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Abstract 

Parkinson’s disease (PD) is a degenerative neurological syndrome 

characterized by the preferential loss of dopaminergic (DAergic) neurons in the 

Substantia Nigra pars compacta. PD is still incurable and conventional therapies 

treat only symptoms to improve the quality of life. Therefore, there is a impelling 

need to find out new therapeutic strategies that not only provide symptomatic relief 

but also halt or reverse the neuronal damage hampering PD progression. Even though 

the pathogenesis of this disorder remains poorly understood, oxidative stress has 

been identified as one of the major contributors for the nigral loss in both sporadic 

and genetic forms of the disease. In particular, the selective vulnerability of DAergic 

neurons to oxidative stress might be ascribed to dopamine (DA) metabolism, which 

occurs in the cytosol and represents in itself a relevant pathway for superoxide 

radicals production. The main hypothesis of this thesis is that the inhibition of 

reactive oxygen species (ROS) overproduction might delay, block or prevent the 

degenerative process that occurs in PD patients. In this scenario, our project was 

addressed to study in vitro and in vivo the potential protective role of the superoxide 

dismutase (SOD) enzymes and SOD mimetic compounds against oxidative injury, 

related to PD, adopting two experimental paradigms. We focused on SODs because 

they exert a crucial function in cellular antioxidant defense, promoting the 

elimination of superoxide anion.  

The first experimental paradigm was represented by the herbicide paraquat 

(PQ) whose mechanism of action relies on the production of oxidative stress and it is 

epidemiologically linked to sporadic PD. The second one, which has been used to 

model a familial form of PD, was based on PINK1 deficiency. Indeed, PINK1 gene 

mutations have been identified as cause of recessive early-onset parkinsonism. This 

gene encodes for a serine/threonine kinase that is involved in the mitochondrial 

quality control and in the regulation of cellular oxidative status. 

To evaluate whether SODs might have a protective activity against PQ 

toxicity or PINK1 deficiency, the cytosolic and mitochondrial SODs, respectively 

SOD1 and SOD2, were overexpressed in the human neuroblastoma SH-SY5Y cells 
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and in Drosophila melanogaster. In cells and flies, the overexpression of the 

mitochondrial isoform rescued acute PQ toxicity. The selective effect observed 

seems to be associated to an intrinsic mechanism of acute treatment, which strongly 

compromise mitochondria, increasing ROS in these organelles and promoting their 

fragmentation. On the contrary, in flies the cytosolic isoform ameliorated motor 

dysfunctions induced by a chronic PQ exposure, even when SOD1 was 

overexpressed exclusively into the DAergic neurons. These observations indicate 

that the cytosolic compartment is particularly affected by chronic PQ treatment 

suggesting that other oxidative processes in the cytosol of DAergic cells, such as DA 

metabolism, might amplify PQ-induced oxidative stress making them particularly 

vulnerable. In SH-SY5Y cells, PINK1 deficiency resulted in mitochondrial 

fragmentation. Even in this case, SODs appeared protective rescuing the phenotype. 

However, while SOD1 overexpression slightly reduced these mitochondrial 

alterations, SOD2 seemed to reverse mitochondrial fragmentation allowing the 

maintenance of a healthy mitochondrial network. In flies, loss of PINK1 induced a 

severe motor impairment, which was rescued only by the overexpression of the 

cytosolic isoform suggesting that the protein might be involved in other pathways 

that are not strictly correlated with mitochondrial functioning. 

Once the beneficial activity of SODs has been demonstrated, we then 

investigated the therapeutic potential use of a SOD-mimetic compound, M40403. We 

found that the molecule was able to protect cells and flies against the oxidative 

damage induced by both acute and chronic PQ exposure. In addition, the SOD 

mimetic was effective also in PINK1 deficient cells and flies reducing, respectively, 

mitochondrial fragmentation and locomotor defects. Finally, M40403 administration 

in SOD1 and SOD2 deficient flies partially replaced the loss of both isoforms 

suggesting that it can act at cytosolic and mitochondrial level. 

Overall, these findings demonstrate that specific SOD-mimetic compounds 

can be efficacious in reducing oxidative stress and should be further explored as 

therapeutic agents to hamper the progression of PD.  
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In parallel, we developed a second research line which was aimed to the 

characterization of two human neuroblastoma cell lines in order to identify, between 

them, the most reliable cellular model for PD studies. 

Cellular models are largely used to study in vitro the molecular mechanisms 

underlying DAergic degeneration in PD. Although their use presents several 

advantages, cell lines do not always recapitulate morphological and neurochemical 

properties of DAergic neuronal cells. Considering the relevance of DA metabolism 

in the pathogenesis of PD, the DAergic phenotype is an important requirement. 

Human neuroblastoma cell lines are commonly used as models in PD research, 

although they are undifferentiated, do not exhibit markers of mature neurons and 

appear able to synthetize different neurotransmitter, in particular the catecholamines 

DA and noradrenaline (NA). For this reason, we studied the ability of three different 

agents, phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), retinoic acid 

(RA) and staurosporine to drive neuronal differentiation toward a DAergic 

phenotype in SH-SY5Y and BE(2)-M17 cells. The first cell line is largely adopted 

and studied, even though the phenotype acquired upon differentiation is still a 

debated issue. In contrast, the second one is poorly characterized and might represent 

a valid alternative cellular system. In this thesis, we first investigated the acquisition 

of neuronal-like features in terms of growth inhibition, cell morphology and neuronal 

markers expression. Our results indicated that staurosporine and RA were the most 

efficient treatments to inhibit cell growth, respectively in SH-SY5Y and BE(2)-M17. 

Furthermore, in both cell lines, RA and staurosporine promoted the formation a 

complex network of neuritic extensions and the expression of mature neuronal 

markers. To evaluate whether the differentiation promotes a DAergic or NAergic 

phenotype in these cell lines, we analyzed the expression profile of the major genes 

involved in DA and NA metabolism and the intracellular content of these 

neurotransmitters. In SH-SY5Y cells, RA and TPA induced the down-regulation of 

DA- and NA-related genes as well as a decrease of neurotransmitter amounts 

compared to undifferentiated cells, indicating the loss of the catecholaminergic 

phenotype. On the contrary, staurosporine treatment resulted in the up-regulation of 

all these genes and an increase of NA content, enhancing the NAergic phenotype. 
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Surprisingly, in BE(2)-M17, DA and NA levels detected in undifferentiated cells 

were considerably more elevated than in SH-SY5Y which suggests that these cells 

presents a more pronounced catecholaminergic phenotype. The latter was not 

affected by TPA and RA treatments, which did not substantially alter gene 

expression and the amount of neurotransmitters. In contrast, staurosporine promoted 

the up-regulation of the genes involved in metabolism of DA and NA and an increase 

of their intracellular amounts, indicating a relevant enhancement of the observed 

phenotype.  

These results indicate that the BE(2)-M17 cell line emerges as a new 

experimental model with a catecholaminergic phenotype that differs substantially 

from those of SH-SY5Y cells, suggesting different fields of application for the two 

cell lines. 
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Riassunto 

La malattia di Parkinson è una sindrome neurologica degenerativa, 

caratterizzata dalla perdita preferenziale dei neuroni dopaminergici della Substantia 

Nigra pars compacta. Questa patologia è attualmente incurabile e le terapie 

convenzionali agiscono esclusivamente sui sintomi migliorando la qualità della vita. 

Pertanto, è necessario identificare nuove strategie terapeutiche che non solo 

forniscano un efficacie trattamento della sintomatologia ma agiscano anche 

ritardando i danni neuronali e arrestando la progressione della malattia. Sebbene 

l’eziologia è tuttora sconosciuta, lo stress ossidativo sembra svolgere un ruolo chiave 

nella degenerazione dopaminergica sia nella forme sporadiche che familiari della 

patologia. In particolare, la selettiva vulnerabilità di tali neuroni allo stress ossidativo 

potrebbe essere associata al metabolismo della dopamina (DA), evento molecolare 

citosolico responsabile, esso stesso, della sovrapproduzione di specie reattive 

dell’ossigeno (ROS) L’ipotesi principale alla base di questa tesi è che l’inibizione 

della produzione di ROS possa ritardare, arrestare o prevenire il processo 

neurodegenerativo che si verifica nei pazienti affetti dal morbo di Parkinson. In 

questo scenario, il nostro progetto si propone di studiare in vitro e in vivo il 

potenziale ruolo protettivo delle superossido dismutasi (SOD) e di composti che ne 

mimano l’attività (SOD mimetici) contro i danni ossidativi, correlati a tale patologia, 

utilizzando due diversi paradigmi sperimentali. La scelta di studiare questi enzimi è 

legata alla loro funzione cellulare antiossidante, cruciale nel promuovere 

l’eliminazione dell’anione superossido, radicale capostipite nella produzione a valle 

di specie molto più tossiche e reattive.  

In questo studio, il primo paradigma utilizzato è l’erbicida paraquat (PQ), il 

cui meccanismo di tossicità si basa sulla produzione di stress ossidativo. 

L’esposizione cronica a tale molecola è stata correlata epidemiologicamente 

all’insorgenza delle forme sporadiche di Parkinson. Il secondo modello adottato si 

basa sulla deficienza della chinasi PINK1, responsabile di una forma familiare della 

malattia. Infatti, mutazioni a carico del gene PINK1 sono state identificate come 

causa di parkinsonismo giovanile precoce. Questa proteina sembra svolgere un ruolo 

chiave nel mitochondrial quality control e nella regolazione dello stress ossidativo.  
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Al fine di studiare la potenziale azione protettiva delle SOD contro la 

tossicità esercitata dal PQ o indotta dall’assenza di PINK1, l’isoforma citosolica e 

quella mitocondriale, rispettivamente SOD1 e SOD2, sono state sovraespresse nelle 

cellule di neuroblastoma umano SH-SY5Y e in Drosophila melanogaster. In vitro e 

in vivo, esclusivamente la sovraespressione dell’isoforma mitocondriale ha 

evidenziato un effetto protettivo contro l’esposizione acuta al PQ. La selettività 

osservata potrebbe essere associata ad un meccanismo di tossicità intrinseco 

dell’erbicida che, ad elevate dosi, comprometterebbe fortemente i mitocondri, 

aumentando la produzione di ROS in questi organelli e promuovendone la 

frammentazione. Al contrario, in Drososphila, l’enzima citosolico SOD1 è in grado 

di migliorare le performance motorie, alterate dall’esposizione cronica al PQ. Tale 

effetto è stato rilevato anche quando la sovraespressione era indotta esclusivamente a 

livello dei neuroni dopaminergici. Le nostre osservazioni indicano che in tali 

condizioni il compartimento citosolico potrebbe essere particolarmente 

compromesso, suggerendo che nei neuroni dopaminergici il citosol possa essere la 

sede di altri meccanismi ossidativi, tra i quali il metabolismo della DA, in grado di 

amplificare o esacerbare lo stress ossidativo indotto dal PQ, rendendo tali cellule 

particolarmente vulnerabili. In cellule SH-SY5Y, la deficienza di PINK1 ha causato 

un fenotipo mitocondriale caratterizzato dalla frammentazione del network di questi 

organelli. Anche in questo caso, le SOD hanno svolto una funzione protettiva 

contrastando la frammentazione mitocondriale osservata. Tuttavia, mentre la 

sovraespressione della SOD1 ha ridotto solo parzialmente il danno, la SOD2 è 

apparsa in grado di garantire il mantenimento di un corretto network mitocondriale. 

In Drosophila, la perdita di PINK1 promuove una severa disabilità motoria, la quale 

può essere migliorata dall’ attività dell’isoforma citosolica SOD1, suggerendo che 

PINK1 possa essere coinvolta in altri processi molecolari non strettamente correlati 

col mantenimento del funzionamento mitocondriale. 

Dimostrata l’azione protettiva delle SOD, abbiamo deciso di studiare il 

potenziale utilizzo terapeutico del SOD mimetico M40403. I risultati delle nostre 

analisi hanno evidenziato che tale molecola svolga un’attività antiossidante, in vitro e 

in vivo, proteggendo dal danno ossidativo indotto dal trattamento acuto e cronico con 
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l’erbicida PQ. Inoltre, il composto M40403 è stato testato in modelli cellullari e 

animali privi di PINKI1 nei quali ha migliorato, rispettivamente, il fenotipo 

mitocondriale e i difetti nell’apparato locomotore. Infine la somministrazione di 

questo SOD mimetico in linee di Drosophila deficienti per SOD1 o SOD2, ha 

rivelato che la molecola possa sopperire parzialmente all’assenza di ciascun enzima, 

supportando l’ipotesi che possa agire sia a livello citosolico che mitocondriale. 

Complessivamente, i dati ottenuti finora hanno dimostrato che l’utilizzo di 

specifici composti SOD mimetici, in particolare M40403, possa essere efficacie nel 

contrastare danni ossidativi. Questi composti dovrebbero essere ulteriormente 

studiati al fine di identificare un possibile agente terapeutico per la malattia di 

Parkinson. 

Parallelamente al progetto appena descritto, ci siamo focalizzati su un 

seconda linea di ricerca volta alla caratterizzazione dei due linee di neuroblastoma 

umano al fine di definire quali, tra queste, rappresenti il modello cellulare più 

attendibile per lo studio della malattia di Parkinson. 

I modelli cellulari sono largamente utilizzati nello studio in vitro dei 

meccanismi molecolari alla base della degenerazione dei neuroni dopaminergici. 

Nonostante il loro utilizzo presenti grandi vantaggi, queste linee cellulari non sempre 

ricapitolano le proprietà morfologiche e neurochimiche dei suddetti neuroni. 

Pertanto, considerando il ruolo del metabolismo della DA nell’eziologia del morbo di 

Parkinson, l’acquisizione del fenotipo dopaminergico risulta essere un requisito 

importante. In particolare, le linee cellulari di neuroblastoma sono spesso usate come 

modello, nonostante siano proliferanti, non esprimano markers caratteristici dei 

neuroni maturi e siano in grado di sintetizzare diversi neurotrasmettitori, in 

particolare le catecolamine DA e noradrenalina (NA). Per queste ragioni, abbiamo 

studiato l’abilità di tre differenti agenti, il 12-O-tetradecanoilforbolo-13-acetato 

(TPA), l’acido retinoico (RA) e la staurosporina, nel guidare il differenziamento 

delle cellule SH-SY5Y e BE(2)-M17 verso un fenotipo dopaminergico. La prima di 

queste linee cellulari è ampiamente utilizzata e studiata, nonostante il fenotipo 

acuisito dopo il differenziamento sia ancora un argomento dibattuto. Al contrario, la 
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seconda è stata finora poco caratterizzata e potrebbe rappresentare un valido sistema 

cellulare alternativo. 

In questa tesi, al fine di valutare l’acquisizione delle caratteristiche neuronali, 

abbiamo inizialmente analizzato l’effetto indotto dai tre agenti sull’ inibizione della 

crescita, morfologia cellulare e espressione di markers neuronali. I nostri risultati 

hanno dimostrato che il trattamento con staurosporina e RA siano i più efficienti 

nell’arrestare la proliferazione cellulare rispettivamente nelle cellule SH-SY5Y e 

BE(2)-M17. Inoltre, in entrambe le linee, RA e staurosporina promuovono la 

formazione di un compresso network di ramificazioni neuritiche e l’espressione di 

specifici markers neuronali citoscheletrici. Per studiare l’effetto del differenziamento 

nell’acquisizione di un fenotipo dopaminergico o noradrenergico nei due modelli 

cellulari, abbiamo valutato il profilo di espressione dei geni principalmente coinvolti 

nella sintesi di entrambi i neurotrasmettitori e i loro contenuto intracellulare. In 

cellule SH-SY5Y, il trattamento con RA e TPA è risultato in grado di promuovere 

non solo la down-regolazione dei geni analizzati ma anche una consistente riduzione 

del contenuto di DA e NA, suggerendo la perdita del fenotipo catecolaminergico. Al 

contrario, la staurosporina ha evidenziato la capacità di up-regolare l’espressione 

genica degli enzimi coinvolti nella sintesi dei due neurotrasmettitori e di 

incrementare il contenuto di NA, amplificando il fenotipo noradrenergico di questo 

modello. Nella linea cellulare BE(2)-M17, i livelli di DA and NA rilevati prima del 

differenziamento risultano essere considerevolmente elevati rispetto a quelli misurati 

nelle SH-SY5Y, evidenziando che la prima abbia un fenotipo catecolaminergico 

molto più pronunciato della seconda. Quest’ultimo non viene sostanzialmente 

alterato dai trattamenti con TPA e RA, mentre il differenziamento con staurosporina 

è nuovamente in grado di up-regolare il profilo di espressione analizzato e di 

promuovere un’ulteriore sintesi di DA e NA, determinando l’acquisizione di un 

fenotipo ulteriormente marcato. 

Concludendo, i risultati di questo studio indicano che la linea BE(2)-M17 

possa essere un modello sperimentale alternativo con proprietà neurochimiche 

differenti dalle SH-SY5Y, suggerendo l’applicazione delle due line cellulari in 

differenti campi di ricerca.  
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1.1 Parkinson’s disease  
Parkinson’s disease (PD) is a degenerative neurological syndrome 

characterized by the selective death of dopaminergic (DAergic) neurons in the 

midbrain area known as Substantia Nigra pars compacta (SNpc). These neuronal 

cells project their axons at striatal level controlling, ultimately, voluntary 

movements. The neuronal degeneration results in a dopamine (DA) depletion and in 

the loss of DAergic transmission which manifests with motor symptoms including 

resting tremor, rigidity, bradykinesia (slowness of movement) and postural 

instability. However, the neurodegenerative event also affects cholinergic, 

serotoninergic and noradrenergic pathways explaining other non-motor clinical 

manifestations present in most patients, such as cognitive impairment, olfactory 

deficits, sleep disturbance, depression and constipation (Poewe, 2008). The second 

pathological hallmark of PD is the presence of intracytoplasmic proteinaceous 

inclusions observed in neuronal cell body and processes, known respectively as 

Lewy bodies (LBs) and Lewy neurites (LNs). The major component of LBs and LNs 

is α-synuclein (α-syn), a small pre-synaptic nerve terminal protein mainly expressed 

in the neocortex, hippocampus, substantia nigra (SN), thalamus and cerebellum 

(George, 2002). 

Currently, the etiopathogenesis of PD is still not clearly understood. In most 

cases, patients present a sporadic or idiopathic form, which is considered a 

multifactorial disease with variable contributions of genetic susceptibility and 

environmental factors (Pilsl & Winklhofer, 2012). About 5-10% of cases can be 

classified as familial forms, caused by genetic inheritance. As sporadic and genetic 

forms share often most of the clinical, pathological and biochemical features, the 

understanding of the molecular mechanisms underlying the familial forms could 

allow to identify the principal pathways involved also in sporadic PD (Lesage & 

Brice, 2012). Actually, studies on families with Mendelian inheritance evidenced 

protein aggregation, ubiquitin-proteasome system (UPS) impairment, mitochondrial 

dysfunction as crucial players in the onset or progression of the motor disorder. Each 

of these molecular pathways, through different mechanisms, might be responsible for 

reactive oxygen species (ROS) overproduction and the consequent oxidative stress 
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has been identified as one of the major contributors for the nigral loss or dysfunction 

(Kumar et al, 2012).  

PD is also defined as an age-related (dependent) disorder; in fact the 

prevalence of PD escalates steeply with age (de Rijk et al, 1997)and because of 

higher life expectancy, the incidence of PD is expected to increase dramatically 

worldwide (Dorsey et al, 2007). Aging could be considered the main risk factor for 

the etiology of this syndrome. The progressive decline of normal cellular processes 

that occurs with aging could be responsible for a vulnerable state able to exacerbate 

the cellular demise which characterizes PD (Collier et al, 2011). In the 1950s, “the 

free radical theory of aging” postulated a deep and strong correlation between ROS 

overproduction and aging. According to this theory, in aerobic organism the most 

relevant determinant of life span was associated to cellular damage to biological 

macromolecules via free radicals production (Harman, 1956). Two decades later, 

mitochondria were recognized as the main source and target of these reactive 

molecules (Harman, 1972). Actually, ROS are by-product of aerobic respiration and 

in particular of oxidative phosphorylation (OXPHOS) that occurs at mitochondrial 

level. Even though this theory was considered valid for several decades, many 

alternative theories have been proposed since the discovery that free radicals can not 

only cause molecular damage to cells, but also serve as signals acting as modulators 

of physiological processes (Jin, 2010). Particularly relevant is the modern or 

modified free radical theory based on the concept that ROS signaling and 

homeostasis is probably the most important enzyme/gene pathway responsible for 

the development of cell senescence. Therefore, aging might be caused by a 

disruption of the whole signaling network involving ROS (Afanas'ev, 2010; Vina et 

al, 2013). In this scenario, neuronal cells are also considered hypersensitive to ROS-

induced damage because of: a) their massive oxygen consumption associated with an 

high energy demand (Wang & Michaelis, 2010), b) their low regenerative capacity 

due to their post mitotic nature and c) their high level of unsaturated fatty acids 

which are hot spot for oxidative processes (Uttara et al, 2009). These facts might 

explain the vulnerability of neuronal tissues to chronic and degenerative disease, 

including PD. 
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1.2 Oxidative stress 
Oxidative stress is a condition associated with an excessive bioavailability of 

ROS as a consequence of a redox imbalance between their production and 

detoxification through antioxidant systems (Kregel & Zhang, 2007). ROS include 

both free radicals, such as superoxide anion (O2
.−), hydroxyl radical (OH.−.), and 

other non radical molecules, like hydrogen peroxide (H2O2) (Andersen, 2004). These 

species can either be generated exogenously or produced intracellularly from several 

different sources. Cytosolic enzyme systems contributing to oxidative stress include 

the family of NADPH oxidases, a superoxide-generating system, which was first 

identified in the neutrophil. However, several evidence suggest that the majority of 

intracellular ROS production is derived from the mitochondria. The production of 

mitochondrial superoxide radicals occurs primarily at two discrete points in the ETC, 

at level of complex I and complex III . Once the O2
.− is generated, it could lead to the 

formation of other ROS, such as H2O2 and OH.−. The latter can be the result of the 

reduction of H2O2 in the presence of endogenous iron by means of the Fenton 

reaction. In addition, it could arise from electron exchange between O2
.− and H2O2 

via the Harber-Weiss reaction. Furthermore, when both O2
.− with NO are synthesized 

within cell, they will combine spontaneously to form peroxynitrite (ONOO.−), which 

is highly reactive nitrogen species (RNS) (Finkel & Holbrook, 2000). In 

physiological condition, ROS homeostasis is guaranteed by a complex antioxidant 

system (see Paragraph 1.4.1). However, if this scavenging system is overwhelmed, 

ROS biovailability increases. ROS and the derived RNS can interact with many 

cellular components including nucleic acids, proteins and lipids causing cell injury 

leading to a pathological state (Valko et al, 2007).  
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1.2.1 Evidence of oxidative stress in PD patients 

The link between oxidative stress and degeneration of DAergic neurons has 

been highlighted through post-mortem examinations of PD brains. In the analyzed 

tissues, a strong evidence of oxidative damage was found in lipids, proteins and 

nucleic acids. Unsaturated lipids are susceptible to oxidative modifications at the 

level of their carbon-carbon double bonds. As consequence, ROS can induce lipid 

peroxidation in cell membranes through the generation of a radical chain reaction 

which leads to the production of 4- hydroxyl 2,3-nonenal and malondialdehyde. Both 

these markers have been observed in DAergic cells of PD brains (Dexter et al, 1989; 

Yoritaka et al, 1996). Additionally, the same kind of analyses revealed that patients 

presented an increase of the common product of nucleic acids oxidation, 8-

hydroxyguanosine, at level of nigral neurons (Zhang et al, 1999). Different 

investigations also identified the presence of an high content of tyrosine nitration 

(Good et al, 1998) and protein carbonylation (Alam et al, 1997; Floor & Wetzel, 

1998) in PD brains. These modifications are hallmarks of oxidative protein damage 

induced respectively by nitric peroxide and other reactive species.  

Alterations of the antioxidant defense can also be considered as an indirect 

evidence of ROS accumulation. Actually, the earliest biochemical indicator of an 

impairment of the antioxidant system and a consequent nigral degeneration is a 

depletion of glutathione (GSH) depletion observed in SN and corpus striatum of PD 

patients (Sofic et al, 1992). The role of GSH is fundamental for cell physiology , 

indeed, this molecule is the most abundant non protein thiol in mammalian cells, 

which acts as reducing agent, antioxidant, and free-radical scavenger (Mardones et 

al, 2012). 

In conclusion, the overall reported data support the concept that oxidative 

stress contributes to neurodegeneration of DAergic cells. As previously mentioned, 

oxidative stress is intimately interconnected to several key pathways correlated to 

neurodegeneration (Jenner, 2003). Most of them are directly involved in genetic 

forms of the disease; while, others might be responsible for the vulnerability of 

DAergic neurons. Each molecular mechanism will be discuss in details in the next 

sections. 
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1.2.2 Mitochondrial dysfunction 

Mitochondrial dysfunction includes the impairment of a wide spectrum of 

normal functions which affects the activity of respiratory chain complexes, ROS and 

ATP production, calcium regulation, mitochondrial membrane potential maintenance 

and mitochondrial dynamics and clearance (Gandhi & Abramov, 2012). Most 

processes are connected and interdependent; consequently, their impairment might 

be concomitant. 

Several observations support the involvement of mitochondria in the 

pathogenesis of PD. The first evidence was the discovery that an intravenously 

injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in a 

severe parkinsonian–like phenotype (Langston et al, 1983). This compound has been 

demonstrated to be selectively toxic to DAergic neurons. In the brain, MPTP is first 

converted in its metabolite, MPP+, by monoamine oxidase B (MAO-B); afterwards, 

MPP+ is actively transported by the dopamine transporter (DAT) within DAergic 

neurons, where it blocks mitochondrial complex I activity (Javitch et al, 1985). 

Complex I is located in the inner mitochondrial membrane and it is a part of the 

respiratory electron transport chain (ETC) which catalyzes electron transfer from 

NADH to ubiquinone. It is considered the main source of radical production, but it is 

also a preferential target of oxidants and radicals leading to its inhibition or 

inactivation (Navarro & Boveris, 2009). Further investigations confirmed the 

pathological role of this complex, whose defects have been reported in PD patients 

(Parker et al, 1989). In addition, post-mortem examinations revealed an high 

prevalence of somatic mitochondrial DNA deletions in SN of PD brains (Bender et 

al, 2006).  

Mitochondrial genome encodes for 13 subunits of OXPHOS complexes; 

therefore, mitochondrial DNA deletions are likely to impact on cellular 

bioenergetics. The effects associated with a decline of mitochondrial respiration are a 

deficit of ATP levels, an increase of ROS production and a concomitant opening of 

the permeability transition pore (PTP), which results in a consequent depolarization 

of mitochondrial membrane potential. The latter event is followed by the release into 
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the cytosol of cytotoxic apoptotic proteins, such as cytochrome c, leading to DAergic 

cell death. 

Another line of evidence for mitochondrial dysfunction, related to 

vulnerability of nigral neurons, came from the identification, in autosomal recessive 

forms of PD, of mutations in genes encoding for the proteins Parkin, PINK1 and DJ-

1 which are all involved in mitochondrial functions. PINK1 and Parkin have a role in 

the mitochondrial quality control, while DJ-1 seems to be a mitochondrial redox 

sensor. Their function and role will be analyzed further on.  

 

1.2.3 Neuroinflammation and reactive microgliosis 

In recent years, chronic inflammation has been identified as a prominent 

player in PD where it may contribute to the nigrostriatal pathway degeneration 

promoting the progression of the disease (Tansey & Goldberg, 2010). Post-mortem 

analyses supported this idea. The first observation came from the identification of a 

large numbers of reactive microglial cells, hallmark of an ongoing 

neuroinflammatory process, in PD patients (McGeer et al, 1988).  

Microglia are the resident macrophages of central nervous system,considered 

as the prime component of immunological defense in this organ. Resting microglial 

cells display a ramified morphology with highly dynamic branching processes which 

are necessary to extend their surveillance in the surrounding neuronal environment.  

Microglial activation is mediated by pattern recognition receptors (PPR) on 

the cell surface, engaged by pathogen-associated molecular patterns (PAMPs) which 

are bacterial- or viral-derived molecules, such as lipopolysaccharide (LPS) (Beraud 

et al, 2013). Once PPRs recognize their specific ligand, a signal transduction cascade 

leads to morphological changes, cell proliferation, migration to the site of damage 

and antigen presentation. Thus, these cells assume an amoeboid shape and a 

phagocytic activity. To perform the acquired antimicrobial function, microglial cells 

induce the production and release of pro-inflammatory cytokines, such as tumor 

necrosis factor α (TNF-α) and interleukin-1β (IL-1β). In addition, they express 

enzymes, involved in the inflammatory response mediated by oxidative stress such as 



Introduction 

9 

 

inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and NADPH 

oxidase, which generate RNS and ROS. The latter process, known as respiratory 

burst, is crucial to induce detrimental damage in pathogens. In PD patients, several 

markers of activated microglia have been reported. Pro-inflammatory modulators, 

including TNF-α, IL-1β and interferon-γ (IFN-γ), were constitutively overexpressed 

in brains, serum and cerebrospinal fluid (CSF) (Blum-Degen et al, 1995; Dobbs et al, 

1999; Mogi et al, 1994; Mogi et al, 2007). In addition, other investigations showed 

an increment of COX2 and iNOS levels in SN (Knott et al, 2000). 

While mild microglial activation has a physiological and protective effects, 

chronic inflammation may damage and kill the surrounding neural cells. Under 

pathological condition, microglial PPR recognize danger-associated molecular 

patterns (DAMPs) which originate from multiple sources, including injured and 

dying neurons. Therefore, in response to neuronal damage microglia become 

overactivated releasing the same multitude of immunomodulatory molecules, that 

generally characterized inflammation. In these circumstances, cytokines, RNS and 

ROS might have a severe cytotoxic effect, inducing more widespread damage to 

neighbouring neurons, which in turn might release other pathological stimuli and 

toxins amplifying the degenerative process (Block et al, 2007). Even though the 

initial insult has ceased, this overactivated state persists because of a positive 

feedback from damaged DAergic neurons, leading a self propelling vicious cycle, 

known as reactive microgliosis. Among the different substances released by dying 

neurons, α-syn, neuromelanin (NM) and matrix metalloproteinase-3 (MMP-3) have 

been identified as microglial activators (Fig.1.1) (Collins et al, 2012). 

