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Abstract

The first Chapter of the Thesis presents a general and abstract framework for the analysis of
mean-variance portfolio optimization problems. Under a minimal no-arbitrage condition, we con-
sider a whole range of quadratic optimization problems, which are solved in a unified way. We
give general and model-independent characterizations of the optimal solutions as well as abstract
generalizations of classical results from financial economics such as two-fund separation results,
mean-variance efficiency and a CAPM-type formula. Finally, we apply our general results to the
valuation of contingent claims according to several mean-variance indifference valuation rules.

The second Chapter considers a general reduced-form credit risk model, where the default
time is modeled as a doubly stochastic random time with default intensity driven by a diffusion
affine process. We characterize the family of all locally equivalent probability measures which
preserve the affine structure of the model by giving necessary and sufficient conditions on their
density process. We illustrate the usefulness of our results first in the context of a jump-to-default
extension of the popular Heston (1993) stochastic volatility model and then in the context of a
more general hybrid equity/credit risk multifactor model, providing applications of interest in view
of risk management as well as pricing purposes.

The third Chapter deals with general diffusion-based models and shows that, even in the absence
of an Equivalent Local Martingale Measure, the financial market may still be viable, in the sense
that strong forms of arbitrage are ruled out. Relying partly on the recent literature, we provide
necessary and sufficient conditions for market viability in terms of the market price of risk process
and martingale deflators. Regardless of the existence of a martingale measure, we show that the
financial market may still be complete and contingent claims can be valued under the original
(real-world) probability measure, provided we use as numéraire the Growth-Optimal Portfolio.

Finally, the fourth Chapter deals with no-arbitrage conditions which are weaker than the clas-
sical No Free Lunch with Vanishing Risk (NFLVR) criterion, providing necessary and sufficient
conditions for their validity in terms of the characteristics of the discounted price process. We
study the stability of weak no-arbitrage conditions with respect to changes of numéraire, absolutely
continuous changes of the reference probability measure and restrictions/enlargements of the ref-
erence filtration. In particular, we prove that weak no-arbitrage conditions, unlike the classical No
Arbitrage (NA) and NFLVR criteria, are in general robust with respect to these changes. Finally, we
provide a general characterization of attainable contingent claims and market completeness without
relying on the NFLVR condition.
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Sunto

Il primo Capitolo di questa Tesi contiene un approccio generale e astratto a problemi di ottimiz-
zazione di portafoglio secondo un criterio media-varianza. In particolare, vengono studiati e risolti
congiuntamente diversi problemi di ottimizzazione in media-varianza, assumendo unicamente una
condizione minimale di non-arbitraggio. Le soluzioni ottime a tali problemi vengono descritte e-
splicitamente, senza alcuna ipotesi sulle caratteristiche del modello sottostante. Inoltre, vengono
presentate generalizzazioni di risultati classici dell’economia finanziaria, come il teorema di sepa-
razione in due fondi, la frontiera efficiente media-varianza e una formula di tipo CAPM. Infine, i
risultati generali ottenuti vengono applicati alla valutazione di strumenti finanziari.

Il secondo Capitolo è dedicato allo studio di un modello generale a forma ridotta per il rischio
di credito, in cui il tempo di fallimento viene modellizzato come un tempo aleatorio doppiamente
stocastico la cui intensità è funzione di un processo diffusivo di tipo affine. Si ottiene una carat-
terizzazione completa della famiglia di tutte le misure di probabilità localmente equivalenti che
preservano la struttura affine del modello, formulando condizioni necessarie e sufficienti sul pro-
cesso densità. L’utilità di questi risultati generali viene illustrata prima nel contesto di un modello a
volatilità stocastica di Heston (1993) con l’aggiunta di un possibile fallimento e succesivamente nel
contesto di un modello multi-fattoriale più generale che consente di modellizzare congiuntamente il
rischio di credito e il rischio di mercato. Si considerano applicazioni di interesse per la valutazione
di strumenti derivati come anche per il risk management.

Il terzo Capitolo è dedicato allo studio di modelli basati su processi diffusivi. In particolare,
viene mostrato che, anche in assenza di una Misura Martingala Locale Equivalente, il mercato fi-
nanziario può essere privo di forme forti di arbitraggio. Basandoci in parte sulla letteratura recente,
vengono fornite condizioni necessarie e sufficienti per l’assenza di forme forti di arbitraggio. Tali
condizioni coinvolgono il prezzo di mercato del rischio e processi martingale deflator. Indipenden-
temente dall’esistenza di una misura martingala, si dimostra che il mercato finanziario può essere
completo e strumenti derivati possono essere valutati rispetto alla misura di probabilità del mondo
reale, utilizzando come numéraire il Growth-Optimal Portfolio.

Infine, il quarto Capitolo contiene uno studio delle condizioni di non-arbitraggio più deboli del
classico criterio No Free Lunch with Vanishing Risk (NFLVR). Vengono fornite condizioni neces-
sarie e sufficienti per la validità di tali condizioni deboli di non-arbitraggio, espresse rispetto alle
caratteristiche del processo che rappresenta il prezzo scontato degli asset. Viene anche studiata la
stabilità delle condizioni deboli di non-arbitraggio rispetto a cambiamenti di numéraire, cambia-
menti assolutamente continui della misura di probabilità di riferimento e restrizioni/allargamenti
della filtrazione di riferimento. In particolare, si dimostra che le condizioni deboli di non-arbitraggio
considerate nel presente lavoro godono di buone proprietà di stabilità, al contrario di quanto accade
per le classiche condizioni di Non Arbitraggio (NA) e NFLVR. Infine, presentiamo una caratte-
rizzazione generale dei titoli finanziari che possono essere replicati, dimostrando che il mercato
finanziario può essere completo anche in assenza della condizione NFLVR.
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Introduction

As the title indicates, this Thesis consists of four essays dealing with some issues arising in math-
ematical finance. In the first chapter, we shall start with a general and abstract perspective on
mean-variance portfolio optimization problems, which represent a classical, but still active, field
of research in financial mathematics. Then, motivated by a popular approach to the modeling of
credit risk which has emerged in the last decade, the second chapter deals with more theoretical
questions concerning the stability of certain structural properties of a credit risk model under a
change of measure. Finally, in the third and fourth chapters, we shall deal with some foundational
issues which have recently attracted the attention of several researchers. More specifically, we shall
be concerned with the analysis of financial market models which satisfy robust no-arbitrage condi-
tions, which are in particular weaker than the classical no-arbitrage criteria usually adopted in the
literature. We now present a brief description of the contents of the four chapters of the Thesis,
referring to the introductory sections of each chapter for a more thorough discussion as well as for
more references to the related literature.

Chapter 1, which is based on Fontana & Schweizer (2011), deals with classical mean-variance
portfolio selection problems. We choose to work in a very general and abstract setting, simi-
lar to that originally introduced in Schweizer (1997),(2001a), which allows us to obtain model-
independent results under the minimal no-arbitrage condition of no approximate riskless profits in
L2. By relying on projection techniques in Hilbert spaces, we provide general characterizations of
the solutions to abstract versions of the classical Markowitz portfolio selection problems as well as
of mean-variance hedging and utility maximization problems. In particular, our abstract framework
allows to treat different mean-variance problems in a unified manner, showing in a clear way how
the corresponding optimal solutions are related. Generalizing the classical two-fund-separation the-
orem, we show that the optimal solutions to all mean-variance problems can be decomposed into
the sum of a fixed minimum variance element and a multiple of an additional fixed element given
by the best L2-approximation of the riskless payoff 1 onto the set of all cumulated (undiscounted)
gains from trade. Furthermore, only the amount invested into the latter depends on the specific
problem under consideration. We also derive abstract generalizations of classical results from fi-
nancial economics such as a characterization of the mean-variance efficient frontier, a CAPM-type
formula and a general solution to the problem of maximizing the Sharpe ratio. Finally, we also
consider the problem of valuing square-integrable contingent claims according to several mean-
variance indifference valuation rules, for which our abstract mean-variance theory yields general
descriptions of the corresponding indifference values, thus extending some results of Mercurio
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Introduction

(2001), Møller (2001), Schweizer (2001a) and Sun & Wang (2005),(2006). In particular, under
the simplifying assumption that a zero-coupon bond can be (approximately) attained in the abstract
financial market, all mean-variance indifference valuation formulae admit a very natural economic
interpretation. Related results can also be found in Chapter 1 of Fontana (2010b).

Chapter 2 starts by considering a general reduced-form credit risk model, where the default
time is modeled as a doubly stochastic random time with default intensity driven by an affine dif-
fusion process. In the first part of the Chapter, we characterize the family of all locally equivalent
probability measures which preserve the affine structure of the model by giving necessary and suf-
ficient conditions on their density process. In particular, this allows for a rigorous treatment of
diffusive and jump-type risk premia and shows that the affine structure is preserved under rather
general risk-premia specifications, which nest most of the specifications usually adopted in the lit-
erature. As an application, we consider a jump-to-default extension of the popular Heston (1993)
stochastic volatility model, giving a complete description of the family of all risk-neutral measures
which preserve the structure of the model, thus extending and sharpening the results of Wong &
Heyde (2006). Always in the context of the Heston with jump-to-default model, our general results
allow us to easily answer the question of whether discounted asset prices are true martingales or
only local martingales under a given risk-neutral measure and the question of whether the so-called
Minimal Martingale Measure exists. Finally, we illustrate the usefulness of our results on affine-
preserving measure changes in the context of a hybrid equity/credit risk model, as considered in
several recent papers (see e.g. Carr & Linetsky (2006), Campi et al. (2009), Carr & Wu (2010)
and Cheridito & Wugalter (2011)). We propose a class of multifactor models, allowing for both
stochastic volatility and stochastic default intensity. In particular, we ensure that the affine struc-
ture of the model is preserved under both the physical and the risk-neutral probability measure thus
enabling us to explicitly compute several key quantities of interest for risk management as well as
pricing applications. Finally, we shall also briefly consider the incomplete information case, where
some components of the underlying driving process are not perfectly observable to market partici-
pants. As in Fontana (2010a) and Fontana & Runggaldier (2010), this will lead to the formulation
of a suitable filtering problem.

In Chapter 3, which is based on Fontana & Runggaldier (2011), we consider a general class
of diffusion-based models and show that, even in the absence of an Equivalent Local Martingale
Measure (ELMM), the financial market may still be viable, in the sense that strong forms of arbi-
trage are excluded and portfolio optimization problems can be meaningfully solved. Relying partly
on the recent literature (see e.g. Karatzas & Kardaras (2007), Hulley & Schweizer (2010) and Kar-
daras (2010a)), we provide necessary and sufficient conditions for market viability in terms of the
market price of risk process and the existence of a martingale deflator. In particular, a martingale
deflator can be considered as a weaker counterpart to the density process of a traditional ELMM
and inherits most, but not all, of the useful properties of the latter. We then explicitly compute
the growth-optimal portfolio (GOP), which is also shown to possess the numéraire property and to
coincide with the reciprocal of a martingale deflator. Regardless of the existence of a well-defined
ELMM, we show that the financial market may still be complete and contingent claims can be val-
ued under the original (real-world) probability measure. In particular, we discuss three different
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but related valuation approaches: real-world pricing, upper-hedging pricing and utility indifference
pricing. In the special case of a complete financial market, we show that these three valuation rules
yield the same valuation formula, which amounts to taking the expectation (under the real-world
probability measure) of the GOP-discounted payoff. We also discuss relations with Stochastic Port-
folio Theory and with the Benchmark Approach, where financial market models not admitting an
ELMM are typically encountered, see e.g. Fernholz & Karatzas (2009), Platen (2006),(2009) and
Platen & Heath (2006).

Chapter 4 is concerned with the analysis of no-arbitrage conditions which are weaker than the
classical No Arbitrage (NA) and No Free Lunch with Vanishing Risk (NFLVR) conditions considered
in the seminal work of Delbaen & Schachermayer (1994). More specifically, we shall analyze the
No Unbounded Increasing Profit (NUIP), the No Immediate Arbitrage Opportunity (NIAO) and
the No Unbounded Profit with Bounded Risk (NUPBR) conditions. We provide necessary and
sufficient conditions for the validity of NUIP/NIAO/NUPBR in terms of the characteristics of the
discounted price process of the risky assets. In particular, this allows us to generalize the results
of Chapter 3 to more general financial market models based on continuous semimartingales. We
then study the stability properties of the NUIP/NIAO/NUPBR no-arbitrage conditions with respect
to several modifications of the structure of the underlying financial market model. More precisely,
we analyze the impact of changes of numéraire, of absolutely continuous changes of the reference
probability measure and of restrictions/enlargements of the reference filtration. The main message
is that the weak NUIP/NIAO/NUPBR no-arbitrage conditions possess stronger stability properties
than the classical NA and NFLVR criteria, thus confirming the economic soundness of the weak no-
arbitrage conditions considered in the present work. Finally, assuming that the NUPBR condition
holds, we provide an abstract and general characterization of attainable contingent claims, without
relying on the full strength of the classical NFLVR condition. In particular, we obtain natural
generalizations of the classical results of Ansel & Stricker (1994) and Delbaen & Schachermayer
(1995c) on the attainability of contingent claims, with martingale deflators replacing the traditional
ELMMs. Finally, we generalize the second fundamental theorem of asset pricing to the situation
where the NFLVR condition fails to hold.
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Chapter 1

An abstract and unifying approach to
mean-variance optimization problems

1.1 Introduction

Mean-variance portfolio optimisation is one of the classical problems in financial economics. Many
papers have been written on the subject, and many different settings and versions have been studied.
So what is there left to be said?

We offer in this paper a new perspective that allows to treat mean-variance portfolio problems
in a simple and yet general way. Our approach does not depend on any particular model and uses
only simple mathematics. The key for this is a change of parametrisation.

Consider one standard formulation of the classical Markowitz problem (there are other versions
and we discuss them all in the paper): Given a financial market, find a portfolio with maximal return
(mean) given a constraint on its risk (variance). The familiar mathematical description is to search
for a (self-financing) strategy ϑ whose resulting gains from trade GT (ϑ) maximise E[GT (ϑ)] over
all allowed ϑ ∈ Θ subject to Var[GT (ϑ)] ≤ σ2 for some constant σ2 > 0. The control variable
is the strategy ϑ. In a one-period model with returns given by an Rd-valued random variable ∆S,
a strategy is simply a constant vector ϑ ∈ Rd, and trading gains are the scalar product ϑ>∆S. In
a continuous-time model with asset prices described by an Rd-valued semimartingale (St)0≤t≤T ,
a strategy is an Rd-valued predictable S-integrable process (satisfying some technical conditions),
and GT (ϑ) is given by the real-valued stochastic integral

∫ T
0
ϑu dSu.

The very simple idea of our approach is that we need not look at S and ϑ separately — all that
matters for our problem isGT (ϑ). Since this depends linearly on ϑ, the set of all possible gains from
trade in a frictionless financial market is simply a linear space. (Of course, frictions or transaction
costs will complicate this; but then we already leave the classical setting.) Moreover, that space G
of gains from trade g should be a subset of L2(P ) since our problem formulation involves mean
and variance. In other words, we no longer look at trading strategies as control variables, but only
at the resulting final positions. It turns out that this change of parametrisation from Θ to G makes
everything very simple and tractable.
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Chapter 1. An abstract and unifying approach to mean-variance optimization problems

Of course, this idea is not completely new. It has been used (and, to the best of our knowledge,
introduced) in Schweizer (1997) and has been picked up by other authors more recently. We give
a detailed discussion of related literature in Section 1.6. However, the systematic exploitation
for a whole range of four mean-variance optimisation criteria seems to be missing so far. We
explicitly work out the connections between the four solutions, and we do all this carefully in
an undiscounted framework. Our results include explicit formulas, two-fund separation results, a
CAPM-type relation, and explicit indifference valuation rules.

The paper is structured as follows. Section 1.2 presents the general setup and the formulation of
our four mean-variance optimisation problems. Section 1.3 contains the mathematics — it solves
the four problems explicitly and provides a number of connections between their solutions. We
even do this more generally than discussed above, by replacing g with g − Y for some exogenous
extra financial position. Section 1.4 starts on the financial economics; it determines the mean-
variance efficient frontier, presents a CAPM-type relation, and derives two different but related
two-fund separation results. Section 1.5 introduces mean-variance indifference valuation. Because
we can compute the values of our optimisation problems explicitly, we can also explicitly obtain,
for a suitable chosen Y , the value (financial amount) h at which an agent is indifferent, under a
mean-variance criterion and at optimal investment, between either selling a contingent claim H for
a compensation of h or not selling H and not getting extra money. Finally, Section 1.6 contains a
detailed discussion of related work in the literature.

1.2 General setup and problem formulation

This section describes the abstract financial framework and introduces the main mean-variance
portfolio optimisation problems we are interested in. For a given probability space (Ω,F , P ),
denote by L2 := L2(Ω,F , P ) the space of all real-valued square-integrable random variables with
the usual scalar product (X, Y ) = E[XY ] and norm ‖X‖L2 = (E[X2])1/2. Let G be a given
nonempty subset of L2, denote by G⊥ := {X ∈ L2 | (X, Y ) = 0 for all Y ∈ G} its orthogonal
complement in L2, and write G for its closure in L2. Finally, let B be a real-valued random variable
in L2 such that B > 0 P -a.s.

The financial interpretation is as follows. Think of a time horizon T ∈ (0,∞) and let t = 0 be
the initial time. Then G represents the set of all undiscounted cumulated gains from trade (evaluated
at time T ) generated by suitable self-financing trading strategies starting at t = 0 from zero initial
capital. The element B represents the strictly positive value (at the final time T ) of a numéraire
asset and can, but need not, be interpreted as the final value of a savings account. We avoid calling
B a “riskless” asset; in fact, investing one unit of money in this asset only guarantees that we end
up at T with the strictly positive amount B, which is however random and can be strictly less than
the initial investment of 1. The set {cB+g | c ∈ R, g ∈ G} = RB+G then represents the set of all
attainable undiscounted final wealths, i.e. all those square-integrable payoffs or contingent claims
which can be replicated in the abstract financial market (B,G) by following a self-financing strategy
starting from some initial capital c. Note that we do not assume that G is closed in L2. Square-
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1.2 General setup and problem formulation

integrability is imposed to ensure existence of means and variances, which is a basic necessary
assumption when dealing with mean-variance problems. Finally, the Hilbert space structure of L2

allows an easy and efficient derivation of general solutions to several mean-variance problems, as
will be shown in Section 1.3.

Remark 1.2.1. It is worth emphasising that apart from the obvious requirement of square-integra-
bility, the present setup for an abstract financial market does not rely on any underlying modelling
structure. As a consequence, all the results we are going to present are model-independent, and in
particular hold for both discrete- and continuous-time models. We refer the reader to Examples 1–3
in Schweizer (1999) for an illustration of how typical financial models can be embedded into the
present abstract setting.

Let us now introduce a basic standing assumption for the rest of the paper.

Assumption I. The two following conditions hold:

(a) G is a linear subspace of L2.

(b) There are no approximate riskless profits in L2, meaning that G does not contain 1.

Intuitively, part (a) of Assumption I amounts to considering a frictionless financial market with-
out constraints or other restrictions on trading. The condition 1 /∈ G of no approximate riskless
profits in L2 in part (b) represents an abstract and minimal no-arbitrage condition. It can be equiv-
alently formulated as R ∩ G = {0}, and this amounts to excluding the undesirable situation where
an agent is able to reach, or approximate in the L2-sense, a deterministic riskless final wealth from
zero initial capital. As will be shown in the next section, the condition of no approximate riskless
profits in L2 is necessary and sufficient for the solvability of the quadratic problems we are now
going to introduce.

In the present paper, we shall be mainly concerned with four major mean-variance portfo-
lio optimisation problems, denoted as Problems (A)–(D) and formulated in the following ab-
stract terms. We let Y ∈ L2 represent the final undiscounted value of a generic financial posi-
tion/liability, α ∈ (0,∞) a given risk-aversion coefficient, µ ∈ R a target minimal expected value
and σ2 ∈ (0,∞) a target maximal variance. Then we consider

Problem (A’) E[g − Y ]− αVar[g − Y ] = max
g∈G

!

Problem (B’) Var[g − Y ] = min! over all g ∈ G such that E[g − Y ] ≥ µ.

Problem (C’) E[g − Y ] = max! over all g ∈ G such that Var[g − Y ] ≤ σ2.

Problem (D’) ‖Y − g‖L2 = min
g∈G

!

We shall argue below that each Problem (X’) has the same optimal value as the corresponding

Problem (X) where we optimise over G instead of G.
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Chapter 1. An abstract and unifying approach to mean-variance optimization problems

The financial interpretations of Problems (A’)–(D’) are rather obvious. In fact, (A’) describes
the portfolio optimisation problem faced by an agent with mean-variance preferences and risk-
aversion coefficient α. (B’) and (C’) are abstract versions of the classical Markowitz portfolio
selection problems, slightly extended by including the random liability Y . More specifically, in
(B’), the agent is interested in minimising the variance of her/his final net position, given a minimal
target level µ for its expected value. Symmetrically, in (C’), the agent wants to maximise the
expected value of her/his final net position, given a maximal target level σ2 for its variance. Finally,
(D’) consists of finding the optimal quadratic hedge for Y . As we illustrate at the end of Section
1.4, different investment situations can be represented via suitable choices of Y .

Remark 1.2.2. Part (b) of Assumption I excludes the case 1 ∈ G, but not the case 1 ∈ G⊥.
However, the latter situation is neither particularly interesting from a mathematical point of view
nor particularly realistic from an economic point of view. In fact, 1 ∈ G⊥ mathematically means
thatE[g] = (g, 1) = 0 for all g ∈ G. But then there is nothing to optimise in (C’), and the constraint
in (B’) is trivially always or never satisfied, depending on whether E[Y ] ≤ −µ or E[Y ] > −µ.
Finally, (A)’ reduces to the simpler problem of minimising the variance. In financial terms, the case
1 ∈ G⊥ corresponds to the situation where all undiscounted cumulated gains have zero expectation
under the original (real-world) probability measure P . In this case, there is no proper notion of
a trade-off between risk (variance) and return (expected value), and so we cannot meaningfully
consider mean-variance portfolio optimisation problems.

Due to Remark 1.2.2, there is no loss of generality in introducing the following additional
standing assumption for the sequel.

Assumption II. 1 /∈ G⊥, or equivalently {g ∈ G | E[g] 6= 0} 6= ∅.

1.3 Mathematical tools and general results

This section contains the mathematical ingredients for solving Problems (A)–(D). The Hilbert space
structure of our framework makes the results both general and easy to obtain. We postpone to later
sections all pertinent economic considerations and applications to financial problems.

Recall that the orthogonal complement G⊥ is a closed linear subspace of L2, and denote by π
the orthogonal projection in L2 on G⊥. Since G is a linear subspace of L2 by part (a) of Assumption
I, we have (G⊥)⊥ = G. This yields the direct sum decomposition L2 = G ⊕ G⊥, meaning that any
Y ∈ L2 can be uniquely decomposed as

Y = gY +NY = gY + π(Y ) with gY ∈ G and NY = π(Y ) ∈ G⊥. (1.1)

Using this basic orthogonal decomposition, we can already tackle Problem (D’). Note first that

inf
g∈G
‖Y − g‖L2 = inf

g∈G
‖Y − g‖L2 . (1.2)

In fact, “≥” is clear from G ⊆ G, and conversely, any ḡ ∈ G admits a sequence (gn)n∈N ⊆ G
converging in L2 to ḡ. So

inf
g∈G
‖Y − g‖L2 ≤ ‖Y − gn‖L2 −→ ‖Y − ḡ‖L2 as n→∞,
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1.3 Mathematical tools and general results

and as ḡ ∈ G is arbitrary, we also get “≤” in (1.2). In other words, the optimal value of Problem
(D’) does not change if we replace G by its closure G in L2. The projection theorem then gives

inf
g∈G
‖Y − g‖L2 = inf

g∈G
‖Y − g‖L2 = min

g∈G
‖Y − g‖L2 = ‖Y − gY ‖L2 = ‖NY ‖L2 . (1.3)

Optimising over the closed subspace G ensures existence and uniqueness for the solution to Problem
(D), where G replaces G in (D’), and the solution is the projection in L2 of Y on G,

gY = argmin
g∈G

‖Y − g‖L2 . (1.4)

Remark 1.3.1. Also for Problems (A’)–(C’), the optimal values do not depend on whether we
optimise over G or G. This is easily checked by the same arguments as for (1.2), using that gn → g

in L2 implies E[gn − Y ]→ E[g − Y ] and Var[gn − Y ]→ Var[g − Y ], for any Y ∈ L2.

In view of Remark 1.3.1, we henceforth consider the Problems (A)–(D) instead of (A’)–(D’),
where the optimisation now goes over the closed linear subspace G instead of G. As a preliminary
to the derivation of the solutions to Problems (A)–(C), let us introduce the following variance-
minimisation problem.

Problem (MV) Var[Y − g] = min
g∈G

!

The solution to Problem (MV) is given in the following result and denoted by gYmv, where the
subscript “mv” stands for “minimum variance”. It is obtained by relying on the solution to Problem
(D) we have just derived in (1.4).

Proposition 1.3.2. For Y ∈ L2, Problem (MV) admits in G the unique solution

gYmv := argmin
g∈G

Var[Y − g] = gY − a∗Y
(
1− π(1)

)
, where a∗Y :=

E[NY ]

E[π(1)]
. (1.5)

Proof. The key idea allowing us to reduce Problem (MV) to Problem (D) is the simple fact that

Var[Y − g] = min
a∈R

E[(Y − g − a)2].

Hence we can write

min
g∈G

Var[Y − g] = min
g∈G

min
a∈R

E[(Y − a− g)2] = min
a∈R

min
g∈G

E[(Y − a− g)2].

The inner minimisation over G corresponds to Problem (D) for Y − a and is solved by gY−a. By
linearity of the projection and (1.1), we have gY−a = gY − ag1 = gY − a(1− π(1)) and so

min
g∈G

Var[Y − g] = min
a∈R

E[(Y − a− gY−a)2] = min
a∈R

E
[(
NY − aπ(1)

)2]
. (1.6)

9



Chapter 1. An abstract and unifying approach to mean-variance optimization problems

Now observe that because 1− π(1) is in G, we have (NY , 1− π(1)) = 0 and (π(1), 1− π(1)) = 0.
This gives E[NY π(1)] = E[NY ] and E[π(1)] = E[(π(1))2] = ‖π(1)‖2

L2 > 0 since 1 /∈ G by part
(b) of Assumption I. Squaring out and completing the square therefore yields

E
[(
NY − aπ(1)

)2]
= E[π(1)]

(
a− E[NY ]

E[π(1)]

)2

− (E[NY ])2

E[π(1)]
+ E[(NY )2]. (1.7)

So the optimal a ∈ R is uniquely given by

a∗Y := argmin
a∈R

E
[(
NY − aπ(1)

)2]
=

E[NY ]

E[π(1)]
,

and we obtain

gYmv := argmin
g∈G

Var[Y − g] = gY−a
∗
Y = gY − a∗Y

(
1− π(1)

)
.

The uniqueness of the solution gYmv ∈ G follows from the projection theorem via the uniqueness of
gY−a ∈ G for all a ∈ R.

Let us now introduce the notation RY
mv := gYmv − Y , where “R” stands for the final “result” of

an abstract financial position. Then, for any g ∈ G, we can write

g − Y = RY
mv + g − gYmv

and hence
E[g − Y ] = E[RY

mv] + E[g − gYmv]. (1.8)

Furthermore, due to the optimality of gYmv ∈ G and the linearity of G, the first order condition for
(MV) gives for the element RY

mv the fundamental zero-covariance property

Cov(RY
mv, g) = 0 for all g ∈ G. (1.9)

Since g − gYmv ∈ G for any g ∈ G, this implies that we have

Var[g − Y ] = Var[RY
mv + g − gYmv] = Var[RY

mv] + Var[g − gYmv]. (1.10)

Equations (1.8) and (1.10) show that in Problems (A)–(C), we can isolate the part coming from the
minimum variance element RY

mv. Furthermore, since gYmv ∈ G and G is a linear space, the mapping
g 7→ g′ := g − gYmv is a bijection of G to itself. These observations suggest that we can reduce the
general versions of our abstract mean-variance problems to the particular case Y ≡ 0. This will be
exploited in the proofs of the three following propositions.

Remark 1.3.3. For future use in later sections, we compute the mean and variance of the optimal
position RY

mv = gYmv − Y = −NY − a∗Y (1− π(1)). From the expression for a∗Y in (1.5), we get

E[RY
mv] = − E[NY ]

E[π(1)]
, (1.11)

and using (1.6) and (1.7) yields

Var[RY
mv] = E

[
(NY )2

]
− (E[NY ])2

E[π(1)]
. (1.12)
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1.3 Mathematical tools and general results

We start with the solution to Problem (A), denoted by gYopt,A(γ), where γ := 1
α

is the risk-
tolerance coefficient corresponding to the risk-aversion coefficient α. We shall comment on the
case γ = 0 below.

Proposition 1.3.4. For Y ∈ L2 and γ ∈ [0,∞), Problem (A) has a unique solution gYopt,A(γ) ∈ G.
It is explicitly given by

gYopt,A(γ) = argmin
g∈G

{Var[g − Y ]− γE[g − Y ]} = gYmv + g0
opt,A(γ), (1.13)

where g0
opt,A(γ) ∈ G is the solution to Problem (A) for Y ≡ 0, explicitly given by

g0
opt,A(γ) = argmin

g∈G
{Var[g]− γE[g]} =

γ

2

1

E[π(1)]

(
1− π(1)

)
. (1.14)

Proof. Notice first that with γ = 1
α

, Problem (A) can be equivalently formulated as

Var[g − Y ]− γE[g − Y ] = min
g∈G

!

Moreover, equations (1.8) and (1.10) allow us to write, for any g ∈ G,

Var[g − Y ]− γE[g − Y ] = Var[RY
mv]− γE[RY

mv] + Var[g − gYmv]− γE[g − gYmv].

Since G is linear and contains gYmv, Problem (A) can thus be reduced to the basic problem

Var[g]− γE[g] = min
g∈G

! (1.15)

More precisely, if g0
opt,A(γ) ∈ G denotes the solution to (1.15), then the solution gYopt,A(γ) ∈ G to

Problem (A) in its original formulation is given by (1.13). Hence it only remains to solve (1.15).
Following the same idea as in the proof of Proposition 1.3.2, we write

Var[g]− γE[g] = min
a∈R

E[(g − a)2]− γE[g] = min
a∈R

(
E
[(
g − (a+ γ

2
)
)2
]
− γ2

4
− aγ

)
. (1.16)

But for Y ≡ a+ γ
2
, the solution of Problem (D) is by (1.4) and linearity of the projection

ga+ γ
2 = (a+ γ

2
)g1 = (a+ γ

2
)
(
1− π(1)

)
. (1.17)

Combining this with (1.16) and completing the square gives

min
g∈G
{Var[g]− γE[g]} = min

a∈R

{
min
g∈G

E
[(
g − (a+ γ

2
)
)2
]
− γ2

4
− aγ

}
= min

a∈R

{
E
[(

(a+ γ
2
)π(1)

)2
]
− γ2

4
− aγ

}
= min

a∈R
E[π(1)]

(
a− γ

2
1−E[π(1)]
E[π(1)]

)2

− γ2

4
E[1−π(1)]
E[π(1)]

. (1.18)

11



Chapter 1. An abstract and unifying approach to mean-variance optimization problems

Note that as in the proof of Proposition 1.3.2, Assumption I gives E[π(1)] > 0. The last expression
in (1.18) is clearly minimised by the unique value

a∗γ :=
γ

2

E[1− π(1)]

E[π(1)]
,

and together with (1.17), this yields

g0
opt,A(γ) = argmin

g∈G
{Var[g]− γE[g]} = ga

∗
γ+ γ

2 =
γ

2

1

E[π(1)]

(
1− π(1)

)
.

The uniqueness of the solution again follows from the projection theorem via the uniqueness of
ga+ γ

2 ∈ G for all a ∈ R and γ ∈ [0,∞).

Remark 1.3.5.

1. The proofs of Propositions 1.3.2 and 1.3.4 both rely on the elementary identity Var[X] =

mina∈RE[(X − a)2] for X ∈ L2. This allows us to reduce variance-minimisation problems
to particular cases of Problem (D).

2. The above trick of expressing the variance as an optimal value for a minimisation problem
over R is also at the root of the appearance of the quantity 1−π(1); in fact, this is simply the
projection in L2 of the constant 1 ∈ R on G.

3. It is interesting to notice that the solution to Problem (MV) can be recovered from the solution
to Problem (A). In fact, by letting γ = 0, Proposition 1.3.4 implies that

gYopt,A(0) = argmin
g∈G

Var[g − Y ] = gYmv.

This simple relation is in line with intuition, because γ = 0 corresponds to infinite risk-
aversion (α =∞), which means in (A) that one is only interested in minimising the risk.

4. As seen in the proof of Proposition 1.3.4, the condition 1 /∈ G of no approximate riskless
profits in L2 is sufficient for ensuring the existence of a unique solution to Problem (A). But
this condition is also necessary for the solvability of (A). In fact, suppose to the contrary that
g̃ ∈ G solves Problem (A), but 1 ∈ G. Then g′ := g̃+1 ∈ G satisfies Var[g′−Y ] = Var[g̃−Y ]

and E[g′ − Y ] = 1 + E[g̃ − Y ] > E[g̃ − Y ], contradicting the optimality of g̃.

5. One can prove the uniqueness of the solution to (A) directly by using only its optimality. But
the argument above via the projection theorem leads to a more compact proof.

The results obtained so far do not rely on Assumption II that 1 6∈ G⊥. It is easy to see from
Proposition 1.3.4 that in the case 1 ∈ G⊥, the solutions to Problem (MV) and Problem (A) coincide,
since 1 ∈ G⊥ implies π(1) ≡ 1. But for tackling Problems (B) and (C), we shall exploit Assumption
II. The basic idea is well known; it is folklore that the solutions to (B) and (C) are obtained by
choosing for the risk-aversion α in (A) a particular value, depending on the respective constraint in
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1.3 Mathematical tools and general results

(B) or (C). In more detail, this goes as follows. In analogy to RY
mv = gYmv − Y , we first introduce

the notation

RY
opt,A(γ) := gYopt,A(γ)− Y = RY

mv + g0
opt,A(γ) = RY

mv +
γ

2

1

E[π(1)]

(
1− π(1)

)
.

Using

Var[1− π(1)] = Var[π(1)] = E
[(
π(1)

)2]− (E[π(1)])2 = E[π(1)](1− E[π(1)]) (1.19)

and recalling from (1.9) the zero-covariance property of RY
mv, we then obtain

E
[
RY

opt,A(γ)
]

= E[RY
mv] +

γ

2

E[1− π(1)]

E[π(1)]
, (1.20)

Var
[
RY

opt,A(γ)
]

= Var[RY
mv] +

γ2

4

E[1− π(1)]

E[π(1)]
. (1.21)

So for 1 ∈ G⊥, we obtain E[RY
opt,A(γ)] = E[RY

mv] and Var[RY
opt,A(γ)] = Var[RY

mv] for all
γ ∈ [0,∞). But if Assumption II holds, then we have E[1 − π(1)] = ‖1 − π(1)‖2

L2 > 0, and
therefore the functions γ 7→ E[RY

opt,A(γ)] from [0,∞) to [E[RY
mv],∞) and γ 7→ Var[RY

opt,A(γ)]

from [0,∞) to [Var[RY
mv],∞) are both surjective. This implies that for any µ ∈ [E[RY

mv],∞), there
exists γµ ∈ [0,∞) such that E[RY

opt,A(γµ)] = µ, and analogously, any σ2 ∈ [Var[RY
mv],∞) admits

some γσ2 ∈ [0,∞) such that Var[RY
opt,A(γσ2)] = σ2. Under the (standing) Assumptions I and II,

this simple observation allows us to derive the solutions to Problems (B) and (C) from the solution
to Problem (A), as shown in the next two results.

Proposition 1.3.6. Let Y ∈ L2 and µ ∈ R. If µ > E[RY
mv], then Problem (B) admits a unique

solution gYopt,B(µ) ∈ G. It is explicitly given by

gYopt,B(µ) = gYmv + g0
opt,B

(
µ− E[RY

mv]
)
, (1.22)

where g0
opt,B(m) is the solution to Problem (B) for Y ≡ 0 and constraint m, explicitly given by

g0
opt,B(m) =

m

E[1− π(1)]

(
1− π(1)

)
. (1.23)

If µ ≤ E[RY
mv], then Problem (B) has gYmv as unique solution.

Proof. As in the proof of Proposition 1.3.4, Problem (B) can be reduced to the basic version

Var[g] = min! over all g ∈ G such that E[g] ≥ m, (1.24)

where m in (1.24) stands for µ−E[RY
mv]. More precisely, if g0

opt,B(m) ∈ G denotes the solution to
(1.24), then the solution gYopt,B(µ) ∈ G to Problem (B) in its original formulation is given by (1.22),
due to (1.10) and (1.8).

If m ≤ 0, then (1.24) is trivially solved by g ≡ 0, which proves the last assertion. On the other
hand, there is for any m > 0 some γm ∈ (0,∞) with m = E[R0

opt,A(γm)] = E[g0
opt,A(γm)]; in fact,

(1.20) gives due to R0
mv = 0 that

γm = 2m
E[π(1)]

E[1− π(1)]
. (1.25)
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Chapter 1. An abstract and unifying approach to mean-variance optimization problems

We claim that g0
opt,B(m) = g0

opt,A(γm), i.e. that g0
opt,A(γm) solves (1.24). To see this, take g′ ∈ G

with E[g′] ≥ m = E[g0
opt,A(γm)]. Because g0

opt,A(γm) solves (A) for γm and Y ≡ 0, we then get

m− Var[g′]

γm
≤ E[g′]− Var[g′]

γm
≤ E

[
g0

opt,A(γm)
]
−

Var
[
g0

opt,A(γm)
]

γm
= m−

Var
[
g0

opt,A(γm)
]

γm
.

Since γm > 0, this implies Var[g′] ≥ Var[g0
opt,A(γm)] which shows that g0

opt,A(γm) solves (1.24).
The uniqueness of the solution to Problem (B) then follows from the uniqueness of the solution to
Problem (A). Finally, the explicit expression (1.23) is obtained by inserting (1.25) into (1.14).

The solution for (C) is derived next; the proof is symmetric to that of Proposition 1.3.6.

Proposition 1.3.7. Let Y ∈ L2 and σ2 ∈ [0,∞). If σ2 > Var[RY
mv], then Problem (C) admits a

unique solution gYopt,C(σ2) ∈ G. It is explicitly given by

gYopt,C(σ2) = gYmv + g0
opt,C

(
σ2 − Var[RY

mv]
)
, (1.26)

where g0
opt,C(v) is the solution to Problem (C) for Y ≡ 0 and constraint v, explicitly given by

g0
opt,C(v) =

√
v

Var[1− π(1)]

(
1− π(1)

)
. (1.27)

If σ2 = Var[RY
mv], then Problem (C) admits gYmv as unique solution. If σ2 < Var[RY

mv], Problem
(C) cannot be solved.

Proof. As in the proof of Proposition 1.3.4, we use (1.8) and (1.10). In view of (1.10), the last
two assertions are clear; so we focus on the case where σ2 > Var[RY

mv]. Then Problem (C) can be
reduced to the basic version

E[g] = max! over all g ∈ G such that Var[g] ≤ v, (1.28)

where v stands for σ2 − Var[RY
mv]. More precisely, if g0

opt,C(v) ∈ G denotes the solution to (1.28),
then the solution gYopt,C(σ2) ∈ G to Problem (C) in its original formulation is given by (1.26).

To solve (1.28), note that (1.19) and (1.21) with Y ≡ 0, hence RY
mv = 0, give for v > 0 that

γv = 2
√
v

E[π(1)]√
Var[1− π(1)]

∈ (0,∞) (1.29)

satisfies v = Var[R0
opt,A(γv)] = Var[g0

opt,A(γv)]. We claim that g0
opt,C(v) = g0

opt,A(γv), i.e. that
g0

opt,A(γv) solves (1.28). Indeed, for any g′ ∈ G with Var[g′] ≤ v = Var[g0
opt,A(γv)], we obtain

from the fact that g0
opt,A(γv) solves Problem (A) for γv and Y ≡ 0 that

E[g′]− v

γv
≤ E[g′]− Var[g′]

γv
≤ E

[
g0

opt,A(γv)
]
−

Var
[
g0

opt,A(γv)
]

γv
= E

[
g0

opt,A(γv)
]
− v

γv
.

This yields E[g′] ≤ E[g0
opt,A(γv)], showing that g0

opt,A(γv) solves (1.28). Uniqueness follows again
from the uniqueness of the solution to Problem (A), and the explicit expression (1.27) is obtained
by inserting (1.29) into (1.14).
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1.4 Mean-variance problems and mean-variance efficiency

Remark 1.3.8.

1. Note that the solutions to Problems (B) and (C) both satisfy their constraints with equalities,
at least in the genuinely interesting cases where µ ≥ E[RY

mv] and σ2 ≥ Var[RY
mv]. As a con-

sequence, Problems (B) and (C) could equivalently be formulated with equality constraints.
Alternatively, this could also be seen by checking directly that an element g ∈ G satisfying
the constraints with strict inequality cannot be optimal.

2. Propositions 1.3.4–1.3.7 show that the solutions to Problems (A)–(C) all have a very similar
and simple structure — they all are linear combinations of the minimum variance element
gYmv and 1−π(1). If one knows a priori the key role played by the element 1−π(1), then the
solutions to Problems (A)–(C) can be quickly derived as follows. Notice first that G = G+gYmv

since G is a linear space and gYmv ∈ G. Furthermore, the space G can be represented as

G = R
(
1− π(1)

)
⊕N , where N := {g ∈ G | E[g] = 0}. (1.30)

Indeed, this direct sum decomposition is obtained by noting that (span{1−π(1)})⊥∩G = N ,
because E[g] = E[g(1− π(1))] for g ∈ G. So we can write:

G = gYmv + G = gYmv + R(1− π(1)) +N

and hence all g ∈ G admit the decomposition:

g = gYmv + w
(
1− π(1)

)
+ n for some w ∈ R and n ∈ N .

Because Cov(RY
mv, g) = 0 for all g ∈ G by (1.9) and Cov(1−π(1), n) = E[(1−π(1))n] = 0

for all n ∈ N , we obtain for RY
mv = gYmv − Y that

E[g − Y ] = E[RY
mv] + wE[1− π(1)],

Var[g − Y ] = Var[RY
mv] + w2 Var[1− π(1)] + Var[n].

But then it is an easy exercise to check that optimising over w ∈ R and n ∈ N directly yields
the solutions to Problems (A)–(C) as given in Propositions 1.3.4–1.3.7.

The above reasoning does not yet explain how the special element 1 − π(1) comes up. For
that, note that 1 6∈ G by Assumption I and 1 6∈ G⊥ by Assumption II. So 1 − π(1) is simply
the projection of 1 on G, and (1.30) is the orthogonal decomposition of G into the span of this
element and its orthogonal complement. A similar comment appears in Remark 1.3.5.

1.4 Mean-variance problems and mean-variance efficiency

We now discuss the financial implications of the abstract results obtained in Section 1.3. In partic-
ular, we derive some properties of the solutions to Problems (A)–(D) which are abstract versions
of classical results from mean-variance portfolio selection. Consider a fixed element Y ∈ L2. In
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Chapter 1. An abstract and unifying approach to mean-variance optimization problems

order to focus on the more interesting cases, we assume throughout this section that the parameters
µ ∈ R and σ2 ∈ (0,∞) appearing in Problems (B) and (C) are such that

µ > E[RY
mv] and σ2 > Var[RY

mv].

We first make a crucial observation. As can be seen from Propositions 1.3.2–1.3.7, the solutions to
Problems (A)–(D) all have the same fundamental structure

gYopt,i = gYmv + cYopt,i

(
1− π(1)

)
for i ∈ {A,B,C,D} (1.31)

for suitable constants cYopt,i ∈ R and where gYopt,D := gY . This can be seen as an abstract gener-
alisation of the classical two-fund separation theorem. In fact, the solutions to Problems (A)–(D)
can all be decomposed into the sum of the “minimum variance payoff” gYmv and an additional term
proportional to 1 − π(1). Clearly, the latter represents the best L2-approximation in G of the con-
stant payoff 1, and only the amount invested in that depends on the problem under consideration
(and on the specific values of the parameters α, µ and σ2). Alternatively, the element 1 − π(1)

can be characterised as the unique element of G in the Riesz representation of the continuous linear
functional E[ · ] on G; in fact, E[g] = E[g(1− π(1) + π(1))] = (g, 1− π(1)) for all g ∈ G.

Using the notation RY
opt,i := gYopt,i − Y and omitting the dependence on α, µ and σ2 gives

E[RY
opt,i] = E[RY

mv] + cYopt,iE[1− π(1)], (1.32)

Var[RY
opt,i] = Var[RY

mv] + (cYopt,i)
2 Var[1− π(1)], (1.33)

where (1.33) follows from the zero-covariance property of RY
mv in (1.9). Recall also that Assump-

tion II implies E[1 − π(1)] = ‖1 − π(1)‖2
L2 > 0. Thus we can use (1.19) to solve (1.32) for

cYopt,i =
E[RYopt,i]−E[RYmv]

E[1−π(1)]
and insert this expression into (1.33) to get, for i ∈ {A,B,C,D},

Var[RY
opt,i] = Var[RY

mv] +
(
E[RY

opt,i]− E[RY
mv]
)2 E[π(1)]

E[1− π(1)]
. (1.34)

Similarly, solving for cYopt,i in (1.33) and plugging that into (1.32), we obtain

E[RY
opt,i] = E[RY

mv] +
√

Var[RY
opt,i]− Var[RY

mv]

√
E[1− π(1)]

E[π(1)]
. (1.35)

Equations (1.34) and (1.35) represent abstract versions of the classical mean-variance efficient
frontier, which provides a simple relationship between the mean (“return”) and the variance (“risk”)
of any element RY

opt,i which is an optimal outcome according to a mean-variance criterion. In
particular, (1.35) shows a linear relationship between the “excess return”, with respect to RY

mv, of a
mean-variance optimal element RY

opt,i and the square root of its “excess risk”.
The coefficients cYopt,i appearing in (1.31) also admit an interesting characterisation as “beta

factors”. To see this, notice first that the zero-covariance property of RY
mv in (1.9) yields

Cov
(
RY

opt,i, 1− π(1)
)

= Cov
(
RY

mv + cYopt,i

(
1− π(1)

)
, 1− π(1)

)
= cYopt,i Var[1− π(1)].
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1.4 Mean-variance problems and mean-variance efficiency

Because Var[1− π(1)] > 0 due to Assumption II, we thus obtain

cYopt,i =
Cov

(
RY

opt,i, 1− π(1)
)

Var[1− π(1)]
.

We have therefore proved for i ∈ {A,B,C,D} the relation

E[gYopt,i]− E[gYmv] = E[RY
opt,i]− E[RY

mv] =
Cov

(
RY

opt,i, 1− π(1)
)

Var[1− π(1)]
E[1− π(1)].

This can be regarded as an abstract version of the classical CAPM relation, with the element 1−π(1)

playing the role of a “market portfolio” or reference asset. In fact, the excess expected value (with
respect to gYmv) of the solution to any of the Problems (A)–(D) is proportional to the expected
value of the “market portfolio” 1 − π(1), with a proportionality factor having the typical structure
“β = Cov /Var”. A similar abstract CAPM relation can be found in Proposition 1.29 of Fontana
(2010b), which in turn generalises a result due to Courtault et al. (2004).

The zero-covariance property of the minimum variance element RY
mv also implies another in-

teresting relation. For any RY := g − Y with g ∈ G and all i ∈ {A,B,C,D}, we have

Cov(RY
opt,i, R

Y ) = Cov
(
RY

mv + cYopt,i

(
1− π(1)

)
, RY

mv − gYmv + g
)

= Var[RY
mv] + cYopt,i Cov

(
1− π(1), g − gYmv

)
= Var[RY

mv] + cYopt,iE[π(1)]E[g − gYmv]

= Var[RY
mv] + cYopt,iE[π(1)]

(
E[RY ]− E[RY

mv]
)
. (1.36)

Let us specialise this to the case i = B (with constraint µ), where cYopt,B = µ−E[RYmv]
E[1−π(1)]

due to (1.22)
and (1.23). We then have

Cov(RY
opt,B, R

Y ) = Var[RY
mv] +

(
µ− E[RY

mv]
)(
E[RY ]− E[RY

mv]
) E[π(1)]

E[1− π(1)]
. (1.37)

Now take any ĝ ∈ G such that R̂Y := ĝ − Y and RY
opt,B are uncorrelated. Then (1.37) yields

E[R̂Y ] = E[RY
mv]− Var[RY

mv]

µ− E[RY
mv]

E[1− π(1)]

E[π(1)]
. (1.38)

Solving (1.36) for E[RY ], plugging in (1.38), using (1.34) for i = B and again (1.38) give

E[RY ] = E[RY
mv] +

Cov(RY
opt,B, R

Y )− Var[RY
mv]

µ− E[RY
mv]

E[1− π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

µ− E[RY
mv]

E[1− π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

Var[RY
opt,B]

Var[RY
mv] + (µ− E[RY

mv])2 E[π(1)]
E[1−π(1)]

µ− E[RY
mv]

E[1− π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

Var[RY
opt,B]

(µ− E[R̂Y ])

17



Chapter 1. An abstract and unifying approach to mean-variance optimization problems

for any g ∈ G. This shows that for any fixed µ ∈ R, the expected value of an arbitrary RY := g−Y
can be written as a generalised convex combination of µ = E[RY

opt,B] = E[gYopt,B − Y ] and E[R̂Y ],
where gYopt,B is the solution to Problem (B) with constraint µ, and R̂Y = ĝ−Y is an element having
zero correlation with RY

opt,B. We emphasise that this holds for any RY := g − Y with g ∈ G. In
particular, RY need not be optimal according to any of our mean-variance criteria.

Let us now consider a related mean-variance portfolio optimisation problem, namely

Problem (SR) E[g − Y ]√
Var[g − Y ]

= max! over all g ∈ G such that Var[g − Y ] > 0.

Observe that the quantity to be maximised in Problem (SR) is an abstract counterpart of the classical
Sharpe ratio, a typical measure for the trade-off between risk and return. The solution to Problem
(SR) is given in the following result.

Proposition 1.4.1. Let Y ∈ L2 and suppose that E[RY
mv] > 0 and Var[RY

mv] > 0. Then Problem
(SR) admits a unique solution gYsr ∈ G, explicitly given by

gYsr = gYmv +
Var[RY

mv]

E[RY
mv]

1

E[π(1)]

(
1− π(1)

)
. (1.39)

Proof. Since Var[RY
mv] > 0, the same reasoning via (1.8) and (1.10) as in the proofs of Propositions

1.3.4–1.3.7 allows us to reduce Problem (SR) to the basic version

E[RY
mv] + E[g]√

Var[RY
mv] + Var[g]

= max
g∈G

! (1.40)

If we denote by g∗ ∈ G the solution to (1.40), then the solution to the original problem is gYsr =

g∗ + gYmv, where gYmv is the solution to Problem (MV). To solve (1.40), we proceed in two steps.
We first fix µ ∈ (0,∞) and want to minimise Var[g] over all g ∈ G satisfying the extra constraint
E[g] = µ. Due to Proposition 1.3.6, this problem is uniquely solved by

g0
opt,B(µ) =

µ

E[1− π(1)]

(
1− π(1)

)
,

and so we get

max
g∈G:E[g]=µ

E[RY
mv] + E[g]√

Var[RY
mv] + Var[g]

=
E[RY

mv] + µ√
Var[RY

mv] + Var
[
g0

opt,B(µ)
] =

E[RY
mv] + µ√

Var[RY
mv] + µ2 E[π(1)]

E[1−π(1)]

.

Since E[RY
mv] > 0, it can be readily checked that the last expression is maximised over µ by

µ∗ =
Var[RY

mv]

E[RY
mv]

E[1− π(1)]

E[π(1)]
=: cYsrE[1− π(1)], (1.41)

and so (1.40) is uniquely solved by g∗ = g0
opt,B(µ∗). Problem (SR) is therefore uniquely solved by

gYsr = gYmv + g0
opt,B(µ∗).
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1.4 Mean-variance problems and mean-variance efficiency

Remark 1.4.2. It can be checked that if E[RY
mv] < 0, the element gYsr ∈ G given in Proposition

1.4.1 can be characterised as the unique minimiser of the ratio E[g − Y ]/
√

Var[g − Y ].

Combining (1.31) (or Propositions 1.3.4–1.3.7) with Proposition 1.4.1 yields an alternative for-
mulation of a two-fund separation result. In fact, writing (1.31) and (1.39) via (1.41) as

gYopt,i = gYmv + cYopt,i

(
1− π(1)

)
,

gYsr = gYmv + cYsr
(
1− π(1)

)
allows us to solve for 1− π(1) and obtain, for i ∈ {A,B,C,D},

gYopt,i = gYmv +
cYopt,i

cYsr
(gYsr − gYmv) =

cYopt,i

cYsr
gYsr +

(
1−

cYopt,i

cYsr

)
gYmv.

So the solutions to Problems (A)–(D) can all be written as generalised convex combinations of gYmv

and gYsr , the solutions of minimising the variance and of maximising the Sharpe ratio for g − Y ,
respectively.

In preparation for the next section, we now specialise the abstract results from Section 1.3 to a
more concrete financial situation. We replace the abstract random variable Y ∈ L2 by

Y = −cB + (H − hB)−H0 with c, h ∈ R and H,H0 ∈ L2. (1.42)

This describes the net financial balance (outflows minus incomes) at the final time T faced by an
agent who is endowed with initial capital c at the starting time t = 0 and sells the contingent
claim H , to be paid at T , for a compensation of h, obtained at t = 0. In addition, the agent has
a position H0 (evaluated at T ), which can be interpreted as an existing book of options or as a
random endowment. We can then study what happens if the agent trades in the market by choosing
an optimal g ∈ G according to one of the mean-variance rules formalised as Problems (A)–(D). Of
course, this includes “pure investment” problems without trading the contingent claimH by simply
letting H ≡ 0 and h = 0.

For later use in solving mean-variance indifference valuation problems, we now give explicit
formulas for the optimal values of Problems (A)–(D) for the specific Y given in (1.42). Recall that
RY
x = gYx −Y and note that (1.42) yields NY = NH−NH0− (c+h)π(B). First, (1.11) and (1.12)

in Remark 1.3.3 give for the minimum variance result RY
mv the mean and variance as

µmv(c,H, h,H0) := E
[
R−cB+(H−hB)−H0

mv

]
= (c+ h)

E[π(B)]

E[π(1)]
− E[NH ]− E[NH0 ]

E[π(1)]
, (1.43)

σ2
mv(c,H, h,H0) := Var

[
R−cB+(H−hB)−H0

mv

]
= E

[(
(c+ h)π(B)−NH +NH0

)2]
−
(
(c+ h)E[π(B)]− E[NH ] + E[NH0 ]

)2

E[π(1)]
. (1.44)
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Chapter 1. An abstract and unifying approach to mean-variance optimization problems

Next, the optimal value of Problem (A) with a risk-aversion coefficient α ∈ (0,∞) is given from
(1.20) and (1.21) by

v∗(c,H, h,H0;α) := E
[
R
−cB+(H−hB)−H0

opt,A (1/α)
]
− αVar

[
R
−cB+(H−hB)−H0

opt,A (1/α)
]

= µmv(c,H, h,H0)− ασ2
mv(c,H, h,H0) +

1

4α

E[1− π(1)]

E[π(1)]
. (1.45)

The Markowitz problem (B) of minimising the variance given a constraint µ ∈ R on the mean leads
via (1.33), (1.19), (1.22) and (1.23) to the optimal variance

σ2
∗(c,H, h,H0;µ) := Var

[
R
−cB+(H−hB)−H0

opt,B (µ)
]

= σ2
mv(c,H, h,H0) +

((
µ− µmv(c,H, h,H0)

)+
)2 E[π(1)]

E[1− π(1)]
. (1.46)

Finally, the optimal mean in Problem (C), given a constraint σ2 ∈ (0,∞) on the variance with
σ2 ≥ σ2

mv(c,H, h,H0), is due to (1.32), (1.26), (1.27) and (1.19) given by

µ∗(c,H, h,H0;σ2) := E
[
R
−cB+(H−hB)−H0

opt,C (σ2)
]

= µmv(c,H, h,H0) +
√
σ2 − σ2

mv(c,H, h,H0)

√
E[1− π(1)]

E[π(1)]
. (1.47)

Remark 1.4.3. The mean-variance hedging problem for an initial capital c ∈ R and a contingent
claim H ∈ L2 is usually written as

‖H − cB − g‖L2 = min
g∈G

!

see e.g. Schweizer (1996),(2001a). In our notation, this is Problem (D) for Y := H − cB. The
corresponding minimal value is due to (1.3) given by

min
g∈G
‖H − cB − g‖L2 = ‖NH − cπ(B)‖L2 (1.48)

Instead of fixing c, we could optimise with respect to the initial capital as well and consider

‖H − cB − g‖L2 = min
(c,g)∈R×G

!

If B /∈ G so that E[Bπ(B)] 6= 0, the optimal initial capital c∗(H) ∈ R is due to (1.48) given by

c∗(H) := argmin
c∈R

{
‖NH − cπ(B)‖L2

}
=
E[NHπ(B)]

E[Bπ(B)]
=
E[Hπ(B)]

E[Bπ(B)]
=

(
dP̃

dP
,
H

B

)
, (1.49)

where P̃ denotes the so-called variance-optimal signed (G, B)-martingale measure; see Schweizer
(2001a). The value c∗(H) is also called the L2-approximation value of the payoff H .
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1.5 Mean-variance indifference valuations

1.5 Mean-variance indifference valuations

In the last section, we have introduced a financial position of the form Y = −cB+(H−hB)−H0,
where H ∈ L2 represents a contingent claim sold by our agent for a compensation h. However, h
has been considered as exogenously given. In the present section, we study how a value for h can
be determined endogenously. As an application of the mean-variance theory developed so far, we
analyse several mean-variance indifference valuation rules, i.e. we determine the value h at which
an agent is indifferent, in terms of optimal value according to a mean-variance criterion, between
the two following alternatives:

1. Sell the contingent claim H , receive the compensation h and optimise the final net position
(c+ h)B + g −H +H0 over g ∈ G.

2. Ignore the contingent claim H and just optimise the final position cB + g +H0 over g ∈ G.

In order to derive explicit results for this approach, we need some preliminaries. We first in-
troduce the set A := RB + G and its L2-closure A. Intuitively, A contains all undiscounted final
wealths generated by a trading strategy for some g ∈ G starting from some initial capital c ∈ R.
So A consists of those undiscounted payoffs which can be approximately attained in the financial
market (B,G), in the sense that they are L2-limits of a sequence of attainable final wealths. Then
we introduce

Assumption III. There exist a constant δ 6= 0 and ḡ ∈ G such that δB + ḡ = 1 P -a.s.

With the above interpretation of A, Assumption III is equivalent to saying that a riskless zero-
coupon bond can be approximately attained in the abstract financial market (B,G) (from an initial
investment of δ).

Remark 1.5.1. 1) An easy extension (taking into account both the cases B /∈ G and B ∈ G) of
the arguments used in Lemma 2 of Schweizer (2001a) allows to show that A = RB + G. Hence
Assumption III can be equivalently formulated as 1 ∈ A (or, equivalently, R ∩ A 6= {0}).

2) Due to the linearity of G, it is easy to check that Assumption III is equivalent to the condition
RB + G = R + G.

In this section, we always suppose that Assumption III is satisfied, with δ > 0 (in fact, the
case δ < 0 can be seen as a pathological arbitrage situation). This is motivated on the one hand
by the fact that it makes the theory particularly simple and elegant, as we shall see below. On the
other hand, it is also reasonable to expect that such an assumption will be satisfied in many financial
markets. One could still solve mean-variance indifference valuation problems without Assumption
III, but this would lead to more involved formulae without a clear economic interpretation. Hence
we omit the details.

It is interesting to note that Assumption III is related to the notion of no approximate profits in
L2, formally defined as the condition B /∈ G; see Schweizer (1999),(2001a).

Lemma 1.5.2. If Assumption III holds, then the conditions of “no approximate riskless profits in
L2” and “no approximate profits in L2” are equivalent, i.e. we have 1 /∈ G if and only if B /∈ G.
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Proof. This follows directly from the linearity of G, since 1 = δB + ḡ can be rewritten as B =
1
δ
(1− ḡ).

Lemma 1.5.2 implies that as soon as Assumption III is satisfied, we can equivalently work with
any of the two no-arbitrage conditions 1 /∈ G and B /∈ G. Moreover, the condition B /∈ G can be
shown to be equivalent to an abstract version of the classical law of one price; see Courtault et al.
(2004) and Fontana (2010b), Section 1.4.1. Finally, we can use Assumption III to obtain a more
detailed version of the orthogonal decomposition (1.1), as follows.

Lemma 1.5.3. Under Assumption III, the terms gY ∈ G and NY ∈ G⊥ in the decomposition (1.1)
of Y ∈ L2 can be uniquely represented as

gY = g̃Y + cY (B − π(B)) and NY = cY π(B) + LY , (1.50)

where cY = E[Y π(B)]
E[Bπ(B)]

, the element g̃Y ∈ G is the orthogonal projection in L2 of Y − cYB on G, and

LY ∈ A⊥ is given by LY = Y − cYB − g̃Y . Furthermore, we have E[LY ] = 0.

Proof. Because L2 = A⊕A⊥, any Y ∈ L2 can be uniquely decomposed as

Y = aY + LY , where aY ∈ A and LY ∈ A⊥.

Moreover, aY ∈ A = RB + G gives aY = cYB + g̃Y with cY ∈ R and g̃Y ∈ G and therefore

Y = cY (B − π(B)) + g̃Y + LY + cY π(B). (1.51)

Note that cY (B−π(B)) + g̃Y ∈ G and LY ∈ G⊥, since LY ∈ A⊥ and G ⊆ A. The assertion (1.50)
thus follows from the uniqueness of the decomposition (1.1), and we have E[LY ] = (LY , 1) = 0

since LY ∈ A⊥ and 1 ∈ A. Finally, because B = 1
δ
(1 − ḡ) is in A, LY ∈ A⊥ implies that

(LY , B) = 0. Since also LY ∈ G⊥, we get E[LY π(B)] = (LY , B) − (LY , B − π(B)) = 0 and
therefore E[Y π(B)] = cYE[Bπ(B)] due to (1.51). Because B /∈ G by Lemma 1.5.2, we have
E[Bπ(B)] > 0, and solving for cY thus completes the proof.

Remark 1.5.4. If we think of Y := H as a contingent claim, the term cH in Lemma 1.5.3 represents
in financial terms the “replication price” of the attainable part aH ∈ A of H . Moreover, cH also
coincides with the quantity c∗(H) in (1.49) because

cH =
E[Hπ(B)]

E[Bπ(B)]
=
E[NHπ(B)]

E[Bπ(B)]
= c∗(H).

Thus the constant cH can also be interpreted as the L2-approximation value of H .

Using Lemma 1.5.3, we can obtain more explicit expressions for the optimal values of our
mean-variance problems. Since Assumption III gives π(B) = π(1)

δ
and we have by (1.19) that

E[1− π(1)] = Var[π(1)]
E[π(1)]

, we can rewrite (1.43)–(1.47) by simple computations as

µmv(c,H, h,H0) =
c+ h− cH + cH0

δ
, (1.52)
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σ2
mv(c,H, h,H0) = Var[LH − LH0 ] = Var[LH ] + Var[LH0 ]− 2 Cov(LH , LH0), (1.53)

v∗(c,H, h,H0;α) =
c+ h− cH + cH0

δ
− αVar[LH − LH0 ] +

1

4α

Var[π(B)]

(E[π(B)])2
, (1.54)

σ2
∗(c,H, h,H0;µ) =

((
µ− c+ h− cH + cH0

δ

)+
)2

(E[π(B)])2

Var[π(B)]
+ Var[LH − LH0 ], (1.55)

µ∗(c,H, h,H0;σ2) =
c+ h− cH + cH0

δ
+
√
σ2 − Var[LH − LH0 ]

√
Var[π(B)]

E[π(B)]
. (1.56)

For the “pure investment case” H ≡ 0 and h = 0, this simplifies to

µmv(c, 0, 0, H0) =
c+ cH0

δ
, (1.57)

σ2
mv(c, 0, 0, H0) = Var[LH0 ], (1.58)

v∗(c, 0, 0, H0;α) =
c+ cH0

δ
− αVar[LH0 ] +

1

4α

Var[π(B)]

(E[π(B)])2
, (1.59)

σ2
∗(c, 0, 0, H0;µ) =

((
µ− c+ cH0

δ

)+
)2

(E[π(B)])2

Var[π(B)]
+ Var[LH0 ], (1.60)

µ∗(c, 0, 0, H0;σ2) =
c+ cH0

δ
+
√
σ2 − Var[LH0 ]

√
Var[π(B)]

E[π(B)]
. (1.61)

We now formally introduce the mean-variance valuation rules we analyse in this section.

Definition 1.5.5. Let c ∈ R and H,H0 ∈ L2. For a given risk-aversion coefficient α ∈ (0,∞), the
(A)-indifference value of H is defined by

hA(H; c,H0, α) := inf{h ∈ R | v∗(c,H, h,H0;α) ≥ v∗(c, 0, 0, H0;α)}. (1.62)

For µ ∈ R, the (B)-indifference value of H is defined by

hB(H; c,H0, µ) := inf{h ∈ R | σ2
∗(c,H, h,H0;µ) ≤ σ2

∗(c, 0, 0, H0;µ)}. (1.63)

For σ2 ∈ (0,∞), the (C)-indifference value of H is defined by

hC(H; c,H0, σ
2) := inf{h ∈ R | µ∗(c,H, h,H0;σ2) ≥ µ∗(c, 0, 0, H0;σ2)}. (1.64)

We use here the notation introduced in (1.45)–(1.47) and the convention inf ∅ =∞.

Remark 1.5.6.

1. We emphasise that the mean-variance indifference values introduced above should not be
regarded as market prices for the contingent claim H , since they are outcomes of subjective
valuation mechanisms.

2. As can be seen from (1.54), the function h 7→ v∗(c,H, h,H0;α) is continuous (even affine)
and strictly increasing, since δ > 0. Consequently, the (A)-indifference value hA(H; c,H0, α)

satisfies the relation

v∗
(
c,H, hA(H; c,H0, α), H0;α

)
= v∗(c, 0, 0, H0;α). (1.65)
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This means that hA(H; c,H0, α) could be defined by the implicit requirement that it makes
the agent indifferent, in terms of maximal values for Problem (A), between the two alterna-
tives of selling or not selling H , as explained at the beginning of this section. An analogous
result holds true for the (B)- and (C)-indifference values, at least in the more interesting cases
where the functions h 7→ σ2

∗(c,H, h,H0;µ) and h 7→ µ∗(c,H, h,H0;σ2) are continuous and
strictly monotonic. See the proofs of Propositions 1.5.8 and 1.5.9 for more details.

3. We have defined all our indifference values from the point of view of a seller of the contingent
claimH . One can also consider the buyer versions by simply replacingH and hwith−H and
−h, respectively, and “inf” with “sup” in the definitions. In the case of the (A)-indifference
value, we have for instance

hbuyer
A (H; c,H0, α) := sup{h ∈ R | v∗(c,−H,−h,H0;α) ≥ v∗(c, 0, 0, H0;α)}.

It is easy to check that one has between the seller and buyer versions the intuitive relation

hseller
i (H) := hi(H) = −hbuyer

i (−H) for i ∈ {A,B,C}.

4. Let us briefly consider the case where 1 /∈ G, but B ∈ G. In particular, due to Lemma
1.5.2, Assumption III cannot hold. Since B ∈ G implies that π(B) ≡ 0, (1.43)–(1.47) show
that µmv and σ2

mv and hence also the optimal values of Problems (A)–(C) do not depend on
h. In this case, the mean-variance indifference valuation problems formulated above are not
well-posed and we always have hi(H) ∈ {−∞,+∞} for any H ∈ L2 and i ∈ {A,B,C}.

We are now ready to solve the mean-variance indifference valuation problems explicitly. To
focus on the financially meaningful cases, we always impose Assumption II that 1 /∈ G⊥. With all
the work done so far, the proofs of the next three results are very simple; we just use the explicit
expressions for the optimal values of Problems (A)–(C) given in (1.52)–(1.61).

Proposition 1.5.7. Let c ∈ R and H0 ∈ L2. For any risk-aversion coefficient α ∈ (0,∞) and any
H ∈ L2, the (A)-indifference value is explicitly given by

hA(H; c,H0, α) = cH + δα
(

Var[LH ]− 2 Cov(LH , LH0)
)
,

where cH , LH and LH0 are from Lemma 1.5.3.

Proof. Use (1.62) and compare (1.54) and (1.59).

Proposition 1.5.8. Let c ∈ R and H0 ∈ L2. For µ ∈ R and H ∈ L2, the (B)-indifference value is
explicitly given by

hB(H; c,H0, µ) =

{
∞ if Var[LH − LH0 ] > σ2

∗(c, 0, 0, H0;µ),

h∗(c,H,H0;µ) if Var[LH − LH0 ] ≤ σ2
∗(c, 0, 0, H0;µ),

where

h∗(c,H,H0;µ) := (µδ − c+ cH − cH0)− δ
√
σ2
∗(c, 0, 0, H0;µ)− Var[LH − LH0 ]

√
Var[π(B)]

E[π(B)]
.
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Proof. Comparing (1.55) and (1.60) shows that we have σ2
∗(c,H, h,H0;µ) > σ2

∗(c, 0, 0, H0;µ) for
all h ∈ R if Var[LH −LH0 ] > σ2

∗(c, 0, 0, H0;µ); so (1.63) then gives hB(H; c,H0, µ) =∞. On the
other hand, if Var[LH − LH0 ] ≤ σ2

∗(c, 0, 0, H0;µ), then h∗(c,H,H0;µ) above is well defined and
due to (1.55) and (1.60) satisfies σ2

∗(c,H, h∗(c,H,H0;µ), H0;µ) = σ2
∗(c, 0, 0, H0;µ). This implies

hB(H; c,H0, µ) = h∗(c,H,H0;µ).

Proposition 1.5.9. Let c ∈ R and H0 ∈ L2. For σ2 ≥ Var[LH0 ] and H ∈ L2, the (C)-indifference
value is explicitly given by

hC(H; c,H0, σ
2) =

{
∞ if Var[LH − LH0 ] > σ2,

h∗(c,H,H0;σ2) if Var[LH − LH0 ] ≤ σ2,

where

h∗(c,H,H0;σ2) = cH − δ
(√

σ2 − Var[LH − LH0 ]−
√
σ2 − Var[LH0 ]

)√Var[π(B)]

E[π(B)]
.

Proof. Proposition 1.3.7 and (1.53) show that if σ2 < σ2
mv(c,H, h,H0) = Var[LH−LH0 ], Problem

(C) for Y = −cB + (H − hB) − H0 cannot be solved and hence hC(H; c,H0, σ
2) = ∞ by

(1.64). On the other hand, if σ2 ≥ Var[LH − LH0 ], then h∗(c,H,H0;σ2) above is well defined
and satisfies µ∗(c,H, h∗(c,H,H0;σ2), H0;σ2) = µ∗(c, 0, 0, H0;σ2) due to (1.56) and (1.61). This
implies hC(H; c,H0, σ

2) = h∗(c,H,H0;σ2).

The next result shows that in the nontrivial cases, all mean-variance indifference values share
the same fundamental structure. For ease of notation, we omit most arguments of the hi.

Corollary 1.5.10. Let c ∈ R and H0 ∈ L2. For any α ∈ (0,∞), µ > c+cH0

δ
and σ2 > Var[LH0 ]

and any H ∈ L2 such that Var[LH − LH0 ] ≤ σ2
∗(c, 0, 0, H0;µ) and Var[LH − LH0 ] ≤ σ2, we have

for some αi ∈ (0,∞) that

hi(H) = cH + δαi
(

Var[LH ]− 2 Cov(LH , LH0)
)

=: cH + %i(H) for i ∈ {A,B,C}. (1.66)

Note, however, that αi can depend on H via LH .

