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Riassunto

Questa tesi presenta nuove metodologie di permutazione per risolvere problemi
reali di natura complessa. Spesso i dati reali sono risultati di complesse fasi di
pianificazione dell’esperimento, o sono di loro natura complessi. Risposte mul-
tiple sono spesso di interesse e, fatto che aumenta ulteriormente la complessità,
le strutture di dipendenza presenti all’interno dei dati sono, oltre che compli-
cate, sconosciute (problema della molteplicità). Sono qui stati affrontati due
problemi reali: i cos̀ı detti single-case experiments e l’analisi di dati ordinali.

Nella tesi vengono proposte soluzioni sia univariate che multivariate, che
mostrano di risolvere il problema in modo soddisfacente tramite l’utilizzo di
test di permutazione e della loro combinazione non parametrica. Riguardo i
single-case experiments viene presentata una soluzione complessa basata sulla
combinazione di tecniche di lisciamento e della teoria di permutazione. Per
l’analisi di dati ordinali, invece, si propongono alcuni test di permutazione che
utilizzano stime non parametriche come statistiche test, creando in questo modo
un collegamento tra soluzione del problema via parametrica e non parametrica.

Diversi studi di simulazione e applicazioni a dati reali mostrano il buon
comportamento e l’utilità dei metodi proposti.
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Abstract

The thesis presents new results within the permutation testing approach in order
to deal with real complex problems. Very often real datasets are the result of
complicated planning phases of the study or they are complex by themselves.
Multiple outcomes are often of interest and, a fact which increases further on
their complexity, complicated and unknown dependence structures can underlie
such multivariate responses (i.e. the multiplicity issue). Two particular applied
problems are faced: single-case experiments and regression analysis of ordinal
data.

Both univariate and multivariate solutions to such issues are proposed in this
thesis, which show to successfully handle the data complexity by means of per-
mutation tests and their nonparametric combination. Regarding the single-case
experiments problem a complex solution is developed which exploits the joint
use of smoothing techniques and permutation theory. For ordinal data analysis
instead, we propose some permutation solutions that use parametric estimates
as test statistics, creating a link between parametric and nonparametric problem
solving.

Several simulation studies and real case applications show the good behavior
and the usefulness of the presented procedures.
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Chapter 1

Introduction

This chapter provides an introduction to the research work presented in this
thesis. It gives an overview of the the topics we dealt with during the second
and third year of my Ph.D., discussing the research background and describing
the motivations that brought us to explore this particular topics. A description
of the structure of the thesis is also given. Moreover the main contributions are
presented, together with a more detailed description of the faced problems and
of the proposed solutions.

1.1 Overview

The thesis presents new results within the permutation testing approach in
order to deal with real complex problems. Very often real datasets are the
result of complicated planning phases of the study or they are complex by
themselves: multiple outcomes are often of interest and, a fact which increases
further on their complexity, complicated and unknown dependence structures
can underlie such multivariate responses (i.e. the multiplicity issue). As it
can be a difficult job to try to solve real complex problems, and as we are
aware of the fact that statistics can play an important role in many business
or health-care decisions, we think that the data analysis should be performed
in a suitable way for the problem at hand. Nonparametric statistics can be
classified, in this sense, among the most powerful statistical approaches, since
it avoids too many assumptions on the data and performs a distribution-free
inference. Among nonparametric testing methods, permutation techniques are
known to be well performing while not requiring too strong assumptions on the
data, and this is the reason why we decided to adopt such methodology in order
to solve the problems we present in this work. That is also why we chose this
title for this thesis: we will introduce new permutation methodologies to deal
with the multiplicity issue in real applications.

The thesis is divided in two parts, related to two main projects which have
been developed during this research period: a first one is related to the study
of single-case experiments (see Onghena (2005) and Diggle et al. (2002)), where
longitudinal data are recorded on one subject regarding some response of in-
terest and multiple treatment conditions are alternated on time and compared
among each other. The second problem we faced is the analysis of ordinal data,

1



2 CHAPTER 1. INTRODUCTION

which is nowadays a very “hot” topic: very often statistical surveys, having
ordinal outcomes, are conducted in many fields (e.g. in marketing research) and
ordinal responses are often recorded also in clinical research while, for instance,
comparing different treatments or drugs. The awareness of the complexity of
real data and the presence, very often, of multivariate responses is the reason
why for the two real problems we present both a basic univariate solution and
an extension to the multivariate case. Within the single-case experiments, the
situation of replication of such kind of study on more than one subject, also al-
lowing the presence of a multivariate response, will be considered. On the other
hand the analysis of survey data with more than one outcome is also solved
through the use of a multivariate technique.

Chapters 2 and 3 are devoted to the description of the solution proposed for
single-case experiments while the Chapters 4 and 5 refer to the cubmodels prob-
lem (such acronym is originated by the introduction of Covariates in the mixture
of Uniform and shifted Binomial distributions). As already said, univariate and
multivariate solutions are provided for both the issues, hence separated chapters
are dedicated to the two solutions. Chapter 2 describes the univariate solution
to test for treatments’ effect difference in single-case experiments, giving the
motivation and the description of the method and exploring its performances
by means of a simulation study and a real application. The extension to the
general case of replication of single-case experiments with multivariate response
is considered in Chapter 3, where the permutation strategy is presented and its
behavior again checked through a simulation study. In this chapter two appli-
cations are also presented. Chapter 4 introduces the cubmodels approach and
proposes the permutation test as an alternative to likelihood based inference; a
simulation study shows its reliability and power and a meaningful application
to real data is also presented. Chapter 5 describes the permutation solution
to test for covariates influence in the case of multivariate ordinal responses, it
discusses the results of a simulation study which shows the good performances
of the method and again two real applications are presented. The conclusions
of the thesis are presented in Chapter 6. Finally an Appendix is given with
the presentation and description of the R codes which can be used in order to
perform all the permutation solutions presented in this thesis: the first section
of the Appendix refers to the univariate and replicated-multivariate solution for
single-case experiments, while the second section to the R codes for cubmodels.
The codes are described and two toy examples are also introduced, which can
be used in oder to practice with the R scripts and the use and interpretation of
the outputs.

1.2 Main Contributions of the Thesis

Single-case experiments are clinical experiments which are conducted on sin-
gle subjects in order to test if two or more treatments (or active treatments
and placebo) have different effects on some outcome variable of interest for the
particular patient under study. In such experiments different treatments are
administered to the subject during a certain period of time; the order of the
treatments in time is randomized and usually the experiment is double-blind, in
the sense that neither the physician nor the patient know the actual sequence
of treatments. Patient-specific results can be extended to a population level



1.2. MAIN CONTRIBUTIONS OF THE THESIS 3

through repetition of single-case experiments: hence the same randomization
schedule is applied to several subjects while the treatments are compared in
terms of the same outcome variables. The randomization of treatments during
the time period of observation allows to find a natural solution to such prob-
lem by means of permutation tests: exploiting the randomization scheme we
can build the randomization (or permutation) distribution of the test statistic
of interest and then use it to make inference without relying on too strong as-
sumptions on the data. The use of permutation tests for inference on single-case
experiments can be found already in Bulté and Onghena (2008) and Bulté and
Onghena (2009): there the single subject’s observations are differently labelled
according to treatments and, after the sample means are computed on the sev-
eral sub-sequences, a permutation test is performed to compare such means.
In Bulté and Onghena (2009) the authors suggest the possibility of computing
other test statistics on the sub-series (instead of the sample mean), so that dif-
ferences in trend (and not only in average level) can be detected. Our proposal
aims to improve the one just described, still keeping the idea of considering
separately the differently treatments’ labelled observations; we work within the
framework of alternation design single-case experiments, where the randomiza-
tion schedule allows all the treatments to be present at any time occasion. In
our solution these sub-time-series are smoothed and the resulting curves, in-
stead of other summary statistics, are then compared. Moreover in this work
we propose an extension of such method to the general case of replicated single-
cases with multivariate response, being this kind of studies often used in order
to extend the single patient related results to a population of interest (through
replication), and at the same time measure the effects of the several treatments
on more aspects which can be relevant for the health of the patients (multi-
variate response). The method is, according to current literature, the first ever
proposed to handle such a complex problem with the aim of controlling the mul-
tiplicity issue. The global permutation technique is obtained by nonparametric
combination of dependent permutation tests and it is the result of a two steps
procedure.

The second part of this thesis is devoted to the analysis of ordinal data
through permutation methodologies within the cubmodels framework (see Pic-
colo (2003), D’Elia and Piccolo (2005) and Piccolo (2006)). cubmodels are
regression models which can be used to analyze the influence of some covariates
on an ordinal response. Rating problems arise in survey data when the respon-
dents are asked to rate a product or more generally an item; it can also be the
case of clinical studies when the patients are asked to rate the level of efficacy
of a certain medical treatment. Here the choice of the respondent is modeled
as a mixture of two components, the feeling of the subject for the item and the
uncertainty due to the fact that a choice among several values has to be done.
Inference using this kind of model has been developed in a parametric framework
for which asymptotic results based on maximum likelihood theory are available
and the method is known to be quite flexible and to give good and reliable
performances when the sample size is not small. After an iid sample is drawn
from the population of interest, the parameters associating the covariates to the
response can be estimated via maximum likelihood using an EM algorithm (see
Piccolo (2006) and Iannario and Piccolo (2009)). The linear predictor given by
covariates values and associated parameters is linked directly to the feeling and
uncertainty parameters, which shape the distribution of the response variable.
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In order to test the influence of a covariate on the response Wald type or likeli-
hood ratio based tests can be performed. However when the sample size is not
high such asymptotic results lack of reliability and alternative solutions must be
adopted. We propose some permutation tests based on the maximum likelihood
estimates of the parameters; considering the Wald or the likelihood ratio type
statistic as simple statistics of the data, then we can then use their permutation
distribution in order to make inference. The proposed solution is based on the
constrained permutation of raw data and it is valid when the covariates which
are not tested, but are included in the null model, are categorical. Such alterna-
tive to parametric inference is reliable and powerful also when the sample size
is low; in such case the type I error is not controlled by the standard parametric
solution. The performance of the permutation tests tends to coincide with the
parametric one as we increase the sample size. Such permutation solution is
proposed and some of its properties are shown in Bonnini et al. (2011). How-
ever the presence of multivariate responses is very common for this kind of data:
think about survey data, where there is never a single item which is involved in
the study; also in clinical studies often the outcomes of interest can be related
to several health level indicators. The necessity of analyzing more than one
outcome at the same time is very common, but no parametric method seems to
be available in this case. We propose to nonparametrically solve the problem
by performing separated permutation tests on the several responses of interest
and then building a global test nonparametrically combining the partial tests:
in this way the underlying dependence structure can be handled without the
need of estimating it.

Hence, this thesis presents new permutation methods to deal with the real
scenarios described above. All the proposals have been developed to improve
the already existing ones, in order to obtain better performances in a general
context. We can summarize the main contributions of the thesis as follows:

• univariate framework: we improve an already existing permutation solu-
tion for single-case experiments, which is able to detect general differences
in the effects of more treatments;

• univariate framework: we present a valid alternative to classical para-
metric inference for cubmodels, in order to deal with cases in which the
asymptotic approximation is not reliable;

• multivariate framework: we assert external validity in replicated single-
case experiments, together with the possibility of getting also single pa-
tients’ level results. Such solution also takes care of the multiplicity issue.

• multivariate framework: we test for covariates effects on multivariate or-
dinal responses within the cubmodels framework. Also in this case we
take care of the multiplicity issue.



Chapter 2

Single-case experiments

2.1 Introduction

This chapter is devoted to testing some treatment effects on a response variable,
which can be carried out by performing a clinical experiment in which the effect
of several treatments on the outcome variable is registered. Such research can be
broadly divided into relatively large-scale clinical trials and single-case studies.
Here we concentrate on single-case experiments since often large-n trials cannot
be carried out, due to financial and human resourcing constraints. For this
reason single-case experiments are becoming more and more important.

As described in Onghena (2005), single-case experiments are characterized
by the fact that one entity is observed repeatedly during a certain period of
time, under different levels (“treatments”) of at least one independent variable.
Hence we observe only one entity (single-case, n = 1), manipulating indepen-
dent variable(s) (experiment); this way the entity is exposed to all levels of the
independent variable, and we handle repeated measures or observations of the
dependent variable of interest (longitudinal data, see Diggle et al. (2002)). As
argued in Onghena (2005), single-case experiments have a long history in behav-
ioral science; often they are the only viable options if rare or unique conditions
are involved, and they can be motivated thinking that actually they mimic the
care for the individual patient that is needed in clinical work.

The goal of single-case experiments is usually to investigate the presence of
a difference in the effects of the treatments considered in the study. Instead of
using standard parametric techniques, which in this setting cannot always pro-
vide valid inference, nonparametric tools can be a valid alternative to analyze
this kind of data (see Todman and Dugard (2001) and Onghena (2005)). In
particular, randomization of assignment of the measurement occasions to treat-
ments allows us to find an interesting solution to the problem in permutation
tests. We can thus ensure the study’s internal and statistical-conclusion validity.
The basic idea is to perform a randomization of the repeated observations in
time, instead of in individuals as is usually done, and then choose a statistic to
evaluate the difference between treatments.

In this work we aim to motivate the use of permutation techniques in or-
der to analyze single-case data; for this reason new proposals are presented to
successfully solve the problem in a permutation framework. Such proposals are

5
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shown to improve the performances of other already existing solutions. In the
second Section we give a main argument for the use of randomization methods,
describing how randomization is dealt with in these kinds of experiments, and
hence how these methods are exact by construction, due to the random alloca-
tion in the real experiment. In Section 3 we describe the general approach to
the solution of the testing for treatment effects in single-case designs, underlin-
ing the need to adopt time-series analysis tools in order to model data which
actually display some autocorrelation. Section 4 is devoted to the more in depth
description of a new permutation time-dependent solution, describing the gen-
eral idea behind the permutation methodology for single-case experiments, and
discussing proposals for the choice of “best” time-series analysis tools. Section
5 shows the results of a simulation study in which the proposed permutation
solutions are tested under a wide variety of data scenarios, and these methods
are applied to real clinical psychologist data in Section 6. Conclusions about
the obtained results are discussed in Section 7.

2.2 Randomization in single-case designs

The starting point for correctly analyzing single-case designs is to underline the
difference between random sampling and random allocation. A crucial point
is understanding that random allocation does not apply exclusively to the al-
location of participants to treatment conditions. In single-case designs, it also
applies to the allocation of opportunities for exposure to treatment conditions.
Both these points are essential to understand that the permutation approach
really does make sense in this kind of problem.

Random sampling from a large, well-defined population is the usual formal
requirement for applying parametric techniques, and it justifies the generaliza-
tion of results, allowing their external validity. However, it is often impractical
to have a genuine random sample from a given population of interest, both be-
cause it is difficult to define the population of interest itself, and because costs
and time requirements can be prohibitive. Instead, randomization in human
experimentation is much more likely than random sampling; each exposure op-
portunity is considered to be randomly placed into separate urns, each of which
represents a particular combination of experimental conditions (independent
variables). Hence no general wider population is supposed to exist here, and we
are able to control for confounding variables.

The simple and natural randomization mechanism considered in the study
can then be used to construct a test - the permutation test - simply by mim-
icking this underlying random assignment. Hence the permutation test is by
construction the most natural candidate for use in data analysis following a
given randomization design. Indeed we can easily construct the distribution of
the test statistic under the null hypothesis of interest by randomly reassigning
the condition urns to exposure opportunities.

2.2.1 Different randomization designs

The randomization designs in single-case experiments can broadly be divided
into two categories - alternation and phase designs (see Todman and Dugard
(2001) and Onghena (2005)). The former class is characterized by the fact
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that any level of the independent variable can be present at each measurement
occasion; hence we randomly determine the treatment sequence by taking into
account the number of levels of the independent variables and the number of
measurement occasions for each level. For example, for one independent variable
(treatment) with two levels (say A and B) and three measurement occasions
for each level, we simply have to randomly select a sequence from a number
of possible ones: AAABBB, AABABB, AABBAB, AABBBA, ABAABB,
ABABAB, ABABBA, BAABBA, BAABAB, BAAABB, etc. Of course,
depending on the specific characteristics of the study, we can impose a minimum,
or a maximum, number of consecutive measurement occasions for each level of
the independent variable.

Phase designs are useful when fast and frequent alternation of treatments
is difficult to perform. In this case several consecutive measurements are per-
formed for each phase, the order of the phases is fixed and we randomize the
moments of phase change. Hence we randomly determine the treatments’ phases
sequence by taking into account the order of the phases, the number of treat-
ments, the minimum length of the phases and the total length of the experiment.
For example, for one independent variable (treatment) with two levels (say A
and B), six measurement occasions and at least one measurement for each phase,
we simply have to randomly select a sequence from the following possible ones:
ABBBBB, AABBBB, AAABBB, AAAABB, AAAAAB.

2.3 Testing for treatment effects in single-case
experiments

To make inference in single-case designs is not as straightforward as in large-
n problems. Indeed, classic parametric techniques are often not suitable for
making statistical decisions while correctly controlling the inferential errors. In
this thesis we propose a solution to test for treatment effects in single-case
designs; let us use {XAj (t)}t∈T , where T is a continuous support, to indicate
the time-process of the response under treatment Aj , with j = 1, . . . , C. The
null and alternative hypotheses that we are going to consider in this work can
then be formalized as follows H0 : XAj (t)

M
= XAl(t) ∀j < l, j, l = 1, . . . , C, ∀t ∈ T

H1 : ∃ j, l ∈ {1, . . . , C}, j 6= l | XAj (t)
M
6= XAl(t),

,

where the notations (t) and M emphasize that we are considering the model
underlying the response time process. Hence we aim to test the null hypothesis
that the several treatments have the same effect on the time process underly-
ing the response against the alternative hypothesis that there is at least one
treatment effect which is different from the others.

Various approaches have been proposed (see Gorman and Allison (1996) for
an in-depth description). Among them, time series analysis provides a valid
set of procedures, such as autoregressive integrated moving average (ARIMA)
models. This solution is often useful and works well, provided that we handle a
sufficient number of observations.

An alternative solution is given by classic ANOVA and least squares re-
gression approaches. Indeed, even if in principle parametric statistics require



8 CHAPTER 2. SINGLE-CASE EXPERIMENTS

normality and homoscedasticity assumptions, in practice they are robust to vio-
lations of these assumptions. However their robustness is less strong in the case
of small and unequal sample sizes, as actually often arises in single-case experi-
ments. Additionally, the use of such parametric techniques can be criticized for
the presence of another strong assumption - that the errors are uncorrelated.
This latter problem has to be taken into account, since, as argued in Gorman
and Allison (1996) and Levin et al. (1978), autocorrelation very often arises in
single-case designs, and classic ANOVA and least squares regression approaches
are not robust to violations of this assumption.

A third class of solutions is given by nonparametric tests. In general they
represent a valid alternative to parametric solutions, especially in small-n and
in large-n cases when the required assumptions may be violated. They can
be successfully applied in single-case designs; the positive results of the use of
nonparametric rank tests is shown in Edgington (1996).

To summarize, as argued in Todman and Dugard (2001), for single-case
designs with a large number of observations (say at least 50 per phase) the
time-series analysis approach can be successfully applied. When the number of
observations per phase is not that large, we should instead use a permutation
test to solve the problem.

2.4 The permutation solution

The permutation-based solution for single-case experiments has been discussed
by many authors. A good review is given in Todman and Dugard (2001), where
the authors also provide an in-depth discussion of the motivations for using
randomization tests in this framework. Recently, this methodology has been
discussed in Bulté and Onghena (2008) and Bulté and Onghena (2009), where
the description of a specific R package is also given. It is also applied to real
data problems in, among other works, de Jong et al. (2005) and ter Kuile et al.
(2009). The basic idea is to randomize the repeated observations in time, in-
stead of in individuals as is usually done, and then choose a statistic to evaluate
the difference between the treatments. More specifically, the kind of random-
ization needed to perform the test should be based on the design aspect that
is random in the experiment; hence we can randomize either the treatments at
each measurement occasion, in alternation designs, or the moments of phase
change, in phase designs (see Onghena (2005)).

In this chapter we propose a permutation solution to test for treatment
effects in alternation single-case experiments. The aim of our research is to
improve the existing proposals on the choice of test statistic to be used to
compare the performance of the different treatments. For example, in Bulté
and Onghena (2008) and Bulté and Onghena (2009) the authors simply use the
sample mean difference, ignoring the time ordering of the observations.

In this section of the chapter we firstly point out the importance of taking
care of the autocorrelation between observations, and we underline how permu-
tation tests are able to handle this problem. Then the randomization scheme
and the permutation procedure itself are well defined. Furthermore we discuss
the problem of choice of test statistic, proposing the use of time-series analysis
tools.
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2.4.1 Autocorrelation and randomization scheme

As pointed out previously, autocorrelation, i.e. correlation between the residuals
of scores in time-series data, is of course present in single-case data. Parametric
techniques such as t-test and ANOVA require the assumption of independence
of observations, and it is known that violation of this assumption leads to higher
type I errors. Therefore it is very important to take care of the serial dependence
between the observations.

One main feature of randomization tests for single-case designs is that they
are not sensitive to the effect of serial dependency because under the null hy-
pothesis there would be identical responses across occasions. As such the ran-
domization scheme allows us to mimic the true distribution of the test statistic
under the null hypothesis. However, this does not mean that any test statistic
is good for making inference about the phenomenon of interest, and, if serial
dependence exists among the observed data, we should choose a suitable test
statistic that can capture the main feature of interest. This means that, exclud-
ing the simple case of no trend and effect level of interest, a time-series analysis
tool is needed. This aspect will be treated in more detail in the next paragraph.

2.4.2 Time-series solution for the test statistic

Here we discuss the problem of choosing a suitable test statistic for testing
the treatment effect in single-case designs. The reader is referred to Bulté and
Onghena (2008) where the authors propose the sample mean difference as a test
statistic to compare the effect of the two treatments; this choice is motivated by
the argument that the focus is on an expected difference in level, which can be
reflected by a difference between means. The same proposal can also be found
in Bulté and Onghena (2009), where it is suggested that if needed, also other
test statistics, such as differences in slopes or intercepts, can be adopted. As
far as we are aware, the problem of choosing the type of statistic has not yet
been considered, and the R package presented in Bulté and Onghena (2008)
and Bulté and Onghena (2009) does not offer much choice. We think this
is a particularly relevant topic, since the sample mean can be sometimes not
suitable to distinguish between time-series: in this kind of problems the shape
of the observed points in relation to time is of primary interest, as, for instance,
different trends can be found in different time-series while they can register the
same average behavior.

The basic idea behind the development of our proposals is that a longitudinal
data analysis tool is needed in this case. In order to provide a completely
nonparametric solution, nonparametric tools may seem more appropriate. It is
true, on the other hand, that even using a parametric tool on each randomized
sample, then using its permutation distribution, might be a solution given that
we do in fact treat the resulting parametric statistic as a simple choice for the
test statistic, completely disregarding its inferential properties.

More precisely, our idea is to estimate the time functional shape of ob-
servations (with a nonparametric smoother, as splines, kernel smoother, local
regression, as well as a parametric time-series analysis tool) and then use a
summary statistic of the resulting curve (say ψ(·)). By randomizing the ob-
servations according to the randomization design, we are able to reproduce the
null distribution of the test statistic, and hence evaluate the p-value for the test
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of interest. Thus, we estimate the time functional shape of observations for the
sub-datasets of various treatments, and then use a summary statistic which is
able to measure the difference between these smoothed time-processes. Indeed,
under the null hypothesis the outcome variable should follow similarly shaped
time processes for the different treatments; hence by randomizing the labels
of the treatment in order to construct the permutation distribution of the test
statistic under the null hypothesis, we expect to end up with a set of low values
for the difference between the various smoothed time-series. Any extreme value
of the observed test statistic will then denote a departure of the data from the
null hypothesis.

Formally, we can describe the general randomization procedure as follows:

i. consider the original time-series x = (x1, . . . , xT ), and compute the ob-
served value for the test statistic tobs = ψ(x);

ii. according to the randomization scheme, perform a randomization of the
treatments’ labels for x, obtaining the permuted time-series x∗,1, and
compute the value for the test statistic t∗,1 = ψ(x∗,1);

iii. repeat Step ii. B times, getting the values of the test statistic t∗,i =
ψ(x∗,i), for i = 1, . . . , B;

iv. construct the permutation distribution of the test statistic under the null
hypothesis from the vector of values t∗ = (t∗,1, . . . , t∗,B);

v. compute the p-value of the test for treatment effects, for example rejecting
the null hypothesis for high values of the test statistic, as
p =

∑B
i=1 1(tobs,∞)(t

∗,i(x∗,i))/B.

We remark that B can be either the number of all the possible permutations of
the data (the whole permutation space) or a lower number if we are interested
in using only a Monte Carlo sample of them (for further details see Pesarin and
Salmaso (2010)). In the following section we provide a more in-depth description
of the proposed randomization solution.

2.4.3 Formalization of the procedure

In alternation designs each treatment can arise at any time occasion in the
single-case experiment. Once the treatment sequence is randomized, we handle
a time process in which we alternate the considered treatments. As already
pointed out, we propose to separately smooth the different treatment-labeled
time-processes, and then use a measure of the distance between the curves as
a test statistic. Firstly we define the concept of exchangeability under the
null hypothesis when the underlying model for the response time-process is of
interest. Then we discuss both the choice of smoother and of test statistic.

