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1 SUMMARY 
 
1.1 English 
 

Circadian rhythms are responsible for various rhythmic 24-hour changes 

in physiological and behavioral parameters. A core oscillator located 

in the suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for the 

coordination of these rhythms. The SCN controls the endogenous timing system 

by coordinating the tissue-specific clocks present in all cells of the body. The 

regulation is mainly based on a core transcriptional-translational feedback 

loop that keeps internal gene expression entrained by the external light-dark cycle. 

The transcription factor Bmal1 is a major component of both central and 

peripheral clocks, and its absence leads to disruption of circadian rhythms.  

 

In order to understand the function of the intrinsic muscle clock we compared 

two muscle specific knockouts of the Bmal1 gene (a conditional model 

Bmal1 mKO and an inducible model Bmal1 imKO) and their normal wild type 

littermates. Changes in muscle phenotype were analyzed at morphological 

and physiological level, and muscle gene expression was determined. 

 

We have observed that in contrast with the whole body Bmal1 knockout, 

Bmal1 mKO mice have a normal lifespan and growth. Contrary to the extreme 

muscle atrophy found in Bmal1 null mice, muscle-specific Bmal1 mKO causes 

a small but significant increase in muscle mass. However, this hypertrophic 

phenotype is not accompanied by an increase in muscle force, and indeed there 

is a marked reduction in both absolute muscle force and muscle force normalized 

to muscle weight. Myofibrillar architecture is conserved in Bmal1 mKO muscles, 

and there are no major histological abnormalities in the muscles. Myosin heavy 

chain composition is slightly shifted to fast myosin heavy chain isoforms. 

We have compared the muscle circadian gene expression profile of these mice 

and their control littermates. Our analyses indicate that the transcription of many 

circadian muscle genes is greatly altered. By Gene Set Enrichment Analysis 

(GSEA) we found that the p38 pathway, including upstream activators 
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and downstream targets, is down−regulated, suggesting that this pathway, which 

is known to be linked to contractile activity, is controlled by BMAL1. 

 

1.2 Italian 

 

I ritmi circadiani sono responsabili della variazione giornaliera di molteplici 

parametri fisiologici e di comportamento.  L’orologio centrale preposto alla 

coordinazione di questi ritmi è localizzato nel nucleo soprachiasmatico 

dell’ipotalamo. Il nucleo soprachiasmatico scandisce il ritmo globale 

dell’organismo sincronizzando il ritmo dei cosiddetti orologi periferici dei tessuti, 

presenti in tutte le cellule del corpo. La regolazione avviene principalmente 

tramite un circuito accoppiato di trascrizione-traduzione, che mantiene 

l’espressione genica interna vincolata al ciclo esterno di luce e buio. Il fattore di 

trascrizione Bmal1 è uno dei principali componenti sia dell’orologio centrale che 

di quelli periferici, e la sua assenza porta alla scomparsa dei ritmi circadiani 

nell’organismo.  

 

Al fine di comprendere la funzione dell’orologio intrinseco del muscolo, abbiamo 

confrontato due diverse linee di topi in cui il gene Bmal1 è assente esclusivamente 

nel muscolo scheletrico (un modello condizionale, nominato Bmal1 mKO, e un 

modello inducibile, chiamato Bmal1 imKO), con dei topi di controllo appartenenti 

allo stesso ceppo selvatico. Cambiamenti fenotipici a livello muscolare sono stati 

analizzati sia a livello morfologico che fisiologico, ed è stata inoltre valutata 

l’espressione genica globale del muscolo. 

 

Abbiamo così osservato che a differenza dei topi in cui il gene Bmal1 è assente in 

tutte le cellule del corpo (Bmal1-/-), i topi Bmal1 mKO hanno una durata della vita 

ed una crescita normale. Al contrario della forte atrofia riscontrata nel topo 

Bmal1-/-, nel nostro modello muscolo-specifico Bmal1 mKO abbiamo rilevato un 

significativo, benché piccolo, incremento di massa muscolare. Ad ogni modo, ciò 

non è accompagnato da un aumento della forza muscolare ne’ assoluta, ne’ 

normalizzata rispetto al peso del muscolo. L’architettura del muscolo è preservata 

nei topi Bmal1 mKO, e questi non presentano anomalie vistose a livello 

istologico. Nei topi Bmal1 mKO si nota un leggero incremento nel numero delle 
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fibre che esprimono catene pesanti delle miosine di tipo rapido. Abbiamo inoltre 

confrontato l’espressione genica circadiana di questi topi rispetto ai loro controlli. 

Le nostre analisi indicano che la trascrizione di molti geni circadiani muscolari è 

fortemente alterata. Tramite analisi di arricchimento di gruppi genici (Gene Set 

Enrichment Analysis, o GSEA), abbiamo trovato che la via di segnalazione della 

proteina p38, inclusi attivatori a monte e bersagli a valle, è ridotta, suggerendo 

così che questa via, nota per essere legata all’attività contrattile, sia controllata da 

BMAL1.  
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2 AIM OF THE PROJECT 
 
BMAL1 is a transcription factor of the basic-helix-loop-helix PAS domain family, 

known to be an essential part of the molecular clock that regulates circadian 

rhythms. A mouse model lacking BMAL1 in the whole body has been previously 

generated and has the following phenotype: completely disrupted circadian 

rhythms, shortened lifespan, decreased body weight and muscle weight, and 

impaired muscle function (weaker muscles) (Bunger et al., 2000; 

Kondratov et al., 2006; Boden et al., 2006; McDearmon et al., 2006; 

Andrews et al., 2010). However, it is not clear whether the changes in skeletal 

muscle are due to the lack of BMAL1 in muscle cells or are secondary to the 

disruption of circadian rhythms in other tissues. In order to understand the 

importance of Bmal1 in skeletal muscle, we generated and characterized two 

mouse models with a depletion of Bmal1 specifically in skeletal muscle using the 

Cre−LoxP system. The first model was a conditional muscle−specific knockout 

(Bmal1 mKO) and the second model was an inducible muscle−specific knockout 

(Bmal1 imKO).  

 

In summary, our objective was to elucidate the effect of the local muscle 

disruption of Bmal1 without altering the clock machinery in the rest of the body. 
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3 INTRODUCTION 
 
Circadian rhythms in mammals 
 
The term circadian comes from the Latin ‘circa’ and ‘diem’, which mean 

approximately a day. Circadian rhythms are thus regular biological processes with 

a period of approximately 24−hours. All organisms are subject to daily 

environmental changes, such as day and night cycles due to the Earth’s 24−hour 

rotation around its axis, that makes them adapt to the different conditions during 

the day and night.  

 

The presence of an internal clock in organisms helps them to prepare for these 

changes in the environment, allowing them to adapt to but also to anticipate daily 

variations in environmental conditions. These biological clocks are synchronized 

to external time by various timing cues. While the most prominent environmental 

signal is the light, other relevant cues, such as temperature, feeding and activity 

rhythms may also entrain the endogenous clock.  

 

In mammals, the core pacemaker in the suprachiasmatic nucleus (SCN) 

of the hypothalamus receives direct innervation from the retina, and coordinates 

physiological functions with the light/dark cycle. Peripheral clocks present 

in all cells of the body are ultimately synchronized by circulating factors 

and neural cues (Figure 1). 
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Figure 1. Hierarchical organization of the biological clock in mammals 

 

3.1 Molecular aspects of the clock machinery 
 

Circadian rhythms are finely regulated and the mechanism of regulation is based 

on a conserved transcriptional−translational feedback loop that is 

self−autonomous, and is present in all the cells of the body (Figure 2).   

 

 

Figure 2. Scheme of the transcriptional−translational feedback loop composed of both the 
positive and negative arms of regulation that is present in all cells of the body. Adapted 
from (Albrecht, 2007). 
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The main components of the clock machinery are circadian locomotor output 

cycles kaput (CLOCK) protein, Brain and Muscle Aryl hydrocarbon receptor 

nuclear translocator−like protein1 (BMAL1), Period (PER1, PER2, and PER3), 

and Cryptochrome (CRY1 and CRY2).  

 

CLOCK and BMAL1 are transcription factors from the basic−helix−loop−helix 

Per−Arnt−Sim (bHLH−PAS) family. They form heterodimers and comprise 

the core component of the clock (Hogenesch et al., 1998), which regulates 

the transcriptional activation of target genes that have E−boxes in their promoters 

(with the consensus sequence CACGTG) such as the mammalian Period (Per) 

and Cryptochrome (Cry) genes (Gekakis et al., 1998). This forms the positive arm 

of regulation of the feedback loop that activates the target genes Per, Cry, RORα, 

REV−ERBα, and other clock−controlled genes. The negative arm of regulation of 

the feedback loop is formed by PER and CRY proteins, that accumulate gradually 

and form heterodimers that migrate into the nucleus repressing the formation 

of CLOCK:BMAL1 complex. PER2 positively regulates Bmal1 transcription, 

whereas CRY1 or CRY2 inhibit the transcriptional activity of BMAL1 when 

it is in complex with CLOCK (Shearman et al., 2000; Griffin et al., 1999). 

It is a finely−tuned feedback loop in which the mRNA levels of both arms 

of the loop accumulate in an anti−phase manner allowing the cycle to oscillate 

in a 24−hour period.  

