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Riassunto 

 

L‘incremento di scambi commerciali internazionali avvenuto ultimi decenni ha portato ad un 

aumento del rischio di introduzione di specie invasive, organismi che vengono introdotti in nuovi 

ambienti al di fuori del loro areale d‘origine. Questi sono soprattutto piante ed insetti. Tra gli insetti, 

di particolare interesse forestale risultano essere le specie xilofaghe. Queste introduzioni hanno 

gravi effetti economici ed ecologici, ed è un obiettivo prioritario l‘intercettazione e l‘eradicazione di 

queste specie nei siti di introduzione. 

Nel presente lavoro viene presa in considerazione il coleottero cerambicide di origine 

asiatica Anoplophora glabripennis (Motschulsky). Questo cerambicide rappresenta una grande 

minaccia per le foreste temperate dell‘emisfero boreale, e ricorre in molte aree di infestazione in 

Europa e Nord America. La consistente bibliografia esistente, la sua biologia e la sua accezione 

cosmopolita ne fanno una specie modello estremamente interessante. Un‘area di infestazione 

presente in Nord Italia (Regione Veneto) è stato il sito di studio della specie. 

La tesi si struttura in quattro parti. La prima (capitolo 1) è un‘introduzione sulle specie 

invasive e su A. glabripennis in particolare, fornendo le conoscenze necessarie alla comprensione 

dei capitoli successivi. 

La seconda parte (capitolo 2) presenta un‘analisi delle dinamiche di introduzione di A. 

glabripennis tramite uno studio dendrocronologico delle piante colpite, che identifica i punti di più 

antica datazione e ne spiega la causa dell‘introduzione. 

La terza parte è costituita da tre capitoli (3-4-5) che considerano l‘insediamento di A. 

glabripennis in un nuovo ambiente e l‘adattamento a nuove piante ospiti, investigando inoltre quali 

sono gli effetti di diversi ambienti e ospiti. Il capitolo 3 indaga la fenologia e biologia di A. 

glabripennis in nord Italia;  il capitolo 4 tratta delle preferenze di A. glabripennis a le diverse specie 

ospiti; il capitolo 5 indaga infine l‘interazione tra ambiente e pianta ospite, ricercando le cause della 

mancata colonizzazione delle aree forestali confinanti l‘infestazione considerata nello studio.  

La quarta e ultima parte presenta un‘analisi delle dinamiche di dispersione di A. 

glabripennis negli ambienti di neocolonizzazione, sviluppando un approccio basato sulla probabilità 

di attacco di un nuovo ospite in relazione alla distanza da una pianta colpita. 

Nel complesso, lo studio contribuisce alle conoscenze sulla specie, fornendo dati provenienti 

da una nuova area di infestazione. Non solo, ricerca anche spiegazioni ad alcune caratteristiche di A. 

glabripennis, quali la scarsa attitudine alla colonizzazione di aree boschive e la variabilità intrinseca 
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nella scelta delle specie ospiti. Viene introdotto, infine, un nuovo approccio alla stima di 

dispersione della specie che potrà essere applicato anche ad altri organismi invasivi. 
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Abstract 

 

The increasing international trade occurred in the last decades has raised the risk of 

introduction of invasive species. These are organisms introduced in new environments located out 

of their native area. Plants and insects represent the most common invasive species. Concerning 

insects, wood borers are the most important for forest ecosystems. Introductions of invasive alien 

species have strong ecological and economic effects on native fauna and their interception and 

eradication are prior goals. 

In the present work, the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), 

recently discovered in north Italy has been considered. This longhorned beetle is a threat for 

temperate forests of the northern hemisphere, accounting many infestation sites in Europe and 

North America. The rich literature, its biological characteristics and the wide distribution makes of 

A. glabripennis an appropriate model species. The thesis is divided into four main parts: the first 

(chapter 1) is an introduction about invasive species with special attention on A. glabripennis, 

providing the knowledge for understanding the following chapters.  

The second part (chapter 2) investigated the beetle introduction and spreading pathways in 

the infestation site through a dendrochronological study of the infested plants, identifying the oldest 

spot and the possible causes of introduction. 

The third part is composed of three chapters (3-4-5) focused on establishment into a new 

environment and adaptation to novel hosts, analysing the interactions between different 

environments and host preference. Chapter 3 studies insect phenology and life history in N Italy. 

Chapter 4 investigates the host-plant preferences. Effect of habitats and host plants is addressed in 

chapter 5, where the colonization failure of forest areas nearby the infestation is investigated. 

A last part (chapter 6) presents an analyses of the adult dispersal, developing an approach 

based on the probability of attack from an attacked host to an healthy one. 

The study contributes on the global knowledge of Anoplophora glabripennis, providing data from a 

new infestation area. Moreover, it looks for plausible explanation of species traits, such as the 

variation on host preference between populations. Finally, it is proposed a new approach to 

dispersal evaluation, which can be developed also on other invasive organisms. 
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INVASIVE ALIEN SPECIES 

 

World biota has been depicted by evolution of species over millions of years and insects 

themselves evolved in the last 400 millions of years. Population isolation is the main cause involved 

in speciation and geographical barriers maintain species isolated one to other. Sometimes changes 

occur determining a species to be introduced in a new community where it was not present before. 

This has normally happened in the past, but the increasing human activity led to an abrupt increase 

of the frequency of new introductions (Roques et al., 2009), never seen before (Hulme, 2009). 

These introductions are either intentional, such as new crop plants, or incidental, as their parasites. 

In particular, the international trade characterizing the last 200 years of human history led to the 

incidental introduction of many species (di Castri, 1989). While most of the species introduced fail 

to survive in the new environment, sometimes establishment can take place (Mack et al., 2000). 

Once an organism is introduced into new environments located out of its natural range of 

distribution either intentionally or unintentionally is defined as invasive alien species (IUCN 2000). 

Alien invasive insects affect the hoisting environment through direct interactions, for instance 

feeding on native plants, or indirect interactions, such as competition. The ecological effects vary at 

different levels of the system and at different spatial scales (Kenis et al., 2009). Enormous damages 

may be caused both to ecosystems and economies and invasive alien species are well recognized as 

one of the biggest threat for biodiversity (Kenis et al., 2009). 

A biological invasion can be divided into three main phases: arrival, establishment and 

spread (Liebhold and Tobin 2008). Whereas the arrival is primary associated with the management 

activities of quarantines and inspections, the other two phases concern adaptation to the new 

environment and interactions with the native hosts. In this study, attention has been posed mainly 

on the establishment and the spread, which represent key periods in which an invading population 

adapts, grows up and expand its distributional ranges.  

This work aims on the study of alien wood borers introduced in new areas as a consequence 

of the increasing goods trade. Establishment into a  new environment, adaptation to new host plants 

and spreading dynamics have been the main aspects considered. Because of the large number of 

invasive species reported in the last decades (Hulme, 2009), the attention was focused on a study 

species, which represents, in terms of hazards and eradication efforts, an excellent example of 

invasive species. 
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The ―Asian Longhorn Beetle‖ (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera 

Cerambycidae), is a wood borer belonging to the subfamily of Lamiinae, polyphagous on broad-leaf 

species. This species, native from China, displays a broad polyphagia on alive, healthy trees and it 

is involved in many invasions over the temperate areas of Asia, Europe and North America, 

representing a great threat for their broadleaf forests. Because of it, this pest is attracting a 

significantly increasing attention from the scientific world (Hu et al. 2009, Haack et al. 2010).  

 

 

 

Anoplophora glabripennis (The Asian Longhorned Beetle) 

 

Description 

ALB  has glossy black adults with 10-20 distinct irregular-shaped patches on the elytra (Fig. 

1), although in rare instances the number of patches ranges from 0 to 60. Patch colour is usually 

white, but can be shades of yellow to orange in the nobilis form. Body length usually ranges 

between 17 and 40 millimetres. Antennae are composed of 11 segments, with a banding pattern in 

which the basal portion of each antennomer is pale blue or white and the distal portion is black (Fig. 

2). The ratio of antennal length to body length is about 2 for males and 1.5 for females (Hajek et al., 

2004). Eggs are oblong, white, and 5-7 mm long (Fig. 3). Larvae are legless, cream-colored and 30-

50 mm long when mature (Fig. 3). Larvae have a pigmented pronotal shield characteristic of the 

specie Pupae are whitish and 27-38 mm long. 

 

Fig. 1: Adult of Anoplophora glabripennis (photo by author).  
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Fig. 2: Detail of elytra and antennae of ALB (Photo by pest and disease image library) 

 

 

 

Fig. 3: Egg and larvae at different instars of Anoplophora glabripennis (Photos by L.R. Barber) 
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Taxonomy 

The genus Anoplophora is composed of 36 species (Lingafelter & Hoebeke, 2002) that 

occur throughout Asia, with the highest diversity in tropical and subtropical regions. Elytra 

characters are important morphological characters used for distinguishing A. glabripennis from 

other similar species. The similarities among all the Anoplophora species have often resulted in 

taxonomic confusion (Fukaya, 2003). It has been suggested that A. glabripennis from Northern 

China and from Southern China are actually two separate species (Chen, 1989), although this is not 

generally accepted. In recent years, the relationship between the two most closely-related species 

within Anoplophora, A. glabripennis and A. nobilis Ganglbauer has been investigated  (Gao et al., 

2000; Tang et al., 2004). A study of external morphology shows that they have the same 

microreticulations at the elytral base, although there is a variation in colour of the elytral spots 

(white in A. glabripennis, yellow in A. nobilis). These species are usually found in the same areas 

and they utilize similar host species (An et al., 2004). Analyses of peroxidises and esterase enzymes 

were compared and no significant differences were found (Zhou et al., 1995). Results obtained from 

studies using RAPD also suggest they belong to the same specie (An et al., 2004). To solve the 

uncertainty, cross-mating experiments were conducted between A. glabripennis and A. nobilis. The 

results obtained showed that the F1 generation could produce a viable F2 generation (Gao et al., 

2000). Therefore, A. glabripennis and A. nobilis are now regarded as two forms of A. glabripennis, 

in agreement with Lingafelter & Hoebeke (2002). 

 

Geographic distribution 

A. glabripennis is native from China and South Korea (Cavey et al. 1998; Lingafelter & 

Hoebeke, 2002; Williams et al. 2004a). In China A. glabripennis occurs in the regions of Liaoning, 

Jiangsu Shanxi, Henan and Hubei (Yan, 1985) where it is known since the Qing dynasty (1644 - 

1912). 

Anoplophora glabripennis was originally restricted to Asia, being present in four climatic 

zones of China and Korea (Cavey et al., 1998; Lingafelter & Hoebeke, 2002; Williams et al., 

2004a). In China, this beetle was first detected in the eastern regions, extending from Liaoning 

to Jiangsu and to Shanxi, Henan, and Hubei (Yan, 1985). After exotic tree species (e.g. 

Populus) that were suitable breeding sites for A. glabripennis had  been planted over large areas, 

especially in the  north,  and had matured (Zhao et al ., 2007), this beetle was  recorded  

throughout most of the whole country, with the exception of the central Asian provinces of 

Qinghai, Xinjiang and Tibet (Li & Wu, 1993). However, in recent years, A. glabripennis was also 

found in Tibet (Wang et al., 2003) and Xinjiang Province (Y.Q. Luo, unpublished data). 
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Studies in natural forests in South Korea, where A. glabripennis  is native but not common, suggest 

that these beetles are naturally adapted to riparian habitats and, thus, edges of habitats; this 

hypothesized specialization for edges of habitats helps to account for the ready adaptability of A. 

glabripennis to fragmented and disturbed habitats (Williams et al ., 2004a). 

An unresolved question is whether A. glabripennis is also indigenous to Japan. On the 

basis of a collection record from 100 years ago (Cavey et al., 1998), Japan has been included in 

the indigenous area of A. glabripennis (Yan & Qin, 1992; Zhang et al., 2002). However, 

according to Makihara (2002), A. glabripennis is not present in Japan at the present time, 

lending support to suggestions that it is not native to Japan. 