Proof. For i = A, this is immediate from Proposition 1.5.7 with αA := α. For i = B and i = C,
one simply checks by direct computation that (1.66) holds with

αB :=
(√

σ2
∗(c, 0, 0, H0;µ)− Var[LH0 ] +

√
σ2
∗(c, 0, 0, H0;µ)− Var[LH − LH0 ]

)−1
√

Var[π(B)]

E[π(B)]

and

αC :=
(√

σ2 − Var[LH0 ] +
√
σ2 − Var[LH − LH0 ]

)−1

√
Var[π(B)]

E[π(B)]
,

respectively.
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The representation in Corollary 1.5.10 has an interesting financial interpretation. Indeed, (1.66)
shows that all mean-variance indifference values can be written as the sum of cH and an additional
risk premium %i(H). By Remark 1.5.4, the term cH is the replication price for the attainable part
of the contingent claim H , or the L2-approximation value of H . The risk premium depends on
H only via LH , which represents the unhedgeable part of H , and it also takes into account the
covariance between LH and the unhedgeable part LH0 of the existing position H0. The indifference
value hi(H) itself is always increasing with respect to the difference Var[LH ] − 2 Cov(LH , LH0).
So an agent might be willing to pay for selling a payoff H if in his view, its unhedgeable part LH

has a diversification or insurance effect on his overall position.
In view of part 3) in Remark 1.5.6, Corollary 1.5.10 also yields an explicit expression for the

bid-ask spread sA between the seller and buyer versions of the (A)-indifference value; we have

sA(H) := hseller
A (H)− hbuyer

A (H) = hA(H) + hA(−H) = 2δαA Var[LH ].

It is interesting to observe that the bid-ask spread depends only on the risk associated to the un-
hedgeable part LH of the contingent claim H; the existing position H0 plays no role. We remark
that Var[LH ] also represents the remaining risk in the quadratic hedging problem for the claim H ,
because Lemma 1.5.3, Remark 1.5.4 and Remark 1.4.3 yield

Var[LH ] = ‖LH‖2
L2 = ‖NH − cHπ(B)‖2

L2 = ‖NH − c∗(H)π(B)‖2
L2 = min

(c,g)∈R×G
‖H − cB− g‖2

L2 .

Remark 1.5.11.

1. For i = B and i = C, the bid-ask spread si (H) has a more complicated form because then
αi (H) 6= αi (−H). We do not write out the formula, but we mention that we do obtain
αi (H) = αi (−H), and hence si (H) = 2δαi (H) Var

[
LH
]
, if we have Cov

(
LH , LH0

)
= 0.

2. It is worth pointing out that the indifference values satisfy the following very intuitive itera-
tivity property: For any H1, H2 ∈ L2 and i ∈ {A,B,C}, we have

hi(H1 +H2; c,H0) = hi(H1; c,H0) + hi
(
H2; c+ hi(H1; c,H0), H0 −H1

)
, (1.67)

at least in the nontrivial cases. This can be shown by the same arguments as in Section 5.3
of Schweizer (2001a). The reason why this holds is the description of hi via an implicit
equation as in part 2) of Remark 1.5.6; see (1.65) for the example case i = A. In financial
terms, (1.67) says that the value for selling the sum claim H1 + H2 equals the sum of the
value for first selling the claim H1 plus the value for then selling the claim H2, if we adjust
before the second sale both initial capital and initial position to take into proper account the
effect of the first sale.

3. Now consider the case where H ∈ A so that H = cHB + g̃H for some cH ∈ R and g̃H ∈ G.
Intuitively, this means that the contingent claim H is (approximately) attainable with initial
capital cH . Under the assumptions of Corollary 1.5.10, all mean-variance indifference values
then coincide with the replication price cH because LH ≡ 0. This is of course an expected
result — the value of an attainable payoff does not depend on preferences, but is determined
by arbitrage arguments alone.
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4. Suppose c ≥ 0 (and not only c ∈ R), so that the initial capital is nonnegative, and also that
Problem (B) has a constraint µ ≥ 0. Let us also restrict the definitions of all indifference
values to the interval [−c,∞) and denote by hci(H) the resulting version of hi(H), for i ∈
{A,B,C}. Intuitively, this amounts to excluding the undesirable situation where an agent is
allowed to start with c + hi(H) < 0, i.e. in a debt position. It is then easy to verify that we
have the natural relation hci(H) = max(−c, hi(H)).

1.6 Connections to the literature

As already mentioned in the introduction, mean-variance portfolio optimisation problems have
always represented a classical topic in financial economics. In the traditional and simplest formu-
lation, beginning with the seminal work of Markowitz (1952), one considers a single-period model
with a random vector in Rd representing the returns on a finite number of assets. One then derives
the mean-variance optimal strategy, represented by a deterministic vector in Rd, and the equations
describing the mean-variance efficient frontier. For standard textbook accounts, we refer the reader
to Chapter 4 of Ingersoll (1987), the book by Markowitz (1987), Chapter 3 of Huang & Litzen-
berger (1988) or Chapter 6 of Luenberger (1998). The survey by Steinbach (2001) contains a more
detailed treatment and an extensive bibliography.

In the last two decades, quadratic portfolio optimisation problems have also drawn the atten-
tion of researchers in the mathematical finance community. Typically, one considers more or less
general continuous-time semimartingale models and uses the powerful tools of stochastic calculus
to characterise the optimal strategy, which is here represented by a predictable process (satisfying
suitable technical conditions). We do not attempt here a detailed survey of the extensive relevant
literature, but only refer to Schweizer (2010). We just mention that a large body of literature on
mean-variance hedging is based on projection techniques and martingale methods; see for instance
the survey papers by Pham (2000) and Schweizer (2001b). In addition, stochastic control tech-
niques and backward stochastic differential equations have been used to solve Markowitz problems
in continuous-time models; see for instance Zhou (2003) for an overview of the Itô process case, or
Czichowsky & Schweizer (2011) for some recent results in a general semimartingale framework.
In the context of discrete-time multiperiod models, Markowitz problems and mean-variance opti-
mal strategies have been studied in Li & Ng (2000) via recursive techniques, and in Leippold et al.
(2004) by a geometric approach. Duality methods have also been employed, to obtain characterisa-
tions of mean-variance optimal strategies in terms of optimal (signed) martingale measures; see for
instance Leitner (2000), Hou & Karatzas (2004), Xia & Yan (2006) and Czichowsky & Schweizer
(2010). All these authors work in general semimartingale settings which do not assume specific
modelling structures. In that respect, and also in some of its techniques, this strand of literature is
rather close to our abstract approach.

The setup of the present paper lies in some ways on a middle ground between the classical
approach outlined in the first paragraph and the more sophisticated semimartingale models surveyed
in the second one. On the one hand, our setting is essentially a one-period model. On the other
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hand, we avoid any description of the underlying financial market because we do not model assets,
returns and strategies, but only work with the abstract space A := RB + G ⊆ L2 of attainable
final wealths. Put differently, we parametrise our variables not via strategies, but directly via the
resulting final positions. The key advantage of this approach is that it allows to describe in a simple
way the general structure of all mean-variance optimal portfolios, together with their fundamental
economic properties. Moreover, our results are by construction completely model-independent and
hence hold for any semimartingale financial model. But of course, there is also a price to pay:
We can describe the optimal wealth positions and their general properties, but we cannot give the
corresponding trading strategies — there are no strategies in our setup because these depend on the
financial market model.

In the economic literature, the introduction of Hilbert space techniques in the context of mean-
variance problems goes back to Chamberlain & Rothschild (1983) and Hansen & Richard (1987);
see also Chapters 5 and 6 of Cochrane (2005) for a textbook account. A related approach can be
found in Luenberger (2001), under the standard assumption that the market is generated by a finite
number of assets. Coming closer to our work, the abstract L2-framework adopted in this paper has
been first introduced in Schweizer (1996),(1997) and then used in several related works; see for
instance Schweizer (1999),(2001a), Møller (2001) and Sun & Wang (2005),(2006).

In comparison with the last group of papers, our results here provide two main innovations. One
is that we systematically tackle and solve a whole range of quadratic optimisation problems in a
unified way, including connections between the different problems and their solutions. The second
major point is that we systematically deal with undiscounted quantities. This contrasts with the
standard mathematical finance literature where one typically (“without loss of generality”) works
from the beginning with already discounted quantities. If we interpret B as the final value of a
savings account, discounting corresponds to letting B ≡ 1. As a consequence, several well-known
results for the discounted case (see for instance Møller (2001), Theorem 4.3) can be recovered by
just specialising our general results to the case B ≡ 1. However, using undiscounted terms seems
to us more natural from a financial economics point of view.

Earlier work on abstract financial markets with stochastic interest rates by Schweizer (2001a)
and Sun & Wang (2005),(2006) has interpreted B as the final value of a savings account and then
considered mean-variance problems in terms of B-discounted quantities, under the no-arbitrage
condition B /∈ G of no approximate profits in L2. For related work, compare also Section 3.5 in
Rheinländer (1999) and Chapter 1 in Fontana (2010b). Because we do not discount and give no
specific interpretation to B, we impose instead the no-arbitrage condition 1 /∈ G of no approximate
riskless profits in L2. As we have seen, only the latter is necessary for solving our general mean-
variance problems. Of course, the distinction only matters if B is random.

Remark 1.6.1. The issue of discounting is here actually a bit more subtle than “without loss of gen-
erality” suggests. Several papers introduce B-discounted quantities and then solve mean-variance
portfolio optimisation problems with respect to the measure PB defined by dPB

dP
:= B2

E[B2]
, instead

of the original measure P . For mean-variance hedging, this is fine because ‖ g
B
‖L2(PB), the second

moment of B-discounted gains with respect to the measure PB, corresponds (up to a normalising
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factor) to ‖g‖L2(P ). But this does not hold for the mean, since

EB

[
g

B

]
:= E

[
dPB

dP

g

B

]
= E

[
B2

E[B2]

g

B

]
=

1

E[B2]
E[Bg].

It seems not clear if this quantity has a meaningful economic interpretation under the original mea-
sure P , nor why an agent with mean-variance preferences should be interested in it. In that sense,
the approach first suggested in Schweizer (1997) and later followed by Sun & Wang (2005),(2006),
among others, is mathematically elegant but seems economically flawed. Our current approach
does not suffer from this inconsistency.

Let us briefly return to the discounted case B ≡ 1. As can be seen from Schweizer (1996),
(2001b), Pham (2000) and Møller (2001), mean-variance optimisation problems are via duality
deeply linked to the so-called variance-optimal (signed) martingale measure P̃ . In our abstract
terms, this is defined (for B ≡ 1) by dP̃

dP
:= D̃, where D̃ ∈ G⊥ denotes the element which

minimises ‖D‖L2 over all D ∈ G⊥ such that E[D] = 1. The following result is known; but
the proof we give here, and especially the insight behind it, is much more elegant than previous
ones (e.g. in Schweizer (1996)).

Corollary 1.6.2. Let B ≡ 1. If Assumption I holds, the variance-optimal (signed) martingale
measure P̃ can be uniquely characterised by

dP̃

dP
=

π(1)

E[π(1)]
.

Proof. Equivalently to the definition, D̃ minimises Var[D] over all D ∈ G⊥ such that E[D] = 1.
But this is simply a particular case of Problem (B), with Y ≡ 0 and G exchanged for G⊥. In
Proposition 1.3.6, we thus have to replace π by Id − π, hence 1 − π(1) by π(1), and so the result
follows directly from (1.23) with m = 1.

We conclude this section with a brief literature review for Section 1.5. Utility-based indifference
valuation rules were introduced in the mathematical finance literature by Hodges & Neuberger
(1989) and then studied in a variety of settings; see for instance Henderson & Hobson (2009) and
Becherer (2010) for recent overviews. However, explicit results are available only in a handful
of cases; this mainly includes exponential utility as in Becherer (2003),(2006) and mean-variance
preferences as in the present paper. More specifically, the indifference valuation rules analysed in
Section 1.5 are closely related to the utility indifference prices under mean-variance preferences
used in Mercurio (2001), Møller (2001), Schweizer (2001a), Sun & Wang (2005) and Section 1.3
of Fontana (2010b). By letting B ≡ 1 throughout Section 1.5, we easily obtain mean-variance
indifference values with respect to discounted quantities, recovering the case studied in Mercurio
(2001) and Møller (2001). In particular, if B ≡ 1, Assumption III is automatically satisfied with
δ = 1 and ḡ ≡ 0. Definition 1.5.5 is inspired by the notion of mean-variance price introduced
by Bielecki et al. (2004) in the context of credit risk modelling, and our Proposition 1.5.8 can be
regarded as a generalised and abstract counterpart to their Proposition 18.
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Chapter 2

Measure changes for reduced-form affine
credit risk models, with applications to
hybrid equity/credit risk models

2.1 Introduction

Credit risk is one of the main constituents of financial risk in general. Historically, two main
approaches to credit risk modeling have been proposed in the literature. The first one consists in the
class of structural models and goes back to the seminal work of Merton (1974). Structural models
allow for the joint modeling of equity and credit risk and lead to a clear economic explanation
of the occurrence of the default event, which happens if the assets’ value process hits a default-
triggering barrier. However, it has been amply demonstrated that structural models suffer from
severe shortcomings when they have to be applied to the valuation of default-sensitive payoffs, see
e.g. Section 9.3 of Schönbucher (2003a). In fact, the fundamental value of the assets of a firm
cannot be easily observed in general, the determination of a suitable default-triggering barrier is
rather arbitrary and, moreover, significant short-term credit spreads cannot be easily reproduced.

To overcome some of the drawbacks inherent in structural models, reduced-form (also known as
intensity-based) models have been more recently proposed. According to the reduced-form mod-
eling paradigm, the occurrence of the default event is represented by an exogenously given random
time with an intensity process and there is no attempt at explaining the precise mechanism leading
to the default event. Among reduced-form credit risk models, a typical and convenient formula-
tion consists in letting the default intensity be a linear function of an affine diffusion process, thus
giving rise to the class of reduced-form affine credit risk models, first proposed by Lando (1998),
Duffee (1999) and Duffie & Singleton (1999) (for textbook accounts, see Schönbucher (2003a),
Chapter 7, and McNeil et al. (2005), Section 9.5). The main advantage of reduced-form affine
credit risk models consists in the possibility of relying on the well-known and powerful machinery
of affine processes, originally introduced in the context of interest rate term-structure modeling, for
the purpose of evaluating default-sensitive quantities.
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In the context of credit risk modeling, the two most basic tasks consist in the computation of
default/survival probabilities and in the arbitrage-free valuation of credit-risky financial derivatives.
In fact, on the one hand, the knowledge of the survival probability of a given firm up to some time
horizon is of fundamental importance for risk management purposes, e.g. for the computation of
Value-at-Risk and other risk measures. On the other hand, the increasing number of credit deriva-
tives traded in modern financial markets requires the development of reliable pricing techniques.
At this point, a rather delicate issue arises. In fact, survival probabilities and related quantities need
to be computed with respect to the physical/real-world probability measure, while arbitrage-free
prices of financial products are expressed with respect to some risk-neutral probability measure.
Thus, in order to cover both risk-management as well as pricing applications, one needs to jointly
consider the physical and the risk-neutral probability measures, thereby requiring a precise knowl-
edge of the corresponding Radon-Nikodym density process. Furthermore, the underlying structure
of the model can be profoundly altered by a change of the reference probability measure and, there-
fore, special care must be taken in order not to destroy the nice features of the model if one aims at
preserving a sufficient analytical tractability of the latter.

We provide a complete characterization of the family of all locally equivalent probability mea-
sures which preserve the affine structure of a reduced-form credit risk model. More precisely, we
formulate necessary and sufficient conditions on the density process ensuring that the default time
is a doubly stochastic random time with respect to both probability measures and the diffusion pro-
cess driving the default intensity maintains its affine structure under both probability measures. It
turns out that these questions are also related to the preservation of the so-called immersion property
under a change of measure, i.e. the preservation of the property that any martingale with respect
to the original filtration F is also a martingale in the filtration G ⊇ F obtained as the progressive
enlargement of F with respect to the default time. In a general semimartingale (default-free) set-
ting, sufficient conditions for the preservation of the affine structure under a change of measure
have been recently obtained by Kallsen & Muhle-Karbe (2010). However, in the case of an affine
diffusion framework, our results allow to consider more general density processes for the change
of measure. In the special default-free case, our density process specifications correspond to those
studied by Cheridito et al. (2007) in the context of term-structure modeling. In turn, our results are
also related to the question of whether a positive exponential local martingale is a true martingale
and, hence, can be used as the density process for an equivalent change of measure. This represents
a classical issue in stochastic calculus (see e.g. Protter (2005), Section III.8, and Revuz & Yor
(1999), Chapter VIII) which has also attracted new interest in recent years, especially in view of its
applications in mathematical finance, see e.g. Kallsen & Shiryaev (2002), Cheridito et al. (2005),
Protter & Shimbo (2008), Blei & Engelbert (2009), Kallsen & Muhle-Karbe (2010), Mijatović &
Urusov (2010a) and Mayerhofer et al. (2011).

As an application of our general results on measure changes for reduced-form affine credit risk
models, we consider hybrid equity/credit risk models, i.e. models that allow for a unified treatment
of market and default risk. In the last years, researchers in financial mathematics have been paying
increasing attention to hybrid equity/credit models. In particular, one of the most appealing features
of such models is represented by their capability of linking the stochastic behavior of the stock price
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(and/or of its volatility) with the random occurrence of the default event and, as a consequence, with
the level of credit spreads. There is strong empirical evidence showing that equity and credit risk are
deeply related and, moreover, several studies also document significant relationships between stock
price volatility and typical measures of default risk such as credit spreads of corporate bonds and
spreads of Credit Default Swaps (CDS). For an overview of the related literature we refer the reader
to the introductory section of Carr & Linetsky (2006) (see also Section 2.5.5 for more references to
the literature). Furthermore, phenomena such as the leverage effect, volatility smiles and volatility
skews are nowadays widely acknowledged in the literature dealing with equity risk modeling: see
for instance Gatheral (2006) for a general account.

We shall first consider a rather simple model, which extends the classical Heston (1993) stochas-
tic volatility model by introducing a jump-to-default which kills the stock price process as soon as
the default event occurs, as in Carr & Schoutens (2008). By specializing our general results on
the preservation of the affine structure of the model under a change of measure, we are able to
provide in a simple way a complete characterization of the family of all Equivalent Local Martin-
gale Measures (ELMMs) which preserve the Heston with jump-to-default structure of the model.
Furthermore, we also show that, under any ELMM, the discounted defaultable stock price process
is a true martingale and not only a local martingale. Of course, these results also cover the classi-
cal default-free Heston (1993) stochastic volatility model. This allows us to immediately obtain a
significant extension of the results of Wong & Heyde (2006) on equivalent changes of measure in
stochastic volatility models.

Extending the Heston with jump-to-default model, we propose a general framework for the
joint modeling of equity and credit risk which allows for a flexible modeling of the interdepen-
dences between stock price, stochastic volatility and default intensity, thus being consistent with
several empirical observations. At the same time, this framework preserves a remarkable analyti-
cal tractability, since it relies on the technology of affine processes. More specifically, we jointly
model the logarithm of the pre-default stock price, its volatility and an additional factor process
via a multivariate affine process. The random default time is modeled as the first jump time of a
Poisson process with stochastic intensity, the latter being given by an affine function of the volatil-
ity and of the factor process. We also specify the interest rate as an affine function of the joint
vector affine process. This framework nests several stochastic volatility models which have been
proposed in the literature and extends their analysis to a defaultable setting. The stochastic factors
themselves allow for a very general economic interpretation as macroeconomic, idiosyncratic and
also latent factors. The affine structure of the model allows us to obtain an explicit expression
for the conditional characteristic function of the joint factor process, under both the physical and
the risk-neutral probability measure. Furthermore, we are able to explicitly derive the conditional
characteristic function of the joint factor process with respect to suitable survival measures, which
turn out to be useful for the valuation of default-sensitive payoffs. We will also briefly consider the
incomplete information case, i.e. the case where some of the components of the joint factor process
cannot be perfectly observed. This situation is of particular interest, since it allows us to capture
unmeasurable variables and unobservable frailty effects driving the default intensity, as in Fontana
& Runggaldier (2010) and Fontana (2010a). A side advantage of such an incomplete information
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framework is that we can also let the stochastic volatility be an unobservable process. On the basis
of noisy observations of market data, we then set up a state-observation system from which one can
formulate a filtering problem.

This Chapter is structured as follows. Section 2.2 describes the general setup of a reduced-form
credit risk model based on an affine diffusion process which drives the default intensity. Section
2.3 contains our main theoretical results and provides necessary and sufficient conditions for the
preservation of the affine structure of an intensity-based default risk model with respect to a locally
equivalent change of the reference probability measure. In Section 2.4 and 2.5, we consider two
applications of the results of Section 2.3. More precisely, Section 2.4 deals with the Heston (1993)
stochastic volatility model, both in its typical default-free formulation as well as in a jump-to-
default extended version, and gives a complete characterization of the family of all risk-neutral
measures which preserve the structure of the model, thus sharpening the results of Wong & Heyde
(2006). Section 2.5 generalizes the Heston with jump-to-default model to a multifactor framework,
thus allowing the stock price, its volatility, the interest rate and the default intensity to depend
on a stochastic factor process. By relying on the affine technology and on the general results of
Section 2.3, we are able to compute several quantities of interest for both risk management as well
as pricing applications. Finally, Section 2.6 concludes by pointing out some further developments
which are currently under investigation.

2.2 General setup and preliminaries

This Section describes the key mathematical features of a general reduced-form credit risk model.
The basic framework we are going to introduce is characterized by a random time τ , which models
the random occurrence of a credit event (for instance, the default of a firm), and by a multivariate
affine diffusion process, which represents the stochastic evolution of the market situation. As usual
in the context of interest rate and credit risk modeling via affine processes, we shall restrict some of
the components of the multivariate affine process to be strictly positive. We postpone to Sections
2.4 and 2.5 all pertinent economic considerations and applications to specific financial models.

Let (Ω,G, P ) be the reference probability space, with P denoting the physical/real-world prob-
ability measure. Let W = (Wt)t≥0 be a d-dimensional Brownian motion on (Ω,G, P ), with d ∈ N,
and denote by F = (Ft)t≥0 the right-continuous P -augmented natural filtration of W . To allow
for greater generality, we consider an infinite time horizon1. On the filtered probability space
(Ω,G,F, P ), let us consider the following SDE:

dXt = µ (Xt) dt+ σ (Xt) dWt X0 = x̄ ∈ Rd (2.1)

where µ : Rd → Rd and σ : Rd → Rd×d are measurable continuous functions such that:

µ (x) = b+ Ax and σ (x)σ (x)′ = Σ0 +
d∑
i=1

Σixi (2.2)

1Clearly, one can deal with a finite time horizon T ∈ (0,∞) by simply considering the relevant processes stopped
at the fixed time T .
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for b ∈ Rd and A,Σ0,Σ1, . . . ,Σd ∈ Rd×d and where the superscript ′ denotes transposition. Hence-
forth, we call affine SDE an SDE of the type (2.1), with parameters µ and σ satisfying (2.2).

Remark 2.2.1 (Notation). Throughout this Chapter, we shall often deal with more than one proba-
bility measure defined on the same measurable space (Ω,G). Hence, in order to distinguish expec-
tations with respect to different measures, we shall denote by E [·] the expectation with respect to
the original probability measure P and by EQ [·] the expectation with respect to any other probabil-
ity measure Q on (Ω,G). Analogously, W denotes the Brownian motion with respect to P , while
WQ denotes a Brownian motion with respect to any other probability measure Q on (Ω,G).

For the time being, we can think of the process X = (Xt)t≥0 as an abstract factor process
(financial applications will be considered in detail in Sections 2.4 and 2.5). For a fixed m ∈
{1, . . . , d}, we restrict our attention to solutions to the SDE (2.1) taking values in the canonical
state space Rm

++ × Rd−m, where Rm
++ := {x ∈ Rm : xi > 0, ∀ i = 1, . . . ,m}. In order to ensure

existence and uniqueness of a strong solution to the SDE (2.1) on the canonical state space Rm
++ ×

Rd−m, let us introduce the following set of conditions.

Condition A.

(i) Aij = 0, for i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , d}, and Aij ≥ 0, for i, j ∈ {1, . . . ,m}
with i 6= j;

(ii) Σi = 0 ∈ Rd×d, for i ∈ {m+ 1, . . . , d}, and Σ0,Σ1, . . . ,Σm are symmetric positive semi-
definite, with Σi positive definite for at least one i ∈ {0, 1, . . . ,m};

(iii) σij (x) = δij
√

Σii
i x

i, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , d}, where δij = 1 if i = j and 0

otherwise;

(iv) bi ≥ 1
2
Σii
i , for i ∈ {1, . . . ,m}.

Proposition 2.2.2. Suppose that Condition (A) holds. Then, for any x̄ ∈ Rm
++ × Rd−m, there

exists an unique strong solution X = (Xt)t≥0 on (Ω,G,F, P ) to the SDE (2.1), taking values in
Rm

++×Rd−m and with X0 = x̄. Furthermore, 0 is an entrance boundary (that is, never hit) for X i,
for all i ∈ {1, . . . ,m}, and the matrix σ (Xt) is P -a.s. non-singular, for all t ≥ 0.

Proof. The first assertion can be proved as in Lemma 10.6 of Filipović (2009), since (X1, . . . , Xm)
′

satisfies an autonomous square-root SDE. The fact that 0 is an entrance boundary for X i, for all
i ∈ {1, . . . ,m}, follows from Duffie & Kan (1996), due to part (iv) of Condition A. Due to part (ii)
of Condition A, this also implies that the matrix σ (Xt) is P -a.s. non-singular for all t ≥ 0.

Let us now denote by τ the random default time2, with τ > 0 P -a.s. We assume that τ is a
doubly stochastic random time with respect to (P,F), in the sense of Definition 9.11 of McNeil et

2We want to point out that, for the time being, the random time τ does not need to be necessarily linked to the
random occurrence of a default event. Indeed, the theoretical results of Sections 2.2-2.3 hold true for any doubly
stochastic random time τ .
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Chapter 2. Measure changes for reduced-form affine credit risk models

al. (2005). This means that there exists a P -a.s. strictly positive F-adapted process λP =
(
λPt
)
t≥0

such that:
P (τ > t|F∞) = P (τ > t|Ft) = e−

∫ t
0 λ

P
u du for all t ≥ 0 (2.3)

with
∫ t

0
λPu du < ∞ P -a.s. for all t ≥ 0. In particular, this implies that the random default

time τ is not an F-stopping time. We call the process λP the P -intensity of τ , thus empha-
sizing the role of the reference probability measure P . Equivalently, according to the termi-
nology adopted in Bielecki & Rutkowski (2002) and Coculescu & Nikeghbali (2010), the pro-
cess

∫ ·
0
λPu du =

(∫ t
0
λPu du

)
t≥0

=
(
− logP (τ > t|Ft)

)
t≥0

represents the P -hazard process of the
random time τ . Let us now introduce the enlarged filtration G = (Gt)t≥0, formally defined as
Gt := G0

t+, for all t ≥ 0, where G0
t := Ft ∨ σ {τ ∧ t}. It is well-known that G is the smallest filtra-

tion satisfying the usual conditions which makes τ a stopping time and contains F, i.e. Ft ⊆ Gt for
all t ≥ 0 (see e.g. Protter (2005), Section VI.3). We assume that G = G∞ =

∨
t≥0 Gt and we denote

by H = (Ht)t≥0 the default indicator process, defined as Ht := 1{τ≤t} for t ≥ 0. We summarize in
the following Lemma two key properties of doubly stochastic random times.

Lemma 2.2.3. Let τ be a doubly stochastic random time with respect to (P,F) with P -intensity
process λP =

(
λPt
)
t≥0

. Then the following hold:

(a) the process MP =
(
MP

t

)
t≥0

, defined by:

MP
t := Ht −

∫ t∧τ

0

λPu du t ≥ 0 (2.4)

is a (P,G)-martingale;

(b) every (P,F)-martingale is also a (P,G)-martingale.

Proof. Part (a) follows from Proposition 9.15 of McNeil et al. (2005). Due to the first equality in
(2.3), part (b) follows from Lemma 5.9.4.2 of Jeanblanc et al. (2009).

Remark 2.2.4.

1. The (P,F)-martingale hazard process of a random time τ is formally defined as an F-
predictable right-continuous increasing process L = (Lt)t≥0 such that H − Lτ is a (P,G)-
martingale, where Lτ denotes the process L stopped at τ . Hence, part (a) of Lemma 2.2.3
shows that the P -hazard process

∫ ·
0
λPu du represents also the (P,F)-martingale hazard pro-

cess of τ . See also Bielecki & Rutkowski (2002) and Coculescu & Nikeghbali (2010).

2. Part (b) of Lemma 2.2.3 asserts that, under the probability measure P , the so-called im-
mersion property (also known as martingale invariance property, see Bielecki & Rutkowski
(2002), Section 6.1.1) holds between the filtrations F and G. It is easy to show that this prop-
erty can be equivalently formulated as follows: every (P,F)-local martingale is a (P,G)-local
martingale. Furthermore, the immersion property between the filtrations F and G holds if and
only if P (τ ≤ t|F∞) = P (τ ≤ t|Ft) for all t ≥ 0 (see e.g. Jeanblanc et al. (2009), Lemma
5.9.4.2).
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The diffusion process X and the random default time τ represent the two fundamental ingredi-
ents of a general reduced-form (or intensity-based) model, where the default intensity is driven by
the factor processX . As explained in the Introduction, a convenient specification consists in letting
the default intensity be given as a linear function of Xt. We formalize this modeling approach in
the following Definition.

Definition 2.2.5. Let Q be a probability measure on (Ω,G). We say that the pair (X, τ) has an
affine structure with respect to Q if the following hold:

(i) the processX = (Xt)t≥0 satisfies an affine SDE of the type (2.1) on (Ω,G,F, Q), with respect
to a (Q,F)-Brownian motion WQ and with parameters satisfying Condition A;

(ii) the random default time τ is a doubly stochastic random time with respect to (Q,F) and
admits a Q-intensity process λQ =

(
λQt
)
t≥0

with the following affine structure:

λQt = λ̄Q +
(
ΛQ
)′
Xt for all t ≥ 0 (2.5)

for λ̄Q∈R+ and ΛQ∈Rd
+ with ΛQ,i = 0 for all i∈{m+ 1, . . . , d} and λ̄Q +

∑m
i=1 ΛQ,i > 0.

2.3 The affine structure under a change of measure

This Section studies the effects of a locally equivalent change of measure on the affine structure
of a general reduced-form credit risk model. Financial applications will be considered in Sections
2.4 and 2.5. In this Section, we shall always work under the standing assumption that (X, τ) has
an affine structure with respect to the original probability measure P , in the sense of Definition
2.2.5. Our main goal consists in characterizing the family of all probability measures Q on (Ω,G)

locally equivalent to P which preserve the affine structure of (X, τ). Recall that, according to
Definition III.3.2 of Jacod & Shiryaev (2003), a probability measure Q on (Ω,G) is said to be
locally equivalent to P if Q|Gt ∼ P |Gt for all t ≥ 0, where Q|Gt and P |Gt denote the restrictions of
Q and P , respectively, to the σ-field Gt.

Definition 2.3.1. Suppose that (X, τ) has an affine structure with respect to P . Let Q be a proba-
bility measure on (Ω,G) such that Q loc∼ P . We say that Q preserves the affine structure of (X, τ) if
(X, τ) has an affine structure with respect to Q as well.

Let Q be a probability measure on (Ω,G) locally equivalent to P , i.e. Q loc∼ P . Due to Theorem
III.3.4 of Jacod & Shiryaev (2003), there exists an unique (P,G)-martingale ZQ,G =

(
ZQ,G
t

)
t≥0

such that ZQ,G
t =

dQ|Gt
dP |Gt

for all t ≥ 0. Furthermore, since the filtration G satisfies the usual con-
ditions, there is no loss of generality in assuming that ZQ,G is right-continuous. We call ZQ,G the
density process of the measure Q with respect to (P,G). However, note that Q loc∼ P does not
necessarily imply that Q ∼ P on G = G∞ and, equivalently, the (P,G)-martingale ZQ,G may fail
to be uniformly integrable.
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Chapter 2. Measure changes for reduced-form affine credit risk models

Lemma 2.3.2. Let Q loc∼ P . Then the following hold:

P
(
ZQ,G
t > 0 and ZQ,G

t− > 0 for all t > 0
)

= Q
(
ZQ,G
t > 0 and ZQ,G

t− > 0 for all t > 0
)

= 1

Proof. Define the increasing sequence (Tn)n∈N of G-stopping times by Tn:=inf
{
t > 0:ZQ,G

t <1/n
}

,
for n ∈ N, and let T := inf

{
t > 0 : ZQ,G

t = 0 or ZQ,G
t− = 0

}
= lim

n→∞
Tn. Part (ii) of Theorem

III.3.4 of Jacod & Shiryaev (2003) implies that, for all n ∈ N, we have Q|GTn ∼ P |GTn on the set

{Tn <∞}, with ZQ,G
Tn

=
dQ|GTn
dP |GTn

. Due to the right-continuity of ZQ,G, we have then, for all n ∈ N
and t > 0:

Q (T ≤ t) ≤ Q (Tn ≤ t) = E
[
ZQ,G
Tn

1{Tn≤t}

]
≤ 1

n

Taking the limit for n → ∞ we get Q (T ≤ t) = 0 for all t > 0. Noting that {T ≤ t} ∈ Gt for
all t > 0, being T a G-stopping time (see e.g. Ethier & Kurtz (1986), Proposition 1.1.2), and that
Q|Gt ∼ P |Gt for all t > 0, this also implies that P (T ≤ t) = 0 for all t > 0, thus proving the
claim.

For any probability measure Q on (Ω,G) with Q loc∼ P , the following Lemma gives a general
representation of the density process ZQ,G with respect to (P,G). A similar result can also be found
in Kusuoka (1999).

Lemma 2.3.3. LetQ loc∼ P . Then the density process ZQ,G =
(
ZQ,G
t

)
t≥0

ofQ with respect to (P,G)

can be represented as follows, for all t ≥ 0:

ZQ,G
t = E

(∫
θ′dW +

∫
γ dMP

)
t

= exp

(
d∑
i=1

∫ t

0

θiu dW
i
u −

1

2

d∑
i=1

∫ t

0

(
θiu
)2
du−

∫ τ∧t

0

γuλ
P
u du

)(
1 + γτHt

) (2.6)

where E (·) denotes the stochastic exponential and MP is the (P,G)-martingale defined in (2.4)
and where θ = (θt)t≥0 is an Rd-valued G-predictable process such that

∫ t
0
‖θu‖2 du < ∞ P -a.s.

for all t ≥ 0, i.e. θ ∈ L2
loc (W ), and γ = (γt)t≥0 is a real-valued G-predictable process such that

γt > −1 and
∫ t

0
|γu|λPu du <∞ P -a.s. for all t ≥ 0.

Proof. Let Q loc∼ P and let ZQ,G be its density process with respect to (P,G). Lemma 2.3.2 shows
that ZQ,G

− > 0 P -a.s. Furthermore, being G-adapted and left-continuous, the process ZQ,G
− is also

predictable and locally bounded with respect to the filtration G. Hence, due to Theorem IV.29
of Protter (2005), the stochastic integral process LQ,G :=

∫ (
ZQ,G
−
)−1

dZQ,G is well-defined as a
(P,G)-local martingale with LQ,G0 = 0. It is well-known (see e.g. Runggaldier (2003), Theorem
2.3, and Jeanblanc et al. (2009), Proposition 8.8.6.1) that

(
W,MP

)
has the representation property

with respect to (P,G), in the sense that any (P,G)-local martingale can be written as a stochastic
integral of

(
W,MP

)
. This implies that we can represent LQ,G as follows:

LQ,G =

∫
θ′dW +

∫
γ dMP
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for some Rd-valued G-predictable process θ = (θt)t≥0 belonging to L2
loc (W ) and some real-valued

G-predictable process γ = (γt)t≥0 such that
∫ t

0
|γu|λPu du < ∞ P -a.s. for all t ≥ 0. Since

ZQ,G = 1 +
∫
ZQ,G
− dLQ,G, the process ZQ,G can be represented as ZQ,G = E

(
LQ,G

)
, thus showing

the first equality in (2.6). The explicit expression in second line of (2.6) follows from Theorem
II.37 of Protter (2005). Finally, Lemma 2.3.2 shows that ZQ,G > 0 P -a.s. and thus, due to (2.6),
we have γt > −1 P -a.s. for all t ≥ 0.

Remark 2.3.4. Note that part (b) of Lemma 2.2.3 implies that the (P,F)-Brownian motion W is
also a continuous (P,G)-martingale and, due to Lévy’s characterization of Brownian motion (see
e.g. Protter (2005), Theorem II.39), also a (P,G)-Brownian motion. Furthermore, the (P,G)-
martingales W and MP are orthogonal. In fact, we have

[
W,MP

]
= 〈W,MP 〉 ≡ 0, since W is

continuous and MP is a pure jump process. Due to Yor’s formula (see Protter (2005), Theorem
II.38), equation (2.6) can then be rewritten as follows, for all t ≥ 0:

ZQ,G
t = E

(∫
θ′dW

)
t

E
(∫

γ dMP

)
t

(2.7)

The goal of the remaining part of this Section is to show that a probability measure Q on (Ω,G)

with Q loc∼ P preserves the affine structure of (X, τ) if and only if the processes θ and γ appearing
in the representation (2.6) of its density process ZQ,G satisfy the following Condition.

Condition B.

(i) The Rd-valued process θ = (θt)t≥0 has the following form, for all t ≥ 0:

θt = θ (Xt) := σ (Xt)
−1 (θ̂ + ΘXt

)
(2.8)

for some θ̂ ∈ Rd such that θ̂i ≥ 1
2
Σii
i − bi, for all i ∈ {1, . . . ,m}, and for some Θ ∈ Rd×d

such that Θij = 0 for all i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , d}, and Θij ≥ −Aij for all
i, j ∈ {1, . . . ,m} with i 6= j;

(ii) the real-valued process γ = (γt)t≥0 has the following form, for all t ≥ 0:

γt = γ (Xt) :=

(
λ̄Q − λ̄P

)
+
(
ΛQ − ΛP

)′
Xt

λ̄P + (ΛP )′Xt

(2.9)

for some λ̄Q ∈ R+ and ΛQ ∈ Rd
+ with ΛQ,i = 0 for all i ∈ {m+ 1, . . . , d} and λ̄Q +∑m

i=1 ΛQ,i > 0.

Note that, if (X, τ) has an affine structure with respect to P , in the sense of Definition 2.2.5, the
left-hand sides of (2.8) and (2.9) are well-defined, since the matrix σ (Xt) is P -a.s. invertible for
all t ≥ 0 and Xt ∈ Rm

++ × Rd−m for all t ≥ 0 (see Proposition 2.2.2). Furthermore, observe that
Condition B implies that the processes θ = (θt)t≥0 and γ = (γt)t≥0 are F-adapted. As in Section 3
of Björk et al. (1997), let us introduce the following simplifying Assumption.
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Assumption 2.3.5. For any non-negative (P,G)-martingale Z = (Zt)t≥0 with Z0 = 1 there exists

a probability measure Q on (Ω,G) such that Zt =
dQ|Gt
dP |Gt

for all t ≥ 0.

Remark 2.3.6. Let us briefly comment on Assumption 2.3.5. Suppose that Z = (Zt)t≥0 is a
non-negative (P,G)-martingale with Z0 = 1. Then, for any T ≥ 0, we can define a probability
measure QT � P on (Ω,G) by letting dQT

dP
:= ZT . Furthermore, the family

(
QT
)
T≥0

has the
following consistency property: for all 0 ≤ S ≤ T , the restriction QT |GS of QT to the σ-field GS
coincides with QS on (Ω,GS). However, nothing ensures that there exists a probability measure Q
on (Ω,G) such that, for every T ≥ 0, its restrictionQ|GT coincides withQT on (Ω,GT ), sinceZ may
fail to be uniformly integrable. Assumption 2.3.5 is meant to avoid this awkward situation. One
can formulate precise technical conditions on the reference filtered probability space (Ω,G,G, P )

which ensure that Assumption 2.3.5 is satisfied. For instance, Assumption 2.3.5 is satisfied if one
works on the Skorohod canonical space D of all càdlàg functions (see Jacod & Shiryaev (2003),
Section VI.1), equipped with the natural filtration (D0

t )t≥0 generated by the coordinate process:
see Proposition 3.9.17 of Bichteler (2002). We warn the reader that there is a potential conflict
between imposing the usual conditions on the reference filtered probability space (Ω,G,G, P ) and
Assumption 2.3.5. A possible way out of this problem consists in replacing the condition of P -
completion of the filtration G with the slightly weaker assumption that, for all t ≥ 0, the σ-field Gt
contains all countable unions of P -null-sets of

⋃
t≥0 Gt together with their subsets. For more details,

we refer the interested reader to Bichteler (2002) and to the recent paper Najnudel & Nikeghbali
(2011). Finally, note also that it may well be thatQ is not equivalent (or even absolutely continuous)
with respect to P on (Ω,G), even if its restriction Q|GT coincides with QT on (Ω,GT ), for every
T ≥ 0.

Theorem 2.3.7. Let θ and γ be two processes satisfying Condition B. Then the process Z = (Zt)t≥0

defined as Z := E
(∫

θ′dW +
∫
γ dMP

)
is a P -a.s. strictly positive (P,G)-martingale. If Assump-

tion 2.3.5 holds, then Z is the density process with respect to (P,G) of a probability measure Q on
(Ω,G) such that Q loc∼ P and the following two properties hold:

(a) the process X satisfies on (Ω,G,F, Q) an affine SDE of the type (2.1), with parameters sat-
isfying Condition A and state space Rm

++ × Rd−m;

(b) the (Q,F)-martingale hazard process of the random default time τ is given by
∫ ·

0
λQu du, where

λQt := λ̄Q +
(
ΛQ
)′
Xt for all t ≥ 0.

Proof. Suppose that we are given two processes θ = (θt)t≥0 and γ = (γt)t≥0 satisfying Condition
B. Since X is a continuous F-adapted process, θ and γ are continuous and F-adapted as well
and, hence, also predictable and locally bounded with respect to the filtration F. Since F ⊆ G,
the same holds true for the enlarged filtration G. Note also that, as explained in Remark 2.3.4,
the (P,F)-Brownian motion W is also a (P,G)-Brownian motion. These observations, together
with Theorem IV.29 of Protter (2005), imply that the stochastic integrals

∫
θ′dW and

∫
γ dMP are

well-defined as (P,G)-local martingales. It follows that the process Z := E
(∫

θ′dW +
∫
γ dMP

)
is also a (P,G)-local martingale. Furthermore, since γt > −1 P -a.s. for all t ≥ 0, we have
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2.3 The affine structure under a change of measure

Zt = Zt− + ∆Zt = Zt− (1 + γτHt) > 0 P -a.s. for all t ≥ 0. Fatou’s lemma implies that Z is also
a (P,G)-supermartingale, being a positive (P,G)-local martingale.

We now show that Z = (Zt)t≥0 is a true (P,G)-martingale, extending to the present context
some of the arguments used in the proof of Theorem 1 of Cheridito et al. (2007) (see also Cheridito
et al. (2005), Section 4). Let us first introduce the following notation:

AQ := A+ Θ and bQ := b+ θ̂ (2.10)

and consider the following SDE on the filtered probability space (Ω,G,F, P ):

dX̃t =
(
bQ + AQX̃t

)
dt+ σ

(
X̃t

)
dWt X̃0 = x̄ ∈ Rm

++ × Rd−m (2.11)

Since θ and γ satisfy Condition B, it is easy to check that the pair
(
AQ, bQ

)
satisfies items (i) and

(iv) of Condition A. Hence, Proposition 2.2.2 implies that there exists an unique strong solution
X̃ =

(
X̃t

)
t≥0

to (2.11) on (Ω,G,F, P ) taking values in Rm
++ × Rd−m. This also implies that the

processes θ̃ =
(
θ̃t
)
t≥0

and γ̃ =
(
γ̃t
)
t≥0

defined as θ̃t := θ
(
X̃t

)
and γ̃t := γ

(
X̃t

)
for all t ≥ 0, with

the functions θ (·) and γ (·) being given in (2.8)-(2.9), are well-defined. Fix now some T ∈ (0,∞)

and define the sequences (τn)n∈N and (τ̃n)n∈N of F-stopping times as follows:

τn := inf

{
t > 0 : ‖θt‖ ≥ n or γt /∈

( 1

n
− 1, n

)}
∧ T

τ̃n := inf

{
t > 0 :

∥∥θ̃t∥∥ ≥ n or γ̃t /∈
( 1

n
− 1, n

)}
∧ T

Since the processes θ, γ and θ̃, γ̃ are P -a.s. finite-valued and 0 is an unattainable boundary for X i

and X̃ i, for all i ∈ {1, . . . ,m} (and, hence, −1 is an unattainable boundary for γ and γ̃), it is clear
that both (τn)n∈N and (τ̃n)n∈N increase P -a.s. to T as n → ∞. For each n ∈ N, define now the
stopped processes θn := θ1 ]]0,τn]] and γn := γ1 ]]0,τn]] and the process Zn = (Zn

t )0≤t≤T as follows:

Zn := E
(∫

θn ′dW +

∫
γn dMP

)
Due to the definition of θn and γn it is easy to see that:

E

[
exp

(
1

2

∫ T

0

‖θnu‖
2 du

)
(1 + γnτHt) exp

(
− γnτHt

1 + γnτ

)]
≤ (1 + n) exp

(
n− 1 +

n2 T

2

)
<∞

For each n ∈ N, the results of Lepingle & Mémin (1978) imply that Zn is a P -a.s. strictly positive
uniformly integrable (P,G)-martingale. Hence, we can define a probability measure Qn on (Ω,G)

by letting Zn
T =: dQn

dP
. Due to Girsanov’s theorem (see e.g. Protter (2005), Theorem III.40), the

Rd-valued process WQn =
(
WQn

t

)
0≤t≤T defined as:

WQn

t := Wt −
∫ t

0

1

Zn
u−
d〈Zn,W 〉u = Wt −

〈∫
θn ′dW +

∫
γn dMP ,W

〉
t

= Wt −
∫ t

0

θnudu
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is a (Qn,G)-Brownian motion, for every n ∈ N. As a consequence, for all t ≥ 0, we can write as
follows:

Xτn
t = x̄+

∫ t∧τn

0

(
b+ AXτn

u

)
du+

∫ t∧τn

0

σ (Xτn
u ) dWu

= x̄+

∫ t∧τn

0

(
b+ AXτn

u + σ (Xτn
u ) θnu

)
du+

∫ t∧τn

0

σ (Xτn
u ) (dWu − θnudu)

= x̄+

∫ t∧τn

0

(
bQ + AQXτn

u

)
du+

∫ t∧τn

0

σ (Xτn
u ) dWQn

u

(2.12)

Recall now that, due to Proposition 2.2.2, there exists an unique strong solution X̃ to the SDE
(2.11). Due to Theorem 5.3.6 of Ethier & Kurtz (1986), existence of a unique strong solution
implies uniqueness in law for the solution to the SDE (2.11) and, furthermore, due to Corollary
5.3.4 of Ethier & Kurtz (1986), uniqueness in law is equivalent to the uniqueness of the solution
to the corresponding martingale problem. This shows that, according to the terminology of Ethier
& Kurtz (1986), the martingale problem corresponding to the SDE (2.11) is well-posed. Then, due
to Theorem 4.6.1 of Ethier & Kurtz (1986) (see also Jacod & Shiryaev (2003), Theorem III.2.40),
there exists an unique solution to the stopped martingale problem corresponding to the SDE (2.11).
Note that {τ̃n ≤ t} ∈ F X̃t for all n ∈ N and t ≥ 0, where F X̃t := σ

{
X̃s : s ≤ t

}
. Analogously, we

have {τn ≤ t} ∈ FXt for all n ∈ N and t ≥ 0, where FXt := σ {Xs : s ≤ t}. Due to Theorem 4.6.1
and Lemma 4.5.16 of Ethier & Kurtz (1986) together with equation (2.12), this implies that the law
of the pair

(
X̃ τ̃n , τ̃n

)
under the measure P coincides with the law of the pair (Xτn , τn) under the

measure Qn, for all n ∈ N. Hence, recalling that τn ↗ T P -a.s. and τ̃n ↗ T P -a.s. as n→∞:

E [ZT ] = lim
n→∞

E
[
ZT1{τn≥T}

]
= lim

n→∞
E
[
Zn
T1{τn≥T}

]
= lim

n→∞
Qn (τn ≥ T )

= lim
n→∞

P (τ̃n ≥ T ) = 1

where the first equality follows from the monotone convergence theorem, the second uses the def-
inition of the process Zn, the third follows from the definition of the measure Qn and the fourth
uses the fact that, for all n ∈ N, the law of τn under Qn coincides with the law of τ̃n under P . Since
T ∈ (0,∞) is arbitrary, this shows that the process Z = (Zt)t≥0 is a (P,G)-martingale, being a
(P,G)-supermartingale with constant expectation.

For any T ≥ 0, we can define a probability measure QT ∼ P on (Ω,G) by letting dQT

dP
:= ZT .

Furthermore, the family
(
QT
)
T≥0

is consistent, in the sense that, for any S ≤ T , the restriction
QT |GS coincides with QS on (Ω,GS). Assumption 2.3.5 implies that there exists a probability
measure Q on (Ω,G) such that its restriction Q|GT coincides with QT on (Ω,GT ), for every T ≥ 0.
Since QT ∼ P for all T ≥ 0, this implies that Q loc∼ P . Properties (a) and (b) now follow by simple
applications of Girsanov’s theorem for locally equivalent changes of measure (see Jacod & Shiryaev
(2003), Theorem III.3.11). In fact, the process WQ =

(
WQ
t

)
t≥0

, defined as WQ
t := Wt −

∫ t
0
θudu

for all t ≥ 0, is a (Q,G)-Brownian motion and, being F-adapted, also a (Q,F)-Brownian motion
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2.3 The affine structure under a change of measure

(moreover, we have WQ = W n on [[0, τn]], for all n ∈ N). Hence, we can write as follows:

dXt = (b+ AXt) dt+ σ (Xt) dWt

= (b+ AXt) dt+ σ (Xt)

(
dWt −

1

Zt−
d〈Z,W 〉t +

1

Zt−
d〈Z,W 〉t

)
= (b+ AXt + σ (Xt) θt) dt+ σ (Xt) (dWt − θtdt)

=
(
b+ AXt + θ̂ + ΘXt

)
dt+ σ (Xt) (dWt − θtdt)

=
(
bQ + AQXt

)
dt+ σ (Xt) dW

Q
t

(2.13)

This shows property (a). For property (b), we have that the process MQ =
(
MQ

t

)
t≥0

is a (Q,G)-
local martingale, where3:

MQ
t := MP

t −
∫ t

0

1

Zu−
d〈Z,MP 〉u = MP

t −
∫ t∧τ

0

λPu γu du = Ht −
∫ t∧τ

0

λPu (1 + γu) du

= Ht −
∫ t∧τ

0

λQu du

(2.14)

with the F-adapted continuous process λQ =
(
λQt
)
t≥0

being defined as λQt := λPt (1 + γt) =

λ̄Q +
(
ΛQ
)′
Xt for all t ≥ 0. Equation (2.14) shows that the process

∫ ·∧τ
0

λQu du is the (P,G)-
compensator of the increasing process H , being G-predictable and of finite variation. Since H
is bounded, the Doob-Meyer decomposition theorem (see Protter (2005), Theorem III.11) implies
that the process MQ =

(
MQ

t

)
t≥0

is a uniformly integrable (Q,G)-martingale. According to part
1 of Remark 2.2.4, this shows that the process

∫ ·
0
λQu du is the (Q,F)-martingale hazard process of

the random default time τ .

Remark 2.3.8. Let us suppose for a moment that P (τ =∞) = 1, thus reducing our analysis to
the default-free case, and let θ = (θt)t≥0 be an Rd-valued process satisfying part (i) of Condition
B. Under Assumption 2.3.5, Theorem 2.3.7 implies that there exists a probability measure Q on
(Ω,G) with Q loc∼ P such that X is a well-defined affine diffusion process with respect to Q as well.
In the more general context of affine semimartingales, an analogous problem has been recently
studied in Kallsen & Muhle-Karbe (2010). In particular, Corollary 4.2 of Kallsen & Muhle-Karbe
(2010) implies that property (a) of our Theorem 2.3.7 holds if θt = σ (Xt)

′ h for all t ≥ 0, for some
h ∈ Rd. However, this specification for the process θ is just a particular case of our specification
(2.8). In fact, as can be easily checked, we can recover the specification θt = σ (Xt)

′ h by letting
θ̂ = Σ0h and Θij =

∑d
k=1 Σik

j h
k for i, j ∈ {1, . . . , d} in (2.8). This shows that, in the case where

X is an affine diffusion, our Theorem 2.3.7 allows for more general specifications of the process θ
than Corollary 4.2 of Kallsen & Muhle-Karbe (2010).

Theorem 2.3.7 implies that, as soon as the processes θ and γ satisfy Condition B and As-
sumption 2.3.5 holds, there exists a probability measure Q loc∼ P such that the process MQ :=

H −
∫ ·∧τ

0
λQu du is a (Q,G)-martingale. However, this does not necessarily imply that the (Q,F)-

martingale hazard process
∫ ·

0
λQu du of the random time τ coincides with the Q-hazard process

3Note that the predictable covariation 〈Z,MP 〉 always exists since the (P,G)-martingale MP is locally bounded.
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(
− logQ (τ > t|Ft)

)
t≥0

of the random default time τ . In other words, it does not automatically

follow from Theorem 2.3.7 that Q (τ > t|Ft) = exp
(
−
∫ t

0
λQu du

)
for all t ≥ 0. This means that a

priori we do not know whether λQ =
(
λQt
)
t≥0

is the Q-intensity process of τ (see also the discus-
sion at the end of Section 5.3 of Bielecki & Rutkowski (2002)). We now show that, under suitable
conditions on the processes θ and γ, this is indeed the case. To this effect, we need the following
preliminary Lemma.

Lemma 2.3.9. Let Q loc∼ P and suppose that the processes θ and γ appearing in (2.6) are F-
adapted and suppose furthermore that the process γ is F-locally bounded. Then, the density process
ZQ,F =

(
ZQ,F
t

)
t≥0

of Q with respect to (P,F) is given as follows:

ZQ,F
t = E

[
ZQ,G
t |Ft

]
= E

(∫
θ′dW

)
t

for all t ≥ 0

Proof. Note first that, for any F-stopping time ρ and for any t ≥ 0:

ZQ,F
t∧ρ = E

[
ZQ,G
t∧ρ |Ft∧ρ

]
= E

(∫
θ′dW

)
t∧ρ

E

[
E
(∫

γ dMP

)
t∧ρ

∣∣∣∣Ft∧ρ
]

(2.15)

where the second equality follows from (2.7) and from the fact that the process E
(∫

θ′dW
)

is
F-adapted, since both W and θ are F-adapted. Observe that MP is F-locally bounded (since the
process H is bounded between 0 and 1 and the process λP is continuous and F-adapted, hence
F-locally bounded) and the integrand γ is also F-locally bounded by assumption. It follows that
there exists a sequence (ρn)n∈N of F-stopping times such that ρn ↗ ∞ P -a.s. as n → ∞ and
the stopped process E

(∫
γ dMP

)ρn is bounded, for any n ∈ N. For any n ∈ N and t ≥ 0, take
now an arbitrary set A ∈ Ft∧ρn and consider the random variable 1A. Since the filtration F is the
(right-continuous P -augmentation of the) filtration generated by W , Itô’s representation theorem
(see e.g. Protter (2005), Theorem IV.43) implies that 1A can be written as follows:

1A = cA +

∫ t∧ρn

0

(
ξAu
)′
dWu (2.16)

for some cA ∈ R and where the process ξA =
(
ξAt
)
t≥0

is an F-predictable Rd-valued process such

that E
[∫ t∧ρn

0

∥∥ξAu ∥∥2
du
]
<∞. Hence, we can write as follows:

E

[
1A E

(∫
γ dMP

)
t∧ρn

]
=cAE

[
E
(∫

γ dMP

)
t∧ρn

]
+E

[∫ t∧ρn

0

(
ξAu
)′
dWu E

(∫
γ dMP

)
t∧ρn

]

=cA = cA + E

[∫ t∧ρn

0

(
ξAu
)′
dWu

]
= E [1A]

(2.17)
In (2.17), the first equality follows from (2.16), the second is due to the martingale property of
the product

(∫
(ξA)′dW

)ρn E (∫ γ dMP
)ρn , which follows from the fact that the stopped pro-

cess E
(∫

γ dMP
)ρn is a bounded (P,G)-martingale orthogonal to the (P,F)/(P,G)-martingale∫ (

ξA
)′
dW , and, finally, the third equality uses the fact that E

[∫ t∧ρn
0

(
ξAu
)′
dWu

]
= 0 due to the

44



2.3 The affine structure under a change of measure

martingale property of
∫ (

ξA
)′
dW . Since theFt∧ρn-measurable setAwas arbitrary, equation (2.17)

shows that:

E

[
E
(∫

γ dMP

)
t∧ρn

∣∣∣∣Ft∧ρn
]

= 1

and hence, due to equation (2.15) with ρ = ρn, we get ZQ,F
t∧ρn = E

(∫
θ′dW

)
t∧ρn

, for every n ∈ N.
Since F is the (right-continuous P -augmented) filtration generated by the (P,F)-Brownian motion
W , the (P,F)-martingale ZQ,F is continuous (see e.g. Protter (2005), Corollary 1 to Theorem
IV.43). Since ρn ↗ ∞ P -a.s. as n → ∞, we can take the limit for n → ∞ and conclude the
proof.

Theorem 2.3.10. Let θ and γ be two processes satisfying Condition B. Then, if Assumption 2.3.5
holds, there exists a probability measure Q on (Ω,G) with Q loc∼ P and density process given by
ZQ,G = E

(∫
θ′dW +

∫
γ dMP

)
. Moreover, the following hold:

(a) every (Q,F)-martingale is a (Q,G)-martingale, i.e. the immersion property between the
filtrations F and G holds under the measure Q;

(b) τ is a doubly stochastic random time with respect to (Q,F) and theQ-intensity of τ coincides
with the (Q,F)-martingale hazard rate λQt = λ̄Q +

(
ΛQ
)′
Xt, for all t ≥ 0, i.e.:

Q (τ > t|Ft) = exp

(
−
∫ t

0

λQu du

)
for all t ≥ 0 (2.18)

Proof. For θ and γ satisfying Condition B, the existence of a probability measure Q on (Ω,G) with
Q

loc∼ P and ZQ,G = E
(∫

θ′dW +
∫
γ dMP

)
follows from Theorem 2.3.7. To prove part (a), recall

that, due to part 2 of Remark 2.2.4, the immersion property between F and G can be equivalently
formulated in terms of local martingales. Hence, let NQ,F =

(
NQ,F
t

)
t≥0

be an arbitrary (Q,F)-
local martingale. Due to Girsanov’s theorem (in the version of Protter (2005), Theorem III.40, with
respect to the filtration F), we have that NQ,F

t can be written as follows, for any t ≥ 0:

NQ,F
t = NP

t −
∫ t

0

1

ZQ,F
u−

d
〈
ZQ,F, NP

〉
u

(2.19)

where NP =
(
NP
t

)
t≥0

is a suitable continuous (P,F)-local martingale and ZQ,F is the density
process of Q with respect to (P,F). Note that 〈ZQ,F, NP 〉 in (2.19) is well-defined, since both ZQ,F

and NP are continuous, being (P,F)-local martingales, and hence locally bounded. Recall now
that part (b) of Lemma 2.2.3 implies that the immersion property holds under P , hence NP is also
a continuous (P,G)-local martingale. Again due to Girsanov’s theorem (now with respect to the
filtration G), this implies that NP can be decomposed as follows:

NP
t = NQ,G

t +

∫ t

0

1

ZQ,G
u−

d
〈
ZQ,G, NP

〉
u

(2.20)
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where NQ,G =
(
NQ,G
t

)
t≥0

is a suitable (Q,G)-local martingale. By combining (2.19) with (2.20)
we get:

NQ,F
t = NQ,G

t +

∫ t

0

1

ZQ,G
u−

d
〈
ZQ,G, NP

〉
u
−
∫ t

0

1

ZQ,F
u−

d
〈
ZQ,F, NP

〉
u

= NQ,G
t +

〈∫
γ dMP , NP

〉
t

= NQ,G
t

where the second equality follows from equations (2.6) and Lemma 2.3.9 and the last equality is
due to the fact that the (P,G)-martingales NP and

∫
γ dMP are orthogonal, being continuous and

purely discontinuous, respectively. This shows that any (Q,F)-local martingale is also a (Q,G)-
local martingale, i.e. the immersion property between the filtrations F and G holds with respect to
the measure Q.

To prove part (b), recall first that, since Q loc∼ P , any (Q,F)-local martingale can be represented
as a stochastic integral of WQ (see e.g. Jeanblanc et al. (2009), Proposition 1.7.7.1). Then, part (a)
and the arguments used in the proof of Lemma 2.3.9 (now with respect to the measure Q) allow to
show that EQ

[
MQ

t |Ft
]

= 0, for all t ≥ 0, where MQ := H −
∫ ·∧τ

0
λQu du (see also Coculescu et al.

(2008), Lemma 5.1). Thus:

0 = EQ

[
Ht −

∫ t∧τ

0

λQu du
∣∣∣Ft] = Q (τ ≤ t|Ft)− EQ

[∫ t

0

1{τ>u}λ
Q
u du

∣∣∣Ft]
= Q (τ ≤ t|Ft)−

∫ t

0

Q (τ > u|Ft)λQu du = 1−Q (τ > t|Ft)−
∫ t

0

Q (τ > u|Fu)λQu du

where the third equality uses Tonelli’s theorem (together with the F-adaptedness of λQ) and the
fourth equality follows from the fact that Q (τ > u|Ft) = Q (τ > u|Fu) for any t ≥ u, since the
immersion property between F and G holds under Q (see part 2 of Remark 2.2.4). We have thus
shown that, for all t ≥ 0:

Q (τ > t|Ft) = 1−
∫ t

0

Q (τ > u|Fu)λQu du = exp

(
−
∫ t

0

λQu du

)
Since, due to Theorem 2.3.7, the process λQ is Q-a.s. strictly positive, continuous and F-adapted,
this shows that λQ =

(
λQt
)
t≥0

is the Q-intensity of the random default time τ . Furthermore, as
argued in part 2 of Remark 2.2.4, the immersion property between the filtrations F and G holds
under the measure Q if and only if Q (τ ≤ t|F∞) = Q (τ ≤ t|Ft) for all t ≥ 0. Hence, due to part
(a) of the Theorem, this implies that τ is a doubly stochastic random time with respect to (Q,F),
in the sense of Definition 9.11 of McNeil et al. (2005).

Remark 2.3.11.

1. It is well-known that the immersion property between F and G is preserved by an equivalent
change of measure if the density of the new measure with respect to the old one is F∞-
measurable, see e.g. Coculescu et al. (2008), Proposition 4.3, and Jeanblanc et al. (2009),
Proposition 5.9.1.2. However, due to the presence of the term

∫
γ dMP appearing in (2.6),

this is not our case, which is therefore more general. Furthermore, we explicitly consider
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2.3 The affine structure under a change of measure

locally equivalent changes of measure. The proof of Theorem 2.3.10 is rather simple and
only uses a general version of Girsanov’s theorem and the structure of the density processes
of a probability measure Q loc∼ P with respect to the two filtrations F and G. Under the addi-
tional assumption that Q ∼ P (or, equivalently, that the (P,G)-martingale ZQ,G is uniformly
integrable) part (a) of Theorem 2.3.10 can also be deduced from Theorem 6.4 of Coculescu
et al. (2008).

2. Note that, once we know that the immersion property between F and G holds under the
measure Q, part (b) of Theorem 2.3.10 can be deduced from the general results of Coculescu
& Nikeghbali (2010), in particular from their Theorem 3.8. In fact, since F is immersed
in G under Q, the random time τ is a pseudo (Q,F)-stopping time. Using the notation of
Coculescu & Nikeghbali (2010), we have Zτ

t := − logQ (τ > t|Ft) > 0 Q-a.s. for all
t ≥ 0, since P (τ > t|Ft) > 0 for all t ≥ 0 and Q

loc∼ P . Furthermore, the filtration
F supports only continuous martingales and the (Q,F)-martingale hazard process

∫ ·
0
λQu du

is continuous, due to Theorem 2.3.7. Summing up, all the assumptions of Theorem 3.8 of
Coculescu & Nikeghbali (2010) are satisfied, thus implying that the (Q,F)-martingale hazard
rate λQ =

(
λQt
)
t≥0

coincides with the Q-intensity of τ .

We can now prove the following Theorem, which characterizes the family of all probability
measures Q on (Ω,G) with Q loc∼ P which preserve the affine structure of (X, τ), in the sense of
Definition 2.3.1.

Theorem 2.3.12. Let Q be a probability measure on (Ω,G) with Q
loc∼ P . Then Q preserves

the affine structure of (X, τ) if and only if its density process ZQ,G with respect to (P,G) can be
represented as in (2.6) for some processes θ and γ satisfying Condition B.

Proof. Let ZQ,G = E
(∫

θ′dW +
∫
γ dMP

)
, where the processes θ and γ satisfy Condition B. Part

(a) of Theorem 2.3.7 shows that X satisfies on (Ω,G,F, Q) an affine SDE of the type (2.1), with
respect to a (Q,F)-Brownian motion WQ and with parameters satisfying Condition A. Part (b) of
Theorem 2.3.10 implies that τ is a doubly stochastic random time with Q-intensity λQ =

(
λQt
)
t≥0

given by λQt = λ̄Q +
(
ΛQ
)′
Xt for all t ≥ 0, for some λ̄Q ∈ R+ and ΛQ ∈ Rd

+ with ΛQ,i = 0 for
all i ∈ {m+ 1, . . . , d} and λ̄Q +

∑m
i=1 ΛQ,i > 0. According to Definition 2.2.5, this means that

(X, τ) has an affine structure with respect to Q.
Conversely, let Q be a probability measure on (Ω,G) with Q loc∼ P and such that (X, τ) has an

affine structure with respect to Q. Due to Definitions 2.2.5 and 2.3.1, this means that the process
X = (Xt)t≥0 satisfies on (Ω,G,F, Q) the following SDE:

dXt =
(
bQ + AQXt

)
dt+ σ (Xt) dW

Q
t X0 = x̄ ∈ Rm

++ × Rd−m

where the parameters
(
AQ, bQ

)
satisfy items (i) and (iv) of Condition A and where the process WQ

is a (Q,F)-Brownian motion. Since τ is a doubly stochastic random time with respect to (Q,F),
we have Q (τ ≤ t|F∞) = Q (τ ≤ t|Ft) for all t ≥ 0. Due to part 2 of Remark 2.2.4, this implies
that the immersion property between the filtrations F and G holds under the measure Q. Hence, the
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(Q,F)-Brownian motion WQ is also a (Q,G)-Brownian motion and is related to the (P,F)/(P,G)-
Brownian motionW byWQ = W−

∫
1

ZQ,G−
d〈W,ZQ,G〉 = W−

∫ ·
0
θudu, due to Girsanov’s theorem

and Lemma 2.3.3. Hence, we can write:

dXt =
(
bQ + AQXt − σ (Xt) θt

)
dt+ σ (Xt) dWt

= (b+ AXt) dt+ σ (Xt) dWt

where the second equality follows from the standing assumption that (X, τ) has an affine structure
with respect to P . This implies that the following identity holds up to a nullset of Ω× [0,∞):

bQ + AQXt − σ (Xt) θt = b+ AXt

from which we get, using the fact that the matrix σ (Xt) is P -a.s. invertible for all t ≥ 0 (see
Proposition 2.2.2):

θt = σ (Xt)
−1
((
bQ − b

)
+
(
AQ − A

)
Xt

)
Letting θ̂ := bQ − b and Θ := AQ − A, this shows that the process θ = (θt)t≥0 satisfies part (i) of
Condition B, since the parameters bQ and AQ satisfy items (i) and (iv) of Condition A. It remains to
show that the process γ = (γt)t≥0 appearing in (2.6) satisfies part (ii) of Condition B. Since (X, τ)

has an affine structure with respect to Q, the Q-intensity λQ =
(
λQt
)
t≥0

of the random default time

τ is of the form λQt = λ̄Q +
(
ΛQ
)′
Xt for some λ̄Q ∈ R+ and ΛQ ∈ Rd

+ with ΛQ,i = 0 for all
i ∈ {m+ 1, . . . , d} and λ̄Q +

∑m
i=1 ΛQ,i > 0. Furthermore, part (a) of Lemma 2.2.3 (with respect

to Q) shows that the (Q,F)-martingale hazard process of τ is given by
∫ ·

0
λQu du, i.e. the process

MQ := H −
∫ ·∧τ

0
λQu du is a (Q,G)-martingale. Then, for all t ≥ 0:

λ̄Q +
(
ΛQ
)′
Xt = λQt = λPt (1 + γt) =

(
λ̄P +

(
ΛP
)′
Xt

)
(1 + γt)

where the first and the third equalities follow from the assumption that (X, τ) has an affine structure
(see part (ii) of Definition 2.2.5) with respect to Q and P , respectively, and the second equality
follows from Girsanov’s theorem and Lemma 2.3.3, as in (2.14). Since λPt > 0 P -a.s. for all t ≥ 0,
we have then:

γt =

(
λ̄Q − λ̄P

)
+
(
ΛQ − ΛP

)′
Xt

λ̄P + (ΛP )′Xt

thus showing that γ satisfies part (ii) of Condition B.

Remark 2.3.13. Observe that if a probability measure Q on (Ω,G) with Q loc∼ P preserves the
affine structure of (X, τ) then it also preserves the immersion property between the filtrations F
and G. This follows from part (a) of Theorem 2.3.10 or also from the fact that, for all t ≥ 0, we
have Q (τ ≤ t|F∞) = Q (τ ≤ t|Ft), since τ is a doubly stochastic random time with respect to
(Q,F), together with Lemma 5.9.4.2 of Jeanblanc et al. (2009).
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2.4 Application: the Heston with jump-to-default model

We now present an application of the general results of Section 2.3 on the preservation of the
affine structure under a change of measure. More specifically, we consider a version of the popular
stochastic volatility model proposed by Heston (1993), here extended by allowing the stock price
process to be killed by a jump-to-default event. We shall first formulate the model with respect to
the original probability measure P and then characterize the set of all probability measures Q ∼ P

which preserve the key features of the model.
Using the notations introduced in Section 2.2, we let d = 2 andm = 1 and specify the functions

µ (·) : R2 → R2 and σ (·) : R2 → R2×2 appearing in the SDE (2.1) as follows, for all x =

(x1, x2)
′ ∈ (0,∞)× R:

µ (x) := b+ Ax and σ (x) :=
√
x1

(
k 0

ρ
√

1− ρ2

)
(2.21)

where b =
(
β, µ+ λ̄P

)′ with β ≥ k2

2
and µ ∈ R, A =

( α 0
ΛP−1/2 0

)
with α ∈ R,

(
λ̄P ,ΛP

)
∈

R2
+ \ {0}, k > 0 and ρ ∈ (−1, 1). It is easy to check that this specification of the model parameters

satisfies Condition A. Hence, due to Proposition 2.2.2, for any x̄ ∈ (0,∞) × R, there exists an
unique strong solution X = (Xt)t≥0 to the SDE (2.1) on (Ω,G,F, P ) taking values in (0,∞) × R
with X0 = x̄. Let us denote the components of the R2-valued process X as v := X1 and L := X2.
Let the random default time τ be a doubly stochastic random time with respect to (P,F), with P -
default intensity λPt = λ̄P + ΛPvt for all t ≥ 0. We restrict our attention to the finite time horizon
[0, T ], for some fixed T ∈ (0,∞) and we let the filtrations F and G be as in Section 2.2, with
G = GT .

