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Enthusiasm is one of the most powerful 
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Be active, be energetic, be enthusiastic and 

faithful, and you will accomplish your 
object. Nothing great was ever achieved 
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Summary 

 
Main goal of forest diseases’ management is to reduce economic, biological and 
aesthetic damages and biodiversity loss caused by plant parasites. The many 
strategies used can be grouped under two main actions, prevention (prophylaxis in 
some early writings) and therapy (treatment or cure). Prevention is limited 
primarily by the lack of knowledge of the organisms involved, including host plants. 
Mathematical models have been used to extend the understanding of plant disease 
epidemiology on a number of fronts, providing an opportunity for a more rational 
use of resources on expensive field trials and representing a step towards more 
sustainable control measures. From a curative point of view, current efforts by 
scientists have focused on developing diseases management (Pest Management = 
PM) concepts in order to balance the benefits of pesticides with the ecological 
concerns of their residues contaminating the environment. 

In this thesis, the two PM principles were applied from an innovative point of 
view on two case studies: ash dieback caused by Hymenoscyphus fraxineus, which 
can be considered the most serious disease for Fraxinus genus in Europe, and 
chestnut ink disease, caused by Phytophthora cambivora and P. cinnamomi. 

In the first part of the thesis, the two diseases are introduced, in order to permit 
the evaluation of similarities and differences (chapter I). 

Subsequently, from chapter II to chapter V, the experimental trials performed 
are described. In particular, in chapter II a study of the ecological niche of H. 
fraxineus, with the characterization of the environmental variables associated with 
naturally infected zones, is reported. This procedure was realized with Species 
Distribution Models (SDM), widely utilized in the ecological field and only recently 
applied to plant pathology. The presence of the pathogen was highly correlated to 
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three summer predictors: abundant precipitation, high soil moisture and low air 
temperature, in comparison with the averages of the study area. The ensemble 
forecasting technique was then applied to obtain a prediction of the potential 
distribution of the pathogen at European scale, considering the distribution maps 
of Fraxinus excelsior and Fraxinus angustifolia, susceptible to the parasite. At last, 
an innovative method of network analysis permitted to identify the suitable areas 
that are not reachable by the pathogen with a natural spread. 

Chapter III reports a study conducted to evaluate six fungicides for their 
potential to control ash dieback. Initially, in vitro tests of the active ingredients 
against five different strains of the pathogen indicated thiabendazole, propiconazole 
and allicin as the most effective fungicides, with lower median lethal doses than 
procloraz. In contrast, copper sulphate and potassium phosphite were totally 
ineffective. Subsequently, the antifungal activities of the best three compounds 
were investigated in planta against H. fraxineus by trunk injection on European 
ashes inoculated with an indigenous strain. The test was preceded by preliminary 
trials to maximize the efficacy of injections; in the experimental conditions highest 
speed was reached with the addition of 1.2 % acetic acid to the aqueous solution 
and making treatments in early morning or late afternoon. Considering the results 
of in planta trial, thiabendazole and allicin significantly slowed down the growth of 
the necroses in the growing season, in contrast propiconazole injections were 
impracticable. 

The studies in chapters IV and V recall the methodologies applied to ash 
dieback, with application to chestnut ink disease complex. In particular, in chapter 
IV fuzzy logic theory was applied considering the environmental variables, such as 
minimum winter temperature, summer drought, slope's aspect, streams' distance 
and soil's permeability, that mainly can influence the development of the disease. 
The model was validated with a broad field survey conducted in a chestnut area in 
Treviso province. Moreover, uncertainty maps (regarding model structure, inputs 
and parameters) were produced for the correct interpretation of the prediction. 
Great part of the chestnut area in the study zone resulted as suitable for the 
development of ink disease, whereas only the 18.8 %, corresponding to higher 
elevation zones, presented inferior risks. 

In a second study (chapter V), a comparative efficacy trial on four potassium 
phosphite formulations by means of endotherapy against chestnut ink disease is 

 

 



 
   

performed. P. cinnamomi was isolated with baiting technique from symptomatic 
chestnuts and was inoculated on 50 asymptomatic trees. As a result of 
endotherapic treatments, the unique solution that significantly slowed down 
necroses' growth was potassium phosphite (35 %) with an addition of 0.1 % 
micronutrient solution. An additional endotherapic trial was conducted in a 
preliminary way in the chestnut where P. cinnamomi was isolated, with the main 
aim to evaluate growth stimulation of active growing callus next to the shape flame 
necroses by the injected solution of potassium phosphite 70 %. In this case, results 
did not highlight a significant difference between treated trees and water control 
ones, probably for the need of longer times for older trees. 

On the base of the achieved results, epidemiological modelling and endotherapic 
treatments, applied both to ash dieback and chestnut ink disease, can represent 
fundamental tools in the management of these important diseases and should be 
applied in an Integrated Pest Management (IPM) approach, together with 
appropriate cultural techniques to maximize benefits. 

 

 

 



 

 

 

 

 



 

 

 

Sommario 

 
Lo scopo principale della gestione delle malattie forestali è la riduzione dei danni 
economici, biologici ed estetici e delle perdite di biodiversità dovute alle malattie 
delle piante. Le molteplici strategie usate nella gestione delle malattie possono 
essere raggruppate in due azioni principali, la prevenzione (anche detta profilassi) e 
la terapia (trattamento o cura). La prevenzione è principalmente limitata dalla 
mancanza di conoscenza in merito all'organismo in oggetto e i suoi ospiti. I modelli 
matematici sono stati utilizzati per approfondire la conoscenza delle malattie delle 
piante con vari obiettivi. Essi offrono l'opportunità di affrontare un uso razionale 
delle risorse riguardo ai costosi monitoraggi e rappresentano un passo fondamentale 
verso misure di controllo più sostenibili. Da un punto di vista curativo, oggigiorno 
gli sforzi sono focalizzati allo sviluppo di concetti di gestione delle malattie che 
bilancino i benefici dei pesticidi con le preoccupazioni in merito ai residui che 
possono contaminare l'ambiente. 
In questa tesi, i due principi della gestione della malattia sono stati affrontati con 
due casi studio: il dissecamento del frassino, causata da Hymenoscyphus fraxineus, 
che può essere considerata la più grave malattia del genere Fraxinus in Europa, e il 
mal dell'inchiostro del castagno, causata da Phytophthora cambivora (Petri) Buism. 
and P. cinnamomi Rands. 

Nella prima parte della tesi sono state introdotte le due malattie, in modo da 
poterne appurare somiglianze e differenze (Capitolo I). 

Successivamente, dal capitolo II al capitolo V sono descritte le prove 
sperimentali effettuate. In particolare, nel capitolo II è stato approntato uno studio 
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della nicchia ecologica di H. fraxineus, con la caratterizzazione di variabili 
ecologiche e ambientali associate a zone naturalmente infette. Tale procedura è 
stata effettuata tramite Species Distribution Models (SDM), ampiamente utilizzati 
in ambito ecologico e da poco tempo anche nell'ambito della patologia vegetale. La 
presenza del patogeno è risultata fortemente correlata a tre variabili ambientali 
estive, in particolare abbondanti precipitazioni, alta umidità del suolo e basse 
temperature, in comparazione con la media dell'area di studio. Successivamente la 
tecnica dell'ensemble forecasting è stata applicata per ottenere una predizione della 
distribuzione potenziale del patogeno a scala europea, considerando la distribuzione 
di F. excelsior e F. angustifolia, ospiti della malattia. Infine, un innovativo metodo 
di network analysis ha permesso di individuare le aree ecologicamente adatte al 
patogeno ma non raggiungibili con una diffusione naturale. 

Nel capitolo III viene descritto uno studio condotto per valutare sei diversi 
fungicidi contro H. fraxineus. Inizialmente è stata effettuata una prova in vitro dei 
prodotti commerciali contro cinque ceppi del patogeno. Tiabendazolo, 
propiconazolo e allicina sono risultati i fungicidi più efficaci, con dose letale 
mediana più bassa, rispetto, per esempio, al principio attivo procloraz. Al contrario, 
il solfato di rame e i fosfiti di potassio si sono rilevati completamente inefficaci. 
Successivamente, i tre migliori fungicidi sono stati applicati in planta tramite 
trattamenti endoterapici su frassini maggiori inoculati al tronco con un ceppo 
autoctono. Tale test è stato anticipato da prove preliminari per massimizzare 
l'efficienza delle iniezioni; nelle condizioni stazionali e climatiche delle prove, 
maggiori velocità sono state raggiunte con soluzione acquosa addizionata con 1.2 % 
di acido acetico, effettuando i trattamenti la mattina presto o nel pomeriggio tardo. 
Considerando i risultati della prova in planta, tiabendazolo e allicina hanno 
rallentato in maniera significativa la crescita delle necrosi, al contrario non si è 
riusciti a iniettare la soluzione a base di propiconazolo. 

I capitoli IV e V riprendono le metodologie applicate contro la patologia del 
dissecamento del frassino, applicandole al mal dell'inchiostro del castagno. In 
particolare nel capitolo IV, la teoria fuzzy è stata adottata nello studio del 
complesso del mal dell'inchiostro, includendo nella costruzione del modello variabili 
ambientali quali temperatura minima invernale, siccità estiva, esposizione, distanza 
da corsi d'acqua e permeabilità del suolo, che più possono influire sullo sviluppo 
della malattia. Il modello è stato validato con un'ampia ricerca sul campo condotta 

 

 



  
   

nei castagneti nell'area di Treviso. Inoltre, sono state prodotte delle mappe 
dell'incertezza (inerenti a struttura, input e parametri del modello) per la corretta 
interpretazione della previsione. Buona parte dell'area a castagneto nella zona di 
studio si è rivelata adatta allo sviluppo del mal dell'inchiostro, mentre solo il 18.8 
%, corrispondente alle aree più elevate, presentava rischi inferiori. 

Un secondo studio (capitolo V) ha riguardato una prova comparativa di efficacia 
di quattro formulazioni di fosfiti di potassio tramite endoterapia. P. cinnamomi è 
stata isolata con la tecnica del baiting in un castagneto affetto da mal 
dell'inchiostro ed è stata inoculata su 50 castagni asintomatici. In seguito ai 
trattamenti endoterapici, l'unica soluzione che ha significativamente rallentato la 
crescita delle necrosi è stata quella a base di fosfiti di potassio (35 %) addizionata 
con 0.1 % di soluzione di micronutrienti. Un'ulteriore prova di endoterapia è stata 
condotta in via preliminare nel castagneto abbandonato in cui era stata isolata P. 
cinnamomi, al fine di valutare la stimolazione alla crescita del callo cicatriziale da 
parte della soluzione iniettata fosfiti di potassio 70 %. I risultati ottenuti in questo 
caso non hanno evidenziato una differenza significativa rispetto ai controlli trattati 
con acqua, probabilmente per una necessità di tempi più lunghi considerando 
piante di età maggiore. 
In base ai risultati raggiunti, la modellistica epidemiologica e i trattamenti 
endoterapici sperimentati in merito alle patologie del dissecamento del frassino e al 
mal dell'inchiostro del castagno possono rappresentare degli strumenti fondamentali 
nella gestione integrata delle malattie considerate, da applicare insieme ad 
appropriate tecniche colturali per massimizzarne i benefici. 
 

 

 



 

 

 

 

 



 

 

 

Table of contents 

  

List of Figures.................................................................................................................... iii 
List of Tables ...................................................................................................................... v 
 
CHAPTER I. Introduction ................................................................................................. 1 

Fraxinus spp. ............................................................................................................. 3 
Ash dieback ............................................................................................................... 6 
Castanea sativa Mill..................................................................................................12 
Chestnut ink disease .................................................................................................14 

 
CHAPTER II. Risk of natural spread of Hymenoscyphus fraxineus with environmental 
niche modelling and ensemble forecasting technique ..........................................................19 

Abstract ....................................................................................................................21 
Introduction ..............................................................................................................21 
Materials and Methods .............................................................................................24 
Results ......................................................................................................................33 
Discussion .................................................................................................................41 

 
CHAPTER III. Efficacy tests on commercial fungicides against Ash dieback in vitro 
and by trunk injection .......................................................................................................45 

Abstract ....................................................................................................................47 
Introduction ..............................................................................................................47 
Materials and Methods .............................................................................................49 
Results ......................................................................................................................52 
Discussion .................................................................................................................56 

 

 



ii Table of contents 
   

 
CHAPTER IV. Large-scale fuzzy rule-based prediction of for suitable chestnut ink 
disease sites: a case study in northeast Italy ..................................................................... 61 

Abstract ................................................................................................................... 63 
Introduction ............................................................................................................. 63 
Materials and Methods ............................................................................................. 65 
Results ..................................................................................................................... 74 
Discussion ................................................................................................................. 80 

 
CHAPTER V. Efficacy of potassium phosphite formulations against chestnut ink 
disease by trunk injection .................................................................................................. 83 

Abstract ................................................................................................................... 85 
Introduction ............................................................................................................. 86 
Materials and Methods ............................................................................................. 87 
Results ..................................................................................................................... 91 
Discussion ................................................................................................................. 94 

 
CHAPTER VI. General discussion and conclusions .......................................................... 97 
 
References ....................................................................................................................... 105 
Scientific production ....................................................................................................... 149 
 
ANNEX 1. Chestnut ink disease symptoms and compromised slope ............................... 151 
ANNEX 2. Epidemiological forecasting modelling - An overview .................................... 152 
ANNEX 3. R code for the construction of the spatially explicit model for H. fraxineus .. 171 
ANNEX 4. Principal optimized parameters for the single models ................................... 173 
ANNEX 5. Contingency tables for the evaluation of the singles model on the test set ... 175 
ANNEX 6. R code for bynomial statistic ........................................................................ 178 
ANNEX 7. Endotherapic trial on ashes against ash dieback ........................................... 179 
ANNEX 8. Forest Pathology decision on manuscript ...................................................... 180 
ANNEX 9. Endotherapic trial on chestnuts against ink disease ...................................... 181 
ANNEX 10. Matlab code for cylinder unwrapping .......................................................... 182 
 
Acknowledgments ........................................................................................................... 183

 

 



 

 

 

24BList of Figures 

 

Fig. 1. Apotecia of H. fraxineus on ash rachisis .................................................................. 8 

Fig. 2. Hypothetical biological cycle of H. fraxineus. .........................................................10 

Fig. 3. P. cinnamomi under the microscope.......................................................................15 

Fig. 4. Synthetic representation of P. cinnamomi life cycle. ..............................................16 

Fig. 5. Study area and presences of H. fraxineus derived from natural infection ...............25 

Fig. 6. Mosaic plots for every single model and weighted average (WA) consensus 
model .................................................................................................................................34 

Fig. 7. ROC curves for the individual models and for the WA consensus model ...............36 

Fig. 8. Estimated spatial distribution of H. fraxineus in Europe according to the 
individual models ...............................................................................................................38 

Fig. 9. Estimated spatial distribution of H. fraxineus in Europe according to the final 
models. ..............................................................................................................................39 

Fig. 10. LD50 values calculated for each active ingredient .................................................53 

Fig. 11. Different performances in injection speed at different moment in the day into 
F. excelsior trunk at breast height. ....................................................................................54 

Fig. 12. Average quantity of different solutions injected in three minutes at 150 cm 
from the soil.......................................................................................................................55 

Fig. 13. Differences in the relative increase of the necrotic areas 3 months after 
treatments. ........................................................................................................................56 

 

 



iv List of Figures 
   

Fig. 14. Map of the study area and locations of the 100 points surveyed for chestnut 
ink disease. ........................................................................................................................ 66 

Fig. 15. Schematic illustration of the central concept of fuzzy logic .................................. 69 

Fig. 16. Different classes symptoms of ink disease. ............................................................ 73 

Fig. 17. Rule view interface used to access individual output values of habitat 
suitability according to input values ................................................................................. 76 

Fig. 18. Predicted spatial habitat suitability for chestnut ink disease in the study area ... 77 

Fig. 19. Outcomes of the propagation of the model structure uncertainty for the study 
area. .................................................................................................................................. 77 

Fig. 20. Outcomes of the propagation of the input uncertainty for the study area ........... 78 

Fig. 21. Outcomes of the propagation of parameter uncertainty for the study area .......... 78 

Fig. 22. Agarose gel of PCR samples after electrophoresis ................................................ 91 

Fig. 23. Some examples of the possible growth of callus tissue .......................................... 92 

Fig. 24. Differences in the relative increase of the necrotic areas after 50 days from the 
treatments ......................................................................................................................... 93 

Fig. 25. Schematic representation of the elements of an epidemic ................................... 152 

Fig. 26. Examples of disease progress curves ................................................................... 155 

Fig. 27. Example of AUDPC computation, conducted in R cran .................................... 156 

 

 

 

 

 

 

 

 

 

 



 

 

 

24B 25BList of Tables 

 

Tab. 1. Environmental variables considered in the study .................................................. 28 

Tab. 2. Parameters used in the evaluation of individual models and the weighted 
average consensus model .................................................................................................... 30 

Tab. 3. Performances of the individual models and the weighted average consensus 
model. ................................................................................................................................ 35 

Tab. 4. Percentages of agreement in relative probabilities predicted by selected 
individual models and the weighted average consensus model on the whole dataset .......... 37 

Tab. 5. Overall Importance of environmental predictors included in model building ......... 40 

Tab. 6. Commercial products and respective active ingredients tested for their 
fungicidal effect against H. fraxineus. ................................................................................ 50 

Tab. 7. Isolates of H. fraxineus chosen for in vitro experiment. ......................................... 50 

Tab. 8. Multiple comparisons between the relative growth of the fungus in the wood 
from June to September (growing season 2013) ................................................................. 56 

Tab. 9. Reference values associated with the nominal classes of soil permeability to 
extract an average value for each grid cell of the study area ............................................. 68 

Tab. 10. Membership functions for input and output variables used in the fuzzy model ... 70 

Tab. 11. Fuzzy rule-based system for inferring habitat suitability for chestnut ink 
disease with input variables. .............................................................................................. 70 

Tab. 12. Parameters used in the evaluation of fuzzy model ............................................... 74 

Tab. 13. Contingency table combining the fuzzy model predictions and monitoring 
data ................................................................................................................................... 79 

 

 



vi List of Tables 
   

Tab. 14. Fuzzy model performance calculated on the basis of monitoring data acquired 
in the study area ............................................................................................................... 80 

Tab. 15. Description of the commercial products used in the endotherapic trial. .............. 90 

Tab. 16. Multiple comparisons between the relative growth of the fungus in the wood 
in 50 days during the growing season of the treated trees toward water control. .............. 93 

Tab. 17. Some examples of the use of LDE in plant pathology. ....................................... 158 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

26BCHAPTER I 

27BIntroduction 

 

 

 

 

 

 

 

 
  

 

 



 

 
 

 

 



Introduction 3 
   

0BFraxinus spp. 
Fraxinus is one of the 24 genus belonging to Oleaceae family. It is considered a 
monophyletic group composed by ca 50 species distributed in temperate and 
subtropical areas in the northern hemisphere (Wallander and Albert, 2000) and 
characterized by pinnate compound leaves. Three species are present in Europe: 
Fraxinus excelsior L. and F. angustifolia Vahl belonging to subgenus Fraxinaster 
(with flowers provided with corolla with wind pollination, which appears before 
defoliation) and F. ornus L. (included in Ornus subgenus, characterized by flowers 
provided with corolla that arises soon after leaves' emission; Bernetti, 2005; 
FRAXIGEN, 2005). 

Among the three above mentioned ashes, F. excelsior, the European or common 
ash, is the most extensively distributed one in Europe; the species is a deciduous 
tree growing up to 40 m tall and with a trunk up to 1 m diameter. The buds are 
pyramidal, from black to dark brown; the apical one has major dimensions than the 
lateral ones. Common ash has compound leaves with 7-15 leaflets with minutely 
serrate margin, with oval to lanceolate shape. Trees can be either only male or 
female or hermaphroditic and flowers are grouped in inflorescences. The fruits are 
samara type, flattened and distally winged (Pignatti, 1997; FRAXIGEN, 2005). 
The growth potential for F. excelsior is strictly correlated to soil's features: the 
species needs for rich, sandy, calcareous loam soil, with pH 7-8 (Pliura and Heurtz, 
2003; FRAXIGEN, 2005). Moreover, common ash does not tolerate drought's 
periods and it is very susceptible to late frosts, that can even provoke its death 
(Lupieri, 2004). Young trees can tolerate shading, in contrast older ones are 
heliophilous and intolerant to lateral competition (Bernetti, 2005). 
Its distribution area covers great part of Europe; the species reaches Atlantic 
coasts, up to Scotland, Denmark and southern regions of Sweden, Norway and 
Finland towards the North, and Ural mountains towards the East, but it can be 
found also in northern Turkey and in Caucasus region; the central zones of Spain, 
Italy and Greece represent the southern limit (Gellini, 1975). In Italy, common 
ashes are comprised mainly in ash-maple woods, whose elevation limits are defined 
by late frosts and water stagnation (Del Favero, 2004); taking this into account, 
the species can reach sub-mountain and mountain heights in Alps and pre-Alps, in 
contrast it can be found only in the northern zone of Apennines (Bernetti, 2005). 
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F. excelsior wood is creamy to light brown, with annular porosity and coarse grain, 
and it does not present differentiated sap wood and heartwood, although it is 
occasionally possible to find a dark-black heartwood (black-heart; Nardi Berti, 
1994). The wood is strong, durable, resilient and easily bent, making it particularly 
suitable for furniture and house interiors, tool handles (e.g. hammers) and sports 
equipment (FRAXIGEN, 2005). 

F. angustifolia, commonly denominated narrow-leafed ash, is an ash with dense 
crown and can reach 25 m height. It can be differed from common ash by the 
brown hairy buds and the leaves composed by 5-7 lanceolate leaflets with the same 
number of teeth as the secondary veins (Pignatti, 1997). Narrow-leafed ashes are 
hermaphroditic and possess inflorescences of the raceme type (FRAXIGEN, 2005). 
In comparison with F. excelsior, narrow-leaved ash well grows on rich and moist 
soils and tolerates temporary flooding; optimum is found for moderately sandy-clay 
soils with pH 5-8 (but usually 6.0-8.0) and depth between 40 and 100 cm 
(FRAXIGEN, 2005). F. angustifolia is a light-demanding species and requires 
precipitation between 400 and 800 mm in order to ensure a growing season from 6 
to 7 months. 
Its distribution reflects the Mediterranean zone; in Italy, it can reach high altitude 
(500-2000 m; FRAXIGEN, 2005). The species can be usually found in the 
remaining strips of planitial wood and on the banks of large rivers (Bernetti, 2005). 
F. angustifolia is an important species for wood production, with similar properties 
of F. excelsior, although a smaller proportion of heartwood (30-56 % contra 52-74 
%). The species has also been widely used as an ornamental tree along roads and 
city streets. 

F. ornus, the manna ash, is a small deciduous trees, usually not more than 15 m 
tall (rarely up to 20 m in humid and rich soils). The buds are grey and slightly 
hairy. Its flowers are small, with four white petals, comprised in big inflorescences, 
mainly with entomophilic pollination (Pignatti, 1997; FRAXIGEN, 2005). 
It is possible to find manna ashes in a limited distribution area in southern Europe, 
from sea level up to an elevation of ca 1500 m. It requires high air temperatures 
and the optimum rainfall is from 500 to 650 mm. The surface root system is 
extensive and requires well-drained soils. 
F. ornus mainly settles down on warm south-facing slopes, generally in association 
with Quercus spp., Castanea sativa Mill., Carpinus spp., Ostrya carpinifolia Scop. 
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and Acer spp. (FRAXIGEN, 2005). Low temperatures are the main limiting factor, 
so manna ashes can be found in southern Europe (mainly Italy and Greece), up to 
the southern zones of Slovakia. 
F. ornus possess a lighter wood than the other two above mentioned species, but it 
does never reach large dimensions. Although its wood has good properties, because 
of its moderate dimensions it has few industrial uses (i.e. tool handles 
construction). Traditionally, manna is collected from the bark of young trees, 
which was formerly used as a laxative and today it is still produced in Sicily, in the 
Castelbuono and Pollina areas (FRAXIGEN, 2005). 
 

Taking into account diseases and pests of ashes, these can be summarized as 
follows: 
- Plant species, such as Hedera helix, Clematis vitalba and Clematis recta; 
- Animal species, e.g. Cervus elaphus, Capreolus capreolus, Sus scrofa, Lepus 

europaeus, Oryctolagus cuniculus; 
- Mites, such as Aceria fraxinivora, Eriophyes fraxinivorus, that lives in the 

inflorescences and causes the formation of leaning galls; Tetranychus urticae (red 
spider mite); 

- Nematodes, e.g. Meloidogyne spp. (root-knot nematodes); 
- Insects, in particular: Prociphilus fraxini, an aphid that conducts its holocycle 

between the epigeous ash parts and the roots of Abies genus and causes 
aesthetic and functional damages; Psyllopsis fraxini, a jumping plant lice that 
induces folding of the edges of leaves turning into brown galls; Tomostethus 
melanopygus, an Hymenoptera whose larvae feed on leaves, leaving only the ribs; 
Lytta vesicatoria, with a similar behavior, which can lead to the whole 
defoliation of ashes; Lithocolletis fraxinella, a micro Lepidoptera leaf miner, that 
causes the typical leaf miner damage with ovoid or elongated shape; Caloptilia 
(= Xanthospilapteryx) syringella, that provokes only aesthetical damages; 
Dasineura fraxini, a gall midge that causes a gall to form on the underside of 
the main vein; Stereonychus (= Cionus) fraxini, leading to moderate damages 
with intense and repeated ashes defoliations during the growing seasons; bark 
beetles such as Leperisinus (Hylesinus) fraxini, Leperisinus (Hylesinus) orni, 
Hylesinus crenatus, Hylesinus oleiperda; Phloeotribus scarabaeoides; Chionaspis 
salicis; Eleucanium sp., Parthenolecanium sp.; Cossus cossus; Zeuzera pyrina; 
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Hyphantria cunea; Lymantria dispar; Euproctis chysorrhoea; Cerambyx cerdo; 
Aegeria aliformi; Operophthera brumata; 

- Bacteria: Pseudomonas syringae ss. savastanoi, causing the bacterial canker of 
ashes branches. The pathogen penetrates the plant through wounds, attacks 
parenchymatic tissues and proliferates through sap flow, originating new 
cancerous formations; 

- Fungi: Phyllactinia guttata and Mycosphaerella fraxini can cause defoliation; 
Venturia fraxini provokes wilting and leaf fall; Nectria cinnabarina and N. 
galligena, Sphaeropsis spp., Armillaria spp., Rosellinia necatrix; Heterobasidion 
annosum, Ganoderma lucidum, G. applanatum Phytophthora cactorum, Fomes 
fomentarius, Polyporus sulphureus, Coriolus versicolor, Schizophyllum spp.; 
Verticillium albo-atrum, Gloeosporium spp. and Apiognomonia spp. (Stergulc 
and Frigimelica, 1996; Ferrari et al., 1999). 