Let us use f to denote the density of response X, f (n)(x) to denote the
density of the sampling variable X(n), and x = (x1, . . . , xn) to denote the data
set. In general the exchangeability of the observed data with respect to groups
under the null hypothesis is said to hold if f (n)(x1, . . . , xn) = f (n)(xu∗1 , . . . , xu∗n),
where (u∗1, . . . , u

∗
n) is any permutation of (1, . . . , n). We can adapt this char-

acterization to the case of time-dependent data as follows: firstly we introduce
time into the formulation, and substitute the concept of ‘density’ with that of



2.4. THE PERMUTATION SOLUTION 11

‘model’. Thus we speak about the model underlying the sampling variable time-
process M(n)(x; t). We then recall that in the single-case framework, and in
particular in the case of alternation designs, the experimental random quantity
is the treatment assignment. Hence we can say that the exchangeability of the
observed data with respect to treatments under the null hypothesis is said to
hold if M(n)(x1, . . . , xn; t) = M(n)(xu∗1 , . . . , xu∗n ; t), where (u∗1, . . . , u

∗
n) is any

permutation of the original treatment sequence.
As regards the choice of smoother, the best candidate, or best time-series

modeling tool in general, of course depends on the real data being handled.
The same holds for the choice of most suitable test statistic. An interesting
feature of permutation tests is that in principle we can choose any statistic
depending on the data we wish to analyze and the study’s objective. On the
other hand, the opinion of the expert who presents the problem can also be
taken into consideration in making this choice. If, for example, the expert
expects that all treatments will lead to a trend in the outcome, and that what
is of interest is the difference between the slopes and the intercepts of these
trends, then we should choose a time-series analysis tool capable of taking into
account the underlying slopes and intercepts of the different treatment trends.
Therefore the nature of the data is also important. The number of observations
per treatment for example can help us to decide which statistical instrument
to use. We strongly believe that several implicit and explicit aspects of the
data should be taken into account when choosing the test statistic. In this
work we propose some possible choices, which of course do not exclude the
possibility of applying different ones depending on specific real data features.
However, we aim to provide a unique main proposal both for the smoother
and the test statistic, which should be better able to detect treatment effects
for any feature of the data than the others, at least in the field of educational
and behavioural sciences. Two categories of techniques for modeling time-series
data are nonparametric smoothers and classical ARIMA models. Nonparametric
smoothers can be a good choice when we have no idea what the time-process
underlying the data is (for instance when we handle an experiment concerning
a new treatment, and not even the field expert knows what to expect from the
data). On the other hand, ARIMA modeling can be a useful tool when pilot
studies are available, or at least previous analyses on similar problems. In what
follows we will consider only the former class of models, for one main reason:
ARIMA models are only applicable with equispaced time-series data, which
poses a problem for the solution we are proposing. Indeed, since each treatment
can arise in every time occasion, then each single treatment time-series does not
in general have equispaced observations across time. Nonparametric smoothing
on the other hand is particularly suitable for our purposes. We need to somehow
measure the distance between the several treatment curves, hence nice objects
we can handle are continuous curves to compare, which actually is the output
of smoothers. Among nonparametric smoothers many choices exist, such as
splines, kernel smoothers and local regression. As a starting point, we consider
local regression to be a good choice. It is a widely accepted method, it gives
good fitting results even with relatively short time-series, and it is quite simple
to understand even for users out of the statistical world.

As regards the choice of test statistics, it should, as already said, be a mea-
sure of the distance between the curves. Several choices can be made and,
according to Fisher (1935), in principle there is no preferable statistic for all
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data features. Depending on different features of the same null hypothesis, dif-
ferent test statistics may be more appropriate. This leads to the Multi-Aspect
(MA) testing issue (see Pesarin (2001)). Therefore in our particular frame-
work, we propose to nonparametrically combine several test statistics t

′

m(x), for
m=1,. . . ,M, about which more details will be given in Section 5.

The permutation procedure for alternation designs can be summarized as
follows: let us consider the general case of C treatments, denoted by A1, A2, . . . ,
AC ; also let sAj (t;xAj ), for j = 1, . . . , C, be the resulting local regression
smoothed processes from, respectively, data labelled with treatments Aj , for
j = 1, . . . , C; sAj (t;xAj ) emphasizes the fact that the smoother is a function
of time t, hence defined in every time occasion, given the sub-series xAj only.
Then:

i. consider the original time-series x = (x1, . . . , xT ), and the C sub-series
xAj = (xAj ,1Aj

, . . . , xAj ,TAj
). Compute the C smoothed processes

sAj (t;xAj ), for j = 1, . . . , C;

ii. compute the observed value for the partial test statistics t
′,obs
m (x) = ψm(x)

= ψm(sA1(t;xA1), . . . , sAC (t;xAC )), for m = 1, . . . ,M ;

iii. according to the randomization scheme, perform a randomization of the
treatments’ labels for x, getting the randomized time-series x∗,1 and the C
permuted sub-series x∗,1Aj . Compute the C permuted smoothed processes

s∗,1Aj (t;x∗,1Aj ), for j = 1, . . . , C;

iv. compute the value of the partial test statistics t
′,∗,1
m = ψm(x∗,1)

= ψm(s∗,1A1 (t;x∗,1A1 ), . . . , s∗,1
AC (t;x∗,1

AC )), for m = 1, . . . ,M ;

v. repeat Steps iii. and iv. B times, getting the values of the partial test
statistics t

′,∗,i
m = ψm(x∗,i) = ψm(s∗,iA1(t;x∗,iA1), . . . , s∗,i

AC (t;x∗,i
AC )), for i =

1, . . . , B, m = 1, . . . ,M ;

vi. construct the permutation distributions of the partial test statistics under
the null hypothesis from the vectors of values t

′,∗
m = (t

′,∗,1
m , . . . , t

′,∗,B
m ), for

m = 1, . . . ,M ;

vii. nonparametrically combine the partial permutation tests, obtaining the
permutation distribution of the Multi-Aspect global test
t
′′

MA = Ψ(t
′

1, . . . , t
′

M );

viii. compute the p-value of the global Multi-Aspect test for treatment effects,
for example rejecting the null hypothesis for high values of the test statis-
tic, as p =

∑B
i=1 1(t′′,obs,∞)(t

′′,∗,i(x∗,i))/B.

2.5 Power behavior

A Monte Carlo simulation study was performed to demonstrate the reliability
and power of the proposed procedures in single-case experiments with univariate
responses, in the case of a bidirectional alternative hypothesis. The study was
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divided into two main parts. At first, we considered the simplest case of C = 2
treatments, where the tested hypotheses are H0 : XA1(t)

M
= XA2(t) ∀t ∈ T

H1 : XA1(t)
M
6= XA2(t),

,

Then, we considered the more general case of C > 2 treatments. The reliability
of the methods was measured through the estimation of the type I error, while
the capability of the procedures to detect treatment effects was deduced from the
estimation of power. In the latter case different data scenarios were simulated
under the alternative hypothesis, considering several underlying models for the
treatment time-processes. We compared the new permutation solutions with the
proposal in Bulté and Onghena (2008). As regards the smoother, we performed a
local polynomial regression with degree 2, span parameter λ = 0.75 and tricubic
weighting (proportional to (1− (dist/maxdist)3)3).

In the case of C = 2, we propose two MA solutions which use the fol-
lowing partial test statistics. The first global test (hereafter labeled t

′′

MA1
) is

constructed combining the partial tests

t
′

1(x) =

∑lgrid
j=1 (s∗,iA1(tj ;x

∗,i
A1)− s∗,iA2(tj ;x

∗,i
A2))2

lgrid

t
′

2(x) = max
j=1,...,lgrid

(|s∗,iA1(tj ;x
∗,i
A1)− s∗,iA2(tj ;x

∗,i
A2)|).

Notice that t
′

1 is a proxy of the area between the two smoothed time sub-
processes. In practice this quantity has been approximated by the mean of the
squared distances on a regular time grid t1, . . . , tlgrid of length lgrid < 100. In-

stead t
′

2 is the well-known two-sample Kolmogorov-Smirnov type statistic. The
second global test (hereafter labeled t

′′

MA2
) is constructed combining the above

presented partial tests with the one proposed in Bulté and Onghena (2008)
(hereafter denoted by tBO), which uses the absolute value of the difference be-
tween the sample means in the two treatment groups. In order to increase
the procedure’s power, we propose to use Tippett combining function (see Pe-
sarin (2001) and Pesarin and Salmaso (2010)), given that under the alternative
hypothesis it chooses the smallest partial p-value. Hence

t
′′

MAk
(x) = Ψ(t

′

1, . . . , t
′

Mk
) = max

(
1− λ

′

1, . . . , 1− λ
′

Mk

)
,

where λ
′

m, m = 1, . . . ,Mk, indicates the permutation p-value of the mth partial
test, so in our case k ∈ {1, 2} and Mk ∈ {2, 3}.

The simulation study was performed generating CMC = 1000 samples from
the assumed underlying models; for the implementation of the permutation tests
we used B = 1000 permutations (drawing a Monte Carlo random sample from
the permutation space). We considered errors coming from both the standard
normal and the Student t distribution with 2 degrees of freedom. We considered
four lengths for the entire time series, n = 30, 50, 70, 100, and five underlying
ARIMA models, AR(1), MA(1), ARMA(1, 1), and ARIMA(1, 1, 1) with and
without constant term µ = 1, each with several values for the autoregressive
and moving-average parameters, φ, θ = −0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5.
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Table 2.1 shows, for the normal errors case, the reliability of the proposed meth-
ods under the null hypothesis: the obtained results suggest that all the three
methods behave in a reliable way under the null hypothesis, controlling the I
type error at the nominal level.

Table 2.1: Estimated I type error for the alternation design solutions, C = 2
treatments; errors simulated from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100 tBO

Length of the series Length of the series Length of the series
Model Parameters n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100

AR(1)

φ = −0.3 0.054 0.039 0.041 0.047 0.047 0.042 0.060 0.049 0.040 0.046 0.048 0.040
φ = −0.2 0.053 0.061 0.054 0.055 0.054 0.055 0.053 0.065 0.047 0.053 0.046 0.068
φ = −0.1 0.037 0.057 0.051 0.046 0.040 0.048 0.052 0.043 0.063 0.037 0.048 0.034
φ = 0.1 0.055 0.045 0.049 0.050 0.056 0.044 0.031 0.060 0.050 0.046 0.042 0.056
φ = 0.2 0.050 0.046 0.050 0.042 0.052 0.042 0.064 0.044 0.066 0.047 0.051 0.052
φ = 0.3 0.056 0.044 0.053 0.054 0.056 0.044 0.053 0.054 0.046 0.041 0.045 0.044
φ = 0.4 0.031 0.046 0.052 0.047 0.042 0.050 0.052 0.041 0.044 0.055 0.049 0.059
φ = 0.5 0.045 0.041 0.040 0.058 0.040 0.053 0.055 0.054 0.052 0.052 0.054 0.055

MA(1)

θ = −0.3 0.056 0.045 0.059 0.059 0.056 0.045 0.059 0.059 0.055 0.046 0.046 0.057
θ = −0.2 0.051 0.039 0.054 0.049 0.051 0.039 0.054 0.049 0.052 0.037 0.056 0.058
θ = −0.1 0.035 0.042 0.049 0.060 0.035 0.042 0.049 0.060 0.050 0.048 0.046 0.065
θ = 0.1 0.055 0.052 0.052 0.045 0.055 0.052 0.052 0.045 0.052 0.058 0.055 0.048
θ = 0.2 0.045 0.057 0.050 0.056 0.045 0.057 0.050 0.056 0.046 0.049 0.048 0.046
θ = 0.3 0.057 0.054 0.051 0.052 0.057 0.054 0.051 0.052 0.045 0.044 0.061 0.046
θ = 0.4 0.055 0.048 0.047 0.055 0.052 0.048 0.047 0.052 0.050 0.047 0.041 0.057
θ = 0.5 0.058 0.039 0.042 0.054 0.058 0.039 0.042 0.054 0.053 0.043 0.042 0.066

ARMA
(1, 1)

φ, θ = −0.3 0.050 0.045 0.054 0.052 0.053 0.050 0.058 0.060 0.053 0.047 0.054 0.056
φ, θ = −0.2 0.037 0.041 0.043 0.053 0.051 0.034 0.042 0.057 0.061 0.052 0.039 0.059
φ, θ = −0.1 0.049 0.052 0.056 0.046 0.051 0.049 0.052 0.049 0.049 0.045 0.043 0.049
φ, θ = 0 0.051 0.049 0.042 0.057 0.041 0.049 0.039 0.053 0.041 0.047 0.038 0.046
φ, θ = 0.1 0.053 0.061 0.052 0.046 0.043 0.054 0.053 0.056 0.054 0.054 0.053 0.052
φ, θ = 0.2 0.050 0.051 0.048 0.055 0.055 0.051 0.054 0.060 0.053 0.052 0.063 0.057
φ, θ = 0.3 0.052 0.048 0.040 0.059 0.043 0.044 0.040 0.054 0.041 0.057 0.052 0.048
φ, θ = 0.4 0.055 0.054 0.057 0.052 0.062 0.057 0.054 0.047 0.051 0.071 0.059 0.040
φ, θ = 0.5 0.046 0.052 0.050 0.051 0.053 0.042 0.047 0.052 0.046 0.044 0.046 0.058

ARIMA
(1, 1, 1)

φ, θ = −0.3,
µ = 0

0.054 0.044 0.054 0.050 0.051 0.056 0.055 0.057 0.046 0.053 0.050 0.058

φ, θ = −0.2,
µ = 0

0.048 0.053 0.055 0.058 0.043 0.049 0.062 0.047 0.047 0.051 0.059 0.034

φ, θ = −0.1,
µ = 0

0.045 0.052 0.056 0.045 0.052 0.055 0.049 0.046 0.051 0.051 0.051 0.049

φ, θ = 0,
µ = 0

0.044 0.039 0.062 0.049 0.053 0.049 0.059 0.037 0.051 0.057 0.049 0.044

φ, θ = 0.1,
µ = 0

0.053 0.056 0.040 0.052 0.053 0.052 0.041 0.047 0.055 0.036 0.048 0.034

φ, θ = 0.2,
µ = 0

0.050 0.042 0.048 0.048 0.052 0.051 0.049 0.045 0.056 0.050 0.055 0.052

φ, θ = 0.3,
µ = 0

0.048 0.031 0.041 0.051 0.056 0.027 0.053 0.050 0.067 0.043 0.050 0.058

φ, θ = 0.4,
µ = 0

0.047 0.056 0.048 0.046 0.049 0.066 0.056 0.043 0.057 0.062 0.051 0.037

φ, θ = 0.5,
µ = 0

0.048 0.041 0.053 0.039 0.043 0.056 0.050 0.050 0.046 0.068 0.058 0.051

ARIMA
(1, 1, 1)

φ, θ = −0.3,
µ = 1

0.054 0.036 0.049 0.046 0.051 0.038 0.047 0.043 0.040 0.057 0.041 0.049

φ, θ = −0.2,
µ = 1

0.043 0.052 0.040 0.057 0.051 0.056 0.050 0.051 0.053 0.052 0.052 0.041

φ, θ = −0.1,
µ = 1

0.055 0.053 0.044 0.047 0.050 0.053 0.040 0.046 0.054 0.053 0.040 0.046

φ, θ = 0,
µ = 1

0.049 0.038 0.052 0.049 0.048 0.047 0.053 0.056 0.044 0.048 0.045 0.049

φ, θ = 0.1,
µ = 1

0.055 0.053 0.042 0.042 0.048 0.054 0.037 0.054 0.048 0.056 0.046 0.043

φ, θ = 0.2,
µ = 1

0.059 0.046 0.041 0.049 0.050 0.041 0.058 0.053 0.047 0.048 0.059 0.046

φ, θ = 0.3,
µ = 1

0.065 0.045 0.043 0.050 0.055 0.045 0.053 0.051 0.054 0.054 0.041 0.051

φ, θ = 0.4,
µ = 1

0.068 0.046 0.048 0.054 0.065 0.043 0.055 0.051 0.068 0.047 0.061 0.052

φ, θ = 0.5,
µ = 1

0.043 0.049 0.068 0.058 0.048 0.042 0.056 0.048 0.053 0.046 0.045 0.053

The power of the procedures was also investigated under different data
scenarios. Again we considered four lengths for the entire time series, n =
30, 50, 70, 100, and generated the difference in treatment effects by adding two
different deterministic parts to the same underlying stochastic ARMA models.
The rationale behind this choice is that we expect a patient’s response to differ-
ent treatments to remain the same in the underlying autocorrelation structure,
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and change only in the deterministic component of the model. More precisely,
data has been simulated as follows:

xt =deterministic component + stochastic component

=

{
fA(t) + φxt−1 + θεt−1 + εt if Treatmentt = A
fB(t) + φxt−1 + θεt−1 + εt if Treatmentt = B

,

with εt ∼ N(0, 1) or εt ∼ t2 iid. As regards the deterministic part of the model,
we simulated treatment A as both a placebo and an active treatment, and
treatment B as the active treatment, mimicking both a difference in level and
slope of the trend between the two treatment effects. We simulated a difference
in levels between the treatments as follows:

xt =

{
φxt−1 + θεt−1 + εt if Treatmentt = A
δ + φxt−1 + θεt−1 + εt if Treatmentt = B

.

Three ARMA models, AR(1), MA(1) and ARMA(1, 1) were considered, each
with several values for the autoregressive and moving-average parameters, φ, θ =
−0.3,−0.1, 0.1, 0.3, 0.5. Additionally, several values were considered for the level
differences δ = 1, 3, 5, 10. Therefore we simulated a difference in the slope of the
trend between treatments as follows:

xt =

{
βA + xt−1 + εt if Treatmentt = A
βB + xt−1 + εt if Treatmentt = B

.

Notice that treatment A mimics either a ‘no treatment’ setting when βA = 0
or an active treatment when βA 6= 0, while treatment B always has a lin-
ear trend in the response. Indeed, again several values have been consid-
ered for the slope differences combining different values for the slopes βA =
−50,−30,−10,−5,−1, 0, 1 and βB = 1, 5, 10, 30, 50. The results are reported in
Tables 2.2 and 2.3 for the level and slope difference respectively. Some of the
results for the normal error case are also displayed in Figures 2.1 and 2.2 for
the case of a treatment difference in level and a treatment difference in slope
respectively. While tBO shows greater power when the two treatments are sim-
ulated with different levels, it performs worse when we consider a difference
in slopes; in the latter case the estimated rejection probability is greater than
the nominal level α only when the slopes of the two treatments have opposite
signs. Regarding the MA solutions, t

′′

MA2
performs better than t

′′

MA1
in the

case of a difference in levels, but not a difference in slopes, where t
′′

MA1
often

reports greater power. These results are coherent with the way in which the
MA solutions are constructed. In t

′′

MA2
, use of the partial test on the difference

between the sample means allows us to increase power when the treatments
differ in level, but it decreases it in the case of different slopes. It should there-
fore be noted that in the case of different slopes, t

′′

MA2
is always more powerful

than tBO. At the end, the power of all procedures increases with the number
of observations and with the difference between the deterministic parts of the
two models. Moreover, the power values reach 1 as n and δ increase when
we simulate differences in levels, while this is not the case for differences in
slopes, where the power function seems to have a horizontal asymptote below
1. We must remark that the model used to simulate the data with difference
in slopes produces a non stationary process, where both the average level and
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the variance of the process are not fixed but they increase with time. This, in
particular, means that the population mean is not finite under the null hypoth-
esis, when the number of time observations goes to infinity: this means that the
data simulated in this way do not respect the first sufficient condition for the
weak consistency of permutation tests (see Pesarin and Salmaso (2011)), leading
our test in this case to be not consistent. However it is worth underlying that
this is a very particular situation, which is usually treated, for instance within
the ARMA theory, differentiating the series and then estimating the model of
the differentiated time-series. One could follow the same idea, then, in order to
solve the problem of the horizontal asymptote below 1 for the power function
of the test: a possible solution could be to differentiate the series, getting a
stationary time-process similar to the ones simulated for the difference in levels.
More specifically we would get a process with only homoscedastic innovations
and no autocorrelation, that represents a particular case of the model considered
for the difference in levels. For this simulation model the good performances
of the permutations tests have already been shown. Regarding the effect of
the autocorrelation on the power behavior of the proposed methods, in general
the estimated rejection probabilities change when changing the autocorrelation
values. They slightly decrease as the autocorrelation parameters of the ARMA
models (it does not matter which model is considered) move, in absolute value,
away from zero. Similar results have been obtained for the case of errors

Figure 2.1: Simulation study. On the left an example of simulated data with a
difference between levels with an ARMA(1, 1) model for the errors with param-
eters φ, θ = 0.1, n = 50 and δ = 3; on the right power functions for the three
considered permutation solutions in the case of an ARMA(1, 1) model for the
errors with parameters φ, θ = 0.1, while n and δ are varying.

generated from the t2 distribution. All the procedures control the type-I error
at the nominal level; the power simply decreases with respect to the normal
errors case, but the behaviour of the three procedures remains the same.

Considering the more general case of C > 2 treatments, the new solution is
built performing the MA permutation tests on all pairwise comparisons between
treatments, and then combining them in a global test. Formally, for i = 1, . . . , B,
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Table 2.2: Estimated power for the alternation design solutions, C = 2
treatments. Simulated difference in level between the two treatments’ effects;
errors simulated from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100 tBO

Length of the series Length of the series Length of the series
δ Model Parameters n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100

1

AR(1)

φ = −0.3 0.298 0.540 0.720 0.796 0.616 0.855 0.949 0.992 0.688 0.902 0.966 0.993
φ = −0.1 0.333 0.593 0.753 0.831 0.644 0.870 0.970 0.998 0.704 0.910 0.982 0.999
φ = 0.1 0.324 0.572 0.741 0.824 0.622 0.895 0.959 1.000 0.706 0.919 0.974 1.000
φ = 0.3 0.271 0.550 0.716 0.791 0.579 0.839 0.954 0.992 0.655 0.884 0.967 0.996
φ = 0.5 0.254 0.453 0.632 0.729 0.499 0.750 0.903 0.970 0.563 0.807 0.931 0.988

MA(1)

θ = −0.3 0.278 0.495 0.708 0.800 0.602 0.858 0.955 0.993 0.673 0.897 0.971 0.997
θ = −0.1 0.305 0.570 0.748 0.838 0.620 0.885 0.966 0.998 0.701 0.920 0.981 1.000
θ = 0.1 0.329 0.589 0.778 0.827 0.639 0.877 0.975 0.999 0.700 0.912 0.987 0.999
θ = 0.3 0.325 0.603 0.725 0.821 0.615 0.865 0.951 0.993 0.676 0.891 0.968 0.994
θ = 0.5 0.295 0.555 0.702 0.778 0.564 0.820 0.935 0.979 0.625 0.865 0.953 0.985

ARMA
(1, 1)

φ, θ = −0.3 0.236 0.386 0.571 0.695 0.503 0.734 0.892 0.966 0.582 0.798 0.937 0.986
φ, θ = −0.1 0.306 0.575 0.725 0.791 0.629 0.888 0.967 0.994 0.700 0.929 0.981 0.994
φ, θ = 0.1 0.322 0.555 0.773 0.829 0.613 0.864 0.968 0.991 0.677 0.901 0.983 0.997
φ, θ = 0.3 0.273 0.499 0.634 0.719 0.535 0.776 0.897 0.973 0.606 0.827 0.922 0.983
φ, θ = 0.5 0.202 0.328 0.468 0.513 0.337 0.537 0.716 0.845 0.385 0.604 0.761 0.884

3

AR(1)

φ = −0.3 0.881 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = −0.1 0.899 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.1 0.883 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.3 0.875 0.990 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.5 0.766 0.982 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MA(1)

θ = −0.3 0.881 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = −0.1 0.898 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.1 0.912 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.3 0.910 0.996 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.5 0.889 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ARMA
(1, 1)

φ, θ = −0.3 0.821 0.995 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = −0.1 0.882 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.1 0.895 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.3 0.847 0.988 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.5 0.742 0.951 0.990 0.997 0.994 1.000 1.000 1.000 0.997 1.000 1.000 1.000

5

AR(1)

φ = −0.3 0.943 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = −0.1 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.1 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.3 0.922 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.5 0.869 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MA(1)

θ = −0.3 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = −0.1 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.1 0.968 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.3 0.958 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.5 0.963 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ARMA
(1, 1)

φ, θ = −0.3 0.927 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = −0.1 0.957 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.1 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.3 0.931 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.5 0.852 0.988 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10

AR(1)

φ = −0.3 0.966 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = −0.1 0.968 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.1 0.963 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.3 0.958 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ = 0.5 0.922 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MA(1)

θ = −0.3 0.966 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = −0.1 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.1 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.3 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 0.5 0.977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ARMA
(1, 1)

φ, θ = −0.3 0.958 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = −0.1 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.1 0.983 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.3 0.947 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.5 0.899 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

the ith permutation value of the test is constructed as follows:

t∗,i =ψ(s∗,iA1(t;x∗,iA1), . . . , s∗,i
AC (t;x∗,i

AC ))

=
∑

l<s, l,s∈{1,...,C}

t
′′,∗,i
MAk;l,s

(x)

sd
(
t
′′,∗,
MAk;l,s

(x)
) ,

where t
′′,∗,i
MAk;l,s

(x) denotes the MA permutation test related to the comparison

of treatments Al and As. Notice that the procedure coincides with operating a
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Table 2.3: Estimated power for the alternation design solutions, C = 2
treatments. Simulated difference in slope between the two treatments’ effects;
errors simulated from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100 tBO

Length of the series Length of the series Length of the series
Slope A Slope B n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100

βA = 0

βB = 1 0.097 0.089 0.124 0.120 0.081 0.082 0.111 0.093 0.060 0.054 0.066 0.047
βB = 5 0.289 0.367 0.388 0.363 0.229 0.266 0.298 0.284 0.068 0.064 0.063 0.051
βB = 10 0.336 0.430 0.467 0.415 0.261 0.317 0.352 0.306 0.066 0.060 0.057 0.059
βB = 30 0.351 0.451 0.468 0.446 0.265 0.330 0.371 0.328 0.053 0.058 0.061 0.039

βA = 1

βB = 1 0.043 0.056 0.042 0.062 0.045 0.061 0.039 0.053 0.047 0.046 0.049 0.042
βB = 5 0.282 0.346 0.385 0.335 0.195 0.248 0.296 0.255 0.048 0.040 0.064 0.050
βB = 10 0.353 0.415 0.474 0.402 0.274 0.297 0.354 0.296 0.049 0.052 0.049 0.047
βB = 30 0.358 0.434 0.488 0.463 0.276 0.321 0.374 0.346 0.058 0.058 0.052 0.051
βB = 50 0.345 0.439 0.487 0.439 0.247 0.331 0.374 0.314 0.057 0.051 0.062 0.057

βA = −1 βB = 1 0.163 0.230 0.209 0.206 0.183 0.225 0.221 0.209 0.174 0.189 0.183 0.180
βA = −5 βB = 5 0.339 0.442 0.460 0.402 0.383 0.460 0.477 0.450 0.362 0.398 0.382 0.423
βA = −10 βB = 10 0.351 0.452 0.496 0.417 0.405 0.451 0.498 0.492 0.379 0.425 0.421 0.423
βA = −30 βB = 30 0.377 0.443 0.463 0.436 0.438 0.478 0.476 0.492 0.408 0.428 0.427 0.440
βA = −50 βB = 50 0.361 0.449 0.514 0.434 0.414 0.470 0.519 0.493 0.385 0.414 0.423 0.43

nonparametric combination of the MA pairwise comparisons permutation tests
using a Direct combining function (see Pesarin (2001) and Pesarin and Salmaso
(2010)). In the summation we divide the terms by their standard deviation in
order to standardize the combined test statistics.

