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Riassunto 

Fusarium graminearum è un fungo filamentoso conosciuto come principale agente della 

fusariosi della spiga (FHB), una importante malattia che colpisce principalmente cereali 

da granella. Nel frumento il patogeno attacca la spiga in fase di fioritura, causando 

considerevoli  perdite di raccolto e riducendo la qualità delle cariossidi a causa della 

contaminazione da micotossine tricoteceni, prodotte dal fungo durante il processo 

infettivo.  

Diversi studi citologici hanno dimostrato una correlazione tra l’infezione della spiga e la 

produzione da parte di F. graminearum di enzimi degradativi della parete cellulare 

vegetale. I tessuti del frumento, come quelli di altre piante monocotiledoni 

commelinoidi, sono particolarmente ricchi in xilano, il quale può essere idrolizzato dalle 

endo-β-1,4-xilanasi fungine.  

FGSG_03624 è uno dei geni codificanti endo-xilanasi più espressi da F. graminearum in 

spiga di frumento al terzo giorno di infezione, ed è stato espresso eterologamente nel 

lievito Pichia pastoris. La proteina ricombinante ottenuta (22.7 kDa) possedeva attività 

xilanasica e induceva morte cellulare e accumulo di perossido di idrogeno in tessuti di 

frumento quali foglie infiltrate con 10 ng/μl o glume trattate con 20 ng/μl. Questo effetto 

riflette quanto osservato per altre xilanasi fungine di Trichoderma reesei, T. viride and 

Botrytis cinerea, con cui FGSG_03624 condivide uno stretch di aminoacidi riportato in 

letteratura come essenziale per l’elicitazione della risposta necrotica. 

Sono stati ottenuti diversi mutanti con il gene FGSG_03624 deleto, i quali mostravano 

circa il 40% di riduzione dell’attività xilanasica totale rispetto al ceppo wild type se 

cresciuti in una coltura contenente xilano come unica fonte di carbonio. 

Anche se la xilanasi FGSG_03624 è in grado di indurre sintomi simili a quelli osservati 

nella risposta ipersensibile in tessuti di monocotiledone, i mutanti ottenuti dalla 

delezione del gene corrispondente sembravano possedere completa virulenza quando 

inoculati in spighe di frumento tenero delle cultivar Nandu e Bobwhite, probabilmente a 

causa della ridondanza dei geni codificanti xilanasi. Il ruolo della xilanasi FGSG_03624 

durante l’infezione del frumento rimane quindi elusivo. 

Per ottenere informazioni circa l’importanza dell’attività xilanasica prodotta da F. 

graminearum durante l’infezione della pianta ospite, il fattore trascrizionale Xyr1, che 
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regola putativamente l’espressione di diversi geni codificanti per enzimi xilanolitici, è 

stato deleto tramite ricombinazione omologa sito-specifica. 

I mutanti derivati dalla delezione del gene FGSG_17662, codificante Xyr1, sono stati 

cresciuti in coltura liquida con xilano come unica fonte di carbonio e hanno mostrato 

una ridotta capacità di produrre biomassa ed una consistente diminuzione dell’attività 

xilanasica totale rilevata nel mezzo di coltura: in particolare, l’attività xilanasica 

prodotta dai mutanti era solo il 10% dell’attività secreta dal ceppo WT, e il peso secco 

dei mutanti risultava ridotto del 40-70%. 

I mutanti di F. graminearum con gene xyr1 inattivato sono ora disponibili per l’analisi 

trascrizionale in vivo, che consentirà di studiare la regolazione mediata da Xyr1 

dell’espressione di geni codificanti enzimi xilanolitici durante l’infezione della pianta 

ospite. 

I mutanti saranno inoltre caratterizzati per la loro virulenza mediante inoculo di spighe di 

Triticum aestivum. Se la virulenza di questi mutanti sarà dimostrata essere compromessa 

dalla delezione di xyr1, la sovrespressione di inibitori delle xilanasi in pianta potrà 

essere considerata come strumento per il controllo della fusariosi della spiga. 
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Summary 

Fusarium graminearum is the fungal pathogen mainly responsible for Fusarium head blight 

(FHB) of cereal crops, which attacks wheat spikes, reducing crop production and quality 

of grain by producing trichothecene mycotoxins.  

Several cytohistological studies showed that spike infection is associated with the 

production of cell wall degrading enzymes. Wheat tissue, as in other commelinoid 

monocot plants, is particularly rich in xylan which can be hydrolyzed by fungal endo-β-

1,4-xylanase.  

The FGSG_03624 is one of the most expressed xylanase genes in wheat spikes 3 days after 

inoculation and was heterologously expressed in the yeast Pichia pastoris. The 

recombinant protein (22.7 kDa) possessed xylanase activity and induced cell death and 

hydrogen peroxide accumulation in wheat leaves infiltrated with 10 ng/μl or in wheat 

glume surface treated with 20 ng/μl. This effect reflects that observed with other 

described fungal xylanases (from Trichoderma reesei, T. viride and Botrytis cinerea) 

with which the FGSG_03624 protein shares a stretch of amino acids reported as 

essential for elicitation of necrotic responses.  

Several F. graminearum mutants with the FGSG_03624 gene disrupted were obtained, and 

showed about 40% reduction of total xylanase activity in comparison to the wild type 

when grown in culture with xylan as carbon source.  

Even if the FGSG_03624 xylanase is able to induce hypersensitive-like symptoms on a 

monocot plant, FGSG_03624 gene deletion mutants were fully virulent on wheat cvs. 

Bobwhite and Nandu, probably because of xylanase gene redundancy. Therefore the role 

of this xylanase during wheat infection remains elusive. 

To get insight about the importance of xylanase activities produced by the pathogen during 

infection of host plants, Xyr1, a transcriptional regulator factor putatively regulating the 

expression of several xylanase genes has been deleted by targeted homologous 

recombination. 

Deleted mutants of the FGSG_17662 gene, encoding Xyr1, were heavily impaired both in 

total secreted xylanase activity and in fungal biomass formation when grown in liquid 

culture with xylan as sole carbon source. In comparison to WT, the fungal dry weight 

was reduced, by 40% to 70% and the total xylanase activity was reduced by about 90%. 
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F. graminearum Xyr1 deletion mutants are now available to be submitted to expression 

analysis in vivo to verify the Xyr1 mediated regulation of the expression of genes 

encoding for xylanolitic enzymes during plant infection.  

The Xyr1 disrupted mutants will be characterized for their virulence by inoculating 

Triticum aestivum spikes. If these mutants will be verified as impaired in virulence, in 

planta overexpression of xylanase inhibitors may be considered as a new tool to control 

FHB. 

 



11 

 

Introduction 
The filamentous Ascomycete Fusarium graminearum [teleomorph Gibberella zeae 

(Schwein.) Petch] is an ubiquitous plant pathogen (O’Donnell et al., 2004) with a wide 

range of hosts. The fungus is the most common responsible for Fusarium Head Blight 

(FHB), a serious plant disease which affects monocotyledonous plants of huge 

agronomical interest as well wheat, barley and other small grains leading to large 

economic losses (Goswami et al., 2004). However this pathogen can infect 

dicotyledonous plants as Arabidopsis, tobacco, tomato and soybean (Urban et al., 2002). 

FBH reduces production, caryopsis weight and germination, and affects composition in 

carbohydrates and proteins and quality of seeds, which result discolorated, wilted and 

contaminated with trichothecene mycotoxins. 

During wheat grain infection F. graminearum produces several mycotoxins, including 

deoxynivalenol (DON) and derivates, zearalenone, fusarin C and aurofusarin. The limits 

of DON and zearalenone in food and feed are regulate by law in many countries (Trail, 

2009). Zearalenone causes estrogenic effects in animals, including humans. The 

Deoxynevalenol, a potent protein biosynthesis inhibitor, affects the digestive system by 

decreasing intestinal barrier permeability, and the major organ function in animals and 

humans (Trail, 2009; Pinton et al., 2009). DON is the most important contaminant of 

wheat grain and has been shown to be a virulence factor of the fungus, during 

colonization of the spike (Proctor et al., 1995; Bai et al., 2001). 

F. graminearum exhibits an hemibiotrophic behavoir in the Triticum aestivum 

pathosystem(Brown et al., 2010). This fungus enters the host through natural openings 

(Pritsch et al., 2000) or penetrates the epidermal cell walls directly with short infection 

hyphae (Wanyoike et al., 2002) and complex infection structures, such as lobate 

appressoria and infection cushions (Boenisch et al., 2011). Following spikelet 

inoculation, the primary penetration sites of the fungus are mainly the ovary and the 

inner surfaces of the lemma and palea (Wanyoike et al., 2002). Once inside the tissue, 

the fungal hyphae grow inter- and intra-cellularly and spread systemically along the 

rachis.  
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In plant-microbe interactions, the plant cell wall plays several roles: first physical barrier to 

pathogen infection, source of nutrients for invaders, and origin of signaling molecules. 

The plant cell wall is composed of cellulose and matrix material. Cellulose, a β-1,4-

glucan, is one of the most abundant polysaccharides in nature and constitutes the fibrillar 

component of the primary and secondary cell walls. The matrix material is composed of 

pectin, hemicelluloses and structural proteins (Carpita et al., 1993; Kikot et al., 2009). 

Pectin is the main component of the middle lamella and of the primary cell wall of 

dicotyledons and non-graminaceous monocotyledons, but is less abundant in the cell 

walls of grasses (Ridley et al., 2001; Vogel J., 2008). Hemicelluloses are a group of 

complex polymers abundant in primary cell walls and composed of different backbone 

sugars, such as xylose, glucose and mannose.  

To overcome the plant cell wall, F. graminearum, as most fungal pathogens, secretes 

during the pathogenesis a wide array of cell wall-degrading enzymes with different 

substrate specificity, which facilitate the penetration of the pathogens into the host 

(Kang et al., 2000 a and b; Wanyoike et al., 2002). Cytological studies performed with 

enzyme-gold labeling techniques (Wanyoike et al., 2002) showed that during the early 

stages of wheat spike infection F. graminearum secretes xylanase, pectinase and 

cellulase activities, but little is known about the role actually played by these enzymes. 

The role of cell wall degrading enzymes in fungal virulence has been examined by targeted 

gene disruption in dicot and monocot plant pathogens leading to controversial results. 

With regard to xylanolytic enzymes, the deletion of the gene encoding for the Botrytis 

cinerea xylanase Xyn11A caused a moderate reduction of growth on xylan medium but 

a pronounced effect on virulence (Brito et al., 2006). In contrast, the inactivation of 

individual xylanase encoding genes in the cereal pathogens Cochliobolus carbonum, 

Magnaporthe grisea and Fusarium oxysporum did not affect the fungal virulence (Apel 

et al., 1993; Apel-Birkhold and Walton, 1996; Gomez-Gomez et al., 2002; Wu et al., 

2006). Besides, enzymes degrading hemicellulose are suspected to play an important 

role in the pathogenesis of the necrotrophic cereal pathogen Mycosphaerella 

graminicola (Douaier et al., 2007).  