As mentioned before, α-syn is the main component of LBs and LNs; this fibrillar 

protein is also correlated to genetic and sporadic form of PD. In vivo and in vitro 

studies showed that α-syn may activate microglia altering the expression levels of 

subset of PPR, namely toll-like receptors and increasing the proinflammatory 

molecules and oxidative stress (Beraud et al, 2011; Su et al, 2008).     
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Fig. 1.1. Proposed mechanism for reactive microgliosis that might drive the progression of 

DAergic cell death in PD patients. After a cell injury, nigral neurons may release specific substances 

(e.g. MMP-3, α-syn and neuromelanin) able to activate microglia, generating a self propelling vicious 

cycle responsible for PD progression (Block et al, 2007). 

 

1.2.4 UPS impairment 

In physiological condition, the balance between protein synthesis and 

degradation is tightly regulated. The UPS is one of the two cellular machineries 

responsible for protein degradation. Therefore, its failure or impairment can cause 

accumulation of unfolded and/or damaged proteins, which is a common hallmark of 

neurodegenerative diseases, including PD. UPS utilizes ubiquitinated polypeptide 

chains as signals for selective degradation. Ubiquitin-protein ligation requires three 

enzymes which catalyze sequential reactions. First, the carboxyl end of ubiquitin is 

activated in an ATP-dependent process by the ubiquitin-activating enzymes, E1. 

Then, activated ubiquitin is transferred to ubiquitin-conjugating enzymes, E2. 

Finally, it is ligated to lysine residues of protein substrates by ubiquitin protein 

ligases, E3. Polyubiquitinated proteins are generally degraded by the 26S proteasome 

in short fragments, that can be recycled. Afterwards, polyubiquitin chains are 

disassembled by ubiquitin carboxy-terminal hydrolases (UCHL1) to produce 
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monomeric ubiquitin molecules that can be recycled (Fig.1.2) (McNaught et al, 

2001). 

The involvement of UPS in PD pathogenesis was supported by the discovery 

that Parkin and UCH-L1, genes associated with familial forms of PD, encode for 

proteins directly involved in ubiquitination or in ubiquitin-recycling processes. In 

addition, further works reported a significant reduction in the proteasome enzymatic 

activity in SN in sporadic PD patients (Fig.1.2) (McNaught et al, 2003; McNaught & 

Jenner, 2001).  

              

Fig.1.2. Degradation of protein mediated by UPS; some of its components are strongly involved 

in sporadic and familial forms of PD. The cycle represent the degradation of an abnormal/damaged 

or mutant protein (eg α-syn). The process requires the labelling of this protein with polyubiquitin 

chain, catalyzed by three different enzymes, afterwards the target protein is degraded by proteasome 

and the polyunquitin chains are recycled. Different components involved in this mechanism are 

affected in sporadic and genetic form of PD (details are presents in the figure) (McNaught et al, 2001).  

 

In agreement with these findings, immunocytochemical analyses revealed the 

accumulation of ubiquitinated proteins and UPS components within LBs (Ii et al, 

1997). Furthermore, in vitro and in vivo studies strongly supported the link between 

UPS impairment and DAergic degeneration. For example, in fetal rat ventral 

mesencephalic cultures the inhibition of proteasomal function leads to the 
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degeneration and the formation of α-syn and ubiquitin-positive inclusions 

(McNaught et al, 2002). Systemic injections of proteasome inhibitors in adult rats 

induced behavioral, pathological, and neurochemical features of PD, including motor 

symptoms, DAergic cell death and DA depletion (McNaught et al, 2004). 

UPS failure might be involved in ROS overproduction exacerbating protein 

aggregation and degenerative events (Domingues et al, 2008). In fact, it has been 

reported that the selective proteasome inhibitor lactacystin, reduced loss of viability 

and increased oxidative damage at the level of proteins, DNA and lipids in NT-2 and 

SK-N-MC cell lines (Lee et al, 2001). However, it is possible that oxidative stress, in 

turn, may contribute to UPS impairment: oxidized proteins could be not properly 

recognized by UPS leading to their intracellular accumulation that could induce 

proteasomal inhibition. Shamoto-Nagai and colleagues have shown that after a 

treatment with the complex I inhibitor rotenone, human neuroblastoma SH-SY5Y 

cells exhibited a reduced proteasomal activity through the production of oxidatively 

modified proteins, including oxidative modification of the proteasome itself 

(Shamoto-Nagai et al, 2003). Overall, these data suggest that protein degradation and 

oxidative species generation may be strongly correlated. 

 

1.2.5 Iron accumulation 

Iron is an essential element for living organism. It is involved as cofactor in 

several reactions; in particular, in the central nervous system it plays a crucial role in 

myelination, neurotransmitter synthesis and oxidative metabolism, including 

OXPHOS, nitric oxide metabolism and oxygen transport. Iron homeostasis is strictly 

regulated at the level of its uptake, export and storage. Under pathological 

conditions, the dysregulation of these mechanisms might induce iron accumulation, 

that is a common feature of several neurodegenerative disorders (Benarroch, 2009). 

In PD patients, a significant iron accumulation was observed in the SN using 

different experimental procedures [see (Friedman et al, 2009)]. In the brain, the 

highest content of iron is bound to ferritin, a protein largely expressed in glial cells 

(Weinreb et al, 2013). At the level of the nigrostriatal system, large amounts of Fe3+ 

ions are also sequestered in subcellular organelles, known as NM granules (Zecca et 
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al, 2004). However, as consequence of its accumulation, iron may saturate iron-

chelating sites on NM, leading to an increase of the active redox state ions (Fe2+) 

which then get released from NM owing to weak affinity (Bharath et al, 2002). Thus, 

the reactive free iron pool can trigger oxidative stress via Fenton reaction generating 

the hydroxyl radical, which is responsible for cellular damage. Additionally, it has 

been suggested that iron accumulation could promote α-syn fibrillation (Uversky et 

al, 2001) and have an involvement in UPS impairment (Li et al, 2012).  

 

1.2.6 DA metabolism 

None of the molecular pathway previously described provides an explanation 

for the preferential degeneration of DAergic neurons, that characterizes PD.  

The most probable mechanism that could clarify the selectivity of this 

phenomenon could be the presence of DA and its metabolism itself (Hastings & 

Zigmond, 1997). This neurotransmitter is a reactive molecule potentially toxic for the 

cell if it is not properly stored (Bisaglia et al, 2013). DA is synthesized in the 

cytoplasm by tyrosine hydroxylase (TH), which catalyzes the hydroxylation of 

tyrosine to L-DOPA, and aromatic amino acid decarboxylase (AADC), that converts 

L-DOPA in DA. After its synthesis, more than 90% of cytosolic DA is immediately 

transferred into synaptic vesicles by the vesicular monoamine transporter 2 

(VMAT2); about 10% escapes sequestration and is metabolized (Eisenhofer et al, 

2004). Therefore, the storage may be considered the pivotal step in the regulation of 

DA in the cytosol, where the neutral pH makes it unstable and prone to oxidation 

through several pathways (Graham, 1978). Among them, two are the mechanisms 

considered the main contributors for reactive and toxic species production. First, 

monoamine oxidase (MAO) can transform DA in the corresponding aldehyde 

(DOPAL), which is a substrate for aldehyde dehydrogenase (ALDH) to produce the 

dihydroxyphenylacetic acid (DOPAC). The secondary product of MAO reaction is 

H2O2, which in turn can undergo a Fenton chemistry with transition metals such as 

iron to form the hydroxyl radical. Alternatively, the catechol ring of DA can undergo 

oxidation to form ROS and DA-derived quinones (DAQ) (Berman & Hastings, 

1999). As described above, ROS can extend their toxicity on cellular components, 
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lipid, nucleic acid and proteins, causing cell death. In addition, DAQ may react with 

cellular nucleophiles, such as DNA and sulfhydryl groups on cysteinyl residues of 

proteins (Tse et al, 1976).  

We recently described all the possible pathogenic molecular pathways in 

which DAQ could be involved [see (Bisaglia et al, 2014)]. For instance, there are 

evidences of DAQ-DNA adducts formation in vitro, suggesting that this event could 

promote DNA mutations in vivo. These modifications could impact on mitochondrial 

DNA, which encodes 7 of 49 proteins in Complex I of the ETC, driving the Complex 

I deficiency observed in PD patients (Zahid et al, 2011). Moreover, the mitochondrial 

impairment has been also associated to a direct action of quinone on the opening of 

mitochondrial PTP. The consequent depolarization of the transmembrane potential 

induces the release of small solutes and proteins, osmotic swelling and a loss of 

oxidative phosphorylation (Berman & Hastings, 1999). However, DAQ can 

preferentially react with proteins, in particular with their cysteine residues. These 

covalent modifications result in loss of protein function with potentially deleterious 

effects on cell viability. Several studies reported α-syn, Parkin and DJ-1, three 

proteins involved in the familial forms of PD, as targets of DAQ (Girotto et al, 2012; 

LaVoie et al, 2005; LoPachin & Saubermann, 1990). Furthermore, DAQ are the 

fundamental building block of NM, which forms from an excess of cytosolic 

dopamine not accumulated into the synaptic vesicles (Sulzer et al, 2000). 

Physiologically, NM is located in NM granules. Under pathological condition, 

neuronal death might result in NM release in the extracellular space, where it can 

induce reactive microgliosis by microglia activation (see Paragraph 2.3) (Zecca et al, 

2006). 

 

1.2.7 Calcium regulation 

In addition to DA metabolism, recent studies suggest that calcium (Ca2+) 

regulation might be considered another element responsible for the specific 

susceptibility of DAergic degeneration in PD (Guzman et al, 2010). Calcium plays a 

central role in cell physiology controlling several processes such as signal 

transduction, gene expression, muscle contraction, cell death as well as 
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neurotransmitter release in excitable cells. Intracellular concentration of calcium is 

rigorously regulated through the balance between: its active extrusion to the 

extracellular space, mediated by Ca2+-ATPase pump and Na+/Ca2+  exchanger; its 

sequestration and compartmentalization into cellular organelles, such as 

mitochondria and endoplasmic reticulum; and its influx inside the cells or release 

from endoplasmic reticulum through calcium channels (Orrenius et al, 2003). The 

hypothesis of a possible involvement of calcium regulation in PD came from the 

observation that the SN neurons present peculiar neurophysiological properties. They 

are autonomously active because they continuously generate low frequency action 

potentials in the absence of synaptic input (Surmeier, 2007) to sustain DA release. 

This pacemaking activity derives from the presence of voltage-sensitive L-type 

calcium (Cav) channels. In particular, DAergic neurons present a pore-forming 

Cav1.3 subtype. These channels seem to be more expressed in SNpc DAergic 

neurons than in their neighboring ventral tegmental area (VTA) neuronal cells 

(Guzman et al, 2009). Because of the pacemaking activity of Cav1.3 channels, the 

magnitude of the Ca2+ influx is consistent. To maintain the non toxic intracellular 

level, calcium must be extruded through ATP dependent processes with an high 

metabolic cost (Surmeier et al, 2011). This energy demand requires an intensive 

oxidative phosphorylation which increase ROS generation. Recently, Guzman and 

colleagues confirmed the link between oxidative stress and calcium regulation. 

Actually, they observed that during autonomous pacemaking, exclusively in SN 

DAergic neurons the engagement of Cav1.3 channels and the consequent calcium 

influx generated mitochondrial ROS overproduction. In agreement with these data, 

they also found that DJ-1 deletion amplified this oxidant condition because of its 

involvement in antioxidant defense (Guzman et al, 2010). In conclusion, the peculiar 

physiological properties of DAergic neuronal cells might increase their vulnerability 

to oxidative insults.  

Overall, the molecular mechanisms previously described can all contribute to 

the oxidative stress, which can be considered the main player in the degeneration of 

nigrostriatal neurons, observed in PD patients (Fig.1.3).  
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Fig.1.3. Molecular mechanisms involved in ROS overproduction and the consequent oxidative 

stress, which drives DAergic degeneration in PD [adapted from (Dias et al, 2013)]. 
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1.3. Familial and sporadic forms of PD 
Increasing evidence suggest that PD is an heterogeneous disorder with a wide range 

of clinical symptoms and signs (Perfeito et al, 2012). Some of the molecular 

pathways discussed above have been identified studying the familial forms of PD. 

Even though mendelian mutations are rarely the cause of PD, they could allow to 

define the complex scenario of events involved also in the pathogenesis of idiopathic 

PD. The genetic contribution to PD development has been established during the past 

two decades with the identification of 18 PD-related gene loci, named as PARK 

(Thenganatt & Jankovic, 2014). Meanwhile, the involvement of environmental 

toxins in the etiology of this motor syndrome came from epidemiological studies. 

Recently, an exhaustive summary of the state of knowledge has been published, 

highlighting that prolonged exposure to pesticides might be a risk factor for PD 

(Kamel, 2013). In the next sections, familial and sporadic forms of PD will be further 

discussed. 

 

1.3.1 Familial forms 

Among the 18 PARK loci, identified through human genetic studies, seven 

genes have been recognized as cause of monogenic PD (Fujioka & Wszolek, 2012). 

They present either autosomal dominant or recessive mode of inheritance with 

different and overlapping phenotypes. The autosomal dominant genes include SNCA, 

LRRK2, VSP35 and EIF4G1; however, only the first two have been deeply studied, 

whereas the others have recently discovered and only partially investigated.  

The SNCA gene encodes for α-syn. The physiological function of this protein 

remains unknown; however, its localization at presynaptic terminals and its 

association with synaptic vesicles suggest an involvement in the regulation of 

neurotransmitter release, synaptic function and neuronal plasticity (Lashuel et al, 

2013). In particular, the amphipathic α-helical domain in the N-terminal region might 

drive the interaction with membranes (Perfeito et al, 2012). This small protein is 

particularly prone to aggregate because of its highly amiloidogenic domain NAC 

which is essential to form oligomers and insoluble fibers (Giasson et al, 2001). As 

described in Section 1.2, α-syn, that represents the main component of LBs, can 
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contribute to PD pathogenesis through several pathways including UPS impairment, 

iron accumulation, chronic inflammation and DA metabolism.  

Mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most 

common cause of genetic PD. This gene encodes for a large protein (approximately 

285 kDa) with two enzymatic activities mediated by two distinct domains, a GTPase 

and a kinase domain. So far, the precise LRRK2 function has not been identified. 

Nevertheless, the wide distribution of this protein and its association to various 

intracellular membranes and vesicular structures, including endosomes, lysosomes, 

mitochondrial outer membrane, Golgi complex and endoplasmic reticulum, support 

an involvement in multiple pathways, such as regulation of autophagy, microtubule 

dynamics, and mitochondrial function (Esteves et al, 2014). 

Recessive inheritance is linked to mutations in Parkin, PINK1, DJ-1 which 

are causative of early onset PD. Clinically, these forms differ from the classical PD 

not only for the juvenile manifestation but also for the slow disease progression, the 

excellent response to the most common used drug, L-DOPA, and the minimal 

cognitive decline (Bonifati, 2012). Furthermore, at pathological level, the presence of 

LBs in recessive PD patients is still controversial. First post-mortem examinations 

reported the absence of protein inclusions (Yokochi, 1997), while in further studies 

LB pathology has been observed in patients with pathogenic PINK1 and Parkin 

mutations (Farrer et al, 2001; Samaranch et al, 2010). The roles and functions of DJ-

1, Parkin and PINK1 will be examined in details in the following sections because of 

their involvement in maintaining mitochondrial homeostasis and their 

neuroprotective properties against oxidative damage. Recently, mutations in other 

genes, such as ATP13A2, FBXO7, PLA2G6, have been associated to atypical 

recessive inherited juvenile disorders, with different clinical manifestations in 

addition to parkinsonism (Bonifati, 2014). 
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1.3.1.1 DJ-1 

Mutations in DJ-1 were identified as responsible for a monogenic autosomal 

recessive parkinsonism (Bonifati et al, 2003). DJ-1encodes for a protein of 189 

amino acids, that form dimers. DJ-1 is an evolutionarily ancient protein: homologs 

were found both in prokaryotes and eukaryotes. In particular, some residues are 

extremely conserved, including one of the three cysteines, the C106. This residue has 

been identified as highly sensitive to oxidative stress (Kinumi et al, 2004). Even 

though the biochemical function of DJ-1 is still unclear, its involvement in the 

antioxidant defenses represents the most plausible hypothesis. Indeed, DJ-1 knock 

down cells presented an increased sensitivity to oxidant insults (Taira et al, 2004). In 

contrast, the overexpression of DJ-1 in human neuroblastoma cells resulted in an 

increase of tolerance to rotenone and H2O2 exposure, correlated to a significant 

reduction of ROS (Lev et al, 2008). In vivo analyses confirmed the neuroprotective 

role of this protein against oxidative injury. Actually, Drosophila DJ-1 mutants were 

selectively sensitive to ROS-generating environmental toxins, such as rotenone and 

paraquat. (Meulener et al, 2005). In addition, DJ-1 deficient flies presented 

locomotor defects and this phenotype was strongly exacerbated after the treatment 

with an oxidant insult (Park et al, 2005). In agreement with this line of evidence, DJ-

1 deficient mice showed striatal denervation after MPTP administration (Kim et al, 

2005).  

At least three hypothesis have been proposed to explain the molecular 

mechanism driving DJ-1 activity against oxidative stress. First, it has been suggested 

that DJ-1 controls the formation of the complex between MAP3 kinase apoptosis 

signaling regulating kinase 1 (ASK1) and tioredoxin (Trx1). Under basal condition, 

Trx1 acts on ASK1, which is a potent apoptotic molecule, inhibiting its activity. 

Upon oxidative stress, Trx1 dissociates from ASK1, inducing its activation. The 

proposed model suggests that DJ-1 modulates the stability of this complex: DJ-1 

suppresses ASK1 activity and prevents the dissociation of ASK1/Trx1 complex (Im 

et al, 2010). The second mechanism is based on the idea that DJ-1 could have a 

direct interaction with the cytosolic antioxidant enzyme superoxide dismutase 1 

(SOD1) in a copper-dependent mode. Actually, it has been demonstrated that DJ-1 
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was able to bind copper and to transfer it to SOD1 by acting as a metallochaperone, 

DJ-1 might regulate the activation of the cytosolic antioxidant enzyme (Girotto et al, 

2014). Finally, recent works support an alternative hypothesis which relies on an 

another possible role of DJ-1 in regulating mitochondrial homeostasis and dynamics. 

The loss of this protein in several cell lines induced an aberrant mitochondrial 

morphology (Irrcher et al, 2010) and an accumulation of damaged organelles 

(Krebiehl et al, 2010). Accordingly, it has been proposed that DJ-1 might act 

controlling mitochondrial function and autophagy in parallel to the PINK1/Parkin 

mitochondrial quality control pathway (Thomas et al, 2011) (see 1.3.1.4). 

 

1.3.1.2 Parkin 

More than 10 years ago, Kitada et al. discovered that “loss of function” 

mutations in PARK2 gene, which encodes for Parkin protein, cause autosomal 

recessive juvenile parkinsonism (Kitada et al, 1998). Mutations in this gene account 

for about half of recessive PD cases. Parkin is 465 amino acid protein and contains a 

N-terminal ubiquitin-like domain followed by four zinc fingers domains. Parkin is 

involved in protein ubiquitination acting as an E3 ubiquitin ligase and targeting 

substrates prone to degradation through the UPS system (Shimura et al, 2000). 

Therefore, it has been first hypothesized that Parkin loss of function resulted in the 

accumulation of toxic substrates leading to DAergic degeneration. However, more 

recent investigations suggest that this protein acts in a wide range of pathways 

regulating different cellular processes which are only partially related to degradative 

events (Winklhofer, 2014). In particular, increasing evidence demonstrated the 

involvement of Parkin in mitochondrial maintenance.  

Flies lacking the Parkin gene present a severe phenotype: they are semi-

viable and exhibit reduced longevity, motor deficits, male sterility and DAergic 

neuron degeneration (Greene et al, 2003; Whitworth et al, 2005). The locomotor 

impairment is due to apoptotic cell death in muscles which seems to be the late 

consequence of the loss of mitochondrial integrity (Greene et al, 2003). Interestingly, 

Drosophila Parkin mutants are characterized by an alteration in oxidative stress 

response (Park et al, 2009) and an increased sensitivity to oxygen radical injury 
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(Pesah et al, 2004). In line with these results, Parkin null mice presented a reduction 

in synaptic excitability in nigrostriatal neurons which is not associated with the 

degeneration of this cell population (Goldberg et al, 2003). In addition, in the same 

animal model it has been observed an increase of oxidative stress, a reduction in 

respiratory capacity of striatal mitochondria which is consistent with a decreased 

abundance of several subunits of ETC complexes I and IV (Palacino et al, 2004). 

However, the absence of a PD-phenotype and DAergic degeneration in mouse 

models suggests the presence of a compensatory mechanism (Dawson et al, 2010), 

even though such a mechanism has not been identified yet. In agreement with the 

aforementioned observations, in vitro studies support the mitochondrial antioxidant 

properties of this protein (Machida et al, 2005; Rothfuss et al, 2009). In conclusion, 

the common denominator for all these models is that Parkin deficiency affects 

mitochondrial morphology, the ETC complexes and ATP levels (Costa et al, 2013). 

The molecular mechanisms in which Parkin is involved are only partially 

defined. They include mitochondrial biogenesis, mitophagy, mitochondrial transport, 

fusion and fission (Fig.1.4) (Gaweda-Walerych & Zekanowski, 2013). All of these 

processes are highly interconnected and regulate the maintenance of a healthy 

mitochondrial network. As far as mitochondrial biogenesis is concerned, it has been 

shown that Parkin might regulate mitochondrial biogenesis through a physical 

interaction with the mitochondrial transcription factor A (TFAM), the main regulator 

of mitochondrial transcription and replication (Kuroda et al, 2006). Actually, Parkin 

overexpression in cell cultures increased mitochondrial mass and mtDNA replication 

(Rothfuss et al, 2009). In contrast, the silencing of the endogenous protein decreased 

the mitochondrial transcription (Langston et al, 1983). As the other cellular pathways 

are mostly regulated in association with PINK1, they will be discussed further on. 
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Fig.1.4. Parkin involvement in several processes that regulate mitochondrial functioning Mfn1: 

mitofusin1; Drp-1: dynamin-related GTPase, Ub: ubiquitin. (Gaweda-Walerych & Zekanowski, 2013).  

 

1.3.1.3 PINK1 

PINK1 gene mutations have been identified as cause of the second most 

common form of early onset parkinsonism (Valente et al, 2004). PINK1 encodes for 

an ubiquitously expressed serine/threonine kinase, which contains in the N-terminus 

a high-confidence mitochondrial targeting sequence (Silvestri et al, 2005). Several 

pathogenic mutations, insertions and deletions affect the kinase domain leading to 

the dysfunction of its catalytic activity (Beilina et al, 2005). PINK1 exists in different 

forms: PINK1 full-length (FL), of approximately 63 kDa and at least other two 

shorter forms of 52 kDa and 45 kDa, resulting from proteolytic processing of FL.  

The subcellular localization of FL and its isoforms is still debated. However, 

the most accepted point of view suggests that the protein is distributed both at 

mitochondrial and cytosolic level (Beilina et al, 2005; Silvestri et al, 2005). In 

particular, it has been shown that, following mitochondrial import, PINK1 precursor 

is cleaved by mitochondrial proteases and at least a portion of the processed products 

may be released into the cytosolic compartment (Lin & Kang, 2008). The main 

controversial issue remains the sub mitochondrial localization. Actually, some 

studies reported that PINK1 is mainly situated in the outer mitochondrial membrane 
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(OMM) with the kinase domain facing the cytosol where PINK1-substrated might be 

found (Zhou et al, 2008). In contrast, other works showed that PINK1 is localized at 

the level of inner mitochondrial membrane (IMM) and the catalytic domain is 

exposed in the intermembrane space (Silvestri et al, 2005).  

To define the role and function of PINK1 several animal models have been 

generated. Three independent studies demonstrated that Drosophila PINK1 deficient 

flies exhibited loss of dopaminergic neurons, mobility abnormalities, reduced life 

span, mitochondrial defects, reduced ATP levels (Clark et al, 2006; Park et al, 2006; 

Yang et al, 2006)and an increased sensitivity to multiple stresses including oxidative 

insults (Clark et al, 2006). These observations were not completely confirmed in 

PINK1 -/- mice. Indeed, although these animals presented a clear impairment of 

mitochondrial functions, such as ATP-generation and respiration (Gispert et al, 

2009), they manifested a mild phenotype presenting a slight reduction of weight and 

motor performance not associated with degeneration of nigrostriatal neurons or 

alteration in DA levels and receptors (Kitada et al, 2007). The real discovery came 

from genetic analyses with Parkin. The striking similarity in phenotypes between 

PINK1 and Parkin mutant animals indicated that they may act in a common pathway. 

In agreement with this hypothesis, it was found that PINK1/Parkin double knock out 

flies did not exacerbated the phenotype of either Parkin or PINK1 single knock out 

(Clark et al, 2006; Park et al, 2006). Furthermore, it has been demonstrated that 

Parkin overexpression in PINK1 null flies was able to ameliorate mutant phenotypes; 

but conversely PINK1 overexpression did not influence the Parkin mutants 

phenotype (Clark et al, 2006; Park et al, 2006; Yang et al, 2006). The link between 

PINK1 and Parkin was further confirmed in human cell culture; in fact, PINK1 

deficiency was rescued by the enhancement of Parkin expression (Exner et al, 2007). 

Overall, these aforementioned findings strongly support that Parkin acts downstream 

of PINK1 in controlling mitochondrial integrity (Clark et al, 2006; Park et al, 2006). 
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1.3.1.4 Parkin/PINK1 pathway regulates mitochondrial quality control 

Mitochondria produce the highest amount of cellular energy through the 

OXPHOS complexes. To maintain the functionality of these organelles, cells have 

developed a strict system of surveillance, referred to as mitochondrial quality control. 

In physiological conditions, an healthy pool of mitochondria is guaranteed through 

several pathways that control mitophagy and mitochondrial dynamics, biogenesis 

and motility. The first line of defense within these organelles occurs at molecular 

level and it is mediated by chaperones and proteases which act on protein folding and 

degradation (Rugarli & Langer, 2012).  

The subsequent level of defense that might be engaged is the organellar 

quality control system based on a balance between fusion, fission and degradation 

(mitophagy) (Lehmann & Martins, 2013). As described in the previous sections, 

PINK1 and Parkin mutations impact on mitochondrial functioning and integrity, but 

the mechanism underlying this control is still not completely elucidated. So far, it has 

been demonstrated that, in mammalian cells, Parkin is selectively recruited from the 

cytosol to dysfunctional mitochondria which present low membrane potential, 

promoting the degradation of these impaired organelles (Narendra et al, 2008). 

Further investigations reported that after mitochondrial depolarization, PINK1 

accumulates on OMM of dysfunctional organelles; this stabilization becomes the 

signal for Parkin recruitment and activation. The ubiquitin ligase activity of this 

protein on OMM components allows the remodeling of depolarized mitochondrial 

surface, leading to mitophagy (Matsuda et al, 2010; Narendra et al, 2010). This 

model is also conserved in Drosophila (Ziviani et al, 2010) confirming that PINK1 

acts upstream Parkin. However, it is still unclear how PINK1 recruits Parkin on 

damaged mitochondria. Some authors reported that PINK1 can phosphorylate Parkin 

directly at a highly conserved residue, the serine 65 (Kondapalli et al, 2012; Shiba-

Fukushima et al, 2012). Nevertheless, this modification does not seem to be 

sufficient for the full activation of ubiquitin-ligase activity of this protein. Actually, 

abolishing Parkin phosphorylation on serine 65 did not completely inhibit its PINK1-

dependent activation (Kane et al, 2014). Recently, three different groups identified a 

new PINK1 substrate, that might be considered the missing link in this pathway. 
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Using biochemical and proteomic approaches, they demonstrated that PINK1 

phosphorylates ubiquitin at a serine amino-acid residue (serine 65) and this modified 

ubiquitin, in turn, induces Parkin activity leading to mitophagy (Fig.1.5) (Kane et al, 

2014; Kazlauskaite et al, 2014; Koyano et al, 2014). 

 

      

Fig.1.5. PINK1/Parkin pathway involved in mitochondrial quality control. Pink1 accumulates on the 

OMM of dysfunctional mitochondria anchoring with its kinase domain facing the cytoplasm. PINK1 

phoshorilates Parkin but also the ubiquitin (Ub) protein itself. Phosphorylated ubiquitin directly binds 

to Parkin which becomes activated leading to disposal of the damaged mitochondria through 

mitophagy (Abeliovich, 2014) 

 

Even though recent researches have partially clarified one PINK1/Parkin 

molecular pathway, many other aspects correlated to the two proteins need to be 

elucidated. In fact, PINK1 and Parkin are also involved in mitochondrial dynamics. 

Mitochondria form a dynamic interconnected network undergoing continuous fission 

and fusion processes (Fig.1.4). Fusion allows damaged mitochondria to mix their 

contents with healthy organelles as a mechanism of complementation. Fission is 

necessary to generate new mitochondria, but it also contributes to remove the 

mitochondria with insufficient complementation. Three GTPases are involved in 

fusion: the Mitofusin1 (Mfn1) and Mitofusin2 (Mfn2) and the dynamin-related 

protein OPA1, while the machinery that control fission is manly based on the 

dynamin-related GTPase Drp1 [see (Scorrano, 2013)]. Given that Drosophila Parkin 
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and PINK1 mutants exhibited an alteration in mitochondrial morphology (Clark et al, 

2006; Greene et al, 2003), many efforts have been produced to understand if and how 

PINK1 and Parkin regulate the mitochondrial network. Therefore, the effects of 

altering the gene expression of the main component of fusion/fission machinery in 

Drosophila PINK1 and Parkin mutant flies have been explored. Drp1 loss-of-

function mutations were largely lethal in these mutants. In contrast, their phenotypes 

were strongly rescued promoting mitochondrial fission through Drp1 overexpression 

as well as reducing fusion through OPA1 and Mfn2 loss-of-function mutations (Poole 

et al, 2008). Furthermore, it has been observed that in Drosophila, PINK1 or Parkin 

deficiency causes an increase in Mfn levels and an hyperfused mitochondrial 

network (Ziviani et al, 2010). However, the mitochondrial phenotypes observed in 

mammalian model lacking PINK1 and Parkin is significantly different. Actually, 

neuroblastoma and primary mouse neurons presented mitochondrial fragmentation 

(Lutz et al, 2009). These discrepant phenotypes might be explained through a 

compensatory event: the early event of fragmentation is then followed by a rapid up-

regulation of fusion. This should facilitate dilution of dysfunctional mitochondria, 

but should not favor elimination of damaged mitochondria through mitophagy. Thus, 

the mitochondrial hyperfusion event might have several deleterious effects in the 

long term (Pilsl & Winklhofer, 2012). At molecular level, the link between 

mitochondrial dynamics and PINK1/Parkin may be Mfn, which was identified as 

Parkin substrate (Fig.1.6). Actually, it has been reported that its ubiquitination 

mediated by Parkin prevents re-fusion of damaged mitochondria promoting their 

degradation by autophagic machinery (Ziviani et al, 2010; Ziviani & Whitworth, 

2010). Thus, a potential model by which PINK1 and Parkin promote mitochondrial 

fragmentation and turnover can be postulated: i) upon Parkin recruitment to damaged 

organelles, it ubiquitinates the mitochondrial fusion-promoting factor Mfn; ii) this 

event tags Mfn for degradation, abolishing its fusion-promoting activity; iii) refusion 

of these mitochondria is prevented and they can be segregated for subsequent 

autophagy (Poole et al, 2010) (Fig.1.6). 
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Fig.1.6.Proposed function of PINK1 and Parkin in regulating the segregation of damaged 

mitochondria. This model postulates that upon Parkin recruitment to damaged portions of the 

mitochondrial reticulum, it ubiquitinates (Ub) the mitochondrial fusion-promoting factor Mfn thus 

tagging it for degradation, or otherwise inactivating its fusion-promoting activity (Poole et al, 2010). 