 

Life history 

Anoplophora glabripennis usually takes one year to complete its life cycle, although two 

years is common (Keena MA, 2005). In China, ALB requires 1-2 years to develop from egg to adult 

and generally overwinters as a larva, although it has been found on rare occasions to overwinter as 

an egg or pupa (Li & Wu, 1993). Voltinism may vary as a function of local climatic conditions, and 

a significant correlation has been established with altitude. For example, in inner Mongolia 

(northern China), a single generation takes 2 years to develop, whereas, in Taiwan, one generation 

per year has been documented. In Shandong Province (central-eastern China), approximately 90 % 

of individuals complete one generation in one year. It has been estimated that overall in China about 

80% of individuals can complete their development within one year and less that 20% require 2 

years. However, the time to complete one  generation  may vary among populations in a single  

area, depending on the type of host in which the  larvae develop.  

Under field conditions, it has been calculated that, to complete metamorphosis, A. 

glabripennis needs 1264.2 accumulated degree-days  (DD) at  a developmental threshold of 

13.4°C  (Yang et al ., 2000). 

Depending on local temperatures, adults have been observed over all their areas from April 

to December, with peak activity usually during May to July.  

The initiation of adult emergence is influenced by accumulated annual temperature (Zhao 

& Yoshida, 1999). Studies in China showed that male adults live for 3 - 50 days, and females live 

for 14 - 66 days (Li & Wu, 1993), whereas laboratory studies in the U.S.A. reported a longevity of 

approximately 80 and 100 days at 25◦C in males and females, respectively (Keena, 2006).  

Adults conduct maturation feeding for 10-15 days before initiating oviposition, usually feeding on 

twigs, petioles, and veins of leaves (Fig. 4). 
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Fig. 4: Adult maturation feeding signs (Photo by D. Morewood). 

 

Mate-finding is mediated by contact and short range pheromones (He & Huang , 1993).  

ALB typically initiates oviposition along the upper trunk and main branches. The females usually 

chew a distinct funnel-shaped oviposition pit through the bark and inject a single egg beneath the 

bark (Fig 5). Chinese studies have reported that eggs need 8-12 days to mature (Li & Wu, 1993).  

 

 

Fig. 5: Anoplophora glabripennis oviposition pit on Salix sp. Tree (photo by author). 

 

After eggs are laid and before they hatch, the inner part of the bark surrounding the 

oviposition site becomes degraded. After eggs hatch, the larvae begin to feed on the decayed 

phloem around the oviposition site. As they progressively move under the bark, away from the egg 
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niche, the second instars larvae feed primarily on the healthy phloem and feed little on the nearby 

xylem. 

They start tunneling into the xylem in the late third or early fourth instars. The larval 

galleries are at first horizontal and slightly curved but galleries later turn upward, usually away from 

the roots. As the larvae tunnel, they expel frass from the initial oviposition site. At pupation, each 

larva creates a chamber near the outer bark. The prepupal stage is followed by a pupal stage 

(average 19.6 days). After melanization, adults spend several days resting before chewing the exit 

hole. It typically measures 10-15 mm in diameter, but can range from 6 to 20 mm (Lingafelter & 

Hoebeke, 2002) 

The larger larvae are always well protected inside the heartwood and are scarcely affected by the 

outside environment, which includes being protected from chemical pesticides to tree surfaces. 

 

Host trees  

 

Anoplophora glabripennis is a highly polyphagous species. Many tree species from several 

family (at least 15) have been reported as hosts in Asia, Europe and North America (Gaag & 

Loomans, 2014). However, complete development has not be confirmed on all tree species listed as 

possible hosts (Smith et al., 2009). In its native range, ALB infests trees primarily in the genera 

Acer (Sapindaceae), Populus (Salicaceae), Salix (Salicaceae), and Ulmus (Ulmaceae). Several other 

genera have been reported as occasional hosts in Asia (Lingafelter & Hoebeke, 2002). 

In the United States, ALB has completed development on species of Acer (Aceraceae), 

Aesculus (Sapindaceae), Albizia (Fabaceae), Betula (Betulaceae), Cercidiphyllum 

(Cercidiphyllaceae), Fraxinus (Oleaceae), Platanus (Platanaceae), Populus, Salix (Salicaceae), 

Sorbus (Rosaceae), and Ulmus (Ulmaceae) (Haack et al., 2006). Acer was the most commonly 

infested tree genus in the United States, followed by Ulmus and Salix. In Canada, complete 

development has been confirmed only on Acer, Betula, Populus, and Salix, although oviposition has 

occurred on other tree genera. Acer was the most commonly infested tree genus in Canada (Turgeon 

et al., 2007). In Europe, complete development has been recorded on Acer, Aesculus, Alnus, Betula, 

Carpinus, Fagus, Fraxinus, Platanus, Populus, Prunus, Salix, and Sorbus. The top five host genera 

infested in Europe, in decreasing order, are Acer, Betula, Salix, Aesculus, and Populus (Herard et 

al., 2006). 
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Host - plant finding and selection 

 

The ability of perceive and respond to volatile organic compounds (VOCs) released by host 

trees plays an important role in the host selection and reproduction of cerambycid species (Allison 

et al., 2004). Several research projects have focused on the effects of VOCs released from the 

trunks or leaves of host species on adults. For example, an attraction test was performed using the 

high susceptible host A. negundo and adults of A. glabripennis (Wen et al., 1999). More than 66% 

of the beetles within a radius of 100 meters were attracted to feed on A. negundo. In the same study, 

the greatest distance from which A. glabripennis could be attracted was found to be 240 meters. To 

determine when the higher quantity of VOCs is released by A. negundo, a study on the VOCs 

releasing was performed at different times in summer (Li et al., 2003). The quantities of VOCs 

released during the day varied throughout the summer: in July, the highest peak was found at 14.00 

h, whereas in August, the peak was at 10.00 h (Li et al., 2002). 

Because elevated damage by ALB has been reported to occur on water stressed A. negundo 

trees, the VOCs released from water stressed plants were investigated (Jin at al., 2004). The results 

obtained showed that, three compounds (butyl-alcohol, pentyl-alcohol, cis-3-hexenol) play an 

important role in signaling to A. glabripennis the presence of water stressed trees susceptible to the 

insect attack. Moreover, these results are in agreement with the general observations from Chinese 

poplar forests indicating that A. glabripennis populations increase the outbreak levels after trees 

have undergone several years of drought stress (Gao et al., 1997). 

Host selection by A. glabripennis may also be driven by some repellent volatiles that signal 

the presence of non-host trees. One compelling example is given by the high resistance of callery 

pear (Pirus calleryana), a native of China that is resistant to both larvae and adults of ALB 

(Morewood et al., 2004). Compared with other tree species, the insect laid few eggs on this plant, 

and the few larvae that hatched on callery pear fail to survive. Adults beetles feeding on callery pear 

had reduced longevity and females feeding only on callery pear failed to develop any eggs. 

These negative effects may be caused by the chemical composition of the tree, including 

toxic compounds and/or secondary metabolites that interfere with normal beetle development 

(Morewood et al., 2004). In fact, two other plants, Ailanthus altissima and Melia azedarach have 

strong negative effects on the larval growth of A. glabripennis (Zhao et al., 1994). The 

monoterpenes b-pinene and b-caryophillene have been identified from these trees and effectively 

repel ALB adults (Tang et al., 1999). 
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Pheromones 

 

Studies have been conducted to characterize the pheromones of A. glabripennis. Preliminary 

experiments have shown that male orientation is influenced by volatiles released by females (Li et 

al., 1999). Further investigations revealed that two dialkyl either volatiles are potential male 

produced pheromones in this specie (Zhang et al., 2002). They are secreted by males in a ratio of 

1:1 and they elicit strong responses in both males and females. Olfactometer experiments showed 

that they were significantly attractive to adults, although they do not seem to be involved in sex 

recognition (Zhang et al., 2002). 

GC-MS (Gas Chromatography – Mass Spectroscopy) analysis of female cuticular extracts, 

showed that five monounsaturated compounds were  constantly more abundant in females that in 

males (Zhang et al., 2003). Males attempted to mate when contacting a surface coated with a 

synthetic mixture of these compounds, indicating that the blend effectively elicits copulatory 

behavior in males (Zhang et al., 2003). 

It is often very difficult to distinguish between sex, aggregation and defense pheromones in 

coleopteran species, and individual compounds can function in several ways (e.g., see Suzuki et al., 

1988). Thus, it is possible that, for A. glabripennis, the female-produced contact sex pheromone or 

the male-produced pheromone resulting in attraction may also have additional functions. 

 

Symbiotic relationships 

 

A. glabripennis is a woodborer that feed for the most part of its life of durable plant 

materials, mainly lignified and nutritionally poor. The mouth system and the digestion apparatus are 

the morphologic elements that allow the insects to exploit these substances. 

The mouth is characterized for a pair of strong and well developed mandibles, both in the 

larval and adult stages, with the function of grind and chew the hard tissues of the trees. Although 

the important role of this system, the main function in the assumption of nutrients is performed by 

the gut. In fact, the broad variety of organic substances that the insects feed requires many enzymes 

to make all the nutrients available.  

An additional resource on the food exploitation is the mutualistic symbiosis. Insects often 

exploit beneficial symbiotic relationships to augment their physiological capabilities and facilitate 

their expansion into challenging niches. Many insects harbor specific bacteria in their digestive 

tract, and these gut microbiota often play important roles in digestion and nutrient provisioning.  
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Obligate mutualists are usually intracellular, transmitted vertically, and enable survival of 

many insects on nutritionally deficient diets such as blood, plant sap, or wood (Aksoy S, 2000; 

Buchner P, 1965; Moran et al., 2003). In addition to intracellular obligates, many insects harbor 

secondary facultative symbionts that display a wider range of tissue tropism and can be intracellular 

(Oliver et al., 2006), located in the gut of the insect (Bauer et al., 2000; Broderick et al., 2004; 

Cazemier et al., 1997; Tholen, 1997), or associated externally (Abril & Bucher, 2002; Cardoza et 

al., 2006; D‘Ettore et al., 2002). Secondary symbionts primarily serve a nutrient provisioning role in 

their hosts, which may include cellulose digestion, nitrogen fixation, and synthesis of vitamins, 

amino acids, lipids, and sterols (Breznak, 2000; Brune, 2003).  

The bacterial communities and the cellulose digestion have been analyzed on ALB larvae 

reared on different host plants: Acer saccharinum, Quercus palustris (Morewood et al., 2005) and a 

high resistant species, Pyrus calleryana (Morewood et al., 2004b). The obtained results have been 

compared against the bacterial communities of insects collected from a population of Anoplophora 

glabripennis in New York. The larvae reared on the resistant specie, callery pear (Pyrus 

calleryana), have shown a totally reduced cellulose digestion. The results prove the difference 

amongst host specie, on their influence on the bacterial community complexity and cellulose 

digestion activity. 

 

 

Risk of introduction and outbreaks in non-native regions 

 

The increasing in the international trade, as a part of the globalization mechanism, has 

brought to a high risk of pests spreading, treating both cultivated and wild plants.  

Especially the recent exchanges among China and western countries led to the introduction 

of Anoplophora glabripennis in many areas over the world. The main ways of incoming are related 

to the products that require wood packages, probably containing young larvae. For this reason, more 

controls have been applied on the traded goods. 

Anoplophora glabripennis was detected outside Asia for the first time in 1996 in New 

York City (Haack et al., 1996), although it had probably already arrived in that area at least by 

1990. It is likely that it was transported from China to New York City within SWPM. After 1996, 

this species was found in an increasing number of places in North America (Chicago, 1998; New 

Jersey, 2002; Toronto, Ontario, Canada, 2003; Massachusetts, 2008). In August 2008, a new 

infestation site was discovered in Worcester, Massachusetts, as the first occurrence in New 

England (EPPO, 2008b). Outside North America, the first discovery was made in 2001 in Braunau 
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am Inn, Austria (Tomiczek et al., 2002) followed by a discovery in 2002 at Yokohama in Japan 

(where it was considered as an invasive species) (Takahashi & Ito, 2005). In France, the first 

infestation was discovered in 2003, at Gien, and a second infestation in 2004, at Sainte-Anne-sur-

Brivet (Hérard et al., 2006). In Germany, the first infestation was discovered in 2004; at 

Neukirchen are Inn, and a second infestation in 2005, at Bornheim (EPPO, 2008a). In Italy, a 

small infestation was discovered in 2007, at Corbetta (Maspero et al., 2007). In May 2008, A. 

glabripennis was officially declared as present and under eradication in France and in Germany 

(EPPO, 2008a). The same year, two beetle were found in Belgium but, since that discovery, no 

other ALB has been found in the surrounding (IPPC, 2009). Since 2011, repeated ALB discoveries 

have been reported in different sites of Switzerland (EPPO 2014c). A first infestation in England 

occurred in 2012 (EPPO 2012), whereas in Corse (France), ALB has been found in 2013 and is still 

under eradication (EPPO 2013). Another infestation in Italy has been reported in Marche Region in 

2013 (EPPO 2013). Indeed, A. glabripennis has been intercepted in many more locations but, in 

these cases, beetles were detected  before they dispersed into the landscape; such locations 

include detections inside warehouses after emerging from SWPM (USDA-APHIS, 2008b) and after 

emergence from imported bonsai (Poland; Białooki, 2003).  