Fungal xylanolytic enzymes, and in particular endo-β-1,4-xylanases, may play an important 

role during plant infection not only by degrading the cell wall xylan but also by inducing 
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necrosis and activating defense responses in the host tissues independently from their 

enzymatic activity, as shown by the products of Xyn11A, Xyn2 and Eix genes of B. 

cinerea, Trichoderma reesei and Trichoderma viride, respectively. 

Recently, a putative transcriptional regulator of genes encoding for xylanolitic enzymes 

(Xyr1) has been identified in the F. graminearum genome (Brunner et al., 2007). 

During my work of thesis I followed two main research lines. Firstly I characterized the 

activity and the role of the FGSG_03624 endo-β-1,4-xylanase during Triticum aestivum  

infection process. Secondly, I produced deletion mutants of the F. graminearum 

encoding for the transcriptional activator of xylanase genes Xyr1, which were 

characterized in vitro and are actually available for the future investigation about the 

involvement of xylanase activity during host plants colonization.  
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Chapter I 
 

Study of Fusarium graminerum endo-β-1,4-xylanase 
genes expression during wheat infection and 

necrotizing activity of the recombinant FGSG_03624 
xylanase 
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1.1 Introduction 

Xylan is a hemicellulosic polysaccharide composed of monomers of D-xylose linked by β-

1,4-bridges, more or less substituted by various groups (Collins et al., 2005; Hatsch et 

al., 2006). Xylan is particularly abundant in the primary cell walls of commelinoid 

monocot plants (Cooper et al., 1988; Vogel et al., 2008), and its complete hydrolysis 

requires the action of several enzymes, among which endo-1,4-β-D-xylanases (EC 

3.2.1.8; further referred to as endoxylanase) randomly cleave the internal glycosidic β-

1,4 bonds in the xylose backbone (Collins et al., 2005; Wong et al., 1988). 

Endoxylanases have been grouped in the glycoside hydrolase families 10 and 11 

corresponding, respectively, to high and low molecular weight xylanases (Baiely et al., 

1997; Collins et al., 2005; Wong et al., 1988). Several endoxylanase encoding genes 

have been identified in the genome of most phytopathogenic microorganisms (Wong et 

al., 1988). Many of these genes are translated and the corresponding enzymes are 

secreted in the infected plant tissues (Wu et al., 1997).  

The contribution of endoxylanase to virulence has been established in the necrotrophic 

pathogen Botrytis cinerea where the Xyn11A gene is required to determine full virulence 

during the infection of tomato leaves and grape berries (Brito et al., 2006). Fungal 

endoxylanases could also induce necrosis and activate defense responses in plants 

independently from their enzymatic activity, as shown by the product of Xyn2 and Eix 

genes of Trichoderma reesei and T. viride, respectively, which induce necrosis and 

defense responses in plants (Baiey et al., 1990; Enkerly et al., 1999; Fuchs et al., 1989; 

Furman-Matarasso et al., 1999). In tomato, a short amino acid stretch (TKLGE) in the 

EIX primary structure is essential for recognition by a LRR receptor-like protein (Ron et 

al., 2004) and for elicitation of defense responses (Rotblat et al., 2002). This short region 

is partially conserved in XYN11A of B. cinerea (TEIGS) and together with the 

successive conserved six amino acids (VTSDGS) is thought to be responsible of the 

necrotizing activity and virulence of this fungus (Noda et al., 2010). 

Fusarium graminearum is thought to penetrate the host tissue through the activity of 

secreted cell wall degrading enzymes (CWDE) such as xylanases, pectinases and 

cellulases (Kang et al., 2000 a and b; Wanyoike et al., 2002); in fact, the fungus has been 

shown to secrete xylanase, pectinase and cellulose activities during the early stages of 
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wheat spike infection (Wanyoike et al., 2002), although little is known about the role 

actually played by these enzymes. 

With regard to xylanolytic enzymes, in silico analysis of the genome of F. graminearum 

(http://mips.helmholtz-muenchen.de/genre/proj/FGDB/ and 

http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/) allowed us 

to identify 10 genes putatively encoding endo-β-1,4-xylanases. 

A transcriptomic analysis of F. graminearum performed in different growing conditions 

demonstrated that six endoxylanase encoding genes (FGSG_03624, FGSG_11487, 

FGSG_06445, FGSG_10999, FGSG_11304 and FGSG_11258) were expressed when 

the fungus was grown on hop plant cell wall (Hatsch et al., 2006). These genes are also 

transcribed during infection of barley (Güldener et al., 2006) and, except for 

FGSG_11258, of wheat spikes (Lyøe et al., 2011). The results obtained in wheat are also 

consistent with a proteomic analysis (Paper et al., 2007).  

Among the F. graminearum endoxylanase genes expressed during wheat infection, the 

FGSG_03624 endoxylanase has been biochemically characterized following 

heterologous expression in Escherichia coli (named XylB) (Beliën et al., 2005; Pollet et 

al., 2009) or purification from cultures of F. graminearum grown on wheat bran (named 

Xyl2) (Dong et al., 2012). In a sequence comparison analysis, we observed that the 

FGSG_03624 possessed a high level of similarity to the fungal xylanases XYN11A, EIX 

and XYN2 reported as necrosis-inducing factors in other plant–fungal interactions 

(Bailey et al., 1990; Enkerli et al., 1999; Fuchs et al., 1989; Furman-Matarasso et al., 

1999; Noda et al., 2010). Since necrosis is a typical symptom of FHB, this observation 

prompted us to investigate the role of the FGSG_03624 xylanase during wheat infection. 

Here we report the transcript accumulation of FGSG_03624 compared to five other 

endoxylanase genes after spike inoculation with F. graminearum. Additionally, we 

tested the necrotizing capacity of FGSG_03624 on wheat tissue, by using this protein 

produced heterologously in Pichia pastoris, and the virulence of F. graminearum mutant 

strains with the FGSG_03624 gene disrupted. 
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1.2 Materials and method 

1.2.1 Fungal strains and culture conditions 

The Fusarium graminearum strain PH1 was cultured at 25 °C on complete medium (CM) 

(Leach et al; 1982) supplemented with 1.5% (w/v) granulated agar (DifcoTM, Becton, 

Dickinson and Company, Sparks, MD, USA) or on potato dextrose agar (PDA; Difco 

Laboratories, Detroit, MI, USA).  

Conidia were obtained by culturing F. graminearum WT and mutant strains in 50 ml of 

carboxymethyl cellulose (CMC) liquid medium (Cappellini et al; 1965) at 25 °C and 100 

rpm.  

Fungal growth was determined on a liquid culture (Szécsi et al; 1990) supplemented with 

0.5% (w/v) larchwood xylan (Sigma-Aldrich, Milano, Italy) as the sole carbon source by 

inoculating 20 ml of medium with 500 conidia ml-1. After 7 days at 25 °C on an orbital 

shaker at 100 rpm the flasks were transferred into 50 ml pre-weighed tubes and 

centrifuged at 8500 x g for 20 min. The mycelium was collected, washed twice with 

deionized water, oven dried at 80 °C for 3 d and weighed. 

Xylanase activity was determined at 4 and 7 dpi on 50 ml cultures inoculated with 1x104 

conidia ml-1 and grown at 25 °C in the xylan medium. Alternatively, 2.5 ml of the 

medium were inoculated with one agar plug (5 mm diameter) taken from the edge of 

actively growing colonies.  

 

1.2.2 Selection of F. graminearum endoxylanase genes and primer 
design for expression analysis 

Six endoxylanase encoding genes previously shown to be transcribed and/or secreted 

during wheat infection (MIPS database entries: FGSG_03624, FGSG_11487, 

FGSG_06445, FGSG_10999, FGSG_11304, FGSG_11258) and the β-tubulin gene 

(MIPS database entry FGSG_06611) as reference gene were selected.  

Primers for cloning the FGSG_03624 gene in Pichia pastoris and for the Real Time 

expression analysis in vitro and in planta were designed by using DNAMAN (Lynnon 

Biosoft) and PerlPrimer v.1.1.17 programs (Table 1).  
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1.2.3 Cloning and expression of the FGSG_03624 xylanase in P. 
pastoris 

The cDNA of the entire coding sequence of the FGSG_03624 gene was obtained from total 

RNA extracted from infected wheat spikelets at 3 dpi by using the reverse specific 

primer 03624Rc (Table 1) and the ImPromII reverse transcriptase (Promega, Milano, 

Italy), following manufacturer’s instructions. The gene was amplified from the obtained 

cDNA with the primers pair 03624Fc/03624Rc by using the “REDTaq ReadyMix PCR 

Reation Mix” (Sigma, Milano, Italy). The PCR was performed by repeating for 35 times 

the following cycle: 1 min at 94 °C; 30 sec at 55 °C; 1 min at 72 °C. 

The amplification product of the expected size (686 bp) was purified using the “Wizard SV 

Gel and PCR Clean-Up System kit” (Promega, Milano, Italy) and was then cloned into 

the pGEM-T Easy vector (Promega, Milano, Italy) following manufacturer’s 

instructions. The cloned cDNA was sequenced in order to check the correctness of the 

nucleotide gene sequence and then amplified with Pfu DNA polymerase (Promega, 

Milano, Italy) by using two specific primers (03624ecorIF/03624xbaIR, Table 1) 

containing adaptors for EcoRI and XbaI recognition sequences. The amplification was 

performed by repeating for 35 times the following cycle: 1 minute at 94 °C, 30 seconds 

at 55 °C, 1 minute at 72 °C. The PCR amplicon, purified as above reported, was ligated 

into the EcoRI and XbaI sites of the pPICZαA expression vector and the ligation mixture 

was then used to transform E. coli competent cells, selected in Low Salt LB medium 

(Invitrogen Life Technologies, Milano, Italy) supplemented with 25 μg/ml zeocin. The 

recombinant plasmid pPICZA/Fg03624 was extracted and purified from one PCR 

positive colony using the “Plasmid Maxi Kit Spin” protocol (EZNA), linearized with 

PmeI, precipitated with 2 volumes of absolute ethanol and 1/10 volume of sodium 

acetate 3 M pH 5.2 and the pellet was resuspended in 20 μl of water. Five μg of the 

linearized plasmid were added to 100 μl of P. pastoris competent cells prepared 

following the “EasySelectTM Pichia expression kit manual” (Invitrogen Life 

Technologies, Milano, Italy). Electroporation  was performed into a pre-cooled sterile 

cuvette (Electroporation Cuvettes Plus™, BTX Harvard Apparatus, USA) by an ECM® 

630 Electro Cell Manipulator (BTX Harvard Apparatus, USA) applying 9.4 msec 

electric pulse at 1500 V and 400 Ω. Transformed cells were plated according to the 
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expression kit manual above reported. Some positive colonies were tested by PCR using 

the specific primers 03624-FOR and 03624-REV (Table 1) and the “REDTaq ReadyMix 

PCR Reaction Mix” (Sigma, Milano, Italy), repeating for 35 times the following cycle: 

30 sec at 94 °C, 30 sec at 53 °C, 1 min at 72 °C. The colonies showing the expected 560 

bp band were grown and induced with methanol according to the Invitrogen Life 

Technologies manual. After 96 h liquid cultures were centrifuged at 10,000g for 10 min 

and supernatants were assayed for xylanase activity and subjected to SDS-PAGE.  