  

Another level of mitochondrial quality control system is also regulated 

through mitochondrial transport along microtubules mediated by motor proteins, 

kynesins and dynesins. This event requires the presence of a motor/adaptor complex 

which is composed by the OMM GTPase Miro and its cytosolic adapter Milton. The 

hypothesis is that PINK1 and Parkin might impact on mitochondrial transport 

interacting directly with this complex and regulating trafficking and motility (Fig. 

1.4). Accordingly, it has been observed that PINK1 immunoprecipitated with Miro 

and Milton (Weihofen et al, 2009). Moreover, Wang et al. showed that upon 

mitochondrial depolarization PINK1 can accumulate on OMM and phosphorylates 

Miro to trigger its degradation through a Parkin-dependent pathway. Thus, the 

proposed mechanism considers that damaged mitochondria might be stopped in their 

tracks leading to an initial quarantining step prior to their clearance or a mechanism 

to spatially restrict their deleterious effects (Wang et al, 2011) (Fig.1.7).   
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Fig.1.7. Proposed mechanism used by PINK1 and Parkin to control mitochondrial motility. 

According to this model, PINK1 and Parkin, participate in this regulation by arresting mitochondrial 

movement. PINK1 phosphorylates Miro, a component of the primary motor/adaptor complex that 

anchors kinesin to the mitochondrial surface. The phosphorylation of Miro activates proteasomal 

degradation of Miro in a Parkin-dependent manner. Removal of Miro from the mitochondrion also 

detaches kinesin from its surface. By preventing mitochondrial movement, the PINK1 and Parkin may 

quarantine damaged mitochondria prior to their clearance (Wang et al, 2011). 

 

1.3.2 Sporadic forms 

The most common form of parkinsonism is the idiopathic or sporadic PD, 

whose causes are still unknown. As for other human diseases, the environment 

crucially contributes to the pathogenesis of this motor disorder. However, it is most 

likely that the sporadic forms are the result of the interaction between environmental 

stressors and genetic predisposition associated to the aging. To discover and identify 

the environmental risk factors, several epidemiological studies have been carried out 

over the past decades. Thus, drinking well water, rural living, farming, and exposure 

to agricultural chemicals and industrial metals have been classified as negative 

regulators and potential risk factors for PD onset (Priyadarshi et al, 2001). In 

contrast, some substances such as cigarettes and coffee consumption have been 

correlated with a decreased incidence of PD (Pan-Montojo & Reichmann, 2014), 

even though the mechanism underlying such protection is still unclear. Among the 

different epidemiological researches, the most consistent results have been obtained 
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with works focused on pesticides. In 2013, a wide meta analysis based on 104 studies 

concluded that the prolonged exposure to pesticides is a risk factor for PD (Pezzoli & 

Cereda, 2013). Pesticides are often not strictly selective for the target species and 

they might extend their toxicity to other species, including humans. These 

compounds are responsible for acute and long term health effects due to their ability 

to alter a variety of physiological functions.  

To date, several pesticides have been studied for their possible involvement 

in PD pathogenesis, including rotenone, maneb and paraquat (PQ). Among them, PQ 

is the only one that has been significantly associated with PD (Kamel, 2013). As a 

consequence, this environmental toxicant might be a reliable experimental paradigm 

to generate in vitro or in vivo models that recapitulate some of the hallmarks of PD.  

 

1.3.2.1 Paraquat  

PQ is a widely used herbicide because of its low cost and rapid action. It is a 

highly reactive quaternary nitrogen compound which acts on weed and grass control. 

Recently, European nations and the United States have banned or restricted its use; 

however, it is still extensively utilized in other less developed countries (Drechsel & 

Patel, 2008). In humans, acute PQ poisoning mostly induces lung and kidney lesions, 

while chronic exposure might impact on DAergic neurons. In all these tissues, the 

mechanism of toxicity is the same: PQ generates massive oxidative stress through its 

redox cycling within cells (Fig.1.8). Owing to a low redox potential, the PQ dication 

(PQ2+) is easily reduced to form a radical by a single electron from intracellular 

enzymes. In presence of molecular oxygen (O2), the reduced monocation PQ (·PQ+) 

is re-oxidized with the concomitant formation of superoxide anion, which initiates a 

radical chain reaction leading to cellular damage (Moran et al, 2010). Several 

enzymes involved in a wide range of cellular processes are capable of initiating this 

redox cycling and they have been identified in microsomal, plasma membrane, and 

cytosolic components. They include NADPH oxidase, nitric-oxide synthase and 

NADPH-cytochrome c reductase (Castello et al, 2007). Different evidences support 

the hypothesis that, although the involvement of the aforementioned compartments, 

mitochondria might be the major site for PQ-induced ROS production (Cocheme & 
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Murphy, 2008). Nevertheless, the mechanism underlying mitochondrial ROS 

production is still not completely clear. Some studies reported that PQ2+ is 

internalized across the mitochondrial inner membrane, through a mechanism 

dependent on mitochondrial membrane potential. Once in the matrix, PQ might be 

reduced generating oxidative stress within this organelle. The proposed mechanism 

requires the activity of respiratory chain complexes, in particular complex I and III of 

ETC (Castello et al, 2007; Cocheme & Murphy, 2008). 

 

                        

Fig.1.8. PQ redox cycling [adapted from (Franco et al, 2010)]. 

 

To act on the nigrostriatal system, PQ must be transported across the blood-

brain barrier (BBB) and then taken up by DAergic neuronal cells. Being a charged 

molecule, PQ can penetrate into the brain only through a specific carrier, presumably 

a neutral amino acid transporter such as the system L carrier (LAT-1), which 

normally transports the amino acids L-valine and L-phenylalanine (Shimizu et al, 

2001). Initially, the structural similarity with MPTP suggested the hypothesis that 

both the toxicants might have the same mechanism of toxicity. Thus, PQ was 

commonly believed to be transported into DAergic neurons by DAT and to inhibit 

complex I (Franco et al, 2010). However, Richardson et al. reported that the 

neurotoxic effects of PQ do not depend on the DAT-mediated transport and that, 

even if mitochondria might be considered the preferential site for PQ reduction, the 

herbicide is not a complex I inhibitor (Richardson et al, 2005). These observations 
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suggested that the preferential vulnerability of DAergic neurons to PQ is not related 

to a selective transport mechanism into cells and complex I inhibition, while it is 

most likely to be associated with their susceptibility to oxidative damage due, for 

example, to the pro-oxidant properties of dopamine (Kang et al, 2009). As an 

alternative or complementary hypothesis, it has been observed that PQ induces 

DAergic neurotoxicity through a molecular pathway related to inflammatory 

response. In mice and in cell cultures, exposure to this herbicide caused neurotoxicity 

and oxidative stress that is dependent to the respiratory burst generated by microglial 

activation and induction of NADPH oxidase (Purisai et al, 2007; Wu et al, 2005). 

Thus, microglial activation and inflammation might be additional events that enhance 

PQ toxicity. 

Overall, these studies confirmed that PQ might increase ROS production 

through different mechanisms. When, cells cannot compensate for radical 

overproduction of and the consequent oxidative stress, they can undergo apoptosis or 

necrosis. Actually, it has been reported that PQ treatment determines DAergic 

neuronal cell death through the activation of an apoptotic cascade (Peng et al, 2004), 

that involves mainly the intrinsic mitochondrial pathway (Yang & Tiffany-

Castiglioni, 2008).  

Because of its ability to generate ROS as well as cell death, PQ is also 

frequently utilized as experimental paradigm to generate animal models. In mice 

systemic injections of PQ caused motor defects and the progressive death of DAergic 

neurons (Brooks et al, 1999) that was not correlated with a decrease in the amount of 

striatal DA (McCormack et al, 2002). The discrepancy between neurodegeneration 

and lack of significant dopamine loss was considered an effect of a compensatory 

mechanisms by which surviving neurons might be capable of restoring 

neurotransmitter tissue levels. Additionally, the observed phenomenon seems to be 

selective and specific on the nigrostriatal system. In fact, the number of GABAergic 

cells in SN pars reticulata was not affected by the treatment (McCormack et al, 

2002). 
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In conclusion, the molecular mechanisms involved in PQ neurotoxicity and 

its involvement in sporadic forms of PD are mostly due to its ability to generate 

oxidative stress through a redox cycling within cells. PQ administration, as 

experimental paradigm, allows to develop models for Parkinsonian 

neurodegeneration that replicate most of the pathological and phenotypic features of 

this motor disorder.  

 

1.4 Treatments of PD  
PD is still an incurable disorder and the available therapies only treat the 

symptoms improving the quality of life. The most common pharmacological 

approach is based on DA replacement, in particular on the use of the DA precursor, 

L-DOPA, which, is able to cross the BBB while the neurotransmitter itself is not. 

However, chronic administration of L-DOPA is associated with a gradual decline of 

clinical efficiency and the development of side effects such as dyskinesia (Heumann 

et al, 2014).  

To overcome these limitations,. other classes of drugs have been developed 

that can be used in addition to L-DOPA  enhancing the dopaminergic tone. These 

include DA agonists, which act directly on the dopamine receptor; monoamine 

oxidase-B (MAO-B) inhibitors, which increase synaptic DA levels blocking central 

dopamine oxidative metabolism; and catechol-O-methyltransferase (COMT) 

inhibitors, which increase bioavailability of L-DOPA inhibiting its peripheral 

metabolism (Olanow & Schapira, 2013). When PD patients experienced a decrease 

in the effects of medical therapy over time, surgical therapies are often applied and 

deep brain stimulation (DBS) is the most frequently performed (Coune et al, 2012). 

In DBS, an electrode is surgically implanted in the subthalamic nucleus, globus 

thalamus or ventral intermediate nucleus, providing continuous high frequency 

electrical stimulation attempting to overwhelm the loss of dopamine signaling in the 

striatum (Beitz, 2014). Even though this therapy has some beneficial effects against 

motor symptoms, the sensory motor side effects of stimulation are limiting factors 

for efficiency of the technique (Benabid, 2003).  
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Other experimental therapies could offer new hopes for the future. These 

include gene and cell replacement. To date, five gene therapy trials have been 

developed with the use of adeno-associated virus (AAV) or lentivirus vector 

platforms. In the first clinical study, an AAV-vector to express glutamic acid 

decarboxylase (GAD) was delivered to the subthalamic nucleus. In PD, striatal DA 

depletion leads to a decrease in the inhibitory control exerted by the external segment 

of the globus pallidus on the subthalamic nucleus. The subsequent lack of inhibition 

of the subthalamic nucleus affects the output of the basal ganglia circuitry causing 

impairments in motor functions. GAD enzyme catalyzes the synthesis of -

aminobutyric acid, the major inhibitory neurotransmitter in the central nervous 

system, potentially providing the lost inhibitory control in the basal ganglion motor 

system, thus restoring appropriate transynaptic balance. Another approach has 

attempted to improve the ability to synthesize DA using different strategies. The first 

strategy is based on the expression of the major L-DOPA-converting enzyme AADC 

in the putamen that can be used to increase the efficacy of pharmacological therapy. 

The second one relies on the delivery of three transgenes, TH, AADC and guanosine 

5′-triphosphate cyclohydrolase1 (the rate–limiting enzyme that synthesizes the 

essential TH co–factor) from a single vector cassette to induce ectopic DA synthesis 

from tyrosine. Finally, two gene therapy approaches have employed the expression 

and secretion of neurotrophic factors, glial-derived neurotrophic factor (GDNF) or 

neurturin (NRTN). Thus rather than directly modulating neuronal activity, they 

confer trophic support to the dopamine pathway trying to restore its function [see 

(Bartus et al, 2014)]. To date, these clinical trials did not demonstrate sufficiently 

robust or consistent benefits to patients, compared to that achieved by placebo 

controls (Bartus et al, 2014) . 

Cell replacement has been suggested as a great potential therapeutic strategy 

in PD (Loewenbruck & Storch, 2011). Although transplantation of dopamine fetal 

cells in the striatum of advanced PD patients provided disappointing results (Evans et 

al, 2012; Olanow et al, 2003) in the future, cell therapies might come back with the 

use of the appropriate cell source such as stem cells. Actually, current and future 

studies are attempting to overcome the main obstacle for the clinical application of 
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stem cell in PD therapy by finding the ideal candidate for cell replacement, among 

adult, embryonic or induced-pluripotent (iPS) stem cells (Kim & de Vellis, 2009).  

In conclusion, so far none of the aforementioned therapies provides more 

benefits then L-DOPA and all of them present their own set of side effects. 

Therefore, it is still necessary to find out new therapeutic strategies that not only 

provide symptomatic benefits without motor complications, but also delay or reverse 

PD progression (Olanow & Schapira, 2013). 

 

1.4.1 ROS homeostasis and antioxidant defense  

As widely discussed, ROS overproduction might trigger and/or amplify the 

process of neuronal cell death in PD. Hence, it is a clear consequence that the 

inhibition of this event could block or delay neuronal degeneration. However, to date 

treatment based on antioxidants showed very disappointing results (Bjelakovic et al, 

2012).  

To understand the possible limitations of the therapies based on blocking 

ROS production, it is necessary to thoroughly consider the physiological role of these 

reactive species. Increasing evidence support that these molecule are involved in 

maintaining cell homeostasis and in cell signaling (Finkel, 2011). Several studies 

have shown that oxidants act as cellular messenger regulating cell proliferation, cell 

death (either apoptosis or necrosis), gene expression and metabolic response 

(Gemma et al, 2007). Additionally, it has been recently observed that ROS signaling 

is required for the normal regulation of autophagy (Scherz-Shouval & Elazar, 2011). 

As mentioned in the Section 1.1, the current theory of aging does not imply that 

radicals always cause damage (as in the original one) but it is based on the idea that 

aging is caused by a disruption of the whole signaling network involving ROS. 

According to this “modified” hypothesis, the indiscriminate reduction of reactive 

species could alter essential signaling events and this could explain the discouraging 

outcomes observed with antioxidant treatments in clinical trials.  

In physiological condition, to counteract oxidative stress, cells have an 

intrinsic system, based on a complex network of antioxidant molecules. This 
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defensive system does not act entirely removing oxidants but, rather, by maintaining 

a tight homeostatic control of ROS. Endogenous antioxidants include low molecular 

weight molecules such as GSH, present in millimolar concentrations within cells, as 

well as a wide array of protein antioxidants with specific subcellular localizations 

and chemical reactivities (Finkel, 2011) (Fig.1.9).  

 

 

Fig.1.9. Catalytic antioxidant systems. To maintain the proper redox balance, cells developed a  

system of components that can be divided into two major groups, enzymatic and nonenzymatic. Major 

ROS-scavenging enzymes; SOD superoxide dismutase (SOD1, SOD2, SOD3) catalase; GPX, 

glutathione peroxidase; GR, glutathione reductase;GRXo, glutaredoxin (oxidized); GRXr, 

glutaredoxin (reduced); GSHr, glutathione (reduced); GSSG, glutathione (oxidized); TRXo, 

thioredoxin (oxidized); TRXr, thioredoxin (reduced); XO, xanthine oxidase (Trachootham et al, 

2009).  

  

Among them, superoxide dismutases (SODs) catalyze the disproportionation 

of superoxide to H2O2 and O2. H2O2, generated in this reaction, can be further 

converted to water  and O2 by the action of catalase in the peroxisomes and through 

glutathione peroxidases (GPx) in the cytosol and mitochondria (Young & Woodside, 
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2001). The activity of GPx is dependent on the constant availability of reduced 

glutathione, which is, in turn, strictly regulated by glutathione reductase (GR). 

Actually, GR is responsible for the regeneration of GSH from oxidized glutathione 

(GSSG). In the next section, SOD enzymes will be analyzed more in details. 

 

1.4.2 Superoxide dismutases (SODs) 

SODs are considered the first line of defense against ROS, because of their 

ability to scavenge the O2
.−, which is the primary radical responsible for the 

downstream generation of more toxic ROS. They promote the elimination of 

superoxide anion radicals derived from both  extracellular stimuli, such as ionizing 

radiation and oxidative insults, and intracellular sources, such as mitochondrial ETC 

(Miao & St Clair, 2009).  

In mammals, three different isoforms have been identified and characterized. 

Even though, they exert a similar functions, these enzymes differ in chromosome 

localization, protein structure, metal cofactor requirement and cellular 

compartmentalization (Miao & St Clair, 2009).  

In humans, SOD1 is encoded by a nuclear gene located on chromosome 

21q22 (Levanon et al, 1985). This protein is an ubiquitous copper (Cu), zinc (Zn) 

protein, that resides mainly at cytosolic level, although it has been found also in the 

nucleus (Gertz et al, 2012), peroxisomes (Islinger et al, 2009)  and mitochondrial 

intermembrane space  (Kawamata & Manfredi, 2010). The functional unit of SOD1 

is a homodimer, composed of two relatively small subunits of 154 amino acids that 

folds into a β-barrel formed by 8 antiparallel β-strands arranged in a Greek-key motif 

(Fig1.10). The copper ion directly participates in the catalytic reaction; while zinc 

has a structural role for the active site folding but is not necessary for enzymatic 

activity (Kawamata & Manfredi, 2010). In addition, the protein presents a highly 

conserved intramolecular disulfide bridge required for the stabilization of matured 

SOD1 (Furukawa et al, 2004). Therefore, SOD1 maturation into the functional 

enzyme requires three posttranslational modifications: copper and zinc insertion, 

disulfide bond formation, and dimerization, all of which contribute significantly to 
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SOD1 stability. Copper insertion and oxygen-dependent disulfide bridge formation 

are facilitated by the copper chaperone for SOD1 (CCS) (Furukawa et al, 2004).  

The relevance of this enzyme in the antioxidant defense is supported by the 

discovery that more than one hundred mutations in the SOD1 gene are causative for 

familial forms of amyotrophic lateral sclerosis, a neurodegenerative disease (Saccon 

et al, 2013).  

 

                     

Fig.1.10. Crystal structure and topology of SOD1. SOD1 is a dimeric β-sandwich protein consisting 

of eight anti-parallel β-strands.. Each monomeric subunit also contains a Zn (blue sphere) and Cu ion 

(orange sphere), as well as an intramolecular disulfide bond (yellow). The electrostatic loop is 

depicted in green, while the Zn-binding loop is depicted in cyan (Kayatekin et al, 2012). 

 

The human SOD2 is encoded by a gene located on chromosome 6q25 

(Church et al, 1992). This protein, which contains manganese (Mn) in its active site, 

is synthesized in the cytosol, and imported into the mitochondrial matrix (Wispe et 

al, 1989). Human Mn-SOD is assembled into a homotetramer of 22-kDa subunits 

forming a dimer of dimers that creates two symmetrical four-helix bundles 

(Borgstahl et al, 1992) (Fig.1.11A). The manganese is bound as a five-coordinate 

complex with a trigonal bipyramidal geometry. Four ligands are provided by the 

protein, three histidines and one aspartic acid residue, and the fifth ligand by the 

solvent (Fig.1.11B). The bound solvent ligand is an hydroxide anion for the oxidized 
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enzyme and it is considered the acceptor for proton transfer upon manganese 

reduction (Abreu & Cabelli, 2010). The active-site cavity of SOD2 is characterized 

by a hydrogen bonded network extending from the aqueous ligand of the metal and 

comprising the side chains of several residues (Perry et al, 2009).  

Because of its localization, this mitochondrial protein acts directly against 

superoxide radicals produced as a byproduct of OXPHOS. A clear evidence of its 

central role has been identified through the observation that mice lacking SOD2 were 

characterized by a severe phenotype with a dilated cardiomyopathy and neonatal 

lethality (Li et al, 1995). In addition, mutant mice presented a consistent reduction in 

mitochondrial enzyme activities confirming that Mn-SOD is required for normal 

biological functions, by maintaining the integrity of mitochondrial proteins or 

complexes susceptible to direct inactivation by superoxide. 

 

             

Fig.1.11 Human MnSOD crystal structure. (A) The homotetrameric of structure MnSOD, 

containing two symmetrical four-helix bundles and four C-terminal α/β domains, is depicted with the 

four different polypeptide chains, cyan, blue, green and yellow, and active site manganese ions 

depicted as magenta spheres. (B) The MnSOD active site with a hydrogen-bonding scheme. The side 

chains of the residues involved in the active site, namely, His26, His74, His163, and Asp159, bind the 

Mn ion, in conjunction with a solvent molecule (Perry et al, 2010).   
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The human extracellular isoform, SOD3, is encoded by a gene located on 

chromosome 4p15 (Stern et al, 2003). This enzyme is a homotetrameric Cu- and Zn-

containing glycoprotein, with a C-terminal extracellular matrix (ECM)-binding 

region that binds heparin, other sulphated proteoglycans and collagen (Petersen et al, 

2005). The crystal structure revealed that a protein is a tetramer composed of dimers 

that are similar to the human SOD1 dimers (Antonyuk et al, 2009) (Fig.1.12). While 

SOD1 and SOD2 are expressed ubiquitously, SOD3 is synthesized in a more limited 

number of cell types and tissues (Marklund, 1990). The highest levels of this protein 

have been found in blood vessels, lung, kidney, and uterus, while lower 

concentrations were present in the eye, skeletal muscle, liver, and brain (Fattman et 

al, 2003). The physiological function is to prevent cell and tissue damage initiated by 

extracellularly produced ROS. In addition, EC-SOD is likely to play an important 

role in mediating nitric oxide-induced signaling events (Fattman et al, 2003). 

 

             

Fig.1.12 Human tetrameric SOD3. The structure shows the four subunits (A, B, C and D) with 

different colors, the C-terminus, the Cu in cyan and Zn in orange. (Antonyuk et al, 2009). 
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1.4.3 SOD mimetic compound 

Considering the role of oxidative stress in the pathogenesis of PD and the 

growing knowledge about the protective role that the antioxidant systems plays, 

many efforts have been directed to develop an efficient antioxidant approach to 

counteract the oxidative stress-induced neuronal cell death (Navarro-Yepes et al, 

2014).  

Many endogenous non-enzymatic antioxidant, such as vitamin E, vitamin C, 

coenzyme Q, have been considered excellent candidate for clinical treatment. In fact, 

they are cheap, orally bioavailable, safe in large doses, and absorbed and recycled 

within our bodies (Halliwell et al, 1992). Therefore, the enhancement of antioxidant 

defenses through dietary supplementation using these compounds should have 

provided a more reasonable and practical approach to reduce the level of oxidative 

stress (Finkel & Holbrook, 2000). However, these strategies have been largely 

unsuccessful. Indeed, a great number of thorough clinical trials have been carried out 

using several different antioxidants on a wide range of pathologies with little 

improvement in clinical outcome for the patients [see (Bjelakovic et al, 2012)]. Many 

other factors and limitations have been proposed to explain the lack of effectiveness 

of these clinical interventions. For instance, the intrinsic characteristics of the 

antioxidant studied such as absorption, metabolism, ability to penetrate the BBB and 

distribution (Navarro-Yepes et al, 2014) as well as the scarce specificity these 

molecule that could interfere with ROS-dependent cellular signaling (Murphy, 2014). 

Recently, it has been proposed that a new approach should be based on molecules 

that react directly with a particular reactive species which contributes to the disease 

by a specific mechanism, crucial in the pathological process (Murphy, 2014). Since 

superoxide has been suggested as a critical pathological ROS, because all the very 

reactive species originate from it. Thus, antioxidants that selectively scavenge 

superoxide should be therapeutically useful. In agreement with these observations, 

several preclinical studies supported the potential beneficial effect of SODs in a 

broad range of disease, including PD. For instance, overexpression of SOD1 in mice 

has been associated with protection against MPTP toxicity (Przedborski et al, 1992). 
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In contrast, mice partially deficient for SOD2 showed an increased vulnerability to 

the same mitochondrial toxin (Andreassen et al, 2001). 

The first attempt to use SOD enzymes as drug was achieved through the 

production of Orgotein, a Cu,Zn- SOD, prepared from bovine tissues, which showed 

a potent anti-inflammatory activity (Rosner et al, 1980). However, in clinical trials 

the use of this native enzyme revealed a significant immunogenicity due to the non-

human origin of this protein (Muscoli et al, 2003). In addition, because of their large 

size, these proteins cannot penetrate the BBB, which is a primary requirement of a 

potential therapeutic agent for PD. In this scenario, the development of synthetic, low 

molecular weight mimetics of the native enzymes, known as SOD mimetics, could 

be particularly relevant.  

Currently, SOD mimetics can be classified in four different classes: 

manganese (III) metalloporphyrins (Fig.1.13A), manganese (II)-base complexes 

(Fig.1.13B), manganese (III) salen complexes (Fig.1.13C) and nitroxides 

(Fig.1.13D). 

 

 

Fig.1.13 Structure of different classes of SOD mimetics. (A) manganese (III) metalloporphyrins 

(Mn-TMPyP); (B) manganese (II)-base complexes (M40403), (C) manganese (III) salen complexes 

(EUK-134) and (D)  nitroxides (Tempol). 

 

Mn(III) metalloporphyrins have at least four distinct antioxidant properties, 

acting as scavenger of superoxide (Batinic-Haberle et al, 1998), hydrogen peroxide 

A B C 

D 
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(Day et al, 1997), peroxynitrite (Pfeiffer et al, 1998) and lipid-peroxyl (Day et al, 

1999). As the native enzyme, the manganese moiety is responsible for superoxide 

dismutation through the conversion of Mn(III) in Mn(II). The catalase activity could 

be associated to their ability to also undergo oxidation to Mn(IV) or Mn(V) or 

Mn(VI) (Salvemini et al, 2002).  

Mn(III)–salen complexes have been reported to possess combined superoxide 

dismutase/catalase mimetic activity (Doctrow et al, 1997). It has been demonstrated 

that Mn(III)–salen complexes were able to rescue the phenotype of Mn-SOD 

deficient mice suggesting that these compounds might be also able to enter the 

mitochondria (Melov et al, 2001). However, the mechanism used by these molecules 

to detoxify superoxide and hydrogen peroxide is not well defined. 

Nitroxides are cell-permeable weak SOD mimetics that react with superoxide 

very slowly at physiological pH. Actually, their chemistry is based on the nitroxide 

cycle between the oxidized oxoammonium cation (RNO+) and the reduced 

hydroxylamine (RNOH) (Batinic-Haberle et al, 2010). Moreover, nitroxide, (RNO) 

can be oxidized to RNO+ with peroxinitrite, which, in turn, rapidly reacts with 

superoxide regenerating RNO. Thus, the catalytic removal of superoxide may be 

coupled to the reaction with peroxynitrite (Miriyala et al, 2012).  

Overall, the aforementioned classes of compound are SOD mimetics not 

selective for the superoxide anion. Several studies have been carried out testing their 

protective effects in vitro and in vivo [see  (Batinic-Haberle et al, 2010; Miriyala et 

al, 2012; Salvemini et al, 2002)]. Because manganese (II)-base complexes, in 

particular M40403, are the subject of study in this thesis, they will be discussed in 

more details. 

Manganese (II)-base complexes were discovered and developed using a 

combination of computer-aided modelling studies (Miriyala et al, 2012) that allowed 

to generate this new class of agents presenting high SOD activity, high stability, 

selectivity only for superoxide and in vivo efficacy. One of the main property is their 

catalytic behavior since they remove superoxide anions at a high rate without that the 

complex itself is consumed (Muscoli et al, 2003). In addition, these SOD mimetics 
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are highly selective catalysts for superoxide dismutation and they do not react with 

other biological species.  

The unique selectivity of these molecules resides in the nature of the Mn(II) 

centre of the complex. Actually, the resting oxidation state of the complex is the 

reduced Mn(II) ion, thus the complex does not react with reducing agents until it is 

oxidized to Mn(III) by protonated superoxide. Then, the complex is rapidly reduced 

back to the Mn(II) state by the superoxide anion (Salvemini et al, 2002).  

So far, several works reported that M40403 suppresses oxidative stress and 

inflammation in a variety of in vitro and in vivo models (Di Napoli & Papa, 2005), 

for istance in rat model of septic shock (Macarthur et al, 2000), LPS-induced 

cytokine production by cultured rat alveolar macrophages (Ndengele et al, 2005), 

inflammatory pain in a carrageenan model of paw edema (Wang et al, 2004), 

myocardial ischemia–reperfusion injury (Masini et al, 2002), chronic hypoxia-

induced pulmonary hypertension (Dennis et al, 2009). Interestingly, the in vivo 

distribution of M40403 supports that it might cross the BBB. Indeed, after 6 hours of 

injection in rats, the drug was found widely distributed in the body mass, including 

the brain (Salvemini et al, 1999). Furthermore, results of phase I and phase II clinical 

trials, performed on approximately 700 subjects/patients using an intravenous 

formulation of M40403, indicate that it is safe and well-tolerated in humans (Murphy 

et al, 2008).  