Several models have been developed to predict the potential survival of A. glabripennis 

worldwide. The climate-matching model CLIMEX has been employed to match the climate where 

the beetle is native with potential introduction areas (MacLeod et al., 2002).  
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The Italian populations  

 

In Italy, three cases have been reported in 2007, 2009 and 2013 respectively. In June 2007, 

the Asian longhorned beetle Anoplophora glabripennis (Motschulsky) was found at Corbetta, in 

Lombardy, 23 km west of Milan. The specie was observed in four host trees, one sycamore maple 

Acer pseudoplatanus L. and three silver birches Betula pendula Rothmahler. During summer 2007, 

20 living and 107 dead A. glabripennis beetles were collected on or around the infested trees. The 

dissection of the infested material showed that 287 beetles emerged from the trees during previous 

years and 158 living larvae of varied ages were still developing in April, 2008. After the destruction 

of the plants, no more ALB or symptomatic tree has been reported.  

In August 2013, an infestation has been detected in Grottazzollina municipality, Marche 

region (EPPO 2013). After one year, ALB has been detected in more than 80 sites over the area. 

Attacked plants belonged to the genera Ulmus, Acer, Aesculus, Salix, Populus and Betula (EPPO 

2014b). 

In summer 2009, many insects and infested trees have been found in Treviso (NE Italy), 

where an eradication plan is still in act. In June 2009, in a garden placed in the municipality of 

Cornuda (TV), an Acer ginnala tree has been found infested of many insect of the family 

Cerambicidae. These were recognized from the University of Padua, Department of Agronomy, 

Food, Natural Resources, Animals and Environment, as Anoplophora glabripennis. The tree was 

destroyed immediately from the agencies of Servizio Forestale di Treviso and Servizio Fitosanitario 

Regionale. 

Since the detection of the pest in the area, a first action was taken thanks to the collaboration 

between the regional Forest Service, Phytosanitary Service, University of Padova and Municipality 

of Cornuda. First, a monitoring plan was set to outline the infested area detecting the presence of 

the insect on all the  plants around the first recognition. During this controls, the attack to many 

trees on a wide scale has been confirmed and was assessed the outbreak of ALB. The infested area 

encompasses three municipalities: Cornuda , Crocetta del Montello and Pederobba. Because of its 

extension it seems to be the greatest in Europe. 

Many tree genera were infested from the beetle (Acer, Aesculus, Prunus, Salix, Betula, 

Populus, Ulmus, Cercidiphyllum) but only four of them are the main involved in the attack (Acer, 

Ulmus, Betula, Salix). According to the other infestations, Anoplophora glabripennis infests 

primarily the genus Acer (Lingafelter & Hoebeke, 2002) and several other genera are reported as 

possible hosts, but the host preference shows to be variable (Turgeon et al., 2007; Herard et al., 

2006; Lingafelter & Hoebeke, 2002; Haack et al., 2006).  
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The eradication plan arranged from the authorities aims to the recognize the presence of 

Anoplophora glabripennis distinguish tree by tree. Moreover, the plan considers each plant that 

reveals the presence of the insect as infested and then it must be destroyed. During winter the 

selected trees are cut, harvested in a collection point and minced in chips for burning.  

The infestation has been initially detected in a urban area, characterized by patches of 

industrial, housing and agricultural zones. Despite the presence of two big forest areas aside the 

outbreak, beetle presence has been only recorded in the urban area. By now, only one isolated tree 

(birch) has been found attacked at forest edge, and no other insect signs has been detected nearby, 

along forest borders or inside it.  

After five years since the first record and the creation of the eradication plan, the number of 

infested trees has strongly reduced and seems to be decreasing again (EPPO Reporting Service, 

2014a). In summer 2010, a new infested area has been found in Maser, five kilometres far from the 

edge of Cornuda infestation. Genetic analysis have shown that there is no significant difference 

between the population and the new one can be considered derived from the first.   
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Objectives and content of the thesis 

 

This thesis focuses on the study of invasive wood borers, considering different aspects of the 

model species Anoplophora glabripennis. Three main aspects are here investigated: detection, 

establishment and spread.  

Detection, as first, plays a crucial role in the understanding of arrival and spreading 

pathways of an alien species. In this thesis, a study (Chapter II) based on dendrochronological 

analyses is proposed as a reliable method for dating wood borers infestations and assess the 

introduction pathways in the area. 

After arrival, establishment involves alien species adaptation to new environment (Chapter 

III) and interactions with native host plants (Chapter IV and V). In Chapter III, biology, phenology 

and survival of ALB in the new introduction area are investigated, while host plant preferences and 

reproductive performance are explored in Chapter IV, with a focus on the effects of different 

environments in Chapter V. 

Once the invasive species population begins to grow, spreading toward new hosts takes 

place. In the last part (Chapter VI), I analysed the spreading of ALB through a probability-based 

approach. 
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Dating Anoplophora glabripennis introduction in NE 

Italy by growth-ring analysis 
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Introduction 

The Asian Longhorn Beetle (ALB), Anoplophora glabripennis (Coleoptera: Cerambycidae), is a 

quarantine species in the whole EU (EPPO, 2004; 2010). In June 2009, an outbreak of ALB was 

detected in the province of Treviso (municipality of Cornuda, NE Italy). In less than one year (June 

2009 - May 2010), 576 trees were found to be infested by ALB, over a total of about 10,000 

inspected trees. As ALB usually needs several years to kill healthy trees, the exit holes bored by the 

beetles are often sealed by the reaction tissues produced by the cambium in the years following the 

emergence. In this respect, the reaction tissues produced by the tree can be dated by growth-ring 

analyses (Sawyer, 2007). In addition, in some tree species the transition from early- to latewood is 

readily recognizable as a change from lighter to darker wood. In order to identify time and location 

of ALB arrival in NE Italy, we carried out a retrospective analysis based on the dating of exit holes 

bored by the emerging ALB beetles. 

 

Materials and methods  

In summer 2009, 46 trees belonging to 4 genera (Acer, Ulmus, Betula and Aesculus) infested by 

ALB were randomly sampled from the whole of the infested area, which extended over an urban 

area of about 2 x 2 km in the village of Cornuda (Treviso) (coordinates 45° 49' 56" N  12° 0' 19" E). 

The coordinates of each sampled tree were recorded by GPS and their position mapped. Infested 

trees were cut and a number of branch sections bearing exit holes variable according to the 

infestation density was cut from each host tree and taken to the laboratory. Each section was then 

cut orthogonally to the branch axis in the centre of the exit hole. The resulting surfaces were 

smoothed by sandpaper and the tissue layers around the hole were dated by analysis of the growth 
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rings. It was also noted whether the first tissue layer around the edge of the exit hole was of early- 

or latewood type, to indicate the timing of the ALB adult emergence.  

 

Results and discussion 

More than 91% (310) of the exit holes (339) dated 2009, whereas about 7% (24) were from 2008. 

Two holes (0.5%) were from 2007 and 2006, while the oldest exit hole dated 2005 (Fig. 1). Most of 

the exit holes (78.9%) were surrounded by latewood. The oldest emergence hole (2005) suggests 

that ALB was occurring in the sampling site at least from 2004, and that the ALB infestation was 

discovered at least 5 years after the insect introduction. Similar results were found by Sabbatini et 

al. (2012) on A. chinensis in Rome. The main occurrence of the exit holes in latewood suggests that 

the largest part of the beetles emerged from the host trees during the second part of the growing 

season (summer), in accordance with literature (Hu et al., 2009). Lastly, all the oldest emerging 

holes were located near to companies involved in international trade, confirming that wood 

packaging materials is probably the way by which ALB was introduced in the area (Hu et al., 2009).  

 

Fig. 1: Estimated age of the analyzed exit holes. 
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Abstract 

1 The Asian longhorn beetle Anoplophora glabripennis is highly polyphagous and widely spread 

over regions with different climates. Determining the key life history traits is important for 

understanding how local conditions affect its successful establishment and to develop adaptive 

management strategies.  

 

2 Field and laboratory studies were conducted from 2010 to 2012 on an A. glabripennis infestation 

in Northern Italy, to determine its seasonal phenology, adult beetle longevity, density of 

successful emergence, infestation age and overwintering life history.  

 

3 Adult beetle emerged from infested trees from 22 May to 28 June. Ninety percent of emergence 

was reached around 20 July. The first 1% of emergence was accurately predicted by an 

accumulated degree-day model. 

 

4 In the laboratory, the mean longevity of males and females developed under natural conditions 

was 27.8 ± 1.7 days and 24.9 ± 1.8 days, respectively. In northern Italy A. glabripennis largely 

overwinter as mature larvae in the xylem. The mean density of exit holes was 24.0 ± 2.7 / sq m of 

bark, with successful emergence from branches as small as 3.2 cm in diameter. Although the 
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infestation was discovered in June 2009, the oldest exit hole found in infested trees dated from 

2005. 
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Introduction 

The Asian longhorn beetle (ALB) Anoplophora glabripennis (Motschulsky), native to China and 

the Korean Peninsula (Lingafelter & Hoebeke, 2002), is a highly polyphagous wood borer 

(xylophagous) of deciduous trees. It attacks both young and old healthy and stressed trees, and 

recently cut logs (Peng & Liu, 1992; Gao et al., 1993; He & Huang, 1993). Although ALB 

predominantly infests Populus spp., Salix spp., Ulmus spp. and Acer spp. in China (Wang, 2004), it 

is reported to damage 34 tree species belonging to 14 genera in 10 families (Lingafelter & Hoebeke, 

2002; Haack et al., 2010). However, reports of ALB in China are limited to plantations, windrows 

in agroforest landscapes, urban and other highly disturbed areas, notably with little or no species 

diversity (Li & Wu, 1993; Williams et al., 2004). In Korea, however, ALB is found attacking only 

two native species, Acer mono Maxim and Acer truncatum Bunge, both growing in species rich 

natural areas (Williams et al., 2004). 

 

Inadvertently introduced via international trade, largely associated with the use of solid wood 

packing material, breeding populations of ALB have been reported since the beginning of 1990s in 

many states of USA (Haack et al., 1996; Poland et al., 1998; Haack, 2003; NAPPO, 2008), Canada 

(Hopkin et al., 2004), and Europe (Tomiczek et al., 2002; Cocquempot & Hérard, 2003; Benker et 

al., 2004; Maspero et al. 2007; Hérard et al., 2009; Hugel & Brua, 2009; EPPO, 2010; 2013; 

Faccoli et al., 2011; Forster & Wermelinger, 2012). In addition, ALB continues to be intercepted at 

different ports worldwide. In its new range, i.e. outside its countries of origin, it has thus far been 

reported on at least 18 deciduous tree species belonging to 12 genera in North America, and on 

species belonging to 8 genera, overwhelmingly Acer, in Europe (Hu et al., 2009; Haack et al., 2010). 

Based on this information, ALB is now considered a dangerous quarantine pest in North America 

and the European Union, and one the world‘s top 100 worst invasive alien species 

(http://www.issg.org/database/species/search.asp?st=100ss). 

In general, results from the few field studies on the biology of ALB show wide variations in key 

life history traits (see Hu et al., 2009 and Haack et al., 2010 and literature therein), which are often 

attributed to climatic conditions, host preference, host suitability and/or natural mortality. 