 

1.2.4 SDS-Page anaylsis and xylanse assay 

Forty µl of the P. pastoris culture medium were analyzed by SDS-PAGE according to 

Laemmli (Laemmli et al., 1970) by a Mini Protean II unit (Bio-Rad). The gel was 

stained with Coomassie Brillant Blue R250 (Sigma-Aldrich, Milano, Italy).  

Xylanase activities of F. graminearum and P. pastoris cultures were determined by 

measuring the reducing sugars released from 0.5% (w/v) larchwood xylan (Sigma-

Aldrich, Milano, Italy) dissolved in 50 mM sodium citrate buffer at pH 5 according to 

the dinitrosalicylic acid (DNSA) method described by Miller et al. (Miller et al; 1959) 

and modified by Bailey et al. (Bailey et al., 1992). D-xylose (Merck Chemicals) was 

used as a standard. Xylanase activity of F. graminearum was assayed by incubating 50 

μl of fungal culture in a 200 μl reaction mixture, while xylanase activity secreted by P. 

pastoris was performed by incubating 100 µl of culture filtrates in a 1 ml reaction 

mixture. One unit of xylanase activity was defined as the amount of enzyme required to 

release 1 μmol of xylose in 1 min under the assay conditions. 

 

1.2.5 Purification of the recombinant xylanase 

P. pastoris cultures were centrifuged at 10000xg for 5 min and the supernatant was filtered 

through GFA cellulose acetate membranes (Sartorius) of decreasing pore sizes (0.8, 0.45 

and 0.2 μm), concentrated using the Vivaflow 200 (10,000 MWC PES) system 

(Sartorius) and then diluted and concentrated three times against sodium acetate buffer 

50 mM pH 5.0 to a final volume of 20 mL. The concentrated sample was purified by an 

AKTA system (GE Healthcare, Sweden) equipped with a cation exchange S-Sepharose 
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column (1.6 x 10 cm). Bound protein was eluted with a linear gradient of NaCl 0-0.5 M 

in 20 column volumes. The activity of the fractions were assayed for xylanase activity, 

as above reported. The protein concentration of the most active fractions was determined 

by A280 using BSA as a standard.  

 

1.2.6 In vivo inoculation with the heterologous xylanase 

Ten μl of the culture supernatants of two selected P. pastoris transformed colonies 

producing xylanase (Ppxyl5 and Ppxyl6) were pipetted into wheat (cv. Bobwhite) florets 

between palea and lemma at anthesis. After treatment the spikes were covered for 3 days 

with a plastic bag and plants maintained as described below for fungal infection. The 

development of symptoms was monitored from 3 to 7 days after inoculation and 

compared with those obtained by treating florets with 10 μl of an untransformed P. 

pastoris liquid culture. 

 

1.2.7 Histo-cytochemistry of wheat tissue treated with FGSG_03624 
xylanase 

The second or third emerging leaf from 3-weeks old plantlets were infiltrated with the 

purified FGSG_03624 xylanase diluted at 100 ng/µl or 10 ng/µl in phosphate buffer 

saline (PBS) 0.01 M pH 7.4, or with PBS alone as control, or with xylanase boiled for 20 

or 30 min to destroy its enzymatic activity. The inactivation of the boiled FGSG_03624 

was evaluated by using both the DNSA method and the Nelson-Somogyi assay (NSA) 

with copper and arsenomolybdate reagents, since the DNSA method has been recently 

shown to give 3- to 6-fold overestimations of xylanase activity compared to NSA 

(Gusakov et al., 2011).   

Infiltration was carried out with 100 µL of solution, using a needleless insulin syringe. 

After 24 h, infiltrated tissues were excised and some of them infiltrated overnight with 1 

mg/L 3,3'-diaminobenzidine (DAB)-HCl to detect H2O2 while the others were stained 

with Evans blue to detect cell death, as detailed in Faoro and Iriti (Faoro et al., 2005). In 

some experiments also lemma tissues excised from spikelets were treated with the 

FGSG_03624 xylanase diluted at 20 ng/µl, by pipetting a 10 µl drop onto the surface of 
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a detached lemma and incubating for 24 h in a humid chamber. Staining was performed 

with Evans blue as above reported for detecting dead cells.  

All samples were examined with an Olympus BX50 light microscope (Olympus, Tokyo, 

Japan), equipped with differential interference contrast (DIC) and epi-polarization 

filters. 

 

1.2.7 Nucleic acid extraction 

Genomic DNA from F. graminearum WT and mutant strains was extracted as reported by 

Henrion et al. (Henrion et al., 1994) from 200-400 mg of mycelium recovered from 50 

ml CM liquid culture inoculated with 5 mycelium plugs (5 mm diameter) and grown at 

24 °C for 4 days at 150 rpm on a orbital shaker. 

RNA was extracted from 100 mg of frozen infected wheat spikes or fungal mycelium 

collected after 4 days of liquid culture in a medium containing xylan as the sole carbon 

source by using the “RNeasy Plant Mini Kit” (Qiagen) following the manufacturer’s 

instructions. RNA was then treated with DNaseI (Promega, Milano, Italy) following 

manufacturer’s instructions and quantified both spectrophotometrically and by a 

denaturing gel.  

 

1.2.8 Xylanase genes expression in vitro and in planta 

Reverse transcription was performed by mixing 0.5 μg of an oligo-dT (15/18 thymine) 

reverse primer with about 1 μg of target RNA and by using the ImPromII reverse 

transcriptase (Promega, Milano, Italy), following manufacturer’s instructions.  

The amplification of the xylanase and reference genes was performed by qPCR (Rotor-

Gene Q 2plex, Qiagen GmbH) using specific primers (Table 1). The 20 μl reaction 

mixture contained 10 μl of 2X Brilliant III Ultra-Fast SYBR Green QPCR MasterMix 

(Agilent Technologies), 0.4 μM of each specific primer and 3 μl of cDNA as template. 

The qPCR was performed by repeating 40 times the following cycle: 15 sec at 95 °C; 15 

sec at 56 °C; 40 sec at 72 °C. Relative expression results were analyzed by using the 

Rotor-Gene 2.0.3.2 Software version (Qiagen GmbH). Two independent qPCR 

experiments were performed with different RNA preparations.  
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1.2.9 Construction of the gene replacement vector and fungal 
transformation mediated gene disruption 

To generate the construct for disrupting the F. graminearum FGSG_03624 gene, its 

flanking homologous regions, necessary for targeted homologous recombination, were 

amplified by PCR using F. graminearum genomic DNA as template. Specific 

oligonucleotides were designed to amplify the upstream (primers fg_03624-5UP-for and 

fg_03624-3UP-rev) and downstream (primers fg_03624-5DOWN-for and fg_03624-

3DOWN-rev) flanking regions (Figure 1 and Table 1) of about 800 bp. The 

amplification was performed by using the “REDTaq ReadyMix PCR Reaction Mix” 

(Sigma, Milano, Italy) in a 50 μl volume. PCR conditions were as follows: 94 °C for 3 

min, followed by 35 cycles of 94 °C for 1 min, 54 °C for 30 sec and 72 °C for 1 min. 

The amplicons obtained were purified and used in a second PCR to fuse the homologous 

flanking regions with the hygromycin resistance gene (hygromycin B 

phosphotransferase, hyg), used as selection marker (Punt et al; 1987). The fusion PCR 

reaction was performed with the “REDTaq ReadyMix PCR Reaction Mix” (Sigma, 

Milano, Italy) in a 25 μl volume using 200 ng of the purified flanking regions containing 

tails homologous to the 5’ and 3’ region of the hyg gene (Figure 1) and 400 ng of the hyg 

gene cut with Sma I (Fermentas, Milano, Italy) from pAN7-1 vector (Voigt et al; 2005). 

The fusion PCR conditions were as follows: 94 °C for 4 min, followed by 20 cycles of 

94 °C for 1 min, 56 °C and 72 °C for 4 min. The fusion PCR product was then used as 

template in a nested PCR reaction with the primers Nested-For and Nested-Rev (Table 1 

and Figure 1). Nested PCR conditions were as follows: 94 °C for 4 min, followed by 35 

cycles of  94 °C for 1 min, 56 °C for 30 sec and 72 °C for 4 min. The amplicon obtained 

was cut from agarose gel, purified and then cloned into the pGEM-T easy vector 

(Promega, Milano, Italy) following the manufacturer’s instruction. An E. coli positively 

transformed colony was grown in LB-broth high salt culture (Fluka, BioChemika) and 

the plasmid DNA was extracted with the “MIDI Nucleobond® Ax” (Macherey-Nagel 

GmbH & Co.) kit following manufacturer’s instructions. The construct of 3328 bp was 

then cleaved from the pGEM-T vector by double digestion using BstXI and SfiI 

(Fermentas, Milano, Italy) and used to transform protoplasts of F. graminearum WT 
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strain. Protoplast formation and fungal transformation were performed according to Van 

Nguyen et al. (Nguyen et al., 2012).  

Hygromycin-resistant colonies were collected and transferred to 30-mm CM plates 

supplemented with 250 μg/ml of hygromycin B (Duchefa Biochemie, Haarlem, The 

Netherlands). Resistant mutants were single-conidiated and preliminarily screened by 

PCR using the primer pair fg03624int-For and fg03624-int-Rev (Table 1 and Figure 1). 

Transformants without the FGSG_03624 gene were then tested by Southern blot 

hybridization for single insertion of the disruption construct. 

 

 

Figure 1 – Schematic illustration of the PCR-based construction of the gene replacement vector. 

Flanking homology regions of the F. graminearum FGSG_03624 gene were amplified by PCR 

using specific primers for each gene: primers 1 (fg_03624-5UP-For) and 2 (fg_03624-3UP-Rev) 

were used for the amplification of the upstream region (UP), and primers 3 (fg_03624-5DOWN-

For) and 4 (fg_03624-3DOWN-Rev) for the downstream region (DOWN). UP and DOWN 

amplicons were fused with the hygromycin resistance hph gene by the “Fusion PCR” technique, 

using as primers the tails ( ) of primers 2 and 3, complementary to the 5’ and 3’ hph regions, 

respectively. The fusion PCR product was used as template in a subsequent nested PCR reaction, 

where primers 5 (Nested-For) and 6 (Nested-Rev) were used to obtain the full construct of 3372 

bp. The disruption of the target gene was obtained by homologous recombination via two 

crossing-over events. Primers pairs 7-8 (fg03624int-For and fg03624int-Rev) and 9-10 (Hyg-For 
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and Hyg-Rev) were used to obtain the FGSG_03624 and hph probes for Southern blot analysis, 

respectively. Sites recognized by NsiI, used for DNA digestion, are also indicated.  

