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ABSTRACT 
 

Introduction. 
 

Cortical and white matter structural abnormalities in Anorexia Nervosa (AN) have been recently 

investigated, but no attempt has been made to explore the organizational patterns that govern the 

relationships between different brain areas and to characterize the neurobiology of the disorder in the 

different stages of its course. Aims of the present work are to characterize cortical and white matter 

network architecture by means of different structural indices and computational techniques, to observe 

the presence of any correlation between clinical variables and networks characteristics and to 

investigate the structural organizational patterns in the different stage of AN course.   

Methods and Materials. 

38 patients with acute AN, 38 healthy controls and 20 patients in full remission from AN were included 

in this study. All participants underwent high-resolution MRI. An analysis of cortical structural co-

variance was performed using cortical thickness and gyrification indices. The anatomical complexity of 

the cortex was explored by means of Fractal Dimension (FD). Connectomic tools were applied to DTI 

tractography data to investigate the white matter network architecture. 

Results. 

Patients with AN showed unbalanced integration and segregation properties in cortical thickness, 

gyrification and DTI networks both on global and regional levels. Patients with a poor outcome at a 

three years follow-up assessment showed higher segregation measures and lower small-worldness in 

the gyrification network. The FD analysis revealed a reduced cortical complexity in the AN group.  

Discussion. 

Alterations in structural covariance patterns in AN are likely to reflect the metabolic consequences of 

the disorder as well as deviations in normal developmental trajectories. Lower FD in AN indicates a 

reduction of cortical complexity in the acute stages of the disorder and evidenced that this structural 

index is sensitive to the effects of malnutrition. 
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INTRODUCTION 

 

ANOREXIA NERVOSA 
 
Anorexia Nervosa (AN) is a severe psychiatric disorder of multifactorial etiology that typically develops 

during adolescence, is characterized by a high female/male ratio and by high co-morbidity and mortality 

rates. From a psychopathological point of view, pivotal elements of the disorder are an intense fear of 

weight gain and a distortion of the body image, which results in an extreme caloric restriction and in 

other compensatory behaviors such as purging or excessive exercise (American Psychiatric Association, 

2013; Zipfel et al., 2015).  

The incidence rates in AN have been estimated at 490 per 100000 person-years in a large community 

study (Keski-Rahkonen et al., 2007), with the highest incidence rates among females aged 14 to 19 years 

(Javaras et al., 2015). The lifetime-prevalence of AN substantially changed after the introduction of 

DSM-5 diagnostic criteria. In particular, the transition from DSM-IV to DSM-5 has caused increased 

diagnosis rates in the full-threshold diagnoses and a reduction of sub-threshold diagnoses (Smink, van 

Hoeken, & Hoek, 2013). Using DSM-5 criteria, a recent research estimated a lifetime-prevalence of AN 

at 3.6% in a sample of 16-20 years old female population (Mustelin et al., 2016). In the last three 

decades the AN incidence seems to have reached a plateau, but a decrease in its age of onset has been 

highlighted (Angela Favaro, Caregaro, Tenconi, Bosello, & Santonastaso, 2009).  

AN is characterized by variable clinical course and outcome. The clinical course of AN is often relapsing 

and protracted, leading to high rates of disability and to high burdens on families, society and national 

health systems. Across studies examining patients 10 to 20 years after diagnosis, just under half of 

patients achieved full recovery, another third remained symptomatic but demonstrated some 

improvement, and 20% remained chronically ill (Steinhausen, 2002). The prognosis of AN is strongly 

influenced by the time between the onset and its recognition. Early recognition and early treatment 

seem to predict more favorable outcomes, while long delays between onset of illness and initiation of 
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treatment is associated with worse course and outcome (Steinhausen, 2002). In AN, mortality rates are 

higher than in any other psychiatric disorder, mainly as the result of the serious clinical complications.  A 

large meta-analysis conducted on a total of 35 studies and on 6009 subjects evidenced an annual 

mortality rate of 5.10 deaths per 1000 person-years, of which 1.3 deaths resulted from suicide (Arcelus, 

Mitchell, Wales, & Nielsen, 2011). Also suicide attempts are frequently reported in AN. A study on a 

large cohort of AN patient (n=432) reported that 17% of them endorsed at least one suicide attempt 

(Bulik et al., 2008), and a review conducted in 2006 by Franko and Keel reported that clinical correlates 

of suicide attempts included purging behaviors, depression, substance abuse and history of childhood 

physical or sexual abuse (Franko & Keel, 2006).  

Many studies have reported elevated co-morbidity rates in individuals with AN, also evidencing that the 

ability to identify the presence of co-morbidities is of high importance for addressing therapeutic 

choices (Salbach-Andrae et al., 2008). The most common psychiatric disorders that occur with AN are 

Major Depressive Disorder, with reported lifetime prevalence rates ranging from 9,5% to 64,7% in those 

with restrictive AN and from 50 to 71,3% in those with AN binge-purge subtype (Fernandez-Aranda et 

al., 2007). Anxiety Disorders and Obsessive-Compulsive disorders are also frequently diagnosed in 

comorbidity with AN (Halmi et al., 2003; Swinbourne et al., 2012). The onset of anxiety disorders often 

precedes the onset of AN and their frequency among AN patients ranges from 25% to 75%. With regard 

to OCD symptoms, 68% of AN patients of the restrictive type and 79,1% of those of the binge 

eating/purging type present lifetime obsessions and compulsions (Halmi et al., 2003).  

 

THE ROLE OF STRUCTURAL NEUROIMAING IN THE UNDERSTANTING OF THE 
PATHOGENETIC PATHWAYS TO ANOREXIA NERVOSA 
 
The etiology of AN is complex and multifactorial and the role of the involved factors should be 

distinguished in predisposing, precipitating and perpetuating. Either biological and genetical, as well as 

psychological and sociocultural factors (Rose & Frampton, 2011) have a role.  
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In last years, advances in neuroimaging techniques, alongside the presence of increasingly powerful 

computational methods, have allowed great progresses in the identification of the neurobiological 

substrates that characterize AN etiology and progression (Guido K. W. Frank, Favaro, Marsh, Ehrlich, & 

Lawson, 2018; Guido K.W. Frank, 2014). In this context, structural neuroimaging has the advantage of 

evaluating substrates that are not influenced by acute emotional and motivational states (J. A. King, 

Frank, Thompson, & Ehrlich, 2018). However, since to date the long-term effects of weight loss and 

starvation on the brains of patients with EDs are largely unknown, studies conducted in currently ill or in 

recovered patients are intrinsically limited in describing cause-effects relationships, because it is not 

possible to disentangle structural alterations pre-existent to the disorder from the consequences of 

malnutrition. In other words, research should address not only the role of genetic and environmental 

risk factors on the brain, but also the effects of the disorder on developmental trajectories, in order to 

fully understand the pathogenetic pathways to disease, and to distinguish causes from consequences 

(Angela Favaro, 2013).  

The main challenge with the interpretation of structural neuroimaging findings in AN is in the ability to 

recognize which pathogenic mechanisms underlie specific brain alterations. In fact, alterations in the 

brain structure could result from multiple causes that can in turn act differently depending on the stage 

of the disorder in which they occur. Coherently with this, is particularly important to adopt a staging 

model of AN that could help in distinguishing those factors that contribute to the onset of the disorder 

from those that are caused by the disorder itself in a neurodevelopment context (Angela Favaro, 2013). 

A proper staging of the course of AN is also important from a therapeutic perspective, since it allows to 

design treatment programs tailored to the phase of the illness (Treasure, Stein, & Maguire, 2015).  

To date, structural neuroimaging studies in AN focused on Gray Matter (GM) or White Matter (WM) 

evaluation. GM evaluations used both Voxel Based Morphometry (VBM) and Surface Based 

Morphometry approaches (SBM) (J. A. King et al., 2018; J Seitz, Herpertz-Dahlmann, & Konrad, 2016; 

Titova, Hjorth, Schiöth, & Brooks, 2013). VMB allows to investigate cortical volume and density, while 
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SBM allows to estimate Cortical Thickness and Gyrification indices. WM estimations mainly focused on 

Fractional Anisotropy (FA) (Landman et al., 2007). FA describes how diffusive processes vary in the 

different spatial directions and is a good marker of WM integrity. An increase in FA (FA values range 

from 0 to 1) reflects an increased diffusivity in the direction parallel to the fiber and a reduced 

diffusivity in the perpendicular directions. Alterations in FA values can reflect different pathogenetic 

processes, such as inflammation, edema, demyelination, gliosis and axonal loss (Agarwal et al., 2009; 

Dong et al., 2004).  

A novel approach in the neuroimaging of AN consists in applying connectomic measures to structural 

indices, in order to investigate the structural architecture of neural circuits and to describe the mutual 

relationships between different brain areas (Sporns, 2010). From a neurobiological perspective, 

neurocircuits represents a highly sensitive interface between biological and environmental factors, 

being continuously modeled accordingly to developmental demands and to external contingencies. 

Infancy and adolescence are very important and peculiar developmental windows, as they are 

characterized by greater brain plasticity rates (DeFelipe, 2006). During these critical periods, the 

exposure to specific risk factors may have important effects on neurocircuit modeling, that may results 

in conditions of vulnerability (Angela Favaro, 2013). A connectomic approach is particularly useful in 

understanding changes in both local and global brain dynamics that are associated with a pathological 

process or behavior in a neurodevelopment context (Morgan, White, Bullmore, & Vértes, 2018).  

 

STATE OF THE ART IN THE STRUCTURAL NEUROIMAGING IN ANOREXIA NERVOSA 
 

GREY MATTER EVALUATION 
 
The study of the brain macrostructure requires T1-weighted MRI. For the evaluation of grey matter, two 

methods can be identified: voxel-based morphometry (VBM) (Ashburner & Friston, 2000) and surface-

based analysis (SBA) (B. Fischl & Dale, 2000; Bruce Fischl, Sereno, & Dale, 1999).  
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In VBM, two quantities are used to measure morphometric properties: volume and concentration (i.e. 

the amount of gray matter per unit of intracranial volume). This technique performs a non-linear 

registration to spatially normalize the T1-weighted image of a subject to a group template and to 

establish a voxel-per-voxel correspondence across subjects. This process creates a map of how far each 

voxel in the input image must move to land at the matching point in the template image. Then, these 

deformed brain images are segmented in different tissue classes and smoothed so that each voxel 

represents the average of itself and its neighbors. A voxel-wise statistical analysis is performed to 

compare brains from different subjects.  

In SBA, the morphometric measures are computed by geometrically modelling the cortical surface. In 

particular, in SBA, the cortex is modeled as a mesh of triangles whose vertices are used as coordinates. 

The knowledge of these coordinates allows the spatial manipulation of the cortex and the computation 

of different morphometric measures. For example, the cortical surface area can be computed by 

summing up the areas of the triangles, the cortical thickness is computed as the distance between the 

white and pial surfaces and the curvature is a measure of how sharply the cortex is folded at each point. 

VBM studies in AN have been exhaustively meta-analyzed (Jochen Seitz et al., 2014). The two most 

comprehensive meta-analyses conducted to date showed quite consistent results and identified a 

marked reduction in GM in patients with acute AN (Jochen Seitz et al., 2014; Titova et al., 2013). The 

main concerns with VMB studies in AN are represented by the small sample sizes and by the 

heterogeneity of age in the experimental samples. Overall, studies on adolescents showed more 

homogeneous results and more pronounced GM volume changes in comparison to adult ones. The 

regions that have been shown to be more susceptible to GM changes appeared to be Cingulate Gyrus, 

Hippocampus and Midbrain. With some exceptions, recovered AN patients tend to show nearly 

normalized brain volumes after weight gain. Short-term weight gain in longitudinal studies resulted in 

about half of GM and CSF changes being normalized relatively quickly upon initial weight gain (on 

average after 4 months) (Jochen Seitz et al., 2014).  
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SBM studies in AN are inconsistent as regards findings, methodological approaches and recruitment 

criteria.   

A significant reduction of cortical thickness in underweight patients with AN was reported by different 

studies, although it has not been always replicated (Bär, de la Cruz, Berger, Schultz, & Wagner, 2015; 

Bernardoni et al., 2016; Lavagnino et al., 2016) . Inconsistent findings across different studies were 

probably due to differences in experimental samples. The duration of the disease and the age of the 

patients are likely to be the main sources of these differences. There is to date only one longitudinal 

observation estimating cortical thickness in patients with AN. This longitudinal study showed a 

substantial restoration of CT after an average of three months of weight recovery (Bernardoni et al., 

2016). Regional findings showed reduced CT mainly in parietal and frontal regions (Bär et al., 2015; 

Fuglset et al., 2016) but involved brain areas are quite heterogeneous across studies. Lavagnino et al. 

(2018), in a recent study, performed a region-based analysis that showed a mixed pattern with AN 

patients showing higher values of cortical thickness in comparison to healthy controls in orbital and 

insular areas and lower values in superior frontal cortex.  

Regarding cortical gyrification, Favaro et al. (Angela Favaro, Tenconi, Degortes, Manara, & 

Santonastaso, 2015) observed the presence of significant alterations in the parietal and frontal cortex of 

adult patients with AN; hypogyrification in these areas was not correlated with weight loss, body mass 

index, cortical thickness or dehydration (Angela Favaro et al., 2015). Furthermore, these alterations 

were not present in patients with a good clinical outcome, regardless of their body weight and recovery 

status. On the contrary, in a mixed sample of adolescents and adults, Bernardoni et al. (Bernardoni et 

al., 2018a) found that an almost complete normalization of cortical folding after weight gain and weight 

restoration was the main predictor of increased gyrification during treatment (Bernardoni et al., 2018a). 
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WHITE MATTER EVALUATION 
 
In recent years, a marked increase in studies evaluating white matter in AN by means of Diffusion 

Tensor Imaging (DTI) has been observed. However, these studies considered low and heterogeneous 

samples and used different multi-subjects analysis approaches (Voxel-Based Morphometry, Tract-Based 

Spatial Statistics, Probabilistic and Deterministic Tractography). Furthermore, a recent research has 

raised methodological issues in the investigation of the fornix, which is shown to be structurally altered 

in five DTI studies in AN. In fact, in acute AN, the increased volume of the ventricles seems to lead to a 

partial volume effect (PVE) that alters the diffusion index of the fornix (Kaufmann et al., 2017).  For all 

these reasons, the results of DTI studies in AN should be interpreted with caution.  

Overall, DTI studies in patients with acute AN evidenced heterogeneus FA alteration in several WM fiber 

tracts, suggesting the presence of a lower WM integrity. A recent research, conducted by Philippou and 

colleagues on a sample of 26 patients with restrictive AN showed widespread WM alteration, with 

largest differences in Corona Radiata, Corpus Callosum and Superior Longitudinal Fasciculus (Phillipou et 

al., 2018). Alterations in these regions were replicated by another recent TBSS analysis (Gaudio et al., 

2017). Interestingly, in a longitudinal analysis, Vogel and colleagues observed FA alterations in similar 

areas than Philippou et al. and Gaudio et al., but with a different direction (increased FA in Corona 

Radiata, Corpus Callosum, Anterior and Posterior Thalamic Radiation, Anterior and Posterior limb of 

internal capsula, inferior longitudinal fasciculus) (Vogel et al., 2016). Increased FA was also observed by 

Frank et al. (Guido K.W. Frank, Shott, Hagman, & Yang, 2013) Travis et al. (2015) and Cha et al. (Cha et 

al., 2016), who evidenced complex patterns of FA alterations in AN. Frank and colleagues found higher 

FA in left superior longitudinal fasciculus, bilateral anterior corona radiata, bilateral inferior fronto-

occipital fasciculus, and lower FA in left fornix, bilateral cingulum, right forceps major, right superior, 

left posterior corona radiata in AN patients when compared to healthy controls. Travis and colleagues 

(2015) evidenced increased FA in anterior thalamic radiations and in left anterior superior longitudinal 

fasciculus, and lower FA in right anterior superior longitudinal fasciculus, in fimbria-fornix and in the 
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motor subdivision of corpus-callosum in patients with AN with respect to healthy controls. The studies 

that showed patterns of increased FA in patients with AN are all conducted on adolescent patients with 

relatively short illness duration and are likely to reflect a sort of reaction of the developing brain to the 

toxic effects of malnutrition, dehydration or starvation. To investigate whether the nature of DTI 

findings reflected state or trait disorder related features, few studies to date have focused on patients 

recovered from AN. Among them, only one evidenced the presence of WM alterations in patients 

recovered from AN, while the others reported no differences in WM structures between recovered 

patients and healthy controls.  A recent longitudinal observation focused on a sample of 46 patients 

with AN before and after a partial weight restoration (at least 10% of BMI increase). The study 

replicated findings about reduced FA in the fornix and corpus callosum and found an increased FA in the 

corticospinal tract in the acute state of malnutrition. All these alterations normalized with weight gain 

at the follow up assessment (Boehm et al., 2016). The normalization of DTI alterations with weight 

recovery confirms the results of another longitudinal observation conducted by Vogel and colleagues, 

but not the findings of Cha and collaborators, who found a persistence of higher FA values in regions 

near to the lateral Orbito Frontal Cortex and in the Nucleus Accumbens in recovered AN patients (Cha 

et al., 2016; Vogel et al., 2016).  

A meta-analysis conducted by our research-group in 10 DTI studies in AN identified two clusters of 

decreased FA in patients with AN that are located in the left caudate and in left thalamus (Meneguzzo & 

Collantoni et al., in prep.). In the following Table, the studies that investigated WM in patients with AN 

to date are reported.  
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Table 1. DTI studies in AN 
 

Study 
Diagnosis/ 
Diagnostic 

criteria 

N 
AN 

N 
HC 

Age 
AN 

Age 
HC 

BMI 
AN at 

the 
scan 

BMI 
HC 

Illness 
duration 
Years(DS) 

Medicated 

Bang et al., 
2017 

recAN 
DSM IV 

22 22 
27.62 
(5.06) 

26.10 
(4.75) 

20.45 
(1.69) 

21.83 
(1.80) 

2.83 
(2.31) 

3/22 

No differences AN-HC. 

Shott et al., 
2016 

 

recAN 
DSM IV 

24 24 
30.3 
(8.1) 

27.4 
(6.3) 

20.83 
(2.37) 

21.64 
(1.26) 

5.90 
(5.21) 

6/24 

recAN showed increased white matter connectivity between bilateral insula regions and ventral 
striatum left insula and middle orbitofrontal cortex and right insula and medial prefrontal cortex. 

FA was reduced in recAN compared with HC in anterior corona radiata, external capsule, and 
cerebellum including the corticopontine tract, corpus callosum, anterior thalamic radiation, 

inferior, and middle cerebellar peduncle as well as inferior fronto-occipital and uncinate 
fasciculus. 