Moreover, the adaptability of ALB to these dynamic factors severely limits the predictability of its 

key life history traits in nature, which in turn significantly affect the development and integration of 

the science-based adaptive management strategies that are essential for the success of early 

detection and rapid response to new introductions and existing established populations. 

To date, no detailed studies have reported the natural life history of ALB in southern Europe 

and Mediterranean regions. Furthermore, although the infestations in New York, Toronto and 
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northern Italy are at similar latitudes, 40°70‘N, 43°60‘N and 45°80‘N, respectively, the climatic 

conditions differ significantly. New et al. (2002) and Hijmans et al. (2005) reported that North 

America is generally much colder than Europe at the same latitudes. This paper therefore reports 

investigations on the natural life history of ALB in northern Italy, with special attention to its 

seasonal phenology, adult longevity, infestation age and density, and overwintering ecology. In 

addition, field data concerning adult emergence were used to validate the existing degree-day model 

for predicting adult ALB emergence according to Smith et al. (2004). 

 

Materials and methods 

Study Area  

Studies were conducted in the town of Cornuda (45°80‘N, 12°01‘E) and the neighbouring 

municipalities (province of Treviso, NE Italy), where a large ALB infestation was first discovered 

in June 2009 (Faccoli et al., 2011). Under an eradication programme, more than 1,000 infested trees 

were found from 2010 through 2013. The study area is located at about 160 m a.s.l., in a hilly 

landscape. Cornuda is surrounded by mixed deciduous forests and riparian habitats along the Piave 

river. The natural forests are primarily composed of Carpinus betulus L., Fagus sylvatica L., Acer 

pseudoplatanus L., Quercus robur L., and Fraxinus excelsior L. on shady damp slopes, and 

Fraxinus ornus L., Betula pendula Roth., Ostrya carpinifolia Scopoli, and Quercus pubescens 

Willd. on sunny dry slopes. Despite the abundance of potential host tree species in forests and 

natural areas and along their edges , no infested trees were found during an intensive survey of these 

areas. Both native and exotic hardwood trees grow in the town parks and private gardens, and along 

the main roads, including susceptible (e.g., Ulmus, Acer, Betula, Aesculus and Salix) and non-

susceptible (e.g., conifers) species. The study area is located along the southern border of the Italian 

Alps, in a North-South climatic transition from continental to Mediterranean conditions, and 

characterized by temperate summer and winter. The mean January temperature is approximately 2 

°C to 4 °C. Annual precipitation ranges from 1,100 mm to 1,200 mm, and is concentrated in spring 

and autumn.  

 

Phenology  

A specific eradication protocol has been applied against the ALB population in Cornuda since June 

2009. This includes the winter monitoring by ground visual checking of all trees belonging to the 

most common ALB host genera growing within 2 km of each infested tree (Faccoli et al., 2011). 

Large trees or trees showing unclear symptoms are checked with the help of tree-climbers. Trees 

found to be infested, i.e. showing exit holes or oviposition pits, are referenced geographically and in 
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May they are cut down, logged, gathered into a safety area and chipped to kill the pupae just before 

adult emergence. In late May 2010, 2011 and 2012, more than 500 infested logs approximately 35 

cm in length and 15-20 cm in diameter, chosen among the most infested branches of A. 

pseudoplatanus, B. pendula, Ulmus pumila L., Aesculus hippocastanum L. and Salix spp., were not 

chipped but placed singly or in pairs in aerated orange plastic tubes (50 cm long, 30 cm diameter) to 

await adult emergence. Trunks were not sampled because ALB mainly infests the upper part of the 

trees and the main branches in the canopy; moreover, logs and bolts obtained from trunks were too 

large to be stored in the emergence tubes. Both ends of the tubes were covered with fine metal mesh 

screen to retain the emerged insects until checking and collection. The tubes were stored outdoors, 

piled horizontally on an open iron shelf in 5 layers (each layer having 5 tubes), under a plastic roof 

to protect them from rain and direct sunshine, but ensure good ventilation and thermal exchange. 

Before being placed in the tubes, the cut surfaces of the logs were sealed with paraffin to reduce 

drying. Tubes were checked three times per week until the following November. Beetles found in 

the tubes were collected, counted and sexed according to Lingafelter & Hoebeke (2002). Air 

temperature within the tubes was recorded hourly using a data logger (HOBO Temp


) inserted in a 

tube to record a temperature as close as possible to that of the logs.  

The degree-days (DD) required for ALB to emerge were computed with the ―rectangle method‖ 

of Gilmore & Rogers (1958), where a base temperature (T0) characterizing a developmental stage or 

the occurrence of some life history event, is subtracted from the daily mean temperature ( ). This 

method is reliable when the appropriate base temperatures and starting dates for computation are 

used (Legg et al., 2000; Stevenson et al., 2008). The base temperature threshold for ALB 

emergence is T0 = 10 
o
C (Smith et al., 2004), while the mean daily field temperature ( ) for 2010-

2012 (3 years) was recorded at a weather station located within the infestation area and close to the 

rearing area (Maser, 45°81‘N, 11°98‘E, 147 m a.s.l.). Therefore, DD =  – 10 if  – 10 > 0, 

otherwise DD = 0. Accumulated degree-days (ADD) were calculated by summing DD from January 

1 to the current sampling date within each year. Therefore, the predicted percentage of cumulative 

emergence = EXP (-EXP(-0.004 * ADD + 3.5))*100 (Smith et al., 2004). The absolute values of 

the difference between predicted and actual weekly cumulative emergence were calculated and 

normality tested (SAS Proc Univariate). If the data were normally distributed, a t-test (SAS Proc t-

test) was conducted on the data. Otherwise, the Wilcoxon signed rank test (SAS 9.3 Proc 

Univariate) was conducted on the absolute values of the differences to determine if the mean of the 

absolute values was significantly different from zero, i.e. if the predicted and actual cumulative 

emergence were significantly different. For each investigated year, air temperatures recorded from 
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May to November by the weather station and the data logger placed inside the tubes were compared 

statistically by linear regression. 

 

Dating and density of exit holes 

In 2009, the density ALB exit holes was calculated from logs sampled from 25 mature trees of 

sycamore (A. pseudoplatanus) that were felled in late autumn at the end of the ALB emergence 

period. Three logs (about 30 cm in length) were cut from infested branches of each tree, for a total 

of 75 logs. The trees and sample logs were selected randomly from trees and branches 

representative of the mean level of infestation in the area. Sections of trunks were not sampled 

because ALB mainly infests the upper parts of trees and main branches. Length and diameter of the 

logs were measured and number of emergence holes counted.  

Host colonization by ALB is a multiyear process where an individual tree is repeatedly 

attacked over a period of years until it is no longer attractive and/or of suitable quality for 

successful development. Therefore, when based solely upon the density of exit holes, results from 

the evaluation of host preference and host suitability may be compromised. Although beyond the 

scope of the study, we used dendrochronological methods to determine the year in which individual 

exit holes were chewed by an emerging adult beetle, thereby accounting for the multiyear process of 

host colonization and death of the infested tree (Sawyer, 2007; Favaro et al., 2013). The logs were 

cut orthogonally to the branch axis in the centre of each exit hole. The resulting surfaces were 

smoothed with sandpaper and the tissue layers around the hole were dated by analysis of the growth 

rings by stereoscope. 

The surface area of each log was calculated according to the log sizes and density of exit 

holes reported as the number of holes per square metre of bark. Logs were arbitrarily partitioned 

into 4 diameter classes, specifically < 5 cm, 5 cm - 6.9 cm, 7 cm - 8.9 cm, ≥ 9 cm, and density of 

exit holes compared among the 4 diameter classes and the host trees (SAS 9.3 PROC GLM).  

 

Adult longevity 

In 2011, ALB males and females newly emerged from the infested logs stored in the plastic rearing 

tubes (see phenology section) were collected from 23 May to 5 September, recording the emergence 

day of each adult. The elytra of each beetle were marked with a permanent marker to denote the 

date of emergence. Beetles were then sexed, and males and females placed separately in metal mesh 

cages (100 cm x 100 cm x 200 cm), avoiding any mating and egg deposition that might affect adult 

longevity, especially of the males. Moreover, there was no oviposition substrate within the cages. 

As many adults stored together in the same cage often fight and mutilate each other, affecting 
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longevity, there were never more than 20 adults per cage. Because food quality may drastically 

affect longevity, the adults were fed upon freshly cut twigs of maple (A. pseudoplatanus) placed in 

a glass with fresh water and renewed twice a week. The cages were kept under laboratory 

conditions at 22 ºC and 16h:8h L:D photoperiod, and the ambient air temperature recorded hourly. 

The cages were checked twice weekly and dead beetles removed and counted. Longevity of males 

and females was compared using SAS 9.3 PROC t-test.  

 

Overwintering 

The population of ALB occurring in four host tree species growing in Cornuda was investigated to 

determine which instars overwinter. At end of January 2010 (18th – 22nd), logs ca. 40 cm in length 

and 10 cm in diameter were collected from naturally infested trees of A. pseudoplatanus (n = 30), B. 

pendula (n = 41), U. pumila (n = 28) and Salix alba L. (n = 40). About 10 trees per species were 

sampled, collecting logs from dying branches showing infestation signs (i.e., oviposition pits and 

exit holes). The logs were debarked and split, and the following data were recorded: 1) oviposition 

pits without eggs (empty pits), 2) unhatched eggs, 3) live young larvae in phloem galleries, 4) dead 

larvae in galleries, or empty galleries in phloem, 5) live mature larvae in galleries in xylem. The 

empty pits were reported as percentage of the total oviposition pits found in each tree species, 

whereas the developing instars (young, mature and dead larvae) were reported as percentages 

calculated on the fertile oviposition pits, i.e. pits with eggs. Data concerning overwintering stages 

were compared by a binomial generalized mixed model applied singly to overwintering stage and 

host tree. The analyses were performed using the SAS9.3 PROC GLIMMIX. 

 

 

Results 

Phenology 

For each investigated year, air temperatures from a weather station and the data logger set up inside 

the tubes showed no statistical differences. The temperature inside tubes was slightly warmer than 

outside in late spring and beginning of summer but was cooler in summer, with a mean difference 

of only about ± 1 °C (see for instance Fig. 1 referring to 2011). In 2010 beetles emerged from 28 

June to 9 August (Fig. 2a), in 2011 from 22 May to 23 August (Fig. 2b), and in 2012 from 21 June 

to 9 August (Fig. 2c). Emergence of adults peaked from 5 to 12 July 2010, 14 to 28 June 2011, and 

5 to 12 July 2012, spanning approximately one, two and one week respectively. In 2010 and 2012, 

the initial emergence occurred 37 d and 31 d later than in 2011 respectively. In the three 

investigated years, 90% emergence was reached within 3 d of each other: 20 July, 21 July, and 19 
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July, respectively. The overall phenology of ALB emergence was consistent over the three years. 

The sex ratio (M:F) of emerging beetles was 1.02:1 (45:44), 1.24:1 (150:121), and 1.33:1 (168:126) 

in 2010, 2011 and 2012, respectively. The phenology of ALB males and females showed a similar 

temporal pattern in the three investigated years (Fig. 2a, 2b and 2c, respectively). 

According to the recorded air temperature, 1% of cumulative emergence of ALB was predicted 

by the model on 11 June 2010 (491.3 ADD), 3 June 2011 (501 ADD), and 14 June 2012 (496.7 

ADD) (Fig. 3a, 3b and 3c, respectively). A peak of emergence was predicted from 13 July 

(915.5ADD) to 17 July 2010 (988.8 ADD), 9 July (911.3 ADD) to 13 July 2011 (976.7 ADD), and 

8 July (867.8 ADD) to 12 July 2012 (931.2 ADD). Ninety percent of actual emergence occurred by 

24 August 2010 (1,448.2 ADD), 20 August 2011 (1,437.5 ADD) and 17 August 2012 (1,440.9 

ADD). Lastly, 95% of cumulative emergence was predicted by 12 September 2010 (1,623 ADD) 

(Fig. 3a), 1 September 2011 (1,621.4 ADD) (Fig. 3b), and 29 August 2012 (1,623.3 ADD) (Figs 3a, 

3b and 3c, respectively). The test for normality indicated that the absolute values of the difference 

between predicted and actual weekly cumulative emergence had normal distribution in 2010 

(Shapiro-Wilk test, n = 7, W = 0.87, P = 0.21), and 2012 (Shapiro-Wilk test, n = 7, W = 0.89, P = 

0.31), but not in 2011 (Shapiro-Wilk test, n = 13, W=0.84, P = 0.02). Comparing the absolute 

values, statistical tests showed that the predicted and actual cumulative emergence were 

significantly different for each of the three years of the study (t-test, d.f. = 6, T = 2.98, P = 0.02 and 

T = 3.71, P = 0.009, for 2010 and for 2012, and Signed Rank test, n=13, S = 45.5, P = 0.0002 for 

2011).  