 

1.2.10 Southern blot analysis 

Genomic DNA samples of 5-7 μg were digested with NsiI (Fermentas, Milano, Italy), 

separated on a 1% (w/v) agarose/TBE gel and blotted onto a Hybond NX membrane 

(Amersham Biosciences, Italy). Digoxygenin (DIG)-labeled (Roche, Mannheim, 

Germany) specific probes were generated with primers specific for the FGSG_03624 or 

hyg genes (Table 1 and Figure 1) by using genomic or plasmid DNA as template, and 

were used for overnight hybridization at 65 °C. The PCR reaction, performed in a 50 μl 

volume using DIG-11-dUTP (Roche, Mannheim, Germany), consisted of 5 min at 94 

°C, followed by 35 cycles of 94 °C for 1 min, 55 °C for 1 min and 72 °C for 2 min.  

Southern Blot hybridization and detection of the DIG-labeled probes were performed 

according to manufacturer’s instruction. Membranes were exposed to X-ray film (X-

Omat AR, Kodak, Rochester, NY, USA) for approximately 3 hours.  

 

1.2.11 Growth and infection of wheat plants 

Wheat seeds (Triticum aestivum L., cv. Bobwhite and cv. Nandu) were surface-sterilized 

with sodium hypochlorite (0.5% v/v) for 10 min and incubated for 3 days in the dark on 

wet filter paper for germination. Seedlings were vernalized at 4 °C for 7-10 days before 

transplanting in soil. Plants were grown in a climatic chamber with a 14 h photoperiod 

and a 19/17 °C day/night temperature for approximately 1 month, and with a 14 h 

photoperiod and 22/20 °C day/night temperature until anthesis for an additional month.  

Wheat spikes were inoculated at anthesis (Zadocks stage 65-67) (Zadocks et al., 1974) with 

F. graminearum WT or mutant strains by dropping 10 µl of a fresh conidial suspension 

(approximately 2,000 conidia for cv. Bobwhite infections and 500 conidia for cv. Nandu 

infections) between the bracts of two florets of two opposite spikelets. After inoculation, 

spikes were covered for 3 dpi with a plastic bag to maintain a moist environment. Plants 

were then moved into a growth chamber with 85% relative humidity under a 16 h 

photoperiod and at a 22/20 °C day/night temperature.  
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For RNA extraction, wheat spikelets infected with the F. graminearum WT and mutant 

strains were collected 3 and 5 dpi. Symptom development on inoculated spikes was 

monitored up to 3 weeks post-inoculation. Data were statistically analyzed by applying 

the two-tailed Student’s test. 
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Table1 – List of used primers.  

Primer name Sequence (5’-3’) 

Primers for cloning the FGSG_03624 gene in Pichia pastoris 

03624Fc ATGGTCTCCTTCACCTACCT 

03624Rc TTATCCAGAGACAGTCATGGT 

03624ecorIF ATGCAGAATTCGCTCCCAACCCTACCA 

03624xbaIR ATGCATCTAGATTATCCAGAGACAGTCATGGTA 

FG03624-FOR CCTACAACTGGTGTCAACAAT 

FG03624-REV CAGAGACAGTCATGGTAGCC 

Primers for qPCR expression analysis  
03624RTfor GTCTCCTTCACCTACCTTCTC 

03624RTrev TCCATCCCTTACCACCGA 

06445RTfor GGTGGCTAATGGTAACTGGA 

06445RTrev AGGTTGTAGTCGTTGTAGTAGAG 

10999RTfor GTCTCGTTCAAATCCCTTCTC 

10999RTrev TTCCACCGACAAAGTTACCA 

11258RTfor GTTTCTGACAAGACACCTCC 

11258RTrev TTTGTGCCAAGCCAATCC 

11304RTfor CAAGTGGGTTTCTCAGGGT 

11304RTrev CAATGTCAAGCTCGGTAATGG 

11487RTfor GATTACAGCATTGACGACCC 

11487RTrev GCAACCTCCTTTACACCAG 

BetatubF1 ACTTCCGTCTGTTCCGTG 

BetatubR1 TTCCATCTCGTCCATACCCT 

Primers to produce the disruption construct 

fg_03624-5UP-For GAGAGCGGTCAGACTCTCAG 

fg_03624-3UP-Rev AGATGCCGACCGAACAAGAGCTGTCCCCCTTGGACTTGTTGGCGATAAT 

fg_03624-5DOWN-For TCAATGCTACATCACCCACCTCGCTCCCCCAATAAAGACGGCTCAGTCCA 

fg_03624-3DOWN-Rev ACAGTTTCGTGCTTGCCTAC 

Nested-For GTGCGACCTTTCGGTTATTA 

Nested-Rev TACATGGAGATGGTGGTTCG 

Primers for preliminary screening of ΔXyl mutants and for DIG-labeled probes 

fg03624int-For CCTACAACTGGTGTCAACAAT 
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fg03624int-Rev CAGAGACAGTCATGGTAGCC 
Hyg-For CTCGATGAGCTGATGCTTTG 
Hyg-Rev GGACAGCTCTTGTTCGGTCGG 
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1.3 Results 

1.3.1 Sequence comparison and expression analysis of Fusarium 
graminearum xylanase genes 

Sequence comparison between F. graminearum xylanases and the B. cinerea XYN11A, T. 

reesei XYN2 and T. viride EIX xylanases (known as necrosis-inducing factors) showed 

that FGSG_03624 possessed the highest sequence similarity (Figure 2) and seven of 11 

conserved amino acids regarded as essential for eliciting necrosis in plant tissues (Noda 

et al., 2010). 

Relative expression level of FGSG_03624 was determined by qPCR in comparison with 

five other selected xylanase genes both in vitro and during F. graminearum wheat spike 

infection.  

After 4 days of culture in a liquid medium containing xylan as sole carbon source, the most 

expressed gene was FGSG_10999; in particular, this gene was about 2.6 folds more 

expressed than the reference gene β-tubulin (set to 1) (Figure 3). The other xylanase 

genes were expressed at levels comprised between 0.1 and 0.5 folds that of the β-tubulin 

(Figure 3).  

At 3 days post inoculation (dpi), FGSG_03624 showed the strongest expression together 

with FGSG_10999. The transcript level of these two genes was similar to that of the β-

tubulin reference gene (set to 1), while those of the other four genes ranged between 0.2-

fold (FGSG_11487, FGSG_11304 and FGSG_11258) and 0.4-fold (FGSG_06445) 

(Figure 4A). At 5 dpi, transcript accumulation declined for all xylanase genes except 

FGSG_11487. However, FGSG_03624 was still the most expressed one (0.3-fold) 

together with FGSG_11487, which showed steady expression (Figure 4B).  
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Figure 2. –Amino acidic alignment of the sequence deduced from the F. graminearum 

FGSG_03624 gene with the sequences of B. cinerea XYN11A (Noda et al., 2010), T. reesei 

XYN2 (Enkerli et al., 1999) and T. viride EIX (Furman-Matarasso et al., 1999) endoxylanases. 

Red box indicates the amino acid region putatively involved in the induction of necrosis (Noda 

et al., 2010). Green, blue and yellow backgrounds indicate respectively 100%, 75% and 50% 

sequence similarity.  
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Figure 3 – Relative expression level of six selected F. graminearum xylanase genes after 4 days of 

liquid culture in a medium containing xylan as the sole carbon source. qPCR was performed 

with Rotor-Gene Q 2plex (Qiagen GmbH). Each transcript was normalized with the F. 

graminearum β-tubulin gene as reference (set to 1) and the relative expression was analyzed by 

using the Rotor-Gene 2.0.3.2 Software version (Qiagen). Data represent the average ± mean 

standard error (indicated by bars) of the relative expression of two independent qPCR 

experiments. 
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Figure 4 – Relative expression level of six selected F. graminearum xylanase genes during wheat 

spike infection. qPCR was performed with Rotor-Gene Q 2plex (Qiagen GmbH). Each transcript 

was normalized with the F. graminearum β-tubulin gene as reference (set to 1) and the relative 

expression was analyzed by using the Rotor-Gene 2.0.3.2 Software version (Qiagen). Data 

represent the average ± mean standard error (indicated by bars) of the relative expression of two 

independent qPCR experiments. Relative expression at (A) 3 dpi and (B) 5 dpi.  
 

 

 

 



34 

 

1.3.2 Heterologous expression of the FGSG_03624 xylanase in P. 
pastoris 

The mature coding region of the FGSG_03624 xylanase gene was cloned into the pPICZαA 

vector to obtain the pPICZαA/Fg03624 plasmid which was used to transform P. pastoris 

cells. Twenty transformed colonies were obtained, and 7 of them were tested by PCR for 

the integration of the construct into the genome of P. pastoris: the expected 560-bp 

amplicon was present in all selected colonies (data not shown). The presence of the 

recombinant protein in the secretome of P. pastoris was verified by subjecting to SDS-

PAGE analysis aliquots of culture broths of four colonies (Ppxyl1, Ppxyl2, Ppxyl5 and 

Ppxyl6) grown for 96 h in presence of methanol. A band of the expected size 

corresponding to a protein with a molecular mass of approximately 22.7 kDa was 

particularly expressed by the Ppxyl5 and Ppxyl6 colonies (Figure 5). There was a second 

faint band of about 25 kDa, possibly corresponding to a glycosylated form of 

FGSG_03624, which possesses four putative O-glycosylation and two N-glycosylation 

sites in its sequence (predicted by NetNGlyc 1.0 and NetOGlyc 3.1 programs, available 

online at http://www.cbs.dtu.dk/services/). 

Ppxyl5 and Ppxyl6 cultures showed high xylanase activities (data not shown) and the 

culture filtrate of Ppxyl6 was used to purify the recombinant enzyme by cation exchange 

chromatography (S-sepharose). Bound protein eluted in a single peak with xylanase 

activity (data not shown).  
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Figure 5. – SDS-PAGE analysis of the secretome of a WT (lane 1) and four P. pastoris colonies 

(Ppxyl1, Ppxyl2, Ppxyl5 and Ppxyl6, lanes 2–5, respectively) transformed to express the F. 

graminearum FGSG_03624 xylanase. Forty µl of P. pastoris cultures induced with methanol for 

96 h were loaded on a 12% polyacrylamide gel then stained with Coomassie Brillant Blue R250. 

M: molecular weight standards (Low Range; Bio-Rad Laboratories); molecular masses are 

shown on the right. 

 

1.3.3 Effects of treatments with the heterologous xylanase on wheat 
tissues 

An aliquot of Ppxyl5 and Ppxyl6 cultures, containing the xylanase of interest, was used to 

perform a preliminary treatment of wheat spikelets (Triticum aestivum cv. Bobwhite). 

After 5–7 dpi, lemmas of spikelets treated with culture supernatants showed necrotic 

symptoms, while no symptoms appeared on spikelets treated with the culture 

supernatant of an untransformed P. pastoris colony (data not shown). 