Again we worked with CMC = 1000, B = 1000, and the cases of C = 3
and C = 5 were considered. For C = 3 and C = 5, as lengths we simulated
for the entire time series respectively n = 45, 75, 150 and n = 75, 125, 250 and
three underlying ARMA models, AR(1), MA(1) and ARMA(1, 1), each with
several values for the autoregressive and moving-average parameters, φ, θ =
−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5. The reliability of the methods is re-
ported in Tables 2.4 and 2.5 for the cases C = 3 and C = 5 respectively. The
results confirm the reliability of the proposed solutions, showing the control of
the type-I error at the nominal level α = 0.05.

We performed a simulation study to show that the power of the MA solutions
increases with sample size, distance from the null hypothesis and number of
pairwise comparisons under the alternative hypothesis. As with the case of
C = 2, we generated the treatment effect adding different treatments to the data
generating processes and different deterministic parts to the same stochastic
underlying ARMA models. We considered both a difference in level and slope
of the trend among the several treatment effects, following a similar scheme to
the one used for C = 2. We simulated a difference in levels among treatments
considering three ARMA models, AR(1), MA(1) and ARMA(1, 1), each with
several values for the autoregressive and moving-average parameters, φ, θ =
−0.3,−0.1, 0.1, 0.3, 0.5. Moreover, for both the cases of C = 3 and C = 5, four
settings were considered for the level differences, which are described in Table
2.6. The settings differ both in terms of the total difference among the treatment
levels (δtot) and the number of false null hypotheses in the family of all pairwise
comparisons. The results, for normal errors, are reported in Tables 2.7 and 2.8
for the cases C = 3 and C = 5. Some of the results for the case of C = 3
are also displayed in Figure 2.3. Notice that the power of both MA solutions
increases with sample size; furthermore, we obtain a higher power when we also
increase the distance from the global null hypothesis (in Figure 2.3 summarized
as a combination between the number of false partial null hypotheses and the
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Figure 2.2: Simulation study. At the top an example of simulated data with a
difference between slopes with n = 50, βA = 1 and βB = 10; below left power
functions for the three considered permutation solutions in the case of βA = 1
while n and βB are varying; below right power functions for the three considered
permutation solutions in the case of βA = −βB while n and βB are varying.

total difference among the treatment levels, δtot); this behavior is less clear
in the case of C = 5, probably due to the coexistence of too many different
deterministic parts in the full time series, which makes it more difficult for the
tests to distinguish between different effects.

We simulated a difference in slopes among treatments considering four set-
tings for both the cases of C = 3 and C = 5, described in Table 2.9: the settings
differ both in terms of the total difference among the treatment slopes (βtot) and
the number of false null hypotheses in the family of all pairwise comparisons.
The results are reported in Tables 2.10 and 2.11 for the cases C = 3 and C = 5
respectively. Again in this case the power of both MA solutions increases with
sample size; furthermore we obtain a higher power when we also increase the
number of false null hypotheses in the family, even if this behavior is less clear
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Table 2.4: Estimated I type error for the alternation design solutions t
′′

MA1

and t
′′

MA2
, C = 3 treatments; errors simulated from the standard normal

distribution.

t
′′

MA1
, lgrid = 100, C = 3 t

′′

MA2
, lgrid = 100, C = 3

Length of the series Length of the series
Model Parameters n = 45 n = 75 n = 150 n = 45 n = 75 n = 150

AR(1)

φ = −0.3 0.046 0.059 0.045 0.043 0.032 0.050
φ = −0.2 0.054 0.065 0.055 0.052 0.036 0.056
φ = −0.1 0.049 0.047 0.044 0.065 0.051 0.066
φ = 0.1 0.055 0.052 0.047 0.054 0.047 0.054
φ = 0.2 0.058 0.056 0.047 0.048 0.048 0.055
φ = 0.3 0.054 0.054 0.056 0.048 0.054 0.051
φ = 0.4 0.062 0.046 0.052 0.040 0.043 0.056
φ = 0.5 0.051 0.053 0.053 0.041 0.049 0.045

MA(1)

θ = −0.3 0.061 0.047 0.060 0.061 0.047 0.060
θ = −0.2 0.041 0.055 0.065 0.041 0.055 0.065
θ = −0.1 0.047 0.052 0.055 0.047 0.052 0.055
θ = 0.1 0.038 0.046 0.055 0.038 0.046 0.055
θ = 0.2 0.058 0.056 0.048 0.058 0.056 0.048
θ = 0.3 0.063 0.049 0.055 0.063 0.049 0.055
θ = 0.4 0.055 0.052 0.056 0.055 0.049 0.048
θ = 0.5 0.052 0.053 0.046 0.052 0.053 0.046

ARMA
(1, 1)

φ, θ = −0.3 0.043 0.060 0.043 0.054 0.047 0.048
φ, θ = −0.2 0.047 0.056 0.045 0.044 0.046 0.046
φ, θ = −0.1 0.044 0.052 0.043 0.058 0.043 0.048
φ, θ = 0 0.060 0.053 0.041 0.044 0.056 0.047
φ, θ = 0.1 0.047 0.050 0.058 0.071 0.064 0.051
φ, θ = 0.2 0.041 0.053 0.063 0.055 0.044 0.057
φ, θ = 0.3 0.060 0.053 0.054 0.036 0.050 0.054
φ, θ = 0.4 0.045 0.052 0.055 0.049 0.054 0.058
φ, θ = 0.5 0.049 0.046 0.055 0.042 0.050 0.053

than in the case of a difference in levels among the treatment effects. Again we
find a less clear increase of power in the case of C = 5. An the end, in the case
of both a difference in levels and a difference in slopes among the treatments, it
has to be underlined that the order between the power of the two MA solutions
is the same as the order obtained in the related simulation settings for the case
of C = 2. The coherence between the simple case and the generalization to
C > 2 is of course a good feature of the method. Regarding the effect of the
autocorrelation on the power behavior, we can notice a similar behavior in case
of C = 2 treatments: the results show a decrease of the estimated rejection
probabilities as the autocorrelation parameters move, in absolute value, away
from zero.

2.6 Real clinical psychology data application

We applied the proposed MA solutions to real data from a single-case experiment
carried out at the Virga Jesse Hospital in Hasselt, Belgium (see Baplu (2005)).
The data were collected from a 17-year old adolescent who had concentration
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Table 2.5: Estimated I type error for the alternation design solutions t
′′

MA1

and t
′′

MA2
, C = 5 treatments; errors simulated from the standard normal

distribution.

t
′′

MA1
, lgrid = 100, C = 5 t

′′

MA2
, lgrid = 100, C = 5

Length of the series Length of the series
Model Parameters n = 75 n = 125 n = 250 n = 75 n = 125 n = 250

AR(1)

φ = −0.3 0.053 0.072 0.059 0.049 0.053 0.048
φ = −0.2 0.067 0.046 0.055 0.049 0.049 0.049
φ = −0.1 0.049 0.053 0.063 0.052 0.042 0.043
φ = 0.1 0.056 0.047 0.052 0.043 0.051 0.056
φ = 0.2 0.057 0.062 0.031 0.056 0.062 0.044
φ = 0.3 0.048 0.039 0.048 0.045 0.051 0.055
φ = 0.4 0.047 0.063 0.049 0.038 0.054 0.046
φ = 0.5 0.052 0.049 0.066 0.056 0.033 0.051

MA(1)

θ = −0.3 0.052 0.055 0.049 0.053 0.055 0.048
θ = −0.2 0.063 0.061 0.052 0.063 0.061 0.052
θ = −0.1 0.059 0.052 0.052 0.059 0.052 0.052
θ = 0.1 0.051 0.050 0.041 0.051 0.050 0.041
θ = 0.2 0.051 0.053 0.058 0.051 0.053 0.058
θ = 0.3 0.058 0.056 0.046 0.058 0.056 0.046
θ = 0.4 0.053 0.051 0.048 0.047 0.050 0.046
θ = 0.5 0.045 0.046 0.047 0.045 0.046 0.047

ARMA
(1, 1)

φ, θ = −0.3 0.050 0.053 0.052 0.052 0.055 0.062
φ, θ = −0.2 0.036 0.066 0.049 0.043 0.048 0.043
φ, θ = −0.1 0.066 0.047 0.053 0.056 0.049 0.058
φ, θ = 0 0.060 0.054 0.052 0.049 0.051 0.042
φ, θ = 0.1 0.056 0.057 0.042 0.053 0.056 0.044
φ, θ = 0.2 0.045 0.040 0.060 0.050 0.046 0.052
φ, θ = 0.3 0.042 0.047 0.047 0.049 0.042 0.043
φ, θ = 0.4 0.047 0.052 0.046 0.043 0.049 0.065
φ, θ = 0.5 0.043 0.052 0.042 0.047 0.050 0.046

Table 2.6: Settings of treatments’ levels δj , j ∈ {A,B,C,D,E}; cases of C = 3
and C = 5.

C Setting δtot Proportion of false H0 δA δB δC δD δE

C = 3

1 2 2/3 0 0 1
2 4 3/3 0 1 2
3 4 2/3 0 0 2
4 8 3/3 0 2 4

C = 5

5 4 4/10 0 0 0 0 1
6 10 7/10 0 0 0 1 2
7 8 4/10 0 0 0 0 2
8 20 7/10 0 0 0 2 4

problems, but who did not meet the formal DSM-IV-TR criteria for Attention
Deficit Disorder (ADD). The patient came to consultation with his mother and
complained about increasing attention problems at school and worsening of his
school grades. They had heard about the effect of methylphenidate (Ritalin) on
concentration and wondered whether they could obtain a prescription. Although
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Figure 2.3: Simulation study. Power functions for the two considered MA solu-
tions in the case of C = 3, an ARMA(1, 1) model for the errors with parameters
φ, θ = 0.1, while n, δtot and the number of false partial null hypotheses are vary-
ing.

there is some evidence that Ritalin has a positive effect on concentration, even
in the absence of ADD, the general use of this drug for mild conditions (or to
improve intellectual performance) is still very controversial, and the effect could
vary strongly from individual to individual (see Agay et al. (2010) and Crutchley
and Temlett (1999)). Therefore, the physician, in close collaboration with a
researcher from the Katholieke Universiteit of Leuven (Belgium), proposed to
design a single-case experiment to determine the effectiveness (and also the
possible side-effects) of this drug, and only to continue using of the drug after
convincing experimental results.

The experiment was approved by the Ethics Committee of the hospital and
the patient and his parents gave informed consent including a detailed account
of the purpose, risks, and design of the study. The study was set up as a random-
ized, double-blind, placebo-controlled single-case experiment, comparing Ritalin
to placebo. The study was randomized because six treatment periods and six
placebo periods were randomly assigned to twelve available time blocks (i.e.,
one treatment order was randomly selected from 12!/6!6! = 924 possibilities).
A time block consisted of two days. Because Ritalin washes out within five
hours, no carryover effects from one day to the next were expected (see Tan-
nock et al. (1989)). The study was double-blind because neither the patient
and his family, nor the physician and the researcher knew the actual treatment
order. A sealed envelope containing the actual treatment order was prepared
by the researcher’s supervisor and handed directly to the hospital pharmacist
who prepared identical capsules (same shape, color, and taste) for the active
medication and the placebo. The capsules had to be taken twice a day, and
also the primary outcome measure was taken twice a day. Because a time block
consisted of two days, this means that four measurements were available for
each treatment period as well as for each placebo period. The outcome measure
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was the sum of three scores on items from the ADHD Rating Scale IV, which
were selected as most relevant by the patient, his parents, and the physician.
The patient gave a score on an anchored scale from 0 (never or rarely) to 3 (very
often) in a diary for each of the following items:

• Does not follow through on instructions and fails to finish work.

• Fails to give close attention to details or makes careless mistakes in school-
work.

• Has difficulty sustaining attention in tasks or play activities.

In the diary also more general comments, other complaints and potential adverse
or side effects could be registered.

Figure 2.4 shows the summed scores of these three items. We wish to high-
light the fact that the same application was considered in Bulté and Onghena
(2008), where a directional alternative hypothesis was considered. We performed
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Figure 2.4: Real data from Baplu (2005): summed scores and smoothed time
sub-processes.

the two MA proposals (t
′′

MA1
and t

′′

MA2
) and the tBO solution; the results are

shown in Table 4.11. A visual inspection of Figure 2.4 might suggest that the
intake of Rilatine results in better concentration scores as compared to placebo,
but the permutation test shows that there is only weak evidence against the null
hypothesis. The three test statistics provide p-values around 10%, with t

′′

MA1

providing the smallest p-value and t
′′

MA2
providing the largest p-value. On the

basis of his results the adolescent decided not to continue the medication. Fur-
thermore, in a debriefing interview after the study, it was clear that he could
not discriminate between the treatment and the placebo periods.

2.7 Main results

In this chapter we presented a permutation solution to test for treatment effects
in single-case experiments with an alternation design. The aim of our research



24 CHAPTER 2. SINGLE-CASE EXPERIMENTS

is to improve the already existing solutions and provide an instrument which
behaves well in a variety of data scenarios.

The joint use of nonparametric smoothing and permutation theory provides
a good solution for the problem of interest; additionally, considering an MA
solution, we are able to satisfactorily handle several data scenarios. A simulation
study showed that the proposed tool is reliable under the null hypothesis and
powerful under the alternative. As regards comparison with an already existing
solution, the MA solutions generally behave better than their competitor, always
showing an estimated rejection probability greater than the nominal level of
the test under the alternative hypothesis; this is not the case, instead, for the
considered competitor. In general a good feature of the proposed solutions is the
increase in their power as the data move further away from the null hypothesis.

The new techniques were also applied to real data, where we confirmed the
results of the simulation study and demonstrated the flexibility and usefulness
of the methods.

Several further developments can be made using the tools presented here.
For instance, it may be of interest to study performances when a smoother other
than local regression is used to draw the smoothed time sub-processes, as well
as when we simply change the choice of smoothing parameter. The role played
by the use of different partial test statistics in the MA solution could also be
studied. Furthermore, the performance of the methods could be explored un-
der many other data scenarios, for instance letting the several treatments have
also different underlying correlation structures besides the differences in levels or
slopes. Another possible kind of presence of carry-over is when there is the effect
of the number of treatment administrations that precede a particular adminis-
tration (see Edgington and Onghena (2007)). Hence two scenarios can happen:
the carry-over is identical for the several treatments (identical carry-over), or
it is different, meaning that the subject’s response to a treatment at certain
time depends also on the particular treatments that were given at the previous
treatment times (differential carry-over). In the former case we do not have any
difference among treatments’ effects, hence we are under the null hypothesis,
and inference made through randomization tests in alternation designs is not
affected by such a carry-over effect because the effect is constant over all data
permutations. In the latter case instead, we are under the alternative hypothe-
sis, as there is a difference in the effects of the several treatments; in this case,
inference made through randomization tests is affected by this kind of effect, as
this is not constant over all data permutations. It would surely be interesting
to check the behavior of the proposed procedure in such case.
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Table 2.7: Estimated power for the alternation design solutions (using direct
combining function on standardized test statistics), C = 3 treatments. Simu-
lated difference in level among the three treatments’ effects; errors simulated
from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting Model Parameters n = 45 n = 75 n = 150 n = 45 n = 75 n = 150

Setting 1

AR(1)

φ = −0.3 0.078 0.097 0.172 0.115 0.173 0.294
φ = −0.1 0.078 0.127 0.199 0.107 0.168 0.321
φ = 0.1 0.085 0.128 0.204 0.128 0.181 0.328
φ = 0.3 0.084 0.117 0.187 0.112 0.190 0.290
φ = 0.5 0.089 0.103 0.188 0.115 0.171 0.281

MA(1)

θ = −0.3 0.066 0.104 0.175 0.112 0.177 0.301
θ = −0.1 0.094 0.103 0.206 0.143 0.172 0.301
θ = 0.1 0.080 0.131 0.201 0.123 0.209 0.324
θ = 0.3 0.078 0.114 0.184 0.112 0.166 0.313
θ = 0.5 0.080 0.108 0.184 0.117 0.158 0.282

ARMA
(1, 1)

φ, θ = −0.3 0.073 0.102 0.146 0.116 0.159 0.255
φ, θ = −0.1 0.084 0.130 0.206 0.114 0.187 0.309
φ, θ = 0.1 0.091 0.106 0.207 0.128 0.174 0.314
φ, θ = 0.3 0.069 0.089 0.160 0.099 0.134 0.258
φ, θ = 0.5 0.080 0.068 0.114 0.095 0.105 0.173

Setting 2

AR(1)

φ = −0.3 0.140 0.221 0.495 0.271 0.458 0.816
φ = −0.1 0.153 0.261 0.531 0.323 0.534 0.848
φ = 0.1 0.140 0.253 0.552 0.299 0.534 0.849
φ = 0.3 0.147 0.233 0.492 0.272 0.484 0.817
φ = 0.5 0.129 0.220 0.423 0.220 0.385 0.711

MA(1)

θ = −0.3 0.117 0.230 0.501 0.273 0.483 0.823
θ = −0.1 0.131 0.251 0.514 0.289 0.524 0.823
θ = 0.1 0.148 0.261 0.526 0.304 0.529 0.848
θ = 0.3 0.161 0.232 0.528 0.309 0.503 0.823
θ = 0.5 0.141 0.252 0.510 0.289 0.464 0.788

ARMA
(1, 1)

φ, θ = −0.3 0.116 0.202 0.417 0.215 0.389 0.734
φ, θ = −0.1 0.140 0.256 0.511 0.316 0.525 0.860
φ, θ = 0.1 0.141 0.254 0.511 0.310 0.501 0.836
φ, θ = 0.3 0.146 0.215 0.413 0.238 0.386 0.726
φ, θ = 0.5 0.097 0.155 0.257 0.188 0.236 0.460

Setting 3

AR(1)

φ = −0.3 0.148 0.208 0.353 0.272 0.364 0.407
φ = −0.1 0.159 0.250 0.346 0.296 0.389 0.411
φ = 0.1 0.156 0.233 0.333 0.277 0.355 0.389
φ = 0.3 0.147 0.208 0.371 0.269 0.321 0.408
φ = 0.5 0.144 0.204 0.346 0.244 0.339 0.418

MA(1)

θ = −0.3 0.150 0.239 0.351 0.287 0.378 0.396
θ = −0.1 0.148 0.233 0.363 0.274 0.371 0.411
θ = 0.1 0.155 0.260 0.353 0.289 0.409 0.414
θ = 0.3 0.146 0.249 0.335 0.253 0.371 0.393
θ = 0.5 0.140 0.235 0.398 0.282 0.337 0.453

ARMA
(1, 1)

φ, θ = −0.3 0.129 0.202 0.356 0.233 0.349 0.442
φ, θ = −0.1 0.162 0.212 0.371 0.316 0.330 0.422
φ, θ = 0.1 0.159 0.248 0.346 0.294 0.367 0.408
φ, θ = 0.3 0.135 0.221 0.350 0.233 0.346 0.417
φ, θ = 0.5 0.134 0.176 0.296 0.199 0.263 0.418

Setting 4

AR(1)

φ = −0.3 0.623 0.929 1.000 0.997 1.000 1.000
φ = −0.1 0.641 0.933 1.000 0.999 1.000 1.000
φ = 0.1 0.645 0.941 1.000 0.998 1.000 1.000
φ = 0.3 0.606 0.918 1.000 0.994 1.000 1.000
φ = 0.5 0.496 0.836 0.994 0.954 0.993 1.000

MA(1)

θ = −0.3 0.325 0.655 0.949 0.789 0.969 0.999
θ = −0.1 0.347 0.641 0.964 0.852 0.977 1.000
θ = 0.1 0.377 0.672 0.972 0.860 0.970 1.000
θ = 0.3 0.377 0.669 0.965 0.810 0.967 0.999
θ = 0.5 0.284 0.615 0.948 0.754 0.942 1.000

ARMA
(1, 1)

φ, θ = −0.3 0.584 0.882 0.999 0.992 0.999 1.000
φ, θ = −0.1 0.647 0.930 0.999 0.998 1.000 1.000
φ, θ = 0.1 0.655 0.942 1.000 0.999 1.000 1.000
φ, θ = 0.3 0.575 0.913 1.000 0.985 1.000 1.000
φ, θ = 0.5 0.433 0.768 0.984 0.889 0.998 1.000
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Table 2.8: Estimated power for the alternation design solutions (using direct
combining function on standardized test statistics), C = 5 treatments. Simu-
lated difference in level among the three treatments’ effects; errors simulated
from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting Model Parameters n = 45 n = 75 n = 150 n = 45 n = 75 n = 150

Setting 1

AR(1)

φ = −0.3 0.114 0.157 0.240 0.194 0.241 0.269
φ = −0.1 0.115 0.157 0.213 0.213 0.242 0.277
φ = 0.1 0.106 0.163 0.226 0.197 0.248 0.260
φ = 0.3 0.119 0.160 0.229 0.199 0.241 0.271
φ = 0.5 0.116 0.192 0.254 0.193 0.271 0.316

MA(1)

θ = −0.3 0.115 0.170 0.238 0.202 0.273 0.251
θ = −0.1 0.100 0.185 0.250 0.200 0.239 0.283
θ = 0.1 0.113 0.165 0.244 0.193 0.260 0.269
θ = 0.3 0.121 0.165 0.222 0.203 0.234 0.254
θ = 0.5 0.121 0.161 0.235 0.197 0.244 0.275

ARMA
(1, 1)

φ, θ = −0.3 0.110 0.157 0.216 0.201 0.268 0.295
φ, θ = −0.1 0.128 0.155 0.240 0.196 0.235 0.276
φ, θ = 0.1 0.111 0.185 0.238 0.213 0.252 0.264
φ, θ = 0.3 0.115 0.144 0.256 0.188 0.240 0.291
φ, θ = 0.5 0.081 0.126 0.221 0.134 0.196 0.292

Setting 2

AR(1)

φ = −0.3 0.208 0.360 0.605 0.539 0.662 0.709
φ = −0.1 0.160 0.345 0.614 0.525 0.664 0.694
φ = 0.1 0.205 0.340 0.598 0.520 0.625 0.692
φ = 0.3 0.190 0.357 0.608 0.520 0.647 0.701
φ = 0.5 0.188 0.356 0.588 0.486 0.648 0.748

MA(1)

θ = −0.3 0.188 0.343 0.612 0.534 0.653 0.736
θ = −0.1 0.182 0.352 0.603 0.507 0.629 0.695
θ = 0.1 0.183 0.357 0.622 0.503 0.636 0.691
θ = 0.3 0.197 0.339 0.619 0.537 0.624 0.718
θ = 0.5 0.185 0.374 0.623 0.485 0.637 0.728

ARMA
(1, 1)

φ, θ = −0.3 0.192 0.350 0.595 0.491 0.676 0.748
φ, θ = −0.1 0.199 0.365 0.586 0.552 0.647 0.692
φ, θ = 0.1 0.182 0.357 0.585 0.500 0.637 0.669
φ, θ = 0.3 0.207 0.369 0.614 0.508 0.613 0.754
φ, θ = 0.5 0.166 0.310 0.565 0.389 0.590 0.757

Setting 3

AR(1)

φ = −0.3 0.083 0.084 0.092 0.123 0.096 0.101
φ = −0.1 0.050 0.080 0.080 0.078 0.084 0.074
φ = 0.1 0.052 0.068 0.063 0.084 0.079 0.086
φ = 0.3 0.070 0.101 0.094 0.094 0.108 0.100
φ = 0.5 0.072 0.113 0.117 0.153 0.138 0.129