 

The primary feedback loop is regulated by a secondary stabilizing feedback loop 

that coordinates circadian expression of Bmal1, and is composed of two of orphan 

nuclear receptors REV−ERBα and β, and RORα, β and γ. The Bmal1 promoter 

has recognition sequences (ROREs) for REV−ERB and ROR. The RORE 

consensus sequence is (A/T)A(A/T)NT(A/G)GGTCA, and has been shown to 

give a cyclic gene expression profile (Ueda et al 2002). REV−ERBα is a repressor 

of Bmal1 expression, which is activated by the CLOCK:BMAL1 complex, and 

which presents an oscillatory mRNA expression profile with an opposite phase to 

that of Bmal1. It was shown that mice lacking REV−ERBα have elevated levels of 

BMAL1 causing a disrupted rhythm of activity with shorter cycle 

(Preitner et al., 2002). In contrast, RORα has a role in the transcriptional 

activation and maintenance of Bmal1 levels but not in its rhythmic expression.  
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It was also shown by Sato et al., that mice lacking RORα have reduced levels of 

BMAL1, indicating a positive influence of RORα on Bmal1 expression 

(Sato et al., 2004). The authors report that there is a competition between 

REV−ERBα and ROR for the binding to the Bmal1 promoter’s ROR element in 

order to regulate Bmal1 expression, and it is directly linked to the amount of each 

protein. However, it seems that REV−ERB repressor may exert a more prevalent 

role compared to the ROR activators. When the REV−ERB protein levels 

decrease, ROR enhances the transcriptional activation of Bmal1 and maintains its 

robust oscillation (Akashi & Takumi, 2005). 

 

The stabilizing loop also acts on different levels: it has been reported that 

the CLOCK:BMAL1 complex not only regulates Cry1 directly, but also indirectly 

via REV−ERBα (which, as said previously, is a repressor of Bmal1 expression). 

It has been suggested that E−box and ROR elements in the Bmal1 gene contribute 

to the precise tuning of the circadian timing system, and the second feedback loop 

plays a role in the control of the clock output genes (Liu et al., 2008). 

 

In addition to the secondary loop formed by REV−ERB and ROR, other 

interlocking loops include the PARbZIP family of transcription factors, including 

DBP, HLF, and TEF, and putative PARbZIP antagonist E4BP4. These are directly 

regulated by the core clock through E−boxes on their promoters, and act on target 

genes. E4BP4 (also called NFIL3) was reported to be a negative regulator of clock 

output genes, whereas the PARbZIP family members are activators of the 

transcriptional activity of output genes, and they show an anti−phase pattern of 

expression. The PARbZIP proteins and E4BP4 share a similar conserved binding 

sequence RT(G/T)AYGTAAY, where R is a purine and Y a pyrimidine, and they 

regulate target genes in a complementary manner. A model was proposed, in 

which the CLOCK:BMAL1/PER:CRY complexes directly regulate PARbZIP 

family members, which in turn regulate clock−controlled genes. For E4BP4, there 

is an indirect regulation of the core clock machinery, through REV−ERBs and 

RORs. It was also shown that the activity of PAR proteins and E4BP4 may feed 

back to the core clock machinery, as was reported in vitro in the regulation of 

Per1 (Mitsui et al., 2001; Asher & Schibler, 2011). DBP was reported to increase 

the transcriptional activation of Per1 upon the activation by the core clock, as part 
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of the interlocking loops. Dbp has also been reported to be negatively regulated 

by CRY (Yamaguchi et al., 2000) 

 

The final advantage of having interlocking loops would be to maintain the 

persistence and period of the cycle in spite of external perturbations, while 

transducing the external cues into the molecular clock and being able to efficiently 

adapt (Figure 3) (Liu et al., 2008). 

 

Figure 3. Schematic representation of the molecular clock. The primary feedback loop 
is formed by positive elements CLOCK and BMAL1 and the negative elements PER 
and CRY. The secondary feedback loops are formed by clock−controlled genes that act 
as regulators of the core clock or second regulators of clock−controlled genes. Figure 
adapted from (Asher & Schibler, 2011) 

 
3.2 Posttranslational modifications that regulate the circadian 

machinery 
 

In order to keep the 24−hour cycle, it is important to maintain the delay between 

the positive and negative arms of the clock. This is achieved by introducing 
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posttranslational modifications that regulate nuclear import and export, chromatin 

accessibility and also protein degradation (Gallego & Virshup, 2007). 

 

The core clock protein BMAL1 is phosphorylated by Casein Kinase I delta 

and epsilon (CKIδ and CKIε), and this promotes CLOCK:BMAL1 dependent 

transcription (Eide et al., 2002). It has been reported that mutations in CKI have 

an effect on circadian rhythmicity. For example, the tau hamster has a mutation 

in CKIε and shows a shortened locomotor activity period (Lowrey et al., 2000). 

Also, in humans mutations of CKI have been associated with a disruption 

of period length, causing familial advance sleep−phase syndrome (FASPS) 

(Jones et al., 1999). Period proteins are also phosphorylated by CKI promoting 

their degradation by the ubiquitin−proteasome pathway (Vanselow et al., 2006). 

CRYs are also a substrate for CKIε when bound to PER1/2, yet the functional 

significance is unknown (Eide et al., 2002; Takano et al., 2000). 

 

Additionally, the mitogen activated protein kinase (MAPK) phosphorylates 

BMAL1 in different sites, thus impairing the binding of the CLOCK:BMAL1 

complex to the promoter of target genes (Sanada et al., 2002).  It was also shown 

that the p38 MAPK pathway indirectly activates the promoter of Per1 

by phosphorylation of the cAMP responsive element binding protein (CREB), 

however this activation does not play a role in the regulation by CLOCK:BMAL1 

(Travnickova−Bendova et al., 2002). 

 

BMAL1 rhythmicity is also controlled by the addition of small ubiquitin−related 

modifier proteins, after the activation of CLOCK:BMAL1 targets, thus regulating 

the turnover of the protein (Cardone et al., 2005). 

 

Finally, the F−box protein FBXL3 a component of the Skp1 Cullin F−box (SCF) 

E3 ubiquitin ligase complex has been identified as a component of the circadian 

machinery, stabilizing the equilibrium between activation and repression 

of CLOCK:BMAL1 complex through the turnover of CRY. Ubiquitination of 

CRY by FBLX3 leads to a decrease in inhibition of the CLOCK:BMAL1 

complex, controlling the circadian homeostasis (Godinho et al., 2007; 

Siepka et  al., 2007; Busino et al., 2007). 
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3.3 The central pacemaker and peripheral clocks.  

 

The retina perceives light and then sends the signal via the retino−hypothalamic 

tract (RHT) to the SCN that acts as the coordination center of the 24−hour 

rhythm. The SCN is a self−sustained oscillator, which mantains a robust 

rhythmicity even in the absence of light. Through neural and humoral pathways 

the SCN communicates with the rest of the body, entraining all cells to the 

light/dark cycle, controlling gene expression rhythms and various physiological 

and metabolic parameters. Synchronization between the SCN and the peripheral 

tissues is fundamental for phase coherence within the timing system. The SCN 

normally sends timing signals to the periphery, entraining self−sustained clocks in 

peripheral tissues to external time (Balsalobre et al., 2000). When the SCN 

is lesioned, there is a persistent circadian oscillation of the peripheral clocks that 

is sustained in time but it is no longer in phase between different cells or tissues. 

This demonstrates that, while the peripheral clocks are able to function 

independently, the SCN is needed to ultimately synchronize the phase of all 

clocks (Yoo et al., 2004). 

 
Early experiments in rats showed that lesions in the suprachiasmatic area and not 

the preoptic area of the brain lead to disruption of activity and drinking behavior 

(Stephan & Zucker, 1972). It was later demonstrated by rescue experiments in 

hamsters that implanting fetal SCN grafts into SCN−lesioned animals restored 

normal locomotor activity rhythms (Lehman et al., 1987). These studies focused 

attention on the SCN as the crucial point that transmits light information to the 

rest of the body. Mammals perceive the light via the retina of the eye. Distinct 

ganglion cells that express the photopigment melanopsin gather the photic 

information that is transduced through axonal projections along the RHT 

(Berson et al., 2002). In response to this signal, the RHT terminals release 

glutamate and pituitary adenylate cyclase−activating peptide (PACAP) at 

synapses with SCN neurons. This photic input activates signaling pathways, 

causing chromatin remodeling and inducing a rapid expression of clock genes 

(Albrecht et al., 1997; Sun et al., 1997). Per1 activation has been shown to be the 

first to occur: an activation of the extracellular−signal regulated kinase (ERK) 

phosphorylates CREB, which acts as a transcriptional activator of Per1 by 



3. INTRODUCTION 

 
12 

binding to the CRE motifs in its promoter (Travnickova−Bendova et al., 2002). 

The SCN projects to and thus transmits information to other nuclei within the 

brain via different neurotransmitters. The entrainment of other brain nuclei allows 

for further transmission of circadian information via neural and hormonal cues 

that that control various behavioral and physiological functions, including feeding 

behavior, body temperature and locomotor activity, ultimately entraining 

peripheral tissues to the 24−hour cycle (Dibner et al., 2010).  

 

3.4 External regulation of circadian rhythms 

 
Feeding time has been demonstrated to a major entrainment factor for circadian 

rhythms in peripheral tissues. For example, when nocturnal mice (which normally 

eat during the night) are subjected to restricted feeding during the day, they 

display a phase resetting of peripheral clocks. Animals under restricted feeding 

show a decrease in body temperature during the night that may be the cue for the 

changes in the peripheral tissues but not in the SCN that is not affected by these 

variations. The liver is the first organ to adapt to the shift in food intake, 

responding to metabolites and hormonal levels (Damiola et al., 2000; 

Stokkan et al., 2001). 

 

In vitro experiments in rat−1 fibroblasts have reported that treatment with glucose 

synchronizes circadian gene oscillation. It was observed that the metabolism 

of glucose regulates Per1, Per2, and Bmal1 through glucose responsive 

immediate early genes Tieg1 and Vdup1. TIEG1 negatively regulates Per1 and 

Bmal1 genes acting on Sp1 sequences present in their promoters. VDUP1 

is a negative regulator of thioredoxin, a DNA binding partner of various 

transcription factors that enhances the activity of HIF1α and HLF promoting their 

interaction with CREB−Binding protein, which mediates CLOCK:BMAL1 

complex activation, therefore VDUP1 may negatively regulate CLOCK:BMAL1 

complex and reduce Per1 and Per2 transcription (Hirota et al., 2002). 
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3.5 The muscle clock 

 

Locomotor activity is often used as a readout of circadian rhythms, 

but it is unknown whether circadian rhythms entrain locomotor activity, 

or if the activity affects the entrainment of the peripheral clock machinery. Similar 

to other peripheral tissues, skeletal muscle contains local clocks and responds to 

circadian neural cues like motor neuron activity, as well as responding to the 

central SCN clock.  