To investigate the possible necrotizing activity of FGSG_03624, both wheat leaves and 

spikes (cv. Bobwhite) were treated with the purified xylanase. Infiltration of young 

wheat leaves with a solution containing 100 ng/µl of purified FGSG_03624 caused the 

formation of chlorotic lesions due to extensive death of mesophyll cells within 24 h, as 

revealed by Evans blue staining (Figure 6A). DAB staining showed the elicitation of 

large hydrogen peroxide (H2O2) deposits in treated tissues (Figure 6B). Since the above 

xylanase concentration was so destructive, infiltration experiments were carried out with 

a more diluted enzyme (10 ng/µl), obtaining similar results both in terms of cell death 
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and H2O2 induction (Figure 7A and B). To verify whether the induction of H2O2 and cell 

death were related to enzymatic activity, leaves were infiltrated with FGSG_03624 (10 

ng/µl) boiled for 20 min. The boiled enzyme produced microscopic symptoms similar to 

those obtained with non-boiled xylanase, with numerous dead mesophyll cells 

corresponding with large H2O2 deposits (Fig. 7C and D). However, neither macroscopic 

nor microscopic alterations were present in leaves infiltrated with buffer only (Fig. 7E 

and F). Since a residual minimal enzymatic activity (about 10% of the initial activity) 

was measured after boiling the xylanase for 20 min, we tested the retained capability of 

inducing cell death also in spikelets, which are the preferred penetration sites of F. 

graminearum (Yang et al; 2012), by boiling the FGSG_03624 xylanase for 30 min; after 

this treatment no residual enzymatic activity was detected. In this case a 10-µl drop of 

xylanase either boiled or not and diluted to 20 ng/µl was laid between lemma and palea 

for 24 h. Evans blue staining of lemma showed extensive cell death in both cases (Fig. 

8A and B), while control spikelets treated with buffer appeared unaltered (Fig. 8C). 

Interestingly, and as in infiltrated leaves, dead cells were those of the tissues underneath 

the epidermis, both in boiled and non-boiled xylanase treatments. 

 

 

Figure 6 – Wheat leaf tissues infiltrated with 100 ng/µl of FGSG_03624 xylanase and stained after 

24 h with Evans blue (A) or DAB (B); insets are enlargements of the corresponding framed 

areas. (A) The mesophyll tissue, but not the epidermis, shows numerous dead cells (stained blue) 

in the infiltrated area; the intensity of staining indicates different degrees of cell membrane 

degradation and/or different stages of cell death. (B) Extensive H2O2 deposits revealed by 

brownish DAB staining are co-localized with dead and neighboring cells shown in (A); all bars 

= 200 µm; bars in the insets = 100 µm.  
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Figure 7 – Wheat leaf tissues infiltrated with 10 ng/µl of FGSG_03624 xylanase (A, B) or with the 

same amount of xylanase boiled for 20 min (C, D), or with buffer as control (E, F) and stained 

after 24 h with Evans blue (A, C, E) or DAB (B, D, F); insets are enlargements of the 

corresponding framed areas; arrows indicate stomata. Numerous dead cells (stained blue) are 

present in the mesophyll tissue infiltrated with both non boiled (A) and boiled (C) xylanase, but 

not in the tissue infiltrated with buffer only (E); the intensity of staining indicates different 

degrees of cell membrane degradation and/or different stages of cell death; extensive H2O2 

deposits, revealed by brownish DAB staining are co-localized with dead and neighboring cells in 

both cases (B, D), but not in buffer infiltrated tissue (F); all bars = 200 µm; bars in the insets = 

50 µm.  
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Figure 8 – Glume tissues of wheat spikelets 

treated with 20 ng/µl of FGSG_03624 

xylanase (A) or with the same amount of 

xylanase boiled for 30 min (B) or with 

buffer as control (C) and stained after 24 h 

with Evans blue. All mesophyll cells 

under the areas treated with both non-

boiled (A) and boiled (B) xylanase are 

dead (stained in blue), while those treated 

with buffer only appear unaltered (C); all 

bars = 500 µm; bars in the insets = 50 µm. 

1.3.4 Targeted knock-out of the FGSG_03624 xylanase encoding gene 

The F. graminearum wild type (WT) protoplasts were transformed with a construct 

containing the hygromycin resistance gene in order to replace the FGSG_03624 gene. 

Among the 30 hygromycin resistant regenerated colonies, 24 transformants were single-

conidiated and checked by PCR for the presence/absence of the 617-bp internal 

fragment of the FGSG_03624 gene. Three PCR negative mutants (ΔXyl5.1, ΔXyl11 and 

ΔXyl5.2, Figure 9) were further analyzed by high-stringency Southern blot using the 

FGSG_03624 and Hyg specific probes.  
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Figure 9 – PCR selection of F. graminearum FGSG_03624 gene disruption mutants. Transformed 

fungal colonies resistant to hygromycin were screened by PCR using the primer pair fg03624int-

For and fg03624-int-Rev. The 617 bp internal fragment of the FGSG_03624 gene was amplified 

in WT (lane 6), ΔXyl6 (lane 2) and ΔXyl20 (lane 4) strains, but not in the mutant strains 

ΔXyl5.1 (lane 1), ΔXyl11 (lane 3) and ΔXyl5.2 (lane 5). A negative control was loaded on lane 

7. M: molecular size markers (GeneRuler DNA Ladder Mix, Fermentas, Milano, Italy) are 

shown on the left.  
 

Hybridization results showed a single homologous integration of the hygromycin resistance 

gene and the disruption of the gene of interest (Figure 10A and B). 
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Figure 10 – High-stringency Southern blot analysis of genomic DNA from F. graminearum WT 

and mutant strains digested with NsiI (Promega, Milano, Italy). (A) A fragment of the 

FGSG_03624 gene was used as specific probe. The WT strain (lane 1) and the ∆Xyl6 (lane 3) 

and ∆Xyl20 (lane 5) mutant strains showed an hybridization signal of 2.2 kb corresponding to 

the FGSG_03624 gene, while the ∆Xyl5.1 (lane 2), ∆Xyl11 (lane 4) and ∆Xyl5.2 (lane 6) 

mutant strains did not show this hybridization signal. A second hybridization signal of about 3.6 

kb was also evident in all the WT and mutant strains; this band was due to the cross-

hybridization of the FGSG_03624 probe with the FGSG_10999 xylanase gene, which shows 

70% nucleotide similarity with the FGSG_03624 probe. (B) A fragment of the Hyg resistance 

gene was used as probe. All the ∆Xyl mutant strains (∆Xyl5.1, ∆Xyl6, ∆Xyl11, ∆Xyl20 and 

∆Xyl5.2, lanes 1-5, respectively) showed a single hybridization signal at 2.9 kb; the WT strain 

gave no hybridization signal (data not shown). M: molecular size marker (Dig Marker VII, 

Fermentas, Milano, Italy). 

 

1.3.5 Characterization of the FGSG_03624 knock-out  mutant strains in 
culture and during wheat infection 

Total xylanase activity secreted by the ΔXyl5.1, ΔXyl11 and ΔXyl5.2 mutant strains in 

Szécsi liquid culture containing xylan as sole carbon source was measured at 4 and 7 

dpi. At 4 dpi the xylanase activity of all three mutant strains was significantly reduced 

by about 40% compared to WT (Figure 11), without significant differences among the 

mutant strains. This difference was confirmed at 7 dpi (data not shown). 
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Figure 11 – Total xylanase activity secreted by WT and ΔXyl mutant strains. Fifty µl of culture 

filtrates, collected after 4 d of liquid culture in Szécsi medium with xylan as carbon source, were 

incubated in 1 ml of reaction mixture containing 0.5% (w/v) larchwood xylan. Xylanase activity, 

measured with the DNSA method, was expressed as xylanase units/ml of culture filtrate. One 

xylanase unit was defined as the amount of enzyme required to release 1 μmol of xylose in 1 min 

under the assay conditions. Data represent the average ± mean standard error (indicated by bars) 

of four independent experiments. Treatments were statistically different (p<0.05, F = 5.655) by 

applying randomized complete blocks ANOVA. Different letters (a, b) indicate significant 

differences at p<0.05 (Student–Newman–Keuls test).  

 

The dry weight of WT and of the three mutant strains show no significant differences after 

7 d of growth in a liquid culture containing xylan as sole carbon source (Figure 12). 
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Figure 12 – Dry weight of WT and FGSG_03624 knock-out mutant strains grown for 7 days in a 

liquid culture containing xylan as the sole carbon source. 1x104 conidia ml-1 of F. graminearum 

WT and mutant strains were grown in 20 ml of Szècsi liquid medium supplemented with 0.5% 

(w/v) larchwood xylan at 100 rpm and 25 °C. After 7 days mycelia were collected, filtered, 

washed twice with sterile water, oven dried at 80 °C for 3 days and then weighed. Dry weights 

are expressed in milligrams (mg). Data represent the average ± standard deviation (indicated by 

bars) of three flasks per strain and were not statistically different by applying the completely 

randomized ANOVA and using the Student-Newman-Keuls test at p<0.05.  
 

Infection experiments on wheat spikes (T. aestivum cvs. Nandu and Bobwhite) were 

performed at anthesis with a spore suspension of the three mutant and WT strains. 

Spikelets were point-inoculated and symptoms were assessed 21 dpi. All three knock-

out mutants maintained the capability to infect wheat spikes and there were no 

significant reductions in symptoms between WT and mutants strains (Fig. 13A and B). 
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Figure. 13 – Wheat spikelet infection with F. graminearum WT and ΔXyl mutant strains. Disease 

symptoms were assessed at 21 dpi by counting the number of visually diseased spikelets. 

Infected spikelets are expressed as percent of symptomatic spikelets on total number of spikelets 

of the respective head. (A) Infection of T. aestivum cv. Bobwhite. Data represent the average ± 

mean standard error (indicated by bars) of three independent infection experiments performed by 

inoculating at least 10 plants with 2000 conidia in each independent experiment. Probability (p) 

of no significant difference between WT and mutant strains, as determined by the two-tailed 

Student’s t-test: ΔXyl5.1 (p>0.08); ΔXyl5.2 (p>0.39); ΔXyl11 (p>0.42). (B) Infection of T. 

aestivum cv. Nandu. Data represent the average ± mean standard error (indicated by bars) of two 

independent infection experiments performed by inoculating with 500 conidia at least 10 plants 

in each independent experiment. Probability (p) of no significant difference between WT and 

mutant strains, as determined by the two-tailed Student’s t-test: ΔXyl5.1 (p>0.87); ΔXyl5.2 

(p>0.92); ΔXyl11 (p>0.36). 
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1.4 Discussion 

Xylan is one of the main hemicellulosic components of the plant cell wall, especially 

abundant in tissues of commeniloid monocot species such as wheat (Cooper et al., 1988; 

Vogel et al., 2008). Complete hydrolysis of xylan requires the activity of endoxylanases, 

which randomly cleave the internal glycosidic β-1,4-bonds of the xylose backbone 

(Collins et al., 2005; Wong et al., 1988). Among the six endoxylanase genes known to 

be expressed during infection, the transcript of FGSG_03624 strongly accumulates 

within the first 5 dpi, with a maximum accumulation at 3 dpi, when the FGSG_03624 

transcript accumulates about 3–5 times more than the other xylanase genes, except for 

FGSG_10999 which shows a similar maximum accumulation and is also the most 

expressed gene during in vitro growth in a medium containing xylan as sole carbon 

source. 