MA(1)

θ = −0.3 0.079 0.105 0.094 0.101 0.114 0.095
θ = −0.1 0.061 0.059 0.073 0.096 0.077 0.072
θ = 0.1 0.052 0.074 0.066 0.082 0.086 0.072
θ = 0.3 0.056 0.090 0.079 0.104 0.104 0.085
θ = 0.5 0.085 0.092 0.106 0.120 0.117 0.115

ARMA
(1, 1)

φ, θ = −0.3 0.116 0.133 0.143 0.166 0.148 0.143
φ, θ = −0.1 0.064 0.081 0.082 0.107 0.094 0.081
φ, θ = 0.1 0.053 0.081 0.083 0.087 0.092 0.091
φ, θ = 0.3 0.100 0.116 0.134 0.168 0.139 0.141
φ, θ = 0.5 0.112 0.164 0.210 0.198 0.198 0.225

Setting 4

AR(1)

φ = −0.3 0.069 0.198 0.282 0.334 0.376 0.345
φ = −0.1 0.047 0.106 0.174 0.279 0.267 0.242
φ = 0.1 0.054 0.131 0.193 0.282 0.260 0.249
φ = 0.3 0.077 0.179 0.266 0.324 0.355 0.324
φ = 0.5 0.132 0.288 0.466 0.450 0.523 0.504

MA(1)

θ = −0.3 0.062 0.163 0.227 0.302 0.297 0.278
θ = −0.1 0.055 0.113 0.183 0.268 0.224 0.230
θ = 0.1 0.040 0.095 0.199 0.239 0.261 0.232
θ = 0.3 0.059 0.107 0.193 0.269 0.260 0.245
θ = 0.5 0.063 0.132 0.239 0.291 0.287 0.285

ARMA
(1, 1)

φ, θ = −0.3 0.107 0.240 0.383 0.420 0.448 0.435
φ, θ = −0.1 0.053 0.108 0.208 0.274 0.268 0.247
φ, θ = 0.1 0.044 0.107 0.210 0.241 0.247 0.258
φ, θ = 0.3 0.090 0.197 0.338 0.372 0.429 0.389
φ, θ = 0.5 0.169 0.326 0.549 0.502 0.585 0.615
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Table 2.9: Settings of treatments’ slopes, cases of C = 3 and C = 5.
C Setting βtot Proportion of false H0 βA βB βC βD βE

C = 3

1 4 2/3 1 1 5
2 18 3/3 1 5 10
3 18 2/3 1 1 10
4 48 3/3 1 10 30

C = 5

5 16 4/10 1 1 1 1 5
6 44 7/10 1 1 1 5 10
7 36 4/10 1 1 1 1 10
8 134 7/10 1 1 1 10 30

Table 2.10: Estimated power for the alternation design solutions (using direct
combining function on standardized test statistics), C = 3 treatments. Simu-
lated difference in slope among the three treatments’ effects; errors simulated
from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting n = 45 n = 75 n = 150 n = 45 n = 75 n = 150

1 0.132 0.127 0.159 0.097 0.113 0.140
2 0.122 0.176 0.174 0.101 0.143 0.150
3 0.136 0.158 0.188 0.109 0.128 0.152
4 0.124 0.179 0.211 0.124 0.171 0.178

Table 2.11: Estimated power for the alternation design solutions (using direct
combining function on standardized test statistics), C = 5 treatments. Simu-
lated difference in slope among the five treatments’ effects; errors simulated
from the standard normal distribution.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting n = 75 n = 125 n = 250 n = 75 n = 125 n = 250

5 0.075 0.097 0.113 0.071 0.084 0.099
6 0.108 0.115 0.161 0.079 0.108 .0144
7 0.092 .0126 0.138 0.079 0.120 0.114
8 0.106 0.116 0.153 0.86 0.116 0.129

Table 2.12: P-values of the tests on the difference between placebo and active
drug effects; data from Baplu (2005).

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100 tBO

P-values 0.0997 0.1430 0.1105
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Chapter 3

Replicated multivariate
single-case experiments

3.1 Introduction

As already pointed out in Chapter 2, single-case experiments are often used in
clinical research. Statistical inference made on the single subject can assure
internal validity, so conclusions on the effect difference of the treatments can
be referred to the patient included in the study. In order to extend the single
subject related results to a population of interest, more than one subject can
be involved in the study, using replicated single-case designs. These are often
much more consistent with the way in which consecutive patients are entered
into clinical trials than the random sampling model underlying many group
designs and standard statistical techniques. This chapter deals with the prob-
lem of extending single-case experiment results to a wider population level by
combining together the results obtained on replicated single-case experiments.

We recall that by performing a single-case experiment the researcher usually
aims to investigate the presence of a difference in the effects of the treatments
considered in the study. In this setting valid inference sometimes cannot be
made using parametric statistical procedures, and nonparametric tools often
represent a valid alternative or complementary approach to analyze this kind
of data (see Pesarin and Salmaso (2010)). In Chapter 2 we underlined that
permutation methods, in particular, are an interesting solution to the problem,
since they exploit the randomization of assignment of the measurement occa-
sions to treatments in order to build the permutation distribution of the test
statistic under the null hypothesis. Statistical inference is then based on the
comparison of the test statistic from the observed data with this permutation
distribution. In this chapter we consider and extend the permutation solution
discussed in Chapter 2 as well; the principal idea of this univariate test is to
smooth the single-case experiment time-series and then study the difference
between the several treatments’ effect working with the resulting smoothed pro-
cesses, instead of with other classical statistics based on the original dataset.
The method works well under a variety of data scenarios, is reliable under the
null hypothesis and is powerful under the alternative. Through this technique
we can assure the study’s internal and statistical-conclusion validity.

29
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In this chapter we will extend the above cited permutation solution in order
to deal with the multivariate response case and with replicated single-case ex-
periments, by using the nonparametric combination of dependent permutation
tests (see Pesarin (2001) and Pesarin and Salmaso (2010)). In the second sec-
tion we recall the single-case experiment theory and the permutation solution
presented in Chapter 2; Section 3 is devoted to the presentation of our proposed
extension. Section 4 shows the results of a simulation study in which the pro-
posed permutation solutions are tested under a wide variety of data scenarios,
and these methods are applied to a real experiment and mixed real and simu-
lated data in Section 5. At the end, conclusions about the obtained results are
discussed in Section 6.

3.2 A time-series permutation approach for single-
case experiments

In single-case experiments we observe one subject over a period of time, ad-
ministering different treatments during the study. The allocation of observation
occasions to treatment conditions is done using randomization. Depending on
which type of randomization we consider, we deal with different randomization
designs, and in this thesis we present some solutions for alternation design, case
in which any level of the independent variable can be present at each measure-
ment occasion.

To extend the single-case results to a wider population of interest we can use
replication; this is done by planning separated single-case experiments on several
subjects, and then performing them simultaneously (simultaneous replication
design) or sequentially (sequential replication design). We can introduce ran-
domization into the study by simply applying the randomization schedules sep-
arately in the several single-case designs (see Onghena and Edgington (2005)).
The complexity of the data we deal with in this case appears quite clear: con-
sidering the simpler case in which a univariate response in recorded in each
single-case experiment, we handle several time-series, one for each subject, on
which we wish to compare two or more treatments. When the response of in-
terest is multivariate, the problem complexity increases further on as for each
subject we register several time-series on which we want to test for the treat-
ments’ effect difference.

The permutation solution presented in Chapter 2 proposes the joint use of
smoothing methods and the permutation theory in order to test for treatments’
effect difference in univariate single-case experiments. Below we will adopt
the same notation used in Chapter 2. We recall that the null and alternative
hypotheses can be formalized as follows: H0 : XAj (t)

M
= XAl(t) ∀j < l, j, l = 1, . . . , C, ∀t ∈ D

H1 : ∃ j, l ∈ {1, . . . , C}, j 6= l | XAj (t)
M
6= XAl(t),

,

with (t) andM underlining the attention on the model underlying the response
time-process. The idea for the solution is to estimate the time functional shape
of observations for the different treatments’ sub-datasets, using a nonparametric
smoother, and then to use a summary statistic which is able to measure the
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difference among the several smoothed time-processes. As regards the choice
of smoother, we propose the use of local regression and, for the choice of test
statistic, a MA solution.

3.3 Extension via nonparametric combination of
dependent permutation tests

As we said above, the multiplicity issue can arise in single-case experiments in
two cases: at first, as very often happens in real data applications, when the
dependent variable of the study is multivariate; then, when we are interested in
asserting external validity of the analysis results, and we consider replications
of single-case experiments. In actual fact both these problems are hard to solve
using classical methods. This is essentially due to the fact that each single-case
experiment with a univariate outcome is a time-series, and when we either con-
sider a multivariate response or perform a replicated single-case experiment, it is
like considering separated time-series. Of course a further problem is that these
separated time-series actually are (in single-case experiments with a multivari-
ate response) or may be (in replicated single-case experiments) correlated. In
order to solve this problem, some solutions are proposed in Bulté and Onghena
(2009), essentially related to the combination of the test statistics. We propose
to use nonparametric combination of dependent permutation tests (see Pesarin
(2001)); this way we can handle the multiplicity issue completely disregarding
the dependence structure among the different tests.

In practice multiplicity can arise in both ways at the same time in single-
case experiments. Replicated single-case experiments can indeed be performed
when multivariate responses are observed for each subject. In this framework
we propose to nonparametrically combine partial permutation tests, while seek-
ing consistency in the design construction and the recording of data. As the
name suggests, replicated single-case experiments can be seen as a replication
of individual single-case experiments; each single-case experiment can then be
performed recording a multivariate response. Hence it is natural to construct
a combination procedure that works on two nested levels: firstly, at an inter-
nal level, we handle the multiplicity related to the multivariate nature of the
response; secondly, at an external level, we cope with the multiplicity from
replication of the individual single-case experiments. Suppose we perform a
replicated single-case experiment on S subjects, for each of which we record val-
ues from a multivariate response Xs = (X1

s , . . . , X
ps
s ), for s = 1, . . . , S. Hence

for the lth component of the multivariate response and the sth subject we ob-
serve the univariate time-series xls = (xls,1, . . . , x

l
s,T ), with s = 1, . . . , S and

l = 1, . . . , ps. Thus the index l = 1, . . . , P denotes the component of the multi-
variate response (and not the treatment condition as in the previous chapter),
s = 1, . . . , S indicates the subjects, xls for l = 1, . . . , ps is the response of the
lth variable for subject s. Formally the procedure we propose works as follows:

I) for all the individual single-case experiments, perform a partial permuta-
tion test, say T ls, on each component of the multivariate response xls, for
l = 1, . . . , ps and s = 1, . . . , S, following the iterative procedure below:

i. consider the original time-series of subject s and component of the
multivariate response l, say x = (x1, . . . , xT ), and the C sub-series
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xAj = (xAj ,1Aj
, . . . , xAj ,TAj

). Compute the C smoothed processes
sAj (t;xAj ), for j = 1, . . . , C;

ii. compute the observed value for the partial test statistics t
′,obs
m (x) =

ψm(x) = ψm(sA1(t;xA1), . . . , sAC (t;xAC )), for m = 1, . . . ,M ;

iii. according to the randomization scheme, perform a randomization of
x, obtaining the randomized time-series x∗,1 and the C permuted
sub-series x∗,1Aj . Compute the C permuted smoothed processes

s∗,1Aj (t;x∗,1Aj ), for j = 1, . . . , C;

iv. compute the value of the partial test statistics t
′,∗,1
m = ψm(x∗,1) =

ψm(s∗,1A1 (t;x∗,1A1 ), . . . , s∗,1
AC (t;x∗,1

AC )), for m = 1, . . . ,M ;

v. repeat steps iii and iv B times, obtaining the values of the partial
test statistics t

′,∗,i
m = ψm(x∗,i) = ψm(s∗,iA1(t;x∗,iA1), . . . , s∗,i

AC (t;x∗,i
AC )),

for i = 1, . . . , B, m = 1, . . . ,M ;

vi. construct the permutation distributions of the partial test statistics
under the null hypothesis from the vectors of values t

′,∗
m = (t

′,∗,1
m , . . . ,

t
′,∗,B
m ), for m = 1, . . . ,M ;

vii. nonparametrically combine the partial permutation tests, obtaining
the permutation distribution of the Multi-Aspect global test
T ls = t

′′

MA = Ψ(t
′

1, . . . , t
′

M );

II) nonparametrically combine the partial permutation tests within each sub-
ject, obtaining a global subject related test T

′,s = Φ
(
T 1
s , . . . , T

ps
s

)
, for

s = 1, . . . , S;

III) nonparametrically combine the global subject related permutation tests,

obtaining a global test T
′′

= Φ
(
T
′,1, . . . , T

′,S
)

.

At the single subject - single component stage of the multivariate response level,
we propose to perform the two MA permutation solutions presented in Chapter
2. We remark that, in order to deal with the implicit correlation structure
present within each subject, synchronized randomizations of the treatments
are performed at Step I.iii. of the above presented algorithm (for all the
components of the multivariate response within each subject).

Furthermore, using a closed testing procedure (see Marcus et al. (1976)),
we can also recover the information on the significance of partial and global
subject related tests. Adjusted p-values can indeed be calculated to see which
components of the multivariate response or which individual single-case experi-
ments led to the eventual rejection of the null hypothesis. The above described
combination scheme is presented schematically in Figure 3.1.

3.4 Power behavior

A simulation study was carried out to check the performance of the proposed
solution, following a very similar scheme to the one used in the simulation study
performed in Chapter 2. Our aim is to demonstrate the reliability and power of
the proposed procedures in replicated single-case experiments and in the case
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of multivariate response. Due to computational time restrictions, we considered
the case of C = 2 treatments to be compared. The tested hypotheses are{ ⋂S

s=1H
s
0⋃S

s=1H
s
1

⇔


⋂S
s=1

{
Xs,A1(t)

M
= Xs,A2(t)

}
∀t ∈ T⋃S

s=1

{
Xs,A1(t)

M
6= Xs,A2(t)

}
,

,

where Xs,Ac(t) indicates the pc-dimensional multivariate response time-series
related to the sth subject under treatment Ac, with c = 1, 2 and s = 1, . . . , S.
Notice that the computation order complexity is quite high, since at first a
partial permutation test (and the related B permutations) is performed for each
component of the multivariate response within each subject, then the procedure
is repeated for all the subjects. Hence, the B permutations are performed in
a threefold nested “for” loop. The reliability of the methods was measured
through the estimation of the type I error, while the capability of the procedures
to detect a difference among treatments’ effect was deduced from the estimation
of power. In the latter case different data scenarios were simulated under the
alternative hypothesis. We consideredMC = 1000 Monte Carlo replications and
B = 1000 permutations. Exactly as in Chapter 2, with regard to the smoother,
we performed a local polynomial regression with degree 2, span parameter λ =
0.75 and tricubic weighting. As regards the combining function, we propose to
use Tippett’s at both levels of combination (see scheme in Figure 3.1).

Under the null hypothesis, we considered four lenghts for the entire time se-
ries, n = 30, 50, 70, 100, and, as the underlying ARMA model, an ARMA(1, 1)
with several values for the autoregressive and moving-average parameters, φ =
θ = −0.3,−0.1, 0.1, 0.3, 0.5; hence five ARMA(1, 1) models are considered for
each sample size, corresponding to the five possible values for φ = θ. Under the
alternative hypothesis, we generated the difference in treatments’ effect adding
different deterministic parts to the different treatments’ data generating pro-
cesses for the same stochastic underlying ARMA models (see Chapter 2 for
a more detailed description). We considered both a difference in levels and
slopes between the treatments’ effect. Several settings were considered under
the alternative hypothesis. They differ in terms of number of false null partial
hypotheses, considering both different numbers of subjects and/or variables for
which we are under the alternative hypothesis. We maintained fixed differences
in levels and slopes between the treatments’ effect (under the alternative hy-
pothesis), always working with a difference in levels of δ = 1 (i.e. we simulated
data under H1 with respective means of the stationary processes equal to 0 for
treatment A and to 1 for treatment B) and a difference in slopes of βdiff = 49
(meaning that we simulated data under H1 with respective slopes βA = 1 and
βB = 50). We considered the case of a replicated single-case experiment with
S = 3 subjects for which a multivariate response of dimension p1 = p2 = p3 = 4
was recorded. The settings are described in Table 3.1 in terms of subjects and
variables simulated under the alternative hypothesis (for both cases of differ-
ences in levels and slopes). As regards the correlation structure of the errors,
we considered the case of no correlation among the subjects and two levels of
correlation between the pairs of variables within each single-case experiment,
ρi,j = 0.3, 0.8 for i < j, i, j = 1, . . . , S, where ρi,j denotes the correlation co-
efficient between the ith and the jth component of the multivariate response.
Hence, since normal errors have been used to simulate the data, we simulated
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Table 3.1: Settings of simulated data under the alternative hypothesis - the
symbol X indicates the partial comparisons which have been simulated under
the alternative hypothesis. Xi

s, i = 1, . . . , 4, s = 1, . . . , 3 indicates the ith
component of the multivariate response for the sth subject.

Setting Var. under H1 (per subj.) Subj. under H1 Subj. 1 Subj. 2 Subj. 3
X1

1 X2
1 X3

1 X4
1 X1

2 X2
2 X3

2 X4
2 X1

3 X2
3 X3

3 X4
3

1 2 1 X X
2 2 2 X X X X
3 2 3 X X X X X X
4 4 2 X X X X X X X X

errors for each single-case experiment, at each observation occasion, from a
multivariate normal distribution with a correlation matrix with values ρi,j , for
i < j, i, j = 1, . . . , S, for the elements out of the diagonal. Hence the consid-
ered settings in terms of ARMA underlying models, sample size and number
of false partial null hypotheses have been explored twice, considering the two
correlation structures.

The results related to the behavior under the null and alternative hypotheses
are reported in Table 3.2 and 3.3 for the two correlation structures respectively.
The proposed methods showed to control the type I error at the nominal level
in all the considered settings. Some of the simulation results, related to power
of the proposed methods, when ρi,j = 0.3, are also displayed in Figure 3.2
for the cases of a simulated difference in levels and slopes respectively between
the two treatments. Such results refer to data simulated from an ARMA(1, 1)
with autoregressive and moving-average parameters φ = θ = 0.1, with n and
the distance from the global null hypothesis (a combination of the number of
aspects and the number of subjects under the alternative hypothesis) varying.
Notice that similar results were obtained for the two correlation structures, with
a slight decrease of power for both procedures for ρi,j = 0.8, due to the larger
correlation between the partial permutation tests. As we can see the power of
both procedures reaches 1 already with a difference in levels of δ = 1 and a
low sample size (n = 30). In these cases the univariate version of the two MA
solutions did not reach power values greater than 0.6 (see Chapter 2). This
behavior, which can be found in the whole simulation study, suggests the capa-
bility of the nonparametric combination to better recognize that we are far from
the null hypothesis when we increase the number of aspects and subjects under
the alternative hypothesis. Again confirming the results obtained in Chapter 2,
as regards the effect of the autocorrelation on the power behavior of the pro-
posed methods, generally, the estimated rejection probabilities slightly decrease
as the autocorrelation parameters of the ARMA model move, in absolute value,
away from zero. Moreover, for both procedures, we can see that the power in-
creases with the setting, i.e. as the number of aspects and subjects under the
alternative hypotheses increases. It also has to be noticed, therefore, that the
behavior difference of t

′′

MA2
and t

′′

MA1
that can be appreciated in the univariate

version (t
′′

MA2
being more powerful than t

′′

MA1
with difference in levels, no clear

difference with difference in slopes, see Chapter 2) is no longer present in the
multivariate extension.
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Table 3.2: Estimated rejection probabilities for the alternation design solutions,
C = 2 treatments; for each subject the errors are simulated from the multi-
variate standard normal distribution with correlation 0.3 between all pairs of
variables.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting ARMA Par n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100

H0

φ, θ = −0.3 0.014 0.011 0.010 0.012 0.019 0.027 0.023 0.020
φ, θ = −0.1 0.010 0.017 0.018 0.013 0.021 0.022 0.027 0.021
φ, θ = 0.1 0.013 0.013 0.006 0.015 0.014 0.022 0.018 0.025
φ, θ = 0.3 0.013 0.008 0.016 0.016 0.023 0.021 0.030 0.020
φ, θ = 0.5 0.014 0.013 0.016 0.014 0.019 0.024 0.026 0.024

H1 - Shift 1

φ, θ = −0.3 0.993 0.986 0.994 0.991 0.987 0.989 0.986 0.981
φ, θ = −0.1 0.986 0.991 0.995 0.988 0.984 0.986 0.992 0.986
φ, θ = 0.1 0.992 0.994 0.994 0.987 0.986 0.988 0.985 0.982
φ, θ = 0.3 0.987 0.985 0.986 0.988 0.984 0.987 0.980 0.982
φ, θ = 0.5 0.988 0.991 0.985 0.984 0.987 0.983 0.988 0.988

H1 - Shift 2

φ, θ = −0.3 0.989 0.993 0.994 0.993 0.990 0.990 0.990 0.989
φ, θ = −0.1 0.987 0.993 0.997 0.993 0.991 0.991 0.993 0.986
φ, θ = 0.1 0.991 0.995 0.989 0.995 0.989 0.985 0.992 0.986
φ, θ = 0.3 0.988 0.990 0.994 0.996 0.988 0.989 0.991 0.987
φ, θ = 0.5 0.993 0.995 0.989 0.994 0.989 0.989 0.990 0.989

H1 - Shift 3

φ, θ = −0.3 0.994 0.995 0.993 0.998 0.991 0.990 0.994 0.997
φ, θ = −0.1 0.992 0.993 0.995 0.993 0.992 0.995 0.993 0.992
φ, θ = 0.1 0.996 0.997 0.990 0.996 0.994 0.994 0.995 0.995
φ, θ = 0.3 0.994 0.994 0.997 0.994 0.990 0.992 0.995 0.990
φ, θ = 0.5 0.992 0.989 0.992 0.996 0.992 0.993 0.988 0.990

H1 - Shift 4

φ, θ = −0.3 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = −0.1 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
φ, θ = 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.5 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000

H1 - Slope

1 0.978 0.978 0.979 0.981 0.985 0.988 0.983 0.990
2 0.989 0.986 0.990 0.980 0.992 0.994 0.990 0.992
3 0.996 0.992 0.990 0.996 0.996 1.000 0.994 0.996
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.5 Two applications

3.5.1 The Baplu (2005) experiment

We applied the proposed MA solutions to mixed real and simulated data: the
real part comes from a single-case experiment carried out at the Virga Jesse
Hospital in Hasselt, Belgium (see Baplu (2005)). The experiment is the same
considered in Chapter 2. The data refer to a 17-year old adolescent who had
concentration problems. The treatment which was tried on the patient was
methylphenidate (Ritalin). In this chapter we consider the single outcome mea-
sures, recorded twice a day, and not the summed scores. Hence we deal with
scores on a scale from 0 (never or rarely) to 3 (very often) for each of the follow-
ing items: a) does not follow through on instructions and fails to finish work, b)
fails to give close attention to details or makes careless mistakes in schoolwork,
c) has difficulty sustaining attention in tasks or play activities.

As we wish to show how the proposed permutation solution works in the case
of replicated multivariate single-case experiments, we simulated the outcomes
of two other patients, following the same setup that can be found in Baplu
(2005). We simulated the two other multivariate single-case experiments under
the alternative hypothesis on all the items, with several levels for the difference
in the effects of the two treatments. The data for the real and simulated subjects
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Table 3.3: Estimated rejection probabilities for the alternation design solutions,
C = 2 treatments; for each subject the errors are simulated from the multi-
variate standard normal distribution with correlation 0.8 between all pairs of
variables.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Length of the series Length of the series
Setting ARMA Par n = 30 n = 50 n = 70 n = 100 n = 30 n = 50 n = 70 n = 100

H0

φ, θ = −0.3 0.025 0.026 0.028 0.033 0.036 0.026 0.025 0.044
φ, θ = −0.1 0.031 0.022 0.037 0.030 0.043 0.031 0.046 0.034
φ, θ = 0.1 0.038 0.036 0.029 0.033 0.049 0.044 0.056 0.049
φ, θ = 0.3 0.028 0.031 0.031 0.029 0.029 0.046 0.040 0.049
φ, θ = 0.5 0.024 0.033 0.038 0.037 0.037 0.050 0.035 0.047

H1 - Shift 1

φ, θ = −0.3 0.982 0.983 0.983 0.980 0.973 0.972 0.976 0.976
φ, θ = −0.1 0.980 0.978 0.980 0.991 0.973 0.976 0.983 0.974
φ, θ = 0.1 0.970 0.981 0.988 0.987 0.973 0.984 0.980 0.977
φ, θ = 0.3 0.978 0.982 0.981 0.985 0.975 0.984 0.970 0.980
φ, θ = 0.5 0.980 0.977 0.975 0.987 0.970 0.969 0.974 0.977

H1 - Shift 2

φ, θ = −0.3 0.994 0.995 0.989 0.994 0.987 0.990 0.987 0.994
φ, θ = −0.1 0.989 0.987 0.986 0.993 0.982 0.989 0.984 0.989
φ, θ = 0.1 0.984 0.989 0.986 0.989 0.984 0.980 0.980 0.990
φ, θ = 0.3 0.990 0.990 0.988 0.991 0.990 0.990 0.991 0.989
φ, θ = 0.5 0.982 0.980 0.983 0.982 0.982 0.983 0.983 0.988

H1 - Shift 3

φ, θ = −0.3 0.995 0.996 0.995 0.995 0.987 0.990 0.993 0.987
φ, θ = −0.1 0.993 0.995 0.993 0.992 0.993 0.994 0.990 0.996
φ, θ = 0.1 0.992 0.988 0.994 0.993 0.988 0.991 0.992 0.991
φ, θ = 0.3 0.986 0.993 0.989 0.998 0.990 0.988 0.988 0.995
φ, θ = 0.5 0.985 0.993 0.991 0.995 0.992 0.991 0.987 0.996

H1 - Shift 4

φ, θ = −0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = −0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.1 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.3 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
φ, θ = 0.5 0.995 0.999 1.000 1.000 0.998 0.998 1.000 1.000

H1 - Slope

1 0.980 0.979 0.979 0.982 0.985 0.991 0.984 0.989
2 0.985 0.988 0.991 0.985 0.991 0.994 0.993 0.991
3 0.997 0.994 0.990 0.996 0.994 1.000 0.994 0.996
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

are displayed in Figure 3.3. We remark that, as in the real experiment no score
greater than 2 was recorded, we did not allow that value for the simulated
experiments either.