To summarize, manganese (II)-base complexes, specially M40403, are small 

molecules, non-immunogenic and can penetrate cells. They are stable in vivo and 

selective for superoxide. M40403 is also protective in various models of acute and 

chronic inflammation and seems to be able to cross the BBB. Thus, this SOD 

mimetic might be an excellent candidate as therapeutic agent to counteract oxidative 

stress in PD.  
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1.5 In vitro and in vivo models for PD studies 
To better understand the etiology, pathogenesis and molecular mechanisms 

underlying DAergic degeneration in PD, several in vitro and in vivo models have 

been developed. Cellular models can only provide information on the molecular 

pathways that are dysfunctional in a disease-mimicking situation (i.e., gene 

mutations, oxidative stress, neurotoxins exposure, etc.). Nevertheless, they can be 

particular helpful presenting some interesting advantages. Indeed, they can be human 

genome-based and easily genetically manipulated, which makes them good 

candidates not only for exploratory studies on the pathway involved in the disease 

but also to test the efficacy of disease modifiers. Within the last few years, many 

efforts have been produced to develop an efficient protocols to differentiate patient-

derived fibroblasts or iPS into induced DAergic neurons, that could represent the best 

in vitro model, obtaining a limited success (Auburger et al, 2012). Meanwhile, rodent 

primary neuronal cultures derived from embryonic central nervous system tissue 

which retain morphological, neurochemical, and electrophysiological properties of 

neurons in situ (Radio & Mundy, 2008) were largely used as cellular model. 

However, they present some limitations. Long-term culturing of primary neurons 

remains the principal disadvantage with cells that cannot be longer propagated. Thus, 

new cultures must be prepared from nervous system tissue on a regular basis, 

increasing the genetic variability of the model system across different cultures (Radio 

& Mundy, 2008). Moreover, the use of rodent cells faces the additional problem of 

slight but relevant metabolic differences between rodents and humans (Herman, 

2002). Alternatively, neuroblastoma cell lines have been also used as in vitro models 

to study neuronal development, neurological disorders, mechanisms of actions and 

neurotoxicity of compounds affecting the nervous system. 

Animal models, both genetic and toxin-based, not only provided invaluable 

information but also recapitulate many of the phenotypic features of PD allowing to 

test innovative therapeutic approaches (Le et al, 2014). Model organisms range from 

yeast, worm, fruit fly, zebrafish, mouse and rat. Even though mammalian models are 

widely considered as the most powerful approach, their use is costly and time 

consuming. Furthermore, research using mammalian models is slowed down by the 
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complexity of the organisms and their genomes, by the long latency of the symptoms 

and by the difficulty to generate and analyze large cohorts, providing a need for even 

simpler systems (Debattisti & Scorrano, 2013). In this scenario, the use of non-

mammalian models becomes relevant. In particular, Drosophila melanogaster is 

currently considered an attractive and valuable system for studying human 

neurodegeneration. In the next sections, the main features and properties of human 

neuroblastoma cell lines and Drosophila melanogaster will be presented more in 

details because of their use as models in this thesis. 

 

1.5.1 Drosophila melanogaster as animal model for neurodegeneration 

Fruit fly is cheap and easy to handle, it can give rise to a large number of 

genetically identical progeny and it has a short life span 20522007. In addition, the 

completion and annotation of genome sequence of Drosophila revealed that 77% of 

genes related to human diseases are conserved in flies 11084932. For instance, the 

fly genome encodes homologs of DJ-1, PINK1, Parkin, LRRK2, human genes linked 

to familial forms of PD (Hirth, 2010). Furthermore, Drosophila shows complex 

cognitive processes, including learning and memory, and motor behaviors, such as 

walking, climbing, and flying, which are driven by a sophisticated brain and nervous 

system. This system consists of about 105 neurons, including approximately 200 

DAergic cells that are grouped together into six major clusters arranged with bilateral 

symmetry and a well-defined anatomical location (Whitworth et al, 2006). Genetic 

perturbations or neurotoxic treatments affecting the number, morphology, or 

locations of these neurons can be readily recognized.  

Several different approaches have been used to model aspects of PD in 

Drosophila, including pharmacological insults (neurotoxin-induced models), the 

generation of mutant flies as well as the overexpression or knock down of familial 

PD gene homologs (White et al, 2010). The latter strategy is mainly based on the use 

of GAL4/UAS system which is one the most powerful and versatile tools available in 

Drosophila.  

 



 

 

 



Introduction 

 

47 

 

1.6 Aim of the project 
The research project of this thesis can be divided in  two main topics: the first 

one is aimed to explore of the potential protective role of SODs and SOD mimetics 

against oxidative injuries related to Parkinson’s disease (PD); the second one relies 

on the characterization of two human neuroblastoma cell lines in order to identify 

between them the most suitable cellular model for PD studies. 

PD is a degenerative disorder characterized by a progressive loss of DAergic 

neurons. This motor disease is still incurable and the conventional therapies only 

treats symptoms. Therefore, it is necessary to develop new therapeutic strategies than 

not only provide symptomatic relief but also can halt or retard the progression of the 

disease avoiding further neuronal damage. Increasing evidence demonstrated that 

oxidative stress is a key player in the etiopathogenesis of both sporadic and familial 

forms of PD. In this scenario, the function of antioxidant SODs enzymes could be 

crucial to burden oxidative stress delaying or arresting DAergic degeneration. To test 

this hypothesis, we investigated, in vitro and in vivo, whether SODs overexpression 

or the administration of SOD mimetics ameliorate oxidative injuries induced by the 

herbicide PQ and/or PINK1 deficiency, used as experimental paradigms related, 

respectively, to sporadic and familial forms of PD.  

In parallel, considering that the DAergic phenotype is an important 

requirement to study, in vitro, the molecular mechanisms involved in PD 

pathogenesis, we characterized two human neuroblastoma cell lines upon neuronal 

differentiation. In particular, to develop a reliable model of DAergic neurons, we 

analyzed the effects of three differentiating agents in their capability to promote the 

acquisition of a mature neuronal-like phenotype with neurochemical properties of 

DAergic cells. 
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2.1 Cell culture -in vitro experiments 

2.1.1 Reagent stocks 

PQ (Sigma): 100 mM in distilled sterile water  

SOD mimetics: 

 Mn-III-TMPyP (S. Cruz Biotechnology): 4 mM in phosphate buffer (PBS) 

 M40403 (synthesized by collaborators from the University of Pavia), 41 mM 

(20 g/L) in distilled sterile water   

 EUK-134 (S. Cruz Biotechnology): 0.5 mM in ethanol for cinetic assays; 100 

mM in DMSO for cell viability assessment 

 Tempol (Sigma): 1 M in distilled sterile water 

CCCP (Sigma): 10 mM in DMSO 

Lipofectamine 2000 (Invitrogen) 

Fetal bovine serum (FBS-Gibco): heat inactivated at 56°C for 30-60 minutes 

Staurosporine (Stauro, Sigma): 40 μM in ethanol 

RA (Sigma): 10 mM in DMSO, stored at -°20°C as mono-use aliquots  

TPA (Sigma): 40 μM in ethanol 

 

2.1.2 Cell lines 

All the cell lines used were maintained in the proper growth medium in a 5% 

CO2 humidified incubator at 37°C. The medium was replaced every 3 days and once 

80% of confluence was reached, cell cultures were sub-cloned by trypsinization.  

Human neuroblastoma SH-SY5Y (IST, Genova, Italy) cells were cultured in a 

mixture 1:1 of Ham's F12 (F12) and Dulbecco Modified Eagle Medium (DMEM) 

supplemented with 10% (v/v) FBS. 
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Human neuroblastoma BE(2)–M17 (ATCC) cells were cultured in in a mixture 1:1 

of F12 and DMEM supplemented with 10% FBS. 

Human cervical carcinoma HeLa (ECACC) cells were grown in DMEM with 10% 

FBS.  

 

2.1.3 Neuronal differentiation 

Human neuroblastoma cell lines (SH-SY5Y and BE(2)-M17) were chosen 

because they are widely used as model of DAergic cells. In all of the experiments, 

the cells were used at early passages (P1-5 after purchase). For cell proliferation 

analysis, the cells were seeded into 25 cm2 flasks at a density of 1×105 cells. 24 hours 

after seeding, differentiation was induced by the addition of TPA, RA or 

staurosporine (STAU) at 15 μM, 10 μM or 10 nM, respectively, for SH-SY5Y and 

30 μM, 5 μM or 8 nM, respectively, for BE(2)-M17. Fresh media containing the 

specific inducing agent were replaced every 2 days. To determine the rate of cell 

growth, the cells were harvested after 0.05% trypsin treatment and quantified using a 

hemocytometer. Differences in morphology between proliferative and differentiated 

cells were evaluated under a phase contrast light microscope (Motic AE2000). 

 

2.1.4 Neuritic outgrowth 

To measure the neuritic outgrowth after differentiation, human neuroblastoma 

cell lines (SH-SY5Y and BE(2)-M17) were seeded on coverslip pre-coated with 

poly-D-lysine in 24 wells plates. 24 hours after seeding, they were transfected with a 

vector containing the coding sequence for a GFP, whose expression allow to track 

the neurite length per single at single cell-level using fluorescence microscopy. The 

day after transfection, differentiation was induced as described above. After 7 day of 

treatment, sample were fixed and analyzed. Images were acquired using Leica 5000 

B epifluorescence microscope with a magnification of 20X. Neurite length was 

assessed using ImageJ software.    
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2.1.5 SOD1 and SOD2 SH-5YSY stable overexpressing cells 

To overexpress human SOD1 and SOD2, first full length sequences were 

amplificated using Pfu polymerase (Promega). The forward and reverse primers 

(Tab.2.1) for amplification contained a Kozac sequence, which is recognized by the 

ribosome as the translational start site (Kozak, 1986), and stop codon. Considering 

the mitochondrial subcellular localization of SOD2, the mitochondrial translocation 

sequence was cloned at the N-terminus of the protein. The amplified sequences 

(SOD1 and SOD2) were separated by agorose gel elettrophoresis, recovered from 

PCR using PCR Clean-up System (Promega) and cloned into pCR8/GW/TOPO 

(Invitrogen) (Fig.2.1A).    

Gene Primer sequence (5'-3') 

 

Human-SOD1 

 

Fw: ACCATGGCGACGAAGGCCGTGTGCG 

Rv: TTATTGGGCGATCCCAATTACACC 

Human-SOD2 Fw-ACCATGTTGAGCCGGGCAGTGTG                         

Rv-TTACTTTTTGCAAGCCATGTATCTTTC 

  

Tab.2.1. List of primers used for SOD1 and SOD2 amplification. 

 

Each plasmid (entry vector) was used to transform DH5α high competent E. 

coli cells. Bacterial colonies selected using SPECTINOMYCIN antibiotic were used 

to purify each vector using QIAprep Spin Miniprep Kit (Qiagen). After DNA 

sequencing, SOD1 or SOD2 fragment which was present into entry vector ,was 

inserted into the pT-REX-DEST30 final vector (Invitrogen) (Fig.2.4B) for protein 

expression in mammalian cells using the Gateway technology. Plasmid DNA was 

then replicated and isolated using NucleoBond® Xtra Midi EF maxi-prep 

(MACHEREY-NAGEL) 
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.   

Fig.2.1. Vectors used for human SOD1 and SOD2 overexpression. (A) pCR8/GW/TOPO used as 

entry vector (B) pT-REx-DEST30 used as final vector which contained the Neomycin cassette 

necessary for selection using G418. 

 

To generate stable cell lines, SH-SY5Y wild-type cells were plated in 6 well 

plates at 70% of confluence and transfected with 2 μg of final vector using 

Lipofectomine. To maximize the transfection efficiency DNA:Lipofectamine ratio 

was kept at 1:4. After 48 hours, 500 μg/ml geneticin (G418, Sigma) was added to the 

culture for selection. Stably transfected cells were isolated after two weeks in the 

selection medium. Each isolated clone was expanded and stored at -80°C. 

 

2.1.6 Qualitative assessment of mitochondrial morphology  

Assessment of mitochondrial morphology was performed using a 

mitochondrial fluorescent protein, mt-RFP. The expression vector containing the 

coding sequence for the mt-RFP was a kind gift from Luca Scorrano (University of 

Padova, Padova, Italy). Qualitative analysis was done for each cell according to the 

follow classification.  Cells containing a majority of long interconnected 

mitochondrial networks presented a tubular shape; cells containing a combination of 

interconnected mitochondrial networks along with some smaller fragmented 

mitochondria were classified as intermediate; finally cells with a majority of short 

and multiple punctiform organelle were defined as fragmented.  

To this purpose, SH-SY5Y cells were plated on poly-lysine coated coverslips 

in 24 well plates (105 cells per well). After 24 hours, samples were transfected with 

A B 
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0.25 or 0.5 μg of the expression vector containing the coding sequence for the mt-

RFP. Lipofectomine were used as transfection agent with the aforementioned 

DNA:Lipofectamine ratio. After fixation, low resolution images were acquired using 

epifluorescence using a Leica 5000B with 100X oil objective; while, higher 

resolution images were acquired through ZEISS LSM700 confocal microscope with 

63X oil objective. The data analysis was performed in a blind manner and reported as 

% of cells with tubular, intermediate or fragmented morphology relative to total cell 

number. 

 

2.1.7 PINK1 knock-out using CRISPR/CAS system  

PINK1 gene knock-out (KO) has been obtained though GeneArt® CRISPR 

Nuclease Vector with CD4 Enrichment Kit (Lifetchnologies) according to the 

manufacturer's protocol. This system allowed the expression of the functional 

components needed for CRISPR/Cas9 genome editing in mammalian cells with the 

CD4 gene reporter. The latter was used to track transfected cells using anti-CD4 

fluorescent antibodies. The CRISPR/CAS system includes three components the 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated 

(Cas) nuclease, Cas9; a target complementary CRISPR RNA (crRNA) and an 

auxiliary trans-activating crRNA (tracrRNA). In this kit, the crRNA and tracrRNA 

are expressed together as a guide RNA (gRNA) combining the targeting specificity 

of the crRNA with the scaffolding/binding ability for Cas9 nuclease of the tracrRNA. 

Once the gRNA and the Cas9 are expressed in the cell, the genomic target sequence 

can be permanently disrupted (Fig.2.3). To this purpose, first it was necessary to 

designed two single-stranded DNA oligonucleotides with suitable overhangs to 

complement the linearized vector; one encoding the target CRISPR RNA (top) and 

its complement (bottom). In the procedure, this step is crucial because these 

oligonucleotides must contain the sequence for the target gene, in this case PINK1, 

required to induce the double break DNA. The optimized length should be 19 or 20 

bp. To avoid off-target effects, the sequence should not contain significant homology 

to other genes. According to these instructions, two pairs of oligonucleotides, namely 

KO1 and KO2, has been designed (Tab.2.2). Their specificity of the target gene was 

verified using RGEN tools software (http://www.rgenome.net/cas-offinder/). 
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Fig.2.2. CRISPR/CAS mechanism for genome editing. Cas9 assembles with hybrid guide RNAs in 

human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site 

complementary to the guide RNA sequence in genomic DNA (Jinek et al, 2013) 

 

Oligonuclotide Sequence (5’-3’) 

KO1 5’- CGTAATTCACATTGGAGCAGGTTTT-3’   top 

5’- CTGCTCCAATGTGAATTACGCGGTG-3’ bottom 

  

KO2 5’-CCGCTTCTTCCGCCAGTCGGGTTTT-3’ top 

5’-CCGACTGGCGGAAGAAGCGGCGGTG-3’ bottom 
 

Tab.2.2. Oligonucleotide sequences, KO1 and KO2, used for PINK1 knock out in human cells.  

 

Each pair of oligonucleotide was annealed first incubating samples at 95 °C 

for 4 minutes in a heat block and then allowing the reaction mixture to cool to 25°C 

for 5–10 minutes. After annealing, two 100-fold serial dilutions of the double strand 

(ds) oligonucleotide stock (50 µM) were performed to prepare the final 5 nM ds 

oligonucleotide working solution. Afterwards, the ligation reaction was set up with 

the linearized CRISPR Nuclease vector, the oligonucleotide working solution and T4 

DNA Ligase. The reaction took place at RT with an incubation of 90 minutes. Once 

the ligation was completed, DH5α competent E. coli were transformed with the 

resulting CRISPR nuclease construct. For bacterial transformation, 5 μL of the 
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ligation reaction (1/4 of the total reaction) were added into a vial of competent cells 

and mix gently tapping the tube. The vials was maintained on ice for 30 minutes. For 

heat-shock procedure, cells were incubated for 90 seconds at 42°C and transferred to 

ice. In each vial, 900 μl SOC medium were added at RT and the culture was 

incubated for 45 minutes at 37°C. At the end of this incubation, 100 μl of the 

transformation reaction were spread on a pre-warmed LB agar plate containing 100 

µg/mL ampicillin. The plates were incubated overnight at 37°C. For KO1 and KO2 

sequences, 3 to 5 ampicillin-resistant colonies were picked and grown overnight in 5 

ml LB medium, containing 100 µg/mL ampicillin, at 37°C. Bacteria were then 

pelleted and plasmidic DNA purification was performed using QIAprep Spin Kit 

(Qiagen) for mini-prep, following the manufacturer’s instructions. Sequencing of the 

CRISPR nuclease construct was performed using the U6 Forward (supplied with the 

kit). Once the correct CRISPR nuclease construct was identified, it was used to 

perform NucleoBond® Xtra Midi EF maxi-prep (MACHEREY-NAGEL). Pure 

plasmid DNA was transfected in human cells.  

LB medium: 0.5% w/v yeast extract, 1% w/v Bacto Triptone, 8.56 mM NaCl, 0.1% 

NaOH 1N 

LB-agar medium: 0.5% w/v yeast extract, 1% w/v Bacto Triptone, 8.56 mM NaCl, 

0.1% NaOH 1N, 1.5% w/v agar  

SOC medium: 0.5% w/v yeast extract, 2% w/v Bacto Triptone, 8.56 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 20 mM glucose 

To assess the efficiency of PINK1 gene disruption obtained with each 

sequence (KO1 and KO2), HeLa cells were used because of their high transfection 

efficiency (around 80%) that make possible to evaluate PINK1 knock-out as 

reduction of PINK1 protein level. Thus, cells were plated on 6 well plate (106 cells 

per well) and after 24 hours transfected with 2 μg KO1 and KO2 vectors using 8 μl 

Lipofectomine. The day after transfection, cells were solubilized in lysis buffer and 

samples were used for western blot analysis. While to evaluate the effect of PINK1 

knock-out on mitochondrial morphologies, SH-SY5Y cells were seeded on poly-

lysine coated coverslips, in 24 well plates (105 cells per well) and the day after 
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seeding were co-transfected with 0.75 μg of KO1 or KO2 vector and with 0.25 μg 

mt-RFP plasmid using 3 μl of Lipofectomine. The ratio between the two vectors as 

well as the volume of Lipofectamine was optimized to obtain the best transfection 

efficiency and the lower cell toxicity. 24 hours after transfection, cells were fixed and 

stained with Alexa Fluor 488 anti-human CD4 antibody that allowed to label 

transfected cells. Assessment of mitochondrial morphology was performed as 

described in the Section 2.1.6 

 

2.1.8 Cell Treatment 

2.1.8.1. PQ exposure 

In order to evaluate the effect of SODs overexpression or SOD mimetic 

treatments, SH-5YSY WT and stable cell lines, were exposed to increasing 

concentration of PQ. All the used doses and the exposure time are reported below: 

 For CCK-8 assay: 50-100-250-500 μM of PQ for 24 hours 

 For cytofluorimetric analysis: 100-250-500 μM of PQ for 48 hours 

 For mitochondrial morphology: 500 μM of PQ for 24 hours 

 For ROS production: 500 μM of PQ for 6 and 12 hours. 

Because the herbicide presents a great instability losing its activity with 

freeze-thaw cycles. Stock solutions of 100 mM PQ were prepared and mono-use 

aliquots were stored at -20°C. 

2.1.8.2. SODs mimetics 

Considering that the four compounds interfered with the CCK-8 colorimetric 

assay, their antioxidant activity was tested in rescuing PQ-induced apoptosis through 

cytofluorimetric measurements. After the determination of the specific activity of 

SOD mimetics (see Paragraph 2.1.16), the antioxidant properties of each molecule 

against oxidative injury has been assessed. The concentration of each drug has been 

established based on their catalytic activity adding in the medium the same number 

of catalytic units for each molecule. In addition, in a previous work EUK-134 has 
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been used at 25 μM in the human neuroblastoma SK-N-MC cells showing a 

protective effect against H2O2 (21205220). Therefore, based on these informations, 

the final concentrations utilized were:  

 150 nM for Mn-TMPyP 

 10 μM for M40403 

 25 μM for EUK-134  

 800 μM for Tempol.  

While, for the assessment of mitochondrial morphology protocols described 

in the Section 2.1.6 and 2.1.8.1 were followed. 

2.1.8.3. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP)  

In order to evaluate the efficiency of PINK1 gene disruption with 

CRISPR/CAS system, the protonophore CCCP (in ethanol, Sigma) was used to 

induce the mitochondrial depolarization. The dissipation of mitochondrial membrane 

potential induced through CCCP allow the PINK1 stabilization and accumulation, 

required to measure the reduction of protein level after gene knock-out. Thus, HeLa 

cells were transfected with PINK1 KO1 and KO2 vectors for 24 hours and were 

exposed to 10 μM CCCP for 4 hours. Samples were then lysed and used for western 

blot analysis.   
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2.1.9 Immunofluorescence 

Cells were plated on 15 mm glass coverslips pre-coated with poly-D-lysine in 

24 wells plates in 0.5 ml of medium. After treatment, cells were fixed for 30 min at 

room temperature (RT) with 4% paraformaldehyde (PFA) in phosphate buffered 

saline (PBS) solution pH 7.4, rinsed three times with PBS, permeabilized with 0.1% 

Triton X in PBS for 30 min at RT and incubated in blocking solution (5% FBS in 

PBS) for 30 min. The cells were incubated for 1 hour at RT with primary antibodies 

(Tab.2.3) diluted in blocking solution.  

Primary Antibody Host Company Dilution 

Anti-neurofilament Mouse Covance 1:1000 

Anti-neuronal β-III tubulin Mouse Sigma 1:200 

Anti- SOD1 Rabbit Prestige, Sigma 1:500 

Anti-SOD2 Rabbit StressMarq 1:200 

Anti-SDHA Mouse  Santa Cruz 1:200 

Alexa Fluor 488 anti-human CD4 Mouse Biolegend 1.:10 
 

Tab.2.3. List of primary antibodies (host species, company and dilutions) used in 

immunofluorescence.  

 

After 3 washes in PBS, cells were subsequently incubated with secondary 

antibody (Tab.2.4) for 1 hour at RT. Nuclei were counterstained using 0.16 µM 

Hoechst 33258 (Life technologies) for 5 min, and after extensive washing in PBS, 

the coverslips were mounted with ProLong Gold Antifade (Life Technologies). Low 

resolution images were acquired using a Leica 5000B epifluorescence microscope, 

while higher resolution images were acquired through Leica SP5 confocal 

microscope. 

For neuronal differentiation cells were fixed after 4 or 7 days of 

differentiation. For stable transfected clones, samples were fixed 24 hours after 
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seeding. For mitochondrial network, cells were fixed after 24 of transfection and 24 

of PQ exposure (with or without 10 μM of M40403). For PINK1 gene disruption, 

samples were fixed 24 hours after transfection. The anti- human CD4 primary 

antibody used was conjugated with Alexa Fluor 488, therefore the incubation with 

the secondary antibody was not necessary. 

Secondary Antibody Host Company Dilution 

Alexa Fluor 488 (green) Mouse Life Technologies 1:200 

Alexa Fluor 488 (green) Rabbit Life Technologies 1:200 

Alexa Fluor 568 (red) Mouse Life technologies 1.200 

Alexa Fluor 568 (red) Rabbit Life technologies 1.200 
 

Tab.2.4. List of secondary antibodies (host species, company and dilutions) used in 

immunofluorescence. 488 and 568 are the two excitation wavelengths used with fluorescence 

microscopy, which correspond respectively to green and red fluorescence. 

 

2.1.10 mRNA expression levels using quantitative RT-PCR. 

Determination of gene expression was performed using semi-quantitative and 

quantitative real-time PCR (qRT-PCR). Total RNA was extracted from 

undifferentiated or differentiated cells using TRIzol according to the manufacturer’s 

instructions (Life technologies). Reverse transcription was performed using the 

ImProm II Reverse Transcription System (Promega) and cDNA was obtained for 

semi-quantitative or RT-PCR reactions. Semi-quantitative PCR was performed with 

GoTaq DNA Polymerase (Promega) using the following conditions for 

amplification: a single denaturation step at 95°C for 5 min followed by 30 cycles of 

30 s of denaturation at 95°C, 30 s of annealing at 60°C and 1 min of extension at 

72°C. A final extension step at 72°C was applied for 10 min. Amplified DNA was 

subsequently analyzed by 2.0% agarose gel electrophoresis and the images were 

acquired by Quantity One software using the Gel Doc XR System (Bio-Rad). For 

quantitative analysis, qRT- PCR assays were performed in 96-well optical plates 

with a 7500 real-time PCR system (Applied Biosystems) using the following 

parameters: 95°C for 10 min, 38 cycles of 20 s at 95°C and 60 s at 60°C, followed by 
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2 cycles of 15 s at 95°C and 60 s at 60°C. cDNA was amplified using the Power 

SYBR Green Master Mix (Applied Biosystems) containing 0.2 µM primers. The 

primer forward (Fw) and reverse (Rv) sequences and expected lengths of the 

amplified products are listed in Tab.2.5. 

 

Tab.2.5. List of primers used for semi-quantitative and real time-PCR. 

 

The expression of individual target genes was calculated using the ΔΔCt-

method (26). Sample Ct –values were normalized by Ct –values of the housekeeping 

genes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was the reference 

gene used for AADC and DβH quantification while RNA polymerase II (RPII) was 

the internal control gene for TH, VMAT2 and DAT. These two housekeeping genes 

Gene Primer sequence (5'-3') Product length (bp) 

 

GAPDH 

 

Fw: ATGAAGGGGTCATTGATGG 

Rv: AAGGTGAAGGTCGGAGTCAA 

 

138 

RPII Fw: TTGGTGACGACTTGAACTGC  

Rv: CCATCTTGTCCACCACCTCT 

123 

TH Fw: GCCCTACCAAGACCAGACGTA 

Rv: CGTGAGGCATAGCTCCTGA 

89 

AADC Fw: GAAGCCCTGGAGAGAGACAA 

Rv: CCTTGTTGCAGATAGGACCG 

121 

VMAT2 Fw: GAAGAGAGAGGCAACGTCA 

Rv: CGTCTTCCCCACAAACTCAT 

149 

DβH Fw: GCCTTCATCCTCACTGGCTA 

Rv: TTCTCCCAGTCAGGTGTGTG 

109 

DAT Fw: TGCAACAACTCCTGGAACAG 

Rv: AAGTACTCGGCAGCAGGTGT 

113 



Materials and Methods 

63 

 

were expressed at the same level as target genes. These results were further 

normalized using undifferentiated cells.  

 

2.1.11 Western blot analysis 

For western blot (WB) analysis, cells were harvested, washed with PBS and 

solubilized in lysis buffer. Cell lysates were centrifuged at 14000×g for 30 minutes. 

Total protein content was measured using BCA assay (Thermo Scientific). SDS-

PAGE was used to separate protein according their size. Samples were prepared 

boiling for 10 minutes proteins in presence of Laemmli buffer. Equal amount of 

proteins were loaded and run on acrylamide gel at 90 V for 90 minutes in running 

buffer. Once proteins were properly separated, they were blotted onto PVDF 

membranes (Immobilion, Millipore). The membrane was blocked in TTBS plus 5% 

nonfat dry milk for 1 hour at RT and then incubated with primary antibody diluted in 

TTBS (Tab.2.6). The PVDF membranes were washed in TTBS and probed with 

horseradish peroxidase-conjugated secondary antibody diluted in TTBS (Tab.2.6). 

After TTBS washing, the PVDF membrane was covered with enhanced 

chemiluminescence advance (ECL, GE Healthcare) and then exposed to an ECL 

Hyperfilm (GE Healthcare) for a period sufficient to detect the bands. The film was 

developed and fixed. Densitometry was carried out using ImageJ Software using an 

housekeeping protein, such as tubulin or glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), as loading control. 

Lysis buffer: 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Tween 20 

or 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 

mM NaVO4  and protease inhibitor cocktail (Sigma) 

Laemmli loading buffer 4X: Tris-HCl 50 mM pH 6.8, SDS 2%, DTT 100 mM, 

bromophenol blue 0.1%, glycerol 10%  

Acrylamide gel:  

Stacking gel (4%): acrylamide solution 4%, Tris-HCl 0.125 mM pH6.8, SDS 

0.1%, APS 0.1%, TEMED 0.1% (acrylamide solution is constituted by 

acrylamide: bis acrylamide ratio equal to 29:1) 
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Resolving gel (13%): acrylamide solution 13%, Tris-HCl 0.375 mM pH 8.8, 

SDS 0.1%, APS 0.1%, TEMED 0.008% 

Transfer buffer: 25 mM Tris-HCl, 192 mM glycine, 10% v/v methanol 

TTBS buffer: 50 mM Tris-HCl, 150 mM NaCl, 0.1% v/v Tween 

Running buffer: Tris-HCl 25 mM, glycine192 mM, SDS 0.1%, pH 8.3 

 

Primary Antibody Host Company Dilution Incubation  

Anti-SOD1 rabbit Prestige, Sigma 1:10000 1 hour at RT 

Anti-SOD2 rabbit Prestige, Sigma 1:10000 1 hour RT 

Anti-PINK1 rabbit Novus 1.1000 overnight at 4°C 

Anti- tubulin mouse Sigma 1:5000 1 hour at RT 

Anti-GAPDH mouse Sigma 1:2000 1 hour at RT 

Secondary Antibody Host Company Dilution Incubation  

Anti-rabbit goat Sigma 1:16000 1 hour at RT 

Anti-mouse goat Sigma 1:2000 1 hour RT 
 

Tab.2.6. List of primary and secondary antibodies (host species, company and dilution and 

incubation) used in western blot analysis. 

 

2.1.12 Cell viability assay 

Cell viability was measured by colorimetric assay using Cell Counting Kit-8 

(CCK-8, Sigma) according to manufacturer’s instruction. CCK-8 is a sensitive 

colorimetric assay based on the use of 2-2-methoxy-4-nitrophenyl-3-4-nitrophenyl-5-

2,4-disulfophenyl-2H-tetrazolium (WST-8), which in presence of an electron carrier, 

1-Methoxy PMS, is reduced by cellular dehydrogenase to give a yellow-orange 

formazan dye (Fig.2.3). The latter is an highly dye soluble in the tissue culture media 

and its amount, generated by the activities of those enzymes in cells, is directly 

proportional to the number of living cells. Among the different colorimetric kit, 
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CCK-8 was selected because of its higher detection sensitivity compared to other 

tetrazolium salts such as MTT, XTT, MTS or WST-1.  