In addition to expression level, the FGSG_03624 gene also attracted our attention because 

its encoded protein shares high sequence similarity with B. cinerea XYN11A, T. reesei 

XYN2 and T. viride EIX endoxylanases shown to induce necrosis in plant tissues 

(Enkerli et al., 1999; Furman-Matarasso et al., 1999; Noda et al., 2010). In particular, 

FGSG_03624 contained seven of 11 amino acids regarded as essential for eliciting 

necrosis in plant tissues (Noda et al., 2010). 

The FGSG_03624 protein, heterologously expressed in P. pastoris, has a molecular mass of 

22.7 kDa, possesses xylanase activity in vitro and induces necrotic symptoms in wheat 

tissue. Dead cells were revealed by microscopic observations after Evans blue staining 

in both infiltrated wheat leaves and treated lemmas. In lemma, a tissue rich in 

arabinoxylans (Dong et al., 2012), the presence of dead cells in the tissues underneath 

the epidermis suggests that the penetration of the xylanase occurred through stomatal 

openings. Cell death was associated with the production of high levels of H2O2, as a 

consequence of a robust oxidative burst, and these effects were also maintained after 

heat inactivation of enzyme activity. Thus, it can be assumed that cell death elicitation is 

independent of the enzyme’s catalytic activity, as previously shown for the xylanases of 

B. cinerea, T. viride and T. reesei (Enkerli et al., 1999; Furman-Matarasso et al., 1999; 

Noda et al., 2010). Moreover, of this fungus, could depend on specific recognition by a 

plant receptor. In fact, the relative independence of cell death elicitation from treatments 
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with different xylanase concentrations suggests that the necrotic process is due to the 

induction of the hypersensitive-like response rather than to tissue maceration. The ability 

of this F. graminearum xylanase to elicit cell death in wheat tissues, which is consistent 

with the necrotrophic lifestyle Ron and Avni (Ron et al., 2004) identified a leucine-rich 

repeat receptor in tobacco and tomato plants which was able to specifically recognize the 

EIX xylanase of T. viride and to induce programmed cell death with H2O2 production. 

Therefore FGSG_03624 would not have a direct toxic effect but could be recognized by 

a putative plant receptor, not yet identified in wheat, thus activating the hypersensitive 

response. To our knowledge, this is the first finding of a xylanase inducing necrosis in a 

monocot species, thus suggesting a wider role of these fungal enzymes, involved not 

only in cell wall degradation but also in elicitation of cell death.  

Forward and reverse genetic approaches have been used to identify pathogenicity or 

virulence genes in F. graminearum. Most of the mutations affecting the infection 

process have targeted regulatory genes with pleiotropic effects on toxin biosynthesis and 

fungal development (Kazan et al., 2012). So far, genes predicted to encode CWDE have 

not been analyzed by a reverse genetic approach, probably because the large number of 

genes encoding CWDE in the genome of F. graminearum (Cuomo et al., 2007) 

discouraged using this approach to investigate the role of these enzymes during the 

infection process. In fact, the knock-out of the F. graminearum FGSG_03624 gene 

demonstrated that the mutant strains were not significantly reduced in virulence 

compared to the WT strain, although when grown in a liquid medium containing xylan 

as the sole carbon source they showed about 40% reduction of the total xylanase activity 

compared to WT.  

Although FGSG_03624 contributes significantly to total xylanase activity and induces 

necrosis in the infected tissue, its role in pathogenicity appears dispensable. These data 

are in contrast with those obtained with B. cinerea infecting tomato and grape berries, 

where the XYN11A xylanase contributes only 30% of total activity but is an important 

virulence factor (Brito et al., 2006; Noda et al., 2010). Therefore the role of 

FGSG_03624 during wheat infection remains elusive, as observed with endo-xylanases 

of Cochliobolus carbonum (Apel-Birkhold et al., 1996), F. oxysporum (Gómez-Gómez 

et al., 2002) and Magnaporthe grisea (Wu et al., 2006) and with other fungal necrotizing 
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factors like NLP (Nep1-like proteins), detected in B. cinerea, F. oxysporum f.sp. 

erythroxyli and Mycosphaerella graminicola (Arenas et al., 2010; Bailey et al., 2002; 

Motteram et al., 2009). In conclusion, we demonstrated that F. graminearum endo-

xylanase genes were differently expressed during wheat spike infection, with the 

FGSG_03624 transcript accumulating strongly. Additionally, the xylanase encoded by 

this gene caused necrosis of wheat tissue, probably through the induction of 

hypersensitive response (HR), but appears dispensable in pathogenicity. 
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Chapter II 
 

Gene disruption approch to investigate the role of 
Fusarium graminearum Xyr1 transcriptional regulator 

during host infection 
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2.1 Introduction 

As shown in the previous chapter, the deletion of the endo-β-1,4-xylanase gene 

FGSG_03624 did not affect the virulence of F. graminearum. This finding is similar to 

those obtained by gene disruption of a single xylanase encoding gene in the cereal 

pathogens Cochliobolus carbonum, Magnaporthe grisea and Fusarium oxysporum (Apel 

et al., 1993; Apel-Birkhold and Walton, 1996; Gomez-Gomez et al., 2002; Wu et al., 

2006). Therefore, in these fungi either the endo-β-1,4-xylanase activity has a dispensable 

role during plant infection or the contribution to total activity by other fungal xylanases 

is sufficient to support the fungal infection. In order to answer these questions and 

because of the redundancy of xylanase genes in the F. graminearum genome, two main 

strategies can be used: the simultaneous silencing of all the xylanase genes (Nguyen et 

al., 2011), or the knocking-out of components of the signal transduction pathway 

(Tonukari et al., 2000), including the elimination of specific transcriptional activators.  

In some Ascomycetes a single transcriptional activator with a zinc binuclear cluster domain 

regulates the expression of several xylanolytic, cellulolytic and glucanolytic genes, 

suggesting a general role as regulator of the cellulose and hemicelluloses degradation 

and metabolism (Calero-Nieto et al., 2007; de Vries and Visser, 1999; Gielkens et al., 

1999; Raucher et al., 2006; Striecker et al., 2006; van Pije et al., 1998a). 

The XlnR factor was identified as the major transcriptional activator of xylanase genes in 

the saprophytic fungus Aspergillus niger (van Peij et al., 1998a and b). Its deletion 

blocked the expression of ten hydrolytic enzymes normally transcribed in the WT strain 

grown on xylan or xylose containing media. The sequence GGCTAA is recognized as 

the putative binding motif for XlnR, and is located at the 5’ regulatory sequence of the 

affected genes. The role of XlnR orthologues have been investigated in other fungi. 

AoXlnR of Aspergillus oryzae, the homologue of XlnR, seems to be responsible for the 

expression of four xylanolytic and four cellulolytic enzymes when the fungus is grown 

on xylan, xylose, microcrystalline cellulose and cellobiose. These genes contains one to 

three putative binding site for AoXlnR (Marui et al., 2002a and b). The regulatory gene 

xyr1 of Trichoderma reesei is essential for the production of xylanase, cellobiohydrolase 

and glucanase activity and this homologous of xlnR affects also the D-xylose catabolism 

by regulating the transcription of xyrR gene encoding for the intracellular enzyme D-



50 

 

xilose reductase, as observed also in A. niger and Hypocrea jecorina (Hasper et al., 

2000; Stricker et al., 2006). The role of the transcriptional activator XlnR of Fusarium 

oxysporum f. sp. lycopersici in regulating xylanase genes and virulence has been 

investigated by Calero-Nieto et al. (2007). They generated ΔxlnR disrupted mutants as 

well as strains carrying a xlnR allele under the control of a strong constitutive promoter. 

In this vascular wilt pathogen, xlnR transcription is induced by oat spelt xylan and 

repressed by glucose. The knock-out of xlnR resulted in lack of expression of xylanase 

genes, both in culture and during infection of tomato plants, as well as in dramatically 

reduced extracellular xylanase activity. When xlnR was over-expressed under the control 

of the gpdA promoter, the xylanase activity did not significantly increased, suggesting 

that XlnR should be regulated not only at transcriptional but also at post-traslational 

level. Interestingly, the ΔxlnR mutants were still fully virulent on tomato plants, defining 

the major transcriptional activator of xylanase genes as not essential for virulence in F. 

oxysporum under tested conditions. 

A putative transcriptional regulator of endo-xylanase genes, named Xyr1, has been 

identified in the F. graminearum genome (Brunner et al., 2007). While in the MIPS 

database (http://mips.helmholtz-muenchen.de/genre/proj/FGDB/) xyr1 is identified as a 

single gene/protein (MIPS entry FGSG_17662), in the Broad Institute database 

http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/) xyr1 is 

splitted in two hypothetical proteins (entries FGSG_12713 and FGSG_12714), with 

FGSG_12714 being the N-terminus of the putative regulator and FGSG_12713 forming 

the C-terminal end of the protein (Brunner et al., 2007). 

The xyr1 gene encodes a 873 amino acids protein that show 59% identity and 71% 

similarity with the Trichoderma reesei Xyr1 sequence. The characteristic Zn(2)-C6 

fungal DNA binding domain of the F. graminearum Xyr1 has been identified between 

amino acids 95 and 121, matching perfectly with the position of the motif found in T. 

reesei. The two motives share 96% identity, with only one Leu substituted by a Gln in F. 

graminearum. Compared to A. niger XlnR, the binding domains of T. reeesi and F. 

graminearum show 96% and 54% identity at nucleotide and protein level, respectively 

(Brunner et al., 2007). 
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F. graminearum xyr1 deletion mutants have been produced and characterized (Brunner et 

al., 2007). These mutants showed a significant reduction of growth on agar plates 

containing xylose or xylitol as sole carbon source but the effect of the mutation has not 

been ascertained. 

In the present work new xyr1 disrupted mutants were produced and tested for xylanase 

activity and growth on xylan as sole carbon source. These mutants are now available to 

perform virulence test on Triticum aestivum. 
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2.2 Materials and methods 

2.2.1 Fungal cultures, media and growth condition 

The Fusarium graminearum strain PH1 was cultured at 25 °C on complete medium (CM) 

(Leach et al., 1982) supplemented with 1.5% (w/v) granulated agar (DifcoTM, Becton, 

Dickinson and Company, Sparks, MD, USA) or on potato dextrose agar (PDA; Difco 

Laboratories, Detroit, MI, USA). 

To obtain mycelium for DNA extraction, WT and mutant strains were grown in 30 ml of 

CM liquid culture inoculated with 3 mycelium plugs (5 mm diameter) and grown at 24 

°C for 4 days at 150 rpm on a orbital shaker. 