 
It has been reported that disrupting the circadian machinery via knockout 

of the clock gene Bmal1 in mice may lead to an altered phenotype that includes 

reduced lifespan, lower bodyweight, reduced activity and reduced force 

production. This decrease in body mass is accompanied by a striking reduction in 

muscle mass and muscle fiber size (Kondratov et al., 2006). Surprisingly, rescue 

experiments in the Bmal1−/− mice showed that specific expression of Bmal1 

in skeletal muscle restores muscle mass and activity levels, whereas rescuing 

Bmal1 expression in the brain only restored rhythmic patterns of activity 

(McDearmon et al., 2006). Furthermore, it was reported that the clock machinery 

regulates muscle integrity, as Bmal1−/− mice were reported to have 

disorganization of the sarcomeric structure, and decreased force production 

(Andrews et al., 2010). 
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4 MATERIALS & METHODS 
 

4.1 Mice  

 

All experimental protocols were reviewed and approved by the local Animal Care 

Committee, Università degli Studi di Padova. All mice used were from 

a C57BL/6 background. Pups were weaned four weeks after birth and house 

according to sex. Mice were housed approximately six to a cage, with food and 

water ad libitum in a 21ºC controlled facility under a 12h light/dark cycle 

(12:12 LD).  

 

4.1.1 MLC1f−Cre  

 

These mice express the Cre recombinase under the control of the myosin light 

chain 1 f promoter (MLC1f), in fast and slow skeletal muscle starting from early 

postnatal stages (Bothe et al., 2000).  

 

4.1.2 HSA−Cre 

 

These mice express Cre recombinase linked to a mutated estrogen receptor 

(CreER) driven by the Human Skeletal Actin (HSA) promoter, which 

is selectively active in fast and slow skeletal muscles (Schuler et al., 2005). 

In this line, Cre recombinase activity is normally inactive, but can be induced 

at a desired time by treatment with the synthetic estrogen receptor ligand 

4−hydroxytamoxifen (tamoxifen or TAM). In the absence of TAM, the CreER 

is localized in the cytoplasm. When TAM is administered, it binds to the mutated 

ER, causing the CreER translocation to the nucleus and induce activation of Cre 

recombinase, thus allowing for the recombination and deletion of any regions of 

genes flanked by LoxP sites.  
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4.1.3 Bmal1fl/fl 

 
These mice were purchased from Jackson laboratories (B6.129S4−Arntltm1Weit/J). 

They contain LoxP sites flanking the exon coding for the basic−helix−loop−helix 

domain (bHLH) of Bmal1. Mice homozygous for this Bmal1 mutant allele are 

indistinguishable from wild type mice (Storch et al., 2007). Animals carrying the 

mutant allele have wild type activity of BMAL1, but when the allele is excised 

animals carry a null mutation of Bmal1. 

 

Mice breeding 
 

For the conditional Bmal1 muscle specific knockout (Bmal1 mKO), Bmal1fl/fl 

mice were crossed with MLC1f−Cre mice, obtaining a first generation of mice 

heterozygous for both the floxed Bmal1 allele and the MLC1f−Cre allele (BM1). 

BM1 mice were crossed a second time with Bmal1fl/fl mice in order to obtain 

homozygous mice for the Bmal1fl/fl allele and heterozygous for the Cre allele 

(BM2). For successive generations these mice were backcrossed to the original 

Bmal1fl/fl line. The resulting Bmal1 mKO mice were always compared to their Cre 

negative control littermates (Figure 4A). 

 

For the inducible Bmal1 muscle specific knockout (Bmal1 imKO) the same 

method was used, breeding the Bmal1fl/fl line with the HSA−Cre line. 

After obtaining the Bmal1fl/fl expressing the CreER, adult mice were treated 

for 5 days with tamoxifen (one daily intraperitoneal injection of 1 mg tamoxifen 

in 10% (v/v) ethanol/sunflower oil) to induce the deletion of the exon encoding 

for the bHLH domain of the Bmal1 gene. Bmal1 imKO mice and their Cre 

negative control littermates were analyzed one month after TAM treatment 

(Figure 4B).  
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Figure 4. Schematic representation of the knockout models. A. Conditional Bmal1 muscle 
specific knockout, crossing of the transgenic line with the Bmal1 floxed gene (exon 9 is 
flanked by two LoxP sites) and the line that expresses the Cre recombinase under the 
MLC1f promoter. The litters that we obtained from this cross are skeletal muscle specific 
KO for Bmal1. B. Conditional Bmal1 inducible muscle specific knockout; the Bmal1 floxed 
line is crossed with the HSA promoter driven Cre recombinase, the knockout is then 
induced in adult animals by the administration of tamoxifen 

 
4.2 Genotyping   
 

Mice pups, approximately one to two weeks of age were numbered according 

to our mouse identification scheme providing an ID for each mouse. A small 

tissue sample was biopsied for genomic DNA isolation.  
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Genomic DNA isolation buffer 
 

100mM Tris HCl pH 7.5 

200µg/ml Proteinase K 

DNA isolation protocol 

 

Extraction of DNA 
 

Biopsies were placed in 50µl of genomic DNA isolation buffer; samples were 

heated to 57ºC for one hour for the DNA extraction, after which the samples were 

brought to 99ºC to inactivate the proteinase K. The genomic DNA was stored 

at −20ºC until used. 

 

Genotyping PCR 
 

For the characterization of the inherited Bmal1 and Cre alleles a standard 

polymerase chain reaction protocol was followed. A mix containing 

Taq polymerase and buffers was used (GoTaq Green Master mix 2x, Promega). 

Forward and reverse primers (Table 1) were added to a final concentration 

of 0.1µM, with 1µl of the isolated genomic DNA solution.  

 

Gene Primer Sequence 5' à 3' 
Primer 
Type 

Bmal1 oIMR7525 ACT GGA AGT AAC TTT ATC AAA CTG Forward 
 oIMR7526 CTG ACC AAC TTG CTA ACA ATT A Reverse 
Cre NSP−780 CAC CAG CCA GCT ATC AAC TCG Forward 
 NSP−979 TTA CAT TGG TCC AGC CAC CAG Reverse 

Table 1. Sequences of the primers used for the genotyping of the mice 

 

Thermal profile for Bmal1 PCR: 

1) 94°C for 3min 

2) 94ºC for 30sec  

3) 56ºC for 1min  

4) 72ºC for 1min 

5) 35 cycles of steps 2 to 4 

6) 72ºC for 1min  

7) 10ºC hold 
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The size of the amplified fragments is expected to be 327bp for the wild type 

allele and 431bp for the mutant allele.  

 

Thermal profile for Cre PCR 

1) 94°C for 3min 

2) 94ºC for 45sec  

3) 61ºC for 30sec  

4) 72ºC for 1min 

5) 40 cycles of steps 2 to 4 

6) 72ºC for 1min  

7) 10ºC hold 

 

The expected amplified fragment size is 200bp. 

 

DNA gel electrophoresis 
 

10µl of the amplified PCR product was analyzed on a 1% (w/v) agarose gel (w/v) 

stained with EuroSafe (Euroclone) a fluorescent nucleic acid stain. 

Then the electrophoretic gel is run in TBE buffer at 100V for 1h and visualized by 

UV light. The ladder used to confirm the expected size of the fragments was 

either a 100bp ladder or a 2−log ladder (BioLabs). 

 

4.3 Sample collection  
 

Following the ethic committee protocol, animals were sacrificed by cervical 

dislocation in order to minimize suffering of the mice. Six animals, three controls 

and three knockouts, were sacrificed at Zeitgeber times ZT0 (lights ON), ZT4, 

ZT8, ZT12 (lights off), ZT16 and ZT20. Tissues were collected and immediately 

frozen in liquid nitrogen for RNA and protein assays.  

 
4.4 RNA 

RNA extraction 
 

RNA was extracted from frozen muscle samples using TRIZol® (Invitrogen) 

according to manufacturer’s instructions. Briefly, a sample of powdered tissue 

was taken and homogenized in TRIzol to disrupt all cell membranes and release 
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RNA, DNA, and protein. Chloroform was used to separate the RNA phase from 

DNA and protein; total RNA was precipitated with isopropanol and finally 

resuspended in 30-50µl of DEPC-treated water. Following NanoVue 

spectrophotometer (General Electrics) determination of RNA concentration, RNA 

quality was controlled by the absorbance ratio OD260/OD280, with a ratio ≥1.8 

RNA was considered acceptable. 

 

RNA retrotranscription 
 

cDNA was obtained from the reverse transcription of the total RNA following 

the protocol: 

 

5−25ng Random primers 

1nM dNTPs 

0.8µg RNA 

Volume up to 26µl dH2O 

Thermal profile  

1) 65ºC for 5min 

2) 4ºC hold 

 
Then add: 

8µl First strand buffer 

2µl of 0.1mM DTT 

2µl RNase Inhibitor  

2µl SuperScript® III RT (Invitrogen) 

Thermal profile  

1) 25ºC for 10min  

2) 42ºC for 50min  

3) 70ºC for 15min  

4) 4ºC hold 
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4.4.1 Microarray 

 

For gene expression profiling, 250ng of RNA from tibialis anterior or soleus 

muscles was hybridized to Mouse Gene 1.0 ST Arrays (Affymetrix) 

Three biological replicates were used per group for each time point.  