1BAsh dieback 
Ash dieback is a serious disease in Europe causing death of European ash. The 
disease is caused by the ascomycete Hymenoscyphus fraxineus (T. Kowalski) Baral, 
Queloz, Hosoya, comb. nov. (basionym Chalara fraxinea Kowalski, synonym 
Hymenoscyphus pseudoalbidus Queloz et al.; Kowalski, 2006; Queloz et al., 2010; 
Pautasso et al., 2013; Baral et al., 2014; Pautasso et al., 2014), most likely 
introduced from East Asia (Zhao et al., 2012). The disease was first observed on 
Fraxinus excelsior L. in northeastern Poland in the 1990s (Przybył, 2002), but the 
pathogen was identified as the primary causal agent of ash dieback in 2006 
(Kowalski, 2006). Symptoms were also observed in both European (F. angustifolia 
Vahl. and, only under artificial conditions, F. ornus L.) and introduced ash species 
(F. nigra Marsh., F. pennsylvanica Marsh., F. americana L. and F. mandschurica 
Rupr.; Drenkhan and Hanso, 2010; Kirisits et al., 2010; Webber and Hendry, 2012; 
Gross et al., 2014a). All age classes are affected, resulting in terminal decline. 

The symptoms include necrotic leaf spots; wilting of leaves and young shoots; 
premature shedding of leaves; crown dieback; and necrotic bark lesions 
(Schumacher et al., 2010; Dal Maso et al., 2012). Below the bark, the fungus grows 
rapidly in the pith, paratracheal parenchyma and parenchymatic rays and phloem 
(Schumacher et al., 2010). Mycelium can pass through the simple pits between the 
parenchymatic cells and fibres (Dal Maso et al., 2012). H. fraxineus can colonize 
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wood tissues in the three dimensions and ash trees can react with the production of 
epicormic shoots, assuming a bushy appearance. In young stands, dieback causes 
major problems for establishment and regeneration (Lygis et al., 2014), whereas 
older trees show a slower, chronic process (Keßler et al., 2012). The presence of H. 
fraxineus was ascertained in leaves, stems, buds and roots (Przybył, 2002; 
Kowalski, 2006; Schumacher et al., 2007; Kirisits and Halmschlager, 2008). 
Recently, Cleary et al. (2012) also found the fungus inside seeds directly collected 
from a symptomatic tree, with important economic implications. 

From an historical point of view, ash dieback was initially associated to C. 
fraxinea (Kowalski, 2006). At a later stage the fungus was initially associated as 
anamorph to the teleomorph H. albidus (subclass Leotiomycetidae, order Helotiales, 
family Helotiaceae). H. albidus is a saprotroph discomycete, known as Peziza 
(Phialea cyathoidea) albida Rob. already from 1851 and widely distributed in 
Europe. It is a colonizator specific of ash leaves rachises in the litter, where it 
produces white-cream apothecia in the year following the fall, that release 
ascospores with 1-2 septa (Desmazières, 1850; Kirisits and Cech, 2009; Kowalski 
and Holdenrieder, 2009). Further molecular analyses identified the teleomorph of C. 
fraxinea in Hymenoscyphus pseudoalbidus sp. nov. (Queloz et al., 2010). The two 
Hymenoscyphus spp. were denominated "cryptic" because they were considered 
morphologically identical but they presented differences in DNA sequences of 
internal transcribed spacers (ITS), calmodulin gene and elongation factor 1-α. 
Recently, this concept was evolved considering the presence (for H. pseudoalbidus) 
or absence (for H. albidus) of croziers at the ascus (Figure 1) base, strictly 
correlated with molecular characteristics (Baral and Bemmann, 2014). In contrast 
to H. albidus, the pathogenicity of H. pseudoalbidus was proved (McKinney et al., 
2012). Moreover, the same authors found that H. pseudoalbidus is heterothallic, in 
contrast H. albidus is homothallic. This was confirmed by the absence of 
phialophora production by H. albidus colonies in vitro (Kirisits et al., 2013). The 
heterothallism of H. pseudoalbidus can partly explain the genetic variability among 
different strains from different elevations zones (Kraj and Kowalski, 2013) and the 
vegetative incompatibility in vitro among pathogen strains obtained from different 
F. excelsior trees in England (Brasier and Webber, 2013). Considering the new 
rules for pleomorphic fungi naming system dictated by the International Code of 
Nomenclature for algae, fungi, and plants, C. fraxinea and H. pseudoalbidus names 
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were combined by Baral et al. (2014) into:  
Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, Hosoya, comb. nov. 
Basionym: Chalara fraxinea T. Kowalski, For. Path. 36: 265 (2006). 
Synonym: Hymenoscyphus pseudoalbidus Queloz et al., For. Path. 41: 140 (2011). 
The European outbreak of the disease was probably due to the introduction just 

once of at least two H. fraxineus individuals with compatible mating types from an 
Asian region (Gross et al., 2014b). This in accordance with Zhao et al. (2012), who 
reported the presence of H. fraxineus in Japan, recorded in 1993 under the name 
Lambertella albida (a synonym of H. albidus), associated with Fraxinus 
mandshurica. In contrast to F. excelsior in Europe, no disease symptoms caused by 
H. fraxineus have been reported on F. mandschurica in Japan. Furthermore, the 
presence of H. fraxineus has been recorded in China and Korea, with a slightly 
higher variation in gene sequences in comparison to the European reference (Zheng 
and Zhuang, 2013; Han et al., 2014). European populations of H. fraxineus have 
gone through a significant bottleneck during the invasion of the continent (Gross et 
al., 2014b), but this was probably sufficient for the replacement of the native H. 
albidus from its ecological niche (Mckinney et al., 2012). In general. invasive 
pathogens are often predicted to have higher pathogenicity and infectivity than 
native pathogens, which, on the contrary, have co-evolved with the same host for a 
long time, in the presence of favorable environmental conditions (Garbelotto et al., 
2010). 

An hypothesis of H. fraxineus biological cycle was proposed by Gross et al. 
(2012; Figure 2). In autumn infected leaves fall to the ground and the fungus 
winters inside, protected by the characteristic pseudosclerotial black layer that it  

 
Figure 1. Apotecia of H. fraxineus on ash rachisis (Dal Maso E.). 
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sets up on the surface (Kowalski and Holdenrieder, 2009; Kirisits et al., 2013). In 
the study conducted by Gross and Holderieder (2013) it was possible to isolate the 
fungus from these structures also after 92 days of drying, therefore it was possible 
to hypothesize that they can endure at least 2 years in nature. The main 
hypothesis of the cycle is that the mucilaginous conidia of H. fraxineus could be 
produced in autumn at low temperature in droplets from the phialophores 
(Kowalski, 2006) and could act as spermatia (conidiospora), moved by water till 
the fusion with the ascogonia produced by a different mating type (Gross et al., 
2012). Apotecia (Figure 1) are generated in summer on pseudosclerotial layer on 
the rachises remnants in the litter and release ascospores into the air mainly from 
half of July to half of August, early in the morning, probably because their 
maturation takes place in the night when the humidity is high (Timmermann et 
al., 2011; Hietala et al., 2013). Ascospores' infection were first observed two weeks 
after discharge. They can germinate on ash leaflets and rachises, develop germ 
tubes, followed with the production of an appressorium and with subsequent 
penetration of cuticle and epidermal cells (Cleary et al., 2013). More than one 
infection can occur in the same leaf, as verified by Gross et al. (2012). In the 
leaflets the mycelium colonize epidermal, palisade and spongy mesophyll cells and 
the vascular bundles (Cleary et al., 2013). Moreover, H. fraxineus mycelium can, at 
least under experimental conditions, infect through the intact, epidermis of current-
year shoots of common ash and penetrate through leaf scars (Kräutler et al., 2015). 
After the infection, the fungus can develop inside the stem, spreading into the 
phloem below the bark, into the parenchymatic rays and into the xylem (Dal Maso 
et al., 2012), causing the characteristic cankers and dieback. The cycle is closed 
with the fall of leaves in autumn. 

Some strains of H. fraxineus can produce secondary metabolites. The most 
important are viridin and its derivative, viridiol; the first one is phytotoxic and its 
activity was verified on Fraxinus seedlings, the second one has fungistatic and 
antibiotic properties (Andersson et al., 2009; Grad et al., 2009). According to 
Junker et al. (2013), not all the tested H. fraxineus strains produce viridiol in vitro 
and the concentration of the compound is not directly correlated to the pathogen's 
virulence. Moreover, other furanosteroids with structure similar to viridin were 
isolated from the pure culture, but these compounds, in contrast, do not cause 
similar phytotoxic effects on treated seedlings (Andersson et al., 2012).  
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Figure 2. Hypothetical biological cycle of H. fraxineus. 

Pham et al. (2013) extracted from pure culture mycelium other types of secondary 
metabolites, denominated chalarafraxinines, whose concentration is highly 
correlated to the degree of the disease in plants, and they optimized a technique for 
the rapid identification in vitro and in vivo of the pathogen by means of mass 
spectroscopy. Halecker et al. (2014) gave the  name hymenosetin to a 3-
decalinoyltetramic acid antibiotic isolated from cultures of H. fraxineus; the 
metabolite exhibited broad spectrum antibacterial and antifungal activities but was 
inactive in assays for evaluation of phytotoxicity, so it could constitute a defense 
metabolite. Moreover, H. fraxineus produces secondary volatiles metabolites, in 
particular lactones; among the four ones identified by Citron et al. (2014), 3,4-
dimethylpentan-4-olide was found to be a strong germination inhibitor for ash 
seeds, causing necroses in the plant tissue. 

Ash dieback was initially identified in Poland in 2006 (Kowalski, 2006). 
Currently, the disease is present in Austria, Belarus, Belgium, Croatia, the Czech 
Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, 
Lithuania, the Netherlands, Norway, Romania, Russia, Slovakia, Slovenia, Sweden, 
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Switzerland and United Kingdom; recently, symptoms were detected also in 
Croatia, Romania, Russia (Kaliningrad region) and Slovakia (EPPO 2010; Ogris et 
al. 2009; Timmermann et al. 2011; EPPO, 2014). Due to the severity of the disease, 
in 2007, the fungus was added to the EPPO (European and Mediterranean Plant 
Protection Organization, 2007) Alert List and the NAPPO (North American Plant 
Protection Organization) Phytosanitary Alert List (2009); H. fraxineus was later 
deleted from EPPO Alert List because sufficient alert was considered to have been 
given (EPPO, 2014). Trade and consequent transport of ash logs infected by H. 
fraxineus can represent a serious threat for disease free areas. Many authors 
suggested phytosanitary measures such as fumigation, that was used for instance 
for treating oak logs against Ceratocystis fagacearum (Bretz) J. Hunt. At last, 
Hauptman et al. (2013) studied the survival of the pathogen varying moderate high 
temperatures and concluded that a single treatment in water at 36°C for 10 hours 
of ash seedlings infected by H. fraxineus annulled the probability of isolation of the 
pathogen without impairing seedlings vitality. Biosecurity protocols on disinfection 
were proposed to control the disease; in particular, Cooke et al. (2013) proposed 
various physical and chemical methods to restrict the production and spread of 
ascospores, including the removal of plant debris from infected sites, preventing 
movement of infected plant material to new sites, the use of disinfectants to treat 
contaminated footwear, clothing and equipment and the use of fungicides and 
biocides for the treatment of infected debris. Until now information of fungicides 
effective against the disease is not complete (Cooke et al. (2013)), but the potential 
for a cure was considered to be high with carbendazim, being able to stop the 
production of apothecia after fungicidal treatments (Hauptman et al., 2012). These 
authors found, moreover, effective concentrations of urea to inhibit in vitro growth 
of H. fraxineus and formation of its apothecia, but attention should be paid 
because low concentration could even enhance the formation of apothecia or 
positively affect disk area of the developed apothecia (Hauptman et al., 2014). 
Moreover, genetic studies on the resistance toward H. fraxineus were conducted 
with good results on different clones of F. excelsior and permitted to distinguish 
clones with different susceptibility (Pliura et al,. 2011; Kjaer et al., 2012; 
McKinney et al., 2012; Stener, 2013; Cleary et al., 2014; Pliura et al,. 2014). 
Although completely resistant ashes have not been identified yet, identification and 
propagation of highly superior ash trees offers a potential route to revitalize and 
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restore ash forests in the future (McKinney et al., 2014). 
In 2012, the FRAXBACK COST Action was specifically constituted for a period 

of 4 years, in order to share the knowledge on the disease and elaborate guidelines 
for a sustainable management of ashes in Europe. 

2BCastanea sativa Mill. 
Castanea genus, belonging to Fagaceae family, is composed by a variety of 
deciduous trees and shrubs. Most common cultivated species are Castanea crenata 
Sieb and Zucc. (the Japanese chestnut), C. dentata (Marsh.) Borkh. (the American 
chestnut), C. mollissima Bl. (the Chinese chestnut) and C. sativa Mill. (the sweet 
chestnut; MacDonald, 1993). In Italy, sweet chestnut has been cultivated since 
antiquity and find its optimum in the Castanetum area (400 and 1000 m in 
altitude). The species is exothermic and suffers winter temperature inferior to -15 
°C and summer droughts (Lazzara et al., 1990; Borin et al., 2003). 

The sweet chestnut is a deciduous and long-lived species, with 15-20 m average 
height (exceptionally 30-35 m) and a root system robust but little developed in 
depth (Paglietta and Bounos, 1979; Bravo, 1949). It prefers acid, siliceous and 
volcanic soils, with pH between 4.5 and 6.7, with high permeability and organic 
matter content (Lazzara et al., 1990; Bassi, 2008). Minimum rainfall is 800 mm and 
main limitation for nut production is low temperatures, which enable the female 
flowers to be fecundated and to develop a normal kernel (Breisch, 1995). 

Chestnut has been classically described as a monoecious species, with flowers of 
both sexs arising from the leaf axis of current season's growth; male flowers present 
stamens up to 35 cm in length and meiosis occurs in the first week of June in 
Italian cultivars, 10-15 days before anthesis (Botta et al., 1995); female flowers are 
grouped in 3-5 inflorescences and every flower presents generally 7 carpels and 
could have stamen remnants on the base of the style (Pereira-Lorenzo and Ramos-
Cabrer, 2004). Pollen is wind-dispersed and cross-pollination is essential for normal 
production (Breisch, 1995; Soylu et al., 1999). After the fecundation, a thorny husk 
envelops the fruit (Borin et al., 2003). 

New orchards should be established on slopes to take advantage of the good 
drainage (Pereira-Lorenzo and Ramos-Cabrer, 2004); on the contrary, convex 
shaping of land is suggested on plain plot (Bassi, 2008). Chestnut wood for nuts 
production is usually governed as high forest, with low density (100-150 trees/ha); 
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commonly, graft is made in the field after four years (Pereira-Lorenzo and Ramos-
Cabrer, 2004). Orchards for timber and nut production can be also maintained as 
coppice stand, with a much higher density than the nut-only orchards (7 × 7 m). 
Orchards' management consists of pruning (every 5 years), fertilization and 
removal of suckers at the collar (Lazzara et al., 1990). 

Chestnuts are affected by a conspicuous group of pathogens. Since the first 
observation in Genova in 1938, Cryphonectria parasitica (Murr.) Barr causing 
canker blight, has spread quickly in Italy and Europe. The fungus destroys the 
bark and the cambium causing the death of distal branches or of the entire tree 
when girdling around the trunk (Pereira-Lorenzo and Ramos-Cabrer, 2004; 
Vettraino et al., 2008). Biological control is practiced applying hypovirulent strains 
according to Grente's method (Grente and Berthelay-Sauret, 1978). Other parasites 
can be responsible of chestnuts' decline (MacDonald, 1993); in particular root rot 
can be caused by Armillaria spp. Overall, serious root damages can be provoked by 
Phytophthora species associated to ink disease (see next section for further 
information; Vettraino et al., 2008). 

Two chestnut weevils (Cydia splendana Hubner and Curculio elephas Gyll.) and 
two fungi (Phoma endogena Speg. and Rachodiella castaneae Pyr.) were the main 
responsible of nut losses (Pereira-Lorenzo and Ramos-Cabrer, 2004). Since the first 
observation in Italy in 2002, the gall wasp Dryocosmus kuriphilus Yasumatsu has 
spread both by active flight of adults and together with the transport of infected 
material. The pest, originated from China, attacks chestnuts spring shoots and 
buds, inducing severe plant decline and drastic yield reductions (Graziosi and 
Santi, 2008). Trials of biological control started in Italy with the introduction of 
the parasitoid Torymus sinensis Kamijo from China’s mainland, with encouraging 
results (Quacchia et al., 2008; Sartor et al., 2009). 

C. sativa is a multipurpose tree valued for its nuts, timber, secondary products 
(i.e. tannins, honey, associated fungi), forest landscape and biodiversity (Fenaroli, 
1945; Malandrino and Gruppo lavorazioni forestali dell'assolegno, 1983; Lazzara et 
al., 1990; Pereira-Lorenzo and Ramos-Cabrer, 2004). This traditional crop has 
declined in importance due to diseases and low profitability, especially in old 
plantations, together with the abandonment of mountainous areas (Malandrino and 
Gruppo lavorazioni forestali dell'assolegno, 1983; Pereira-Lorenzo and Ramos-
Cabrer, 2004; Buonous, 2005). The species is a long-term investment where returns 
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are limited but nowadays its stable fresh market and the need of life suitability for 
mountain people encourage the growers to establish new plantations and recover 
old orchards (Pereira-Lorenzo and Ramos-Cabrer, 2004; Turchetti and Maresi, 
2008; Beccaro et al., 2009; Blom et al., 2009; Costa et al., 2011). 

3BChestnut ink disease 
Chestnut ink disease (CID) is one of the most destructive diseases of sweet 
chestnut (Vannini and Vettraino, 2001; Vettraino et al., 2005; Choupina et al., 
2014). CID is known since 1917 (Petri, 1917, 1923) and is increasingly spreading in 
many European chestnut forests and plantations (Turchetti and Maresi, 2008; 
Vettraino et al., 2008; Beccaro et al., 2009; Costa et al., 2011; Woodward et al., 
2011). The disease is caused by two soil-borne pathogens Phytophthora cambivora 
(Petri) Buism. and P. cinnamomi Rands; other Phytophthora species were found 
associated with chestnut root system, but their role could be limited to fine roots' 
damage (Vettraino et al., 2005). 

Accordingly to recent taxonomy, Phytophthora genus, comprising over 100 
recognized species (Kroon et al., 2012) and initially included in the Fungi kingdom 
(Petri, 1917), belongs today to kingdom Chromista (Smith, 1988; Hawksworth et 
al., 1995; Agrios, 2005), in particular: 
Kingdom Chromista; Phylum Oomycota; Class Oomycetes; Order Peronosporales; 
Family Pythiaceae; Genus Phytophthora 

The epidemiology associated with Phytophthora is considered multicyclic (Erwin 
and Ribeiro, 1996). The mycelium of P. cinnamomi can produce three type of 
vegetative fructifications: chlamydospores (average diameter 41 µm; Figure 3), 
sporangia (average 75 x 45 µm; Figure 3), within 20-30 natant zoospores are 
produced (25-35 mm; Erwin and Ribeiro, 1996). These spores can move on short 
distances attracted by chemical and electrical signals emitted by the apex of 
growing plant roots (Gara et al., 2005; Deacon, 2000). When a zoospore encounters 
a root, it loses the whips, encysts and adheres to the surface of the root by means 
of an adhesive substance produced by the cellular wall; subsequently, a germ tube 
penetrates the root apex and the mycelium can develop inside the host (Figure 4; 
Gara et al., 2005). 
P. cinnamomi is heterothallic. Sex organs, the oospora (size range 19 - 54 µm, 
depending on the medium), are produced by sexual recombination of A1 and A2  
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Figure 3. P. cinnamomi under the microscope. On the left, the coralloid mycelium; on 
the right, a typical sporangium (Dal Maso E.). 

generations of the pathogen (Figure 4). Phytophthora cambivora is morphologically 
similar to P. cinnamomi and they are considered a unique taxon with different 
genetic structures but unique behavior (Brasier, 1999). 

C. sativa affected by CID exhibits reduced leaf size, dieback of the distal 
branches, canopy dieback, cracked areas at the base, root and collar necroses, bark 
detachment, tannic fluid leaks, gradual decline and host death (ANNEX 1; Vannini 
and Vettraino 2001; Vettraino et al. 2005; Vannini et al., 2010; Prospero et al., 
2013). Disease progression can be slow, leading chestnuts to a chronic dieback, or 
rapid, killing also large trees in few growing seasons (Jung et al., 2000; Balci and 
Halmschlager, 2003; Jung et al., 2005). The loss of chestnuts entailed not only an 
economical and cultural damage, but it compromises also the stability of slopes or 
ridges, leaving them exposed to erosion from runoff rainwater (ANNEX 1; Maresi 
and Turchetti, 2008). 

CID was discovered in Portugal for the first time in 1838 on C. sativa (Crandall 
et al., 1945), but probably was already present in Spain since 1726 (Crandall, 
1950). In Italy Gibelli observed the characteristic symptoms in 1875, but he did not 
identified the pathogen. The species was described for the first time as 
Blepharospora cambivora by Petri (1917). In 1923 the Italian Government issued a 
"Decreto ministeriale di Lotta Obbligatoria", then abrogated in 1998. 

High mortality caused by CID have been observed in various areas of Europe  
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and USA (Anselmi et al., 1996; Olsen, 2000). The soil-borne pathogens are animals 
and waterways dependent for long-range dispersal (Vannini et al., 2010; Gonthier 
and Nicolotti, 2013), while they can disperse actively for little distances as natant 
zoospores (Brasier, 1999). 

CID can be prevented or controlled by integrated chemical and agronomic 
measures and protocols, that imply, for instance, management of water's flows and 
fertilizing (IPC; Bounous and Abreu, 1998; Brasier, 1999; Gentile et al., 2010). 
Hybridization was proposed among the first solutions against CID and there were 
various attempts to obtain resistant varieties that were also vigorous and 
productive, with contrasting results considering acclimatization, adaptability to 
different environment and fruits production (Gomes-Pereira et al., 1993; Bounous 
and Abreu, 1998; Craddock and Bassi, 1999; Guedes-Lafargue and Salesses, 1999; 
Bounous and Beccaro, 2004). 
Among compounds employed in CID chemical control, copper compounds represent 
efficient solutions against Phytophthora spp. First application can be assigned to 
the “Gandolfo” method, consisting in pouring bordeaux mixture 5 % additioned 
with copper oxychloride on the trunk base and main roots, then exposed to winter 
temperature (Paglietta and Bounos, 1979; Vannini and Vettraino, 2001). As 
disadvantages, copper compounds were proved to deliver toxic impact on micobiont 
when applied to the soil (Graham et al., 1986). 
Among systemic compounds, some phenylamide fungicides are indicated as effective 
against Phytophthora. In particular, P. cinnamomi growth is highly sensitive to the 
water soluble metalaxyl (Erwin and Ribeiro, 1996), so that the compound was 
suggested together with copper sulphate for soils treatment. However, its use 
should be carefully considered, as it can entail the insurgence of resistant isolates 
(Franceschini, 2011). 
Phosphonates are effectives both in vitro and in planta against P. cinnamomi and 
P. cambivora (Coelho et al., 2005; Hardy et al., 2001; Wilkinson et al., 2001; 
Gouveia et al., 2010), acting directly at high concentration or stimulating host 
defence at low concentration (Jackson et al., 2000). In comparison with phosphite 
foliar treatments (Pilbeam et al., 2000; Hardy et al., 2001), trunk injection can lead 
to less or none phytotoxic effect, varying considerably with the dose and at a 
family and genus level (Garbelotto et al., 2007). Phosphite trunk injections was 
proved effective against Phytophthora cinnamomi in Avocado and in chestnuts 
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(Darvas et al., 1984; Gentile et al., 2009), but little is known about ideal 
concentration and potential adjuvants. 

Moreover, the positive role of ectomycorrhizae (EMs) in controlling P. 
cambivora and P. cinnamomi infections in chestnut has been demonstrated both in 
laboratory and greenhouse trials on seedlings and micropropagated plants 
(Branzanti and Zambonelli, 1986; Branzanti et al., 1994; Martins et al., 1996, 1997; 
Branzanti et al., 1999). At forest level, ectomycorrhizal community composition 
and abundance can be used as bioindicators of early and asymptomatic stages of 
the disease (Scattolin et al., 2012; Corcobado et al., 2014). 
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4BAbstract 
Ash dieback, caused by the ascomycete Hymenoscyphus fraxineus, is rapidly 
expanding over large geographical areas in Europe. A myriad of factors influence 
pest invasions and long-term establishment, i.e., species' life stage, the availability 
of suitable hosts and the suitability of the environment. This paper examines the 
principal environmental features that characterise naturally infected zones in order 
to forecast the potential distribution of the pathogen within the ranges of European 
ash species by means of Species Distribution Modelling and an ensemble forecasting 
technique. Furthermore, a network analysis permitted dispersal dynamics to be 
included in order to obtain realistic risk predictions for the natural spread. The 
multi-modelling procedure allowed the most endangered regions to be identified as 
the central and eastern Alps, Baltic States, southern Finland and the area 
encompassing Slovakia and southern Poland, whereas most marginal regions of the 
study area appeared less suitable for the natural establishment and spread of the 
disease. Statistical model predictions were highly correlated with abundant summer 
precipitation, high soil moisture and low air temperature. A novel approach to the 
ensemble forecasting technique in epidemiological modelling of plant pathogens is 
suggested as a tool to aid the survey of this infectious disease. Moreover, the final 
potential distribution maps may promote discussions about the control of the 
disease and the risks associated in the trade or movement of ash species. 
Keywords 
ash dieback; Hymenoscyphus pseudoalbidus, Chalara fraxinea; Fraxinus; Species 
Distribution Models; epidemiology. 
Abbreviations 
GDD, Growing Degree Days; TSS, True Skill Statistic; AUC, area under the curve; 
ROC, Receiver Operating Characteristic; GLM, Generalised Linear Model; LOG, 
Logistic Regression Model; SVM, Support Vector Machine Model; MLP, Multilayer 
Perceptron Artificial Neural Network; CHAID, Chi-squared Automatic Interaction 
Detector Classification Tree; WA, weighted average. 