Conidia were obtained by culturing F. graminearum WT and mutant strains in 50 ml of 

carboxymethyl cellulose (CMC) liquid medium (Cappellini et al., 1965) at 25 °C and 

100 rpm. 

For growth experiments, biomass of WT and transformants was determined on a liquid 

culture (Szécsi et al., 1990) supplemented with 0.5% (w/v) beechwood xylan (Sigma-

Aldrich, Milano, Italy) as the sole carbon source by inoculating 20 ml of medium with 

1x104 conidia ml-1. After 7 days at 25 °C on an orbital shaker at 100 rpm the flasks were 

transferred into 50 ml pre-weighed tubes and centrifuged at 8500 x g for 20 min. The 

mycelium was collected, washed twice with deionized water, oven dried at 80 °C for 3 d 

and weighed. 

Xylanase activity was determined at 4 and 7 dpi on 20 ml cultures inoculated with 1x104 

conidia ml-1 and grown at 25 °C in the xylan medium. Alternatively, 2.5 ml of the 

medium were inoculated with one agar plug (5 mm diameter) taken from the edge of 

actively growing colonies. 

 

2.2.2 DNA manipulation and construction of the gene replacement 
vector 

Genomic DNA from F. graminearum WT and mutant strains was extracted as reported by 

Henrion et al. in 1994 from 200-400 mg of mycelium. All primers used to generate the 

construct for disrupting the F. graminearum xyr1 gene (MIPS database entry 
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FGSG_17662; Broad Institute Fusarium Comparative Genome entries FGSG_12714 and 

FGSG_12713) were designed by using DNAMAN (Lynnon Biosoft) and PerlPrimer 

v.1.1.17 programs (Table 2). The xyr1 flanking homologous regions, necessary for 

targeted homologous recombination, were amplified by PCR using F. graminearum 

genomic DNA as template. Specific oligonucleotides were chosen to amplify the 

upstream (primers Fg17662upF and Fg17662upR) of about 900 bp and downstream 

(primers Fg17662downF and Fg17662downR) flanking regions (Figure 14 and Table 2) 

of about 1000 bp. The amplification was performed by “REDTaq ReadyMix PCR 

Reaction Mix” (Sigma, Milano, Italy) in a 50 μl volume. PCR conditions were as 

follows: 94 °C for 3 min, followed by 35 cycles of 94 °C for 1 min, 55 °C for 30 sec and 

72 °C for 1 min. The amplicons obtained were purified and used in a second PCR to fuse 

the homologous flanking regions with the hygromycin resistance gene (hygromycin B 

phosphotransferase, hyg), used as selection marker (Punt et al., 1987). The fusion PCR 

reaction was performed with the “REDTaq ReadyMix PCR Reaction Mix” (Sigma, 

Milano, Italy) in a 50 μl volume using 150 ng of the purified flanking regions containing 

tails homologous to the 5’ and 3’ region of the hyg gene (Figure 14) and 450 ng of the 

hyg gene cut with Sma I (Fermentas, Milano, Italy) from pAN7-1 vector (Voigt et al., 

2005). The fusion PCR conditions were as follows: 94 °C for 4 min, followed by 20 

cycles of 94 °C for 1 min, 60 °C and 72 °C for 4 min. The fusion PCR product was then 

used as template in a nested PCR reaction with the primers Fg17662nstF and 

Fg17662nstR (Table 2 and Figure 14). Nested PCR conditions were as follows: 94 °C 

for 4 min, followed by 35 cycles of 94 °C for 1 min, 55 °C for 30 sec and 72 °C for 4 

min. The amplicon obtained was cut from agarose gel, purified and then cloned into the 

pGEM-T easy vector (Promega, Milano, Italy) following the manufacturer’s instruction. 

An E. coli positively transformed colony was grown in LB-broth high salt culture 

(Fluka, BioChemika) and the plasmid DNA was extracted with the “MIDI Nucleobond® 

Ax” (Macherey-Nagel GmbH & Co.) kit following manufacturer’s instructions. The 

construct of 3438 bp was then cleaved from the pGEM-T EASY vector by double 

digestion using BstXI and ApaI (Fermentas, Milano, Italy) and used to transform 

protoplasts of F. graminearum WT strain. 
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Figure 14 – Schematic illustration of the PCR-based construction of the gene replacement vector. 

Flanking homology regions of the F. graminearum FGSG_17662 gene were amplified by PCR 

using specific primers for each gene: primers 1 (Fg17662upF) and 2 (Fg17662upR) were used 

for the amplification of the upstream region (UP), and primers 3 (Fg17662downF) and 4 

(Fg17662downR) for the downstream region (DOWN). UP and DOWN amplicons were fused 

with the hygromycin resistance hph gene by the “Fusion PCR” technique, using as primers the 

tails ( ) of primers 2 and 3, complementary to the 5’ and 3’ hph regions, respectively. The 

fusion PCR product was used as template in a subsequent nested PCR reaction, where primers 5 

(Fg17662nstF) and 6 (Fg17662nstR) were used to obtain the full construct of 3372 bp. The 

disruption of the target gene was obtained by homologous recombination via two crossing-over 

events. Primers pairs 7-8 (Fg17662intF and Fg17662intR) and 9-10 (Hyg-For and Hyg-Rev) 

were used to obtain the FGSG_17662 and hph probes for Southern blot analysis, respectively. 

Sites recognized by NsiI, used for DNA digestion, are also indicated.  

 

2.2.3 Fungal transformation-mediated gene disruption and preliminary 
screening of mutant lines 

Protoplast formation and fungal transformation were performed according to Van Nguyen 

et al. (2012). Hygromycin-resistant colonies were collected and transferred to 30-mm 

CM plates supplemented with 200 μg/ml of hygromycin B (Duchefa Biochemie, 

Haarlem, The Netherlands). Resistant mutants were single-conidiated and preliminarily 

screened by PCR using the primer pair Fg17662int-F and Fg17662-int-R, designed by 

using DNAMAN (Lynnon Biosoft) and PerlPrimer v.1.1.17 programs (Table 2 and 
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Figure 14). Transformants without the FGSG_17662 gene were then tested by Southern 

blot hybridization for single insertion of the disruption construct. 

 

2.2.4 Southern blot analysis 

Genomic DNA samples of 1,5 μg were digested with NsiI (Fermentas, Milano, Italy), 

separated on a 1% (w/v) agarose/TBE gel and blotted onto a Hybond NX membrane 

(Amersham Biosciences, Italy). Digoxygenin (DIG)-labeled (Roche, Mannheim, 

Germany) specific probes were generated with primers specific for the FGSG_17662 or 

hyg genes (Table 2 and Figure 14) by using genomic or plasmid DNA as template, and 

were used for overnight hybridization at 65 °C. The PCR reaction, performed in a 50 μl 

volume using DIG-11-dUTP (Roche, Mannheim, Germany), consisted of 1 min at 94 

°C, followed by 35 cycles of 95 °C for 1 min, 55 °C for 1 min and 72 °C for 2 min. 

Southern Blot hybridization and detection of the DIG-labeled probes were performed 

according to manufacturer’s instruction. Membranes were exposed to X-ray film (X-

Omat AR, Kodak, Rochester, NY, USA) for approximately 3 hours. 

 

2.2.5 Total xylanase activity assay 

Total xylanase activity of F. graminearum liquid cultures was determined by measuring the 

reducing sugars released from 0.5% (w/v) beechwood xylan (Sigma-Aldrich, Milano, 

Italy) dissolved in 50 mM sodium citrate buffer at pH 5 according to the dinitrosalicylic 

acid (DNSA) method described by Miller et al. in 1959 and modified by Bailey et al. in 

1992. D-xylose (Merck Chemicals) was used as a standard. Xylanase activity of WT and 

Δxyr mutant strains was assayed by incubating 100 μl of fungal culture in a 200 μl 

reaction mixture. One unit of xylanase activity was defined as the amount of enzyme 

required to release 1 μmol of xylose in 1 min under the assay conditions. 
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Table2 – List of used primers.  

Primer name Sequence (5’-3’) 

Primers to produce the disruption construct 

Fg17662upF ACTTCCCTCCAGGATCCACT 

Fg17662upR AGATGCCGACCGAACAAGAGCTGTCCCCCACATCTTGCCGGTACTCAGG 

Fg17662downF TCAATGCTACATCACCCACCTCGCTCCCCCCAACATACTTGGGGCGTCTT 

Fg17662downR GCAACAACACAAGCGAGAAA 

Fg17662nstF TGCCAAACCCATTACAACAA 

Fg17662nstR TACTTCCCCTTGCCCTCTTT 

Primers for preliminary screening of Δxyr mutants and for DIG-labeled probes 
Fg17662intF CTGTTGCTGATGGTGTTGCT 

Fg17662intR TTCTTTGCGTGATGCAAGTC 

Hyg-For CTCGATGAGCTGATGCTTTG 

Hyg-Rev GGACAGCTCTTGTTCGGTCGG 
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2.3 Results 

2.3.1 Targeted disruption of F. graminearum Xyr1 encoding gene 

The F. graminearum (WT) protoplasts were transformed with a disruption vector 

containing the hygromycin resistance gene in order to replace the FGSG_17662 gene by 

two homologous recombination events. Thirty-two hygromycin resistant colonies were 

selected from regenerated protoplasts. After single conidiation, the transformants were 

screened by PCR for the absence of an internal 661 bp fragment of the FGSG_17662 

gene. The genomic DNA of eleven mutants did not produce any xyr1 amplicons (Figure 

15A), but resulted positives for hyg gene (Figure 15B).  
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Figure 15 – PCR selection of F. graminearum FGSG_17662 gene disruption mutants. 

Transformants colonies resistant to hygromycin were screened by PCR using the primer pair 

Fg17662intF and Fg17662intR or Hyg-For and Hyg-Rev. (A) The 661 bp internal fragment of 

the FGSG_17662 gene was amplified in WT (lane 17), but not in the mutant strains Δxyr1.3 

(lane 11), Δxyr2.1 (lane 1), Δxyr2.2 (lane 2), Δxyr2.3 (lane 3), Δxyr2.11 (lane 12), Δxyr2.14 

(lane 13) and Δxyr2.16 (lane 14). Δxyr2.17 (lane 15) Δxyr2.23 (lane 18) and Δxyr2.24 (lane 19), 

which exhibited the amplification of hyg gene. A negative control was loaded in lane C. M: 

molecular size markers (GeneRuler DNA Ladder Mix, Fermentas, Milano, Italy) are shown on 

the left. (B) The 525 bp internal fragment of the hyg gene was absent in WT (lane 18), and 

amplified in the mutant strains Δxyr1.3 (lane 11), Δxyr2.1 (lane 1), Δxyr2.2 (lane 2), Δxyr2.3 

(lane 3), Δxyr2.11 (lane 12), Δxyr2.14 (lane 13), Δxyr2.16 (lane 14), Δxyr2.17 (lane 15), 

Δxyr2.23 (lane 8) and Δxyr2.24 (lane 9). A negative control was loaded in lane C. M: molecular 

size markers (GeneRuler DNA Ladder Mix, Fermentas, Milano, Italy) are shown on the left. 