Table 3.4 reports the results of the application of the two MA solutions to
the data. It reports the adjusted partial p-values to test for effect difference on
each dimension of the multivariate response in each single-case experiment, the
global p-values for the several single-case experiments, and the final p-value for
the global test. A visual inspection of Figure 3.3 might suggest that the effect
of Rilatine is better in terms of concentration scores as compared to placebo,
in particular in the graphics related to the second simulated experiment. The
obtained results, reported in Table 3.4, suggest that both MA solutions are able
to recognize a global difference in the effects of the two treatments. Notice how
the permutation solutions and the use of nonparametric combination are able to
extract more from the extra information due to the replication of the single-case
experiment on more patients. Furthermore, it can also be seen that t

′′

MA2
seems

to be better able to recognize the effect differences. This result is coherent with
the considerations made after the simulation study: difference in levels, which
might be conjectured looking at the graphics, is the case where in the simulation
study t

′′

MA2
was shown to lead to higher powers.
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Table 3.4: Application to mixed real (from Baplu (2005)) and simulated data;
p-values of the tests on the effect difference.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Subject Partial Sub-global Global Partial Sub-global Global

1
0.248

0.247

0.0119

0.267
0.267

0.0011

0.497 0.549
0.248 0.378

2
0.872

0.301
0.584

0.0100.749 0.111
0.302 0.011

3
0.364

0.006
0.328

0.0000.364 0.215
0.006 0.001

3.5.2 The Yelland et al. (2009) experiment

We also applied the proposed permutation tests to a real study: an experiment
based on a replicated single-case experiment to assess the efficacy of a certain
drug for chronic neuropathic pain, presented in Yelland et al. (2009). Neu-
rophatic pain is a condition characterized by lesions or diseases affecting some
areas of the nervous system. The function of such nerves is affected in a way
that it sends pain messages to the brain. Neuropathic pain is often described
as burning, stabbing or like an electric shock. This kind of disease can be very
difficult to treat; in particular determining the best treatment for individual
patients is a very challenging issue nowadays, as individual responses might be
difficult to predict (see Yelland et al. (2009) for a more in depth discussion). The
drug administered in the study is an antidepressant which is often used to treat
neuropathic pain. The study we consider here refers to a replicated single case
experiment in which a multivariate response is recorded in order to compare the
active drug and placebo’s effects on curing this disease. Patients came from two
Australian public hospitals in Port Kembla and in Brisbane (Australia). After
an open-label dose-finding period of 2-3 weeks, only for the patients who were
not already on the active drug, the 12 week lasting experiment started: the
patients were observed for three 4-week periods. During these periods, for two
weeks the patients were treated with the active drug and during the other two
with placebo. The order of the two treatments was randomized separately in the
three periods. Hence, in total 8 randomizations were possible. Some descriptive
information was recorded for the patients at their entry in the study, like sex,
age and other variables related to the severity of chronic pain. Moreover, several
outcome variables were considered related to the pain, the capability of sleeping
and a general evaluation of the two treatments.

In this thesis we have at our disposal the data on only eight patients among
the ones enrolled in the study and who finished the 12 weeks lasting period,
hence less than the original sample size presented in Yelland et al. (2009). We
considered a bivariate response consisting in a daily estimation of pain in the
marked area and a daily estimation of sleep interference, both on a visual scale
from 0 to 10. The daily outcomes were recorded only during the second week
of each treatment within each 4-week period in order to allow for washout (the
effects of the active drug wear off within two days). Figures 3.4 and 3.5 display
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the data: on the two columns we find the bivariate response, while the eight
patients are represented on the rows. It can be noticed how the several patients
respond quite differently to the both the treatments.

We applied the two proposed permutation solutions to the data. We remind
that we constructed the two procedures in order to test for a difference in the
effects of the two treatments, hence a two-sided alternative is considered. Table
3.5 summarizes the results of the study on our eight patients: we report the
partial p-values for the test on each patient-response combination, along with
the global patients’ related p-values and the overall p-values, the latter ones
to assert if the active drug and placebo have a different effect globally on the
bivariate response and on the eight considered patients. We remark that, since
only 8 randomizations are possible, the minimum p-value turns out to be 0.125:
hence the results must be read in terms of how close are the obtained p-values
to such minimum value. The analysis suggests that the active drug and placebo
have a different effect on patients 2 and 4. Less strong conclusions in the same
direction can be done also for patients 1, 3, 6 and 7 (see Figures 3.4 and 3.5).
As regards the choice of the best treatment, we can assert that in patients 2 and
4, the ones with higher evidence of difference between the two treatments, the
active drug looks to improve both the pain and sleep scores. The same can be
said for patient 7. On the contrary, an opposite situation can be deduced from
the displayed data of patient 6 which shows better scores under the placebo
treatment. Globally the overall permutation tests suggest a difference in the
effect between the drug and placebo. Looking at the other information we had
available for the patients, we can underline that patients giving better responses
to the active drug (patients 2, 4 and 7, respectively 72, 78 and 96 years old)
are in average quite older than patient 6 (45 years old), who showed a better
effect for the placebo treatment. Moreover it is also worth noticing that scores
of patient 6 are quite high compared to the ones of the other patients, fact
that, together with the young age (this patient is also the youngest of the eight
considered), could suggest a particular situation for this patient.

We must mention the fact that other combining strategies can be used to
analyze this data, which could lead to more powerful solutions for the global
permutation test. In particular a trick could be that of looking at the whole
replicated single-case experiment as just one big unique study, instead of as
the union of several smaller studies on the single patients. By doing this the
whole permutation space becomes the space of all possible combination of the
8 possible randomizations per subject, which turns out to have a cardinality
of 88, much larger than the only 8 possible randomizations that we considered
before. We performed such alternative solution, again using Tippett combining
function to combine the partial subject related tests. We applied this alternative
solution getting a p-value for the global test of 0.058 for t

′′

MA1
and of 0.113 for

t
′′

MA2
. These results suggest with higher evidence the presence of a difference in

the effects of the two treatments, especially in the case of t
′′

MA1
.

In conclusion, the active drug shows to have a different effect with respect
to placebo. The analysis suggests that patient specific decisions should then
be taken regarding the administration of this treatment for chronic neuropathic
pain. This also confirms the results obtained in Yelland et al. (2009).
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Table 3.5: Real application from Yelland et al. (2009); p-values of the tests on
the effect difference.

t
′′

MA1
, lgrid = 100 t

′′

MA2
, lgrid = 100

Subject Partial Sub-global Global Partial Sub-global Global

1
0.250

0.250

0.125

0.250
0.250

0.125

0.250 0.250

2
0.125

0.125
0.125

0.125
0.625 0.875

3
0.250

0.250
0.250

0.250
1.000 1.000

4
0.125

0.125
0.125

0.125
0.125 0.125

5
0.875

0.625
0.875

0.750
0.875 0.875

6
0.375

0.250
0.375

0.250
0.250 0.250

7
0.250

0.375
0.250

0.375
0.250 0.250

8
0.875

0.750
0.875

0.750
0.875 0.875

3.6 Main results

In this chapter we presented an extension, via nonparametric combination, of
a time-series permutation solution to test for treatments’ effect in single-case
experiments with alternation designs. The aim of our research was to propose a
technique that can be used generally in replicated single-case experiments when
a multivariate response is also observed.

The use of nonparametric combination of dependent permutation tests allows
us to successfully handle this problem. A simulation study showed that the
proposed extension is reliable under the null hypothesis and powerful under the
alternative. In general a good feature of the proposed solutions is the increase
in their power as the data moves further away from the null hypothesis.

We also applied the new techniques to a real experiment and mixed real and
simulated data, in which we show the flexibility and usefulness of the methods
which can be used to analyze complicated replicated single-case studies with
multivariate responses, even when the length of the single-cases time-series is
short.

Several further developments could be made using the tools presented here.
For instance, we could explore how to improve the performance of the method
changing the combining functions that are used at the different levels of the
combination scheme. The performance of the method could also be explored
within many other data scenarios.
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Figure 3.1: Combination scheme for replicated single-case experiments with
multivariate response.



3.6. MAIN RESULTS 41

●

●

●

●

2 3 4 5 6 7 8

0.
96

0.
97

0.
98

0.
99

1.
00

Power −− ARMA(1,1) −− S=3,p=4 −− difference in levels

# var(H1)   x   # subj(H1)

P
ow

er ●

●
●

●

●

●

●

●

● MA1

MA2

n=30
n=50
n=70

●

●

●

●

2 3 4 5 6 7 8

0.
97

0
0.

97
5

0.
98

0
0.

98
5

0.
99

0
0.

99
5

1.
00

0
Power −− S=3,p=4 −− difference in slopes

# var(H1)   x   # subj(H1)

P
ow

er

●

●

●

●

●

●
●

●

● MA1

MA2

n=30
n=50
n=70

Figure 3.2: Simulation study results. On the left, power functions for the two
considered permutation solutions in the case of a simulated difference in levels,
an ARMA(1, 1) model for the errors with parameters φ, θ = 0.1, with n and the
distance from the global null hypothesis (a combination of number of aspects
and number of subjects under the alternative hypothesis) varying; on the right,
power functions for the two considered permutation solutions in the case of a
simulated difference in slopes, with n and the distance from the global null
hypothesis varying.
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Figure 3.3: real (from Baplu (2005)) and simulated data: scores and smoothed
time sub-processes.



3.6. MAIN RESULTS 43

20 40 60 80

0
2

4
6

8
10

Days

P
ai

n 
−

 P
at

ie
nt

 1

20 40 60 80

0
2

4
6

8
10

Days

S
le

ep
 −

 P
at

ie
nt

 1

20 40 60 80

0
2

4
6

8
10

Days

P
ai

n 
−

 P
at

ie
nt

 2

20 40 60 80

0
2

4
6

8
10

Days

S
le

ep
 −

 P
at

ie
nt

 2

20 40 60 80

0
2

4
6

8
10

Days

P
ai

n 
−

 P
at

ie
nt

 3

20 40 60 80

0
2

4
6

8
10

Days

S
le

ep
 −

 P
at

ie
nt

 3

20 40 60 80

0
2

4
6

8
10

Days

P
ai

n 
−

 P
at

ie
nt

 4

20 40 60 80

0
2

4
6

8
10

Days

S
le

ep
 −

 P
at

ie
nt

 4

Figure 3.4: Real data from Yelland et al. (2009). The bivariate response is
always displayed in the two columns, the first, second, third and fourth patients
are reported in the four rows. Black circles refer to the active drug treated
observations, red circles to the placebo ones
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Figure 3.5: Real data from Yelland et al. (2009). The bivariate response is
always displayed in the two columns, the fifth, sixth, seventh and eighth patients
are reported respectively in the four rows. Black circles refer to the active drug
treated observations, red circles to the placebo ones



Chapter 4

Univariate CUB models

4.1 Introduction

Analysis of ordinal data is nowadays receiving a growing theoretical and applied
interest in many fields (see Agresti (1999, 2002, 2010); Agresti and Natarajan
(2001)). For instance we often need this kind of analysis in marketing, when
we wish to study the preferences of consumers about a set of products (market
segmentation), or in clinical studies, when researchers wish to rate different
treatments or drugs which are measured through ordinal categorical scores.
With reference to these examples, the evaluation of the product or the rating
of the treatments are processes which depend on specific subject (consumer or
patient) and object (product or drug) characteristics. Formally, the rating issue
arises when the subject is asked to express on a Likert scale a level of satisfaction
or a degree of evaluation for the object of interest. In this chapter we propose a
permutation technique to test for covariate influence on rating ordinal responses,
working within a particular parametric framework for this kind of data.

In this sense several regression techniques have been proposed in order to
analyze categorical data. For instance discriminant analysis performs a classi-
fication analysis for categorical responses, seeing the possible values that the
outcome can take as possible categories and working on the likelihoods coming
from the estimation of the models for the multivariate vector of covariates in
the several categories. Indeed the covariates are here assumed to be realiza-
tions of normal random variables and a Bayes argument is used to construct
the conditional probability of having a specific multivariate realization of the
independent variable given the category the subject belongs to. Hence in this
case the classical link between a linear predictor and the distribution of the
categorical response does not exist. Another parametric modeling framework is
based on the General Linear Models (GLM) paradigm introduced by McCullagh
and Nelder (1989) and, specifically, by McCullagh (1980) for ordinal data. In
this case the covariates are considered as fixed given values and some aspect of
the distribution of the ordinal response is modeled as a function of the ordi-
nal response. In the same vein, a new approach is represented by cubmodels,
which have been introduced by Piccolo (2003), D’Elia and Piccolo (2005) and
subsequently generalized by Piccolo and D’Elia (2008) and Iannario and Pic-
colo (2009) (the acronym cub is derived from the presence of Covariates in the

45
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mixture of discrete U niform and shifted B inomial distributions). Again the
ordinal response’s distribution is modeled on the basis of the values of the co-
variates, which are considered to be fixed and not realization of a random vector.
Briefly, cubmodels are generated by a class of discrete probability distributions
and allow to analyze ordinal data by taking into account the presence of two
intrinsically continuous quantities (feeling and uncertainty) pertaining to the
response. The rationale of such proposal is developed according to a psycho-
logical mechanism which explains the selected choice as the result of a personal
liking/disliking (feeling) towards the object under judgment and an inherent in-
decision (uncertainty) generated by multiple alternatives. Formally the model is
defined as a mixture of two discrete distributions where feeling and uncertainty
components are explained by a shifted Binomial and Uniform random variables,
respectively.

The definition of the two distributions contributing to the mixture comes
from the following considerations. As far as the first component is concerned,
the choice of a particular score may be interpreted as result of the pairwise
comparisons between the possible scores, so that each comparison generates a
dichotomous choice (Bernoulli experiment). Consider, for instance, a scale from
1 to m, with m = 4, and suppose that a subject is asked to rate a particular
item (and let Y denote the response random variable). Then, if the subject’s
response is y = 3, he/she preferred the score 3 with respect to the other possible
scores (1, 2 and 4), that is he/she chose 3 in the pairwise comparisons 1 versus
3, 2 versus 3 and 3 versus 4. If we assume that the random variables describing
the comparisons are (approximately) independent Bernoulli distributions with
parameters (1 − ξ) and ξ, as the probability that each comparison is lost and
won by the first score, respectively, then a given sequence of failure/success has
(approximately) a probability of (1−ξ)y−1ξm−y. A combinatorial argument im-
mediately proves that the probability of a given choice is

(
m−1
y−1

)
(1− ξ)y−1ξm−y.

In addition, a heuristic argument may justify the use of this distribution since
it is able in an effective way to map a continuous latent variable into a discrete
set of values 1, . . . ,m and to allow different skewness and shapes (see Piccolo
(2003)). A formal justification for the selection of a Uniform distribution as
a building block for modeling uncertainty is its simplicity (absence of param-
eters) and the property of being a random variable which maximizes entropy
over all discrete distributions with a finite support. In fact, we are not saying
that a portion of respondents belongs to completely lazy people subset (who
choose a category only by a chance mechanism) but we are assuming that each
respondent manifests a propensity to act according such extreme behavior. The
weight of this propensity is (1− π) and it is related to the second parameter of
the model.

It is of course of interest to include some covariates of interest in order to
model the distribution of the respondents’ choices. Hence the main general-
ization of cubmodel consists of the inclusion of the dependence of one or both
parameters on some covariates. In fact, interpretation and fitting of cubmodels
generally improve when we relate feeling and uncertainty to subjects’ charac-
teristics since this allows to explain the different patterns of responses and the
presence of clusters among respondents. It is worth of interest to check the
significance of such relationship within an inferential framework, and thus to be
able to identify the covariates that really influence the ordinal response while
controlling the inferential errors. Moreover, given the pronounced importance
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of ordinal data analysis in applied fields, it is surely of interest to specify a
testing procedure which is adequate also for small or moderate sample sizes.
More precisely, in this chapter we aim at presenting a permutation solution to
test for the effect of a covariate on a rating response within the cubmodeling
framework. Several types of permutation tests have been proposed in order to
compare different models, and a comprehensive review of the literature is given
by Anderson and Ter Braak (2003). Permutation strategies can be divided in
two groups: permutation of raw data and permutation of residuals. The solu-
tion we propose belongs to the former class. Within this group of methods there
are three important approaches: the first one is the unrestricted permutation of
raw data (see Manly (1997)), which is an exact solution only in the case of one
factor of interest. Restricted permutations of raw data can also be performed
(see Good (1994); Edgington (1995)), and it is an exact test when we do not
deal with interaction terms. A third solution is the synchronized permutation
test (see Salmaso (2003); Basso et al. (2007)). Simulation studies (see Gonzalez
and Manly (1998)) show that no method is uniformly the best over all kinds of
design. Our solution belongs to the family of restricted permutation tests.

Section 2 is devoted to the formalization of the cubmodel and the summary
of the main inferential parametric results. The proposed permutation test is
presented in Section 3, where the iterative procedure is described and a step-
wise procedure for the choice of a suitable cubmodel while controlling for the
multiplicity issue is also proposed. Section 4 reports the results of a simula-
tion study on the proposed solution. The applicability, in terms of minimum
sample size, of our proposal is discussed in Section 5. Section 6 presents the
application of the proposed test to a real dataset. At the end the conclusions
are summarized in Section 7.

4.2 Formalization of the model

We consider that respondents are asked to select a given category in a set of
m given and ordered alternatives related to satisfaction, agreement, attraction,
evaluation, perception, worry, and so on. An independent and identically dis-
tributed (i.i.d.) sample of size n is assumed to be drawn from one or more
populations of interest. Thus, we are collecting ratings of n people with re-
spect to a definite item, object, sentence, question, and so on, and the observed
sample will be denoted by y = (y1, y2, . . . , yn)′.

This process defines a discrete random variable Y whose support is {1, 2, . . . ,
m}, for a given and known m. On the basis of the logic and psychological
hypotheses listed in the previous section, we assume that such random variable
has the following cub probability distribution:

Pr (Y = y) = π

(
m− 1

y − 1

)
(1− ξ)y−1ξm−y + (1− π)

(
1

m

)
, y = 1, 2, . . . ,m,

where π ∈ (0, 1] and ξ ∈ [0, 1]. With such constraints, this distribution is always
well defined and Iannario (2010) proved its identifiability for any m > 3. Notice
that the parametric space of such random variable is the left open unit square,
that is :

Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1} .
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Parameters ξ and π are related to feeling and uncertainty, respectively. As
a matter of fact, the cub distribution is positively (negatively) skewed when
its mode is less (greater) than the midrange (m + 1)/2 and thus low (high)
ratings have higher probabilities: this happens for ξ > 1/2 (ξ < 1/2, respec-
tively). As a consequence, (1− ξ) denotes a measure of feeling towards the ob-
ject/service/item. On the contrary, the indecision of the respondents increases
directly with the weight of the Uniform distribution in the mixture; thus, (1−π)
is a direct measure of the uncertainty that characterizes the ordinal choice. In
addition, since there is a one-to-one correspondence among a point in the unit
square and a cubmodel, it is possible to achieve effective interpretations of es-
timated results in terms of feeling and uncertainty, respectively, as shown by
Iannario (2008a) and Corduas et al. (2010), for instance.

As said in the previous section, one of the most relevant and simplest gen-
eralization stems from the inclusion of subjects’ covariates. The aim is to use
such covariates for explaining feeling and/or uncertainty parameters and for
improving model fitting. Hence, the general formulation of a cub (p, q) model
(with p covariates to explain uncertainty and q covariates to explain feeling) is
expressed by the stochastic component:

Pr (Y = y|zi,wi) = πi

(
m− 1

yi − 1

)
(1− ξi)yi−1ξm−yii + (1− πi)

(
1

m

)
, (4.1)

with y = 1, 2, . . . ,m and two systematic components:

πi =
1

1 + e−zi β
; ξi =

1

1 + e−wi γ
; i = 1, 2, . . . , n, (4.2)

where zi and wi are the covariates row-vectors for explaining πi and ξi, respec-
tively, and ψ = (β′,γ′)′ is the vector of parameters associated to the covariates.
Here the logistic formulation has been chosen since it is the simplest and common
mapping among the real line and the unit interval; however, other convenient
links (as probit, log-log complimentary, etc.) might be introduced if necessary.

In the current literature, the relationship has been usually established be-
tween covariates and ratings through the expectation of the response (as in the
GLM framework). Instead, notice that in cubmodels this link is straightly
expressed through the parameters since:

E[Y ] = π(m− 1)

(
1

2
− ξ
)

+
m+ 1

2
,

and thus different parameter vectors (π, ξ)
′

can generate the same expectation.
Inference on cubmodels has been mainly developed in a parametric frame-

work. Given a sample of observed ordinal data and row-vectors of covariates
(yi, zi,wi), for i = 1, . . . , n, the log-likelihood function for the parameter vector
ψ = (β′, γ′)′ of a general cub (p, q) model is defined by

` (ψ) =

n∑
i=1

log

[
1

1 + e−zi β

((
m− 1

yi − 1

)
e−wi γ(yi−1)

(1 + e−wi γ)m−1
− 1

m

)
+

1

m

]
.

In order to compute maximum likelihood estimates of the parameters with an
EM algorithm, Piccolo (2006) derived a statistical procedure and Iannario and
Piccolo (2009) made available an effective R software for its implementation.
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Some measures for testing the adequacy of the estimated models (asymptotic sig-
nificance of parameters, log-likelihood and fitting measures, simulations, graph-
ical displays, and so on) are also currently available.

4.3 A permutation test on the covariates

4.3.1 The permutation procedure

We propose a nonparametric solution for testing the significance of the covariate
coefficients of the cubmodel, based on the permutation of the tested covariates.
Indeed, the parametric solutions for this testing problem are usually based on
asymptotic holding assumptions on the distribution of the maximum likelihood
statistics under H0, as Wald and likelihood ratio tests, for instance. Such con-
ditions are not valid for small sample size and thus a suitable nonparametric
solution is needed.

Let us consider a general cub (p, q) model. Test on the adequacy of the
estimated model and test on the comparison between nested models can be
considered as a unique inferential problem, where under the null hypothesis
one or more coefficients are equal to zero. Indeed, testing the adequacy of a
cub (p, q) model consists in comparing the general model with p+ q covariates
with the simplest model with no covariates. Let us formalize the problem of
interest: let us consider the cubmodel where the response variable Y follows
the mixture distribution as described in section 2 (equations 4.1-4.2). If we
denote by Ψ the parametric space, then ψ ∈ Ψ and the general null hypothesis
of interest can be written as

H0 : ψ ∈ Ψ0,

with Ψ0 ⊂ Ψ. In Ψ0 some elements of β∗ = (β1, . . . , βp)
′

and/or some elements

of γ∗ = (γ1, . . . , γq)
′

are equal to zero. The alternative hypothesis can be
represented as follows

H1 : ψ ∈ Ψ1,

where Ψ1 = Ψ−Ψ0.
In the present section, we refer to the full model as the model specified

under the alternative hypothesis, that is the cub (p, q) model. Let us describe
the permutation test: suppose to observe a sample of data described by the
row vectors (yi, zi,wi), for i = 1, . . . , n, generated under H0 by a cub (p1, q1)
model (null model), with p1 ≤ p, q1 ≤ q and p1 + q1 < p+ q. When not all the
covariates are tested let us assume that the non tested covariates are categorical.
Moreover let us assume that the observed frequencies of each combination of
values of the non tested covariates are greater than one (all-cell-permutation
condition), i.e. there are at least 2 respondents characterized by each possible
combination of values of non tested covariates. As we will see, in presence of non
tested covariates this condition is essential for the applicability of the proposed
method.

In other words, we are testing p2 = p − p1 covariates for π and q2 = q − q1
covariates for ξ. Without loss of generality, let us assume to test the last p2
covariates for π and the last q2 covariates for ξ. Hence, the tested hypotheses
can be written as

H0 : βp1+1 = · · · = βp = γq1+1 = · · · = γq = 0 (4.3)
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versus

H1 : ∃r ∈ {p1 + 1, p1 + 2, . . . , p} : βr 6= 0 or ∃s ∈ {q1 + 1, q1 + 2, . . . , q} : γs 6= 0.
(4.4)

It is helpful to organize the sample information (dataset) as a matrix like
the following:


y1
y2
. . .
yn

∣∣∣∣∣∣∣∣
z11 . . . z1p1
z21 . . . z2p1
. . . . . . . . .
zn1 . . . znp1

∣∣∣∣∣∣∣∣∣
z1,p1+1 . . . z1p
z2,p1+1 . . . z2p

. . . . . . . . .
zn,p1+1 . . . znp

∣∣∣∣∣∣∣∣∣
w11 . . . w1q1
w21 . . . w2q1
. . . . . . . . .
wn1 . . . wnq1

∣∣∣∣∣∣∣∣∣
w1,q1+1 . . . w1q
w2,q1+1 . . . w2q

. . . . . . . . .
wn,q1+1 . . . wnq



where the first column corresponds to the vector y of observed values of the
response and the distinction between non tested and tested covariates for π and
for ξ is highlighted.