                 

Fig.2.3. CCK-8 assay mechanism. The colorimetric assay is based on the WST-8 tetrazolium salt 

that in presence of a specific electron carrier, 1-Methoxy PMS, can be reduced in WST-8 formazan 

dye by the activity of the intracellular dehydrogenases. The formazan salt is an orange highly soluble 

salt and its formation, related measuring the absorbance at 460 nm, is directly proportional to the 

number of living cells. 

 

Cell viability of SH-SY5Y WT and transgenic cells was assessed after PQ 

treatment. Thus, cells were plated on each well of 96-well plates (104 cell per well) in 

phenol red free media. One day after seeding, cells were treated with the herbicide 

(see Paragraph 2.1.8.1). Then, 10 μl of CCK-8 solution were added to each well and 

incubated for 4 or 6 hours at 37°C. The absorbance was measured at 460 nm using a 

plate reader (Victor TM X3, Perkin Elmer). Each condition was performed in 8 

technical replicates for experiment. Cell viability was expressed as % compared to 

untreated cells (100% of viability). Data were presented as mean ± SEM of at least 3 

independent experiments. 
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2.1.13 Cytofluorimetric analysis for apoptosis detection  

In literature, it widely reported that PQ triggers cell death through apoptosis. 

To detected apoptotic cell death, Annexin V/PI double staining kit (BD PharmigenTM) 

has been used in cytofluorimetric analyses. Several morphological changes take 

place during apoptosis. For instance, one of the early events that happens in the 

apoptotic pathway is the loss of plasma membrane asymmetry. In particular, in 

apoptotic cells the membrane phospholipid phosphatidylserine (PS) is translocated 

from the inner to the outer leaflet of the plasma membrane. While, a late event of the 

programmed-cell death is the loss of membrane integrity and permeability. 

Therefore, the annexin V/ PI protocol is a commonly used approach for studying 

these two events. This technique allows to discriminate between apoptotic, necrotic 

and viable cells using two fluorescent probes. Propidium iodide (PI) is a red-

fluorescent nuclear and chromosome counterstain. Since it is not permeant to live 

cells, it is used to detect necrotic or late apoptotic cells, characterized by the loss of 

the integrity of the plasma and nuclear membranes. In this case, PI can pass through 

the membranes, intercalate into nucleic acids, and display its fluorescence. Annexin 

V is a 35-36 kDa Ca2+ dependent phospholipid-binding protein that has a high 

affinity for PS, and binds to cells with exposed PS. Annexin V labeled with a 

fluorescent tag, such as FITC, can be used with flow cytometry to measure this 

event. 

These fluorescent dyes were used to assess PQ-induced apoptosis. Thus, WT 

and SOD1 and SOD2 overexpressing cells were cultured onto 6 well plates and, after 

24 hours of attachment period, were treated with PQ for 48 hours. For analysis, cell 

were detached from supports with papain protease instead of trypsin. This enzyme 

was selected because its milder negative effect on cell survival, reducing the 

apoptotic and necrotic events due to cell detachment. Cells were detached by 3 

minutes treatment with papain protease (Worthington), centrifuged at 500 x g for 5 

min and  resuspended in 500 μl of 1Х binding buffer. The cell suspension was 

transferred to a 5-ml round bottom-tube and 1.5 μl of annexin V-FITC (dilution 1:50) 

and 2 μl of PI (5 μg/ml) were added and incubated for 8 minutes at RT. Samples 
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were analyzed by FACSCanto II flow cytometry (BD Bioscience) acquiring 10,000 

ungated events 

                       

Fig.2.4. Representative dot plot obtained by cytofluorimetric analyses. PI signal was plotted 

versus Annexin V- FITC.  These Plots are cut in four regions corresponding to: viable (PI/FITC -/-; 

Q3), apoptotic (PI/FITC -/+; Q4), late apoptotic  (PI/FITC +/+; Q2) and necrotic (PI/FITC +/-; Q1) 

cells. 

 

The data generated by flow-cytometry can be plotted in two-dimensional dot 

plots in which PI is represented versus Annexin V-FICT (Fig.2.4). These Plots are 

cut in four regions corresponding to: 

 viable cells which are negative to both probes (PI/FITC -/-; Q3);  

 apoptotic cells which are Annexin positive PI negative (PI/FITC -/+; Q4); 

 late apoptotic  which are Annnexin and PI positive (PI/FITC +/+; Q2); 

 necrotic which are Annexin negative PI positive (PI/FITC +/-; Q1).  

Cytofluorimetric data were expressed as % of viable cells (PI/FITC -/-; Q3) 

compared to untreated cells (100% of viability). Data were mean ± SEM of at least 3 

independent experiments. 

Binding buffer 10Х: 0.1 M Hepes/NaOH pH 7.4, 1.4 M NaCl, 25 mM CaCl2). 
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2.1.14 Cellular redox state measurement through roGFP2  

As described in the Introduction, cells have an elaborate mechanism to 

maintain redox state within each compartment. An excessive oxidation, due to 

impaired ROS homeostasis, can alter this state impacting on the cell survival. In the 

current work, in order to measure ROS overproduction, induced by PQ, genetically 

encoded redox sensor GFP (roGFP2) has been used. Conventional dyes for redox 

measurement could present a low specificity or could interact with several oxidant 

within cells promoting an artificial ROS formation. Among the different approaches 

to measure ROS production, the most promising tools are genetically encoded redox 

sensors, which present several advantages. For instance, they allow to detect in real 

time redox state in different live cells or animal tissues, without the permeation and 

pre-incubation of exogenous probes, and to have a ratiometric quantification of this 

event, that can be accurately assessed regardless of the absolute levels of probe 

concentration due to expression or photobleaching (Liu et al, 2012). These indicators 

are GFP mutants (roGFP), with two surface-exposed cysteine placed at the position 

147 and 204 on adjacent β-strands close to the chromophore. Formation of the 

disulfide bridge between these two residues induces the protonation of the 

chromophore, which impacts on protein fluorescence excitation spectrum (Fig.2.5). 

In particular, the oxidation of two cysteines increases the fluorescence intensity at 

405 nm with concomitant decrease at 488 nm, while reduction reverses the spectrum 

(Fig.2.6). The ratio between the fluorescence (collected between 500-530 nm) using 

the 405 and 488 as excitation wavelengths reports the redox state of the cell. Among 

the different variants, roGFP2 was selected as probe because it exhibits the largest 

dynamic range, it is brighter, pH insensitive in physiological condition, and is 

resistant to photoswitching (Bhaskar et al, 2014). Two different isoforms of this 

indicator has been used: the first one, namely roGFP2, which is distributed 

throughout the cell cytosol and the second one, known as mt-roGFP2, which is 

localized into mitochondria. The use of fluorescent proteins with a distinct 

localization allowed to quantify the ROS production in the two compartments. 
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Fig.2.5. roGFP2 mechanism. roGFP2 contains two cysteine residues capable of forming an 

intramolecular disulfide bond in response to changes in intracellular redox status [adapted from 

(Bhaskar et al, 2014)] 

                         

Fig.2.6. Fluorescence excitation spectra of roGFP2. Fully reduced (red line) or fully oxidized (blue 

line) state. Emission is followed at 500-530 nm (Morgan et al, 2011). 

 

The expression vectors (from Remington’s Lab, University of Oregon) 

containing the sequence for each variants were used to transform DH5α competent E. 

coli cells. Kanamycin- resistant colonies were isolated and used for plasmid DNA 

isolation using NucleoBond® Xtra Midi EF maxi-prep (MACHEREY-NAGEL) 

according to the manufacturer’s protocol. The pure vector was used to transfect SH-

SY5Y cells. 2x 105 cells were plated on poly-lysine pre-coated dishes with glass 

bottom (µ-Dish 35mm, Ibidi) for live imaging. Two days after seeding, cell were 

transfected with 0.8 µg of DNA using 3.2 µl Lipofectamine (800 µl total volume) for 

24 hours. Thus, cells were exposed to 500 µM PQ for 6 or 12 hours in growing 

medium without phenol red. After treatment, samples were imaged using Leica SP5 

confocal microscope with 63x oil immersion objective. Fluorescence was collected 

between 500-530 nm using 405 and 488 nm as excitation wavelength. To avoid 

photobleaching and/or laser-induced oxidation, images were acquired every 2 

minutes using a wide pinhole and a fast scanning speed (256 x 256 and 512 x 512 
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respectively for low and high resolution images). Laser power for each filter was set 

up using 1 mM H2O2 and 4 mM DTT to define the maximum of fluorescence 

(avoiding saturation) respectively at 405 and 488 mm.  

Microscope settings: 

 roGFP2: Power 8% 405; 38% 488; smart gain 830 V; smart off:-6.2% 

pinhole 250 µm 

 mt-roGFP2: Power 7% 405; 35% 488; smart gain 830 V; smart off:-6.2% 

pinhole 364 µm 

For each fluorescent probe, the calibration was performed altering the redox 

state using 1 mM H2O2 for 20 minutes and 4 mM dithiothreitol (DTT) for 12 minutes 

that were respectively necessary to define the extreme oxidizing and reducing 

conditions and the probe dynamic range (ratio between these two values). Once 

probes were calibrated, they were used to investigated the effect of PQ exposure. 

Using the same settings for calibration, different fields of each samples were 

acquired. Raw images were exported to ImageJ software as RGB TIF for analysis. 

Each cells in the field was selected as region of interest (ROI) and in turn, each ROI 

was used to measure mean intensity. Background correction was performed for 

single ROI. The ratio between values of 405 and 488 images was reported in 0-100% 

range of oxidized state using extreme oxidizing and reducing values and compared to 

untreated cells. Therefore, data were expressed as the mean ± SEM, calculated 

through error propagation. 

 

2.1.15 Quantification of catecholamine levels.  

Undifferentiated and differentiated cells were harvested, washed with PBS, 

and mixed with ice-chilled 0.2 M perchloric acid containing 5 mM EDTA and 5 mM 

sodium bisulfate (100 μl of solution in every 4x106 cells). Lysates were centrifuged 

at 7000 g for 20 min at 4°C and the supernatants were collected and stored 

immediately at -80°C until further analysis. High-performance liquid 

chromatography (HPLC) (Agilent 1100 Series) coupled with an ESA Coulochem II 

electrochemical detector was used to measure the concentrations of noradrenaline 
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(NA) and DA. Separations were achieved on a 150 × 4.6 mm Waters C18 column. 

The mobile phase consisted of 75 mM NaH2PO4, 1.7 mM 1-octanesulfonic acid, 25 

μM EDTA and 10% (v/v) acetonitrile, adjusted to pH 3 with phosphoric acid. The 

column was maintained at RT and the flow rate was 0.6 ml/min. An analytical cell 

ESA 5011A was used with the electrochemical potentials set at -150 mV and +220 

mV. The working standard solution was prepared in 0.2 M perchloric acid containing 

5 mM EDTA and 5 mM sodium bisulfite. Five- to twenty-microliter samples were 

injected. The peak areas of the external standards were used to quantify the sample 

peaks. The lower detectable concentrations of DA and NA were of approximately 3 

nM when twenty microliters were injected. For each sample used, the protein 

concentrations were detected using the BCA protein assay kit (Thermo Scientific 

Pierce), and the DA and NA concentrations were then expressed in nanomoles per 

gram of proteins. 

 

2.1.16 SOD-mimetic compound activity assays 

SOD-mimetic compound activities were determined through the citochrome c 

assay (McCord, 2001). The reduction rate of cytochrome c by O2 550 nm utilizing 

xanthine-xanthine oxidase as a source of superoxide. The reaction mixture consisted 

in 50 mM K-phosphate, pH 7.8, 0.1 mM EDTA, 50 μM xanthine, 10 μM cytochrome 

c in the absence (control) or in the presence of different amounts of human SOD1 or 

SOD-mimetics, in a total volume of 1 ml. After the addition of ~ 3 mU of xanthine 

oxidase, spectra were acquired every 10 s for a total period of 4 min. Each kinetic 

was performed in triplicate. Percent inhibition was calculated as follows: % 

inhibition = [(control rate-sample rate)/control rate] × 100 The values calculated with 

different amounts of SOD1 or SOD-mimetics (expressed in μmol) have then been 

fitted by a rectangular hyperbola: y = abx/(1+bx) where “a” represents the maximal 

percentage of inhibition obtained and “b” indicates the units per μmol of protein. 

 

 



Materials and Methods 

72 

 

2.1.17 Statistical Analysis.  

Each experiment was performed in triplicate. The data were expressed as the 

mean ± SEM. Student’s t-test or one way ANOVA were used to evaluate statistically 

significant differences using the GraphPad Prism software. 

 

2.2 Drosophila melanogaster- in vivo experiments 

2.2.1 Reagent stock 

PQ (Sigma): 100 mM in distilled sterile water  

SOD mimetics: 

 M40403 (synthesized by collaborators from the University of Pavia), 10 mM 

in distilled sterile water   

 

2.2.2 Fly stocks 

Flies were raised on standard yeast-molasses-agar medium at 25°C and 70% 

relative humidity in 12 hours light/dark cycles. The following strains were obtained 

from the Bloomington Drosophila Stock Center: UAS-Sod (#33605), UAS-Sod2 

(#24494), da-GAL4 (#5460), UAS-Sod-RNAi (#24491), UAS-Sod2-RNAi (#24489). 

TH-GAL4 was a gift from Serge Birman (CNRS, Paris), while PINK1B9mutants 

were provided by J. Chung (KAIST). A white Dahomey (w,Dah) strain was utilized 

as wild-type control line (a gift from Linda Partridge, UCL). For all experiments 

employing GAL4 expression to drive UAS-transgenes, GAL4/+ or PINK1B9/+; 

GAL4/+ were utilized as controls. 

 

2.2.3 Semi-quantitative PCR to assess Sod or Sod2 overexpression 

Total RNA was extracted form whole body of 5-10 flies using TRIzol reagent 

(Life technologies). Afterwards, Reverse transcription and semi-quantitative PCR 

were performed as described in the Section 2.1.10 using Sod and Sod2 primers 

(Tab.2.7). Amplified DNA was subsequently analyzed by 2.0% agarose gel 
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electrophoresis and the images were acquired by Quantity One software using the 

Gel Doc XR System (Bio-Rad). 

 

Tab.2.7. List of primers used for semi-quantitative PCR to evaluate Sod and Sod2 

overexpression. 

 

2.2.4 Fly treatment 

2.2.4.1 PQ administration 

For survival experiments, flies were starved for 4 hours and then kept in vials 

with filter paper soaked with 5 mM paraquat in 5% sucrose for 4 days .  

For locomotion activity, flies were starved for 4 hours and then kept in vials 

with filter paper soaked with 1 mM paraquat in 5% sucrose for 7 days. The filter 

paper was replaced every 2 days. 

2.2.4.2 M40403  

To assess the beneficial effect of M40403 against PQ, treatment was 

performed in adult flies. Therefore, 200 μM or 1 mM M40403 were added to the 

filter paper containing PQ and 5% sucrose. SOD mimetic was administered for 4 or 

20 days in survival and for 7 days in locomotion performance experiments. While to 

investigate whether this compound could rescue the strong phenotype of PINK1B9, 

the treatment was performed during the larval development (form mating to eclosion) 

through the addition of the M40403 directly to the fly food. Therefore, in order to 

test the thermal stability of this compound, its antioxidant activity against PQ, has 

been assessed before and after an incubation at 70°C. Once the stability of the SOD 

mimetic was confirmed, it was added to the medium during the melting process. In 

this case, considering that it well know that larvae used to eat more than adults, lower 

Gene Primer sequence (5'-3') Product length (bp) 

Sod Fw: GTCGACGAGAATCGTCACCT 

Rv: TTGACTTGCTCAGCTCGTGT 

187 

Sod2 Fw: CTGAAGAAGGCCTCGAGTC 

Rv: ATAGTAGGCGTGCTCCCAGA 

222 
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concentrations were tested. To minimize the total amount of drug used, a final 

volume of 2 ml of medium, containing from 0.1 to 1 mM of M40403, were put on 

empty tube. After one day, these tubes were used to set up the crosses.  

 

2.2.5 Survival assessment 

Groups of 20-25 one- to two-day-old flies were exposed to PQ, in presence or 

absence of M40403 for 4 days. First, gender sensitivity to PQ was assessed. Then, 

considering that female were much more resistant to the drug, only male were used 

in the further experiments. Surviving to the chemical treatment was determined every 

day for 4 days. Experiments were repeated 4-6 times for control and experimental 

genotypes, and the mean and SEM were calculated.  

Sod or Sod2 RNAi lines presented a reduced lifespan. Therefore, in order to 

evaluate whether M40043 could replace native enzyme, survival these fly lines was 

assed. Groups of 20-25 one- to two-day-old male flies were collected and kept in 

vials with filter paper in presence or absence of M40403. Every 2 days, filter paper 

was replaced with a fresh one. Surviving was determined every day for a 20 days. 

 

2.2.6 Locomotion Assay 

To quantify whether prolonged exposure to PQ could impact on fly motor 

performance as well as Sods overexpression or SOD mimetic administration could 

rescue the herbicide toxicity, groups of 20-25 one- to two-day-old flies were 

exposure to PQ for 7 days. The locomotion assays were performed after 7 days of 

treatment. The mobility of flies from each treatment group was assessed using a 

counter-current apparatus in a negative geotaxis climbing assay. Flies were placed in 

an empty plastic vial (2.5 cm diameter), gently tapped to the bottom, and the number 

of flies crossing a line at 8 cm height within a time period of 10 s was scored. Each 

animal was tested 5 times. The number of male flies tested per genotype was n > 

150.  

PINK1B9 mutants (male flies) presented a strong phenotype with a reduced 

life span, sterility, muscle degeneration and motor dysfunction. To investigate 

whether Sods overexpression or/and M40403 treatment could rescue this phenotype, 
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motor performance were tested using the aforementioned procedure. Thus, climbing 

assays were performed with groups of 20-25 one- to two-day-old flies. Climbing 

index was measured in PINK1B9 mutants (PINK1B9 /Y; male) and compared with 

control (PINK1B9 /+; female). For each genotypes, more than 150 flies, from two 

different crosses, were tested.  

 

2.2.7 Statistical analysis.  

Data were analyzed using GraphPad Prism 4 software. “t-test”, one-way 

ANOVA followed by Bonferroni post hoc test or logrank test were used to determine 

whether groups were statistically different. P values < 0.05 were considered 

significant.
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As described in the Introduction, oxidative stress plays a crucial role in the 

pathogenesis of PD. The main goal of this work is to investigate whether the 

inhibition or the reduction of ROS overproduction could delay, block or prevent the 

degeneration of DAergic neurons. To this aim, the role of SODs, the superoxide 

scavenging enzymes considered the first line of defense against ROS, has been 

investigated. In particular, the ability of these enzymes and SOD mimetic compounds 

to counteract oxidative injury, related to sporadic and genetic forms of PD, has been 

evaluated in vitro and in vivo. 

 

3.1 Effect of PQ toxicity on cell viability and apoptosis 
As discussed in Section 1.3.2.1, chronic exposure to the herbicide PQ has 

been identified as a risk factor for sporadic forms of PD. Furthermore, with animal 

models, PQ proved to recapitulate some of the key PD pathological features such as 

motor impairment, loss of dopaminergic neurons, protein aggregation as well as 

proteasomal and mitochondrial dysfunction (Castello et al, 2007; Yang et al, 2007).  

In literature, it has been demonstrated that PQ affects cell viability through 

oxidative stress (Chang et al, 2013); however, it is still unclear whether the molecular 

events that lead to toxicity occur in the cytosol or in mitochondria or in both 

compartments. In the present study, PQ has been used as experimental paradigm 

because of its ability to generate superoxide anion and related ROS through its redox 

cycling within cells. The effect of PQ treatment has been evaluated in human SH-

SY5Y neuroblastoma cell line, which was used as model of DAergic neurons. To 

assess cytotoxicity induced by this herbicide, the viability of cells was measured after 

24 hours of treatment with increasing concentration of PQ (50-500 μM) through the 

colorimetric CCK-8 assay. This technique allows to quantify the activities of 

intracellular dehydrogenases, which are directly proportional to the number of living 

cells. Cell viability was found to decrease significantly in a PQ dose dependent 

manner (Fig.3.1). In agreement with previous works (Yang & Tiffany-Castiglioni, 

2007; Yang et al, 2010), in the presence of the highest amount of PQ used (500 μM), 

the viability was approximately 40% of that of untreated cells. 
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Fig.3.1 PQ treatment impacts on cell viability of SH-SY5Y cells. Cells were treated with increasing 

concentration of PQ (50-500 µM) for 24 h. Viability was measured by CCK8 colorimetric assay. 

Histograms indicate the percentage of viable cells after treatment, relative to untreated cells used as 

control. Data are expressed as mean of at least three independent experiments ± SEM. Statistical 

significance was determined by t-test comparing treated with untreated cells. (***p<0.001).  

To further characterize the effect of the exposure to PQ, the capability of this 

molecule to trigger apoptotic cell death was also assessed. Cytofluorimetric analyses 

were performed in the presence of red-fluorescent propidium iodide (PI) and 

recombinant annexin V conjugated to fluorescein (FITC annexin V) in order to 

discriminate among apoptotic, necrotic and viable cells. PI is a nucleic acid binding 

dye, which is impermeable to live cells, but stains necrotic and late apoptotic cells. 

Annexin V is a Ca2+ dependent phospholipid-binding protein that has a high affinity 

for phosphatidylserine, a membrane phospholipid that translocates from the inner to 

the outer leaflet of the plasma membrane during the early phases of apoptosis. As the 

events analyzed by cytofluorimetric assay occur in a time period subsequent to the 

metabolic dysfunctions observed using the colorimetric test, the incubation with PQ 

was extended to 48 hours. Our analyses clearly indicated that the PQ exposure 

promoted an increase of apoptotic events (PI/FITC -/+; Q4) (Fig.3.2A) and a 

concomitant decrease of viable cells (PI/FITC -/-; Q3), as highlighted in the 

histogram(Fig.3.2B). 
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Fig.3.2. PQ induces apoptosis in SH-SY5Y cells. (A) Dot plots corresponding to cytofluorimetric  

analysis carried out on SH-SY5Y cells treated with increasing amounts of PQ. Before the analysis 

cells were labelled with propidium iodide (PI) and annexin V-FITC and 104 cells were analyzed for 

each condition tested. The staining pattern resulting from simultaneous use of these dyes made it 

possible to distinguish viable, apoptotic and necrotic cells. Plots are divided in four regions 

corresponding to viable (PI/FITC -/-; Q3), apoptotic (PI/FITC -/+; Q4), late apoptotic (PI/FITC +/+; 

Q2) and necrotic (PI/FITC +/-; Q1) cell populations. (B) Data are expressed as mean of at least three 

different experiments ± SEM. Statistical significance was determined by t-test comparing treated with 

untreated cells. (*p<0.05, **p<0.01, ***p<0.001).  

 

In agreement with previous studies (Chang et al, 2013; Yang & Tiffany-

Castiglioni, 2008), these data showed that the herbicide reduced the viability through 

the induction of apoptotic pathway. Indeed, it has been previously reported that PQ 

significantly increased protein levels of p53 and the pro-apoptotic factor Bax, 

inducing release of cytochrome c from mitochondria. Additionally, the herbicide 

increased the activities of caspases 9 and 3 suggesting that the mitochondrial intrinsic 
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pathway associated with p53 might be the main mechanism involved (Yang & 

Tiffany-Castiglioni, 2008).  

 

3.2 SODs overexpression in SH SY5Y cells 

To investigate the potential protective role of the SODs against PQ toxicity, 

the cytosolic and mitochondrial isoforms, respectively SOD1 and SOD2, were stably 

overexpressed in SH-SY5Y cells. The stable overexpression was necessary in this 

cell line because of their low transfection efficiency (about 15% in optimized 

conditions), unsuitable for the evaluation of any effect of SODs overexpression. 

Cells were transfected using an expression vector containing the coding sequence for 

each of these proteins as well as a neomycin resistance cassette used to select and 

isolate G418-resistant clones that expressed SODs in a stable manner. The 

expression level of each isoform was assessed by western blot analysis (Fig.3.3A) 

and quantified through densitometry (Fig.3.3B), normalizing with tubulin as loading 

control. In the selected colonies, SOD1 was overproduced about 3-5 folds, while the 

overexpression of SOD2 was about 2-6 times higher than untransfected cells.   

         

 

Fig.3.3 SOD1 and SOD2 overexpression in SH-SY5Y cell line. (A) Western blot analyses and (B) 

densito-metric quantification of SOD1 and SOD2 in stably transfected and untransfected SH-SY5Y 

cells. The quantification was obtained using Image J software. The β-tubulin signal was used as 

loading control. Data are expressed as mean of three independent experiments ± SEM.  

Each clone was further characterized by immunofluorescence. Representative images 

for SOD1 clone 2 (SOD1 cl.2) and SOD2 clone 1 (SOD2 cl.1) are reported in 

Fig.3.4. The distribution of SOD1 (red) and SOD2 (green) fluorescence confirmed 
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either the overexpression of these enzymes and the isolation of a single population, 

in which all cells expressed  approximately the same protein level (Fig.3.4).  

 

         

Fig.3.4 SOD1 and SOD2 overexpression and localization in SH-SY5Y cell line. 

Immunofluorescence microscopy. Red staining revealed that SOD1 was evenly distributed in stably 

transfected SH-SY5Y and confirmed overexpression compared to untransfected cells. Green staining 

confirmed the isolation of a unique clone and the increased expression of SOD2 protein in stably 

transfected SH-SY5Y compared to untransfected cells. Scale bar 100 μm. 

Furthermore, the correct localization of overexpressed SOD2 inside the mitochondria 

has been demonstrated by a co-immunostaining with succinate dehydrogenase A 

(SDHA, red), an inner mitochondrial membrane protein (Fig.3.5). 
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Fig.3.5 Mitochondrial localization of overexpressed SOD2. SOD2 immunoreactivity (green 

fluorescence) showed excellent overlapping with Succinate dehydrogenase A (red fluorescence), 

which is located on the inner membrane of the mitochondria, indicating the mitochondrial localization 

of SOD2. Scale bar 20 μm. 

 

3.3 SOD2 protects SH-SY5Y cells against PQ toxicity 
The cell lines generated were used to determine whether an increase in SODs 

activity protects against oxidative injury induced by PQ. Considering that the 

insertion of the expression vector in the host genome occurred randomly, we decided 

to analyze two clones for each protein. Thus, cells were exposed to increasing 

concentration of PQ (50-500μM) for 24 hours. Then, cell viability was measured by 

colorimetric assay. Interestingly, the overexpression of these proteins produced very 

different effects in terms of cell viability. While SOD1 was unable to protect cells 

from the toxic insult induced by PQ in both the analyzed clones (Fig.3.6A), SOD2 

provided an improved survival of cells exposed to PQ at the different concentrations 

tested (Fig.3.6B). In addition, the resistance of the different Mn-SOD cell colonies to 

PQ seemed to be correlated to the level of protein overexpression; accordingly, 

SOD2 was more protective in cl.1 (5.7 fold of overexpression) than cl.3 (3.1 fold).  
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Fig.3.6. SOD2 protects SH-SY5Y cells against PQ toxicity. Cell viability was measured by CCK8 

colorimetric assay after 24 hours of PQ treatment. Histograms indicate the percentage of viable cells 

after treatment, relative to untreated cells used as control. (A) Untransfected (WT), SOD1 cl.2 and 

SOD2 cl.1 (B) Untransfected (WT), SOD1 cl.1 and SOD2 cl.3 overexpressing cells were treated with 

increasing amount of PQ. Data are expressed as mean of at least three different experiments ± SEM. 

Statistical significance was determined by t-test comparing SOD-overexpressing cells with 

untransfected cells. (*p<0.05, **p<0.01).  
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3.4 Protective role of SOD2 against PQ induced apoptosis 

To further investigate the activity of SODs against PQ exposure, 

cytofluorimetric analyses were performed after 48 hours of treatment. Our previous 

data on wild-type (WT) cells confirmed that PQ toxicity was mediated by apoptotic 

cell death. As reported in Fig.3.7, dot plots showed that in WT cells apoptotic events 

increased in the presence of PQ in a dose-dependent manner. A similar degree of 

apoptosis was also observed with SOD1 overexpression, while in the SOD2 

overexpressing cells only at the highest amount of PQ used, apoptotic events were 

evident. The results of these analyses are summarized in Fig.3.8 and expressed as 

percentage of viable cells (PI/FITC -/-; Q3). The histogram clearly showed a 

beneficial activity exerted by SOD2 against the toxicity of this environmental toxin. 

Overall, the results obtained with human neuroblastoma SH-SY5Y cell line 

indicate a selective role of mitochondrial SOD in rescuing cytotoxicity and apoptosis 

mediated by PQ, supporting the idea that an acute treatment with this herbicide could 

directly impact on mitochondrial functions leading to their impairment. These 

observations are in agreement with a recent work published by Rodriguez-Rocha et 

al. (Rodriguez-Rocha et al, 2013). These authors reported that in SH-SY5Y cells the 

overexpression of the mitochondrial Mn-SOD but not the cytosolic Cu,Zn-SOD 

prevented cell death induced by PQ. However, independent evidence suggested the 

protective effects of the cytosolic isoform, Cu,Zn-SOD, under exposure to the 

herbicide (Choi et al, 2006). Indeed, it has been found that the fusion protein PEP-1–

Cu,Zn-SOD was able to rescue PQ toxicity in primary astrocyte cultures. In addition, 

when the same fusion protein was injected intraperitoneally in mice, a complete 

protection against DAergic neuronal cell death was observed (Choi et al, 2006). 

Thus, whether PQ-induced oxidative stress involves mainly mitochondria or cytosol 

is still unclear and need to be further investigated. 
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Fig.3.7. SOD2 protects SH-SY5Y cells against PQ toxicity. Dot plots corresponding to 

cytofluorimetric analysis carried out on untransfected, SOD1- and SOD2- stably transfected cells, 

treated with increasing amounts of PQ. Before the analysis, cells were labeled with propidium iodide 

(PI) and annexin V-FITC. The staining pattern resulting from the simultaneous use of these dyes 

allows to distinguish viable, apoptotic and necrotic cells. Plots are divided in four regions 

corresponding to viable (PI/FITC -/-; Q3), apoptotic (PI/FITC -/+; Q4), late apoptotic (PI/FITC +/+; 

Q2) and necrotic (PI/FITC +/-; Q1) cell populations. Untransfected cells and SOD1 overexpressing 

cells show increase an of apoptosis after the incubation with PQ while in the SOD2 clonal cells only 

at the highest amount of PQ used, apoptotic events is evident. 
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Fig.3.8. SOD2 overexpression protects SH-SY5Y cells against PQ induced apoptosis. 