 

The genome of five interesting mutants were submitted to high-stringency Southern blot 

using the FGSG_17662 and the hyg specific probes. The knock-out of the gene was 

confirmed in the all examinated mutant strains, but only for the Δxyr1.3 and Δxyr2.11 

strain the hybridization with the hyg probe revealed a unique signal of the expected 7.4 
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Kb size, indicating a single homologous integration of the deletion construct (Figure 16). 

The single signal of about 10 Kb showed by Δxyr2.3, Δxyr2.14 and Δxyr2.16 strains 

was compatible with a targeted double integration of the disruption construct in the 

correct locus.  

 

 
Figure 16 – High-stringency Southern blot analysis of genomic DNA from F. graminearum WT 

and mutant strains digested with NsiI (Promega, Milano, Italy). (A) A fragment of the 

FGSG_17662 gene was used as specific probe. The WT strain (lane 1) showed an hybridization 

signal of 8.6 Kb corresponding to the FGSG_17662 gene, while the ∆xyr1.3 (lane 2), ∆xyr2.3 

(lane 3), ∆xyr2.11 (lane 4), ∆xyr2.14 (lane 5), ∆xyr2.16 (lane 6), mutant strains did not show 

this hybridization signal. (B) A fragment of the hyg resistance gene was used as probe. The WT 

(lane 1) strain gave no hybridization signal. ∆xyr1.3 (lane 2), ∆xyr2.11 (lane 4) mutant strains 

showed a single hybridization signal at 7.4 Kb; while in ∆xyr2.3 (lane 3), ∆xyr2.14 (lane 5), 

∆xyr2.16 (lane 6) mutants the single signal at 10.3 Kb was higher than the expected size. Dig 

Marker VII, (Fermentas, Milano, Italy) was used molecular size marker. 
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2.3.2 In vitro characterization of the FgΔxyr mutants 

To verify if the disruption of the transcriptional regulator gene was effective, the WT and 

the Δxyr mutant strains were grown in liquid culture containing xylan as the sole carbon 

source. The total xylanase activity in the cultural supernatant was determined by the 

DNSA method at 4 and 7 dpi. At 4 dpi, the total xylanase activity produced by the 

mutants was 90% lower than the WT strain and no significant differences among mutant 

strains were observed (Figure 17). The difference observed between mutants and WT 

strains was also confirmed at 7 dpi (data not shown). 

 

 
Figure 17 – Total xylanase activity secreted by WT and Δxyr mutant strains. One hundred µl of 

culture filtrates, collected after 4 d of liquid culture in Szécsi medium with xylan as carbon 

source, were incubated in 1 ml of reaction mixture containing 0.5% (w/v) beechwood xylan. 

Xylanase activity, measured with the DNSA method, was expressed as xylanase units/ml of 

culture filtrate. One xylanase unit was defined as the amount of enzyme required to release 1 

μmol of xylose in 1 min under the assay conditions. Data represent the average ± mean standard 

error (indicated by bars) of three independent flasks per strain. Treatments were statistically 

different (p<0.01, F = 243.89) by applying randomized complete blocks ANOVA. Different 

letters (a, b) indicate significant differences at p<0.01 (Student–Newman–Keuls test).  

 

The biomass formation produced by of WT and mutant strains in a liquid culture containing 

xylan as the sole carbon source was compared after 7 days of growth. Dramatic 
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differences in dry weight were observed between mutants and the WT strain. (Figure 

18). The dry weight of mutant strains resulted from 40% to 70% lower than the WT, 

even no significant differences among mutant strains have been revealed by performed 

statistical analysis. 

 

 
Figure 18 – Dry weight of WT and Δxyr mutant strains grown for 7 days in a liquid culture 

containing xylan as the sole carbon source. 1x104 conidia ml-1 of F. graminearum WT and 

mutant strains were grown in 20 ml of Szècsi liquid medium supplemented with 0.5% (w/v) 

beechwood xylan at 100 rpm and 25 °C. After 7 days mycelia were collected, filtered, washed 

twice with sterile water, oven dried at 80 °C for 3 days and then weighed. Dry weights are 

expressed in milligrams (mg). Data represent the average ± standard deviation (indicated by 

bars) of three flasks per strain. Treatments were statistically different (p<0.01, F = 12.3215) by 

applying randomized complete blocks ANOVA. Different letters (a, b) indicate significant 

differences at p<0.01 (Student–Newman–Keuls test). 
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2.4 Discussion 

In the present work, the targeted gene replacement of the Fusarium graminearum xyr1 

gene, encoding for the transcriptional regulator of the endo-xylanase genes expression, 

has been successfully performed. From thirty-two hygromycin resistant transformants 

screened by PCR, eleven mutants were selected for the lacking of FGSG_17662 gene. 

Among them, five were analyzed by high-stringency Southern blot, which revealed that 

the a single homologous integration of the deletion construct in FGSG_17662 locus 

occurred in the Δxyr1.3 and Δxyr2.11 mutant strains, while a double homologous 

integration of the disruption cassette occurred in the Δxyr2.3, Δxyr2.14 and Δxyr2.16 

mutant strains. 

These Δxyr mutants exhibited a strong impairing in the capability to grow on xylan as sole 

carbon source, and after seven days of liquid culture the dry weight of mutant resulted 

very reduced, from 40% to 70% lower than the WT. This result is coherent with the 40% 

reduction of biomass formation observed by Brunner et al. (2007) for xyr1 deletion 

mutants grown on xylan, compared to WT.  

The decrease of total xylanase activity secreted in liquid culture by all our Δxyr strains 

appeared really dramatic, since mutants preserved only 10% of the enzymatic activity 

produced to WT. Interestingly, Brunner et al. (2007) observed a less dramatic reduction 

of the total xylanase activity produced by the xyr1 F. graminearum deletion mutants, 

measured as 30% of the total activity produced by the WT strain when grown on xylan 

medium.  

Taken together, these data seem to confirm the involvement of the F. graminearum Xyr1 

transcription factor in xylan utilization, as suggested by Brunner et al. (2007) and earlier 

proposed for other plant fungal pathogens (Hasper et al., 2000; Stricker et al., 2006).  

In order to forecast a possible F. graminearum Xyr1 binding site in the 5’ regulatory 

sequence of the xylanase genes selected for the expression analysis in vivo (Chapter I, 

paragraphs 1.1 and 1.2.8), an in silico analysis was carried out on their 5’ regulatory 

sequences to search for the hypothetical conserved motif GGCTAA: this short sequence 

is indicated as a putative binding motif for the Xyr1 orthologue XlnR found in 

Aspergillus oryzae, and was reported as located at the 5’ regulatory sequence of the 

affected genes (Marui et al. 2002a and b). All the six F. graminearum xylanase encoding 
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genes analyzed showed only the presence of the central motif GCTA, in at least two 

copies at the 5’ of the ORFs. 

Brunner et al. (2007) analyzed the expression of endo xylanase genes only in vitro after 48 

h of growth on wheat cell wall medium, and demonstrated that all the genes showed a 

two to five magnitude order reduction in mutants compared to WT; however they did 

not include in this analysis the expression of the FGSG_10999 gene, one of the two most 

transcribed endoxylanase encoding genes during wheat spike infection (Chapter I, 

paragraph 1.2.8).  

The expression of the FGSG_11258, FGSG_11304, FGSG_06445, FGSG_11487, 

FGSG_03624 and FGSG_10999 genes will be studied in vitro by qPCR analysis. Gene 

expression will be compared between WT and Δxyr mutant strains in order to get deeper 

insight on the transcriptional regulation mediated by Xyr1. 

The expression analysis in vivo is therefore necessary to verify if this regulation functions 

also during plant infection. The xyr1 disrupted mutants now available will be 

characterized for their virulence by in-vivo inoculation experiments of Triticum aestivum 

spikes and for expression of the xylanase genes to verify their regulation during plant 

infection. 
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Conclusions and perspectives  

Fusarium graminearum is a necrotrophic plant pathogen which has a brief initial short 

biotrophic stage (Kazan et al., 2012) and is primarily responsible of the FHB disease that 

affects cereals such as wheat. Some observations suggest that CWDEs secreted by this 

pathogen can play an important role during pathogenesis. In particular, cell wall 

degradation of F. graminearum infected spike tissue was observed by 

immunohistological methods (Brown et al 2010., Kikot et al., 2009; Wanyoike et al., 

2002). Besides, the observation that wheat transgenic plants expressing inhibitors of 

fungal pectinases (Ferrari et al., 2012; Volpi et al., 2011) show a reduction of FHB 

symptoms indicates the importance of these CWDEs during host colonization. The 

xylanases may also play a major contribution to break the plant cell wall and especially 

the cell wall of the cereal plants. To better define the role of xylanases during the FHB 

disease, a two step approach was followed. By first one of the major expressed enzymes 

belonging to the glycoside hydrolase family 11, the FGSG_03624 endoxylanase, was 

recognized as the major responsible of the activity detected in vitro. However, no clear 

contribution to virulence of this xylanase was observed when FGSG_03624 knock-out 

mutants were used to infect wheat spikes, although a recombinant FGSG_03624, 

purified after Pichia pastoris heterologous expression, displayed a hypersensitive-like 

effect on glume tissues that seems independent from the enzyme activity. The purified 

enzyme is now available for future molecular plant-pathogen interaction studies directed 

to isolate some specific receptor for FGSG_03624 in wheat cells as well as to identify 

the amino acidic motif possibly recognized by the putative wheat receptor. To this aim, 

peptides could be synthesized and used also for examining the elicitation of other plant 

responses and possibly to induce resistance or prime plants against successive pathogen 

attacks. 

The second aim of the research was to establish the importance of the entire xylanase 

enzymes class produced by F. graminerarum during infection of host plants. To this 

purpose the FGSG_17662 gene, encoding for the F. graminearum Xyr1 transcriptional 

regulator factor, has been deleted by targeted homologous recombination. Disruptant 

strains are heavily impaired both in secreted total xylanase activity and in biomass 

formation when grown in liquid culture with xylan as sole carbon source, and are now 
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available to be assayed in infection experiments with wheat plants. If these mutants will 

be verified as impaired in virulence, new control measures of the FHB can be 

investigated. For example, transgenic plants may be produced to counteract the fungal 

attack by inhibiting the xylanase activity. To this aim three types of xylanase inhibitors 

(XIs) have been identified in wheat: Triticum aestivum XI (TAXI) (Debyser et al., 1997; 

Debyser et al., 1998), xylanase inhibitor protein (XIP) (McLauchlan et al., 1999) and 

thaumatin-like XI (TLXI) (Fierens et al., 2007). The most effective of these XI could be 

expressed to obtain wheat plants more resistant to FHB. 
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Page 17, line 10 and 11: Bailey et al., 1997 must be changed with Biely et al., 
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fg03624int-Rev CAGAGACAGTCATGGTAGCC 

Hyg-For CTCGATGAGCTGATGCTTTG 
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