The random time τ models the random occurrence of the default event of a given firm and we let
the process S = (St)0≤t≤T represent the price of one share issued by that firm. We assume that the
firm goes bankrupt as soon as the default event occurs, in which case the process S jumps to zero
and remains thereafter frozen at zero. Formally, the defaultable stock price process S = (St)0≤t≤T

is defined as St := (1−Ht) S̃t for all t ∈ [0, T ], where S̃ =
(
S̃t
)

0≤t≤T is a continuous F-adapted

process which represents the pre-default value of the stock4. The latter is defined as S̃t := exp (Lt)

for all t ∈ [0, T ]. A simple application of Itô’s formula shows that the defaultable stock price
process S satisfies the following SDE:

dSt = (1−Ht−) dS̃t − S̃t dHt − d
[
S̃, H

]
t

= (1−Ht−) d exp (Lt)− S̃t dHt

= (1−Ht−) exp (Lt)
(
dLt +

1

2
d〈L〉t

)
− (1−Ht−) S̃t dHt

= St−

(
dLt +

1

2
d〈L〉t

)
− St− dHt

(2.22)

where we have used the integration by parts formula, the fact that
[
S̃, H

]
≡ 0, since S̃ is continuous

and H is a pure jump process, and the definition of the process S. More explicitly, the pair (S, v)

4Note that, if the process S is continuous before default and jumps to zero at default, there is no loss of generality
in assuming that the pre-default price process S̃ is F-adapted. This is due to the fact that every G-predictable process
is equal on the set {τ ≥ t} to an F-predictable process, see e.g. Proposition 5.9.4.1 of Jeanblanc et al. (2009).
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satisfies the following system of SDEs:

dSt = St−
(
µ+ λPt

)
dt+ St−

√
vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
− St−dHt

= St−µ dt+ St−
√
vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
− St−dMP

t

dvt = (β + αvt) dt+ k
√
vt dW

1
t

(2.23)

where, recalling part (a) of Lemma 2.2.3, the processMP := H−
∫ ·∧τ

0
λPu du is a (P,G)-martingale.

Clearly, the system of SDEs (2.23) recalls the classical stochastic volatility model proposed by He-
ston (1993), here extended with a jump-to-default, as in Carr & Schoutens (2008). However, unlike
in Carr & Schoutens (2008), the model is here formulated with respect to the original probability
measure P and not directly with respect to a risk-neutral measure Q, the existence of which has
yet to be properly studied. Furthermore, unlike in Carr & Schoutens (2008), the P -default intensity
λP =

(
λPt
)

0≤t≤T of the random default time τ is allowed to be stochastic, due to its dependence on
the volatility process v.

2.4.1 Equivalent changes of measure

The process X = (v, L)′ satisfies an affine SDE of the type (2.1), where v = (vt)0≤t≤T and
L = (Lt)0≤t≤T denote the stochastic volatility and the logarithm of the pre-default stock price, re-
spectively. The results of Section 2.3 allow us to characterize the family of all probability measures
Q on (Ω,G) withQ ∼ P which preserve the affine structure of (X, τ). Note that, since we consider
a finite time horizon, all martingales are automatically uniformly integrable5 and, therefore, there
is no need to enforce Assumption 2.3.5 (see also Remark 2.3.6). The following Proposition is an
immediate consequence of Theorem 2.3.12.

Proposition 2.4.1. Let the processes θ = (θt)0≤t≤T and γ = (γt)0≤t≤T be defined as follows:

θt := θ (Xt) =
1
√
vt

(
1/k 0

− ρ

k
√

1−ρ2
1√

1−ρ2

)(
θ̂ + Θ

(
vt
Lt

))

=

 1
k

(
θ̂1√
vt

+ Θ11√vt
)

1√
1−ρ2

(
θ̂2+Θ22Lt√

vt
+ Θ21√vt

)
− ρ√

1−ρ2
θ1
t

 (2.24)

γt := γ (Xt) =

(
λ̄Q − λ̄P

)
+
(
ΛQ − ΛP

)
vt

λ̄P + ΛPvt
(2.25)

for θ̂ ∈ R2 with θ̂1 ≥ k2

2
− β and Θ ∈ R2×2 with Θ12 = 0 and

(
λ̄Q,ΛQ

)
∈ R2

+ \ {0}. Then
we can define a probability measure Q ∼ P on (Ω,G) by letting dQ

dP
:= E

(∫
θ′dW +

∫
γ dMP

)
T

and (X, τ) has an affine structure with respect to Q. Conversely, any probability measure Q on
(Ω,G) with Q ∼ P which preserves the affine structure of (X, τ) has a density process with respect

5This is due to the fact that any martingale M = (Mt)0≤t≤T is closed by its terminal value MT , meaning that we
have Mt = E [MT |Ft] P -a.s. for all t ∈ [0, T ] (compare also with Protter (2005), Theorem I.13).
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to (P,G) of the form ZQ,G = E
(∫

θ′dW +
∫
γ dMP

)
, where the processes θ and γ are as in

(2.24)-(2.25) and satisfy the above conditions.

Let Q be a probability measure on (Ω,G) with Q ∼ P such that the affine structure of (X, τ)

is preserved. By relying on Proposition 2.4.1 and Girsanov’s theorem, we can write as follows the
dynamics of (S, v) with respect to Q:

dSt = St−

(
µ+ λ̄P − λ̄Q + θ̂2 +

(
Θ21 + ΛP − ΛQ

)
vt + Θ22Lt

)
dt

+ St−
√
vt

(
ρ dWQ,1

t +
√

1− ρ2 dWQ,2
t

)
− St−dMQ

t

dvt =
(
β + θ̂1 +

(
α + Θ11

)
vt

)
dt+ k

√
vt dW

Q,1
t

(2.26)

where, for i = 1, 2, the process WQ,i =
(
WQ,i
t

)
0≤t≤T is the (Q,F)/(Q,G)-Brownian motion

defined as WQ,i := W i −
∫ ·

0
θiudu, and the process MQ =

(
MQ

t

)
0≤t≤T is the (Q,G)-martingale

defined as MQ := MP −
∫ ·∧τ

0
γuλ

P
u du = H −

∫ ·∧τ
0

λQu du, with λQt = λPt (1 + γt) = λ̄Q + ΛQvt
for all t ∈ [0, T ].

Note that, even if (X, τ) maintains the affine structure, the equivalent change of measure from P

to Q may introduce a dependence on v and L in the drift term of the defaultable stock price process
S, as can be seen from (2.26). Hence, in view of practical applications, one could be interested
in the set of all equivalent probability measures which preserve the original structure (2.23) of the
Heston with jump-to-default model. More precisely, let us give the following Definition.

Definition 2.4.2. Let Q be a probability measure on (Ω,G) with Q ∼ P . We say that Q preserves
the Heston with jump-to-default structure if Q preserves the affine structure of (X, τ), in the sense
of Definition 2.3.1, and the pair (S, v) satisfies a system of SDEs of the type (2.23) also with respect
to Q.

By looking at (2.23) and (2.26), we can rephrase Definition 2.4.2 by saying that a probability
measureQ on (Ω,G) withQ ∼ P preserves the Heston with jump-to-default structure if it preserves
the affine structure of (X, τ) and the drift term of the SDE satisfied by the process S under Q is of
the form St−µ

Qdt for some µQ ∈ R. We have then the following simple Corollary.

Corollary 2.4.3. A probability measure Q on (Ω,G) with Q ∼ P preserves the Heston with jump-
to-default structure if and only if its density process with respect to (P,G) is of the form ZQ,G =

E
(∫

θ′dW +
∫
γ dMP

)
, where the processes θ and γ are as in Proposition 2.4.1 with Θ22 = 0 and

Θ21 = ΛQ − ΛP .

Proof. If the processes θ and γ are as in (2.24)-(2.25) with Θ22 = 0 and Θ21 = ΛQ − ΛP , Propo-
sition 2.4.1 and (2.26) imply that the Heston with jump-to-default structure is preserved under the
probability measure Q ∼ P defined by dQ

dP
:= E

(∫
θ′dW +

∫
γ dMP

)
T

. Conversely, let Q be a
probability measure on (Ω,G) with Q ∼ P which preserves the Heston with jump-to-default struc-
ture. Then, Proposition 2.4.1 implies that ZQ,G = E

(∫
θ′dW +

∫
γ dMP

)
, where θ and γ are as in
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(2.24)-(2.25). Furthermore, due to (2.26), the following identity must hold P -a.s. for all t ∈ [0, T ],
for some µQ ∈ R:

µQ = µ+ λ̄P − λ̄Q + θ̂2 +
(
Θ21 + ΛP − ΛQ

)
vt + Θ22Lt

Since the process X = (v, L)′ takes values in (0,∞)×R, it can be easily checked that this implies
Θ22 = 0 and Θ21 = ΛQ − ΛP .

2.4.2 Characterization of Equivalent (Local) Martingale Measures

Let us denote the discounted defaultable stock price process as S̄ =
(
S̄t
)

0≤t≤T , with S̄t := e−rtSt
for all t ∈ [0, T ] and where r is the risk-free interest rate, which is supposed to be constant in the
time interval [0, T ]. Clearly, the G-adapted process S̄ is locally bounded, since it is continuous
before the default time τ and goes to the cemetery state 0 as soon as the default event occurs. Due
to the fundamental theorem of asset pricing in the version of Delbaen & Schachermayer (1994),
the No Free Lunch with Vanishing Risk no-arbitrage condition holds if and only if there exists an
Equivalent Local Martingale Measure (ELMM) for S, i.e. a probability measure Q on (Ω,G) with
Q ∼ P such that S̄ is a (Q,G)-local martingale. Hence, in order to exclude arbitrage opportunities,
we want to be sure that the set of all ELMMs for S is non-empty. Furthermore, especially in view
of practical applications, one could be interested in preserving the Heston with jump-to-default
structure under an ELMM. The following simple Corollary characterizes the set of all ELMMs for
S which preserves the Heston with jump-to-default structure.

Corollary 2.4.4. A probability measure Q on (Ω,G) with Q ∼ P is an ELMM for S which pre-
serves the Heston with jump-to-default structure if and only if its density process ZQ,G with respect
to (P,G) is of the form ZQ,G = E

(∫
θ′dW +

∫
γ dMP

)
, where the processes θ and γ are given as

follows, for all t ∈ [0, T ]:

θt =

(
θ1
t

θ2
t

)
=

 1
k

(
θ̂1√
vt

+ Θ11√vt
)

1√
1−ρ2

(
λ̄Q−λ̄P−µ+r√

vt
+
(
ΛQ − ΛP

)√
vt

)
− ρ√

1−ρ2
θ1
t

 (2.27)

γt =

(
λ̄Q − λ̄P

)
+
(
ΛQ − ΛP

)
vt

λ̄P + ΛPvt
(2.28)

with θ̂1 ≥ k2

2
− β, Θ11 ∈ R and

(
λ̄Q,ΛQ

)
∈ R2

+ \ {0}.

Proof. The result follows immediately from Proposition 2.4.1 and Corollary 2.4.3 together with
(2.26), since the process S satisfies the following SDE under any ELMM Q:

dSt = St−rdt+ St−
√
vt

(
ρ dWQ,1

t +
√

1− ρ2 dWQ,2
t

)
− St−dMQ

t (2.29)
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2.4 Application: the Heston with jump-to-default model

Remark 2.4.5 (The default-free Heston (1993) model). Let us briefly consider the case of the
Heston (1993) stochastic volatility model in its typical formulation, i.e. without the inclusion of the
random default event, so that F = G. In this case, Corollary 2.4.4 implies that the density process
ZQ,F with respect to (P,F) of any ELMM Q for S which preserves the Heston structure is of the
form ZQ,F = E

(∫
θ′dW

)
, where the R2-valued process θ = (θt)0≤t≤T is given as follows:

θt =

(
θ1
t

θ2
t

)
=

 1
k

(
θ̂1√
vt

+ Θ11√vt
)

1√
1−ρ2

r−µ√
vt
− ρ√

1−ρ2
θ1
t

 (2.30)

for all t ∈ [0, T ], with θ̂1 ≥ k2

2
− β and Θ11 ∈ R.

In mathematical finance, it is customary to call market prices of risk (or risk premia) the pro-
cesses θ and γ characterizing the density process of an ELMM for S. In particular, the process θ1

represents the market price of volatility risk, since it is associated to the Girsanov’s transformation
of the Brownian motion W 1 which drives the stochastic volatility process v. Similarly, the process
θ2 is linked to the market price of diffusive risk for the stock price, since it is associated to the Gir-
sanov’s transformation of the Brownian motion W 2 which only intervenes in the dynamics of S.
Finally, the process γ represents the market price of risk associated to the jump-to-default risk, i.e.
the risk of an unpredictable default event which kills the stock price process. We refer the reader to
Section 2.5.3 for a more detailed discussion of the financial interpretation of the processes θ and γ.

We want to emphasize that the specification (2.27)-(2.28) for the risk premia processes θ and γ
is very general and nests most of the market price of risk specifications usually encountered in the
literature, as we are going to argue now. For simplicity, let us consider for the moment the default-
free case, as in Remark 2.4.5. The typical choice for the market price of volatility risk in the Heston
model assumes that θ̂1 = 0, so that θ1

t is proportional to
√
vt. This implies that the market price for

volatility risk θ1
t becomes very small as the volatility approaches zero. By letting θ̂1 = 0 in (2.30),

we recover the specification of θt = (θ1
t , θ

2
t )
′ considered in Wong & Heyde (2006). However,

unlike in Wong & Heyde (2006), we do not need to impose any restriction on the parameter Θ11 in
order to ensure that the process E

(∫
θ′dW

)
is well-defined as a (P,F)-martingale. This generalizes

Theorem 3.5 of Wong & Heyde (2006). The reason why we are able to obtain sharper results than
those of Wong & Heyde (2006) is that, by relying on the general theory presented in Section 2.3,
we avoid any model-specific computation and the use of Novikov conditions. Furthermore, our
results can also cover the case where θ̂1 6= 0. In the latter case, the fact that θ1

t involves then the
reciprocal of

√
vt and, hence, θ1

t can grow without bound as vt approaches zero, creates no technical
problems, due to the fact that Condition A ensures that zero is an unattainable boundary for v (see
Proposition 2.2.2) and so θ1

t remains finite. Letting θ̂1 6= 0 allows all the parameters in the drift
term of the process v to change from P to Q, with a consequent improvement of the flexibility of
the model, as has been empirically documented by Cheridito et al. (2007) in the context of term
structure modeling. Furthermore, in the jump-to-default case, also the default intensity parameters
can change from

(
λ̄P ,ΛP

)
to
(
λ̄Q,ΛQ

)
. Unlike previous known results on the Heston model,

the conditions on the processes θ and γ given in Corollary 2.4.4 are not only sufficient but also
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necessary if one wants the probability measure Q to be an ELMM for S and preserve the Heston
with jump-to-default structure as well.

Suppose now that θ and γ satisfy (2.27)-(2.28). Corollary 2.4.4 then implies that the probability
measure Q on (Ω,G) defined by dQ

dP
:= E

(∫
θ′dW +

∫
γ dMP

)
T

is an ELMM for S and preserves
the Heston with jump-to-default structure. However, we do not know a priori if S̄ is a true (Q,G)-
martingale or only a (Q,G)-local martingale, i.e. we do not know if Q is an Equivalent Martingale
Measure (EMM) for S or only an ELMM. We now provide an answer to this question, showing
that any ELMM for S which preserves the Heston with jump-to-default structure is automatically
an EMM for S. We first consider in the following Lemma the default-free case (with F = G), as in
Remark 2.4.5.

Lemma 2.4.6. Suppose that λP ≡ 0, i.e. the random default time τ satisfies P (τ =∞) = 1. Let
Q be an ELMM for S which preserves the affine structure of X = (v, L)′, where L = log S. Then
the discounted stock price process S̄ is a true (Q,F)-martingale, i.e. Q is an EMM for S.

Proof. Let Q be an ELMM for S which preserves the affine structure of X = (v, L)′. This means
that X satisfies an SDE of the form (2.1) with respect to Q and the process S satisfies the following
SDE under Q:

dSt = Strdt+ St
√
vt

(
ρ dWQ,1

t +
√

1− ρ2 dWQ,2
t

)
S0 ∈ (0,∞)

Define now the process Z̃ =
(
Z̃t
)

0≤t≤T by Z̃t := e−rtSt/S0 for all t ∈ [0, T ]. A simple application

of Itô’s formula allows to show that the process Z̃ can be represented as follows, for all t ∈ [0, T ]:

Z̃t = E
(
ρ

∫ √
v dWQ,1 +

√
1− ρ2

∫ √
v dWQ,2

)
t

= E
(∫

θ̃1 dWQ,1 +

∫
θ̃2 dWQ,2

)
t

where θ̃1
t := ρ

√
vt and θ̃2

t :=
√

1− ρ2
√
vt for all t ∈ [0, T ]. Observe now that we can represent(

θ̃1
t , θ̃

2
t

)′ as follows: (
θ̃1
t

θ̃2
t

)
=

1
√
vt

(
1/k 0

− ρ

k
√

1−ρ2
1√

1−ρ2

)(
0 + Θ̃

(
vt
Lt

))

where Θ̃ =
(
kρ 0
1 0

)
. Proposition 2.4.1, applied with respect to the probability measure Q (and

neglecting the process γ since P (τ =∞) = 1), implies then that the process Z̃ is the density
process with respect to (Q,F) of the probability measure Q̃ ∼ Q on (Ω,G) defined by dQ̃

dQ
:= Z̃T =

e−rTST/S0. In particular, Z̃ is a (Q,F)-martingale, thus proving the Lemma.

We want to point out that Lemma 2.4.6 extends Theorem 3.6 of Wong & Heyde (2006), where
the authors obtain an analogous result under more restrictive conditions on the parameters of the
model. The following Proposition, the proof of which relies on Lemma 2.4.6, deals with the more
general case of the Heston with jump-to-default model.
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Proposition 2.4.7. Let Q be an ELMM for S which preserves the Heston with jump-to-default
structure. Then the discounted stock price process S̄ is a true (Q,G)-martingale, i.e. Q is an EMM
for S.

Proof. Let Q be an ELMM for S which preserves the Heston with jump-to-default structure. As
in the proof of Lemma 2.4.6, let us define the process Z̃ =

(
Z̃t
)

0≤t≤T by Z̃t := e−rtSt/S0 for all
t ∈ [0, T ]. Recall that we always assume τ > 0 P -a.s., so that S0 > 0 P -a.s. and, hence, also
Q-a.s. Equation (2.29) and a simple application of Itô’s formula allow to represent Z̃ as follows,
for all t ∈ [0, T ]:

Z̃t = E
(
ρ

∫ √
v dWQ,1 +

√
1− ρ2

∫ √
v dWQ,2 −MQ

)
t

Note that (see e.g. Jeanblanc et al. (2009), Proposition 8.4.4.1):

E
(
−MQ

)
t

= (1−Ht) exp

(∫ t∧τ

0

λQu du

)
= 1{τ>t} exp

(∫ t

0

λQu du

)
Clearly, the process Z̃ jumps at 0 at the random default time τ and is a non-negative (Q,G)-local
martingale. Therefore, Z̃ is also a (Q,G)-supermartingale. To prove the Proposition, it suffices to
show that EQ

[
Z̃T
]

= 1, where EQ [·] denotes the expectation under the measure Q.

EQ
[
Z̃T
]

= EQ
[
EQ
[
Z̃T |FT

]]
= EQ

[
E
(
ρ

∫ √
v dWQ,1 +

√
1− ρ2

∫ √
v dWQ,2

)
T

Q (τ > T |FT ) exp

(∫ T

0

λQu du

)]
= EQ

[
E
(
ρ

∫ √
v dWQ,1 +

√
1− ρ2

∫ √
v dWQ,2

)
T

]
= 1

where the second equality uses the fact that theQ-intensity process λQ is F-adapted, being an affine
function of the F-adapted process v, the third equality follows from (2.3) (with respect to Q) and,
finally, the last equality follows as in the proof of Lemma 2.4.6.

Lemma 2.4.6 and Proposition 2.4.7 show that, both for the classical Heston (1993) model and
for the Heston with jump-to-default model, any ELMM for S which preserves the structure of the
model is automatically an EMM for S. This excludes the situation where the discounted stock price
process S̄ is a strict local martingale, i.e. a local martingale which is not a true martingale.

Remark 2.4.8 (On the impossibility of stock price bubbles). In the recent literature, several
authors have considered models that allow the discounted stock price process to follow a strict
local martingale under an ELMM Q, see e.g. Cox & Hobson (2005), Heston et al. (2007), Jarrow
et al. (2007) and Jarrow et al. (2010). This apparent anomaly does not contradict the NFLVR
no-arbitrage condition and has been interpreted as the occurrence of a stock price bubble, since
Su > EQ

[
e−r(t−u)St|Gu

]
for all 0 < u < t ≤ T , due to the strict supermartingale property of S̄.

This means that the current price Su of the stock exceeds its fundamental value, the latter being
defined as the expectation (under the risk-neutral measure Q) of the discounted future value St.
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Proposition 2.4.7 shows that, if the Heston with jump-to-default structure is preserved under the
ELMM Q, there cannot exist stock price bubbles. However, note that the impossibility of stock
price bubbles does not imply that option bubbles are automatically banned from the market, as
shown in Example 1.3 of Heston et al. (2007).

Remark 2.4.9 (On the change of numéraire). Let us briefly return to the default-free case consid-
ered in Lemma 2.4.6 and letQ be an ELMM for S which preserves the affine structureX = (v, L)′.
Let us define the process Z̃ =

(
Z̃t
)

0≤t≤T as Z̃t := e−rtSt/S0 for all t ∈ [0, T ]. The proof of Lemma

2.4.6 shows that Z̃ can be represented as Z̃ = E
(∫

θ̃′dWQ
)

, where the R2-valued process θ̃ is of

the form (2.24). Hence, due to Proposition 2.4.1, the process Z̃ is the density process of the proba-
bility measure Q̃ on (Ω,G) defined by dQ̃

dQ
:= Z̃T = e−rTST/S0. We have Q̃ ∼ Q and Q̃ preserves

the affine structure of X = (v, L)′. Clearly, this has important and useful implications if one
wants to use change of numéraire techniques (see e.g. Jeanblanc et al. (2009), Section 2.4) with
the stock price process S as numéraire. In fact, under the probability measure Q̃ which uses S as
numéraire, the preservation of the affine structure of the process X = (v, L)′ ensures a remarkable
analytical tractability of the model. Of course, an analogous result holds true for the Heston with
jump-to-default model if we restrict our attention to the stochastic interval [[0, τ [[ .

2.4.3 The Minimal Martingale Measure

This Section is devoted to another application of the general results presented in Section 2.3. More
specifically, we shall be concerned with the study of the existence and the characterization of the
Minimal Martingale Measure in the context of the Heston with jump-to-default model.

For simplicity, let us first consider the case of the default-free Heston model, where the stochas-
tic volatility process v = (vt)0≤t≤T and the stock price process S = (St)0≤t≤T satisfy the following
system of SDEs on (Ω,G,F, P ):

dvt = (β + αvt) dt+ k
√
vtdW

1
t v0 = v̄ ∈ (0,∞)

dSt = Stµ dt+ St
√
vt

(
ρ dW 1

t +
√

1− ρ2dW 2
t

)
S0 = s̄ ∈ (0,∞)

with α, µ ∈ R, β ≥ k2

2
, k > 0 and ρ ∈ (−1, 1). Observe that the discounted stock price process

S̄ =
(
S̄t
)

0≤t≤T admits the following unique canonical decomposition (see e.g. Protter (2005),
Section III.7), being a continuous F-semimartingale:

S̄ = s̄+ Ā+ M̄

where Ā is a continuous F-adapted process of finite variation with Ā0 = 0 and M̄ is a continuous
(P,F)-local martingale with M̄0 = 0, explicitly given as:

Ā =

∫ ·
0

S̄u (µ− r) du and M̄ =

∫ ·
0

S̄u
√
vu

(
ρ dW 1

u +
√

1− ρ2 dW 2
u

)
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Denote also by 〈M̄〉 =
∫ ·

0
S̄2
uvudu the predictable quadratic variation of M̄ . Clearly, we have

Ā� 〈M̄〉. In fact, we can write, noting that the processes S̄ and v are strictly positive:

Ā =

∫
φ d〈M̄〉 where φt =

µ− r
S̄t vt

∀t ∈ [0, T ]

Note that, since the processes S̄ and v are both continuous and F-adapted, the process φ =

(φt)0≤t≤T is F-predictable and locally bounded. Hence, we have φ ∈ L2
loc

(
M̄
)
, thus implying

that the stochastic integral
∫
φ dM̄ is well-defined as a continuous (P,F)-local martingale. Let us

now define the process Ẑ =
(
Ẑt
)

0≤t≤T as follows:

Ẑ := E
(
−
∫
φ dM̄

)
= E

(
−
∫ ·

0

µ− r
√
vu

(
ρ dW 1

u +
√

1− ρ2 dW 2
u

))
Since φ ∈ L2

loc

(
M̄
)
, the process Ẑ is a P -a.s. strictly positive (P,F)-local martingale and is

the candidate density process of the so-called Minimal Martingale Measure Q̂, first introduced in
Föllmer & Schweizer (1991). Intuitively, the candidate density process of the Minimal Martingale
Measure is the “simplest” local martingale Ẑ =

(
Ẑt
)

0≤t≤T with Ẑ0 = 1 which satisfies the property

that the product ẐS̄ is a local martingale. The process Ẑ is a well-defined density process for Q̂ if
and only if Ẑ is a (P,F)-martingale. However, we do not know if Ẑ is a true (P,F)-martingale or
just a (P,F)-local martingale. In the case of the default-free Heston model, the following Propo-
sition gives an affirmative answer. Furthermore, we show that the minimal martingale measure Q̂
is not only an ELMM for S but also an EMM which preserves the affine structure of X = (v, L)′,
where L = logS.

Proposition 2.4.10. Suppose that β − kρ (µ− r) ≥ k2

2
. Then the process Ẑ is a (P,F)-martingale

and the measure Q̂ on (Ω,G) defined by dQ̂
dP

:= ẐT is an EMM for S which preserves the affine
structure of X = (v, L)′.

Proof. Observe first that the process Ẑ can be represented as follows, for all t ∈ [0, T ]:

Ẑt = E
(∫

θ1 dW 1 +

∫
θ2 dW 2

)
t

where θ1
t := −ρ µ− r√

vt
and θ2

t := −
√

1− ρ2
µ− r
√
vt

Note that the processes θ1 = (θ1
t )0≤t≤T and θ2 = (θ2

t )0≤t≤T are of the form (2.24), with:

θ̂ =

(
kρ (r − µ)

r − µ

)
and Θ =

(
0 0

0 0

)

If β + θ̂1 = β − kρ (µ− r) ≥ k2

2
, Corollary 2.4.4 and Remark 2.4.5 imply that the probability

measure Q̂ on (Ω,G) defined by dQ̂
dP

:= ẐT admits Ẑ as density process and is an ELMM for S
which preserves the affine structure of X = (v, L)′. Furthermore, due to Lemma 2.4.6, the process
S̄ is a true

(
Q̂,F

)
-martingale and not only a

(
Q̂,F

)
-local martingale, meaning that Q̂ is an EMM

for S.
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Let us now move to the more general case of the Heston with jump-to-default model. Recall
that, under the original probability measure P , the stochastic volatility process v and the defaultable
stock price process S satisfy the following system of SDEs:

dvt = (β + αvt) dt+ k
√
vtdW

1
t v0 = v̄ ∈ (0,∞)

dSt = St−µ dt+ St−
√
vt

(
ρ dW 1

t +
√

1− ρ2dW 2
t

)
− St−dMP

t S0 = s̄ ∈ (0,∞)

Since the discounted stock price process S̄ =
(
S̄t
)

0≤t≤T is a locally bounded G-semimartingale,
it admits the following unique canonical decomposition:

S̄ = s̄+ Ā+ M̄

where Ā is a G-predictable process of finite variation with Ā0 = 0 and M̄ is a (P,G)-local martin-
gale with M̄0 = 0, explicitly given as:

Ā =

∫ ·
0

S̄u− (µ− r) du and M̄ =

∫ ·
0

S̄u−
√
vu

(
ρ dW 1

u +
√

1− ρ2 dW 2
u

)
−
∫ ·

0

S̄u−dM
P
u

Denote also by 〈M̄〉 =
∫ ·

0
S̄2
u−
(
vu + λPu

)
du the predictable quadratic variation of M̄ . Note that

〈M̄〉 exists since M̄ is locally bounded. We then have Ā� 〈M̄〉. In fact, we can write:

Ā =

∫
φ d〈M̄〉 where φt =

µ− r
S̄t− (vt + λPt )

∀t ∈ [0, T ]

Note that, since the processes v and λP are both continuous and F-adapted and the process S̄− is
left-continuous and G-adapted, the process φ is G-predictable and locally bounded. Hence, the
stochastic integral

∫
φ dM̄ is well-defined as a (P,G)-local martingale (see e.g. Protter (2005),

Theorem IV.29). Let us now define the process Ẑ =
(
Ẑt
)

0≤t≤T as follows:

Ẑ := E
(
−
∫
φ dM̄

)
= E

(
−
∫ ·

0

√
vu (µ− r)
vu + λPu

(
ρ dW 1

u +
√

1− ρ2 dW 2
u

)
+

∫ ·
0

µ− r
vu + λPu

dMP
u

)
As in the case of the default-free Heston model, the process Ẑ represents the candidate density
process with respect to (P,G) of the minimal martingale measure Q̂. In general, Ẑ is a (P,G)-
local martingale, but we do not know a priori whether it is a P -a.s. strictly positive true (P,G)-
martingale. The following Proposition gives some simple sufficient conditions for Ẑ to be a well-
defined density process.

Proposition 2.4.11. Let µ ≥ r and suppose that λ̄P = 0 and β− kρ(µ−r)
1+ΛP

≥ k2

2
. Then the process Ẑ

is a P -a.s. strictly positive (P,G)-martingale. Furthermore, the measure Q̂ on (Ω,G) defined by
dQ̂
dP

:= ẐT is an EMM for S and preserves the Heston with jump-to-default structure.
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Proof. Observe first that the process Ẑ can be represented as follows:

Ẑ = E
(∫

θ1 dW 1 +

∫
θ2 dW 2 +

∫
γ dMP

)
where, for all t ∈ [0, T ]:

θ1
t := −ρ

√
vt (µ− r)

(1 + ΛP ) vt
θ2
t := −

√
1− ρ2

√
vt (µ− r)

(1 + ΛP ) vt
γt :=

µ− r
(1 + ΛP ) vt

Note first that µ ≥ r implies that γt ≥ 0 P -a.s. for all t ∈ [0, T ], since the process v is P -
a.s. strictly positive. This implies that Ẑ is P -a.s. strictly positive. Then, note that the processes
θ1 = (θ1

t )0≤t≤T , θ2 = (θ2
t )0≤t≤T and γ = (γt)0≤t≤T are of the form (2.24)-(2.25), with:

θ̂ =

(
kρ(r−µ)
1+ΛP
r−µ

1+ΛP

)
Θ =

(
0 0

0 0

)
λ̄Q̂ = (µ− r) ΛP

1 + ΛP
ΛQ̂ = ΛP

If β − kρ(µ−r)
1+ΛP

≥ k2

2
, Corollary 2.4.4 implies that the probability measure Q̂ on (Ω,G) defined by

dQ̂
dP

:= ẐT admits Ẑ as density process and is an ELMM for S which preserves the Heston with
jump-to-default structure. Furthermore, due to Proposition 2.4.7, the process S̄ is a true

(
Q̂,G

)
-

martingale and not only a
(
Q̂,G

)
-local martingale, meaning that Q̂ is an EMM for S.

2.5 Application: a multifactor equity/credit risk model with
stochastic volatility

This Section is meant to be an illustration of the benefits of preserving the affine structure of a
reduced-form credit risk model under both the physical and the risk-neutral probability measure.
More specifically, extending the Heston with jump-to-default model analyzed in Section 2.4, we
shall consider a hybrid equity/credit risk model, where the stock price process can be killed by
a jump-to-default event and stochastic volatility, interest rate and default intensity are all linked
through a multivariate affine process. Section 2.5.1 illustrates the general features of this modeling
framework, while Section 2.5.2 and Section 2.5.3 deal with several applications to risk management
and risk-neutral valuation, respectively. In Section 2.5.4, we shall briefly consider the incomplete
information case where some of the components of the underlying affine process cannot be directly
observed. Finally, Section 2.5.5 contains a brief overview of the related literature.

2.5.1 The modeling framework

As in Section 2.2, let (Ω,G,F, P ) be the underlying filtered probability space, with an Rd̄-valued
Brownian motion W̄ =

(
W̄t

)
0≤t≤T ∗ , for some d̄ ≥ 2, and where T ∗ ∈ (0,∞) denotes a finite time

horizon. Let the default time τ be a doubly stochastic random time with respect to (P,F), with
P -default intensity λP =

(
λPt
)

0≤t≤T ∗ , and let the filtration G be the progressive enlargement of
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F with respect to τ , as in Section 2.2. The random time τ models the occurrence of the default
event of a given firm and we assume that the price of the traded stock of that firm jumps to zero
as soon as the default event occurs. Adopting the notations of Section 2.4, we let the processes
S = (St)0≤t≤T ∗ , S̃ =

(
S̃t
)

0≤t≤T ∗ and L = (Lt)0≤t≤T ∗ represent the defaultable stock price, the
pre-default stock price and the logarithm of the pre-default stock price, respectively. Recall that
these three processes are related as follows, for all t ∈ [0, T ∗]:

St = (1−Ht) S̃t = (1−Ht) e
Lt

where Ht := 1{τ≤t} denotes the default indicator process. Furthermore, we let v = (vt)0≤t≤T ∗ rep-
resent the stochastic volatility affecting the stock price process and we also introduce the Rd-valued
process Y = (Yt)0≤t≤T ∗ representing a vector of economic factors, with d ≤ d̄−2. For convenience
of notation, let us define the Rd+2-valued process X = (Xt)0≤t≤T ∗ as Xt := (vt, Y

′
t , Lt)

′, for all
t ∈ [0, T ∗]. The processes v, Y and L are jointly specified via the following square-root SDE:

dXt = (AXt + b) dt+ Σ
√
Rt dWt (2.31)

where A ∈ R(d+2)×(d+2), b ∈ Rd+2, Σ ∈ R(d+2)×(d+2), Rt is a diagonal (d+ 2)-matrix with el-
ements Ri,i

t := Ri,i (Xt) = αi + β′iXt, with αi ∈ R and βi ∈ Rd+2, for i = 1, . . . , d + 2, and
W = (Wt)0≤t≤T ∗ is an Rd+2-valued (P,F)-Brownian motion composed of the first d+ 2 elements
of the Rd̄-valued (P,F)-Brownian motion W̄ . The last d̄− d− 2 components of the original Brow-
nian motion W̄ will only appear in Section 2.5.4 to model noise factors affecting the observations
of market data.

Remark 2.5.1. Under mild non-degeneracy conditions, Duffie & Kan (1996) have shown that
(2.31) can be regarded as equivalent to the specification (2.1) for the dynamics of a diffusion affine
process. Note that the matrices A and Σ in (2.31) are allowed to be non-diagonal and asymmetric,
thus allowing to model flexible correlation patterns among all the components of X . We also want
to point out that assuming the matrix Σ to be the identity matrix, as in the “canonical representation”
of Dai & Singleton (2000), may lead to unnecessary restrictions on the model if d > 1, as has been
recently pointed out by Cheridito et al. (2010). See also Remark 1 after Condition C for related
comments.

Due to the presence of the square-root in the diffusion term, the SDE (2.31) can fail to have an
unique strong solution on (Ω,G,F, P ). Therefore, we impose the following parameter restrictions,
where we denote by α the vector in Rd+2 defined as α := (α1, . . . , αd+2)′ and by β the square
(d+ 2)-matrix defined as β := (β1, . . . , βd+2).

Condition C. Let m ∈ {1, . . . , d+ 1}. The parameters A ∈ R(d+2)×(d+2), b ∈ Rd+2, Σ ∈
R(d+2)×(d+2), α ∈ Rd+2

+ and β ∈ R(d+2)×(d+2)
+ satisfy the following restrictions:

• bi ≥ 0 for i ∈ {1, . . . ,m};

• Ai,j = 0 for i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , d+ 2} and
Ai,j ≥ 0 for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m} \ {i};
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• Σi,j = 0, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , d+ 2} \ {i};

• αi = 0 for i ∈ {1, . . . ,m};

• βj,i = 0, for i ∈ {1, . . . , d+ 2} and j ∈ {m+ 1, . . . , d+ 2}, and
βj,i = 0 for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m} \ {i};

and bi ≥ 1
2

(Σi,i)
2 βi,i for all i = 1, . . . ,m.

Remark 2.5.2.

1. The parameter restrictions of Condition C are similar to the parametrization adopted in the
“canonical representation” of Dai & Singleton (2000), except that here we allow for a richer
correlation structure. More precisely, the canonical representation of Dai & Singleton (2000)
requires each component of the vector process X to be driven by a single element of the
vector Brownian motion W , while in our parametrization the last d + 2−m components of
X can be driven by all the elements of W . This possibility has significant implications from
the point of view of financial modeling. For instance, it has been shown that the absence of
correlation between the Brownian motions driving the stock price process and the stochastic
volatility process hinders the capability of the model of fitting the observed volatility surface,
see e.g. Gatheral (2006) for a general account.

2. In order to facilitate the comparison with Section 2.2, we now formulate the model described
in the present Section by using the notations introduced in Section 2.2, here denoted with the
superscript ∗. The SDE (2.31) can be rewritten in the form (2.1) as follows:

dXt = µ∗ (Xt) dt+ σ∗ (Xt) dWt

where the function µ∗ : Rd+2 → Rd+2 is given by µ∗ (x) = Ax + b and the function σ∗ :

Rd+2 → R(d+2)×(d+2) is such that σ∗ (Xt)σ
∗ (Xt)

′ = d〈X,X〉t
dt

. More specifically, for any
t ∈ [0, T ∗]:

σ∗ (Xt)σ
∗ (Xt)

′ = Σ
√
Rt

(
Σ
√
Rt

)′
= ΣRt Σ′

Hence, for any i, j ∈ {1, . . . , d+ 2}:

(
σ∗ (Xt)σ

∗ (Xt)
′)
i,j

=
d+2∑
k=1

Σi,k Σj,k (αk + β′kXt) = (Σ∗0)i,j +
d+2∑
`=1

(Σ∗`)
i,j X`

t

where we have used the following notation, for i, j, ` ∈ {1, . . . , d+ 2}:

(Σ∗0)i,j :=
d+2∑
k=1

Σi,k Σj,k αk and (Σ∗`)
i,j :=

d+2∑
k=1

Σi,k Σj,k β`,k (2.32)

It can be easily checked that Condition C implies that the parameter restrictions formulated in
Condition A are satisfied. Hence, due to Proposition 2.2.2, there exists an unique strong solution
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X = (Xt)0≤t≤T ∗ on (Ω,G,F, P ) taking values in Rm
++×Rd+2−m to the SDE (2.31). More explicitly,

we have that, for i ∈ {1, . . . ,m}:

dX i
t =

(
bi +

m∑
j=1

Ai,j X
j
t

)
dt+ Σi,i

√
βi,iX i

t dW
i
t (2.33)

and, for i ∈ {m+ 1, . . . , d+ 2}:

dX i
t =

(
bi +

d+2∑
j=1

Ai,j X
j
t

)
dt+

m∑
j=1

Σi,j

√
βj,j X

j
t dW

j
t +

d+2∑
k=m+1

Σi,k

√√√√αk +
m∑
`=1

β`,kX`
t dW

k
t

(2.34)
By combining (2.22) and (2.34) (for i = d + 2), we can obtain the following dynamics for the

defaultable stock price process S:

dSt = St−

(
bd+2 +

1

2

d+2∑
k=m+1

(Σd+2,k)
2 αk + Ad+2,d+2 logSt−

+

(
Ad+2,1 +

1

2
(Σd+2,1)2 β11 +

1

2

d+2∑
k=m+1

(Σd+2,k)
2 β1,k

)
vt

+
d∑
j=1

Ad+2,j+1 Y
j
t +

1

2

m−1∑
j=1

(Σd+2,j+1)2 βj+1,j+1 Y
j
t

+
1

2

d+2∑
k=m+1

m−1∑
`=1

(Σd+2,k)
2 β`+1,k Y

`
t

)
dt

+ St−Σd+2,1

√
β1,1 vt dW

1
t + St−

m−1∑
j=1

Σd+2,j+1

√
βj+1,j+1 Y

j
t dW

j+1
t

+ St−

d+2∑
k=m+1

Σd+2,k

√√√√αk + β1,k vt +
m−1∑
`=1

β`+1,k Y `
t dW

k
t − St− dHt

=: St−µS (Xt) dt+ St−

d+2∑
j=1

Σd+2,j

√
Rj,j
t dW j

t − St− dHt

= St−
(
µS (Xt)− λPt

)
dt+ St−

d+2∑
j=1

Σd+2,j

√
Rj,j
t dW j

t − St− dMP
t

(2.35)

where MP is the (P,G)-martingale introduced in part (a) of Lemma 2.2.3. As can be immediately
seen from (2.35), the defaultable stock price process S has rich and flexible stochastic dynamics. In
particular, the SDE (2.35) allows for stochastic volatility and both the drift and the diffusion terms
of S depend on the factor process Y . In addition, the drift term can depend on the volatility and on
the pre-default stock price process itself. Observe that we have three distinct layers of interaction
between S and the volatility v:
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1. a direct interaction, since v appears explicitly in the dynamics of S;

2. a “semi-direct” interaction, since the Brownian motion W 1 driving the process v is also one
of the drivers in the dynamics of S;

3. an indirect interaction, due to the common dependence of the processes S and v on the factor
process Y .

The framework so far described is rather general and, in particular, can be regarded as an ex-
tension to a defaultable setting of several stochastic volatility models proposed in the literature, as
shown in the following Examples.

Example 2.5.3 (The Heston with jump-to-default model). Let us consider the simple case where
d = 0 and m = 1, meaning that we do not consider any factor process Y . Let the model parameters
be specified as follows:

b =

(
b̄

µ

)
A =

(
a 0

−1/2 0

)
Σ =

(
k 0

ρ
√

1− ρ2

)
α =

(
0

0

)
β =

(
1 1

0 0

)
where b̄ ≥ k2/2, µ, a, k ∈ R and ρ ∈ [−1, 1]. It is easy to check that this parametrization satisfies
Condition C. Due to (2.35), the defaultable stock price process satisfies the following SDE:

dSt = St−µ dt+ St−
√
vt ρ dW

1
t + St−

√
vt
√

1− ρ2 dW 2 − St− dHt

= St−µ dt+ St−
√
vt dW̃t − St− dHt

(2.36)

where the process W̃ =
(
W̃t

)
0≤t≤T ∗ is a (P,F)-Brownian motion defined as W̃t := ρW 1

t +√
1− ρ2W 2

t , for t ∈ [0, T ∗]. The volatility process satisfies the following SDE, as can be easily
seen from (2.33):

dvt =
(
b̄+ avt

)
dt+ k

√
vt dW

1
t (2.37)

and d〈W̃ ,W 1〉t = ρ dt. We have thus recovered the Heston with jump-to-default model considered
in Section 2.4. Clearly, we can extend this model by introducing a non-trivial factor process Y , as
will be shown in the next Examples.

Example 2.5.4 (A defaultable two-factor stochastic volatility model). Let d = 1 and m = 2 and
consider the following specification for the model parameters:

A =

 −k k 0

0 −k0 0

−1/2 0 0

 Σ =

σ̄ 0 0

0 σ0 0

ρ 0
√

1− ρ2

 β =

1 0 1

0 1 0

0 0 0


b =

(
kv̄, k0ȳ, µ− ζ̄

)′
α = (0, 0, 0)′

with k ∈ R+, k0, v̄, σ̄, σ0, µ, ζ̄ ∈ R, kv̄ ≥ σ̄2/2, k0ȳ ≥ σ2
0/2 and ρ ∈ [−1, 1]. It is easy to check

that this parametrization satisfies Condition C. As can be deduced from (2.35), the defaultable stock
price process satisfies the following SDE:

dSt = St−
(
µ− ζ̄

)
dt+ St−

√
vt

(
ρ dW 1

t +
√

1− ρ2 dW 3
t

)
− St− dHt (2.38)
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where the parameters µ and ζ̄ represent the expected return rate and the dividend yield, respectively.
The stochastic volatility process v satisfies the following SDE:

dvt = k (v̄ + Yt − vt) dt+ σ̄
√
vt dW

1
t (2.39)

The factor Y can be thought of as a long-term stochastic trend component of the volatility process
and satisfies the following SDE:

dYt = k0 (ȳ − Yt) dt+ σ0

√
Yt dW

2
t (2.40)

Equations (2.38)-(2.40) are analogous to the two-factor stochastic volatility model considered in
Section 4.3 of Duffie et al. (2000), with the additional feature that the stock price process jumps to
zero as soon as the default event occurs.

Example 2.5.5 (A defaultable stochastic volatility - stochastic interest rate model). Let d = 1

and m = 2 and suppose that the real-valued process Y represents the stochastic evolution of the
risk-free interest rate. Consider the following specification for the model parameters:

A =

 a1 0 0

0 a2 0

−1
2

1
2

0

 Σ =

k1/ρ1 0 0

0 k2/ρ2 0

1 1 1

 β =

ρ2
1 0 1− ρ2

1

0 ρ2
2 1− ρ2

2

0 0 0


b = (b1, b2, 0)′ α = (0, 0, 0)′

with a1, a2, k1, k2 ∈ R, b1 ≥ k2
1/2, b2 ≥ k2

2/2 and ρ1, ρ2 ∈ [−1, 1] \ {0}. It is easy to check that
this parametrization satisfies Condition C. As can be seen from (2.35), the defaultable stock price
process satisfies the following SDE:

dSt = St− Yt dt+ St−

(
ρ1

√
vt dW

1
t + ρ2

√
Yt dW

2
t +

√
(1− ρ2

1) vt + (1− ρ2
2)Yt dW

3
t

)
− St− dHt

(2.41)
and the stochastic volatility process v and the interest rate process Y satisfy the following SDEs,
respectively:

dvt = (b1 + a1vt) dt+ k1

√
vt dW

1
t (2.42)

dYt = (b2 + a2Yt) dt+ k2

√
Yt dW

2
t (2.43)

Observe that (2.41) can be equivalently written as follows:

dSt− = St− Yt dt+ St−

(√
vt dW̃

1
t +

√
Yt dW̃

2
t

)
− St− dHt (2.44)

where W̃ 1 and W̃ 2 are two Brownian motions such that d〈W̃ 1,W 1〉t = ρ1dt and d〈W̃ 2,W 2〉t =

ρ2dt. Equations (2.42)-(2.44) represent a defaultable version of the stochastic volatility - stochastic
interest rate model proposed by Ahlip & Rutkowski (2009), here extended by allowing the stock
price process to jump to zero as soon as the default event occurs.
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Coming back to our general framework, note that the default intensity λP =
(
λPt
)

0≤t≤T ∗ has
been left so far unspecified. Following Section 2.2, we specify λP as follows:

λPt = λ̄P +
(
ΛP
)′
Xt for all t ∈ [0, T ∗] (2.45)

with λ̄P ∈R+ and ΛP ∈Rd+2
+ with ΛP,i = 0 for all i∈{m+ 1, . . . , d+ 2} and λ̄P +

∑m
i=1 ΛP,i > 0.

The specification (2.45) ensures that the process λP remains P -a.s. strictly positive, since 0 is an
unattainable boundary for the firstm components of the processX (see Proposition 2.2.2). The rea-
son why we impose a linear structure on λP lies in the possibility of obtaining analytically tractable
formulae for several quantities of interest, as will be shown in Section 2.5.2. It is interesting to
observe that (2.45) allows for a direct dependence of the default intensity on the stochastic volatil-
ity v. This is a very important feature, being consistent with several empirical observations which
document a link between default risk and volatility risk (see for instance the introduction of Carr &
Linetsky (2006) and Gatheral (2006), Chapter 6).

Remark 2.5.6 (On the interaction between the stock price and the default intensity). Note that
the specification (2.45) for the default intensity does not allow for a direct dependence of λP on
the logarithm of the pre-default stock price L, since the latter may take negative values6. However,
we can still capture a stochastic interaction between the default intensity and the stock price. In
fact, the dynamics of λP and L both depend on the factor process Y and, furthermore, the diffusion
terms in the dynamics of L are also directly correlated with the diffusion terms in the dynamics of
λP .

Let us also specify the risk-free spot interest rate r = (rt)0≤t≤T ∗ as follows:

rt = r̄ + Υ′Xt for all t ∈ [0, T ∗] (2.46)

where r̄ ∈ R and Υ ∈ Rd+2. As in the case of the default intensity process, if we want to ensure
non-negative interest rates, we can impose r̄ ∈ R+ and Υ ∈ Rd+2

+ with Υj = 0 for all j ∈
{m+ 1, . . . , d+ 2}. However, in order to cover the most general case, we do not impose this
restriction on the interest rate process7. We want to point out that specifications of the type (2.46)
are very common in the context of term structure modeling via affine processes: see for instance
Duffie & Kan (1996), Dai & Singleton (2000), Duffee (2002) and Chapter 10 of Filipović (2009).

Remark 2.5.7.

1. The specifications (2.45)-(2.46) for the default intensity and the interest rate allow the pro-
cesses λP and r to be correlated, due to their common dependence on the first m components

6 Clearly, one can let the default intensity λP depend also on the last d+ 2−m components of the vector process
X , including the pre-default stock price process L, via quadratic or exponential functions in order to ensure that the
process λP does not leave the positive orthant, see e.g. Fontana & Runggaldier (2010). However, as will be shown
in the following Sections, the affine structure of equations (2.45)-(2.46) is crucial for obtaining explicit formulae for
several key quantities useful for both risk management as well as pricing applications.

7 Note that, even in the case where the interest rate process r is not restricted to the positive orthant, the probability
of rt taking negative values can be made almost negligible from a practical point of view by a suitable choice of the
mean-reversion parameters in the SDE (2.31).
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of the Rd+2-valued process X . Furthermore, all the key elements appearing in our model
enjoy a rich correlation structure, in the sense that the stock price, the stochastic volatility,
the default intensity, the interest rate and the factor process Y are all mutually correlated.
An analogous structure for both the interest rate and the default intensity has been adopted
in Fontana (2010a) in a multi-firm setting and with the additional inclusion of a rating-based
component in the default intensity specification.

2. The present framework can be extended to a multi-firm setting. In fact, suppose that the
market comprises a number p ∈ N of firms and denote by τ i the random default time of
the i-th firm, for i = 1, . . . , p. As in Section 9.6 of McNeil et al. (2005), we can model
the random default times {τ i}i=1,...,p as conditionally independent doubly stochastic random
times with respect to (P,F), with corresponding P -default intensities

{
λP,i
}
i=1,...,p

, where
the latter are specified as in (2.45). Let us also denote by Li the logarithm of the pre-default
stock price process of the i-th firm and, analogously, by vi the stochastic volatility process
associated to the i-th firm, for i = 1, . . . , p. We can then define the Rd+2p-valued process
X = (Xt)0≤t≤T ∗ as Xt := (v1

t , . . . , v
p
t , Y

′
t , L

1
t , . . . , L

p
t )
′, for all t ∈ [0, T ∗]. It is easy to

see that if X satisfies an SDE of the form (2.31) and if a suitable version of Condition C
holds, then we can still rely on the powerful results made available by the affine technology.
Clearly, this multi-firm framework can accommodate flexible stochastic interactions between
the different stock price processes and their stochastic volatilities. In particular, the dynamics
of Li can also depend on vj for j 6= i. Furthermore, the default intensities associated to the
different firms are mutually correlated, due to the common dependence of

{
λP,it
}
i=1,...,p

on
the vector (v1

t , . . . , v
p
t , Y

′
t )
′.

2.5.2 Risk management applications

By relying on the affine structure of the general framework described in Section 2.5.1, we shall
now be concerned with some simple computations (under the real-world probability measure P ),
which may be of interest in view of risk management applications. Let us start with the following
Proposition, which will play a key role in the derivation of most of the results of this Section.

Proposition 2.5.8. Suppose that Condition C holds. Then, there exists an unique solution
(
Φ (·, u) ,

Ψ (·, u)
)

: [0, T ∗]→ C× Cd+2 to the following system of Riccati ordinary differential equations:

∂tΦ (t, u) = b′Ψ (t, u) +
1

2

d+2∑
k=m+1

[Σ′Ψ (t, u)]
2
k αk − λ̄

P

Φ (0, u) = 0

∂tΨi (t, u) =
d+2∑
k=1

Ak,i Ψk (t, u) +
1

2
[Σ′Ψ (t, u)]

2
i βi,i +

1

2

d+2∑
k=m+1

[Σ′Ψ (t, u)]
2
k βi,k − ΛP,i

∂tΨj (t, u) =
d+2∑

k=m+1

Ak,j Ψk (t, u)

Ψ (0, u) = u

(2.47)
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for i = 1, . . . ,m and j = m + 1, . . . , d + 2 for the initial condition u = 0. Furthermore, the
following holds:

E
[
e−

∫ T
t λPu du eu

′XT
∣∣Ft] = eΦ(T−t,u)+Ψ(T−t,u)′Xt

for any t, T ∈ [0, T ∗] with t ≤ T and for any u ∈ Cd+2 such that there exists an unique solution(
Φ
(
·,R (u)

)
,Ψ
(
·,R (u)

))
:
[
0, T̄

]
→ R× Rd+2 to system (2.47) for some T̄ ≥ T .

Proof. The proof relies on the same arguments used in the proof of Theorem 10.4 of Filipović
(2009). Note that condition (a) in Theorem 10.4 of Filipović (2009) is always satisfied by the
process λP , i.e. we have E

[
exp
(
−
∫ T

0
λPu du

)]
< ∞ for all T ∈ [0, T ∗], since λP is uniformly

bounded from below by 0, due to (2.45) together with Proposition 2.2.2.

From the risk-management perspective, one of the most important quantities we are interested
in is represented by the Gt-conditional survival probability over a given time horizon [t, T ], with
0 ≤ t ≤ T ≤ T ∗. This is the content of the following Corollary, the proof of which relies on
Proposition 2.5.8.

Corollary 2.5.9. Suppose that Condition C holds. For any t, T ∈ [0, T ∗] with t ≤ T , the Gt-
conditional survival probability over the time interval [t, T ] is explicitly given as follows:

P (τ > T | Gt) = (1−Ht) e
−A(T−t)−B(T−t)′X̂t

where X̂t := (X1
t , . . . , X

m
t )
′ and the functions A : [0, T ∗] → R and B : [0, T ∗] → Rm are the

unique solutions to the following system of Riccati ordinary differential equations:

∂tA (t) = b′B (t)− 1

2

d+2∑
k=m+1

[Σ′B (t)]
2
k αk + λ̄P

A (0) = 0

∂tBi (t) =
d+2∑
k=1

Ak,iBk (t)− 1

2
[Σ′B (t)]

2
i βi,i −

1

2

d+2∑
k=m+1

[Σ′B (t)]
2
k βi,k + ΛP,i

B (0) = 0

(2.48)

for i = 1, . . . ,m.

Proof. Observe first that system (2.48) corresponds to (2.47) with initial condition u = 0 by letting
Φ (t, 0) = −A (t) and Ψi (t, 0) = −Bi (t) for i = 1, . . . ,m. Due to Proposition 2.5.8, there exists
an unique solution

(
Φ (·, u) ,Ψ (·, u)

)
: [0, T ∗] → R × Rd+2 to system (2.47) for u = 0. It is also

easy to see that we have Ψj (t, 0) = 0 for all t ∈ [0, T ∗] and j = m + 1, . . . , d + 2. Hence, there
exists an unique solution

(
A (·) , B (·)

)
: [0, T ∗]→ R× Rm to (2.48). We have then:

P (τ > T | Gt) = (1−Ht)
P (τ > T |Ft)
P (τ > t|Ft)

= (1−Ht)E
[
e−

∫ T
t λPu du

∣∣Ft]
= (1−Ht) e

−A(T−t)−B(T−t)′X̂t

where the first two equalities follow from Lemma 5.1.2 and formula (5.9) of Bielecki & Rutkowski
(2002) and the last equality follows from Proposition 2.5.8 with u = 0.
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In particular, note that the Gt-conditional survival probability depends only on the first m com-
ponents of Xt, i.e. on the components of X which drive the default intensity itself. For T ∈ [0, T ∗],
let us now introduce a probability measure P T on (Ω,G), named T -survival probability measure
and formally defined as follows8:

dP T

dP
:=

e−
∫ T
0 λPu du

E
[
e−

∫ T
0 λPu du

] (2.49)

The terminology T -survival probability measure is justified by the following property, which holds
for any integrable FT ∗-measurable random variable F and for any t, T ∈ [0, T ∗] with t ≤ T :

E
[
F 1{τ>T}|Gt

]
= (1−Ht)

E
[
F 1{τ>T}|Ft

]
P (τ > t|Ft)

= (1−Ht)
E
[
F E

[
1{τ>T}|FT ∗

]∣∣Ft]
P (τ > t|Ft)

= (1−Ht)
E
[
F E

[
1{τ>T}|FT

]∣∣Ft]
P (τ > t|Ft)

= (1−Ht)
E
[
e−

∫ T
0 λPu du F

∣∣Ft]
P (τ > t|Ft)

= (1−Ht)E
[
e−

∫ T
t λPu du F

∣∣Ft] = (1−Ht)E
[
e−

∫ T
t λPu du

∣∣Ft]EPT [F |Ft]

= P (τ > T | Gt)EPT [F |Ft]
(2.50)

where EPT [·] denotes the expectation with respect to P T . In (2.50), the first equality follows
from Lemma 5.1.2 of Bielecki & Rutkowski (2002), the third equality uses the property that
P (τ > t|Ft) = P (τ > t|Fs) for any s ≥ t (see part 2 of Remark 2.2.4), the sixth equality follows
from the definition of the measure P T and Bayes’ formula and, finally, the last equality follows
as in the proof of Corollary 2.5.9. Hence, we see that the computation of the Gt-conditional ex-
pectation of the FT ∗-measurable random variable F in the case of survival until T reduces to the
computation of the Ft-conditional expectation of the random variable F with respect to the mea-
sure P T , while the term P (τ > T | Gt) can be computed as in Corollary 2.5.9. The next Corollary
gives an explicit formula for the Ft-conditional characteristic function of the random vector XT

under the T -survival measure P T , for any t, T ∈ [0, T ∗] with t ≤ T .

Corollary 2.5.10. Suppose that Condition C holds. Then, for any t, T ∈ [0, T ∗] with t ≤ T , the
Ft-conditional characteristic function of the random vector XT with respect to the measure P T is
explicitly given as follows, for all u ∈ iRd+2:

EPT
[
eu
′XT
∣∣Ft] =

eΦ(T−t,u)+Ψ(T−t,u)′Xt

e−A(T−t)−B(T−t)′X̂t

Proof. Due to the definition of the measure P T we have that:

EPT
[
eu
′XT
∣∣Ft] =

E
[
e−

∫ T
t λPs ds eu

′XT
∣∣Ft]

E
[
e−

∫ T
t λPs ds

∣∣Ft]
8 The T -survival probability measure PT bears resemblance to the restricted defaultable forward measure intro-

duced in Bielecki & Rutkowski (2002), Section 15.2.2, except that here PT is defined with respect to the physical
probability measure P and not with respect to a risk-neutral T -forward probability measure. Compare also the defini-
tion of the T -forward survival risk-neutral measure Q̃T in Section 2.5.3.
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The claim then follows by applying Proposition 2.5.8 (and Corollary 2.5.9) with u ∈ iRd+2 and
u = 0 to the numerator and to the denominator, respectively.

Due to (2.50), we can compute the Gt-conditional expectation (under the real-world probability
measure P ) of arbitrary functions of the random vector XT in the case of survival by relying on
Corollaries 2.5.9 and 2.5.10 and employing standard Fourier inversion techniques (for a specific
application, see Proposition 2.5.12).

Remark 2.5.11. For any t, T ∈ [0, T ∗] with t ≤ T , we have derived in Corollary 2.5.10 the Ft-
conditional characteristic function of the random vector XT with respect to the T -survival measure
P T . It is worth pointing out that the Ft-conditional characteristic function also coincides with the
Gt-conditional characteristic function, i.e.:

EPT
[
eu
′XT
∣∣Gt] = EPT

[
eu
′XT
∣∣Ft] =

eΦ(T−t,u)+Ψ(T−t,u)′Xt

e−A(T−t)−B(T−t)′X̂t

To prove the first equality, recall that the immersion property holds under the measure P , due
to part (b) of Lemma 2.2.3. Since the density dPT

dP
of the measure P T with respect to P is FT -

measurable, being λP an F-adapted process, Proposition 5.9.1.2 of Jeanblanc et al. (2009) implies
that the immersion property holds also with respect to the measure P T . Hence, due to Proposition
5.9.1.1 of Jeanblanc et al. (2009), we obtain that EPT

[
eu
′XT | Gt

]
= EPT

[
eu
′XT |Ft

]
, since XT is

FT -measurable.

Many risk management applications (like the computation of Value-at-Risk or similar risk mea-
sures) require the knowledge of quantiles of the conditional distribution (under the real-world mea-
sure P ) of the defaultable stock price at a given future time. To this effect, we derive in the following
Proposition the Gt-conditional distribution function of the defaultable stock price at time T in the
case of survival.

Proposition 2.5.12. Suppose that Condition C holds. Let x ∈ R+ and t, T ∈ [0, T ∗] with t ≤ T .
Then the following hold:

P (ST ≤ x, τ > T | Gt) = (1−Ht) e
−A(T−t)−B(T−t)′X̂t

(
1

2
− 1

π

∫ ∞
0

Im
(
e−iy log x ϕTt (y)

)
y

dy

)

where Im denotes the imaginary part and ϕTt denotes the Ft-conditional characteristic function of
LT under the measure P T , explicitly given as follows:

ϕTt (y) := EPT
[
e iyLT |Ft

]
=
eΦ(T−t,iyd+2)+Ψ(T−t,iyd+2)′Xt

e−A(T−t)−B(T−t)′X̂t

for all y ∈ R and where yd+2 denotes the vector (0, . . . , 0, y)′ ∈ Rd+2.

Proof. Observe first that:

P (ST ≤ x, τ > T |Gt) = P (LT ≤ log x, τ > T |Gt) = P (τ > T |Gt)P T (LT ≤ log x|Ft)

= (1−Ht) e
−A(T−t)−B(T−t)′X̂t P T (LT ≤ log x|Ft)
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where the second equality follows from (2.50) and the third equality from Corollary 2.5.9. By
relying on standard Fourier inversion techniques, it can be shown that (see e.g. Paolella (2007),
Section 1.2.6):

P T (LT ≤ log x|Ft) =
1

2
− 1

π

∫ ∞
0

Im
(
e−iy log x ϕTt (y)

)
y

dy

where Im denotes the imaginary part and ϕTt denotes the Ft-conditional characteristic function
of LT under the measure P T . The latter can be determined by relying on Corollary 2.5.10, with
u = i (0, . . . , 0, y)′ =: iyd+2 ∈ iRd+2.

2.5.3 Risk-neutral measures and valuation of default-sensitive payoffs

In Section 2.5.1, we have described the modeling framework with respect to the probability measure
P , which represents the probability measure characterizing the physical world. Accordingly, we
have considered in Section 2.5.2 several risk management applications, always under the real-
world measure P . However, if we want to proceed with the arbitrage-free valuation of financial
derivatives, we need to shift the model to a proper risk-neutral measure. As in Section 2.4.2, let
us denote by S̄ =

(
S̄t
)

0≤t≤T ∗ the discounted stock price process, where S̄t := e−
∫ t
0 ruduSt for all

t ∈ [0, T ∗]. A probability measure Q on (Ω,G) with Q ∼ P is said to be an Equivalent Local
Martingale Measure (ELMM) (or risk-neutral measure) for S if the process S̄ is a (Q,G)-local
martingale. It is well-known that the existence of an ELMM for S is equivalent to the No Free
Lunch with Vanishing Risk no-arbitrage condition. This follows from the fundamental theorem of
asset pricing in the version of Delbaen & Schachermayer (1994), since S̄ is locally bounded9.

It is important to be aware of the fact that most of the key features of the modeling framework
described in Section 2.5.1 are not necessarily preserved by an equivalent change of measure. In
particular, the affine structure of (X, τ), in the sense of Definition 2.2.5, may be lost. However, the
general results of Section 2.3 allow us to formulate conditions on the density process of an ELMM
so that the affine structure of (X, τ) is preserved.

Proposition 2.5.13. Suppose that Condition C holds. Let θ = (θt)0≤t≤T ∗ be an Rd+2-valued pro-
cess satisfying the following condition, for all t ∈ [0, T ∗]:

θt = θ (Xt) :=
(√

Rt

)−1 (
θ̂ + ΘXt

)
(2.51)

for some θ̂ ∈ Rd+2 and Θ ∈ R(d+2)×(d+2) such that:

(i)
∑d+2

k=1 Σi,kθ̂k ≥ 1
2

(Σ i,i)
2 βi,i − bi for all i ∈ {1, . . . ,m};

(ii)
∑d+2

k=1 Σi,kΘk,j = 0, for all i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , d+ 2},
and

∑d+2
k=1 Σi,kΘk,j ≥ −Ai,j , for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m} \ {i}.

9In fact, S̄ is non-negative and bounded from above by the discounted pre-default stock price process e−
∫ ·
0
rudu S̃,

which, being continuous, is locally bounded.
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Let γ = (γt)0≤t≤T ∗ be a real-valued process satisfying the following condition, for all t ∈ [0, T ∗]:

γt = γ (Xt) :=

(
λ̄Q − λ̄P

)
+
(
ΛQ − ΛP

)′
Xt

λ̄P + (ΛP )′Xt

(2.52)

for some λ̄Q ∈ R+ and ΛQ ∈ Rd+2
+ with ΛQ,i = 0 for all i ∈ {m+ 1, . . . , d+ 2} and λ̄Q +∑m

i=1 ΛQ,i > 0 and where λ̄P and ΛP are as in (2.45). Furthermore, suppose that the following
identity holds P -a.s. on [0, T ∗ ∧ τ ]:

µS (Xt)− λPt (1 + γt) +
d+2∑
j=1

Σd+2,j

√
Rj,j
t θjt = rt (2.53)

where the function µS : Rd+2 → R is as in (2.35). Then the measure Q on (Ω,G) defined by
dQ
dP

:= E
(∫

θ′dW +
∫
γ dMP

)
T ∗

is an ELMM for S which preserves the affine structure of (X, τ).

Proof. Note that conditions (2.51)-(2.52) are analogous to conditions (2.8)-(2.9) for the affine pro-
cess X as given in (2.31). Theorem 2.3.7 implies that E

(∫
θ′dW +

∫
γ dMP

)
is a P -a.s. strictly

positive (P,G)-martingale on [0, T ∗] and, hence, we can define a measure Q on (Ω,G) with Q ∼ P

by letting dQ
dP

:= E
(∫

θ′dW +
∫
γ dMP

)
T ∗

. Theorem 2.3.12 shows that Q preserves the affine
structure of (X, τ). Finally, Girsanov’s theorem and (2.53) imply that S̄ is a (Q,G)-local martin-
gale. In fact, recalling equation (2.35):

dS̄t = S̄t−
(
µS (Xt)− λPt − rt

)
dt+ S̄t−

d+2∑
j=1

Σd+2,j

√
Rj,j
t dW j

t − S̄t− dMP
t

= S̄t−

(
µS (Xt)− λPt − rt +

d+2∑
j=1

Σd+2,j

√
Rj,j
t θ

j
t − λPt γt

)
dt+ S̄t−

d+2∑
j=1

Σd+2,j

√
Rj,j
t dWQ,j

t

− S̄t− dMQ
t

= S̄t−

d+2∑
j=1

Σd+2,j

√
Rj,j
t dWQ,j

t − S̄t− dMQ
t

where WQ =
(
WQ
t

)
0≤t≤T ∗ is the (Q,F)/(Q,G)-Brownian motion defined by WQ := W −

∫ ·
0
θudu

and MQ =
(
MQ

t

)
0≤t≤T ∗ is the (Q,G)-martingale defined by MQ := MP −

∫ ·∧τ
0

λPu γudu.

Remark 2.5.14 (On diffusive and jump-type risk premia). The processes θ and γ admit the
financial interpretation of risk premia associated to the randomness generated by W and MP , re-
spectively. The Rd+2-valued process θ represents the risk premium associated to the “diffusive
risk” generated by the randomness driving the process X . Since the stock price, the volatility,
the interest rate and the default intensity all depend on X , the risk premium θ can be considered
as a market-wide non-diversifiable risk premium. The real-valued process γ represents the risk
premium associated to the default event or, more precisely, the risk premium associated to the id-
iosyncratic component of the risk generated by the occurrence of the default event (see also El
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Karoui & Martellini (2001) and Campi et al. (2009)). Assuming γ ≡ 0 means that the idiosyn-
cratic component of the default risk can be diversified away in the market, as explained in Jarrow
et al. (2005), and, therefore, market participants do not require a compensation for it. However,
since we are considering a single firm, assuming γ ≡ 0 may be seen as an over-simplification of
the model. Indeed, it is reasonable to expect the jump-type risk premium to be large when it is
difficult to hedge the risk associated with the timing of the default event of a particular firm. As can
be immediately seen from (2.51)-(2.52), the risk premia θ and γ are not independent, due to their
common dependence on X . Finally, as we have pointed out at the beginning of Section 2.5.1, the
last d̄− d− 2 components of the Rd̄-valued Brownian motion W̄ will only be used in Section 2.5.4
to model noise factors affecting the observations of market data. Consequently, it seems reasonable
to assume that such “noise-related risk” does not carry any intrinsic financial risk and can be diver-
sified away. Consequently, market participants do not require a compensation for being exposed to
the randomness generated by the last d̄− d− 2 components of the Brownian motion W̄ .

Until the end of this Section, we shall always assume that the hypotheses of Proposition 2.5.13
hold and, hence, there exists a risk-neutral measureQwhich preserves the affine structure of (X, τ).
This implies that the process X satisfies the following SDE on (Ω,G,F, Q):

dXt =
(
bQ + AQXt

)
dt+ Σ

√
Rt dW

Q
t (2.54)

where bQ ∈ Rd+2 and AQ ∈ R(d+2)×(d+2) are defined as follows, for i, j ∈ {1, . . . , d+ 2}:

AQi,j := Ai,j +
d+2∑
k=1

Σi,kΘk,j and bQi := bi +
d+2∑
k=1

Σi,kθ̂k (2.55)

For the purpose of valuing default-sensitive payoffs, the T -forward survival risk-neutral prob-
ability measure Q̃T turns out to be useful. For any T ∈ [0, T ∗], the measure Q̃T is defined as
follows10:

dQ̃T

dQ
=

e−
∫ T
0 (ru+λQu ) du

EQ
[
e−

∫ T
0 (ru+λQu )du

] (2.56)

where EQ [·] denotes the expectation with respect to the risk-neutral measure Q. The measure Q̃T

bears resemblance to the T -survival measure P T introduced in Section 2.5.2, except that Q̃T is
defined with respect to a risk-neutral measure Q and the density dQ̃T

dQ
also involves the discount

factor.
In the following Proposition, we derive a general formula for the arbitrage-free price of a general

payoff with maturity T ∈ [0, T ∗], paid only if the default event occurs after T . We call this situation
the zero recovery case.

10We assume throughout this Section that EQ
[
e−

∫ T
0
rudu

]
<∞ for all T ∈ [0, T ∗]. Clearly, under this assumption

the expectation appearing in the denominator of (2.56) is finite.
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Proposition 2.5.15. Let t, T ∈ [0, T ∗] with t ≤ T and let F : Rd+2 → R+. Then the arbitrage-free
price at time t of the random payoff F (XT ) at maturity T on the event {τ > T}, with zero recovery
in the case of default, is given by the following expression:

EQ
[
e−

∫ T
t rudu F (XT ) (1−HT )

∣∣Gt] = (1−Ht)E
Q
[
e−

∫ T
t (ru+λQu )du∣∣Ft]EQ̃T [F (XT ) |Ft]

(2.57)

Proof. Since the random variable e−
∫ T
t ruduF (XT ) is FT -measurable, Corollary 5.1.1 of Bielecki

& Rutkowski (2002) implies that:

E Q
[
e−

∫ T
t ruduF (XT ) (1−HT )

∣∣Gt] = (1−Ht)E
Q
[
e−

∫ T
t (ru+λQu )duF (XT )

∣∣Ft]
Equation (2.57) follows then immediately from the definition of Q̃T and Bayes’ rule.