 

Dating and density of exit holes  

The mean diameter, length and surface area of the 75 sampled logs was 7.1 ± 0.45 cm, 31.8 ± 0.92 

cm, and 706 ± 46 sq cm, respectively. There were 139 ALB exit holes in the logs. About 85% (119) 

of them dated from 2009, whereas 10% (16) were from 2008. Two holes dated from 2007 and one 

2006, while the oldest exit hole was from 2005. Considering only the most recent exit holes (119 

from 2009), their mean number per log was 1.6 ± 0.24, with no statistical differences among the 25 

sampled trees (F test, F = 0.43, d.f. = 24, 45, P = 0.32). The mean density of emergence holes in 

2009 was 24.0 ± 2.7 per sq m (Table 1), with successful emergence from branches as small as 3.2 

cm in diameter. There was no significant difference in density of emergence holes among the four 

classes of branch diameter (F test, F = 0.52, d.f. = 3, 71, P = 0.56). 

 

Adult longevity 
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In 2011, the longevity of 201 ALB adults (94 males and 107 females) was studied in relation to the 

emergence date, which occurred between 23 May and 5 September. The mean longevity of ALB 

males and females was 29.6 ± 1.6 days and 31.2 ± 1.5 days, respectively. T-test showed no 

significant difference in mean longevity between sexes (t-test, Method = pooled, d.f. = 199, T = 

0.73, P = 0.46) (Fig. 4a). The association between adult longevity and emergence date was analysed 

by fitting a polynomial line to the data. The R
2
 value for males (n = 94) and females (n = 107) was 

0.023 and 0.104, respectively (Figs 4b and 4c), indicating the absence of a significant association 

between adult longevity and emergence date for both sexes.  

 

Overwintering 

Results showed that ALB largely overwinter as larvae, particularly as mature larvae in the xylem 

(Fig. 5). The number of empty pits and dead larvae in the phloem showed significant differences 

among host tree species (F test , F = 6.6, d.f. = 4, 135, P < 0.05). The percentage of empty pits, i.e. 

oviposition pits without eggs, approached 30% on U. pumila (25.7%), A. pseudoplatanus (29.2%) 

and B. pendula (32.1%), and was significantly lower (10%) on S. alba (F test, F = 15.2, d.f. = 4, 

135, P < 0.05). According to the different host-trees, the percentages of unhatched eggs and live 

larvae overwintering in the phloem were 0 - 6% and < 10%, respectively. The percentage of dead 

larvae in galleries in phloem was significantly lower (6.7%) on A. pseudoplatanus than on the other 

tree species, U. pumila (15.0%), S. alba (27.7%) and B. pendula (36.0%) (F test, F = 21.4, d.f. = 4, 

135, P < 0.05). Clearly, most ALB individuals overwinter as mature larvae in galleries in xylem 

(60% on S. alba and B. pendula, 70% on U. pumila and ca. 80% on A. pseudoplatanus). No dead 

mature larvae, nor any pupae, were found in the xylem during the sampling in January.  
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Figure 1 Correlation between mean daily temperature recorded inside and outside the tubes 

containing the logs infested by A. glabripennis (y = 0.9315x + 0.9067, R² = 0.549, P < 0.01).  

12

15

18

21

24

27

30

12 15 18 21 24 27 30

M
ea

n
 d

ai
ly

 a
ir

 t
em

p
er

at
u

re

Mean daily temperature within the tubes 



Chapter 3                                                                                                                            Life history in southern Europe 

 

47 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Emergence of Anoplophora glabripennis females and males at Cornuda (Italy) in 2010, 

2011 and 2012. Temperatures are reported as the mean of the hourly temperatures. 
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Figure 3 Predicted and actual emergence of Anoplophora glabripennis adults at Cornuda (Italy) in 

2010, 2011 and 2012. 
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Figure 4 Absolute longevity of Anoplophora glabripennis (females and males) in days (a), and 

longevity according to date of emergence for males (b) (y = -0.0034x
2
 + 278.13x – 6E+07, 

R
2
 = 0.023) and females (c) (y = -0.0116x

2
 + 941.21x – 2E+07, R

2
 = 0.104). 
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Figure 5 Overwintering life stages of Anoplophora glabripennis in four host tree species, Salix 

alba, Ulmus pumila, Acer pseudoplatanus and Betula pendula. Empty pits are reported as 

percentage of the total number of oviposition pits. Developmental life stages are reported as 

percentage of the total number of oviposition pits in which an egg was deposited. Different 

letters indicate a significant difference among host tree species within a given life stage 

(binomial generalized mixed model analysis). 

 

 

Table 1 Log Characteristics and Density of Adult Anoplophora glabripennis Emergence Holes on 

Acer pseudoplatanus.  

  

 
Log Diameter 

(cm) 

Log Length 

(cm) 

Log Surface 

(cm
2
) 

Exit Holes 

(#) 

 Exit Holes 

per m
2
 

Mean ± SEM 7.2 ± 0.45 31.8 ± 0.92 706 ± 46 1.6 ± 0.24  24.0 ± 2.7 

Min value 3.2 26.0 291.4 1  8.4 

Max value 11.5 46.0 1,336.1 4  68.7 
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Discussion 

Phenology  

This part of the study evaluated ALB phenology in southern Europe and, by field observations, 

validated the model proposed by Smith et al. (2004). The seasonal phenology of ALB recorded 

shows the main emergence occurring at end-June – July. Also in previous field observations 

conducted in China 90% of emergence had occurred by 23 July 1995, 22 July 1996, and 22 July 

1997 (Zhao & Naliaki, 1999), with a degree-day accumulation of about 1450ADD in mid-July 

(Smith et al., 2001; Smith et al., 2004).  

The main results from our study were obtained in experimental conditions strictly comparable to 

natural conditions. In fact, based upon accumulated degree days, the beginning and the first 1% 

emergence in the study was accurately predicted by the ADD model reported by Smith et al. (2004). 

Although the adult emergence was in cut logs caged in plastic tubes kept outdoors, the whole insect 

development occurred in living trees naturally infested and exposed to natural climatic conditions, 

except for a few weeks  in some cases a few days as in 2011  during pupation and just before 

emergence. Moreover, the plastic tubes were stored outdoors, piled horizontally, and kept under a 

plastic roof to protect them from rain and direct sunshine, but ensuring good ventilation and thermal 

exchange. Indeed, the comparison between air temperatures recorded inside and outside the tubes 

showed a mean difference of only about ± 1 °C. The natural log drying and within-tube temperature 

did not thus affect insect development, because they had already developed, or adult emergence. In 

fact, every year the beginning of emergence, i.e. end of development, was the same as that predicted 

by the ADD model. 

Thereafter, Smith et al. (2004) estimated that the peak of adult emergence (corresponding to 

about 50% of the adults) would occur under natural conditions in China after 950 DD (when the 

accumulation started on 1 January and with a lower threshold of 10 °C). Similar values (924.6 DD) 

were found by Keena & Moore (2010) in laboratory conditions using the same temperature 

threshold of 10 °C. Our field estimates of the degree-days necessary for the emergence peak 

(ranging between 931.2 and 988.8 ADD, depending on the year) hence correspond fairly well with 

previous estimates made both in field and laboratory conditions. 

Emergence data predicted by the model, however, do not fit very well with the collected field 

data, as the predicted incremental ADD and emergence of ALB slightly underestimated the rate of 

increase of the real emergence data observed in the field (Fig. 3). This may partly be explained by 

differences between the methods used in our study and those in which the degree day model was 

developed (Smith et al., 2004), based only on data from rearing experiments carried out in 

laboratory conditions. More specifically, the temperature inside the tubes where the logs were 
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stored in our study was slightly warmer (about 1 °C) than the field temperature that led to the 

development of the degree day model. The field temperature in our study therefore slightly 

underestimated the xylem temperature of the logs in which the beetles were developing, thereby 

increasing the rate of the incremental accumulated degree days and emergence. Also Keena & 

Moore (2010) suggest that at least 2 °C should be added to air temperatures to adjust for the 

mediation of temperature by the wood.  

After accounting for the small difference between the predicted and actual emergence, this is 

the first reported field study to validate the existing degree-day model for predicting adult ALB 

emergence. The impact of accurately predicting emergence of ALB cannot be overstated. In 

particular, accurate prediction of the initial emergence has been successfully used in China, Canada 

and the U.S. to time the implementation of management strategies, including visual surveys for 

infested trees and detection of adult beetles (e.g., pheromone traps), and for control of adult beetles 

by contact insecticides and fungal bands, and systemic insecticide targeting adult beetles feeding on 

twigs and leaves (Ric et al., 2006; Hu et al. 2009; Haack et al. 2010). Furthermore, prediction of 

adult peak emergence has been used to intensify and focus these strategies, and thereby 

significantly increase their effectiveness and econometric efficiency. Moreover, development and 

implementation of additional adaptive management strategies require phenology models for each of 

the life stages of ALB. The phenology models should be able to predict larval eclosion, larval 

development pupation, adult eclosion and emergence (Keena & Moore, 2010). While studies on 

incubation, larval development and pupation have already been reported  see for instance Keena 

(2006), Keena & Moore (2010) and literature therein , they have largely been based on laboratory 

experiments where beetles were held under optimal artificial conditions, e.g. constant temperature 

and relative humidity, and reared on an artificial diet or cut logs. Therefore, given that the 

nutritional quality of its host is arguably the single most important factor that governs the 

development of the immature life stages of ALB living within live trees, development of reliable 

phenology models of immature ALB requires studies in live trees inhabited in nature, specifically 

accounting for the continuum of host stress levels and stages of decline associated with the 

multiyear process of host colonization, as well as host tree species. 

 

Dating and density of exit holes  

The oldest exit hole dated to 2005 suggests that ALB had been in the sampling site at least since 

2004, and that the infestation was discovered about 5 years after the insect introduction (June 2009). 

Similar results were found by Favaro et al. (2013), who in the same site (Cornuda) performed the 

same experiment on a larger number of trees infested by ALB (46) belonging to 4 genera (Acer, 
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Ulmus, Betula and Aesculus), and by Sabbatini et al. (2012) on A. chinensis in Rome. The delay in 

discovery was probably due to the low population density in the first years of the infestation, with 

asymptomatic trees suffering a low level of damage. The first infested trees were observed when the 

colonisation density was high enough to induce visible tree decay. 

Retrospective investigation of host colonization, specifically by assessing the density of adult 

emergence, has previously reported on the density of emergence holes (Yan, 1985; Peng & Liu, 

1992; Haack et al., 2006; Dodds & Orwig, 2011). The density of emergence holes has typically 

been calculated per tree (Haack et al., 2006) or per diameter of trees measured at breast-height 

(DBH). In our study, however, density of emergence holes was measured as a function of the 

diameter of the sampled log, and then calculated per unit surface area of the log (e.g., per sq cm and 

per sq m). The density of exit holes previously reported and those reported in this study are thus not 

directly comparable. Moreover, since density of exit holes is based upon the branch diameter and 

surface from which the adult beetle emerged, the results in this study significantly improve the 

precision of the correlation between the density of emergence and host diameter. 

In field studies, Li & Wu (1993) noted that female ALB do not lay eggs under the bark of 

branches that are less than 5 cm in diameter, let alone complete development. To our knowledge 

this is the first study showing that adults can successfully emerge from branches as small as 3.2 

cm in diameter, although we did not record where the oviposition pit was for this exit hole and 

if the larva tunneled upwards from a thicker portion of the branch, or  less probably  

downwards from a thinner portion. Given that visual survey and removal of infested trees is the 

basis for successful eradication of ALB, these results will significantly increase the 

effectiveness of early detection of infested trees, particularly by tree climbers who might 

otherwise overlook branches or branch sections that were previously thought too small to be 

infested.  