Let us denote with Z1 and with W1 the sub-matrices of the dataset cor-
responding to the non tested covariates for π and ξ respectively (second and
fourth block of columns), and similarly with Z2 and W2 the sub-matrices cor-
responding to the tested covariates (third and fifth block of columns).

The starting point for the construction of any permutation test is the identi-
fication of exchangeable units in the dataset under the null hypothesis; after that
is done and a suitable test statistic is chosen, permutations of such quantities can
be performed and the distribution of the tests statistic under the null hypothesis
can be estimated. Under our null hypothesis the rows of the tested covariates
Z2 and W2 are exchangeable within each block of rows having the same combi-
nation of values for the non tested covariates: indeed under the null hypothesis
the tested covariates are not included in the model so rows having the same
combinations of values for the non tested covariates determine responses from
cubmodels having the same values for the uncertainty and feeling parameters,
while rows having different combinations of values determine responses coming
from different cubmodels. At this point, after having chosen a test statistic,
its permutation distribution can be calculated through suitable (constrained if
needed, see Remark 1 below) permutations in the dataset. Let us assume, with-
out loss of generality, a suitable test statistic t is chosen such that H0 is rejected
for large values of t. Let us set also a large number B of permutations that can
coincide either with the total number of possible permutations or with a lower
number, depending on the choice to consider the whole permutation space or
a random sample of permutations for computational convenience (see Pesarin
and Salmaso (2010)). The procedure consists of the following steps:

i. Calculate the observed value of the test statistic as function of the observed
dataset to = t(y,Z1,Z2,W1,W2).

ii. Permute the rows of Z2 and W2, keeping fixed the remaining elements of
the dataset. When there is at least one non tested covariate, constrained
permutations within blocks have to be performed (see also Remark 1 be-
low). Let us denote with 1Z

∗
2 and 1W

∗
2 the results of this permutation,

i.e. the permuted matrices.

iii. Calculate the value of the test statistic corresponding to the permuted
dataset.

iv. Repeat Steps ii and iii B times, yielding the permutation distribution
of the test statistic. The value of t corresponding to the b-th permutation
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is bt
∗ = t(y,Z1, bZ

∗
2 ,W1, bW

∗
2 ), b = 1, 2, . . . , B, where bZ

∗
2 and bW

∗
2

represent the result of the b-th permutation on X2 and W2 respectively.

v. Calculate the p-value λ of the test as usual according to the permutation
distribution of t, i.e. λ =

∑B
b=1 I[t0,∞)(bt

∗)/B where I[t0,∞)(t) = 1 if t ≥ t0
and 0 otherwise.

The idea of performing constrained permutations within blocks is displayed in
Figure 4.1, in which we consider the particular case of two dichotomous non
tested covariates, w1 and w2, and two tested covariates, w3 and w4, for ξ. We
can see that is this case we have four possible blocks, one for each possible
combination of values of the two non tested covariates. Within each of the four
blocks then, we can permute the rows of tested covariates, as indicated in the
scheme.

Figure 4.1: Permutation scheme. Case of two dichotomous non tested covariates,
w1 and w2, and two tested covariates, w3 and w4, for ξ.

To perform the described procedure, many possible test statistics can be
chosen. We decided to use the following classical parametric likelihood based
test statistics:

• The classical likelihood-ratio statistic tlrt = 2
[
`
(
ψ̂
)
− `
(
ψ̂0

)]
, where ψ̂

and ψ̂0 represent the maximum likelihood estimator of ψ under the full
model and null model, respectively. Consider that at each permutation
only the full model needs to be estimated.

• The Wald-type test twald = (| β̂p1+1

se(β̂p1+1)
|, . . . , | β̂p

se(β̂p)
|, | γ̂q1+1

se(γ̂q1+1)
|, . . . , | γ̂q

se(γ̂q)
|)·

c, where c ∈ <p2+q2+ is a suitable vector of weights and se(·) denotes the
standard error of an estimator. Hence this test statistic is a linear com-
bination of the partial test statistics on the single tested coefficients and
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each single test statistic consists in the absolute value of the standardized
estimator.

• The Non Parametric Combination (NPC-type) test tnpc = ϕs(λ1, . . . ,
λp2+q2 ; c), where λk is the p-value of the k-th partial test related to a
covariate (k = 1, . . . , p2 + q2), c a vector of weights and ϕs(·) a suitable
function according to the NPC of dependent permutation tests theory
(see Pesarin and Salmaso (2010)). Notice that the Wald-type test can
be considered a particular case of the NPC-type test, when the so-called
direct combination is applied.

Remark 1. As noticed above, when there is at least one non tested covariate
(i.e. when the null model include not only the constant) under the null hy-
pothesis not all the rows of the tested covariates are exchangeable, since the
probability distribution Pr (Y = y|z,w) changes according to the values of the
non-tested covariates. Anyhow, the same probability distribution can be found
in blocks of rows with the same combination of values for the non-tested covari-
ates, and the rows of the tested covariates are exchangeable within these blocks.
Remark 2. As already said, in order to determine the permutation distribution
of the test statistic, only the rows of the tested covariates have to be permuted.
Furthermore, the permutations have to be synchronized, so that the dependence
among the tested covariates for the same respondent can be taken into account.
Remark 3. Even if the proposed method could be considered a semi-parametric
procedure, since it combines parametric and nonparametric tools, it can be
properly classified as a permutation approach, because in this framework the
parametric techniques taken into account can be seen just as a general way to
manipulate the data and calculate the values of a test statistic. This is surely
a full nonparametric method because no assumption is done and no asymptotic
theory is applied to explicitly describe the distribution of the test statistic.
Remark 4. The proposed method differs from the so-called model-based per-
mutation approaches used in linear models, where the permuted elements consist
in the error terms. Conversely, in order to calculate or estimate the permuta-
tion distribution of the test statistic, in this nonlinear model we need to permute
some of the covariate vectors.

We remind that the procedure is defined in general for categorical or discrete
non tested covariates. However it can be applied also in the case of continuous
non tested covariates after a suitable class transformation or categorization of
them. Anyway, in presence of non tested covariates, regardless of the nature of
them, the all-cell-permutation condition has to be satisfied. Table 4.1 displays
the cases in which the permutation solution can be applied and the constraints
to be satisfied according to the situations. Finally, it should be considered that
the procedure is quite general and many other test statistics can be chosen for
its application.

4.3.2 A stepwise procedure for covariate selection

In practice, it is useful to establish a suitable procedure or a set of rules to
find the best model for the data. Hence, in principle, many tests need to be
performed in order to decide for a suitable model. Usually, researcher may work
in two directions: (i) starting from a set of covariates, he/she may specify the full
cub (p, q) model, including all the covariates, and go back (backward stepwise
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Table 4.1: Applicability of the permutation solution.

Covariates under H0 Covariates

Categorical or discrete Continuous
None Always applicable Always applicable

One or more
All-cell-permutation All-cell-permutation condition,

condition after transformation

procedure) removing non significant covariates until he finds a parsimonious
but well fitting model; (ii) otherwise, he/she may follow a forward stepwise
procedure, starting from the simplest model (the one with only the constant
covariate), and adding one covariate at a time until a satisfactory model for the
data has been found.

We propose a forward stepwise procedure based on permutation inference
in order to find a suitable model. Our choice of a forward procedure mainly
comes from one reason: in the general case the permutation solution performs
constrained permutations within blocks; the number of blocks increases in geo-
metrical progression with the number of non-tested covariates, raising the risk
that the all-cell-permutation condition is not satisfied. Hence the solution we
propose consists in starting from the simplest model with only the constant
covariate, and adding one covariate at each step. At every step significance
tests on the covariates not already included in the model are performed and
the covariate related to the more significant coefficient is included in the model.
Choosing a suitable procedure is important also because different procedures of
model selection can lead to different final models. Hence, a joint use of mul-
tiple permutation tests and closed testing methods is a suitable way to solve
the problem of multiplicity and provide an efficient procedure for the model
selection.

More specifically, let r be the number of covariates under study and s the
number of covariates included in the model (s = 1, . . . , r). Hence when all the
covariates affect both feeling and uncertainty the model is a cub (r, r). The
procedure works as follows:

i. Fit the null cub (0, 0) model (s = 0).

ii. Perform r− s permutation tests to test the null model against each of the
possible cubmodels obtained adding one of the r− s available covariates.
To perform this step, the Wald-type or the NPC-type permutation tests
defined in the previous section can be applied.

iii. Apply the NPC methodology (see Pesarin and Salmaso (2010)) to combine
the single permutation tests (partial tests) in step (ii) and obtain a global
test on the joint nullity of the parameters versus the significance of some
of them.

iv. If the null hypothesis of the global test at step (iii) cannot be rejected, no
tested covariate should be added to the model. Then the selection proce-
dure ends. If the global null hypothesis at step (iii) is rejected then adjust
the p-values of the partial tests. To do it, apply the closed testing non
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parametric procedure proposed by Pesarin and Salmaso (2010). Specify
the new null model adding the covariate related to the lowest adjusted
p-value. Hence s has increased by one.

v. Starting from the new null model, repeat steps (ii), (iii) and (iv) on the
remaining covariates.

vi. The selection procedure ends when s = r or when the null hypothesis of
the global test is not rejected.

It should be noted that the expression “add a covariate” means the inclusion
of a variable in the model as a covariate of feeling, uncertainty or both. Hence
three tests have to be performed to decide how many and which parameters are
affected by the covariate. Thus we propose to test the inclusion of a covariate
in the model in the following way:

1. Perform the partial permutation tests, t(1,0) (for π) and t(0,1) (for ξ) say,
needed to verify if the covariate affects the parameters π or ξ.

2. Combine together the two tests of step (1), obtaining a global test. If the
global test is not significant, conclude that the covariate has no influence
on the response; if the combined test is significant, adjust the two partial
p-values and include the covariate in the model according to the following
rules: a) if the adjusted p-value of t(1,0) is less than the significance level
(α), include the covariate for π; b) if the adjusted p-value of t(0,1) is less
than α, include the covariate for ξ.

This way we are taking care of the multiplicity issue at a inner level, while
deciding which parameters the covariate affects, and also at an outer level at
each step of the procedure.

4.4 Power behavior

A Monte Carlo simulation study has been carried out in order to study the power
behavior of the permutation test on covariates for finite sample size. The study
is divided in two main parts: at a first step we considered the cub (1, 1), the
cub (1, 0) and the cub (0, 1) models as the full model and the cub (0, 0) model
as null hypothesis, in order to check the behavior of the permutation tests in
the simplest possible cases. At a second step we extend the simulation study
considering more complicated cubmodels under the alternative hypothesis (up
to the cub (3, 3) model).

In general in the simulation study the performance of the permutation tests
has been compared with a parametric competitor in terms of rejection rates
both under the null and alternative hypotheses for different settings. We con-
sidered the case of dichotomous covariates, which is a common case for several
subjects’ characteristics represented through dummy variables (gender, marital
or employment status, qualitative membership, and so on). Actually, by us-
ing a dichotomous covariate W taking values in {0, 1}, we are comparing two
populations which correspond to two different cubmodels under the alterna-
tive hypothesis. Let us suppose that we wish to test if the covariate affects the
feeling towards the object, then in this case we are testing the null hypothesis

H0 : γ1 = 0, ⇔ H0 : ξ = ξ(0) =
[
1 + e−γ0

]−1
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Table 4.2: Settings for ξ in the simulation study.

ξ(0) γ0 δξ ξ(1) = ξ(0) + δξ γ1 hypothesis
0.10 −2.1972 0.00 0.10 0.0000 H0

0.10 −2.1972 0.20 0.30 1.3499
H10.10 −2.1972 0.40 0.50 2.1972

0.10 −2.1972 0.50 0.60 2.6027

against the alternative

H1 : γ1 6= 0, ⇔ H1 :

{
if w = 0, ξ = ξ(0) = [1 + e−γ0 ]

−1

if w = 1, ξ = ξ(1) = [1 + e−γ0−γ1 ]
−1 .

Of course, a corresponding scheme applies for π. To test the cub (1, 1) full
model against a cub (0, 0) null model, the same reasoning has to be done on
both the uncertainty and feeling parameters, and the null tested hypothesis is:

H0 : β1 = γ1 = 0.

We performed the simulation study by generating data for different values of π
and ξ in the compared populations or equivalently for different values of β1 and
γ1. The same reasoning holds for more complicated cubmodels.

In this context, it is immediate to derive formulas for a convenient re-
parametrization Iannario (2008b). For simplicity for the case the covariate
affects the feeling towards the object they are given by:

γ0 = log

(
ξ(0)

1− ξ(0)

)
, γ1 = log

[
ξ(1)

(
1− ξ(0)

)
ξ(0)

(
1− ξ(1)

)] .
Regarding the first part of the simulation study, Tables 4.2 and 4.3 show

the considered settings in the simulation study for ξ and π, respectively. The
“distance” between the values of the parameters ξ and π for the two populations,
under the alternative hypothesis, can be expressed by the values δξ and δπ,
respectively. We remark that the case considered under the null hypothesis of a
cub (0, 0) model is characterized by π = 0.8 and ξ = 0.1, which corresponds to
high feeling and moderate uncertainty, typical of many real applications. This is
also the reason for starting from π0 = 0.8 and adding negative δπ to obtain the
several values for π1 (see Table 4.3). Figure 4.2 displays the simulation settings
in the parametric space Ω(π, ξ), allowing for them an interpretation in terms of
”distance” from the null hypothesis of a cub (0, 0) model: larger points denote
greater distance from the null model in terms of number of non-zero coefficients.

In the simulation study we considered the permutation solutions tlrt, twald

and tnpc with Tippett combining function (see Pesarin and Salmaso (2010)) and
the parametric likelihood-ratio test, hereafter labeled as tpar-lrt. The test based
on the statistic tnpc with Tippett combination, performs the Wald-type tests
on the single parameters and combines the related p-values. Table 4.7 reports
the estimated rejection probabilities of the compared tests on the parameters
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Figure 4.2: Settings for the simulation study, first part. cub (0, 0) null model
vs cub (1, 1), cub (1, 0) and cub (0, 1) alternative models.

Table 4.3: Settings for π in the simulation study.

π(0) β0 δπ π(1) = π(0) + δπ β1 hypothesis
0.80 1.3863 0.00 0.80 0.0000 H0

0.80 1.3863 −0.40 0.40 −1.7918
H10.80 1.3863 −0.60 0.20 −2.7726
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Table 4.4: Estimated rejection probabilities for m = 7, n = 50 and α = 0.05.

tlrt twald tnpc tpar-lrt

δξ = 0
(ξ(0) = ξ(1) = 0.1)

δπ = 0
(π(0) = π(1) = 0.8)

0.041 0.038 0.051 0.070

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.478 0.390 0.390 0.334

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.790 0.514 0.514 0.676

δξ = 0.2
(ξ(0) = 0.1, ξ(1) = 0.3)

δπ = 0
(π(0) = π(1) = 0.8)

0.887 0.874 0.874 0.790

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.754 0.646 0.626 0.806

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.780 0.564 0.567 0.857

δξ = 0.4
(ξ(0) = 0.1, ξ(1) = 0.5)

δπ = 0
(π(0) = π(1) = 0.8)

0.999 0.996 0.996 0.999

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.952 0.900 0.894 0.971

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.934 0.853 0.851 0.970

δξ = 0.5
(ξ(0) = 0.1, ξ(1) = 0.6)

δπ = 0
(π(0) = π(1) = 0.8)

0.999 0.998 0.998 0.999

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.981 0.942 0.946 0.992

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.962 0.909 0.902 0.985

γ1 and β1 for m = 7, n = 50 and working at a nominal level of α = 0.05.
B = 1000 random permutations and MC = 1000 Monte Carlo replications have
been considered. Notice that under the null hypothesis (δπ = δξ = 0) all the
permutation solutions control the type I error at the nominal level, while the
parametric counterpart does not. Under the alternative hypothesis, permutation
inference seems to be more powerful than the parametric one under a cub (1, 0)
or a cub (0, 1) model; instead opposite situation can be appreciated when under
the alternative hypothesis we specify a cub (1, 1) model. We have to remark
that a proper comparison between permutation methods and parametric test is
not possible, because the different solutions are not of the same size (the actual
levels of the tests are different). In general tlrt is the most powerful permutation
solution among the ones considered in this study.

Table 4.8 reports the same simulation results for n = 100. By increasing the
sample size, we observe a better performance of the parametric solution under
the null hypothesis, even if the estimated probability of type I error still exceeds
the nominal level α. In general all the estimated rejection probabilities increase
with respect to the case of n = 50.

In the second part of the simulation study models with more than one co-
variate for π and ξ (up to the cub (3, 3) model) are considered under the al-
ternative hypothesis, to study how the number of covariates affects the infer-
ential results and the performance of the tests. The fact that dichotomous
covariates are considered means that every significant covariate introduced in
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Table 4.5: Estimated rejection probabilities for m = 7, n = 100 and α = 0.05.

tlrt twald tnpc tpar-lrt

δξ = 0
(ξ(0) = ξ(1) = 0.1)

δπ = 0
(π(0) = π(1) = 0.8)

0.05 0.048 0.053 0.059

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.793 0.776 0.776 0.658

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.976 0.871 0.871 0.959

δξ = 0.2
(ξ(0) = 0.1, ξ(1) = 0.3)

δπ = 0
(π(0) = π(1) = 0.8)

0.992 0.992 0.992 0.986

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.976 0.967 0.948 0.985

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.988 0.932 0.929 0.993

δξ = 0.4
(ξ(0) = 0.1, ξ(1) = 0.5)

δπ = 0
(π(0) = π(1) = 0.8)

1.000 1.000 1.000 1.000

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

0.999 0.995 0.996 1.000

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

0.995 0.989 0.989 0.998

δξ = 0.5
(ξ(0) = 0.1, ξ(1) = 0.6)

δπ = 0
(π(0) = π(1) = 0.8)

1.000 1.000 1.000 1.000

δπ = −0.4
(π(0) = 0.8, π(1) = 0.4)

1.000 0.998 0.998 1.000

δπ = −0.6
(π(0) = 0.8, π(1) = 0.2)

1.000 0.995 0.994 1.000
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Table 4.6: Simulation settings: models considered under the alternative hypoth-
esis and marginal and global effects of the covariates on π and ξ.

Settings Model under H1 δπ,(z1) δξ,(wi), i = 1, . . . , 3 δξ,((w1),(w2),(w3))

1

cub (0, 2) − 0.05 0.12
cub (0, 3) − 0.05 0.21
cub (1, 2) −0.6 0.05 0.12
cub (1, 3) −0.6 0.05 0.21

2

cub (0, 2) − 0.10 0.26
cub (0, 3) − 0.10 0.46
cub (1, 2) −0.6 0.10 0.26
cub (1, 3) −0.6 0.10 0.46

3

cub (0, 2) − 0.20 0.52
cub (0, 3) − 0.20 0.76
cub (1, 2) −0.6 0.20 0.52
cub (1, 3) −0.6 0.20 0.76

the model determines two sub-populations to be compared; hence for instance
when two covariates are introduced in the model four sub-populations are ac-
tually compared, identified by each combination of values taken by the covari-
ates. Depending on which parameter the covariates influence, the compared
sub-populations can be identified by cubmodels with different values of the
uncertainty or feeling parameter; for instance if two covariates are introduced
for the feeling parameter we are actually dealing with four sub-populations hav-
ing four different values of the feeling parameter ξ(0,0), ξ(1,0), ξ(0,1), ξ(1,1). In
general a measure of the distance between the compared populations can be
given by the values δπ,((z1),...,(zp)) = π((z1=1),...,(zp=1)) − π((z1=0),...,(zp=0)) and
δξ,((w1),...,(wq)) = ξ((w1=1),...,(wq=1))− ξ((w1=0),...,(wq=0)), which in a way summa-
rize the joint influence of the covariates on the response. In this simulation study
(without loss of generality) we worked with a fixed marginal effect of the only
covariate considered for the uncertainty parameter δπ,(z1) = π(1) − π(0) = −0.6
and with three fixed values for the marginal effect of the covariates considered
for the feeling parameter δξ,(w1) = ξ(1,0,0)−ξ(0,0,0) = δξ,(w2) = ξ(0,1,0)−ξ(0,0,0) =
δξ,(w3) = ξ(0,0,1) − ξ(0,0,0) = 0.05, 0.1, 0.2 in the three considered settings. More
precisely in each setting the marginal effects of the covariates are simulated all
equal, hence δξ,(wi) = 0.05 for i = 1, . . . , 3 in the first setting, δξ,(wi) = 0.1 for
i = 1, . . . , 3 in the second setting and δξ,(wi) = 0.2 for i = 1, . . . , 3 in the third
setting. The null cub (0, 0) model has been kept with the same values π = 0.80
and ξ = 0.10 in all the settings. The considered scenarios are reported in Table
4.6, in terms of model considered under the alternative hypothesis and marginal
and joint effects of the covariates on the π and ξ parameters.

Again we compare the permutation solutions tlrt, twald and tnpc and the
parametric likelihood-ratio test, hereafter labeled as tpar-lrt, considering a num-
ber of B = 1000 permutations and MC = 1000 replications. Tables 4.7 and 4.8
summarize the obtained results, in terms of estimated rejection probabilities of
the compared tests, respectively for sample size n = 50 and n = 100. Notice
how the power of all the procedures increases as the sample size n increases.
It has also to be underlined that the parametric solution does not control the
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Table 4.7: Estimated rejection probabilities for m = 7, n = 50 and α = 0.05.

True model
Tested models

tlrt twald tnpc tpar-lrtH0 H1

H0 cub (0, 0) cub (3, 3) 0.059 0.049 0.064 0.119

H1 − Setting 1
(δπ,(z1) = −0.6, δξ,(wi) = 0.05∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 0.235 0.229 0.220 0.501
cub (0, 3) 0.257 0.275 0.232 0.671
cub (1, 2) 0.507 0.064 0.195 0.919
cub (1, 3) 0.394 0.044 0.111 0.891

H1 − Setting 2
(δπ,(z1) = −0.6, δξ,(wi) = 0.1∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 0.688 0.686 0.646 0.740
cub (0, 3) 0.806 0.816 0.681 0.849
cub (1, 2) 0.437 0.167 0.188 0.743
cub (1, 3) 0.468 0.213 0.333 0.761

H1 − Setting 3
(δπ,(z1) = −0.6, δξ,(wi) = 0.2∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 0.985 0.983 0.958 0.992
cub (0, 3) 0.986 0.981 0.965 0.999
cub (1, 2) 1 0.999 1 1
cub (1, 3) 0.999 0.999 1 1

type I error when the sample size is low (n = 50); a better performance can be
appreciated for n = 100. As a matter of fact an unusual power behavior can
be observed for the estimated power of all the procedures: when a significant
covariate is simulated for the uncertainty parameter π we can observe a decrease
of the estimated rejection probabilities. This problem appears to be more seri-
ous for the permutation solutions based on the nonparametric combination of
partial permutation tests (twald and tnpc). This strange behavior is probably
due to the strange behavior of the partial test on the parameter associating the
covariate to the feeling component, which had already been noticed in the first
part of the study: we think that a possible reason for this is that when we intro-
duce more uncertainty in a part of the observations (one of the two sub-samples
identified by the uncertainty associated covariate) we are actually making more
difficult for the tests to recognize the influence of the other covariates on the
feeling parameter. Hence when we consider the likelihood-ratio test (both para-
metric and permutation versions) we loose some power but we are still able to
see the improvement of the model due to the introduction of the covariates, but
when we take into consideration the partial tests the problem becomes more
serious. Anyway it has to be noticed that, for fixed values of δπ,(z1), the power
of all the procedures still increases as we move away from the null hypothesis
regarding the covariates influencing the feeling parameter (as δξ,(wi) increases,
hence as we go from Setting 1 to Setting 3).

We can conclude that the parametric solution should be carefully used for
low sample sizes, since asymptotic results do not hold in this case and the test
does not control the type I error. Increasing the sample size, on one hand the
performances of the parametric test under the null hypothesis improve, and on
the other hand they tend to converge to the ones of the permutation tests also
under the alternative hypothesis.
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Table 4.8: Estimated rejection probabilities for m = 7, n = 100 and α = 0.05.