 

Gene expression data was normalized and summarized with Robust Multichip 

Average (RMA) using custom Chip Description File (CDF) files (Version 14.1.0; 

EntrezG) to remap the probes on the arrays to recent genome and transcriptome 

library data (Dai et al., 2005).  Differentially expressed genes were determined 

using a default R2 threshold of 0.6 and a cubic regression model in maSigPro 

(microarray Significant Profiles), a two−step regression−based method to identify 

genes with significant temporal expression changes and significant 

differences between experimental groups in time series microarray 

experiments (Conesa et al., 2006). Rhythmic genes that cycle with a 24h period 

were identified using a Benjamini−Hochberg Q−value< 0.2 in the non−parametric 

algorithm JTK_Cycle (Hughes et al., 2010).  Enrichment was assessed using 

Gene set enrichment analysis (GSEA) (Subramanian, Tamayo et al., 2005) using 

gene sets from the TRANSFAC and Biocarta databases. Using default settings, 

gene sets were called significant with a p<0.05 and False Discovery Rate 

(FDR) <0.25. 

 

4.4.2 RT−qPCR  

 

Primer sets were designed using Primer−BLAST (NCBI) and validated 

by gradient PCR and electrophoretic analysis to test for optimal annealing 

temperature, reaction efficiency and specificity prior to use.  

 

cDNA samples were amplified on the 7900HT Fast Real−Time PCR System 

(Applied Biosystems) using the Fast SYBR Green RT−PCR kit (Applied 

Biosystems). All samples were analyzed in duplicates.  
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The thermal profile used for the RT−qPCR was: 

1) 95ºC for 20sec 

2) 95ºC for 1sec 

3) 60ºC for 20sec 

4) 40 cycles of steps 2 and 3 

5) 95ºC for 15sec  

6) 60ºC for 15sec 

7) 95ºC for 15sec 

 

Specificity of gene amplification was confirmed by analyzing the dissociation 

curves of the genes (Table 2) with SDS 2.4 software (Applied Biosystems). 

Analysis was performed using the standard curve method and all data were 

normalized relative to 36B4 mRNA expression.  

 

Table 2. Sequences of the primers used for the RT−qPCR to confirm the microarray data 

 
4.5 Protein methods: Western blotting  

 

Protein isolation buffer 
 

50mM Tris pH 7.5 

150mM NaCl 

10mM MgCl2 

0.5mM DTT 

1mM EDTA 

10% (v/v) glycerol 

2% (w/v) SDS 

1% (v/v) Triton 

1mM NaVO3  

5mM NaF 

3mM Glycerol−2−Phosphate 

Complete® 50x (Roche) 

 

Protein isolation: 
 

Proteins were isolated from cryosections of muscle. Muscles were cut 

in the cryostat and 30 cryosections of 20µm thickness were collected in 1.5ml 

Gene Sequence 5' à 3’  Primer Type 

mBmal1 GCA GTG CCA CTG ACT ACC AA Forward 

 TCC TGG ACA TTG CAT TGC AT Reverse 

m36B4 TAT GGG ATT CGG TCT CTT CG Forward 

  AGC GGT TTT GCT TTT TCATC Reverse 
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vials. 100µl of protein extraction buffer was added trying to cover all cryosections 

and subsequently placed in ice. Next, samples were vortexed and heated up to 

70ºC for 10min with continuous shaking, at approximately 700rpm. After that the 

vials were centrifuged at 4ºC 13000rpm for 15min. The supernatant was collected 

and the pellet was discarded. From the supernatant or protein lysate, 2µl was 

taken for quantification and the remaining protein lysate was stored at −80ºC until 

use. 

 

Protein quantification: 
 

The protein lysate was quantified using the Bicinchoninic acid kit (BCA Kit, 

Pierce), following the manufacturer’s protocol. Briefly, 2µl of protein lysates 

were placed in a final volume of 1ml of BCA. Samples were heated for 30min at 

37ºC, and then immediately placed in ice to stop the reaction. After 10min, 

the absorbance was measured and protein concentration was calculated according 

to the standard curve for the assay.  

 

Immunoblotting: 
 

Protein samples were prepared with 4x LDS sample buffer (Invitrogen) 

and 1M DTT (to a final concentration of 50mM), and heated at 70ºC for 10min 

to denaturate the proteins, then the samples were loaded in 4−12% (w/v) Bis−Tris 

or 3−8% (w/v) Tris−Acetate precast NuPage® SDS-PAGE gels (Invitrogen). 

The gels were run in NuPage® MES SDS running buffer or NuPage® 

Tris−Acetate SDS running buffer (Invitrogen) at 90V for 30min and 150V for 1h.  

Proteins were blotted into PVDF membrane (BioRad) previously activated with 

methanol, in a Transblot® SD SemiDry Transfer cell (BioRad) at 23V for 1h.  

 

Protein loading on the membranes was visualized using a Red Ponceau solution 

(0.5% (w/v) Red Ponceau, 1% (v/v) acetic acid). Membranes were washed with 

a 0.01% (v/v) Tween−Tris−buffered saline solution (TBST) and blocked with 5% 

(w/v) low fat−milk in TBST for 1h at room temperature. Primary antibody 

incubation was carried either at room temperature (RT) or at 4ºC when overnight 

(O.N) depending on the antibody as described in Table 3. 



4. MATERIALS & METHODS 

 
23 

 

Name Manufacturer Code Concentration Incubation  
Secondary Ab. 
HRP−Conjugated 

Actin Sigma A4700 1:10000 30min RT Anti−Mouse 
Actin SantaCruz SPM161 1:10000 30min RT Anti−Mouse 
Bmal−1 AbCam ab93806 1:1000 60min RT Anti−Rabbit 

Bmal−1 
Novus 
Biologicals 

NB100-
2288 

1:500 O.N 4ºC Anti−Rabbit 

Table 3. List of antibodies used for western blotting, manufacturer and code. Concentration 
used and buffer used for dilution (BSA or Milk). Secondary antibody used for each primary 
antibody, all HRP−conjugated anti IgG (H+L). 

 

Secondary antibodies used were goat anti rabbit (H+L) horseradish peroxidase 

(HRP) conjugated, and goat anti mouse (H+L) HRP conjugated. Secondary 

incubation was conducted at a dilution of 1:2000 in 5% (w/v) milk/TBST for 1h at 

room temperature. Membranes were developed with the enhance 

chemiluminescence kit (SuperSignal West Pico Chemiluminescent Substrate, 

Pierce). The chemiluminscence signal from the bands was captured in 

autoradiographic film (Kodak).  

 

4.6 Histology 
 

4.6.1 Cryosections 

 

Muscles were collected from control and Bmal1 mKO animals and then 

immediately frozen in precooled isopentane in liquid nitrogen. Samples were 

stored at −80ºC until the time of sectioning. Immediately prior to sectioning, 

muscles were equilibrated to −20ºC, and cut in the cryostat. Serial sections 

of 8 to 10um thickness were cut and attached to positively charged slides 

(SuperFrost Plus, ThermoFisher). Slides were kept at −20ºC until use. 

 
4.6.2 Histochemistry 

 

Slides containing control and Bmal1 mKO muscle sections were subjected to 

hematoxylin and eosin (H&E) staining, and succinyl dehydrogenase (SDH) 

staining. These are described in detail below.  
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Hematoxylin and Eosin (H&E) staining was used to visualize muscle morphology. 
 

Slides were fixed with 4% (w/v) PFA/PBS and washed three times with PBS. 

They were incubated with hematoxylin for 6min, rinsed in running water 

for 3min, placed in alcoholic acid (0.3% (v/v) hydrochloridric acid/ ethanol) for 

10min, rinsed again in running water for 3min before finally incubating them with 

Eosin for 1min. The sections were then dehydrated with three steps of increasing 

concentrations of ethanol (75%, 95% and 100% (v/v)) for 5min each, and then 

with xylene before mounting with Entellan® (Merk), a resin−embedding medium.  

 

Succinyl dehydrogenase (SDH) Staining 
 

SDH incubation solution: 

1mg/ml Nitroblue tetrazolium 

0.1M Sodium succinate 

0.1M Phosphate buffer 

 

Slides were placed in the SDH incubation solution for 1h at 37ºC, after that they 

were washed in running water for 2min and mounted with Elvanol (polyvinyl 

alcohol, Sigma), a hydrophilic mounting medium.  

 
4.6.3 Immunofluorescence 

 

Slides containing control and Bmal1 mKO muscles were air−dried, and incubated 

with M.O.M blocking reagent (Vector laboratories) to avoid nonspecific binding 

of the antibodies. Slides were incubated with primary antibodies against three 

type of myosin heavy chain listed in Table 4 (Schiaffino et al., 1989), in 

0.5% (w/v) BSA/PBS with 2% (v/v) goat serum for 1h at 37ºC or overnight at 

4ºC. The sections were then washed with PBS three times for 5min, followed by 

an incubation with the fluorophore−conjugated secondary antibody (Table 4, 

made in goat) in a dilution 1:200 in 4% (v/v) goat serum and 0.5% (w/v) BSA in 

PBS for 1h at room temperature. Slides were washed in PBS, rinsed with water 

and mounted with Elvanol (Sandonà et al., 2012).  
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Name Manufacturer Code Concentration Recognize 

Myosin heavy 
chain I 

Developmental 
Studies Hybridoma 
Bank (DSHB, 
University of Iowa) 

BA−D5  1:100   

Myosin heavy 
chain IIB 

DSHB, University 
of Iowa 

BF−F3 1:100  

Myosin heavy 
chain IIA 

DSHB, University 
of Iowa 

SC−71 1:50  

Goat anti 
mouse IgG, Fc_ 
2b subclass 
specific 
DyLight405 

Jackson 
ImmunoResearch 

115−475−207 1:200 BA−D5 

Goat anti 
mouse IgM 
DyLight549 

Jackson 
ImmunoResearch 

115−505−075 1:200 BF−F3 

Goat anti 
mouse IgG, Fc_ 
1 subclass 
specific 
DyLight488 

Jackson 
ImmunoResearch 

115−485−205 1:200 SC−71 

Table 4. List of the antibodies used for the myosin – fiber type characterization 

 

Imaging 

 
Images were captured with an epifluorescence microscope coupled with a CCD 

camera. Different excitation wavelengths and filters were used depending 

on the fluorophore conjugated to the secondary antibody. The software used 

for the image acquisition was the Leica Application Suite (LAS). 