5BIntroduction 
Ash trees in Europe are threatened by a major disease caused by the ascomycete 
Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, Hosoya, comb. nov. 
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(basionym Chalara fraxinea T. Kowalski, synonym Hymenoscyphus pseudoalbidus 
Queloz et al.; Kowalski, 2006; Queloz et al., 2010; Pautasso et al., 2013; Baral et 
al., 2014), most likely introduced from East Asia (Zhao et al., 2012). The disease 
was first observed on Fraxinus excelsior L. in northeastern Poland in the 1990s 
(Przybył, 2002), but the pathogen was identified as the primary causal agent of ash 
dieback in 2006 (Kowalski, 2006). Symptoms were also observed in both European 
(F. angustifolia Vahl. and, only under artificial conditions, F. ornus L.) and 
introduced ash species (F. nigra Marsh., F. pennsylvanica Marsh., F. americana L. 
and F. mandschurica Rupr.; Drenkhan and Hanso, 2010; Kirisits et al., 2010; 
Webber and Hendry, 2012; Gross et al., 2014a). 

Wind-dispersed ascospores, produced during the summer in apothecia on the 
previous year's leaf remnants in the litter, can penetrate and infect ash leaves via 
appressoria (Timmermann et al., 2011; Cleary et al., 2013; Gross et al., 2014a). The 
symptoms that subsequently develop include necrotic leaf spots; wilting of leaves 
and young shoots; premature shedding of leaves; crown dieback; and necrotic bark 
lesions extending to the phloem, paratracheal parenchyma and parenchymatic rays 
below the bark (Schumacher et al., 2010; Dal Maso et al., 2012). 

At the present time, fully effective measures to control the disease are still 
lacking (Cooke et al., 2013; Hauptman et al., 2013, 2014). Due to its rapid spread 
in the majority of European countries (Kowalski, 2006; Timmermann et al., 2011; 
Sansford, 2013), H. fraxineus was added to the EPPO Alert List in 2007 but was 
later deleted because sufficient alert was considered to have been given (EPPO, 
2014). 

Predicting the spread of emerging infectious diseases is fundamental for 
forecasting potential ecological consequences and designing control strategies (Paul 
and Munkvold, 2005; Dupin et al., 2011; Meetmeyer et al., 2011; Jönsson and Thor, 
2012; Santini et al., 2013; Lõhmus and Runnel, 2014), and mathematical models 
have long been widely used for agricultural and forest diseases (ANNEX 2; Paul 
and Munkvold, 2005; Dupin et al., 2011; Van Maanen and Xu, 2003; Meentmeyer 
et al., 2004; Bergot et al., 2004; Auclair et al., 2010), in particular, to predict the 
spread of parasites and pests (Sturrock et al., 2011; Venette and Cohen, 2006; 
Klopfenstein et al., 2009; Pukkala et al., 2005; BenDor et al., 2006) or the risk of 
infection in pest-free areas (Kelly et al., 2007; Ganley et al., 2009; Robinet et al., 
2012). Among those extensively employed, Species Distribution Models (SDMs) can 
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identify statistical or logical functions linking species' occurrences to a series of 
predictors, and project these relationships onto a geographical space, allowing range 
dynamics to be estimated and suitability maps defined (Kamino et al., 2012). 
Infact, the SDM approach is based on the concept of Grinnellian niche as a 
constraint to the potential distribution of species and can easily be implemented 
using ecological and evolutionary assumptions (i.e., selecting the most causal 
environmental predictors or determining a restricted set of competing models in 
multi-model inference; Peterson, 2003; Guisan and Thuiller, 2005). 

Some environmental characteristics connected to a pathogen's biology are known 
or hypothesised from field observations and laboratory experimental proofs. In 
terms of temperature requirements, H. fraxineus can be classified as a mesophile 
(Hietala et al., 2013), considering that most isolates in pure culture show their 
maximal growth rate at approximately 20°C and cease to develop at approximately 
30°C (Kowalski and Bartnik, 2010). However, in ash tissues, the fungus exhibits 
less tolerance to heat (Hauptman et al., 2013). On the other side, the pathogen is 
considered a cold-tolerant organism because of the ability of producing necroses 
during the winter and phialides at low temperature (Kowalski and Bartnik, 2010; 
McKinney et al., 2012). The asexual stage of the pathogen is most likely strongly 
associated with the pseudosclerotial plates that it produces on infected rachises 
(Gross et al., 2014a) and that allow the fungus to overwinter (Schumacher et al., 
2010; Cleary et al., 2013). The main hypothesis for subsequent fertilisation is 
proposed by Gross et al. (2012) and supposes that conidiospores (spermatia), 
readily produced on the petiole in autumn, could be mediated by free water till the 
fusion with an ascogonium (Schumacher et al., 2010; Gross et al., 2012). Ascospores 
of H. fraxineus, produced in the leaf litter by apothecia, are windborne and secure 
the dispersal and spread of the pathogen (Bengtsson et al., 2012; Gross et al., 
2012). They are produced in abundance during several months in late spring and 
summer and are considered drought sensitive (Gross et al., 2014a). Furthermore, 
Husson et al. (Husson et al., 2012) found a positive correlation between soil 
moisture and the percentage of affected collar circumference caused by H. fraxineus 
in northeastern France. Additionally, Gross et al. (2012) supposed that moist soil 
conditions could favour the survival of the pathogen on ash rachises in the litter 
and apothecia production. The discharge of spore has a peak in the morning 
(Timmermann et al., 2011), most likely to prevent spore desiccation and to 
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facilitate germination (Hietala et al., 2013). Moreover, depending on altitude and 
related climatic conditions, the pathogen's apothecia first appear at the end of 
May, June or early July, subsequently with a different duration of dispersal 
(Kräutler and Kirisits, 2012); in addition, the genetic intrapopulation variability of 
H. fraxineus is highly dependent on elevation, and, together, on the number of days 
with snow cover (Kraj and Kowalski, 2013). 

The artificial long-distance movement of infected ash commodities is known to 
have contributed to the spread of the disease (Pautasso et al., 2013; Gross et al., 
2014a), so that a Plant Health Order was introduced in Great Britain to restrict 
imports of ash plants and seeds to those originating in pest-free areas, despite the 
confirmed presence of the pathogen in a number of sites in the country (Elith and 
Leathwick, 2009), but little is known about the natural spread potential of H. 
fraxineus when considering habitat suitability. According to official reports 
(Timmermann et al., 2011; EPPO, 2014), not all the distribution ranges of F. 
excelsior and F. angustifolia are affected yet. By means of an ensemble forecasting 
technique, resulting from a combination of nine distribution models, the main 
objective of this study was to examine the potential natural distribution of the 
parasite in European and neighbouring regions according to the geographical 
distribution of its hosts and to the main environmental features of the sites in 
which the natural presence of the disease was reported. Secondly, the natural 
spread of the pathogen was simulated, in order to consider the role of airborne 
spores in dispersal. In this perspective, nurseries and recent plantations that may 
be associated with the movement of infected plants for planting (Harwood et al., 
2009; Great Britain Forestry Commissioners, 2012; Pautasso et al., 2013; Gross et 
al., 2014a) were intentionally excluded. 

6BMaterials and Methods 
Study area 

The extension of the study area was based on the natural distribution maps of the 
three indigenous European ash species known to be susceptible to the parasite 
under natural conditions (Kirisits et al., 2009, 2010). F. excelsior and F. 
angustifolia distribution maps were obtained from EUFORGEN and FRAXIGEN 
official databases with previous authorisation (EUFORGEN, 2013; FRAXIGEN 
Research Project, 2013), imported into Quantum GIS software (QGIS Development 
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Team, 2013), and then converted into a single georeferenced shapefile 
corresponding to the study area (Figure 5). On the contrary, F. ornus was not 
included in the modelling because this species can develop limited necrotic lesions 
after artificial inoculation but appears to be resistant under field conditions 
(Pautasso et al., 2013). 

Pathogen's presence 
The greatest number of scientific reports of H. fraxineus were collected in a data-
set by means of a wide bibliographic study (used keywords "Hymenoscyphus 
pseudoalbidus", "Chalara fraxinea", "ash dieback", "dieback" or "decline of Fraxinus 
excelsior" or "European ash" or" common ash" or "Fraxinus angustifolia" or " 
narrow-leafed ash", and the combinations of these in all languages of the countries 
included in the study area; time frame for the research 01/06/2013-30/09/2013; 
publications had to be scientific papers referring to records of the disease that were 
spatially included in the study area; Schumacher et al., 2007; Bakys et al., 2009; 
Kirisits, 2008; Jankovský and Holdenrieder, 2009; Kowaslki, 2009; EPPO, 2010; 
Kowalski and Czekaj, 2010; Chandelier et al., 2011; Husson et al., 2011; Kunca, 

 

Figure 5. Study area and presences of H. fraxineus derived from natural infection. 
The area was obtained by merging the chorological maps of F. excelsior and F. 
angustifolia. Stars indicate the 252 localities where the presence of the pathogen was 
associated with a natural infection process. 
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2011; Rytkönen et al., 2011; Witzel and Metzler, 2011; Barić et al., 2012; Baumann 
et al., 2012; Conedera et al., 2012; Timmermann et al., 2011; Husson et al., 2012; 
Koltay et al., 2012; Lenz et al., 2012; Stenström et al., 2012; Županić et al., 2012; 
Bakys et al., 2013; Davydenko et al., 2013; Forestry Commission, 2013; author, 
unpublished data). As the movement of asymptomatic, infected plants for planting 
is responsible for the artificial spread of the disease (Pautasso et al., 2013; Gross et 
al., 2014a), reports in plantations younger than 3 years (the minimum time for 
confirmation that the site could be suitable for the pathogen; Varstvo gozdov 
Slovenije, 2013) and in nurseries were excluded from processing (16 records 
excluded). In this way, 252 sites with symptomatic ashes within the study area 
were considered (Figure 5). 

This type of data can show patchy spatial coverage and some regions where the 
detected ash dieback had a greater recorded density than others, which was most 
likely derived from different sampling methods (Loiselle et al., 2008; Newbold, 
2010). Moreover, these types of records are often closer to roads, rivers, coasts, 
towns and cities or concentrated in areas that are of more interest to collectors 
than they would be if the survey effort were completely random (Hijmans et al., 
2000; Soberón et al., 2000; Funk and Richardson, 2002; Reddy and Davalos, 2003). 
To correct for this spatial bias, the resolution of the final study area was fixed in a 
0.5° x 0.5° regular grid considering the spatial accuracy and precision of species 
records, according to Dungan et al. (2002). Presence points were then intersected 
with this grid, thereby reducing the number of presences to 177 patches containing 
at least one infected point (Farina, 2001). 

Environmental variables 
The predictor set included 12 environmental variables. For every predictor with a 
temporal scale, a subset January 1992 - December 2013 (Timmermann et al., 2011) 
was considered and monthly averages were computed in Raster Map Calculator in 
GRASS GIS (GRASS Development Team, 2013). The variables were selected for 
their relevance to the pathogen’s biology and current main hypotheses on its life 
cycle, as reported in the introduction section. Precipitation, frequency of days with 
frost and monthly mean temperature maps were obtained from available Climatic 
Research Unit (CRU) time-series datasets (Mitchell and Jones, 2005; Harris et al., 
2014), and the Growing Degree Days (GDD) computation was performed with a 
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temperature threshold of -10°C (Snyder, 1985; Hietala et al., 2013). Maximum, 
mean and minimum monthly temperature at a height of 2 m, surface temperature, 
soil moisture (0-10 cm depth) and runoff were obtained from NCEP/NCAR 
Reanalysis 2 (Kalnay et al., 1996; Kanamitsu et al., 2002). Snow cover and 
elevation maps were acquired from MODIS/Terra Snow Cover Monthly Dataset 
(National Operational Hydrologic Remote Sensing Center, 2004) and from SRTM 
90 m Digital Elevation Data (Jarvis et al., 2008), respectively. Wind speed and 
direction were obtained from NCEP/NCAR Reanalysis 2 (Kalnay et al., 1996; 
Kanamitsu et al., 2002) but, after computing monthly averages in the considered 
temporal range, final maps showed no spatial pattern in the study area (Fink et al., 
2010; QGIS Development Team, 2013), also for the months more suitable for 
spores' dispersal (Timmermann et al., 2011). Therefore, these predictors were 
discarded from further analyses. 

To avoid multi-collinearity (Graham, 2003) and model over-fitting (Peterson et 
al., 2007), the 122 environmental predictors (10 monthly predictors plus digital 
elevation data and GDD November-March, according to Table 1) were subjected to 
a collinearity control, based on the Pearson correlation between predictors (Table 
1; Dormann et al., 2013). In this way and according to Peers et al. (2013), when 
the correlation between two variables was statistically significant for r>0.85 and 
p<0.0001 (IBM SPSS Statistics software v. 22, International Business Machines 
Corp., New York, USA; IBM Corp. Released, 2013), the most adequate predictor 
was selected using information about the fungal biology (Dupin et al., 2011; Jopp 
et al., 2011; Braunisch et al., 2013). According to Merow et al. (2013), this 
approach eliminates correlation and allows more parsimonious and interpretable 
models. Finally, the resulting maps were overlaid with the grid’s study area while 
considering the average values in the centroids (the centre points of defined areas; 
de Smith et al., 2007). 

Pre-processing of data 
The modelling was directly trained in the whole study area as no other regions with 
similar environmental ranges, hosts and disease's presence have been detected to 
date (EPPO, 2014), nor could a subplot represent all the considered climatic zones 
(Barve et al., 2011; Owens et al., 2013). Moreover, taking into account the 
unavailability of absence data for the pathogen (Václavíck and Meentemeyer,  
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Chosen predictor Monthly averages 
calculation 

Variables correlated (r>0.85, 
p<0.0001) and discarded 

Digital elevation data     

Mean temperature * 
Maximum, minimum and mean 
temperature at a height of 2 m; 
Skin temperature 

Frost day frequency * Snow cover 
Precipitation *   

GDD November-March   
Maximum, minimum and mean 
temperature at a height of 2 m; 
Skin temperature 

Soil moisture (0-10 cm depth) * Runoff  

Table 1. Environmental variables considered in the study. The table shows the 
variables used for model building and the discarded predictors after the collinearity 
control based on the Pearson correlation (r). Stars indicate the selected predictors for 
which a monthly average was computed. 

2009), background data (also referred as “pseudoabsences”) were included in model 
construction (Elith et al., 2006; Chefaoui and Lobo, 2008; Barbet-Massin et al., 
2012). Pseudoabsences were generated randomly, reducing the number of 
background points to three times the number of presences, according to Wisz and 
Guisan (2009) and Barbet-Massin et al. (2012). The resulting data were then 
separated in three partitions in a split-sample approach (IBM SPSS Statistics 
software v. 22, International Business Machines Corp., New York, USA; Van 
Houwelingen and Le Cessie, 1990; IBM Cop. Released, 2013): training (65 %, 
comprising 115 presences and 345 pseudoabsences) and validation (15 %, with 27 
presences and 80 pseudoabsences) sets were used in the construction and 
calibration of the individual models with the control of overfitting (Sheriff et al., 
2004), respectively. The remaining data (test set, 20 %, with 35 presences and 106 
pseudoabsences) were used for comparing models (Nelles, 2001). 

Species Distribution Modelling procedures 
In accordance with Elith et al. (2006) and Guisan and Thuiller (2005), more than 
one modelling algorithm, both classical and novel, was adopted. Methods were 
grouped on the basis of algorithm class into the following five categories: 1) 
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Regression based models, 2) Classification Trees (Rokach and Maimon, 2008) and, 
within the machine learning community, 3) Artificial Neural Networks (ANN; 
Priddy and Keller, 2005), 4) Support Vector Machine (SVM; Wang, 2005) and 5) 
Maxent (Phillips et al., 2004, 2006). The chosen regression-based models were 
backward stepwise logistic regression (with only main effect or with first order 
interactions; LOG) and a Generalised Linear Model (GLM), considering a binomial 
distribution, previously used extensively in species' distribution studies (Guisan 
and Zimmermann, 2000; Rushton et al., 2004; Segurado and Araújo, 2004; Elith 
and Graham, 2009; Rupprecht et al., 2011; Zurell et al., 2011; Smith and Hoffman, 
2001). CHAID (Chi-squared Automatic Interaction Detector), belonging to the 
category “Classification tree”, was chosen in order to take advantage of multiple 
splitting pathways for each grid’s node (Scarnati et al., 2009; Clark et al., 2012) 
and two models were built, considering both boosting and bagging (bootstrap 
aggregation) procedures (De'ath, 2007). Boosting and bagging procedures were also 
performed within the Artificial Neural Networks (ANN) Multilayer Perceptron 
category (MLP), which is considered more powerful than multiple regression 
models when modelling nonlinear relationships (Guisan and Zimmermann, 2000; 
Williams et al., 2009). The last two machine learning algorithms used were the 
Support Vector Machine (SVM), recently introduced in a species distribution 
context (Guo et al., 2005; Drake et al., 2006), and Maxent (Maximum Entropy 
Model), estimating the target probability distribution by finding the probability 
distribution of maximum entropy (Phillips et al., 2004, 2006; Clark et al., 2012). 
Among the five categories of model construction, 1 to 4 were built in IBM SPSS 
Statistics software (v. 22, International Business Machines Corp., New York, USA; 
IBM Corp. Released, 2013), and the SVM algorithm was implemented in LibSVM 
library (v. 3.17; Chih-Chung and Chih-Jen, 2011), while the Maxent model was 
produced in Maxent software (v 3.3.3k; Phillips et al., 2004, 2006). For each type 
of model, respective statistical parameters were calibrated in order to optimise the 
resulting sensitivity. Multiple runs (maximum = 50) for each model gave the 
distribution probability in each cell, which generated a final output with a mean 
predictive cell value ranging from 0 to 1. 

Evaluation statistics 
To evaluate the performances of the nine models, the predicted values were 
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compared with the test set by means of contingency tables (also called a confusion 
matrix; Li and Guo, 2013) obtained with IBM SPSS Statistics software (v. 22, 
International Business Machines Corp., New York, USA) and considering the 
conventional threshold of 0.5 (Liu et al., 2005) predicted relative probabilities ≥ 0.5 
were classified as presence, whereas relative probabilities < 0.5 were classified as 
absence. The classical measures derived from the confusion matrix and calculated 
in Microsoft Excel (v. 2007, Microsoft Corporation, Redmond, USA; Microsoft, 
2007) were a) overall accuracy, b) specificity, c) sensitivity, d) Kohen's Kappa 
statistic and e) the True Skill Statistic (TSS) (Table 2; Liu et al., 2005; Allouche et 
al., 2006). The Area Under the Curve (AUC) of the receiver operating 
characteristic (ROC; Manel et al., 2001; Brotons et al., 2004; Thuiller et al., 2005; 
Peterson et al., 2008) was obtained in IBM SPSS Statistics software (v. 22, 
International Business Machines Corp., New York, USA), using the obtained  

Measure Formula 

Overall 
accuracy 

TP TN
n
+

 

Sensitivity 
+

TP
TP FN

 

Specificity 
TN

TN FP+
 

Kappa statistic 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

21

TP FP TP FN FN TN TN FPTP TN
n n

TP FP TP FN FN TN TN FP
n

+ + + + + + − 
 

+ + + + +
−

 

TSS 1Sensitivity Specificity+ −  

Fpb 
2 TP

TP FN FP
×

+ +
 

Table 2. Parameters used in the evaluation of individual models and the weighted 
average consensus model. Abbreviations: TSS, True Skill Statistic; WA, weighted 
average; n, total number of cases; TN, true negative; FP, false positive; TP, true 
positive; FN, false negative (sensu Li and Guo, 2013). 
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measures as the probability that one score associated to a random presence site is 
higher than the probability of a random pseudoabsence site (Elith, 2000). The Fpb 
index, specifically relying on presences and pseudoabsences (Li and Guo, 2013), was 
then calculated from the contingency tables. In this way, the regions where the 
pathogen's establishment is possible but did not occur or was not yet detected, 
were not considered. For each category of model construction, only those that 
performed the highest Fpb measures were used to generate relative suitability 
surfaces in the study area and a qualitative comparison in Quantum GIS (QGIS 
Development Team, 2013) was performed. A quantitative comparison was 
performed on the basis of the percentages of agreement among the predicted 
probabilities of selected models that were calculated on the whole dataset 
considering the conventional threshold of 0.5 between presence and pseudoabsence 
(Liu et al., 2005). 

The weighted average consensus model and spatially realistic probability 
Considering that the nine models gave partially different probability maps but 
performed very well in the comparison with the test set, rather than selecting just 
one as definitive, their prediction outputs were combined using a consensus 
modelling framework procedure (Araújo et al., 2005; Marmion et al., 2009a; 
Grenouillet et al., 2011). Furthermore, this approach can enable more robust 
decision-making in the face of uncertainty, in particular in a conservation planning 
context (Araújo and New, 2007). Therefore, a weighted average (WA) was 
calculated on the previous evaluation of the selected modelling techniques but 
because pseudoabsences cannot be considered as confirmed H. fraxineus absences, 
instead of using conventional AUC values as weights (Marmion et al., 2009a, 
2009b), the new measure of Fpb was exploited: 

( )
i

i

pb ijij
j

pbi

F P
WA

F

×
=
∑
∑

 

with P representing the predicted relative suitability (sensu Phillips and Elith, 
2013) of the single model i for each grid cell j. The performance of the new WA 
consensus model was assessed with the same statistics and test set used for the 
individual models described above. 

Because the natural spread of a pathogen is an intrinsically spatial process 
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(Bian, 2004), the spatially explicit model for H. fraxineus in the study area was 
produced to identify possible suitable areas not reachable with a natural spread 
process, using the following procedure. According to a precautionary approach, the 
patches resulting as suitable for the pathogen or useful as transitional zones were 
selected in Quantum GIS (QGIS Development Team, 2013) from the potential map 
obtained from the ensemble modelling technique (Marmion et al., 2009a, 2009b). 
This operation was made through a binary transformation and considered the 
threshold maximising the True Skill Statistic (Barbet-Massin et al., 2012; Jimenez-
Valverde and Lobo, 2007). A script in R (R Core Team, 2013) was written ad hoc 
to generate a network (Wassermann and Faust, 1994; Brooks et al., 2008; Firestone 
et al., 2012) among neighbour polygons with a distance lower than 1.3° 
(approximately 120 km) and with a safety factor of one (two times the maximum 
spread distance indicated in the literature, given that the natural spread rate of H. 
fraxineus can reach 60 km/year (Timmermann et al., 2011; Solheim et al., 2011). R 
code for the construction of the spatially explicit model is included as part of the 
ANNEX 3. The spread of the pathogen from the presence points in the network 
was then simulated in R (100 iterations over time). In this way, the final prediction 
excluded the areas potentially prone to natural spread in the WA consensus model, 
but not the regions gradually reachable from presence areas. 

Relative importance of predictor variables 
The contributions of each environmental variable to the construction of the models 
used in the WA consensus procedure obtained from the software were merged in a 
single relative importance value (OI, Overall Importance) to achieve a more 
readable result. This arrangement was achieved by computing a weighted average 
(Microsoft Excel v. 2007, Microsoft Corporation, Redmond, USA; Microsoft, 2007) 
using the Fpb value associated with each individual model, similarly to the 
construction of the WA consensus model: 

,,
(   )

   i

i

pb i ji j
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Overall Importance of Predictor

F
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=
∑
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where j represents the predictor and i the individual model. 

 

 

 



Risk of natural spread of Hymenoscyphus fraxineus with environmental 
niche modelling and ensemble forecasting technique 33 

   

7BResults 
Extension of the study area 
The shapefile corresponding to the study area included most of Europe plus 
neighbouring countries, from a northern limit in southern Scandinavia to some 
parts of north-western Africa and Anatolia, from Ireland and Portugal to western 
Russia and northern Iran (Figure 5). 

Chosen predictors 
The collinearity test based on the Pearson correlation allowed the number of 
predictors to be reduced from 122 to 50, as reported in Table 1. In particular, the 
maximum and minimum temperature at a height of 2 m, snow cover and runoff 
were discarded from further analyses. From the intersection of the maps with the 
grid, 4576 background samples were obtained and then reduced to 531 to allow 
model building. 

Model fits and comparison 
During model building, each type of algorithm was optimised and the best final set 
parameters are reported as part of the ANNEX 4. The relative efficacy of the 
models on the test set was evaluated by comparing contingency tables (Figure 6, 
see ANNEX 5 for a deepen explanation) and a series of parameters (Table 3). 
Among the models, SVM and MLP built with boosting or bagging procedures and 
Maxent achieved the highest measures of overall accuracy, sensitivity, Kappa 
statistic and TSS. In the comparison of the algorithms on the basis of the ROC 
curve (Figure 7), the SVM and the two MLP models were the best performing in 
predictive accuracy. This result was confirmed by the respective AUC values 
(AUC>0.9; Table 3). Considering specificity and Fpb, the values covered a greater 
range, indicating that LOG with first order interactions and CHAID bagging 
models performed significantly worse than the others in the same categories. As a 
result, the models selected for the WA consensus model for each category of 
construction on the basis of Fpb measures were GLM, SVM, CHAID built with 
boosting procedure, Artificial Neural Network MLP with boosting procedure, and 
Maxent. The WA consensus model often achieved higher performances on the basis 
of the evaluation parameters than the single models used for its construction. 

The projections of the selected models in the QGIS software were visually  
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Figure 6. Mosaic plots for every single model and weighted average (WA) consensus 
model. Mosaic plots were obtained from the contingency tables used to compare 
predicted probabilities with the test set. In each plot, "s = 0" and "s = 1" stand for 
"pseudoabsence" and site with symptomatic ashes in the reference set (test set); "p = 
0" and "p = 1" indicate predicted the unsuitability and suitability scenario by the 
single model. The size of the box obtained from the combination of every "p" with "s" 
is proportional to the number of cases for each contingency table case. In particular, 
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the blue, black, green and red boxes indicate the proportion of "true negative", "false 
positive", "true positive" and "false negative", respectively. Abbreviations: GLM, 
Generalised Linear Model; LOG, Logistic Regression Model; SVM, Support Vector 
Machine Model; MLP, Multilayer Perceptron Artificial Neural Network; CHAID, Chi-
squared Automatic Interaction Detector Model; WA, weighted average. 