Zhang et al., 
2016 

 

recAN 
DSM IV 

24 
(23 
f/ 1 
m) 

31 
21.33 
(4.54) 

20.90 
(3.91) 

20.13 
(1.51) 

21.99 
(3.02) 

6.01 
(2.87) 

none 

No differences in mean total fiber count between groups. recAN showed abnormal modularity 
involving frontal, basal ganglia, and posterior cingulate nodes. 

Yau et al., 2013 
 

recAN 
DSM IV 

12 10 
28.7 
(7.9) 

26.7 
(5.4) 

21.2 
(1.5) 

22.0 
(1.1) 

5.67 
(5.21) 

none 

No differences in FA. recAN showed lower mean diffusivity in frontal, parietal and cingulum 
white matter relative to control women. 

Hayes et al., 
2015 

AN 
DSM IV-TR 

8 8 
35 

(11) 
36 (9) n/a n/a 16 (6) 8/8 

Reduced FA in AN in bilateral anterior limb of capsula interna, left inferior fronto-occipital 
fasciculus, right anterior cingulum. Increased FA in AN in the left fornix crus. Deterministic 

multitensor tractography suggested increased white matter connectivity in prefrontal and left 
occipitoparietal corticies and decreased in thalamus in AN. 

Frank et 
al.,2013 

AN 
DSM IV 

19 22 
15.4 
(1.4) 

14.8 
(1.8) 

16.2 
(1.1) 

21.3 
(1.9) 

 11/19 

Reduction of FA in AN in left fornix, bilateral cingulum, right forcepts major, right superior and 
left posterior corona radiata. Increased in AN in left superior longitudinal fasciculus, bilateral 

anterior corona radiata and bilateral inferior fronto-occipital fasciculus. 

Philippou et 
al., 2018 

 

AN 
DSM-5 

23 26 
22.01 
(5.42) 

22.61 
(3.12) 

16.71 
(1.18) 

22.83 
(3.38) 

5.35 
(4.62) 

n/a 

Widespread FA decreases with one significant cluster that encompassed the corpus callosum, the 
left and right corona radiate, the superior longitudinal fasciculus and the right posterior thalamic 

radiation. 

Gaudio et al., 
2017 

AN 
DSM-IV-TR 

18 16 
15.7 
(1.6) 

16.3 
(1.5) 

16.2 
(1.2) 

21.1 
(1.9) 

0.41 
(0.15) 

none 

FA reduced in AN in the left anterior and superior corona radiata and left superior longitudinal 
fasciculus. 

Hu et al., 2017 

AN 
DSM-IV 

8 14 
17.6 
(2.2) 

19.1 
(3.1) 

14.3 
(1.3) 

20.1 
(1.7) 

0.87 
(0.52) 

n/a 

AN patients revealed a decrease in FA in the left superior frontal gyrus, medial frontal gyrus, 
anterior cingulate cortex, middle frontal gyrus, inferior frontal gyrus, thalamus, and bilateral 
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insula. Positive correlations between the mean FA value of the left inferior frontal gyrus, insula as 
well as thalamus and BMI in AN patients. 

Kaufmann et 
al., 2017 

 

AN 
DSM 5 

25 25 
22.8 
(4.8) 

23.36 
(3.4) 

13.83 
(1.33) 

21.07 
(1.93) 

6.8 (4.9) 11/25 

Reduced FA in the fornix in AN, but disappeared completely after correcting for free water. 

Canna et al., 
2017 

 

AN 
DSM 5 

16 16 
25.3 
(1.6) 

26.1 
(3.5) 

16,8 
(1,6) 

21.1 
(1.6) 

AN: 7.9 
(6.9) 

 
none 

No significant differences in the mean FA of the corpus callosum. 

Cha et al., 
2016 

 

AN 
DSM 5 

22 18 
19.5 

(2.42) 
20.5 

(2.95) 

17.3 
(1.24) 

 

21.2 
(1.63) 

 
n/a none 

An increase in FA was observed in the dorsolateral PFC, superior frontal gyrus, and cerebellum; a 
decrease in FA was observed in the cerebellum.  Mean FA of the whole brain white matter did 

not significantly differ between the groups. 

Vogel et al., 
2016 

 

AN 
DSM IV 

22 21 
15.03 
(1.60) 

 

15.17 
(1.28) 

15.36 
(1.08) 

20.34 
(2.59) 

1 (1) 2/22 

Increased FA in bilateral frontal, parietal and temporal areas (including the bilateral superior 
region of corona radiata, corpus callosum anterior, anterior and posterior thalamic radiation, 

anterior and posterior limb of the internal capsule as well as the left inferior longitudinal 
fasciculus) in AN patients at admission compared to controls. Exploratory longitudinal analysis 

showed this FA increase to be partially normalized after weight rehabilitation. 

Pfuhl et al., 
2016 

 

AN 
DSM IV 

 
35 35 

16.1 
(2.8) 

16.4 
(2.6) 

14.70 
(1.31) 

20.75 
(2.98) 

n/a none 

No differences AN-HC. 

Frank et al., 
2016 

 

AN 
DSM IV 

26 26 
23.23 
(5.26) 

24.39 
(3.49) 

16.23 
(1.09) 

21.61 
(1.21) 

6.62 
(5.65) 

16/26 
 

AN subjects had greater structural 
connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower 

connectivity from orbitofrontal cortexand amygdala to the hypothalamus 

Travis et al., 
2015 

 

AN 
DSM IV 

15 15 
16.6 ± 

1.4 
17.1 ± 

1.3 
16.0 
(1.2) 

21.4 
(2.1) 

1.36 
(0.95) 

2/15 

Reduced FA in AN in right anterior superior longitudinal fasciculus, bilateral fimbria fornix, motor 
subdivision of corpus callosum. Increased FA in AN in right anterior thalamic radiation, left 

anterior superior longitudinal fasciculus. 

Nagahara et 
al., 2014 

 

AN 
DSM IV 

17 18 
23.8 

(6.68) 
26.2 
(5.6) 

13.6 
(1.3) 

19.9 
(2.0) 

4.93 (4.9) 6/17 

AN patients showed a significantly lower FA value in the left cerebellum. Significant positive 
correlations between the mean FA value of the left cerebellar hemisphere cluster and BMI, as 
well as between the mean MD value of the cluster in the anterior body of the fornix and the 

duration of illness 

Via et al., 2014 
 

AN 
DSM IV 

19 19 
28.37 
(9.55) 

28.63 
(8.58) 

17.03 
(1.09) 

21.09 
(1.80) 

6.53 
(6.03) 

5/19 

AN patients showed significant FA decreases in the parietal part of the left superior longitudinal 
fasciculus (included the temporoparietal junction and surrounded the posterior insular cortex 

and the temporal and parietal opercula). 

Frieling et al., 
2012 

 

AN 
DSM IV 

12 20 
26.84 
(6.94) 

24.80 
(2.60) 

15.18 
(1.39) 

19.60 
(0.94) 

  

AN showed bilateral reductions of FA maps in the posterior thalamic radiation which includes the 
optic radiation, and the left mediodorsal thalamus. 
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Kazlouski et al., 
2011 

 

AN 
DSM IV 

16 17 
23.9 
(7) 

25.1 
(4) 

16.5 
(1) 

21.5 
(1) 

7.5 (8) 8/16 

AN showed clusters of significantly reduced FA in the bilateral fimbria- fornix, fronto-occipital 
fasciculus, and in posterior cingulum WM. In the AN group, Harm Avoidance was predicted by 

left and right fimbria-fornix FA. 

von 
Schwanenflug 

et al., 2018 

AN 
DSM IV 

56 56 
15.9 
(2.9) 

16.2 
(2.9) 

14.66 
(1.34) 

20.62 
(2.44) 

1.21 
(0.91) 

n/a 

FA was significantly reduced in the callosal body in AN. 
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NEW PARADIGMS AND FUTURE DIRECTIONS IN STRUCTURAL NEUROIMAGING: FROM 
STRUCTURE TO NETWORKS 
 
The hypothesis that psychiatric disorders arise from a disrupted organization of interconnected neural 

systems is not new, and has been supported by several studies that investigated the functional 

connectivity patterns between distinct brain areas. The idea that the complex cognitive, emotional and 

behavioral alterations that characterize psychiatric disorders derive from a complex alteration of neural 

connectivity arose a huge interest in recent years and highlighted the potentialities of applying network 

neurosciences tools to psychiatric research (Fornito, Zalesky, & Breakspear, 2015). Within neuroimaging 

research, the study of brain networks proceeded on two distinct methodological lines: the first focuses 

on small networks of different brain regions by means of correlation analysis or independent 

component analysis (Damoiseaux et al., 2006; Fox et al., 2005), while the second focuses on the studies 

of large networks by means of complex system science tools (Bullmore & Sporns, 2009; Rubinov & 

Sporns, 2010; Sporns, 2006). Since the brain is a complex system per definition, the use of complex 

system science to evaluate its architecture seems to be particularly appropriate and is having an ever-

increasing application (Danielle S Bassett & Sporns, 2017; Fröhlich, 2016). A specific characteristic of 

complex systems is that they display organized structural and functional patterns that results from a 

selective coupling between different elements. These patterns are achieved by means of an intricate 

system of different types of connectivity that are displayed on different scales, from micro- to macro-

scales.  

A mathematical description of complex systems of interconnected elements is provided by Graph 

Theory (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). A graph consists of a connection matrix 

which describes pairwise relationships between discrete entities that are called nodes. Connections 

between nodes are called edges. Edges can be either directed, if the direction of the interaction 

between two nodes is specified, or undirected, if the interaction between the nodes has no direction.  A 

graph can be represented both graphically, by nodes (eg, circles) and edges (eg, arrows or lines), or 
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mathematically by an adjacency matrix (which can be also called connection matrix). In this n-b-n 

adjacency matrix (where n is the number of nodes) each node is defined by a row and a corresponding 

column. In undirected networks, the adjacency matrix is symmetrical (Rubinov & Sporns, 2010).  

From a graph, a lot of parameters can be obtained by applying a set of different mathematical formulae. 

One of the most relevant parameters of a graph is the degree. The degree of a node is the number of 

connections that connect it to other nodes. The degree distribution of a real network is estimated from 

the degree of all nodes of the network, and indicates the range on which the degree of the nodes that 

constitute the network varies. Nodes can be connected by single edges (neighbor nodes) or by 

sequences of intermediate nodes and links. Ordered sequences of unique edges and intermediate 

nodes are called paths, while sequences of non-unique edges are called walks. The correlation between 

the degrees of connected nodes is defined as assortativity. Positive assortativity values indicate that 

high-degree nodes are likely to connect to each other, while negative values of assortativity indicate 

that nodes with high degree tend to connect with nodes with low degree (Noldus & Mieghem, 2014).  

The measures that characterize a network can be distinguished and classified in:  

1. Local segregation properties that quantify the tendency of a network to form regions of nodes 

that are strongly interconnected with each other and poorly connected to the other nodes of 

the graph. 

2. Global integration properties that quantify how much a network is capable of a globally 

distributed and efficient communication. 

3. Influence and Centrality measures that analyze the role that some nodes assume within the 

network, according to their relevance in managing connectivity and information transmission.  

 

Integration measures:  

 

1. Path length is the minimum number of edges that must be traversed to go from one node to 

another. A measure of the typical separation between two nodes in the graph is given by the 
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average shortest path length, also known as characteristic path length. Characteristic path 

length is defined as the mean of geodesic lengths over all couples of nodes (Boccaletti et al., 

2006).  

2. Global efficiency is a measure of efficient information transfer and is inversely related to path 

length. A fully connected network has maximal global efficiency, while in a fully disconnected 

network the global efficiency has a minimal value (Latora & Marchiori, 2001). 

Segregation measures:  

 

1. The clustering coefficient of a node indicates the density of connections between the neighbors 

of the node. The clustering coefficient of a network is computed as the average of clustering 

coefficients across nodes (Onnela, Saramäki, Kertész, & Kaski, 2005). 

2. Local efficiency has a role similar to the clustering coefficient, representing a nodal measure of 

the average efficiency within a local subgraph (Latora & Marchiori, 2001). 

3. The modularity measures the correlation between the probability of having an edge that 

connect two nodes and the probability that those nodes are parts of the same community. The 

most important algorithm for the computation of modularity is the Girvan Newman (GN) one, 

which works by recursively removing the edges with the highest betweenness until a good 

separation in single communities is found (Newman & Girvan, 2004). Modules are defined as 

local communities of highly interconnected nodes which are poorly connected with other 

regions.  

Centrality and influence measures:  

 

In a network, some nodes are more densely connected, able to promote integrative processes and 

influential than others. Such nodes are defined as “hubs” (Martijn P. van den Heuvel & Sporns, 2013). 
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Hubs can be identified by several parameters. The simplest index used to identify a hub is the degree. 

Nodes with a high degree manage more connections and are likely to influence many other network 

nodes. Nodes with a high degree can handle connections with different modules or within a single 

module. Hubs that have many inter-modules interactions are called connector hubs and have a high 

participation coefficient, while hubs that have many intra-modules connections are called provincial 

hubs and have a low participation coefficient.  Other measures of centrality are based on the idea that a 

node is as influential as it can exert a control over the flow of information (Sporns, 2010). From these, 

the betweenness centrality estimates the relevance of a node as the fraction of all shortest paths in the 

network that pass through that node. Nodes with high betweenness centrality are crossed by many 

short paths and exert a high influence over the information stream. Brain Hubs were demonstrated to 

form a so-called “rich club”, that is characterized by the tendency of high degree-nodes to be more 

densely connected among themselves than with nodes with a lower degree. Rich club regions, 

computed by DTI techniques, include the superior parietal cortex, the precuneus, the superior frontal 

cortex, the putamen, the hippocampus and thalamus in both right and left hemispheres (M. P. van den 

Heuvel & Sporns, 2011).  

 

Small world properties:  

Small-world properties combine high clusterization levels and short path length characteristics. In a 

network with small-world properties all nodes are linked through relatively few intermediate steps, 

even though most nodes maintain only few direct connections and mainly with their neighbors. A small-

world network is placed in an intermediate position between regular and irregular networks and is 

mathematically characterized by an equal combination of their characteristics. Small-world brain 

networks exhibit the ability to use a relatively small number of long-distance connections to synchronize 

the overall information flow and the advantage to use local connections to locally processing the 

information (Danielle Smith Bassett & Bullmore, 2006a; Watts & Strogatz, 1998). 
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Structural  network extraction:  

Structural brain networks can be mapped by means of different parameters. Studies that investigate the 

architecture of the brain cortex compute structural connection patterns from cross-correlations in 

cortical thickness or gyrification data, while studies that investigate white matter architecture uses 

diffusion imaging and tractography data. The computation of a structural network entails different 

steps. The first requires the parcellation of the brain in different areas. Different anatomical parcellation 

schemes are specifically available for this purpose.  Step 2 requires the choice of the metrics on which 

connectivity can be estimated (cortical thickness, gyrification, DTI). Step 3 requires the computation of 

an association matrix with the correlation values between different brain areas.  Step 4 requires the 

choice of a threshold to generate an adjacency matrix from the association matrix: different thresholds 

will generate graphs of different sparsity or connection density, and so network properties can be 

explored over a range of different thresholds. At step 5 network parameters can be computed by 

comparing the observed network with the “null” distribution of equivalent parameters estimated in 

random networks (with the same number of nodes and connections) (Patric Hagmann et al., 2007; 

Rubinov & Sporns, 2010).  

 

 
Figure 1. Main steps involved in the computation of structural networks 
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Cortical structural  co-variance patterns 
 
The opportunity to use graph theory tools to investigate the cortical structural patterns derives from 

the observation that inter-individual differences in the structure of a brain region often covary with 

inter-individual differences in other brain regions (P Lerch et al., 2006). This phenomenon, known as 

structural co-variance, is likely to reflect different cellular and molecular mechanisms that arise from 

connectivity processes (Gong, He, Chen, & Evans, 2012). Several observations highlighted that the 

synapses between neurons have a NMNDA-dependent trophic effect on neuronal development, and 

that synchronous firing induces neuroplasticity and synaptogenesis (Burgoyne, Graham, & Cambray-

Deakin, 1993). At the microanatomic level, these mechanisms are evidenced to determine coordinated 

grow processes and to shape the structural inter-relations between different neural communities (Katz 

& Shatz, 1996).  

More in details, coordinated neurodevelopment could arise both from activity-independent and 

activity-dependent processes: 1) activity-independent processes rely mainly on genetic factors. For 

example, correlated genetic influences have been showed to contribute to the formation of structural 

correlations between areas of the frontal-parietal network (Rimol et al., 2010; Schmitt et al., 2008; 

Thompson et al., 2001), and the 5-HTTLPR polymorphism of the gene for the serotonin transporter was 

observed to contribute in the determination of structural co-variance patterns between the amygdala 

and the anterior cingulate cortex (Pezawas et al., 2005).  2) Activity-dependent mechanisms rely mainly 

on cognitive and behavioral processes. Obviously, the relations between structural co-variance patterns 

and cognition/behaviors are partially genetically determined, but the brain morphology, as well as the 

inter-relations between different areas, have been demonstrated to be specifically modified by learning 

and training mechanisms (Hyde et al., 2009; Lv et al., 2008; Maguire et al., 2000).  

From a psychiatric perspective, the investigation of how the patterns of structural inter-regional 

correlation emerge during childhood, adolescence and the first adulthood is particularly interesting.  
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During these periods, neuroplasticity mechanisms are fundamental for driving the fine-tune of the brain 

maturation accordingly to experiences-driven stimuli (experience-expectant plasticity), and any 

alterations in their progression could be involved in determining the emergence of several psychiatric 

conditions (Hensch, 2004a).  

Over the most intense phases of neurodevelopment, axonal connections continuously undergo forming 

and reforming processes, sharing mutually trophic effects and leading to synchronized maturational 

changes. From a structural perspective, the periods of greater maturational changes are characterized 

by a combination of synaptic pruning and myelination. Interestingly, the processes that determine a 

reduction in cortical thickness during adolescence - i.e. synaptic pruning - seem to be particularly 

important in shaping the structural co-variance between different brain regions (Zielinski, Gennatas, 

Zhou, & Seeley, 2010). Moreover, maturational transformations are largely determined by functional 

needs and are characterized by different timing and speed-rates during development.  

A longitudinal study that investigate the development of structural covariance networks showed an 

increase of integration properties during late childhood (from 8,5 to 11,3 years) and an opposed 

maturational pattern from 11 to 15 years (increase of segregation properties) (Khundrakpam et al., 

2013). During the adulthood, the curve tends to stabilize. This study also highlighted that connectivity 

patterns showed a shift in regional maturation patterns. In fact, early connectivity was showed to 

establish mainly in primary sensorimotor areas, while later developmental phases were characterized 

by greater connectivity processes in paralimbic and association regions. A change in structural co-

variance patterns during development is confirmed by a recent research conducted by Khundrakpam et 

al. (2013), who observed a peak in the number of hubs during late childhood and a shift in their 

distribution toward frontal regions during adolescence. In another longitudinal observation, Alexander-

Bloch and colleagues (Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013) considered a large sample 

of young people (aged 9-22 years at enrollment) who underwent a different MRI scans over a follow-up 
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period of 6-12 years. Their findings support the hypothesis that correlated anatomical structure 

between brain regions results from similarities in developmental trajectories.   