 

4.6.4 Electron microscope preparation 

 

Muscles from control and Bmal1 mKO animals were collected and cut into small 

pieces. The small muscle pieces were fixed in 2.5% (w/v) glutaraldehyde/ 

0.1M sodium cacodylate at 4ºC for 4h. Next, they were subjected to repeated 

washes in 2% (w/v) sucrose /0.1M sodium cacodylate.  Samples were stained with 

1% (w/v) OsO4 /0.1M sodium cacodylate for 2h at 4ºC, then washed with 

2% (w/v) sucrose/0.1M cacodylate four times during 90min. After this, samples 

were subjected to a dehydration process with increasing concentration of ethanol 
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at 4ºC, 50% (v/v) ethanol for 5min three times, 70% (v/v) ethanol 5min three 

times, 95% (v/v) ethanol 10min two times and finally absolute ethanol at room 

temperature for 15min four times. To continue with the dehydration process 

samples were placed in acetone for 15min twice, keeping them always covered 

by the liquid.  

 
For the embedding process, the samples were included in an increasing 

concentration of the Epoxy−embedding medium (resin), starting with 

acetone/resin 2:1 for 30min at room temperature, acetone/resin 1:2 for three hours 

and overnight with the resin allowing it to penetrate the muscle pieces. 

The following day the samples are placed in a sample cast adding fresh resin and 

placing the cast at 70ºC for approximately three days so the epoxy−embedding 

medium can polymerize.  

 

In order to have an idea of the quality of the embedding of the samples 

and to choose the areas of interest semi−thin, 1µm thick, sections were cut in the 

utramicrotome then placed in slides and stained with toluidine blue, once the right 

orientation was found it was possible to continue with the thin sections. Thin 

longitudinal and transverse sections, 70nm thick, were cut for the following 

electron microscopic analysis. Samples were collected in copper grids 

and contrasted with uranyl acetate for 20min followed by washes with water 

and incubation with lead citrate for 5min and rinsed with water.  

 
Imaging 

 

Images from control and Bmal1 mKO muscles were taken with Tecnai 12 (FEI) 

Transmission electron microscope (TEM) coupled to a CCD camera, and using 

the TIETZ software.  

 

4.7 In vivo muscle force measurements 
 
Mice were anaesthetized with a mix of 2% Xylazine® (Bio 98 S.r.l) 

and Zoletil® 100 (Virbac). The sciatic nerve was exposed and electrode wires 

were implanted on both sides of the nerve and the common peroneal nerve 

was dissected. Then the animals were sutured and placed on a table where the foot 
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was fixed to a footplate connected to a muscle lever system (Model 305C; Aurora 

Scientific). Force frequency curves were determined by stimulating the sciatic 

nerve with increasing frequency pausing for 30sec after each stimulus to avoid 

fatigue (Blaauw et al., 2008; Blaauw et al., 2009).  

 
4.8 Statistical analysis 
 

All data are presented as mean ± S.E.M. Data were analyzed with Student’s 

t−tests. Statistical significance was accepted at p−values <0.05. 
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5 RESULTS 
 

5.1 Bmal1fl/fl x MLC1f−Cre mice 

 

5.1.1 Characterization of the animal model  

 

In order to investigate the function of the clock gene Bmal1 in skeletal muscle, 

we generated conditional Bmal1 muscle−specific knockout mice (Bmal1 mKO) 

by crossing the Bmal1fl/fl mice line with the MLC1f−Cre line. Mice homozygous 

for the floxed Bmal1 allele and heterozygous for Cre were used as the 

experimental group, whereas their Cre negative littermates were used as controls. 

First, the genotype of each mouse was established by standard PCR of genomic 

DNA (Figure 5A). Next, RT−qPCR confirmed the specificity of the knockdown 

of Bmal1 exclusively in skeletal muscle in tissue samples from soleus (SOL), 

tibialis anterior (TA) and heart. Whereas in control skeletal muscle Bmal1 mRNA 

expression followed an oscillatory expression across the day/night cycle, in Bmal1 

mKO mice Bmal1 mRNA was drastically reduced and did not maintain its 

oscillatory pattern (Figure 5B). Similarly, BMAL1 protein levels were also 

reduced, as confirmed by western blot analysis of gastrocnemius (GA) muscle 

lysates from control and Bmal1 mKO mice. In these samples a band 

of approximately 60KDa was evident in the control and absent in Bmal1mKO 

mice (Figure 5C). These first results confirmed the successful ablation 

of BMAL1 selectively in skeletal muscle, which allowed us to proceed to 

characterization of the phenotype.  
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Figure 5. Preliminary characterization of the mouse model with disrupted clock gene 
Bmal1. A. PCR product for Bmal1 and Cre, Bmal1 431bp band contains the two LoxP sites; 
Animals with the mutant band for Bmal1 and with the band for Cre are the KOs (*) and 
controls carry the mutated allele (**). B. RT−qPCR for the Bmal1 transcript, (corrected for 
the housekeeping gene 36B4). Showing temporal profile of Bmal1 transcript in slow SOL, 
fast TA and cardiac muscle at Zeitgeber times (ZT0 = lights on, ZT12 = lights off). Note 
the specificity of the Bmal1 excision in skeletal muscle and not in cardiac muscle of Bmal1 
mKO. C. Loss of BMAL1 protein in GA demonstrated by western blot at Zeitgeber time 4 
with an anti−BMAL1 antibody  (AbCam), normalized with panactin (Sigma) 
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5.1.3 Bmal1 mKO phenotype 

 

Initial observations showed that Bmal1 mKO mice reproduce normally, 

and do not present any gross differences in appearance when compared to their 

control littermates. Bmal1 mKO showed a normal growth (Figure 6A) and 

lifespan (Figure 6B). This is in stark contrast with whole body Bmal1 KO mice, 

which were reported to have severely impaired survival and growth, with 

significant reductions in both muscle mass and fiber size. Surprisingly, muscle 

mass increased by ~15% in fast TA and GA muscles from Bmal1 mKO compared 

to control littermates (Figure 6C), and an ~8% increase in fiber size was also 

observed in TA (Figure 6D). 

 

 

Figure 6. Time course of growt and lifespan of control (blue) and Bmal1 mKO (red) mice. 
A. Mean body weight (g) measured until adult age. B. Lifespan curve, note the survival of 
the Bmal1 mKO compared to wild type littermates. C. Muscle weight (mg), comparison of 
tibialis anterior, and gastrocnemius, increased muscle mass in the Bmal1 mKO. D. 
Cross−sectional area of the tibialis anterior relative to control (Significance: * p<0.05 *** 
p<0.01, Student’s t−test). 
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To investigate the role of BMAL1 in muscle morphology, we performed 

histological examination of tibialis anterior (TA) muscle cryosections. We stained 

with hematoxylin and eosin to discern signs of histological changes, and with 

SDH staining to have a preliminary assessment of fiber type composition 

and distribution (oxidative vs. glycolytic). The comparison between control 

and Bmal1 mKO muscles revealed a normal structure without any signs of tissue 

alteration (Figure 7A) and a similar distribution of oxidative and glycolytic fibers 

(Figure 7B).  

 

 

Figure 7. Histological analysis of the TA muscles from Control and Bmal1 mKO mice. 
Cross−section of the TA stained with A. Hematoxylin Eosin (H&E) staining. B. Succinate 
dehydrogenase staining (SDH). Note normal structure and similar distribution of oxidative 
and glycolytic fibers. 
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In control mice electron microscopy reveals normal myofibrillar architecture with 

regular hexagonal distribution of thin and thick filaments, and correct alignment 

of the sarcomeres important for a precise muscle function. In Bmal1−/− mice this 

muscle structure was reported to be severely disrupted (Andrews et al., 2010). 

However, in the Bmal1 mKO muscles, there was no alteration in the organization 

of the thin and thick filaments (Figure 8A) or in sarcomere alignment (Figure 

8B).  

 

 

Figure 8. Myofibrillar architecture visualized by transmission electron microscopy. 
A. Transversal image, normal alignment of thin and thick filaments. B. Longitudinal image 
of the sarcomere organization, see normal disposition of the sarcomere 
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Skeletal muscle is composed of different types of muscle fibers that can 

be classified according to their predominant myosin heavy chain and its 

shortening velocity: type 1 slow, type 2A moderately fast, type 2X fast and type 

2B highly fast fibers (Schiaffino, 2010). In order to determine whether fiber type 

composition is changed in Bmal1 mKO muscles, cross−sections of soleus (SOL) 

and extensor digitorium longus (EDL) muscles from 5−month−old control 

and Bmal1mKO were stained for myosin heavy chain I, IIA and IIB, 

and quantifying the number of fibers stained for each myosin (Figure 9A), Bmal1 

mKO SOL showed a decrease in slow type 1 fibers (p<0.05) accompanied with 

an increase in 2A−type fibers (p<0.05) (Figure 9B upper panel), whereas the 

EDL showed decrease type 2X fibers (p<0.05) with a tendency towards an 

increase in type 2B fibers (Figure 9B lower panel).  