 

Model 

O
verall 

accuracy 

Specificity 

Sensitivity 

K
appa 

statistic 

T
SS 

A
U

C
 

F
pb  

GLM 0.81 0.83 0.71 0.49 0.54 0.87 0.88 
LOG, main effects 0.81 0.88 0.58 0.45 0.46 0.88 0.80 
LOG, 1° order 
interactions 

0.55 0.52 0.65 0.11 0.17 0.56 0.47 

SVM 0.89 0.91 0.81 0.69 0.72 0.92 1.22 
MLP, boosting 0.90 0.94 0.74 0.69 0.68 0.92 1.21 
MLP, bagging 0.84 0.88 0.71 0.56 0.59 0.92 0.98 
CHAID, boosting 0.81 0.88 0.67 0.49 0.54 0.85 0.88 
CHAID, bagging 0.81 0.88 0.55 0.43 0.43 0.83 0.76 
Maxent 0.85 0.90 0.65 0.55 0.55 0.90 0.95 
WA consensus model 0.90 0.93 0.77 0.70 0.70 0.94 1.23 
 

Table 3. Performances of the individual models and the weighted average consensus 
model. Performances were computed on the test set considering overall accuracy, 
specificity, sensitivity, Kappa statistic, True Skill Statistic (TSS), the area under the 
curve (AUC) of the Receiver Operating Characteristic (ROC) and Fpb (Table 2). The 
best four values for each parameter are italicised; the bold values indicate the best 
model for each category (according to those presented in the Materials and Methods 
section) on the basis of Fpb measures. Abbreviations: GLM, Generalised Linear Model; 
LOG, Logistic Regression Model; SVM, Support Vector Machine Model; MLP, 
Multilayer Perceptron Artificial Neural Network; CHAID, Chi-squared Automatic 
Interaction Detector Classification Tree; WA, weighted average. 

 

 



36 Chapter II 
   

 

Figure 7. ROC curves for the individual models and for the WA consensus model. 
Sensitivity is plotted against the corresponding proportion of false positives (1-
specificity), at various threshold settings. Abbreviations: GLM, Generalised Linear 
Model; LOG, Logistic Regression Model; SVM, Support Vector Machine Model; MLP, 
Multilayer Perceptron Artificial Neural Network; CHAID, Chi-squared Automatic 
Interaction Detector Classification Tree; WA, weighted average. 

different both in predicted extent and in the levels of the relative probabilities 
(Figure 8). In particular, the GLM forecast a wider potential area, with eastern 
extremes in the Moscow region (Figure 8, A). In the SVM, the potential area was 
more restricted and had higher associated relative probabilities; Figure 8, B). A 
similar result was obtained for the MLP, but with more irregular and fragmented 
areas (Figure 8, C) in addition to the CHAID regression tree model (Figure 8, D). 
The spatial pattern associated with the Maxent model was completely different and 
consisted of a smoother and larger potential distribution with a low relative 
suitability of presence, which also reached some southern zones in the study area 
(Figure 8, E). 

Although the models tended to differ in the magnitude of predicted relative 
probabilities, agreement was reached by all the models in highlighting the central, 
northern and eastern Alps, Baltic States, southern Finland and the zone including 
Slovakia and southern Poland as more suitable areas for the pathogen as potential 
scenarios. 

 

 



Risk of natural spread of Hymenoscyphus fraxineus with environmental 
niche modelling and ensemble forecasting technique 37 

   

Considering the quantitative comparison among these models on the basis of 
predicted relative probabilities in the whole dataset after applying the 0.5 
threshold, the percentage of agreement varied from 86.3 % to 93.4 %, whereas the 
accordance of the models with the WA consensus model achieved higher 
percentages (89.4 % - 96.7 %; Table 4). 

 

Model GLM SVM 
MLP, 
boosting 

CHAID, 
boosting 

Maxent 
WA 
consensus 
model 

GLM - 88.4 88.8 86.3 87.9 89.4 
SVM 88.4 - 93.4 91.7 89.9 96.3 
MLP, boosting 88.8 93.4 - 91.6 90.0 96.7 
CHAID, boosting 86.3 91.7 91.6 - 89.1 94.4 
Maxent 87.9 89.9 90.0 89.1 - 91.5 
WA consensus 
model 

89.4 96.3 96.7 94.4 91.5 - 

Table 4. Percentages of agreement in relative probabilities predicted by selected 
individual models and the weighted average consensus model on the whole dataset. 
The table reports the agreement among relative probabilities predicted by the best 
models for each category chosen according to the Fpb measures reported in Table 3. 
Predicted relative probabilities are rounded to 0 (pseudoabsence) or 1 (presence) using 
the conventional threshold of 0.5 before percentages' computation and comparison. 
Abbreviations: GLM, Generalised Linear Model; SVM, Support Vector Machine Model; 
MLP, Multilayer Perceptron Artificial Neural Network; CHAID, Chi-squared 
Automatic Interaction Detector Classification Tree; WA, weighted average. 

WA consensus and spatially realistic models 
The potential map of H. fraxineus drawn from the WA consensus model appeared 
to be an intermediate result in comparison with previous models (Figure 9, A): the 
areas at major risk of spread (p>0.7), such as the central and eastern Alps, 
Austria, Switzerland, eastern France, central Ukraine, southern and northern 
Poland, northeastern Germany, southern Sweden and Finland, central Denmark, 
southeastern England and the Baltic States, were confirmed and connected by 
areas of low-medium relative probabilities (0.25<p<0.7). 

The final map obtained from the network analysis (threshold obtained for TSS 
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maximisation 0.25) represented the spatially explicit distribution for H. fraxineus 
(Figure 9, B), with the predicted distribution overlapping the greater part of the 
WA consensus map but with some patches, such as in the Pyrenees and Caucasus, 
which were not considered, being not gradually reachable from the potential area in 
Central Europe. 
 

 

Figure 8. Estimated spatial distribution of H. fraxineus in Europe according to the 
individual models. According to the legend, different colours represent different levels 
of predicted relative suitability. A, Generalised Linear Model (GLM). B, Support 
Vector Machine (SVM). C, Artificial Neural Networks Multilayer Perceptron (MLP), 
with boosting building. D, Chi-squared Automatic Interaction Detector (CHAID) 
Classification Tree, with boosting procedure. E, Maxent. 
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Figure 9. Estimated spatial distribution of H. fraxineus in Europe according to the 
final models. According to the legend, different colours represent different levels of 
predicted relative suitability. A, WA consensus model. Ensemble values were 
calculated using a weighted summation approach where predictions from individual 
models were combined on the basis of individual model valuation. B, Spatially explicit 
model, obtained from the network analysis. 

Environmental variables associated with the natural spread of H. 
fraxineus 
Important variables in creating model fits were consistent in all models except for 
Maxent. Of the 50 predictors, the most important ones (OI ≥ 2, OI = Overall 
Importance) are reported in Table 5. Precipitation in July and August were the 
two most important variables, with OI values of 7.2 and 12.1, respectively. 
Precipitation in June and soil water content in August were also relatively strong 
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predictors correlated with the occurrence of ash dieback (OI = 5.7 and 5.6), while 
temperature in July and August played a moderate role (OI = 3.9 and 3.2). In 
general, apart from elevation (OI = 2), the other predictors represented averages 
during the summer months. In particular, when compared to the average values of 
the whole study area, the presence of H. fraxineus was associated with a low mean 
temperature between June and September (16.6 °C), abundant summer 
precipitation (> 80 mm) and higher soil moisture content (> 30 %). 

Environmental predictor 
Overall 

importance 
Mean value in presence 

dataset 

Elevation 2.0 359.2 m 

Mean temperature, January 2.3 -0.5 °C 

Mean temperature, June 2.3 16.8 °C 

Mean temperature, July 3.9 18.1 °C 

Mean temperature, August 3.2 17.9 °C 

Mean temperature, September 2.8 13.7 °C 

Frost day frequency 
December 

2.6 21.7 °C 

GDD November-March 2.0 1743.1 °C 

Precipitation, May 2.5 77.8 mm 

Precipitation, June 5.7 91.4 mm 

Precipitation, July 7.2 100.4 mm 

Precipitation August 12.1 93.8 mm 

Precipitation, September 2.0 82.1 mm 

Soil moisture, March 2.2 0.35 

Soil moisture, July 3.3 0.31 

Soil moisture, August 5.6 0.30 

Table 5. Overall Importance (OI) of environmental predictors included in model 
building. Variables with OI>2 are shown; predictors with OI>6 are in bold, italicised 
text indicates the variables with 3<OI<6. The average value for each predictor 
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considering the dataset of H. fraxineus presences are displayed in the right hand 
column. Abbreviation: GDD, Growing Degree Days. 

8BDiscussion 
Due to the rapid spread of H. fraxineus in Europe reported in recent years (EPPO, 
2014; Gross et al., 2014a), this study was performed to provide a spatial prediction 
of the vulnerability of indigenous ash tree species in Europe, considering the 
distribution of hosts and the main environmental factors associated with naturally 
infected sites. 

Among the nine algorithms compared, the Support Vector Machine (SVM), 
Artificial Neural Network Multilayer Perceptron (MLP) with boosting procedure 
and Maxent models achieved the highest measures of specificity, Kappa statistic, 
Area Under the Curve (AUC) and Fpb, demonstrating that they fit the test set 
better than the other models, which allows projections of observed patterns into 
independent situations and minimises over-fitting of data (Araújo and Guisan, 
2006). Sensitivity, an essential measure in models with presences and 
pseudoabsences, was significantly higher in the Generalised Linear Model (GLM), 
SVM and MLP Artificial Neural Network models. The generally higher 
performance of machine-learning methods, most likely due to peculiar advantages, 
such as robust parameter estimates, model structure learned from data and easy 
fitting of complex interactions, in spite of considering the use of pseudoabsences in 
models evaluation (Chefaoui and Lobo, 2008), was therefore confirmed (Valle et al., 
2013). 

Among the performance measures considered, prominence was given to the Fpb 
statistic. This accuracy assessment was recently proposed by Li and Guo (2013) for 
presence-only modelling, to specifically consider presences and pseudoabsences 
instead of true absences in the confusion matrix (Li and Guo, 2014). Given that the 
performance of such models with regard to Fpb were quite robust, but that their 
predictive maps partially differed in the extension and magnitude of relative 
suitability of the pathogen’s presence, in accordance with Stohlgren et al. (2010), 
the consensus ensemble forecast was calculated as the weighted average of the best 
models, highlighting the areas of agreement among models as expected and thereby 
minimising the weakness of any given algorithm (Araújo et al., 2005; Araúio and 
New, 2007; Marmion et al., 2009b). The resulting model, highlighting the areas 
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suitable for the pathogen, generally outperformed any single algorithm based on the 
evaluation parameters (mainly Kappa statistic, AUC and Fpb) and suggested a 
potential distribution map with higher risk for the central and eastern Alps, Baltic 
States, southern Finland and Sweden, Slovakia and southern Poland. This 
approach can enable more robust decision-making in the face of uncertainty 
(Araúio and New, 2007), however, as suggested by Elith et al. (2010), caution 
should be taken in selecting models for an ensemble forecast. An understanding of 
the data, single models and predictions should not be underestimated, especially in 
the case of a climate change context. 

Species Distribution Models (SDMs) and ensemble forecasting lead to interesting 
conclusions on the ecological appropriateness of some areas to the potential 
pathogenic spread of H. fraxineus (Peterson, 2003). To take into account the 
dispersal limitation (Svenning and Skov, 2004) and obtain a more realistic 
projection, a novel approach to the network analysis was implemented, which 
considered the potential map obtained from the ensemble modelling technique and 
the points where the disease presence can be considered as derived from a natural 
infection. In this way, most of the edging areas of the F. excelsior chorological map 
resulted as unsuitable for a natural spread in the final scenario (i.e., western 
Ireland, part of France and northern Spain, all the southern areas in central Italy, 
the Balkans and northern Turkey and western areas in Russia, the Caucasus and 
Iran). The reported consensus ensemble forecast potential distribution map may 
therefore indicate the areas where the trade of ash species should be under 
particular control. In any event, caution should be taken in transferring predicted 
results from a wider scale to a more local scale (Boychuk et al., 2004; 
Münzbergová, 2004). The disease in Europe most likely originated from a single 
introduction event of the pathogen of at least two individuals with compatible 
mating types and was first observed in the early 1990s in Poland (Gross et al., 
2014b), although there is an hypothesis of the introduction of the pathogen 
together with the importation of F. mandschurica to Estonia (Drenkhan et al., 
2014). The computed network analysis based on current presence points aimed to 
deliver realistic predictions, so the potential distribution in the case that the 
disease originated in others regions was not implemented. 

The expected spread to F. angustifolia largely resulted as low, except for some 
areas in northern Italy, Slovenia, Croatia, Bosnia-Herzegovina and Romania, 
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confirming the hypothesis of Gross et al. (2014a), who reported that the epidemic 
rate in Europe is slowing down, the sill of a sigmoid function of spatial growth 
against time has been reached. Similar studies on invasive pest modelling suggest 
that environmental conditions may serve as a constraint limiting the spread in 
respect to the hosts' distribution. For instance, Podger et al. (Podger et al., 1990) 
considered the establishment of Phytophthora cinnamomi in potential areas with 
annual mean temperature < 7.5°C and annual mean rainfall < 600 mm as unlikely. 
Moreover, Koch and Smith (2008) estimated the potential spread of non-native 
Xyleborus glabratus in the southeastern U.S. and concluded that climatic conditions 
could prevent the spread from coastal plain to eastern interior forests. 

As a result of the modelling, precipitation, soil moisture and air temperature 
were shown to be significantly more influential than other predictors in model 
building of the potential distribution of H. fraxineus. In particular, the species 
distribution appeared to be highly dependent on abundant rainfall and high soil 
moisture content in the summer months, confirming the hypothesis of more intense 
ash dieback near water courses or in high soil moisture sites (Cech, 2008; Ogris, 
2008) and supporting the hypothesis of Gross et al. (2012) about the importance of 
free water for the fertilisation of the H. fraxineus anamorph on petioles. Summer 
mean temperatures were also relevant for model construction of the pathogen 
niche, consistent with available information on the species (Hauptman et al., 2013). 
In an ecological and biological interpretation, the temperature ranges highlighted 
by the models could be necessary for apothecia production, known to occur from 
May to October, with a peak in July, with a minimum temperature of 1.1°C and 
optimum temperature of 22°C (Ogris, 2010; Timmermann et al., 2011). Considering 
the low January mean temperature in areas where the species was present (-0.5°C), 
various studies indicate that the fungus can develop within the plants over the 
winter, causing necrosis (Sansford, 2013), and the mycelium tolerates freezing at -
20°C for at least two months and can even survive-70°C for at least one month 
(Gross et al., 2014a). In addition, conidial sporulation is favoured in vitro by 
temperatures between 5 and 15°C (Kowalski and Bartnik, 2010) and was observed 
in nature in autumn on ash rachises in the ground litter (Kirisits et al., 2009). 

Modelling was directly trained on the entire study area in order to cover all the 
environmental gradients in the distributions of F. excelsior and F. angustifolia and 
to avoid underestimating climatic factors in delimiting species' distribution (Barve 
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et al., 2011). Moreover, attention must be paid in considering relative suitability 
predictions of the models, because of the possible lack of equilibrium, which is 
typical of an invasive pathogen not yet reaching its full potential distribution (Elith 
et al., 2010). For this reason, further reports of ash dieback over time, including the 
probable original Asian distribution (Zhao et al., 2012; Zheng and Zhuan, 2013), 
could be easily taken into account to enlarge the boundaries of the Grinnellian 
niche (closer to equilibrium, according to Pulliam, 2000; Anderson et al., 2004; 
Václavík and Meentmeyer, 2012). The availability of a wider time series, including 
data on ash dieback severity and host abundance, will allow the consideration of 
the spread dynamics of the disease in the context of different landscapes and in a 
climate change scenario (Rosenzweig et al., 2001; Anderson et al., 2004; 
Chakraborty, 2005). More detailed mathematical analyses are in progress, to 
identify the specific high performance components in the machine learning models 
able to describe the biological and ecological complex interactions involved in the 
expression of the disease. 
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31BEfficacy tests on commercial fungicides against Ash 
dieback in vitro and by trunk injection 
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9BAbstract 
Ash dieback, caused by Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, 
Hosoya, comb. nov. (basionym Chalara fraxinea T. Kowalski, synonym 
Hymenoscyphus pseudoalbidus Queloz et al.), has emerged as a critical disease in 
urban areas and in the forests of many European countries. This study was 
conducted to evaluate six fungicides for their potential to control the disease. In 
vitro assays with different concentrations of the products against five different 
strains of the pathogen, illustrated that thiabendazole, propiconazole and allicin 
exhibited lower median lethal doses, procloraz completely killed half of the samples 
at higher concentrations, whereas copper sulphate and potassium phosphite were 
totally ineffective. Subsequently, the antifungal activities of the best three 
compounds were investigated in planta against H. fraxineus by trunk injection. The 
rate of necroses development following artificial inoculation of 24 F. excelsior was 
significantly slowed down in the growing season by the treatment with 
thiabendazole and allicin. In the phenological phase and climatic conditions tested, 
and with the chosen formulation and injection method, propiconazole injections 
were impracticable. The results of this study, along with some technical suggestions 
for application in the field, support the idea of using organic and chemical 
endotherapic products to combat ash dieback symptoms in Fraxinus spp., with the 
safe and very low impact method of trunk injection. 
Keywords 
allicin, Chalara fraxinea, endotherapy, Fraxinus excelsior, Hymenoscyphus 
fraxineus, thiabendazole. 

10BIntroduction 
Over the last 14 years, an increasing decline in ash trees (Fraxinus excelsior L. and 
F. angustifolia Vahl) has been noted in Northern and Central Europe. According to 
Kowalski (2006) and Queloz et al. (2011), this has been caused by the Ascomycete 
Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, Hosoya, comb. nov. 
(basionym Chalara fraxinea T. Kowalski, synonym Hymenoscyphus pseudoalbidus 
Queloz et al.). Also pathogenicity was noted against the European F. ornus L., the 
North American F. nigra Marsh., F. pennsylvanica Marsh., F. americana L. and 
the Asian F. mandschurica Rupr. (Drenkhan and Hanso, 2010; Kirisits et al., 
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2010). 
All age classes are affected, resulting in terminal decline. Infection takes place on 

leaves or at the leaf rachises, after wind dispersal of ascospores in summer from 
apothecia developed from pseudosclerotial plates in infected leaf remnants in the 
litter (Cleary et al., 2013; Gross et al., 2014a). Infected leaves desiccate and the 
pathogen develops inside the stem, spreading into the phloem below the bark, into 
the parenchymatic rays and into the xylem, causing a brown discoloration in the 
wood followed closely by crown dieback (Schumacher et al., 2010; Dal Maso et al., 
2012; Gross et al., 2014a). Due to the ease of its spread and pathogenicity, the 
fungus was included in EPPO Alert List (EPPO, 2007). 

During recent years, research has focused on the study of the in vitro 
mycological characteristics (Brasier and Webber, 2013; Kirisits et al., 2013), 
apothecia and ascospores role in the disease (Gross and Holdenrieder, 2013; Hietala 
et al., 2013; Kowalski et al., 2013), different host susceptibility, genetic variability 
of the pathogen (Kraj and Kowalski, 2013; Stener, 2013; MacLean, 2014; McKinney 
et al., 2014; Thomasset et al., 2014), pathogen detection techniques (EPPO, 2013b; 
Gherghel et al., 2013; Pham et al., 2013) and, finally, the ecological consequences of 
the disease (Pautasso et al. 2013; Lõhmus and Runnel, 2014; Lygis et al. 2014). 

Attention is now being centered on phytosanitary protection of ash trees from 
the pathogen. At the present time there are no effective measures to control the 
disease, but biosecurity protocols on disinfection to prevent the spread of H. 
fraxineus have been recommended. In particular, Cooke et al. (2013) proposed 
various physical and chemical methods to restrict the production and spread of 
ascospores, including the removal of plant debris from infected sites, preventing 
movement of infected plant material to new sites, the use of disinfectants to treat 
contaminated footwear, clothing and equipment and the use of fungicides and 
biocides for the treatment of infected debris. In addition, hot water treatments 
were suggested by Hauptman et al. (2013) for the disinfection of plant propagation 
material or growing plants, considering the sensitivity of H. fraxineus to relative 
high temperature. 

Until now there are no complete reports on fungicides effective against the 
disease (Cooke et al., 2013), but the potential for a cure was considered to be high 
with procloraz and carbendazim, being able to stop the production of apothecia 
after fungicidal treatments (Hauptman et al., 2012). 
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Considering the lack of information on phytosanitary measures against ash 
dieback, the first aim of this study was to ascertain the in vitro lethal dose of six 
commercial fungicides against the pathogen. The best performing ones were then 
used for trunk injections (Tattar et al., 1998; Young, 2002; Takai et al., 2003) in 
artificially infected trees, in order to determine their potential to control the disease 
in planta. 

11BMaterials and Methods 
In vitro experiments 
Commercial fungicidal formulations of six active ingredients (thiabendazole, 
procloraz, propiconazole, allicin, potassium phosphite and copper sulphate; Table 
6), corresponding to an equal number of chemical classes (Benzimidazole, 
Imidazole, Triazole, Thiosulfinate, Potassium Phosphonate, Copper compounds), 
were tested in vitro for their effect against five H. fraxineus strains (Table 7) 
previously selected among the ones available in the TeSAF herbarium for their high 
pathogenicity, according to Ogris et al. (2009). 

Each fungicidal agent was diluted with sterile de-mineralized water (100 %, 85 
%, 65 %, 50 %, 35 %, 15 %, 5 %, 1 %, 0.1 %, 0.01 %, 0.001 %, 0.0001 %, 0 %), and 
0.35 mL not buffered suspension was homogeneously spread on the surface of 10 
mL PDA (Potato Dextrose Agar, Difco Laboratories, Detroit, MI, USA) in 94 mm 
diam. Petri dishes (Taiga et al., 2008), accounting 25 replicates per treatment. 

After growing the fungal strains on PDA for three weeks at 20±1 °C in the dark, 
8 mm diameter. plugs were removed from the actively growing colony margins, 
then placed top- down onto five plates per treatment (Aloj et al., 1993; Secor and 
Rivera, 2012). After an incubation at 20±1 °C in the dark for 3 days, plugs were 
transferred to unamended PDA in the same conditions (Aharoni et al., 1997; Allen 
et al., 2004; Suleiman, 2010), and fungal growth was checked weekly using a 
microscope (up to 200x) for five consecutive weeks. 

Growing colonies were classified as “vital”, while those which failed to grow as 
“dead”. Growth data were statistically elaborated in R cran (R Core Team, 2013) 
by means of one-way analysis of variance (ANOVA, p<0.05) to evaluate the 
growth between strains at different concentrations. Then, for every strain and 
product, a regression curve fitting was performed by means of Generalized Linear 
Model considering a binomial outcome, choosing the best between logit and probit 
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Commercial 
product 

Active 
ingredient 

Strength Manufacturer 

TECTO 20S Thiabendazole 220 g/L Syngenta Crop Protection S.p.a. 
SPORTAK 45 EW Procloraz 450 g/L BASF Italia S.p.a 
ALAMO Propiconazole 14.3 % Syngenta Crop Protection S.p.a. 
CONQUER Allicin 5000 ppm JCA Limited 
FOSFISAN P4O10 + K2O 30 %, 20 % Agrofill by Adriatica S.p.a. 
BIOYETHI CU Copper sulphate 2 % Summerfruit S.r.l.  

Table 6. Commercial products and respective active ingredients tested for their 
fungicidal effect against H. fraxineus. 
 

Isolate name Location Sample collector 

Cf 1005 Cornuda (TV) 
 
 

Dal Maso E. 

Cf 1032 Fusine (UD) Ogris N. 

Cf 1054 Cessalto (TV) Frigimelica G. 

Cf 1056 Falcade (BL) Frigimelica G. 

Cf 1058 Cencenighe Agordino (BL) Frigimelica G. 

Table 7. Isolates of H. fraxineus chosen for in vitro experiment. 

model on the base of Akaike's information criterion (AIC), the coefficient of 
determination (R2) and residual analysis (Secor and Rivera, 2012). 

LD50s (lethal dose for 50 % of the colonies; Aloj et al., 1993) were calculated 
(ANNEX 6) and then compared among the active agents effective for all the 5 
strains by means of Multiple Comparison (TukeyHSD, p<0.05). Shapiro-Wilk 
Normality Test and Levene test for homogeneity of variance across groups 
(p<0.01) were performed to check for test assumptions. The three active 
ingredients that achieved the smallest LD50s were selected for in planta trials. 

In planta experiments 
The experiment was carried out in a forest of Common ash (F. excelsior; N 
45°50'26", E 11°58'20", 180-230 m asl, Cornuda, TV), where H. fraxineus has been 
present since 2010. Specimens ranged from young to mature trees naturally 
regenerated, to mature trees planted in the 1970’s. Due to the need to infect 
asymptomatic trees with the pathogen, and restrictions made by the forest owner, 
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after careful selection 24 ash trees were chosen for the experiment, ranging from 
16.7 to 37.8 cm (ave. 26.45 cm) diam. at breast height (dbh). 

Artificial inoculations were performed using the indigenous strain Cf 1005, 
previously grown on PDA added with streptomycin (0.5 % w:v) for 60 days at 
20±1 °C in the dark. In May 2012, every trunk was wounded 150 cm above the 
collar with a sterile 7 mm diam. cork borer, penetrating approximately 5 mm, and 
a plug of the same diameter removed from the colony edge was placed top side 
inward into the hole, then protected with the bark previously removed. 

In June 2013, the edges of the infected wounds were carefully debarked, 
photographed with a scale bar and their areas were measured by means of ImageJ 
software (v. 1.46r, Wajne Rasband, National Institutes of Health, USA; Abràmoff 
et al., 2004). According to both tree diameter and the necrotic areas, the 24 trees 
were then organized into four comparable groups (Peterson et al., 2009), to be 
injected with commercial formulations of thiabendazole 24 %, propiconazole 24 %, 
allicin 80 % (Table 6) and water, as a control. 

For the injections, a handheld tool recently developed by the University of 
Padova (BITE; Montecchio, 2013) was chosen. Preliminary trials to increase the 
injection speed were made on neighboring trees (F. excelsior) in April-May 2013 at 
different times of the day and with different points of injection (root collar or into 
the trunk 1.5 m from the soil). Furthermore, as thiabendazole tested formulation is 
not registered for endotherapy (Table 6), its injection performance at different 
concentrations of the active ingredient was tested adding a series of chemical 
adjuvants (acetic acid, acetone, ammonium nitrate, hydrochloric acid, nitric acid, 
potassium hydroxide) at increasing concentrations, with 10 replicates for treatment 
(Zwieniecki et al., 2001). Obtained results were applied for the official trial. 

The trees selected for the final test were then injected at 100 cm from the 
ground in 3 equidistant points starting from the opposite side of the inoculation 
point, with 2 ml/cm dbh of each of the fungicidal agents (ave. ca. 60 ml per tree), 
with the addition of 1.2 % acetic acid. When uptake was too low, additional 
injection ports opposite to the infection, and located between the existing ones, 
were used. The time required for each injection was recorded, too. 