True model
Tested models

tlrt twald tnpc tpar-lrtH0 H1

H0 cub (0, 0) cub (3, 3) 0.039 0.035 0.0370 0.063

H1 − Setting 1
(δπ,(z1) = −0.6, δξ,(wi) = 0.05∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 0.455 0.466 0.420 0.476
cub (0, 3) 0.626 0.635 0.528 0.785
cub (1, 2) 0.874 0.393 0.589 0.959
cub (1, 3) 0.810 0.294 0.571 0.964

H1 − Setting 2
(δπ,(z1) = −0.6, δξ,(wi) = 0.1 ∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 0.972 0.968 0.915 0.965
cub (0, 3) 0.999 0.997 0.965 0.998
cub (1, 2) 0.853 0.623 0.718 0.978
cub (1, 3) 0.866 0.628 0.708 0.991

H1 − Setting 3
(δπ,(z1) = −0.6, δξ,(wi) = 0.2 ∀i = 1, . . . , 3)

cub (0, 0)

cub (0, 2) 1 1 1 1
cub (0, 3) 1 1 1 1
cub (1, 2) 0.946 0.926 1 0.987
cub (1, 3) 0.954 0.939 1 0.998

4.5 Minimum sample size for the application of
the permutation test

Before performing a test of significance, every researcher should make sure that
it controls the I type error, and consists in a powerful solution for the testing
problem. Obviously the application of a testing procedure is not possible when
the minimum possible p-value of the tests is greater than the significance level
α, according to the distribution of the test statistic.

Permutation tests in fact can present this problem when the number of
possible permutations is low: when all the possible permutations are considered,
the p-value of a general permutation test which rejects the null hypothesis for
high values of the test statistic t is given by

λ =
# (t∗ ≥ toss)

B
,

where t∗ are the values of the test statistic computed on the permuted samples,
toss is the observed value of t and B is the total number of distinct permutations
of the dataset. This quantity can vary from the minimum and the maximum
values

λmin =
1

B
≤ λ ≤ B

B
= 1 = λmax.

Hence a necessary condition for the applicability of the method is λmin = 1/B <
α, i. e. B > 1/α. If we consider the usual 0.05 value for α, we obtain that
the minimum number of total distinct permutations to have a powerful test is
B = 21.

Let us adapt the above presented rule to the permutation test we are consid-
ering in this work. Let us indicate with nj , j = 1, . . . ,M the number of subjects
belonging to the jth block corresponding to a given combination of values/levels
of the non-tested covariates; hence M indicates the number of blocks. The total
number of distinct permutations is then given by

B =

M∏
j=1

nj !.
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Table 4.9: Minimum sample sizes (and the optimal partition of subjects in the
blocks) for α = 0.05 and several values for M .

M nmin nj , j = 1, . . . ,M
1 n = 4 n1 = 4 (B = 24)
2 n = 6 n1 = 2, n2 = 4 (B = 48)
3 n = 7 n1 = 2, n2 = 2, n3 = 3 (B = 24)
4 n = 9 n1 = 2, n2 = 2, n3 = 2, n4 = 3 (B = 48)

M ≥ 5 n = 2M nj = 2, j = 1, . . . ,M (B = 2M )

Table 4.10: Minimum sample sizes (and the optimal partition of subjects in the
blocks) for α = 0.10 and several values for M .

M nmin nj , j = 1, . . . ,M
1 n = 4 n1 = 4 (B = 24)
2 n = 5 n1 = 2, n2 = 3 (B = 12)
3 n = 7 n1 = 2, n2 = 2, n3 = 3 (B = 24)
4 n = 2M = 8 nj = 2, j = 1, . . . ,M (B = 24 = 16)

M ≥ 5 n = 2M nj = 2, j = 1, . . . ,M (B = 2M )

We remind that the all-cell-permutation condition needs to be satisfied in order
to apply the permutation solution. This means that ∀j, nj ≥ 2. Hence the
considered test does not need great samples sizes in the several blocks: for
α = 0.05, M ≥ 5 the all-cell-permutation condition allows the application of
the test, since B ≥ 25 = 32 > 21. Tables 4.9 and 4.10 report the minimum
sample sizes (and the optimal partition of subjects in the blocks) for several
values for M respectively for two values of the significance level α = 0.05, 0.10.
Notice that the the minimum required sample sizes appear to be quite low. As
one could have expected, they increase as M increases, i.e. as the number of
non-tested covariates (or number of values that the non-tested covariates can
take) increases. In real case applications a common problem consists in testing
the influence of a covariate on the response in presence of two, three non-tested
dichotomous covariates; this corresponds to M = 4, 8 respectively.

4.6 Real data application

Real data have been analyzed with the proposed permutation solution and they
refer to a statistical survey on Passito, a typical Italian wine produced in the
North-East of Italy (see Arboretti Giancristofaro et al. (2011)). A sample of
386 consumers living in Veneto region (Italy) has been asked to give an opinion
about Passito by considering different points of view. Several covariates were
also recorded. In this analysis we considered five response variables, representing
satisfaction about five aspects of the wine:

- y1: level of liking;

- y2: satisfaction about aroma;

- y3: satisfaction about the sweet taste;
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- y4: satisfaction about alcohol percentage;

- y5: satisfaction about intensity of taste.

These responses are measured on a scale from 1 (maximum dissatisfaction) to 7
(maximum satisfaction). Three dichotomous covariates were considered in this
analysis: Age (coded as 0 if the subject was ≤ 25 years old, and 1 other wise),
Gender (0 for females and 1 for males), Residence (coded as 0 for East Veneto,
and 1 for West Veneto).

We performed the proposed forward stepwise procedure in order to find
a suitable model for each of the responses. The proposed twald permutation
solution was used at step (ii) of the procedure; regarding the NPC methodology
at step (iii), the Tippett combining function (see Pesarin and Salmaso (2010))
has been used for the combination of covariate related partial tests. Table
4.11 reports the obtained final models for the five responses of interest, with
the estimates of the β and γ parameters associated to the added covariates,
the estimates of the π and ξ parameters in the two groups identified by the
tested covariate and the p-values of the permutation tests on the goodness-
of-fit of the final models (i.e. the tests comparing the obtained models with
the simplest model without any covariate). The estimates of the uncertainty
parameter suggest, for all the responses, that we are in a very low uncertainty
situation, i.e. the respondents seem to be quite sure about their ratings.

Table 4.11: Real case application results. Final models obtained from the pro-
posed stepwise procedure: estimates of the parameters and p-values for the
goodness-of-fit tests.

Response
Age Gender Residence p-value

π ξ π ξ π ξ

Level of liking
−−−−− −−−−− −−−−− γ̂1 = −0.616 −−−−− −−−−− 0.000

ξ̂(0) = 0.589

ξ̂(1) = 0.437

Satisfaction −−−−− −−−−− β̂1 = 1.112 γ̂1 = −0.318 −−−−− −−−−− 0.002

about π̂(0) = 0.563 ξ̂(0) = 0.430

aroma π̂(1) = 0.797 ξ̂(1) = 0.354

Satisfaction −−−−− γ̂1 = 0.35322 −−−−− γ̂2 = −0.409 β̂1 = −2.213 −−−−− 0.001

about ξ̂(0) = 0.396 ξ̂(0) = 0.396 π̂(0) = 0.888

the sweet taste ξ̂(1) = 0.483 ξ̂(1) = 0.303 π̂(1) = 0.465
Satisfaction −−−−− −−−−− −−−−− −−−−− −−−−− γ̂1 = 0.275 0.000

about ξ̂(0) = 0.494

the alcohol percentage ξ̂(1) = 0.562

Satisfaction −−−−− −−−−− β̂1 = 1.715 −−−−− −−−−− −−−−− 0.001
about π̂(0) = 0.368

the intensity of the taste π̂(1) = 0.764

All the considered covariates appear to affect some responses: results suggest
that men are less uncertain on rating the considered responses, and their feeling
is greater than that of women. Greater uncertainty and less feeling is observed
for respondents living in West Veneto in comparison with East Veneto. We can
also say that younger respondents are more satisfied about the sweet taste. At
the end, it can be noticed that the goodness-of-fit tests give a strong evidence
of the influence of the added covariates on each of the considered responses.
The low p-values confirm the powerfulness of the permutation solution, already
shown by the simulation study: thanks to the high sample size, even not so
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extreme differences of the parameters values in the groups identified by the
covariates are very well recognized by the permutation tests.

4.7 Main results

In this chapter we proposed a permutation solution to test for the effects of
covariates on ordinal response variables within the cubmodels framework. The
nonparametric strategy is based on the constrained synchronized permutation
of the tested covariates vectors. The aim of the work is to provide a competitive
and well performing alternative to the standard parametric solution based on
the asymptotic theory, in order to deal with real data problems with small
sample size. The solution is applicable even with continuous covariates, after a
suitable class transformation (very common practice in the analysis of statistical
surveys). Moreover, a nonparametric forward stepwise procedure based on the
permutation solution has been proposed to analyze real data problems.

A simulation study was performed to analyze the power behavior of the
proposed solution and to compare it with a parametric counterpart (the classi-
cal likelihood-ratio test). Several test statistics have been implemented in the
permutation solution. The results show that all the considered permutation
tests control the type I error even for small sample size, while this is true for
the parametric solution only for large sample sizes. The permutation solutions
present high powers; they show to be competitive with respect to the para-
metric counterpart, even if a proper comparison cannot be done as the actual
significance levels of the several tests are not the same. Regarding the permu-
tation methods, even for a low sample size (n = 50), we can notice fast increase
of the power as, for fixed values of δπ,(z1), the difference of the values of ξ in
the compared populations under H1 grows. Moreover we can notice that, more
clearly the two permutation solutions based on the nonparametric combination
of partial permutation test on the single regression parameters, but in general
all the testing procedures present a decrease of the power when a covariate for
the uncertainty parameter is introduced in the model. The performances of all
the methods improve as we increase the sample size: the actual type I error rate
of the parametric solution gets closer to the nominal level, the powers of all the
tests increase and they tend to converge towards each other.

We also discussed the problem of which is the minimum sample size needed to
perform the proposed permutation test. We presented the minimum sample sizes
and the best partitions of subjects in the M blocks of covariates’ combinations.

A real problem was analyzed through the proposed permutation solutions:
a statistical survey on Passito wine has been considered and a forward stepwise
procedure has been used to select a suitable model for some responses of interest
in the study, by considering some explanatory covariates. Meaningful results
have been obtained.

Both the simulation study and the real case application suggested that the
proposed solution is well performing even when the sample size is not high and
asymptotic theory cannot be applied. The use of this permutation tool is then
recommended in presence of small sample sizes, and its usefulness is anyway
confirmed even for problems with higher number of observations.



Chapter 5

Multivariate CUB models

5.1 Introduction

As pointed out in the previous chapter, analysis of ordinal data can be faced
in many fields; for example in marketing to study the preferences of consumers
about a set of products, or in clinical studies to rate treatments or drugs. Nor-
mally the ordinal response (rating) which is given to products or treatments is
a process which depends on specific subject (consumer or patient) and object
(product or drug) characteristic. In this area a new approach is represented by
cubmodels, which are generated by a class of discrete probability distributions,
to model the data taking into account two intrinsically continuous quantities
(feeling and uncertainty) pertaining to the response; these are modeled as a
shifted Binomial and an Uniform random variable respectively. Let us consider
the cubmodel where the response variable Y follows the mixture distribution
as described in the previous chapter (equations 4.1-4.2). Moreover let us use the
same notation, hence we observe the sample y = (y1, y2, . . . , yn)′ of responses
and zi and wi, with i = 1, . . . , n of subjects’ covariate vectors for explain-
ing πi and ξi, the uncertainty and feeling parameters respectively. Therefore
ψ = (β′,γ′)′ denotes the vector of parameters associated to the covariates.

Inference on cubmodels has been mainly developed in a parametric frame-
work, via maximum likelihood and asymptotic theory (see Piccolo (2006) and
Iannario and Piccolo (2009)) and, in the previous chapter we proposed a non-
parametric approach by means of a permutation solution to test for the effect
of covariates on a rating response within the cubmodeling framework. The
method is based on the constrained permutation of raw data and it basically
performs a test on the comparison between nested cubmodels. As it is shown,
our permutation test is a competitive alternative to the classical parametric test
when the sample size is not high.

In this chapter we extend the above presented permutation solution to the
case in which a multivariate ordinal response is observed. The procedure is
described in Section 2, where we explain how nonparametric combination of de-
pendent permutation tests (see Pesarin (2001) and Pesarin and Salmaso (2010))
is used to end up with a global tool for comparing several nested cubmodels
at the same time on several aspects of the multivariate response. In Section 3
a simulation study is carried out in order to explore the performances of the

65
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multivariate test. In Section 4 the method is applied to two real datasets. The
first real application is the same presented in Chapter 4, here analyzed from a
multivariate point of view. The second real dataset regards the evaluation of
the Ski School of Sesto Pusteria in the Trentino Alto Adige region (Italy). The
conclusions of the chapter are summarized in Section 5.

5.2 A permutation test for multivariate responses

We propose a nonparametric solution for the test of significance for the co-
efficients of the covariates of the cubmodel when a multivariate response is
observed. We recall that in Chapter 4 the permutation test we proposed is
based on the constrained permutations of the tested covariates. Now, we wish
to test the global influence of one or more covariates on a multivariate response.
Moreover, for each partial inferential problem (i.e. influence of the tested co-
variates on each component of the multivariate response) we are testing the
influence of the same covariates. The global alternative hypotheses is usually
defined when at least one of the partial null hypotheses is false.

We propose to solve the problem in the permutation framework, using non-
parametric combination of dependent permutation tests (see Pesarin (2001) and
Pesarin and Salmaso (2010)). In this way we can provide both a global measure
of the significance of specific covariates on all the considered responses and par-
tial adjusted tests for the single model comparisons. Let a multivariate response

Y
′

= (Y 1, . . . , Y d) be of interest, and let a set of its realizations (y1, . . . ,yd),
with yl = (yl1, y

l
2, . . . , y

l
n)′, l = 1, . . . , d, be observed on n respondents. More-

over let the subject related covariates zi and wi, with i = 1, . . . , n be observed
on the same set of respondents. Formally the procedure we propose works as
follows:

i. Set the null and the alternative models that need to be compared (say
Ml,0 and Ml,1 respectively), treating separately all the components of
the multivariate response Y l, l = 1, . . . , d.

ii. For each component of the multivariate response l, l = 1, . . . , d, consider
the observed data (yli, zi,wi), with i = 1, . . . , n and perform one of the
permutation tests proposed in Bonnini et al. (2011) to compareMl,0 and
Ml,1 (tl say). In order to maintain the dependence due to the fact that for
each test the responses come from the same n subjects on the multivariate
response, synchronized permutations have to be performed on the several
tests.

iii. Consider the d separated tests tl, l = 1, . . . , d and combine them in the
global test t to test the global null hypothesis of interest, using the non-
parametric combination of dependent permutation tests.

iv. If the global test t is significant, correct the partial tests tl, l = 1, . . . , d, for
multiplicity, using a closed testing nonparametric procedure (see Pesarin
(2001) and Pesarin and Salmaso (2010)), obtaining the adjusted p-values
pladj, l = 1, . . . , d, and conclude that the tested covariates influence the

response on those aspects where the adjusted p-values pladj are significant.
If the global test t is not significant, conclude that the tested covariates
do not influence the multivariate response.
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We remark that the permutations tests tl, l = 1, . . . , d, can be chosen among
the ones proposed for the univariate case. Moreover measures of the significance
of specific domain related models can be also tested.

5.3 Power behavior

A Monte Carlo simulation study has been carried out in order to check the
performances of the proposed multivariate method. In Chapter 4 a simulation
study was presented for the univariate permutation test. The study shows that
the method is both reliable under the null and powerful under the alternative
hypothesis.

5.3.1 How to simulate the multivariate response

We must simulate multivariate responses. A multivariate version of the cubmo-
del has not been defined yet in the literature, hence a first problem we had to
deal with when we started the simulation study was how to simulate the data
from a multivariate cubmodel. We started from the fact that the permuta-
tion approach we propose to test for covariates significance on a multivariate
response works performing partial tests on the single aspects of the response
variable, in a way as they had marginal cub distributions. Hence, as a first step
in the simulation mechanism, we decided to simulate the data in a way such
that the several components had marginally a cub distribution. Moreover we
wanted to be able to induce some correlation structure among the several com-
ponents of the multivariate response; a common instrument used to describe the
dependence between random variables is the copula (see Nelsen (2006)). The
basic idea is to apply the probability integral transform to the single compo-
nents and then specify the dependence among the resulting uniform random
variables, instead of among the original ones. Formally, let us assume we deal
with a multivariate random vector Y = (Y 1, . . . , Y d). Therefore we can define
C : [0, 1]d → [0, 1] as a d-dimensional copula if C is a joint cumulative distribution
function of a d-dimensional random vector on the unit cube [0, 1]d with uniform
marginals. Let F1, . . . , Fd be the marginal cumulative distribution functions of
the components of Y ; the idea is that by applying probability integral transform
to each component of Y , the random vector(

U1, . . . , Ud
)

=
(
F1(Y 1), . . . , Fd(Y

d)
)

has uniform margins and it takes values on the unit cube [0, 1]d, hence it is a
copula. At this point one can define the copula of (Y 1, . . . , Y d) as the joint
cumulative distribution function of (U1, . . . , Ud), C(u1, . . . , ud) say. Hence by
specifying C we can model the dependence structure between the components
of Y , while the marginal cumulative distribution functions F1, . . . , Fd contain
all information on the marginal distributions.

Our idea is to use this concept to simulate a multivariate response with
cubmarginals and a specified dependence structure. Indeed, the other way
around, it is also possible to write

(Y 1, . . . , Y d) =
(
F−11 (U1), . . . , F−1d (Ud)

)
,
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which can be used to simulate from (Y 1, . . . , Y d) in copula models. However
copulas theory does not share the same results for continuous and discrete data;
all the results holding in the continuous case follow from Sklar’s theorem (see
Sklar (1959)): it assures that, given the joint cumulative distribution function of
a continuous random vector, this can be written as a function of the marginal cu-
mulative distribution functions, and that such function (called copula) is unique.
Formally the theorem says that in the continuous case the following represen-
tation (Sklar’s representation):

Pr
(
Y 1 ≤ y1, . . . , Y d ≤ yd

)
= H

(
y1, . . . , yd

)
= C

(
F1(y1), . . . , Fd(y

d)
)

is unique given H, in the sense that there is only one possible specification for
C. When we pass to the discrete case in particular identifiability issues arise,
due to the lack of uniqueness of Sklar’s representation in this case. Copulas
models for discrete data are anyway valid constructions and, as suggested by
Genest and Neslehová (2007), they are helpful in the context of simulation;
the identifiability problem, indeed concerns the estimation field and not the
simulation one.

All we need is to be able to simulate from a copula and to invert the cu-
mulative distribution function for a cubmodel. Consider the general case of a
multivariate response of dimension d. The simulating procedure works according
to the following two steps:

1) simulate a sample from a multivariate copula, according to a pre-specified
correlation structure, getting ui =

(
u1i , . . . , u

d
i

)
, with i = 1, . . . , n;

2) consider each multivariate element of the simulated sample, ui, and trans-
form it into the final element through the inverse cumulative distribution
function of a cubmodel, i.e. yi =

(
y1i , . . . , y

d
i

)
=
(
F−11 (u1i ), . . . , F

−1
d (udi )

)
.

We remark that at any combination (i, l), with i = 1, . . . , n and l = 1, . . . , d a
specific cubmodel has to be considered while inverting the cumulative distribu-
tion function Fl(y), according to the parameters values βl and γl chosen for that
component of the multivariate response and the values taken for the covariates
of interest (xi,wi) by the ith subject. In general the cumulative distribution
function of a cubmodel, for the ith subject and the lth component of the multi-

variate response, with uncertainty and feeling parameters πli = 1/
(

1 + e−zi β
l
)

and ξli = 1/
(

1 + e−wi γ
l
)

can be derived as follows:

Fl(y) = Pr (Y ≤ y|zi,wi) =

y∑
h=1

[
πli

(
m− 1

h− 1

)
(1− ξli)h−1ξli

m−h
+ (1− πli)

(
1

m

)]

= πli

y∑
h=1

[(
m− 1

h− 1

)
(1− ξli)h−1ξli

m−h
]

+ (1− πli)
( y
m

)
= πli

y∑
h=1

[(
m− 1

h− 1

)
(1− ξli)h−1ξli

((m−1)−(h−1))
]

+ (1− πli)
( y
m

)
= πli

y−1∑
h=0

[(
m− 1

h

)
(1− ξli)hξli

((m−1)−h)
]

+ (1− πli)
( y
m

)
.
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We can recognize that Fl(y) is actually a mixture of two cumulative distribution
functions: the one of a binomial distribution Bi(m − 1, (1 − ξli)) calculated in
y− 1 and the one of a discrete uniform distribution. At this point the inversion
of such function becomes straightforward: we build an algorithm that uses the
quantile functions of the cumulative distribution functions and takes care of
the fact that we are dealing with a mixture of such functions, then we can
numerically invert such function.

We used an Archimedean copula (see Nelsen (2006), p. 116), mainly because
it allows to model the dependence with only one parameter. The use of this
copula family with discrete data can be found in the literature, for instance in
Pfeifer and Neslehová (2004). A copula is said to be Archimedean if its joint
cumulative distribution function can be represented as

C
(
u1, . . . , ud

)
= φ

(
φ−1(u1) + · · ·+ φ−1(ud)

)
,

where φ is called generator. In particular, following an example that can be
found in Pfeifer and Neslehová (2004), we chose the so-called Frank’s copula,
which is determined by the generator φ(t) = − [log(1− (1− exp(−θ))exp(−t))]
/θ, where θ is the parameter regulating the dependence induced among the
d components of the multivariate response. We remark that this is just one
possible choice and that in principle other copulas could be used.

A last remark refers to the general term dependence that has been used
while talking about what copulas models for discrete data can handle. This
choice has been done since a more specific definition for this dependence cannot
be given in our case. In the discrete case the copula alone cannot characterize
the dependence between the several components of the final multivariate vector
(see Genest and Neslehová (2007) for a more in depth discussion): indeed con-
cordance measures are margin-dependent in the discrete case, so for instance
the classical correlation coefficients calculated on couples of components of the
multivariate vector can vary according to the marginal models. One helpful
property anyway keeps on holding in our case, i.e. increasing the value of the
dependence parameter θ of the copula, also the dependence induced in the final
discrete responses increases. Hence, in this simulation study, we will disregard
which kind of dependence we will have in the final multivariate discrete vec-
tor, taking into consideration only the fact that the setting differing in terms
of θ differ somehow in terms of simulated dependence within the multivariate
response.

5.3.2 Settings and results

In this simulation study we considered similar settings as the ones used in Chap-
ter 4. Working in terms of rejection rates, the reliability of the method under
the null hypothesis has been checked, and its power under alternative hypothe-
ses has been studied. The aim of this study is to confirm the coherence of the
tests performances in the univariate and multivariate cases; we considered only
two permutation solutions (hereafter tlrt, twald), as a parametric counterpart is
not available for the multivariate problem of interest. We considered only the
cub (0, 1) model and not the cub (1, 0) and cub (1, 1) under the alternative hy-
pothesis, as in Chapter 4 the power behavior in the latter two cases has already
been studied and, once proved the coherence of the tests performances in the
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univariate and multivariate cases for the cub (0, 1), we can extend the results
to the general cub (p, q) model; this is essentially due to the fact that the power
of the global permutation solution depends on the power behavior of the partial
tests. We considered the case of dichotomous covariates. We remark that the
cub (0, 1) scenario with a dichotomous covariate, besides being a very common
and simple structure, is also helpful to interpret the feeling parameter γ, which
in this case can be seen as a measure of the difference in feeling between the
two sub-populations identified by the covariate (see Chapter 4).

As regards the simulation settings, since the increase of the power func-
tions, in the univariate case, as the data move away from the null hypothesis
has already been shown in Chapter 4, we decided to choose a fixed value for
the “distance” between the values of the parameters ξ for the two populations
determined by the covariate (hereafter δξ), and instead change the number of
components of the multivariate response which we simulate under the alterna-
tive hypothesis, in order to see if the estimated rejection probabilities increase
as we increase it (in a way in fact this can be seen as the data was moving away
from the global null hypothesis).

Moreover several values for the dependence parameter θ have been consid-
ered in order to check the behavior of the power functions for different levels of
dependence among the components of the multivariate response. As already un-
derlined above, the dependence simulated in the copula is then not transmitted
in the exact same way to the final simulated responses (see Pfeifer and Neslehová
(2004) for a more in depth discussion). The general idea is that the dependence
present in the final data does not depend on the underlying copula alone and it
is instead influenced by the marginal distributions as well. Therefore in our par-
ticular case some correlation is surely introduced in the final responses when we
simulate all the components under the alternative hypothesis, i.e. all marginally
following a cub distribution with the same significantly influent covariate. This
means that we are not able to quantify the dependence among the response
components; anyway, at the same time we can say that increasing the depen-
dence parameter θ and letting fixed all the other parameters in the simulation
setting, we get an increase of the dependence in the final response, no matter
which is the impact, on the final correlation, of the introduction of a significant
covariate.

Table 5.1 shows the considered simulation settings for d = 2, 3 dimensions
of the multivariate response: the table must be read in terms of number of
components simulated under the alternative hypothesis. Settings for 1 to 3
refer to a bivariate simulated response, while settings from 4 to 7 to the case
d = 3. Hence in the first and in the fourth setting we are simulating the data
under the global null hypothesis that the covariate does not influence any of the
components. We kept fixed the value of δξ = 0.2. We set two values for the
sample size (n = 50, 100) and three values for the dependence parameter (θ =
0, 5, 10). The feeling parameter was set to ξ = 0.1 for the components simulated
under the null hypothesis (cub (0, 0) model), and to ξ(0) = 0.1, ξ(1) = 0.3, in the
two sub-groups identified by the covariate, for the components simulated under
the alternative hypothesis (cub (0, 1) model). The uncertainty parameter was
set always equal to π = 0.9 (low uncertainty situation, very often happening in
real applications).