 

Adult longevity 

Although observed in laboratory conditions, the longevity of adult male and female ALB reported 

in this study is consistent with previous field studies. Early field studies conducted in China showed 

that adult male and female ALB live for 3 d to 50 d and 14 d to 66 d, respectively (Li & Wu, 1993). 

More recently, Gao et al. (2009) evaluated adult longevity in field studies where wild male and 

female ALB were collected within an established infestation and caged on naturally occurring 

healthy Betula platyphylla trees. Twigs were freshly cut from B. platyphylla and provided to the 

caged beetles. Results showed that the mean survival of male and female beetles was 41.2 d and 

39.1 d, respectively. Similar results were found in field studies where adult beetles were tracked 
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from emergence to death (M.T. Smith, unpublished). Collectively, the longevity of adult ALB 

reported in this study is hence consistent with previous field studies conducted in nature. 

Conversely, the longevity of adult male and female ALB reported in this study differs greatly 

from previous laboratory studies. Under comparable temperature conditions, Keena (2006) reported 

that average survival of adult female and male beetles was 127.8 d and 85.3 d, respectively. This is 

approximately three to four times longer than the female and male beetle longevity found in our 

study. These differences can be attributed to at least two key factors. The studies reported by Keena 

(2006) were conducted under laboratory conditions and, more importantly, using beetles that had 

been in continuous culture on an artificial diet for three to seven generations and well adapted to the 

experimental conditions. Conversely, the beetles used in our study were collected upon emergence 

from natural infested trees and as such, had been exposed to the biotic and abiotic factors that 

typically limit fitness in nature, including adult survival. Therefore, the results reported by Keena 

(2006) significantly overestimated longevity of adult ALB found in nature. Similar findings are 

reported also by Smith et al. (2002). 

While the longevity and date of emergence of adult ALB did not show a significant association 

in our study, adult longevity steadily increased until peak emergence and declined thereafter, 

particularly for female beetles (see Fig. 2b). Akbulut & Linit (1999) reported that the survival and 

reproductive performance of adult Monochamus carolinensis (Olivier), also a cerambycid species 

from the same tribe, is significantly higher for beetles emerging from trees cut in the spring than for 

those emerging from trees cut in the summer and autumn. They also reported that the nutritional 

quality of phloem and xylem of its host is highest in the spring and declines thereafter. The authors 

suggest that the decline in adult survival of adult beetles emerging later in the season may be 

associated with the simultaneous decline in nutritional quality of its host. It should be noted that the 

nutritional quality of its host is important to the fitness of larvae feeding within the host tree and 

adult beetles during their maturation feeding period. 

In our study, however, the infested trees were not felled sequentially over the period of adult 

emergence, as in the studies reported by Akbulut & Linit (1999), but were all felled in the spring, 

prior to the initiation of adult emergence. Therefore, in the absence of the natural changes in the 

seasonal phenology of its host, the association between date of emergence and longevity was found 

to lack significance. However, the steady increase in adult longevity as emergence reached its peak 

and the subsequent decline thereafter may be associated with changes in host phenology, 

specifically the nutritional quality of the fresh twigs fed weekly to the adult beetles during the 

study. Clearly, given the complex life history and broad host range of ALB, further studies of adult 

longevity are needed, specifically addressing insect  host-plant interactions. This is particularly 
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important for ALB, where host colonization is a multiyear process involving repeated attack and 

slow death of host trees. 

 

Overwintering 

Previous investigations of the overwintering population of ALB also reported mature larvae as the 

predominant life stage (Li & Wu, 1993; Haack et al., 2006). The eggs and early instar larvae found 

overwintering probably result from oviposition by female beetles very late in the season. 

Furthermore, the high proportion of larvae found dead in the phloem can largely be explained by a 

combination of the relatively poor insulating characteristics and resulting low winter temperature of 

the phloem, and the lower fat stores of larvae inhabiting the phloem than those overwintering as 

mature larvae in the xylem and parasitism. Zhao et al. (1991) reported that parasitoids account for 

20.9% to 22.3% mortality of early stage larvae of ALB living in the phloem. 

 

Collectively, integration of the predictive degree-day model of adult emergence and the 

estimated adult longevity reported here, with predictions of age specific fecundity (oviposition) 

(Smith et al., 2002), incubation and larval development within the phloem, should provide valuable 

information for when to proceed with eradication protocols or biological control programmes, for 

instance by the release of egg and early larval parasitoids of ALB (Smith et al. 2003; Yao & Yang, 

2008). A similar approach was also proposed for other Anoplophora species, such as A. chinensis in 

Italy (Delvare et al., 2004; Franck Hérard, pers. comm.). Therefore, detailed information that 

accurately predicts different aspects of the life history of ALB under field conditions is of 

paramount importance in effective and successful exclusion, eradication and/or management of this 

and other invasive species (Damos & Savopoulou-Soultani, 2012). Such data may also be important 

in risk assessment of the potential for invasive species to establish (MacLeod et al., 2002). 
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Abstract 

 

The Asian Longhorned Beetle, Anoplophora glabripennis, is a highly polyphagous invasive species 

having a broad range of host species, presenting relevant differences between infestation areas.  

Host preference and breeding performance were assessed in a population in northern Italy. Choice 

and no-choice experiments were carried out in both field and laboratory conditions. In field, 

between 2009 and 2012 horse chestnut results the preferred host showing the highest percentage of 

infested trees (11.8% of the available trees), although maple is the main attacked host genus (426 

infested trees but corresponding to only 4.4% of the available maples). This difference is probably 

due to the greater abundance of Acer sp. trees in the infestation area and the low ALB propensity 

for dispersal. Other susceptible species were birches (8.9%), elms (5.2%) and willows (3.3).  

In laboratory, choice trials recorded differences among the tested trees concerning female fecundity, 

eggs survival and larval survival, resulting in the highest performance on maple trees. No-choice 

experiments confirmed the high suitability of maple, showing the highest beetle reproductive 

performance. It is also reported that birch, which from literature are known to be among the main 

host, resulted in the lowest beetle suitability, despite a notable number of felled birch trees during 

the eradication. 

Differences regarding host tree preference and suitability between ALB populations are reported in 

literature and here confirmed. The reasons of these differences are still unclear and further 

investigations are required. 
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Introduction 

The Asian Longhorn Beetle (ALB), Anoplophora glabripennis (Coleoptera: Cerambycidae), 

is a species native of China and Korea largely polyphagous on broadleaves. In the last decades, 

ALB has been recorded several times as invasive pest in USA (Haack et al., 1996; Poland et al., 

1998; Haack, 2006), Canada (CFIA, Canadian Food Inspection Agency, 2003) and Europe  

(Tomiczek et al., 2002; Cocquempot et al., 2003; Benker et al., 2004; Eppo, 2008; 2010; 2011). In 

June 2009 a population of ALB was detected also in the municipality of Cornuda (NE Italy), where 

an eradication program is still in progress (Faccoli et al., 2011; 2014a). The pathways of 

introduction and spreading of ALB in new areas frequently follow the international trade of wood 

packing material (Hu et al., 2009). Everywhere introduced, ALB posed an enormous threat to 

broadleaves growing in urban and suburban parks and gardens (Haugen, 2000; Nowak et al., 2001). 

Emergence of ALB adults begins in the second half of May and may continue until October, 

although the main swarming occurs in late June - early July (Li and Wu, 1993). Newly emerged 

adults usually remain on the same host-tree for about 7-10 days, where they carry out a maturation 

feeding on leaf petioles and young bark. In average, adults survive for about a month (Faccoli et al., 

2014a), although survival longer than three months has been recorded in lab conditions (Keena, 

2006). After mating, female lays the eggs singly under the bark of trunk and branches usually larger 

than 3-5 cm in diameter (Li and Wu, 1993: Faccoli et al., 2014a). Eggs are laid singly in 

characteristic oviposition pits chewed out by the female. About two weeks after oviposition the 

larva hatches and starts to feed on phloem. Once the third instar it reached, the larva bores into the 

wood where it completes the development. Pupation takes place in a pupal chamber bored in the 

sapwood, and after a couple of weeks the new adult emerge through a large circular hole (about 10 

mm diameter). Unlike most cerambycids, ALB attacks mainly healthy, which remain asymptomatic 

also for many years. As several generations can develop year by year on the same tree, the insect 

can kill also originally vigorous trees (Hu et al., 2009; Haack et al., 2010). 

In general, most aspects of ALB biology and ecology largely change according with climate 

and latitudes. For instance, host preference showed by adults during maturation feeding and 

oviposition is known to be different between populations (Haack et al., 2006; Hu et al., 2009). A 

great variation of the main host trees has been recorded comparing populations from the native 

Asian regions with populations from the north American and European areas of introduction (Hu et 

al., 2009; Haack et al., 2010). Different ALB populations show different host preference, and tree 

species heavily infested in a region are not colonised in other localities. For instance, European and 

North American populations of A. glabripennis show different host preferences (Hu et al., 2009). In 

Europe, ash trees (Fraxinus sp.) have never been reported as ALB host (Tomiczek & Hoyer-
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Tomiczek, 2007), whereas in Chicago F. pennsylvanica (Marsh.) was one of the main attacked tree 

species.. Host suitability may affect insect breeding performance, change the mean development 

time and increase egg and larval mortality, introducing new aspects of uncertainty about the ALB 

life history. The large adaptability of ALB to different hosts, which strongly affect its phenology, 

voltinism and breeding performances, makes the biology of this species hardly predictable without 

specific studies. Moreover, an accurate knowledge of ALB host preference is a crucial point for the 

infestation management and the successfully application of appropriate eradication plans. Although 

the scientific literature concerning various aspects of biology and ecology of ALB is extremely rich 

(Hu et al., 2009; Haack et al., 2010), no detailed information is available about ALB host preference 

in southern Europe and Mediterranean regions.  

The main aims of the present paper are to investigated the host preference and the breeding 

performance in different tree species of the ALB population occurring in southern Europe . 

 

 

Materials and Methods  

 

Study area 

The study has been carried out in the village of Cornuda (45° 80‘ N, 12° 01‘ E) and in the  

neighbouring municipalities (province of Treviso, NE Italy), where a large ALB infestation was 

recorded since June 2009. Although a still running eradication plan was immediately applied, more 

that 1100 trees were found to be infested by ALB in the following two years (Faccoli et al., 2011; 

2014). The study area is located at about 160 m a.s.l., in a hilly landscape. The village is closely 

surrounded by mixed broadleaf forests and riparian habitats, which follow a large river. Despite the 

large availability of potential host trees and the application of a specific monitoring program, no 

infested trees were found in the forests and natural areas neighbouring the village of Cornuda and 

the infestation area, not even along the forest edges. In the city parks, private gardens and along the 

main roads there are many trees of both native and exotic hardwood species, some susceptible to 

ALB, such as elms, maples, birches, horse chestnuts and willows, some less or not susceptible, such 

as conifers. The whole area is located along the lower edge of the NE Italian Alps, with a climate 

showing Mediterranean conditions characterized by temperate summer and winter. The mean 

January temperature is about 3°C; precipitations are concentrated in spring and fall, with an annual 

mean of about 1200 mm (Faccoli et al., 2014b).  
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Insect collection and rearing 

ALB adults needed for the experiments were obtained from laboratory rearing of infested logs. In 

early spring 2012, several hundreds infested logs were collected from trees cut in the infestation 

area during the application of the eradication plan. The logs (about 40 cm long and 10 cm in 

diameter) belonged to different tree species, including mainly A. pseudoplatanus, B. pendula, 

Ulmus pumila, and Salix spp. The logs were then moved to a field laboratory, and kept at field 

temperature in plastic tubes (50 cm long, 30 cm diameter) closed with fine wire mesh. The rearing 

tubes were checked weekly until June for adult emergence. Then, during beetle emergence (June-

August), the tubes were checked three times a week and all callow adults were collected. The newly 

emerged adults were sexed (Lingafelter & Hoebeke, 2002), placed in separated transparent plastic 

boxes (40x60x30 cm), and provided with fresh twigs of maple (Hu et al., 2009; Haack et al., 2010); 

the twigs were replaced twice a week. Before being tested in the following experiments, the adults 

were held in the boxes for at least 20 days to ensure their full sexual maturation (Li & Liu, 1997; 

Keena, 2002; Smith et al., 2002). In July, healthy and fully matured adults were collected from the 

maturation boxes and randomly assigned to the experimental trials. 