The treatments effectiveness was assessed by comparing the dimension of the 
necrotic area measured on the day of the treatment with those observed after 3, 5 
and 7 months (corresponding to the end of the growing season, autumn and winter, 
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respectively). 
To verify the presence and vitality of the fungus, during every survey, four 

equidistant 3 mm3 wood samples were collected along the edge of each inoculation 
point, plated on PDA plus streptomycin (0.5 % w:v) and incubated for 60 days at 
20±1 °C in the dark. Isolations were scored as positive when fungal cultures 
exhibited the typical H. fraxineus morphology (Kowalski, 2006). 

Statistical analyses focused on the fungal growth rate after treatments. The 
relative ratios of necrotic areas were computed for every tree for each survey date 
in comparison with the previous one and processed in R cran (R Core Team, 2013), 
first performing Shapiro-Wilk Normality Test and Levene test for homogeneity of 
variance across groups (p<0.01), then with Multiple Comparison (TukeyHSD, 
p<0.05). 

12BResults 
In vitro experiments 
Analysis of variance showed no significant differences among the strains treated 
with different concentrations of thiabendazole (Tecto 20S; p=0.912), copper 
sulphate (Bioyethi Cu; p=1), propiconazole (Alamo; p=0.98) and procloraz 
(Sportak 45 EW; p=0.281). 

Significant differences among strains were observed for potassium phosphite 
(Fosfisan; p=0.0258) and allicin (Conquer; p=0.019), with potassium phosphite at 
high concentrations inducing a fungistatic effect versus Cf 1005 and Cf 1032 during 
the first week, then settling into more uniform pattern of results. 

LD50s of the tested products are reported in Figure 10. All strains demonstrated 
sensitivity to the three synthetic fungicides, procloraz, thiabendazole and 
propiconazole. Their equations in the logistic model showed a high suitability as 
confirmed by p and R2 values. At high concentrations, 1 to 5 g/L, no differences 
were observed amongst them, but at lower doses thiabendazole was the most 
effective agent, with calculated LD50 value varying between 0.84 (for more 
susceptible strains) to 40.7 mg/L (for more resistant ones). H. fraxineus was 
significantly less susceptible to propiconazole (TukeyHSD, p=0.019) and to 
procloraz (TukeyHSD, p<0.001), whose LD50 respectively ranged from 28.9 to 158 
mg/L and from 0.15 to 0.78 g/L among strains. In addition, fungicidal effects of 
propiconazole and procloraz significantly differed (TukeyHSD, p<0.001). 
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The organic pesticide allicin was effective against three isolates, in particular, Cf 
1005, Cf 1056 and Cf 1058, which were associated to LD50 0.13, 0.11 and 0.09 g/L, 
respectively. 
Both potassium phosphite and copper sulphate were ineffective against the fungus 
at the concentrations used and consequently it was not possible to fit the regression 
dose–response model for these agents. Therefore, the LD50 values could not be 
calculated. 

 
Figure 10. LD50 values calculated for each active ingredient. Boxplots illustrate the 
variation among H. fraxineus strains. Dotted lines indicate the maximum 
concentration (m.c.) tested for the corresponding active ingredient; when lacking m.c. 
is higher than 1 g/L. 

In planta experiments 
In the subsequent paragraph the most relevant results of the preliminary studies on 
enhancing solution trunk injection in F. excelsior are explained. 

Considering the point of the treatment on the tree, the injection of water or 26.4 
g/L thiabendazole solution was null when performed at the trunk collar and was 
significantly better (ave 6.3 mL/3 minutes for water, 5.9 mL/3 minutes for 
thiabendazole, applying a pressure of ave. 100000 Pa) at 1.5 m height. The time of 
the injection was also fundamental: as indicated in Figure 11, the best 
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performances for the injection were achieved in early morning (8 00 - 11 00) and 
then in late afternoon (18 00 - 20 00), whereas the worst results were obtained in 
the middle of the day and at night. As observed in the last series of preliminary 
trials, different adjuvants lead to different injection performances. Figure 12 shows 
most significant results: the addition of 1.2 % acetic acid almost doubled the 
average speed of the injection of water or thiabendazole solution; hydrochloric acid 
solution enhanced the performance but with minor efficacy. Acetone and 
ammonium nitrate additions slowed down the velocity of injection, whereas nitric 
acid and potassium hydroxide inclusion completely blocked the infusion. 

At the time of injection in the forest, all inoculation points showed the presence 
of visibly developed cankers. These showed great variance in shape and size 
independent of tree diameter (ANNEX 7). 

The length of injection time for each injection point were quite different for each 
of the selected agents. Acidified water required up to 50 minutes, thiabendazole up  

 
Figure 11. Different performances in injection speed at different moment in the day 
into F. excelsior trunk at breast height (May 2013). Two solutions are tested (water 
and acetic acid 1.2 %), at atmospheric pressure and at the pressure of the thumb on 
the plunger (ave. 100000 Pa). 
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Figure 12. Average quantity of different solutions injected in three minutes at 150 cm 
from the soil. Milliliters infused at atmospheric pressure (grey columns) and injected at 
ave. 100000 Pa (in black columns). Error bars: 95 % confidence interval (p-value 0.05, 
n=10). a = water, b= thiabendazole 26.4 g/L, c= acetic acid 1.2 %, d= thiabendazole 
26.4 g/L plus acetic acid 0.4 %, e = thiabendazole 26.4 g/L plus acetic acid 1.2 %, f= 
thiabendazole 26.4 g/L plus acetone 2 %, g= thiabendazole 26.4 g/L plus acetone 10 
%, h = thiabendazole 26.4 g/L plus hydrochloridric acid 0.3 %, i = thiabendazole 26.4 
g/L plus hydrochloridric acid 1.5 %, l = ammonium nitrate 4 %. 

to 1 hour, allicin up to 6 hours, while propiconazole was never taken up and 
therefore, given the goal of the research, was discontinued from further evaluations. 

Three months after treatment, the necrotic areas were significantly wider than 
during injections, and none of the products completely blocked the growth of H. 
fraxineus, that was easily reisolated form the necroses’ edges after every survey. 
Nevertheless, when compared with the effect of water injection, thiabendazole and 
allicin slowed down the necrosis development. In particular, allicin reduced the 
growth of the necrosis by 55.8 % in average, and thiabendazole by 67.2 % (Figure 
13). These results were strengthened by Multiple Comparison analysis (Shapiro-
Wilk Normality Test p=0.468; Levene test p=0.069; Table 8), showing that the 
severity of symptom was significantly lower in both the thiabendazole and the 
allicin treatments when compared with water-treated trees (p<0.05) and that there 
were no significant differences between thiabendazole and allicin (p>0.05). 

Five and seven months after the treatments, necrotic areas were no larger than 
in the first survey and showed an identical trend for the three treatments. 
Therefore in the statistical analyses, no differences were found significant between 
the second and the third and between the third and the fourth surveys. 
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Figure 13. Differences in the relative increase of the necrotic areas 3 months after 
treatments. 
 

Treatments comparison Estimated difference Standard error p value 

Allicin  - Control 2.5162597 0.9566  0.047 * 
Thiabendazole  - Control -3.0289132 0.9566  0.016 * 
Thiabendazole  - Allicin -0.5126536 0.9566  0.855 

Table 8. Multiple comparisons (Tukey HSD) between the relative growth of the 
fungus in the wood from June to September (growing season 2013). Asterisks indicate 
significant differences (p<0.05). Comparisons between September and November, and 
between November and January surveys were not significant. 

13BDiscussion 
The research was undertaken to verify if trunk injected commercial fungicides can 
show a positive effect against ash dieback and significantly reduce the symptoms. 

Among the 6 fungicidal agents tested in vitro against 5 different fungal strains 
at 12 different concentrations, the ones containing thiabendazole (Benzimidazole 
class), propiconazole (Triazole class) and allicin (Thiosulfinate class) proved to be 
the best performing agents, with the lowest LD50 values. In particular, 
thiabendazole and propiconazole showed good performances at low concentrations 
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and a uniform response among strains, whereas allicin showed some differences in 
sensitivity among isolates, probably due to its organic origin. This is in accordance 
with previous studies on garlic extracts (e.g. against Cryptococcus neoformans and 
Mycobacterium tuberculosis; Fromtling and Bulmer, 1978; Hannan et al., 2011). 

In comparison with the precedent fungicides, procloraz (Imidazole class) was 
only active at higher concentrations. Contrary to expectations, the effectiveness of 
the commercial formulations of copper, widely used for its fungitoxicity (Gessler et 
al., 2011), and potassium phosphite, known to be effective against many Oomycetes 
and some Ascomycetes (Thao and Yamakawa, 2009; Hofgaard et al., 2010), was 
not demonstrated. 

Therefore, according only to the fungicidal effects against the parasite in vitro 
and not to possible host resistance induction (Bécot et al., 2000; Jackson et al., 
2000; Machinandiarena et al., 2012; Gozzo and Faoro, 2013), thiabendazole, 
propiconazole and allicin, characterized by the lowest LD50s, were selected for the 
following trial in planta on 24 previously artificially infected ash trees. 

Taking into account current legislation on the use of fungicides (i.e. Directive 
2009/128/EC at European level; European Commission, 2009), environmentally 
safer alternatives to the traditional approach of spraying chemicals should be 
considered. An increasingly interest in the biological control of fungal diseases is 
addressed (Santamaría et al., 2007). With this in mind, endotherapic treatments, 
delivering agents directly into trees, are being more commonly adopted as people 
become more concerned about the effects of pesticides on humans and the 
environment generally (Pavela and Bárnet, 2005; Ferracini and Alma, 2008; Tanis 
et al., 2012). Due to these concerns and to the disease’s biology, the selected agents 
were used for endoxylematic injections, performed by means of a tool, whose 
functionality is strictly associated to the physiological state of the tree 
(Montecchio, 2013). As available information on successful trunk injection on 
Fraxinus spp. refers to different application methods, species and climatic 
conditions (Doccola et al., 2011; Smitley et al., 2010), preliminary trials were 
performed to assess the best injection procedures considering the tool 
characteristics, the ash species considered and the local environmental features. 
Results showed that in order to achieve higher injection speed, treatments should 
be performed at breast height in early morning or late afternoon; in fact, the lower 
velocities obtained in the central hours of the day could be explained with stomatal 
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closure induced by high vapor deficit, with weather conditions of April-May in 
Northern-Eastern Italy (Iio et al., 2004). Considering the chemicals compounds 
tested as adjuvants, although great variations were observed depending on weather 
situation, the addition of a small amount (1.2 %) of acetic acid significantly 
improved injection velocity, in accordance with Zwieniecki et al. (2001). 
Furthermore, the presence of acetic acid significantly opposes the adverse influence 
of heat that could decrease the fungicidal effect for Allium plants extract (Yin and 
Tsao, 1999). 

Treatments with propiconazole, although the specific formulation for tree 
injections used (EPA, 2006, 2011), were impractical in the experimental conditions. 
This problem could be due to the injection method used, the physiological and 
health status of the trees, the physiochemical characteristics of the formulation or 
its dilution, perhaps not fully compatible with the sap dynamics or vessels anatomy 
of Fraxinus excelsior (Choat et al, 2006; Jansen et al., 2009). Unfortunately, the 
injection process impaired the 6 trees, preventing the substitution with the next 
best product, procloraz. Allicin injections required up to 7 injection points and on 
average 5 times the period necessary for a thiabendazole infusion. 

Three months after injection, neither thiabendazole nor allicin completely 
arrested the disease’s development over the growing season. This expected result, 
as seen in many other tree diseases (Perry et al., 1991; Downer et al., 2009; Ivic, 
2010; Koch et al., 2010), could be due to product concentration, formulation and 
distribution inside trees (Tanis et al., 2012; Aćimović et al. 2014). A further 
explanation could be directly associated to the disease’s characteristics. In fact, it 
was recently reported that H. fraxineus produces intrahyphal hyphae inside the 
wood (Dal Maso et al., 2012), and they could act as barriers impervious to 
antifungal compounds when present in low concentrations, enabling the fungus to 
survive (Kim et al., 2004). 

Nonetheless, at the dose used, both products significantly slowed down the 
disease’s spread soon after treatment. In fact, unlike the control trees injected with 
water, 3 months after treatment with thiabendazole and allicin, the growth of the 
cankers significantly decreased, maintaining the same extensions in the following 
months until the end of the trial.  

Despite the preliminary nature of the described research, this study 
demonstrated that through the trunk injection of both synthetic and organic 
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pesticides, the development of ash dieback symptoms can be significantly slowed 
down for at least few months, including the growing and the dormancy seasons. 
Further surveys are in progress in order to assess the efficacy in time of one 
treatment and to determine if these treatments are effective both curatively in 
naturally infected trees and, preventatively, in healthy ashes exposed to natural 
inoculum. In addition, the investigations could be extended to a greater number of 
trees, age classes and genotypes, also comparing different injection methods 
(McKinney et al., 2012; Stener, 2013; Aćimović et al., 2014; McKinney et al., 2014). 

 

 



   

. 

 

 



 

 

 

32BCHAPTER IV 

33BLarge-scale fuzzy rule-based prediction of for suitable 
chestnut ink disease sites: a case study in northeast 

Italy 
 

 

 

 

 

 

 

 

 

 

_________________________________________________________________________ 

Accepted for publication by Forest Pathology on 17th January 2015 (ANNEX 8): 
DAL MASO E., MONTECCHIO L., 2014. Large-scale fuzzy rule-based prediction 
of for suitable chestnut ink disease sites: a case study in northeast Italy. Forest 
Pathology, I.F. 1.485. 

 

 



 

 

 

 

 

 



Large-scale fuzzy rule-based prediction for suitable chestnut ink disease 
sites: a case study in northeast Italy 63 

   

14BAbstract 
In the past few decades, economic interest in the cultivation of chestnuts for both 
timber and nut production has resurfaced in the Mediterranean area. However, 
chestnut cultivation has suffered in recent years from the spread of exotic pests, 
such as the gall wasp Dryocosmus kuriphilus, and from the resurgence of previously 
present diseases, most likely due to anomalous climate dynamics. This is the case 
with chestnut ink disease (CID), caused by the soil-borne pathogens Phytophthora 
cinnamomi and P. cambivora. Scientific and technical support in monitoring and 
management, that utilises new forecasting approaches incorporating related 
environmental variables, is therefore essential. The main aim of this study was to 
develop a mathematical model assessing the potential for the establishment of 
chestnut ink disease at a large scale. Towards this goal, fuzzy rule-based theory 
was applied to the environmental variables associated with host presence, 
pathogens' ecological niches, and ink disease symptoms expression. The 
effectiveness of the rule-based modelling outcomes, provided with uncertainty maps 
to facilitate their correct interpretation, was confirmed by detailed field data 
collected from a large chestnut-growing area where ink disease has been increasing 
in recent years. The final model gave consistent predictions for disease presence. 
For this reason, it represents a flexible and valuable decision support tool to 
forecast which sites are at risk from CID. 
Key words: Phytophthora cinnamomi, Phytophthora cambivora, Castanea sativa, 
monitoring, fuzzy model, epidemics. 

15BIntroduction 
Phytophthora cambivora (Petri) Buism. and P. cinnamomi Rands (Vannini and 
Vettraino, 2011; Robin et al., 2012) are the soil-borne pathogens responsible for one 
of the most destructive diseases of sweet chestnut (Castanea sativa Mill), the so-
called chestnut ink disease (CID; Petri, 1923; Vannini and Vettraino, 2001; 
Vettraino et al., 2005; Choupina et al., 2014). The disease is spreading in many 
European chestnut forests and plantations (Turchetti and Maresi 2008; Vettraino 
et al. 2008; Beccaro et al. 2009; Costa et al. 2011; Woodward et al. 2011), most 
likely due to the strong relationship between these soil-borne pathogens and 
environmental features that are changing rapidly due to global climatic change 
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(Jung et al. 2013; Santini et al. 2013). 
The primary CID symptoms are reduced leaf size, dieback of the distal branches, 

canopy dieback, cracked areas at the base, root and collar necroses, bark 
detachment, leaking tannic fluid, and the gradual decline and death of the host 
(ANNEX 1; Vannini and Vettraino, 2001; Vettraino et al., 2005; Vannini et al., 
2010; Prospero et al., 2013). Disease progression can be slow, with chestnuts 
experiencing chronic dieback, or rapid, with large trees killed in a few growing 
seasons (Jung et al., 2000; Balci and Halmschlager, 2003; Jung et al., 2005). The 
loss of chestnuts not only entails economic and cultural damage but also 
compromises the stability of slopes and ridges, leaving them exposed to erosion 
from rainwater runoff (Maresi and Turchetti, 2008). 

For the above reasons, as for other diseases caused by Phytophthora spp., risk 
assessment is recognised as a useful method to rapidly identify, prioritise and 
manage impacts of pests (Brown et al., 2005; Sansford et al., 2009; Robinet et al., 
2012). For this purpose, bioclimatic models have been widely used to assess and 
predict the occurrence and distribution of pathogens or diseases (ANNEX 2; 
Venette and Cohen, 2006; Kelly et al., 2007; Ganley et al., 2009; Klopfenstein et 
al., 2009; Ireland et al., 2013) and their outcomes linked to forest policy, planning 
and decision-making (Sturrock et al. 2011). Habitat suitability models 
(environmental niche models) can be constructed utilising spatial analysis methods, 
which relate the presence or absence of the target species to a set of environmental 
variables (Iverson and Prasad, 1998; Kelly et al., 2007; Kamino et al., 2012). In 
recent years, the array of techniques used for ecological modelling has increased 
(Guisan and Zimmermann, 2000). Fuzzy logic, widely used in engineering and 
process control sciences (Sugeno, 1985; Von Altrock, 1995), has begun to be applied 
in biology end environmental sciences (Ayyub and McCuen, 1987; Equihua, 1990). 
Indeed, fuzzy set theory offers good predictive capability and reasonable estimates 
of the unknown model parameters inherent in the variables and functions 
associated with complex ecosystems (Omlin and Reichert, 1999; Adrianssens et al., 
2004; Fukuda, 2009). 

In plant pathology, this approach found its first applications in disease intensity 
prediction (i.e., coffee and soybean rust; Kim et al., 2005; Alves et al., 2011), 
infection simulation (i.e., grapevine downy mildew; Orlandini et al., 2003) and 
diagnosis (i.e., oilseed crops; Kolhe et al., 2011), and risk assessment (i.e., European 
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canker of apple; Kim and Beresford 2012), but it has never been applied to forest 
environments. 

In the present study, fuzzy rule-based theory was used to estimate habitat 
suitability for CID at a large scale in an Italian region with sweetchestnut forests, 
which have contributed to the economy of mountainous and hilly areas for many 
centuries. CID has recently been detected in that area (Scattolin et al., 2012), and 
an increasing number of new foci are being recorded annually. In response to a 
request by the regional authorities for a practical, user-friendly CID monitoring and 
forecasting tool, a fuzzy model (FM) was built to consider the environmental 
variables associated with the ecological niches of the pathogens and disease 
development. Furthermore, to evaluate the predictive accuracy of the model, 
uncertainty maps were computed and surveys conducted. The final product stands 
as a flexible and valuable decision-support system platform, useful for prioritising 
both periodic monitoring and integrated pest management strategies. 

16BMaterials and methods 
Study area and environmental predictors 
The study area (660 km2, 93 - 1538 m a.s.l) is located in northeast Italy (Treviso 
province, Figure 14). According to official literature, the study area covers all of 
the sweet chestnut phytoclimatic zones, where the species is present in high forest 
stands (timber and/or fruit production), coppice (timber, poles and firewood) and 
ornamental plantings (Del Favero et al., 2000; Regione del Veneto, 2006). 

A literature research was conducted to construct an ecological knowledge 
database that was used to select the main input variables relevant to the habitat 
requirements of the pathogens and to disease development. The potential for 
Phytophthora cambivora or P. cinnamomi to spread and to cause CID, as described 
in the following paragraphs, depends primarily on temperature, annual rainfall, 
summer droughts, proximity to streams, slope aspect, soil compaction, reaction 
(soil pH) and organic matter. 

Phytophthora spp. survival and disease development are strongly hampered by 
cold winters (Marçais et al., 1996; Luque et al., 2002; Bergot et al., 2004; Marçais 
et al., 2004; Vettraino et al., 2005; Desprez-Loustau et al., 2007). A map showing 
the minimum temperature for the coldest month of the year was obtained from the 
BIOCLIM database (BIO6, current conditions; Beaumont et al. 2005; Hijmans et 
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Figure 14. Map of the study area and locations of the 100 points surveyed for 
chestnut ink disease. 

al. 2005; Booth et al. 2014) at 30 seconds resolution (~1 km). Following the 
procedure reported by Dullinger et al. (2012), the variable was downscaled to a 250 
m resolution in Arcmap v. 10.2 (ESRI, 2014) after interpolating the 90 m Shuttle 
Radar Topography Mission Digital Elevation Model (SRTM DEM) v. 4.0 (Jarvis et 
al., 2008). The map obtained was then corrected by Kriging on the base of 
interpolated map of the data acquired from the ARPAV open database (145 
meteorological stations considered, median value in the interval 2003-2013; 
Themeßl et al. 2011; ARPAV 2014), and the resolution was fixed in a 250 m x 250 
m regular grid. 

Together with winter temperature, annual rainfall is often considered a key 
parameter regulating the presence of Phytophthora spp. in chestnut stands, and 
precipitation greater than 1000 mm/year is considered a useful index to classify 
areas at risk for CID (Vettraino et al., 2005; Vannini et al., 2012). Therefore, the 
annual rainfall map was downloaded from the BIOCLIM database (BIO12; 
Beaumont et al., 2005), downscaled and corrected as described above for the 
previous environmental predictor. 

In terms of summer climatic conditions, limited droughts do not influence the 
survival of Phytophthora spp. However, following fine feeder root infections, periods 
of drought can lead to dieback or sudden collapse (Delatour, 2003; Johnston et al. 

 

 



Large-scale fuzzy rule-based prediction for suitable chestnut ink disease 
sites: a case study in northeast Italy 67 

   

2003; Jung et al. 2003; Vettraino et al. 2005; Scanu et al. 2013; Corcobado et al. 
2014). Giacobbe's index was consequently included in the model as a summer 
drought index (Giacobbe, 1967; Gavilán, 2005). The maps necessary for its 
computation (in particular, June, July and August precipitation and the maximum 
temperature of the warmest month) were acquired from the WORLDCLIM and 
BIOCLIM databases (Beaumont et al. 2005) and were downscaled and corrected as 
described above. 

In terms of the effects of geographical features, Vannini et al. (2010) have 
indicated that CID severity is significantly higher in proximity to natural sources of 
surface water drainage that lead to flooding or soil saturation events. This 
relationship has also been highlighted by Brasier (1996) and Corcobado et al. 
(2013) for P. cinnamomi infections on Quercus spp. Therefore, a stream map of the 
investigated area was used (Regione del Veneto, Dipartimento Difesa del suolo e 
foreste, internal report), assuming a value of 0 for every grid cell that contained a 
stream and a value of 1 for every grid cell that did not contain a stream but was 
adjacent to a cell containing a stream. Every grid cell that was n>1 cells away 
from the nearest cell containing a stream was assigned a value of "n". 

Slope aspect is another factor that is commonly thought to influence CID 
incidence because infected chestnut are more frequently found in south-facing 
stands (Brasier, 1996; Portela et al., 1999; Vannini and Vettraino, 2001; Marçais et 
al., 2004). The "Northness" index, which quantifies the degree to which a slope has 
a northerly aspect, was therefore calculated with the following formula: 

180
aspect in degrees piNorthness cos  ×

=  
 

 

For example, the northness index for an angle of 360 degrees (indicating north) is 
equal to 1, for 90 degrees (equal both to east and to west) is 0, and for 180 degrees 
(towards the south) is –1 (Morrison et al., 2003; Molotoch et al., 2005). To 
calculate northness, aspect was processed in Arcmap v. 10.2 (ESRI, 2014) using 
ASTER Global Digital Elevation Model data v. 2 (~30 m resolution; NASA Land 
Processes Distributed Active Archive Center (LP DAAC), 2011), and the final 
northness index value for each grid cell corresponded to the median of the 
contained values. 
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Edaphic factors are usually included in the CID reference frame, and incidence 
was shown to increase with compaction (Martins et al., 1998; Vannini and 
Vettraino, 2001; Fonseca et al., 2004, Martins et al., 2007). Because compaction is 
difficult to assess in large areas and at large scales, and as permeability is an 
influential factor favouring root rot caused by Phytophthora spp. (Bounous, 2006), 
only permeability was considered. The official soil permeability map that was used 
had a scale of 1:50000 (Provincia di Treviso and ARPAV, 2008). Nominal classes 
were transformed to reference values (Table 9) to allow the computation of the 
weighted average on the basis of the per cent coverage in each cell. 

Because various authors recommend considering soil reaction (soil pH) as an 
important factor influencing Phytophthora spp. presence (Jung et al., 2000; 
Vettraino et al., 2005; Brasier et al., 2009; Jönsson, 2006), a soil reaction map was 
also used (Provincia di Treviso and ARPAV, 2008). 

Finally, soil organic matter content has been reported to be inversely 
proportional to CID incidence (Portela et al., 1999; Vannini and Vettraino, 2001; 
Vannini et al., 2010). In contrast, Fonseca et al. (2004) observed that an increase in 
organic matter increased the probability that a stand would develop CID because 
the pathogens could even benefit from it due to their poor saprotrophic nature 
(McCarren et al., 2005; Acosta-Muñiz et al., 2012). Given the contradictory 

 

Permeability class Ksat (µm/s) Reference value 

From low to very low < 0.01 0 
Low 0.01 - 0.1 12.5 
From low to moderately low 0.1 - 1 25 
Moderately low 1 - 10 37.5 
From moderately low to moderately high 10 - 100 50 
Moderately high 100 - 1000 62.5 
From moderately high to high 1000 - 10000 75 
High 10000 - 100000 87.5 
From high to very high > 100000 100 

Table 9. Reference values associated with the nominal classes of soil permeability 
(Provincia di Treviso and ARPAV 2008) to extract an average value for each grid cell 
of the study area. Ksat indicates the saturated hydraulic conductivity, defined as the 
ability of a soil to conduct water under saturated conditions (Blanco-Canqui and Lal, 
2008). 
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information in the literature, this variable was not integrated into the model. 
All the environmental maps were analysed in Arcmap v. 10.2 (ESRI, 2014) to 

assess the ranges of the predictors covered in the study area. 