Untransfected (WT), SOD1 (cl.2)- and SOD2 (cl.1)-overexpressing cells were treated with increasing 

amount of PQ. Histograms indicate the percentage of viable cells after treatment, relative to untreated 

cells used as control. Cell viability was measured by flow cytometry after 48 hours of treatment. Data 

are expressed as mean of at least three different experiments ± SEM. Statistical significance was 

determined by t-test comparing SOD-overexpressing cells with untransfected cells. (*p<0.05, 

**p<0.01, ***p<0.001).  

 

3.5 ROS production induced by PQ  
To elucidate the alterations in the oxidative state induced by PQ and to define 

whether this process involves different cell compartments, the redox sensor roGFP2 

has been used. This genetically encoded indicator allows measuring cellular redox 

status in real time regardless of the absolute levels of probe concentration, through 

ratiometric imaging (Celotto et al, 2012). As other sensors of this category, roGFP2 

consists of a GFP mutant in which two surface-exposed cysteine residues are inserted 

in a position close to the GFP intrinsic chromophore. Depending on the redox state of 

the cell, disulfide formation occurs between these cysteines thus promoting the 

protonation of the chromophore with concomitant alteration of the excitation 

spectrum. In particular, reduced probe presents a predominant peak around 488 nm. 

Upon oxidation, an increased intensity around 405 nm is observed at the expense of 

the excitation at 488 nm. Thus, the ratio between the fluorescence emission collected 
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at 500-530 nm using the two excitation wavelength (405 and 488 nm) permits a 

ratiometric quantification. In our experiments, two different variants of roGFP2 have 

been used, the cytosolic roGFP2 and the mitochondrial mt-roGFP2, in order to 

quantify the ROS production in the two different compartments. For each fluorescent 

probe, a calibration assay was first performed. The redox state was altered by 1 mM 

H2O2 and4 mM DTT that were added to induce respectively fully oxidizing or fully 

reducing conditions. The ratio between these two states indicated the dynamic range 

of each probe. To this aim, cells were seeded on specific dishes for live imaging, 

transfected and then after 24 hours images were acquired. Oxidative and reducing 

agents were added in real time during images acquisition. To avoid photobleaching 

and/or laser-induced oxidative damages, images were acquired with a confocal 

microscope every 2 minutes using a wide pinhole and a fast scanning speed as 

previously suggested (Dooley et al, 2004) (see Section 2.1.14).  

As reported in Fig.3.9, in the initial phase, unperturbed cells were in a 

predominantly reduced state. After the addition of 1 mM H2O2, the ratio (405/488) 

increased over reaching a plateau within few minutes, in agreement with the 

oxidation effect depending on peroxide. Afterwards, by adding 4 mM DTT the 

reduced state was restored shifting the fluorescence ratio to its minimum. Thus, the 

dynamic responsiveness to redox changes of each probe has been evaluated. The data 

are summarized in Tab.3.1 that reports the values of the fluorescence ratio, upon the 

two different excitation wavelength (405/488), as recorded in correspondence to 

100% of oxidized and reduced states and the consequent dynamic range. Consistent 

with the theoretical value reported in literature (around 9) (Meyer & Dick, 2010), the 

dynamic range determined in our work was about 8.  
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Fig.3.9 Probe calibrations using H2O2 and DTT. Cells were transiently trasfected with roGFP2 and 

mt-roGFP2 and after 24 hours real time quantification of cytosolic and mitochondrial redox changes 

were measured  in response to 1 mM H202 and 4mM DTT. Density map correspond to the ratio 

between fluorescence collected using 405 and 488 nm as excitation wavelenght. The visualization was 

obtained using the lut “rainbow” of ImageJ. (A) roGFP (B) mt-roGFP. (C) Representative time course 

of redox changes monitored by change of fluorescence emission intensity at 500-530 nm upon 

excitation at 405 nm versus 488 nm of roGFP2 and mt- roGFP2. data are expressed as mean ± SEM of 

three indipendent experiments. 

A
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Tab.3.1. Summary of ratio (405/488) corresponding to 100% reduced and oxidized state and of 

the dynamic range for each sensor. Dynamic range was calculated as ratio between 100% oxidized 

and 100% reduced state for each sample. Data are expressed as mean of at least six different 

experiments ± SEM. 

After probe calibration, this technique was used to examine the cell redox 

status upon PQ exposure. Considering that metabolic dysfunction was observed after 

24 hours of exposure (Paragraph 3.1), it is most likely that ROS production is an 

earlier event. Therefore, cells were seeded, transfected and then treated for 6 and 12 

hours with 500 μM PQ. The treatment significantly increased mitochondrial ROS 

production after both 6 and 12 hours (Fig.3.10). In contrast, PQ was not able to 

increase the oxidative state in the cytosol. 

         

Fig.3.10. Alteration of the cell redox status induced by treatement with 500 μM PQ for 6 and 12 

hours. Cells were transiently trasfected with roGFP2 and mt-roGFP2 for 24 hours. Afterwards, they 

were exposed to PQ for the indicated times. Fluorescence was collected at 500-530 nm using 405 and 

488 nm as excitation wavelenght. Fluorescence Ratio (405/488) obtained for each sample was 

expressed as percent  with respect to that observed for the 100% reduced and oxidized state (Tab.3.1). 

Data are reported as mean ±SEM at least 3 indipendent experiments.. Statistical significance was 

determined by t-test comparing PQ treated with PQ untreated cells (*p<0.05, ***p<0.001). 

 100% reduced 100% oxidized Dynamic range 

 
roGFP2 

 
0.13 ± 0.01 

 
1.17 ± 0.11 

 
8.63 ± 0.86 

 
mt-roGFP2 

 
0.13 ± 0.00 

 
0.97 ± 0.02 

 
8.09 ± 0.80 
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Another group worked on this issue using the same experimental approach, 

publishing when we were performing our analyses. In this study, the authors showed 

that, after 24 hours, 500 μM PQ increased exclusively mitochondrial ROS production 

(Rodriguez-Rocha et al, 2013), coherently with our results. 

Taken together, our data strongly suggest that PQ induces apotosis through a 

ROS-dependent pathway that mainly involved mitochondrial ROS production. 

 

3.6 PQ treatment impacts on mitochondrial morphology  
In light of our previous results, we decided to investigate whether PQ affects 

also the mitochondrial morphology. As mentioned in Section 1.3.1.4, mitochondria 

form a dynamic interconnected network that continuosly undergo fission and fusion 

in order to maintain the proper morphology and functioning. Mitochondrial shape 

depends on the balance between these events which are tightly regulated. Several 

studies reported that, during apoptotic cell death, mitochondrial morphology changes 

occur resulting in organelles that are small, round and more numerous (Frank et al, 

2001; Jagasia et al, 2005) . This process, known as fragmentation, might be due to 

the partecipation of fission/fusion machinery components to apoptotic process 

upstream of caspase activation (Youle & Karbowski, 2005). Recently, different 

works suggested that ROS production in these organelles could trigger mitochondrial 

fragmentation probably promoting an enhanced fission that ultimately impacts on 

mitochondrial network and functions (Pletjushkina et al, 2006; Wu et al, 2011). To 

analyze whether PQ toxicity affected also the mitochondrial network, SH-SY5Y cells 

were transiently transfected with a vector containing the coding sequence for the 

mitochondrial matrix targeted-RFP (mito-RFP) which allowed to monitor the 

mitochondrial morphological changes through fluorescence microscopy. After 

transfection, cells were exposed to 500 μM PQ for 24 hours and then fixed before 

microscopy. 

To measure the entity of these changes, mitochondrial morphology was 

scored as follows: tubular, which is characterized by a long and higher 

interconnectivity; intermediate that presented a mixture of round and shorter tubular 

mitochondria and fragmented that was mainly constitued by multiple punctiform 
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organelles (Fig.3.11A). As shown in Fig.3.11B, untreated cells displayed 

mitochondria mostly with a tubular shape (more than 80%), while cultures treated 

with PQ had mitochondria with fragmented and punctiform morphology. These data 

support the hypothesis that the PQ induces mitochondrial fragmentation by triggering 

oxidative stress. Coherently with these observations, it has been previously 

demonstrated that, in Caenorhabditis elegans, low concentration of PQ resulted in 

substantial structural alterations of mitochondrial morphology (Runkel et al, 2013). 

In addition, it has been shown that, in SH-SY5Y cells, PQ induced a significant 

alteration of mitochondrial morphology, including swelling, matrix thinning and 

cristae breakdown/disruption, as well as a mitochondrial membrane depolarization 

(Rodriguez-Rocha et al, 2013).  

Overall, these findings could be explained through the hypothesis that 

mitochondrial fragmentation precedes mitophagy (Gomes & Scorrano, 2013; Twig et 

al, 2008). The central idea is that to fit into autophagosome, these organelles have to 

decrease their normal dimension through fission process. Thus, a low membrane 

potential or mitochondrial ROS might be the signal used by dysfunctional organelle 

to drive fission required for triggering mitophagy (Gomes & Scorrano, 2013).  

To summarize, our in vitro analyses demonstrated that PQ promotes oxidative 

stress at mitochondrial level, which, in turn, impacts on the morphology of these 

organelles and, ultimately, on cell viability. These observation might explain the 

selective protection exerted by SOD2, which resides directly on the site of the 

damage, hampering PQ toxicity.  
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Fig.3.11 PQ affects mitochondrial network leading to fragmentation. SH-SY5Y cells were 
transfected for 24 hours with mito-RFP, which allowed to visualize the mitochondrial network. 
Afterwards samples were treated with 500 μM PQ and compared with untreated sample (CNTR). 
Images were acquired using an epifluorescence microscope (100x objective). (A) Mitochondrial 
network was scored as follows: tubular, long and higher interconnectivity; intermediate, mixture of 
round and shorter tubular; fragmented multiple punctiform organelles. (B) Quantification of the 
percentage of cells with indicated mitochondrial network. The values represent the percentage of the 
total number of transfected cells counted (≥50 cells per experiment). The data analysis was performed 
in a blind manner. Data are expressed as mean ± SEM of 3 independent experiments. Statistical 
significance was assessed by One way ANOVA with Bonferroni correction (***p<0.001).  
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3.7 Sod-mediated protection against PQ toxicity in Drosophila  
The findings obtained through SODs overexpression in vitro, triggered the 

investigation of the importance of the protective activity of these enzymes also in 

vivo, using Drosophila melanogaster as animal model. Among the well characterized 

genetic tools that are currently available for functional studies in Drosophila, in this 

work, the UAS/GAL4 system was used to drive the overexpression of the two 

homologs of SOD1 and SOD2, called Sod and Sod2, respectively. This tool is based 

on the properties of the yeast GAL4 transcription factor, which activates 

transcription of its target genes by binding to UAS cis-regulatory sites. The two 

components are carried in separate fly lines: one provides the tissue-specific GAL4 

expression, while the responder line carries the coding sequence for the gene of 

interest under the control of UAS sites. Using this system, the proteins were first 

expressed ubiquitously via the da-GAL4 driver and the level of overexpression was 

quantified in terms of mRNA levels through a semi quantitative RT-PCR (Fig.3.12). 

The young progeny (1-2 day old flies) of these crosses were tested after PQ treatment 

in term of fly survival.  

 

            

Fig.3.12. Ubiquitous Sod and Sod2 overexpression in flies. (A) Semi-quantitative PCR analysis and 

(B) densitometric quantification of endogenous Sod and Sod2 by Image J software. The da-

GAL4/UAS system was used to ubiquitously drive the expression of either Sod or Sod2 in D. 

melanogaster flies. 18S mRNA signal was used as loading control. Data are expressed as mean ± 

SEM of three experiments. 

 

Initially, PQ toxicity has been investigated in da-Gal4/+ flies, used as control (WT) 

in order to check whether males and females presented the same response to this 

treatment. In adult flies, drug was administered through a sucrose-soaked filter paper. 

BA 
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Males and females 1-2 day old were treated with 5 mM PQ for 4 days. In agreement 

with other reports (Parashar et al, 2008), male flies results to be more sensitive to this 

herbicide than female flies (Fig.3.13). Thus, all the following experiments were 

performed evaluating PQ toxicity only in males. 

              

Fig.3.13. Male flies are more sensitive to PQ exposure than females. Flies 1-2 days old were 

treated with 5mM of PQ for 4 days. The survival was assessed in a single experiment with more than 

100 males and females.  

 

The effects of Sods overexpression on male flies survival was studied under 

the same treatment with PQ. As reported in Fig.3.14, approximately 30% of WT flies 

died after 1 day and more than 70% after 4 days of treatment. The over-expression of 

Sod did not provide any protection, as the fly survival was not statistically different 

from that of control flies. This result is in agreement with a previous works in which 

the over-expression of Cu,Zn-Sod in several fly lines did not improve their ability to 

withstand experimental oxidative damage induced by PQ (Orr & Sohal, 1993; Seto et 

al, 1990). In contrast, more than 60% of flies were still alive even after 4 days of 

treatment (Fig.3.14) suggesting that the overexpression of mitochondrial isoform 

made the flies more resistant to PQ toxicity, in agreement with the results described 

above with SH-SY5Y cells. Coherently with our results, it has been previously 

reported that flies with Sod2 null mutation as well as RNA interference silencing 
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were hypersensitive to oxidative stress induced by PQ (Duttaroy et al, 2003; Kirby et 

al, 2002). These results suggest that the damage induced by an acute PQ exposure (5 

mM) is likely to compromise the organismal integrity much more extensively at the 

mitochondrial level than the cytosol being. This hypothesis could explain why only 

Sod2 over-expression resulted in rescue. Accordingly, a recent study showed that 

acute PQ dose caused a significant oxidative stress and mitochondrial dysfunction 

among flies in vivo. In particular, it has been demonstrated that the herbicide was 

responsible of a significant reduction in the activity of ETC complexes as well as 

enzymes involved in citric acid cycle (Hosamani, 2013).     

                 

Fig.3.14. Sod2 protects Drosophila melanogaster against lethal treatment with PQ. The 

GAL4/UAS system was used to drive the expression of either Sod or Sod2 in a tissue specific manner. 

The proteins were expressed ubiquitously through the da-GAL4 driver. The survival of da-GAL4/+ 

(WT), da-GAL4>Sod and da-GAL4>Sod2 flies was monitored upon exposure to 5 mM PQ. Data are 

expressed as mean ± SEM. Statistical significance was determined by one-way ANOVA with 

Bonferroni correction (**p<0.01, ***p<0.001). At least 150 flies were assessed for each genotype. 

 

Considering that in humans the chronic exposure to PQ was significantly 

correlated with the onset of PD, we decided to investigate in vivo the toxic effects 

associated to sub-lethal concentrations PQ. When flies were exposed to 1 mM PQ for 

7 days the survival was not affected but defects in locomotor performance, as 

resulting from negative geotaxis climbing assays, were observed. After PQ treatment, 
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control flies showed a strong impairment in locomotion. Interestingly, the ubiquitous 

over-expression of Sod via the da-GAL4 driver was able to almost completely rescue 

this motor dysfunction. In contrast, even though Sod2 over-expression improved the 

behavioral phenotype in a statistically significant manner, the rescue was only partial 

and less evident than with Sod (Fig.3.15A). To better understand whether these 

results might be linked to DAergic system, the Sods over-expression was achieved 

only into DAergic neurons using the TH-GAL4 driver (Fig.3.15B). Surprisingly, in 

these experiments over-expressing Sod2 did not improve the motor dysfunction 

induced by the herbicide. In contrast, Cu,Zn-Sod was able to significantly counteract 

the oxidative damage in dopaminergic neurons.  

These findings suggest that in presence of a chronic PQ concentration, the 

damage appears to be mostly related to the cytosolic production of superoxide 

radical, which interferes with the correct functioning of this subpopulation of 

neurons. As described in the Introduction, DAergic neurons seem to be particularly 

vulnerable to oxidative damage conditions and dopamine metabolism is widely 

considered the main candidate for this vulnerability. Actually, the redox chemistry of 

dopamine, which occurs in the cytosol, represents in itself another pathway for 

superoxide radicals production. As mentioned in the Section 1.2.6, after its synthesis, 

DA is transferred into synaptic vesicles while, approximately 10% of the total 

cellular DA content is present in the cytoplasm where its self-oxidation can produce 

both superoxide anion radicals and hydrogen peroxide (Eisenhofer et al, 2004). In 

this context, the presence of a ROS generator, such as PQ, could promote dopamine 

self-oxidation leading to a sort of vicious cycle. Accordingly, in a previous work, the 

concomitant administration of the herbicide with a nontoxic concentration of DA 

significantly increased either ROS production and cell death, supporting the 

hypothesis that DA itself may contribute to the vulnerability of DA neurons to PQ 

toxicity (Rappold et al, 2011). 
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Fig.3.15. Sod and Sod2 differentially protect Drosophila melanogaster against PQ toxicity. The 

proteins were overexpressed ubiquitously through the da-GAL4 driver (A) or in dopaminergic 

neurons by means of the TH-GAL4 driver. (B). The locomotion behavior of flies was measured after a 

7 days exposure to a sub-lethal concentration (1 mM) of PQ. Data are expressed as mean ± SEM. 

Statistical significance was determined by one-way ANOVA with Bonferroni correction (**p<0.01, 

***p<0.001). In each experiment at least 150 flies were assessed for each genotype.  
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3.8 Sod mimetic compounds  
The use of the SODs native proteins presents some disadvantages, such as 

immunogenicity and the inability to cross the BBB. To overcome these limitations, 

several SOD mimetics have been developed. Like the native enzymes, these 

molecules are able to catalytically dismutate superoxide, which represents a great 

advantage in comparison to other antioxidant compounds. Currently, four classes of 

molecules possessing SOD-like activity have been described, which include 

metalloporphyrin, nitroxides, Mn(III)-salen complexes and Mn(II)-

pentaazamacrocyclic-based complexes (Paragraph 1.4.3). Considering that our 

previously reported data support the beneficial activity of SOD enzymes in both in 

vitro and in vivo models, in this thesis, we also investigated the potential protective 

effect of SOD mimetics. In particular, for each of the aforementioned classes the 

activity of one specific compound, namely Mn(III)TMPyP, Tempol, EUK-134 and 

M40403, has been studied. Before testing their protective effects, the specific activity 

of each molecule has been measured through a widely used assay based on 

cytochrome c (McCord, 2001). In this assay, superoxide anion reduces cytochrome c 

resulting in the increase of its absorbance at 550 nm. This assay allows an indirect 

quantification of SOD activity based on the competition for superoxide between 

cytochrome c and the competitors, SOD or SOD mimetics, producing a measurable 

decrease of cytochrome reduction rate (Fig.3.16A). The slope of this lines obtained 

by plotting the temporal evolution of absorbance represents the % of inhibition of 

cytochrome c reduction induced by each compound. Therefore, by plotting the % of 

inhibition versus SOD concentrations an hyperbolic curve was obtained that allowed 

to calculate the specific activity of each drug (Fig.3.16B). Commercial human SOD1 

was used as control to compare the measured activities. The results obtained by these 

experiments are summarized in Tab.3.2. All the molecules tested showed 

scavenger/catalytic activity against superoxide anions, although their specific activity 

was lower than human SOD1 enzyme. Among them, the porphyrin Mn(III)TMPyP 

was the most active compound while Tempol was the least active; actually its 

activity is approximately 26000 times lower than the SOD1. 
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Fig.3.16. Rapresentative graphs of cytochrome c reduction assay (A) Rapresentative lines of 

cytochrome reduction obtained by plotting the temporal evolution of  absorbance (550 nm). The 

presence of a competitor for superoxide, such as SOD1,induce a slope decrease was observed. (B) 

Rapresentative rectangular hyperbolic curve prepared by plotting the % of inhinition versus 

concentration of SOD or SOD mimetics. 

 

 units/μmol 

SOD1 158 ± 6 

Mn-TmPyP 31 ± 7 

M40403 0.44 ± 0.06 

EUK-134 0.15 ± 0.01 

Tempol 0.006 ± 0.001 

                                                                                             

Tab.3.2. Specific activity (units/μmol) of the SOD-mimetic molecules. These data were calculated 

by the previous curve and are expressed as mean ± SEM of at least three indipendent experiments. 
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3.9 Beneficial effect of M40403 against PQ toxicity in SH-SY5Y cells  
Once the specific activity of each compound was established, their potential 

protective effect against PQ toxicity was investigated in SH-SY5Y cells. Considering 

that the four compounds interfered with the CCK-8 colorimetric assay, their 

antioxidant activity was tested through cytofluorimetric measurements. Specifically, 

cell cultures were treated with 500 μM PQ for 48 hours in presence or in absence of 

these SOD mimetics. The concentration to be used for each drug has been 

established based on their specific activity: we added in the medium the same 

catalytic units for each molecule. Therefore, the final concentrations utilized in these 

experiments were: 150 nM Mn-TMPyP, 10 μM M40403, 25 μM EUK-134 and 800 

μM Tempol. In Fig.3.17, the results of these analysis showed that, among the 

different drugs used, only M40403 was able to significantly rescue PQ toxicity. 

Consistent with our observations, a recent work demonstrated that, in SH-

SY5Y cells, the metalloporphyrin Mn-TMPyP failed to reduce either ROS 

accumulation and cell death induced by PQ (Rodriguez-Rocha et al, 2013). 

Meanwhile, Mollace et al., demonstrated that in rat microinfusion of PQ into the SN 

was followed by an increased lipid peroxidation, which was rescued by pre-treatment 

with the novel SOD mimetic M40401, analog of M40403 used in the present study 

(Mollace et al, 2003). In contrast with our results, in literature it has been 

demonstrated that also Tempol and EUK-134 can have a protective effects rescuing 

PQ toxicity. Indeed, it has been previously reported that in a renal cellular model the 

nephrotoxic action extended by PQ was significantly reduced by treatment with 

EUK-134 and tempol (Samai et al, 2007). Additionally, it has been shown that 

pretreatment of DAergic cultures in vitro as well as an in vivo systemic treatment of 

with SOD/Catalase mimetic, EUK-134 , conferred neuroprotection against selective 

PQ-mediated DAergic cell loss (Peng et al, 2005).     
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Fig.3.17. The SOD-mimetic M40403 rescues PQ toxicity in SH-SY5Y cells. Cytofluorimetric 

analysis carried out on WT cells, treated for 48 hours with 500 μM PQ in the absence or presence of 

the different SOD-mimetic compounds. Before analysis cells were labeled with PI and annexin V-

FITC and 104 cells were analyzed for each condition. (A) Dot plots PI vs FITC. .. The staining pattern 

resulting from the simultaneous use of these dyes allows to distinguish viable, apoptotic and necrotic 

cells. Plots are divided in four regions corresponding to viable (PI/FITC -/-; Q3), apoptotic (PI/FITC -

/+; Q4), late apoptotic (PI/FITC +/+; Q2) and necrotic (PI/FITC +/-; Q1) cell populations .(B) 

Quantification of cell viability (PI/FITC -/-, Q3 events) relative to WT cells. Data are expressed as 

mean of at least three different experiments ± SEM. Statistical significance was determined by t-test 

comparing cells exposed to PQ in absence and in presence of Sod mimetics. (*p<0.05). 

B 
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As shown in Fig.3.11B, PQ induced profound alterations in mitochondrial 

morphology resulting in a severe fragmentation. Therefore, it was of interest to check 

the effects of M40403 on mitochondrial network upon 24 hours exposure to PQ. As 

reported in Fig.3.18, the presence of M40403 significantly reduced mitochondrial 

fragmentation induced by PQ and, concurrently, increase the number of cells 

presenting a tubular shape. 

 

                     

Fig.3.18. M40403 rescues mitochondrial fragmentation induced by PQ. SH-SY5Y cells were 

transfected for 24 hours with mito- RFP, which allowed visualizing the mitochondrial network. 

Afterwards samples were treated with 500 μM PQ in the absence or presence of M40403 and 

compared with untreated sample (CNTR). Images were acquired using epifluorescence  microscope 

with a magnification of 100x. Mitochondrial network was scored as follows: fragmented, small and 

round; intermediate, mixture of round and shorter tubular; and tubular, long and higher 

interconnectivity. The percentage of cells with  a specific mitochondrial network was determined as a 

percentage of the total number of transfected cells counted (≥50 cells per experiment). The data 

analysis was performed in a blind manner. Data are expressed as mean ± SEM of 3 independent 

experiments. Statistical significance was assessed by One way ANOVA with Bonferroni correction 

(*p<0.05, **p<0.01, p***<0.001).  

 

To summarize, these findings support the hypothesis that the use of this class 

of novel and selective SOD mimetics may be helpul in the prevention of oxidative 

injury associated to neurodegenerative disorders such as PD. 



Results and Discussion  

 

105 

 

3.10 Protective role of M40403 against PQ in Drosophila 
The antioxidant activity exerted by M40403 against PQ toxicity was also 

investigated in vivo in Drosophila flies. Once again the two different conditions of 

treatment previously discussed, lethal and chronic, have been analyzed. First, fly 

survival was evaluated by exposing flies to 5 mM PQ in the absence or presence of 

M40403 (200 μM and 1 mM). Consistent with the results presented above, fly 

survival was strongly affected by the presence of 5 mM PQ with less than 50% of 

flies surviving after 4 days. The presence of M40403 increased fly survival in a dose-

dependent manner and at the highest concentration used the rescue was almost 

complete (Fig3.19A). Afterwards, the locomotion behavior of flies after a sub-lethal 

exposure to PQ (1 mM for 7 days) was assessed in the absence or presence of SOD 

mimetic. As expected, PQ administration strongly affected motor performance 

(Fig.3.19B), however the presence of M40403, at both concentration tested, resulted 

in a significant improvement of the climbing ability. These data confirmed the 

rescuing activity of this compound against oxidative stress generated through acute 

or chronic PQ exposure. 

It is worth mentioning that, in previous experiments, Magwere and colleagues 

tested the effects of feeding with the superoxide dismutase (SOD) mimetic drugs, 

EUK-8, EUK-134 and the mitochondria-targeted mitoquinone, on lifespan and 

oxidative stress resistance in Drosophila flies. Instead of a beneficial effect, all these 

drugs showed a dose-dependent increase in toxicity that was exacerbated in the 

presence of PQ (Magwere et al, 2006). In light of these observations, the protective 

activity of M40403 that we observed, in vivo, against PQ toxicity should be 

considered particularly relevant. 
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Fig.3.19 M40403 rescues PQ toxicity in flies. (A) Survival of wild type Drosophila (w, Dah) was 

monitored upon exposure to 5 mM PQ, in the absence or presence of different amounts of M40403. 

(B) Locomotion behaviour of wild type flies was analyzed after treatment with a sub-lethal 

concentration (1 mM) of PQ for 7 days, in the absence or presence of different amounts of M40403. 

Data are expressed as mean ± SEM. Statistical significance was determined by one-way ANOVA with 

Bonferroni correction (**p<0.01, ***p<0.001). At least 60 flies were tested for each condition. 
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3.11 Mitochondrial fragmentation in PINK1 knock out cells 

In the experiments discussed until now, PQ toxicity has been chosen and used 

as an experimental paradigm to mimic sporadic PD in cells and flies. In the next 

sections, the role of SODs and SOD mimetics against oxidative injury related to 

genetic forms of PD will be analyzed. Specifically, PINK1 deficiency has been 

studied as model of genetic parkinsonism in vitro and in vivo studies. As described in 

the Paragraph 1.3.1.3, PINK1 is serine/threonine kinase with a putative 

mitochondrial targeting sequence. Increasing evidence indicates that this protein 

regulates mitochondrial morphology and mitophagy as well as oxidative stress 

(Dagda et al, 2009). Actually, an impairment of the respiratory activity, an increase 

of lipid peroxidation and an hypersensitivity to oxidative stress have been observed 

in primary fibroblasts isolated from PD patients carrying PINK1 mutations (Hoepken 

et al, 2007). Furthermore, it has been reported that PINK1 deficiency in human 

DAergic neurons, obtained through the differentiation of neuronal stem cells, 

induced a chronic mitochondrial dysfunction and an increase in oxidative stress 

(Wood-Kaczmar et al, 2008). In a recent study, a novel mutation in PINK1 gene 

(P209A) has been identified in a cohort of 68 patients with early onset PD. The 

transfection of SH-SY5Y cells with the PINK1 P209A mutant enhanced the 

oxidative stress-induced cell death, supporting the involvement of this kinase in 

regulation of cellular oxidative status (Chien et al, 2013). Moreover, it has been 

demonstrated that RNA silencing of PINK1 impacted on mitochondrial network 

causing fragmentation in HeLa cells. The same mitochondrial phenotype has been 

identified in fibroblasts of PD patients carrying mutations in PINK1 gene (Exner et 

al, 2007) as well in PINK1 knock down SH-SY5Y cells (Dagda et al, 2009). 

In this work, PINK1 knock out cells were generated using the CRISPR/CAS 

technology. This system is a novel powerful tool for genome editing. It is based on 

two distinct components: a guide RNA (gRNA) and the nuclease, Cas9. The gRNA 

is a combination of the CRISP target RNA (crRNA) and trans-activating crRNA 

(tracrRNA). It can combine the targeting specificity of the crRNA, in this case a 

specific sequence for PINK1, with the scaffolding/binding ability for Cas9 nuclease 

of the tracrRNA into a single transcript. When the gRNA and the Cas9 are expressed 
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in the cell, the genomic target sequence can be modified or permanently disrupted. In 

particular, the gRNA/Cas9 complex is recruited to the target sequence, which is 

present in the genomic DNA, through the complementarity with the gRNA sequence. 

Once this complex binds the target sequence, Cas9 can cut both strands of DNA 

generating a Double Strand Break (DSB). Even if DSBs can be repaired through 

repairing pathways, the result is very often the disruption of the open reading frame 

(ORF) of the targeted gene.  

To obtain PINK1 knock out cells, two different sequences, namely KO1 and 

KO2, were designed. Each sequence, able to recognized a specific region of the 

PINK1 genomic DNA, was cloned in an expression vector, containing as gene 

reporter the CD4 sequence, used to label transfected cells. First, to test the ability of 

these sequences to induce gene disruption, HeLa cells were transfected with KO1 or 

KO2 plasmids. In contrast to SH-SY5Y cells, this cell line presented a higher 

transfection efficiency (about 80%) that permitted to evaluate the reduction of 

PINK1 expression level through WB analysis. After 24 hours of transfection, cells 

were exposed to carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 4 hours. 