 

Choice experiment 

Field trials. Since June 2009 a plan of eradication of the ALB population occurring in the village of 

Cornuda was activated in a joint project among the University of Padova, the Regional Plant 

Protection Organization, and the Regional Forest Service (Faccoli et al., 2011). The eradication 

included the visual checking of the infestation symptoms (emerging holes and oviposition pits) 

occurring on all trees belonging to the main ALB host genera known from literature (Hu et al., 

2009; Haack et al., 2010) growing within 2 km from each infested tree (Tab. 2). During the 

monitoring, carried out twice a year in spring and fall, the host-list was progressively updated as 

ALB was found also on other tree species, and the infestation area was progressively enlarged 

following the new findings. Trees were generally checked from the ground by a team of operators 

trained by the Regional Plant Protection Organization. Large trees or trees showing unclear 

symptoms were doubly checked by tree-climbers of the Regional Forest Service (Faccoli et al., 

2011). Data concerning naturally infested trees recorded during a 5 years long monitoring (summer 

2009 – spring 2013) were used to simulate a field choice experiment assessing the ALB preference 

among different host trees naturally available in the landscape. 

 

Laboratory trials. In July 2012, about 30 pairs of mature ALB adults (one male and one female) 

were placed within wire mesh boxes (100x100x150 cm) each containing a standing fresh log (about 
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40 cm long and 10 cm diameter) of each of the four main host genera known to be infested by ALB 

in field (Tab. 2). The species chosen are Acer pseudoplatanus, Betula pendula, Ulmus glabra and 

Salix alba. The experiment was carried out on six replicates, i.e. six boxes for a total of 24 logs. 

Every three days the logs were rotate within the boxes to reduce any possible position effect. Fresh 

maple twigs replaced twice a week allowed ALB adult feeding. Insects died within 2 days from the 

beginning of the experiment were replaced with new ones. Adults were held in the rearing boxes for 

two months (Faccoli et al., 2014b). 

 

No-choice experiment 

Field trials. In July 2012, a field experiment was conducted on breeding performance of ALB on 

reared on different host trees. Six trees belonging to the four ALB host species investigated in the 

previous experiment (A. pseudoplatanus, B. pendula, U. glabra, and S. alba) were tested, for a total 

of 24 trees (Tab. 1). A pair of mature ALB adults (one male and one female) was placed inside a 

cage of 0.5 mm wire mesh fixed at about 3 m from the ground on each of three canopy branches 

(about 10 cm in diameter) per experimental tree, for a total of 144 beetles (72 pairs) (Tab. 1). The 

cage was constructed by wrapping a sheet of wire mesh (100 x 50 cm) around the branch, stapling 

the ends to the branch and further sealing the ends with metal ribbon. The resulting cage was about 

90 cm long and 30 cm in diameter, allowing enough room for the adults to move freely along the 

branch, feed, mate and lay eggs. Three cages were set up in different braches of each tested tree. 

Two days later each insect pair was checked and any dead individuals were replaced with new ones 

of the same age. The tested tree branches were as similar as possible in size and only reachable 

from the ground by ladder, to prevent tampering. Two months later, the cages were removed, the 

branches cut from the trees and the resulting logs taken to the laboratory.  

 

Laboratory trials. In the same month (July 2012), a pair of mature ALB adults (one male and one 

female) was placed within a ventilated transparent plastic boxes (50x40x60 cm) each containing 

three fresh logs (about 40 cm long and 10 cm diameter) of A. pseudoplatanus, B. pendula, U. 

glabra or S. alba. Six replicates were set up for each tree species, for a total of 24 boxes and 48 

ALB adults (24 males and 24 females). The insects were provided with fresh maple twigs replaced 

twice a week. Adults died within 2 days from the beginning of the experiment were replaced with 

new ones. Insects were held in the rearing boxes for two months. 

 

In both field and laboratory experiments, at the end of the trials the tested logs were debarked 

and analysed to assess ALB breeding activity, measuring the realised female fecundity, i.e. number 
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of laid eggs, and the egg survival, i.e. percentage of eggs giving larvae. Lastly, the percentage of 

alive larvae found under bark in relation to the alive eggs gave the larval survival. 

 

Statistical analysis 

Every single tree or box was considered as a true replicate in the following statistical analysis. Thus, 

the mean of data measured from the 3 logs coming from the same tree or the same box was used as 

value for that tree. Number of laid eggs (female fecundity), egg survival and larval survival of the 

young larvae were the variables recorded according to the different host trees. The analysed 

variables, reported as mean values (± SEM) per tree or bark square meter according with the tested 

variable, were compared by single analysis of variance (ANOVA) (Zar, 1999) looking for 

significant differences among different host-tree. Homogeneity of variance was tested by Cochran‘s 

test (test C) and normality by the Kolmogorov–Smirnow test (test D). When necessary, data were 

log- [X‘ = log(x+1)] or arcsin- (X‘ = arcsinx) transformed to obtain homogeneity of the variance 

and normality. Wherever significant differences occurred, Tukey‘s Honestly Significant Difference 

(HSD) multiple comparison test was applied for mean separation (Zar, 1999). Non-homogeneous, 

non-transformable data were analyzed with the χ
2
 goodness-of-fit test using Yates‘ correction for 

continuity, or by the Kruskal-Wallis Anova. Wherever necessary, the recorded variables were each-

other related using multiple regression. An R
2
 value, adjusted for the number of parameters (Zar 

1999), was used to assess the goodness-of-fit of all possible models. Differences at the 0.05 

confidence level were considered significant. Analyses were performed using Statistica 3.11
®
 for 

Windows
® 

software (StatSoft, Inc., Tulsa, OK). 

 

Results 

Choice experiment 

Field trials. A total of 29,564 host trees growing over an area of about 5,625 ha were checked in the 

5 years of survey. Trees found to be infested by ALB were 1,140 (3.8% of the checked). With 426 

trees, maples were the main infested species followed by elms (328), birches (208) and willows 

(150) (Tab. 2). Other tree species, such as Horse chestnut, plum trees and poplars, were infested 

only marginally with respectively 17, 9 and 2 attacked trees (Tab. 2). Considering the relations 

between infested and available trees, ALB showed, however, a clear preference for the horse 

chestnut, with about 12% of infested trees, followed by birches (8.9), elms (5.2), maples (4.4) and 

willows (3.3). 

Laboratory trials. Realised female fecundity (mean number of laid eggs per female) was different 

among the tested tree species (Anova, df = 3; 8, F = 5.45, P < 0.05), with values higher on maple 
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(39.6) than elm (12) and birch (6.6). Willow showed middle values (18) (Tukey test, P < 0.05) (Fig. 

1). Mean egg survival was also different among species (Anova, df= 3; 8, F = 5.89, P < 0.05), with 

birch showing values (no surviving eggs) lower than maple (68.8%), willow (54.4%) and elm 

(46%) (Tukey test , P < 0.05) (Fig. 1). Lastly, larval survival showed significant differences among 

trees species (Anova, df = 3; 8, F = 1,125.14, P < 0.001), as birch had values (no surviving larvae) 

lower than the other tree species (Tukey test, P < 0.05), with maple, willow and elm having 

respectively 95.5%, 100% and 100% of larval survival  (Fig. 1). 

Having the possibility to chose their host tree, in natural conditions females preferred to 

reproduce on horse chestnuts, although in laboratory the highest breeding performance ‒ concerning 

both female fecundity and egg-larval survival ‒ were recorded on maple. 

 

No-choice experiment 

Field trials. The ALB fecundity tested in a no-choice experiment carried out in field varied from 0 

to 60 eggs per female, with a mean of about 17.4 eggs/female. Female fecundity was affected by the 

host tree (Anova, F = 6.66, d.f. = 3; 22, P < 0.01), with birch showing values (1.8) significantly 

lower than maple (35) and willow (20.7);  elm (15.5) showed middle values (Tukey test, P < 0.05; 

Fig. 2). Egg survival showed the same trend of female fecundity with significant differences among 

tree species (Anova, F = 5.01, d.f. = 3; 22, P < 0.01). Egg survival recorded for maple and willow  

91.6% and 79.9%, respectively  was higher than birch (11.1%); again elm (67.2%) showed 

medium values (Tukey test, P < 0.05) (Fig. 2). Lastly, larval survival was lower in (Anova, F = 

1.98, d.f. = 3; 22, P < 0.05) birch (no surviving larvae) than in maple (64.6%), willow (63.8%) and 

elm (53.7%) (Tukey test, P < 0.05; Fig. 2). 

Laboratory trials. The ALB fecundity tested in the no-choice experiment carried out in laboratory 

conditions varied from 2 to 60 eggs per female, with a mean of about 25.4 eggs/female. Female 

fecundity was deeply affected by the host tree (Anova, F = 4.69, d.f. = 3; 8, P < 0.01). The lowest 

fecundity was recorded on birch with a mean of only about 4 egg per female, significantly lower 

than those observed on maple (23.3), willow (40.6) and elm (21.6) (Tukey test, P < 0.05) (Fig. 3). 

Also egg survival, reported as proportion of alive eggs, i.e. hatched, on the total number of laid 

eggs, showed significant differences among host-trees (Anova, F = 8.95, d.f. = 3; 8, P < 0.001), 

with maple and willow showing an egg survival  82.5% and 57.7%, respectively  higher than 

birch (11.1%); elm (30.6%) differed only from maple (Tukey test, P < 0.05; Fig. 3). Similarly, 

larval survival was different among tree species (Anova, F = 47, d.f. = 3; 8, P < 0.001), with birch 

showing values (no surviving larvae) lower than maple (91.6%), willow (79%) and elm (100%) 

(Tukey test, P < 0.05; Fig. 3). 
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In conclusion, females forced to reproduce on birch had the lowest fecundity and suffered the 

highest egg mortality; differently, maples were the host trees allowing the highest ALB breeding 

performance, i.e. the lowest difference between egg and larval survival. 

 

Table 1 Tree species, replicates and insect pairs tested in the no-choice field experiment. 

Tree species 

 N of  

trees 

N of 

replicates 

N of pairs 

N of  

insects 

Acer pseudoplatanus  6 3 18 36 

Betula pendula  6 3 18 36 

Ulmus glabra  6 3 18 36 

Salix alba  6 3 18 36 

Total  24 12 72 144 

 

 

 

Table 2 number of checked and infested trees per genera monitored in the infestation area between 

2009 and 2012. 

 

Monitored genera 
Checked 

trees 

Infested 

trees 
% 

Acer spp.* 9684 426 4.4 

Ulmus spp. 6351 328 5.2 

Betula spp. 2331 208 8.9 

Salix spp. 4514 150 3.3 

Aesculus hyppocastanum 144 17 11.8 

Prunus spp. 3009 9 0.3 

Populus spp. 1613 2 0.1 

Carpinus betulus 1085 0 0 

Fagus sylvatica 165 0 0 

Platanus spp. 668 0 0 

Total 29564 1140 3.8 

 

* spp.: the monitored genus includes many different species.   



Chapter 4                                                                                                           Host preference and breeding performance 

 

74 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Host preference and breeding performance of ALB in laboratory choice test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Host preference and breeding performance of ALB in field no-choice tests.  
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Fig. 3: Host preference and breeding performance of ALB in laboratory no-choice tests.  
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Discussion 

 

This is the first study reporting detailed information concerning host preferences of ALB in 

southern Europe in natural conditions. Moreover, the same host preference were tested by specific 

laboratory and field choice and no-choice experiments. While the general results partially confirm 

data known from other ALB populations and infestation areas, the main outcomes of the present 

investigation suggest that the mechanisms of host selection and host acceptance of ALB are 

probably extremely complex and affected by both endogen and hexogen factors, varying between 

populations.  