The next Proposition deals with the arbitrage-free valuation of a recovery payment, i.e. a payoff
which is paid exactly at the time of default if the latter occurs before a fixed maturity T ∈ [0, T ∗].

Proposition 2.5.16. Let t, T ∈ [0, T ∗] with t ≤ T and let G : Rd+2 → R+. Then the arbitrage-free
price at time t of the random payoff G (Xτ ) at the default time τ on the event {τ ≤ T} is given by
the following expression:

EQ
[
e−

∫ τ
0 ruduG (Xτ )1{t<τ≤T}

∣∣Gt] = (1−Ht)

∫ T

t

EQ
[
e−

∫ u
t (rs+λQs )ds∣∣Ft]EQ̃u

[
λQu G (Xu) |Ft

]
du

(2.58)

Proof. Corollary 5.1.3 of Bielecki & Rutkowski (2002) implies that:

EQ
[
e−

∫ τ
0 ruduG (Xτ )1{t<τ≤T}

∣∣Gt] = (1−Ht)E
Q

[∫ T

t

e−
∫ u
t (rs+λQs )ds λQu G (Xu) du

∣∣∣Ft]
Equation (2.58) then easily follows by first applying Tonelli’s theorem and then using the definition
of the u-forward survival risk-neutral measure Q̃u and Bayes’ rule.

Remark 2.5.17. In the particular case where G ≡ δ for some δ ∈ (0,∞), one can obtain an
alternative formula for the recovery payment in terms of defaultable forward rates and forward
hazard rates conditioned on survival: see Lemma 2.1 of Fontana & Runggaldier (2010).

By combining Propositions 2.5.15 and 2.5.16 we can obtain the arbitrage-free price of a generic
defaultable claim which pays a random amount at maturity in the case of survival and a random
recovery at the time of default if the latter occurs before the maturity. Most (single-name) credit
derivatives can be written as linear combinations of zero-recovery contingent claims and a pure
recovery contingent claim, the latter being paid only in the case of default. Note that Propositions
2.5.15 and 2.5.16 do not rely on the affine structure of (X, τ). As can be seen from (2.57)-(2.58), if
we want to obtain more explicit results, we need to be able to compute the two following quantities:

1. theFt-conditional expected value (underQ) of random variables of the form exp
(
−
∫ T
t

(
λQu +

ru
)
du
)
, for t, T ∈ [0, T ∗] with t ≤ T ;
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2. the Ft-conditional expected value (under Q̃T ) of random variables of the form Γ (XT ), for
some function Γ : Rd+2 → R+ and t, T ∈ [0, T ∗] with t ≤ T .

Due to the affine structure of (X, τ) under the measure Q, the first of the above two elements can
be computed in closed form. Furthermore, we are able to obtain an explicit expression for the
Ft-conditional characteristic function of XT under the measure Q̃T and, hence, we can compute
EQ̃T [Γ (XT ) |Ft] by relying on standard Fourier inversion techniques, see e.g. Carr & Madan
(1999).

Proposition 2.5.18. Let t, T ∈ [0, T ∗] with t ≤ T . Then the following hold:

(a) EQ
[
e−

∫ T
t (ru+λQu )du∣∣Ft] = eΦQ(T−t,0)+ΨQ(T−t,0)′Xt

(b) the Ft-conditional characteristic function of XT with respect to Q̃T is explicitly given as
follows, for all u ∈ iRd+2:

EQ̃T
[
eu
′XT
∣∣Ft] =

eΦQ(T−t,u)+ΨQ(T−t,u)′Xt

eΦQ(T−t,0)+ΨQ(T−t,0)′Xt
(2.59)

where the functions ΦQ : [0, T ∗]×Cd+2 → C and ΨQ : [0, T ∗]×Cd+2 → Cd+2 solve the following
system of Riccati ordinary differential equations:

∂tΦ
Q (t, u) =

(
bQ
)′

ΨQ (t, u) +
1

2

d+2∑
k=m+1

[
Σ′ΨQ (t, u)

]2
k
αk − r̄ − λ̄Q

ΦQ (0, u) = 0

∂tΨ
Q
i (t, u) =

d+2∑
k=1

AQk,i Ψ
Q
k (t, u) +

1

2

[
Σ′ΨQ (t, u)

]2
i
βi,i +

1

2

d+2∑
k=m+1

[
Σ′ΨQ (t, u)

]2
k
βi,k −Υi − ΛQ,i

∂tΨ
Q
j (t, u) =

d+2∑
k=m+1

AQk,j ΨQ
k (t, u)−Υj

ΨQ (0, u) = u
(2.60)

for i = 1, . . . ,m and j = m + 1, . . . , d + 2, where the parameters AQ and bQ are defined as in
(2.55), the parameters r̄ and Υ as in (2.46) and the parameters λ̄Q and ΛQ as in (2.52).

Proof. Recalling that in this Section we always assume that the hypotheses of Proposition 2.5.13
hold, the tuple

(
AQ, bQ,Σ, α, β

)
satisfies Condition C. Therefore, part (a) of the Proposition can

be proved by relying on the same arguments used in the proof of Proposition 2.5.8 and Corollary
2.5.9, now with respect to the measureQ, and part (b) by relying on Proposition 2.5.8 and Corollary
2.5.10, using also the definition of the T -forward survival risk-neutral measure Q̃T . Analogous
results are given in Theorem 10.4 and Corollary 10.2 of Filipović (2009).
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Risk-neutral valuation of fixed-income defaultable products

By relying on Propositions 2.5.15, 2.5.16 and 2.5.18, we can now proceed to the arbitrage-free
valuation of some typical payoffs. The following Corollary deals with the valuation of default-free
0-coupon bonds and defaultable 0-coupon 0-recovery bonds, with unitary face value. It is well-
known that these elementary financial products can be considered as the building blocks of more
complex financial derivatives. In the following Corollary, the subscript “rf ” stands for “risk-free”
while “df ” stands for “defaultable”.

Corollary 2.5.19. Let t, T ∈ [0, T ∗] with t ≤ T . Then the following hold:

(a) the arbitrage-free price at time t of a 0-coupon default-free bond with maturity T is given by
the following expression:

Πrf (t, T ) := EQ
[
e−

∫ T
t rudu

∣∣Gt] = eΦ̄Q(T−t,0)+Ψ̄Q(T−t,0)′Xt

where the functions Φ̄Q : [0, T ∗] × Cd+2 → C and Ψ̄Q : [0, T ∗] × Cd+2 → Cd+2 satisfy a
system of Riccati ODEs of the type (2.60) but without the parameters λ̄Q and ΛQ;

(b) the arbitrage-free price at time t of a 0-coupon 0-recovery defaultable bond with maturity T
is given by the following expression:

Πdf (t, T ) := EQ
[
e−

∫ T
t rudu (1−HT )

∣∣Gt] = (1−Ht) e
ΦQ(T−t,0)+ΨQ(T−t,0)′Xt

where the functions ΦQ : [0, T ∗] × Cd+2 → C and ΨQ : [0, T ∗] × Cd+2 → Cd+2 satisfy the
system of Riccati ODEs (2.60).

Proof. To prove part (a), note that EQ
[
e−

∫ T
t rudu

∣∣Gt] = EQ
[
e−

∫ T
t rudu

∣∣Ft], due to the immersion
property between the filtrations F and G under Q (see part (a) of Theorem 2.3.10) together with
Proposition 5.9.1.1 of Jeanblanc et al. (2009). Since the interest rate process r is linear with respect
to X , due to (2.46), and since X satisfies on (Ω,G,F, Q) the SDE (2.54), part (a) can be proved as
the first part of Corollary 10.2 of Filipović (2009). To prove part (b) it suffices to use Proposition
2.5.15 (with F ≡ 1) together with part (a) of Proposition 2.5.18.

The following Definition formalizes the well-known concepts of yield of a 0-coupon default-
free bond and credit spread of a 0-coupon 0-recovery defaultable bond.

Definition 2.5.20. Let t, T ∈ [0, T ∗] with t < T :

• the yield Y L (t, T ) of a 0-coupon default-free bond is defined as follows:

Y L (t, T ) := − 1

T − t
log
(
Πrf (t, T )

)
• the credit spreadCS (t, T ) of a 0-coupon 0-recovery defaultable bond, computed with respect

to a 0-coupon default-free bond with the same maturity T , is defined as follows on the set
{τ > t}:

CS (t, T ) := − 1

T − t
log

(
Πdf (t, T )

Πrf (t, T )

)
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It is obvious that, due to Corollary 2.5.19, yields and credit spreads take the following linear
form:

Y L (t, T ) = −Φ̄Q (T − t, 0)

T − t
− Ψ̄Q (T − t, 0)′

T − t
Xt

=: AY L (T − t) +BY L (T − t)′Xt

(2.61)

and, on the set {τ > t}:

CS (t, T ) =
Φ̄Q (T − t, 0)− ΦQ (T − t, 0)

T − t
+

(
Ψ̄Q (T − t, 0)−ΨQ (T − t, 0)

)′
T − t

Xt

=: ACS (T − t) +BCS (T − t)′Xt

(2.62)

By relying on Corollary 2.5.19, we can easily compute the arbitrage-free prices of default-free
and defaultable coupon-bearing bonds: see for instance Bielecki & Rutkowski (2002), Section
1.1.5. By combining Corollary 2.5.19 with Proposition 2.5.16, we can also value defaultable cor-
porate bonds with non-zero recovery payments in the case of default. Furthermore, these results
allow us to compute the fair spread of a Credit Default Swap (see e.g. Fontana & Runggaldier
(2010), Section 2.2).

Risk-neutral valuation of equity-related defaultable products

While Corollary 2.5.19 deals with the valuation of fixed-income default-free and defaultable finan-
cial products, let us now consider the case of equity-related products. In particular, we now derive
semi-explicit formulae for the arbitrage-free prices of call and put options written on the default-
able stock S. In the following Corollary we assume that the options are issued by the defaultable
firm itself and written on its own stock S, with zero recovery in the case of default. This means that
if the firm goes bankrupt before the maturity of the option then the latter becomes worthless.

Corollary 2.5.21. Let t, T ∈ [0, T ∗] with t ≤ T and let K ∈ (0,∞) denote a fixed strike price.
Then the following hold11:

(a) the arbitrage-free price at time t of an European call option issued by the defaultable firm
itself and written on S, with maturity T and strike price K, is given by the following expres-
sion:

C̃K (t, T ) := EQ
[
e−

∫ T
t rudu (ST −K)+ (1−HT )

∣∣Gt]
= (1−Ht) e

ΦQ(T−t,0)+ΨQ(T−t,0)′Xt
1

2π

∫ +∞

−∞
ϕ̃Tt (w + iu)

K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

(2.63)
for some w ∈ (1,∞) such that the system of Riccati ODEs (2.60) has an unique solution with
initial condition u = (0, . . . , 0, w)′ ∈ Rd+2;

11Observe that the only difference between the risk-neutral valuation formulae (2.63) and (2.64) lies in the interval
the fixed parameter w belongs to.
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(b) the arbitrage-free price at time t of an European put option issued by the defaultable firm
itself and written on S, with maturity T and strike price K, is given by the following expres-
sion:

P̃K (t, T ) := EQ
[
e−

∫ T
t rudu (K − ST )+ (1−HT )

∣∣Gt]
= (1−Ht) e

ΦQ(T−t,0)+ΨQ(T−t,0)′Xt
1

2π

∫ +∞

−∞
ϕ̃Tt (w + iu)

K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

(2.64)
for some w ∈ (−∞, 0) such that the system of Riccati ODEs (2.60) has an unique solution
with initial condition u = (0, . . . , 0, w)′ ∈ Rd+2.

Here, ϕ̃Tt denotes theFt-conditional characteristic function of the logarithm of the pre-default stock
price LT with respect to the measure Q̃T , explicitly given as follows, for y ∈ C:

ϕ̃Tt (y) := EQ̃T
[
e yLT |Ft

]
=
eΦQ(T−t,yd+2)+ΨQ(T−t,yd+2)′Xt

eΦQ(T−t,0)+ΨQ(T−t,0)′Xt
(2.65)

where yd+2 := (0, . . . , 0, y)′ ∈ Cd+2 and the functions ΦQ : [0, T ∗] × Cd+2 → C and ΨQ :

[0, T ∗]× Cd+2 → Cd+2 solve the system of Riccati ODEs (2.60).

Proof. Note first that, due to Proposition 2.5.15, we have the following:

EQ
[
e−

∫ T
t rudu (ST −K)+ (1−HT )

∣∣Gt] = EQ
[
e−

∫ T
t rudu

(
eLT −K

)+
(1−HT )

∣∣Gt]
= (1−Ht)E

Q
[
e−

∫ T
t (ru+λQu )du∣∣Ft]EQ̃T

[(
eLT −K

)+∣∣Ft]
= (1−Ht) e

ΦQ(T−t,0)+ΨQ(T−t,0)′Xt EQ̃T
[(
eLT −K

)+∣∣Ft]
where the last equality follows from part (a) of Proposition 2.5.18. As in Carr & Madan (1999) and
Filipović (2009), Lemma 10.2, it can be shown that, for any w ∈ (1,∞):

(ex −K)+ =
1

2π

∫ ∞
−∞

e(w+iu)x K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

Hence:

EQ̃T
[(
eLT −K

)+ |Ft
]

=
1

2π
EQ̃T

[∫ ∞
−∞

e(w+iu)LT
K−(w−1+iu)

(w + iu) (w − 1 + iu)
du
∣∣∣Ft]

=
1

2π

∫ ∞
−∞

EQ̃T
[
e(w+iu)LT |Ft

] K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

=
1

2π

∫ ∞
−∞

ϕ̃Tt (w + iu)
K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

where the second equality follows by Fubini’s theorem, which can be applied since the following
holds (here we use the shorthand notation f̃ (u) := K−(w−1+iu)

(w+iu)(w−1+iu)
, for u ∈ R):

EQ̃T
[∫ ∞
−∞

∣∣e(w+iu)LT f̃ (u)
∣∣du] ≤ EQ̃T

[
ewLT

] ∫ ∞
−∞

∣∣f̃ (u)
∣∣du <∞
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due to the fact that the function f̃ is integrable and w ∈ (1,∞) is such that there exists an unique
solution to the system of Riccati ODEs (2.60) with initial condition u = (0, . . . , 0, w)′ ∈ Rd+2

(see also Filipović (2009), Theorem 10.5). The explicit expression given in equation (2.65) for
the Ft-conditional characteristic function of LT under the measure Q̃T follows from part (b) of
Proposition 2.5.18. This completes the proof of part (a) of the Corollary. Part (b) can be proved in
a similar way, using the fact that, for w ∈ (−∞, 0):

(K − ex) =
1

2π

∫ ∞
−∞

e(w+iu)x K−(w−1+iu)

(w + iu) (w − 1 + iu)
du

By relying on techniques similar to those used in the proof of Corollary 2.5.21 and exploiting the
knowledge of the Ft-conditional characteristic function of XT with respect to Q̃T , one can derive
the arbitrage-free value of more complex payoffs, see e.g. Section 10.3.1 of Filipović (2009).

We want to remark that, since the defaultable stock price process jumps to zero as soon as the
default event occurs and remains thereafter frozen at zero, we have that:

C̃K (t, T ) = EQ
[
e−

∫ T
t rudu (ST −K)+ (1−HT )

∣∣Gt]
= EQ

[
e−

∫ T
t rudu (ST −K)+

∣∣Gt] =: CK (t, T )
(2.66)

As in Corollary 2.5.21, C̃K (t, T ) denotes the arbitrage-free price of a call option issued by the
defaultable firm itself. On the contrary, CK (t, T ) denotes the arbitrage-free price of a call option
written on the defaultable stock S but issued by a default-free third party12. Hence, (2.66) shows
that the arbitrage-free price of an European call option written on S does not depend on whether
it is issued by the defaultable firm itself or by a default-free third party. This is intuitively clear.
In fact, both options are written on the same defaultable stock S and, since the process S remains
frozen at zero as soon as the default event occurs, a call option becomes worthless as soon as the
default event occurs regardless of the fact that the option is issued by the defaultable firm itself
or by a default-free third party. However, this is not the case for a put option. In fact, part (b) of
Corollary 2.5.21 gives the arbitrage-free price of an European put option, with strike price K and
maturity T , issued by the defaultable firm itself. If we consider instead a put option (with the same
strike price K and maturity T ) written on the defaultable stock S but issued by a default-free third
party and not by the defaultable firm itself, then it has to be valued as follows:

PK (t, T ) := EQ
[
e−

∫ T
t rudu (K − ST )+

∣∣Gt]
= EQ

[
e−

∫ T
t rudu (K − ST )+ (1−HT )

∣∣Gt]+K EQ
[
e−

∫ T
t ruduHT

∣∣Gt]
= P̃K (t, T ) +K EQ

[
e−

∫ T
t ruduHT

∣∣Gt]
(2.67)

12 We distinguish arbitrage-free prices of options issued by a default-free third party and written on the defaultable
stock S from arbitrage-free prices of options issued by the defaultable firm itself and written on its own stock S by
using the tilde notation for the latter.
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We can notice that the arbitrage-free price of a put option issued by a default-free third party can be
decomposed into the sum of the arbitrage-free price of a put option issued by the defaultable firm
itself and an additional term equal to the arbitrage-free value at time t of the payment of the strike
price K at the maturity T if the firm defaults before time T . Let us focus on this last term:

EQ
[
e−

∫ T
t ruduHT

∣∣Gt] = EQ
[
e−

∫ T
t rudu (1− 1 +HT )

∣∣Gt]
= EQ

[
e−

∫ T
t rudu

∣∣Gt]− EQ
[
e−

∫ T
t rudu (1−HT )

∣∣Gt]
= Πrf (t, T )− Πdf (t, T ) > 0

(2.68)

where we have used the definition of Πrf (t, T ) and Πdf (t, T ) (compare Corollary 2.5.19). We
have thus shown that, in line with the economic intuition, the arbitrage-free price PK (t, T ) of a put
option issued by a default-free third party can be decomposed into the sum of the price P̃K (t, T )

of a put option with identical characteristics (in terms of underlying, strike price and maturity) but
issued by the defaultable firm itself and a “default-protection” term proportional to the difference(
Πrf (t, T ) − Πdf (t, T )

)
between the arbitrage-free prices of a 0-coupon default-free bond and of

a 0-coupon 0-recovery defaultable bond.
Similarly as in Chapter 6 of Gatheral (2006), we can easily derive the following put-call parity

relation between the arbitrage-free prices of European call and put options (with the same strike
price K and the same maturity T ) issued by the same defaultable firm on its own stock S:

C̃K (t, T )− P̃K (t, T ) = EQ
[
e−

∫ T
t rudu

(
(ST −K)+ − (K − ST )+) (1−HT )

∣∣Gt]
= EQ

[
e−

∫ T
t rudu (ST −K) (1−HT )

∣∣Gt]
= EQ

[
e−

∫ T
t ruduST

∣∣Gt]−K Πdf (t, T )

(2.69)

Analogously, if we consider call and put options written on the defaultable stock S and with the
same characteristics but issued by a default-free third party we have that:

CK (t, T )− PK (t, T ) = EQ
[
e−

∫ T
t rudu

(
(ST −K)+ − (K − ST )+)∣∣Gt]

= EQ
[
e−

∫ T
t ruduST

∣∣Gt]−K Πrf (t, T )
(2.70)

Recall that, due to equation (2.66), we have that C̃ (t, T ) = C (t, T ). Hence, by combining equa-
tions (2.69) and (2.70) we obtain that:

PK (t, T )− P̃K (t, T ) = PK (t, T )− CK (t, T )−
(
P̃K (t, T )− C̃K (t, T )

)
= K

(
Πrf (t, T )− Πdf (t, T )

)
which agrees with the result of equations (2.67) and (2.68). Furthermore, if the discounted stock
price process S̄ is a true (Q,G)-martingale and not only a (Q,G)-local martingale, equations (2.69)
and (2.70) can be rewritten in the following classical versions:

C̃K (t, T )− P̃K (t, T ) = St −K Πdf (t, T )

CK (t, T )− PK (t, T ) = St −K Πrf (t, T )
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Remark 2.5.22 (On the supermartingale property of the discounted defaultable stock price
process). Note that, due to Fatou’s Lemma, the process S̄ is a non-negative (Q,G)-supermartingale,
being a non-negative (Q,G)-local martingale. This implies that, for all t, T ∈ [0, T ∗] with t ≤ T :

EQ
[
e−

∫ T
t rudu ST

∣∣Gt] ≤ St

Hence, equations (2.69)-(2.70) imply the following:

C̃K (t, T )− P̃K (t, T ) ≤ St −K Πdf (t, T )

CK (t, T )− PK (t, T ) ≤ St −K Πrf (t, T )

The above inequalities are strict in the case where the process S̄ is a strict (Q,G)-local martingale,
i.e. it is not a true (Q,G)-martingale (to this effect, compare also with Remark 2.4.8). This situation
is connected to the existence of stock price bubbles and has been analyzed in a series of recent
papers: see for instance Cox & Hobson (2005), Heston et al. (2007), Jarrow et al. (2007) and
Jarrow et al. (2010).

2.5.4 The incomplete information case

So far, we have supposed that all market participants have access to the information contained in
the filtration G, to which the factor process Y is adapted, since it is F-adapted and F ⊆ G. In this
Section, we depart from this hypothesis and let some of the components of Y be unobservable. This
implies that investors have no longer access to the full information filtration G. In the context of
credit risk modeling, the introduction of latent factors is particularly interesting, since it allows to
represent unobserved frailty variables that impact on the likelihood of the occurrence of the default
event (to this effect, see e.g. Schönbucher (2003b) and Duffie et al. (2009)). Furthermore, a model
enriched with latent factors is less prone to inadequate specifications of the factor process Y and
can also capture truly unmeasurable effects. For a more detailed discussion of these aspects, we
refer the reader to the introductory sections of Fontana & Runggaldier (2010) and Fontana (2010a),
which also contain several references to the pertinent literature.

In the present context, letting some of the driving processes be unobservable seems to be par-
ticularly appropriate. In fact, our modeling framework explicitly includes a stochastic volatility
process. Clearly, the latter cannot be directly observed in real financial markets, since it represents
a rather abstract quantity13. As a consequence, it seems reasonable to model stochastic volatility as
an unobservable process. On the other hand, it seems also reasonable to assume that investors can

13 We want to emphasize that one should distinguish between the different notions of volatility, realized volatility
and implied volatility. While the last two concepts represent observable quantities, the concept of volatility, which
denotes the instantaneous variance over an infinitesimal time interval, should not be assumed to be directly observable.
It is well-known that the volatility of the stock price process can be approximated by the empirical quadratic variation.
However, as can be seen from (2.35), the diffusion term of the stock price process S does not depend only on the
stochastic volatility process v but also on several components of the factor process Y . Hence, in general we cannot
directly disentangle the stochastic volatility component vt from the observation of the empirical quadratic variation of
the stock price process S.
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observe the behavior of the stock price process, being the latter a traded security, and the occurrence
of the default event. Note that, since we assume that the stock price jumps to zero as soon as the
default event occurs, the observation of the default indicator process is embedded in the observation
of the defaultable stock price process. Hence, let us make the following Assumption.

Assumption 2.5.23. For a fixed ď ∈ {1, . . . , d}, the first ď components of the Rd-valued factor
process Y = (Yt)0≤t≤T ∗ are unobservable while the last d− ď components are observable.

Note that there is no loss of generality in assuming that the first ď components of Y are unob-
servable, since otherwise we can simply reorder the components of Y . Clearly, the dynamics of
each component of the vector process X as well as the affine structure of the model are not altered
by a reordering of the components of Y . We denote by Y̌ =

(
Y̌t
)

0≤t≤T ∗ the Rď-valued unobservable

process defined as Y̌t :=
(
Y 1
t , . . . , Y

ď
t

)′ for t ∈ [0, T ∗] and by Ỹ =
(
Ỹt
)

0≤t≤T ∗ the Rd−ď-valued

observable process defined as Ỹt :=
(
Y ď+1
t , . . . , Y d

t

)′ for t ∈ [0, T ∗]. We also define X̌ :=
(
v, Y̌ ′

)′
and similarly X̃ :=

(
Ỹ ′, L

)′, so that the Rď+1-valued process X̌ collects all unobservable elements
of X and the Rd−ď+1-valued process X̃ all observable elements of X . Due to (2.54), it is easy to
see that the processes X̌ and X̃ satisfy the following dynamics under a risk-neutral measure Q:

dX̌t =
(
ǍX̌t + ÃX̃t + b̌

)
dt+ Σ̌

√
R
(
X̌t, Ỹt

)
dWQ

t (2.71)

dX̃t =
(
ČX̌t + C̃X̃t + b̃

)
dt+ Σ̃

√
R
(
X̌t, Ỹt

)
dWQ

t (2.72)

for suitable matrices Ǎ, Ã, Č, C̃, Σ̌, Σ̃ and vectors b̌ and b̃ such that:

AQ =

(
Ǎ Ã

Č C̃

)
∈ R(d+2)×(d+2) bQ =

(
b̌

b̃

)
∈ Rd+2 Σ =

(
Σ̌

Σ̃

)
∈ R(d+2)×(d+2)

Similarly as in Fontana & Runggaldier (2010), we assume that all market participants are able
to observe, besides the stock price process and the process Ỹ of observable factors, the following
elements:

1. the interest rate process r = (rt)0≤t≤T ∗;

2. a vector composed of p yields computed on 0-coupon default-free bonds with respect to p
different maturities Ti, i = 1, . . . , p;

3. a vector composed of q credit spreads computed on 0-coupon 0-recovery defaultable bonds
with respect to q different maturities Tj , j = 1, . . . , q.

Of course, yields and credit spreads are computed on 0-coupon (0-recovery) default-free and de-
faultable bonds, respectively, which are rather stylized financial products and, as such, not liquidly
traded in real financial markets. As a consequence, yields and credit spreads have to be recon-
structed from more complex objects such as CDS spreads and prices of corporate bonds. Hence,
we assume that investors are able to observe yields and credit spreads up to a noise factor, also
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due to liquidity and tax effects affecting CDS spreads and corporate bond prices. The noise factors
are represented by the Rd̄−d−2-valued Brownian motion W ∗ = (W ∗

t )0≤t≤T ∗ , composed of the last
d̄ − d − 2 elements of the Rd̄-valued Brownian motion W̄ . Recall that we assume that there is no
risk premium associated to the noise factor W ∗ (see Remark 2.5.14). Indeed, unlike the Brownian
motion W driving the vector process X , the Brownian motion W ∗ does not represent a fundamen-
tal source of financial risk but only a small uncertainty affecting market prices, due to the presence
of bid-ask spreads, transmission errors, liquidity and tax effects. This assumption implies that the
process W ∗ is a Brownian motion with respect to both the physical and the risk-neutral probability
measures14.

For any {T1, . . . , Tp}, with Ti ∈ (t, T ∗] for all i = 1, . . . , p, let us denote by ylt the vector in Rp

composed of the p noisily-observed yields, corresponding to their theoretical values Y L (t, Ti), for
i = 1, . . . , p:

ylt :=
(
Y L (t, T1) , . . . , Y L (t, Tp)

)′
+ %W ∗

t (2.73)

for some % ∈ R p×(d̄−d−2). Analogously, we denote by cst the vector in Rq composed of the
q noisily-observed credit spreads, corresponding to their theoretical values CS (t, Tj), for j =

1, . . . , q:

cst :=
(
CS (t, T1) , . . . , CS (t, Tq)

)′
+ νW ∗

t (2.74)

for some ν ∈ R q×(d̄−d−2). Equations (2.73)-(2.74), together with (2.61), (2.62) and (2.54), imply
the following dynamics, for i ∈ {1, . . . , p}:

d ylit =
(
∂tAY L (Ti − t) + ∂tBY L (Ti − t)′Xt

)
dt+BY L (Ti − t)

(
AQXt + bQ

)
dt

+BY L (Ti − t) Σ
√
R (Xt) dW

Q
t + % dW ∗

t

=:
(
f (Ti − t) + F̌ (Ti − t)′ X̌t + F̃ (Ti − t)′ X̃t

)
dt

+BY L (Ti − t) Σ
√
R
(
X̌t, Ỹt

)
dWQ

t + % dW ∗
t

(2.75)

for suitable functions f , F̌ and F̃ . Analogously, we have the following dynamics for the noisily-
observed credit spread on {τ > t}, for any j ∈ {1, . . . , q}:

d csjt =
(
∂tACS (Tj − t) + ∂tBCS (Tj − t)′Xt

)
dt+BCS (Tj − t)

(
AQXt + bQ

)
dt

+BCS (Tj − t) Σ
√
R (Xt) dW

Q
t + ν dW ∗

t

=:
(
g (Tj − t) + Ǧ (Tj − t)′ X̌t + G̃ (Tj − t)′ X̃t

)
dt

+BCS (Tj − t) Σ
√
R
(
X̌t, Ỹt

)
dWQ

t + ν dW ∗
t

(2.76)

for suitable functions g, Ǧ and G̃. Due to equations (2.46) and (2.71)-(2.72), we have the following

14 Furthermore, under the standing assumption that the risk-neutral measure Q preserves the affine structure of
(X, τ), the process W ∗ is also a Brownian motion with respect to the enlarged filtration G under both P and Q, since
the immersion property between F and G holds under both P and Q (see Proposition 2.5.13).
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dynamics for the interest rate process:

drt =
((

Υ′
[1:ď+1]

Ǎ+ Υ′
[ď+2:d+2]

Č
)
X̌t +

(
Υ′

[1:ď+1]
Ã+ Υ′

[ď+2:d+2]
C̃
)
X̃t + Υ′bQ

)
dt

+ Υ′Σ
√
R
(
X̌t, Ỹt

)
dWQ

t

(2.77)

where Υ[j:k] denotes the vector (Υj, . . . ,Υk)
′ ∈ Rk−j+1, for any 1 ≤ j ≤ k ≤ d+ 2.

Let us now introduce the Rd−ď+p+q+2-valued vector process V = (Vt)0≤t<T ∗∧τ defined as
Vt :=

(
X̃ ′t, rt, yl

′
t, cs

′
t

)′ for t ∈ [0, T ∗ ∧ τ ]. We call V the observations’ process. As can be seen
from (2.72) and (2.75)-(2.77), the observations’ process V has a drift term which is linear with
respect to X̌ and V itself and a diffusion term proportional to the square root of a linear function
of X̌ and V . Due to (2.71), the same holds true for the unobservable state process X̌ . Hence, con-
sidering the couple

(
X̌, V

)
, we have obtained a state-observation filtering system, the dynamics of

which preserve the fundamental affine structure of our framework. We do not discuss here possible
approaches to the actual solution of the filtering problem: we just mention that in Fontana & Rung-
galdier (2010) the authors consider a similar filtering problem, which is tackled by introducing an
auxiliary state process of lower dimension and relying on the Extended Kalman Filter.

Remark 2.5.24.

1. Note that, since we are considering a single defaultable firm, it is reasonable to restrict our
attention to the set {τ > t}, due to the fact that after the random default time τ the stock price
remains frozen at zero and the firm cannot exit from the default state.

2. We have so far assumed that investors can observe, besides the interest rate and the default-
able stock price process, a vector of yields computed on default-free bonds and a vector of
credit spreads computed on defaultable bonds. However, the present setting can also be ex-
tended to the case where investors are able to observe market prices of liquidly traded deriva-
tives written on the stock S. As we have seen in Section 2.5.3, the arbitrage-free price π F,Tt of
a derivative paying the random amount F (ST ) at the maturity T (in the case of survival until
T ), for t, T ∈ [0, T ∗] with t ≤ T , can be expressed as a functional ofXt =

(
X̌ ′, X̃ ′

)′ ∈ Rd+2:

π F,Tt := EQ
[
e−

∫ T
t rudu F (ST ) (1−HT )

∣∣Gt] = (1−Ht) e
ΦQ(T−t,0)+ΨQ(T−t,0)′Xt F̄ (Xt)

where F̄ (Xt) := EQ̃T
[
F
(
eLT
)
|Xt

]
= EQ̃T

[
F
(
eLT
)
|Ft
]
, where we have used the Markov

property of X (under the measure Q̃T ) and the fact that σ {Xs : s ≤ t} = σ {Ws : s ≤ t},
for all t ∈ [0, T ∗]. If the function F̄ satisfies suitable smoothness conditions (i.e. F̄ ∈ C2),
we can apply Itô’s formula and compute its stochastic differential, which will involve the
processes X̌ and X̃ . Since most market prices are observed through a bid-ask spread, we
can assume that the theoretical arbitrage-free price π F,Tt is noisily observed as well, as in
(2.73)-(2.74). We can then enlarge the observations’ process V by adding noisily observed
derivatives’ prices. However, depending on the model’s specification, the function F̄ may
be rather complicated (see for instance Corollary 2.5.21) and we should not expect that the
dynamics of noisily observed derivative prices enjoy the affine structure shown in (2.72) and
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(2.75)-(2.77). Depending on the model’s specification, this might be a more or less serious
drawback.

3. Due to Corollary 2.5.9, on the set {τ > t}, the logarithm of the conditional survival probabil-
ity has a linear structure with respect to X . Hence, if we compute the stochastic differential
of logP (τ > t|Gt) we obtain an SDE with a linear drift term and a diffusion term which is
proportional to the square root of a linear function of Xt, where the driving Brownian mo-
tion is with respect to the physical probability measure P . We can then apply Girsanov’s
theorem in order to obtain the stochastic dynamics of logP (τ > t|Gt) under the risk-neutral
measureQ. Due to the specific form of the risk premia considered in Proposition 2.5.13, such
Q-dynamics will still be characterized by an affine structure of the type shown in equations
(2.75)-(2.77). Hence, we can assume that investors can also observe noisy proxies of the
(logarithms of) true survival probabilities and include them in the observations’ process V .
For more details on this approach, we refer the interested reader to Fontana (2010a).

Assuming that we are able to solve the filtering problem for the couple
(
X̌, V

)
, we can then

easily deal with general pricing problems in the incomplete information case. Let us denote by
V = (Vt)0≤t≤T ∗ the investors’ filtration, i.e. the right-continuous P -augmentation of the filtration
V0 =

(
V0
t

)
0≤t≤T ∗ , where V0

t := σ {Vs : s ≤ t} ∨Ht for t ∈ [0, T ∗]. We have of course V ⊆ G, i.e.
Vt ⊆ Gt for all t ∈ [0, T ∗]. Clearly, since the process r is one of the elements of the observations’
process V , the savings account process

(
e
∫ t
0 rudu

)
0≤t≤T ∗ is V-adapted. As a consequence, e

∫ ·
0 rudu

is not only a numéraire with respect to (Q,G), as in Section 2.5.3, but also with respect to (Q,V).
Let us denote by Q an ELMM for S with respect to the full-information filtration G. The following
simple Lemma shows that the measure Q is also an ELMM for S with respect to the investors’
filtration V.

Lemma 2.5.25. Let Q be an ELMM for S with respect to the full-information filtration G. Then,
Q is also an ELMM for S with respect to the investors’ filtration V.

Proof. Note first that the discounted defaultable stock price process S̄ = e−
∫ ·
0 ruduS is V-adapted.

Since S̄ is continuous before τ and jumps to zero at τ , it is locally bounded. More precisely, there
exists a sequence (τn)n∈N of V-stopping times such that τn↗∞ P -a.s. as n→∞ and S̄τn≤K (n)

P -a.s., for some K (n) ∈ (0,∞). Hence, we can write as follows, for any s, t ∈ [0, T ∗] with s ≤ t

and n ∈ N:

EQ
[
S̄t∧τn|Vs

]
= EQ

[
EQ
[
S̄t∧τn|Gs

]∣∣Vs] = EQ
[
S̄s∧τn|Vs

]
= S̄s∧τn

where the second equality follows from the fact that the process S̄ is a (Q,G)-local martingale,
since Q is assumed to be an ELMM for S with respect to G. This shows that S̄ is a (Q,V)-local
martingale, meaning that Q is an ELMM for S with respect to V.

Lemma 2.5.25 implies that, in the incomplete information case, we can obtain an arbitrage-free
price system with respect to the investors’ filtration V by computing conditional expectations of
discounted payoffs with respect to (Q,V). Furthermore, this (Q,V)-arbitrage-free pricing system
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is linked in an intuitive way to the original full information (Q,G)-arbitrage-free pricing system15.
To see this, for t, T ∈ [0, T ∗] with t ≤ T , let us denote by Π (t, T ;F ) the (Q,G)-arbitrage-free
price at time t of an integrable contingent claim F with maturity T . We have then16:

Π̂ (t, T ;F ) := EQ
[
e−

∫ T
t rudu F

∣∣Vt] = EQ
[
EQ
[
e−

∫ T
t rudu F

∣∣Gt]∣∣∣Vt] = EQ [Π (t, T ;F ) |Vt]
(2.78)

where we have denoted by Π̂ (t, T ;F ) the (Q,V)-arbitrage-free price at time t of the contingent
claim F .

The following Proposition deals with the general problem of computing the (Q,V)-arbitrage-
free price of a credit-risky derivative which pays on the set {τ > t} a random amount F (XT ) at
the maturity T , for F : Rd+2 → R+.

Proposition 2.5.26. Let t, T ∈ [0, T ∗] with t ≤ T and F : Rd+2 → R+. Then the (Q,V)-
arbitrage-free price at time t of the random payoff F (XT ) at maturity T on the event {τ > T},
with zero recovery in the case of default, is given by the following expression:

EQ
[
e−

∫ T
t ruduF (XT ) (1−HT )

∣∣∣Vt] = Π̂df (t, T )EQ̂T [F (XT ) |Vt] (2.79)

where the measure Q̂T � Q on (Ω,G) is defined as follows:

dQ̂T

dQ
:=

e−
∫ T
0 rudu (1−HT )

EQ
[
e−

∫ T
0 rudu (1−HT )

]
and Π̂df (t, T ) denotes the (Q,V)-arbitrage-free price at time t of a 0-coupon 0-recovery default-
able bond with maturity T , explicitly given as follows:

Π̂df (t, T ) = (1−Ht) e
ΦQ(T−t,0) EQ

[
eΨQ(T−t,0)′Xt

∣∣Vt] (2.80)

Furthermore, the Vt-conditional characteristic function of XT with respect to the measure Q̂T is
given as follows on the set {τ > t}, for all u ∈ iRd+2:

ϕ̂Tt (u) := EQ̂T
[
eu
′XT |Vt

]
=
eΦQ(T−t,u) EQ

[
eΨQ(T−t,u)′Xt

∣∣Vt]
eΦQ(T−t,0)EQ

[
eΨQ(T−t,0)′Xt

∣∣Vt] (2.81)

where the functions ΦQ : [0, T ∗] × Cd+2 → C and ΨQ : [0, T ∗] × Cd+2 → Cd+2 are the unique
solutions to the system of Riccati ODEs (2.60).

Proof. Equation (2.79) follows directly by using the definition of the measure Q̂T together with
Bayes’ rule and equation (2.78), here applied to the arbitrage-free price of a 0-coupon 0-recovery
defaultable bond with maturity T . To prove equation (2.80) it suffices to combine (2.78) with part
(b) of Corollary 2.5.19. Hence, it remains to show that the Vt-conditional characteristic function of

15We refer the reader to Gombani et al. (2007) for a more detailed analysis of the consistency of arbitrage-free
pricing systems with respect to different filtrations.

16An analogous result can be found in Lemma 3.1 of Fontana & Runggaldier (2010).
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the random vector XT under the measure Q̂T can be expressed as in (2.81). On the set {τ > t} =

{Ht = 0}, this can be shown as follows, for any u ∈ iRd+2:

EQ̂T
[
eu
′XT |Vt

]
=
EQ
[
e−

∫ T
t rudu (1−HT ) eu

′XT
∣∣Vt]

EQ
[
e−

∫ T
t rudu (1−HT )

∣∣Vt]
=
EQ
[
EQ
[
e−

∫ T
t rudu (1−HT ) eu

′XT
∣∣Gt]∣∣Vt]

EQ
[
EQ
[
e−

∫ T
t rudu (1−HT )

∣∣Gt]∣∣Vt]
=
EQ
[
EQ
[
e−

∫ T
t (ru+λQu )du∣∣Ft]EQ̃T

[
eu
′XT |Ft

]∣∣Vt]
eΦQ(T−t,0)EQ

[
eΨQ(T−t,0)′Xt

∣∣Vt]
=
eΦQ(T−t,u) EQ

[
eΨQ(T−t,u)′Xt

∣∣Vt]
eΦQ(T−t,0) EQ

[
eΨQ(T−t,0)′Xt

∣∣Vt]
where the first equality follows from the definition of the measure Q̂T , the third equality (for the nu-
merator) is due to Proposition 2.5.15 applied to the function F (x) = eu

′x and (for the denominator)
to part (b) of Corollary 2.5.19 and the fourth equality uses Proposition 2.5.18.

Remark 2.5.27.

1. As can be seen from Proposition 2.5.26 and (2.81), the key ingredient for the computation
of arbitrage-free prices at time t with respect to the investors’ filtration V turns out to be the
Vt-conditional characteristic function of the random vectorXt under the risk-neutral measure
Q. This can be easily computed as soon as we manage to solve the filtering problem for the
couple

(
X̌, V

)
under the measure Q.

2. It is interesting to observe that the probability measure Q̂T introduced in Proposition 2.5.26
is similar to the T -forward survival risk-neutral measure Q̃T introduced at the beginning of
Section 2.5.3. The only difference is that the density dQ̂T

dQ
involves the default indicator term

(1−HT ), which may be equal to 0 in the case of default, unlike the term e−
∫ T
t λQu du. As a

consequence, the measure Q̂T is absolutely continuous with respect toQ but is not equivalent
to Q. However, this has no implications for the arbitrage-free properties of the model, since
we only use the measure Q̂T as a computational tool.

3. Clearly, by following the arguments used in the proof of Proposition 2.5.16, one can extend
Proposition 2.5.26 to the arbitrage-free valuation of recovery payments with respect to the
investors’ filtration V.

2.5.5 Connections to the literature

We give here a very brief overview of the related literature on the joint modeling of equity and credit
risk, which has been the subject of several recent papers. In particular, in Campi et al. (2009), Carr
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& Linetsky (2006) and Carr & Madan (2010) the authors consider local volatility models (more
specifically, Campi et al. (2009) and Carr & Linetsky (2006) work with a CEV process) for the
stock price process and introduce a random default time modeled as the first jump time of a Poisson
process with stochastic intensity, the latter being given by a deterministic function of the pre-default
stock price. Moving from a local volatility to a stochastic volatility approach, Carr & Schoutens
(2008) and Carr & Wu (2010) consider the classical stochastic volatility model of Heston (1993)
with the inclusion of an unpredictable jump to default. In the present Chapter, we embed these
models into a rather general class of multivariate affine diffusion models.

The very recent paper by Cheridito & Wugalter (2011) is rather close to our framework. Indeed,
the authors jointly model the stock price process, its volatility and a vector of stochastic factors via
a multivariate affine process, allowing also for jumps in the factors’ dynamics, and then proceed to
the analysis of pricing and hedging problems for several typical payoff structures. However, they
do only consider the model under an a priori chosen risk-neutral probability measure, while the
major focus of this Chapter consists in studying the model under both the physical and the risk-
neutral probability measure, ensuring that the structure of the model is preserved after the change
of measure. Indeed, the common approach in the literature surveyed so far is to formulate a model
with respect to an exogenously fixed risk-neutral probability measure, the only exception being the
papers by Campi et al. (2009) and, to a lesser extent, Carr & Wu (2010). Even in the last two
papers, the authors adopt very particular specifications of the risk premium process and, therefore,
our more general results could be of interest.

Concerning the financial interpretation as risk premia of the processes θ and γ appearing in
density process of a risk-neutral probability measure, we refer the interested reader to El Karoui &
Martellini (2001), Driessen (2005), Jarrow et al. (2005), Section 9.3 of McNeil et al. (2005) and
Giesecke & Goldberg (2008). In particular, Driessen (2005) points out the importance of explicitly
distinguishing between the risk of credit spread changes, if no default occurs, from the risk of the
default event itself. A positive jump-type risk premium indicates that not enough corporate bonds
(or analogous default-sensitive products) are traded in order to fully diversify the default jump risk.
Furthermore, if one does not allow for a jump-type risk premium, one then incurs into the risk of
misspecifying the model, thus leading to an inaccurate fit of the observed default rates. In Giesecke
& Goldberg (2008), the authors propose a different interpretation of the risk premium process γ in
terms of a transparency premium required by investors to compensate for their imperfect knowledge
of the threshold which triggers the default event in the context of a structural model.

2.6 Conclusions and further developments

In this Chapter, we have studied the effects of (locally) equivalent changes of measure on reduced-
form credit risk models, where the default intensity is driven by a multivariate diffusion affine
process. In particular, we have established necessary and sufficient conditions for the preserva-
tion of the affine structure of the model under a locally equivalent change of measure. As an
application, we have considered a defaultable extension of the popular Heston (1993) stochastic
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volatility model. In that context, we have characterized the family of risk-neutral measures which
preserve the Heston with jump-to-default structure, thus generalizing the results obtained by Wong
& Heyde (2006). Then, extending the Heston with jump-to-default model, we have shown how our
techniques can be applied in a general hybrid equity/credit risk modeling framework allowing for
stochastic volatility and multiple (possibly unobserved) stochastic factors which affect the interest
rate and the default intensity.

Among the future developments of this Chapter, the extension of the results of Section 2.3 to
general semimartingale affine processes seems of particular interest. Clearly, many of the results of
the present Chapter rely on the continuity of the underlying affine process and, hence, the extension
to the discontinuous case requires different strategies and techniques. However, we are rather
confident that one can obtain an analogous characterization of the family of all locally equivalent
probability measures which preserve the affine structure of the model. In that direction, we already
have some preliminary results which shall be presented in a future work. In a default-free context,
related questions have also been studied in the recent paper Kallsen & Muhle-Karbe (2010).

In the final part of this Chapter, we have briefly considered the case where some of the com-
ponents of the underlying affine process represent latent factors which cannot be directly observed.
Section 2.5.4 only lays the foundations for the analysis of the incomplete information situation, to-
gether with the ensuing filtering problem. In particular, it could be of interest to apply the filtering
techniques proposed in Fontana & Runggaldier (2010) to a hybrid equity/credit risk model allow-
ing for both stochastic volatility and incomplete information, under both the real-world and the
risk-neutral probability measure. Knowing that we can preserve the affine structure of the model
under an equivalent change of measure, we can take advantage of the analytical tractability ensured
by the affine framework and compute risk-neutral prices of several derivatives, in particular call/put
options written on the defaultable stock. Then, an interesting task would consist in studying the
different impacts of default risk, stochastic volatility and incomplete information on the shape of
the implied volatility surface obtained from those option prices.
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Chapter 3

Diffusion-based models for financial
markets without martingale measures

3.1 Introduction

The concepts of Equivalent (Local) Martingale Measure (E(L)MM), no-arbitrage and risk-neutral
pricing can be rightfully considered as the cornerstones of modern mathematical finance. It seems
to be almost folklore that such concepts can be regarded as mutually equivalent. In fact, most
practical applications in quantitative finance are directly formulated under suitable assumptions
which ensure that those concepts are indeed equivalent.

In recent years, maybe due to the dramatic turbulences raging over financial markets, an increas-
ing attention has been paid to models that allow for financial market anomalies. More specifically,
several authors have studied market models where stock price bubbles may occur: see e.g. Cox
& Hobson (2005), Heston et al. (2007), Hulley (2010), Jarrow et al. (2007), Jarrow et al. (2010).
It has been shown that bubble phenomena are consistent with the classical no-arbitrage theory
based on the notion of No Free Lunch with Vanishing Risk (NFLVR), as developed in Delbaen
& Schachermayer (1994) and Delbaen & Schachermayer (2006). However, in the presence of a
bubble, discounted prices of risky assets follow, under a risk-neutral measure, a strict local martin-
gale, i.e. a local martingale which is not a true martingale. This fact already implies that several
well-known and classical results (for instance put-call parity, see e.g. Cox & Hobson (2005)) of
mathematical finance do not hold anymore and must be modified accordingly.

A decisive step towards enlarging the scope of financial models has been represented by the
study of models which do not fit at all into the classical no-arbitrage theory based on (NFLVR).
Indeed, several authors (see e.g. Christensen & Larsen (2007), Delbaen & Schachermayer (1995a),
Hulley (2010), Karatzas & Kardaras (2007), Loewenstein & Willard (2000)) have studied instances
where an ELMM may fail to exist. More specifically, financial models that do not admit an ELMM
appear in the context of Stochastic Portfolio Theory (see Fernholz & Karatzas (2009) for a recent
overview) and in the Benchmark Approach (see the monograph Platen & Heath (2006) for a detailed
account). In the absence of a well-defined ELMM, many of the usual results of mathematical
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finance seem to break down and one is led to ask whether there is still a meaningful way to proceed
in order to solve the crucial problems of portfolio optimisation and contingent claim valuation. It
is then a remarkable result that a satisfactory theory can be developed even in the absence of an
ELMM, especially in the case of a complete financial market model, as we are going to illustrate.

The present Chapter aims at carefully analysing a general class of diffusion-based financial
models, without relying on the existence of an ELMM. More specifically, we discuss several no-
tions of no-arbitrage that are weaker than the traditional (NFLVR) condition and we study necessary
and sufficient conditions for their validity. We show that the financial market may still be viable,
in a sense to be made precise, even in the absence of an ELMM. In particular, it turns out that the
viability of the financial market is fundamentally linked to a square-integrability property of the
market price of risk process. Some of the results that we are going to present have already been
obtained, also in more general settings (see e.g. Christensen & Larsen (2007), Hulley & Schweizer
(2010), Karatzas & Kardaras (2007), Kardaras (2010b)). However, by exploiting the Itô-process
structure of our model, we are able to provide simple and transparent proofs, highlighting the key
ideas behind the general theory. We also discuss the connections to the Growth-Optimal Portfolio
(GOP), which is shown to be the unique portfolio possessing the numéraire property. In similar
diffusion-based settings, related works that study the question of market viability in the absence
of an ELMM include Fernholz & Karatzas (2009), Galesso & Runggaldier (2010), Heston et al.
(2007), Loewenstein & Willard (2000), Londono (2004), Platen (2002) and Runggaldier (2003).

Besides studying the question of market viability, a major focus of this Chapter is on the valua-
tion and hedging of contingent claims in the absence of an ELMM. In particular, we argue that the
concept of market completeness, namely the capability to replicate every contingent claim, must be
kept distinct from the existence of an ELMM. Indeed, we prove that the financial market may be
viable and complete regardless of the existence of an ELMM. We then show that, in the context of
a complete financial market, there is a unique natural candidate for the price of an arbitrary contin-
gent claim, given by its GOP-discounted expected value under the original (real-world) probability
measure. To this effect, we revisit some ideas originally appeared in the context of the Benchmark
Approach, providing more careful proofs and extending some previous results.

The present Chapter is strongly linked to Chapter 4. In fact, on the one hand, many of the
results of the present Chapter can be recovered by specializing the more general results of Chapter
4 to the case of an Itô-process-based model for a financial market. On the other hand, since the
results of Chapter 4 are formulated in general and abstract terms, the present Chapter can also
serve as an illustration of the concepts and of the main results contained in Chapter 4, avoiding
some of the technicalities which arise in the more general context by restricting our attention to a
diffusion-based financial market model.

The present Chapter is structured as follows. Section 3.2 introduces the general setting, which
consists of a class of Itô-process models satisfying minimal technical conditions. We introduce a
basic standing Assumption and we carefully describe the set of admissible trading strategies. The
question of whether (properly defined) arbitrage opportunities do exist or not is dealt with in Section
3.3. In particular, we explore the notions of increasing profit and arbitrage of the first kind, giving
necessary and sufficient conditions for their absence from the financial market. In turn, this lead us
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to introduce the concept of martingale deflators, which can be regarded as weaker counterparts to
the traditional martingale measures. Section 3.4 proves the existence of an unique Growth-Optimal
strategy, which admits an explicit characterization and also generates the numéraire portfolio. In
turn, the latter is shown to be the reciprocal of a martingale deflator, thus linking the numéraire
portfolio to the no-arbitrage criteria discussed in Section 3.3. Section 3.5 starts with the hedging
and valuation of contingent claims, showing that the financial market may be complete even in
the absence of an ELMM. Section 3.6 deals with contingent claim valuation according to three al-
ternative approaches: real-world pricing, upper-hedging pricing and utility indifference valuation.
In the particular case of a complete market, we show that they yield the same valuation formula.
Section 6 concludes by pointing out possible extensions and further developments.

3.2 The general setting

Let (Ω,F , P ) be a complete probability space. For a fixed time horizon T ∈ (0,∞), let F =

(Ft)0≤t≤T be a filtration on (Ω,F , P ) satisfying the usual conditions of right-continuity and com-
pleteness. Let W = (Wt)0≤t≤T be an Rd-valued Brownian motion on the filtered probability space
(Ω,F ,F, P ). To allow for greater generality we do not assume from the beginning that F = FW ,
meaning that the filtration F may be strictly larger than the P -augmented Brownian filtration FW .
Also, the initial σ-field F0 may be strictly larger than the trivial σ-field.

We consider a financial market composed of N + 1 securities Si, for i = 0, 1, . . . , N , with
N ≤ d. As usual, we let S0 represent a locally riskless asset, which we name savings account, and
we define the process S0 = (S0

t )0≤t≤T as follows:

S0
t := exp

(∫ t

0

ru du

)
for t ∈ [0, T ] (3.1)

where the interest rate process r = (rt)0≤t≤T is a real-valued progressively measurable process
such that

∫ T
0
|rt| dt < ∞ P -a.s. The remaining assets Si, for i = 1, . . . , N , are supposed to be

risky assets. For i = 1, . . . , N , the process Si = (Sit)0≤t≤T is given by the solution to the following
SDE:

dSit = Sit µ
i
t dt+

d∑
j=1

Sit σ
i,j
t dW j

t Si0 = si (3.2)

where:

(i) si ∈ (0,∞) for all i = 1, . . . , N ;

(ii) µ = (µt)0≤t≤T is an RN -valued progressively measurable process with µt =
(
µ1
t , . . . , µ

N
t

)′
and satisfying

∫ T
0
‖µt‖ dt <∞ P -a.s.;

(iii) σ = (σt)0≤t≤T is an RN×d-valued progressively measurable process with σt =
{
σi,jt
}
i=1,...,N
j=1,...,d

and satisfying
∑N

i=1

∑d
j=1

∫ T
0

(
σi,jt
)2
dt <∞ P -a.s.
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The SDE (3.2) admits the following explicit solution, for every i = 1, . . . , N and t ∈ [0, T ]:

Sit = si exp

(∫ t

0

(
µiu −

1

2

d∑
j=1

(
σi,ju
)2
)
du+

d∑
j=1

∫ t

0

σi,ju dW j
u

)
(3.3)

Note that conditions (ii)-(iii) above represent minimal conditions in order to have a meaningful
definition of the ordinary and stochastic integrals appearing in (3.3). Apart from these technical
requirements, we leave the stochastic processes µ and σ fully general. For i = 0, 1, . . . , N , we
denote by S̄i =

(
S̄it
)

0≤t≤T the discounted price process of the i-th asset, defined as S̄it := Sit/S
0
t

for t ∈ [0, T ].
Let us now introduce the following standing Assumption, which we shall always assume to be

satisfied without any further mention.

Assumption 3.2.1. For all t ∈ [0, T ], the (N × d)-matrix σt has P -a.s. full rank.

Remark 3.2.2. From a financial perspective, Assumption 3.2.1 means that the financial market
does not contain redundant assets, i.e. there does not exist a non-trivial linear combination of(
S1, . . . , SN

)
that is locally riskless, in the sense that its dynamics are not affected by the Brownian

motion W . However, we want to point out that Assumption 3.2.1 is only used in the following for
proving uniqueness properties of trading strategies and, hence, could also be relaxed.

In order to rigorously describe the activity of trading in the financial market, we now introduce
the concepts of trading strategy and discounted portfolio process. In the following Definition we
only consider self-financing trading strategies which generate positive portfolio processes.

Definition 3.2.3.

(a) An RN -valued progressively measurable process π = (πt)0≤t≤T is an admissible trading
strategy if

∫ T
0
‖σ′t πt‖

2 dt < ∞ P -a.s. and
∫ T

0
|π′t (µt − rt1)| dt < ∞ P -a.s., where 1 :=

(1, . . . , 1)′ ∈ RN . We denote by A the set of all admissible trading strategies.

(b) For any (v, π) ∈ R+ ×A, the associated discounted portfolio process V̄ v,π =
(
V̄ v,π
t

)
0≤t≤T

is defined by:

V̄ v,π
t := v E

(
N∑
i=1

∫
πi
dS̄i

S̄i

)
t

= v exp

(∫ t

0

π′u (µu − ru1) du− 1

2

∫ t

0

‖σ′u πu‖
2
du+

∫ t

0

π′u σu dWu

) (3.4)

for all t ∈ [0, T ], where E (·) denotes the stochastic exponential.

The integrability conditions in part (a) of Definition 3.2.3 ensure that both the ordinary and
the stochastic integrals appearing in (3.4) are well-defined. For all i = 1, . . . , N and t ∈ [0, T ],
πit represents the proportion of wealth invested in the i-th risky asset Si at time t. Consequently,
1 − π′t1 represents the proportion of wealth invested in the savings account S0 at time t. Note
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that part (b) of Definition 3.2.3 corresponds to requiring the trading strategy π to be self-financing.
Observe that Definition 3.2.3 implies that, for any (v, π) ∈ R+ × A, we have V v,π

t = v V 1,π
t , for

all t ∈ [0, T ]. Due to this scaling property, we shall often let v = 1 without loss of generality,
denoting V π := V 1,π for any π ∈ A. By definition, the discounted portfolio process V̄ π satisfies
the following dynamics:

dV̄ π
t = V̄ π

t

N∑
i=1

πit
dS̄it
S̄it

= V̄ π
t π′t (µt − rt1) dt+ V̄ π

t π′t σt dWt (3.5)

Remark 3.2.4. The fact that admissible portfolio processes are uniformly bounded from below by
zero excludes pathological doubling strategies (see e.g. Karatzas & Shreve (1998), Section 1.1.2).
Moreover, an economic motivation for focusing on positive portfolios only is given by the fact that
market participants have limited liability and, therefore, are not allowed to trade anymore if their
total tradeable wealth reaches zero. See also Section 2 of Christensen & Larsen (2007), Section 6
of Platen (2009) and Section 10.3 of Platen & Heath (2006) for an amplification of this point.

3.3 No-arbitrage conditions and the market price of risk

In order to ensure that the model introduced in the previous Section represents a viable finan-
cial market, in a sense to be made precise (see Definition 3.3.9), we need to carefully answer the
question of whether properly defined arbitrage opportunities are excluded. We start by giving the
following Definition.

Definition 3.3.1. A trading strategy π ∈ A is said to yield an increasing profit if the corresponding
discounted portfolio process V̄ π =

(
V̄ π
t

)
0≤t≤T satisfies the following two conditions:

(a) V̄ π is P -a.s. increasing, in the sense that P
(
V̄ π
s ≤ V̄ π

t for all s, t ∈ [0, T ] with s ≤ t
)

= 1;

(b) P
(
V̄ π
T > 1

)
> 0.

The notion of increasing profit represents the most glaring type of arbitrage opportunity and,
hence, it is of immediate interest to know whether it is allowed or not in the financial market. As a
preliminary, the following Lemma gives an equivalent characterization of the notion of increasing
profit. We denote by ` the Lebesgue measure on [0, T ].

Lemma 3.3.2. There exists an increasing profit if and only if there exists a trading strategy π ∈ A
satisfying the following two conditions:

(a) π′t σt = 0 P ⊗ `-a.e.;

(b) π′t (µt − rt1) 6= 0 on some subset of Ω× [0, T ] with positive P ⊗ `-measure.

Proof. Let π ∈ A be a trading strategy yielding an increasing profit. Due to Definition 3.3.1,
the process V̄ π is P -a.s. increasing, hence of finite variation. Equation (3.5) implies then that
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the continuous local martingale
(∫ t

0
V̄ π
u π′u σu dWu

)
0≤t≤T

is also of finite variation. This fact in

turn implies that π′t σt = 0 P ⊗ `-a.e. (see e.g. Karatzas & Shreve (1991), Section 1.5). Since
P
(
V̄ π
T > 1

)
> 0, we must have π′t (µt − rt1) 6= 0 on some subset of Ω × [0, T ] with positive

P ⊗ `-measure.
Conversely, let π ∈ A be a trading strategy satisfying conditions (a)-(b). Define then the process

π̄ = (π̄t)0≤t≤T as follows, for t ∈ [0, T ]:

π̄t := sign
(
π′t (µt − rt1)

)
πt

It is clear that π̄ ∈ A and π̄′t σt = 0 P ⊗ `-a.e. and hence, due to (3.4), for all t ∈ [0, T ]:

V̄ π̄
t = exp

(∫ t

0

π̄′u (µu − ru1) du

)
Furthermore, we have that π̄′t (µt − rt1) ≥ 0, with strict inequality holding on some subset of
Ω × [0, T ] with positive P ⊗ `-measure. This implies that the process V̄ π̄ =

(
V̄ π̄
t

)
0≤t≤T is P -a.s.

increasing and satisfies P
(
V̄ π̄
T > 1

)
> 0, meaning that π̄ yields an increasing profit.

The following Proposition gives a necessary and sufficient condition in order to exclude the
existence of increasing profits (compare also with Theorem 4.3.2 in Chapter 4).

Proposition 3.3.3. There are no increasing profits if and only if there exists an Rd-valued progres-
sively measurable process γ = (γt)0≤t≤T such that the following condition holds:

µt − rt1 = σtγt P ⊗ `-a.e. (3.6)

Proof. Suppose there exists an Rd-valued progressively measurable process γ = (γt)0≤t≤T such
that (3.6) is satisfied and let π ∈ A be such that π′t σt = 0 P ⊗ `-a.e. Then we have:

π′t (µt − rt1) = π′t σtγt = 0 P ⊗ `-a.e.

meaning that there cannot exist a trading strategy π ∈ A satisfying conditions (a)-(b) of Lemma
3.3.2. Due to the equivalence result of Lemma 3.3.2, this implies that there are no increasing profits.

Conversely, suppose that there exists no trading strategy in A yielding an increasing profit. Let
us first introduce the following linear spaces, for every t ∈ [0, T ]:

R (σt) :=
{
σty : y ∈ Rd

}
K (σ′t) :=

{
y ∈ RN : σ′ty = 0

}
Denote by ΠK(σ′t)

the orthogonal projection on K (σ′t). As in Lemma 1.4.6 of Karatzas & Shreve
(1998), we define the process p = (pt)0≤t≤T by:

pt := ΠK(σ′t)
(µt − rt1)

Define then the process π̂ = (π̂t)0≤t≤T by:

π̂t :=

{
pt
‖pt‖ if pt 6= 0,

0 if pt = 0.
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Since the processes µ and r are progressively measurable, Corollary 1.4.5 of Karatzas & Shreve
(1998) ensures that π̂ is progressively measurable. Clearly, we have then π̂ ∈ A and, by definition,
π̂ satisfies condition (a) of Lemma 3.3.2. Since there are no increasing profits, Lemma 3.3.2 implies
that the following identity holds P ⊗ `-a.e.:

‖pt‖ =
p′t
‖pt‖

(µt − rt1)1{pt 6=0} = π̂′t (µt − rt1)1{pt 6=0} = 0 (3.7)

where the first equality uses the fact that µt − rt1 − pt ∈ K⊥ (σ′t), for all t ∈ [0, T ], with the
superscript⊥ denoting the orthogonal complement. From (3.7) we have pt = 0 P⊗`-a.e., meaning
that µt − rt1 ∈ K⊥ (σ′t) = R (σt) P ⊗ `-a.e. This amounts to saying that we have:

µt − rt1 = σtγt P ⊗ `-a.e.

for some γt ∈ Rd. Taking care of the measurability issues, it can be shown that we can take
γ = (γt)0≤t≤T as a progressively measurable process (compare Karatzas & Shreve (1998), proof of
Theorem 1.4.2).

Let us now introduce one of the crucial objects in our analysis: the market price of risk process.

Definition 3.3.4. The Rd-valued progressively measurable market price of risk process θ = (θ)0≤t≤T
is defined as follows, for t ∈ [0, T ]:

θt := σ′t (σt σ
′
t)
−1

(µt − rt1)

The standing Assumption 3.2.1 ensures that the market price of risk process θ is well-defined1.
From a financial perspective, θt measures the excess return (µt − rt1) of the risky assets (with
respect to the savings account) in terms of their volatility.

Remark 3.3.5 (Absence of increasing profits). Note that, by definition, the market price of risk
process θ satisfies condition (3.6). Proposition 3.3.3 then implies that, under the standing Assump-
tion 3.2.1, there are no increasing profits. Note however that θ may not be the unique process
satisfying condition (3.6).

Let us now introduce the following integrability condition on the market price of risk process.

Assumption 3.3.6. The market price of risk process θ = (θt)0≤t≤T belongs to L2
loc (W ), meaning

that
∫ T

0
‖θt‖2 dt <∞ P -a.s.

Remark 3.3.7. Let γ = (γt)0≤t≤T be an Rd-valued progressively measurable process satisfy-
ing condition (3.6). Using the notation R (σ′t) =

{
σ′t x : x ∈ RN

}
and R⊥ (σ′t) = K (σt) ={

x ∈ Rd : σt x = 0
}

, we have the orthogonal decomposition γt = ΠR(σ′t)
(γt) + ΠK(σt) (γt), for

t ∈ [0, T ]. Under Assumption 3.2.1, elementary linear algebra shows that:

ΠR(σ′t)
(γt) = σ′t (σtσ

′
t)
−1
σtγt = σ′t (σtσ

′
t)
−1

(µt − rt1) = θt

1It is worth pointing out that, if Assumption 3.2.1 does not hold, then the market price of risk process θ can still be
defined by replacing σ′t (σt σ

′
t)
−1 with the Moore-Penrose pseudoinverse of the matrix σt.
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thus giving ‖γt‖ = ‖θt‖ +
∥∥ΠK(σt) (γt)

∥∥ ≥ ‖θt‖, for all t ∈ [0, T ]. This implies that, as soon
as there exists some Rd-valued progressively measurable process γ satisfying (3.6) and such that
γ ∈ L2

loc (W ), then the market price of risk process θ satisfies Assumption 3.3.6.

The key relation between Assumption 3.3.6 and no-arbitrage was first discovered in Delbaen &
Schachermayer (1995b) and Levental & Skorohod (1995) and will play a crucial role in deriving
many of our results. We now introduce a fundamental local martingale associated to the market
price of risk process θ. Let us define the process Ẑ =

(
Ẑt
)

0≤t≤T as follows, for t ∈ [0, T ]:

Ẑt := E
(
−
∫
θ′dW

)
t

= exp

(
−

d∑
j=1

∫ t

0

θju dW
j
u −

1

2

d∑
j=1

∫ t

0

(
θju
)2
du

)
(3.8)

Note that Assumption 3.3.6 ensures that the stochastic integral
∫
θ′dW is well-defined as a contin-

uous local martingale. It is well-known that Ẑ =
(
Ẑt
)

0≤t≤T is a strictly positive continuous local

martingale with Ẑ0 = 1. Hence, due to Fatou’s Lemma, the process Ẑ is also a supermartingale
(see e.g. Karatzas & Shreve (1991), Problem 1.5.19) and we have E

[
ẐT
]
≤ E

[
Ẑ0

]
= 1. It is

easy to show that the process Ẑ is a true martingale, and not only a local martingale, if and only if
E
[
ẐT
]

= E
[
Ẑ0

]
= 1. However, it may happen that the process Ẑ is a strict local martingale, i.e.

a local martingale which is not a true martingale. In any case, the following Proposition shows the
basic property of the process Ẑ.

Proposition 3.3.8. Suppose that Assumption 3.3.6 holds and let Ẑ =
(
Ẑt
)

0≤t≤T be defined as in
(3.8). Then the following hold:

(a) for all i = 1, . . . , N , the process Ẑ S̄i =
(
Ẑt S̄

i
t

)
0≤t≤T is a local martingale;

(b) for any trading strategy π ∈ A the process Ẑ V̄ π =
(
Ẑt V̄

π
t

)
0≤t≤T is a local martingale.

Proof. For any i = 1, . . . , N , part (a) follows from part (b) by taking π ∈ A with πi ≡ 1 and
πj ≡ 0 for j 6= i. Hence, it suffices to prove part (b). Recalling equation (3.5), an application of
the Itô product rule gives:

d
(
Ẑt V̄

π
t

)
= V̄ π

t dẐt + Ẑt dV̄
π
t + d〈V̄ π, Ẑ〉t

= −V̄ π
t Ẑt θ

′
t dWt + Ẑt V̄

π
t π′t (µt − rt1) dt+ Ẑt V̄

π
t π′t σt dWt − Ẑt V̄ π

t π′t σt θt dt

= Ẑt V̄
π
t (π′t σt − θ′t) dWt

(3.9)
Since σ′π ∈ L2

loc (W ) and θ ∈ L2
loc (W ), this shows the local martingale property of Ẑ V̄ π.

Under the standing Assumption 3.2.1, we have seen that the diffusion-based financial market
described in Section 3.2 does not allow for increasing profits (see Remark 3.3.5). However, the con-
cept of increasing profit represents an almost pathological notion of arbitrage opportunity. Hence,
we would like to known whether weaker and more economically meaningful types of arbitrage
opportunities can exist. To this effect, let us give the following Definition, adapted from Kardaras
(2010b).
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Definition 3.3.9. An F-measurable non-negative random variable ξ is called an arbitrage of the
first kind if P (ξ > 0) > 0 and, for all v ∈ (0,∞), there exists a trading strategy πv ∈ A such that
V̄ v,πv

T ≥ ξ P -a.s. We say that the financial market is viable if there are no arbitrages of the first
kind.

The following Proposition shows that the existence of an increasing profit implies the existence
of an arbitrage of the first kind. Due to the Itô-process framework considered in this Chapter, we
are able to provide a simple proof (in a more general context, see also Section 4.3.3).

Proposition 3.3.10. Let π ∈ A be a trading strategy yielding an increasing profit. Then there exists
an arbitrage of the first kind.

Proof. Let π ∈ A yield an increasing profit and define ξ := V̄ π
T − 1. Due to Definition 3.3.1, we

have P (ξ ≥ 0) = 1 and P (ξ > 0) > 0. Then, for any v ∈ [1,∞), we have V̄ v,π
T = vV̄ π

T > v ξ ≥ ξ

P -a.s. For any v ∈ (0, 1), let us define πvt := − log(v)+log(1−v)
v

πt. Clearly, for any v ∈ (0, 1), the
process πv = (πvt )0≤t≤T satisfies πv ∈ A and, due to Lemma 3.3.2, (πvt )

′ σt = 0 P ⊗ `-a.e. We
have then:

V̄ v,πv

T = v exp

(∫ T

0

(πvt )
′ (µt − rt1) dt

)
= v

(
V̄ π
T

)− log(v)+log(1−v)
v > V̄ π

T − 1 = ξ P -a.s.

where the second equality follows from the elementary identity exp (αx) = (expx)α and the last
inequality follows since vx−

log(v)+log(1−v)
v > x− 1 for x ≥ 1 and for every v ∈ (0, 1). We have thus

shown that, for every v ∈ (0,∞), there exists a trading strategy πv ∈ A such that V̄ v,πv

T ≥ ξ P -a.s.,
meaning that the random variable ξ is an arbitrage of the first kind.

We now proceed with the question of whether arbitrages of the first kind are allowed in our
financial market model. To this effect, let us first give the following Definition (compare also with
Definition 4.3.11 in Chapter 4).

Definition 3.3.11. A real-valued non-negative adapted process D = (Dt)0≤t≤T with D0 = 1 and
DT > 0 P -a.s. is said to be a martingale deflator if the product DV̄ π =

(
DtV̄

π
t

)
0≤t≤T is a local

martingale for every π ∈ A. We denote by D the set of all martingale deflators.