Fuzzy model construction and uncertainty computation 
To implement fuzzy set theory into the model, the fuzzy logic toolbox from 
MATLAB v. 8.3 (MATLAB, 2014) was used. Fuzzy sets were used to describe the 
five final ecological variables considered (minimum temperature of the coldest 
month, Giacobbe's index, stream distance, northness index and soil permeability). 
Two trapezoid membership functions ("low" and "high"; Van Broekhoven et al., 
2006; Mouton et al., 2009b) characterised by four parameters (a, b, c, d) were 
created for each variable (Table 10). The degree by which a single variable value 
belonged to a membership function increased linearly from 0 to 1 if the variable 
had a value in the range [a, b], was equal to 1 in [b, c], and decreased linearly from 
1 to 0 in [c, d]. For instance, if the soil permeability was 57 %, the value belonged 
to "low" function soil permeability with a degree of 0.85 and to "high" with a degree 
of 0.15 (Figure 15). 

 
Figure 15. Schematic illustration of the central concept of fuzzy logic. The two 
horizontal lines indicate how the same input value is a partial member of both the 
"low" permeability class and the "high" permeability class. 

The fuzzy rule-based model related the input membership functions to habitat 
suitability for the two Phytophthora species and consisted of if-then rules, such as 
"IF Minimum temperature is low AND Giacobbe's index is low AND Stream 
distance is high AND Northness index is low AND Soil permeability is high THEN 
habitat suitability IS low". The information included in the knowledge base was, 
therefore, summarised into 32 rules to be used for both Phytophthora species (Table 
11). 
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In the current application, the fuzzy AND ('min') operator was used for 
implication, and the fuzzy OR ('max') operator was used for aggregation in the 
Mamdani-Assilian inference method (Mamdani and Assilian, 1975). The fuzzy 
output was then defuzzificated with the centre-of-gravity formula (Adriaenssens et 
al., 2004), obtaining a crisp output value in the range [0, 1] (from very low to high 
suitable context). 

The FM was run for every grid cell of the study area in Simulink v. 8.3 
(MATLAB, 2014) and projected by means of the Arcmap platform (ESRI, 2014); 
then the map was exported in Keyhole Markup Language ("kml") format to allow 
the visualization in Google Earth (Google Earth, 2014) for end users. 

 

Input variables Low [a b c d] High [a b c d] 

Minimum temperature of 
the coldest month (°C) 

trapmf [-15 -15 -4 -3] 
± 2 

trapmf [-4 -3 5 5] 
± 2 

Giacobbe's index (n) trapmf [0 0 11.5 12] 
± 2 

trapmf [11.5 12 23 23] 
± 2 

Stream distance (n) trapmf [0 0 0.5 1] 
± 1 

trapmf [0.5 1 20 20] 
± 1 

Northness index (n) trapmf [-1 -1 -0.1 0.2] 
± 0.2 

trapmf [-0.2 0.1 1 1] 
± 0.2 

Soil permeability (%) trapmf [0 0 55 65] 
± 10 

trapmf [55 65 100 100] 
± 10 

 

Output 
variable 

Very low  
[a b c d] 

Low  
[a b c d] 

Intermediate  
[a b c d] 

High  
[a b c d] 

Very high  
[a b c d] 

Prediction 
(Habitat 
suitability) 

[0 0 0.15 
0.25] 

[0.15 0.25 
0.35 0.45] 

[0.35 0.45 0.55 
0.65] 

[0.55 0.65 
0.75 0.85] 

[0.75 0.85 1 
1] 

Table 10. Membership functions for input and output variables used in the fuzzy 
model. Functions are explained by means of the characterising nodes (a,b,c,d) of the 
trapmf (trapezoidal) function; the range of variation for uncertainty analysis is given 
under each set. 

Table 11 (in the following page). Fuzzy rule-based system for inferring habitat 
suitability for chestnut ink disease with input variables. 
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Minimum 
temperature 

Giacobbe's 
index 

Stream 
distance 

Northness 
index 

Soil 
permeability 

Habitat 
suitability 
for CID 

Low Low Low Low Low Medium 
Low Low Low Low High Low 
Low Low Low High Low Medium 
Low Low Low High High Low 
Low Low High Low Low Medium 
Low Low High Low High Low 
Low Low High High Low Medium 
Low Low High High High Low 
Low High Low Low Low Low 
Low High Low Low High Very low 
Low High Low High Low Low 
Low High Low High High Very low 
Low High High Low Low Low 
Low High High Low High Very low 
Low High High High Low Low 
Low High High High High Very low 
High Low Low Low Low Very high 
High Low Low Low High High 
High Low Low High Low Very high 
High Low Low High High High 
High Low High Low Low Very high 
High Low High Low High High 
High Low High High Low Very high 
High Low High High High Medium 
High High Low Low Low High 
High High Low Low High Medium 
High High Low High Low High 
High High Low High High Medium 
High High High Low Low High 
High High High Low High Medium 
High High High High Low High 
High High High High High Low 
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To evaluate the usefulness of model results, the framework of uncertainty 
provided by Walker et al. (2003) was used, and the computations reflected every 
type of uncertainty occurring in this type of modelling, as detailed below: 
- Model structure uncertainty, linked to the impreciseness of knowledge related to 
the structure itself, was assessed as the difference between the left and right centres 
of area in the defuzzification process (Refsgaard et al., 2007; Janssen et al., 2010). 
- Input uncertainty comprises external forces of a stochastic nature due to the 
variability in the system (Refsgaard et al., 2007; Walker et al., 2003). For each case 
in the rules table (Table 11) and all the intermediate combinations, a Monte Carlo 
analysis (n = 10000) was run on the inputs, for which a normal probability 
distribution with a standard deviation equalling 30 % of the reference value was 
assumed (Table 10; Janssen et al., 2010). For each case, the 25-75 percentile range 
was computed. 
- Parameter uncertainty is associated with the data and the methods used to 
calibrate the model parameters (Walker et al., 2003). Model propagation of this 
type of uncertainty was evaluated with a sensitivity analysis according to Janssen 
et al. (2010; ranges for parameters are given in Table 10), obtaining the 25-75 
percentile range of the differences from the defuzzified model's outputs. 

Monitoring and model validation 
The data for the model validation were acquired in a detailed phytosanitary field 
survey in August and September of 2014, during which 100 sites were investigated 
for CID presence (Figure 14). To consider only comparable locations with at least 
10 chestnuts, monitoring points were randomly chosen in the chestnut stands in the 
forest map previously described (Del Favero et al., 2000; Regione del Veneto, 
2006), and the position was locally controlled by means of a GPS tool with 4±1 m 
resolution (model GSMAP62sc, Garmin Ltd., Southampton, Hampshire, UK). At 
each site, when at least one tree showed symptoms attributable, also in part, to 
CID (Figure 16; Vannini and Vettraino 2001; Vettraino et al. 2005; Prospero et al. 
2013), 10 subcortical samples (~ 15 cm3) were collected from both structural roots 
(5 samples) and the trunk base (5 samples) for each of 5 alive chestnuts. When less 
than 5 symptomatic trees were available, the number was reached sampling 
chestnuts neighbouring to symptomatic ones. All of the specimens were gathered 
together, carefully mixed and immediately processed twice by means of a lateral  
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Figure 16. Different classes symptoms of ink disease, from healthy chestnut (on the 
left) to high symptomatic ones (on the right). 

flow test (Pocket Diagnostic test kit for the detection of Phytophthora, Forsite 
Diagnostics Ltd., Surrey, UK) to confirm the presence of the genus. If a site was 
associated with symptomatic chestnuts and positive results from the lateral flow 
test, it was classified as "positive". 
If all of the chestnuts in the cell were asymptomatic, basal woody samples were 
collected from randomly chosen trees and processed through lateral flow tests as 
above reported, to confirm the "negative" status of the cell. 

Based on the contingency table, validation of the model's predictive results was 
conducted for overall accuracy, specificity, sensitivity, Correctly Classified 
Instances (CCI), Cohen's Kappa statistic (K), the True Skill Statistic (TSS) and 
Fpb index, with the latter specifically relying on presences and pseudoabsences 
(Table 12; Liu et al. 2005, Allouche et al., 2006; Li and Guo, 2013; Maddock et al., 
2013). A model output was considered "positive" if the predicted output had a 
value greater than 0.5 in a range [0, 1] (Adriaenssens et al., 2006; Li and Guo, 
2013). Finally, the Area Under the Curve (AUC) of the receiver operating 
characteristic (ROC; Manel et al., 2001; Brotons et al., 2004; Thuiller et al., 2005; 
Peterson et al., 2008) was obtained in IBM SPSS Statistics software (v. 22, 
International Business Machines Corp., New York, USA; Elith, 2000). 
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Measure Formula 

Overall 
accuracy 

TP TN
n
+

 

Sensitivity 
+

TP
TP FN

 

Specificity TN
TN FP+

 

Kappa statistic 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

21

TP FP TP FN FN TN TN FPTP TN
n n

TP FP TP FN FN TN TN FP
n

+ + + + + + − 
 

+ + + + +
−

 

TSS 1Sensitivity Specificity+ −  

Fpb 
2 TP

TP FN FP
×

+ +
 

Table 12. Parameters used in the evaluation of fuzzy model. Abbreviations: TSS, 
True Skill Statistic; CCI, Correctly Classified Instances; n, total number of cases; TN, 
true negative; FP, false positive; TP, true positive; FN, false negative. 

17BResults 
Environmental predictors choice 
After analysing the possible environmental predictors projected in the study area, 
the final chosen input variables were as follows: minimum temperature of the 
coldest month, Giacobbe's index, stream distance, northness index and soil 
permeability. Annual rainfall and soil pH were discarded from further analyses 
because every grid cell had values higher than the suggested thresholds (>1000 mm 
and > pH 4, respectively). 

Fuzzy model prediction and uncertainty computation 
When the model outputs were evaluated, the rule view interactive interface enabled 
access to individual output values of habitat suitability according to the input 
values of the chosen environmental predictors (see Figure 17 for an example). The 
results of the fuzzy simulations were summarised by calculating the habitat 
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suitability surface for the study area (Figure 18), and the computed suitability 
scores (p) fell within the [0.09, 0.9] interval in the possible suitability score range 
[0, 1]. The greater (central-western and southern) part of the study area was 
covered by high and very high probabilities (36.5 % coverage for p in [0.5, 0.75], 35 
% for p in [0.75, 1], respectively), indicating high suitability for development of 
CID. In contrast, the areas associated with low and very low predictions (18.8 % 
coverage for p in [0.25, 0.50], 9.7 % for p in [0, 0.25], respectively) were located in 
higher-elevation zones, restricted to the northern and eastern areas. 

The depicted uncertainty maps indicate the variability of predictions on the 
basis of different simulations. Model structure uncertainty (Figure 19), referring to 
the variability due to the interrelations among the elements of the system, was low 
(min 0.09, max 0.19, mean 0.13, median 0.15), considering the possible range [0, 1], 
and homogeneously distributed (SD 0.028). In contrast, the input uncertainty 
(Figure 20) revealed that a small stochastic variation in the input parameters could 
lead to a significant variation in the prediction of the transitional zones between 
"positive" and "negative" areas. The statistics indicated that the input uncertainty 
varied from a minimum of 0 to a maximum of 0.37 (mean 0.058, SD 0.1, median 0). 
Finally, parameter uncertainty (Figure 21), related to a priori chosen parameters 
defining the membership functions, was low in nearly the entire study area (min 0, 
max 0.18, mean 0.05, SD 0.037, median 0), considering the achievable range [0, 1]. 
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Figure 17. Rule view interface used to access individual output values of habitat 
suitability according to input values. In this example, input values are reported in the 
column labels and depicted as vertical lines in the underlying plots. Each rule 
(reported in Table 11) is explained as a row of plots and each column is a variable. 
The first five columns show the membership functions for the if-part of each rule: in 
each plot, satisfied membership functions for the considered input are reported in 
yellow, unsatisfied ones in blue. The sixth column shows the membership functions 
referenced by the then-part of each rule (Table 11) and the bottom plot represents the 
aggregate weighted decision for the given inference system, where the defuzzified 
output is displayed as a bold vertical line. 
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Figure 18. Predicted spatial habitat suitability for chestnut ink disease in the study 
area. Different colours represent different levels of predicted probability. 

 

Figure 19. Outcomes of the propagation of the model structure uncertainty for the 
study area. Values denote the difference bewteen 75 and 25 percentile values around 
the median. 
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Figure 20. Outcomes of the propagation of the input uncertainty for the study area. 
Values denote the difference bewteen 75 and 25 percentile values around the median. 

 
Figure 21. Outcomes of the propagation of parameter uncertainty. Values denote the 
difference bewteen 75 and 25 percentile values around the median. 
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Monitoring and fuzzy rule-based model validation 
According to the field surveys conducted to validate the model, According to the 
field surveys conducted to validate the model, the presence of Phytophthora genus 
was confirmed by lateral flow devices in all sites with symptomatic trees (59 
positive cells). Lateral flow's results were negative in all the sites with 
asymptomatic chestnuts (41 negative cells). 

A contingency table was created combining the predicted probabilities (threshold 
= 0.5) and corresponding monitoring data (Table 13). The true positive rate (TP) 
was 54 % and the true negative rate (TN) was 21 %; in contrast, the false positive 
rate (FP) was 20 % and, overall, the false negative (FN) rate was 5 %. 

 

  

  

  

  

Monitoring data 
Total amounts 

Negative Positive 

Model 
prediction 

Negative 21 5 26 

Positive 20 54 74 

Total amounts 41 59 100 

Table 13. Contingency table (also called confusion matrix) combining the fuzzy model 
predictions and monitoring data. Being 100 the total number of surveyed points, the 
reported percentages correspond to real values. Total amounts for positives and 
negatives for model predictions and monitoring data are reported in the right column 
and bottom row respectively, and grand total is in italic. 

The resulting performance measures are reported in Table 14, showing that 
model evaluations revealed medium performance for overall accuracy 
(corresponding to the Correctly Classified Instances, CCI), specificity, Cohen's 
Kappa statistic (K), the True Skill Statistic (TSS) and the Area Under the Curve 
(AUC) of the receiver operating characteristic (ROC). In the context of the data 
set used for evaluation, these values were greatly reduced by the contribution of 
the false positive rate. If the measures that specifically rely on presences and 
pseudoabsences (Table 12, Table 14) are considered, the performance of the method 
for sensitivity and the Fpb index was very good. 
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Evaluation parameter Value 

Overall accuracy (CCI) 0.75 

Sensitivity 0.91 

Specificity 0.51 

Kappa statistic 0.45 

TSS 0.43 

Fpb 1.37 

AUC 0.74 

Table 14. Fuzzy model performance calculated on the basis of monitoring data 
acquired in the study area. AUC represents the Area Under the Curve of the receiver 
operating characteristic (ROC); in Table 12 the explanation for the other 
performance's measures is reported. 

18BDiscussion 
The present study incorporated available environmental information on CID into a 
new inference system for habitat suitability modelling by expressing non-linear 
relationships in terms of if-then rules (computing with words; Adrianssens et al., 
2006; Van Broekhoven et al., 2006; Fukuda, 2009), then graphically transposing 
them into the final thematic map. For instance, CID habitat suitability for all of 
the 10567 considered cells was calculated as "very high" when the site was 
characterised by a high winter minimum temperature, a high probability of 
summer drought, presence of streams, a southerly aspect and a low soil 
permeability. 

As usual, the key sources of uncertainty in presence and prediction maps are 
model structure, input data and parameter values (Refsgaard et al., 2006), with an 
optimal model able to provide the greatest simplifications together with an 
accurate representation of the investigated phenomenon. From this point of view, 
model structure uncertainty arises from the approximation of the physical and 
biological world by mathematical expressions (Ascough et al., 2008), and 
addressing the level of uncertainty for the correct interpretation of outcomes and 
results is essential (Loucks et al., 2005; Janssen et al., 2010). The structure 
uncertainty map for the current fuzzy rule-based model showed very low 
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uncertainty in the study area, and a slight variation in the model's parameters did 
not noticeably change the final prediction, indicating the robustness of the model 
system (Mayne et al., 2000). As noted by Kim and Beresford (2012), input surfaces 
obtained from spatial interpolation may contain uncertainty and imprecision, due 
also to the inherent randomness of nature (i.e., the chaotic and unpredictable 
quality of natural processes; Ascough et al., 2008). In this respect, the obtained 
input uncertainty map showed that a fluctuation in the input values tended to 
modify predictions in the transitional zones between high and low suitability areas, 
which, on the contrary, were little affected. 

The developed FM was validated using a significant amount of data directly 
collected in the study area considering CID symptoms and Phytophthora genus-
specific lateral flow devices outcomes. The comparison of survey's results with 
model predictions demonstrated the need to consider various performance criteria. 
Specifically, overall accuracy, specificity, the Kappa statistic, TSS values and AUC 
reflected moderate to good performance by the model. In particular, moderate 
outcomes were derived from the evident number of false positive observations. 
Effectively, Kpb and sensitivity measures, which address these types of data (Li and 
Guo, 2013), were substantially higher. Previous research has shown that, from an 
ecological point of view, models that overpredict observations may not necessarily 
be ecologically irrelevant (Mouton et al., 2009a, 2011). Underpredictions (false 
negative observations) always imply a model error, whereas overpredictions (false 
positive points) may be due to unbalanced colonisation of suitable habitats in the 
considered area (Mouton et al., 2011). In the specific case of CID, overpredictions 
could be caused, for instance, by physical barriers separating disjoint areas, 
consistent with the property that soil-borne pathogens depend on animals and 
waterways for long-range dispersal (Vannini et al., 2010; Gonthier and Nicolotti, 
2013). However, the underpredictions (false negative observations) detected in the 
validation procedure were included in transitional areas with the highest input 
uncertainty. 

The FM was demonstrated to be simple (relations between input and output are 
explained with linguistic rules) and robust (performance does not depend on the 
training data; Adrianssens et al., 2004, 2006). Moreover, this type of model is a 
flexible tool, as it can be easily updated with new input variables and rules. For 
instance, the annual rainfall predictor can be included at a later time, or previously 
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considered variables can be discarded when applying the model to different 
geographical situations. Moreover, thanks to its linguistic aspect, the FM model 
and its results are transparent and interpretable by a wide range of end users, 
facilitating communication among modellers, ecologists and forest managers 
(Adrianssens et al., 2004; Chen and Mynett, 2003). 

The model described here, employed in forest pathology for the first time, may 
be a useful decision support tool in pest risk management. Effectively, ranking a 
current or potential chestnut area for the probability of CID presence can allow for 
better forest conservation strategies (Vannini et al., 2010). The accurate 
geographical identification of transitional zones (corresponding to the border of 
infected and symptomatic areas) could facilitate focused containment measures 
along an outbreak frontline (Bounous and Abreu, 1998; Brasier, 1999; Gentile et 
al., 2010). In particular, integrated pest management (IPM) strategies could be 
attempted by 1) potassium phosphite treatments through trunk injection (Gentile 
et al. 2009; Vannini et al. 2009), 2) chicken manure distribution (Turchetti and 
Maresi 2006, 2009) and 3) soil moisture drainage (Gentile et al. 2009). As a 
subsequent step, a software application based on the developed fuzzy logic model 
and requiring additional information such as the susceptibility of host populations 
(Robin et al., 2006) could be realised for a more detailed and site-specific approach. 
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19BAbstract 
Ink disease, caused by Phytophthora cinnamomi and P. cambivora, is one of the 
most destructive diseases affecting Castanea sativa. Currently, disease control 
requires careful integrated chemical and agronomic measures. Trunk injection with 
potassium phosphite was shown as curative in reducing symptoms expression but 
little is known about the ideal formulation and potential adjuvants. A preliminary 
endotherapic trial was conducted in a chestnut where P. cinnamomi was isolated, 
with the main aim to evaluate growth stimulation of active growing callus next to 
the shape flame necroses, by the injected solution of potassium phosphite 70 %. In 
this case, results did not highlight a significant difference between treated trees and 
water control ones. In a further research, fifty asymptomatic sweet chestnuts were 
inoculated with P. cinnamomi. Subsequently, trees were injected with four 
formulations of potassium phosphite. In comparison with water treatment, after 50 
days the growth of the necroses was significantly slowed down only by one 
formulation, consisting in potassium phosphite added with a micronutrient 
solution. The results increases the knowledge base on the efficacy of endotherapy 
against chestnut ink disease. 

резюме 
Чернильная болезнь, вызвана Phytophthora cinnamomi и P. cambivora, является 
одним из самых разрушительных болезней, поражающихсъедобный каштан (Castanea 
sativa). В настоящее время, борьба с болезнями, требует тщательных комплексных 
химических и агрономических мер.По доступной литературе, инъекциикалия фосфита 
в ствол снижает экспрессию симптомов, но мало данных об идеальной постановке и 
потенциальных вспомогательных веществ. 
В этом исследовании, пятьдесят здоровых каштанов были привиты с P. cinnamomi, 
локально изолированы от симптоматических каштанов.Двадцать дней спустя, в деревья 
были сделаны инъекции четырех составов, содержащих фосфит калия.По сравнению с 
применении воды, после 50 дней рост некрозов была значительно замедлена только с 
одним препаратам, состоящего из фосфита калия с добавленнымимикроэлементами. 
Результаты этого исследования, вместе с некоторыми техническими предложениями 
для применения в практике, поддерживают идею использования 
endotherapicпродуктов для содержания заболевании, с безопасным и очень низким 
влиянием метода инъекции в ствол. 
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20BIntroduction 
Phytophthora cambivora (Petri) Buism. and P. cinnamomi Rands are soil-borne 
pathogens responsible of the so-called chestnut ink disease (CID), one the most 
destructive diseases of sweet chestnut (Castanea sativa Mill; Vannini and 
Vettraino, 2001; Vettraino et al., 2005; Choupina et al., 2014). CID symptoms 
comprise dieback of the distal branches, defoliation, root and collar necroses, tannic 
fluid leaks, gradual decline and host death (Vannini and Vettraino, 2001; Vettraino 
et al., 2005; Vannini et al., 2010; Prospero et al., 2013). Chestnuts' loss entailed not 
only an economical and cultural damage, but it compromises also the stability of 
slopes or ridges, leaving them exposed to erosion from runoff rainwater (Maresi and 
Turchetti, 2008). 

Chestnut ink disease can be prevented or controlled by integrated chemical and 
agronomic measures and protocols, that imply, for instance, management of water's 
flows and fertilizing (IPC; Bounous and Abreu, 1998; Brasier, 1999; Gentile et al., 
2010). Among compounds employed in CID chemical control, metalaxyl and copper 
compounds represent efficient solutions against Phytophthora spp., but were proved 
to deliver toxic impact on micobiont when applied to the soil (Graham et al., 1986) 
or insurgence of resistant isolates (Franceschini, 2011), respectively. Phosphonates 
are effectives both in vitro and in planta against P. cinnamomi and P. cambivora 
(Coelho et al., 2005; Hardy et al., 2001; Wilkinson et al., 2001; Gouveia et al., 
2010), acting directly at high concentration or stimulating host defence at low 
concentration (Jackson et al., 2000). In comparison with phosphite foliar 
treatments (Pilbeam et al., 2000; Hardy et al., 2001), trunk injection can lead to 
less or none phytotoxic effect, varying considerably with the dose and at a family 
and genus level (Garbelotto et al., 2007). Phosphite trunk injections was proved 
effective against Phytophthora cinnamomi in Avocado and in chestnuts (Darvas et 
al., 1984; Gentile et al., 2009), but little is known about ideal concentration and 
potential adjuvants. 

The aim of this study was to ascertain best performing formulates to control 
CID in artificially infected trees by trunk injections (Tattar et al., 1998; Takai et 
al., 2003; Aćimović et al., 2014). Furthermore in planta test on symptomatic 
chestnuts were conducted to evaluate recovering of chestnuts treated with high 
concentration potassium phosphite on the basis of growing increase of active 
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growing callus. 

21BMaterials and Methods 
Measurement of callus growth after potassium phosphite treatment 
The research was performed in a chestnut in the Veneto region (Northeastern 
Italy) where, after a first report at regional scale in 1923 (Petri, 1923), ink disease 
was observed in 2007 (Scattolin et al., 2012). The site (45° 47 ′ N; 11° 50 ′ E; 110 – 
150 m a.s.l.) is a private, unmanaged sweet chestnut forest characterized by wet 
temperate climate with warm summers, annual mean temperature of 12.5° C, 
equinoctial rainfall regimen with two maxima in spring and autumn (266 and 264 
mm, respectively) and mean annual rainfall of 705 mm. The soil is classified as 
Acrisol-Alisol, according to FAO-UNESCO-WRB (FAO-WRB, 1998). The study 
plot is approximately 4-ha wide, with a 25 – 40 % slope. The vegetation type is 
typical of the Castanetum (De Philippis, 1937), with > 10 % of Fraxinus excelsior 
L., Robinia pseudoacacia L. and Corylus avellana L. 

Due to the need for alive trees with similar ink disease symptoms and, in 
particular, with shape flame necroses at the collar, after careful selection 14 
chestnuts were chosen for the experiment, ranging from 18 to 47 cm (ave. 30 cm) 
at breast height (dbh). For each tree, 10 subcortical samples (~ 15 cm3) were 
collected from both structural roots and trunk. The specimens were immediately 
processed by means of a lateral flow test (Pocket Diagnostic test kit for the 
detection of Phytophthora, Forsite Diagnostics Ltd., Surrey, UK) to confirm the 
genus presence. Moreover, soils cores (10 x 20 cm, 45 cm in depth) were collected 
radially from the stem base (50 cm from the trunk) along the maximum slope 
direction (up or down) and along its perpendicular direction (Iso), 30 cm far from 
the collar. The samples were processed by baiting (Jung et al., 1996; Franceschini, 
2011) using fresh C. sativa leaves as baits. Baiting assays were kept at room 
temperature until the development of necroses (5-10 days). Baits were then gently 
cleaned under running water for 1 hour and let dry on sterile paper. Small portions 
(3 x 3 mm) of fresh active lesions, where the necrotic tissues are continuous with 
healthy tissues, were plated on PDA (Potato Dextrose Agar, Difco Laboratories, 
Detroit, MI, USA) in 60 mm diam. Petri dishes and incubated at 24 ± 1° C in the 
dark and daily checked for fungal cultures with coenocytic mycelium, immediately 
sub-cultured on PDA. Phytophthora-like colonies, presenting characteristic colony 
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pattern and mycelium (Erwin and Ribeiro, 1996; Scanu et al., 2014), but not 
producing sporangia, were treated according to Halsall and Forester (1977), in 
order to allow the production of fructification. The measurements of sporangia and 
chlamydospores allowed a first species identification (Erwin and Ribeiro, 1996), in 
order to select the cultures for molecular identification processing. 