Structural co-variance studies conducted on psychiatric populations showed mixed results. Patients with 

Schizophrenia showed increased segregation properties (increased clustering) and lower integration 

characteristics (longer path length) in cortical thickness covariance network (Collin et al., 2013; Y. Zhang 

et al., 2012). The distribution of the most central nodes also appears to be altered in patients with 

schizophrenia, with a decrease in frontal hubs and an increase in primary sensory and/or paralimbic 

nodes (Alexander-Bloch, Giedd, & Bullmore, 2013a; Rubinov & Bullmore, 2013). Studies evaluating co-

variance gyrification patterns in schizophrenia evidenced alterations in regional topological properties, 

with increased segregation of insula and dorsolateral prefrontal cortex and reduced integration of 

structures around the central sulcus and lateral occipital cortex (Palaniyappan, Park, Balain, Dangi, & 

Liddle, 2015). Moreover, patients with first episode psychosis who showed a poor treatment response 

had higher segregation and reduced integration properties in the global gyrification covariance network 

when compared to healthy controls and to patients who showed good response to therapy 

(Palaniyappan et al., 2016a). Covariance network computed with cortical thickness indices in patients 

with MDD showed higher clusterization and lower small-world properties. Furthermore, patients with 

major depression showed altered nodal centrality in different components of the Default Mode, 

Salience and Central Executive Networks. Depression severity scores were shown to correlate with 

alterations in nodes within the default mode and executive networks (Wang et al., 2016). In Obsessive-

Compulsive Disorder, a network approach with cortical thickness measures evidenced the presence of 

alterations in node efficiency that was mainly located in sensory-motor regions. No differences were 

detected at a global level in a comparison between patients with OCD and healthy controls (Kim, Jung, 

Kim, Jang, & Kwon, 2013).    
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White matter co-variance patterns 

 

Recent advances in diffusion MRI and tractography methods allow to map structural connectivity by 

tracing white-matter fibers with deterministic or probabilistic approaches (Descoteaux, Deriche, 

Knösche, & Anwander, 2009). Studies that compared anatomical tract tracing and DTI in non-human 

species found a considerable agreement between the two approaches and demonstrated that DTI is a 

valid and reliable method to non-invasively investigate the structure and the orientation of white 

matter tracts (Danielle S Bassett & Sporns, 2017; Dauguet et al., 2007). The application of DTI 

techniques to the study of developmental changes showed a progressive decrease in diffusivity and an 

increase in anisotropy with age. These changes are likely to reflect an increase in myelination rates and 

continue until early adulthood (Morgan et al., 2018).  

Studies evaluating structural connectivity by means of DTI during development in healthy subjects 

evidenced non-uniform maturational changes. Wierenga and colleagues (2016), found a gradual 

strengthening in frontal and parietal intra-lobes connectivity and lower changes in subcortical, temporal 

and occipital regions in the age range of 7 to 23. Furthermore, they reported a decrease in overall path 

length and an increase in nodes strength with age. The observation of a progressive increase in 

integration characteristic of the network (increment in global efficiency, nodal strength, number of 

modules), alongside a reduction in segregation properties (decrease in local clustering and modularity) 

during development is replicated by several papers (Cao, Huang, Peng, Dong, & He, 2016). The increase 

of integration and robustness characteristics during maturational trajectories probably reflects the 

refinement of connectivity patterns that sustain the dynamic modeling of brain circuits.   

Notably, during development, it was shown that the increase in fractional anisotropy correlated with 

changes in network properties. This observation allows to hypothesize that the maturation of the 

network is probably sustained by processes that lead to a change in WM structure such as 

synaptogenesis, myelination and synaptic pruning (Cao et al., 2016; Tau & Peterson, 2010).  
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Graph theoretical analysis on DTI measures in patients with schizophrenia revealed a preserved small-

world organization but an impaired connectivity in a distributed network of nodes that include medial 

frontal, parietal/occipital and the left temporal lobe. Schizophrenic patients also showed a less efficient 

connectivity architecture at a global level. An analysis of hubs distribution in schizophrenia revealed a 

reduction in rich club density, that was associated with lower levels of global communication properties 

and with a reduced hubs centrality (Martijn P. Van Den Heuvel et al., 2013). In Major Depressive 

Disorder, a connectome analysis on DTI data evidenced the presence of lowered structural connectivity 

in areas of the default mode network and in regions associated to emotional and cognitive processing. 

The global network characteristics were demonstrated to be conserved in patients with MDD 

(Korgaonkar, Fornito, Williams, & Grieve, 2014). An abnormal white matter connectivity, by means of 

graph theory, was also evidenced in patients with ADHD in several brain networks encompassing 

cortico-cortical, subcortical, cerebellar and frontostriatal circuits. Moreover, different connectivity 

patterns were evidenced to characterize different clinical ADHD subtypes (Hong et al., 2014).  

 

 

 

 

Figure 2. Connectome maps measured with DTI in patients with major depression, ADHD and 
schizophrenia. The depression data were first described by Korgaonkar et al. (2014), the the 
ADHD findings by Hong et al. (2014), and the changes in schizophrenia by Zalesky et al. (2011). 
Figure is taken from Fornito et al., 2017 
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Economy of the brain organization – a developmental perspective in the evaluation of psychiatric 
disorders 
 

The idea that the topological organization of the brain requires a trade-off between complexity and 

containment of the wiring cost is not recent. Between the end of the nineteenth and the beginning 

of the twentieth century, Ramon Y Cajal clearly proposed that the evolution of neuronal 

morphology and connectivity is closely linked to the need to preserve basic resources such as space 

and biological material: “all the various conformations of the neuron and its various components 

are simply morphological adaptations governed by laws of conservation for time, space and 

material” (Sporns, 2010).  

The recent ever-increasing application of complex networks science to the study of the brain has 

resumed and expanded this concept, allowing to highlight that the organization of the brain arises 

from the negotiation between more parsimonious segregation properties and more expensive 

integration characteristics. The Small-World organization of the brain sustains this 

integration/segregation trade-off and allows the co-existence of both intra and extra-modular 

connections (Danielle Smith Bassett & Bullmore, 2006b).  

Different developmental and anatomical mechanisms are involved in determining the wiring of 

neural networks according to energy saving and space optimization needs. For example, as 

previously described, the macroscopic network organization in modules and clusters successfully 

sustains this functional and structural demand. Another developmental mechanism that is 

supposed to fundamentally contribute in optimizing the length and the wiring cost of neural 

connections is cortical folding. It has been hypothesized that the convolution of the cortex derives 

from tension-based processes due to the physical force exerted by axonal connectivity (Van Essen, 

n.d.). The development of cortical gyrification would therefore results in an optimization of the 

axonal conduction cost, as well as in an increase of brain complexity. 
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The identification and the evaluation of possible alterations in the architecture of the brain both at 

regional and global levels requires the application of different tools that can explore different aspects of 

the network organization.  

While graph theory indices provide a good description of the rules that govern the anatomical 

correlations between different areas at a macroscopic level (Bullmore & Sporns, 2009), the 

characterization of the hierarchical and multilevel organization of the brain, of its convolutive patterns 

and of its macroscopic and microscopic complexity can be provided by other specific measures (i.e. 

gyrification, fractal dimension) (Benoit B. Mandelbrot, 1983). 

Figure 3. a) the cortical sheet is physically tethered from only one side, initially by radial glial 
processes. b) specific cortico-cortical projectons are established. b) and c) tension along obliquely 
oriented axonal trajectories between nearby cortical areas would generate tangential force 
components that tend to induce folds at specific locations in relation to areal boundaries. Outward 
folds tend to occur between neighboring areas that are only weakly interconnected d) along inward 
folds, cells in deep layers shoud be stretched radially, making these layers thinner. In outward folds 
cells in deep layers shoud be stretched radially, making these layers thicker.  
Figure taken from Van Essen, 1997. 
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The study of the maturation of connectivity patterns is very important in a psychiatric perspective, since 

most of the etiopathogenetic factors that determine psychiatric disorders are likely to intervene during 

the first two decades of life (Paus, Keshavan, & Giedd, 2008). A description of the organization of the 

connectome using graph theory tools allowed to conceptualize a theoretical model for psychiatric 

illnesses, called “developmental miswiring” – i.e., the abnormal development of neural interactions in 

the connectome (DiMartino et al., 2014). The evaluation of anomalies in developmental trajectories 

differentiate between processes that alter the timing of networks maturation from processes that alter 

the nature of specific developmental mechanisms. The ability to exactly individuate the nature of 

developmental alterations requires to know the rules that govern the normal wiring of the connectome 

at the different stages of brain maturation. For this purpose, an increasing number of efforts are 

directed to characterize the organizing principles of the normal connectome by means of longitudinal 

MRI studies in pediatric populations (Collin & Van Den Heuvel, 2013; P Hagmann et al., 2010; Menon, 

2013).  

The key brain maturational mechanisms that, if altered, may lead to a developmental miswiring and to 

the emergence of neurologic and psychiatric symptoms have been recently investigated. A recent 

review provides a comprehensive description of the five fundamental processes that characterize 

normal neuro-developmental trajectories (DiMartino et al., 2014):   

1- Shift from short to long-range connectivity: a continuous shift from short-length to long-length 

connectivity patterns occurs from infancy to early adulthood. Although this change is gradual 

during maturation, it appears to be prominent in the first two years of life (Gao, Alcauter, Elton, 

et al., 2015; Gao, Alcauter, Smith, Gilmore, & Lin, 2015; Yap et al., 2011).  

2- Community structure changes: the application of graph theory tools to the study of brain 

development has allowed to observe a dynamic change in the composition of segregation and 

integration properties. In infancy, a prevalence in connections between anatomically proximal 
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regions is observed, while more distributed properties emerge with age (Fair et al., 2007; 

Fransson, Åden, Blennow, & Lagercrantz, 2011; Thomason et al., 2014).  

3- Maximizing the cost-efficiency of information transfer: graph theory allows to assess the 

efficiency of the flow of information between neurons both at global and regional levels. While 

global efficiency seems to remain quite stable across developmental phases, local efficiency is 

showed to increase across childhood (Cao et al., 2014; Dennis et al., 2013). A fundamental role 

in the determination of local efficiency is played by brain hubs, that constitute the structural and 

functional backbone of brain connectivity. During development, a shift in hubs location is 

observed: during infancy hubs are preferentially located in primary sensory and in motor areas, 

whereas in first adulthood they are preferentially located in posterior cingulate, insula and in 

other heteromodal/associative regions (Fransson et al., 2011). Interestingly, hub-regions 

appears to be particularly vulnerable in neurological as in psychiatric conditions. One meta-

analysis conducted by Crossley and colleagues (2014) on more than 20,000 patients, evidenced 

that gray matter lesions were more likely to occur in hub regions than in non-hub ones over 26 

different neurological and psychiatric disorders. Hub regions are particularly expensive elements 

within the connectome, since they manage a lot of information. Because of their centrality, 

integrativity and energetic cost, brain hubs are particularly vulnerable to pathogenic processes 

that affect the brain. Furthermore, when affected by disease-related processes, they are likely 

to spread damages in other brain regions. The exact role of hub-regions in the pathogenesis of 

psychiatric disorders is still to clarify, but preliminary observations in schizophrenia highlighted a 

compensatory over-activation of high degree nodes during the first phases of the disorder, 

followed by a later functional deterioration (Crossley et al., 2016; Fornito et al., 2015). 

4- From subcortico-cortical to cortico-cortical connectivity: in childhood, subcortical-cortical 

connections tend to be stronger, while in adulthood, a shift in cortico-cortical connectivity is 

observed (Greene et al., 2014; Supekar, Musen, & Menon, 2009).  
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5- Interhemispheric connectivity: the development of both inter-hemispheric and intra-

hemispheric connectivity is crucial during brain maturation. Structural and functional MRI 

studies focused mainly on corpus callosum changes and in hemispheric specialization during 

development. During brain maturation, a progressive increase in hemispheric specialization is 

observed. This process is necessary to support, both structurally and functionally, a specific 

subset of functions and determines a gradual inter-hemispheric asymmetry (Tzourio-Mazoyer, 

2016).   

Among psychiatric disorders, Anorexia Nervosa offers a unique and fascinating model, because it is 

likely to have a neurodevelopmental origin, but also is associated to severe metabolic alterations that 

might interfere with the neurodevelopmental trajectory given that the onset is often during 

adolescence or first adulthood.  These metabolic repercussions can critically alter the balance between 

the energy optimization needs and the global integration properties of the brain network. Thus, the 

application of multimodal imaging and computational techniques to the study of AN could be 

particularly useful to explore not only the complex nature of its neurobiological underpinnings, but also 

the consequences of starvation and malnutrition on brain maturation.   

 

Brain structural complexity 
 
The complexity of central nervous system arises from its organization in interconnected elements that 

can be studied on different scales, from the microscopic (molecules and cells) to the macroscopic (brain 

areas and their relationship to behavior and diseases) (Fröhlich, 2016) . As previously described, the 

application of graph theory to neuroimaging data allows to investigate the neural architecture on a 

macroscopic level, and is not able to offer a detailed anatomical description of the brain structure.  

The possibility to describe the brain anatomical complexity by means of neuroimaging tools is a 

fascinating and tricky challenge, given the complex rules that shape its structure. The Euclidean 

geometry demonstrated great limits in describing very complex structures, and for this reason, in recent 
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years, alternative geometrical models have been considered. Among these, fractals geometry was 

specifically proposed for its ability to capture complex and convoluted structures that are characterized 

by a multilevel and hierarchical organization (Mandelbrot, 1983).  

From a mathematical point of view, fractal objects result from the iterative repetition of equal parts 

over infinity length scales and are characterized by “self-similarity”. This mathematical approach allows 

to describe and quantify the complexity of several natural objects with an irregular morphology, and is 

particularly useful to quantify the complexity of the brain cortex. Fractal geometry estimates the 

complexity of a structure by means of a specific index, called fractal dimension (D) (Jelinek & Fernandez, 

1998; Dušan Ristanović & Milošević, 2012). D quantifies the geometrical complexity of an object by 

describing its space-filling properties. The most frequently used method to compute D is the box-

counting algorithm, that allows to measure the level of occupancy of an analyzed object regardless of its 

fractal or non-fractal nature.  The box-counting method works by reiteratively covering fractal objects 

by means of meshes of differently dimensioned squares, and then counting the number of squares 

occupied by the studied figure (Di Ieva, 2016; Dusan Ristanović, Stefanović, & Puskas, 2013). From this 

computation, a logarithmic function is extracted, and the slope of the function is referred as fractal 

dimension (D). The convoluted pattern of the brain cortex is particularly suited to be studied by fractal 

geometry tools, which were successfully integrated in the surface-based computation of MRI images (R. 

D. King, Brown, Hwang, Jeon, & George, 2010). Intuitively, since gyrification is the main source of 

cortical complexity, FD could be considered an indirect measure of cortical folding. Different literature 

observations show that FD correlate not only with the gyrification index but also with cortical thickness 

(Madan & Kensinger, 2016). This is a very interesting finding, since FD may be able to integrate the 

information given by cortical thickness and gyrification, also providing further and non-redundant 

information. The use of this parameter appears to be particularly useful in the study of 

neurodegenerative processes, where the effect of the decrease in cortical thickness is observed to be 

complementary with the impact of the reduction in cortical convolution.  
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As previously stated for the application of connectomic tools to structural neuroimaging in AN, the 

application of FD to surface-based processed MRI images in this disorder could represents an 

interesting research perspective, since it is an uncommon condition in which a reduction of cortical 

thickness and gyrification does not occur in degenerative neurological conditions or in elderly 

populations. 

 

 

 

 

 

  

Figure 4. The effects of cortical thickness and gyrification index on measured fractal dimensionality. A coronal 
slice from a control subject and its fractal dimension is seen in the box. The remaining cortical ribbons are 
artificial data demonstrating fractal dimension changes with variation in cortical thickness, gyrification index, 
and the combination of the two. The fractal dimension of each slice is indicated by the number below the 
slice. Changes in cortical thickness are seen on the horizontal axis with increasing thickness towards the right. 
Changes in the gyrification index are seen on the vertical axis with values increasing upwards. Thinning of the 
cortical ribbon and lowering the gyrification index both decrease fractal dimensionality (From King et al., 
2010) 
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Main research questions 

Aims of the present work are to characterize cortical and white matter network architecture by means 

of different structural indices and computational techniques, to observe the presence of any correlation 

between clinical variables and networks characteristics and to investigate the structural organizational 

patterns in the different stage of AN course.  

We hypothesize that cortical architecture and white matter connectivity patterns are altered in patients 

with AN. We also hypothesize the presence of specific alterations in covariance patterns of areas that 

are crucially involved in the neurobiology of the disorder and the presence of specific correlations 

between structural abnormalities in AN and specific clinical variables of the disorder. 
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Small-world properties of brain morphological characteristics in 
Anorexia Nervosa 
 

 

INTRODUCTION 
 

Anorexia Nervosa (AN) is a disabling psychiatric disorder that typically develops in female individuals 

during adolescence or early adulthood and is characterized by important psychopathological, cognitive, 

medical and neurobiological abnormalities (Zipfel et al., 2015).  

From a neurobiological perspective, in recent years many efforts have been made to describe brain 

volumetric and morphological characteristics in AN, and to characterize them according to the course of 

the disease and to different clinical variables. Since AN often has its onset in adolescence (Favaro et al., 

2009), a neurodevelopmental approach is of particular relevance in order to understand both the role 

of early etiopathogenetic factors (Favaro et al., 2006) and the consequences of malnutrition on 

maturational trajectories.  

The possibility to describe changes of morphological and structural brain features over 

neurodevelopmental trajectories allows better interpretation of how their alterations can impact on 

different psychiatric conditions.  

The study of cortical thickness and gyrification indices are very promising within this context, since their 

modifications through the stages of brain maturation and their ability to capture anatomical and 

structural cortical properties are increasingly characterized (J. A. King et al., 2018). During 

neurodevelopment, cortical thickness reflects processes that determine a progressive reorganization of 

grey matter structure, following the demands for greater plasticity in childhood and the subsequent 

need for higher synaptic stability in later phases. Gyrification, on the other hand, begins prior to birth to 

shape an efficient architecture that shows great structural stability over time, with the exception of a 

gradual decrease in the amount of cortical complexity during adolescence (White, Su, Schmidt, Kao, & 

Sapiro, 2010).  
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The different stability of these two structural parameters along neurodevelopmental trajectories is 

explained by their different sensitivity to environmental influences; cortical thickness is in fact more 

influenced by environmental exposures than gyrification, which maintains a more constant 

configuration during development (Armstrong, Schleicher, Omran, Curtis, & Zilles, 1995; Thambisetty et 

al., 2010).  