This uncoupler was utilized to induce mitochondrial membrane depolarization, 

necessary for PINK1 stabilization and accumulation on the outer mitochondrial 

membrane. As reported in Fig.3.20, Both KO1 and KO2 sequences were able to 

decrease PINK1 protein levels, confirming their ability to induce gene disruption. 
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Fig.3.20 PINK1 knockout in Hela cells. Hela cells were transfected with vector containig PINK1 

crispr/cas sequences (KO1 or KO2) for 24 hours and then were treated with 10 μM CCCP for 4 hours 

in order to have PINK1 stabilization on OMM. (A) Alterations in endogenous full-length protein 

levels were assessed by western blot in a single expreiment. (B) Densitometric quantification of full-

length endogenous PINK1 levels using Image J. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was used as a loading control.  

 

Afterwards, considering that the most pronounced phenotype of PINK1 

deficiency in mammalian cellular model is mitochondrial fragmentation, the effect of 

PINK1 knock out was evalauted in terms of alterations of the mitochondrial network 

in human SH-SY5Y cells. Therefore, cells were co-transfected with KO1 or KO2 

and mito-RFP for 24 hours and then samples were fixed and stained with CD4 

antibody conjugated with Alexafluor 488-antibody. Through fluorescence 

microscopy, the mitochondrial network in CD4+ (transfected) cells has been 

evaluated and compared with CD4- (untransfected) cells used as control. The 

quantification was obtained using the same classification previously described 

(Paragraph 3.6). In agreement with the aforamentioned works (Dagda et al, 2009; 

Exner et al, 2007), PINK1 deficiency, obtained through either KO1 and KO2 

sequences, significantly affected mitochondrial network inducing fragmentation 

(Fig.3.21). 
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Fig.3.21. PINK1 deficiency affects mitochondrial network leading to fragmentation. SH-SY5Y 

cells were co-transfected for 24 hours with KO1 or KO2 and mito-RFP, which allowed visualizing the 

mitochondrial network. Images were acquired using epifluorescence microscope with a magnification 

100x. Mitochondrial network was scored as follows: tubular, long and higher interconnectivity; 

intermediate, mixture of round and shorter tubular and fragmented multiple punctiform organelle. 

Quantification of the percentage of cells with the indicated mitochondrial network. The values 

represent the percentage of the total number of transfected cells counted (≥30 cells per experiment). 

The analysis was performed in a blind manner. Data are expressed as mean ± SEM of 3 independent 

experiments. Statistical significance was assessed by One way ANOVA with Bonferroni correction.  

 

3.12 SODs reverse mitochondrial fragmentation in PINK1 knock out 

cells 
The PINK1 deficiency was used as experimental paradigm to explore the 

effect of SODs overexpression at the level of mitochondrial morphology. Using the 

same protocol described above, SOD1 and SOD2 stably overexpressing cells were 

co-transfected with KO1 or KO2 and mito-RFP and analyzed after 24 hours. 

Preliminary results of these experiments are reported in Fig.3.22. Once again, the 

expression of the cytosolic and mitochondrial isoforms produced different effects. 

Indeed, while SOD1 overexpression seemed to partially reduce the mitochondrial 

fragmentation induced by PINK1 gene disruption (KO1 WT and KO2 WT), 

increasing the number of cells with an intermediated morphology (Fig.3.22A); the 
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mitochondrial SOD2 appeared able to reverse mitochondrial fragmentation allowing  

the maintenance of a healthy mitochondrial network (Fig.3.22B). 

 

                         

Fig.3.22. SODs overexpression appears e protective against mitochondrial fragmentation 

induced by PINK1 knock out. SH-SY5Y WT, (A) SOD1, and (B) SOD2 stably overexpressing cells 

were co-transfected for 24 hours with KO1 or KO2 and mito-RFP, which allowed to visualize the 

mitochondrial network. Images were acquired using epifluorescence microscope with a magnification 

of 100x. Mitochondrial network was scored as follows: tubular, long and higher interconnectivity; 

intermediate, mixture of round and shorter tubular and fragmented multiple punctiform organelle.. 

The values represent the percentage of the total number of transfected cells counted (≥30 cells per 

experiment). Data are expressed as mean ± maximum error of two independent experiments. 

A
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If these results will be further confirmed, they support the involvement of 

oxidative stress and, specially of superoxide anion, in the mitochondrial 

fragmentation in PINK1 knock out cells. Coherently with the observed SOD2 

protection, it has been previoulsy reported that, in SH-SY5Y cells, PINK1 knock 

down increased the level of mitochondrial superoxide which, in turn, promoted 

mitochondrial fragmentation. Indeed, superoxide has been proposed an essential 

mediator in triggering fragmentation of the mitochondrial network (Dagda et al, 

2009). Moreover, it has been demonstrated that the absence of PINK1, in SH-SY5Y 

cells and in human neurons derived from fetal mesencephalic stem cells, was 

associated with a significant increase of ROS production in two separate sites, the 

mitochodria and the cytosol (Gandhi et al, 2009). These observations revealed the 

involvement of both these compartment in oxidative stress linked to PINK1 

dysfunction and might explain the partial protective effect of SOD1 overexpression. 

 

3.13 Sod recues motor deficits in Drosophila PINK1 mutants  

To investigate the role of PINK1, several animal models have been generated. 

Among them, Drosophila PINK1 mutants exhibited a strong phenotype that included 

shorter lifespan, male sterility, motor impairment, muscle and DAergic neuron 

degeneration. Additionally, at mitochondrial level these flies revealed prominent 

defects, such as enlarged and swollen mitochondria, fragmented cristae, decreased 

ATP production (Clark et al, 2006). Therefore, Drosophila is considered a valid 

animal model which recapitulates mitochondrial dysfunction and age-related 

neuronal death observed in PD patients. To evaluate the involvement of oxidative 

stress in PINK1 mutant flies (PINK1B9), the previously described UAS/GAL4 system 

was used to overexpress Sod and Sod2 in an ubiquitous manner via the da-GAL4 

driver. RT-PCR was first used to verify the overexpression of each Sod isoform 

(Fig.3.23A). Afterwards, the protective function of each enzyme was examined by 

taking into consideration the ability to improve the motor performance of the mutants 

(PINK1B9/Y; da/+). Our results indicated that Sod and Sod2 overexpression 

produced a very different and selective effect. Surprisingly, climbing assays showed 

that, while the mitochondrial isoform did not ameliorate the motor impairment, the 
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overexpression of the cytosolic Cu,Zn-Sod increased locomotor activity of 

PINK1B9mutant flies (Fig.3.23B).  

 

 

Fig.3.23 Sod overexperssion partially rescues PINK1B9 motor impairment. (A) Ubiquitous Sod 

and Sod2 overexpression in mutant flies was verified by semi-quantitative RT-PCR analysis. The da-

GAL4/UAS system was used to ubiquitously drive the expression of either Sod or Sod2 in flies. 

GAPDH mRNA level was used as loading control. (B) Locomotion behavior of PINK1B9/Y; da/+ flies 

(male mutants) was analyzed and compared with PINK1B9/+;da/+ (females used as control) trought 

climbing assay. PINK1B9/Y;da>UAS.Sod flies presented an improvement of motor dysfunction; while 

PINK1B9/Y;da>UAS.Sod2 flies behaved as PINK1B9 mutants. Climbing assays were performed with 

1-2 day old flies. Data are expressed as mean ± SEM. Statistical significance was determined by one-

way ANOVA with Bonferroni correction (*p<0.05, **p<0.01, ***p<0.001). For each genotype at 

least 150 flies were tested. 

 

Our data are in agreement with a previous work in which the overexpression 

of human SOD1 was able to rescue the degeneration of DAergic neurons in PINK1 

RNAi fly lines, although the mechanism underlying the selective protection extended 

by cytosolic Sod, in vivo, remains unclear (Wang et al, 2006). To date, several 

studies demonstrated the involvement of PINK1 in maintaining mitochondrial 

homeostasis (Chu, 2010); however, our in vitro and in vivo results suggest another 

possible action of this kinase in the regulation of oxidative stress through other 

processes not directly connected to mitochondria functioning and maintenance. 
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Indeed, although PINK1 is predominantly localized in mitochondria, this protein can 

also be found in the cytoplasm (Weihofen et al, 2008), where it might be involved in 

different molecular pathways. For instance, recently a novel function of the cytosolic 

PINK1 has been proposed (Zhou et al, 2014), in which the kinase, controlling 

negatively the TH and DA levels in DAergic neurons, regulates the sensitivity to 

oxidative stress. According to this hypothesis, PINK1 dysfunction promotes an up-

regulation of DA synthesis and content, which might strongly increase the cytosolic 

ROS production. 

 

3.14 M40403 reverses mitochondrial alterations in PINK1 knock out 

cells 
To investigate whether M40403 was able to rescue the mitochondrial 

fragmentation observed in PINK1 deficient cells, SH-SY5Y cells were co-transfected 

with KO1 or KO2 and mito-RFP in presence or absence of 10 μM M40403. The 

effect of this compound on mitochondrial network was then analyzed through 

fluorescence microscopy, as previously described. When cells were transfected with 

the KO1 sequence, M40403 decreased the fragmentation increasing the intermediate 

shape. On the contrary, when the knock out was induced by the KO2 sequence, of the 

presence of M40403 increased the percentage of cells with the tubular shape with a 

concomitant reduction of those with an intermediate morphology. Even though the 

results obtained with the two sequences used are different, they both indicate a 

protective effect of M40403. Although further analyses are required to validate the 

effect, our preliminary data suggested that this treatment with M40403 was slightly 

protective rescuing the mitochondrial phenotype due to the absence of PINK1. 
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Fig.3.24 M40403 seems to partially ameliorate the mitochondrial fragmentation due to the loss 

of PINK1. SH-SY5Y cells were co-transfected for 24 hours with KO1 or KO2 and mito-RFP, which 

allowed to visualize the mitochondrial network. Images were acquired using an epifluorescence 

microscope with a magnification of 100x. Mitochondrial network was scored as follows: tubular, long 

and higher interconnectivity; intermediate, mixture of round and shorter tubular; fragmented, multiple 

punctiform organelles. Quantification of the percentage of cells with the indicated mitochondrial 

network. The values represent the percentage of the total number of transfected cells counted (≥30 

cells per experiment). Data are expressed as mean ± maximum error of two independent experiments. 

 

3.15 M40403 administration improves motor performance in PINK1 

fly mutants  

Considering the promising results obtained by overexpressing Sod proteins in 

PINK1 fly mutants and in light of the partial beneficial activity of M40403 in 

rescuing PINK1 deficiency in vitro, the activity of this SOD mimetic has been 

further explored in Drosophila PINK1 mutants. Immediately after eclosion, these 

flies exhibited an abnormal wing posture associated with muscle degeneration. For 

this reason, while, PQ and M40403 were previously administered to adult flies using 

a sucrose/drug-soaked filter paper, in these experiments M40403 was administered 

during the larval phase (from mating to eclosion). adding the drug directly to the 

solid standard food. The thermal stability of the SOD mimetic has been first assessed 

at 70°C, temperature necessary to melt fly food (data not shown). As it is well known 

that during larval stage, flies eat more than in the adulthood, treatments carried out 
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during this phase are usually used with lower doses of drug than in adult 

administration, for instance see (Tain et al, 2009). Thus,, the drug was tested in 

PINK1 mutants using increasing concentrations (0.01-0.3 mM). Our results indicated 

that this treatment resulted in a significant suppression of the climbing deficits in 

PINK1 mutant flies (Fig.3.25), although other pathological phenotypes, such as 

thorax indentations and abnormal wing posture, were still evident.  
     

                                                                       

 

Fig.3.25 The M40403 SOD-mimetic rescues PINK1B9 motor impairment. PINK1B9/Y; da/+ flies 

(male mutants) PINK1B9/+; da/+(females used as control) were fed from mating to enclosion with a 

medium containg increasing concentrations (0.01-0.3 mM) of drug. 0-4 day old flies were collected 

and used to assess climbing index. The exposure to M40403 significantly restored motor dysfucntion 

in PINK1B9/Y; da/+ flies in a dose dependent manner; while, its presence did not have any effect on 

control flies. Data are expressed as mean ± SEM. Statistical significance was determined by one-way 

ANOVA with Bonferroni correction multiple comparison- selected pairs (***p<0.001). For each 

genotype at least 40 flies were tested. 

Our observations might be considered particularly relevant because for the 

first time the exposure to a SOD mimetic proved to rescue significantly one of the 

most pronounced phenotypes, which characterized Drosophila PINK1 mutants.
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3.16 Lethality rescue by M40403 in Sod- and Sod2- knock down flies 
Overall, from the results presented it appears evident that M40403 was able 

to act similarly to SOD2 in scavenging superoxide radicals produced at 

mitochondrial level through acute exposure to PQ and PINK1 deficiency. 

Additionally, the protection exerted by this SOD mimetic against PQ sub-lethal 

treatment as well as PINK1 loss of function in flies supported the hypothesis that the 

drug could act also at cytosolic level. To address this important issue and to better 

characterize the properties of this molecule, its protective activity has been tested in 

Sod and Sod2 deficient flies, generated through the transgenic RNAi technology 

coupled with the da-GAL4 driver. The ubiquitous down-regulation of the enzymes 

has been described to lead to early adult mortality and elevated endogenous oxidative 

damage production (Kirby et al, 2002; Wicks et al, 2009). The survival of each fly 

line was assed and was comparable, with a median survival of 13 days. The 

treatment of these flies with M40403 increased the survival for both genotypes, but 

with differential effects. In the case of Sod-deficient flies, the presence of M40403 

appeared to be strongly protective in the first period of treatment (12 days), after 

which the survival rapidly decreased reaching the values similar to the untreated flies 

(Fig.3.26A). In contrast, the drug was not able to reduce the mortality of Sod2-

deficient flies in the first period of treatment but showed protection starting from the 

6th day until the end of the experiment (Fig.3.26B). The survival distribution of the 

untreated and M40403-treated flies was compared through the logrank test, which 

indicated that in both cases the two curves are significantly different (p=0.004 and 

p<0.001 for Sod-and Sod2-knockdown flies, respectively).  
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Fig.3.26. The M40403 SOD-mimetic rescues the lethality in Sod- and Sod2-deficient flies. Sod- 

and Sod2-knockdown flies were generated through the expression of a UAS inverted repeat transgene, 

to induce RNA interference, coupled with the da-GAL4 driver. The survival of (A) Sod- or (B) Sod2-

deficient flies was measured over a period of 20 days in the absence or presence of 1 mM M40403. 

The survival distribution of the untreated and M40403-treated flies was compared using the logrank 

test. 

 

In conclusion, the data presented here indicated that the SOD-mimetic 

molecule M40403 is able to partially rescue, in vivo, the loss of either Sod or Sod2 

suggesting that it can act both at cytosolic and mitochondrial level. Nevertheless, as 

that mitochondria are widely considered the primary source or ROS, recently a 

mitochondria-targeted SOD mimetic, MitoSOD, was synthesized by conjugating 

M40403 with a mitochondria-targeting triphenylphosphonium group (Kelso et al, 

2012). Using energized mitochondria it has been demonstrated a greater uptake of 

A

B



Results and Discussion  

 

119 

 

MitoSOD than M40403. Even if M40403 uptake seemed negligible, the results 

obtained in this thesis support at least a partial mitochondrial uptake.  

Overall, the potential ability of M40403 to act both at mitochondrial and 

cytosolic level could have a particular importance when cytosolic processes 

contribute to and exacerbate the production of superoxide radicals, as supposed in 

our experimental paradigms. Thus, from a therapeutic point of view the use of a SOD 

mimetic less selective and not specific for mitochondrial import, like M40403, could 

be more advantageous.  
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A s mentioned in the Introduction (Paragraph 1.5), cellular models are largely 

used to study in vitro the molecular mechanisms underlying the preferential DAergic 

cell death, that affects PD patients. This selective loss might be correlated to the 

dopamine metabolism itself; thus, a suitable and reliable cellular model should 

exhibits a DAergic phenotype. Beside the use of primary rodent cells or of stem cell-

derived dopaminergic neurons, an alternative cell system is represented by human 

neuroblastoma cells. These cell lines have a number of advantages that make them 

useful as models: they are easy to obtain and to grow using standard tissue culture 

plastic and media, and they can be stored indefinitely in liquid nitrogen. In addition, 

they continuously divide and can provide the required quantity of cells for different 

experiments, without exhibiting a large variability. The downside of these cell lines 

is the lack of many features that define neurons, including neuronal morphology, 

inhibited cell division, and expression of neuron-specific markers (Andres et al, 

2013). Hopefully, neuronal cell lines can be induced to differentiate by adding 

different drugs or growth factors to the media. Differentiation results in non-dividing 

cells with many of the characteristics of a neuron, including the extension of neurites.  

The human neuroblastoma SH-SY5Y cell line has been largely used in 

neuroscience research and, in particular, as a PD cell system (Lopes et al, 2010; Xie 

et al, 2010). These cells, which were subcloned from the SK-N-SH cell line, are 

neuronal in origin, express tyrosine hydroxylase (TH) and exhibit moderate levels of 

dopamine-β-hydroxylase (DßH) activity, specific for noradrenergic (NAergic) 

neurons (Ross et al, 1983). A variety of agents, including retinoic acid (RA) 

(Pahlman et al, 1984), phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) 

(Pahlman et al, 1981; Pahlman et al, 1983), brain-derived neurotrophic factor 

(Spinelli et al, 1982), dibutyryl cyclic AMP (Kume et al, 2008) and staurosporine 

(Jalava et al, 1992) have been used to induce differentiation. Much less is known 

about the BE(2)-M17 cell line. These cells have been cloned from the SK-N-BE(2) 

neuroblatoma cell line isolated from a 2 years old male. Even though the first 

biochemical characterizations of these cells date back to the 80s (Ciccarone et al, 

1989; Rettig et al, 1987), their use has been limited, most probably because of the 

larger diffusion of the SH-SY5Y cell line. However, little research has been 
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performed on the analysis of the DAergic pathway of BE(2)-M17, in both 

undifferentiated and differentiated state. 

In this chapter, results concerning the neuronal differentiation of SH-SY5Y 

and BE(2)-M17 will be presented. Even though SH-SY5Y cells are largely adopted 

in PD studies, the phenotype acquired after differentiation is still debated, because of 

their ability to synthetize different neurotransmitter, including the catecholamines 

DA and noradrenaline (NA). For this reason, we decided to re-evaluate 

morphological and neurochemical changes induced by neuronal differentiation in this 

cell line. In addition, we analyzed and characterized the phenotype of BE(2)-M17 

cells before and after differentiation. To this aim, here we investigated the capability 

of three differentiating agents, TPA, RA and staurosporine, to drive the 

differentiation toward a DAergic phenotype in terms of growth inhibition, 

morphological properties, expression profiles of genes involved in catecholamine 

synthesis and storage and the cellular content of the neurotransmitters DA and NA. 

TPA, RA, and staurosporine have been selected on the basis of their inexpensiveness 

and ease of manipulation. Each of these compounds induces differentiation through a 

different mechanism. RA regulates neurite outgrowth and growth inhibition through 

the regulation of the transcription of neurotrophin receptors, modulation of the Wnt 

signaling pathways and participation of type II protein kinase A (Xie et al, 2010). 

The differentiating properties of TPA and staurosporine are primarily mediated by 

protein kinase C (PKC) isoforms. Nevertheless, TPA is a PKC activator, while 

staurosporine is a potent PKC inhibitor (Leli et al, 1992). 

 

3.1 Effect of differentiation on growth inhibition 

Upon differentiation, SH-SY5Y and BE(2)-M17 cells can cease to proliferate, 

becoming a stable population with morphological similarity to neuronal cells, such as 

an extensive neurite outgrowth. To find the optimal experimental conditions for 

differentiation, growth inhibition was first evaluated in both cell lines, using various 

concentrations of each differentiating agent. On the basis of previous reports on SH-

SY5Y cells (Jalava et al, 1992; Pahlman et al, 1984; Pahlman et al, 1983) the 

following ranges of concentration were tested: 1.5-150 nM for TPA, 1-50 μM for RA 
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and 3-15 nM for staurosporine. Consistent with the literature results, in the case of 

SH-SY5Y cells, we observed that the most pronounced effects on growth inhibition 

were obtained with 15 nM TPA, 10 μM RA and 10 nM staurosporine. With BE(2)-

M17 cells the most effective concentrations found were 30 nM TPA, 5 μM RA and 8 

nM staurosporine, not much dissimilar from those obtained for SH-SY5Y cells.  

Cells were then treated with the optimized concentration of each 

differentiating agent for 4 and 7 days and growth inhibition was assessed by cell 

counting using a hemocytometer. As shown in Fig.3.1, all of the drugs altered cell 

proliferation, but with variable efficiency depending on the treatment and on the cell 

line. In the case of SH-SY5Y, after 4 days the inhibition levels in the presence of RA 

and TPA were very similar (~40%), whereas RA promoted a more marked effect 

compared to TPA after 7 days (~70% and ~45%, respectively). Interestingly, 

staurosporine induced the most pronounced inhibition. In fact, after 4 days treatment, 

cell proliferation was almost completely blocked with a growth inhibition of ~80%, 

and the effect became more evident after an incubation time of 7 days (~95%) 

(Fig.3.1A). The results obtained with BE(2)-M17 cells were quite different. After 4 

days of treatment, the effects of staurosporine were almost absent while the growth 

inhibition in the presence of TPA reached ~20%. The strongest inhibition (~40%) 

was obtained in the presence of RA. After 7 days, RA still induced the strongest 

inhibition (~70%), whereas staurosporine promoted a more marked effect compared 

to TPA (~45% and ~20%, respectively), although very small in comparison with the 

effects observed on SH-SY5Y cells (Fig3.1B). In agreement with other studies 

(Constantinescu et al, 2007; Mattsson et al, 1984), in SH-SY5Y cells, TPA only 

partially inhibits cell growth and was less effective than staurosporine, which 

arrested proliferation almost completely. Indeed, in literature it has been reported that 

staurosporine, used in a range between 10 and 25 nM, induced a total inhibition of 

DNA synthesis in SH-SY5Y cell line, coherently with the complete block of cell 

proliferation observed here (Constantinescu et al, 2007). A different response was 

obtained in BE(2)-M17 cultures, where RA resulted the most effective agent in 

arresting cell cycle. 
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Fig.3.1. Cell growth of undifferentiated and differentiated SH-SY5Y and BE(2)-M17 cells. Cell 

growth has been evaluated after 4 and 7 days of differentiation in (A) SH-SY5Y (B) BE(2)-M17 All 

the examined drugs inhibited cell proliferation. In SH-SY5Y, the effect of staurosporine was the most 

pronounced, while in BE(2)-M17 the strongest inhibition was achieved with RA treatment. Data are 

expressed as mean ± S.E.M. of three experiments. Differences between differentiated and 

undifferentiated were tested for significance using Student’s t-test. (*P<0.05, **P<0.01, 

***P<0.001). 

 

A

B
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3.2 Morphological differentiation and neurite outgrowth  
Neuronal differentiation is also associated with the acquisition of a specific 

morphology characterized by a small cell body, called soma, which contains the 

nucleus, and specialized elongated neuritic processes arising from the soma. In this 

work, the effects of the treatment with TPA, RA and staurosporine have been further 

analyzed in their ability to induce morphological changes. 

Undifferentiated SH-SY5Y neuroblastoma cells display a characteristic 

morphology with rounded cell bodies and few short processes (Fig.3.2A). A similar 

morphology is also present in undifferentiated BE(2)-M17 cells although they are 

smaller and the processes are less evident (Fig.3.2B). To explore whether and how 

the differentiation alters cell morphology, cells were treated with TPA, RA or 

staurosporine for 7 days. After treatment, cells were analyzed using a phase contrast 

light microscope. Depending on the chemical used, cells displayed different levels of 

neurite length and branching. Differentiation induced by TPA resulted in the 

formation of short processes only in both cell lines. In contrast, both RA- and 

staurosporine-differentiated cultures showed a morphology more similar to neurons 

with a complex network of neuritic extensions. 

To better characterize the morphological changes and to quantify the effect of 

each differentiating agent in terms of neurite outgrowth, cells were transfected with a 

cytosolic fluorescent probe that allowed tracking of the neurites at single-cell level. 

Three parameters were used to analyze the outgrowth of neurites: i) the longest 

neurite length, ii) the average of neurite length and iii) the number of neurites per 

cell. Results are summarized in Fig.3.3.  

In SH-SY5Y cells, TPA slightly increased neuritic length as compared with 

undifferentiated cells; in presence of RA this increment was more evident, although 

not statistically significant. Consistent with our results, RA has been reported to be 

an inducer of neurite outgrowth and axonal elongation in several cell models 

(Clagett-Dame et al, 2006). Staurosporine-induced differentiation resulted again the 

best condition tested: neurite length significantly increased compared with 
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undifferentiated and RA- or TPA- differentiated cells (Fig.3.3B). However, none of 

these drugs impacted on the number of neurites per cell.  

In BE(2)-M17 cell line, TPA only partially stimulated neuritic outgrowth; in 

contrast the effects with the other two agents were more marked. Staurosporine 

induced a significant elongation of processes; although the best morphological 

differentiation was accomplished by the addition of RA, that not only increased 

neurite length but also promoted branching, as clearly showed with the increase of 

the number of processes per cell (Fig.3.3F). 
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Fig.3.2. Cellular morphology after differentiation. Representative phase contrast images of 

undifferentiated and differentiated (A) SH-SY5Y and (B) BE(2)-M17 cells after 7 days of treatment 

with different differentiating agents. TPA: phorbol ester 12-O-tetradecanoylphorbol-13-acetate, RA: 

Retinoic acid, Stauro: Staurosporine.. After 7 days of treatment, staurosporine and RA promoted the 

most remarkable neurite extension, respectively, in SH-SY5Y cells and BE(2)-M17. Scale bar = 100 

µM.  

A B
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Fig.3.3. Neurite outgrowth after differentiation. Three different parameters have been quantified: 

the length of the longest neurite, the average of neurite length and the neurite number per cells. Each 

parameter was measured in undifferentiated and differentiated (A, B, C) SH-SY5Y or (D, E, F) 

BE(2)-M17 cells after 7 days treatment with  differentiating agents  phorbol ester 12-O-

tetradecanoylphorbol-13-acetate (TPA), Retinoic acid (RA), Staurosporine (Stauro). Staurosporine 

and RA promoted the most remarkable neurite lenght, respectively, in SH-SY5Y cells and BE(2)-

M17. Additionally, RA treatment increased neurite branching in BE(2)-M17. Data are expressed as 

mean ± SEM of three experiment. For each condition at least 90 cells were analyzed. Statistical 

significance was determined by one-way ANOVA with Bonferroni (*p<0.05; **p<0.01; ***p<0.001). 
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3.3 Immunofluorescence analysis of neuronal markers.  
To study whether differentiated cells expressed late neuronal markers, we 

stained undifferentiated and differentiated SH-SY5Y and BE(2)-M17 cultures using 

specific antibodies against neuron-specific proteins such as β-tubulin III and 

neurofilament. β-tubulin III is a neuron-specific class of tubulin. During 

development, the relative abundance of this protein increases with the rate of 

neuronal differentiation (Lee et al, 1990). Neurofilaments are intermediate filaments, 

components of the mature cytoskeleton of neurons and present mainly in axons. 

After 7 days of incubation in the presence of each differentiating agent, cells were 

fixed and immunocytochemistry was performed. Consistent with our previous , TPA 

induced marked variations in cell morphology leading to neuron-like appearance 

(Fig.3.4). Accordingly, while TPA-treated cells showed only moderate neurite 

outgrowth and did not exhibit detectable neuronal-marker-positive processes; on the 

contrary, the differentiation with RA and staurosporine promoted in both cell lines a 

significant increase in processes positive to both β-tubulin III and neurofilament. 

In agreement with these observations, it has been previously shown that the 

differentiation induced by RA in SH-SY5Y and BE(2)-M17 increased the expression 

of late neuronal markers, not only β-tubulin III but also microtubule-associated 

protein 2, (Andres et al, 2013; Constantinescu et al, 2007) which is an abundant 

neuronal cytoskeletal phosphoprotein essential for the development and maintenance 

of neuronal morphology, cytoskeleton dynamics and organelle trafficking (Binder et 

al, 1985). The expression of these markers was concomitant with the down-

regulation of nestin, that a member of the intermediate filament family not expressed 

in mature neuronal cells (Lopes et al, 2010). Furthermore, the induction of mature 

neuronal markers, observed upon differentiation with staurosporine, confirmed 

previous studies ,which showed that this molecule stimulated SH-SY5Y cells to 

express mature neuronal markers, such as microtubule-associated protein 2 (Borland 

et al, 2008) and growth associated protein 43 (Jalava et al, 1992). The latter is 

involved in axonal growth and the modulation of synaptic connection (Benowitz et 

al, 1987).  
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Taken together, our data demonstrate that in both cell lines the treatment with 

RA and staurosporine generate cell populations with variably extended neuritic 

processes, which are positive to the neuronal markers used, suggesting the 

acquisition of a mature neuronal-like phenotype. 

 

 

Fig.3.4. Immunofluorescence staining for two components of the cytoskeleton of mature 

neurons:, neurofilament and β-III tubulin. The comparison was made between undifferentiated and 

differentiated SH-SY5Y and BE(2)-M17 cells after 7 days of treatment with . phorbol ester 12-O-

tetradecanoylphorbol-13-acetate (TPA), retinoic acid (RA) and staurosporine (Stauro). RA and 

staurosporine differentiation induced the formation of long processes positive for neurofilament and 

β-III tubulin in both cell lines. Blue: Hoechst; Green: neurofilaments; Red: β-III tubulin; Gray: phase 

contrast. Scale bar = 50 µM. 
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3.4 Expression profile of DA-and NA-related genes 
To analyze the effects of differentiation on the CAergic pathway in both SH-

SY5Y and BE(2)-M17 cells, variations in gene expression profile before and after 

differentiation has been assessed through qRT-PCR experiments. Specifically, we 

decided to focus on the key genes involved in DA and NA synthesis and storage: TH 

and aromatic L-amino acid decarboxylase (AADC), which are both involved in the 

synthesis of DA; vesicular monoamine transporter 2 (VMAT2), which rapidly 

sequester DA from the cytosol into synaptic vesicles; DβH, which synthesizes NA 

from DA inside synaptic vesicles.  

The results obtained with SH-SY5Y cells after addition of the differentiating 

agents are summarized in Tab.3.1 and plotted in Fig.3.4. After 4 days, the expression 

profiles of TPA-differentiated cells were slightly down-regulated relative to the 

undifferentiated controls. This trend was more evident after 7 days of TPA treatment. 

A similar trend of general down-regulation was also observed when the cells were 

treated with RA, where the effects were visible as early as 4 days after treatment. 