 

 

Figure 9. Fiber−type composition. A. Representative cross−section of the slow soleus 
(SOL) and the fast extensor digitorium longus (EDL) muscles in Bmal1 mKO 
immunostained for myosin type I (blue), type IIA (green), type IIB (red), and type IIX 
(black/ unstained) fibers. B. Quantification of the fiber types; upper panel SOL fiber type 
composition, lower panel EDL fiber type composition note a significant switch towards 
faster type of fibers (*p<0.05, Student’s t−test) 
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5.1.4 Locomotor activity 

 
Mice are nocturnal, and as such are active at night. Considering that in Bmal1 

knockout mice circadian rhythms of locomotor activity were found completely 

disrupted (Bunger et al., 2000), we wondered whether the local disruption of 

Bmal1 exclusively in skeletal muscle would lead to similar changes in circadian 

locomotor activity. Our results showed that the circadian rhythm of activity in the 

Bmal1 mKO mice was normal, with a clear increase in activity during the dark 

phase (Figure 10). While activity rhythm was normal, a significant (~20%) 

increase in activity during the dark phase was observed in Bmal1 mKO mice 

compared to their control littermates. 

 

  
Figure 10. Locomotor activity was monitored by biotelemetry sensors 
implanted in the peritoneum, measuring the free movements of the animals in the cage. Red 
bars show Bmal1 mKO, blue bars control animals 
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5.1.6 Force measurements 

 

We measured the muscle force by stimulating the gastrocnemius muscle 

in anaesthetized mice to investigate whether the ablation of Bmal1 is accompanied 

by a loss in muscle strength, as was the case in the Bmal1 knockout mice, both 

at the level of the whole muscle and single fibers (Kondratov et al., 2006; 

Andrews et al., 2010). Comparing the two groups (control and Bmal1 mKO) 

the absolute force is decreased by 12% in the Bmal1 mKO. When the values 

of the absolute force are normalized by the muscle weight, the difference between 

control and Bmal1 mKO is manifested in a 20% decrease in maximum force 

production (Figure 11). 

 

Figure 11. Force measurements:  Stimulation of the Gastrocnemius muscle in Bmal1 mKO 
and controls. A. Absolute force (force: g, frequency of the stimulus: Hz). B. Normalized 
force by body weight (N/Kg, Hz) (*p<0.05 Student’s t−test). 
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5.2 Gene expression profile 

 
The transcription factor BMAL1 is a crucial component of the molecular clock 

that keeps tissue−specific gene expression entrained to the 24h day/night cycle. 

We therefore wanted to investigate the effect on muscle specific Bmal1 knockout 

on the skeletal muscle circadian transcriptome. Microarray analyses were 

performed in fast TA and slow SOL muscles collected every four hours over a 

total of 24h (Zeitgeber times 0, 4, 8, 12, 16 and 20). The JTK_CYCLE algorithm 

(Hughes et al., 2010) was used to identify genes which cycle within this 24h 

period. A comparison of control fast and slow muscles identified 684 cycling 

genes in control fast TA and 1359 cycling genes in control slow SOL muscle. 

In the absence of the clock gene Bmal1 only 197 genes maintained their circadian 

oscillation in Bmal1 mKO TA, whereas only 693 genes continued to cycle 

in Bmal1 mKO SOL (Table 5 and Figure 12A). These genes would be likely 

regulated by circadian systemic factors, which continue cycling in the absence 

of a functional muscle clock. 

 

Muscle 
Cycling genes in 
control muscles 

Genes still cycling in 
Bmal1 mKO muscles 

Genes no longer 
cycling in Bmal1 mKO 
muscles 

TA 
muscle 

684 197 487 

SOL 
muscle 

1359 693 666 

Table 5. Cycling genes identified by JTK_CYCLE algorithm in muscles from control and 
Bmal1 mKO (BH Q−value< 0.2) 
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Figure 12. Gene expression profile. A. Phase map of circadian transcripts in control SOL 
and TA muscles identified using JTK_CYCLE (BH Q−value <0.2). B. Phase map of 
the differentially expressed genes identified using magSigPro algorithm TA (fast muscle) 
and SOL (slow muscle) in green down−regulated genes and red up−regulated genes. 
Muscles were collected at 4h intervals through the day (white box) and night (dark box) 

 

Using the magSigPro method (Conesa et al., 2006) 931 genes were differentially 

expressed in TA and 706 genes in SOL muscle (Figure 12B).  

 

We were able to validate the results of the microarray by performing RT−qPCR 

on selected genes. As previously demonstrated in Figure 1C, the Bmal1 transcript 

follows a circadian pattern of expression in control TA muscle that is completely 

abrogated in Bmal1 mKO (Figure 13). 
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Figure 13. Microarray analysis of Bmal1 gene (mean±SEM; n=3/time point), was validated 
by qPCR and plotted relative to 36B4 expression (±SEM; arbitrary units; n=3/time point) 
in TA muscles 

 

As expected, genes previously known to be part of the core clock machinery 

showed a markedly altered expression between control and Bmal1 mKO muscles. 

For example the Period genes, directly transcriptional targets 

of the CLOCK:BMAL1 complex showed a decrease in transcript levels. 

Specially, Per1 and Per3 were decreased, but Per2 was only slightly disturbed. 

The oscillatory pattern of Cryptochrome genes, also transcriptional targets of 

CLOCK:BMAL1, was abolished for Cry2 although the levels of Cry1 were 

increased. Clock also showed increased mRNA levels (Figure 14).  
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Figure 14. Transcript levels of core clock genes in A. TA muscle and B. SOL muscle. 
Gene expression was determined by microarray analysis from samples taken every four 
hours during a day (mean ±SEM; n=3 per time point) 

 

Additional target genes of the CLOCK:BMAL1 complex, such as Rev−Erbα, 

PAR family members Dbp, Tef, and Hlf, all showed a marked decrease (Figure 

15), whereas E4bp4/Nfil3, a negative regulator of the BMAL1−dependent 

expression, was increased (Figure 15).  
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Figure 15. Transcript levels of clock associated genes part of secondary loops of regulation 
in A. TA muscle and B. SOL muscle. Gene expression was determined by microarray 
analysis from samples taken every four hours during a cycle of 24h (mean ±SEM; n=3 per 
time point) 

 

Some genes that lost their rhythmicity in Bmal1 mKO muscles have defined 

physiological roles in muscle function. For example, Acvr1b encodes for the 

activin receptor 1b, part of the myostatin receptor complex, or Asb2 codes for an 

E3 ubiquitin ligase expressed in skeletal muscle (Figure 16A). In the Bmal1 mKO 

muscles, cycling Acvr1b was strongly reduced, and expression levels remain 

lower than basal levels in the control muscle. On the other hand, Asb2 levels 

remain constitutively high, corresponding to the peak levels of control muscles. 

 

While some genes lost their oscillatory pattern, it was observed that certain other 

genes maintained their circadian expression. For example: FoxO1, which encodes 

for a transcription factor important in the regulation of muscle mass, shows 

an identical pattern of expression in Bmal1 mKO muscles (Figure 16B). 
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Other genes were only slightly affected, such as Fbxo32, which encodes 

the muscle−specific E3 ubiquitin ligase atrogin1/MAFbx and displays 

a phase−shift of about 4h phase delay in Bmal1mKO (Figure 16B).  

 

Other genes maintained cyclic expression, but with altered levels of expression 

having either increased levels of expression. For example, Myod1 (Figure 16B), 

a myogenic regulatory factor that has been identified as a circadian gene 

(McCarthy et al., 2007) was increased but maintained its temporal profile. 

Alternatively, Ky (Figure 16B), a Z−disk associated protein−coding gene 

(Baker et al., 2010), was shown to be down−regulated in Bmal1 mKO muscles. 

 

  
Figure 16. Transcript levels of cyclic genes. A. Cyclic genes that show an ablation 
of the oscillatory pattern in the Bmal1 mKO. B. Cyclic genes that keep the normal 
oscillatory pattern in Bmal1 mKO, or show phase shift or increased/decreased levels 

 

5.2.1 Altered pathways  

 
In order to identify biologically meaningful changes that occur in Bmal1 mKO 

muscles, Gene set enrichment analysis (GSEA) was performed. First the data was 

analyzed using gene sets from the TRANSFAC database, which groups genes 
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according to the presence of validated transcription factor binding motifs in their 

promoter region. Serving as a validation of our approach, it was interesting to note 

that the top ranking gene sets down−regulated were those under the regulation 

of E4BP4 and HLF, both output regulators of the clock machinery (Table 6, 

p<0.01).  

 

NAME NOM p−value FDR q−value 

V$E4BP4_01 (NFIL3) 0 9.90E−04 

V$HLF_01 1.99E−04 0.001543765 
V$CREBP1_01 (ATF2) 0 0.001834922 

Table 6. Top three significantly TRANSFAC gene sets enriched in control vs. Bmal1 mKO 
and shown to be down−regulated in Bmal1 mKO muscles. p<0.05,  False discovery rate 
(FDD) q<0.25. Bmal1 mKO muscles 

 

Using gene sets from the Biocarta database, which groups genes together based 

on their presence in a common signaling pathway (Table 7), GSEA analysis 

highlighted a number of significantly enriched pathways that were altered 

in muscles from Bmal1 mKO mice compared to controls. In particular, the p38 

pathway was enriched in control muscles, suggesting decreased activity in 

Bmal1 mKO muscles (p<0.05). 