Previous literature on brain morphology in patients with AN is inconsistent as regards findings, 

methodology approaches and recruitment criteria. A significant reduction of cortical thickness in 

underweight patients with AN was found by two studies, which did not detect a direct correlation 

between cortical thickness and body mass index (BMI) (Bär et al., 2015; J. A. King et al., 2015). 

Furthermore, in a longitudinal study, Bernardoni and colleagues (Bernardoni et al., 2016) observed a 

substantial normalization of thickness after an average of three months of weight restoration 

(Bernardoni et al., 2016). On the contrary, Lavagnino and colleagues (Lavagnino et al., 2016), while 

observing a correlation between cortical thickness and BMI in the AN group, did not find any differences 

between patients and controls (Lavagnino et al., 2016). Moreover, in a recent study, a comparison 

between patients with AN (both acute and recovered) and healthy women revealed higher cortical 

thickness values in orbitofrontal areas (Lavagnino et al., 2018).  

Regarding cortical gyrification, Favaro et al. (Favaro et al., 2013) observed the presence of significant 

alterations in the parietal and frontal cortex of adult patients with AN; hypogyrification in these areas 

was not correlated with weight loss, body mass index, cortical thickness or dehydration (Favaro et al., 

2013). Furthermore, these alterations were not present in patients with a good clinical outcome, 

regardless of their body weight and recovery status. On the contrary, in a mixed sample of adolescents 

and adults, Bernardoni et al. (Bernardoni et al., 2018a) found that an almost complete normalization of 

cortical folding after weight gain and weight restoration was the main predictor of increased gyrification 

during treatment (Bernardoni et al., 2018a). 
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In the context of clinical neurosciences, evaluation of the morphological and structural parameters of 

the cerebral cortex on the basis of their covariance patterns is becoming increasingly important since it 

can reveal an inter-regional structural dependence, which derives from a complex mixture of 

developmental, genetic and environmental factors (Alexander-Bloch, Giedd, & Bullmore, 2013b). The 

possibility of characterizing the topology of cortical structural and morphological networks provides an 

insight into the ways in which the architecture of cortical connectivity negotiates the trade-off between 

network wiring cost and topological complexity and allows a very promising perspective on the study of 

psychiatric illnesses (Bullmore & Sporns, 2012; Fornito, Bullmore, & Zalesky, 2017). One of the most 

promising potentials of complex network sciences is in fact related to its applicability for uncovering 

developmental mechanisms that lead to aberrant brain network organization and for tracking the 

progression of disease in degenerative disorders (Fornito & Bullmore, 2015). The topological complexity 

of brain networks lies mainly in the need to mediate the presence of locally and globally distributed 

connections and to support, during neurodevelopment, the shift from a modular and segregated 

organization to a more globally integrated one. This integrated configuration fulfills the maturation of 

high order association areas and of higher cognitive abilities. In this perspective, it is of great interest to 

explore the connectomic characteristics of Anorexia Nervosa: a disorder that is hypothesized to have an 

early neurodevelopmental origin (Favaro et al., 2013), but also represents a potential restraint for brain 

maturational trajectories due to starvation and consequent malnutrition. Our purpose in this paper is 

therefore to apply the tools provided by connectomics and graph theory to deepen our knowledge of 

the neurobiological complexity of AN, by trying to define any abnormalities in covariation patterns of 

gyrification and cortical thickness and then to assess the rules that govern the structural cortical 

topological interaction in the disorder. The secondary aim of the present study was to compare 

covariation patterns of the same brain characteristics between patients who have recovered at a 3-year 

follow-up and those who have not. We hypothesized that graph theory metrics in AN would support a 
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delay in neurodevelopmental trajectories in both cortical measurements, with higher network 

segregation parameters and lower integrative properties in patients with AN compared to HC. 

 

METHODS AND MATERIALS 
 

The sample included was the same as a previous study (Favaro et al., 2013). A total of 58 patients with 

AN (38 with acute AN and 20 fully recovered) and 38 HC participated. Definition of full recovery was: 1) 

having had AN (according to DSM-5 criteria) in their lifetime; 2) being asymptomatic for at least 6 

months at the time of scanning (mean remission time: 38.5 months (standard deviation=33.2; range 6-

96). Amenorrhea, food restriction, bingeing, excessive exercise, fasting and purging in the last 6-months 

were exclusion criteria for the recovered AN group and none of the subjects of this group relapsed in 

the year following scanning. Table 1 describes the main characteristics of the sample. Exclusion criteria 

for both patients with AN and HC were male gender, history of head trauma or injury with loss of 

consciousness, history of any serious neurological or medical illness, active use of systemic steroids, 

pregnancy, active suicidality or major depression, history of substance/alcohol abuse or dependence, 

bipolar disorder or schizophrenia spectrum disorder, moderate mental impairment (IQ<60) or learning 

disabilities, use of medications other than antidepressants, and known contraindications to 

conventional MRI. History of any psychiatric disorder and any first-degree relatives with an eating 

disorder were additional exclusion criteria for HC.  

When recruiting subjects, some individuals were not included in the study: five AN patients, because of 

antipsychotic medication and/or severe comorbidity; one AN patient and one healthy subject, because 

of previous head trauma; and one AN patient, 3 recovered AN and 2 healthy subjects, who were not 

available to undergo MRI scanning when scheduled. The final sample comprised of 96 women (38 with 

AN, 20 recovered from AN, and 38 HC). No further subject was excluded due to problems with scan 

acquisition, gross brain alterations, or motion artifacts. 



 38 

The experimental sample was composed of different diagnostic subtypes: 32 subjects (84%) were 

restrictive AN, 6 patients were binge eating/purging AN subtype and 7 patients presented restrictive AN 

subtype with a history of binge eating or purging behavior. 14 AN patients and 4 recovered women 

were under drug treatment with antidepressants at the time of scanning (acute AN: 1 patient 

mirtazapine, 2 paroxetine, 2 escitalopram, 1 fluoxetine, 8 sertraline; recovered AN: 4 sertraline). 

Ethical permission was obtained from the ethics committee of the Hospital of Padova. After completely 

describing the study to the subjects, informed written informed consent was obtained.  

 

Table 2. Baseline characteristics of the three groups 
 

 
AN patients 
(n=38) 

Recovered AN 
patients 
(n=20) 

Healthy 
women 
(n=38) 

AN vs. HW 
Recovered 
AN vs. HW 

 mean (SD) mean (SD) mean (SD) z (p) z (p) 

Age 26.1 (7.2) 26.3 (7.1) 25.3 (6.3) 0.38 (0.701) 0.44 (0.659) 

Age at onset 18.3 (5.1) 17.7 (3.2) = = = 

Duration of illness 
(months) 

78.6 (81.3) 45.7 (65.0) = = = 

Duration of recovery 
(months) 

= 45.4 (46.8) = = = 

Baseline BMI 15.8 (1.8) 19.6 (1.6) 21.7 (2.9) 7.42 (0.000) 3.09 (0.002) 

Lowest BMI 14.0 (1.8) 15.7 (1.4) 19.8 (2.5) 7.17 (0.000) 5.35 (0.000) 

Education 14.2 (2.2) 14.2 (2.7) 15.5 (2.3) 2.63 (0.009) 1.94 (0.053) 

Edinburgh laterality 
index 

57.2 (37.6) 60.6 (35.2) 55.1 (42.0) 0.52 (0.603) 0.32 (0.749) 

Left cortical thickness 2.45 (0.14) 2.52 (0.10) 2.53 (0.09) 2.65 (0.008) 0.23 (0.819) 

Right cortical 
thickness 

2.44 (0.14) 2.51 (0.11) 2.52 (0.08) 2.86 (0.004) 0.34 (0.731) 

Left gyrification 2.85 (0.09) 2.90 (0.09) 2.90 (0.11) 1.97 (0.048) 0.23 (0.819) 

Right gyrification 2.85 (0.10) 2.90 (0.09) 2.90 (0.12) 1.83 (0.067) 0.07 (0.941) 

According to the false discovery rate method, differences are significant at p<0.027 
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Clinical Assessment and Follow-up  

All subjects were investigated for AN diagnosis with a diagnostic interview according to the Eating 

Disorders Section of the Structured Clinical Interview for DSM-5 (American Psychiatric Association, 

2013) and, also, a semi-structured interview was used in order to collect socio-demographic and clinical 

variables (Favaro et al., 2012, 2013). More information about subjects’ psychopathology was achieved 

using the Hopkins Symptoms Checklist (Derogatis, Lipman, Rickels, Uhlenhuth, & Covi, 1974) and  the 

Eating Disorders Inventory (Garner, Olmstead, & Polivy, 1983) in order to gather depressive and 

obsessive-compulsive symptoms, as well as those regarding eating disorders. Furthermore, the 

Edinburgh Handedness Inventory (Oldfield, 1971) was used to assess handedness. 

All subjects were recruited at the Hospital of Padova Eating Disorder Unit, fulfilled the diagnosis for AN 

according to DSM-IV criteria and were medically stable at the time of scanning. Most patients had 

restricting type anorexia nervosa at the time of scanning (see Supplementary Materials).  Follow-up for 

acute AN patients was performed about 3 years later (average 3.4 years, range 1.7-3.9). A semi-

structured interview, the Eating Disorders Section of the Structured Clinical Interview for DSM-IV, as 

well as information from informants, were used to achieve diagnostic information at follow up. Full 

recovery was defined as: normal range weight, regular menses, absence of binge/purge/avoidance or 

restrictive eating behavior, absence of excessive physical activity, body dissatisfaction or drive to 

thinness for at least 3 months before the evaluation. Table 2 shows the baseline characteristics of the 

two groups with a different outcome at follow up.  
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Table 3. Baseline data of the two outcome groups 
 

 
AN patients with recovery at 
follow-up 
(n=13) 

AN patients without 
recovery 
(n=24) 

 

 mean (SD) mean (SD) z (p) 

Age 25.5 (6.8) 26.7 (7.5) 0.33 (0.74) 

Age at onset 20.8 (6.5) 17.1 (3.8) 2.26 (0.02)* 

Duration of illness 
(months) 

40.0 (46.2) 101.2 (89.8) 2.10 (0.04) 

Baseline BMI 14.9 (1.75) 16.2 (1.6) 2.23 (0.03) 

Lowest BMI 14.4 (2.0) 13.7 (1.7) 1.13 (0.26) 

Duration follow-up 
(years) 

3.2 (0.6) 3.5 (0.5) 1.48 (0.14) 

Final BMI 19.6 (2.1) 17.7 (4.3) 
3.66 
(<0.001)* 

According to the false discovery rate method, differences are significant at p<0.027 

 

MRI Data Acquisition 

Scans were collected using a Philips Achieva 1.5 Tesla scanner equipped for echo-planar imaging. High-

resolution 3D T1-weighted anatomical images were acquired using a gradient-echo sequence 

(repetition-time=20 sec, echo time=3.78 msec, flip angle= 20°, 160 sagittal slices, acquisition voxel 

size=1×0.66×0.66 mm, field of view 21-22 cm). 

 

Data Processing and Statistics 

Data processing was performed using the FreeSurfer package (Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital, Boston) version 5.3.0. The preprocessing was carried out according to 

the standard description using the following steps: skull-stripping and intensity correction, gray matter–

white matter boundary determination for each cortical hemisphere using tissue intensity and 
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neighborhood constraints, and finally, tessellation of the resulting surface boundary to generate 

multiple vertices across the whole brain before inflating. 

After cortical reconstruction, the cortex was divided into units based on individual gyral and sulcal 

structures (Destrieux, Fischl, Dale, & Halgren, 2010). The local Gyrification Index (lGI) was measured at 

thousands of points of the reconstructed cortical surface using previously validated algorithms (Schaer 

et al., 2008).  In each vertex, lGI is computed within 25-mm circular regions of interest and represents 

the degree of cortical folding that quantifies the amount of cortex buried with in the sulcal folds in the 

surrounding circular region. An overall hemispheric lGI value was automatically computed. Vertex-wise 

measurements of cortical thickness (B. Fischl & Dale, 2000) were also estimated (Destrieux et al., 2010; 

B. Fischl & Dale, 2000). Surface reconstruction and segmentation were manually inspected and minor 

manual intervention was performed when necessary, according to FreeSurfer user guidelines. The local 

Gyrification Index (lGI) was developed to take account of the three-dimensional nature of the cortical 

surface and was introduced in order to replace the previous two-dimensional linear gyrification 

measures, more susceptible to different kinds of bias. The lGI is a measure of cortical folding and was 

calculate at thousands of points of the reconstructed cortical surface using already validated algorithms 

(Schaer et al., 2008). 

 

Properties of the Connectome and group comparison 

Covariance patterns within connectome are described using integration and segregation properties, 

which are quantified using various graph theory indices. Segregation indicates a modular development 

of related brain regions, while integration results from maturational processes affecting the entire 

brain. Integration was measured using Global Efficiency and Characteristic Path Length; segregation was 

measured using Clustering Coefficient, Modularity and Local Efficiency. We also quantified Small-World 

Index (SWI), a measure of the balance between integration and segregation. All topological properties 
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were computed using Graph Analysis Toolbox (GAT) (http://brainlens.org/tools. html) (Hosseini, Hoeft, 

& Kesler, 2012). 

Between group comparison was performed 2 groups at time, both for cortical thickness and for 

gyrification indices (AN vs HC, AN-rec vs HC, poor-outcome vs good-outcome). Significant differences 

between topological parameters were investigated using a nonparametric permutation test with 1000 

repetition. The numerosity of the original groups were maintained in each repetition by the randomly 

reassignment of the regional data (or residuals) of each participant to one of the two group analyzed, so 

as to obtain an association matrix for each random group. Then, a range threshold of 0.1 to 0.5 with 

increments of 0.05 were applied to each random group in order to estimate the binary adjacency 

matrices. Topological measurements were calculated for all networks and the full density range were 

used in order to compare differences in network measurements. For each iteration, the values of each 

random group across the range of density were plotted and the differences of the different areas under 

the obtained curves were used in order to compute topological proprieties. p values were obtain by 

comparing the results from the actual differences in the curve functions obtained and the null 

distribution of differences. This nonparametric permutation test compared the shapes of the curves 

derived from multiple threshold points (and so from multiple comparisons) and is based on functional 

data analysis (FDA) that allowed to overcome limitations driven by the sensitivity of the analysis 

methodology. 

 

Constructing Cortical Thickness-based Networks  

A 148×148 Pearson’s correlation matrix of Cortical Thickness indices of each parcellated brain region 

was used to create a binary adjacency matrix for each group. Age, Edinburgh Handedness Inventory 

score and mean cortical thickness index were used as covariates. 
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A range of thresholds determined by connection densities (proportions of connections present in a 

graph to all possible connections) varying from 0.1 to 0.5 (increments of 0.05) was used to compare the 

properties of emerging networks. 

 

Constructing Gyrification-Based Networks  

A 148×148 Pearson’s correlation matrix of gyrification indices of each parcellated brain region was used 

to create a binary adjacency matrix for each group. Age, intracranial volume, Edinburgh Handedness 

Inventory score and mean overall gyrification index were used as covariates. 

A range of thresholds determined by connection densities (proportions of connections present in a 

graph to all possible connections) varying from 0.1 to 0.5 (increments of 0.05) was used to compare the 

properties of emerging networks. 

Comparing network measures between patients with different outcome profiles at follow up, the 

minimum density at which fully connected graph was observed was 0.20. Between these groups, the 

range of thresholds used to compare the properties of the networks varied from 0.2 and 0.5 

(increments of 0.05). 

 

Statistics 

Group comparisons were performed by means of nonparametric statistical tests, with false discovery 

rate methods to control for multiple comparisons. 
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RESULTS 

 
 
Table 1 shows the main clinical characteristics of the 3 groups involved in the study, including average 

cortical thickness and gyrification index as found in Favaro et al (Favaro et al., 2013). Differences in 

vertex-wise analyses were reported in our previous paper (Favaro et al., 2013). 

 

Cortical thickness based networks 

Main findings regarding the properties of cortical thickness based networks are reported in Table 3. Hub 

distribution is described in Supplementary Materials. 

 

Patients with AN vs. HC 

Patients with acute AN showed increased segregation measures in terms of Mean Local Efficiency, 

Clustering and Modularity in comparison to HC (Table 3), while, on the contrary, they revealed 

significantly lower patterns of integration as measured by Global Efficiency. 

Both AN patients and HC reported average values of small-wordless greater than 1, but the small-world 

index was significantly higher in patients with acute AN than in HC (Table 3). No regional differences 

were detected either in the segregation or in the integration indices. Figure n.5 graphically represents 

differences in clustering coefficient, mean local efficiency, small-world index and modularity between 

AN group and HC.  
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Figure 5. Differences in clustering coefficient, mean local efficiency, small-world index and modularity 
between AN patients and HC. 
 

 

Patients recovered from AN vs. HC 

No differences emerged in the comparison between the recovered AN and the healthy control group in 

any integration and segregation parameters in either overall or regional networks analysis. In recovered 

patients, mean small-world index was 1.63 (SD=0.53). With regard to segregation measures, mean 

clustering coefficient was 0.45 (SD=0.09), mean local efficiency is 0.71 (SD=0.07) and mean modularity 

was 0.28 (SD=0.09), whereas with regard to integration measures, mean global efficiency is 0.64 

(SD=0.09), and mean characteristic path length was 1.77 (SD=0.26).  
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Table 4. Topological properties of Cortical Thickness-based connectome 
 

According to the false discovery rate method, differences are significant at p<0.027 

 

 

Good outcome patients vs. poor outcome patients  

Patients with a poor outcome and those with a good outcome at a 3-year follow-up assessment did not 

show differences in global network properties. A regional analysis of the between-group differences 

revealed a significantly higher clustering coefficient of the orbital part of the left inferior frontal gyrus in 

the poor outcome group (FDR-corrected permutation-based p values: <0,001) while patients with a 

 AN 
(n=38) 

HC 
(n=38) 

Poor 
outcome 
(n=24) 

Good 
outcome 
(n=13) 

FDA permutation 
test (p-values) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

Small-world index 1.64 (0.46) 1.45 (0.38) 1.66 (0.47) 1.73 (0.55) AN>HC (0.0001) 

Measure of 
segregation 

     

Clusteri
ng  
Coeffici
ent 

0.47 (0.08) 0.39 (0.11) 0.47 (0.08) 0.47 (0.78) AN>HC (0.008) 

Mean 
local 
efficien
cy 

0.72 (0.07) 0.68 (0.09) 0.63 (0.09) 0.63 (0.09) AN>HC (0.005) 

Modula
rity 

0.28 (0.09) 0.19 (0.07) 0.27 (0.08) 0.27 (0.09) AN>HC (0.006) 

Measures of 
integration 

     

Global 
efficien
cy 

0.63 (0.09) 0.64 (0.08) 0.63 (0.09) 0.63 (0.09) AN<HC (0.02) 

Charact
eristic 
path 
lenght 

1.78 (0.29) 1.74 (0.22) 1.78 (0.28) 1.79 (0.29) AN>HC (0.03) 
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good outcome show a higher degree in the same area (FDR-corrected permutation-based p values: 

<0,001).  