Analysis at 7 days revealed that the TH and AADC genes were the most affected, 

suggesting that DA synthesis was specifically inhibited. In contrast, cells treated with 

staurosporine exhibited an up-regulation of all these markers both at 4 and 7 days 

after differentiation. Interestingly, while the expression of the TH gene was only 

slightly increased, VMAT2 expression was increased more than 80 and 100 times at 4 

and 7 days, respectively. Also expression of the DβH gene was considerably 

enhanced (~7 and ~8 times at 4 and 7 days, respectively). Overall, these results 

indicate that while DA synthesis appears to be only slightly increases by 

staurosporine-induced differentiation, the potential for DA storage inside vesicles 

and subsequent conversion into NA are clearly increased.  

In literature, SH-SY5Y cells have been largely characterized in terms of 

expression profile of genes and proteins involved in neurotransmitter synthesis, 

metabolism and storage. So far, an unequivocal characterization of the 

neurotransmitter phenotype of differentiated SH-SY5Y cells is still lacking. For 

instance, treatment with RA, which was the most extensively analyzed, produced 

controversial results (Korecka et al, 2013). Actually, it has been shown that 
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differentiating agent induced the expression of TH, suggesting a shift towards a 

DAergic phenotype (Lopes et al, 2010). However, other authors did not observe 

changes in the expression of key DAergic-cell markers in RA treated cells (Cheung 

et al, 2009). Moreover, RA treatment has been reported to induce a cholinergic 

phenotype (Zimmermann et al, 2004), evaluated as the increase of 

acetylcholinesterase and acetyltransferase activity compared with non-treated cells 

(Adem et al, 1987). In our analyses, it was observed that RA promoted the down-

regulation of all DA- and NA- related genes suggesting the loss catecholaminergic 

phenotype and supporting the possibility that these cells could acquire a cholinergic 

phenotype. In literature, it has been proposed that TPA-induced differentiation leads 

to a NAergic phenotype, as consequence of the TH stimulation and of a significant 

increment (200 fold) of NA content compared to undifferentiated cells (Jalava et al, 

1992; Pahlman et al, 1984). However, in this work we observed a general down-

regulation of catecholaminergic markers, which does not support the previously 

described phenotype. Finally, consistent with the NAergic phenotype ascribed to 

staurosporine-differentiated cells (Jalava et al, 1993), we found that this agent was 

responsible for a general increase of all DA/NA-related gene expression and, in 

particular of VMAT2 and DβH, key enzymes for NA synthesis.  
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  SH-SY5Y 

TPA TH AADC VMAT2 DβH 

4 days 0.75±0.02 0.68 ± 0.08 0.74 ± 0.04 0.73 ± 0.05 

7 days 0.18±0.06 0.33 ± 0.04 0.38 ± 0.03 0.25 ± 0.03 

RA TH AADC VMAT2 DβH 

4 days 0.14 ± 0.03 0.40 ± 0.03 0.30 ± 0.01 0.79 ± 0.05 

7 days 0.05 ± 0.02 0.10 ± 0.01 0.34 ± 0.02 0.40 ± 0.04 

Stauro TH AADC VMAT2 DβH 

4 days 1.42 ± 0.03 3.3 ± 0.2 83 ± 3 7.3 ± 0.4 

7 days 1.12 ± 0.03 2.7 ± 0.3 105 ± 2 7.9 ± 1.0 
 

Tab.3.1. Gene expression profile of the primary catecholaminergic markers after differentiation 

in SH-SY5Y cells after 4 and 7 day of differentiation. Tyrosine hydroxylase (TH), aromatic L-

amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2) and dopamine beta 

hydroxylase (DβH) mRNAs were analyzed using qRT-PCR and compared with undifferentiated cells, 

using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and RNA polymerase II (RPII) as 

housekeeping genes. Values higher and lower than 1 represent, respectively, up- and down-regulation 

of the genes after cell differentiation. The data are expressed as the mean ± SEM of three experiments. 
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Fig.3.5. Gene expression profile of CAergic markers in differentiated SH-SY5Y. After 4 and 7 

days of differentiation with TPA, RA and staurosporine, Tyrosine hydroxylase (TH), aromatic L-

amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2) and dopamine beta 

hydroxylase (DβH) mRNA levels were compared with levels in undifferentiated cells using qRT-

PCR. Expression is displayed on a Log2 scale. Positive and negative values indicated, respectively, 

up- and down-regulation of the genes relative to control cells (undifferentiated cells). For each gene, 

differences between differentiated and undifferentiated were tested for significance using Student’s t-

test. (*P<0.05, **P<0.01, ***P<0.001). 
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The effects observed in the BE(2)-M17 cell line after differentiation were less 

straightforward (Tab.3.2 and Fig.3.6). In general, for each differentiating agent used, 

the expression profiles observed at 4 and 7 days of treatment were very similar. The 

effects observed in the presence of TPA were rather mild (with the exception of the 

TH gene that was up-regulated ~3 times) and the phenotype did not seem to change 

in comparison to undifferentiated cells. Even in the presence of RA, the expression 

profiles of TH, AADC and DβH genes were only slightly different from 

undifferentiated control, while VMAT2 resulted from 6 to10 times down-regulated. 

As in the case of the SH-SY5Y cell line, among the differentiating agents tested 

staurosporine was the only one that increased the catecholaminergic phenotype of the 

cells. Nevertheless, in addition to VMAT2 and DβH genes, also the TH gene was 

strongly up-regulated (~8 times), in contrast with SH-SY5Y. BE(2)-M17 cells have 

been previously described to express choline acetyltransferase, acetylcholinesterase 

and dopamine-β-hydroxylase suggesting both cholinergic and NAergic properties 

(Andres et al, 2013). However, this is the only work available in literature, no further 

investigations have been described. Thus, our results become particularly relevant 

considering the current scanty characterization of this cell line.   
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BE(2)-M17 

TPA TH AADC VMAT2 DβH 

4 days 3 ±0.2 1.3 ± 0.10 0.67 ± 0.08 1.93 ± 0.19 

7 days 2.6 ±0.2 1.19 ± 0.10 0.75 ± 0.06 1.31 ± 0.15 

RA TH AADC VMAT2 DβH 

4 days 0.93 ± 0.06 1.34 ± 0.08 0.14 ± 0.01 0.58 ± 0.05 

7 days 0.85 ± 0.05 1.48 ± 0.12 0.11 ± 0.01 0.87 ± 0.07 

Stauro TH AADC VMAT2 DβH 

4 days 7.9 ± 1.5 1.49 ± 0.09 19.1 ± 1.5 21 ± 2 

7 days 8.2 ± 0.6 1.54 ± 0.11 36 ± 2 16.8 ± 1.1 
 

Tab.3.2. Gene expression profile of the primary catecholaminergic markers after differentiation 

in BE(2)-M17 cells after 4 and 7 day of differentiation. Tyrosine hydroxylase (TH), aromatic L-

amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2) and dopamine beta 

hydroxylase (DβH) mRNAs were analyzed using qRT-PCR and compared with undifferentiated cells, 

using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and RNA polymerase II (RPII) as 

housekeeping genes. Values higher and lower than 1 represent, respectively, up- and down-regulation 

of the genes after cell differentiation. The data are expressed as the mean ± SEM. 
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Fig.3.6. Gene expression profile of CAergic markers in differentiated BE(2)-M17 cells. After 4 

and 7 days of differentiation with TPA, RA and staurosporine, Tyrosine hydroxylase (TH), aromatic 

L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 (VMAT2) and dopamine beta 

hydroxylase (DβH) mRNA levels were compared with levels in undifferentiated cells using qRT-

PCR. Expression is displayed on a Log2 scale. Positive and negative values indicated, respectively, 

up- and down-regulation of the genes with respect to control cells (undifferentiated cells). For each 

gene, differences between differentiated and undifferentiated were tested for significance using 

Student’s t-test. (*P<0.05, **P<0.01, ***P<0.001). 
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3.5 Quantification of catecholamine levels 
To investigate whether the alterations of gene expression profile were 

associated to changes in the cellular content of the neurotransmitters DA and NA, 

their intracellular level (expressed as nanomoles per gram total proteins) has been 

quantified by HPLC coupled with an electrochemical detector. These analyses were 

performed in SH-SY5Y and BE(2)-M17 cells, before and after 7 days differentiation 

with the three differentiating agents (Tab.3.3).  

The DA and NA intracellular contents detected in undifferentiated SH-SY5Y 

cells were, respectively, 0.7 ± 0.1 and 1.7 ± 0.6 nmol g-1. Consistent with the down-

regulation of the four analyzed genes, treatment with TPA and RA decreased the 

content of neurotransmitter. Actually, the level of DA was below detection level, 

while NA content was reduced to 0.4 ± 0.2 with TPA and 0.2 ± 0.1 nmol g-1 with 

RA, supporting a potential shift from catecholaminergic to cholinergic phenotype. As 

expected, the effect observed after staurosporine-differentiation was particularly 

different. Indeed, DA and NA amounts were augmented to 2.4 ± 0.6 and 11 ± 3 nmol 

g-1, respectively, indicating that differentiation promotes a more pronounced NAergic 

phenotype.  

In SH-SY5Y cells, NA content was already measured in another study, upon 

TPA-, RA- and staurosporine differentiation. In agreement with our observations, it 

has been found that staurosporine treatment induced a consistent increase in 

intracellular NA levels (Prince & Oreland, 1997). In the same work, a moderate 

effects after TPA exposure was also identified, however this increase was not 

appreciated by other investigators (Jalava et al, 1993). As mentioned before, the 

phenotype of RA-treated SH-SY5Y cells is the subject of some controversy in the 

literature. Recently, RA has been described to suppress serotonergic, noradrenergic 

and cholinergic characteristics and actively promoted DA (Korecka et al, 2013), 

although others reported that this treatment developed a cholinergic phenotype 

(Zimmermann et al, 2004). In agreement with the latter study, here we found that RA 

differentiation inhibited DA and NA synthesis. 
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In undifferentiated BE(2)-M17 cells, these analyses revealed that the DA and 

NA content (9.2 ± 1.2 and 5.4 ± 1.7 nmol g-1, respectively) was higher than the 

values measured in SH-SY5Y cells. TPA treatment slightly increased the level of 

both neurotransmitters (11.3 ± 1.9 and 17.7 ± 3.0), which might be explained with 

the modest up-regulation of TH and DβH genes observed through qRT-PCR. 

Coherently with our gene expression analysis, treatment with RA did not affected 

DA and NA content, while the presence of staurosporine induced a strong increase of 

both DA and NA content. Even though few data are available regarding this cell line, 

it is worth mentioning that, consistent with our results, also in the case of SK-N-

BE(2) cells, from which BE(2)-M17 were subcloned, high levels of DA were 

detected although DβH activity was measured (Biedler et al, 1978). 

 DA NA 

SH-SY5Y undifferentiated 0.7 ± 0.1 1.7 ± 0.6 

SH-SY5Y TPA nd 0.4 ± 0.2 

SH-SY5Y RA nd 0.2 ± 0.1 

SH-SY5Y Stauro 2.4 ±0.6 11 ± 3 

BE(2)-M17 undifferentiated 9.2 ± 1.2 5.4 ± 1.7 

BE(2)-M17 TPA 11.3 ± 1.9 17.7 ± 3.0 

BE(2)-M17 RA 9.7 ± 1.5 7.5 ± 1.5 

BE(2)-M17 Stauro 40 ± 12 45 ± 14 
 

Tab.3.3. DA and NA contents detected in SH-SY5Y and BE(2)-M17 cell lines before and after 7 

days of differentiation. The values represent nanomoles of catecholamine per gram of proteins. The 

data were expressed as the mean ± SEM of at least 3 experiments. Nd: not detectable. 

To summarize, the proliferating and differentiating effects of three agents, 

RA, TPA and staurosporine, in SH-SY5Y and BE(2)-M17 human neuroblastoma cell 

lines were analyzed. Our results indicate that the BE(2)-M17 cell line, which has 

been poorly characterized in the past, emerges as a new experimental paradigm with 
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catecholaminergic phenotype more pronounced than that one observed in SH-SY5Y 

cells. Additionally, the differentiation induced with staurosporine not only promotes 

a mature neuronal-like phenotype but also enhances the this phenotype. 
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Aim of this thesis was to investigate the potential protective role of SODs and 

SOD mimetics against oxidative injury related to PD.  

Although the ethiopathogenic mechanisms of Parkinson’s disease (PD) are 

still unclear, several literature evidence suggest that oxidative stress plays a central 

role in both sporadic and familial forms of PD (Hwang, 2013). In the disorder, the 

dysregulation of ROS homeostasis and the consequent oxidative stress are the results 

of a complex scenario of molecular pathways. Indeed, different sources and 

molecular pathways have been associated to ROS generation, including protein 

aggregation, UPS impairment, mitochondrial dysfunction, neuroinflammation and 

dopamine (DA) metabolism (Dias et al, 2013). The key hypothesis of this work was 

that the inhibition of ROS overproduction, through antioxidant enzymes or molecules 

could block, delay or prevent the degeneration of dopaminergic (DArgic) neurons. In 

particular, we focused on SOD enzymes, because of their ability to dismutate 

superoxide anions, which are responsible for the downstream generation of more 

toxic species. Thus, the role of these enzymes as well as of small compounds, that 

mimic the native protein activity, has been investigated in vitro and in vivo as 

protective mechanism against oxidative injuries, related to PD. To this aim, two 

different experimental paradigms have been used: the first one was paraquat (PQ), 

whose chronic exposure has been identified as a risk factor for sporadic form of PD; 

the second one was PINK1 deficiency, which has been chosen as a model of genetic 

parkinsonism.   

PQ is a widely used herbicide, the main mechanism of its toxicity resides in 

its redox cycling within cells, that generates a massive oxidative stress leading to a 

consistent cell damage (Franco et al, 2010). In this thesis, PQ toxicity has been first 

estimated in human neuroblastoma SH-SY5Y cells. Our cytofluorimetric analyses 

showed that, after 48 hours of exposure, PQ induced cell death, through the apoptotic 

pathway. Afterwards, to explore whether SODs might counteract the PQ-induced 

oxidative damage, the cytosolic and the mitochondrialproteins were stably 

overexpressed in neuroblastoma cells. It resulted that only the mitochondrial SOD2 

significantly rescued the cytotoxicity induced by PQ. The selective effect of this 

enzyme suggests that this treatment directly impacts on mitochondrial functions. To 
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better elucidate and characterize the potential involvement of mitochondria in PQ 

toxicity, we measured ROS production in SH-SY5Y cells using the genetically 

encoded redox sensor roGFP2. Specifically, two isoforms of this indicator have been 

expressed, one localized in the cytosol (roGFP2) and the second one in the 

mitochondria (mt-roGFP2). Considering that ROS generation might precede cell 

death, our analyses were performed after 6 and 12 hours of PQ exposure. In 

agreement with this hypothesis, we found that the treatment significantly increased 

oxidative stress at mitochondrial level, while the cytosolic compartment was not 

affected. Being that mitochondrial ROS have been proposed to modulate the 

morphology of these organelles (Dagda et al, 2009), we also analyzed the effects of 

PQ on mitochondrial network using the fluorescent probe, mito-RFP. Indeed, we 

observed that PQ-induced oxidative stress triggered mitochondrial fragmentation. 

Overall, in our in vitro model, PQ toxicity affected extensively mitochondria, 

increasing ROS production in these organelles, which in turn promoted 

mitochondrial fragmentation. These observations are consistent with the protection 

exerted by mitochondrial SOD2 against the herbicide and support the hypothesis that 

this enzyme might have a relevant function in hampering oxidative damage in PD.  

To further validate our results, the role of SODs has been studied in vivo, 

using Drosophila melanogaster. Thus, fly lines, ubiquitously overexpressing either 

the cytosolic or mitochondrial homolog proteins, were exposed to a lethal 

concentration of PQ (5 mM). The treatment strongly impacted on fly survival, which 

was significantly recovered only by Sod2 overexpression. Coherently with our in 

vitro results, this selective protection of the mitochondrial isoform confirmed that 

acute PQ exposure induced toxicity through a mechanism that mainly involved 

mitochondria. The picture that emerges using a sub-lethal concentration of PQ is 

different and quite complex. Actually, when flies were exposed to 1 mM PQ, the 

treatment did not affected survival but motor performance. Under these conditions, 

the mitochondrial Sod2 only partially ameliorated the motor phenotype, which was, 

on the contrary, almost completely restored by the overexpression of the cytosolic 

isoform. Considering that the chronic exposure to PQ was correlated to PD onset, we 

overexpressed each enzyme exclusively into the dopaminergic neurons. In this case, 
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Sod2 did not improve at all the motor dysfunction induced by 1 mM of PQ, while the 

cytosolic Sod reversed the locomotor defects. Our results support the view that the 

chronic exposure to PQ is mostly related to a cytosolic damage, which seems to be 

particularly relevant for the correct functioning of DAergic neurons. Our hypothesis 

is that some cytosolic processes, such as DA metabolism, occur inside these neurons, 

which might amplify the toxicity derived from the PQ- induced production of free 

radical species resulting in a particular vulnerability of DAergic neurons to oxidative 

stress. 

Having demonstrated the protective role of both SODs against PQ toxicity, 

we thoroughly investigated the effects of a SOD mimetic. Although the direct 

administration of SOD enzymes, from bovine origin, proved to have beneficial 

effects in many diseases, both pre-clinically and clinically [see (Salvemini et al, 

2002)], SOD-mimetic compounds were developed to circumvent several drawbacks 

associated with the use of native enzymes, such as immunogenicity and the inability 

to cross the BBB. Like the native enzymes, these compounds are molecules able to 

catalytically dismutate superoxide, which represents a great advantage in comparison 

to other antioxidant compounds. In this study, we tested the activity of the Mn(II)-

pentaazamacrocyclic-based complex M40403, that acts selectively as scavenger for 

superoxide anion (Salvemini et al, 2002). The effect of this compound was first 

compared with other SOD mimetics against PQ toxicity in SH-SY5Y cells. 

Interestingly, among the different molecules tested, only M40403 showed significant 

beneficial properties decreasing PQ-induced cell death. In addition, this molecule 

reversed the mitochondrial fragmentation promoted by PQ. Moreover, when tested in 

vivo, M40403 succeeded in rescuing the lethality generated by elevated concentration 

of PQ as well as the locomotion behaviour of flies exposed to  a chronic 

concentration. Taken together, these analyses reveal that M40403 is able to rescue 

oxidative damage induced by PQ both in vitro and in vivo, supporting a potential use 

as therapeutic agent. 

In this research line we focused also on PINK1 deficiency. PINK1 gene 

mutations have been identified as causes of recessive early onset parkinsonism 

(Valente et al, 2004). This gene encodes for a serine/threonine kinase that has been 
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reported as important regulator of mitochondrial quality control (Chu, 2010). 

Furthermore, several evidence suggested that the protein is also involved in the 

regulation of the cellular oxidative status (Chien et al, 2013). Thus, it has been 

selected to explore the effects of SODs overexpression and M40403 treatment. 

First, we induced PINK1 gene disruption in SH-SY5Y cells, using 

CRISPR/CAS technology for genome editing. In literature, it has been largely 

demonstrated that one of the most prominent phenotype in PINK1-deficient 

mammalian cells is  mitochondrial fragmentation (Dagda et al, 2009; Exner et al, 

2007). Coherently with previous works, we found that loss of PINK1 strongly 

perturbed the mitochondrial network resulting in its fragmentation. To evaluate 

whether SODs overexpression might ameliorate the observed phenotype, PINK1 

knock out has been induced in SOD1 and SOD2 stably overexpressing cells and 

mitochondrial morphology was investigated. Even though further experiments are 

required, our preliminary analyses suggest promising results. Indeed, the cytosolic 

SOD1 seemed able to slightly reduce the mitochondrial morphological alterations; 

while the effect of the mitochondrial SOD2 appeared more evident, reducing 

mitochondrial fragmentation and allowing the maintenance of a healthy 

mitochondrial network.  

The potential protective activity of Sods has been also investigated in PINK1 

mutant flies, which exhibited a strong phenotype, that includes a severe motor 

impairment (Clark et al, 2006). In these mutants, the ubiquitous overexpression of 

Sods was achieved using the UAS/GAL4 system and the effects were analyzed in 

terms of motor performance. Surprisingly, we observed that only the overexpression 

of cytosolic Sod was able to significantly improve the locomotor activity of these 

flies. Although the mechanism underlying this selective protection remains unclear, 

the data suggest that PINK1 might be also involved in other pathways that are not 

strictly correlated with mitochondrial maintenance and functioning. 

PINK1 deficient condition has also been used to test the effect of M40403 in 

vitro and in vivo. In SH-SY5Y cells, the compound seemed able to partially reverse 

mitochondrial fragmentation, although other experiments are necessary to confirm 
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this improvement. Coherently with our preliminary data in cells, the M40403 

administration during larval development was able to rescue the motor impairment 

observed in PINK1 mutant flies. In agreement with our findings concerning PQ 

toxicity, these results highlight the protective effect of this compound against 

oxidative stress in PD models. 

Finally, to better characterize the properties of the SOD mimetic M40403 and 

to understand whether this molecule can act as superoxide scavenger both in the 

cytosol and mitochondria, its protective effect has been tested in Sod and Sod2 

deficient flies. These fly lines were characterized by a reduced life span (Wicks et al, 

2009). Therefore, the effect of this drug was tested for 20 days in terms of survival. 

The results of these experiments demonstrated that M40403 was able to partially 

replace the loss of either Sod or Sod2 suggesting that it can act both at cytosolic and 

mitochondrial level. 

Starting from the data presented in this thesis, it might be worth  

reconsidering the use of antioxidants in PD therapy, by testing the protective role of 

M40403 molecule (or its analogues) in clinical trials. Specifically, SOD mimetic 

compounds belonging to the M40403 family could be evaluated for their use as a 

complementary therapy to the currently adopted treatments for PD. Unlike other 

SOD mimetics, these molecules could offer several advantages. First, they are be 

able to cross the BBB (Salvemini et al, 1999), which is crucial requirement of a 

potential drug aimed to neurodegenerative disorders. Actually, the in vivo 

distribution of M40403 has been described in rats and after injection the drug was 

found widely distributed, also in the brain (Salvemini et al, 1999). Furthermore,  

M40403 presents a great stability and selectivity as scavenger for superoxide anion 

(Muscoli et al, 2003). Finally, this compound was already tested in phase I and phase 

II clinical trials for inflammatory diseases resulting safe and well-tolerated. 
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In parallel to the study described above, we carried out a second project line 

aimed to the characterization of two human neuroblastoma cell lines, SH-SY5Y and 

BE(2)-M17, in order to identify between them the most reliable model for PD 

studies. 

Neuroblastoma cell lines are widely used in in vitro studies to analyze 

cellular pathways involved in the pathogenesis of PD. Although their use presents 

several advantages, these cells are undergo mitosis, are unsynchronized and do not 

exhibit the typical markers of mature neurons (Xie et al, 2010). In some 

circumstances, undifferentiated SH-SY5Y and BE(2)-M17 can be appropriately 

used, while in other studies their differentiation toward a neuronal-like phenotype 

could be preferred. Because DA metabolism is considered a key factor for the 

preferential degeneration of nigrostriatal neurons in PD, to provide a reliable cellular 

model we investigated the ability of three different agents, phorbol ester 12-O-

tetradecanoylphorbol-13-acetate (TPA), Retinoic acid (RA), staurosporine , to drive 

a neuronal differentiation of these cell lines toward a DAergic phenotype. Although 

SH-SY5Y cells are largely used in PD research, an unequivocal characterization of 

their phenotype is still lacking, due to their ability to synthetize different 

neurotransmitter, including the catecholamines DA and noradrenaline (NA). For this 

reason, we decided to re-evaluate morphological and neurochemical changes induced 

by neuronal differentiation in this cell line. Additionally, we decided to analyze 

BE(2)-M17 cell line before and after differentiation, owing to the current scarce of 

knowledge of their phenotype. 

The effects induced by TPA , RA and staurosporine, were first explored for 

their effects on promoting neuronal differentiation of both cell lines. To this aim, 

growth inhibition, cell morphology and expression of late neuronal markers were 

analyzed. Our results indicate that all the analyzed chemicals affect cell proliferation 

and morphological features with efficacies that depend on the treatment and on the 

cell line. Indeed, staurosporine and RA treatments were the most efficient to inhibit 

cell growth, respectively, in SH-SY5Y and BE(2)-M17. Moreover, while TPA 

resulted in the formation of few and short processes in each cell line, RA and 

staurosporine promoted the formation of a complex network of neuritic extensions. 
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In addition, immunofluorescence analysis revealed that these two compounds 

induced the expression of mature neuronal markers, β-III-tubulin and neurofilament, 

in SH-SY5Y and as well as in BE(2)-M17 cells. 

Once the capability of each cell line to differentiate and acquire a neuron-like 

phenotype was evaluated, we investigated whether the differentiation impacts on 

catecholaminergic pathways in these cells. To address this issue, we first assessed the 

consequence of the three differentiating treatments on the expression profile of the 

major genes involved in DA and NA metabolism, tyrosine hydroxylase (TH), 

aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transporter 2 

(VMAT2) and dopamine beta hydroxylase (DβH). In the case of SH-SY5Y cells, both 

RA and TPA promoted the down-regulation of all the considered genes, suggesting a 

loss of the DA/NAergic phenotype. In contrast, staurosporine treatment resulted in 

up-regulation of all DA- and NA-related genes and, in particular, of VMAT2 and 

DβH. Although the effects of TPA and RA on BE(2)-M17 cells were less 

pronounced, even in this case staurosporine induced the up-regulation of the genes 

involved in metabolism of DA and NA neurotransmitters. These data demonstrate 

that the cathecholaminergic phenotype in both SH-SY5Y and BE(2)-M17 cells can 

be modulated through differentiation. Moreover, HPLC Analyses showed that 

undifferentiated SH-SY5Y cells accumulate both DA and NA, but the NA amount 

was higher than DA level. Coherently with the observed gene down-regulation, TPA 

and RA-induced differentiation decreased the content of both neurotransmitters. 

Upon staurosporine treatment, consistent with the increased expression of DβH gene, 

we observed a large increase of the NA content relative to control cells. In 

conclusion, SH-SY5Y cells exhibit a more marked NAergic phenotype, which is 

further enhanced following staurosporine-induced differentiation. The amounts of 

DA and NA detected in undifferentiated BE(2)-M17 cells were considerably more 

elevated in comparison with SH-SY5Y , indicating a more pronounced DA/NAergic 

phenotype. In spite of the presence of DβH, which is expected to convert DA into 

NA, DA level was  even higher than NA content. Consistent with the gene 

expression profile analysis, RA and TPA did not substantially alter the amount of 

each neurotransmitter. On the contrary, following the treatment with staurosporine, 
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we observed a large increase of both DA and NA. Overall, BE(2)-M17 cells exhibit a 

clear catecholaminergic phenotype and the differentiation induced with staurosporine 

not only promotes a mature neuronal-like morphology but also enhances this 

phenotype. 

In conclusion, our results indicate that the BE(2)-M17 cell line emerges as a 

new and alternative experimental paradigm with with a catecholaminergic phenotype 

that differ substantially from that of the SH-SY5Y cells, suggesting different fields of 

application for the two cell lines. As the presence of DA appears to be an important 

requirement for a cell model, the use of the BE(2)-M17 cell line appears more 

suitable. On the contrary, the use of the SH-SY5Y cell line should be preferred to 

carry out studies in which the interference due to the presence of DA needs to be 

minimized.  

In light of these results, we might better understand some data obtained in the 

first part of this thesis. Actually, studying the protective role of SODs in vitro and in 

vivo we observed some differences. Indeed, in SH-SY5Y cells SOD2 rescued PQ 

toxicity and PINK1 deficiency, while in Drosophila the cytosolic isoform was 

particularly protective in DAergic neurons. The different effects identified in these 

two approaches might be explained with the prominent NAergic phenotype of 

undifferentiated SH-SY5Y cells. Therefore, this model could not allow to thoroughly 

evaluate the contribution of DA metabolism in oxidative stress damage induced by 

PQ toxicity or PINK1 deficiency. In contrary, BE(2)-M17 cells might be a more 

suitable model to further investigate this issue.  
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AADC aromatic L-amino acid decarboxylase 

AAV adeno-associated virus 

BBB blood brain barrier 

Cav voltage-sensitive L-type calcium (Cav) channels 

CCCP Carbonyl cyanide m-chlorophenyl hydrazone 

CRISPR clustered regularly interspaced short palindromic repeats 

DA dopamine 

DAergic dopaminergic 

DAQ dopamine quinone 

DAT dopamine transporter 

DBS deep brain stimulation 

DTT Dithiothreitol 

DβH dopamine β hydroxylase 

ETC electron transport chain 

FITC fluorescein isothiocyanate 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GSH glutathione  

GSSG oxidized glutathione  

HPLC high performance liquid chromatography 

IFN-γ interferon-γ 

IMM inner mitochondrial membrane 

LB Lewy bodies 

LN Lewy neurites 

LPS lipopolysaccharide 

MAO monoamine oxidase 

Mfn mitofusin 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

mt-roGFP2 mitochondrila-redox sensor GFP2 
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NA noradrenaline 

NAergic noradrenergic 

OMM outer mitochondrial membrane 

OXPHOS oxidative phosporilation 

PAMPs pathogen-associated molecular patterns 

PD Parkinson’s disease 

PI propidium iodide 

PKC Protein kinase C 

PPR pattern recognition receptor 

PQ paraquat 

PTP permeability transition pore 

qRT-PCR quantitative Reverse transcriptase-polymerase chain reaction 

RA retinoic acid 

RNS reactive nitrogen species 

roGFP2 redox sensor GFP2 

ROS reactive oxygen species 

RPII RNA polymerase II 

RT-PCR Reverse transcriptase-polymerase chain reaction 

SN Substantia Nigra 

SNpc Substantia Nigra pars compacta 

Sod Drosophila homolog cytosolic SOD1 

SOD1 human superoxide dismutase 1 (cytosolic Cu,Zn-SOD) 

Sod2 Drosophila homolog mitochondrial SOD2 

SOD2 human superoxide dismutase 2 (mitochondrial Mn-SOD) 

SOD3 human superoxide dismutase 3 (extracellular Cu,Zn-SOD) 

TH tyrosine hydroxylase 

TPA 12‐O‐tetradecanoylphorbol‐13‐acetate 

Ub ubiquitin 

UCHL1 Ubiquitin carboxyl-terminal esterase L1 
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UPS ubiquitin proteasome system 

VMAT2 vesicular monoamine transporter 2 

α-syn α synuclein 

 