 

Cross−referencing the top ranking gene sets from the analysis using TRANSFAC 

gene set as reference, we noticed that CREBP1, also known as ATF2, was ranked 

among the top gene sets enriched in control muscle (Table 6). ATF2 

is an immediate downstream effector of p38 MAPK pathway. Thus, also 

suggesting decreased activity of the p38 pathway in Bmal1 mKO muscles 

(p<0.01). The p38 pathway is a signaling cascade activated by different stimuli 

such as stress or exercise; ATF2 is a chromatin regulator, which binds to c−AMP 

responsive elements in response to signals from the p38 MAPK and JNK 

pathway.  
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NAME NOM p−value FDR q−value 
NTHI_PATHWAY (NF−kB, downstream of 
p38MAPK) 

3.99E−04 0.048723523 

P38MAPK_PATHWAY 0.012185378 0.17000613 
HDAC_PATHWAY 0.004636162 0.17391846 
CARM_ER_PATHWAY 0.020477137 0.18074787 
IL12_PATHWAY 0.00318408 0.18827936 
TGFB_PATHWAY 0.024860779 0.2003742 
TEL_PATHWAY 0.011890606 0.2154802 
LAIR_PATHWAY 0.029792238 0.22962427 
SPPA_PATHWAY 0.025768086 0.23862484 

Table 7. Pathways down−regulated in Bmal1 mKO. False discovery rate (FDR) q<0.25 

We subsequently performed Leading Edge Analysis to identify genes that 

are common among multiple gene sets, and thus more likely to be of interest. 

The Map2K6 gene, which encodes for MKK6, the upstream activator of the p38 

pathway, was identified in 12 different data sets as a down−regulated gene 

in Bmal1 mKO muscles (Figure 17), seen in both TA and SOL muscles (Figure 

18). From these results we observed that both upstream activators and 

downstream effectors or targets of this pathway are altered in the Bmal1 mKO. 

 

 

Figure 17. Leading edge analysis. A. Down−regulated genes present in different data sets. 
B. Zoom in of the list of common genes down−regulated, note Map2k6 at the top 
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Figure 18. Transcript levels of Map2K6, which encodes for MKK6 protein, at different 
Zeitgeber time points. Note reduced mRNA levels in both TA and SOL from Bmal1 mKO 
(p<0.001) 

 
5.3 Bmal1fl/fl x HSA−Cre (Inducible knockout) 
 

The previously described Bmal1 mKO model had a constitutive lack of Bmal1 in 

the muscle from early postnatal stages. In order to elucidate the role of Bmal1 in 

adult muscle we generated an inducible muscle−specific Bmal1 (Bmal1 imKO), 

by crossing the Bmal1fl/fl line with the tamoxifen inducible HSA−CreER line 

(Figure 4B). Both 2−month−old control and Bmal1 imKO were treated with 

tamoxifen for 5 consecutive days to induced the Cre−LoxP system. 

 

5.3.1 Preliminary characterization 

 
In line with our previous characterization of the Bmal1 mKO, we confirmed that 

the Bmal1fl/fl x HSA_Cre line was carrying the Bmal1 mutant allele (431bp) 

and the Cre allele (200bp) by standard PCR (Figure 19A). Then after activation 

of the Cre activity with the tamoxifen treatment (Schuler et al., 2005), 

the genomic excision of the Bmal1 gene in skeletal muscle was confirmed 

by looking at the transcript levels of Bmal1 in skeletal muscle at different time 

points. Bmal1 mRNA was abolished in the Bmal1 imKO (Figure 19B): 

the circadian oscillation of the transcript disappeared. The final validation was 

at the protein level, where BMAL1 was detected to be depleted in the muscles of 

the induced knockout (Figure 19C). 
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Figure 19. Validation of the animal model. A. PCR for Bmal1 and Cre, Bmal1 431bp band 
contains the two LoxP site; Animals with the mutant band for Bmal1 and with the band for 
Cre are the inducible KOs (*), and those without the Cre are controls (**). Animals were 
treated with tamoxifen and muscles were analyzed one month after the induction of the KO. 
B. RT−qPCR for the Bmal1 transcript, relative to housekeeping 36B4 gene. Left panel: 
average value for each group at Zeitgeber times 0 and 12 (three samples per group), Right 
panel: temporal profile of Bmal1. C. Western blot for BMAL1 (Novus Biologicals) 
normalized with panactin 

 
5.3.2 Lifespan, body weight and muscle weight 

 
Animals from this mouse line were allowed to develop as wild type animals and 

during adulthood the genomic excision of Bmal1 was induced with 5−day 

tamoxifen treatment, and no changes in their lifespan were observed. There was 
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no difference in growth either before or after induction of the knockout (Figure 

20A and Figure 20B, respectively). 

 

 

Figure 20. Growth of the Bmal1 imKO model. A. Body weight before induction with 
tamoxifen. B. Body weight at the time of sacrifice, 40 days after tamoxifen−induced 
knockout. C. Muscle weight. 

 
5.3.3 Circadian rhythms of locomotor activity 

 

We questioned whether a sudden ablation of the BMAL1 transcription factor 

would alter the muscle and so its activity; it was observed that Bmal1 imKO 

showed a normal rhythm of locomotor activity during the day, being more 

abundant during the subjective night (Figure 21).   
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Figure 21. Locomotor activity was monitored by implanted sensors in the peritoneum, 
measuring the free movements of the animals in the cage. Red bars show Bmal1 imKO 
after tamoxifen induction, blue bars control animals 

 

5.3.4 Force measurements 

 
The next step after the induction of the knockout was to determine if the muscle 

physiological behavior was impaired as was previously shown the Bmal1 mKO. 

Our preliminary results did not show significant changes in the force 

of the Bmal1 imKO animals (p>0.05) (Figure 22). 
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Figure 22. Force measurements:  Stimulation of the Gastrocnemius muscle in Bmal1 imKO 
and controls. A. Absolute force (force: g, frequency of the stimulus: Hz). B. Normalized 
force by body weight (N/Kg, Hz) (Student’s t−test). 
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6 DISCUSSION 
 

6.1 Bmal1 deletion in whole body and in skeletal muscle 

 

BMAL1 is known to be an essential component of both central and peripheral 

clocks. Deletion of Bmal1 specifically in skeletal muscle (Bmal1 mKO) allows 

us to investigate its role in muscle physiology without confounding whole−body 

effects. Unlike Bmal1−/− mice, Bmal1 mKO mice show normal locomotor activity 

at night, demonstrating that the light input from the retina to the SCN 

and the circadian entrainment is conserved.  

 

Ablation of the clock gene Bmal1 at the whole body level causes reduced lifespan, 

body weight, muscle mass and loss of circadian locomotor activity 

(Kondratov et al., 2006; Bunger et al., 2000). Rescue experiments in Bmal1 null 

mice showed that re−expression of Bmal1 in the brain restores the periodicity 

of the activity but not its total levels, while rescue in skeletal muscle, albeit 

at constitutively high levels, restored total activity levels without restoring 

rhythmicity (McDearmon et al., 2006). Our findings show that local ablation 

of Bmal1 in skeletal muscle does not decrease lifespan or body weight, 

and in contrast with the findings in Bmal1 null mice, circadian activity rhythms 

in Bmal1 mKO and Bmal1 imKO mice were preserved (Figure 10 and Figure 

21). Surprisingly, the level of activity in Bmal1 mKO mice during the night was 

increased by approximately 20% compared to controls, whereas this difference 

was not seen in Bmal1 imKO mice (Figure 21). 

  

6.2 The effect of Bmal1 mKO on the muscle core clock   
 
The response of the core clock genes (Figure 14 and Figure 15) to the local 

ablation of Bmal1 is consistent with previous results in Bmal1 null mice and 

Bmal1 liver−specific knockout (Kondratov et al., 2006; Lamia et al., 2008). The 

fact that Per2 oscillation is almost unchanged in Bmal1 mKO muscles may reflect 

a role for oscillating systemic signals in the regulation of this gene, as 

demonstrated in liver−specific Bmal1 knockout (Buhr et al., 2010; Kornmann et 

al., 2007). The up−regulation of Clock, Cry and E4bp4 in Bmal1 mKO muscles 
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may be due to the lack of repression (Kondratov et al., 2006). The fact that targets 

of E4BP4 and HLF were down−regulated (Figure 6) is in agreement with 

the changes in their transcript levels. HLF is a transcriptional activator, 

as well as a direct target gene of CLOCK:BMAL1, and its transcript levels 

are markedly reduced in Bmal1 mKO muscles. On the other hand, E4BP4 

is a transcriptional repressor, and its transcript levels are markedly increased 

in the absence of muscle BMAL1, presumably leading to increased repression 

of its targets. In addition, the conserved rhythmic oscillation of other genes, such 

as Per2, reflects a possible regulation by extrinsic factors in the absence of Bmal1.  

Previous studies have shown that through heat shock response pathways, 

temperature acts as an entrainment signal for circadian rhythms in peripheral 

clocks, consistent with the binding of Heat Shock Factor 1 (HSF1) to heat 

shock−binding elements within the upstream region of the Per2 gene 

(Buhr et al., 2010), thus driving the oscillatory pattern of Per2 transcript even 

in the absence of CLOCK:BMAL1−dependent transcription.  

 
6.3 BMAL1 and MyoD  

 
MyoD, a myogenic regulatory factor, has been identified as a circadian gene with 

a peak of expression in the subjective night (McCarthy et al., 2007). Circadian 

expression of Myod1, the gene coding for MyoD, was lost in Bmal1 null mice 

and it was suggested that Myod1 is a direct target of the core clock based 

on the finding that BMAL1 binds the Myod1 promoter and that Bmal1 KO 

and MyoD KO mice show similar changes in muscle structure and function 

(Andrews et al., 2010). However, our results show that Bmal1 mKO muscle 

maintain a circadian pattern of expression for Myod1 and even increased levels 

of Myod1 expression at some time points (Figure 16B). These findings suggest 

that Myod1 oscillation is mainly controlled by systemic circadian cues.  

 

6.4 Bmal1, muscle structure and muscle function 
 

Intriguingly, whole body Bmal1 null mice show a very strong muscle phenotype, 

with marked decrease in muscle mass and muscle force due to severe alterations 

in muscle morphology (Kondratov et al., 2006, Andrews et al., 2010). In contrast, 
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in our muscle−specific Bmal1 mKO model, muscle structure was normal 

and muscle mass was actually increased (Figure 6). In addition, similar 

to Bmal1 null mice, both absolute force and normalized force were depressed 

compared to control muscles (Figure 11). The hypothesis that muscle force 

decrease is due to an altered myofibrillar architecture based on analyses in Bmal1 

null mice (Andrews et al., 2010) was not corroborated in our studies of the 

Bmal1 mKO (Figure 8).  