Gyrification based networks 

Main findings regarding the properties of gyrification based networks are reported in Table 4. Hub 

distribution is described in Supplementary Materials. 

 

Patients with AN vs. HC 

No differences were detected in integration and segregation measures between patients with AN and 

HC. Both AN patients, HC and recovered AN patients showed small-worldness greater than 1. However, 

the small-world index was significantly higher in patients with acute AN than in HC (Table 4).  

 

Patients recovered from AN vs. HC 

No statistically significant differences were detected in the gyrification based network in the 

comparison between recovered AN patients and HC. In recovered patients, mean small-world index was 

1.81 (SD=0.59). With regard to segregation measures, mean clustering coefficient was 0.54 (SD=0.05), 

mean local efficiency was 0.76 (SD=0.04) and mean modularity was 0.32 (SD=0.11), whereas with regard 

to integration measures, mean global efficiency was 0.62 (SD=0.10), and mean characteristic path 

length was 1.84 (SD=0.36).  

 

Good outcome patients vs. poor outcome patients  

Patients with a poor outcome showed significantly higher clustering and trends towards significantly 

higher mean local efficiency and characteristic path length when compared to patients with a good 

outcome (Table 4). At a regional level, the poor outcome group revealed a higher normalized degree 

index in the inferior part of the right circular sulcus of the insula (FDR-corrected permutation-based p 
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values: <0,001) and a higher normalized clustering of the left superior temporal sulcus (FDR-corrected 

permutation-based p values: <0,001). 

Both groups showed small-worldness greater than 1, but the small-world index was significantly higher 

in the good outcome group. 

 

Table 5. Topological properties of Gyrification-based connectome 

 
AN 

(n=38) 
HW 

(n=38) 

Poor 

outcome AN 

(n=24) 

Good 

outcome AN 

(n=13) 

FDA permutation 

test (p-values) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

Small-world index 1.91 (0.75) 1.75 (0.66) 1.12 (0.01) 1.51 (0.31)  
AN>HC (0.019); 

Good>poor-

outcome (0.02) 

Measures of 

segregation 
     

Clusteri

ng  

Coeffici

ent 

0.53 (0.05) 0.48 (0.06) 0.64 (0.05) 0.57 (0.05) 
Poor>good-

outcome (0.02) 

Mean 

local 

efficien

cy 

0.75 (0.04) 0.73 (0.04) 0.81 (0.04) 0.78 (0.02) 
Poor>good-

outcome (0.03) 

Modula
rity 

0.32 (0.12) 0.29 (0.11) 0.20 (0.05) 0.26 (0.08) = 

Measures of 

integration 
     

Global 

efficien

cy 
0.62 (0.10) 0.63 (0.09) 0.65 (0.08) 0.66 (0.07) = 

Charact

eristic 

path 

lenght 

1.84 (0.37) 1.80 (0.31) 1.77 (0.25) 1.68 (0.17) 
Poor>good-

outcome (0.04) 

According to false discovery rate method, differences are significant at p<0.029 
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Hubs distribution in cortical thickness-and gyrification-based connectomes 

Differences in Hubs distribution were detected in the comparisons between different groups both on 

cortical thickness and on gyrification based networks. Hubs distribution is reported in tables … 

 

 
Table 6. Hubs distribution in cortical thickness-based connectome. Comparison between AN patients and 
HC. 
 

NET HUBS DEGREE (AN) 
 

NET HUBS DEGREE (HC) 

L- Paracentral lobule and sulcus L-Middle frontal sulcus 

L- Middle frontal gyrus 
L- Planum temporale or temporal plane of the 

superior temporal gyrus 

L- Orbital sulci (H-shaped sulci) L-Transverse temporal sulcus 

R- Middle-anterior part of the cingulate gyrus and 

sulcus (aMCC) 
R-Paracentral lobule and sulcus 

R-Long insular gyrus and central sulcus of the insula R-Short insular gyri 

R- Postcentral gyrus R- Postcentral gyrus 

R-Superior frontal sulcus R-Lateral aspect of the superior temporal gyrus 

 R- Temporal pole 

NET HUBS BETWENNESS (AN) NET HUBS BETWENNESS (AN) 

L- Paracentral lobule and sulcus 
L- Middle-anterior part of the cingulate gyrus 

and sulcus (aMCC) 

L- Anterior part of the cingulate gyrus and sulcus(ACC) L- Middle frontal gyrus (F2) 

L- Posterior-dorsal part of the cingulate gyrus(dPCC) L- Postcentral gyrus 

L- Middle temporal gyrus (T2) L- Planum polare of the superior temporal gyrus 

R- Long insular gyrus and central sulcus of the insula 
L- Superior occipital sulcus and transverse 

occipital sulcus 

R- Middle occipital sulcus and lunatus sulcus L- Transverse temporal sulcus 

R- Anterior occipital sulcus and preoccipital notch 

(temporo-occipital incisure) 
R- Short insular gyri 

R- Fronto-marginal gyrus (of Wernicke) and sulcus R- Postcentral gyrus 

 R- Lateral aspect of the superior temporal gyrus 
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Table 7. Hubs distribution in gyrification-based connectome. Comparison between AN patients and HC. 

NET HUBS DEGREE (AN) NET HUBS DEGREE (HC) 

L- Subcentral gyrus (central operculum) and 

sulci 
L-Opercular part of the inferior frontal gyrus 

L- Long insular gyrus and central sulcus of the 

insula 
R- Opercular part of the inferior frontal gyrus 

L- Lateral occupito-temporal gyris (fusiform 

gyrus) 
R-Triangular part of the inferior frontal gyrus 

R- Subcentral gyrus (central operculum) and 

sulci 

R-Vertical ramus of the anterior segment of the lateral 

sulcus (or fissure) 

 R- Superior segment of the circular sulcus of the insula 

 R- Suborbital sulcus 

NET HUBS BETWENNESS (AN) NET HUBS BETWENNESS (HC) 

L- Lateral occipito-temporal gyrus (fusiform 

gyrus, O4-T4) 
L- Anterior part of the cingulate gyrus and sulcus(ACC) 

L- Supramarginal gyrus L- Inferior temporal gyrus (T3) 

R- Superior occipital gyrus (O1) L- Anterior transverse collateral sulcus 

R- Orbital gyri L- Posterior transverse collateral sulcus 

R- Supramarginal gyrus 
R- Middle-anterior part of the cingulate gyrus and 

sulcus (aMCC) 

R- Anterior transverse collateral sulcus R- Supramarginal gyrus 

R- Lateral orbital sulcus 
R- Intraparietal sulcus (interparietal sulcus) and 

transverse parietal sulci 

R- Medial orbital sulcus (olfactory sulcus) R- Inferior part of the precentral sulcus 

R- Superior temporal sulcus (parallel sulcus)  
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Table 8. Hubs distribution in cortical thickness-based connectome. Comparison between AN-rec patients and 

HC. 
 

NET HUBS DEGREE (AN-rec) NET HUBS DEGREE (HC) 

L- Middle-posterior part of the cingulate gyrus and 

sulcus (pMCC) 

L- Long insular gyrus and central sulcus of the 

insula 

L- Straight gyrus, Gyrus rectus 
L- Planum polare of the superior temporal 

gyrus 

L- Marginal branch (or part) of the cingulate sulcus 
L- Posterior ramus (or segment) of the lateral 

sulcus (or fissure) 

R- Posterior-ventral part of the cingulate gyrus 

(vPCC, isthmus of the cingulate gyrus) 
L- Superior temporal sulcus (parallel sulcus) 

R- Anterior transverse temporal gyrus (of Heschl) L- Transverse temporal sulcus 

R- Superior occipital sulcus and transverse occipital sulcus R- Superior parietal lobule (lateral part of P1) 

 R- Postcentral gyrus 

 
R- Anterior transverse temporal gyrus (of 

Heschl) 

NET HUBS BETWENNESS (AN) NET HUBS BETWENNESS (HC) 

L- Anterior part of the cingulate gyrus and sulcus (ACC) 
L- Long insular gyrus and central sulcus of the 

insula 

L- Posterior-ventral part of the cingulate gyrus 

(vPCC, isthmus of the cingulate gyrus) 
L- Postcentral gyrus 

L- Calcarine sulcus 
L- Planum polare of the superior temporal 

gyrus 

L- Marginal branch (or part) of the cingulate sulcus 
L- Posterior ramus (or segment) of the lateral 

sulcus (or fissure) 

R- Cuneus L- Superior temporal sulcus (parallel sulcus) 

R- Posterior transverse collateral sulcus L- Transverse temporal sulcus 

R- Middle frontal sulcus R- Superior parietal lobule (lateral part of P1) 

R- Pericallosal sulcus (S of corpus callosum) 
R- Anterior transverse temporal gyrus (of 

Heschl) 
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Table 9. Hubs distribution in gyrirification-based connectome. Comparison between AN-rec patients and HC. 
 

NET HUBS DEGREE (AN-rec) NET HUBS DEGREE (CTR) 

L- Middle-anterior part of the cingulate gyrus and 

sulcus (aMCC) 
L- Opercular part of the inferior frontal gyrus 

L- Calcarine sulcus R- Triangular part of the inferior frontal gyrus 

R- Middle-anterior part of the cingulate gyrus and 

sulcus (aMCC) 
R- Medial orbital sulcus (olfactory sulcus) 

R- Straight gyrus, Gyrus rectus  

R- Medial orbital sulcus (olfactory sulcus)  

NET HUBS BETWENNESS (AN) NET HUBS BETWENNESS (AN) 

L- Precuneus (medial part of P1) 
L- Anterior part of the cingulate gyrus and 

sulcus (ACC) 

L-Short insular gyri 
L- Planum temporale or temporal plane of the 

superior temporal gyrus 

L- Vertical ramus of the anterior segment of the 

lateral sulcus (or fissure) 
L- Postcentral sulcus 

R- Long insular gyrus and central sulcus of the insula 
R- Middle-anterior part of the cingulate gyrus 

and sulcus (aMCC) 

R- Occipital pole 
R- Lingual gyrus, ligual part of the medial 

occipito-temporal gyrus, (O5) 

R- Calcarine sulcus R- Orbital gyri 

 
R- Intraparietal sulcus (interparietal sulcus) and 

transverse parietal sulci 

 
R- Superior occipital sulcus and transverse 

occipital sulcus 
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Table 10. Hubs distribution in cortical thickness-based connectome. Comparison between patients with a 

good outcome and patients with a poor outcome. 

NET HUBS DEGREE 

(good-outcome group) 

NET HUBS DEGREE 

(poor-outcome group) 

L- Middle frontal sulcus 
L- Middle-anterior part of the cingulate gyrus 

and sulcus (aMCC) 

L- Inferior part of the precentral sulcus L- Superior parietal lobule (lateral part of P1) 

R- Angular gyrus 
L- Intraparietal sulcus (interparietal sulcus) and 

transverse parietal sulci 

R- Middle frontal gyrus (F2) R- Postcentral gyrus 

R- Sulcus intermedius primus (of Jensen) R- Superior frontal sulcus 

 
R- Anterior occipital sulcus and preoccipital 

notch(temporo-occipital incisure) 

NET HUBS BETWENNESS 

(good-outcome group) 

NET HUBS BETWENNESS 

(poor-outcome group) 

L-Middle-anterior part of the cingulate gyrus and 

sulcus (aMCC) 

L- Posterior-dorsal part of the cingulate 

gyrus(dPCC) 

L- Anterior transverse temporal gyrus (of Heschl) 
L- Inferior segment of the circular sulcus of the 

insula 

L- Occipital pole 
L- Superior segment of the circular sulcus of the 

insula 

L- Temporal pole L- Sulcus intermedius primus (of Jensen) 

L- Middle frontal gyrus (F2) R- Occipital pole 

L- Lateral orbital sulcus R- Superior frontal gyrus (F1) 

L- Parieto-occipital sulcus (or fissure) R- Middle occipital sulcus and lunatus sulcus 

R- Inferior segment of the circular sulcus of the 

insula 

R- Anterior occipital sulcus and preoccipital 

notch(temporo-occipital incisure) 

R- Medial orbital sulcus (olfactory sulcus)  
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Table 11.Hubs distribution in gyrification-based connectome. Comparison between patients with a good 
outcome and  

 

NET HUBS DEGREE 

(good-outcome group) 

NET HUBS DEGREE 

(poor-outcome group) 

L- Opercular part of the inferior frontal gyrus L- Anterior transverse temporal gyrus (of Heschl) 

L- Lateral aspect of the superior temporal gyrus R- Opercular part of the inferior frontal gyrus 

R- Lateral orbital sulcus  

NET HUBS BETWENNESS 

(good-outcome group) 

NET HUBS BETWENNESS 

(poor-outcome group) 

L- Opercular part of the inferior frontal gyrus 
L- Posterior ramus (or segment) of the lateral 

sulcus (or fissure) 

L- Lateral aspect of the superior temporal gyrus 
L- Marginal branch (or part) of the cingulate 

sulcus 

L- Inferior frontal sulcus L- Subparietal sulcus 

L- Superior temporal sulcus (parallel sulcus) 
R- Anterior part of the cingulate gyrus and 

sulcus(ACC) 

R- Middle-posterior part of the cingulate gyrus and 

sulcus (pMCC) 
R- Opercular part of the inferior frontal gyrus 

R- Opercular part of the inferior frontal gyrus 

R- Lateral occipito-temporal gyrus (fusiform gyrus, 

O4-T4) 

 

R- Subcallosal area, subcallosal gyrus R- Pericallosal sulcus (S of corpus callosum) 

R- Lateral orbital sulcus  
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DISCUSSION 

 
 
In the last decade many advances have been made in the description of the organizational principles 

that govern the anatomy and the topology of brain structural covariance networks and in establishing 

the relationship between them and functional connectivity patterns (Alexander-Bloch, Giedd, et al., 

2013b). Regional and global structural brain features undergo profound modifications during 

development and establish their covariance properties following complex trajectories that are 

influenced by both genetic predisposition and environmental influences. The biological mechanisms 

underlying thickness and gyrification correlation among cortical areas might impact at different 

developmental stages and their properties should reflect the different mechanisms that influence the 

cortical connective architecture. Several studies have examined thickness and gyrification covariance 

patterns in psychiatric diseases in order to understand whether disruptions in segregation and 

integration properties are measurable and to investigate the candidate biological and developmental 

underpinnings that may explain such alterations (Buchy et al., 2017; Chen et al., 2014; Griffiths et al., 

2016; Palaniyappan et al., 2016b, 2015; Saad et al., 2017). 

In this study we use a connectomic approach by means of cortical thickness and gyrification data to 

study the cortical structural architecture in AN and to evaluate the presence of any imbalance in the 

overall cortical network properties and in regional subnetwork patterns.  

Our results highlighted the presence of a significantly higher segregation of the overall cortical thickness 

network in the acute AN group in comparison to the healthy control group. AN patients in particular 

showed higher local efficiency, modularity and clustering coefficients, which indicate the presence of a 

more topologically localized and less densely distributed connective organization. On the contrary, 

gyrification patterns did not show significant differences between the acute AN and the HC group. The 

observation that cortical thickness networks showed more significant alterations than gyrification based 

networks in acute AN patients is probably due to their different developmental trajectory and to their 
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different sensitivity to environmental changes. While convolution of the cortical surface begins prior to 

birth, establishing its main patterns principally in the fetal and neonatal stages, cortical thickness 

undergoes profound modification during later developmental phases, probably as the result of a fine 

tuning process between brain structure and function (Hensch, 2004b). 

Evidence in the literature regarding the evolution of cortical thickness networks suggests that structural 

networks exhibit a global efficient small-world and modular organization by the time of birth and 

indicates a delayed increase of their integrative properties, which follows maturation of high order 

association areas and refinement of higher cognitive abilities (Cao et al., 2016; Morgan et al., 2018).  

In acute AN patients, our results highlight the presence of significantly higher small-world properties in 

cortical thickness and in gyrification-based networks. These findings could represent the consequence 

of processes that tend to reduce the wiring cost of the global network and could indicate the presence 

of a more economical and less random cortical structural architecture. We can also hypothesize that 

this configuration could represent a consequence of the energy saving needs imposed by AN in the 

acute stage and that the presence of increased small-world properties is due to the attempt to maintain 

an adequate network efficiency despite starvation and malnutrition. This finding is also consistent with 

the clinical observation that many patients describe increased functioning during starvation, at least in 

the initial stages, and better ability in managing emotions, which is considered a maintenance factor 

(Brockmeyer et a l., 2012).  

The present study excludes the presence of any regional differences (which have been found in other 

psychiatric diagnoses) in integration and segregation properties, suggesting that the disorder impacts 

only the global covariation patterns estimated on cortical thickness indices. These results allow us to 

hypothesize that the acute effect of the disease could determine a global network readjustment that 

follows energy saving purposes. Therefore, AN could impact the balance between the wiring cost of the 

network and its integrative communication demand, supporting a less expensive connective 

architecture reconfiguration. 
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To better understand the impact of AN on the cortical structural connectivity architecture and on their 

developmental trajectories we evaluated a sample of AN recovered patients, without finding significant 

alterations either in gyrification or in cortical thickness covariance networks. These results seem to 

confirm the sensitivity of the overall cortical thickness network to the acute effects of the disease. 

The second objective of our study was to explore the impact of gyrification and cortical thickness 

patterns in predicting outcome at follow up, evaluating the presence of possible differences in cortical 

connectivity patterns between “good prognosis” and “poor prognosis” patients. The absence of 

significant differences in the overall cortical thickness network properties between the two groups 

examined is consistent with a high cortical thickness sensitivity to the acute effects of AN, which 

homogeneously impact the cortical thickness covariance patterns in the acute stage of the disease. 

However, regional analysis showed a non-homogeneous pattern, with a significantly lower number of 

connected edges (lower degree) and higher regional clustering of the orbital part of the left inferior 

frontal gyrus in the poor-outcome group. Inferior frontal gyrus is involved in numerous executive 

functions, playing a critical role mainly in cognitive control and in response inhibition. Proper 

maturation of inhibitory abilities is particularly crucial during adolescence, given the detrimental role of 

high levels of impulsivity during this critical developmental period. Interestingly, the transition from 

adolescence to adulthood is characterized by profound differences in the spatial localization of 

inhibitory processing, with a higher recruitment of right IFG in adulthood and a more left dominant 

processing at younger ages (Vara, Pang, Vidal, Anagnostou, & Taylor, 2014).  