Remark 3.3.12. Let D ∈ D. Then, taking π ≡ 0, Definition 3.3.11 implies that D is a non-
negative local martingale and hence, due to Fatou’s Lemma, also a supermartingale. Since DT > 0

P -a.s., the minimum principle for non-negative supermartingales (see e.g. Revuz & Yor (1999),
Proposition II.3.4) implies that P

(
Dt > 0 for all t ∈ [0, T ]

)
= 1.

The following Proposition shows that the existence of a martingale deflator is a sufficient con-
dition for the absence of arbitrages of the first kind.

Proposition 3.3.13. If D 6= ∅ then there cannot exist arbitrages of the first kind.

Proof. Let D ∈ D and suppose that there exists a random variable ξ yielding an arbitrage of the
first kind. Then, for every n ∈ N, there exists a strategy πn ∈ A such that V̄ 1/n,πn

T ≥ ξ P -a.s. For
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every n ∈ N, the process DV̄ 1/n,πn =
(
DtV̄

1/n,πn

t

)
0≤t≤T is a positive local martingale and, hence,

a supermartingale. So, for every n ∈ N:

E [DT ξ] ≤ E
[
DT V̄

1/n,πn

T

]
≤ E

[
D0V̄

1/n,πn

0

]
=

1

n

Letting n→∞ gives E [DT ξ] = 0 and hence DT ξ = 0 P -a.s. Since, due to Definition 3.3.11, we
have DT > 0 P -a.s. this implies that ξ = 0 P -a.s., which contradicts the assumption that ξ is an
arbitrage of the first kind.

It is worth pointing out that one can also prove a converse result to Proposition 3.3.13, showing
that if there are no arbitrages of the first kind then there exists at least one martingale deflator. In
a general semimartingale setting, this has been recently shown in Kardaras (2010b) (compare also
Hulley & Schweizer (2010) in the context of continuous path processes). Furthermore, Proposition
1 of Kardaras (2010a) shows that the absence of arbitrages of the first kind is equivalent to the
condition of No Unbounded Profit with Bounded Risk (NUPBR), formally defined as the condition
that the set

{
V̄ π
T : π ∈ A

}
be bounded in probability. By relying on these facts, we can state the

following Theorem, the second part of which follows from Proposition 4.19 of Karatzas & Kardaras
(2007).

Theorem 3.3.14. The following are equivalent:

(a) D 6= ∅;

(b) there are no arbitrages of the first kind;

(c)
{
V̄ π
T : π ∈ A

}
is bounded in probability, i.e. the condition (NUPBR) holds.

Moreover, for every concave and strictly increasing utility function U : [0,∞) → R, the utility
optimisation problem of finding an element π∗ ∈ A such that

E
[
U
(
V̄ π∗

T

)]
= sup

π∈A
E
[
U
(
V̄ π
T

)]
either does not have a solution or has infinitely many solutions when any of the conditions (a)-(c)
fails.

We want to remark that an analogous result has already been shown in Theorem 2 of Loewen-
stein & Willard (2000) under the assumption of a complete financial market. In view of the second
part of the above Theorem, the condition of absence of arbitrages of the first kind can be seen as
the minimal no-arbitrage condition in order to be able to meaningfully solve portfolio optimisation
problems. It is now straightforward to show that, as soon as Assumption 3.3.6 holds, the diffusion-
based model introduced in Section 3.2 satisfies the equivalent conditions of Theorem 3.3.14. In
fact, due to Proposition 3.3.8, the process Ẑ defined in (3.8) is a martingale deflator for the finan-
cial market

(
S0, S1, . . . , SN

)
as soon as Assumption 3.3.6 is satisfied. Conversely, if Assumption

3.3.6 fails to hold, then there cannot exist any martingale deflator (see Remark 3.3.7). In a more
general context, compare also with Theorem 4.3.23 in Chapter 4.
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Corollary 3.3.15. The financial market
(
S0, S1, . . . , SN

)
is viable, i.e. it does not admit arbitrages

of the first kind (see Definition 3.3.9), if and only if Assumption 3.3.6 holds.

We want to emphasise that, due to Theorem 3.3.14, the diffusion-based model introduced in
Section 3.2 allows us to meaningfully consider portfolio optimisation problems as soon as As-
sumption 3.3.6 holds. However, nothing guarantees that an Equivalent Local Martingale Measure
(ELMM) exists, as shown in the following classical example, already considered in Delbaen &
Schachermayer (1995a), Hulley (2010) and Karatzas & Kardaras (2007). Other instances of mod-
els for which an ELMM does not exist arise in the context of diverse financial markets, see Chapter
II of Fernholz & Karatzas (2009).

Example 3.3.16. Let us suppose that F = FW , where W is a standard Brownian motion (d = 1),
and letN = 1. Assume that S0

t ≡ 1 for all t ∈ [0, T ] and that the real-valued process S = (St)0≤t≤T
is given as the solution to the following SDE:

dSt =
1

St
dt+ dWt S0 = s ∈ (0,∞) (3.10)

It is well-known that the process S is a Bessel process of dimension three (see e.g. Revuz & Yor
(1999), Section XI.1). So, St is P -a.s. strictly positive and finite for all t ∈ [0, T ]. Furthermore, the
market price of risk process θ is given by θt = σ−1

t µt = 1
St

, for t ∈ [0, T ]. Since S is continuous,

we clearly have
∫ T

0
θ2
t dt < ∞ P -a.s., meaning that Assumption 3.3.6 is satisfied. Hence, due to

Corollary 3.3.15, there are no arbitrages of the first kind.
However, for this particular financial market model there exists no ELMM. We prove this claim

arguing by contradiction. Suppose that Q is an ELMM for S and denote by ZQ =
(
ZQ
t

)
0≤t≤T

its density process. Then, due to the martingale representation theorem (see Karatzas & Shreve
(1991), Theorem 3.4.15 and Problem 3.4.16), we can represent ZQ as follows:

ZQ
t = E

(
−
∫
λ dW

)
t

for t ∈ [0, T ]

where λ = (λt)0≤t≤T is a progressively measurable process such that
∫ T

0
λ2
t dt < ∞ P -a.s. Due

to Girsanov Theorem, the process WQ =
(
WQ
t

)
0≤t≤T defined by WQ

t := Wt +
∫ t

0
λu du, for

t ∈ [0, T ], is a Brownian motion under Q. Hence, the process S satisfies the following SDE under
Q:

dSt =

(
1

St
− λt

)
dt+ dWQ

t S0 = s (3.11)

Since Q is an ELMM for S, the SDE (3.11) must have a zero drift coefficient, i.e. it must be
λt = 1

St
= θt for all t ∈ [0, T ]. Then, a simple application of Itô’s formula gives:

ZQ
t = E

(
−
∫

1

S
dW

)
t

= exp

(
−
∫ t

0

1

Su
dWu −

1

2

∫ t

0

1

S2
u

du

)
=

1

St

However, since S is a Bessel process of dimension three, it is well-known that the process 1/S =

(1/St)0≤t≤T is a strict local martingale, i.e. it is a local martingale but not a true martingale (see e.g.
Revuz & Yor (1999), Exercise XI.1.16). Clearly, this contradicts the fact that Q is a well-defined
probability measure, thus showing that there cannot exist an ELMM for S.
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Chapter 3. Diffusion-based models for financial markets without martingale measures

As the above Example shows, Assumption 3.3.6 does not guarantee the existence of an ELMM
for the financial market

(
S0, S1, . . . , SN

)
. It is well-known that, in the case of continuous-path

processes, the existence of an ELMM is equivalent to the no-arbitrage condition of No Free Lunch
with Vanishing Risk (NFLVR), see Delbaen & Schachermayer (1994) and Delbaen & Schacher-
mayer (2006). Furthermore, (NFLVR) holds if and only if both (NUPBR) and (NA) hold (see Sec-
tion 3 of Delbaen & Schachermayer (1994) and Proposition 4.2 of Karatzas & Kardaras (2007)),
where, recalling that V̄ π

0 = 1, the classical no-arbitrage condition (NA) precludes the existence
of a trading strategy π ∈ A such that P

(
V̄ π
T ≥ 1

)
= 1 and P

(
V̄ π
T > 1

)
> 0. This implies that,

even if Assumption 3.3.6 holds, the well-known no-arbitrage condition (NFLVR) may fail to hold.
However, due to Theorem 3.3.14, the financial market may still be viable.

Remark 3.3.17 (On the martingale property of Ẑ). It is important to note that Assumption 3.3.6
does not suffice to ensure that Ẑ is a true martingale. Well-known sufficient conditions for this to
hold include the Novikov and Kazamaki criteria, see e.g. Revuz & Yor (1999), Section VIII.1. If
Ẑ is a true martingale we have then E

[
ẐT
]

= 1 and we can define a probability measure Q̂ ∼ P

by letting dQ̂
dP

:= ẐT . The martingale Ẑ represents then the density process of Q̂ with respect to

P , i.e. Ẑt = E
[
dQ̂
dP

∣∣Ft] P -a.s. for all t ∈ [0, T ]. Recall that a process M = (Mt)0≤t≤T is a

local Q̂-martingale if and only if the process ẐM =
(
ẐtMt

)
0≤t≤T is a local P -martingale. Due

to Proposition 3.3.8-(a), this implies that if E
[
ẐT
]

= 1 then the process S̄ :=
(
S̄1, . . . , S̄N

)′ is a
local Q̂-martingale or, in other words, the probability measure Q̂ is an ELMM. Girsanov’s theorem
implies then that the process Ŵ =

(
Ŵt

)
0≤t≤T defined by Ŵt := Wt +

∫ t
0
θu du for t ∈ [0, T ] is a

Brownian motion under Q̂. Since the dynamics of S :=
(
S1, . . . , SN

)′ in (3.2) can be rewritten as:

dSt = diag (St)1 rt dt+ diag (St)σt
(
θt dt+ dWt

)
S0 = s

the process S̄ :=
(
S̄1, . . . , S̄N

)′ satisfies the following SDE under the measure Q̂:

dS̄t = diag
(
S̄t
)
σt dŴt S̄0 = s

We want to point out that the process Ẑ =
(
Ẑt
)

0≤t≤T represents the density process with respect
to P of the minimal martingale measure, when the latter exists, see e.g. Hulley & Schweizer
(2010). Again, we emphasise that in this Chapter we do not assume neither that E

[
ẐT
]

= 1 nor
the existence of an ELMM.

We close this Section with a simple technical result which turns out to be useful in the following.

Lemma 3.3.18. Suppose that Assumption 3.3.6 holds. Then an RN -valued progressively measur-
able process π = (πt)0≤t≤T belongs to A if and only if

∫ T
0
‖σ′t πt‖

2 dt <∞ P -a.s.

Proof. We only need to show that Assumption 3.3.6 and
∫ T

0
‖σ′t πt‖

2 dt <∞ P -a.s. together imply
that

∫ T
0
|π′t (µt − rt1)| dt < ∞ P -a.s. This follows easily from the Cauchy-Schwarz inequality, in

fact:∫ T

0

|π′t (µt − rt1)| dt =

∫ T

0

|π′t σt θt| dt ≤
(∫ T

0

‖σ′t πt‖
2
dt

) 1
2
(∫ T

0

‖θt‖2 dt

) 1
2

<∞ P -a.s.
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3.4 The growth-optimal portfolio and the numéraire portfolio

As we have seen in the last Section, the diffusion-based model introduced in Section 3.2 can rep-
resent a viable financial market even if the traditional no-arbitrage condition (NFLVR) fails to hold
or, equivalently, if an ELMM for

(
S0, S1, . . . , SN

)
fails to exist. Let us now consider an interesting

portfolio optimisation problem, namely the problem of maximising the growth rate, formally de-
fined as follows (compare Fernholz & Karatzas (2009), Platen (2006) and Platen & Heath (2006),
Section 10.2).

Definition 3.4.1. For a trading strategy π ∈ A the growth rate process gπ = (gπt )0≤t≤T is defined
as the drift term in the SDE satisfied by the process log V π = ( log V π

t )0≤t≤T , i.e. the term gπt in
the SDE:

d log V π
t = gπt dt+ π′tσtdWt (3.12)

A trading strategy π∗ ∈ A (and the corresponding portfolio process V π∗) is said to be growth-
optimal if gπ

∗
t ≥ gπt P -a.s. for all t ∈ [0, T ] for any trading strategy π ∈ A.

The terminology “growth rate” is motivated by the fact that:

lim
T→∞

1

T

(
log V π

T −
∫ T

0

gπt dt

)
= 0 P -a.s.

under “controlled growth” of σσ′, i.e. lim
T→∞

(
log log T
T 2

∫ T
0
ai,it dt

)
= 0 P -a.s. where at := σtσ

′
t

for t ∈ [0, T ] (see Fernholz & Karatzas (2009), Section 1). In the context of the diffusion-based
financial market described in Section 3.2, the following Theorem gives an explicit description of
the growth-optimal strategy π∗ ∈ A.

Theorem 3.4.2. Suppose that Assumption 3.3.6 holds. Then there exists an unique growth-optimal
strategy π∗ ∈ A, explicitly given by:

π∗t = (σt σ
′
t)
−1
σt θt (3.13)

where the process θ = (θt)0≤t≤T is the market price of risk introduced in Definition 3.3.4. The cor-
responding Growth-Optimal Portfolio (GOP) V π∗ =

(
V π∗
t

)
0≤t≤T satisfies the following dynamics:

dV π∗
t

V π∗
t

= rt dt+ θ′t (θt dt+ dWt) (3.14)

Proof. Let π ∈ A be a trading strategy. A simple application of Itô’s formula gives that:

d log V π
t = gπt dt+ π′t σt dWt (3.15)

where gπt := rt+π′t (µt − rt1)− 1
2
π′t σt σ

′
t πt, for t ∈ [0, T ]. Since the matrix σtσ′t is P -a.s. positive

definite for all t ∈ [0, T ], due to Assumption 3.2.1, a trading strategy π∗ ∈ Amaximises the growth
rate if and only if, for every t ∈ [0, T ], π∗t solves the first order condition obtained by differentiating
gπt with respect to πt. This means that π∗t must satisfy the following equation, for every t ∈ [0, T ]:

µt − rt1− σtσ′tπ∗t = 0
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Recall that, due to Assumption 3.2.1, the matrix σtσ′t is P -a.s. positive definite for all t ∈ [0, T ].
So, using Definition 3.3.4, we get the following unique optimiser π∗t :

π∗t = (σt σ
′
t)
−1

(µt − rt1) = (σt σ
′
t)
−1
σt θt for t ∈ [0, T ]

We now need to verify that π∗ = (π∗t )0≤t≤T ∈ A. Due to Lemma 3.3.18, it suffices to check that∫ T
0
‖σ′tπ∗t ‖

2 dt <∞ P -a.s. To show this, it is enough to notice that:∫ T

0

‖σ′t π∗t ‖
2
dt =

∫ T

0

(µt − rt1)′ (σt σ
′
t)
−1

(µt − rt1) dt =

∫ T

0

‖θt‖2 dt <∞ P -a.s.

due to Assumption 3.3.6. We have thus shown that π∗ maximises the growth rate and is an admis-
sible trading strategy. Finally, note that equation (3.15) leads to:

d log V π∗

t = gπ
∗

t dt+ (π∗t )
′ σt dWt

= rt dt+ θ′t σ
′
t (σt σ

′
t)
−1

(µt − rt1) dt− 1

2
θ′t σ

′
t (σt σ

′
t)
−1
σt σ

′
t (σt σ

′
t)
−1
σt θt dt

+ θ′t σ
′
t (σt σ

′
t)
−1
σt dWt

=
(
rt +

1

2
‖θt‖2

)
dt+ θ′tdWt

where the last equality is obtained by replacing θt with its expression as given in Definition 3.3.4
and from which (3.14) follows by a simple application of Itô’s formula.

Remark 3.4.3.

1. Results analogous to Theorem 3.4.2 can be found in Section 2 of Galesso & Runggaldier
(2010), Example 3.7.9 of Karatzas & Shreve (1998), Section 2.7 of Platen (2002), Section
3.2 of Platen (2006), Section 10.2 of Platen & Heath (2006) and Proposition 2 of Platen
& Runggaldier (2007). However, in all these works the growth-optimal strategy has been
derived for the specific case of a complete financial market, i.e. under the additional assump-
tions that d = N and F = FW . Here, we have instead chosen to deal with the more general
situation described in Section 3.2, i.e. with a general incomplete market. Furthermore, we
rigorously check the admissibility of the candidate growth-optimal strategy.

2. Due to Corollary 3.3.15, Assumption 3.3.6 ensures that there are no arbitrages of the first
kind. However, it is worth emphasising that Theorem 3.4.2 does not rely on the existence of
an ELMM for the financial market

(
S0, S1, . . . , SN

)
.

3. Due to equation (3.14), the discounted GOP process V̄ π∗ =
(
V̄ π∗
t

)
0≤t≤T satisfies the follow-

ing SDE:
dV̄ π∗

t

V̄ π∗
t

= ‖θt‖2 dt+ θ′t dWt (3.16)

We can immediately observe that the drift coefficient is the “square” of the diffusion coef-
ficient, thus showing that there is a strong link between rate of return and volatility in the
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GOP dynamics. Moreover, the market price of risk plays a key role in the GOP dynamics.
To this effect, compare the discussion in Chapter 13 of Platen & Heath (2006). Observe also
that Assumption 3.3.6 is equivalent to requiring that the solution V̄ π∗ to the SDE (3.16) is
well-defined and P -a.s. finite valued, meaning that the discounted GOP does not explode in
the finite time interval [0, T ]. It can also be shown, and this holds true in general semimartin-
gale models, that the existence of a non-explosive GOP is in fact equivalent to the absence of
arbitrages of the first kind, as can be deduced by combining Theorem 3.3.14 and Karatzas &
Kardaras (2007), Theorem 4.12 (see also Christensen & Larsen (2007)).

Example 3.4.4 (The classical Black-Scholes model). In order to develop an intuitive feeling for
some of the concepts introduced in this Section, let us briefly consider the case of the classical
Black-Scholes model, i.e. a financial market represented by (S0, S), with rt ≡ r for some r ∈ R
for all t ∈ [0, T ] and S = (St)0≤t≤T a real-valued process satisfying the following SDE:

dSt = St µ dt+ St σ dWt S0 = s ∈ (0,∞)

with µ ∈ R and σ ∈ R \ {0}. The market price of risk process θ = (θt)0≤t≤T is then given by
θt ≡ θ := µ−r

σ
for all t ∈ [0, T ]. By Theorem 3.4.2, the GOP strategy π∗ = (π∗t )0≤t≤T is then given

by π∗t ≡ π∗ := µ−r
σ2 , for all t ∈ [0, T ]. In this special case, Novikov’s condition implies that Ẑ is a

true martingale, yielding the density process of the martingale measure Q̂.

The remaining part of this Section is devoted to the derivation of some basic but fundamental
properties of the GOP. Let us start with the following simple Proposition.

Proposition 3.4.5. Suppose that Assumption 3.3.6 holds. Then the discounted GOP process V̄ π∗ =(
V̄ π∗
t

)
0≤t≤T is related to the process Ẑ =

(
Ẑt
)

0≤t≤T as follows, for all t ∈ [0, T ]:

V̄ π∗

t =
1

Ẑt

Proof. Assumption 3.3.6 ensures that the process Ẑ =
(
Ẑt
)

0≤t≤T is well-defined and P -a.s. strictly
positive. Furthermore, due to Theorem 3.4.2, the growth-optimal strategy π∗ ∈ A exists and is
explicitly given by (3.13). Now it suffices to observe that, due to equations (3.16) and (3.8):

V̄ π∗

t = exp

(∫ t

0

θ′udWu +
1

2

∫ t

0

‖θu‖2 du

)
=

1

Ẑt

We then immediately obtain the following Corollary.

Corollary 3.4.6. Suppose that Assumption 3.3.6 holds. Then, for any trading strategy π ∈ A, the
process V̂ π =

(
V̂ π
t

)
0≤t≤T defined by V̂ π

t :=
V π
t

V π∗
t

, for t ∈ [0, T ], is a non-negative local martingale
and, hence, a supermartingale.

Proof. Passing to discounted quantities, we have V̂ π
t =

V π
t

V π∗
t

=
V̄ π
t

V̄ π∗
t

. The claim then follows by
combining Proposition 3.4.5 with part (b) of Proposition 3.3.8.
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In order to give a better interpretation to the preceding Corollary, let us give the following
Definition, adapted from Becherer (2001), Karatzas & Kardaras (2007) and Platen (2009).

Definition 3.4.7. An admissible portfolio process V π̃ =
(
V π̃
t

)
0≤t≤T has the numéraire property

if all admissible portfolio processes V π = (V π
t )0≤t≤T , when denominated in units of V π̃, are

supermartingales, i.e. if the process V π

V π̃ =
(
V π
t

V π̃
t

)
0≤t≤T

is a supermartingale for all π ∈ A.

The following Proposition shows that if a numéraire portfolio exists then it is also unique.

Proposition 3.4.8. The numéraire portfolio process V π̃ =
(
V π̃
t

)
0≤t≤T is unique. Furthermore,

if Assumption 3.3.6 holds, there exists an unique trading strategy π̃ ∈ A such that V π̃ is the
numéraire portfolio, up to a null subset of Ω× [0, T ].

Proof. Let us first prove that if M = (Mt)0≤t≤T is a P -a.s. strictly positive supermartingale such
that 1

M
is also a supermartingale then Mt = M0 P -a.s. for all t ∈ [0, T ]. In fact, for any 0 ≤ s ≤

t ≤ T :

1 =
Ms

Ms

≥ 1

Ms

E [Mt|Fs] ≥ E

[
1

Mt

∣∣∣Fs]E [Mt|Fs] ≥
1

E [Mt|Fs]
E [Mt|Fs] = 1 P -a.s.

where the first inequality follows from the supermartingale property of M , the second from the
supermartingale property of 1

M
and the third from Jensen’s inequality. Hence, both M and 1

M

are martingales. Furthermore, since we have E
[

1
Mt

∣∣Fs] = 1
E[Mt|Fs] and the function x 7→ x−1

is strictly convex on (0,∞), again Jensen’s inequality implies that Mt is Fs-measurable, for all
0 ≤ s ≤ t ≤ T . For s = 0, this implies that Mt = E [Mt|F0] = M0 P -a.s. for all t ∈ [0, T ].

Suppose now there exist two elements π̃1, π̃2 ∈ A such that both V π̃1 and V π̃2 have the
numéraire property. By Definition 3.4.7, both V π̃1

V π̃2
and V π̃2

V π̃1
are P -a.s. strictly positive super-

martingales. Hence, it must be V π̃1

t = V π̃2

t P -a.s. for all t ∈ [0, T ], due to the general result just
proved. In order to show that the two trading strategies π̃1 and π̃2 coincide, let us write as follows:

E

[∫ T

0

(
Ẑt V̄

π̃1

t π̃1
t − Ẑt V̄ π̃2

t π̃2
t

)′
σt σ

′
t

(
Ẑt V̄

π̃1

t π̃1
t − Ẑt V̄ π̃2

t π̃2
t

)
dt

]
= E

[〈∫
Ẑ
(
V̄ π̃1

π̃1 − V̄ π̃2

π̃2
)′
σ dW

〉
T

]
= E

[〈∫
Ẑ V̄ π̃1(

(π̃1)′σ − θ′
)
dW −

∫
Ẑ V̄ π̃2(

(π̃2)′σ − θ′
)
dW

〉
T

]
= E

[〈
Ẑ
(
V̄ π̃1 − V̄ π̃2) 〉

T

]
≤ C E

[
sup
t∈[0,T ]

∣∣∣ Ẑt(V̄ π̃1

t − V̄ π̃2

t

) ∣∣∣2] = 0

for some C > 0, where we have used the fact that V̄ π̃1

t = V̄ π̃2

t P -a.s. for all t ∈ [0, T ], equation
(3.9) and the Burkholder-Davis-Gundy inequality (see Karatzas & Shreve (1991), Theorem 3.3.28)
applied to the local martingale Ẑ

(
V̄ π̃1 − V̄ π̃2). Since, due to the standing Assumption 3.2.1, the

matrix σtσ′t is P -a.s. positive definite for all t ∈ [0, T ], this implies that it must be π̃t := π̃1
t = π̃2

t

P ⊗ `-a.e., thus showing the uniqueness of the strategy π̃ ∈ A.
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3.4 The growth-optimal portfolio and the numéraire portfolio

Remark 3.4.9. Note that the first part of Proposition 3.4.8 does not rely on any modelling assump-
tion and, hence, is valid in full generality for any semimartingale model (compare also Becherer
(2001), Section 4).

From Corollary 3.4.6 and Definition 3.4.7 we have that the GOP possesses the numéraire prop-
erty. Proposition 3.4.8 then immediately yields the following Corollary.

Corollary 3.4.10. Suppose that Assumption 3.3.6 holds. Then, the growth-optimal portfolio V π∗

coincides with the numéraire portfolio V π̃. Furthermore, the corresponding trading strategies
π∗, π̃ ∈ A coincide, up to a null subset of Ω× [0, T ].

We emphasize again that all these results hold true even in the absence of an ELMM. For further
comments on the relations between the GOP and the numéraire portfolio in a general semimartin-
gale setting, we refer to Section 3 of Karatzas & Kardaras (2007).

Remark 3.4.11 (On the GOP-denominated market). Due to Corollary 3.4.10, the GOP coincides
with the numéraire portfolio. Moreover, Corollary 3.4.6 shows that all portfolio processes V π, for
π ∈ A, are local martingales when denominated in units of the GOP V π∗ . This means that, if we
express all price processes in terms of the GOP, then the original probability measure P becomes an
ELMM for the GOP-denominated market. Hence, due to the fundamental theorem of asset pricing
(see Delbaen & Schachermayer (1994)), the classical no-arbitrage condition (NFLVR) holds for
the GOP-denominated market. This observation suggests that the GOP-denominated market may
be regarded as the minimal and natural setting for dealing with valuation and portfolio optimisation
problems, even when there does not exist an ELMM for the original market (S0, S1, . . . , SN). To
this effect, compare also with Christensen & Larsen (2007).

Following Platen (2002),(2006),(2009) and Platen & Heath (2006), let us give the following
Definition.

Definition 3.4.12. For any portfolio process V π, the process V̂ π =
(
V̂ π
t

)
0≤t≤T , defined as V̂ π

t :=
V π
t

V π∗
t

for t ∈ [0, T ], is called benchmarked portfolio process. A portfolio process V π and the

associated trading strategy π ∈ A are said to be fair if the benchmarked portfolio process V̂ π is a
martingale. We denote by AF the set of all fair trading strategies in A.

According to Definition 3.4.12, the result of Corollary 3.4.6 amounts to saying that all bench-
marked portfolio processes are non-negative supermartingales. Note that every benchmarked port-
folio process is a local martingale but not necessarily a true martingale. This amounts to saying that
there may exist unfair portfolios, namely portfolios for which the benchmarked value process is a
strict local martingale. The concept of benchmarking will become relevant in Section 3.6.1, where
we shall discuss its role for valuation purposes.

Remark 3.4.13 (Other optimality properties of the GOP). Besides maximising the growth-rate, the
GOP enjoys several other optimality properties, many of which are illustrated in the monograph
Platen & Heath (2006). In particular, it has been shown that the GOP maximises the long-term
growth rate among all admissible portfolios, see e.g. Platen (2009). It is also well-known that
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the GOP is the solution to the problem of maximising an expected logarithmic utility function,
see Section 3.6.3 and also Karatzas & Kardaras (2007). Other interesting properties of the GOP
include the impossibility of relative arbitrages (or systematic outperformance) with respect to it,
see Fernholz & Karatzas (2009) and Platen (2009), and, under suitable assumptions on the behavior
of market participants, two-fund separation results and connections with mean-variance efficiency,
see e.g. Platen (2002),(2006). Other properties of the growth-optimal strategy are also described in
the recent paper MacLean et al. (2010).

3.5 Replicating strategies and completeness of the financial mar-
ket

Without relying on the existence of an ELMM for the financial market
(
S0, S1, . . . , SN

)
, in this

Section we start laying the foundations for the valuation of arbitrary contingent claims. More
specifically, in this Section we shall be concerned with the study of replicating (or hedging) strate-
gies, formally defined as follows.

Definition 3.5.1. Let H be a positive F-measurable contingent claim (i.e. random variable) such
that E

[
ẐT
S0
T
H
]
< ∞. If there exists a couple

(
vH , πH

)
∈ (0,∞) × A such that V vH ,πH

T = H

P -a.s., then we say that πH is a replicating strategy for H .

The following Proposition deals with the issue of the uniqueness of a replicating strategy.

Proposition 3.5.2. Suppose that Assumption 3.3.6 holds. Let H be a positive F-measurable con-
tingent claim such that E

[
ẐT
S0
T
H
]
< ∞ and suppose there exists a trading strategy πH ∈ A such

that V vH ,πH

T = H P -a.s. for vH = E
[
ẐT
S0
T
H
]
. Then the following hold:

(a) the strategy πH is fair, in the sense of Definition 3.4.12;

(b) the strategy πH is unique, up to a null subset of Ω× [0, T ].

Moreover, for every (v, π) ∈ (0,∞) × A such that V v,π
T = H P -a.s., we have V v,π

t ≥ V vH ,πH

t

P -a.s. for all t ∈ [0, T ]. In particular, there cannot exist an element π̄ ∈ A such that V v̄,π̄
T = H

P -a.s. for some v̄ < vH .

Proof. Corollary 3.4.6 implies that the benchmarked portfolio process V̂ vH ,πH =
(
V vH ,πH

t /V π∗
t

)
0≤t≤T

is a supermartingale. Moreover, it is also a martingale, due to the fact that:

V̂ vH ,πH

0 = vH = E

[
ẐT
S0
T

H

]
= E

[
V vH ,πH

T

V π∗
T

]
= E

[
V̂ vH ,πH

T

]
(3.17)

Part (a) then follows from Definition 3.4.12. To prove part (b), let π̂ ∈ A be a trading strategy
such that V vH ,π̂

T = H P -a.s. for vH = E
[
ẐT
S0
T
H
]
. Reasoning as in (3.17), the benchmarked

portfolio process V̂ vH ,π̂ =
(
V vH ,π̂
t /V π∗

t

)
0≤t≤T is a martingale. Together with the fact that V̂ vH ,π̂

T =
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ẐT
S0
T
H = V̂ vH ,πH

T P -a.s., this implies that V vH ,πH

t = V vH ,π̂
t P -a.s. for all t ∈ [0, T ]. Part (b) then

follows by the same arguments as in the second part of the proof of Proposition 3.4.8. To prove
the last assertion let (v, π) ∈ (0,∞) × A be such that V v,π

T = H P -a.s. Due to Corollary 3.4.6,
the benchmarked portfolio process V̂ v,π =

(
V v,π
t /V π∗

t

)
0≤t≤T is a supermartingale. So, for any

t ∈ [0, T ], due to part (a):

V̂ vH ,πH

t = E
[
V̂ vH ,πH

T

∣∣Ft] = E

[
ẐT
S0
T

H
∣∣∣Ft] = E

[
V̂ v,π
T

∣∣Ft] ≤ V̂ v,π
t P -a.s.

and, hence, V vH ,πH

t ≤ V v,π
t P -a.s. for all t ∈ [0, T ]. For t = 0, this implies that v ≥ vH , thus

completing the proof.

Remark 3.5.3. Notice that Proposition 3.5.2 does not exclude the existence of a trading strategy
π̌ ∈ A such that V v̌,π̌

T = H P -a.s. for some v̌ > vH . However, one can argue that it may not
be optimal to invest in such an unfair strategy in order to replicate H , since it requires a larger
initial investment. In fact, Proposition 3.5.2 shows that vH = E

[
ẐT
S0
T
H
]

is the minimal initial
capital starting from which one can replicate the contingent claim H (compare also with Karatzas
& Shreve (1998), Remark 1.6.4).

A particularly nice and interesting situation arises when the financial market is complete, mean-
ing that every contingent claim (i.e. every positive random variable) can be perfectly replicated
from some initial investment by trading in the market according to some admissible self-financing
trading strategy.

Definition 3.5.4. The financial market
(
S0, S1, . . . , SN

)
is said to be complete if for any positive

F-measurable contingent claim H such that E
[
ẐT
S0
T
H
]
< ∞ there exists a couple

(
vH , πH

)
∈

(0,∞)×A such that V vH ,πH

T = H P -a.s.

In general, the financial market described in Section 3.2 is incomplete and, hence, not all con-
tingent claims can be perfectly replicated. The following Theorem gives a sufficient condition for
the financial market to be complete. The proof is similar to that of Theorem 1.6.6 in Karatzas &
Shreve (1998), except that we avoid the use of any ELMM, since the latter may fail to exist in our
general context. This allows us to show that the concept of market completeness does not depend
on the existence of an ELMM. In a more general context, see also Theorem 4.5.13 in Chapter 4.

Theorem 3.5.5. Suppose that Assumption 3.3.6 holds. Assume furthermore that F = FW , where
FW is the P -augmented Brownian filtration associated to W , and that d = N . Then the financial
market

(
S0, S1, . . . , SN

)
is complete. More precisely, any positive F-measurable contingent claim

H with E
[
ẐT
S0
T
H
]
<∞ can be replicated by a fair portfolio process V vH ,πH , with vH = E

[
ẐT
S0
T
H
]

and πH ∈ AF .

Proof. Let H be a positive F = FWT -measurable random variable such that E
[
ẐT
S0
T
H
]
< ∞ and

define the martingale M = (Mt)0≤t≤T by Mt = E
[
ẐT
S0
T
H
∣∣Ft], for t ∈ [0, T ]. According to
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the martingale representation theorem (see Karatzas & Shreve (1991), Theorem 3.4.15 and Prob-
lem 3.4.16) there exists an RN -valued progressively measurable process ϕ = (ϕt)0≤t≤T such that∫ T

0
‖ϕt‖2 dt <∞ P -a.s. and:

Mt = M0 +

∫ t

0

ϕ′u dWu for all t ∈ [0, T ] (3.18)

Define then the positive process V = (Vt)0≤t≤T by Vt :=
S0
t

Ẑt
Mt, for t ∈ [0, T ]. Recalling that

S0
0 = 1, we have vH := V0 = M0 = E

[
ẐT
S0
T
H
]
. The standing Assumption 3.2.1, together with

the fact that d = N , then implies that the matrix σt is P -a.s. invertible for all t ∈ [0, T ]. Then, an
application of the product rule together with equations (3.8) and (3.18), gives:

d

(
Vt
S0
t

)
= d

(
Mt

Ẑt

)
= Mt d

1

Ẑt
+

1

Ẑt
dMt + d

〈
M,

1

Ẑ

〉
t

=
Mt

Ẑt
θ′t dWt +

Mt

Ẑt
‖θt‖2 dt+

1

Ẑt
ϕ′t dWt +

1

Ẑt
ϕ′t θt dt

=
Vt
S0
t

(
θt +

ϕt
Mt

)′
θt dt+

Vt
S0
t

(
θt +

ϕt
Mt

)′
dWt

=
Vt
S0
t

(
θt +

ϕt
Mt

)′
σ−1
t (µt − rt1) dt+

Vt
S0
t

(
θt +

ϕt
Mt

)′
σ−1
t σt dWt

=
Vt
S0
t

N∑
i=1

πH,it

dS̄it
S̄it

(3.19)

where πHt =
(
πH,1t , . . . , πH,Nt

)′
:= (σ′t)

−1 (θt + ϕt
Mt

)
, for all t ∈ [0, T ]. The last line of (3.19)

shows that the process V̄ := V/S0 = (Vt/S
0
t )0≤t≤T can be represented as a stochastic exponential

as in part (b) of Definition 3.2.3. Hence, it remains to check that the process πH satisfies the
integrability conditions of part (a) of Definition 3.2.3. Due to Lemma 3.3.18, it suffices to verify
that

∫ T
0

∥∥σ′t πHt ∥∥2
dt <∞ P -a.s. This can be shown as follows:∫ T

0

∥∥σ′t πHt ∥∥2
dt =

∫ T

0

∥∥∥∥θt +
ϕt
Mt

∥∥∥∥2

dt ≤ 2

∫ T

0

‖θt‖2 dt+2

∥∥∥∥ 1

M

∥∥∥∥
∞

∫ T

0

‖ϕt‖2 dt <∞ P -a.s.

due to Assumption 3.3.6 and because
∥∥ 1
M

∥∥
∞ := max

t∈[0,T ]

∣∣∣ 1
Mt

∣∣∣ < ∞ P -a.s. due to the continuity

of M . We have thus shown that πH is an admissible trading strategy, i.e. πH ∈ A, and the
associated portfolio process V vH ,πH =

(
V vH ,πH

t

)
0≤t≤T satisfies V vH ,πH

T = VT = H P -a.s. with

vH = E
[
ẐT
S0
T
H
]
. Furthermore, since V̂ vH ,πH

t = V vH ,πH

t /V π∗
t = Vt Ẑt/S

0
t = Mt, we also have

πH ∈ AF .

We conclude this Section with some important Remarks on the result of Theorem 3.5.5.
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Remark 3.5.6.

1. We want to emphasise that Theorem 3.5.5 does not require the existence of an ELMM for
the financial market

(
S0, S1, . . . , SN

)
. This amounts to saying that the completeness of a

financial market does not necessarily imply that some mild forms of arbitrage opportunities
are a priori excluded. Typical “textbook versions” of the so-called second Fundamental
Theorem of Asset Pricing state that the completeness of the financial market is equivalent to
the uniqueness of the Equivalent (Local) Martingale Measure, loosely speaking. However,
Theorem 3.5.5 shows that we can have a complete financial market even when no E(L)MM
exists at all. The fact that absence of arbitrage opportunities and market completeness should
be regarded as distinct concepts has been already pointed out in Jarrow & Madan (1999). The
completeness of the financial market model will play a crucial role in Section 3.6, where we
shall be concerned with valuation and hedging problems in the absence of an ELMM.

2. Following the reasoning in the proof of Theorem 1.6.6 of Karatzas & Shreve (1998), but
avoiding the use of an ELMM (which in our context may fail to exist), it is possible to prove
a converse result to Theorem 3.5.5. More precisely, if we assume that F = FW and that every
F-measurable positive random variable H with vH := E

[
ẐT
S0
T
H
]
< ∞ admits a trading

strategy πH ∈ A such that V vH ,πH

T = H P -a.s., then we necessarily have d = N . In a more
general context, compare also with Section 4.5.2 in Chapter 4.

3.6 Contingent claim valuation without ELMMs

The main goal of this Section is to show how one can proceed to the valuation of contingent claims
in financial market models which may not necessarily admit an ELMM. Since the non-existence
of a properly defined martingale measure precludes the whole machinery of risk-neutral pricing,
this appears as a non-trivial issue. Here we concentrate on the situation of a complete financial
market, as considered at the end of the last Section (see Section 3.7 for possible extensions to
incomplete markets). A major focus of this Section is on providing a mathematical justification for
the so-called real-world pricing approach, according to which the valuation of contingent claims is
performed under the original (or real-world) probability measure P using the GOP as the natural
numéraire.

Remark 3.6.1. In this Section we shall be concerned with the problem of pricing contingent claims.
However, one should be rather careful with the terminology and distinguish between a value as-
signed to a contingent claim and its prevailing market price. Indeed, the former represents the
outcome of an a priori chosen valuation rule, while the latter is the price determined by supply and
demand forces in the financial market. Since the choice of the valuation criterion is a subjective
one, the two concepts of value and market price do not necessarily coincide. This is especially true
when arbitrage opportunities and/or bubble phenomena are not excluded from the financial market.
In this Section, we use the word “price” in order to be consistent with the standard terminology in
the literature.
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3.6.1 Real-world pricing and the benchmark approach

We start by introducing the concept of real-world price, which is at the core of the so-called bench-
mark approach to the valuation of contingent claims.

Definition 3.6.2. Let H be a positive F-measurable contingent claim such that E
[
ẐT
S0
T
H
]
<∞. If

there exists a fair portfolio process V vH ,πH =
(
V vH ,πH

t

)
0≤t≤T such that V vH ,πH

T = H P -a.s., for
some vH , πH ∈ (0,∞) × AF , then the real-world price of H at time t, denoted as ΠH

t , is defined
as follows:

ΠH
t := V π∗

t E

[
H

V π∗
T

∣∣∣Ft] (3.20)

for every t ∈ [0, T ] and where V π∗ =
(
V π∗
t

)
0≤t≤T denotes the GOP.

The terminology real-world price is used to indicate that, unlike in the traditional setting, all
contingent claims are valued under the original real-world probability measure P and not under
an equivalent risk-neutral measure. This allows us to extend the valuation of contingent claims to
financial markets for which no ELMM may exist. The concept of real-world price gives rise to
the so-called benchmark approach to the valuation of contingent claims in view of the fact that the
GOP plays the role of the natural numéraire portfolio (compare Remark 3.4.11). For this reason we
shall refer to it as the benchmark portfolio. We refer the reader to Platen (2006),(2009) and Platen
& Heath (2006) for a thorough presentation of the benchmark approach.

Clearly, if there exists a fair portfolio process V vH ,πH such that V vH ,πH

T = H P -a.s. for(
vH , πH

)
∈ (0,∞) × AF , then the real-world price coincides with the value of the fair portfo-

lio. In fact, for all t ∈ [0, T ]:

ΠH
t = V π∗

t E

[
H

V π∗
T

∣∣∣Ft] = V π∗

t E

[
V vH ,πH

T

V π∗
T

∣∣∣Ft] = V vH ,πH

t P -a.s.

where the last equality is due to the fairness of V vH ,πH , see Definition 3.4.12. Moreover, the second
part of Proposition 3.5.2 gives an economic rationale for the use of the real-world pricing formula
(3.20), since it shows that the latter gives the value of the least expensive replication portfolio. This
property has been called the law of the minimal price (see Platen (2009), Section 4). The following
simple Proposition immediately follows from Theorem 3.5.5.

Proposition 3.6.3. Suppose that Assumption 3.3.6 holds. LetH be a positiveF-measurable contin-
gent claim such that E

[
ẐT
S0
T
H
]
<∞. Then, under the assumptions of Theorem 3.5.5, the following

hold:

(a) there exists a fair portfolio process V vH ,πH =
(
V vH ,πH

t

)
0≤t≤T such that V vH ,πH

T = H P -a.s.;

(b) the real-world price is given by ΠH
0 = E

[
H
V π∗
T

]
= E

[
ẐT
S0
T
H
]

= vH .
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Remark 3.6.4.

1. Notice that, due to Proposition 3.4.5, the real-world pricing formula (3.20) can be rewritten
as follows, for any t ∈ [0, T ]:

ΠH
t =

S0
t

Ẑt
E

[
ẐT
S0
T

H
∣∣∣Ft] (3.21)

Suppose now that E
[
ẐT
]

= 1, so that Ẑ is the density process of the ELMM Q̂ (see Remark
3.3.17). Due to the Bayes formula, equation (3.21) can then be rewritten as follows:

ΠH
t = S0

t E
Q̂

[
H

S0
T

∣∣∣Ft]
and we recover the usual risk-neutral pricing formula (compare also Platen (2009), Section
5, and Platen & Heath (2006), Section 10.4). In this sense, the real-world pricing approach
can be regarded as a consistent extension of the usual risk-neutral valuation approach to a
financial market for which an ELMM may fail to exist.

2. Let us briefly suppose that H and the final value of the GOP V π∗
T are conditionally indepen-

dent given the σ-field Ft, for all t ∈ [0, T ]. The real-world pricing formula (3.20) can then
be rewritten as follows:

ΠH
t = V π∗

t E

[
1

V π∗
T

∣∣∣Ft]E [H|Ft] =: P (t, T )E [H|Ft] (3.22)

where P (t, T ) denotes the fair value of a zero coupon T -bond (i.e. a contingent claim which
pays the deterministic amount 1 at maturity T ). This shows that, under the (rather strong)
assumption of conditional independence, one can recover the well-known actuarial pricing
formula (compare also Platen (2006), Corollary 3.4, and Platen (2009), Section 5).

3. We want to point out that part (b) of Proposition 3.6.3 can be easily generalised to any time
t ∈ [0, T ]: compare for instance Proposition 10 in Galesso & Runggaldier (2010).

In view of the above Remarks, it is interesting to observe how several different valuation ap-
proaches which have been widely used in finance and insurance, such as risk-neutral pricing and
actuarial pricing, are both generalised and unified under the concept of real-world pricing. We re-
fer to Section 10.4 of Platen & Heath (2006) for related comments on the unifying aspects of the
benchmark approach.

3.6.2 The upper hedging price approach

The upper hedging price (or super-hedging price) is a classical approach to the valuation of con-
tingent claims (see e.g. Karatzas & Shreve (1998), Section 5.5.3). The intuitive idea is to find the
smallest initial capital which allows one to obtain a final wealth which is greater or equal than the
payoff at maturity of a given contingent claim.
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Definition 3.6.5. Let H be a positive F-measurable contingent claim. The upper hedging price
U (H) of H is defined as follows:

U (H) := inf
{
v ∈ [0,∞) : ∃ π ∈ A such that V v,π

T ≥ H P -a.s.
}

with the usual convention inf ∅ =∞.

The next Theorem shows that, in a complete diffusion-based financial market, the upper hedging
price takes a particularly simple and natural form.

Theorem 3.6.6. Let H be a positive F-measurable contingent claim such that E
[
ẐT
S0
T
H
]
< ∞.

Then, under the assumptions of Theorem 3.5.5, the upper hedging price of H is explicitly given by:

U (H) = E

[
ẐT
S0
T

H

]
(3.23)

Proof. In order to prove (3.23), we show both directions of inequality.

(≥): If {v ∈ [0,∞) : ∃ π ∈ A such that V v,π
T ≥ H P -a.s.} = ∅ then we have E

[
ẐT
S0
T
H
]
< U (H)

= ∞. So, let us assume there exists a couple (v, π) ∈ [0,∞) × A such that V v,π
T ≥ H

P -a.s. Under Assumption 3.3.6, due to Corollary 3.4.6, the benchmarked portfolio process
V̂ v,π =

(
V v,π
t /V π∗

t

)
0≤t≤T is a supermartingale and so, recalling also Proposition 3.4.5:

v = V̂ v,π
0 ≥ E

[
V̂ v,π
T

]
= E

[
ẐT
S0
T

V v,π
T

]
≥ E

[
ẐT
S0
T

H

]
This implies that U (H) ≥ E

[
ẐT
S0
T
H
]
.

(≤): Under the present assumptions, Theorem 3.5.5 yields the existence of a couple
(
vH , πH

)
∈

(0,∞)×AF such that V vH ,πH

T = H P -a.s. and where vH = E
[
ẐT
S0
T
H
]
. Hence:

E

[
ẐT
S0
T

H

]
= vH ∈

{
v ∈ [0,∞) : ∃ π ∈ A such that V v,π

T ≥ H P -a.s.
}

This implies that U (H) ≤ E
[
ẐT
S0
T
H
]
.

An analogous result can be found in Proposition 5.3.2 of Karatzas & Shreve (1998) (compare
also Fernholz & Karatzas (2009), Section 10). We want to point out that Definition 3.6.5 can be
easily generalised to an arbitrary time point t ∈ [0, T ] in order to define the upper hedging price
at t ∈ [0, T ]. The result of Theorem 3.6.6 carries over to this slightly generalised setting with
essentially the same proof, compare with Theorem 3 in Galesso & Runggaldier (2010).
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Remark 3.6.7.

1. Notice that, due to Proposition 3.4.5, equation (3.23) can be rewritten as follows:

U (H) = E

[
ẐT
S0
T

H

]
= E

[
H

V π∗
T

]
This shows that the upper hedging price can be obtained by computing the expectation of the
benchmarked value (in the sense of Definition 3.4.12) of the contingent claim H under the
real-world probability measure P and thus coincides with the real-world price (evaluated at
t = 0), compare part (b) of Proposition 3.6.3.

2. Suppose that E
[
ẐT
]

= 1. As explained in Remark 3.3.17, the process Ẑ represents then the
density process of the ELMM Q̂. In this case, the upper hedging price U (H) yields the usual
risk-neutral valuation formula, i.e. we have U (H) = EQ̂ [H/S0

T ].

3.6.3 Utility indifference valuation

The real-world pricing formula has been justified so far on the basis of replication arguments, as
can be seen from Proposition 3.6.3. We now present a different approach which uses the idea of
utility indifference valuation. To this effect, let us first consider the problem of maximising an
expected utility function of the discounted final wealth. Recall that, due to Theorem 3.3.14, we
can meaningfully consider portfolio optimisation problems even in the absence of an ELMM for(
S0, S1, . . . , SN

)
.

Definition 3.6.8. A utility function U is a function U : [0,∞)→ [0,∞) such that:

1. U is strictly increasing and strictly concave, continuously differentiable;

2. lim
x→∞

U ′ (x) = 0 and lim
x→0

U ′ (x) =∞.

Problem (expected utility maximisation). Let U be as in Definition 3.6.8 and let v ∈ (0,∞). The
problem of expected utility maximisation consists in the following:

maximise E
[
U
(
V̄ v,π
T

)]
over all π ∈ A (3.24)

The following Lemma shows that, in the case of a complete financial market, there is no loss
of generality in restricting our attention to fair strategies only. Recall that, due to Definition 3.4.12,
AF denotes the set of all fair trading strategies in A.

Lemma 3.6.9. Under the assumptions of Theorem 3.5.5, for any utility function U and for any
v ∈ (0,∞), the following holds:

sup
π∈A

E
[
U
(
V̄ v,π
T

)]
= sup

π∈AF
E
[
U
(
V̄ v,π
T

)]
(3.25)
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Proof. It is clear that “≥” holds in (3.25), sinceAF ⊆ A. To show the reverse inequality, let us con-
sider an arbitrary element π ∈ A. The benchmarked portfolio process V̂ v,π =

(
V v,π
t /V π∗

t

)
0≤t≤T

is a supermartingale, due to Corollary 3.4.6, and hence:

v′ := E

[
ẐT
S0
T

V v,π
T

]
= E

[
V v,π
T

V π∗
T

]
≤ v

with equality holding if and only if π ∈ AF . Let v̄ := v − v′ ≥ 0. It is clear that the positive
F-measurable random variable H̄ := V̄ v,π

T + v̄/ẐT satisfies E
[
ẐT H̄

]
= v and so, due to Theorem

3.5.5, there exists an element πH ∈ AF such that V̄ v,πH

T = H̄ ≥ V̄ v,π
T P -a.s., with equality holding

if and only if the strategy π is fair. We then have, due to the monotonicity of U :

E
[
U
(
V̄ v,π
T

)]
≤ E

[
U
(
H̄
)]

= E
[
U
(
V̄ v,πH

T

)]
≤ sup

π∈AF
E
[
U
(
V̄ v,π
T

)]
Since π ∈ A was arbitrary, this shows the “≤” inequality in (3.25).

In particular, Lemma 3.6.9 shows that, in the context of portfolio optimisation problems, re-
stricting the class of admissible trading strategies to fair admissible strategies is not only “reason-
able”, as argued in Chapter 11 of Platen & Heath (2006), but exactly yields the same optimal value.
The following Theorem gives the solution to problem (3.24), in the case of a complete financial
market. Related results can be found in Lemma 5 of Galesso & Runggaldier (2010) and Theorem
3.7.6 of Karatzas & Shreve (1998).

Theorem 3.6.10. Suppose that Assumption 3.3.6 holds. Let U be a utility function and v ∈ (0,∞).
Assume that the functionW (y) := E

[
ẐT I

(
y/V̄ v,π∗

T

)]
is finite for every y ∈ (0,∞), where I is

the inverse function of U ′. The function W is invertible and, under the assumptions of Theorem
3.5.5, the optimal discounted final wealth V̄ v,πU

T for Problem (3.24) is explicitly given as follows:

V̄ v,πU

T = I

(
Y (v)

V̄ v,π∗

T

)
(3.26)

where Y denotes the inverse function ofW . The optimal strategy πU ∈ AF is given by the repli-
cating strategy for the right hand side of (3.26).

Proof. Note first that, due to Definition 3.6.8, the function U ′ admits a strictly decreasing contin-
uous inverse function I : [0,∞] → [0,∞] with I (0) = ∞ and I (∞) = 0. We have then the
following well-known result from convex analysis (see e.g. Karatzas & Shreve (1998), Section
3.4):

U
(
I (y)

)
− yI (y) ≥ U (x)− xy for 0 ≤ x <∞, 0 < y <∞ (3.27)

As in Lemma 3.6.2 of Karatzas & Shreve (1998), it can be shown that the functionW : [0,∞] →
[0,∞] is strictly decreasing and continuous and, hence, it admits an inverse function Y : [0,∞]→
[0,∞]. Since W

(
Y (v)

)
= v, for any v ∈ (0,∞), Theorem 3.5.5 shows that there exists a fair
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strategy πU ∈ AF such that V̄ v,πU

T = I
(
Y (v) /V̄ v,π∗

T

)
P -a.s. Furthermore, for any π ∈ AF ,

equation (3.27) with y = Y (v) /V̄ v,π∗

T and x = V̄ v,π
T gives that:

E
[
U
(
V̄ v,πU

T

)]
=E

[
U

(
I

(
Y (v)

V̄ v,π∗

T

))]
≥E

[
U
(
V̄ v,π
T

)]
+Y (v)E

[
1

V̄ v,π∗

T

(
I

(
Y (v)

V̄ v,π∗

T

)
−V̄ v,π

T

)]
= E

[
U
(
V̄ v,π
T

)]
+ Y (v)E

[
1

V̄ v,π∗

T

(
V̄ v,πU

T − V̄ v,π
T

)]
= E

[
U
(
V̄ v,π
T

)]
thus showing that, based also on Lemma 3.6.9, πU ∈ AF solves Problem (3.24).

Remark 3.6.11.

1. It is important to observe that Theorem 3.6.10 does not rely on the existence of an ELMM.
This amounts to saying that we can meaningfully solve expected utility maximisation prob-
lems even when no ELMM exists or, equivalently, when the traditional no-arbitrage con-
dition (NFLVR) fails to hold. The crucial assumption for the validity of Theorem 3.6.10
is Assumption 3.3.6, which ensures that there are no arbitrages of the first kind (compare
Theorem 3.3.14 and Corollary 3.3.15).

2. The assumption that the functionW (y) :=E
[
ẐT I

(
y/V̄ v,π∗

T

)]
be finite for every y ∈ (0,∞)

can be replaced by suitable technical conditions on the utility function U and on the processes
µ and σ (see Remarks 3.6.8 and 3.6.9 in Karatzas & Shreve (1998) for more details).

Having solved the general utility maximisation problem, we are now in a position to give the
definition of the utility indifference price, in the spirit of Davis (1997) (compare also Galesso &
Runggaldier (2010), Section 4.2, Platen & Heath (2006), Definition 11.4.1, and Platen & Rung-
galdier (2007), Definition 10)2. Until the end of this Section, we let U be a utility function, in the
sense of Definition 3.6.8, such that all expected values below exist and are finite.

Definition 3.6.12. Let H be a positive F-measurable contingent claim and v ∈ (0,∞). For p ≥ 0,
let us define, for a given utility function U , the function WU

p : [0, 1]→ [0,∞) as follows:

WU
p (ε) := E

[
U
(

(v − εp) V̄ πU

T + εH̄
)]

(3.28)

where πU ∈ AF solves Problem (3.24) for the utility function U . The utility indifference price of
the contingent claim H is defined as the value p (H) which satisfies the following condition:

lim
ε→0

WU
p(H) (ε)−WU

p(H) (0)

ε
= 0 (3.29)

Definition 3.6.12 is based on a “marginal rate of substitution” argument, as first pointed out
in Davis (1997). In fact, p (H) can be thought of as the price at which an investor is marginally
indifferent between the two following alternatives:

2In Galesso & Runggaldier (2010) and Platen & Runggaldier (2007) the authors generalise Definition 3.6.12 to an
arbitrary time t ∈ [0, T ]. However, since the results and the techniques remain essentially unchanged, we only consider
the basic case t = 0.
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• invest an infinitesimal part εp (H) of the initial endowment v into the contingent claim H

and invest the remaining wealth
(
v − εp (H)

)
according to the optimal trading strategy πU ;

• ignore the contingent claim H and simply invest the whole initial endowment v according to
the optimal trading strategy πU .

The following simple result, essentially due to Davis (1997) (compare also Platen & Heath
(2006), Section 11.4), gives a general representation of the utility indifference price p (H).

Proposition 3.6.13. Let U be a utility function and H a positive F-measurable contingent claim.
The utility indifference price p (H) can be represented as follows:

p (H) =
E
[
U ′
(
V̄ v,πU

T

)
H̄
]

E
[
U ′
(
V̄ v,πU

T

)
V̄ πU
T

] (3.30)

Proof. Using equation (3.28), let us write the following Taylor’s expansion:

WU
p (ε) = E

[
U
(
V̄ v,πU

T

)
+ εU ′

(
V̄ v,πU

T

)(
H̄ − p V̄ πU

T

)
+ o (ε)

]
= WU

p (0) + εE
[
U ′
(
V̄ v,πU

T

)(
H̄ − p V̄ πU

T

)]
+ o (ε)

(3.31)

If we insert (3.31) into (3.29) we get:

E
[
U ′
(
V̄ v,πU

T

)(
H̄ − p (H) V̄ πU

T

)]
= 0

from which (3.30) immediately follows.

By combining Theorem 3.6.10 with Proposition 3.6.13, we can easily prove the following
Corollary, which yields an explicit and “universal” representation of the utility indifference price
p (H) (compare also Galesso & Runggaldier (2010), Theorem 8, Platen & Heath (2006), Section
11.4, and Platen & Runggaldier (2007), Proposition 11).

Corollary 3.6.14. Let H be a positive F-measurable contingent claim. Then, under the assump-
tions of Theorem 3.6.10, the utility indifference price coincides with the real-world price (at t = 0)
for any utility function U , namely:

p (H) = E

[
H

V π∗
T

]
Proof. The present assumptions imply that, due to (3.26), we can rewrite (3.30) as follows:

p (H) =

E

[
U ′
(
I
(
Y(v)

V̄ v,π∗
T

))
H̄

]
E

[
U ′
(
I
(
Y(v)

V̄ v,π∗
T

))
V̄ πU
T

] =
E
[
Y(v)

V̄ v,π∗
T

H̄
]

E
[
Y(v)

V̄ v,π∗
T

V̄ πU
T

] =

1
v
E
[

H̄
V̄ π∗
T

]
1
v

V̄ πU
0

V̄ π∗
0

= E

[
H

V π∗
T

]
(3.32)

where the third equality uses the fact that πU ∈ AF .
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Remark 3.6.15. As follows from Definition 3.6.12, the utility indifference price p (H) depends a
priori both on the initial endowment v and on the chosen utility function U . The remarkable result
of Corollary 3.6.14 consists in the fact that, under the hypotheses of Theorem 3.6.10, the utility
indifference price p (H) represents an “universal” pricing rule, since it does not depend neither on
v nor on the utility function U and, furthermore, it coincides with the real-world pricing formula.

3.7 Conclusions, extensions and further developments

In this Chapter, we have studied a general class of diffusion-based models for financial markets,
weakening the traditional assumption that the no-arbitrage condition (NFLVR) holds or, equiva-
lently, that there exists an ELMM. We have shown that the financial market may still be viable, in
the sense that arbitrages of the first kind are not permitted, as soon as the market price of risk pro-
cess satisfies a crucial square-integrability condition. In particular, we have shown that the failure
of the existence of an ELMM does not preclude the completeness of the financial market and the
solvability of portfolio optimisation problems. Furthermore, in the context of a complete market,
contingent claims can be consistently evaluated by relying on the real-world pricing formula.

The results of Section 3.6 on the valuation of contingent claims have been obtained under
the assumption of a complete financial market. These results, namely that the real-world pricing
formula (3.20) coincides with the utility indifference price, can be extended to the more general
context of an incomplete financial market, provided that we choose a logarithmic utility function.

Proposition 3.7.1. Suppose that Assumption 3.3.6 holds. Let H be a positive F-measurable con-
tingent claim such that E

[
ẐT
S0
T
H
]
< ∞ and let U (x) = log (x). Then, the log-utility indifference

price p log (H) is explicitly given as follows:

p log (H) = E

[
H

V π∗
T

]
Proof. Note first that U (x) = log (x) is a well-defined utility function in the sense of Definition
3.6.8. Let us first consider Problem (3.24) for U (x) = log (x). Using the notations introduced in
the proof of Theorem 3.6.10, the function I is now given by I (x) = x−1, for x ∈ (0,∞). Due
to Proposition 3.4.5, we have W (y) = v/y for all y ∈ (0,∞) and, hence, Y (v) = 1. Then,
equation (3.26) implies that V̄ v,πU

T = V̄ v,π∗

T , meaning that the growth-optimal strategy π∗ ∈ AF

solves Problem (3.24) for logarithmic utility. The same computations as in (3.32) imply then the
following:

p log (H) =
E
[

H̄

V̄ v,π∗
T

]
E
[

1

V̄ v,π∗
T

V̄ π∗
T

] = E

[
H

V π∗
T

]

The interesting feature of Proposition 3.7.1 is that the claim H does not need to be replicable.
However, Proposition 3.7.1 depends on the choice of the logarithmic utility function and does
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not hold for a generic utility function U , unlike the “universal” result shown in Corollary 3.6.14.
Of course, the result of Proposition 3.7.1 is not surprising, due to the well-known fact that the
growth-optimal portfolio solves the log-utility maximisation problem, see e.g. Becherer (2001),
Christensen & Larsen (2007) and Karatzas & Kardaras (2007).

Remark 3.7.2. Following Section 11.3 of Platen & Heath (2006), let us suppose that the discounted
GOP process V̄ π∗ =

(
V̄ π∗
t

)
0≤t≤T has the Markov property under P . Under such an assumption,

one can obtain an analogous version of Theorem 3.6.10 also in the case of an incomplete financial
market model (see Platen & Heath (2006), Theorem 11.3.3). In fact, the first part of the proof
of Theorem 3.6.10 remains unchanged. One then proceeds by considering the martingale M =

(Mt)0≤t≤T defined by Mt := E
[
ẐT I

(
Y (v) /V̄ v,π∗

T

)∣∣Ft] = E
[
1/V̄ π∗

T I
(
Y (v) /V̄ v,π∗

T

)∣∣Ft], for

t ∈ [0, T ]. Due to the Markov property, Mt can be represented as g
(
t, V̄t

v,π∗), for every t ∈ [0, T ].
If the function g is sufficiently smooth one can apply Itô’s formula and express M as the value
process of a benchmarked fair portfolio. If one can shown that the resulting strategy satisfies
the admissibility conditions, Proposition 3.6.13 and Corollary 3.6.14 can then be applied to show
that the real-world pricing formula coincides with the utility indifference price (for any utility
function!). Always in a diffusion-based Markovian context, a detailed analysis to this effect can
also be found in the recent paper Ruf (2011a).

We want to point out that the modeling framework considered in this Chapter is not restricted
to stock markets, but can also be applied to the valuation of fixed income products. In particular, in
Bruti-Liberati et al. (2010) and Platen & Heath (2006), Section 10.4, the authors develop a version
of the Heath-Jarrow-Morton approach to the modeling of the term structure of interest rates without
relying on the existence of a martingale measure. In this context, they derive a real-world version
of the classical Heath-Jarrow-Morton drift condition, relating the drift and diffusion terms in the
system of SDEs describing the evolution of forward interest rates. Unlike in the traditional setting,
this real-world drift condition explicitly involves the market price of risk process.

Finally, we want to mention that the concept of real-world pricing has also been studied in
the context of incomplete information models, meaning that investors are supposed to have access
only to the information contained in a sub-filtration of the original full-information filtration F, see
Galesso & Runggaldier (2010), Platen & Runggaldier (2005) and Platen & Runggaldier (2007).
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Chapter 4

Weak no-arbitrage conditions:
characterization, stability and hedging
problems

4.1 Introduction

Modern mathematical finance is based on the concept of no-arbitrage. In a nutshell, the no-
arbitrage condition amounts at excluding the possibility of making money out of nothing by trading
in the financial market according to a well-chosen strategy. Obviously, the existence of arbitrage
strategies leads to inconsistencies in the price system and conflicts with the existence of a finan-
cial market equilibrium. As a consequence, any mathematical model which aims at describing the
functioning of a financial market needs to satisfy a suitable no-arbitrage condition, in the absence
of which one cannot draw reliable conclusions concerning market prices and investors’ behavior.

The search for a satisfactory no-arbitrage condition has a rather long history, which has devel-
oped on the border between financial economics and mathematics, see Delbaen & Schachermayer
(2006) for a detailed account. A decisive step towards the establishment of a general and econom-
ically sound notion of no-arbitrage was marked by the classical paper Delbaen & Schachermayer
(1994), where the authors proved (in the case of locally bounded processes) the equivalence of the
No Free Lunch with Vanishing Risk (NFLVR) condition (a condition slightly stronger than the clas-
sical No Arbitrage (NA) condition) with the existence of a probability measure Q equivalent to the
original probability measure P which makes the discounted price process S a local Q-martingale,
i.e. an Equivalent Local Martingale Measure (ELMM) for S. This result was later extended to
general (possibly non-locally bounded) semimartingales in Delbaen & Schachermayer (1998b).

By now, the NFLVR condition has become a sort of “golden standard” in mathematical finance
and the vast majority of models proposed in the literature satisfies the NFLVR condition. However,
especially in the last couple of years, financial market models which do not admit an ELMM (and,
hence, do not satisfy the NFLVR condition) have also appeared in the literature. For instance, in
the context of Stochastic Portfolio Theory (see Fernholz & Karatzas (2009) for an overview), the
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NFLVR condition is not imposed as a normative assumption and, indeed, it is shown that arbi-
trage opportunities naturally arise under some realistic market conditions. Financial market models
which do not satisfy the NFLVR condition are also encountered in the context of the Benchmark
Approach (see Platen (2006),(2009) and Platen & Heath (2006) for a complete account), the main
goal of which consists in the development of an asset pricing theory which does not rely on the
existence of an ELMM. Related works which explicitly consider market models not admitting an
ELMM are Loewenstein & Willard (2000), Cassese (2005), Christensen & Larsen (2007), Hulley
(2010) and Ruf (2011b). Somewhat surprisingly, it has also been shown that the NFLVR condition
is not indispensable for the analysis of classical issues in financial mathematics such as portfolio
optimization problems and valuation and hedging problems, provided suitable strong forms of ar-
bitrage are banned from the market. Hence, we can conclude that there is some evidence pointing
at the fact that the full strength of the NFLVR condition may not be needed in order to formulate a
coherent modeling framework for financial markets.

In the first part of the present Chapter, we shall deal with three no-arbitrage conditions which
are strictly weaker than the classical NFLVR condition, namely the No Unbounded Increasing
Profit (NUIP) condition, the No Immediate Arbitrage Opportunity (NIAO) condition and the No
Unbounded Profit with Bounded Risk (NUPBR) condition. These three no-arbitrage conditions are
not new in the literature. In fact, the NUIP condition has been introduced in Karatzas & Kardaras
(2007), the NIAO condition goes back to Delbaen & Schachermayer (1995b) and the NUPBR
condition has been introduced under that name in Karatzas & Kardaras (2007), but its importance
was already recognized in Delbaen & Schachermayer (1994) and Kabanov (1997). However, a
single reference discussing the precise connections among the NUIP/NIAO/NUPBR no-arbitrage
conditions seems to be missing so far. We provide a detailed analysis of the NUIP/NIAO/NUPBR
conditions, providing necessary and sufficient conditions for their validity as well as equivalent
characterizations. In particular, we show that the validity of the NUIP/NIAO/NUPBR conditions
can be directly verified by looking at the characteristics of the discounted price process. As shown
by an explicit counterexample in Karatzas & Kardaras (2007), this is not possible for the NFLVR
condition. We show that the NUIP condition is the minimal no-arbitrage condition, in the sense that
if NUIP fails then also the stronger NIAO/NUPBR/NFLVR conditions fail. The NIAO condition
is slightly stronger than the NUIP condition, but still weaker than the NUPBR/NFLVR conditions.
Finally, the NUPBR condition is situated on a middle ground between the NIAO and the stronger
NFLVR condition. We discuss these relations by providing explicit examples and counterexamples
and we also provide connections with other notions of arbitrage which have appeared in the liter-
ature. In particular, we show that at the level of the NIAO condition we are essentially excluding
pathological forms or arbitrage, in the presence of which the situation seems to be utterly hopeless
from the point of view of financial modeling. In contrast, the NUPBR has a real economic con-
tent, as has been recently shown in Karatzas & Kardaras (2007), Kardaras (2010a) and Kardaras
(2010b). Furthermore, the NUPBR condition ensures the existence of a martingale deflator, which
inherits some (but not all) of the properties of the density process of an ELMM.

From an economic point of view, it is important for a no-arbitrage condition to be robust with
respect to reasonable modifications of the underlying financial market model. Unfortunately, the
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classical NFLVR condition is not very robust with respect to changes in the original market con-
figuration. For instance, the NFLVR condition can be easily destroyed by a change of numéraire,
as shown in Delbaen & Schachermayer (1995c), thus leading to serious inconsistencies in financial
market models based on several currencies. This motivates our analysis of the stability proper-
ties of the NUIP/NIAO/NUPBR conditions with respect to changes in the original financial market
model. More precisely, we shall analyze the effects of changes of numéraire, absolutely continuous
changes of the reference probability measure and restrictions/enlargements of the reference filtra-
tion. We shall prove that, unlike the classical NFLVR condition, the weaker NUIP/NIAO/NUPBR
conditions are in general preserved under these modifications of the model. To the best of our
knowledge, these results are new and confirm the economic soundness of the NUIP/NIAO/NUPBR
weak no-arbitrage conditions. The reason why the stability properties of the NUIP/NIAO/NUPBR
conditions are easier to ascertain than those of the NFLVR condition is that the former can be ex-
pressed in terms of the characteristics of the discounted price process S. Hence, by studying the
impact of changes of numéraire/measure/filtration on the characteristics of S, we can directly see
whether any of the NUIP/NIAO/NUPBR conditions is preserved or not.

One of the key issues in financial mathematics is represented by the valuation and hedging of
contingent claims. Under the classical NFLVR condition, one can rely on the well-known ma-
chinery of risk neutral pricing. In that context, general results on the attainability of contingent
claims have been obtained by Jacka (1992), Ansel & Stricker (1994) and Delbaen & Schacher-
mayer (1994),(1995c),(1998b). Always under the NFLVR condition, the so-called second funda-
mental theorem of asset pricing asserts that the market is complete, meaning that every (sufficiently
integrable) contingent claim can be perfectly replicated by trading in the market, if and only if there
exists an unique ELMM. Motivated by these classical results, we aim at understanding what one can
say when the NFLVR condition fails but the weaker NUPBR condition holds. By replacing density
processes of ELMMs with martingale deflators (which represent the weaker counterparts of the for-
mer), we show that there still exists a general characterization of attainable claims. Furthermore,
the financial market is complete if and only if there exists an unique martingale deflator, which can
be explicitly computed in terms of the canonical decomposition of the discounted price process S,
thus providing a natural generalization of the second fundamental theorem of asset pricing. In the
special case of diffusion-based financial market models, related (but only partial) results have been
shown in the recent papers Fernholz & Karatzas (2009), Fontana & Runggaldier (2011) and Ruf
(2011b). Precursors to our results, based on an entirely different approach, can also be found in
Stricker & Yan (1998). The key idea underlying our proofs consists in applying a suitable change
of numéraire so that the classical results of Delbaen & Schachermayer (1995c) can be applied to
the price process expressed in terms of the new numéraire.

This Chapter is structured as follows. Section 4.2 contains the general description of our ab-
stract financial market model. In Section 4.3, we study three weak no-arbitrage notions, namely
the No Unbounded Increasing Profit (NUIP) condition (Section 4.3.1), the No Immediate Arbitrage
Opportunity (NIAO) condition (Section 4.3.2) and the No Unbounded Profit with Bounded Risk
(NUPBR) condition (Section 4.3.3). In the context of a financial market model based on contin-
uous semimartingales, we provide necessary and sufficient conditions for their validity as well as
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equivalent characterizations. We also discuss the relations with the classical No Arbitrage (NA)
and No Free Lunch with Vanishing Risk (NFLVR) conditions. Section 4.4 is devoted to the study of
the stability properties of weak no-arbitrage conditions with respect to changes in the structure of
the underlying financial market model. More specifically, we shall consider the effects of changes
of numéraire (Section 4.4.1), absolutely continuous changes of the reference probability measure
(Section 4.4.2) and restrictions/enlargements of the reference filtration (Section 4.4.3). The main
message is that, unlike the classical NA and NFLVR conditions, the weak NUIP/NIAO/NUPBR
conditions are in general robust with respect to these modifications of the underlying financial mar-
ket model. Section 4.5 deals with the characterization of attainable contingent claims under the
assumption that the NUPBR condition holds, without assuming the full strength of the NFLVR
condition. In particular, by replacing Equivalent Local Martingale Measures with the weaker con-
cept of martingale deflators, we shall extend classical results on the attainability of contingent
claims, including the so-called second fundamental theorem of asset pricing. Finally, Section 4.6
concludes and discusses some further developments of the present Chapter.