 

On the other hand, we found that some of the changes in muscle composition 

and muscle function of the Bmal1 mKO are comparable to the changes observed 

in myostatin null mice (mstn−/−). In particular, both knockout models show 

a change in fiber−type profile, with a tendency toward fast type muscle fibers 

(Girgenrath et al., 2005), and an increased muscle mass yet impaired force 

production (Amthor et al., 2007; McPherron et al., 2009). Myostatin is a member 

of the Transforming Growth Factor−β (TGFβ) superfamily, and a negative 

regulator of muscle growth, therefore the lack of myostatin leads to an increase in 

muscle growth. Myostatin binds a receptor complex composed of activin 

receptor 2B and activin receptor 1B, also called Alk4, whose activation leads to 

the phosphorylation and nuclear translocation of Smad2 and Smad3 transcription 

factors (Sartori et al., 2009). Interestingly, Acvr1b, which encodes for Alk4, was 

shown to be a clock−dependent circadian gene whose circadian expression and 

transcript levels are abrogated in Bmal1 mKO muscles (Figure 16).  

 

Our findings would suggest a possible regulatory role for the intrinsic muscle 

clock in the myostatin–activin receptor–Smad pathway, and thus on muscle 

protein synthesis and muscle growth. Indeed, it has recently been shown that 

the circadian clock orchestrates the organization of transcriptional 

and translational processes in liver, modulating transcription of rRNAs, ribosomal 

protein synthesis and ribosome biogenesis, and related signaling pathways, 

therefore controls protein synthesis (Jouffe et al., 2013).  
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6.6 p38 pathway  

 
Different lines of evidence from our microarray analysis indicate that the mitogen 

activated protein kinase (MAPK) p38 pathway is down−regulated in Bmal1 mKO 

muscles. The MAPK p38 pathway is involved in the response to different stress 

signaling stimuli, physical exercise and skeletal muscle contraction 

(Boppart et al., 2001; Akimoto et al., 2005). In cardiac muscle, it was described 

that phosphorylated p38 MAPK, the activated protein, shows a robust 

rhythmicity, which was lost in animals with a disrupted circadian core clock, 

suggesting that cardiac p38 may be under the influence of local cardiac clock 

(Ko et al., 2011).  

 

At the molecular level, p38 is activated via phosphorylation by the mitogen 

activated kinase kinase MKK6, the converging point of activation by external 

stimuli (Figure 23). In turn, activated p38 phosphorylates a wide range 

of substrates, such as the Activating Transcription Factor 2 (ATF2), Myocite 

Enhancer Factor 2C (MEF2C), and, through other kinases, cAMP responsive 

element−binding protein (CREB), Nuclear factor−KappaB (NF−κB) and others. 

We have observed that in Bmal1 mKO mice the p38 pathway is altered 

at different points (Table 7): Map2k6 transcripts, which code for MKK6, 

the upstream activator of p38, were down−regulated (Figure 17), and according 

to GSEA, many transcriptional targets of p38−dependent transcription factors, 

like ATF2 or MEF2C, were also down−regulated (Table 6). Thus all these data 

point to a reduced activity of the p38 pathway in the absence of Bmal1 in skeletal 

muscle. Since the p38 pathway was shown to be stimulated by contractile activity 

(Boppart et al., 2001; Akimoto et al., 2005), we hypothesize that the clock 

machinery may prepare the muscles for the awake/activity phase. If this 

interpretation is correct and confirmed by studies at the protein level, we would 

predict that the Bmal1 mKO mice should have reduced physical adaptation 

abilities in response to exercise.  
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Figure 23. Schematic representation of the p38 MAPK pathway. 

 
6.7 Future perspectives 

 
In order to validate whether the various signaling pathways suggested by our 

preliminary microarray analysis are in fact affected by the ablation of Bmal1, 

it will be important to study the muscle circadian proteome, and to correlate 

the changes observed at the transcript level with those at the protein level. 

However, a complete analysis must also take into account various 

posttranslational modifications, such as phosphorylation or ubiquitination, which 

would affect localization, activity and half−life of these proteins. 

 

Elucidation of the role played by Bmal1 in the regulation of the p38 pathway 

should be first validated by western blot analyses of the key members 

of the pathway at precise time points, looking at the total protein levels as well 

as the active/phosphorylated protein levels. In order to understand whether the 

adaptive ability of the muscles is compromised by the skeletal muscle ablation 

of Bmal1, we suggest subjecting the animals to contractile stimulation, either 
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by voluntary−running or direct electrical stimulation of the sciatic nerve, 

and to analyze the response of the muscles to this mechanical stress. In parallel, 

it will be of interest to study the response of the muscle structural machinery 

to the mechanical stimulation, and particularly to eccentric contractions, which 

are known to reveal hidden vulnerability of altered muscles.  

 
Most experiments we conducted were done in the Bmal1 mKO model; 

in consequence it is possible that some of the differences we have observed 

are caused by compensatory mechanisms due to the lack of BMAL1 during 

postnatal development. Therefore, it would be of great interest to first confirm 

the changes in the circadian gene expression profile in the inducible 

muscle−specific Bmal1 KO model (imKO) by microarray analyses and/or 

RT−qPCR.  
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Rapporto sulla dottorartela Marcia Ivonne Pena Paz

Marcia Ivonne Pena Paz ha svolto il dottorato di ricerca nel mio laboratorio dopo aver
ottenuto una borsa Marie Curie nell'ambito del network europeo FP7 Initial Training Network
(ITN) MUZIC, a cui sono associato insieme al Prof. G. Lanfranchi. Nel corso di dottorato
Ivonne ha lavorato su un progetto di ricerca relativo alla inattivazione del gene circadiano
Bmall nel muscolo scheletrico. Questo progetto ha previsto la generazione di due ceppi di
topi knockout utilizzando il sistema Cre-LoxP. Nel primo modello, topi Binai 1-floxed sono
stati incrociati con topi Mclf-Cre, in cui la Cre ricombinasi è controllata del gene muscolo-
specifico myosin light chain If, per cui l'incrocio causa l'inattivazione di Bmall nel muscolo
sin da stadi precoci dello sviluppo. Nel secondo modello, i topi Bmal1-floxed sono stati
incrociati con topi HSA-Cre-ER, in cui la Cre ricombinasi, legata a un recettore per gli
estrogeni mutato, è controllata dal gene muscolo-specifico human skeletal actin, per cui
l'incrocio causa l'inattivazione di Bmall nel muscolo scheletrico solo nell'animale adulto
dopo trattamento con tamoxifen. Un importante risultato di questo studio è che la rottura del
ritmo circadiano intrinseco del muscolo, conseguente all'inattivazione di Bmall, causa
resistenza all'insulina e disregolazione metabolica con alterazione del metabolismo di
carboidrati, lipidi ed amino acidi nel muscolo scheletrico. Il lavoro che descrive questi effetti,
di cui Ivonne è coautore, è stato inviato per pubblicazione a Celi Metabolism. Altri risultati di
questo progetto saranno oggetto di ulteriori pubblicazioni.

Sotto la diretta supervisione dei miei collaboratori Bert Blaauw e Ken Dyar, Ivonne ha
contribuito in modo importante alle diverse fasi di questo progetto complesso, dagli incroci
dei topi con determinazione del genotipo all'analisi di espressione genica mediante
microarray, PCR quantitativa e immunoblotting, fino alle analisi della distribuzione di
proteine specifiche mediante immunofluorescenza. Nelle prime fasi del suo apprendistato in
laboratorio ha inoltre acquisito esperienza nell'isolamento e nello studio di singole fibre da
muscoli di topo adulto.

Ivonne ha presentato periodicamente i risultati del suo lavoro alle riunioni annuali del
consorzio ITN-MUZIC, oltre che agli incontri della scuola di dottorato di Padova, e ha
frequentato i numerosi Workshops e Summer Schools organizzati da ITN-MUZIC (v.
allegato). Nel congresso EMC 2012 (41st European Muscle Conference), tenutosi a Rodi nel
settembre 2012, Ivonne ha presentato un abstract sul suo lavoro che è stato molto apprezzato,
tanto da essere selezionato per la presentazione orale e da meritare il premio della European
Society for Muscle Research ("ESMR Young Investigator Award") destinato a studenti di
dottorato e giovani postdoc.
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Nel complesso giudico molto positivamente il lavoro svolto da Ivonne come studente di
dottorato e mi auguro che l'esperienza acquisita le sia utile per la sua attività futura.
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Allegato rapporto dottoranda Marcia Ivoime Pena Paz: partecipazione a
workshops/summer schools MUZIC e altri meetings (2010-12)

MUZIC workshops/summer schools

Gene Silencing

Scientific English

Protein - Protein interaction

Electron Microscopy and Tomography

Advance fluorescence microscopy

Summer School-Basic Fluorescence Microscopy

X-ray structure determination

Proteopedia

Communication with public, EMBL

Biphysical characterization and crystallisation

Orai communication skills

Padua, Italy

Padua, Italy

London, England

Leeds, England

Bonn, Germany

Jyvaskyla, Finland

Hamburg,
Germany

Hamburg,
Germany

Hamburg,
Germany

Vienna, Austria

Vienna, Austria

October2012

October2012

June2012

March 2012

November2012

August2011

June2011

June2011

June2011

November 2010

November 2010

Other meetings/congresses

41st European Muscle Conference (speaker, Young Investigator
Award)

MyoAge (speaker]

MyoAge

39th European Muscle Conference

Rhodes, Greece

Barcelona, Spain

Padua, Italy

Padua, Italy

September2012

December2011

October2010

September2010
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