Adolescent individuals with AN show a bilateral decrease in gray matter volume in the IFG and the 

volume of this area was found to negatively correlate with both age and age of onset of the disorder 

(Fujisawa et al., 2015). Our observation of higher segregation in the IFG in the group of patients with a 

poor outcome is consistent with the idea that a lower integration of maturation of this area could 

mediate for prognostically unfavorable characteristics of the disorder.  
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Analysis of the role of gyrification-based networks in predicting the outcome at follow up showed the 

presence of a more clustered, segregated and less efficient overall covariance network in the poor-

outcome group. Since gyrification patterns seem to develop mainly during the prenatal stages, our 

results are in line with others that support a neurodevelopmental hypothesis for AN and suggest a role 

of early maturational processes in the characterization of a subgroup of patients with low response to 

treatments.  

Structural networks are proven to have an intimate relationship with functional cortical 

interconnectivity and a fundamental role in the way in which cortical regions structurally mature in 

relation to one another (Khundrakpam et al., 2013; Raznahan et al., 2011). We can hypothesize that the 

higher global segregation of the poor-outcome group and its lower global efficiency could reduce the 

response to treatment by limiting the dynamic functional reconfiguration of the network and the 

information exchange between topologically distant brain areas. 

The finding of a lower integration of gyrification indices in mediating the prognosis of AN is in line and 

expands the previous observation of a lower cortical gyrification in AN patients who show a poor 

outcome at a 3-year follow up (Angela Favaro, Tenconi, Degortes, Manara, & Santonastaso, 2015). In 

particular, since lower structural integration is likely to indicate a slowdown in the maturation of 

connectivity patterns during development, the opportunity to disentangle the role of 

neurodevelopment trajectories on the onset of AN and the impact that the disorder itself has on 

neurodevelopmental trajectories seems to be particularly relevant from a clinical point of view.  

From a regional perspective, patients with a bad prognosis show an increased clustering of the left 

superior temporal sulcus, a higher-order processing region that has a key role in diverse aspects of 

social perception and cognition, including the perception of faces, voices and understanding the actions 

and mental states of others (Vander Wyk, Hudac, Carter, Sobel, & Pelphrey, 2009; Zilbovicius et al., 

2006). The higher clusterization of this area in AN patients who have a poor response to treatment 

indicates, in this clinical population, a preponderance of segregative network characteristics.  
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Patients with a poor outcome also have a reduced degree of the right insula, when compared with 

patients with good prognosis, which indicates a reduced centrality of an area with high integrative 

functions (Craig, 2009). These regional differences are consistent with the high segregation of 

gyrification covariance networks in patients with bad prognosis and suggest a role of highly connected 

areas such as the insula and superior temporal sulcus in determining or mediating the resistance of the 

disorder to conventional treatments. 

This study has several strengths, as well as important limitations, which should be taken into 

consideration. It is the first to analyze the relationships between different cortical structural indices 

using a connectomic framework in AN, and to describe the relationship between structural covariation 

patterns and subsequent outcomes of the disorder. However, particular caution must be applied in 

interpreting brain findings in AN samples, for which it is often difficult to disentangle the effects of early 

developmental factors on the brain and the consequences of starvation.  

In conclusion, the present study highlights the presence of higher segregation and lower integration 

characteristics in the global cortical thickness-based network in patients with acute AN when compared 

to HC. These higher segregation characteristics could be due to a maturational delay, which would 

affect normal development trajectories, or to a protective and energy saving adaptation to the disease. 

However, the presence of small-world properties in AN patients guarantees the presence of non-

random and balanced network properties, in line with the high level of functioning that characterizes 

patients with AN even in their  malnourished status. The differences evidenced between cortical 

thickness and gyrification networks in acute AN patients and the observation of a more clustered and 

segregated gyrification network in patients with a bad prognosis suggest that the covariation patterns 

of these two parameters should be further investigated using longitudinal observations in order not 

only to better understand the long-term consequences of malnutrition, but also to explore the 

possibility of using gyrification and its pattern of covariance network as a measure of outcome.  
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Reduced cortical complexity in Anorexia Nervosa: a Fractal Dimension 
analysis 
 

 

INTRODUCTION 
 

Anorexia nervosa (AN) is a severe psychiatric disorder with a typical onset during adolescence (Angela 

Favaro et al., 2009), characterized by severe and prolonged alterations of energy intake and high levels 

of mortality. Although there is a notable interest in understanding the effects of starvation on the brain 

structure of these patients, a full characterization of brain changes is still at its first stages (Jochen Seitz 

et al., 2014). The onset of AN typically occurs when neurodevelopment is still ongoing (Connan, 

Campbell, Katzman, Lightman, & Treasure, 2003) and it is possible that the effects of malnutrition have 

a different impact in brain areas that are in a sensitive period of growth at the time of AN onset. 

Moreover, there are some evidences that prenatal and perinatal factors are involved in the 

etiopathogenesis of AN and, for this reason, it is not easy to understand how much brain structural 

alterations in patients with AN precede the onset or are a consequence of the disorder. 

Most studies to date employed a Voxel Based Morphometry approach and found a globally reduced GM 

volume, but inconsistent results emerged in the identification of specific regional changes in AN (Jochen 

Seitz et al., 2014). In addition, only few studies found a significant correlation with body weight or 

amount of weight loss, and almost none with age of onset or duration of illness (J Seitz et al., 2016). The 

use of a Surface Based Morphometry approach did not result in more consistent findings (Bernardoni et 

al., 2016; Fuglset et al., 2016; J. A. King et al., 2015; Lavagnino et al., 2016, 2018). Generally, a reduction 

of cortical thickness is described in the different studies, but the extent of the reduction varies from 

almost the whole cortex to about a quarter or one third (Bernardoni et al., 2016; Fuglset et al., 2016). 

Other surface-based methods, such as local gyrification index and cortical folding, have been employed 

to describe brain cortical changes in patients with AN (Bernardoni et al., 2018b; Angela Favaro et al., 

2015; Schultz et al., 2017). Both measures displayed significant alterations in acute patients, but the 
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interpretation of these findings are not clear, since gyrification tends to develop early in childhood and 

its alteration is usually attributed to prenatal or very early insults (White et al., 2010). 

A novel way to quantify and analyze the cortex from a morphological and structural point of view has 

been recently offered by fractal geometry (Kiselev, Hahn, & Auer, 2003), which is specifically designed 

for the analysis of complex structural and morphological patterns (Madan & Kensinger, 2016). The 

application of fractal geometry to neuroscience is consistent with the evidence, already highlighted by 

the increasing application of complex network science to neuroimaging data, that the central nervous 

system is organized in nested and hierarchical organization patterns that need to balance both 

regularity and randomness (Di Ieva, 2016). This multi-level structural organization of the brain seems to 

be well-described by fractal geometry, which is based on the concept of “self-similarity” (Mandelbrot, 

1983).  Since the fractal properties of the cerebral cortex arise secondary to folding (Hofman, 1991) 

structural MRI studies used fractal dimensionality to quantify the morphological complexity of the 

cortex and its convolutional properties both in clinical and non-clinical samples (Cook et al., 1995; 

Nenadic, Yotter, Sauer, & Gaser, 2014; Sandu et al., 2008). 

Two types of fractal dimensionality can be considered, depending on whether the volume of the gray 

matter is included in the computation.  Incorporating the volume of the grey matter into the 

computation ensures that changes in cortical thickness are directly integrated within the fractal 

dimensionality estimation. Thus, interestingly, fractal dimension appears to co-vary with both cortical 

thickness and gyrification (R. D. King et al., 2010). Furthermore, it also appears to demonstrate a great 

sensitivity to cortical atrophy and to age-related differences (Madan & Kensinger, 2016). Cortical 

complexity measured by means of FD has shown both global and regional alterations when examined in 

different psychiatric disorders such as ADHD, schizophrenia, bipolar and obsessive-compulsive disorders 

(Ha et al., 2005; Li et al., 2007; Nenadic et al., 2014; Sandu et al., 2008; Squarcina et al., 2015).  
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In this study, we explored - for the first time - the use of FD to describe the brain cortical alterations in 

patients with AN. We hypothesize a reduction of cortical complexity in acute underweight patients and 

an improvement of this feature after remission. 

 

METHODS AND MATERIALS 
 

The sample included was the same as a previous study (Favaro et al., 2013). 38 patients with acute AN, 

38 HC and 20 patients in full remission from AN were included in this study. Patients who recovered 

from AN had full AN in their lifetime, but were asymptomatic from at least 6 months at the time of 

scanning [mean remission time: 38.5 months (standard deviation533.2); range 6–96]. The main 

characteristics of the sample are reported in table 12. Exclusion criteria for the recovered group were 

amenorrhea, food restriction, bingeing, excessive exercise, fasting and purging in the last 6-months. 

None of the recovered patients relapsed in the year following the study. Exclusion criteria for all 

subjects were male gender, history of head trauma or injury with loss of consciousness, history of any 

serious neurological or medical illness, active use of systemic steroids, pregnancy, active suicidality or 

major depression, history of substance/alcohol abuse or dependence, bipolar disorder or schizophrenia 

spectrum disorder, moderate mental impairment (IQ<60) or learning disabilities, use of medications 

other than antidepressants, and known contraindications to conventional MRI. For healthy women, 

additional exclusion criteria were history of any psychiatric disorder and the presence of first-degree 

relatives with an eating disorder.  

At the time of recruitment, some individuals were excluded from the study: five AN patients was under 

antipsychotic medication and/or reported severe comorbidity; one AN patient and one healthy subject 

reported a previous head trauma; one AN patient, 3 recovered AN and 2 healthy subjects were not 

available to undergo MRI scanning when scheduled. The final sample comprised of 96 women (38 with 

AN, 20 recovered from AN, and 38 HC). No further subject was excluded due to problems with scan 

acquisition, gross brain alterations, or motion artifacts. 
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Ethical permission was obtained from the ethics committee of the Padova Hospital. After completely 

describing the study to the subjects, informed written informed consent was obtained. 

 

Table 12. Sample characteristics 
 

 

 

 

Clinical assessment and Follow-up 

A diagnostic interview according to the Eating Disorders Section of the Structured Clinical Interview for 

DSM-5 (American Psychiatric Association, 2013) was performed in all subjects. A semi-structured 

interview was also used to collect socio-demographic and clinical variables (Favaro et al., 2012, 2013).  

The Hopkins Symptoms Checklist (Derogatis et al., 1974) to assess depressive and obsessive-compulsive 

symptoms, the Eating Disorders Inventory (Garner et al., 1983) to assess eating psychopathology and 

 AN  
Recovered 

AN 
 HC  AN vs. HC       

t (p) 
Rec.AN vs. 

HC t (p) 
 (n=38)  (n=20)  (n=38)  

 Mean SD Mean SD Mean SD   

Age (years) 26,1 7,2 26,3 7,0 25,2 6,7 0,54 (0,59) 0,59 (0,56) 

Baseline Body mass index 
(kg/m2) 

16,0 1,8 19,6 1,6 21,6 3,0 
10,51 

(<0,001) 
2,91 

(0,005) 
Lowest Body mass index 
(kg/m2) 

14,0 1,8 15,7 1,4 19,8 2,5 
11,56 

(<0,001) 
6,71 

(<0,001) 

Weight loss (kg) 7,1 2,8 5,2 3,1 3,4 1,7 
7,01 

(<0,001) 
2,95 

(0,005) 

Age of onset (years) 18,3 5,0 17,7 3,2 - - - - 

Duration of illness 
(months) 

78,6 81,2 45,7 65,0 - - - - 

Duration of recovery 
(months) 

  45,4 47,0 - - - - 

Edinburgh laterality index 57,1 37,5 60,0 35,2 55,0 42,0 0,23 (0,82) 0,50 (0,62) 

Education (years) 14,2 2,2 14,1 2,6 15,4 2,3 2,44 (0,02) 1,97 (0,05) 

Drive to thinness 9,9 6,1 - - 2,3 4,2 
6,22 

(<0,001) 
- 

Depression 1,4 0,8 - - 0,7 0,6 
4,06 

(<0,001) 
- 

Trait anxiety 56,6 9,7 - - 39,3 9,6 
7,82 

(<0,001) 
- 
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the Edinburgh Handedness Inventory (Oldfield, 1971) were also administered. All subjects were 

recruited at the Eating Disorder Unit of the Hospital of Padova, fulfilled the diagnosis for AN according 

to DSM-IV criteria and were medically stable at the time of scanning. Different diagnostic subtypes at 

the time of scanning were observed: 32 AN patients (84%) were restrictive, 6 AN patients fall under the 

binge eating/purging subtype and 7 patients who were restrictive at the time of the present study 

reported previous recurrent binge eating and/or purging. 14 AN patients and 4 recovered women were 

under treatment with antidepressant drugs at the time the study was conducted (acute AN: 1 case 

mirtazapine, 2 paroxetine, 2 escitalopram, 1 fluoxetine, 8 sertraline; recovered AN: 4 sertraline). 

 

MRI Data Acquisition 

Data were collected on a Philips Achieva 1.5 Tesla scanner equipped for echo-planar imaging. A high-

resolution 3D T1-weighted anatomical image was also acquired, in a gradient-echo sequence 

(repetition-time520 s, echo time- 53.78 ms, flip angle 5208, 160 sagittal slices, acquisition voxel size 51 

3 0.66 3 0.66 mm, field of view 21–22 cm). 

 

Data Processing and Statistics 

Data processing were performed using the FreeSurfer package (Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital, Boston) version 5.3.0. Preprocessing, cortical reconstruction, 

segmentation, and cortical thickness estimation were performed following standard protocols, see 

Supplementary Materials for detailed information. Surface reconstruction and segmentation were 

inspected and minor manual intervention was performed according to FreeSurfer user guidelines. After 

cortical reconstruction, the cortex was divided into units based on individual gyral and sulcal structures 

(Destrieux et al., 2010) 

A freely available MATLAB toolbox (http://cmadan.github.io/calcFD/). was used to compute the fractal 

dimensionality of the cortical ribbon and of parcellated regions of the cortex. The toolbox uses 
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intermediate files generated as part of the standard Freesurfer analysis pipeline to perform the 

calculation (Madan & Kensinger, 2016).  

 

 

RESULTS 
 

Demographic characteristics of the sample are reported in table 12.  

 

FD in patients with AN vs. HC 

Table 13 shows the average FD values in the whole-brain, the 4 lobes and the 21 brain areas (according 

to Destrieux parcellation) in the two groups. The whole-brain and lobar mean FD value was significantly 

lower in acute AN patients compared to HC.  

The mean FD value computed for the whole brain was significantly lower in acute AN patients 

compared to HC. FD values of each brain lobe are lower in the AN group.  

The mean FD value of the cortical ribbon was significantly lower both in the left and in the right 

hemisphere in paracentral, postcentral, superior parietal, superior frontal, middle frontal, inferior 

frontal, orbital, angular, and in superior and middle occipital gyri, in posterior transverse collateral 

sulcus, in the superior part of the precentral sulcus and in precuneus. In the left hemisphere, we found 

significantly decreased FD values in the frontal inferior opercular, supramarginal and precentral giri and 

in the posterior segment of lateral sulcus. In the right hemisphere, we found decreased FD values in the 

posterior ventral cingulate and in lateral superior temporal gyrus, in the lateral anterior fissure and in 

the superior and transverse occipital sulcus (Table 13).  

 

FD in patients recovered from AN vs. HC 

Table 14 shows the average FD values in the whole-brain, the 4 lobes and the 21 brain areas (according 

to Destrieux parcellation) in the two groups. Recovered AN patients didn’t show differences in the 
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global and lobar FD when compared to HC. However, there are some brain areas that showed FD values 

significantly higher than healthy women and brain areas with lower FD in comparison to controls (Table 

14). It is interesting to observe that left middle occipital gyrus and right superior parietal gyrus showed 

significantly lower FD both acute and recovered AN in comparison to controls.  

 

Association between FD values and clinical  variables 

Table 15 shows correlation (rho Spearman’s rank correlation) between FD values and clinical variables 

in the three groups. Significant positive correlations emerged between whole-brain FD and BMI in acute 

AN, and between total FD and cortical volume in acute AN and in recovered patients. The FD value was 

also negatively correlated with duration of the illness in the AN group. Significant negative correlation 

between of age of onset of the disorder and FD emerged in the recovered group (table 15).  
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Table 13. Fractal Dimension differences analysis between AN and HC groups 
 

   AN HC  

 Lat Lobe Mean (SD) Mean (SD) F* (p) 

Total FD    2.49 (0.02) 2.51 (0.01) 16.36 (0.000) 

Frontal Lobe   2.43 (0.02) 2.44 (0.01) 13.07 (0.001) 

Parietal Lobe   2.30 (0.02) 2.32 (0.01) 19.75 (0.000) 

Temporal lobe   2.34 (0.02) 2.35 (0.01) 5.40 (0.023) 

Occipital lobe   2.30 (0.02) 2.32 (0.01) 15.31 (0.000) 

Paracentral lobule and S L Parietal 1.91 (0.04) 1.93 (0.03) 10.41 (0.002) 

G Front Inf Operc L Frontal 2.01 (0.03) 2.03 (0.03) 7.71 (0.007) 

Triangular part inferior frontal G L Frontal 2.00 (0.031) 2.01 (0.027) 5.89 (0.018) 

Middle frontal G  L Frontal 2.09 (0.03) 2.11 (0.02) 7.05 (0.010) 

Superior frontal G L Frontal 2.17 (0.03) 2.18 (0.02) 6.81 (0.011) 

Middle occipital G L Occipital 1.99 (0.04) 2.01 (0.03) 7.71 (0.007) 

Superior occipital G L Occipital 1.90 (0.04) 1.92 (0.03) 6.81 (0.011) 

Orbital G L Frontal 2.03 (0.03) 2.04 (0.02) 9.15 (0.003) 

Angular G L Parietal 2.06 (0.03) 2.08 (0.02) 11.40 (0.001) 

Supramarginal G  L Parietal 2.09 (0.03) 2.11 (0.02) 6.00 (0.017) 

Superior parietal G L Parietal 2.03 (0.04) 2.06 (0.03) 18.82 (0.000) 

Postcentral G L Parietal 1.91 (0.05) 1.94 (0.03) 10.19 (0.002) 

Precentral G L Frontal 1.98 (0.04) 2.01 (0.03) 8.68 (0.004) 

Precuneus L Parietal 2.03 (0.02) 2.05 (0.02) 7.85 (0.007) 

Posterior segment of lateral S L Temporal 1.87 (0.02) 1.89 (0.03) 6.47 (0.013) 

Posterior transverse collateral S L Occipital 1.61 (0.07) 1.65 (0.06) 6.96 (0.010) 

Anterior occipital S L Occipital 1.79 (0.08) 1.83 (0.06) 9.35 (0.003) 

Superior part of the precentral S L Frontal 1.87 (0.04) 1.89 (0.04) 6.86 (0.011) 
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Paracentral lobule R Parietal 1.89 (0.04) 1.91 (0.03) 5.77 (0.019) 

Posterior ventral cingulate G R Parietal 1.68 (0.05) 1.71 (0.05) 9.55 (0.003) 

Triangular part inferior frontal G R Frontal 1.98 (0.03) 2.00 (0.03) 6.74 (0.011) 