4.2 General setup and preliminaries

Let us start from a given filtered probability space (Ω,F ,F, P ), where the filtration F = (Ft)0≤t≤T
satisfies the usual conditions of right-continuity and P -completeness and T ∈ (0,∞) denotes a
finite time horizon. We consider a general financial market comprising d + 1 assets, the prices of
which are described by the Rd+1-valued process S̃ =

(
S̃t
)

0≤t≤T , with S̃t =
(
S̃0
t , S̃

1
t , . . . , S̃

d
t

)′, and

we assume that S̃0
t is P -a.s. strictly positive for all t ∈ [0, T ]. Without loss of generality, we take

asset 0 as numéraire and express all quantities in terms of S̃0. This means that the (S̃0-discounted)
price of asset 0 is constant and equal to 1 and the remaining d risky assets have (S̃0-discounted)
prices described by the Rd-valued process S = (St)0≤t≤T , where Sit := S̃it/S̃

0
t for all t ∈ [0, T ]

and i = 1, . . . , d. We assume that the process S is a continuous Rd-valued semimartingale on
(Ω,F ,F, P ). In particular, this implies that S is a special semimartingale, admitting an unique
canonical decomposition S = S0 +A+M , where A is a continuous Rd-valued predictable process
of finite variation with A0 = 0 and M is a continuous Rd-valued local martingale with M0 = 0 (see
e.g. Jacod & Shiryaev (2003), Lemma I.4.24). Recall also that, due to Proposition II.2.9 of Jacod
& Shiryaev (2003), we can write as follows, for all i, j = 1, . . . , d:

Ai =

∫
aidB and 〈Si, Sj〉 = 〈M i,M j〉 =

∫
cijdB (4.1)

where B is a continuous real-valued predictable increasing process of locally integrable variation,
a =

(
a1, . . . , ad

)′ is an Rd-valued predictable process and c =
(
(ci1)1≤i≤d , . . . ,

(
cid
)

1≤i≤d

)
is

a predictable process taking values in the cone of symmetric nonnegative d × d matrices. The
processes a, c and B satisfying (4.1) are not unique in general, but our results do not depend on
the specific choice we make. Note also that we do not necessarily assume that the process S takes
values in the positive orthant of Rd.
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We suppose that our general financial market is frictionless, meaning that we do not consider
trading restrictions, transaction costs, liquidity effects or other market imperfections. In order to
mathematically represent the activity of trading in the financial market, we need to properly define
the concept of admissible trading strategy. To this effect, let us first introduce the set L (S) of all
Rd-valued S-integrable predictable processes and denote by H · S the stochastic integral process∫
HdS =

(∫ t
0
HudSu

)
0≤t≤T , for H ∈ L (S). Since S is a continuous semimartingale, Proposition

III.6.22 of Jacod & Shiryaev (2003) implies that L (S) = L2
loc (M) ∩ L0 (A), where L2

loc (M) is
the set of all Rd-valued predictable processes H = (Ht)0≤t≤T such that

∫ T
0
H ′td〈M,M〉tHt < ∞

P -a.s. and L0 (A) is the set of all Rd-valued predictable processes H = (Ht)0≤t≤T such that∫ T
0
|H ′tdAt| < ∞ P -a.s. For H ∈ L (S), the continuous semimartingale H · S admits the unique

canonical decomposition H · S = H · A + H ·M . Hence, recalling also (4.1), we have that an
Rd-valued predictable process H = (Ht)0≤t≤T belongs to L (S) if and only if (see also Jacod &
Shiryaev (2003), Theorem III.6.30):∫ T

0

v (H)t dBt <∞ P -a.s. where v (H)t :=
d∑

i,j=1

H i
tc
ij
t H

j
t +

∣∣∣ d∑
i=1

H i
ta
i
t

∣∣∣, t ∈ [0, T ]

Remark 4.2.1 (On the set L (S)). As pointed out in Sections III.4a and III.6c of Jacod & Shiryaev
(2003), the set L (S) represents the most general class of predictable integrands with respect to the
semimartingale S. In particular, we also allow for non-locally bounded integrands, as in Chou et
al. (1980). Note also that, for H ∈ L (S), the process H · M is a continuous local martingale,
since we have L (S) ⊆ L2

loc (M) and M is continuous. Furthermore, we want to emphasize that
H · S has to be understood as the vector stochastic integral of H with respect to S and is in general
different from the sum of the componentwise stochastic integrals

∑d
i=1

∫
H idSi; see for instance

Jacod (1980).

We are now in a position to formulate the following classical Definition.

Definition 4.2.2. Let a ∈ R+. An element H ∈ L (S) is said to be an a-admissible strategy if
H0 = 0 and (H · S)t ≥ −a P -a.s. for all t ∈ [0, T ]. An element H ∈ L (S) is said to be an
admissible strategy if it is an a-admissible strategy for some a ∈ R+.

For a ∈ R+, we denote by Aa the set of all a-admissible strategies and by A the set of all
admissible strategies. Clearly,A =

⋃
a∈R+
Aa. Let H be an admissible strategy. As usual, H i

t is as-
sumed to represent the number of units of asset i held in the portfolio at time t, for all t ∈ [0, T ] and
i = 1, . . . , d. The conditionH0 = 0 in Definition 4.2.2 amounts to requiring that the initial holdings
(at time t = 0) of the risky assets are zero and, hence, the initial endowment is expressed in terms
of the numéraire asset only. We define the gains from trading process G (H) =

(
Gt (H)

)
0≤t≤T

as Gt (H) := (H · S)t, for all t ∈ [0, T ]. According to Definition 4.2.2, the process G (H) cor-
responding to an admissible strategy H ∈ A is uniformly bounded from below by some constant.
This restriction is needed since the set L (S) is too large for the purpose of modeling reasonable
trading strategies and may also contain pathological doubling strategies (see Delbaen & Schacher-
mayer (2006) for a more detailed discussion). However, this sort of strategies is automatically ruled
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out from the market if we impose an upper bound on the line of credit which may be granted to any
market participant, as in Definition 4.2.2.

Remark 4.2.3 (On self-financing strategies). Let x ∈ R represent the initial endowment and
let H be an admissible strategy. Let us introduce the real-valued process H0 = (H0

t )0≤t≤T , with
H0
t representing the units of the numéraire asset held in the portfolio at time t, for t ∈ [0, T ].

The value at time t of the portfolio corresponding to the pair (H0, H) is given by Vt (x;H0, H) :=

H0
t +
∑d

i=1H
i
tS

i
t , for all t ∈ [0, T ], with initial endowment x = V0 (x;H0, H) = H0

0 , sinceH0 = 0.
The pair (H0, H) is said to be self-financing if Vt (x;H0, H) = x+Gt (H), for all t ∈ [0, T ]. Note
that, if the pair (H0, H) is self-financing, the process H0 = (H0

t )0≤t≤T is predictable. This is clear
if S is continuous, as we have assumed above, since any continuous adapted process is predictable.
More generally, we can argue as follows:

H0
t = x+Gt (H)−

d∑
i=1

H i
tS

i
t = x+Gt− (H) + ∆Gt (H)−

d∑
i=1

H i
tS

i
t

= x+Gt− (H) +
d∑
i=1

H i
t∆S

i
t −

d∑
i=1

H i
tS

i
t = x+Gt− (H)−

d∑
i=1

H i
tS

i
t−

(4.2)

where the first equality is due to the self-financing property of (H0, H) and third equality fol-
lows from Theorem IV.18 of Protter (2005). The processes G− (H) and S− are predictable, being
adapted and left-continuous. Since the process H is predictable, it follows that H0 is predictable
as well. Conversely, given an initial endowment x ∈ R and an admissible strategy H ∈ A, we
can always construct a self-financing pair (H0, H) such that Vt (x;H0, H) = x + Gt (H) for all
t ∈ [0, T ] by simply defining H0 as the right-hand side of (4.2).

4.3 Characterization of weak no-arbitrage conditions

Having described the general setting of our abstract financial market, we are now in a position
to begin our journey through several no-arbitrage criteria. In particular, as mentioned in the In-
troduction, our attention shall be focused on no-arbitrage conditions which are weaker than the
classical No Free Lunch with Vanishing Risk (NFLVR) condition. We postpone to the last part of
Section 4.3.3 a discussion of the relations between the weak no-arbitrage conditions considered in
the present Chapter and the classical no-arbitrage theory based on the NFLVR condition.

4.3.1 No Unbounded Increasing Profit

The No Unbounded Increasing Profit condition has been first introduced in Karatzas & Kardaras
(2007) and is formally defined as follows.

Definition 4.3.1. Let H ∈ A0. We say that the strategy H generates an unbounded increasing
profit if P

(
Gs (H) ≤ Gt (H) , for all 0 ≤ s ≤ t ≤ T

)
= 1 and P

(
GT (H) > 0

)
> 0. If there

exists no such H ∈ A0 we say that the No Unbounded Increasing Profit (NUIP) condition holds.
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4.3 Characterization of weak no-arbitrage conditions

Intuitively, an unbounded increasing profit corresponds to a trading strategy which does not re-
quire any initial investment nor any amount of credit at intermediate times and, moreover, generates
an increasing wealth process, obtaining a strictly positive wealth at the final time T with non-zero
probability. From a financial point of view, the notion of unbounded increasing profit represents the
most egregious form of arbitrage and, therefore, should be banned from any reasonable financial
market model. The following Theorem gives a necessary and sufficient condition for the validity
of the NUIP condition.

Theorem 4.3.2. The NUIP condition holds if and only if there exists an Rd-valued predictable
process λ = (λt)0≤t≤T such that a = cλ holds P ⊗ B-a.e., where the processes a, c and B are as
in (4.1).

Proof. Suppose that there exists an Rd-valued predictable process λ = (λt)0≤t≤T such that a = cλ

holds P ⊗ B-a.e. and let H ∈ A0 be a 0-admissible strategy generating an unbounded increasing
profit. By Definition 4.3.1, the gains from trading process G (H) = H · S is increasing, hence
of finite variation. This implies that H · M = H · S − H · A is also of finite variation, being
the difference of two processes of finite variation. Corollary 1 to Theorem II.27 of Protter (2005)
implies then that the processH ·M is constant and equal to (H ·M)0 = 0, being a continuous local
martingale of finite variation. This also gives 〈H ·M〉 ≡ 0. Hence, due to the Kunita-Watanabe
inequality (see e.g. Protter (2005), Theorem II.25), for all t ∈ [0, T ] and i = 1, . . . , d:∣∣〈H ·M,M i〉t

∣∣ ≤ (〈H ·M〉t)1/2(〈M i〉t
)1/2

= 0 P -a.s.

since 〈M i〉t <∞ P -a.s. for all t ∈ [0, T ] and i = 1, . . . , d. Hence, for all t ∈ [0, T ]:

(H · S)t = (H · A)t =

∫ t

0

H ′uaudBu =

∫ t

0

H ′ucuλudBu =

∫ t

0

H ′ud〈M,M〉uλu

=

∫ t

0

d〈H ·M,M〉uλu =
d∑
i=1

∫ t

0

d〈H ·M,M i〉uλiu = 0 P -a.s.

Clearly, this contradicts the assumption that P
(
(H · S)T > 0

)
> 0 and, hence, H cannot yield an

unbounded increasing profit.
Conversely, suppose that the NUIP condition holds. As in the proof of Theorem 3.5 of Del-

baen & Schachermayer (1995b), take an Rd-valued predictable process H = (Ht)0≤t≤T such that
‖Ht (ω)‖ ∈ {0, 1} for all (ω, t) ∈ Ω × [0, T ]. Clearly, H belongs to L (S), being a bounded pre-
dictable process. Suppose that H · 〈M,M〉 ≡ 0 (so that H · M ≡ 0) but H · A 6≡ 0. By the
Hahn-Jordan decomposition (see Delbaen & Schachermayer (1995b), Theorem 2.1), we can write
H · A =

∫
(1D+ − 1D−) dV , where D+ and D− are two disjoint predictable subsets of Ω× [0, T ]

such that D+ ∪D− = Ω× [0, T ] and V denotes the total variation of H · A. Let ψ := 1D+ − 1D−

and define the Rd-valued predictable process H̃ := ψH . It is easy to see that H̃ ∈ L (S) and
H̃ ·M ≡ 0. Thus:

H̃ · S = H̃ · A = (ψH) · A = ψ · (H · A) = ψ2 · V = V
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where the third equality follows from the associativity of the stochastic integral (see Protter (2005),
Theorem IV.21). The process V is non-negative and increasing and satisfies P (VT > 0) = 1,
being the total variation of H · A, which is supposed to be not identically zero. Clearly, this
amounts to saying that the strategy H̃ yields an unbounded increasing profit, thus contradicting the
assumption that the NUIP condition holds. Hence, it must be H · A ≡ 0. Due to Theorem 2.3 of
Delbaen & Schachermayer (1995b), this implies that there exists an Rd-valued predictable process
λ = (λt)0≤t≤T such that the identity a = cλ holds P ⊗B-a.e.

Clearly, the existence of an Rd-valued predictable process λ = (λt)0≤t≤T such that a = cλ

holds P ⊗ B-a.e. implies that dA � d〈M,M〉. Indeed, we have Ait =
∑d

j=1

∫ t
0
λjud〈M i,M j〉u

for all t ∈ [0, T ] and i = 1, . . . , d. The condition dA � d〈M,M〉 is known in the literature as
the weak structure condition and the process λ is usually referred to as the instantaneous market
price of risk (see e.g. Hulley & Schweizer (2010), Section 3). We want to point out that results
similar to Theorem 4.3.2 have already appeared in the literature, albeit under stronger assumptions.
In particular, Theorem 3.5 of Delbaen & Schachermayer (1995b) shows that the weak structure
condition dA � d〈M,M〉 holds under the classical No Arbitrage (NA) condition

{
GT (H) : H ∈

A
}
∩L0

+ = {0}, where we denote byL0
+ the set of all non-negativeF-measurable random variables.

However, the NA condition is strictly stronger than the NUIP condition, as we shall argue at the
end of Section 4.3.3. Somewhat more generally, Kabanov & Stricker (2005) prove that the weak
structure condition holds under the assumption

{
GT (H) : H ∈ A0

}
∩ L0

+ = {0}, which is also
strictly stronger than the NUIP condition (see Definition 4.3.7 and Lemma 4.3.8 in Section 4.3.2).
Our Theorem 4.3.2 shows that the weak structure condition is equivalent to the NUIP condition1,
which therefore represents the minimal no-arbitrage condition for any reasonable financial market
model. To this effect, compare also Section 3.4 of Karatzas & Kardaras (2007). Note also that, in
the special case where S is modeled as an Itô process, Theorem 4.3.2 allows to recover the result
of Proposition 2.4 of Fontana & Runggaldier (2011).

Remark 4.3.3 (Extension to discontinuous semimartingales). Let us briefly consider the case
where the semimartingale S is assumed to be not necessarily continuous but only locally square-
integrable, in the sense of Definition II.2.27 of Jacod & Shiryaev (2003). Note that 〈M,M〉 is still
well-defined, since the local martingale part M in the canonical decomposition of S is a locally
square-integrable local martingale. In this case, it has been shown in Protter & Shimbo (2008)
that the weak structure condition dA � d〈M,M〉 holds if there exists a probability measure Q ∼
P on (Ω,F) such that S is a local Q-martingale. More generally, we can prove that the weak
structure condition holds under a much weaker assumption. In fact, it can be shown that the result
of Theorem 4.3.2 still holds true for S locally square-integrable, provided we add in Definition
4.3.1 the requirement that the process G (H) associated to the strategy H ∈ A0 generating an
unbounded increasing profit is predictable. Indeed, the continuity of S is only used in the first part

1More precisely, as can be seen by inspecting the proof of Theorem 4.3.2, the weak structure condition is also
equivalent to the absence of a strategy H ∈ A0 such that the gains from trading process G (H) is of finite variation
(not necessarily increasing) and satisfies P

(
GT (H) > 0

)
> 0.
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of the proof of Theorem 4.3.2 to invoke Corollary 1 to Theorem II.27 of Protter (2005)2. In the
more general case where S is discontinuous but G (H) is predictable and of finite variation, we can
instead apply Theorem III.15 of Protter (2005) to get H ·M ≡ 0. A similar result is also stated
(without proof) in Theorem 2.2 of Strasser (2005).

Example 4.3.4. We now give an explicit example of a model allowing for unbounded increasing
profits. This example uses the concept of local time (at the level 0) of a continuous local martingale
(see e.g. Protter (2005), Section IV.7, and Revuz & Yor (1999), Chapter VI). LetN = (Nt)0≤t≤T be
a real-valued continuous local martingale on the filtered probability space (Ω,F ,F, P ) and define
the discounted price process S of a single risky asset as S := |N |. The Meyer-Tanaka formula (see
Protter (2005), Corollary 3 to Theorem IV.70) gives the following representation, for all t ∈ [0, T ]:

St = |N0|+
∫ t

0

sign (Nu) dNu + L0
t (4.3)

where the process L0 = (L0
t )0≤t≤T is the local time at the level 0 of the continuous local martin-

gale N . Equation (4.3) gives the canonical decomposition of the continuous semimartingale S into
a continuous local martingale and a continuous finite variation predictable process. Indeed, the
stochastic integral process

∫
sign (N) dN is a continuous local martingale with initial value 0 and

the local time process L0 is continuous non-decreasing and adapted, hence predictable and of finite
variation. Hence, using the notations introduced at the beginning of Section 4.2, we get the canoni-
cal decomposition S = S0 +A+M , with A = L0 and M =

∫
sign (N) dN . We now show that we

cannot have dA� d〈M,M〉, where 〈M,M〉 =
〈∫

sign (N) dN
〉

=
∫ (

sign (N)
)2
d〈N〉 = 〈N〉. In

fact, Theorem IV.69 of Protter (2005) shows that, for almost all ω ∈ Ω, the measure (in t) dL0
t (ω)

is carried by the set {t : Nt (ω) = 0}. However, for almost all ω ∈ Ω, the set {t : Nt (ω) = 0}
has zero measure with respect to d〈N〉t (ω). In fact, due to the occupation time formula (see Prot-
ter (2005), Corollary 1 to Theorem IV.70), we have

∫ t
0
1{Nu=0}d〈N〉u =

∫∞
−∞ L

x
t 1{x=0}dx = 0

P -a.s. for all t ∈ [0, T ]. We have thus shown that L0 induces a measure which is singular with
respect to the measure induced by 〈N〉, thus showing that there cannot exist a predictable process
λ = (λt)0≤t≤T such that dL0

t = λtd〈N〉t. Theorem 4.3.2 then implies that the NUIP condition fails
to hold.

In the framework of the above example, we can also explicitly construct a trading strategy
yielding an unbounded increasing profit. For simplicity, let us suppose that N0 = 0 P -a.s. Let us
define the process H = (Ht)0≤t≤T by H0 := 0 and Ht := 1{Nt=0}, for all t ∈ (0, T ]. Clearly,
H is a bounded predictable process and so H ∈ L (S). Furthermore, we have (H ·M)t =∫ t

0
Hu sign (Nu) dNu = 0 P -a.s. for all t ∈ [0, T ], due to the fact that:

〈∫
H sign (N) dN

〉
T

=

∫ T

0

H2
u

(
sign (Nu)

)2
d〈N〉u =

∫ T

0+

1{Nu=0}d〈N〉u = 0 P -a.s.

2Observe that, if the gains from trading process G (H) = H · S associated to a strategy H ∈ A0 generating an
unbounded increasing profit is predictable, then we can always write H · S = H ·M +H ·A, due to Proposition 2 of
Jacod (1980). In fact, the stochastic integral process G (H) = H ·S is a special semimartingale, being predictable and
of finite variation, and S is also special, being a locally square-integrable semimartingale.
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Note also that
∫
HdL0 = L0, since the measure dL0

t (ω) is carried by the set {t : Nt (ω) = 0} for
almost all ω ∈ Ω. Hence, for all t ∈ [0, T ]:

(H · S)t =

∫ t

0

Hu sign (Nu) dNu +

∫ t

0

HudL
0
u = L0

t = sup
s≤t

(
−
∫ s

0

sign (Nu) dNu

)
where the last equality follows from Skorohod’s Lemma (see e.g. Protter (2005), Exercise IV.30).
This shows that the gains from trading process G (H) = H · S starts from 0 and is P -a.s. non-
decreasing. In particular, this also implies H ∈ A0. Finally, if we assume that the local mar-
tingale N is not trivial, we also have P

(
GT (H) > 0

)
> 0. Indeed, suppose on the contrary that

P
(
GT (H) > 0

)
= 0, so that sups≤T

(
−
∫ s

0
sign (Nu) dNu

)
= 0 P -a.s. and, hence,

∫ t
0

sign (Nu) dNu

≥ 0 P -a.s. for all t ∈ [0, T ]. Due to Fatou’s Lemma, this implies that the process
∫

sign (N) dN is a
non-negative supermartingale, being a non-negative continuous local martingale. Since

∫
sign (N) dN

has initial value zero, the supermartingale property gives
∫

sign (N) dN ≡ 0, which in turn implies
that 〈N〉 =

〈∫
sign (N) dN

〉
≡ 0, thus contradicting the assumption that the continuous local

martingale N is not trivial.

Remark 4.3.5. An interesting interpretation of the arbitrage opportunities arising with local times
can be found in Jarrow & Protter (2005), where the authors show that the existence of large traders
(whose orders affect market prices) can introduce “hidden” arbitrage opportunities for the small
traders, who act as price-takers. These arbitrage opportunities are “hidden” since they occur on
time sets of Lebesgue measure zero, being related to the local time of Brownian motion.

4.3.2 No Immediate Arbitrage Opportunity

In this Section we shall be concerned with another notion of no-arbitrage, slightly stronger than the
NUIP condition studied in Section 4.3.1 but still weaker than the classical No Arbitrage (NA) and
No Free Lunch with Vanishing Risk (NFLVR) conditions. The following Definition has appeared
for the first time in Delbaen & Schachermayer (1995b).

Definition 4.3.6. Let H ∈ A0. We say that the strategy H generates an immediate arbitrage
opportunity if there exists a stopping time τ such that P (τ < T ) > 0 and H = H1]]τ,T ]] and
Gt (H) = (H · S)t > 0 P -a.s. for all t ∈ (τ, T ]. If there exists no such H ∈ A0 we say that the No
Immediate Arbitrage Opportunity (NIAO) condition holds.

Suppose that H ∈ A0 generates an immediate arbitrage opportunity. Then, on the set {τ < T},
we have (H · S)τ+t > 0 P -a.s. for all t ∈ (0, T − τ ], meaning that we can realize an arbitrage
opportunity immediately after the stopping time τ has occurred. This explains the terminology
immediate arbitrage opportunity. It is easy to see that the existence of an unbounded increasing
profit, in the sense of Definition 4.3.1, implies the existence of an immediate arbitrage opportunity.
Indeed, suppose that the strategy H ∈ A0 yields an unbounded increasing profit and let τ :=

inf
{
t > 0 : Gt (H) > 0

}
∧ T . Then it must be P (τ < T ) > 0, since we would otherwise

have τ = T P -a.s. and, by continuity, GT (H) = 0 P -a.s., thus contradicting the assumption that
P
(
GT (H) > 0

)
> 0. Since the gains from trading process G (H) is P -a.s. increasing, it follows
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that the strategy H̃ := H1]]τ,T ]] ∈ A0 realizes an immediate arbitrage opportunity. An example of a
model which satisfies the NUIP condition but which allows for immediate arbitrage opportunities
will be presented at the end of this Section, thus showing that the NIAO condition is strictly stronger
than the NUIP condition.

Let us also give the following Definition, which formalizes an economically sound notion of
arbitrage opportunity.

Definition 4.3.7. Let H ∈ A0. We say that the strategy H generates a strong arbitrage opportunity
if P
(
GT (H) > 0

)
> 0. If there exists no such H ∈ A0, i.e.

{
GT (H) : H ∈ A0

}
∩ L0

+ = {0}, we
say that the No Strong Arbitrage (NSA) condition holds.

The NSA condition introduced in Definition 4.3.7 corresponds to the NA+ property considered
in Strasser (2005). Intuitively, a strong arbitrage opportunity consists in a trading strategy which
does not require any initial capital nor any amount of credit at intermediate times and leads (with
non-zero probability) to a strictly positive final wealth. Of course, this sort of strategy should be
banned from any reasonable financial market model. We have the following simple Lemma.

Lemma 4.3.8. The NIAO condition and the NSA condition are equivalent.

Proof. By following the arguments used in the first part of the proof of Lemma 3.1 in Delbaen &
Schachermayer (1995b), it can be shown that a strong arbitrage opportunity implies the existence
of an immediate arbitrage opportunity. Hence, NIAO implies NSA. Conversely, it is easy to see
directly from Definitions 4.3.6 and 4.3.7 that an immediate arbitrage opportunity is also a strong
arbitrage opportunity. Hence, NSA implies NIAO.

Remark 4.3.9 (On the NSA condition). Our definition of strong arbitrage opportunity is similar
to the notion of arbitrage opportunity adopted in Loewenstein & Willard (2000). In particular, in
the context of a complete diffusion-based financial market model, Theorem 1 of Loewenstein &
Willard (2000) shows that the absence of arbitrage opportunities should be regarded as a minimal
condition, in the absence of which there is no solution to any utility maximization problem. The
NSA condition has been also adopted as a minimal condition in Christensen & Larsen (2007), in
lieu of the stronger classical No Arbitrage (NA) condition

{
GT (H) : H ∈ A

}
∩ L0

+ = {0}. Fur-
thermore, the notion of strong arbitrage opportunity corresponds to the notion of arbitrage adopted
in the context of the Benchmark Approach, see e.g. Section 10.3 of Platen & Heath (2006) and
Section 7 of Platen (2009). However, we want to point out that typical applications of the bench-
mark approach require stronger assumptions than the mere absence of strong arbitrage opportunities
(or, equivalently, immediate arbitrage opportunities), namely the existence of the growth-optimal
portfolio. In Karatzas & Kardaras (2007), the authors show that the existence of a non-exploding
growth-optimal portfolio is equivalent to the No Unbounded Profit with Bounded Risk (NUPBR)
condition. As we are going to show in Section 4.3.3, the NUPBR condition is strictly stronger than
the NSA condition. This means that, in the context of the benchmark approach, not only strong
arbitrage opportunities but also slightly weaker forms of arbitrage are ruled out from the market.
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As we have seen, the NIAO condition (or, equivalently, the NSA condition) is stronger than
the NUIP condition. Theorem 4.3.2 shows that the NUIP condition is equivalent to the existence
of an Rd-valued predictable process λ = (λt)0≤t≤T such that a = cλ holds P ⊗ B-a.e., where the
processes a, c andB are as in (4.1). Hence, it seems natural to conjecture that the NIAO condition is
equivalent to the existence of a process λ as above satisfying some additional integrability property.
This conjecture is correct, as we are going to show in the following Theorem. As a preliminary, let
us define the mean-variance tradeoff process K̂ =

(
K̂t

)
0≤t≤T as follows, for t ∈ [0, T ]:

K̂t :=

∫ t

0

λ′ud〈M,M〉uλu =
d∑

i,j=1

∫ t

0

λiuc
ij
u λ

j
udBu (4.4)

where the Rd-valued process λ = (λt)0≤t≤T is as in Theorem 4.3.2. Let also K̂t
s := K̂t−K̂s, for all

s, t ∈ [0, T ] with s ≤ t. As in Levental & Skorohod (1995) and Strasser (2005), let us also define
the following stopping time:

α := inf
{
t > 0 : K̂t+h

t =∞,∀h ∈ (0, T − t]
}

(4.5)

with the usual convention inf ∅ = ∞. The result of the following Theorem has been already
obtained in Strasser (2005), albeit with a slightly different proof.

Theorem 4.3.10. The NIAO condition holds if and only if there exists an Rd-valued predictable
process λ = (λt)0≤t≤T such that a = cλ holds P ⊗B-a.e. and the stopping time α satisfies α =∞
P -a.s., meaning that the process K̂ does not jump to infinity.

Proof. We have already seen that the NIAO condition implies the NUIP condition. Hence, the
existence of an Rd-valued predictable process λ = (λt)0≤t≤T such that a = cλ holds P ⊗ B-a.e.
follows from Theorem 4.3.2. The fact that the NIAO condition implies α = ∞ P -a.s. is shown
in Theorem 3.6 of Delbaen & Schachermayer (1995b) (compare also with Kabanov & Stricker
(2005), Section 3, and Strasser (2005), Theorem 3.5).

Conversely, suppose that there exists an Rd-valued predictable process λ = (λt)0≤t≤T such that
a = cλ holds P ⊗ B-a.e. and α = ∞ P -a.s. and let the strategy H ∈ A0 yield an immediate
arbitrage opportunity with respect to a stopping time τ with P (τ < T ) > 0. By assumption, since
α = ∞ P -a.s., we have P

(
K̂τ+h
τ =∞,∀h ∈ (0, T − τ ]

)
= 0. For every n ∈ N, define the

stopping time ρn := inf
{
t > τ : K̂t

τ ≥ n
}
∧ T . Since K̂ is continuous and does not jump to

infinity, it is clear that ρn > τ P -a.s. on the set {τ < T}, for all n ∈ N. Let us define the process
λτ,n := λ1]]τ,ρn]], for every n ∈ N. Then, on the set {τ < T}:∫ T

0

(λτ,nt )′ d〈M,M〉tλτ,nt =

∫ T

0

1]]τ,ρn]]λ
′
td〈M,M〉tλt = K̂ρn

τ ≤ n P -a.s.

This implies that λτ,n ∈ L2 (M), for all n ∈ N, and we can meaningfully define the stochastic ex-
ponential Ẑτ,n := E (−λτ,n ·M). The process Ẑτ,n is a strictly positive continuous local martingale
(due to Novikov’s condition it is also a uniformly integrable martingale, see e.g. Protter (2005),
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Theorem III.45). It is also obvious that Ẑτ,n ≡ 1 on the stochastic interval [[0, τ ]] and Ẑτ,n ≡ Ẑτ,n
ρn

on the stochastic interval ]]ρn, T ]]. Let us now compute the stochastic differential of the product
Ẑτ,n (H · S)ρn , where (H · S)ρn denotes the stochastic integral process H · S stopped at ρn:

d
(
Ẑτ,n
t (H · S)ρnt

)
= Ẑτ,n

t d (H · S)ρnt + (H · S)ρnt dẐτ,n
t + d

[
Ẑτ,n, (H · S)ρn

]
t

= Ẑτ,n
t d (H ·M)ρnt + Ẑτ,n

t d (H · A)ρnt + (H · S)ρnt dẐτ,n
t − Ẑ

τ,n
t H ′td〈M,M〉tλτ,nt

= Ẑτ,n
t d (H ·M)ρnt + (H · S)ρnt dẐτ,n

t + Ẑτ,n
t H ′t

(
dAρnt − d〈M,M〉tλτ,nt

)
= Ẑτ,n

t d (H ·M)ρnt + (H · S)ρnt dẐτ,n
t

(4.6)
where the first equality follows from the integration by parts formula (see e.g. Protter (2005),
Corollary 2 to Theorem II.22), the third equality uses the fact that Ẑτ,n

t d (H · A)ρnt = Ẑτ,n
t H ′tdA

ρn
t ,

since we have Ẑτ,n ∈ L (H · A) (being adapted and continuous, hence predictable and locally
bounded) and H ∈ L (S), and, finally, the last equality is due to the fact that dA = d〈M,M〉λ
and H = H1]]τ,T ]]. Due to Theorem IV.29 of Protter (2005), equation (4.6) shows that the prod-
uct Ẑτ,n (H · S)ρn is a non-negative local martingale and, due to Fatou’s Lemma, also a super-
martingale, for all n ∈ N. Since Ẑτ,n

0 (H · S)ρn0 = 0, the supermartingale property implies that
Ẑτ,n
t (H · S)ρnt = 0 for all t ∈ [0, T ] P -a.s. Recall that, on the set {τ < T}, we have ρn > τ P -a.s.

and so Ẑτ,n > 0 P -a.s., for all n ∈ N. This implies that (H · S)ρn ≡ 0 on the set {τ < T}, for
all n ∈ N. Hence, we can conclude that H · S ≡ 0 on

⋃
n∈N ]]τ, ρn]]. Since P (τ < T ) > 0, this

contradicts the fact that (H · S)t > 0 P -a.s. for all t ∈ (τ, T ], thus showing that there cannot exist
an immediate arbitrage opportunity.

In particular, it is important to note that Theorem 4.3.10 shows that we can check whether
a financial market model allows for immediate arbitrage opportunities by looking directly at the
characteristics of the process S representing the discounted price of the risky assets.

Let us now formalize in the following Definition the concept of (weak) martingale deflator,
which plays the role of a weaker counterpart to the classical concept of martingale measure (see the
last part of Section 4.3.3 for more details on this point) and bears a close similarity to the notion of
martingale density introduced in Schweizer (1992),(1995).

Definition 4.3.11. Let Z = (Zt)0≤t≤T be a non-negative local martingale with Z0 = 1. We say that
Z is a weak martingale deflator if the product ZSi is a local martingale, for all i = 1, . . . , d. If Z
satisfies in addition ZT > 0 P -a.s. we say that Z is a martingale deflator.

Remark 4.3.12. Let the process Z = (Zt)0≤t≤T be a weak martingale deflator. Since Z is a non-
negative local martingale, Fatou’s Lemma implies that Z is also a supermartingale (and, hence, a
true martingale if and only if E [ZT ] = E [Z0] = 1). Furthermore, if Z is a martingale deflator, so
that ZT > 0 P -a.s., the minimum principle for non-negative supermartingales (see e.g. Revuz &
Yor (1999), Proposition II.3.4) implies that P

(
Zt > 0 and Zt− > 0 for all t ∈ [0, T ]

)
= 1.

The following Lemma shows the fundamental property of weak martingale deflators. For the
definition and the main properties of σ-martingales we refer the reader to Section 2 of Delbaen &
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Schachermayer (1998b), Section III.6e of Jacod & Shiryaev (2003), Kallsen (2004) and Section
IV.9 of Protter (2005). Observe that the following Lemma does not rely on the continuity of S
but holds true also in the more general context where S is a general (possibly discontinuous and
non-locally bounded) semimartingale.

Lemma 4.3.13. Let the process Z = (Zt)0≤t≤T be a weak martingale deflator. Then, for any
H ∈ L (S), the product Z (H · S) is a σ-martingale. If in addition H ∈ A, then the product
Z (H · S) is a local martingale.

Proof. Let Z = (Zt)0≤t≤T be a weak martingale deflator and let H ∈ L (S). Define the Rd+1-
valued local martingale Y = (Yt)0≤t≤T by Yt :=

(
ZtS

1
t , . . . , ZtS

d
t , Zt

)′ and let L (Y ) be the set of
all Rd+1-valued predictable Y -integrable processes, in the sense of Definition III.6.17 of Jacod &
Shiryaev (2003). For all n ∈ N, define also Hn := H1{‖H‖≤n}. Then, using twice the integration
by parts formula:

Z
(
H (n) · S

)
= Z− ·

(
H (n) · S

)
+
(
H (n) · S

)
− · Z +

[
Z,H (n) · S

]
=
(
Z−H (n)

)
· S +

(
H (n) · S

)
− · Z +H (n) · [S,Z]

= H (n) · (ZS − S− · Z) +
(
H (n) · S

)
− · Z

= H (n) · (ZS) +
((
H (n) · S

)
− −H (n)′ S−

)
· Z = K (n) · Y

where, for every n ∈ N, the Rd+1-valued predictable process K (n) is defined as K (n)i := H (n)i,
for all i = 1, . . . , d, and K (n)d+1 :=

(
H (n) · S

)
− −H (n)′ S−. Clearly, we have K (n) ∈ L (Y ),

sinceK (n) is a predictable and locally bounded process, for all n ∈ N. Define also the Rd+1-valued
predictable process K by Ki := H i, for all i = 1, . . . , d, and Kd+1 := (H · S)− −H ′S−. Arguing
as in the proof of Proposition 8 of Rheinländer & Schweizer (1997), note that H (n) · S converges
toH ·S in the semimartingale topology as n→∞, sinceH ∈ L (S). This implies thatK (n) ·Y =

Z
(
H (n) ·S

)
also converges in the semimartingale topology, since the multiplication with the fixed

semimartingale Z is a continuous operation. Since the space
{
K · Y : K ∈ L (Y )

}
is closed in the

semimartingale topology (see e.g. Jacod & Shiryaev (2003), Proposition III.6.26), we can conclude
that Z (H · S) = K̄ ·Y for some K̄ ∈ L (Y ). But since K (n) converges to K (P -a.s. uniformly in
t, at least along a subsequence) as n→∞, we can conclude that K̄ = K; see Mémin (1980). This
shows thatK ∈ L (Y ). Since the process Y is a local martingale andK ∈ L (Y ), Theorem IV.90 of
Protter (2005) implies that Z (H · S) = K ·Y is a σ-martingale. Now, to prove the second assertion
of the Lemma, suppose that we also have H ∈ A. Then, due to Definition 4.2.2, there exists a
positive constant a such that (H · S)t ≥ −a P -a.s. for all t ∈ [0, T ]. The process Z (a+H · S) is a
σ-martingale, being the sum of a local martingale and a σ-martingale. Furthermore, Exercise IV.43
of Protter (2005) (see also Kallsen (2004), Proposition 3.1) implies that Z (a+H · S) is a local
martingale and also a supermartingale, being a non-negative σ-martingale. In turn, this implies that
the process Z (H · S) is a local martingale, being the difference of two local martingales.

If the process Z = (Zt)0≤t≤T is a weak martingale deflator and H ∈ A1, Lemma 4.3.13 implies
that Z (1 +H · S) is a non-negative local martingale and, hence, a supermartingale. According to
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the terminology adopted in Becherer (2001), this means that the process Z = (Zt)0≤t≤T is a P -
supermartingale density. Similarly, if Z is a martingale deflator, Lemma 4.3.13 implies that Z is an
equivalent supermartingale deflator in the sense of Definition 4.9 of Karatzas & Kardaras (2007).
The importance of supermartingale densities/deflators has been first recognized by Kramkov &
Schachermayer (1999).

Our next goal consists in showing that the NIAO condition ensures the existence of a weak
martingale deflator. This can already be guessed by following the arguments used in the sec-
ond part of the proof of Theorem 4.3.10, but we prefer to give full details. So, let us suppose
that the NIAO condition holds and define the stopping time τ := inf

{
t ∈ [0, T ] : K̂t = ∞

}
.

Then, due to Theorem 4.3.10, we have α = ∞ P -a.s. and, hence, τ > 0 P -a.s. (see also Del-
baen & Schachermayer (1995b), Theorem 3.6). Let the process λ = (λt)0≤t≤T be as in Theorem
4.3.10. Then, on the stochastic interval [[0, τ [[ , the stochastic integral λ · M is well-defined as
a continuous local martingale. This allows us to define the process Ẑ := E (−λ ·M)1[0,τ) =

exp
(
−λ ·M − 1

2

∫
λ′d〈M,M〉λ

)
1[0,τ). On the set {τ ≤ T}, the process Ẑ hits zero not by a jump

and we have
{
Ẑτ− = 0

}
=
{
K̂τ = ∞

}
, see also Section 4 of Kabanov & Stricker (2005). The

process Ẑ is well-defined as a continuous local martingale (and furthermore, being non-negative,
Fatou’s Lemma implies that it is a supermartingale). On the stochastic interval [[0, τ [[ , the same
calculations as in (4.6) allow to show the following, for any H ∈ L (S):

Ẑ (H · S) =
(
ẐH

)
·M + (H · S) · Ẑ

where we have also used the continuity of Ẑ and S. Since H ∈ L (S) ⊆ L2
loc (M) and Ẑ is adapted

and continuous, hence predictable and locally bounded, we have ẐH ∈ L2
loc (M). Similarly, we

also have H · S ∈ L2
loc

(
Ẑ
)
. This shows that the process Ẑ (H · S) is a continuous local martingale

on the stochastic interval [[0, τ [[ . Since Ẑ remains frozen at zero after τ and Ẑτ = Ẑτ− on {τ ≤ T},
this implies that the process Ẑ (H · S) is a continuous local martingale on the whole interval [0, T ].
In a similar way, using the fact that, as a consequence of Theorem 4.3.10, we have dA = d〈M,M〉λ,
we can easily show that ẐSi is also a continuous local martingale, for all i = 1, . . . , d. Furthermore,
the process Ẑ is such that, for any local martingale N = (Nt)0≤t≤T strongly orthogonal (in the
sense of Jacod & Shiryaev (2003), Definition I.4.11) to the local martingale partM in the canonical
decomposition of S, the product ẐN is a local martingale. This can be easily shown as follows:

ẐN = Ẑ− ·N +N− · Ẑ +
[
Ẑ, N

]
= Ẑ ·N +N− · Ẑ − Ẑλ · 〈M,N〉 = Ẑ ·N +N− · Ẑ

where we have used the continuity of M and the orthogonality of M and N . Since the processes Ẑ
and N− are predictable and locally bounded, being adapted and left-continuous, and since Ẑ and N
are both local martingales, Theorem IV.29 of Protter (2005) implies that ẐN is a local martingale.
Summing up, we have proved the following Proposition.

Proposition 4.3.14. Suppose that the NIAO condition holds and let τ :=inf
{
t ∈ [0, T ] : K̂t=∞

}
.

Then the process Ẑ := E (−λ ·M)1[0,τ) is a weak martingale deflator. Furthermore, for any local
martingale N = (Nt)0≤t≤T strongly orthogonal to the local martingale part M in the canonical
decomposition of S, the product ẐN is a local martingale.
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Remark 4.3.15 (On the minimal martingale measure). The process Ẑ := E (−λ ·M) represents
the candidate density process of the so-called minimal martingale measure, originally introduced by
Föllmer & Schweizer (1991) and formally defined as a probability measure Q̂ on (Ω,F) such that
Q̂ = P onF0 and Q̂ ∼ P , such that S is a local Q̂-martingale and such that Q̂ preserves orthogonal-
ity, in the sense that every local P -martingale which is strongly P -orthogonal to the martingale part
M in the canonical decomposition of S (with respect to P ) is also a local Q̂-martingale. Proposition
4.3.14 shows that the process Ẑ is a weak martingale deflator and possesses such an orthogonality-
preserving property. However, the process Ẑ can fail to be the well-defined density process of the
minimal martingale measure Q̂ for two reasons. First, it could be that P

(
ẐT > 0

)
< 1, so that

the measure Q̂ on (Ω,F) defined by dQ̂
dP

:= ẐT would fail to be equivalent to P , being only ab-
solutely continuous to P . Second, Ẑ may fail to be a true martingale, being instead a strict local
martingale (and a strict supermartingale), i.e. a local martingale which is not a true martingale,
meaning that E

[
ẐT
]
< E

[
Ẑ0

]
= 1. In the latter case, Q̂ would fail to be a probability measure,

since Q̂ (Ω) = E
[
ẐT
]
< 1.

Remark 4.3.16 (On the tradeability of Ẑ). The weak martingale deflator Ẑ introduced in Propo-
sition 4.3.14 has another interesting property. To see that, let us define the process X := 1/Ẑ − 1

on the stochastic interval [[0, τ [[ . On the set
{
Ẑτ = 0

}
we let Xτ− = Xτ = ∞ and, since after τ

the process Ẑ remains frozen at 0, we extend X in a natural way on the stochastic interval [[τ, T ]]

by letting X =∞. Note that, as soon as the NIAO condition holds, the stochastic integrals H ·M
and H · S are well-defined on the stochastic interval [[0, τ [[ and, hence, the process X satisfies the
following:

dXt = −Ẑ−2
t dẐt + Ẑ−3

t d
〈
Ẑ
〉
t

= Ẑ−1
t λtdMt + Ẑ−1

t λ′td〈M,M〉tλt = ĤtdSt

where the Rd-valued predictable process Ĥ ∈ L (S) is defined as Ĥ := Ẑ−1λ. Since X ≥ −1 P -
a.s., we also have that the strategy Ĥ is 1-admissible, i.e. Ĥ = Ẑ−1λ ∈ A1. This means that, using
the terminology introduced in Section 4.4 of Karatzas & Kardaras (2007), the weak martingale
deflator Ẑ is tradeable, since it can be represented as the wealth process associated to a suitable 1-
admissible trading strategy. Related results can also be found in Delbaen & Schachermayer (1995b)
and Kabanov & Stricker (2005).

We conclude this Section by showing an example of a model which satisfies the NUIP condition
but which allows for immediate arbitrage opportunities. In view of Theorem 4.3.10, the example
below exhibits a model which satisfies the weak structure condition dA� d〈M,M〉 but for which
P (α < T ) > 0.

Example 4.3.17. This Example is a generalization of Example 3.4 of Delbaen & Schachermayer
(1995b). Let M = (Mt)0≤t≤T be a real-valued continuous local martingale with M0 = 0 on the
filtered probability space (Ω,F ,F, P ) and define the discounted price process S = (St)0≤t≤T of a
single risky asset as S := M + 〈M〉γ , for some γ ≤ 1/2. Then, due to Itô’s formula:

dSt = dMt + γ〈M〉γ−1
t d〈M〉t

134



4.3 Characterization of weak no-arbitrage conditions

Of course, we see that the finite variation part 〈M〉γ in the canonical decomposition of S is ab-
solutely continuous with respect to 〈M〉. Hence, Theorem 4.3.2 implies that the NUIP condition
holds. However, for any ε > 0 we have that:

K̂ε =

∫ ε

0

(
γ〈M〉γ−1

t

)2
d〈M〉t = γ2

∫ ε

0

〈M〉2(γ−1)
t d〈M〉t =


γ2 log

(
〈M〉t

)∣∣∣ε
0

if γ = 1/2

γ2

2γ−1
〈M〉2γ−1

t

∣∣∣ε
0

if γ < 1/2
=∞

This shows that in the present Example we have α = 0 P -a.s. Hence, due to Theorem 4.3.10,
the NIAO condition fails to hold. By letting M = W , for W a standard Brownian motion on
(Ω,F ,F, P ), and γ = 1/2, we recover the situation considered in Example 3.4 of Delbaen &
Schachermayer (1995b).

4.3.3 No Unbounded Profit with Bounded Risk

In this Section we shall study a crucial no-arbitrage condition, named No Unbounded Profit with
Bounded Risk (NUPBR), slightly stronger than the NUIP and NIAO conditions discussed in Sec-
tions 4.3.1 and 4.3.2, respectively, but still weaker than the classical No Free Lunch with Vanishing
Risk (NFLVR) condition (see later in this Section for more details on the relations between NUPBR
and NFLVR). Let us start with the following Definition.

Definition 4.3.18. Let (Xn)n∈N be a sequence in
{

1 + GT (H) : H ∈ A1

}
. We say that (Xn)n∈N

generates an unbounded profit with bounded risk if the collection (Xn)n∈N is unbounded in prob-
ability, i.e. limm→∞ supn∈N P (Xn > m) > 0. If there exists no such sequence we say that the No
Unbounded Profit with Bounded Risk (NUPBR) condition holds.

In words, the NUPBR condition requires the set of terminal wealths generated by 1-admissible
self-financing trading strategies to be bounded in probability. The NUPBR condition has been first
introduced under that name in Karatzas & Kardaras (2007). However, the same condition plays
also a key role in the seminal work Delbaen & Schachermayer (1994), where the authors show
that it is a necessary condition for the validity of the stronger classical NFLVR condition (see also
Kabanov (1997) and later in this Section for more details).

Remark 4.3.19.

1. Note that in Definition 4.3.18 there is no loss of generality in considering 1-admissible strate-
gies only. In fact, we have {a+GT (H) : H ∈ Aa} = a {1 +GT (H) : H ∈ A1}, for any
a > 0. This implies that, for all a > 0, the set of all final wealths generated by a-admissible
self-financing trading strategies is bounded in probability if and only if the set of all final
wealths generated by 1-admissible self-financing trading strategies is bounded in probability.

2. At first sight, the content of Definition 4.3.18 may seem rather technical and the economic
meaning not so clear. However, there exists an alternative characterization of the NUPBR
condition in terms of the absence of arbitrages of the first kind, as has been recently shown
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in Kardaras (2010a). Formally, an arbitrage of the first kind is defined as a non-negative
F-measurable random variable ξ with P (ξ > 0) > 0 such that for all x > 0 there exists an
x-admissible strategy Hx ∈ Ax satisfying x+GT (Hx) ≥ ξ P -a.s.

As we have seen in Sections 4.3.1 and 4.3.2, the NUIP and NIAO conditions exclude rather
blatant forms of arbitrage, which can be seen as pathologies of a given financial market model.
The NUIP and NIAO conditions can therefore be regarded as indispensable “sanity checks” for any
financial market model. However, they do not guarantee the solvability of fundamental problems
in financial mathematics such as portfolio optimization, valuation and hedging problems. The
result of Proposition 4.19 of Karatzas & Kardaras (2007) is therefore of great interest, since it
shows that the failure of the NUPBR condition precludes the solvability of any utility maximization
problem. In the particular case of a complete diffusion-based financial market model, an analogous
result has already been shown in Loewenstein & Willard (2000). Furthermore, as soon as the
NUPBR condition holds, the benchmark approach proposed by Eckhard Platen and co-authors
provides a coherent framework for dealing with valuation and hedging problems for non-negative
contingent claims, see e.g. Platen (2006), Platen & Heath (2006) and Platen (2009). Under the
NUPBR condition, but not requiring the full strength of the classical NFLVR condition, valuation
and hedging problems are also dealt with in Fernholz & Karatzas (2009), Fontana & Runggaldier
(2011) and Ruf (2011b) in the context of diffusion-based financial market models. Summing up,
these observations imply that the NUPBR condition not only excludes strong forms of arbitrage
from the market but also opens the doors to the solution of classical problems of mathematical
finance and, hence, can be regarded as the fundamental no-arbitrage condition.

It is easy to show that if there is an immediate arbitrage opportunity, in the sense of Definition
4.3.6, then there is also an unbounded profit with bounded risk, meaning that the NUPBR condition
is stronger than the NIAO condition. In fact, suppose that the strategy H ∈ A0 generates an
immediate arbitrage opportunity with respect to a stopping time τ with P (τ < T ) > 0. Let ξ :=

GT (H) = 1{τ<T} (H · S)T , so that P (ξ ≥ 0) = 1 and P (ξ > 0) > 0. For all n ∈ N, let us define
the processHn := nH ∈ A0 ⊆ A1 and theF-measurable random variableXn := 1+(Hn · S)T =

1 + nξ. Clearly, the collection (Xn)n∈N ⊆
{

1 +GT (H) : H ∈ A1

}
is not bounded in probability,

meaning that (Xn)n∈N generates an unbounded profit with bounded risk. Equivalently (see part 2
of Remark 4.3.19), the F-measurable random variable ξ is an arbitrage of the first kind. In fact, for
all x > 0, we have x + GT (H) = x + ξ > ξ. An example of a model which satisfies the NIAO
condition but which allows for an unbounded profit with bounded risk will be presented later in this
Section, thus showing that the NUPBR condition is strictly stronger than the NIAO condition.

We now continue the study of the NUPBR condition by giving an equivalent criterion for its
validity. To this effect, let us first introduce the following Definition3, which is adapted from
Christensen & Larsen (2007).

Definition 4.3.20. Let (Hn)n∈N be a sequence in L (S) with Hn · S ≥ −1/n for all n ∈ N. We
say that (Hn)n∈N generates an approximate arbitrage opportunity if GT (Hn) → f in probability

3We warn the reader that in Levental & Skorohod (1995) the term approximate arbitrage is used with a different
meaning.
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as n→∞, for some F-measurable non-negative random variable f such that P (f > 0) > 0.

Lemma 4.3.21. The NUPBR condition holds if and only if there do not exist approximate arbitrage
opportunities.

Proof. It is clear that the set
{

1 + (H · S)T : H ∈ A1

}
cannot be bounded in probability if

there exists a sequence (Hn)n∈N which generates an approximate arbitrage opportunity. In fact,
the strategy nHn is 1-admissible, for every n ∈ N, and the collection

{
1 + n (Hn · S)T : n ∈ N

}
is unbounded in probability (compare also with Delbaen & Schachermayer (1994), Proposition
3.6). Conversely, suppose that the NUPBR condition fails to hold. Then there exists a sequence
(Hn)n∈N ⊆ A1 such that P

(
(Hn · S)T ≥ n

)
> β for all n ∈ N and for some β > 0. For every

n ∈ N, let H̃n := 1
n
Hn. Clearly, we have H̃n ∈ A1/n and P

(
(H̃n · S)T ≥ 1

)
> β, for all

n ∈ N. Let gn := 1
n

+
(
H̃n · S

)
T
≥ 0 P -a.s., for all n ∈ N. Due to Lemma A1.1 of Delbaen &

Schachermayer (1994), there exists a sequence (fn)n∈N, with fn ∈ conv {gn, gn+1, . . .}, such that
(fn)n∈N converges P -a.s. to a non-negative F-measurable random variable f . For all n ∈ N, let
Kn be the convex combination of the strategies

(
H̃m
)
m≥n corresponding to fn. It is easy to see

that Kn ∈ A1/n, for all n ∈ N. Furthermore, we have GT (Kn) = (Kn · S)T = fn + O (n−1),
so that GT (Kn) → f P -a.s. and, hence, also in probability, as n → ∞. Furthermore, due to the
last part of Lemma A1.1 of Delbaen & Schachermayer (1994), we have that P (f > 0) > 0, thus
showing that the sequence (Kn)n∈N generates an approximate arbitrage opportunity.

Remark 4.3.22 (On approximate arbitrage opportunities and cheap thrills). The notion of
approximate arbitrage opportunity is closely related to the concept of cheap thrill introduced in
Loewenstein & Willard (2000). Formally, a cheap thrill is defined as a sequence (Hn)n∈N ⊆ L (S)

such thatHn ∈ Axn , for some xn ≥ 0, for all n ∈ N, with xn ↘ 0 as n→∞ and xn+GT (Hn)→
∞ P -a.s. as n → ∞ on some set with non-zero probability. By reasoning as in the first part of
the proof of Lemma 4.3.21, it can be easily shown that the set

{
1 + GT (H) : H ∈ A1

}
cannot

be bounded in probability if there exists a cheap thrill and, hence, due to Lemma 4.3.21, there
exists an immediate arbitrage opportunity. Conversely, one can easily construct a cheap thrill from
a sequence (Hn)n∈N ⊆ L (S) which generates an approximate arbitrage opportunity. In fact, for
all n ∈ N, let xn := log(n)

n
and H̃n := log (n)Hn. Then xn + H̃n · S = log (n)

(
1
n

+Hn · S
)
≥ 0

P -a.s., since Hn ∈ A1/n, so that we have H̃n ∈ Axn , for all n ∈ N. Furthermore, we have xn ↘ 0

as n → ∞. By assumption, GT (Hn) = (Hn · S)T → f in probability as n → ∞, for some F-
measurable non-negative random variable f with P (f > 0) > 0. Passing to a subsequence, we can
assume that the convergence takes place P -a.s. This implies GT

(
H̃n

)
= log (n)GT (Hn) → ∞

P -a.s. as n → ∞ on some set with strictly positive probability, thus showing that there exists a
cheap thrill.

Summing up, by combining part 2 of Remark 4.3.19, Lemma 4.3.21 and Remark 4.3.22, we
have shown the equivalence between the following types of arbitrage opportunities:

• unbounded profit with bounded risk;

• arbitrage of the first kind;
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• approximate arbitrage;

• cheap thrill.

We want to emphasize that all the above forms of arbitrage opportunities are stronger than the
classical Free Lunch with Vanishing Risk notion adopted in the context of the classical no-arbitrage
theory as formulated in Delbaen & Schachermayer (1994),(1998b),(2006).

The following Theorem gives necessary and sufficient conditions for the validity of NUPBR in
the context of general financial market models based on continuous semimartingales.

Theorem 4.3.23. The following are equivalent:

(a) the NUPBR condition holds;

(b) there exists an Rd-valued predictable process λ = (λt)0≤t≤T such that a = cλ holds P ⊗B-
a.e. and K̂T <∞ P -a.s., i.e. λ ∈ L2

loc (M);

(c) there exists a martingale deflator (in the sense of Definition 4.3.11).

Proof. We first show that (a) implies (b). We already know that the NUPBR condition is stronger
than the NIAO condition. Hence, due to Theorem 4.3.10, there exists an Rd-valued predictable
process λ = (λt)0≤t≤T such that a = cλ holds P ⊗ B-a.e. and α := inf

{
t > 0 : K̂t+h

t =∞,∀h ∈
(0, T − t]

}
= ∞ P -a.s. It remains to show that K̂T < ∞ P -a.s. Suppose that, on the contrary,

we have P (τ ≤ T ) > 0, where τ := inf
{
t ∈ [0, T ] : K̂t = ∞

}
, so that P

(
ẐT = 0

)
= P

(
K̂T =

∞
)
> 0, where the process Ẑ is defined as in Proposition 4.3.14. Define the sequence of stopping

times (τn)n∈N by τn := inf
{
t ∈ [0, T ] : K̂t ≥ n

}
, for every n ∈ N. Clearly, we have τn ↗ τ P -a.s.

as n→∞. For all n ∈ N, define the Rd-valued predictable process λn := λ1]]0,τn]] and note that:∫ T

0

(λnt )′ d〈M,M〉tλnt =

∫ T

0

λt1]]0,τn]]d〈M,M〉tλt = K̂T∧τn ≤ n P -a.s.

This implies that λn ∈ L2 (M) and, since dA = d〈M,M〉λ (due to Theorem 4.3.2), we also have
λn ∈ L0 (A), for all n ∈ N. Hence, we can conclude that λn ∈ L (S), for all n ∈ N. Furthermore,
K̂T∧τn < ∞ P -a.s. implies that the stopped process Ẑτn satisfies Ẑτn > 0 P -a.s. and, hence, the
process

(
Ẑτn
)−1 is well-defined for all n ∈ N. Being adapted and continuous, the process

(
Ẑτn
)−1

is also predictable and locally bounded, for all n ∈ N. Thus, we have that
(
Ẑτn
)−1

λn ∈ L (S) for
all n ∈ N. As in Remark 4.3.16, a simple application of Itô’s formula gives the following, for every
n ∈ N: (

Ẑτn
)−1 − 1 =

((
Ẑτn
)−1

λn
)
· S (4.7)

Since Ẑτn > 0 P -a.s., this also gives
(
Ẑτn
)−1

λn ∈ A1, meaning that the strategyHn := Ẑ−1λ1]]0,τn]]

=
(
Ẑτn
)−1

λn ∈ L (S) is 1-admissible for all n ∈ N. Furthermore:

1 + (Hn · S)T =
1

ẐT∧τn
→ 1

ẐT∧τ
P -a.s. as n→∞
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Since ẐT∧τ = 0 on the set
{
K̂T =∞

}
, which is supposed to have strictly positive probability, this

shows that the collection
{

1 +GT (Hn) : n ∈ N
}

is not bounded in probability, thus contradicting
the assumption that NUPBR holds.

Let us now show that (b) implies (c). If λ ∈ L2
loc (M) the stochastic integral λ ·M is well-

defined as a continuous local martingale. Moreover, the stochastic exponential Ẑ := E (−λ ·M)

is well-defined on the whole interval [0, T ] as a P -a.s. strictly positive continuous local martingale
with Ẑ0 = 1. Similarly to (4.6), the product rule, together with the fact that dA = d〈M,M〉λ,
allows to show that, for all i = 1, . . . , d:

d
(
ẐtS

i
t

)
= ẐtdS

i
t+S

i
tdẐt+d

[
Si, Ẑ

]
t

= ẐtdM
i
t+S

i
tdẐt+Ẑt

(
dAit−d〈M i,M〉tλt

)
= ẐtdM

i
t+S

i
tdẐt

where we have also used the continuity of Ẑ and Si. This shows that ẐSi is a local martingale for
all i = 1, . . . , d, meaning that Ẑ is a martingale deflator.

Finally, it remains to show that (c) implies (a). Let the process Z = (Zt)0≤t≤T be a martingale
deflator and let H ∈ A1. Then, due to Lemma 4.3.13, the product Z

(
1+(H · S)

)
is a non-negative

continuous local-martingale and, hence, also a supermartingale, so that E
[
ZT
(
1 + (H · S)T

)]
≤

E
[
Z0

(
1 + (H · S)0

)]
= 1, for allH ∈ A1. This shows that the set

{
ZT
(
1 + (H · S)T

)
: H ∈ A1

}
is bounded in L1 (P ) and, therefore, it is also bounded in probability. Since the multiplication by
the finite random variable ZT does not affect the boundedness in probability, this implies that the set{

1 +GT (H) : H ∈ A1

}
is bounded in probability, meaning that the NUPBR condition holds.

We want to point out that results analogous to Theorem 4.3.23 have already been obtained in
Section 4 of Kardaras (2010a) and Section 3 of Hulley & Schweizer (2010), always in the context
of general financial market models driven by continuous sermimartingales. However, our proof of
Theorem 4.3.23 emphasizes the role of the process Ẑ = E (−λ ·M) as the natural martingale de-
flator. Furthermore, our proof of Theorem 4.3.23 highlights the fact that the process Ẑ is tradeable,
in the sense of Remark 4.3.16, and, hence, the event

{
ẐT = 0

}
corresponds to the explosion of

the final wealth generated by a suitable 1-admissible self-financing trading strategy. For a related
discussion, see also Section 6 of Christensen & Larsen (2007).

Note that, due to the equivalence between conditions (a) and (b) in Theorem 4.3.23, as soon
as the NUPBR condition holds we have

∫ T
0
λ′td〈M,M〉λt = K̂T < ∞ P -a.s. and so ẐT =

E (−λ ·M)T > 0 P -a.s. Due to the supermartingale property, this also implies P
(
Ẑt > 0 for all t ∈

[0, T ]
)

= 1. If compared with the previous results concerning the NIAO condition (see Remark
4.3.15), this implies that the process Ẑ =

(
Ẑt
)

0≤t≤T can fail to be the well-defined density process
of a probability measure Q on (Ω,F) with Q ∼ P and such that S is a local Q-martingale for only
one reason: Ẑ can fail to be a true martingale, being instead a strict local martingale. In the latter
case we would have E

[
ẐT
]
< E

[
Ẑ0

]
= 1 and so letting dQ̂

dP
:= ẐT would not define a probability

measure on (Ω,F). In the recent paper Kardaras (2010a) it is shown that the existence of a mar-
tingale deflator is equivalent to the existence of a finitely additive measure Q on (Ω,F), weakly
equivalent to P and only locally countably additive (hence, Q is not a true probability measure),
under which the discounted price process S of the risky assets has a sort of local martingale be-
havior (see also Section 5 of Cassese (2005) for some related results). The following Proposition
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shows the general structure of all martingale deflators. Note that a martingale deflator does not
necessarily have to be continuous.

Proposition 4.3.24. Suppose that the NUPBR condition holds. Then a process Z = (Zt)0≤t≤T is a
martingale deflator, in the sense of Definition 4.3.11, if and only if it can be written as follows:

Z = E (−λ ·M +N) = Ẑ E (N) (4.8)

for some local martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0 and ∆N > −1

P -a.s.

Proof. Let Z = (Zt)0≤t≤T be a martingale deflator. Due to Remark 4.3.12, we know that Z is
a local martingale with P

(
Zt > 0 and Zt− > 0 for all t ∈ [0, T ]

)
= 1. Since the process Z− is

adapted and left-continuous, it is also predictable and locally bounded. These observations, together
with Theorem IV.29 of Protter (2005), imply that the stochastic integral process L := Z−1

− · Z is
well-defined as a local martingale with L0 = 0. Clearly, the local martingale L is the stochastic
logarithm of Z, meaning that we can write Z = E (L), see e.g. Theorem II.8.3 of Jacod & Shiryaev
(2003). Since the martingale part M in the canonical decomposition of S is continuous, L admits
a Galtchouk-Kunita-Watanabe decomposition with respect to M , see Ansel & Stricker (1993). So,
we can write:

L = ψ ·M +N

for some Rd-valued predictable process ψ = (ψt)0≤t≤T such that ψ ∈ L2
loc (M) and a local martin-

gale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0. Then, for all i = 1, . . . , d:

ZSi = Z− · Si + Si− · Z +
[
Z, Si

]
= Z− · Ai + Z− ·M i + Si− · Z +

[
Z,M i

]
+
[
Z,Ai

]
= Z− ·

(∫
d〈M i,M〉λ

)
+ Z− ·M i + Si− · Z + Z− ·

[
ψ ·M +N,M i

]
+
[
Z,Ai

]
= Z− ·

(∫
d〈M i,M〉 (λ+ ψ)

)
+ Z− ·M i + Si− · Z + Z− ·

[
N,M i

]
+
[
Z,Ai

] (4.9)

Observe now that Z− ·M i and Si− · Z are both local martingales (see e.g. Protter (2005), Theorem
IV.29). Furthermore, Z− · [N,M i] is a local martingale, since [N,M i] is a local martingale due to
the strong orthogonality of N and M , and [Z,Ai] is also a martingale due to Yoeurp’s Lemma (see
e.g. Jacod & Shiryaev (2003), Proposition I.4.49). Hence, equation (4.9) implies that the process
Z− ·

(∫
d〈M i,M〉 (λ+ ψ)

)
is a local martingale, for all i = 1, . . . , d. Being a predictable process

of finite variation, Theorem III.15 of Protter (2005) implies that it is also constant and P -a.s. equal
to 0. Since Z− > 0 P -a.s., this means that

∫
d〈M i,M〉 (λ+ ψ) ≡ 0 for all i = 1, . . . , d, which

in turn gives
∫ T

0
(λt + ψt)

′ d〈M,M〉t (λt + ψt) = 0 P -a.s. This implies that the stochastic integral
ψ ·M is indistinguishable from −λ ·M , thus yielding the following representation:

Z = E (ψ ·M +N) = E (−λ ·M +N) = Ẑ E (N)

where the last equality follows by using the definition of Ẑ and Yor’s formula (see Protter (2005),
Theorem II.38), since [M,N ] = 〈M,N〉 = 0 due to the continuity of M and the strong orthogo-
nality of M and N . Since Z > 0 and Ẑ > 0 P -a.s., we also have E (N) > 0 P -a.s., meaning that
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∆N > −1 P -a.s. Conversely, if Z = (Zt)0≤t≤T is a process which admits the representation (4.8),
then Z is obviously a P -a.s. strictly positive local martingale with Z0 = 1, due to the definition
of stochastic exponential. Furthermore, analogous computations as in (4.9) allow to show that ZSi

is a local martingale for all i = 1, . . . , d. Due to Definition 4.3.11, we can conclude that Z is a
martingale deflator.

Theorem 4.3.23 and Proposition 4.3.24 show that the process Ẑ = E (−λ ·M) can be rightfully
considered as the minimal and natural martingale deflator. Indeed, if Ẑ fails to be a well-defined
martingale deflator then there cannot exist any martingale deflator.

Remark 4.3.25 (Extension to discontinuous semimartingales). We want to point out that the
continuity of S does not play a crucial role in the proof of Proposition 4.3.24. In fact, suppose that
the semimartingale S is not necessarily continuous but only locally square-integrable, in the sense
of Definition II.2.27 of Jacod & Shiryaev (2003). Then, any martingale deflator Z = (Zt)0≤t≤T
such that Z is locally square-integrable can be represented as Z = E (−λ ·M +N) for some
locally square-integrable local martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0.
In fact, the process L := Z−1

− ·Z is well-defined as a locally square-integrable local martingale (see
Protter (2005), Theorem IV.28) with L0 = 0 and, as such, it admits a Galtchouk-Kunita-Watanabe
decomposition with respect to M , since M is also a locally square-integrable local martingale,
see Ansel & Stricker (1993). Then, the computations in (4.9) and the remaining part of the proof
of Proposition 4.3.24 do not rely on the continuity of M . However, note that under the present
assumptions we cannot write Z = Ẑ E (N), since the process [M,N ] is not necessarily equal
to zero. Analogous results have been already obtained in Theorem 1 of Schweizer (1995) and
Theorem 2.2 and Corollary 2.3 of Choulli & Stricker (1996) (compare also with Christensen &
Larsen (2007), Lemma 6.3). We also want to point out that the equivalence between (a) and (b) in
Theorem 4.3.23 holds true also in the more general context where the discounted price process S
of the risky assets is a general (possibly discontinuous and non-locally bounded) semimartingale,
as has been recently shown in Kardaras (2010b) and Takaoka (2010).

Let us now exhibit a simple example of a model which satisfies the NIAO condition but for
which the NUPBR condition fails to hold. A similar example can also be found in Section 3.1 of
Loewenstein & Willard (2000).

Example 4.3.26. Let W = (Wt)0≤t≤T be a standard Brownian motion on (Ω,F ,F, P ) and define
the discounted price process S = (St)0≤t≤T of a single risky asset as the solution to the following
SDE, for some fixed K > 0:

dSt = St

(
K − log (St)

T − t
+

1

2

)
dt+ St dWt S0 = 1 (4.10)

The SDE (4.10) admits an unique strong solution S, which also satisfies St > 0 P -a.s. for all
t ∈ [0, T ]. If we let Xt := log (St), Itô’s formula gives the following:

dXt =
K −Xt

T − t
dt+ dWt X0 = 0
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This shows that X is a Brownian bridge (see e.g. Revuz & Yor (1999), Exercise IX.2.12) starting
at time t = 0 at the level 0 and ending at time t = T at the level K > 0. From (4.10) it is easy to
see that the conditions of Theorem 4.3.10 are satisfied and, hence, there are no immediate arbitrage

opportunities, thus implying that the process K̂ =
∫ ·

0

(
K−log(Su)

T−u + 1
2

)2

du does not jump to infinity.

However, we have K̂t < ∞ P -a.s. for all t ∈ [0, T ) but K̂T = ∞ P -a.s. Theorem 4.3.23 then
implies that the NUPBR condition fails to hold.

We close this Section by discussing the relations between the NUPBR condition and the clas-
sical No Arbitrage (NA) and No Free Lunch with Vanishing Risk (NFLVR) conditions, formally
defined as follows.

Definition 4.3.27. Let C :=
({
GT (H) : H ∈ A

}
− L0

+

)
∩ L∞, where L∞ denotes the set of all

P -a.s. bounded F-measurable random variables. We say that the No Arbitrage (NA) condition
holds if C ∩ L∞+ = {0}. We say that the No Free Lunch with Vanishing Risk (NFLVR) condition
holds if C ∩ L∞+ = {0}, where the bar denotes the closure in the norm topology of L∞.

Observe that the NA condition can be equivalently formulated as
{
GT (H) : H ∈ A

}
∩ L0

+ =

{0}. It is easy to see that neither the NA nor the NFLVR condition can hold if there exist un-
bounded increasing profits or immediate arbitrage opportunities. As pointed out in Karatzas &
Kardaras (2007), there is no general relation between the NUPBR condition and the NA condition,
in the sense that none of the two implies the other and they are not mutually exclusive. However,
the fundamental results of Delbaen & Schachermayer (1994),(1998b) allow to state the following
Proposition.

Proposition 4.3.28. Let the discounted price process S of the risky assets be a general (possibly
discontinuous and non-locally bounded) semimartingale. Then the following hold:

(a) the NFLVR condition holds if and only if both the NUPBR and the NA conditions hold;

(b) the NFLVR condition holds if and only if there exists an Equivalent σ-Martingale Measure
(EσMM)Q, i.e. a probability measureQ on (Ω,F) withQ ∼ P such that S is a σ-martingale
with respect to Q;

(c) if S is in addition locally bounded, the NFLVR condition holds if and only if there exists an
Equivalent Local Martingale Measure (ELMM) Q, i.e. a probability measure Q on (Ω,F)

with Q ∼ P such that S is a local martingale with respect to Q.