Tables 5.2 and 5.3 report the estimated rejection probabilities of the com-
pared tests (partial adjusted and global permutation tests) on the parameter γ1
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Table 5.1: Simulation settings for d = 2, 3, each cell indicating under which
hypothesis the specific component is simulated for the specific setting. The
symbol − indicates that the component is not considered in that setting.

Setting Y 1 Y 2 Y 3

1 H0 H0 −
2 H1 H0 −
3 H1 H1 −
4 H0 H0 H0

5 H1 H0 H0

6 H1 H1 H0

7 H1 H1 H1

for m = 7 and working at a nominal level of α = 0.05 respectively for n = 50
and n = 100. A number of B = 1000 permutations and MC = 1000 Monte
Carlo replications have been considered. Regarding the partial adjusted tests,
we can notice how their power increases under the alternative partial hypothe-
ses as the sample size increases. Moreover, the obtained results show how the
global permutation test controls the type I error when the global null hypoth-
esis is true. Such test also turns out to be a powerful solution as one of the
partial null hypothesis is not true. In general we can also notice that its power
increases as the sample size increases, for all the considered settings, reaching
the value one as a well performing test is expected to do. Therefore, a power
increase can also be registered while increasing the number of false partial null
hypotheses (hence passing from setting 2 to 3 and from setting 5 to 7). It also
has to be underlined that when more than one partial null hypothesis is false
(hence in settings 3, 6 and 7), the power decreases as the copula’s dependence
parameter θ increases, again confirming an expected behavior (see Pesarin and
Salmaso (2010)).

5.4 Real case applications

5.4.1 The Passito survey

We applied the proposed multivariate solution to the Passito survey data, that
we analyzed already in Chapter 4. In such previous analysis, univariate per-
mutation tests were performed for each of the wine aspects considered in the
study. In this chapter, instead, we apply the multivariate test in order to check
if the final the final models obtained by the stepwise procedure in the previous
analysis globally fit well the data.

We remind that the sample size was of 386 Passito consumers living in
Veneto region (Italy). Five response variables, on a scale from 1 (maximum dis-
satisfaction) to 7 (maximum satisfaction), were considered: level of liking (y1),
satisfaction about aroma (y2), satisfaction about the sweet taste (y3), satisfac-
tion about alcohol percentage (y4), satisfaction about intensity of taste (y5).
The three dichotomous covariates were age (coded as 0 if the subject was ≤ 25
years old, and 1 other wise), gender (0 for females and 1 for males) and residence



72 CHAPTER 5. MULTIVARIATE CUB MODELS

Table 5.2: Estimated rejection probabilities for the partial adjusted permutation

tests on the single components of the multivariate response (tY
l

lrt and tY
l

wald, with

l = 1, 2, 3) and of the global solution (tgloblrt and tglobwald), settings 1 to 7 and
θ = 0, 5, 10. The results refer to sample size n = 50, nominal level of α = 0.05,
B = 1000 permutations and CMC = 1000 replications. Estimates in bold
indicate quantities which should be smaller than α, as cases under the (partial
or global) null hypotheses.

Setting θ = 0 θ = 5 θ = 10
tlrt twald tlrt twald tlrt twald

tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald

1
0.032

0.057
0.027

0.058
0.035

0.057
0.035

0.056
0.029

0.048
0.031

0.048
0.031 0.031 0.032 0.029 0.030 0.035

2
0.923

0.923
0.912

0.923
0.918

0.921
0.916

0.921
0.914

0.919
0.905

0.917
0.052 0.052 0.050 0.025 0.046 0.050

3
0.949

0.995
0.946

0.995
0.947

0.984
0.936

0.985
0.941

0.973
0.934

0.974
0.956 0.948 0.947 0.936 0.944 0.938

4
0.024

0.056
0.027

0.060
0.016

0.050
0.016

0.053
0.019

0.057
0.019

0.0570.015 0.015 0.022 0.014 0.025 0.023
0.020 0.019 0.021 0.023 0.031 0.027

5
0.905

0.907
0.889

0.910
0.918

0.923
0.907

0.924
0.910

0.918
0.887

0.9170.026 0.026 0.030 0.025 0.032 0.026
0.025 0.024 0.025 0.026 0.044 0.038

6
0.923

0.994
0.913

0.994
0.935

0.980
0.929

0.980
0.928

0.978
0.917

0.9780.915 0.903 0.923 0.916 0.924 0.903
0.041 0.045 0.040 0.045 0.056 0.050

7
0.948

0.999
0.942

0.999
0.956

0.991
0.949

0.991
0.940

0.980
0.930

0.9790.939 0.926 0.953 0.937 0.945 0.933
0.950 0.948 0.955 0.950 0.933 0.929

Table 5.3: Estimated rejection probabilities for the partial adjusted permutation

tests on the single components of the multivariate response (tY
l

lrt and tY
l

wald, with

l = 1, 2, 3) and of the global solution (tgloblrt and tglobwald), settings 1 to 7 and
θ = 0, 5, 10. The results refer to sample size n = 100, nominal level of α = 0.05,
B = 1000 permutations and CMC = 1000 replications. Estimates in bold
indicate quantities which should be smaller than α, as cases under the (partial
or global) null hypotheses.

Setting θ = 0 θ = 5 θ = 10
tlrt twald tlrt twald tlrt twald

tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald tY
1,2,3

lrt tgloblrt tY
1,2,3

wald tglobwald

1
0.028

0.062
0.031

0.063
0.026

0.050
0.026

0.051
0.032

0.047
0.029

0.047
0.037 0.039 0.030 0.029 0.025 0.027

2
0.997

0.997
0.996

0.997
0.998

0.998
0.998

0.998
1.000

1.000
1.000

1.000
0.064 0.062 0.050 0.048 0.045 0.043

3
0.998

1.000
0.999

1.000
1.000

1.000
0.999

1.000
1.000

1.000
1.000

1.000
0.998 0.998 1.000 1.000 1.000 1.000

4
0.015

0.060
0.013

0.060
0.017

0.055
0.016

0.053
0.023

0.057
0.020

0.0580.024 0.025 0.028 0.027 0.027 0.028
0.028 0.027 0.021 0.021 0.019 0.020

5
0.997

0.997
0.995

0.997
0.999

0.999
0.999

0.999
0.998

0.998
0.998

0.9980.028 0.028 0.032 0.035 0.035 0.036
0.042 0.039 0.028 0.031 0.035 0.032

6
0.997

1.000
0.998

1.000
1.000

1.000
1.000

1.000
0.998

0.999
0.999

0.9990.999 0.999 1.000 1.000 0.997 0.997
0.060 0.059 0.052 0.050 0.054 0.053

7
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.0000.999 0.999 1.000 1.000 1.000 1.000
0.999 0.999 1.000 0.999 1.000 1.000
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(coded as 0 for East Veneto, and 1 for West Veneto). The final models obtained
in Chapter 4 suggest that all the covariates globally influence the multivariate
response. We want to check such result by means of our multivariate test: thus
the questions we want to answer are a) if the three covariates globally influence
the multivariate response and b) which responses are actually affected by which
covariate(s) while taking care of the multiplicity issue.

We applied the multivariate permutation solution, implementing the twald

test at the first step of the procedure, i.e. performing the partial permutation
tests on the univariate responses. The reason for choosing twald instead of
tlrt is that afterwards that solutions will turn useful to answer to the second
question we want to answer, i.e. which responses are actually affected by which
covariate(s). For the same reason also tnpc would have been a suitable choice.
In practice the analysis was conduced as follows:

• we performed the global permutation test for the significance of the 3
covariates on the multivariate response;

• since this produced a significant result, we corrected the partial tests on
the single responses, taking care of the multiplicity issue;

• since all the partial tests suggested the influence of the three covariates
on the single responses, we corrected the sub-partial Wald type tests re-
lated to the single response/covariate combinations, taking care of the
multiplicity issue.

The results are showed in Table 5.4, where we report the adjusted p-values of
the sub-partial Wald type tests for each response/covariate combination, the
adjusted p-values of the partial tests on the single responses, and the global
p-value for the multivariate test. The analysis confirms almost all the results
obtained in Chapter 4. The global test suggests a significant effect of the three
covariates on the multivariate response. The partial adjusted p-values on the
single responses tell us that the rating of all the considered items is globally
affected by the three covariates. In the central cells of the table we reported
only the significant adjusted p-values of the sub-partial Wald type tests for
each response/covariate combination. It is worth noticing that such results
suggest final models, obtained taking care of the multiple nature of the response,
that coincide for almost all the items with the ones obtained by the stepwise
procedure proposed in Chapter 4.

5.4.2 The S.E.S.T.O. survey

The S.E.S.T.O. (Statistical Evaluation of a Skischool from Tourists’ Opinions)
survey is the first Italian survey on the evaluation (by parents) of ski courses for
young children (up to 14 years old) and it is a pilot study performed in the Ski
School of Sesto, in the Dolomites near Bolzano in the north of Italy. Several cus-
tomer satisfaction variables towards different aspects of ski teaching have been
evaluated in a rating scale 1-10. A multivariate response has been considered in
the study, related to five aspects of the customer satisfaction: “Easy Learning”,
“Helpful Teacher”, “Fun”, “Involvement” and “General Satisfaction”. Moreover
the dichotomous covariate “First presence in Sesto” for parameter ξ has been
included in the analysis, to verify if the families who were in Sesto for the first
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Table 5.4: First real case application results. Partial adjusted p-values of the
sub-partial Wald type tests for each response/covariate combination and of the
partial tests on the single responses. Global p-value to test the joint effect of
the three covariates on the multivariate response.

Response
Age - p-value for Gender - p-value for Residence - p-value for Global p-value
β1 γ1 β2 γ2 β3 γ3

Level
−−−−− −−−−− −−−−− 0.001 −−−−− −−−−−

0.001

of liking
(p-value = 0.008)

Satisfaction
−−−−− −−−−− −−−−− 0.044 −−−−− −−−−−about aroma

(p-value = 0.008)
Satisfaction about

−−−−− 0.036 −−−−− 0.010 0.001 −−−−−the sweet taste
(p-value = 0.001)
Satisfaction about

−−−−− −−−−− −−−−− 0.012 −−−−− −−−−−the alcohol percentage
(p-value = 0.008)
Satisfaction about

−−−−− −−−−− 0.001 −−−−− −−−−− −−−−−the intensity of the taste
(p-value = 0.080)

time presented a different feeling toward the ski courses than the others. The
sample size is n = 96 children.

The global p-value 0.001 leads to the rejection of the global null hypothesis
at α = 0.05 hence the tested covariate affects the feeling. Table 5.5 reports the
adjusted p-values of the partial permutation tests on the single components of
the response, together with the maximum likelihood estimates, for the univariate
cubmodels, of the γ parameters and the feeling parameters in the two groups
identified by the covariate (ξ̂(0) and ξ̂(1)). According to the adjusted p-values
of the partial tests, to be in Sesto for the first time has no influence on the
easy of learning but it positively affects the feeling of the respondents towards
the helpfulness of the teacher (adjusted p-value equal to 0.009), the fun of
the children (adjusted p-value equal to 0.013), the involvement of the children
(adjusted p-value equal to 0.015) and also the general satisfaction (adjusted
p-value equal to 0.001).

To conclude, one could point out that the response variable “general sat-
isfaction” is probably inherently correlated to the other variables. As a last
remark it is worth underlining that this fact anyway does not affect the results
we obtained. Indeed the dependence among the responses, and thus among the
permutation tests performed on each response, is implicitly taken into account
by our global procedure.

5.5 Main results

In this chapter we presented an extension of a permutation solution to test
for covariate influence on an ordinal response, working within the cubmodels
framework. Such extension allows us to deal with a multivariate response, which
is a very common output while analyzing this kind of data. The method basically
works implementing the permutation solution proposed in Chapter 4 separately
on each component of the multivariate response, anyway taking into account the
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Table 5.5: Second real case application results. Feeling parameters estimates
for the several univariate models and partial adjusted permutation tests on the
significance of the “First presence in Sesto” covariate on the the components of
the multivariate response.

Response
First presence in Sesto,

feeling parameters estimates
Part. adj. p-values

Easy Learning
γ̂0 = −2.16244, γ̂1 = −0.44946

0.152m
ξ̂(0) = 0.103 ξ̂(1) = 0.068

Helpful Teacher
γ0 = −2.79602, γ̂1 = −1.66700

0.009m
ξ̂(0) = 0.058 ξ̂(1) = 0.011

Fun
γ̂0 = −2.53541, γ̂1 = −1.51638

0.013m
ξ̂(0) = 0.073 ξ̂(1) = 0.017

Involvement
γ̂0 = −2.32239, γ̂1 = −0.9357

0.015m
ξ̂(0) = 0.089 ξ̂(1) = 0.037

General Satisfaction
γ̂0 = −2.29823, γ̂1 = −0.95986

0.001m
ξ̂(0) = 0.091 ξ̂(1) = 0.037

dependence among such components by performing synchronized permutations
and then nonparametrically combining the partial tests.

The method’s performances have been checked through a simulation study
were the cases of C = 2 and C = 3 dimensions of the multivariate response have
been considered. Several settings have been explored, which differ from each
other in terms of number of partial components under the alternative hypoth-
esis. The results have shown the very good behavior of the global permutation
solution, which is reliable under the global null hypothesis and powerful under
the alternative especially for low sample sizes. Its power increases (reaching the
value one) as we increase the sample size and as the dependence among the
components of the multivariate outcome decreases. Moreover a power increase
can be observed while increasing the number of false partial null hypothesis.

The permutation test has also been applied to two real datasets. The ob-
tained results show the usefulness of the method and its coherence with its
univariate counterpart.

We can conclude that the proposed permutation solution is useful in order
to test for the influence of covariates on a multivariate ordinal response, while
working in the cubmodels framework.
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Chapter 6

Conclusions

6.1 Original results

This thesis presents some innovative results about the use of permutation meth-
ods in real applications. In particular two main real contexts have been consid-
ered in this work: testing for difference in treatments’ effects while performing
single-case experiments and studying covariates influence on ordinal responses
within a regression framework. The two application fields are quite different,
and quite far away from each other are the proposed solutions to the problems,
even if they are both belonging to the permutation approach. The difference
between the presented approaches is due to the substantial difference in the
structures of the data coming from the two applications. In the case of single-
case experiments we do not deal with a classical random sample from some
population of interest, as the recorded values come instead from one single sub-
ject which is observed during a certain period of time. Hence we handle a
vector of values of length n which in practice can be referred to as a time-series.
Within this time-series we can distinguish among values coming from different
treatments, the effects of which we wish to compare at a single-subject (and not
at a wider population) level. In the second application instead the data comes
from a sample of respondents, making us handle the usual i.i.d. sample of size
n from a population of interest. Here again we aim to make some comparisons,
but in this case such comparisons are referred to some sub-populations which
are identified by the different values that the related covariates can take. Due
to this fundamental difference the permutation solutions we proposed for the
two problems are quite different regarding the permutation mechanism. Per-
mutation tests are constructed permuting the quantity which is exchangeable
in the data under the null hypothesis, this way estimating the null distribution
of some test statistic and comparing to it the observed value of such statistic.
Hence the permutation strategy can be different from case to case, according
to which is the exchangeable quantity in the problem of interest. In our two
applications the exchangeable quantities are different, since in single-case data
we permute the treatments sequence on time, within the single subject, whereas
in the regression problem for ordinal data we permute the rows of tested co-
variates among subjects. Hence one main contribute on this thesis is that we
showed how permutation techniques can be a flexible instrument to deal with
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very different real problems and data scenarios.
More specifically important results have been reached in both the real ap-

plication issues. Regarding single-case experiments we proposed a permutation
procedure which is able to solve the problem with good results in a wide range
of possible scenarios. We improved an already existing permutation procedure,
exploiting the implementation of a MA solution: this way the method is able to
catch several effects’ difference besides the elementary case in which the treat-
ments’ effects are characterized by a stationary processes and they differ only
in the average level. The case of possible trends in the treatments’ effects is
indeed considered. The method is innovative also in the sense that it proposes
a joint use of time-series smoothing techniques and the permutation strategy:
this idea is proposed in this thesis and, by means of a simulation study, it shows
to give competitive results. We think that the strength of this mixed procedure
comes from the its ability of wasting much less information about the shape
of the time-series on time than other (also permutation) methods using classi-
cal summary statistics of the data (sample mean, median, slope and intercept
estimates for trends, etc.).

Another innovative contribute is the possibility of making inference on single-
case experiments when a multivariate response is observed, for which no global
inferential errors controlling procedure is currently available in the literature.
Using the nonparametric combination of dependent permutation tests, a solu-
tion is proposed which allows to assert a difference of treatments’ effects glob-
ally on several outcomes of interest, while controlling for the multiplicity issue.
The reader can understand how this results has quite some importance think-
ing about the fact that multivariate responses are much more likely in clinical
studies than univariate outcomes.

This work proposes also a solution to extend the results obtained in single-
case experiments to a wider population of interest. Also on this aspect, no
procedure which takes care of the multiplicity issue is currently available in the
literature. The problem is quite hard to solve because multiple time-series have
to be analyzed at the same time. Again by nonparametrically combining the
univariate permutation tests we are able to solve the problem. The idea of a two
step procedure, which takes care of the way the experiment is conducted and
the data are recorded, is an innovative proposal that allows the analyst to end
up with a global result at a population level but also to recover single-subjects
related information, while taking care of the multiplicity issue. We obtain in this
way a double advantage, as we can make both individual and global conclusions.

Regarding the regression problem dealing with ordinal responses, this thesis
contributes to give more applicability space to a very interesting class of re-
gression models (cubmodels), which is getting growing interest from statistical
research papers in the last years. We believe that cubmodels are a very handy
solution to analyze ordinal data: they are flexible and allow a nice interpreta-
tion of the phenomenon under observation. As low sample size is a common
situation while analyzing real data, we think that a well performing alternative
to the likelihood based solution is an important contribute for the application
of this kind of model. The permutation test we propose shows a good behavior
when the sample size is not high, which suggests that its use should be recom-
mended in real applications when less than 150 respondents are included in the
study. Therefore an innovative proposal can be found in the stepwise procedure
we present, which is able to make a covariate selection while controlling for the
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multiplicity issue at the several steps.
At the end, this work proposes a global solution for the not yet solved prob-

lem of dealing with an ordinal multivariate response, which is a very common
situation in real applications. In this sense the permutation strategy turns out
to be an interesting and innovative alternative to parametric inference not only
for low sample sizes, but in general for analyzing survey data.

6.2 Further developments

Some further developments can be surely of interest for both the main topics in
this thesis. The use of nonparametric combination to construct MA solutions
and to extend the proposal to multivariate tools brings with it a wide range
of possible combinations of test statistics and combining function that could
be adopted. Also the possibility of constructing combination procedures that
work in more levels, bring us to the use of specific decisions and leave a lot of
space for other possible alternatives. Thus a lot can be discussed about possible
further developments of the solutions we proposed and of the study of their
performances.

Regarding the single-case experiment problem many variable pieces are com-
posing the puzzle: first of all the local regression as smoother at the starting
step of the procedure is just our choice and, as already mentioned in Chapter
2, other possible techniques could be chosen. Also the test statistics composing
the MA solution are our particular choices and other solutions are of course
possible, both in terms of different statistics and of number of partial tests
which are combined together. Also in the extended solution for multivariate
replicated single-case experiments specific choices have been made while build-
ing the multivariate test. We proposed a two steps procedure which works on
first level global tests on the subjects and then it combines them in a second
level final global test, but the definition of the two levels could be changed and
different partial steps could be proposed. In this sense, as we already pointed
out previously, we believe that further developments are possible starting from
the method we proposed in the second and third chapter of this thesis. Thus it
may be of interest to study performances of other smoothers for the time sub-
processes, or even simply change the choice of smoothing parameters for the
local regression solution. Again, the role played by the use of different partial
test statistics in the MA solution could also be studied. Further developments
could be of interest regarding the data scenarios on which the method perfor-
mances have been explored. Regarding the extended procedure for multivariate
replicated experiments, we could explore how changing the combining functions
(that are used at the different levels of the combination scheme) the procedure
performances change.

Our proposal to test for covariates effect in cubmodels is also characterized
by specific choices, which could be changed. At first the choice of the test statis-
tics could be changed: other measures of the goodness of fit of the model could
be studied, as, for instance, some kind of residuals. MA solutions could also be
tried, which combine together the partial tests we studied in this work. There-
fore the combining function used in the proposed univariate test to combine the
Wald type partial statistics on the single parameters could also be changed in
order to check if better behaviors can be achieved. The choice of the combining
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functions could be studied more in depth also for the multivariate procedure
proposed in Chapter 5. Finally it could be of interest to check which can be
the reason that makes the power of all the procedures (also the parametric test)
decrease when we have covariates affecting the uncertainty parameter of the
model.

Concluding we hope that this thesis can be a starting point for future new
research on the topics faced here. We also wish that this work can be an
inspiration and a motivation for other researchers to consider the possibility of
using permutation techniques in order to solve real complex problems.



Appendix A

R codes

A.1 R codes for single-case experiments

This section of the appendix describes the R codes needed to perform the permu-
tation solutions to test for difference in treatments’ effect in univariate as well as
multivariate replicated single-case experiments. These codes are available upon
request. They are contained in the files listed below:

• assignments.txt, quantity.txt, selectdesign.txt: functions related
to single-case experiments, needed to perform the randomization test. See
Bulté and Onghena (2009) for a more detailed description;

• combine.txt, FWEminP.r, t2p.r: functions related to the nonparametric
combination of randomization tests. See Basso et al. (2010) for a more
detailed description;

• perm test MA1.R, perm test MA1.R, perm test SP MA1.R,
perm test SP MA1.R: functions performing the two Multi Aspect random-
ization tests. The first two functions perform the univariate solution, while
the second two implement the general procedure for multivariate replicated
single-case experiments.

• toy example singlecase.R: R script containing the code to simulate data
and perform the randomization tests according to a toy example described
below.

The file toy example singlecase.R contains a code to simulate a toy ex-
ample and see how the R functions work. The toy example considers a replicated
single-case study with a multivariate response, with S = 8 subjects and p = 4
dimensions of the multivariate response, and it refers to a particular case con-
sidered in the simulation study presented in Chapter 3. The length of the
time-series is set to n = 50 and, as underlying ARMA model, an ARMA(1, 1)
with autoregressive and moving-average parameters φ, θ = 0.5 was chosen. In
the first part of toy example cub.R, data are generated under the alternative
hypothesis with a difference in levels between the treatment effects, following a
similar scheme as the one used in the simulation study. We maintained fixed
differences in levels between the treatment effects (under the alternative hy-
pothesis), always working with a difference of δ = 3, and we simulated the data
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under the alternative hypothesis for only some dimensions of the multivariate
response and some subjects. The setting is described in Table A.1 in terms of
subjects and variables simulated under the alternative hypothesis.

Table A.1: Toy example; setting of simulated data, the symbol X indicates
the partial comparisons which have been performed under the alternative
hypothesis. Xs

i , i = 1, . . . , 4, s = 1, . . . , 8 indicates the ith component of the
multivariate response for the sth subject.

Subject Var. under H1 (for each subj.) Responses, s = 1, . . . , 8
Xs

1 Xs
2 Xs

3 Xs
4

1 1 X
2 2 X X
3 3 X X X
4 4 X X X X
5 0
6 1 X
7 2 X X
8 3 X X X

As regards the correlational structure of the errors, we considered the case of
no correlation among the subjects and correlation between the pairs of variables
within each single-case experiment set at ρi,j = 0.3 for i < j, i, j = 1, . . . , S.
Normal errors were used to simulate the data. In the second part of the file the
multivariate permutations test is applied on the data providing the final global
solution. The code to obtain partial adjusted results is also available.

A.2 R codes for CUB models

This section of the appendix describes the R codes needed to perform the permu-
tation solutions to test for covariates’ effect in both univariate and multivariate
cubmodels. Again these codes are available upon request and they are con-
tained in the files listed below:

• cubR perm.R, perm test functions cub.r: functions related to cubmo-
dels, needed to perform the randomization test. In particular cubR perm.R

modifies the code proposed by Iannario and Piccolo (2009) for the imple-
mentation of cubmodels, in a way such that it can be recalled by the
function performing the permutation test. perm test functions cub.r

contains the functions for simulate data from a univariate or multivariate
cub model;

• combine.txt, FWEminP.r, t2p.r: functions related to the nonparametric
combination of randomization tests. See Basso et al. (2010) for a more
detailed description;

• perm test blocks.R: function performing the univariate permutation tests;

• toy example cub.R: R script containing the code to simulate data and
perform the permutation tests according to a toy example described below.
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The code toy example cub.R simulates a toy example and can be uses to see
how the R functions work. The toy example considers the case of a multivariate
ordinal response Y , with c = 3 outcomes, and it refers to a particular case
considered in the simulation study presented in Chapter 5 (setting 6). The
sample size is set to n = 50, the number of values that the response can take
to m = 7 and the value for the dependence parameter of the Frank copula to
θ = 5. The feeling parameter is set to ξ = 0.1 for the third component, simulated
under the null hypothesis (cub (0, 0) model), and to ξ(0) = 0.1, ξ(1) = 0.3, in the
two sub-groups identified by the covariate, for the first and second components,
simulated under the alternative hypothesis (cub (0, 1) model). The uncertainty
parameter is set always to π = 0.9. In the first part of toy example cub.R,
data are generated according to the scheme described above. In the second part
of the file the permutations tests are applied on the single components of the
multivariate response and they are then combined together to obtain the final
global solution as well as the partial adjusted tests.
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esclusione di aneurisma alláorta addominale. (talk, Salmaso, L.) VI Congresso
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