Colony PCR was directly applied on a representative isolate without DNA 
extraction according to Kong et al. (2005), together with an official strain of P. 
cinnamomi (CBS 144.22; CBS-KNAW Database, www.cbs.knaw.nl/). In particular, 
cytochrome oxidase genes encoding subunits I (cox1) primers (FM84 
TTTAATTTTTAGTGCTTTTGC and FM83 
CTCCAATAAAAAATAACCAAAAATG for amplification; FM50 
GTTTACTGTTGGTTTAGATG for sequencing; Martin et al., 2014) were used. 
The chosen thermocycling pattern comprised an initial denaturation at 95° C for 3 
min, followed by 35 cycles of 95° C (1 min), 56° C (1 min) and 72° C (2 min), and 
a final extension step of 72° C for 5 min. A sample of 10 µl of the PCR product 
was electrophoresed on a 1 % agarose gel together with MassRuler DNA Ladder 
Mix (#SM0403; Thermo Scientific, MA, US), visualized by staining with Green Gel 
Plus™ (Fisher Molecular Biology, Società Italiana chimici distributor, Rome) and 
imaged using a UVIpro Gold Gel Documentation System (UVItec, Cambridge, 
UK). The amplified products were first purified by an enzymatic reaction using 
Wizard® SV Gel and PCR Clean-Up System (Promega Corporation, Madison, WI, 
USA) and then sequenced by BMR Genomics (Padua, Italy) using Sanger 
sequencing methodology. The sequences were compared with reference ones in the 
NCBI (http://www.ncbi.nih.gov/BLAST; Benson et al., 1999) using the Basic 
Local Alignment Search Total nucleotide search (BLASTn) program (Altschul et 
al., 1997). Sequence taxon categories were assigned as follows (Bidartondo and 
Read, 2008): sequence similarity of 99 %, identification to the species level; 
sequence similarity of 95 – 99 %, identification to the genus level; and sequence 
similarity of 95 %, identification to the family level. 

According to both tree diameter and the percentage of necrotic areas at the 
collar, selected chestnuts were split in two comparable groups (Peterson et al., 
2009), to be injected with commercial formulations of potassium phosphite 70 % 
(Agrofill by Adriatica S.p.a.; 21 % phosphoric acid and 14 % potassium oxide final 
concentrations) and water, as a control. In May-June 2014, trees were injected at 
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breast height in 4-6 equidistant points with 3 mL/cm dbh of each solution with a 
handheld tool recently developed by the University of Padova (BITE; Montecchio, 
2013). At the same time, 15 nails were carefully inserted in the necroses 1 cm from 
left, right and upper border of active growing callus tissue for each tree. After 90 
days, the growth (in mm) of the alive tissue toward the nails were measured. 

Statistical analysis were processed in R cran (R Core Team, 2013): normality 
and homogeneity of variance across groups were checked with Shapiro–Wilk 
Normality Test and Levene, respectively, then Anova (p < 0.05) was used to 
evaluate possible differences. In the case of non normality of data, Kruskall-Wallis 
test was employed (p < 0.05). 

Measurement of growing necroses after potassium phosphite treatment 
Endotherapic trials were conducted in a chestnut coppice in the Veneto region 
(Northeastern Italy, coord, 45° 54 ′ 41 ′′ N; 12° 2 ′ 10 ′′ E; 610 – 630 m a.s.l., 
approximately 20.3 km airline distant from the site previously described). After 
careful selection 50 asymptomatic trees were chosen for the experiment, ranging 
from 7.5 to 14.5 cm (ave. 9.9 cm) diam. at breast height (dbh). In June 2014, 
controlled artificial inoculations were performed using P. cinnamomi strain isolated 
as previously described and grown on PDA for 7 days at 24 ± 1 °C in the dark. 
Every trunk was wounded 150 cm above the collar with a sterile 7 mm diam. cork 
borer, penetrating approximately 5 mm, and a plug of the same diameter removed 
from the colony edge was placed top side inward into the hole, then protected with 
the bark previously removed. After 20 days, the edges of the infected wounds were 
carefully debarked and photographed with a scale bar. Pictures were treated with 
the computational process as follows. The border of necroses were accurately 
marked in GIMP v. 2.8 (ANNEX 9; The GIMP team, 2014) and a script in 
MATLAB v. 8.3 (ANNEX 10; MATLAB, 2014) was created for unwrapping of 
cylindrical trunk photos, then areas of necroses were measured by means of ImageJ 
software (v. 1.46r, Wajne Rasband, National Institutes of Health, USA; Abràmoff 
et al., 2004). 

According to both tree diameter and the necrotic areas, the 50 trees were 
organized into five comparable groups (Peterson et al., 2009), to be injected with 
commercial formulations of potassium phosphite 35 % as it is (122.5 g/L H3PO3; 
Strazzabosco and Klaudatos, 2013) or in double concentration (70 %; 245 g/L 
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H3PO3; Franceschini, 2011), or with the addition of 20 % allicin (1 g/L) or 0.1 % 
micronutrient solution (Table 15), and water as a control. Trees were injected at 
the opposite side 60-70 cm above the inoculation point, in 2-3 equidistant points 
with 1 mL/cm dbh of each solution. To avoid the production of drill holes, a 
hollow bladed, manual injection tool was used (BITE, University of Padova pat. n. 
WO2013010909-A1; Montecchio, 2013; ANNEX 9). 

 

Commercial 
product 

Active ingredient Strength Manufacturer 

FOSFISAN P4O10  30 % Agrofill by Adriatica S.p.a. 

 K2O 20 %  

CONQUER Allicin 0.5 % JCA Limited 

AGROVIT L Soluble B 0.2 % Agrofill by Adriatica S.p.a. 

 Soluble Cu 0.5 %  

 Soluble Fe 0.4 %  

 Fe EDTA 0.4 %  

 Soluble Mn 1 %  

 Soluble Mo 0.02 %  

 Soluble Zn 1 %  

Table 15. Description of the commercial products used in the endotherapic trial. 

Treatments effectiveness was assessed by comparing the dimension of the 
necrotic area measured on the day of the treatment with those observed after 50 
days. To verify the presence and vitality of the fungus, two equidistant 3 mm3 
wood samples were collected along the edge of each inoculation point, plated on 
PDA and incubated for 7 days at 24 ± 1°C in the dark. Isolations were scored as 
positive when fungal cultures exhibited the typical P. cinnamomi morphology 
(Erwin and Ribeiro, 1996). 

Statistical analysis were processed in R cran (R Core Team, 2013). Normality 
and homogeneity of variance across groups were checked with Shapiro–Wilk 
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Normality Test and Levene Test (p > 0.01 and p > 0.05), respectively, then Anova 
(p < 0.05) and Multiple Comparison (TukeyHSD, p<0.05) were used to evaluate 
possible differences on relative ratios of necrotic areas, computed for every tree for 
last survey date in comparison with the initial one. 

22BResults 
Measurement of callus growth after potassium phosphite treatment 
The lateral flow test confirmed the presence of Phytophthora in the samples from 
each symptomatic chestnuts. From baiting essay, a Phytophthora-like strain was 
obtained. After treatment with salts, it produced sporangia (average dimensions 
75.3 x 47.5 µm, range 43.2-124 x 34.4-72 µm, average length-breast ratio 1.54) and 
chlamydospores (average diameter 30 µm, range 23.5 - 41.6 µm). According to the 
white coralloid-type mycelium with abundant hyphal swellings and the measures of 
fructifications, it could be identified at species level as P. cinnamomi, as confirmed 
by molecular analysis (best match sequence, Phytophthora cinnamomi; bit-score, 
1130; E value, 0; similarity, 100 %; accession number, KC609419.1; Figure 22). 

Considering the endotherapic trial, after 90 days the growth of the callus tissue 
(Figure 23 for some examples) was not significantly different between the trees 
treated with potassium phosphite 70 % and water controls (Shapiro–Wilk 
Normality Test, p < 0.01; Levene Test, p > 0.05; Kruskall-Wallis Test, p > 0.05). 
Further surveys were not possible because of the fall of some chestnuts included in 
the trial. 

 

Figure 22. Agarose gel of PCR samples 
after electrophoresis. Nucleic acids of 
each sample were loaded on the gel. 
PCR products are as follows: 
lane 1, marker; 
lane 2, P. cinnamomi isolated with 
baiting (1/10 dilution); 
lane 3, P. cinnamomi CBS 144.22 
baiting (1/10 dilution); 
lane 4, negative control. 
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Figure 23. Some examples of the 
possible growth of callus tissue. 
The initial phase is reported on the 
left (the day of the treatment), the 
second phase (90 days after the 
treatments) on the left. Upper 
pictures are taken from a control 
tree, inferior ones represent the 
border of the necroses of a 
potassium phosphite treated 
chestnut (pictures by Dal Maso 
E.). 

Measurement of growing necroses after potassium phosphite treatment 
All the inoculation points on chosen chestnuts showed the presence of visibly 
developed necrotic areas, with great variance in shape and size independent of tree 
diameter (ANNEX 9). 

In the next observation (50 days after the treatments), all the cankers were 
wider than during injections and none of the products completely blocked the 
growth of P. cinnamomi. Moreover, the pathogen was successfully reisolated from 
the necroses' edges. 

When compared with water injection, all the phosphite treatments slowed down 
the necroses development accordingly to average values. In particular, potassium 
phosphite 35 % reduced the growth of the necrosis by 65.5 %, potassium phosphite 
70 % by 62.07 %, potassium phosphite plus allicin by 49.2 % and potassium 
phosphite plus micronutrient by 84.98 % in average (Anova, p < 0.01; Shapiro-
Wilk Normality Test p=0.038; Levene test p=0.173; Figure 24). Nevertheless, 
Multiple Comparison analysis indicated that the growth of the necroses was 
significantly slower down only by potassium phosphite plus micronutrient solution 
when compared with water-treated trees (p<0.05; Table 16). 
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Figure 24. Differences in the relative increase of the necrotic areas after 50 days from 
the treatments. A = Potassium phosphite 35 %; B = Potassium phosphite 70 %; C = 
Potassium phosphite 35 % plus micronutrient solution 0.1 %; D = Potassium 
phosphite 35 % plus allicin solution 20 %; E = Control. 
 

Treatments comparison 
Estimated 
difference 

Standard 
error 

p value 

Potassium phosphite 35 % - Control -7.93 4.173 0.33 

Potassium phosphite 70 % - Control -10.57 4.067 0.09 

Potassium phosphite 35 % plus 
micronutrient solution 0.1 % 

- Control -12.46 4.066 0.03 * 

Potassium phosphite 35 % plus 
allicin solution 20 % 

- Control -9.09 4.067 0.19 

Table 16. Multiple comparisons (Tukey HSD) between the relative growth of the 
fungus in the wood in 50 days during the growing season of the treated trees toward 
water control. 
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23BDiscussion 
New outbreaks of chestnut ink disease (CID), caused by Phytophthora cinnamomi 
and P. cambivora (Vannini and Vettraino, 2011; Robin et al., 2012) are 
increasingly detected in many European chestnut forests and plantations (Turchetti 
and Maresi, 2008; Beccaro et al., 2009; Costa et al., 2011), reconfirming the interest 
in management's possibilities. The use of potassium phosphite has become a 
common practice in the control of many important Phytophthora plant diseases, 
considering also the extremely low toxicity to invertebrates, aquatic organisms and 
animals (Garbelotto et al., 2007; Thao and Yamakawa, 2009). In particular, against 
CID, endotherapic treatments were suggested as an effective and environment-
friendly method while remaining relatively inexpensive (Tamietti and Valentino, 
2005; Gentile et al., 2009; Franceschini, 2011). 

In the first endotherapic trial, the injection of potassium phosphite 70 % was 
evaluated considering growth stimulation of active growing callus next to the shape 
flame necroses, but the results did not highlight a significant difference between 
treated trees and water control ones. The outcome could be due to the need of 
additional time for the evaluation of treatment's effectiveness, but the fall of some 
chestnuts involved in the study prevented further surveys. 

The second study focused on trunk injections of different potassium phosphite 
formulations against CID. Considering that phosphonates are among the few 
substances with phloem mobility in the symplast (Ouimette and Coffey, 1990; 
Brudenell et al., 1995; Garbelotto et al., 2007) and to simulate what could happen 
treating naturally infected chestnuts, injections were carefully made above the 
inoculation point at the opposite side. The solution of potassium phosphite at low 
concentration (35 %) reduced the growth of the necrosis by 65.5 % in average and 
did not differed significantly from the control. In its comparison, the treatment at 
double concentration slightly changed the result. This outcome is partly in contrast 
with those obtained from Tamietti and Valentino (2005); in that trial curative 
treatment with potassium phosphite on 3 years old trees blocked growing necroses 
in great part of treated plants after the same interval of time. This differences 
could be due, for instance, to the different concentration used, the trees' diameters 
or the pathogenicity of the fungal strain used. Effectively, also Tamietti and 
Valentino (2005) and Gentile et al. (2009) found difficulty in promoting plant 
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recovery of older chestnuts heavily affected by CID in the field after potassium 
phosphite treatment. 

Although the antibacterial principle of garlic (Allium sativum L.; Slusarenko et 
al., 2008), allicin, was never directly tested against P. cinnamomi, it resulted 
effective as inhibitor of growth of P. infestans, P. ramorum, P. kernoviae, P. 
lateralis mycelium also at low concentration (Ke-Qiang and van Bruggen, 2001; 
Curtis et al., 2004; Portz et al., 2008; Hearst et al., 2013). In the current study, in 
planta test on allicin against P. cinnamomi did not indicate a significant effect on 
pathogen growth in comparison to water control; moreover, considering the average 
reduction of necroses' growth, the addition of allicin to the base solution of 
potassium phosphite diminished its effective. It is not known whether allicin flows 
inside the trunk through ascendant xylematic or descendant phloematic streams or 
both; in the case of main upwards translocation, it would not be able to act against 
P. cinnamomi development below; moreover, it could have combined to the 
potassium phosphite and carried it upwards. 

Best results were achieved by potassium phosphite added with the micronutrient 
solution, with average 84.98 % necroses development reduction in comparison to 
the control. Also in this case, the phenomenon could be explained in different ways. 
As a first hypothesis, direct effect of single component should be considered. 
Among the elements in the micronutrients solution, the efficacy of soluble copper 
compounds in the control of P. cinnamomi is recognized for a long time (Halsall, 
1977; Keast et al., 1985; Coelho et al., 2005). Molybdenum and ferric ions are 
known to reduce the production of P. cinnamomi sporangia in vitro, too (Halsall, 
1977; Halsall and Forrester, 1977). Moreover, micronutrient solution and 
phosphonates could act in a synergistic effect; this agrees with the observation 
made by Darvas et al. (1984) and Bezuidenhout et al. (1987) on phosphate 
supplemented with zinc sulphate applied to avocado affected by P. cinnamomi. 
Micronutrient injection could also have influenced the defense response to the 
pathogen, as systemic protection could be attributed to the nutrients increasing 
plant cell resistance (Reuveni et al., 1997; Simoglou and Dordas, 2006; Frenkel et 
al., 2010). At last, the destruction of the root system of chestnuts infected by P. 
cinnamomi in infested groves reduces nutrient uptake and limit tree's growth 
(Labanauskas et al., 1976; Portela et al., 1999; Maurel et al., 2001). Therefore, 
injection of low concentration micronutrients, such as manganese and iron 
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necessary for photosynthesis (Puig and Peñarrubia, 2009; Thomine and Vert, 
2013), could provide for this deficiencies. 

The results of this study implement the knowledge base on CID endotherapic 
treatments with potassium phosphite, indicating that the addition of micronutrient 
solution can significantly slow down the development of the disease for at least few 
months. Moreover, endotherapic treatments, delivering agents directly into trees, 
well adapt to a general context with people more concerned about the effects of 
pesticides on humans and the environment generally (Ferracini and Alma, 2008; 
Tanis et al., 2012). Further investigations will assess the efficacy of various 
formulations in terms of different chestnuts age classes and genotypes, from a 
preventive and curative view. 
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The results presented in this thesis regard the development of updated and 
innovative methods in the management of forest diseases. From a perspective of 
plant disease management, practices rely on anticipating occurrence of disease 
(prevention; i.e monitoring environmental factors for disease forecasting, site 
selection and preparation, utilizing resistant cultivars, altering planting practices, 
drainage, irrigation, pruning, thinning, shading) and therapy (treatment or cure; 
Maloy, 2005). In this context, environmental modelling for risk prediction and 
endotherapic treatments were tested on two major forest diseases, ash dieback 
caused by Hymenoscyphus fraxineus and chestnut ink disease (CID) caused by 
Phytophthora cinnamomi Rands and Phytophthora cambivora (Petri) Buism. The 
two diseases are extremely different, both for epidemiology, pathogenesis, hosts and 
knowledge base. The rapid spread of the airborne H. fraxineus in Europe was 
reported only in 2006 (Kowalski, 2006; EPPO, 2013a; Gross et al., 2014a). In 
contrast, CID is known since 1917 (Petri, 1917), but new outbreaks are increasingly 
detected in many European chestnut forests and plantations (Turchetti and Maresi, 
2008; Vettraino et al., 2008; Beccaro et al., 2009; Costa et al., 2011; Woodward et 
al., 2011), reconfirming the interest in management's possibilities. 

Predicting the spread of infectious diseases is fundamental for forecasting 
potential ecological consequences and designing control strategies, in a risk 
assessment context (Brown et al. 2005; Sansford et al. 2009; Dupin et al., 2011; 
Meentemeyer et al., 2011; Robinet et al. 2012; Santini et al., 2013), and 
mathematical models have long been widely used for agricultural and forest 
diseases (Van Maanen and Xu, 2003; Bergot et al., 2004; Meentemeyer et al., 2004; 
Venette and Cohen, 2006; Kelly et al., 2007; Ganley et al., 2009; Klopfenstein et 
al., 2009). Among those extensively employed, habitat suitability models 
(environmental niche models) can be constructed utilizing spatial analysis methods, 
which relate the presence or absence of the target species to a set of environmental 
variables (Iverson and Prasad, 1998; Kelly et al., 2007; Kamino et al., 2012). In the 
last years the variety of techniques used for ecological modelling has increased 
(Guisan and Zimmermann, 2000; ANNEX 2). In order to assess the infection risk in 
pest-free areas by H. fraxineus, the consensus ensemble forecast technique 
developed in this thesis permitted to highlight the suitable areas at European scale 
within European ash species ranges. Moreover, it lead to interesting conclusions on 
the ecological appropriateness of some areas to the potential pathogen spread, 
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considering the principal environmental features that characterize naturally 
infected zones. In particular, pathogen's natural presence was highly correlated 
with abundant rainfall, high soil moisture content and low mean temperatures in 
the summer months. Furthermore, a network analysis permitted dispersal dynamics 
to be included in order to obtain realistic risk predictions for natural spread. As a 
general consideration, this type of models, which can increase ecological 
understanding for cases where the knowledge is relative low (Wainwright and 
Mullligan, 2013), represents a promising tool in the spatial prediction of plant 
pathogen species for which environmental requirements are still little investigated. 
As disadvantages, these mathematical models usually have low interpretability (the 
so called "black-box", Elith and Leathwick, 2009) and possibly require a continuous 
update, for instance, with wider time series, data on disease severity and hosts 
abundance, to potentially enlarge the boundaries of the Grinellian niche (closer to 
equilibrium, according to Pulliam, 2000; Václavík and Meentemeyer, 2012). 

In the case of CID, a completely different approach was implemented and the 
fuzzy-rule based theory was used to estimate habitat suitability at large scale in the 
Treviso province. Fuzzy set theory offers good predictive capability and reasonable 
estimates of the unknown model parameters inherent to variables and functions of 
complex ecosystems (Omlin and Reichert, 1999; Adrianssens et al., 2004; Fukuda, 
2009). Fuzzy logic, widely used in engineering and process control sciences (Sugeno, 
1985; Von Altrock, 1995), was then applied in biology end environmental sciences 
(Ayyub and McCuen, 1987; Equihua, 1990). In plant pathology, it found first 
applications in disease intensity prediction (i.e. coffee and soybean rust; Kim et al., 
2005; Alves et al., 2011), infection simulation (i.e. grapevine downy mildew; 
Orlandini et al., 2003) and diagnosis (i.e. oilseeds crops; Kolhe et al., 2011), and 
risk assessment (i.e. European canker of apple; Kim and Beresford, 2012). In this 
thesis, the fuzzy model created for CID, here employed in forest pathology for the 
first time, permitted the ranking of a current or potential chestnut area for 
probabilities of CID development, considering the environmental variables 
associated to host presence and parasites' ecological niches. The effectiveness of the 
rule-based modelling outcomes, supplied by uncertainty maps for their correct 
interpretation, was confirmed by detailed field data collection. In comparison to the 
model applied to ash dieback, the use of fuzzy model technique did not require a 
training dataset, basing directly in a priori understanding of the ecological 
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characteristics of CID. Fuzzy models demonstrated to be simple (relations between 
input and output are explained with linguistic rules) and robust (performance is 
not depending on the training data; Adrianssens et al., 2004, 2006). Therefore, for 
well known pathogens, this methodology can allow resources' saving, which can be 
devolved in specific validation data collection. Undoubtedly, data-driven technique 
can be employed in fuzzy logic too, by many authors recommended to provide a 
preliminary model to the experts (Mouton et al., 2011), but this approach is 
extremely data hungry and has very limited transportability (Zhu et al., 2014). 

The two bioclimatic modelling techniques exhibit also different approaches 
towards the fundamental uncertainty factor. The consensus modelling framework 
(ensemble forecasting) procedure can enable robust decision making in the face of 
uncertainty, in particular in a conservation planning context (Araújo and New, 
2007), because it tones down the errors of the single models. On the contrary, the 
fuzzy model directly incorporates uncertainty in model construction (i.e. in the size 
of membership functions overlapping) and it permits also to consider the weights of 
every key source of uncertainty, in particular model's structure, input data and 
parameter values, on the final prediction (Refsgaard et al., 2006). For instance, in 
the CID application of fuzzy logic in this thesis, it was possible to notice that 
underpredictions (false negative observations) detected in the validation procedure 
were included in transitional areas with the highest input uncertainty. 

The optimal model should provide the greatest simplifications together with an 
accurate representation of the investigated phenomenon. Currently, there is no way 
to assess which niche-based model is the most appropriate in forest pathogens' 
epidemiology prediction (Thuiller, 2004). Considering the reported results, the 
choice should be made on the basis of the availability of biological and ecological 
information, explanatory variables at the study scale and the possibility to collect 
survey data for model construction and validation. Once built the chosen model, 
the possibility of updating with different environmental predictors or biological 
information, should be highly regarded. 

The second principle of plant disease management, the therapy, was deepened 
with endotherapic treatments trials, with successful results in both cases, ash 
dieback and CID. Endotherapy has been long applied in tree care as a preventive 
and curative treatment, with first trials by Leonardo Da Vinci in the 15th century 
(Da Vinci, 1478-1519a,b; Tattar et al., 1998; Sánchez-Zamora and Fernández-
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Escobar, 2004; Ferracini and Alma, 2008; Montecchio, 2013; Aćimović et al., 2014); 
nevertheless, in the case of new plant pathogen species information are naturally 
lacking (Hubbard and Potter, 2006), in the case of old known disease, data are 
often localized or incomplete for a broad use of this technique. In the present 
thesis, trunk injections were applied against the two above mentioned diseases, in 
order to supply useful information on the efficient use of trunk injection. 

In the case of ash dieback, considering the partly knowledge of effective 
compounds against the pathogen (Hauptman et al., 2012; Cooke et al., 2013), in 
vitro tests were firstly performed and results indicated thiabendazole, propiconazole 
and allicin as the best performing agents. Subsequently, their antifungal activities 
were investigated in planta against H. fraxineus by trunk injection. Fraxinus genus 
was indicated as difficult to inject in the past (Sach et al., 1986), so in planta tests 
were preceded by preliminary trials that indicated higher treatment velocity when 
performing trunk injections at breast height in early morning or late afternoon with 
the addition of a small amount (1.2 %) of acetic acid. The final efficacy tests of 
fungicides in planta indicated allicin and thiabendazole as effective in slowing down 
the pathogen growth and acceptable efficient in injectability. 

Taking into account CID complex, the efficacy of phosphonates against P. 
cinnamomi and P. cambivora in vitro is known for a long time (Coelho et al., 2005; 
Hardy et al., 2001; Wilkinson et al., 2001; Gouveia et al., 2010) and endotherapic 
treatments were suggested as an effective and environment-friendly method while 
remaining relatively inexpensive (Tamietti and Valentino, 2005; Gentile et al., 
2009; Franceschini, 2011), but little was known about ideal concentration and 
potential adjuvants. The study conducted in this thesis permitted to evaluate 
different potassium phosphite formulations against CID in planta in a comparative 
trial. Trunk injection was performed on fifty asymptomatic sweet chestnuts 
inoculated with P. cinnamomi, isolated with baiting technique from diseased 
chestnuts in a near zone. Although pure solutions of potassium phosphite (35 % 
and 70 %) reduced the growth of P. cinnamomi in average, the only formulation 
that significantly slowed down the necroses consisted in potassium phosphite added 
with a micronutrient solution. On the contrary, the addition of allicin to the 
phosphite solution reduced its effective. In another trial, the main aim was to 
ascertain the possible growth of the active callus on necroses border after potassium 
phosphite injection, but the treatment did not give different results in comparison 
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to water control, probably for longer times need for efficacy evidence. 
Endotherapic treatments, delivering agents directly into trees, well adapt to a 

general context with people more concerned about the effects of pesticides on 
humans and the environment and restricted possibility of fungicide use (Ferracini 
and Alma, 2008; European Commission, 2009; Tanis et al., 2012; Wise et al., 2014). 
Indeed, they represent an environmentally safer alternative to the traditional 
approach of spraying chemicals, in line with the current legislation on the use of 
fungicides (i.e. Directive 2009/128/EC at European level; Pavela and Bárnet, 2005; 
Montecchio, 2013). From this perspective, biological control acquires increasingly 
importance (Santamaría et al., 2007). As limitations, trunk injection technique 
requires a specialized knowledge not only on the practical aspects on the used tool 
and best formulations, but also on the ecophysiology, phenology and phytosanitary 
status on the tree of interest. Nevertheless, while a blanket use would probably be 
impractical and expensive, endotherapy could recover special historic and high 
value trees (Marshall, 2014) and further studies are essential to create technical 
execution tables for each species, host genotype, disease, stand conditions 
combinations, in order to make treatment ever more safe, effective and efficient. 