Proof. Part (a) follows from Corollaries 3.4 and 3.8 of Delbaen & Schachermayer (1994), see also
Lemma 2.2 of Kabanov (1997) and Proposition 4.2 of Karatzas & Kardaras (2007). Part (b) is the
main result of Delbaen & Schachermayer (1998b). Finally, part (c) corresponds to Theorem 1.1 of
Delbaen & Schachermayer (1994).

There exists a close relationship between the density process of an equivalent local martingale
measure and the concept of martingale deflator, introduced in Definition 4.3.11. More precisely,
assuming that F0 is trivial for simplicity, the density process of any ELMM defines a martingale
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deflator. In fact, let Q be an ELMM for S and denote by ZQ =
(
ZQ
t

)
0≤t≤T its density process with

respect to P , i.e. ZQ
t =

dQ|Ft
dP |Ft

for all t ∈ [0, T ]. Since Q ∼ P , we have P
(
ZQ
t > 0 and ZQ

t− >

0 for all t ∈ [0, T ]
)

= 1, see e.g. Proposition VIII.1.2 of Revuz & Yor (1999). Furthermore,
Exercise IV.21 of Protter (2005) implies that the process ZQSi is a local P -martingale, for all
i = 1, . . . , d, since Si is a local Q-martingale, for all i = 1, . . . , d. Conversely, if the process
Z = (Zt)0≤t≤T is a martingale deflator with E [ZT ] = 1, we can define an ELMM Q for S by
letting dQ

dP
:= ZT . If we replace in Definition 4.3.11 the term “local martingale” with the term

“σ-martingale”, then an analogous relationships holds true between density processes of EσMMs
and martingale deflators.

Part (a) of Proposition 4.3.28 shows that the NFLVR condition is stronger than the NUPBR
condition. In fact, it can be directly shown that if there exists an unbounded profit with bounded risk
then there also exists a free lunch with vanishing risk, see e.g. Propositions 3.1 and 3.6 of Delbaen
& Schachermayer (1994) and Section 2 of Kabanov (1997). Moreover, the NFLVR condition is
strictly stronger than NUPBR, meaning that there are situations where the NUPBR condition is
satisfied but the NA condition fails to hold and, hence (see part (a) of Proposition 4.3.28), also
the NFLVR condition fails to hold. Instances of such situations have appeared in the context of
Stochastic Portfolio Theory, see e.g. Fernholz & Karatzas (2009) for an overview, and in the
context of the Benchmark Approach, see e.g. Platen (2006), Platen & Heath (2006) and Platen
(2009). Classical examples of models for which the NUPBR condition holds but NFLVR fails
involve Bessel processes, see e.g. Corollary 2.10 of Delbaen & Schachermayer (1995c), Example
4.6 of Karatzas & Kardaras (2007), Section 12.1 of Fernholz & Karatzas (2009) and Hulley (2010).
See also Fontana & Runggaldier (2011) for a related discussion in the context of diffusion-based
financial market models.

As can be seen from Theorems 4.3.2, 4.3.10 and 4.3.23, the validity of the NUIP, NIAO and
NUPBR conditions can be directly ascertained by looking at the characteristics (and at their inte-
grability properties) of the discounted price process S of the risky assets. On the contrary, there
is no general way of assessing the validity of the NFLVR condition in terms of the characteristics
of S alone, even when S is a continuous semimartingale, as shown by an explicit counterexample
in Section 4.3.2 of Karatzas & Kardaras (2007). This fact represents a severe limitation of the
classical NFLVR condition, also from an economic point of view, since it implies that there is no
practical and direct way of detecting the existence of arbitrages (in the sense of Definition 4.3.27)
in a given financial market model4.

4For the sake of completeness, we want to point out that in some very special cases there exist characterizations of
the NFLVR condition in terms of the characteristics of the discounted price process of the risky assets. Indeed, suppose
that the discounted price process S = (St)0≤t≤T of a single risky asset satisfies the SDE dSt = µ (St) dt+σ (St) dWt,
S0 > 0, with respect to a standard Brownian motion W = (Wt)0≤t≤T and where µ and σ are measurable functions
satisfying the Engelbert-Schmidt conditions (see e.g. Karatzas & Shreve (1991), Section 5.5). In this particular case,
a deterministic necessary and sufficient condition (involving only integrability properties of the functions µ and σ) for
the validity of NFLVR has been recently obtained in Mijatović & Urusov (2010b).
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Remark 4.3.29 (On the martingale property of Ẑ). As we have seen, as soon as the NUPBR
condition holds, the process Ẑ =

(
Ẑt
)

0≤t≤T defined as Ẑ := E (−λ ·M) is a martingale deflator,
in the sense of Definition 4.3.11. Suppose now that the NFLVR condition is also satisfied. Then,
due to part (c) of Proposition 4.3.28, there exists an ELMMQ for S. However, it is important to note
that this does not ensure that the measure Q̂ on (Ω,F) defined by dQ̂

dP
:= ẐT is an ELMM for S. In

fact, even when the NFLVR condition holds, there are situations where the process Ẑ =
(
Ẑt
)

0≤t≤T
is a strict local martingale, i.e. a local martingale which is not a true martingale, as shown in
Delbaen & Schachermayer (1998a). In other words, recalling Remark 4.3.15, this amounts to
saying that the NFLVR condition does not ensure the existence of the minimal martingale measure.

We end this Section with the following Table, which summarizes the weak no-arbitrage condi-
tions studied so far, together with their characterizations (see Theorems 4.3.2, 4.3.10 and 4.3.23)
and their equivalent formulations (see Lemma 4.3.8, part 2 of Remark 4.3.19, Lemma 4.3.21 and
Remark 4.3.22).

CONDITION PROBABILISTIC CHARACTERIZATION EQUIVALENT FORMULATIONS

No Unbounded Increasing Profit (NUIP) ∃ Rd-valued predictable process λ such
that a = cλ P ⊗B-a.e.

-

No Immediate Arbitrage Opportunity (NIAO) ∃ Rd-valued predictable process λ such
that a = cλ P ⊗B-a.e. and K̂ does not
jump to infinity (α =∞ P -a.s.)

No Strong Arbitrage Opportunity

No Unbounded Profit with Bounded Risk
(NUPBR)

∃ Rd-valued predictable process λ such
that a = cλ P ⊗ B-a.e. and K̂T <∞
P -a.s.

No Arbitrage of the First Kind
No Approximate Arbitrage Opportunity
No Cheap Thrill

4.4 Stability properties of weak no-arbitrage conditions

This Section is devoted to the study of the robustness properties of the weak no-arbitrage conditions
discussed in Section 4.3. More specifically, we shall be concerned with the behavior of weak no-
arbitrage conditions with respect to changes of numéraire, absolutely continuous changes of the
reference probability measure and, finally, changes of the reference filtration. As we shall see
throughout this Section, the main message is that the weak no-arbitrage conditions considered in
Section 4.3 enjoy stronger stability properties than the classical No Arbitrage (NA) and No Free
Lunch with Vanishing Risk (NFLVR) conditions.

4.4.1 Changes of numéraire

We continue to work within the general setting described in Section 4.2, where the discounted price
process of the risky assets is given by the Rd-valued continuous semimartingale S = (St)0≤t≤T ,
with canonical decomposition S = S0 + A + M . A numéraire asset is a traded asset (or, more
generally, a portfolio composed of traded assets) with strictly positive price and in terms of which
the prices of all other assets can be expressed. More formally, we have the following general
Definition.
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Definition 4.4.1. Let H be a 1-admissible self-financing strategy, i.e. H ∈ A1, and let V :=

1+H ·S be its corresponding wealth process. The process V = (Vt)0≤t≤T is said to be a numéraire
for S if Vt > 0 P -a.s. for all t ∈ [0, T ].

Recall that in Section 4.2 we have taken asset 0 as numéraire and we have expressed the prices
of all assets in terms of S̃0. Of course, passing to S̃0-discounted quantities, this means that the
numéraire has been implicitly assumed to be the constant 1 and, hence, the resulting price system
is fully characterized by the pair (S, 1). Now, let V be a numéraire for S, in the sense of Definition
4.4.1. If we change the numéraire from the constant 1 to the non-trivial process V , we then need
to rescale the pair (S, 1). Indeed, if we express all quantities in terms of the new numéraire V ,
the resulting price system will then be described by the pair

(
S
V
, 1
V

)
, where S

V
represents the V -

discounted price process of the risky assets and 1
V

represents the price process of the old numéraire
in terms of the new one. In particular, note that the V -discounted price system is characterized by
the Rd+1-valued process

(
S
V
, 1
V

)
, unlike the original price system which can be fully characterized

by the Rd-valued process S. Now, the main question we shall answer in this Section can be for-
mulated in the following terms. Suppose that the pair (S, 1) satisfies one of the weak no-arbitrage
conditions discussed in Section 4.3 and let V be a numéraire for S, in the sense of Definition 4.4.1.
Does the pair

(
S
V
, 1
V

)
satisfy the same no-arbitrage condition? In other words, how are the weak

no-arbitrage conditions studied in Section 4.3 affected by a change of numéraire? This question is
not only of theoretical interest. In fact, it comes up naturally when one considers currency markets,
where different numéraires correspond to exchange ratios between different currencies. In that con-
text, one needs to ensure that the no-arbitrage properties of the model do not depend on the chosen
currency, otherwise one would have inconsistencies within the financial market model.

Let us first introduce some notations. Suppose that V = 1 + HV · S is a numéraire for S, in
the sense of Definition 4.4.1, and define the Rd+1-valued process S̄ =

(
S̄t
)

0≤t≤T as S̄ :=
(
S
V
, 1
V

)
.

Furthermore, let us denote by L
(
S̄
)

the set of all Rd+1-valued predictable S̄-integrable processes
and by Āa the set of all processes H̄ =

(
H̄t

)
0≤t≤T in L

(
S̄
)

such that
(
H̄ · S̄

)
t
≥ −a P -a.s. for

all t ∈ [0, T ]. We also let Ā :=
⋃
a>0 Āa denote the set of all admissible trading strategies with

respect to S̄. The following Lemma shows the relation between the gains from trading processes
generated by admissible trading strategies with respect to different numéraires. Note that the proof
of the following Lemma does not rely on the continuity of S and, hence, the result holds true also
for more general financial market models based on general (possibly discontinuous and non-locally
bounded) semimartingales. As a preliminary, note that, if V = 1 + HV · S is a numéraire for S
(in the sense of Definition 4.4.1), then the process 1/V is a numéraire for S̄. In fact, by defining
the constant process H̄V := (0, . . . , 0, 1)′ ∈ Rd+1, which trivially belongs to L

(
S̄
)
, we can write

1
V

= 1 + H̄V · S̄ and, since V > 0 P -a.s., we also have H̄V ∈ Ā1.

Lemma 4.4.2. Let V be a numéraire for S, with V = 1 +HV · S. Then the following hold:{
H · S : H ∈ L (S)

}
= V

{
H̄ · S̄ : H̄ ∈ L

(
S̄
)}

(4.11)
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Furthermore, for any a > 0:{
H̄ · S̄ : H̄ ∈ Āa

}
=

1

V

{(
H − aHV

)
· S : H ∈ Aa

}
{
H · S : H ∈ Aa

}
= V

{(
H̄ − aH̄V

)
· S̄ : H̄ ∈ Āa

} (4.12)

where the H̄V := (0, . . . , 0, 1)′ ∈ Rd+1.

Proof. The first assertion can be proved by the same arguments used in the proof of Lemma 4.3.13.
More precisely, by replacing Z with 1/V and Y with S̄, the first part of the proof of Lemma 4.3.13
gives that:

1

V

{
H · S : H ∈ L (S)

}
⊆
{
H̄ · S̄ : H̄ ∈ L

(
S̄
)}

Conversely, let H̄ ∈ L
(
S̄
)
. Then, using twice the integration by parts formula and the associativity

of the stochastic integral (see Protter (2005), Theorem IV.21):

V
(
H̄ · S̄

)
= V− ·

(
H̄ · S̄

)
+
(
H̄ · S̄

)
− · V +

[
H̄ · S̄, V

]
=
(
V−H̄

)
· S̄ +

(
H̄ · S̄

)
− · V + H̄ ·

[
S̄, V

]
= H̄ ·

(
V− · S̄ +

[
S̄, V

])
+
(
H̄ · S̄

)
− · V

= H̄ ·
(
V S̄ − S̄− · V

)
+
(
H̄ · S̄

)
− · V

= H̄ ·
(
V S̄
)

+HV
((
H̄ · S̄

)
− − H̄

′S̄−

)
· S = K · S

where the Rd-valued predictable process K = (Kt)0≤t≤T is defined as follows:

Ki := H̄ i +
(
HV
)i ((

H̄ · S̄
)
− − H̄

′S̄−

)
i = 1, . . . , d

Now, the same arguments used in the proof of Lemma 4.3.13 (compare also Rheinländer & Schweizer
(1997), proof of Proposition 8), based on the notion of convergence in the semimartingale topology,
allow to show that K ∈ L (S), thus implying the reverse inclusion:{

H · S : H ∈ L (S)
}
⊇ V

{
H̄ · S̄ : H̄ ∈ L

(
S̄
)}

For any a > 0, equation (4.12) can then be easily shown as follows, using the linearity of the space
L (S): {

H̄ · S̄ : H̄ ∈ Āa
}

=
1

V

{
H · S : H ∈ L (S) , H · S ≥ −aV P -a.s.

}
=

1

V

{
H · S : H ∈ L (S) ,

(
H + aHV

)
· S ≥ −a P -a.s.

}
=

1

V

{(
H − aHV

)
· S : H ∈ L (S) , H · S ≥ −a P -a.s.

}
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Similarly, by using the representation 1
V

= 1 + H̄V · S̄, where H̄V := (0, . . . , 0, 1)′ ∈ Rd+1, we
obtain the following relation, for any a > 0:{

H · S : H ∈ Aa
}

= V
{
H̄ · S̄ : H̄ ∈ L

(
S̄
)
, H̄ · S̄ ≥ − a

V
P -a.s.

}
= V

{
H̄ · S̄ : H̄ ∈ L

(
S̄
)
,
(
H̄ + aH̄V

)
· S̄ ≥ −a P -a.s.

}
= V

{(
H̄ − aH̄V

)
· S̄ : H̄ ∈ L

(
S̄
)
, H̄ · S̄ ≥ −a P -a.s.

}

The following Theorem deals with the behavior of the No Unbounded Increasing Profit (NUIP)
condition under a change of numéraire. The proof is based on some simple but lengthy computa-
tions and is given in the Appendix.

Theorem 4.4.3. Let V = 1 + H · S be a numéraire for S. If S satisfies the NUIP condition, then
S̄ admits the following canonical decomposition:

S̄ = S0 + Ā+ M̄

where M̄ is an Rd+1-valued continuous local martingale with M̄0 = 0 and Ā is an Rd+1-valued
continuous predictable process of finite variation with Ā0 = 0 and such that, for all t ∈ [0, T ]:

Āit =
d+1∑
j=1

∫ t

0

λ̄jud
〈
M̄ i, M̄ j

〉
u

i = 1, . . . , d+ 1 (4.13)

where λ̄jt := Vtλ
j
t , for all j = 1, . . . , d, and λ̄d+1

t := Vt

(
1−

∑d
k=1 S

k
t λ

k
t

)
, for all t ∈ [0, T ], and

where the process λ = (λt)0≤t≤T is as in Theorem 4.3.2.
Conversely, if S̄ satisfies the NUIP condition, then the following hold for all t ∈ [0, T ]:

Ait =
d∑
j=1

∫ t

0

λjud〈M i,M j〉u, i = 1, . . . , d where λjt :=
λ̄jt
Vt

+

(
1−

d+1∑
k=1

Skt λ̄
k
t

Vt

)
Hj
t

Vt
, j = 1, . . . , d

whereA andM denote the finite variation and the local martingale part, respectively, in the canon-
ical decomposition of the Rd-valued semimartingale S and where the process λ̄ =

(
λ̄t
)

0≤t≤T is the
Rd+1-valued predictable process which satisfies dĀ = d〈M̄, M̄〉λ̄.
In particular, the NUIP condition holds for S if and only if the NUIP condition holds for S̄ =(
S
V
, 1
V

)
.

From an economic point of view, the result of Theorem 4.4.3 is somewhat expected. In fact,
as we argued in Section 4.3.1, the NUIP condition excludes only very strong (pathological) forms
of arbitrage. Therefore, it is natural to conjecture that the validity of the NUIP condition should
not depend on the choice of the reference asset in terms of which we express all market prices. It
is worth pointing out that Theorem 4.4.3 not only shows that the NUIP condition is stable under
a change of numéraire, but also gives the explicit canonical decomposition of the price process
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under the new numéraire. Furthermore, we can also explicitly compute the mean-variance tradeoff
process of S̄ in terms of the original price process S, as shown in the following Corollary, the proof
of which is given in the Appendix.

Corollary 4.4.4. Let V = 1 + H · S be a numéraire for S and suppose that S satisfies the NUIP
condition. Then the mean-variance tradeoff process K̄ =

(
K̄t

)
0≤t≤T for S̄ =

(
S
V
, 1
V

)
is explicitly

given as follows, for all t ∈ [0, T ]:

K̄t :=
d+1∑
i,j=1

∫ t

0

λ̄iuλ̄
j
ud〈M̄ i, M̄ j〉u =

∫ t

0

(
Hu

Vu
− λu

)′
d〈M,M〉u

(
Hu

Vu
− λu

)
(4.14)

Having shown the stability of the NUIP condition with respect to a change of numéraire, we now
move to the No Immediate Arbitrage Opportunity (NIAO) condition, analyzed in Section 4.3.2. The
following Theorem shows that also the NIAO condition is not affected by a change of numéraire.
The proof of the following Theorem uses only Definition 4.3.6 and Lemma 4.4.2 and, hence, it
holds true also for general (possibly discontinuous and non-locally bounded) semimartingales.

Theorem 4.4.5. Let V = 1 + H · S be a numéraire for S. Then the NIAO condition holds for S if
and only if the NIAO condition holds for S̄ =

(
S
V
, 1
V

)
.

Proof. We shall argue by contradiction. Suppose first that the NIAO condition holds for S but
there exists a strategy K̄ ∈ Ā0 which generates an immediate arbitrage opportunity for S̄, with
respect to a stopping time τ with P (τ < T ) > 0. Due to Lemma 4.4.2, there exists a strategy
K ∈ L (S) such that K · S = V

(
K̄ · S̄

)
. Since K̄ · S̄ = 0 on the stochastic interval [[0, τ ]], we

can assume that K = K1]]τ,T ]]. On the set {τ < T}, we have (K · S)t = Vt
(
K̄ · S̄

)
t
> 0 P -a.s.

for all t ∈ (τ, T ], since V > 0 P -a.s. Due to Definition 4.3.6, this shows that the strategy K ∈ A0

generates an immediate arbitrage opportunity for S, thus contradicting the assumption that NIAO
holds for S. The converse implication can be shown in analogous way. Indeed, suppose that the
NIAO condition holds for S̄ and let K ∈ A0 generate an immediate arbitrage opportunity for S,
with respect to a stopping time τ with P (τ < T ) > 0. Then, due to Lemma 4.4.1, there exists an
element K̄ ∈ L

(
S̄
)

such that K̄ · S̄ = 1
V

(K · S). Since K ·S = 0 on the stochastic interval [[0, τ ]],
we can assume that K̄ = K̄1]]τ,T ]]. On the set {τ < T}, we have

(
K̄ · S̄

)
t

= 1
Vt

(K · S)t > 0 P -a.s.
for all t ∈ (τ, T ], since V > 0 P -a.s., which contradicts the assumption that the NIAO condition
holds for S̄.

Remark 4.4.6 (An alternative proof to Theorem 4.4.5). We want to point out that Theorem 4.4.5
can also be proved by relying on Theorem 4.3.10 and Corollary 4.4.4. In fact, due to Corollary
4.4.4 and to the Cauchy-Schwarz inequality, the mean-variance tradeoff process K̄ for S̄ satisfies
the following inequalities, for all t ∈ [0, T ]:

K̂t −
∫ t

0

1

V 2
u

H ′ud〈M,M〉uHu ≤
∫ t

0

(
Hu

Vu
− λu

)′
d〈M,M〉u

(
Hu

Vu
− λu

)
= K̄t =

∫ t

0

(
Hu

Vu
− λu

)′
d〈M,M〉u

(
Hu

Vu
− λu

)
≤
∫ t

0

1

V 2
u

H ′ud〈M,M〉uHu + K̂t

(4.15)
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where the process K̂ is as in (4.4). Due to Definition 4.4.1, we have H ∈ L (S) ⊆ L2
loc (M),

thus implying that
∫ t

0
1
V 2
u
H ′ud〈M,M〉uHu < ∞ P -a.s. for all t ∈ [0, T ], since the process 1/V is

continuous and, hence, locally bounded. Thus, as can be seen from (4.15), we have that the process
K̄ jumps to infinity if and only if the process K̂ jumps to infinity. Due to Theorem 4.3.10, this
means that the NIAO condition holds for S̄ if and only if the NIAO condition holds for S.

Let us now study the behavior of the crucial No Unbounded Profit with Bounded Risk (NUPBR)
condition under a change of numéraire. The proof of the following Theorem is surprisingly simple
and follows easily from Lemma 4.4.2. As for Theorem 4.4.5, observe that the proof of the following
Theorem does not rely on the continuity of the semimartingale S. Hence, the result of Theorem
4.4.7 holds true also in financial market models based on general (possibly discontinuous and non-
locally bounded) semimartingales.

Theorem 4.4.7. Let V = 1 +H · S be a numéraire for S. Then the NUPBR condition holds for S
if and only if the NUPBR condition holds for S̄.

Proof. The second part of Lemma 4.4.2, for a = 1, implies that:{
(H · S)T : H ∈ A1

}
= VT

{(
H̄ · S̄

)
T

: H̄ ∈ Ā1

}
− VT

(
H̄V · S̄

)
T

= VT

{(
H̄ · S̄

)
T

: H̄ ∈ Ā1

}
− 1 + VT

where the second equality uses the fact that 1
V

= 1 + H̄V · S̄ and the fact that L
(
S̄
)

is a linear
space. Since the random variable VT is finite and P -a.s. strictly positive and since boundedness
in probability is not affected by the multiplication and the addition of VT , this shows that the
set {(H · S)T : H ∈ A1} is bounded in probability if and only if the set

{(
H̄ · S̄

)
T

: H̄ ∈ Ā1

}
is

bounded in probability.

We want to point out that the necessity part of Theorem 4.4.7 has been shown also in the recent
paper Takaoka (2010). Furthermore, the result of Theorem 4.4.7 can be also obtained by combining
our Theorem 4.3.23 with Corollary 2.8 of Choulli & Stricker (1996). However, the continuity of S
is essential in the proof of Corollary 2.8 of Choulli & Stricker (1996), unlike the simple proof of
Theorem 4.4.7 here provided.

Remark 4.4.8 (An alternative proof to Theorem 4.4.7). Similarly as in Remark 4.4.6, we can
also give an alternative proof of Theorem 4.4.7 by relying on Theorem 4.3.23 and Corollary 4.4.4.
In fact, equation (4.15) shows that we have K̂T < ∞ P -a.s. if and only if K̄T < ∞ P -a.s. Due
to Theorem 4.3.23, this means that the NUPBR condition holds for S if and only if the NUPBR
condition holds for S̄. For a related result on the finiteness of the mean-variance tradeoff process
under a change of numéraire, see also Lemma 4.5 of Delbaen & Shirakawa (1996).

Summing up, Theorems 4.4.3, 4.4.5 and 4.4.7 together show that all the weak no-arbitrage
conditions considered in Section 4.3 are stable with respect to a change of numéraire. As we already
argued above, the robustness with respect to the choice of the numéraire should be regarded from
an economic point of view as a fundamental property of a no-arbitrage condition.

149



Chapter 4. Weak no-arbitrage conditions: characterization, stability and hedging problems

Let us close this Section by comparing the stability properties of the weak no-arbitrage condi-
tions discussed so far with the stability properties (or the lack thereof) of the classical No Arbitrage
(NA) and No Free Lunch with Vanishing Risk (NFLVR) conditions. In Delbaen & Schachermayer
(1995c), the authors study the impact of a change of numéraire on the classical NA and NFLVR con-
ditions, showing that the NA condition (and hence, recalling part (a) of Proposition 4.3.28, also the
NFLVR condition) is not necessarily stable with respect to a change of numéraire. More precisely
(see Delbaen & Schachermayer (1995c), Theorem 4.4), assuming that the NFLVR condition holds
for S, the NA condition (and, hence, in view of part (a) of Proposition 4.3.28 and Theorem 4.4.7,
also the NFLVR condition) holds for S̄ if and only if there exists a probability measureQ on (Ω,F)

with Q ∼ P such that S is a local Q-martingale and V is a uniformly integrable Q-martingale, i.e.
an ELMM Q for S such that the numéraire process is a uniformly integrable Q-martingale. It
follows that the NA condition is not necessarily preserved by a change of numéraire. For a sim-
ple counterexample, we refer the interested reader to Example 4.1 in Delbaen & Schachermayer
(1995c). In a nutshell, the reason why the NA condition is not stable under a change of numéraire
is due to the definition of admissible strategy (see Definition 4.2.2). Indeed, it could be that there
is arbitrage with respect to S̄ =

(
S
V
, 1
V

)
but the NA condition still holds for S, since the strategy

which realizes the arbitrage with respect to S̄ is not admissible for S because it fails to be lower
bounded by some constant. From an economic point of view, the fact that the NA and NFLVR
conditions are affected by the choice of the reference numéraire represents a significant drawback
of the classical no-arbitrage theory based on NA and NFLVR.

4.4.2 Absolutely continuous changes of measure

This Section continues the study of the robustness properties of the weak no-arbitrage conditions
discussed in Section 4.3. More specifically, in the present Section we shall be concerned with
the stability of the NUIP/NIAO/NUPBR conditions under an absolutely continuous change of the
reference probability measure. Recall that we started in Section 4.2 by considering an abstract
financial market model formulated with respect to a fixed probability measure P on (Ω,F). Let us
now suppose that one of the NUIP/NIAO/NUPBR conditions holds with respect to P and consider
another probability measure Q on (Ω,F) with Q � P . We can then ask the following question.
Does the NUIP/NIAO/NUPBR condition still holds with respect to Q? What about the classical
NA and NFLVR conditions? In this Section, we shall provide an answer to these questions.

Let Q be a given probability measure on (Ω,F) with Q� P and denote by ZQ =
(
ZQ
t

)
0≤t≤T

its density process with respect to P , i.e. ZQ
t = E

[
dQ
dP
|Ft
]

for all t ∈ [0, T ]. Recall that ZQ is a uni-
formly integrable P -martingale, which also satisfiesQ

(
ZQ
t > 0 and ZQ

t− > 0 for all t ∈ [0, T ]
)

= 1

(see e.g. Revuz & Yor (1999), Proposition VIII.1.2). Note that the P -martingale ZQ is not nec-
essarily continuous. Recall also that S is supposed to be an Rd-valued continuous semimartingale
on the filtered probability space (Ω,F ,F, P ). Hence, due to Theorem II.2 of Protter (2005), the
process S is also a semimartingale with respect to the probability measure Q. Furthermore, due to
the Girsanov-Lenglart Theorem for absolutely continuous changes of measure (see Protter (2005),
Theorem III.41), we can compute the canonical decomposition of S with respect to Q, as shown in
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4.4 Stability properties of weak no-arbitrage conditions

the following Lemma.

Lemma 4.4.9. Let Q be a probability measure on (Ω,F) with Q � P . Then the density process
ZQ of Q with respect to P can be represented as follows:

ZQ = ZQ
0 + θ ·M +N (4.16)

for some Rd-valued predictable process θ = (θt)0≤t≤T in L2
loc (M) and for some real-valued local

martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0. Moreover, the Rd-valued
continuous semimartingale S admits the canonical decomposition S = S0 +AQ+MQ with respect
to Q, where AQ in an Rd-valued continuous predictable process of finite variation with AQ0 = 0

and MQ is an Rd-valued continuous local martingale with MQ
0 = 0, explicitly given as follows:

AQ = A+

∫
1

ZQ
−
d〈M,M〉θ and MQ = M −

∫
1

ZQ
−
d〈M,M〉θ (4.17)

whereA andM denote the finite variation and the local martingale part, respectively, in the canon-
ical decomposition of S with respect to P .

Proof. Equation (4.16) represents the Galtchouk-Kunita-Watanabe decomposition of the (uniformly
integrable) martingale ZQ with respect to the continuous local martingale M , see Ansel & Stricker
(1993). Then, Theorem III.41 of Protter (2005) implies that the process MQ =

(
MQ

t

)
0≤t≤T de-

fined by MQ
t := Mt−

∫ t
0

1

ZQu−
d〈M,ZQ〉u is a local Q-martingale. Note that, since M is continuous,

the predictable quadratic variation 〈M,ZQ〉 always exists. Hence, we get the following canonical
decomposition of S with respect to Q:

S = S0 +

(
A+

∫
1

ZQ
−
d〈M,ZQ〉

)
+

(
M −

∫
1

ZQ
−
d〈M,ZQ〉

)
The expressions in (4.17) then follow from (4.16), using also the fact that 〈M,N〉 ≡ 0 due to the
continuity of M and to the strong orthogonality of M and N .

By relying on the above Lemma, we can easily prove the stability of the NUIP condition with
respect to an absolutely continuous change of the reference probability measure.

Theorem 4.4.10. Let Q be a probability measure on (Ω,F) with Q � P and suppose that the
NUIP condition holds with respect to P . Then the NUIP condition holds with respect to Q as well.

Proof. Suppose that the NUIP condition holds with respect to P . Then, due to Theorem 4.3.2,
there exists an Rd-valued predictable process λ = (λt)0≤t≤T such that dA = d〈M,M〉λ. Hence, if
Q is a probability measure on (Ω,F) with Q� P , Lemma 4.4.9 implies the following:

AQ = A+

∫
1

ZQ
−
〈M,M〉θ =

∫
d〈M,M〉

(
λ+

θ

ZQ
−

)
=

∫
d〈MQ,MQ〉

(
λ+

θ

ZQ
−

)
(4.18)

where we have also used the fact that 〈M,M〉 = 〈MQ,MQ〉. This shows that dAQ=d〈MQ,MQ〉λQ,
where the Rd-valued predictable process λQ =

(
λQt
)

0≤t≤T is given by λQ := λ + θ

ZQ−
. Theorem

4.3.2 then implies that the NUIP condition holds with respect to Q as well.

151



Chapter 4. Weak no-arbitrage conditions: characterization, stability and hedging problems

In order to study the stability of the NIAO and NUPBR conditions under an absolutely continu-
ous change of measure, let us first compute the mean-variance tradeoff process K̂Q =

(
K̂Q
t

)
0≤t≤T

of S with respect to the probability measure Q.

Lemma 4.4.11. Let Q be a probability measure on (Ω,F) with Q � P . Then the mean-variance
tradeoff process K̂Q =

(
K̂Q
t

)
0≤t≤T of S with respect to the probability measure Q is explicitly

given as follows, for all t ∈ [0, T ]:

K̂Q
t :=

d∑
i,j=1

∫ t

0

(
λQu
)i (

λQu
)j
d
〈(
MQ

)i
,
(
MQ

)j〉
u

=

∫ (
λ+

θ

ZQ
−

)′
d〈M,M〉

(
λ+

θ

ZQ
−

)
(4.19)

Furthermore, the process K̂Q satisfies the following inequality, for all t ∈ [0, T ]:

K̂Q
t ≤ K̂t +

∫ t

0

1(
ZQ
u−
)2 θ

′
ud〈M,M〉uθu (4.20)

Proof. Equation (4.19) follows directly from equation (4.18), using the fact that 〈M,M〉=〈MQ,MQ〉.
Equation (4.20) is then a simple consequence of the Cauchy-Schwarz inequality together with
(4.4).

We can now easily prove the following Theorem, which shows the stability of the NIAO and
NUPBR conditions with respect to an absolutely continuous change of the reference probability
measure.

Theorem 4.4.12. Let Q be a probability measure on (Ω,F) with Q � P . If the NIAO condition
holds with respect to P then it holds with respect to Q as well. In addition, if the NUPBR condition
holds with respect to P then it holds with respect to Q as well.

Proof. Suppose first that the NIAO condition holds with respect to P . As pointed out in Section
4.3.2, the NIAO condition implies the NUIP condition and Theorem 4.4.10 shows that the NUIP
condition holds with respect to Q. In particular, there exists an Rd-valued predictable process
λQ =

(
λQt
)

0≤t≤T such that dAQ = d〈MQ,MQ〉λQ. Hence, in view of Theorem 4.3.10, to show
that the NIAO condition holds with respect to Q it suffices to show that the mean-variance tradeoff
process K̂Q defined in (4.19) does not jump to infinityQ-a.s. Since the NIAO condition holds under
P , Theorem 4.3.2 implies that α := inf

{
t > 0 : K̂t+h

t = ∞,∀h ∈ (0, T − t]
}

= ∞ P -a.s. and
also Q-a.s., since Q � P . Note that the second term in the right hand side of (4.20) is continuous
and P -a.s. (and, hence, also Q-a.s.) finite, because θ ∈ L2

loc (M) and the process 1/ZQ
− is locally

bounded, being left-continuous. Due to the inequality (4.20), this implies the following:

αQ := inf
{
t > 0 : K̂Q

t+h − K̂
Q
t =∞,∀h ∈ (0, T − t]

}
= α =∞ Q-a.s.

Due to Theorem 4.3.10, we can conclude that the NIAO condition holds with respect toQ. Suppose
now that the NUPBR condition holds with respect to P . In view of Theorem 4.3.23, since the
NUPBR condition is stronger than the NUIP/NIAO conditions and since we already know that the
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4.4 Stability properties of weak no-arbitrage conditions

latter hold under Q, to show that NUPBR holds with respect to Q it suffices to show that K̂Q
T <∞

Q-a.s. Since NUPBR holds under P , Theorem 4.3.23 implies that K̂T <∞ P -a.s. and also Q-a.s.,
since Q � P . Thus, equation (4.20) gives K̂Q

T < ∞ Q-a.s. Due to Theorem 4.3.23, we can
conclude that the NUPBR condition holds with respect to Q.

Summing up, Theorems 4.4.10 and 4.4.12 show that the weak no-arbitrage conditions consid-
ered in Section 4.3 are all stable with respect to an absolutely continuous change of the reference
probability measure. However, this stability property is not enjoyed by the classical No Arbitrage
(NA) and No Free Lunch with Vanishing Risk (NFLVR) conditions, as we are going to show in the
next Example, which is based on Delbaen & Schachermayer (1995a).

Example 4.4.13. Let W = (Wt)0≤t≤T be a standard Brownian motion starting from W0 = 1 and
define the stopping time τ := inf {t ∈ [0, T ] : Wt = 0}∧T . We define the discounted price process
S of a single risky asset as the stopped process S := W τ and we assume that the filtration F is the
P -augmented natural filtration of S, with F = FT . Clearly, the process S is a martingale. Hence,
recalling Proposition 4.3.28, the NA and NFLVR no-arbitrage conditions hold with respect to P .
Let us also define a probability measure Q on (Ω,F) by letting dQ

dP
:= ST = WT∧τ = Wτ . Clearly,

we have Q� P but P � Q does not hold, meaning that the probability measures Q and P are not
equivalent. Observe that the process S represents also the density process of Q with respect to P .
In fact, for all t ∈ [0, T ]:

E

[
dQ

dP

∣∣∣Ft] = E [ST |Ft] = E [Wτ |Ft] = Wt∧τ = St

By the Girsanov-Lenglart Theorem for absolutely continuous changes of measure (see Protter
(2005), Theorem III.41), the process N = (Nt)0≤t≤T defined by N := S −

∫
1
S
d〈S, S〉 is a con-

tinuous local Q-martingale. Note that 〈N,N〉t = 〈S, S〉t = t ∧ τ for all t ∈ [0, T ]. Furthermore,
since Q (ST = 0) = E

[
1{ST=0}ST

]
= 0, so that τ = T Q-a.s., we have 〈N,N〉t = t Q-a.s.

for all t ∈ [0, T ]. Lévy’s characterization of Brownian motion (see e.g. Protter (2005), Theorem
II.39) implies then that N is a Q-Brownian motion starting at N0 = 1. Let us denote by G the Q-
augmented natural filtration of N (or, equivalently, of S). It can be easily seen that the filtration G
coincides with F augmented by the subsets of {ST = 0}. We now show that S does not satisfy the
NA condition on the filtered probability space (Ω,G,G, Q), with G = GT . Indeed, suppose on the
contrary that S satisfies the NA condition on (Ω,G,G, Q). Then, due to Theorem 4.4.12 together
with Proposition 4.3.28, there exists a probability measure Q′ on (Ω,G) with Q′ ∼ Q such that S
is a local Q′-martingale. Let us denote by ZQ′ the density process of Q′ with respect to Q. The
(Q,G)-Brownian motion N enjoys the representation property, since G is its Q-augmented natural
filtration. Hence, due to Corollary 2 to Theorem IV.43 of Protter (2005), we have the representation
ZQ′ = E (−θ ·N), for some G-predictable process θ = (θt)0≤t≤T such that

∫ T
0
θ2
t dt < ∞ Q-a.s.

Let us compute the stochastic differential of the product ZQ′S:

d
(
ZQ′

t St
)

= ZQ′

t dSt + StdZ
Q′

t + d〈ZQ′ , S〉t = ZQ′

t dNt +
ZQ′

t

St
dt− ZQ′

t StθtdNt − ZQ′

t θtdt
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Chapter 4. Weak no-arbitrage conditions: characterization, stability and hedging problems

Since ZQ′S is a local Q-martingale and ZQ′ > 0 Q-a.s., this implies that θt = 1
St
Q-a.s. for all

t ∈ [0, T ], thus yielding ZQ′ = E
(
− 1
S
·N
)
. Equivalently, the process ZQ′ =

(
ZQ′

t

)
0≤t≤T is the

unique solution to the following SDE:

dZQ′

t = −ZQ′

t

1

St
dNt ZQ′

0 = 1 (4.21)

On the other hand, Itô’s formula gives the following:

d
1

St
= − 1

S2
t

dSt +
1

S3
t

d〈S〉t = − 1

S2
t

dNt −
1

S3
t

dt+
1

S3
t

dt = − 1

S2
t

dNt
1

S0

= 1 (4.22)

Equations (4.21)-(4.22) show that the processes ZQ′ =
(
ZQ′

t

)
0≤t≤T and 1/S =

(
1/St

)
0≤t≤T solve

the same SDE with the same initial condition and, hence, we must have ZQ′

t = 1
St
Q-a.s. for all

t ∈ [0, T ]. At this point, observe that the process S = (St)0≤t≤T , which satisfies dSt = dNt + 1
St
dt

with respect to the (Q,G)-Brownian motion N , is a Bessel process of dimension three (see Revuz
& Yor (1999), Section XI.1). It is well-known that the reciprocal of a 3-dimensional Bessel process
is a strict local martingale, i.e. a local martingale which is not a true martingale (see e.g. Revuz
& Yor (1999), Exercise XI.1.16). This implies that the process ZQ′ cannot be a true martingale,
thus contradicting the existence of the measure Q′. Due to part (c) of Proposition 4.3.28, this
implies that the NFLVR condition does not hold on (Ω,G,G, Q). On the other hand, observe that
the process ZQ′ is a martingale deflator for S on (Ω,G,G, Q), so that, due to Theorem 4.3.23,
the NUPBR condition holds. Hence, part (a) of Proposition 4.3.28 implies that the NA condition
fails on (Ω,G,G, Q). So, there exists a G-predictable S-integrable (with respect to (Q,G)) process
H = (Ht)0≤t≤T with G (H) ≥ −a Q-a.s., for some a ∈ R+, and such that GT (H) ≥ 0 Q-a.s. and
Q
(
GT (H) > 0

)
> 0. As pointed out on page 360 of Delbaen & Schachermayer (1995a), there

also exists an F-predictable process K = (Kt)0≤t≤T which is Q-indistinguishable from H , so that
K ·S = H ·S, where both stochastic integrals are considered with respect to (Q,G). Since S andK
are both F-predictable, Theorem 7 of Jacod (1980) shows that the stochastic integral K · S viewed
with respect to (Q,G) is the same as the stochastic integral viewed with respect to (Q,F). This
means that the F-predictable process K = (Kt)0≤t≤T is integrable with respect to S (with respect
to (Q,F)) and satisfies G (K) ≥ −a Q-a.s. and GT (K) ≥ 0 Q-a.s. and Q

(
GT (K) > 0

)
> 0.

Hence, we can conclude that the NA condition fails on (Ω,F ,F, Q), thus finishing the Example.

Remark 4.4.14 (On equivalent changes of measure). We close this Section by pointing out that,
if we consider an equivalent change of measure, rather than an absolutely continuous change of
measure, then the NA and NFLVR conditions are also preserved. Indeed, suppose that the NA
condition holds with respect to P and let Q be a probability measure on (Ω,F) with Q ∼ P .
Arguing by contradiction, suppose that there exists an Rd-valued predictable S-integrable (with
respect to Q) process H = (Ht)0≤t≤T with G (H) ≥ −a Q-a.s., for some a ∈ R+, and such
that GT (H) ≥ 0 Q-a.s. and Q

(
GT (H) > 0

)
> 0. Then, since Q ∼ P , Theorem IV.25 of

Protter (2005) shows that the process H is also S-integrable with respect to P and the stochastic
integral H · S viewed with respect to P coincides with the stochastic integral H · S viewed with
respect to Q. Since Q ∼ P , we also have G (H) ≥ −a P -a.s. and GT (H) ≥ 0 P -a.s. and
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P
(
GT (H) > 0

)
> 0. Clearly, this contradicts the assumption that the NA condition holds with

respect to P , thus showing that an equivalent change of measure does not affect the validity of the
NA condition. Due to part (a) of Proposition 4.3.28 together with Theorem 4.4.12, the same holds
true for the NFLVR condition.

4.4.3 Changes of the reference filtration

In this Section we shall be concerned with the issue of the robustness of the weak no-arbitrage
conditions analyzed in Section 4.3 with respect to changes in the reference filtration. Intuitively,
this amounts to study the impact on the weak no-arbitrage conditions of restrictions/enlargements
of the information set available to market participants. This study is not only of theoretical interest
but has also important implications from an economic point of view. Indeed, it allows to show in a
rigorous way the relation between the possibility of making arbitrages (in a suitable sense) and the
quality of the information available to the investors. Furthermore, these issues are also connected
to the analysis of economically relevant situations like insider trading and partial information. In
Section 4.4.3 we shall consider the case where the information set is restricted, while Section 4.4.3
will be devoted to the analysis of the case where the information set is expanded.

Restriction of the filtration

We continue to work within the general framework described in Section 4.2 and we let S be an
Rd-valued continuous semimartingale on the filtered probability space (Ω,F ,F, P ) with canonical
decomposition S = S0 + A + M . Furthermore, we let E = (Et)0≤t≤T be a filtration satisfying the
usual conditions on the probability space (Ω,F , P ) and such that E ⊆ F, meaning that Et ⊆ Ft
for all t ∈ [0, T ]. We also assume that the F-semimartingale S is E-adapted. The basic question
we shall answer in this Section can be formulated in the following terms. Suppose that one of the
NUIP/NIAO/NUPBR no-arbitrage conditions holds on the filtered probability space (Ω,F ,F, P ).
Does the same no-arbitrage condition hold with respect to (Ω,F ,E, P ) as well? In other words:
does the restriction of the information set affect the no-arbitrage condition? Our intuition suggests
that, if there is no-arbitrage (in a suitable sense) in the original full-information financial market
(i.e. with respect to F) and we restrict the information set available to market participants, then
arbitrage should not be possible in the restricted information financial market (i.e. with respect to
E) as well. As will be shown below, this conjecture is indeed valid and can be rigorously justified.

As a preliminary, recall that S is a continuous (and, hence, special) F-semimartingale, with
canonical decomposition S = S0 + A + M , where A is an Rd-valued continuous F-predictable
process of finite variation with A0 = 0 and M is an Rd-valued continuous F-local martingale with
M0 = 0. Since E ⊆ F and S is supposed to be E-adapted, Stricker’s Theorem (see Protter (2005),
Theorem II.4) implies that S is also a special E-semimartingale and we denote by S = S0 + Ã+M̃

its canonical decomposition with respect to E, where Ã is an Rd-valued continuous E-predictable
process of finite variation with Ã0 = 0 and M̃ is an Rd-valued continuous E-local martingale with
M̃0 = 0. Furthermore, we denote by L (S,F) the set of all Rd-valued F-predictable S-integrable
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(with respect to the filtration F) processes and, analogously, we denote by L (S,E) the set of all
Rd-valued E-predictable S-integrable (with respect to the filtration E) processes.

At this point, note that it is tempting to answer the questions formulated at the beginning of
this Section by relying on the following reasoning. Suppose the one of the NUIP/NIAO/NUPBR
conditions holds with respect to the filtration F and let H = (Ht)0≤t≤T be an element of L (S,E)

which realizes an arbitrage (in the sense of UIP/IAO/UPBR, respectively) in the filtration E. Then,
since E ⊆ F, the process H is also F-predictable and, hence, can be viewed as a trading strategy
in the filtration F (in plain words, nothing should prevent a more informed trader from neglecting
part of the information available to her). Hence, one is led to conjecture that L (S,E) ⊆ L (S,F),
so that the strategy H , now viewed with respect to the filtration F, yields an arbitrage (in the sense
of UIP/IAO/UPBR, respectively) also in the filtration F, thus contradicting the assumption that
NUIP/NIAO/NUPBR holds with respect to the filtration F. Hence, one would conclude that the
NUIP/NIAO/NUPBR conditions are stable with respect to a restriction of the reference filtration.
The flaw in this line of reasoning is that the inclusion L (S,E) ⊆ L (S,F) is not true in general,
as shown by an explicit counterexample in Chou et al. (1980) (see also Jeulin (1980), Theorem
3.23). The inclusion holds true if we restrict our attention to locally bounded integrands, as shown
in Theorem 9.19 of Jacod (1979) and in Theorem IV.33 of Protter (2005). However, as pointed out
in Remark 4.2.1, we have chosen to work with the most general class of integrands, which includes
non-locally bounded processes. Hence, the above reasoning fails and special care must be taken.

The following Theorem studies the impact of a restriction of the reference filtration on the No
Unbounded Increasing Profit (NUIP) condition. Furthermore, it gives a characterization of the
finite variation part Ã in the canonical decomposition of S with respect to the filtration E.

Theorem 4.4.15. Let E be a filtration with E ⊆ F and suppose that S is E-adapted. If the NUIP
condition holds with respect to F then it holds with respect to E as well. Furthermore, the finite
variation part Ã in the canonical decomposition of S with respect to E can be represented as
follows, for all t ∈ [0, T ]:

Ãit =

∫ t

0

d〈M̃ i, M̃〉u (p,E)λu i = 1, . . . , d

where M̃ is the local martingale part in the canonical decomposition of S with respect to E and
(p,E)λ denotes the E-predictable projection of the process λ, the latter being as in Theorem 4.3.2.

Proof. Note first that we have 〈M,M〉 = 〈S, S〉 = 〈M̃, M̃〉 and 〈S, S〉 does not depend on the
choice of the reference filtration. Indeed, due to the continuity of S, we have 〈S, S〉 = [S, S] and
the latter does not depend on the reference filtration, being the limit (in probability) of the pathwise
quadratic variation of S (compare also Jacod (1979), part (b) of Theorem 9.19) For every n ∈ N,
let us define the E-stopping time τn as follows:

τn := inf

{
t ∈ [0, T ] : ‖St − S0‖ ≥ n or

d∑
i,j=1

〈Si, Sj〉t ≥ n

}
∧ T
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Clearly, since both S and 〈S, S〉 are P -a.s. finite valued, we have τn ↗ T P -a.s. as n → ∞. For
every n ∈ N, the stopped process 〈M,M〉τn = 〈M τn ,M τn〉 is bounded and, hence, the F-local
martingale M τn is an Rd-valued uniformly integrable F-martingale. Similarly, the same holds true
for the stopped process M̃ τn , for every n ∈ N, with respect to the filtration E. Note that, for every
n ∈ N, we have Aτn = Sτn − S0 −M τn ≤ n −M τn and, hence, Aτnt ∈ L1 (P ) for all t ∈ [0, T ].
Similarly, the same holds true for the stopped process Ãτn , for every n ∈ N, with respect to the
filtration E. So, for any E-stopping time τ and for every n ∈ N:

E [Aτnτ ] = E [Sτnτ − S0]− E [M τn
τ ] = E [Sτnτ − S0] = E [Sτnτ − S0]− E

[
M̃ τn

τ

]
= E

[
Ãτnτ
]

where the second and the third equalities follow from the optional sampling theorem (see e.g.
Protter (2005), Theorem I.16) together with the uniform integrability ofM τn and M̃ τn , respectively.
Due to Theorem 9.22 of Jacod (1979), we can conclude that Ãτn is the dual predictable projection
of Aτn with respect to E, i.e. Ãτn = (Aτn)(p,E), for every n ∈ N. Furthermore, the following holds:

Ãτn = (Aτn)(p,E) =
(
1[[0,τn]] · A

)(p,E)
= 1[[0,τn]] · A(p,E) =

(
A(p,E)

)τn
where the third equality follows from 9.23 of Jacod (1979), since τn is an E-stopping time for all
n ∈ N. Since τn ↗ T P -a.s. as n → ∞, this shows that Ã = A(p,E) (see also Jacod (1979),
Proposition 9.24). Suppose now that the NUIP condition holds with respect to F. Then, due to
Theorem 4.3.2, there exists an Rd-valued F-predictable process λ = (λt)0≤t≤T such that dA =

d〈M,M〉λ. We can thus write the following (compare also with Kohlmann et al. (2007), Lemma
2.2):

Ã = A(p,E) =

(∫
d〈M,M〉λ

)(p,E)

=

(∫
d〈M̃, M̃〉λ

)(p,E)

=

∫
d〈M̃, M̃〉 (p,E)λ

where the last equality follows from 9.23 of Jacod (1979) and (p,E)λ denotes the predictable projec-
tion of λ with respect to the filtration E. Due to Theorem 4.3.2, this shows that the NUIP condition
holds with respect to the filtration E as well.

Theorem 4.4.15 shows that, if the continuous E-adapted F-semimartingale S satisfies the NUIP
condition with respect to the filtration F, then it satisfies the NUIP condition with respect to the
filtration E as well. Note that the proof of Theorem 4.4.15 makes use of the continuity of the
semimartingale S. Our next goal consists in showing that the same result holds true also in the case
where S is a general (possibly discontinuous and non-locally bounded) semimartingale, provided
we make the following natural assumption concerning the structure of the filtrations E and F.

Assumption 4.4.16. Every E-semimartingale is also an F-semimartingale.

Remark 4.4.17. In the theory of enlargement of filtrations, Assumption 4.4.16 is commonly known
as the (H ′)-hypothesis, see e.g. Chapter II of Jeulin (1980), where the interested reader can also
find necessary and sufficient conditions for its validity (simpler results can also be found in Jacod
(1979), Proposition 9.32). Observe that Assumption 4.4.16 automatically holds if one assumes the
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stronger (H)-hypothesis, i.e. if every E-local martingale is also an F-local martingale, see e.g.
Proposition 9.28 of Jacod (1979). However, there are situations where Assumption 4.4.16 holds
but the (H)-hypothesis fails, see for instance part 2 of Remark 9.37 in Jacod (1979).

As soon as Assumption 4.4.16 holds, we are able to prove the following technical result, where
we also allow the process S to be a general (possibly discontinuous and non-locally bounded)
semimartingale.

Proposition 4.4.18. Let E be a filtration with E ⊆ F and assume that the Rd-valued (general) F-
semimartingale S is E-adapted. Suppose that Assumption 4.4.16 holds. Then we have L (S,E) ⊆
L (S,F).

Proof. The claim can be proved by relying on arguments similar to those used in the proofs of
Theorem 7 of Jacod (1980) and Theorem III.6.19 of Jacod & Shiryaev (2003). Suppose that H ∈
L (S,E). Clearly, since E ⊆ F, the processH is F-predictable, being E-predictable. Let Y := H ·S,
where the stochastic integral is viewed with respect to E, and define the set D := {|∆S| > 1} ∪
{|∆Y | > 1} ⊂ Ω× [0, T ]. The optional set D is discrete, meaning that for all (ω, t) ∈ Ω× [0, T ],
the set {s ∈ [0, t] : (ω, s) ∈ D} is finite. Therefore, we can define the processes S̃D =

(
S̃Dt
)

0≤t≤T

and Ỹ D =
(
Ỹ D
t

)
0≤t≤T as follows, for t ∈ [0, T ]:

S̃Dt := S0 +
∑
s≤t

∆Ss1D (s) Ỹ D
t :=

∑
s≤t

∆Ys1D (s)

Since D is discrete we obviously have H ∈ L
(
S̃D,E

)
and H · S̃D = Ỹ D. Clearly, the stochastic

integral H · S̃D is a Stieltjes integral and, as such, does not depend on the choice of the reference
filtration. Hence, we also have H ∈ L

(
S̃D,F

)
. Let us define SD := S − S̃D. Then, to show

that H ∈ L (S,F), it suffices to show that H ∈ L
(
SD,F

)
. In fact, due to part (d) of Theorem

III.6.19 of Jacod & Shiryaev (2003), if we have H ∈ L
(
S̃D,F

)
∩ L

(
SD,F

)
, then we also have

H ∈ L
(
S̃D + SD,F

)
= L (S,F). To show that H ∈ L

(
SD,F

)
, let us define the following

processes, for every n ∈ N:

Fn := 1{‖H‖≤n} H (n) := H1Fn Y D (n) := 1Fn · Y D = H (n) · SD

where Y D := Y − Ỹ D and the stochastic integrals are viewed with respect to E. Note that the
process Y D is a special E-semimartingale, since it has bounded jumps. Hence, due to Assumption
4.4.16, it is also a special F-semimartingale, thus implying that the stochastic integral Y D (n) =

1Fn · Y D is also well-defined with respect to F. On the other hand, note that we have H (n) ∈
L
(
SD,F

)
∩ L

(
SD,E

)
, for every n ∈ N, since H (n) is a bounded E-predictable (and, hence, also

F-predictable) process. Furthermore, due to part (c) of Theorem 9.19 of Jacod (1979), there exists
a common version (i.e. with respect to both E and F) of the stochastic integralH (n) ·SD, for every
n ∈ N. This implies that we have, for every n ∈ N:

H (n) · SD = 1Fn · Y D (4.23)
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where both stochastic integrals are viewed with respect to F. Let us now denote by Y D = ND+CD

the canonical decomposition of Y D with respect to F, where ND is an F-locally square-integrable
F-local martingale with ND

0 = 0 and CD is an F-predictable process of finite variation with CD
0 =

0. Analogously, let us denote by SD = MD +AD the canonical decomposition of SD with respect
to F, where MD is an Rd-valued F-locally square-integrable F-local martingale with MD

0 = 0 and
AD is an Rd-valued F-predictable process of finite variation with AD0 = 0. Now, (4.23), together
with Proposition 2 of Jacod (1980), implies that, for every n ∈ N:

H (n) ·MD = 1Fn ·ND H (n) · AD = 1Fn · CD

As in Section 4.2, let B be a real-valued F-predictable increasing process of F-locally integrable
variation such thatAD =

∫
adB and 〈MD,MD〉 =

∫
cdB, where a and c are suitable F-predictable

processes taking values in Rd and Rd×d, respectively. Then, for every n ∈ N and t ∈ [0, T ]:((
d∑

i,j=1

H icijHj

)
1Fn ·B

)
t

=

((
d∑

i,j=1

H i (n) cijHj (n)

)
·B

)
t

=
〈
H (n) ·MD, H (n) ·MD

〉
t

=
(
1Fn · 〈ND, ND〉

)
t
<∞ P -a.s.

Letting n→∞, we get (for t = T ):

d∑
i,j=1

∫ T

0

H i
tc
ij
t H

j
t dBt = 〈ND, ND〉T <∞ P -a.s.

This shows that H ∈ L2
loc

(
MD,F

)
. Analogously, for every n ∈ N and t ∈ [0, T ]:((

1Fn

∣∣∣∣ d∑
i=1

H iai
∣∣∣∣
)
·B

)
t

=

(∣∣∣∣ d∑
i=1

H i (n) ai
∣∣∣∣·B
)
t

=Var
(
H (n)·AD

)
t
=
(
1Fn·Var

(
CD
))

t
<∞ P -a.s.

where Var denotes the total variation. Letting n→∞, we get (for t = T ):∫ T

0

∣∣∣∣ d∑
i=1

H i
ta
i
t

∣∣∣∣dBt = Var
(
CD
)
t
<∞ P -a.s.

This shows that H ∈ L0
(
AD,F

)
. Summing up, we have proved the following:

H ∈ L2
loc

(
MD,F

)
∩ L0

(
AD,F

)
= L

(
SD,F

)
thus completing the proof of the Proposition.

Remark 4.4.19.

1. As can be seen by inspecting the proof of Proposition 4.4.18, we can actually replace As-
sumption 4.4.16 with the weaker assumption that every E-semimartingale X such that X =

H · S, for some H ∈ L (S,E), is also an F-semimartingale.
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2. Suppose that the stronger (H)-hypothesis (see Remark 4.4.17) holds. Then the proof of
Proposition 4.4.18 can be substantially simplified. Indeed, let H ∈ L (S,E). According to
Definition III.6.17 of Jacod & Shiryaev (2003), there exists a decomposition S = S0 +B+N

of S with respect to E, withB an Rd-valued E-adapted process of finite variation withB0 = 0

and N an Rd-valued E-locally square-integrable E-local martingale with N0 = 0, such that
H ∈ L2

loc (N,E) ∩ L0 (B,E). Since E ⊆ F and every E-local martingale is also an F-local
martingale, due to the (H)-hypothesis, the decomposition S = S0 + B + N can also be
viewed with respect to the larger filtration F. Clearly, the process H is F-predictable, being
E-predictable, and, hence, we have H ∈ L2

loc (N,F)∩L0 (B,F). Definition III.6.17 of Jacod
& Shiryaev (2003) then implies that H is S-integrable with respect to the filtration F as well,
thus showing that L (S,E) ⊆ L (S,F).

We can now state the following Corollary, the proof of which relies on Proposition 4.4.18. In
particular, note that the result of Corollary 4.4.20 holds true also for financial market models based
on general (possibly discontinuous and non-locally bounded) semimartingales.

Corollary 4.4.20. Let E be a filtration with E ⊆ F and assume that the Rd-valued (general) F-
semimartingale S is E-adapted. Suppose that Assumption 4.4.16 holds. Then the following hold:

(a) if the NUIP condition holds with respect to F then it holds with respect to E as well;

(b) if the NIAO condition holds with respect to F then it holds with respect to E as well;

(c) if the NUPBR condition holds with respect to F then it holds with respect to E as well;

(d) if the NA condition holds with respect to F then it holds with respect to E as well;

(e) if the NFLVR condition holds with respect to F then it holds with respect to E as well.

Proof. Part (a) directly follows from Definition 4.3.1 and Proposition 4.4.18, since the only prop-
erty in Definition 4.3.1 that depends on the choice of the reference filtration is related to the S-
integrability of the strategy generating the unbounded increasing profit. To show part (b), suppose
that the NIAO condition holds with respect to F and let H = (Ht)0≤t≤T generate an immediate
arbitrage opportunity with respect to E. Due to Definition 4.3.6, this means that H is an element of
L (S,E) such that H = H1]]τ,T ]] and (H · S)t > 0 P -a.s. on {τ < T} for all t ∈ (τ, T ], where τ is
an E-stopping time such that P (τ < T ) > 0. Since E ⊆ F, we have that τ is also an F-stopping
time and, due to Proposition 4.4.18, we also have H ∈ L (S,F). This implies that H generates an
immediate arbitrage opportunity also with respect to F, thus contradicting the assumption that the
NIAO condition holds with respect to F. To show part (c), note that, due to Proposition 4.4.18:{

1+GT (H) :H ∈ L (S,E), G (H)≥−1 P -a.s.
}
⊆
{

1+GT (H) :H ∈ L (S,F), G (H)≥−1 P -a.s.
}

Hence, the set on the right hand side cannot be bounded in probability if the set on the left hand
side is not bounded in probability. Similarly, part (d) directly follows from the following relation,
which is due to Proposition 4.4.18, for any a > 0:{
GT (H) : H ∈ L (S,E), G (H) ≥ −a P -a.s.

}
⊆
{
GT (H) : H ∈ L (S,F), G (H) ≥ −a P -a.s.

}
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Finally, part (e) is a direct consequence of (c)-(d) together with part (a) of Proposition 4.3.28.

Corollary 4.4.20 shows that, if Assumption 4.4.16 holds, then all the no-arbitrage conditions
considered in Section 4.3 are preserved under a restriction of the available information. In par-
ticular, Corollary 4.4.20 shows the stability not only of the weak NUIP/NIAO/NUPBR conditions
but also of the classical NA and NFLVR conditions. Of course, the result of Corollary 4.4.20 is
very natural from an economic point of view, since it amounts to saying that, if it is not possible to
construct an arbitrage by using all the available information, then it should also not be possible to
construct an arbitrage by using only a subset of the available information.

Enlargement of the filtration

In this Section we shall be concerned with the analysis of the impact on the weak no-arbitrage con-
ditions discussed in Section 4.3 of an enlargement of the reference filtration. We continue to work
within the general setting described in Section 4.2 and we let S be an Rd-valued continuous semi-
martingale with canonical decomposition S = S0 + A+M on the probability space (Ω,F ,F, P ).
Furthermore, we let G = (Gt)0≤t≤T be a filtration satisfying the usual conditions with F ⊆ G,
meaning that Ft ⊆ Gt for all t ∈ [0, T ]. Intuitively, the basic question we shall try to answer in
the present Section can be formulated as follows. Suppose that one of the NUIP/NIAO/NUPBR
no-arbitrage conditions holds with respect to the filtration F. Does the same no-arbitrage condition
hold with respect to the larger filtration G as well? In other words, assuming that there are no arbi-
trage opportunities (in a suitable sense) in the original financial market (i.e. with respect to F), is it
possible that an enlargement of the information set available to the market participants introduces
(suitable types of) arbitrage opportunities?

If compared to the results obtained in Section 4.4.3, the results of the present Section are slightly
less general, since they depend on how the original filtration F is enlarged. Indeed, many funda-
mental properties, like the semimartingale property, the martingale property, the canonical decom-
position, the integrability with respect to a semimartingale, are not necessarily preserved under an
enlargement of the reference filtration. Hence, we shall distinguish different situations, depending
on the hypotheses we make on the enlarged filtration G. Let us first study a rather easy case, where
the semimartingale S admits the same canonical decomposition with respect to both F and G. As a
preliminary, let us state the following simple Lemma.

Lemma 4.4.21. Let S = S0 + A + M be the canonical decomposition of the semimartingale S
with respect to the filtration F and let G be a filtration with F ⊆ G. If the F-local martingale M is
also a G-local martingale, then the canonical decomposition of S with respect to the filtration G is
also given by S = S0 + A+M .

Proof. Let S = S0 + A + M be the canonical decomposition of S with respect to F, where A
is an Rd-valued F-predictable process of finite variation with A0 = 0 and M is an Rd-valued F-
local martingale with M0 = 0. By assumption M is also a G-local martingale. Furthermore, since
F ⊆ G, the process A is G-predictable, being F-predictable. Hence, S − S0 = A + M gives a
decomposition of S − S0 into the sum of the Rd-valued G-predictable process of finite variation
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A with A0 = 0 and the Rd-valued G-local martingale M with M0 = 0. Due to Theorem III.34 of
Protter (2005), such decomposition is unique and it coincides with the canonical decomposition of
S with respect to the filtration G.

Remark 4.4.22 (On the (H)-hypothesis). Suppose that the (H)-hypothesis holds, meaning that
every F-local martingale is also a G-local martingale. In this case, the assumptions of Lemma
4.4.21 are obviously satisfied (compare also with Jacod (1979), part (a) of Proposition 9.28). Con-
versely, it can be easily shown that if the F-local martingale part M in the canonical decomposition
of S (with respect to F) is also a G-local martingale and has the representation property with respect
to the filtration F, then the (H)-hypothesis holds, see e.g. Theorem 9.30 of Jacod (1979). Equiv-
alent characterizations of the (H)-hypothesis are well-known in the literature: see for instance
Proposition 5.9.1.1 of Jeanblanc et al. (2009) or Proposition 3.2 of Fontana (2010b).

By relying on Lemma 4.4.21, we can immediately prove the following Corollary.

Corollary 4.4.23. Let S = S0 + A + M be the canonical decomposition of the semimartingale
S with respect to the filtration F and let G be a filtration with F ⊆ G. Assume that the F-local
martingale M is also a G-local martingale. Then the following hold:

(a) if the NUIP condition holds with respect to F then it holds with respect to G as well;

(b) if the NIAO condition holds with respect to F then it holds with respect to G as well;

(c) if the NUPBR condition holds with respect to F then it holds with respect to G as well.

Proof. Suppose first that S satisfies the NUIP condition with respect to F. Due to Theorem 4.3.2,
this means that there exists an Rd-valued F-predictable process λ = (λt)0≤t≤T such that a = cλ

holds P ⊗ B-a.e. Clearly, the process λ is also G-predictable and, due to Lemma 4.4.21, the
semimartingale S admits the same canonical decomposition with respect to both F and G. Theorem
4.3.2 then implies that the NUIP condition holds with respect to G as well. To show parts (b)
and (c), recall that, due to Theorems 4.3.10 and 4.3.23 and since we already know that the NUIP
condition holds with respect to G, the validity of the NIAO/NUPBR conditions is characterized in
terms of the mean-variance tradeoff process K̂ =

(
K̂t

)
0≤t≤T . Since the latter depends only on the

canonical decomposition of S, which is the same with respect to both F and G, we can conclude
that if the NIAO/NUPBR conditions hold in the filtration F then they also hold in the filtration
G.

Corollary 4.4.23 shows that, in the special situation considered in Lemma 4.4.21, all the weak
no-arbitrage conditions discussed in Section 4.3 are stable with respect to an enlargement of the
reference filtration. It is worth pointing out that the fact that the F-local martingale part M in
the canonical decomposition of S (with respect to F) is also a G-local martingale does not suffice
to ensure that the classical NA and NFLVR no-arbitrage conditions are stable with respect to an
enlargement of the filtration. See also Coculescu et al. (2008) and Section 3.1 of Fontana (2010b)
for a related discussion on the NFLVR condition with respect to an enlarged filtration G.

162



4.4 Stability properties of weak no-arbitrage conditions

Progressive enlargement of the reference filtration
Let us now consider the interesting situation which arises when the filtration F is progressively
enlarged with respect to a random time τ . This type of enlargement of filtration has been studied
by several authors, starting already from the seventies, and represents one of the classical topics
in the theory of enlargement of filtrations, see Section VI.3 of Protter (2005) or Section 5.9 of
Jeanblanc et al. (2009) for an overview of the main results and Chapter IV of Jeulin (1980) for
a more detailed treatment. This type of enlargement of filtration comes up very naturally in the
context of credit risk modeling, where the random time τ represents the random occurrence of a
default event, see for instance Chapter 7 of Jeanblanc et al. (2009).

In order to study the stability of the weak no-arbitrage conditions discussed in Section 4.3 with
respect to a progressively enlarged filtration, we first need some preliminaries. Let us start from
a given random time τ , i.e. a random variable taking values in [0,∞]. Let us define the filtration
G0 = (G0

t )0≤t≤T by G0
t := Ft ∨ σ {τ ∧ t}, for all t ∈ [0, T ], and define the enlarged filtration

G = (Gt)0≤t≤T by Gt := G0
t+, for all t ∈ [0, T ]. It is well-known that the filtration G is the

smallest filtration satisfying the usual conditions which makes τ a G-stopping time. Let us also
denote by Zτ =

(
Zτ
t

)
0≤t≤T the F-optional projection of the process 1[[0,τ [[ , i.e. a cadlag version

of the process
(
P (τ > t|Ft)

)
0≤t≤T , and let ατ be the dual F-optional projection5 of the increasing

process 1[[τ,∞[[ . Then, the process µτ := Zτ +ατ is an F-martingale, see e.g. Lemma 9.51 of Jacod
(1979). Furthermore, it can also be shown that µτ is a BMO F-martingale. Recall also that, for any
F-local martingale M = (Mt)0≤t≤T , the process m = (mt)0≤t≤T defined as:

mt := Mτ∧t −
∫ τ∧t

0

1

Zτ
u−
d〈M,µτ 〉u t ∈ [0, T ] (4.24)

is a G-local martingale (see e.g. Jeulin (1980), Proposition 4.16). We want to remark that, as shown
in Theorem IV.13 of Protter (2005), the set

{
t ∈ [0, T ] : Zτ

t− = 0
}

is contained in the set (τ,∞], so
that the right hand side of (4.24) is indeed well-defined.

We are now in a position to study the impact of a progressive enlargement of the filtration F
with respect to a random time τ on the weak no-arbitrage conditions studied in Section 4.3. In
the following Proposition, we let τ be a general random time and we restrict our attention to what
happens on the stochastic interval [[0, τ ]]. Note that we do not make any assumption concerning the
validity of the (H)-hypothesis, meaning that the following Proposition holds true even when not
all F-local martingales are necessarily G-local martingales (to this effect, see also Barbarin (2008),
Section 5).

Proposition 4.4.24. Let τ be a random time and let G be the progressive enlargement of the filtra-
tion F with respect to τ . Then the following hold:

(a) if S satisfies the NUIP condition with respect to F, then the stopped process Sτ satisfies the
NUIP condition with respect to G as well;

5Note that, as can be deduced from the proof of Lemma 9.51 of Jacod (1979), if the random time τ avoids F-
stopping times, in the sense that P (τ = ρ) = 0 for any F-stopping time ρ, the process ατ coincides with the dual
F-predictable projection of the process 1[[τ,∞[[ .
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(b) if S satisfies the NIAO condition with respect to F, then the stopped process Sτ satisfies the
NIAO condition with respect to G as well;

(c) if S satisfies the NUPBR condition with respect to F, then the stopped process Sτ satisfies
the NUPBR condition with respect to G as well.