Middle frontal G R Frontal 2.08 (0.03) 2.10 (0.02) 8.64 (0.004) 

Superior frontal G R Frontal 2.14 (0.03) 2.17 (0.02) 19.34 (0.000) 

Lateral Anterior Fissure R Frontal 1.70 (0.04) 1.72 (0.05) 5.52 (0.022) 

Middle occipital G R Occipital 2.01 (0.03) 2.03 (0.02) 9.61 (0.003) 

Superior occipital G R Occipital 1.92 (0.04) 1.95 (0.03) 15.86 (0.000) 

Orbital G R Frontal 2.04 (0.03) 2.06 (0.02) 6.10 (0.016) 

Angular G R Parietal 2.09 (0.04) 2.11 (0.03) 8.72 (0.004) 

Superior parietal G R Parietal 2.00 (0.04) 2.03 (0.03) 12.49 (0.001) 

Postcentral G R Parietal 1.88 (0.04) 1.91 (0.04) 14.34 (0.000) 

Precuneus  R Parietal 2.03 (0.03) 2.05 (0.02) 7.33 (0.008) 

Lateral superior temporal G R Temporal 2.02 (0.04) 2.04 (0.03) 5.91 (0.018) 

Posterior transverse collateral S R Occipital 1.64 (0.07) 1.71 (0.09) 11.38 (0.001) 

Sup. and transverse occipital S R Occipital 1.90 (0.04) 1.92 (0.04) 6.73 (0.011) 

Superior part of the precentral S R Frontal 1.88 (0.05) 1.91 (0.04) 9.48 (0.003) 

 

FD: Fractal Dimension; G: gyrus; S: sulcus; Lat: lateral; R: right; L: left  
* F (GLM with age and hand lateralization as covariates of no interest; gl=3,72), p threshold according to FDR 
< 0,025  



 70 

Table 14. Fractal Dimension differences analysis between Recovered AN and HC groups 
 

   Rec.AN HC  

 

Lat Lobe 
Mean (SD) Mean (SD) 

 

F* (p) 

Total FD    2.52 (0.02) 2.52 (0.01) 0.32 (0.573) 

Frontal Lobe   2.44 (0.02) 2.45 (0.02) 0.05 (0.829) 

Parietal Lobe   2.32 (0.02) 2.32 (0.01) 0.72 (0.400) 

Temporal lobe   2.36 (0.01) 2.35 (0.01) 3.46 (0.068) 

Occipital lobe   2.32 (0.02) 2.33 (0.01) 0.55 (0.462) 

Subcentral G# L Frontal 2.03 (0.02) 2.02 (0.02) 5.57 (0.022) 

Middle occipital G L Occipital 1.99 (0.03) 2.01 (0.03) 6.11 (0.017) 

Inferior temporal G# L Temporal 2.11 (0.03) 2.09 (0.03) 5.75 (0.020) 

Middle temporal G# L Temporal 2.11 (0.02) 2.09 (0.03) 6.68 (0.012) 

Transverse occipital S# L Occipital 1.92 (0.03) 1.89 (0.05) 5.37 (0.024) 

Parieto occipital S# L Occipital 1.79 (0.04) 1.75 (0.06) 12.47 (0.001) 

Subparietal S# L Parietal 1.93 (0.05) 1.90 (0.04) 6.49 (0.014) 

Temporal Inferior S# L Temporal 1.79 (0.04) 1.75 (0.05) 11.50 (0.001) 

Superior temporal S# L Temporal 2.12 (0.03) 2.10 (0.03) 7.67 (0.008) 

Superior parietal G R Parietal 2.01 (0.03) 2.03 (0.03) 5.88 (0.019) 

Parieto-occipital S R Occipital 1.98 (0.03) 2.01 (0.03) 15.71 (0.000) 

Subparietal S# R Parietal 1.96 (0.04) 1.92 (0.04) 7.65 (0.008) 

 

G: gyrus; S: sulcus; Lat: lateral; R: right; L: left; ns: not significant 
* F (GLM with age and hand lateralization as covariates of no interest; gl=3,54), p threshold according to FDR 
< 0,025 
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Table 15. Correlation between whole-brain FD and clinical variables in the 3 groups 
 

 whole-brain FD 

 AN 
(n=38) 

 
Rho (p) 

recovered AN 
(n=20) 

 
Rho (p) 

Healthy women 
(n=38 

 
Rho (p) 

Age -0.608 (0.000) -0.617 (0.004) -0.527 (0.001) 

Body mass index 0.380 (0.019) -0.351 (0.130) -0.209 (0.207) 

Duration of illness -0.406 (0.011) -0,111 (0.642)  

Age of onset -0.265 (0.108) -0.586 (0.007)  

Cortex volume 0.638 (0.000) 0.537 (0.015) 0.496 (0.002) 

Overall LGI rh 0.314 (0.055) 0.358 (0.121) 0.504 (0.001) 

Overall LGI lh 0.247 (0.135) 0.332 (0.152) 0.522 (0.001) 

 FD of the Left Middle Occipital Gyrus 

 AN 
(n=38) 

recovered AN 
(n=20) 

Healthy women 
(n=38) 

Age -0.317 (0.053) -0.129 (0.587) -0.579 (0.000) 

Body mass index 0.359 (0.027) -0.393 (0.086) -0.136 (0.416) 

Duration of illness -0.203 (0.223) 0.126 (0.595)  

Age of onset -0.286 (0.082) -0.320 (0.168)  

Cortex volume 0.773 (0.000) 0.735 (0.000) 0.502 (0.001) 

Overall LGI rh 0.467 (0.003) 0.508 (0.022) 0.240 (0.148) 

Overall LGI lh 0.362 (0.025) 0.456 (0.043) 0.159 (0.341) 

 FD of the Right Superior Parietal Gyrus 

 AN 
(n=38) 

recovered AN 
(n=20) 

Healthy women 
(n=38) 

Age -0.294 (0.073) -0.189 (0.424) -0.126 (0.451) 

Body mass index 0.434 (0.006) -0.301 (0.197) 0.144 (0.388) 

Duration of illness -0.160 (0.336) -0.023 (0.925)  

Age of onset -0.343 (0.035) -0.395 (0.084)  

Cortex volume 0.642 (0.000) 0.006 (0.980) 0.312 (0.057) 

Overall LGI rh 0.302 (0.65) -0.096 (0.686) 0.264 (0.110) 

Overall LGI lh 0.196 (0.239) 0.105 (0.659) 0.159 (0.341) 
 

FD: Fractal Dimension; LGI: Local Gyrification Index; R: right; L: left; ns: not significant  
Rho di Spearman; FDR < 0,025  
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DISCUSSION 
 

To our knowledge, the present is the first study that investigate the cortical morphology in AN by means 

of FD, an index that is specifically designed to capture the complex morphological patterns of the 

cortex, thus integrating the structural information provided by other surface-based indexes.  

In this paper we specifically evaluated cortical FD indices both globally and regionally and investigated 

the relationship between any morphological abnormalities and specific clinical variables. 

Our results demonstrated the presence of a globally reduced FD in patients with acute AN compared to 

HC, while patients who recovered from AN didn’t show any differences in FD when compared with HC 

on a global level. This observation, together with the presence of a correlation between FD and BMI, 

allows to hypothesize that a global reduction in cortical complexity may be an acute effect of 

malnutrition, and that it can improve with weight recovery. The ability to investigate the complex 

patterns of cortical morphology, together with the good sensitivity to the effects of underweight on 

cortical structure, points out the usefulness of this parameter in the structural imaging evaluation of AN 

and confirms its ability to describe cortical atrophy. The cortical structural modifications in AN are likely 

to depend on many factors, representing a consequence of underweight and malnutrition but also the 

outcome of neurodevelopmental trajectories alterations (Connan et al., 2003). The hypothesized 

developmental origin of the disorder and the effect of its onset in critical developmental phases 

highlight the importance to consider the relationship between any cortical alterations, the duration of 

the disorder and the patient’s age and age of onset in the evaluation of structural MRI findings. Our 

results indicate that age of the patients and the duration of the disorder correlate inversely with FD, 

suggesting an impact of AN on the reduction of cortical complexity. Since cortical complexity, measured 

by FD, is likely to reduce from adolescence to adulthood as the results of cortical modeling mechanisms 

that physiologically occur with aging (Sandu et al., 2014), we could hypothesize an impact of the 

disorder in accelerating this process.   
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The relation between FD and gyrification index is consistent with previous researches  that already 

evidenced that cortical folding is a high source of cortical complexity (R. D. King, Brown, Hwang, Jeon, & 

George, 2010; Madan & Kensinger, 2016). Gyrification appears to be largely determined during the 

earlier neurodevelopmental phases and alterations in this structural parameter have been already 

highlighted in AN (Bernardoni et al., 2018a; Angela Favaro et al., 2015). Since gyrification abnormalities 

are considered indicators of early neurodevelopmental anomalies and predictors of unfavorable 

outcome in AN as in other psychiatric disorders (Guo et al., 2015; Palaniyappan et al., 2016a), the 

finding of FD alterations could be also consistent with a neurodevelopmental hypothesis for AN (Angela 

Favaro, 2013).  

From a regional analysis, we identified a FD reduction in the left middle occipital gyrus and in the right 

parietal superior gyrus both in acute and in recovered AN patients. These are the only areas in which a 

FD alteration persists after recovery. Parietal and occipital regions are crucial for the integration of 

body-image perception abilities and are probably susceptible to disorder-specific alterations.  

The present study has several strengths, as well as important limitations. It is the first study to explore 

cortical complexity in AN by means of FD, a novel parameter that is demonstrated to show a good 

sensitivity to cortical atrophy and age-related brain differences. The evaluation of cortical morphology 

with FD allows to widen the horizons of surface-based cortical analysis, by integrating the information 

given by cortical thickness and gyrification with novel and non-redundant data. Furthermore, the 

presence of a correlation between FD alterations and the duration of the illness is a new and interesting 

finding over MRI surface-based analysis in AN and highlights the important potentialities of this 

morphological index in capturing the effects of prolonged starvation on cortical structure. A limitation 

of this study is represented by its cross-sectional design. In fact, longitudinal data could be particularly 

useful to understand how cortical complexity vary with the clinical course of the disorder and with 

weight recovery. Another limitation can be found in the absence of male patients in the sample. Any 
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inference about alteration in cortical complexity in male patients with AN cannot be made and would be 

an interesting topic to explore in future studies. 

In conclusion, the present study evidences that FD should be considered particularly useful to 

investigate the morpho-structural properties of brain cortex in AN, since it demonstrated to be able in 

identifying the negative effects of different clinical variables on cortical structure and to give non-

redundant information with respect to other surface-based indexes. Furthermore, the present study 

identifies the duration of the illness as a factor which directly correlates with cortical structural 

alteration in AN.     

  



 75 

Shift toward randomness in Anorexia Nervosa: a structural 
connectivity study 
 

 

INTRODUCTION 
 

The neurobiological characterization of Anorexia Nervosa by means of structural and functional 

neuroimaging techniques evidenced the presence of multifaceted alterations, that are likely to reflects 

the complex psychopathological and cognitive underpinnings of the disorder (Guido K.W. Frank, 2014). 

Overall, neuroimaging studies suggest that the complex array of symptoms characterizing AN emerges 

from failures in the relations between multiple areas rather than from distinct regional alterations 

(Steward, Menchon, Jimenez-Murcia, Soriano-Mas, & Fernandez-Aranda, 2017). The brain networks 

that have been found to be altered in AN support different processes, which include cognitive control, 

reward processing, self-monitoring, visuospatial and somatosensory functions, emotion recognition and 

social/inter-personal abilities (Collantoni et al., 2016; Ehrlich et al., 2015; Angela Favaro et al., 2012; G K 

W Frank, Shott, Riederer, & Pryor, 2016; Seidel et al., 2018). All these functional networks are 

supported by spatially distributed neurocircuits. In recent years, the application of complex science 

tools to neuroimaging data has allowed to study the rules that govern the inter-relations between 

distinct brain areas and to explore how alterations in brain architecture could sustain specific 

psychological, cognitive and behavioral traits (Bullmore & Sporns, 2009).  

The application of network-based statistics and graph theory to neuroimaging data allows to describe 

the organizational properties of neural networks. The global organization of a neural network can be 

described by its ability to efficiently integrate the communication between distant brain regions and to 

ensure, at the same time, an adequate processing of local information. The regional properties of a 

graph can be inferred from the segregation and integration characteristics of individual nodes or from 

their influence and centrality within the network (Rubinov & Sporns, 2010; Sporns, 2010). 

Connectomic approaches have been recently used with both functional and anatomical data in different 

psychiatric disorders as Schizophrenia, Major Depressive Disorder, Obsessive Compulsive Disorder and 
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Attention Deficit Hyperactivity Disorder (Rubinov & Bullmore, 2013; Sidlauskaite, Caeyenberghs, 

Sonuga-Barke, Roeyers, & Wiersema, 2015; Taylor, 2014; Wang et al., 2016). In AN, three studies have 

evaluated the brain architecture by means of graph theory tools to date. Geisler and colleagues (2016)  

used a connectomic approach to study the functional architecture of the brain in a sample of 35 

patients, evidencing both global and regional alterations. They specifically observed an increased overall 

path length, indicating the presence of a less integrated network, and an increase of assortativity, which 

suggests that nodes with similar degree are more likely to connect together. Regionally, they evidenced 

a lower integration of thalamus and insula. A recent research, conducted by our group (Collantoni et al., 

under review, 2018), confirmed an increase of global segregation properties by analyzing cortical 

thickness and gyrification co-variance patterns in a sample of 38 AN patients. In another recent study, 

Zhang et al (2016) used Diffusion Tensor Imaging to compare the modular organization of the brain in 

24 patients recovered from AN and 31 healthy controls. They found an abnormal modular organization 

in frontal, basal ganglia and posterior cingulate nodes in recovered AN patients.  

The neurodevelopmental origin of AN, its frequent onset during adolescence and its dramatic metabolic 

consequences make the study of white matter in this disorder particularly interesting. In fact, the 

maturation of WM proceeds from infancy to adulthood and is likely to be affected by alterations in 

neurodevelopmental trajectories (Lebel et al., 2012). Microstructural white matter (WM) alterations in 

AN have been observed by different studies employing TBSS and VBM to evaluate Fractional Anysotropy 

(FA) (Monzon, Hay, Foroughi, & Touyz, 2016). Results across these studies are quite inconsistent, due to 

low and heterogeneous sample sizes and to methodological issues (Kaufmann et al., 2017). Only few 

studies estimated WM by means of tractography techniques in patients with acute AN, but none of 

them used a connectomic approach to describe the topological properties of neural networks (G K W 

Frank et al., 2016; Pfuhl et al., 2016; Shott, Pryor, Yang, & Frank, 2016). Since WM architecture is 

fundamental to ensure a proper flow of information across the brain, the analysis of its organization in 
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AN may help in understanding if this disorder is sustained by alterations in structural connectivity 

patterns.    

The identification of the most influential and connected regions within the brain seems to be 

particularly relevant when computing the overall architecture of the WM connectome. In fact, these 

regions appear to be particularly vulnerable and sensitive to pathogenic mechanisms that affect the 

brain and are also likely to spread disease-related processes to other brain areas (Fornito et al., 2017).  

Aim of the present research is to analyze the global and regional WM architecture by means of graph 

theory tools in a sample of patients with acute AN, to observe the presence of any abnormalities in 

hubs distribution and to observe the presence of any correlation between clinical variables and the 

properties of the graph.  

 

METHODS AND MATERIALS 
 

The included sample was the same of a previous study (Favaro et al., 2013). A total of 38 patients with 

acute AN and 38 HC were included in this study. Table 16 describes the main characteristics of the 

sample. male gender, history of head trauma or injury with loss of consciousness, history of any serious 

neurological or medical illness, active use of systemic steroids, pregnancy, active suicidality or major 

depression, history of substance/alcohol abuse or dependence, bipolar disorder or schizophrenia 

spectrum disorder, moderate mental impairment (IQ<60) or learning disabilities, use of medications 

other than antidepressants, and known contraindications to conventional MRI were the exclusion 

criteria for both the AN and the HC groups. For healthy women, additional exclusion criteria for were 

history of any psychiatric disorder and the presence of any first- degree relatives with an eating 

disorder.  

When recruiting subjects, some of them were not included in the study: five AN patients with AN, 

because of antipsychotic medication and/or severe comorbidity; one AN patient and one healthy 

subject, because of previous head trauma; one AN patient, 3 recovered AN and 2 healthy subjects, who 
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were not available to undergo MRI scanning when scheduled. The final sample comprised of 76 women 

(38 with AN, and 38 HC). No further subject was excluded due to problems with scan acquisition, gross 

brain alterations, or motion artifacts.  

Ethical permission was obtained from the ethics committee of the Padova Hospital. After completely 

describing the study to the subjects, informed written informed consent was obtained. 

 
Clinical  assessment 

All subjects were investigated for AN diagnosis with a diagnostic interview according to the Eating 

Disorders Section of the Structured Clinical Interview for DSM-5 (American Psychiatric Association, 

2013). A semi-structured interview was also performed to collect socio-demographic and clinical 

variables (Angela Favaro et al., 2012, 2013). All the subjects completed the Hopkins Symptoms Checklist 

(Derogatis et al., 1974) to assess depressive and obsessive-compulsive symptoms, the Eating Disorders 

Inventory (Garner et al., 1983) to assess eating psychopathology and the Cloninger Tridimensional 

Personality Questionnaire  (TPQ) (Cloninger, Przybeck, & Svrakic, 1991) to test personality traits. The 

Edinburgh Handedness Inventory (Oldfield, 1971) was used to assess handedness. All subjects were 

recruited at the Padova Hospital Eating Disorders Unit and all fulfilled all the DSM-5 criteria for AN. At 

the time of scanning, all of them were medically stable. The diagnostic subtype at the time of scanning 

was: restrictive in 32 patients (84%), binge eating/purging type in 6 patients. 7 patients who were 

restrictive at the time of the present study reported previous recurrent binge eating and/or purging. 

Concerning the use of medications, 14 AN patients were under treatment with antidepressant agents at 

the time the study was conducted (acute AN: 1 case mirtazapine, 2 paroxetine, 2 escitalopram, 1 

fluoxetine, 8 sertraline). 

 

Mri Data Acquisition 

Data were collected on a Philips Achieva 1.5 Tesla scanner equipped for echo-planar imaging. A high-

resolution 3D T1-weighted anatomical image was also acquired, in a gradient-echo sequence 
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(repetition-time520 s, echo time- 53.78 ms, flip angle 5208, 160 sagittal slices, acquisition voxel size51 3 

0.66 3 0.66 mm, field of view 21–22 cm).  