As general conclusions, risk predictions maps obtained by means of bioclimatic 
environment niche modelling, represent an useful and cost-effective decision 
support tool in Pest Risk Management, linking their outcomes to allow better 
forest conservation strategies, aid monitoring survey, focus prompter phytosanitary 
measures along an outbreak, and promote discussions about the control of the 
disease and the risks associated to trade or movement of plants for plantings in the 
perspective of global economy. From a curative point of view, endotherapic 
treatments represent an useful tool both effective, because active ingredients are 
delivered directly to the target pest for optimal exposure, and environmental safe, 
because it eliminates or significantly reduces off-target drift-driven pesticide losses 
to the environment. These preventive and curative measures should be applied in a 
coordinated integrated and harmonized manner, together with the appropriate 
cultural practices, to maximize benefits. 
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40BANNEX 1 
41BChestnut ink disease symptoms and compromised slope 

 

A. Shape flame necroses at trunk collar on a symptomatic chestnut and upper cracked 
area; B. Debarked necroses and callus in order to show the sharp transition between 
the necrotic and the healthy areas; C. Symptomatic chestnut with canopy dieback; D. 
A compromised slope, with crashed chestnuts affected by Phytophthora spp. (pictures 
by Dal Maso E.). 

A B 

C D 

 

 



 

42BANNEX 2 
43BEpidemiological forecasting modelling - An overview 

Epidemic derives from two Greek words, epi (on/among) and demon (population), 
meaning "any phenomenon affecting most of the individuals of a population in 
progress at the same place and at the same time". Indeed, this term assumes a 
change in disease intensity in a host population over time and space. The world 
epiphytotic or botanical epidemiology has been used in scientific literature, but was 
abandoned with the increased common use of "epidemiology" word (Chaube and 
Pundhir, 2005). 

 ELEMENTS OF EPIDEMICS 
Plant disease epidemic can develop as a result of a combination of three main 
factors, the classical disease triangle, comprising a susceptible host, a virulent 
pathogen and favorable environmental conditions (Agrios, 2005). Host population is 
characterized by the degree of genetic uniformity, age, vertical or horizontal 
resistance and crop duration (annual or perennial). Furthermore, the pathogen  

 
Figure 25. Schematic representation of the elements of an epidemic (Chaube and 
Pundhir, 2005, modified). 
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mycelium, spores, cleistothecia) and quantity of inoculum near hosts, the type of 
factor can present differences on the base of the level of virulence, the type (i.e. 
reproduction (monocyclic or polycyclic), latent and infectious periods and the mode 
of spread (i.e. air-borne, soil-borne or seed-borne; Cooke et al., 2006). The main 
environmental features involved in disease development are moisture (i.e. rain), 
temperature (Agrios, 2005), radiation and wind speed (Contreras-Medina et al., 
2009). Moreover, the triangle can be developed into a tetrahedon (Francl, 2007) or 
a pyramid, adding humans and time as additional two components (Figure 25). In 
particular, humans can chose the kind, the number and the density of plant grown, 
the cultural practices, the chemical or organic control; moreover humans can be 
responsible of the introduction of new pathogens. On the other hand, disease should 
be plotted against time factor, comprising, i.e., the season and the duration of 
favorable meteorological conditions (Agrios, 2005). 

 EPIDEMIOLOGICAL MODELLING AND DISEASE FORECASTING 
Epidemiological models aim to interpret the biology of the pathogen in the context 
of conditions which affect its development, survival and ability to infect and 
colonize the relevant host, in order to develop sustainable strategies for disease 
management (van Maanen and Xu, 2003). Unfortunately, it is unlikely that all 
eventualities will be covered by even the most complex of models because biological 
processes are in a constant state of flux (i.e. with the introduction of new strains 
and mating types, rapid changes in aggressiveness and temperature adaptations; 
Cooke et al., 2006). For this reason, most of the models impose a cut-off and the 
degree of precision and complexity of the required modelling, and analysis is 
determined by the question(s) modelers are trying to answer. In plant pathology, 
the main objective for modelling is the prediction of a probable outbreak or 
increases in intensity of disease, for the formulation of control measures (Agrios, 
2005). In particular, Norton and Mumford (1993) and van Maanen and Xu (2003) 
proposed this classification of objectives: 

- Predicting the time of an event; 
- Predicting the scale of an event; 
- Estimating the frequency or probability of an event (i.e. in polycyclic 
epidemics); 
- Comparing the performance of different management strategies. 
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Disease forecasting is therefore required both for economic and safety reasons, 
because it can reduce the cost of production (i.e. rational treatments) and the 
effects of pesticides toward the environment, operators and consumers (Cooke et 
al., 2006). According to Campbell and Madden (1990) and Esker et al. (2008), the 
success of plant disease forecasting system should be evaluated on reliability (use of 
sound biological and environmental data), simplicity, importance (i.e. economic 
reply) and usefulness, availability of information about the components, 
multipurpose applicability for several diseases and pests and, finally, cost 
effectiveness. 

The most commons mathematical tools to describe epidemic dynamics can be 
summarized as follows: 

- Disease progress curve (growth model) 
This solution permits to analyze individual epidemics considering the temporal 
dimension. The pattern of the epidemics is quantified in the terms of number of 
lesions, amount of diseased tissue or incidence (Agrios, 2005; Hau and Kosman, 
2007) and plotted over time with a disease-progress curve. The growth models 
commonly used are the monomolecular, exponential (or logarithmic or Malthusian), 
Gompertz and logistic, all in differential form (Figure 26). The time independent 
variable can be the calendar time (days, weeks), or, as suggested in the case of 
epidemics comparisons, the "biological time" (Cooke et al., 2006). In particular, 
monomolecular model is appropriate when the pathogen has a single cycle during 
the growing season; the exponential curve can describe the very early stages of 
most polycyclic epidemics; the widely used logistic and the alternative Gompertz 
model are indicated for polycyclic epidemics. 

Generally, these models have been used to describe the observed patterns and 
compare epidemics. As main limitation, this kind of models are simple and can 
ignore several important factors such as host growth and fluctuating environmental 
conditions, with direct or indirect effect on disease development (Cooke et al., 
2006). 

Examples. There are many publications comprising the use of the growth curves 
in plant pathology. In particular, exponential curves were used, for instance, in the 
quantification of disease expression at different stages (Daamen, 1991; de Jong,  
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Figure 26. Examples of disease progress curves (Contreras-Medina et al., 2009, 
modified). 

1995; Cao et al., 2012) or sometimes integrated with weather variables 
(Papastamati and van den Bosch, 2007), or, rarely, as a dispersal function over 
space (Wingen et al., 2013). Monomolecular model are usually used to describe the 
progress of a disease over time (Kravchenko et al., 2011; Gongora-Canul et al., 
2012; Vicent et al., 2012; Hughes et al., 2014). The Gompertz and the logistic 
equation were used originally to fit the growth of bacteria and to determine the 
time of growth and toxin production by Clostridium botulinum, respectively 
(Dantigny et al., 2011). Later, the models were usually test together, to fit the 
germination data (Marín et al., 1996; Dantigny et al., 2002; Huang et al., 2010), 
disease progress over time (Café-Filho et al., 2010; Bernard et al., 2013; Hughes et 
al., 2014) or disease expression and infection pressure (Jarroudi et al., 2012), 
although logistic model has more applications (Paul and Munkvold, 2004; 
Henderson et al., 2007; Harikrishnan and del Río, 2008; Guyader et al., 2013; Shah 
et al., 2013; Xu et al., 2013; McKay et al., 2014). However, great part of papers 
compare the performances of more than one growth curve and chose the best one 
on the base of the highest Goodness of Fit (Scott et al., 2003; Beltrán et al., 2008; 
Batzer et al., 2012; Carisse et al., 2014). 
 

 

 



156 Annex 2 
   

- Area under the disease progress curve 
The area under the disease progress curve (AUDPC) is a quantitative summary of 
disease intensity over time, for comparison across years, locations, or management 
tactics. The most commonly used method for estimating the AUDPC is the 
trapezoidal method. It permits to discretize the time variable and calculate the 
average disease intensity or economic loss between each pair of adjacent time 
points, without regard to curve shape (Figure 27 for an example; Sparks et al., 
2008). AUDPC can be very useful as an alternative to fitting growth models when 
observed disease patterns cannot be fitted to a progress curve (Cooke et al., 2006). 
Examples. AUDPC computation is usually used to assess different resistance to 
disease (van Maanen and Xu, 2003; Lecomte et al., 2014; Mirkarimi et al., 2013; 
Paraschivu et al., 2013), the virulence of pathogens (Purahong et al., 2014; 
Shishido et al., 2014), effectiveness of various treatments against the disease 
(Conceição et al., 2014; Senechkin et al., 2014) and pathogenesis comparing 
different host parts or time of infection (Siou et al., 2014). 

 

Figure 27. Example of AUDPC computation, conducted in R cran. 
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- Linked differential equations and computer simulation 
Linked differential equations (LDE) represent a flexible and biologically intuitive 
approach to incorporate many disease components into a single model (Cooke et 
al., 2006). In this type of model, differential equations aim to interpret the 
dynamics of plant disease in relation to host, environment and human 
interventions. The LDE models are of the susceptible (healthy), infected and 
removed (post-infectious) (SIR) type or of the susceptible, exposed, infected and 
removed (SEIR) type, usually used in human diseases' epidemiology (Van Maanen 
and Xu, 2003; Scherm et al., 2006). 
Examples. Some examples of the use of LDE and computer simulation are reported 
in Table 17. 
 

Model name Host(s) Pathogen Reference 
Lalancette et al. Grapevine Plasmopara viticola Lalancette et al., 1988 
MILVIT Grapevine Plasmopara viticola Magnien et al., 1991 

PLASMO Grapevine Plasmopara viticola 
Rosa et al., 1993, Orlandini et 
al., 1993 

Rossi et al Grapevine Plasmopara viticola 
Rossi et al., 2007a, Rossi et al., 
2009 

VITIMETEO Grapevine Plasmopara viticola 
Bleyer et al., 2008, Viret et al., 
2005 

Orlandini et al. Grapevine Plasmopara viticola Orlandini et al., 2008 
Thomas et al. Grapevine Uncinula necator Thomas et al., 1994 
Nair et al. Grapevine Botrytis cinerea Nair and Allen, 1993 
Xu et al.  Apple Venturia inaequalis Xu et al., 1995 
RIMPRO Apple Venturia inaequalis Trapman and Polfiet, 1997 
A-Scab Apple Venturia inaequalis Rossi et al., 2007b 
Rossi et al. Apple Venturia inaequalis Rossi et al., 2003a 
Adem Apple Venturia inaequalis Berrie and Xu, 2003 
VENTEM Apple Venturia inaequalis Van Santen and Butt, 1992 
DLV-Welte and 
RIMpro 

Apple, 
Pear 

Venturia inaequalis 
and Venturia pirina 

Aalber et al., 2001 

BSP-Cast Pear 
Stemphylium 
vesicarium 

Montesinos et al., 1995, Llorente 
et al., 2000 

Cougarblight 
Apple, 
Pear 

Erwinia amylovora 
Dewdney et al., 2007, Smith and 
Pusey, 2011 

MARYBLYT Pear Erwinia amylovora Steiner, 1990 
Smith Pear Erwinia amylovora Smith, 1993 

Bugiani et al Tomato 
Phytophthora 
infestans 

Bugiani et al., 1993 
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PhytoPRE Tomato 
Phytophthora 
infestans 

Forrer et al., 1993 

PROGEB Tomato 
Phytophthora 
infestans 

Gutsche, 1993 

BLITECAST Potato 
Phytophthora 
infestans 

Krause et al., 1975 

De Visser Onion 
Botryotinia squamosa, 
Peronospora 
destructor 

De Visser, 1996 

ONIMIL Onion 
Peronospora 
destructor 

Battilani et al., 1996 

MILIONCAST Onion 
Peronospora 
destructor 

Gilles et al., 2004 

CERCOPRI Sugarbeet Cercospora beticola Rossi and Battilani 2008 
CERCODEP Sugarbeet Cercospora beticola Rossi et al., 1994 
CERMAL Wheat Various Battilani et al., 1993 
RUSTDEP Wheat Puccinia recondita Rossi et al., 1997 
SRESM Wheat Puccinia striiformis Luo and Zheng, 1995 

Rossi et al. Wheat 

Gibberella zeae, 
Fusarium culmorum, 
Gibberella avenacea, 
Monographella nivalis 

Rossi et al., 2003b 

POWPRI Wheat Erysiphe graminis 
Rossi et al., 2000a, Rossi et al., 
2000b 

Battilani et al. Sunflower Diaporthe helianthi Battilani et al., 2003 
Aguayo 2014 Alder Phytophthora alni Aguayo et al., 2014 

 

Table 17. Some examples of the use of LDE in plant pathology. 

Steady-state analysis of these equations may generate important results, for 
example on criteria for persistence and invasion (Cooke et al., 2006), but the 
purpose of this theory is to explain rather to predict or contribute to the 
development of new theories (Scherm et al., 2006). Computer simulation have 
therefore be applied together with LDE in epidemiological modelling. Usually, each 
subcomponent of disease development (i.e. the stage of the life cycle of the 
pathogen) is considered in a dynamic LDE approach (Contreras-Medina et al., 
2009). Computer simulation may serve not only as an educational platform, but 
overall to evaluate the importance of each subcomponents of an epidemic at a 
particular time, in order to indicate the most effective management (Agrios, 2005). 
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- Statistical tools 
In few cases, linear or multiple regression can be used for describing the 
relationship between disease severity and time (Sparks et al., 2008). On the 
contrary statistical tools can be applied in some stages of the epidemiological model 
construction, overall when little is known about the structural form of complex 
relationships between response variables (Contreras-Medina et al., 2009). Several 
statistical tools have the potential to improve inference from a range of 
epidemiological studies, such as generalized linear mixed models (GLMMs), 
Bayesian analysis and ROC analysis in decision support, genetic algorithms 
(Scherm et al., 2006), principal component analysis (PCA) and factor analysis (FA) 
in reducing variables and data dimensions. Other tools can be used in comparing 
epidemics, such as analysis of variance (ANOVA), residual (restricted) maximum 
likelihood (REML), cluster analysis, canonical variate analysis, discriminant 
function/logistic regression, survival analysis and canonical correlation (Cooke et 
al., 2006). 

- Future trends 
Nowadays, there are many tools which started to be applied in plant disease 
epidemiological modelling, overall integrating the pathogen identification phase 
with greater speed, volume and accuracy, and environmental variables data 
collection. These tools include: 

> Photosynthetic measurement systems 
> Molecular Tools 
> Geographic Information System (GIS) 
> Global Positioning System (GPS) 
> Geostatistics 
> Remote Sensing 
> Multi spectral and continuous spectrum scans 
> Digital plant canopy imager 
> Image Analysis (e.g. lesion/colony area, space fill) 
> Information Technology 

(Agrios, 2005, Cooke et al., 2006) 
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INTEGRATION OF SPECIES DISTRIBUTION MODELLING IN PLANT 

DISEASE EPIDEMIOLOGY 

Species distribution modelling (SDM; including habitat modelling and ecological 
niche modelling) refers to statistical and/or mechanistic approaches to the 
assessment of range determinants and prediction of species occurrence across space 
and/or time (Svenning et al., 2011). In other words, it quantifies the correlation 
between environmental factors and the distribution of plant and animal species 
(Miller, 2010). Predictions from these models inform conservation policy, invasive 
species management and disease-control measures, focusing on distribution shift of 
the considered species caused by ecological problems (i.e climate change, habitat 
fragmentation and biological invasion; Beale and Lennon, 2012). Moreover, they 
have been used to study the relationships between environmental parameters and 
species richness, and characteristics and spatial configuration of habitats that allow 
persistence of species in landscapes and invasive potential of non-native species 
(Elith et al., 2006). The majority of papers on SDM regard niche-based distribution 
models. They focus on estimation of a species' niche from the geographical 
distribution of species (field observations), considering each environmental gradient 
as a single dimension in Hutchinson’s n-dimensional niche (Miller, 2010). Therefore, 
models can be based on a variety of climatic or other environmental variables, for 
example temperature, precipitation, elevation, ground cover or soil type (Richards 
et al., 2007). At last, predictions (in space and time) can be made by re-projection 
to different geographical space (Guisan and Thuiller, 2005; Beale and Lennon, 
2012). A huge range of methods have been developed for this theory (Guisan and 
Thuiller, 2005), from statistical regression methods, such as generalized-linear 
models and generalized-additive models, to machine-learning approaches, including 
artificial neural networks and implementations of genetic or other learning 
algorithms (Beale and Lennon, 2012). Utilization of SDM has grown substantially 
during the last decade thanks to geographic information systems (GIS) and the 
rapidly increasing wealth of environmental data (Svenning et al., 2011; Miller, 
2010). 

Although well established in many fields of biological research, SDMs are still 
uncommon in plant pathology. There are few examples of application and these 
regard: the influence of environment and climate on occurrence of the cixiid 
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planthopper Hyalesthes obsoletus (the vector of the grapevine disease 'bois noir'; 
Panassiti et al., 2013); the prediction of the biological invasion by Phytophthora 
ramorum (Meentemeyer et al., 2008; Václavík and Meentemeyer, 2009; Václavík et 
al., 2010); the probability of gypsy moth (Lymantria dispar L.) establishment 
(Lippitt, 2008); four key diseases for cassava in developing countries (whiteflies, 
cassava green mites, cassava mosaic disease and cassava brown streak disease; 
Campo et al., 2011) and the prediction of the range of the leafhopper, Hishimonus 
phycitis, in Iran (Shabani et al., 2012). 
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44BANNEX 3 
45BR code for the construction of the spatially explicit model for 

H. fraxineus 

 

## Opening useful libraries 
library(maptools) 
library(rgdal) 
library(maps) 
library(shapefiles) 
library(spdep) 
## Reading in data 
mapIDs <- 
readShapeSpatial("C:/Users/ (insert here the folder 
containing the downloaded map) /PresenceMap") 
## A quick summary of the data 
summary(mapIDs) 
attributes(mapIDs) 
names(mapIDs) 
plot(mapIDs) 
class(mapIDs) 
str(mapIDs) 
## Preliminary settings 
coords <- coordinates(mapIDs) 
set.ZeroPolicyOption(TRUE) 
## Network creation and visualization 
Net<- poly2nb(mapIDs, queen = FALSE, snap = 1.45) 
isTRUE(all.equal(mapIDs, Net, check.attributes = FALSE)) 
summary(Net) 
plot(mapIDs, col = "grey95", border = "grey") 
plot(Net, coordinates(mapIDs), add = TRUE, pch = 16, lwd = 1, 
cex = 1, col = "blue") 
## Obtaining the matrix of distance 
DistanceMatrix <- nb2mat(Net, glist=NULL, style="B") 
dim(DistanceMatrix) 
ncol(DistanceMatrix) 
nrow(DistanceMatrix) 
w.cols <- 1:883 
w.rows <- 1:883 
## Vector presences creation  
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vectorIDs<-cbind(mapIDs$PRESABS) 
vectorIDs 
str(vectorIDs) 
## Simulation (x100)  - Attention: running this part could  
# require long time and availability of computer memory space 
Index = 1:100 
for(i in 1:length(Index)) { 
for(i in 1:883) 
{ for(j in 1:883) 
{  if(DistanceMatrix  [[i,j]]  >  0  &  (vectorIDs[[i]]  >  0  
| vectorIDs[[j]] > 0)) {(vectorIDs[[i]] <- 1) && 
(vectorIDs[j] <- 1) 
print(vectorIDs) 
} } } } 
## Transformation of the final vector in dataframe 
IDs <- c(1:883) 
dataframeIDs<-data.frame(vectorIDs, IDs) 
dataframeIDs 
## Creation of the final map and control 
mapIDsFinal<-SpatialPolygonsDataFrame(mapIDs,dataframeIDs,  
match.ID = FALSE) 
summary(mapIDsFinal)attributes(mapIDsFinal) 
names(mapIDsFinal) 
str(mapIDsFinal) 
## Export the map 
writePolyShape(mappaIDsbindPol,   "C:/Users/   (insert   here   
the folder) /FinalMap") 
 

 

 



 

46BANNEX 4 
47BPrincipal optimized parameters for the single models 

 

Generalized Linear Model (GLM) 
Distribution: Binomial 
Link function: Negative binomial 
Singularity tolerance: 1.0E-7 
 
Logistic Regression Model (LOG), 1° order interactions 
Method: Backward stepwise removal 
Singularity tolerance: 1.0E-5 
Probability for entry: 0.75 
Probability for removal: 0.76 
 
Logistic Regression Model (LOG), main effects 
Method: Backward stepwise removal 
Singularity tolerance: 1.0E-10 
Probability for entry: 0.001 
Probability for removal: 0.005 
 
Chi-squared Automatic Interaction Detector Classification Tree 
(CHAID), boosting 
Maximum tree depth: 10 
Minimum percentage for parent nodes: 1 % 
Minimum percentage for parent for child nodes: 0.5 % 
Significance level for splitting nodes: 0.1 
Significance level for merging nodes: 0.1 
 
Chi-squared Automatic Interaction Detector Classification Tree 
(CHAID), bagging 
Maximum tree depth: 10 
Minimum percentage for parent nodes: 1 % 
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Minimum percentage for parent for child nodes: 0.5 % 
Significance level for splitting nodes: 0.1 
Significance level for merging nodes: 0.1 
 
 
Multilayer Perceptron Artificial Neural Network (MLP), boosting 
Minimum precision: 98 % 
Overfit prevention criterion: 30 % 
Combination rule: median 
 
Multilayer Perceptron Artificial Neural Network (MLP), bagging 
Minimum precision: 98.6 % 
Overfit prevention criterion: 20 % 
Combination rule: average 
 
Support Vector Machine Model (SVM) 
Kernel function: RBF 
Gamma: 2.5 
Regularization parameter (C): 16 
Regression precision (epsilon): 5 
 
Maxent 
Note: in Maxent software (v 3.3.3k), automatic setting is usually recommended. 
Regularization multiplier: 1 
Feature type: Auto features 
Replicated run type: Crossvalidation 
Adjust sample radius: 1 
 

 

 



 

48BANNEX 5 
49BContingency tables for the evaluation of the singles model on the test set 

 
Example of interpretation of a contingency table 

    Prediction 
     0 1 Total 

Test set 0 TN FP TN + FP 
  1 FN TP FN + TP 

Total TN + FN FP + TP n 

 
Performances were computed on the test set. Abbreviations: n, total number of 
cases; TN, true negative; FP, false positive; TP, true positive; FN, false negative; 
"0", pseudoabsences; "1", presences. Grand total is in italic. 
 
 
Generalised Linear Model (GLM) 

    Prediction 
     0 1 Total 

Test set 0 96 19 115 
  1 9 22 31 

Total 105 41 146 

 
 

Logistic Regression Model (LOG), main effects 

    Prediction 
     0 1 Total 

Test set 0 101 14 115 
  1 13 18 31 

Total 114 32 146 
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Logistic Regression Model (LOG), 1° order interactions 

    Prediction 
     0 1 Total 

Test set 0 60 55 115 
  1 11 20 31 

Total 71 75 146 

 
 

Support Vector Machine Model (SVM) 

    Prediction   
    0 1 Total 

Test set 0 105 10 115 
  1 6 25 31 

Total 111 35 146 

 
 

Multilayer Perceptron Artificial Neural Network (MLP), boosting 

    Prediction 
     0 1 Total 

Test set 0 108 7 115 
  1 8 23 31 

Total 116 30 146 

 
 

Multilayer Perceptron Artificial Neural Network (MLP), bagging 

    Prediction 
     0 1 Total 

Test set 0 101 14 115 
  1 9 22 31 

Total 110 36 146 
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Chi-squared Automatic Interaction Detector Classification Tree (CHAID), boosting 

    Prediction 
     0 1 Total 

Test set 0 101 14 115 
  1 13 18 31 

Total 114 32 146 

 
 

Chi-squared Automatic Interaction Detector Classification Tree (CHAID), bagging 

    Prediction 
     0 1 Total 

Test set 0 101 14 115 
  1 14 17 31 

Total 115 31 146 

 
 

Maxent 

    Prediction 
     0 1 Total 

Test set 0 104 11 115 
  1 11 20 31 

Total 115 31 146 

 
 

Weighted average (WA) consensus model 

    Prediction 
     0 1 Total 

Test set 0 107 8 115 
  1 7 24 31 

Total 114 32 146 
 
 

 

 



 

50BANNEX 6 
51BR code for bynomial statistic 

 
Data <- read.table(file="C:\\Users\\....txt", header=TRUE, 
fill=TRUE) 
attach(Data) 
names(Data) 
 
Y<-cbind(death,total-death) 
 
flm<-glm(Y~dose, family=binomial(link=logit), data= Data) 
summary(flm) 
 
pseudoR2<-function(mod) {1-(deviance(mod)/mod$null.deviance)} 
pseudoR2(flm) 
 
flp<-glm(Y~dose, family=binomial(link=probit), data= Data) 
summary(flp) 
pseudoR2(flp) 
 
flc<-glm(Y~dose, family=binomial(link=cloglog), data= Data) 
summary(flp) 
pseudoR2(flp) 
 
ld50<-function(mod) as.vector(-coef(mod)[1]/coef(mod)[2])  
ld50(flm) 
ld50(flp) 
ld50(flc)  

 

 



 

52BANNEX 7 
53BEndotherapic trial on ashes against ash dieback 

 

In planta evaluation of fungicides. The top two images (A, B) are examples of the 
necroses developed 482 days after inoculation of Hymenoscyphus fraxineus. The bottom 
image (C) illustrates the tool used for the injection and modifications applied to 
facilitate long lasting infusion (pictures by Dal Maso E.)  

A  B 

C 

 

 



 

54B52BANNEX 8 
Forest Pathology decision on manuscript 

 

 

 

  

 

 



 

ANNEX 9 
55BEndotherapic trial on chestnuts against ink disease 

 

A. The tool (BITE; Montecchio, 2013) used for the injection of potassium phosphite 
formulations on chestnuts; B, C. The two bottom images are examples of the debarked 
necroses developed 70 days after inoculation of Phytophthora cinnamomi (pictures by 
Dal Maso E.).  

A 

B C 

 

 



 

56BANNEX 10 
57BMatlab code for cylinder unwrapping 

I = imread('Image.jpg'); 
axis on; 
box on; 
ndims_in = 2; 
ndims_out = 2; 
f = @(x, unused) sin(x); 
g = @(x, unused) asin(x); 
inverse_mapping = f; 
forward_mapping = g 
tdata = []; 
tform = maketform('custom', ndims_in, ndims_out, ... 
 forward_mapping, inverse_mapping, tdata); 
udata = [-0.95 0.95]; 
vdata = [0 0.00000001]; 
xdata = [-1.57 1.57]; 
ydata = [-1 10]; 
[I2,xdata,ydata]= imtransform(I, tform, 'UData', udata, 
'VData', vdata); 
imwrite(I2,'ImageTransformed.jpg') 
imshow(I2) 
 

 

 

 

 

 

 

 

  

In the upper part, the script 
specifically developed for 
unwrapping of necrotic areas by 
Phytophthora cinnamomi from the 
chestnut trunk (simplified to 
cylinder) is reported. On the right, 
two examples of its application 
(necroses' pictures by Dal Maso E.). 
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