Proof. Suppose first that S satisfies the NUIP condition with respect to the filtration F. Then,
due to Theorem 4.3.2, there exists an Rd-valued F-predictable process λ = (λt)0≤t≤T such that
dA = d〈M,M〉λ, where A and M denote the finite variation and the F-local martingale part,
respectively, in the canonical decomposition of S with respect to F. Equation (4.24) gives then the
following decomposition of the stopped process Sτ , for all t ∈ [0, T ]:

Sτt = S0 +mt +

∫ τ∧t

0

d〈M,M〉uλu +

∫ τ∧t

0

1

Zτ
u−
d〈M,µτ 〉u (4.25)

where the G-local martingale m is as in (4.24). Since the F-local martingale M is continuous, we
have the following Galtchouk-Kunita-Watanabe decomposition of the F-martingale µτ with respect
to M , see Ansel & Stricker (1993):

µτ = µτ0 + ψ ·M +N (4.26)

for some Rd-valued F-predictable process ψ = (ψt)0≤t≤T ∈ L2
loc (M,F) and for some F-local mar-

tingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0. In particular, strong orthogonality
and continuity of M imply that 〈M,N〉 ≡ 0. Hence, we can rewrite (4.25) as follows, for all
t ∈ [0, T ]:

Sτt = S0 +mt+

∫ τ∧t

0

d〈M,M〉u
(
λu +

ψu
Zτ
u−

)
= S0 +mt+

∫ τ∧t

0

d〈m,m〉u
(
λu +

ψu
Zτ
u−

)
(4.27)

Due to Theorem 4.3.2, this shows that Sτ satisfies the NUIP condition with respect to the filtration
G. In order to prove parts (b) and (c), note that, due to equation (4.27), the mean-variance tradeoff
process of S with respect to the filtration G satisfies the following inequality (compare also with
Lemma 4.4.11), for all t ∈ [0, T ]:

K̂G
τ∧t =

∫ τ∧t

0

(
λu +

ψu
Zτ
u−

)′
d〈m,m〉u

(
λu +

ψu
Zτ
u−

)
≤ K̂τ∧t +

∫ τ∧t

0

1(
Zτ
u−
)2ψ

′
ud〈M,M〉uψu

(4.28)
where K̂ is as in (4.4). Note that the process 1/Zτ

− is F-predictable and locally bounded, being F-
adapted and left-continuous. Since ψ ∈ L2

loc (M,F), this implies that
∫ T

0
1

(Zτt−)
2ψ′td〈m,m〉tψt <∞

P -a.s. Inequality (4.28) shows that, if the process K̂G jumps to infinity, then the process K̂ jumps
to infinity as well. Due to Theorem 4.3.10 and given (a), this implies that, if S satisfies the NIAO
condition with respect to F, then Sτ satisfies the NIAO condition with respect to G. Similarly,
inequality (4.28) (for t = T ) implies that, if K̂T < ∞ P -a.s., then also K̂G

τ∧T < ∞ P -a.s. Due
to Theorem 4.3.23, this shows that, if S satisfies the NUPBR condition with respect to F, then Sτ

satisfies the NUPBR condition with respect to G.
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Proposition 4.4.24 shows that, in the case where the enlarged filtration G is obtained as the
progressive enlargement of F with respect to a random time τ , the weak no-arbitrage conditions
considered in Section 4.3 are stable with respect to the expansion of the information set. Observe
that the result of Proposition 4.4.24 is general in the sense that it does not need any hypothesis on
the random time τ . In the context of credit risk modeling, where the random time τ models the
random occurrence of a default event, the result of Proposition 4.4.24 can be rephrased as follows.
Suppose that the filtration F represents the information set characterizing the default-free financial
market while the enlarged filtration G represents the full market information, i.e. the information
associated to the default-free financial market enriched with the knowledge of whether the default
event has occurred. Then, Proposition 4.4.24 says that if one of the NUIP/NIAO/NUPBR no-
arbitrage conditions holds in the default-free financial market (i.e. with respect to F), then the same
no-arbitrage condition holds with respect to the defaultable market (i.e. with respect to G) as well
(at least up to the occurrence of the default event). Observe that the proof of Proposition 4.4.24
exploits the fact that the validity of the weak no-arbitrage conditions studied in Section 4.3 can
be directly checked by looking at the characteristics of the process S. As pointed out in Section
4.3.3, this is not possible for the classical NA and NFLVR conditions and, hence, one needs to
introduce further assumptions in order to ensure the stability of the NA and NFLVR conditions
under a progressive enlargement of the reference filtration.

Remark 4.4.25 (Extension to discontinuous semimartingales). We want to point out that Propo-
sition 4.4.24 can be extended to the case where the semimartingale S is only assumed to be F-
locally square-integrable, in the sense of Definition II.2.27 of Jacod & Shiryaev (2003), and not
necessarily continuous. In this case, the predictable quadratic variation 〈M,M〉 is still well-defined.
Observe that the proof of Proposition 4.4.24 makes use of the continuity of S only in the Galtchouk-
Kunita-Watanabe decomposition of the F-martingale µτ . However, as shown in Ansel & Stricker
(1993), we can obtain an analogous Galtchouk-Kunita-Watanabe decomposition even if S is only
assumed to be F-locally square-integrable. This is due to the fact that the F-martingale µτ is in
BMO and, as such, also square-integrable (see e.g. Protter (2005), Section IV.4).

Our next goal consists in extending the analysis of Proposition 4.4.24 to see what happens after
the random time τ . To this effect, we need to introduce some further hypotheses on τ . In particular,
in view of credit risk applications, let us consider the case where the random time τ is an initial
time, in the sense of the following Definition.

Definition 4.4.26. A random time τ is said to be an initial time if there exists a measure η on
B (R+) such that Qt (ω, du)� η (du) holds P -a.s. for all t ∈ [0, T ], where Qt (ω, du) denotes the
regular Ft-conditional distribution of τ .

As pointed out in Jeanblanc & Le Cam (2009), Definition 4.4.26 is equivalent to the exis-
tence of a family of positive F-adapted processes (βut )0≤t≤T , u ∈ R+, such that P (τ > u|Ft) =∫∞
u
βst η (ds), for any t ∈ [0, T ], see also El Karoui et al. (2010). Furthermore, for every u ≥ 0, the

process βu = (βut )0≤t≤T is an F-martingale and satisfies the following:

ρτ := inf
{
t ∈ [0, T ] : βτt− = 0 or βτt = 0

}
=∞ P -a.s.
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so that the processes βτ and βτ− are P -a.s. strictly positive. For any F-local martingale M =

(Mt)0≤t≤T , Theorem 3.1 of Jeanblanc & Le Cam (2009) shows that the process m = (mt)0≤t≤T
defined as:

mt := Mt −
∫ τ∧t

0

1

Zτ
u−
d〈M,µτ 〉u −

∫ t

τ∧t

1

βθu−
d〈M,βθ〉u

∣∣∣∣
θ=τ

t ∈ [0, T ] (4.29)

is a G-local martingale. We are now in a position to state the following version of Proposition
4.4.24 in the case where the random time τ is an initial time.

Proposition 4.4.27. Let τ be an initial time and let G be the progressive enlargement of the filtra-
tion F with respect to τ . Then the following hold:

(a) if the NUIP condition holds with respect to F then it holds with respect to G as well;

(b) if the NIAO condition holds with respect to F then it holds with respect to G as well;

(c) if the NUPBR condition holds with respect to F then it holds with respect to G as well.

Proof. The proof is based on arguments similar to those used in the proof of Proposition 4.4.24.
Indeed, suppose that the NUIP condition holds with respect to F. Then, due to Theorem 4.3.2,
there exists an Rd-valued F-predictable process λ = (λt)0≤t≤T such that dA = d〈M,M〉λ, where
A and M denote the finite variation and the F-local martingale part, respectively, in the canonical
decomposition of S with respect to F. Equation (4.29) gives then the following, for all t ∈ [0, T ]:

St = S0 +mt +

∫ t

0

d〈M,M〉uλu +

∫ τ∧t

0

1

Zτ
u−
d〈M,µτ 〉u +

∫ t

τ∧t

1

βθu−
d〈M,βθ〉u

∣∣∣∣
θ=τ

(4.30)

Since βθ =
(
βθt
)

0≤t≤T is an F-martingale, for every θ ≥ 0, and the F-local martingale M is contin-
uous, we can write the following Galtchouk-Kunita-Watanabe decomposition of βθ with respect to
M , see Ansel & Stricker (1993):

βθ = βθ0 + ϕ (θ) ·M + Lθ

for some Rd-valued F-predictable process ϕ (θ) =
(
ϕt (θ)

)
0≤t≤T such that ϕ (θ) ∈ L2

loc (M,F), for
some F-local martingale Lθ =

(
Lθt
)

0≤t≤T strongly orthogonal to M with Lθ0 = 0, for every θ ≥ 0.
Hence, using also the Galtchouk-Kunita-Watanabe decomposition (4.26), we can write as follows,
for all t ∈ [0, T ]:

St = S0 +mt+

∫ t

0

d〈M,M〉u
(
λu + 1[[0,τ ]]

ψu
Zτ
u−

+ 1]]τ,T ]]
ϕu (θ)

βθu−

)∣∣∣∣
θ=τ

= S0 +mt+

∫ t

0

d〈m,m〉uλGu

where the Rd-valued G-predictable process λG =
(
λGt
)

0≤t≤T is defined as follows:

λG := λ+ 1[[0,τ ]]
ψ

Zτ
−

+ 1]]τ,T ]]
ϕ (θ)

βθ−

∣∣∣
θ=τ
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We have thus obtained the canonical decomposition of S with respect to G and, due to Theorem
4.3.2, we can conclude that the NUIP condition holds with respect to the enlarged filtration G, thus
proving part (a). In order to prove parts (b) and (c), observe that the mean-variance tradeoff process
K̂G of S with respect to G satisfies the following inequality, for all t ∈ [0, T ]:

K̂G
t :=

d∑
i,j=1

∫ t

0

(
λGu
)i(
λGu
)j
d〈mi,mj〉u

≤ K̂t +

∫ τ∧t

0

1

(Zτ
u−)2ψ

′
ud〈M,M〉uψu +

∫ t

τ∧t

1(
βθu−
)2ϕu (θ)′ d〈M,M〉uϕu (θ)

∣∣∣∣
θ=τ

Then, by relying on the same arguments used in the last part of the proof of Proposition 4.4.24, we
can easily prove parts (b) and (c).

In the context of credit risk modeling6, Proposition 4.4.27 shows that, if one of the NUIP/NIAO/
NUPBR no-arbitrage conditions holds with respect to the default-free financial market (i.e. with
respect to F), then the same condition holds with respect to the defaultable financial market (i.e.
with respect to G) as well, also after the random default time τ .

Remark 4.4.28 (Extension to discontinuous semimartingales). We want to point out that, simi-
larly as in Remark 4.4.25, Proposition 4.4.27 can be extended to the more general situation where
S is only assumed to be an Rd-valued F-locally square-integrable semimartingale, in the sense
of Definition II.2.27 of Jacod & Shiryaev (2003). Indeed, in this case the predictable quadratic
variation 〈M,M〉 is still well-defined. Furthermore, due to equation (4.30) together with the
Kunita-Watanabe inequality (see e.g. Protter (2005), Theorem II.25), the finite variation part
in the canonical decomposition of S with respect to G is absolutely continuous with respect to
〈m,m〉 = 〈M,M〉. The validity of the NUIP condition with respect to the filtration G then follows
from Theorem 4.3.2. In order to extend parts (b) and (c) of Proposition 4.4.27 to the case where
S is not necessarily continuous, we need some further assumptions on the family of F-martingales
βu, u ∈ R+. In particular, suppose that βu, is an F-locally square-integrable F-martingale, for
every u ∈ R+. Then, due to Ansel & Stricker (1993), there exists a Galtchouk-Kunita-Watanabe
decomposition of βu with respect to the F-locally square-integrable F-local martingale M . Since
the remaining part of the proof of Proposition 4.4.27 does not rely on the continuity of S, we
can then prove parts (b) and (c) also in the case where S is a general F-locally square-integrable
semimartingale.

Remark 4.4.29 (Progressive enlargements with respect to honest times). Let us now briefly
consider the case where the filtration G is obtained as the progressive enlargement of F with respect
to a random time τ , where the latter is supposed to be an honest time. This means that for every

6As pointed out in Jeanblanc & Le Cam (2009), initial times are well-suited to the modeling of credit risk. For
instance, typical intensity-based (or reduced-form) models for default risk assume that the random default time τ is
given by the first jump time of a Poisson process with stochastic intensity (i.e. a doubly stochastic Poisson process),
see e.g. Chapter 7 of Jeanblanc et al. (2009). It can be easily shown that such a random time is a particular example of
an initial time, see Section 5 of Jeanblanc & Le Cam (2009).
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t ≥ 0 there exists an Ft-measurable random variable ξ (t) such that τ = ξ (t) P -a.s. on the set
{τ < t}. Honest times have been extensively studied in the theory of enlargement of filtrations, see
e.g. Chapter V of Jeulin (1980). In particular, Theorem 5.10 of Jeulin (1980) (compare also with
Protter (2005), Theorem VI.18), shows that any F-local martingale M = (Mt)0≤t≤T with M0 = 0

can be decomposed as follows:

Mt = mt +

∫ τ∧t

0

1

Zτ
u−
d〈M,µτ 〉u −

∫ τ∧t

τ

1

1− Zτ
u−
d〈M,µτ 〉u (4.31)

where the process m = (mt)0≤t≤T is a G-local martingale and the F-martingale µτ is defined as
before (4.24). Observe that 〈M,µτ 〉 = 〈m,µτ 〉 and, due to the Kunita-Watanabe inequality, the
finite variation part in equation (4.31) is absolutely continuous with respect to 〈m,m〉 = 〈M,M〉.
Due to Theorem 4.3.2, this implies that, if the NUIP condition holds with respect to F, then it holds
with respect to G as well. However, stronger no-arbitrage conditions such as the NIAO and the
NUPBR conditions (and, hence, also the classical NA and NFLVR conditions) are not necessarily
preserved by a progressive enlargement of the filtration with respect to an honest time7. Indeed,
an honest time can be equivalently characterized as “the end of an optional set” (see Jeulin (1980),
Proposition 5.1, and Protter (2005), Theorem VI.16) and, therefore, an honest time can represent
the time at which the discounted price process S of the risky assets crosses for the last time a
given threshold or achieves its maximum value, see for instance Imkeller (2002). Therefore, from
an economic point of view, the knowledge of an honest time allows one to construct very strong
arbitrage strategies, which can also lead to immediate arbitrage opportunities, as pointed out in
Imkeller (2002) and Zwierz (2007).

Initial enlargement of the reference filtration
Let us close this Section by briefly considering a different but related situation, where the filtration
G is no longer supposed to be obtained as the progressive enlargement of F with respect to a random
time τ but as the initial enlargement of F with respect to a random variable ξ. More formally, let
us define the filtration G = (Gt)0≤t≤T as follows, for all t ∈ [0, T ]:

Gt :=
⋂
s>t

(
Fs ∨ σ {ξ}

)
Similarly as in Definition 4.4.26, we make the following Assumption, first introduced by Jacod
(1985).

7The decomposition (4.31) looks rather similar to the decomposition (4.29). Hence, one may wonder what could
go wrong if one were to apply the arguments used in the proof of Proposition 4.4.27 to the case where the filtration G
is obtained as the progressive enlargement of F with respect to an honest time τ . Technically, the problem is that in
general the process 1

1−Zτ−
may fail to be locally bounded on the stochastic interval ]]τ, T ]]. Indeed, suppose for instance

that there exists a predictable set Γ ⊂ Ω× [0, T ] such that τ (ω) = sup {t ∈ [0, T ] : (ω, t) ∈ Γ}. Then the Theorem on
page 299 of Azéma (1972) gives that Zττ− = 1 P -a.s on the set {τ > 0}, thus implying that the process 1

1−Zτ−
is not

locally bounded on the stochastic interval ]]τ, T ]].
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Assumption 4.4.30. There exists a positive σ-finite measure η on B (R+) such that Qt (ω, du) �
η (du) holds P -a.s. for all t ∈ [0, T ], where Qt (ω, du) denotes the regular Ft-conditional distribu-
tion of the random variable ξ.

Due to Lemma 1.8 of Jacod (1985), there exists a family of positive F-martingales qu =

(qut )0≤t≤T , u ∈ R+, such that, for all t ∈ [0, T ], the measure η (du) qut (ω) is a version ofQt (ω, du).
Due to Theorem 1.1 of Jacod (1985), the (H ′)-hypothesis holds between the filtrations F and G,
meaning that any F-semimartingale is also a G-semimartingale. Furthermore, due to Theorem 2.5
of Jacod (1985), any F-locally square-integrable F-local martingale M = (Mt)0≤t≤T with M0 = 0

admits the following G-canonical decomposition:

Mt = mt +

∫ t

0

1

qθu−
d〈qθ,M〉u

∣∣∣
θ=ξ

t ∈ [0, T ]

where m = (mt)0≤t≤T is a G-local martingale. Note that Corollary 1.11 of Jacod (1985) ensures
that the process qξ− is P -a.s. strictly positive. Thus, the same arguments used in the proofs of
Propositions 4.4.24 and 4.4.27 allow to easily show the following result.

Proposition 4.4.31. Let G be the initial enlargement of the filtration F with respect to the random
variable ξ and suppose that Assumption 4.4.30 holds. Then the following hold:

(a) if the NUIP condition holds with respect to F then it holds with respect to G as well;

(b) if the NIAO condition holds with respect to F then it holds with respect to G as well;

(c) if the NUPBR condition holds with respect to F then it holds with respect to G as well.

In the case where S is continuous, some related results on the preservation of the structure
condition under an initial enlargement of the reference filtration can also be found in Section 2 of
Campi (2005). Similarly as in Remark 4.4.28, the above Proposition can be extended to the case
where S is a general (not necessarily continuous) F-locally square-integrable semimartingale.

Summing up, the results of the present Section show that the NUIP no-arbitrage condition
is stable with respect to an enlargement of the reference filtration under minimal conditions, re-
gardless of the nature of the information added to the original filtration F. The NIAO/NUPBR
no-arbitrage conditions also enjoy good stability properties with respect to an enlargement of the
filtration, at least under (not very restrictive) technical assumptions. However, in the present de-
gree of generality, one cannot prove general results on the preservation of the classical NA and
NFLVR no-arbitrage conditions under an enlargement of the filtration, the reason being that one
cannot check the validity of these no-arbitrage conditions by looking only at the characteristics of
the discounted price process S. Of course, this represents a limitation of the classical no-arbitrage
theory based on the NA and NFLVR conditions.
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4.5 General characterizations of hedgeable contingent claims

So far, we have been concerned with general characterizations of weak no-arbitrage conditions and
with the study of their stability properties with respect to changes in the structure of the underlying
financial market model. This last Section deals with a more “practical” issue, namely the problem of
characterizing the set of contingent claims which can be perfectly replicated in the financial market.
Under the traditional No Free Lunch with Vanishing Risk (NFLVR) condition, general results on the
attainability of contingent claims have been obtained in the classical works Jacka (1992), Ansel &
Stricker (1994) and Delbaen & Schachermayer (1994),(1995c),(1998b). The novelty of the present
Section is represented by the fact that we do not assume that the NFLVR condition holds, but only
that the weaker No Unbounded Profit with Bounded Risk (NUPBR) condition holds. This allows
us to extend the scope of the analysis of hedging problems towards interesting financial market
models which do not satisfy the NFLVR condition, as in the context of Stochastic Portfolio Theory
and Benchmark Approach, see Fernholz & Karatzas (2009) and Chapters 12-13 of Platen & Heath
(2006), respectively.

As in Section 4.2, let us suppose that the discounted price process S = (St)0≤t≤T of d risky
assets is a continuous semimartingale on the filtered probability space (Ω,F ,F, P ). For simplicity,
we assume that the initial σ-fieldF0 is trivial and we letF = FT . As we have seen in Section 4.3.3,
as soon as the NUPBR condition holds, the process Ẑ = E (−λ ·M) is well-defined as a martingale
deflator, in the sense of Definition 4.3.11, where the Rd-valued predictable process λ = (λt)0≤t≤T

is as in Theorem 4.3.2. Furthermore, the process 1/Ẑ satisfies the following SDE (compare also
with Remark 4.3.16):

d
1

Ẑt
= − 1

Ẑ2
t

dẐt +
1

Ẑ3
t

d〈Ẑ〉t =
1

Ẑt
λtdMt +

1

Ẑt
λ′td〈M,M〉tλt =

λt

Ẑt
dSt

The process Ẑ is continuous and, hence, also predictable and locally bounded and Theorem 4.3.23
shows that λ ∈ L2

loc (M) if the NUPBR condition holds. This implies that, as soon as the NUPBR
condition holds, we have λ/Ẑ ∈ L (S). We have thus shown that the martingale deflator Ẑ can be
represented as the reciprocal of the wealth process V = (Vt)0≤t≤T corresponding to a self-financing
trading strategy HV =

(
HV
t

)
0≤t≤T , namely8:

1/Ẑ = V = 1 +HV · S where HV
t = λt/Ẑt, t ∈ [0, T ]

Furthermore, since Ẑ > 0 P -a.s., the strategy HV is 1-admissible, i.e. HV ∈ A1. In particular,
due to Definition 4.4.1, the process V = (Vt)0≤t≤T can be viewed as a numéraire for S. In the
following we shall often use V = 1/Ẑ as a numéraire for S and we denote by S̄ =

(
S
V
, 1
V

)
the

price process expressed in terms of the numéraire V , as in Section 4.4.1. At this point, observe the
8It is well-known that, under the NUPBR condition, the wealth process V = (Vt)0≤t≤T generated by the strategy

HV = λ/Ẑ corresponds to the so-called growth-optimal portfolio, see for instance Christensen & Larsen (2007),
Karatzas & Kardaras (2007), Hulley & Schweizer (2010) and, in the special case of an Itô-process model, Fontana &
Runggaldier (2011). Formally, the growth-optimal portfolio is defined as the element V = 1+H ·S with V > 0 P -a.s.
such that E [log (V ′T /VT )] ≤ 0 for all V ′ = 1 +H ′ · S with H ′ ∈ A1.
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following fundamental fact. Since Ẑ is a martingale deflator, the process S̄ =
(
S
V
, 1
V

)
=
(
ẐS, Ẑ

)
is a local P -martingale. In particular, this implies that the probability measure P is (trivially) an
Equivalent Local Martingale Measure for S̄. Hence, due to part (c) of Proposition 4.3.28, the V -
discounted price process S̄ satisfies the NFLVR condition. In the following, this key property will
be used as follows. Suppose that the original price process S satisfies the NUPBR condition. As a
first step, apply a change of numéraire with respect to V = 1/Ẑ. The V -discounted price process
S̄ then satisfies the NFLVR condition and, hence, we can apply the classical results of Delbaen &
Schachermayer (1994),(1995c) with respect to the price process S̄ =

(
S
V
, 1
V

)
. Finally, we go back

to the original price process S.

4.5.1 Maximal elements

In order to make this approach work, we first need some preliminaries. Let us denote by D the
set of all martingale deflators for S, in the sense of Definition 4.3.11. Due to Theorem 4.3.23, as
soon as the NUPBR condition holds, the set D is non-empty. Furthermore, in view of Proposition
4.3.24, we have:

D =
{
Ẑ E (N) : N local martingale, with N0 = 0, N ⊥M,∆N > −1 P -a.s.

}
(4.32)

where⊥ denotes strong orthogonality, in the sense of Definition I.4.11 of Jacod & Shiryaev (2003).
Furthermore, since S̄ =

(
S
V
, 1
V

)
satisfies the NFLVR condition, the set of all Equivalent Local

Martingale Measures (ELMMs) for S̄ is non-empty (recall part (c) of Proposition 4.3.28). Let us
denote byMe

(
P, S̄

)
the set of all density processes of ELMMs:

Me
(
P, S̄

)
:=

{
ZQ =

(
ZQ
t

)
0≤t≤T : ZQ

t =
dQ|Ft
dP |Ft

for all t ∈ [0, T ], Q is an ELMM for S̄
}

With a slight abuse of notation, we shall sometimes simply write Q ∈Me
(
P, S̄

)
with the meaning

that the density process ZQ of Q with respect to P belongs to Me
(
P, S̄

)
. Since S̄ is already a

local P -martingale, we have P ∈ Me
(
P, S̄

)
. Note however that the setMe

(
P, S̄

)
may contain

infinitely many elements other than P . The following Lemma shows the general structure of the
setMe

(
P, S̄

)
.

Lemma 4.5.1. Suppose that the NUPBR condition holds and let the Rd+1-valued process S̄ =(
S̄t
)

0≤t≤T be defined as above. Then the following hold:

Me
(
P, S̄

)
=
{
E(N) :N local martingale, with N0 =0, N⊥M,∆N>−1 P -a.s. and E [E (N)T ]=1

}
where M denotes the local martingale part in the canonical decomposition of S.

Proof. As soon as the NUPBR condition holds, the process S̄ is a local martingale. More precisely,
due to equations (4.45) and (4.43) with H = λ/Ẑ, for all t ∈ [0, T ]:

S̄it = Si0 +

∫ t

0

1

Vu

(
ei − S̄iuλu

Ẑu

)
dMu = Si0 +

∫ t

0

(
Ẑue

i − S̄iuλu
)
dMu i = 1, . . . , d

S̄d+1
t = 1−

∫ t

0

1

V 2
u

λu

Ẑu
dMu = 1−

∫ t

0

ẐuλudMu

(4.33)
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Analogously as in Definition 4.3.11, a martingale deflator for S̄ is a P -a.s. strictly positive local
martingale Z̄ =

(
Z̄t
)

0≤t≤T with Z̄0 = 1 such that the product Z̄S̄i is a local martingale for all
i = 1, . . . , d + 1. It can be easily seen (see the first part of the proof of Proposition 4.3.24)
that every martingale deflator Z̄ =

(
Z̄t
)

0≤t≤T for S̄ can be represented as Z̄ = E (N), for some
local martingale N = (Nt)0≤t≤T strongly orthogonal to S̄ with N0 = 0 and ∆N > −1 P -a.s.
Furthermore, a martingale deflator Z̄ for S̄ is the density process of an ELMM for S̄ if and only
if E

[
Z̄T
]

= 1. Hence, to prove the Lemma it remains to show that N is strongly orthogonal to S̄
if and only if it is strongly orthogonal to M . If N is strongly orthogonal to M , it readily follows
from (4.33), together with the integration by parts formula, that N is also strongly orthogonal to S̄.
Conversely, suppose thatN is strongly orthogonal to S̄, so that 〈S̄i, N〉 ≡ 0 for all i = 1, . . . , d+1.
Then, for i = 1, . . . , d, using the second equation in (4.33) and recalling that S̄i = ẐSi:

0 = 〈S̄i, N〉 =

∫ (
Ẑei − S̄iλ

)
d〈M,N〉 =

∫
Ẑd〈M i, N〉+

∫
Sid〈S̄d+1, N〉 =

∫
Ẑd〈M i, N〉

Since Ẑ > 0 P -a.s., this implies that 〈M i, N〉 ≡ 0 for all i = 1, . . . , d, meaning that N is strongly
orthogonal to M .

Let us now introduce the following Definition, in the spirit of Delbaen & Schachermayer
(1994),(1995c). For any a > 0, the sets Aa and Āa are defined as in Sections 4.2 and 4.4.1,
respectively.

Definition 4.5.2. For any a > 0, let the sets Ka and K̄a be defined as follows:

Ka :=
{

(H · S)T : H ∈ Aa
}

K̄a :=
{

(H̄ · S̄)T : H̄ ∈ Āa
}

For any a > 0, we say that an element f ∈ Ka is maximal in Ka if the properties g ≥ f P -a.s. and
g ∈ Ka imply that g = f P -a.s. Analogously, for any a > 0, we say that an element f̄ ∈ K̄a is
maximal in K̄a if the properties ḡ ≥ f̄ P -a.s. and ḡ ∈ K̄a imply that ḡ = f̄ P -a.s.

We have then the following simple Lemma, which refines the result of Lemma 4.4.2. As in
Lemma 4.4.2, we let H̄V := (0, . . . , 0, 1)′ ∈ Rd+1.

Lemma 4.5.3. Let V be a numéraire for S, with V = 1 + HV · S, and let a > 0. If H ∈ Aa, then
there exists an element H̄ ∈ Āa such that 1

V
(H · S) =

(
H̄ − aH̄V

)
· S̄. In addition, if (H · S)T

is maximal in Ka, then
(
H̄ · S̄

)
T

is maximal in K̄a. Conversely, if H̄ ∈ Āa, then there exists an
element H ∈ Aa such that V

(
H̄ · S̄

)
=
(
H − aHV

)
· S. In addition, if

(
H̄ · S̄

)
T

is maximal in
K̄a, then (H · S)T is maximal in Ka.

Proof. Let H ∈ Aa and suppose that (H · S)T is maximal in Ka. The existence of an element
H̄ ∈ Āa such that 1

V
(H · S) =

(
H̄ − aH̄V

)
· S̄ follows from Lemma 4.4.2. It remains to show

the maximality of
(
H̄ · S̄

)
T

in K̄a. So, let K̄ ∈ Āa and suppose that
(
K̄ · S̄

)
T
≥
(
H̄ · S̄

)
T
P -a.s.

Then:
1

VT

(
H · S

)
T

=
((
H̄ − aH̄V

)
· S̄
)
T
≤
((
K̄ − aH̄V

)
· S̄
)
T

P -a.s. (4.34)
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Due to Lemma 4.4.2, there exists an elementK ∈ Aa such that
(
K̄ − aH̄V

)
·S̄ = 1

V
(K · S). Then,

the inequality in (4.34) implies that (H · S)T ≤ (K · S)T P -a.s. Since (H · S)T is assumed to be
maximal in Ka, we have (H · S)T = (K · S)T P -a.s., which in turn implies

(
H̄ · S̄

)
T

=
(
K̄ · S̄

)
T

P -a.s., thus showing the maximality of
(
H̄ · S̄

)
T

in K̄a. The converse statement can be proved in a
similar way.

The following Proposition provides several equivalent characterizations of maximal elements.
Its proof is based on a change of numéraire with respect to V = 1/Ẑ, on Corollary 4.6 of Delbaen
& Schachermayer (1995c) (applied to the V -discounted price process S̄) and on Lemma 4.5.3.

Proposition 4.5.4. Suppose that the NUPBR condition holds and let H ∈ Aa, for some a > 0. Let
H̄ be an element in Āa such that 1

V
(H · S) =

(
H̄ − aH̄V

)
· S̄. Then the following are equivalent:

(i) (H · S)T is maximal in Ka;

(ii)
(
H̄ · S̄

)
T

is maximal in K̄a;

(iii) there exists an element Q ∈Me
(
P, S̄

)
such that EQ

[(
H̄ · S̄

)
T

]
= 0;

(iv) there exists an element Q ∈Me
(
P, S̄

)
such that H̄ · S̄ is a Q-martingale;

(v) there exists an element Z = (Zt)0≤t≤T ∈ D such that E
[
ZT
(
a+ (H · S)T

)]
= a;

(vi) there exists an element Z = (Zt)0≤t≤T ∈ D such that Z (a+H · S) is a P -martingale.

Proof. The implication (i) ⇒ (ii) follows from Lemma 4.5.3. Since the Rd+1-valued continuous
semimartingale S̄ satisfies the NFLVR condition, the equivalence (ii)⇔ (iii)⇔ (iv) follows from
Corollary 4.6 of Delbaen & Schachermayer (1995c). We now show that (iii) ⇒ (v). Let Q ∈
Me

(
P, S̄

)
and suppose that EQ

[(
H̄ · S̄

)
T

]
= 0. Then, due to Lemma 4.5.1, this means that there

exists a local martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0, ∆N > −1 P -a.s.
and E [E (N)T ] = 1 such that:

0 = EQ
[(
H̄ · S̄

)
T

]
= E

[
dQ

dP

(
H̄ · S̄

)
T

]
= E

[
E (N)T

(
H̄ · S̄

)
T

]
(4.35)

Now observe that, by the definition of H̄ in the statement of the Proposition:

H̄ · S̄ =
1

V
(H · S) + a

(
H̄V · S̄

)
=

1

V
(H · S) + a

(
1

V
− 1

)
(4.36)

By combining (4.35) and (4.36) we get:

0 = E

[
E (N)T
VT

(H · S)T

]
+ aE

[
E (N)T
VT

]
− a = E

[
ẐT E (N)T

(
a+ (H · S)T

)]
− a

Due to Proposition 4.3.24, the product Ẑ E (N) is a martingale deflator for S, thus showing (v).
To prove that (v)⇒ (vi), note that, due to Proposition 4.3.13, the product Z (a+H · S) is a non-
negative local P -martingale for everyH ∈ Aa, and, due to Fatou’s Lemma, it is also a supermartin-
gale. So, the product Z (a+H · S) is a P -martingale if and only if E

[
ZT
(
a+ (H · S)T

)]
=
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E
[
Z0

(
a+ (H · S)0

)]
= a. It remains to show that (vi)⇒ (i). Suppose that Z is an element of D

such that Z (a+H · S) is a P -martingale and let K ∈ Aa with (K · S)T ≥ (H · S)T P -a.s. Then:

a = E
[
Z0

(
a+ (H · S)0

)]
= E

[
ZT
(
a+ (H · S)T

)]
≤ E

[
ZT
(
a+ (K · S)T

)]
≤ a

where the last inequality follows from the fact that the product Z (a+K · S) is a supermartingale,
being a non-negative local martingale (see Lemma 4.3.13). This shows that E [ZT (H · S)T ] =

E [ZT (K · S)T ], thus implying (K · S)T = (H · S)T P -a.s. Due to Definition 4.5.2, this shows
that (H · S)T is maximal in Ka.

4.5.2 Attainable contingent claims and market completeness

We are now in a position to start dealing with the main theme of this Section, namely the charac-
terization of those contingent claims which can be perfectly replicated by trading in the financial
market according to a self-financing trading strategy. More precisely, let us give the following
Definition.

Definition 4.5.5. A contingent claim is a non-negative F-measurable random variable. A contin-
gent claim f is said to be attainable (or hedgeable) for S if there exists a pair (x,H) ∈ R+×Ax such
that f = x+ (H · S)T holds P -a.s. and (H · S)T is maximal in Kx. Analogously, we say that f is
attainable (or hedgeable) for S̄ if there exists a pair

(
x̄, H̄

)
∈ R+×Āx̄ such that f = x̄+

(
H̄ · S̄

)
T

holds P -a.s. and
(
H̄ · S̄

)
T

is maximal in K̄x̄.

As pointed out in Delbaen & Schachermayer (1995c), there is a good reason to require the use
of maximal elements in Definition 4.5.5. In fact, let f be a given contingent claim and suppose
that there exists a pair (x,H) ∈ R+ × Ax such that f = x + (H · S)T holds P -a.s. but (H · S)T
is not maximal in Kx. Then, there exists an element K ∈ Ax such that x + (K · S)T ≥ f P -a.s.,
with strict inequality on some set with non-zero probability. Hence, an investor who starts from the
initial endowment x will obtain a better final payoff by trading according to the strategy K ∈ Ax.
Clearly, in this case the contingent claim f cannot be the result of an optimal hedging policy. The
following Theorem gives necessary and sufficient conditions for a given contingent claim f to be
attainable. Again, the proof is based on a change of numéraire with respect to V = 1/Ẑ combined
with the classical results of Delbaen & Schachermayer (1995c), here applied to the V -discounted
price process S̄.

Theorem 4.5.6. Suppose that the NUPBR condition holds. Let f be a contingent claim and define
f̄ := fẐT . Then the following are equivalent:

(i) f is attainable for S, i.e. there exists a pair (x,H) ∈ R+ ×Ax such that f = x + (H · S)T
holds P -a.s. and (H · S)T is maximal in Kx;

(ii) f̄ is attainable for S̄, i.e. there exists a pair
(
x̄, H̄

)
∈ R+ × Āx̄ such that f̄ = x̄+

(
H̄ · S̄

)
T

holds P -a.s. and
(
H̄ · S̄

)
T

is maximal in K̄x̄;
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(iii) there exists an element Q ∈Me
(
P, S̄

)
such that:

EQ
[
f̄
]

= sup
{
ER
[
f̄
]

: R ∈Me
(
P, S̄

)}
<∞

(iv) there exists an element Z∗ = (Z∗t )0≤t≤T ∈ D such that:

E [Z∗Tf ] = sup
{
E [ZTf ] : Z ∈ D

}
<∞

Furthermore, parts (i) and (ii) are related as follows:

x = x̄ and H̄ · S̄ =
1

V

((
H − xHV

)
· S
)

(4.37)

Proof. Since the Rd+1-valued continuous semimartingale S̄ satisfies the NFLVR condition and
ẐT > 0 P -a.s., the equivalence (ii) ⇔ (iii) follows from Theorem 4.11 of Delbaen & Schacher-
mayer (1995c). Let us now show that (ii)⇒ (i). Suppose that there exists a pair

(
x̄, H̄

)
∈ R+×Āx̄

such that f̄ = x̄ +
(
H̄ · S̄

)
T

holds P -a.s. and
(
H̄ · S̄

)
T

is maximal in K̄x̄. Let H be an element of
Ax̄ such that H̄ · S̄ = 1

V

(
(H − x̄HV ) · S

)
, as in Lemma 4.5.3. Then:

f = f̄VT =
(
x̄+

(
H̄ · S̄

)
T

)
VT = x̄VT +

((
H − x̄HV

)
· S
)
T

= x̄VT + (H · S)T − x̄ (VT − 1)

= x̄+ (H · S)T
(4.38)

Furthermore, Lemma 4.5.3 implies that (H · S)T is maximal in Kx̄, thus showing that the contin-
gent claim f is attainable for S, in the sense of Definition 4.5.5. Let us now show that (i)⇒ (iv). If
f is attainable for S, there exists a pair (x,H) ∈ R+×Ax such that f = x+ (H · S)T holds P -a.s.
and (H · S)T is maximal in Kx. Due to Proposition 4.5.4, this implies that there exists an element
Z∗ = (Z∗t )0≤t≤T ∈ D such that E

[
Z∗T
(
x+ (H · S)T

)]
= x. Thus, for any Z = (Zt)0≤t≤T ∈ D:

E [Z∗Tf ] = E
[
Z∗T
(
x+ (H · S)T

)]
= x ≥ E

[
ZT
(
x+ (H · S)T

)]
= E [ZTf ]

where the inequality follows since the product Z (x+H · S) is a non-negative local martingale
(see Lemma 4.3.13) and, due to Fatou’s Lemma, also a supermartingale. This shows (iv).

Finally, let us prove that (iv) implies (ii). Due to Lemma 4.5.1 and (4.32), it can be easily seen
that the following holds:

sup
{
ER
[
f̄
]

: R ∈Me
(
P, S̄

)}
≤ sup

{
E [ZTf ] : Z ∈ D

}
= E [Z∗Tf ] <∞ (4.39)

Conversely, let N = (Nt)0≤t≤T be an arbitrary local martingale strongly orthogonal to M with
N0 = 0 and ∆N > −1 P -a.s. and let (τn)n∈N be a localizing sequence for E (N). Then, for every
n ∈ N, the stopped process E (N)τn = E (N τn) is a martingale and, since strong orthogonality
is preserved under stopping (see Jacod & Shiryaev (2003), Lemma I.4.13), we have E (N τn) ∈
Me

(
P, S̄

)
. Thus, due to Fatou’s Lemma:

E
[
ẐT E (N)T f

]
= E

[
lim
n→∞

ẐT E (N)τn∧T f
]
≤ lim inf

n→∞
E
[
E (N τn)T f̄

]
≤ sup

{
ER
[
f̄
]

: R ∈Me
(
P, S̄

)} (4.40)
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By combining (4.39) and (4.40) and recalling Proposition 4.3.24, we have thus shown the following
equality:

sup
{
ER
[
f̄
]

: R ∈Me
(
P, S̄

)}
= sup

{
E [ZTf ] : Z ∈ D

}
= E [Z∗Tf ] <∞

Since S̄ is continuous and satisfies NFLVR, Corollary 3.5 of Delbaen & Schachermayer (1995c)
gives the existence of an element H̄ ∈ Ā such that f̄ ≤ x̄ +

(
H̄ · S̄

)
T

holds P -a.s., where x̄ :=

sup
{
ER
[
f̄
]

: R ∈Me
(
P, S̄

)}
, and such that

(
H̄ · S̄

)
T

is maximal in
⋃
a>0 K̄a. Furthermore,

due to Proposition 3.5 of Delbaen & Schachermayer (1994), we have H̄ ∈ Āx̄. Observe now
that, due to Proposition 4.3.24, we can write Z∗ = Ẑ E (N∗) for some local martingale N∗ =

(N∗t )0≤t≤T strongly orthogonal to M with N∗0 = 0 and ∆N∗ > −1 P -a.s. Furthermore, the
product E (N∗)

(
H̄ · S̄

)
is a local martingale. In fact, due to the integration by parts formula:

E (N∗)
(
H̄ · S̄

)
=
(
(H̄ · S̄)E (N∗)−

)
·N∗ +

(
E (N∗)− H̄

)
· S̄ +

(
E (N∗)− H̄

)
·
[
S̄, N∗

]
(4.41)

Since N∗ and S̄ are strongly orthogonal local martingales (see the proof of Lemma 4.5.1), this
shows the local martingale property of E (N∗)

(
H̄ · S̄

)
. In particular, since H̄ ∈ Āx̄, Fatou’s

Lemma implies that E (N∗)
(
x̄+ H̄ · S̄

)
is also a supermartingale. Hence:

x̄ = E [Z∗Tf ] = E
[
E (N∗)T f̄

]
≤ E

[
E (N∗)T

(
x̄+ (H̄ · S̄)T

)]
≤ x̄

We have thus shown that E
[
E (N∗)T f̄

]
= E

[
E (N∗)T

(
x̄+ (H̄ · S̄)T

)]
, which in turn implies

that f̄ = x̄+
(
H̄ · S̄

)
T

holds P -a.s. Recalling that
(
H̄ · S̄

)
T

is maximal in K̄x̄, we have thus proved
(ii). The last assertion of the Theorem follows by elementary computations as in (4.38).

In particular, the most interesting result of Theorem 4.5.6 is given by the equivalence between
parts (i) and (iv). This equivalence result represents an extension of the classical results of Jacka
(1992), Ansel & Stricker (1994) and Delbaen & Schachermayer (1995c) on the attainability of
contingent claims to the more general situation where, instead of the NFLVR condition, only the
weaker NUPBR condition is supposed to hold. Furthermore, Theorem 4.5.6 highlights the fact that
even in the absence of a well-defined ELMM the situation is not hopeless, since we can easily work
with martingale deflators. In the special case of an Itô process model, the implication (iv)⇒ (i) has
been recently shown in Chapter 2 of Ruf (2011b), albeit with a different (and, to our mind, more
involved) proof.

Remark 4.5.7 (Comparison with the results of Stricker & Yan (1998)). The equivalence (i)
⇔ (iv) in Theorem 4.5.6 bears a close similarity with the result of Theorem 3.2 of Stricker &
Yan (1998). Indeed, working under the same set of assumptions as in the present Section, in
Stricker & Yan (1998) the authors show the equivalence between the condition in part (iv) of our
Theorem 4.5.6 and the replicability of the contingent claim f , in the sense that there exists a pair
(x,H) ∈ R+ × L (S) such that f = x + (H · S)T holds P -a.s. and the product Z (x+H · S) is
a martingale for some Z ∈ D. Our Proposition 4.5.4 shows that this definition of replicability is
equivalent to our Definition 4.5.5. However, it seems to us more natural from an economic point
of view to define the concept of attainability as in our Definition 4.5.5, which does not involve the
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abstract concept of a martingale deflator and only uses the financially sound concept of maximal
element. Furthermore, the proof given in Stricker & Yan (1998) is entirely different from ours, since
it relies on a generalization of the optional decomposition theorem, while our approach is based on
a rather simple change of numéraire technique combined with the classical results of Delbaen &
Schachermayer (1995c).

In the particular case where the contingent claim f is such that f̄ := fẐT is bounded we can also
say something more, as shown in the next Proposition. As a preliminary, let us state the following
simple Lemma.

Lemma 4.5.8. Let L = (Lt)0≤t≤T be a local martingale and let M1 = (M1
t )0≤t≤T and M2 =

(M2
t )0≤t≤T be two martingales such that M1

t ≤ Lt ≤ M2
t P -a.s. for all t ∈ [0, T ]. Then L =

(Lt)0≤t≤T is a martingale.

Proof. Note first that the difference L−M1 is a non-negative local martingale, because it is differ-
ence of a local martingale and a martingale and Lt ≥ M1

t P -a.s. for all t ∈ [0, T ]. Fatou’s Lemma
implies then that L−M1 is also a supermartingale. Since M1 is a martingale, this shows that L is a
supermartingale. Analogously, the difference M2−L is a non-negative supermartingale, again due
to Fatou’s Lemma together with the fact that M2 − L is a non-negative local martingale, because
it is the difference of a martingale and a local martingale and M2

t ≥ Lt P -a.s. for all t ∈ [0, T ].
However, M2 − L is also the difference of a martingale and a supermartingale and, hence, it is a
submartingale. We have thus shown thatM2−L is both a supermartingale and a submartingale and,
hence, it is a martingale. In particular, this implies that L = M2 − (M2 − L) is also a martingale,
being the difference of two martingales.

Proposition 4.5.9. Suppose that the NUPBR condition holds and let f be a contingent claim such
that f̄ := fẐT is bounded. Then the following are equivalent:

(i) f is attainable for S, i.e. there exists a pair (x,H) ∈ R+ ×Ax such that f = x + (H · S)T
holds P -a.s. and (H · S)T is maximal in Kx, and the product Ẑ (x+H · S) is a martingale;

(ii) f̄ is attainable for S̄;

(iii) ER
[
f̄
]

is constant as a function of R ∈Me
(
P, S̄

)
.

Proof. We first show that (iii) ⇒ (ii). Suppose that ER
[
f̄
]

is constant as a function of R ∈
Me

(
P, S̄

)
. This obviously implies that the condition in part (iii) of Theorem 4.5.6 is satisfied

and, hence, due to the equivalence between parts (ii) and (iii) of Theorem 4.5.6, we can conclude
that f̄ is attainable for S̄. Let us now show that (ii) ⇒ (i). Suppose that f̄ is attainable for S̄,
meaning that there exists a pair

(
x, H̄

)
∈ R+ × Āx such that f̄ = x +

(
H̄ · S̄

)
T

holds P -a.s. and(
H̄ · S̄

)
T

is maximal in K̄x. Due to the equivalence between parts (i) and (ii) of Theorem 4.5.6, we
have f = x + (H · S)T P -a.s., where H ∈ Ax satisfies (4.37). Recall that, due to Lemma 4.3.13,
the product Ẑ (x+H · S) is a local martingale and, being non-negative, also a supermartingale.
Recall also that, since P ∈ Me

(
P, S̄

)
, the process H̄ · S̄ is a local P -martingale and let (τn)n∈N
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be a localizing sequence for it. Due to Proposition 4.5.4, there is an element Q ∈ Me
(
P, S̄

)
such

that H̄ · S̄ is a Q-martingale. Thus, for every n ∈ N:(
H̄ · S̄

)
τn∧T

= EQ
[(
H̄ · S̄

)
T
|Fτn∧T

]
= EQ

[
f̄ |Fτn∧T

]
− x

Since by assumption f̄ is bounded, this shows that
(
H̄ · S̄

)
τn∧T

is bounded, for every n ∈ N.

Hence, due to the supermartingale property of Ẑ (x+H · S) and to the dominated convergence
theorem:

x ≥ E
[
ẐT
(
x+ (H · S)T

)]
= E

[
f̄
]

= E
[
x+

(
H̄ · S̄

)
T

]
= x+ E

[
lim
n→∞

(
H̄ · S̄

)
τn∧T

]
= x+ lim

n→∞
E
[(
H̄ · S̄

)
τn∧T

]
= x

Clearly, this shows the martingale property of Ẑ (x+H · S), thus proving part (i) of the Corollary.
Finally, let us show that (i)⇒ (iii). Suppose that f is attainable for S, meaning that there exists a
pair (x,H) ∈ R+ × Ax such that f = x + (H · S)T holds P -a.s. and (H · S)T is maximal in Kx,
and suppose that Ẑ (x+H · S) is a martingale. Due to the equivalence between parts (i) and (ii) in
Theorem 4.5.6, this implies that f̄ is attainable for S̄. Furthermore, due to equation (4.37), we have
that:

H̄ · S̄ =
1

V

((
H − xHV

)
· S
)

= Ẑ
(
H · S − x (V − 1)

)
= Ẑ (x+H · S)− x

thus showing that H̄ · S̄ is a martingale. The martingale property implies the following, for all
t ∈ [0, T ]: (

H̄ · S̄
)
t

= E
[(
H̄ · S̄

)
T
|Ft
]

= E
[
f̄ |Ft

]
− x

Since f̄ is bounded, this implies that there exists a positive constant K such that H̄ · S̄ ≤ K

P -a.s. Let now Q ∈ Me
(
P, S̄

)
, so that, due to Lemma 4.5.1, there exists a local martingale

N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0, ∆N > −1 P -a.s. and E [E (N)T ] = 1

such that dQ
dP

= E (N)T . As shown in (4.41), the product E (N)
(
H̄ · S̄

)
is a local martingale.

Furthermore, it is bounded from below by the martingale−xE (N), since H̄ ∈ Āx, and from above
by the martingale KE (N). Lemma 4.5.8 implies then that E (N)

(
H̄ · S̄

)
is a martingale9, so that:

E
[
f̄
]

= x+ E
[(
H̄ · S̄

)
T

]
= x = x+ E

[
E (N)T

(
H̄ · S̄

)
T

]
= x+ EQ

[(
H̄ · S̄

)
T

]
= EQ

[
f̄
]

Since Q ∈ Me
(
P, S̄

)
is arbitrary, this shows that ER

[
f̄
]

is constant as a function of R ∈
Me

(
P, S̄

)
.

Remark 4.5.10. A probability measure Q on (Ω,F) is said to be an Absolutely Continuous Local
Martingale Measure (ACLMM) for S̄ if Q � P and S̄ is a local Q-martingale. Let us denote
by M

(
P, S̄

)
the set of all ACLMMs for S̄. Clearly, we have Me

(
P, S̄

)
⊆ M

(
P, S̄

)
. It can

9More succinctly, we can also argue as follows. We have shown that there exists a positive constant K such that∣∣(H̄ · S̄)
t

∣∣ ≤ K P -a.s. for all t ∈ [0, T ]. For any Q ∈Me
(
P, S̄

)
, the stochastic integral H̄ · S̄ is a local Q-martingale

and, being bounded, also a Q-martingale. Hence, for any Q ∈ Me
(
P, S̄

)
, we have E

[
f̄
]

= x + E
[(
H̄ · S̄

)
T

]
=

x = x+ EQ
[(
H̄ · S̄

)
T

]
= EQ

[
f̄
]
. Compare also with Lemma 5.1 of Delbaen & Schachermayer (1994).
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be shown that condition (iii) of Proposition 4.5.9 is equivalent to the condition that ER
[
f̄
]

is
constant as a function of R ∈M

(
P, S̄

)
. As pointed out in the proof of Theorem 5.2 of Delbaen &

Schachermayer (1994), this is due to the fact that the setMe
(
P, S̄

)
is dense in L1 (P ) inM

(
P, S̄

)
and, hence, ER

[
f̄
]

is constant onMe
(
P, S̄

)
if and only if it is constant inM

(
P, S̄

)
.

Remark 4.5.11 (Connections with the benchmark approach). Let us briefly comment on an in-
teresting implication of Proposition 4.5.9 in the context of the Benchmark Approach (see Platen
& Heath (2006) for a detailed account). As we have seen, the martingale deflator Ẑ is the re-
ciprocal of the wealth process V generated by the self-financing 1-admissible trading strategy
HV = λ/Ẑ. More precisely, it can be shown that V coincides with the so-called growth-optimal
portfolio (GOP), see for instance Christensen & Larsen (2007), Karatzas & Kardaras (2007), Hul-
ley & Schweizer (2010) and, in the special case of an Itô-process model, Fontana & Runggaldier
(2011). A self-financing trading strategy H ∈ Aa, for some a ∈ R+, is said to be fair if the
GOP-discounted (i.e. V -discounted) value of the corresponding wealth process a + H · S is a
martingale. Since V = 1/Ẑ, we can equivalently say that a trading strategy H ∈ Aa is fair if the
product Ẑ (a+H · S) is a martingale. In the context of the benchmark approach, the valuation
of a given contingent claim f is performed by taking the expectation of its GOP-discounted value
f/VT = fẐT under the original probability measure P , thus giving rise to the so-called real-world
pricing formula, see Section 10.4 of Platen & Heath (2006), Section 5 of Platen (2009) and Section
5 of Fontana & Runggaldier (2011). However, the valuation via the real-world pricing formula is
fully justified only for those contingent claims which can be perfectly replicated by means of a fair
trading strategy, see for instance Corollary 5.1 of Platen (2009). However, at the present time, we
are not aware of any result in the literature providing a characterization of those contingent claims
which can be attained by fair strategies. Hence, the result of our Proposition 4.5.9 can be of in-
terest, since it provides a general characterization of those contingent claims f (such that fẐT is
bounded) which can be attained by fair strategies in the context of financial market models based
on continuous semimartingales.

Let us close this Section by studying the notion of market completeness, which intuitively
means that all contingent claims can be perfectly replicated by trading in the market. More pre-
cisely, let us give the following Definition.

Definition 4.5.12. The financial market is said to be complete if every contingent claim f such that
E
[
ẐTf

]
<∞ is attainable for S, in the sense of Definition 4.5.5.

The following Theorem represents an extension of the so-called second fundamental theorem
of asset pricing to financial market models based on continuous semimartingales which do not
necessarily satisfy the classical NFLVR condition. Theorem 4.5.13 is essentially a corollary to
Theorem 4.5.6. However, due to its importance, we prefer to state it as a theorem.

Theorem 4.5.13. Suppose that the NUPBR condition holds. Then the financial market is complete,
in the sense of Definition 4.5.12, if and only if there is an unique martingale deflator, i.e. D =

{
Ẑ
}

.

Proof. Due to the equivalence between parts (i) and (iv) of Theorem 4.5.6, the financial market
is obviously complete if D =

{
Ẑ
}

. Conversely, suppose that the financial market is complete.
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Let ξ be a bounded F-measurable random variable and let ξ+, ξ− denote the positive and the
negative part of ξ, respectively. Let us define f± := ξ±/ẐT , so that we have f± ≥ 0 P -a.s. and
E
[
ẐTf

±] = E [ξ±] < ∞. Since the financial market is complete, f± is attainable for S and, due
to the equivalence between parts (i) and (ii) of Theorem 4.5.6, f̄± := ξ± is attainable for S̄. This
implies that there exists a pair

(
x±, H̄±

)
∈ R+ × Āx± such that ξ± = x± +

(
H̄± · S̄

)
T

holds
P -a.s. Furthermore, since ξ± is bounded, (the proof of) Proposition 4.5.9 shows that H̄± · S̄ is a
martingale for all Q ∈ Me

(
P, S̄

)
. In particular, H̄± · S̄ is a P -martingale. Let x := x+ − x−

and H̄ := H̄+ − H̄−. Since L
(
S̄
)

is linear (see e.g. Protter (2005), Theorem IV.16), we have
H̄ ∈ L

(
S̄
)
. Hence, we can write ξ = x +

(
H̄ · S̄

)
T

and H̄ · S̄ is a P -martingale. Let now
N = (Nt)0≤t≤T be a bounded martingale strongly orthogonal to M with N0 = 0. By applying the
previous arguments to ξ := NT , we get the representation N = x + H̄ · S̄, for some H̄ ∈ L

(
S̄
)

such that H̄ · S̄ is a P -martingale. In particular, this implies that N has a continuous version. Thus:

〈N,N〉 = H̄ · 〈S̄, N〉 =
(
H̄λ̄
)
· 〈M,N〉 = 0

where the second equality follows from (4.33), for a suitable R(d+1)×d-valued process λ̄, and the
last is due to the strong orthogonality of M and N . Due to Corollary 1 to Theorem II.27 of Protter
(2005), this implies that N is trivial, meaning that Nt = N0 P -a.s. for all t ∈ [0, T ]. In turn, due
to Corollary III.4.27 of Jacod & Shiryaev (2003), this implies that all local martingales strongly
orthogonal to M are trivial. Due to Proposition 4.3.24, we can conclude that Ẑ is the unique
martingale deflator, i.e. D =

{
Ẑ
}

.

In the special case of an Itô-process-based financial market model, related results have been
recently shown in Fontana & Runggaldier (2011) and Ruf (2011b). See also Corollary 2.1 of
Stricker & Yan (1998), where a similar result is obtained by relying on a generalization of the
optional decomposition theorem.

Remark 4.5.14 (Connections with the benchmark approach). Recall that, as we have pointed
out in Remark 4.5.11, the capability of replicating a given contingent claim by following a fair
trading strategy plays a crucial role in the context of the benchmark approach. Recall that a strategy
H ∈ Aa is said to be fair if the product Ẑ (a+H · S) is a P -martingale. We can now prove the
following fact: if the financial market is complete, in the sense of Definition 4.5.12, then every
contingent claim f with E

[
ẐTf

]
< ∞ can be attained by a fair strategy. In fact, let f be a

contingent claim such that E
[
ẐTf

]
<∞ and suppose that the financial market is complete, so that

there exists a couple (x,H) ∈ R+ × Ax such that f = x + (H · S)T holds P -a.s. and (H · S)T
is maximal in Kx. Theorem 4.5.13 gives that D =

{
Ẑ
}

and, therefore, the equivalence between
parts (i) and (vi) of Proposition 4.5.4 implies that the product Ẑ (x+H · S) is a P -martingale, thus
showing that the hedging strategy H is fair.

The following Proposition can be seen as a generalization of Theorem 5.4 of Delbaen & Schacher-
mayer (1994) to financial market models which do not satisfy the classical NFLVR condition and
gives a sufficient condition for the financial market to be complete, in the sense of Definition
4.5.12. Recall that, as in Remark 4.5.10, the set M

(
P, S̄

)
is the set of the density processes of

all ACLMMs for S̄.
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Proposition 4.5.15. Suppose that the NUPBR condition holds. If we haveM
(
P, S̄

)
=Me

(
P, S̄

)
,

then the financial market is complete.

Proof. Recall that, as soon as the NUPBR condition holds, the Rd+1-valued continuous semimartin-
gale S̄ satisfies the NFLVR condition and, since S̄ is a local P -martingale, we have P ∈Me

(
P, S̄

)
.

Theorem 5.4 of Delbaen & Schachermayer (1994) implies then that Me
(
P, S̄

)
= M

(
P, S̄

)
=

{1}, meaning that P is the only ELMM for S̄. Due to Lemma 4.5.1, this means that there exists no
non-trivial local martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0 and such that
∆N > −1 P -a.s. and E [E (N)T ] = 1. Arguing by contradiction, suppose now that the set D con-
tains more than one element. Due to Proposition 4.3.24, this implies that there exists a non-trivial
local martingale N = (Nt)0≤t≤T strongly orthogonal to M with N0 = 0 and such that ∆N > −1

P -a.s. Let (τn)n∈N be a localizing sequence for E (N), so that E
[
E (N)τn∧T

]
= 1, for all n ∈ N.

Since strong orthogonality is preserved by stopping (see Jacod & Shiryaev (2003), Lemma I.4.13),
the fact that E (N τn) ∈ Me

(
P, S̄

)
= {1} implies that N τn is trivial, for every n ∈ N. Since

τn ↗ T P -a.s. as n → ∞, this implies that N is trivial as well, thus contradicting the assumption
that D contains more than one element. We have thus shown that D =

{
Ẑ
}

. Due to Theorem
4.5.13, this implies that the financial market is complete.

4.6 Conclusions and further developments

In the present Chapter, we have studied no-arbitrage conditions which are weaker than the classical
No Free Lunch with Vanishing Risk (NFLVR) criterion, namely: the No Unbounded Increasing
Profit (NUIP) condition, the No Immediate Arbitrage Opportunity (NIAO) condition and the No
Unbounded Profit with Bounded Risk (NUPBR) condition. In the context of general financial market
models based on continuous semimartingales, we have shown that:

NFLVR ⇒ NUPBR ⇒ NIAO ⇒ NUIP (4.42)

Furthermore, we have shown by means of explicit counterexamples that the converse implica-
tions fail, meaning that each of the NFLVR/NUPBR/NIAO/NUIP no-arbitrage conditions is strictly
stronger than the following one in (4.42), and we have compared the above no-arbitrage conditions
which other related notions which have appeared in the literature. A crucial aspect of the weak
NUIP/NIAO/NUPBR conditions, not shared by the classical NFLVR condition, is represented by
the fact that their validity can be directly checked by looking at the properties of the characteristics
of the discounted price process of the risky assets. By relying on this key observation, we have
shown that the NUIP/NIAO/NUPBR conditions are robust with respect to changes of numéraire,
absolutely continuous changes of the reference probability measure and restrictions/enlargements
of the reference filtration. In contrast, the classical NFLVR condition does not generally possess
these stability properties. Extending the classical results on the replication of contingent claims
to financial market models which do not necessarily satisfy the NFLVR condition, we have also
provided a general characterization of attainable contingent claims by relying on the concept of
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martingale deflator, which can be regarded as a weaker counterpart to the classical notion of den-
sity process of an Equivalent Local Martingale Measure.

Among the possible further developments of the present Chapter, the extension to general (pos-
sibly discontinuous and non-locally bounded) semimartingales appears particularly interesting. As
we have pointed out throughout this Chapter, not all of our results rely on the continuity of the
underlying discounted price process S and, hence, we have already given in the text some hints
at possible generalizations to discontinuous semimartingales. However, the results of Section 4.5
on the attainability of contingent claims rely on the continuity of the process S. In fact, if S is
a general (possibly discontinuous and non-locally bounded) semimartingale, the nice and natural
relations linking the candidate density process Ẑ = E (−λ ·M) of the minimal martingale mea-
sure (see Remark 4.3.15) with the existence of a numéraire V for S such that the V -discounted
price process

(
S
V
, 1
V

)
is a local martingale under the original probability measure P may fail, see

also Becherer (2001), Christensen & Larsen (2007) and Karatzas & Kardaras (2007). Hence, we
expect that the extension of the results of Section 4.5 to general semimartingales requires a more
substantial effort.

Finally, we think that it would also be of interest to apply the rather abstract results of the
present Chapter to specific financial market models. As an example, one could try to apply the
results on the preservation (or, symmetrically, on the failure) of the weak NUIP/NIAO/NUPBR
conditions with respect to restrictions/enlargements of the filtration to financial market models in
which a structure with multiple filtrations naturally arises. Typical instances of such models include
credit risk models and models representing incomplete/partial information situations.

4.7 Appendix

Proof of Theorem 4.4.3

The proof is based on some lengthy but rather simple computations, using integration by parts and
Itô’s formula. Suppose first that the NUIP condition holds for S. Then, due to Theorem 4.3.2,
there exists an Rd-valued predictable process λ = (λt)0≤t≤T such that dA = d〈M,M〉λ, where
A and M denote the finite variation and the local martingale parts, respectively, in the canonical
decomposition S = S0 +A+M of the semimartingale S. Let us start by computing the stochastic
differential of 1

V
(recall that V > 0 P -a.s., due to Definition 4.4.1):

d
1

Vt
= − 1

V 2
t

dVt +
1

V 3
t

d〈V 〉t = − 1

V 2
t

HtdSt +
1

V 3
t

H ′td〈M,M〉tHt

= − 1

V 2
t

HtdMt +
1

V 2
t

H ′td〈M,M〉t
(
Ht

Vt
− λt

) (4.43)

with quadratic variation:

d
〈 1

V

〉
t

=
1

V 4
t

H ′td〈M,M〉tHt (4.44)
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Let us now compute the stochastic differential of the ratio Si/V , for i = 1, . . . , d:

d
Sit
Vt

=
1

Vt
dSit + Sitd

1

Vt
+ d
〈 1

V
, Si
〉
t

=
1

Vt
dSit − Sit

1

V 2
t

HtdMt +
Sit
V 2
t

H ′td〈M,M〉t
(
Ht

Vt
− λt

)
− 1

V 2
t

H ′td〈M,M i〉t

=
1

Vt
dM i

t +
1

Vt
d〈M i,M〉tλt − Sit

1

V 2
t

HtdMt +
Sit
V 2
t

H ′td〈M,M〉t
(
Ht

Vt
− λt

)
− 1

V 2
t

H ′td〈M,M i〉t

=
1

Vt

(
ei − SitHt

Vt

)
dMt +

1

Vt

(
ei − SitHt

Vt

)′
d〈M,M〉t

(
λt −

Ht

Vt

)
(4.45)

where ei denotes the vector in Rd with the i-th component equal to 1 and the remaining components
equal to 0. Let us denote by S̄ = S0 + Ā + M̄ the canonical decomposition of the Rd+1-valued
continuous semimartingale S̄ =

(
S
V
, 1
V

)
. Equations (4.43)-(4.45) imply the following, for all i =

1, . . . , d and t ∈ [0, T ]:

〈M̄ i, M̄d+1〉t = −
∫ t

0

1

V 3
u

(
ei − S̄iuHu

)′
d〈M,M〉uHu

= −
∫ t

0

1

V 3
u

d〈M i,M〉uHu +

∫ t

0

S̄iu
V 3
u

H ′ud〈M,M〉uHu

(4.46)

and similarly, for all i, j = 1, . . . , d and t ∈ [0, T ]:

〈M̄ i, M̄ j〉t =

∫ t

0

1

V 2
u

(
ei − S̄iuHu

)′
d〈M,M〉u

(
ej − S̄juHu

)
=

∫ t

0

1

V 2
u

(
ei − S̄iuHu

)′
d〈M,M j〉u −

∫ t

0

1

V 2
u

(
ei − S̄iuHu

)′
d〈M,M〉uHuS̄

j
u

(4.47)

The finite variation part Ād+1 in the canonical decomposition (4.43) of the process S̄d+1 = 1/V

can be rewritten as follows, for all t ∈ [0, T ]:

Ād+1
t =

∫ t

0

1

V 2
u

H ′ud〈M,M〉u
(
Hu

Vu
− λu

)
=

∫ t

0

Vud〈M̄d+1, M̄d+1〉u +
d∑
j=1

∫ t

0

Vuλ
j
ud〈M̄d+1, M̄ j〉u −

d∑
j=1

∫ t

0

S̄ju
V 2
u

λjuH
′
ud〈M,M〉uHu

=

∫ t

0

Vu

(
1−

d∑
j=1

Sjuλ
j
u

)
d〈M̄d+1, M̄d+1〉u +

d∑
j=1

∫ t

0

Vuλ
j
ud〈M̄d+1, M̄ j〉u

where the first equality follows from (4.43) and the second and third equalities from (4.44) and
(4.46). Similarly, for all i = 1, . . . , d, the finite variation part Āi in the canonical decomposition
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(4.45) of the process S̄i = Si/V can be rewritten as follows, for all t ∈ [0, T ]:

Āit =

∫ t

0

1

Vu

(
ei − S̄iuHu

)′
d〈M,M〉u

(
λu −

Hu

Vu

)
=

d∑
j=1

∫ t

0

Vuλ
j
ud〈M̄ i, M̄ j〉u +

d∑
j=1

∫ t

0

λju
Vu

(
ei − S̄iuHu

)′
d〈M,M〉uHuS̄

j
u

−
∫ t

0

1

V 2
u

(
ei − S̄iuHu

)′
d〈M,M〉uHu

=
d∑
j=1

∫ t

0

Vuλ
j
ud〈M̄ i, M̄ j〉u −

∫ t

0

1

V 2
u

(
ei − S̄iuHu

)′
d〈M,M〉uHu

(
1−

d∑
j=1

Sjuλ
j
u

)

=
d∑
j=1

∫ t

0

Vuλ
j
ud〈M̄ i, M̄ j〉u +

∫ t

0

Vu

(
1−

d∑
j=1

Sjuλ
j
u

)
d〈M̄ i, M̄d+1〉u

where the first equality follows from (4.45) and the subsequent equalities from (4.47) and (4.46).
We have thus shown the following, for all i = 1, . . . , d+ 1 and t ∈ [0, T ]:

Āit =
d+1∑
j=1

∫ t

0

λ̄jud
〈
M̄ i, M̄ j

〉
u

where λ̄jt := Vtλ
j
t , for all j = 1, . . . , d, and λ̄d+1

t := Vt

(
1−

∑d
k=1 S

k
t λ

k
t

)
, for all t ∈ [0, T ].

Theorem 4.3.2 implies then that the NUIP condition holds for S̄ as well, since dĀ� d〈M̄, M̄〉.
Conversely, suppose that S̄ satisfies the NUIP condition. Recall that, as pointed out before

Lemma 4.4.2, if the process V = 1 + H · S is a numéraire for S, then the process 1/V is a
numéraire for S̄ and we have the trivial identity (S, 1) = S̄/ 1

V
. Hence, the converse implication

can be proved similarly as in the first part of the Theorem, interchanging the roles of S and S̄ and of
V and 1/V . However, for the sake of completeness, we prefer to give full details. Recall first that,
due to Theorem 4.3.2, if S̄ satisfies the NUIP condition, there exists an Rd+1-valued predictable
process λ̄ =

(
λ̄t
)

0≤t≤T such that dĀt = d〈M̄, M̄〉tλ̄t, where Ā and M̄ denote the finite variation
and the local martingale part, respectively, in the canonical decomposition of S̄. Observe now the
following:

dVt = d
1

S̄d+1
t

= − 1(
S̄d+1
t

)2dS̄
d+1
t +

1(
S̄d+1
t

)3d〈M̄
d+1, M̄d+1〉t

Then, for all i = 1, . . . , d:

dSit = d
(
VtS̄

i
t

)
= d

S̄it
S̄d+1
t

= S̄itd
1

S̄d+1
t

+
1

S̄d+1
t

dS̄it + d
〈
S̄i,

1

S̄d+1

〉
t

= − S̄it(
S̄d+1
t

)2dS̄
d+1
t +

S̄it(
S̄d+1
t

)3d〈M̄
d+1, M̄d+1〉t +

1

S̄d+1
t

dS̄it −
1(

S̄d+1
t

)2d〈M̄
i, M̄d+1〉t

= − S̄it(
S̄d+1
t

)2dM̄
d+1
t − S̄it(

S̄d+1
t

)2d〈M̄
d+1, M̄〉tλ̄t +

S̄it(
S̄d+1
t

)3d〈M̄
d+1, M̄d+1〉t +

1

S̄d+1
t

dM̄ i
t

+
1

S̄d+1
t

d〈M̄ i, M̄〉tλ̄t −
1(

S̄d+1
t

)2d〈M̄
i, M̄d+1〉t
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This shows that, for all i = 1, . . . , d, the finite variation part Ai in the canonical decomposition of
Si is given by the following expression, for all t ∈ [0, T ]:

Ait =

∫ t

0

1

S̄d+1
u

d〈M̄ i, M̄〉uλ̄u −
∫ t

0

S̄iu(
S̄d+1
u

)2d〈M̄
d+1, M̄〉uλ̄u −

∫ t

0

1(
S̄d+1
u

)2d〈M̄
i, M̄d+1〉u

+

∫ t

0

S̄iu(
S̄d+1
u

)3d〈M̄
d+1, M̄d+1〉u

(4.48)
and the predictable quadratic variation between the martingale parts M i,M j in the canonical de-
compositions of Si, Sj is given by the following expression, for all i, j = 1, . . . , d and t ∈ [0, T ]:

〈M i,M j〉t =

∫ t

0

S̄iu(
S̄d+1
u

)2

S̄ju(
S̄d+1
u

)2d〈M̄
d+1, M̄d+1〉u +

∫ t

0

1(
S̄d+1
u

)2d〈M̄
i, M̄ j〉u

−
∫ t

0

S̄iu(
S̄d+1
u

)3d〈M̄
d+1, M̄ j〉u −

∫ t

0

S̄ju(
S̄d+1
u

)3d〈M̄
d+1, M̄ i〉u

(4.49)

Hence, identifying the common terms between (4.48) and (4.49), we can write (4.48) as follows,
for all i = 1, . . . , d and t ∈ [0, T ]:

Ait =
d∑
j=1

∫ t

0

S̄d+1
u λ̄jud〈M i,M j〉u +

∫ t

0

λ̄d+1
u

S̄d+1
u

d〈M̄ i, M̄d+1〉u −
∫ t

0

S̄iuλ̄
d+1
u(

S̄d+1
u

)2d〈M̄
d+1, M̄d+1〉u

−
∫ t

0

1(
S̄d+1
u

)2d〈M̄
i, M̄d+1〉u +

∫ t

0

S̄iu(
S̄d+1
u

)3d〈M̄
d+1, M̄d+1〉u

−
d∑
j=1

∫ t

0

S̄iuS̄
j
uλ̄

j
u(

S̄d+1
u

)3d〈M̄
d+1, M̄d+1〉u +

d∑
j=1

∫ t

0

S̄juλ̄
j
u(

S̄d+1
u

)2d〈M̄
d+1, M̄ i〉u

=
d∑
j=1

∫ t
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(4.50)
Recall now that, due to equations (4.43) and (4.45):

M̄d+1
t = −

∫ t

0

(
S̄d+1
u

)2
HudMu and M̄ i

t =

∫ t

0

S̄d+1
u

(
ei − S̄iuHu

)
dMu i = 1, . . . , d
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Hence, we can rewrite (4.50) as follows:

Ait =
d∑
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∫ t
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We have thus shown the following, for all i = 1, . . . , d and t ∈ [0, T ]:

Ait =
d∑
j=1

∫ t

0

λjud〈M i,M j〉u where λjt :=
λ̄jt
Vt

+

(
1−

d+1∑
k=1

Skt λ̄
k
t

Vt

)
Hj
t

Vt
, j = 1, . . . , d

We have thus shown that dA � d〈M,M〉. Due to Theorem 4.3.2, this implies that S satisfies the
NUIP condition.

Proof of Corollary 4.4.4

The claim can be shown by direct computations, using equations (4.44), (4.46) and (4.47):
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