 

Image processing 

All DICOM images were converted to NIfTI format. Diffusion gradients were extracted using mriconvert 

(http://lcni.uoregon.edu/~jolinda/MRIConvert) was used to extract the diffusion gradients. The package 

FMRIB Software Library (FSL)’s Diffusion Toolkit (FDT) was used to preprocess diffusion-weighted 

images (DWIs) and for the diffusion tensor estimation. Probtrackx was used for the probabilistic tracking 

with crossing fibers. The extraction of gray matter ROIs was performed using Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/). 

 

Connectivity matrices 

The brain of each subjects was parcellated into 148 regions of interest (ROis) of the Destrieux atlas using 

Freesurfer to act as node labels. The quality of the parcellation was manually checked for each subject. 

Node labels were individually treated as seed regions, and the connectivity between ROIs was defined 

as the number of probabilistic streamlines arriving in one ROI when another ROI was seeded and vice-

versa. Seeding and streamline counting was performed in the voxels within the ROI that were in the 

gray/white matter boundary. We used the default parameters of two fibers per voxel and 5000 sample 

streamlines for each tract to create a 148 x 148 matrix, P, of probability values. Each matrix entry Pij 

represents a scaled conditional probability of a pathway between the seed ROI, i, and the target ROI, j, 

given by Pij =(Si→j/Si) Ri, where Si→j denotes the number of the fibers reaching the target region j from 

the seed region I and Si is the number of streamlines seeded in i. This measure quantifies connectivity 

such that Pij ≈ Pji, which, on averaging, gives an undirected weighted connectivity measure. This now 

creates a 148 x 148 undirected symmetrical weighted connectivity network.  

http://lcni.uoregon.edu/~jolinda/MRIConvert)
http://surfer.nmr.mgh.harvard.edu/)


 80 

 

Network properties  

Graph network properties of the connectome were computed using integration, segregation and 

centrality indices. Integration was measured using Global Efficiency and Characteristic Path Length; 

segregation was measured using Clustering Coefficient, Transitivity, Modularity and Local Efficiency. We 

also quantified Small-World Index (SWI), a measure of the balance between integration and 

segregation. The SWI is computed as the ratio between two key metrics: the normalized clustering 

coefficient and the characteristic path length of the network. The network measures were computed 

using Graph Analysis Toolbox (GAT) (http://brainlens.org/tools. html) (Hosseini et al., 2012). 

Significant differences between topological parameters were investigated using a nonparametric 

permutation test with 1000 repetition.  The numerosity of the original groups were maintained in each 

repetition by randomly reassigning regional data (or residuals) of each participant to one of the two 

groups, so as to obtain an association matrix for each random group. Then, a range threshold of 0.02 to 

0.2 with increments of 0.002 were applied to each random group to estimate the binary adjacency 

matrices. Topological measurements were calculated for all networks and the full density range were 

used to compare differences in network measurements. For each iteration, the values of each random 

group across the range of density were plotted and the differences of the different areas under the 

obtained curves (AUC) were used in order to compute the topological proprieties. p values were 

computed by comparing the results from the actual differences in the curve functions and the null 

distribution of differences. This nonparametric permutation test compared the shapes of the curves 

derived from multiple threshold points (and so from multiple comparisons) and is based on functional 

data analysis (FDA) that allowed to overcome limitations driven by the sensitivity of the analysis 

methodology. 
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RESULTS 

Table 16. shows the main clinical characteristics of experimental and control groups.  
 

 

 

Reduced Small world and clustering properties and their association with clinical  
variables 

Between-group comparisons were performed using difference in areas under the curve (AUC). From a 

global perspective, patients with AN showed reduced Small-World Index (SWI) (p=0,031) and lower 

normalized clustering coefficient (p=0,029). Transitivity, which is estimates the relative number of 

triangles in the graph, compared to total number of connected triples of nodes, shows a tendency 

towards a reduction in patients with AN (p=0,054).  No differences were observed in other network 

measures between patients with acute AN and HC. Figure 6 reports differences in AUC of characteristic 

path length, clustering coefficient and small-world index between AN patients and HC.  

 AN  HC  AN vs. HC       t 
(p) 

 (n=38)  (n=38)  

 Mean SD Mean SD  

Age (years) 26.1 7.2 25.2 6.7 0.54 (0.59) 

Baseline Body mass index (kg/m2) 16.0 1.8 21.6 3.0 10.51 (<0.001) 

Lowest Body mass index (kg/m2) 14.0 1.8 19.8 2.5 11.56 (<0.001) 

Weight loss (kg) 7.1 2.8 3.4 1.7 7.01 (<0.001) 

Age of onset (years) 18.3 5.0 - - - 

Duration of illness (months) 78.6 81.2 - - - 

Duration of recovery (months)   - - - 

Edinburgh laterality index 57.1 37.5 55.0 42.0 0.23 (0.82) 

Education (years) 14.2 2.2 15.4 2.3 2.44 (0.02) 

Drive to thinness 9.9 6.1 2.3 4.2 6.22 (<0.001) 

Depression 1.4 0.8 0.7 0.6 4.06 (<0.001) 

Trait anxiety 56.6 9.7 39.3 9.6 7.82 (<0.001) 
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The SWI positively correlates with the lifetime lowest BMI (p<0.001) and with the BMI at the time of the 

evaluation (p=0.024). A regression analysis evidenced a relation between the lowest lifetime BMI and 

the SWI in patients with AN (p=0.006). Normalized clustering coefficient positively correlates with the 

lifetime lowest BMI (p=0.027).   

 

 

 
 

Figure 6. Difference in AUC in characteristic path length, clustering coefficient and small world index 
between patients with AN and HC.   

 

 
 

Differences in regional properties between patients with AN and HC and their association 
with temperamental  and psychopathological  scores 

From a regional analysis, patients with AN showed a higher clustering coefficient in right anterior 

cingulate gyrus and a higher betweenness in right fusiform gyrus. In the AN group, the clustering 

coefficient of the right anterior cingulate gyrus negatively correlates with novelty seeking score, 

measured by means of TPQ, in the AN group. A regression analysis shows a negative relation between 
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novelty seeking and the clustering of the right ACC (p=0.021). Moreover, the betweenness of the right 

fusiform gyrus positively correlates with somatization and depression indices, measured by SCL-90. In 

HC, the clustering coefficient of the right ACC correlates with the current BMI. Table x and xx report 

correlations values between network measures and clinical, psychopathological and temperamental 

variables in the AN group and in the HC one.  

 

Table 17. Correlations analysis between network measures, clinical variables, SCL-90 indices and 
temperamental characteristics in the AN group 
 

AN 
Small-world index 

Normalized 
Clustering coefficient 

Anterior Cingulate 
cortex - Clustering 

coefficient 

Fusiform Gyrus - 
Betweenness 

Rho p Rho p Rho p Rho p 

Clinical 
variables 

Lower BMI 
lifetime 

0.568** <0.001 0.476* 0.003 0.095 0.583 -0.168 0.329 

Current BMI 0.376* 0.024 0.323 0.054 0.089 0.605 -0.156 0.364 

Age 0.105 0.543 -0.005 0.975 0.054 0.752 -0.040 0.819 

Age of onset -0.044 0.798 -0.223 0.190 0.270 0.110 0.125 0.468 

Illness 
duration 

0.131 0.445 0.075 0.662 -0.054 0.752 -0.127 0.461 

SCL-90 

SCL-90 tot 0.152 0.375 0.039 0.817 -0.059 0.732 0.317 0.059 

OC 0.067 0.697 -0.058 0.737 -0.001 0.995 0.236 0.165 
IS 0.034 0.843 -0.078 0.651 -0.208 0.223 0.300 0.076 

SOM 0.262 0.123 0.232 0.172 -0.015 0.927 0.428* 0.009 

DEP 0.022 0.898 -0.065 0.705 -0.056 0.746 0.354* 0.033 

ANX 0.076 0.658 0.013 0.937 0.109 0.527 0.168 0.326 

HOS 0.195 0.254 0.056 0.745 -0.149 0.387 0.267 0.115 

TPQ 

Novelty 
seeking 

0.253 0.136 0.175 0.308 -0.391* 0.018 0.014 0.932 

Harm 
Avoidance 

0.043 0.800 -0.180 0.293 0.023 0.892 -0.047 0.783 

Reward 
Dependance 

0.115 0.505 0.172 0.316 -0.234 0.170 -0.138 0.423 

Spearman’s Rho. p<0,05.  
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Table 18. Correlations analysis between network measures, clinical variables, SCL-90 indices and 
temperamental characteristics in the HC group 
 

HC 
Small-world index 

Normalized 
Clustering coefficient 

Anterior Cingulate 
cortex -Clustering 

coefficient 

Fusiform Gyrus - 
Betweenness 

Rho p Rho p Rho p Rho p 

Clinical 
variables 

Lower BMI 
lifetime 

0.227 0.190 0.032 0.857 -0.282 0.101 0.090 0.609 

Current BMI 0.105 0.543 0.185 0.279 -0.382* 0.022 0.054 0.754 

Age -0.126 0.464 0.056 0.744 -0.106 0.538 -0.159 0.354 
Age of onset - - - - - - - - 

Illness 
duration 

- - - - - - - - 

SCL-90 

SCL-90 tot 0.024 0.955 0.168 0.691 -0.467 0.243 0.228 0.588 

OC 0.008 0.965 0.035 0.845 -0.066 0.712 0.222 0.207 

IS 0.103 0.651 0.172 0.330 0.038 0.833 0.105 0.553 
SOM 0.181 0.305 0.291 0.095 -0.094 0.596 0.025 0.888 

DEP -0.225 0.200 -0.173 0.328 -0.129 0.467 0.138 0.436 

ANX 0.025 0.888 0.077 0.664 -0.049 0.784 0.152 0.391 

HOS 0.182 0.319 0.258 0.154 0.029 0.876 0.215 0.236 

TPQ 

Novelty 
seeking 

0.210 0.218 0.209 0.221 -0.182 0.289 -0.166 0.333 

Harm 
Avoidance 

-0.219 0.199 0.013 0.939 -0.147 0.393 -0.175 0.308 

Reward 
Dependance 

-0.090 0.601 0.063 0.715 -0.156 0.354 -0.123 0.476 

Spearman’s Rho. p<0,05 

 

Altered nodal centrality in AN 

Alterations in nodal centrality were identified by analyzing the hub distribution. Hubs were computed 

both on degree and on betweenness values.  Based on degree, we identified an identical hub 

distribution between AN group and HC, except for the Right Superior Frontal Gyrus, that is lacking in the 

experimental group. Hubs distribution based on nodes degree is reported in table 17. 

Based on betweenness, we identified the same hubs in the two groups, except for the Left Superior 

parietal lobule and the Right Superior Occipital Gyrus. These two hubs are characterized by a high 
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betweenness in HC but not in patients with AN. Hubs distribution based on nodes betweenness is 

reported in table 17. 

 

 

Table 17. Nodes with higher degree between AN patients and HC 
 

NET HUB DEGREE  
(AN) 

NET HUB DEGREE 
(HC) 

Left Pericallosal Sulcus Left Superior frontal gyrus 

Left Putamen Left Pericallosal sulcus 

Left Thalamus Left Putamen 

Right Superior Frontal Gyrus Left Thalamus 

Right Pericallosal Sulcus Right Superior frontal gyrus 

Right Putamen Right Pericallosal Sulcus 

 Right Putamen 

 
 

 
Table 18. Nodes with higher betweenness between AN patients and HC 
 

NET HUB BETWEENNESS  
(AN) 

NET HUB BETWEENNESS 
(HC) 

Left Superior Frontal Gyrus Left Superior frontal gyrus 

Left Pericallosal Sulcus Left Superior parietal lobule 

Left Putamen Left Pericallosal sulcus 

Left Thalamus Left Putamen 

Right Superior Frontal Gyrus Left Thalamus 

Right Pericallosal sulcus Right Superior frontal gyrus 

Right Putamen Right Superior occipital gyrus 

 Right Pericallosal sulcus 

 Right Putamen 
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DISCUSSION 
 

For our knowledge, the present is the first paper that evaluate the WM architecture in patients with 

acute AN by means of connectomic tools. On a global level, our results evidence the presence of 

reduced small-world properties in AN, which are probably driven by a reduction in the clusterization of 

the network. A reduction in the segregation characteristics of the connectome does not seem to reflect 

in an increase of integration, since no integration measures show differences between AN patients and 

HC. 

Clustering coefficient indicates the tendency of a network to be composed by densely connected and 

functionally coherent neuronal units. Higher levels of clustering contribute in increasing the regularity 

of a network, while lower levels of segregation result in a shift toward more random configurations 

(Rubinov & Sporns, 2010). SWI specifically quantify the balance between order and randomness of a 

network: lower levels of SWI indicates higher levels of randomness, while higher SWI values indicate 

higher regularity (Danielle Smith Bassett & Bullmore, 2006c).  

Overall, the studies that evaluated how DTI networks change during development observed a reduction 

in segregation properties along maturational stages, but an increase of clustering coefficient with age 

has also been highlighted (Wierenga et al., 2016). Therefore, it is difficult to understand if the altered 

balance between integration and segregation in AN could be due to deviations in normal developmental 

trajectories or to alterations in already established network properties.  

Interestingly, malnutrition seems to have a specific impact on the overall WM structure. In fact, the 

lowest lifetime BMI and the current BMI have shown to positively correlate with the small-world 

properties of the network, and the lowest lifetime BMI was also evidenced to positively correlate with 

the clustering coefficient in the AN group. These results suggest that malnutrition could negatively 

impact on the trade-off between integration and segregation characteristic in the WM structural 

connectome by reducing its regularity.  
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Regional results highlight increased segregation characteristics in two specific brain areas: the right 

anterior gyrus, which displays a higher clustering coefficient, and the right fusiform gyrus, which shows 

higher betweenness values. The clustering coefficient of a node quantifies the density of connections 

between the node's neighbors, while betweenness measures the fraction of all the network shortest 

paths that pass through a specific node (Sporns, 2010). The anterior cingulate cortex (ACC) is crucially 

involved in several self-referential and self-regulation processes (Carter et al., 1998). Anatomically, it 

connects with different cortical, limbic and paralimbic regions (Margulies et al., 2007). In AN, ACC was 

shown to be involved in the cognitive control of appetite, in perfectionism, in body image distortion, in 

cognitive inflexibility and in elevated performance monitoring ( Bischoff-Grethe et al., 2013; Boehm et 

al., 2014; Friederich et al., 2010; Kaye et al., 2009; Lee et al., 2014b; Geisler et al., 2017). From a 

structural point of view, Bär and colleagues recently observed that reductions in cortical volume and 

thickness in the frontoparietal-cingulate network correlated both with symptoms severity and illness 

duration (Bär et al., 2015). The increased clustering properties of the ACC in the AN group suggests that 

the functional alterations of this area may be, at least partially, sustained by its structural segregation. 

On the other hand, the increased clusterization of ACC may lead to an increase in its centrality, which 

can in turn explain the relevance that this region has demonstrated in the psychopathology and in the 

cognitive functioning of AN. The negative correlation between ACC clusterization and novelty seeking in 

patients with AN suggests that a higher structural centrality of this regions could represent the 

structural basis for a reduced tendency of AN patients to explore unfamiliar stimuli and environments 

(Fassino et al., 2002).  

The fusiform gyrus (FG) is highly involved in the recognition of bodies and faces and in the processing of 

emotions (Kawasaki et al., 2012; Schwarzlose, 2005). Interestingly, FG was observed to be peculiarly 

involved in integrating images of faces and bodies into an image of a person, while occipital areas are 

more involved in a separate categorization of these two elements (Bernstein, Oron, Sadeh, & Yovel, 

2014). In AN, FG was evidenced to show higher levels of functional activation during the early 
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processing of happy facial expressions, suggesting a role in the implicit processing of emotions (Fonville, 

Giampietro, Surguladze, Williams, & Tchanturia, 2014).  The higher structural centrality of FG could 

represent a structural substrate for the increased functional recruitment of this area during specific 

cognitive processes in AN, but may also lead to a reduction of its global integration. The positive 

correlation between FG betweenness and depression and somatization indices in patients with AN 

suggests that a higher centrality of this region could mediate for a more severe psychopathology in the 

disorder.  

The architecture of the most central and influential nodes shows some differences between the 

experimental group and the HC one. Hubs constitute the architectural backbone of the neural network 

and facilitate the structural and functional integration of the connectome (Roberts et al., 2018). Several 

studies reported differences in the distribution of hubs in different psychiatric disorders (Rubinov & 

Bullmore, 2013; Wu et al., 2016), but no research analyzed the hubs distribution in AN to date. We 

identified the WM hubs separately in AN patients and in HC using two centrality measures: degree and 

betweenness. The degree of a node estimates the number of connections of that node. Nodes with a 

high degree manage more connections and are likely to influence many other network nodes. The 

betweenness centrality of an individual node indicates the fraction of all shortest paths in the network 

that pass through the node. The nodes with a higher betweenness are in the intersection of many short 

paths and, by virtue of this, are particularly able to control the flow of information within the network 

(Danielle S Bassett & Sporns, 2017).  

The observed reduction of hubs in AN could indicate a structural weakness of the connectome. Since 

betweenness is a measure of the local influence of a node, the lack of two hubs with high betweenness 

in patients with AN suggests an impaired local information processing in the disorder and is also 

consistent with the observation of a more randomic and less locally organized WM architecture in the 

experimental group. Interestingly, Superior occipital gyrus and superior parietal gyrus, together with 
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precuneus, were observed to display the highest levels of betweenness centrality in a recent WM 

connectome analysis (Kwon, Choi, Seo, & Lee, 2017).  

Since the highest central and connected nodes have high rates of glucose consumption and of cerebral 

blood flow, they are particularly vulnerable to several metabolic and pathogenic processes affecting the 

brain (Fornito et al., 2017). Therefore, in AN, the loss of two hubs with high centrality properties may 

reflect a pathological adaptation of the network to the effects of malnutrition and starvation. Nodes 

with a higher degree show a slightly different distribution in the two groups. In particular, the Left 

Superior Frontal Gyrus is lacking in the AN group. This area was showed to be peculiarly involved in 

those Working Memory functions that require a high level of executive processing (Du Boisgueheneuc 

et al., 2006) and therefore, its lower centrality in the overall DTI network may contribute to the 

executive impairments observed in AN. 

The present study has both strengths and limitations, that need to be taken into consideration when 

interpreting its results. It is the first study to analyze the WM connective architecture using graph 

theory tools in patients with acute AN and to describe the relationships between connectomic indices 

and clinical, temperamental and psychopathological measures. However, the cross-sectional nature of 

our observations does not allow us to understand whether the observed alterations precede the onset 

of AN or represents a consequence of the disorder.  

In conclusion, the present study evidenced the presence of a less regular organization of the overall 

WM network in patients with acute AN. Moreover, AN patients displayed regional differences in areas 

that are involved in different psychopathological and temperamental dimensions. The shift toward a 

more randomic configuration of the network in AN could be partially determined by the loss of some of 

the most integrative and influential hubs in the brain, that are located in prefrontal, parietal and 

occipital regions. 
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