Infestations of A. glabripennis are reported in western countries since 1996 (Haack et al., 

1996), and many lists of host plants have been published often showing discrepancies among them 

(Hu et al., 2009; Van der Gaag & Loomans, 2014), with the preferred hosts vary between 

infestation areas (Haack et al., 2010). Also in this study ALB breeding performance results to be 

deeply affected by the host species. Differences among hosts are found both in field and laboratory 

conditions. Of the four genera tested in the present study and known to be susceptible to ALB 

colonization (Acer, Ulmus, Salix and Betula), maple always allows the highest ALB breeding 

performance. Our results confirm the observations carried out in other introduction areas, where 

maples are the greatly attacked hosts (Hu et al., 2009; Haack et al., 2010). Although maples are the 

most attacked species (426 of 1,140 infested trees), the number of infested trees was nevertheless 

only the 4.4% of the maples available in the infestation area (9,684 maples). In this respect, horse 

chestnut is the tree species mainly affected by ALB (11.8%) in northern Italy. The discrepancy 

between the most infested (maples) and the preferred host (horse chestnut) is presumably a result of 

both the large availability of maple trees over a lower density of other tree species, and the ALB 

spreading behaviour. Although ALB is a highly polyphagous species, it spreads hardly, slowly and 

over short distances (Smith et al., 2002; Favaro et al., 2015). Adults may simply infest the closest 

suitable trees occurring in the surroundings, however preferring  when available  horse chestnut 

rather than other species. Similar results were found also in other infestation areas, where horse 

chestnut is reported to be a very successful host of ALB (Hu et al., 2009; Haack et al., 2010), 

although with a relatively low number of infested trees (Tomiczek & Hoyer-Tomiczek, 2007).  

Also birches are usually reported among the main ALB hosts (Hu et al., 2009), supporting 

our results where infested birches (208 trees) represent 8.9% of the available ones. However, if 

compared with the infestation data collected by field monitoring, the low breeding performance 

observed on birches during the experimental trials is an unexpected result. When breeding on 

birches, ALB shows the lowest values in term of laid eggs, egg survival and larval survival in both 

laboratory and field essays. Although a possible explanation might be the quick log drying occurred 
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in laboratory conditions, the colonization failure even on alive trees makes this hypothesis 

unreliable. The high number of infested trees recorded in field may instead rely on an 

overestimation of ALB occurrence on birches during tree survey. In this respect, birches growing in 

urban parks and gardens are commonly infested by many wood borers, both longhorn beetles such 

as Lamia textor or Cerambyx scopolii (Bense, 1995), and cossids as the Leopard moth Zeuzera 

pirina or the Goat moth Cossus cossus (Heath & Emmet, 1985). Although L. textor and especially 

Z. pirina were found frequently on felled trees (authors observations), in most cases the tree survey 

carried out from the ground by the operators of the Regional Plant Protection Organization is unable 

to distinguish between infestation symptoms (such as exit holes) caused by different species of 

wood borers having ALB similar size. Moreover, following a precaution policy adopted during the 

application of the eradication protocol, all trees growing in the quarantine area and showing 

infestation symptoms potentially imputable to ALB are cut, chipped and listed as effectively ALB 

infested trees. Low breeding performance of ALB on birches was reported also in a previous study 

carried out on the same population (Faccoli et al., 2014a), in which success colonization of birches 

resulted extremely low when compared to other tree species. Analysing the overwintering survival 

of ALB in four main hosts in natural conditions, Betula resulted to be the host genus with the 

highest percentage of empty oviposition pits and dead larvae in phloem, confirming the scarce ALB 

performance in birches. 

ALB is reported to be able to fully develop in a host species, while in other populations the 

same host is reported to be suitable only for oviposition but not for larval development, or even 

recorded as unsuitable. For instance, it is reported that green ash trees are suitable for a complete 

development of ALB population from China and Chicago infestations, whereas in New York 

outbreak oviposition only is reported in green ash (Nowak et al., 2001). Although for many insect 

species host plant quality is a key factor deciding about quantity and quality of the brood (White, 

2014), for others does not. Sometimes, host choice made by insect females during oviposition can 

be erroneous in terms of host quality (Larsson & Ekbom, 1995), or they cannot differentiate 

between hosts on the basis of quality (Rauscher 1985). In a study on the susceptibility of four 

American tree species (Acer saccharum, Acer rubrum, Fraxinus pennsylvanica, Quercus rubra), 

Morewood et al. (2003) observed a relatively large ALB oviposition on green ash although only a 

few larvae survived in it. In this respect  even if not forced  ALB females accepts to oviposit also 

in suboptimal hosts deeply affecting brood survival and development. This reproductive behaviour 

seems to be a common trait in ALB, which presents different host preferences in different 

infestation areas (Hu et al., 2009; Haack et al., 2010). Comparing ALB host plants in China, 

Chicago and New York, Nowak et al. (2001) found that many of the infested tree species were 
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suitable for oviposition only but not for larval development, and that adult emergence was 

confirmed in only a part of them. Moreover, Fraxinus, Malus, Platanus and Tilia resulted to be 

accepted hosts in one site but not in others (Nowak et al. 2001). Even poplars, which are among the 

main preferred hosts in China (Zhao et al. 1997, Wen et al. 1998, Hu et al. 2009), were not fully 

accepted in Chicago and New York. Similarly, of the 1,613 poplar trees occurring in our infestation 

area, only two have been found attacked by ALB.  

While some tree species may have effective defences against ALB (Morewood et al. 2004a, 

2004b) and its symbionts (Geib et al. 2009, 2012, Schloss et al. 2006) affecting oviposition (i.e., 

host-acceptance) or larval development, the large variations in the host range shown by ALB may 

be regulated also by other factors. The preferences expressed by ALB for a specific host species in a 

particular infestation area, but the avoidance of the same tree species in another one, seems to be the 

result of specific traits involving both the origin of the founders  i.e., the genetic characteristics of 

the population  and their adaptation to the local conditions found during the colonisation of new 

areas. In a recent paper concerning the possible effect of habitat and tree suitability on ALB tree 

colonization, Faccoli et al. (2014b) demonstrated that the host-selection and the reproductive 

behaviour of ALB largely depend on habitat type and nutritional characteristics of the potential 

host-trees. Same host-tree species growing in habitats having different nitrogen availability allowed 

ALB colonization only following a mechanism of compensatory feeding of different intensity 

(White, 2014). Suitability of different trees may be instead due to other factors, such as secondary 

chemical compounds (Faccoli et al. 2014b). One plausible explanation of the extraordinary host 

adaptation of ALB is proposed also by Morewood (2003), which argued this behaviour as a strategy 

maintaining the beetle population in an area for a long time, avoiding long dispersal in favour of the 

exploitation of all available trees, changing the forest composition over time. A reduced breeding 

performance on sub-optimal hosts may then be the ecological cost of this broad polyphagia.  

Although many studies were carried out about ALB host preference, a number of molecular, 

biological and ecological aspects are still unclear. Differences in host preferences, host choice and 

host suitability were largely reported in literature, but the underlying host-selection mechanisms 

remain scarcely understood. Further studies should be focused, for instance, on the molecular 

characterization of ALB populations from various infestation areas in relation to host preference, 

suggesting interesting findings on the host-selection mechanisms of this extremely invasive pest. 
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Abstract 

Tree colonisation and feeding activity of the invasive wood-borer Asian Longhorn Beetle 

(Anoplophora glabripennis), an Asian pest introduced into North America and Europe, was studied 

in a newly invaded area in Italy. The hypothesis being tested was that the reproductive success of 

the insect depend on habitat type and tree suitability. Adult beetles were caged on branches of host 

and non-host species, in both urban and forest habitats. Two months later, number and size of 

feeding patches on plant tissues, eggs laid, and surviving larvae were assessed. Bark concentration 

of C and N was also measured from the same trees. Results indicated that the mean area of plant 

tissues consumed by adult feeding was significantly larger on trees growing in forest than in urban 

habitat, although within the same habitat there were no differences between susceptible and non-

susceptible trees. ALB tree colonisation, in terms of number of eggs laid and young larvae survival, 

was not affected by habitat while it was higher on susceptible trees . Although trees growing in 

forests had a lower nitrogen concentration, they allowed colonisation rates similar to those of trees 

growing in the urban habitat. Hence, the amount of carbon and nitrogen did not fully explain tree 

suitability or habitat selection. We suggest compensatory feeding as a potential mechanism that 

might explain this peculiar situation, as supported by a more intensive feeding activity recorded on 
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trees in the forest. Suitability of different trees may be due to other factors, such as secondary 

chemical compounds. 
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Introduction 

The Asian Longhorn Beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera 

Cerambycidae), is a wood boring pest native to China and South Korea (Cavey et al., 1998; 

Lingafelter & Hoebeke, 2002; Williams et al., 2004). ALB is a highly polyphagous species that 

feeds on hardwood tree species from at least 15 families recorded in Asia, Europe and North 

America (Smith et al., 2009). In both its native range and invaded countries, ALB infests species 

primarily in the genera Acer, Betula, Populus, Salix and Ulmus (Lingafelter & Hoebeke, 2002; 

Haack et al., 2006; Hérard et al., 2006; Turgeon et al., 2007). However, tree susceptibility may 

differ greatly within the same genus (Gao et al., 1997; Morewood et al., 2004a), as reported for 

Populus species in China (Wang, 2004; Yin & Lu, 2005) and for maple species in North America 

(Dodds et al., 2014), although the mechanisms driving tree susceptibility have not yet been 

reported. Host range of phytophagous insects is usually governed by adaptation to plant chemistry, 

which varies dramatically across plant species, especially if belonging to different families. While 

some compounds may serve as cues by which adult beetles locate and recognize host plants (Byers, 

1995), avoidance of unsuitable trees may be due either to a lack of nutritional elements ‒ for 

instance nitrogen (Mattson 1980, White 1993) ‒ or to the detection of potentially toxic secondary 

metabolites (Agelopoulos et al., 1999). Considering the wide polyphagy of ALB, the mechanisms 

affecting tree suitability for this species are, however, still unclear, especially if they are assumed to 

be based on characteristics common to such a large range of different host trees. In this respect, the 

nutritional characteristics of the tree tissues would be a possible factor affecting tree susceptibility 

to ALB. It is indeed very well known that the nutritional quality of plants may have an impact on 

the life processes of insects that feed on them (Dixon, 1971; Hosking & Hutcheson, 1979; Mattson, 

1980; Leather, 1995; Akbulut & Linit, 1999). For instance, breeding performance of bark and wood 

boring beetles is often limited by low nitrogen concentrations of the tree tissues they feed on 

(Hodges & Lorio, 1969; Ayres et al., 2000; Schloss et al., 2006). Chemical composition of plant 

tissues may thus characterize ALB tree suitability (Morewood et al., 2004b; Zhao et al., 1994). 

Depending on local temperatures and photoperiod, emergence of ALB adults lasts from April to 

November, with peak flights usually in June-July. While most cerambycids colonise dying or dead 

trees, ALB infests apparently healthy trees (Hu et al., 2009; Haack et al., 2010). After emergence 

and before mating and oviposition, ALB adults undergo a period of 8-15 days of obligatory 

maturation feeding (Li & Wu, 1993; Keena, 2006). They feed on petioles, veins of leaves, twigs or 

tender bark (including both periderm and phloem) of healthy host trees, where the sugars and 

nutrients needed to reach full sexual maturity and sustain their normal activity are found (Li & Liu, 

1997; Keena, 2002; Smith et al., 2002). After ovarian maturation and mating, the female chews an 
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oviposition niche through the bark and inserts a single egg beneath the bark of the upper trunk or 

main branches. Under natural conditions most females may lay more than 100 eggs, according to 

age and body size (Hu et al., 2009). Larvae develop in the wood for 1-2 years depending on 

temperature and host species, and adults emerge in summer through a characteristic circular exit 

hole (Haack et al., 2010 and literature therein). ALB reproduction may not depend only on tree 

species and characteristics, but also on habitat. In the countries of introduction, ALB infestations 

are usually limited to urban trees that are isolated, growing in small groups or rows, in small rural 

stands or along forest edges (Hu et al., 2009; Haack et al., 2010; but see Dodds & Orwig, 2011). 

Studies conducted in South Korea (Williams et al., 2004) ‒ where ALB is native ‒ suggest that it is 

not a true forest species but is adapted to riparian habitats characterized by long edges. This 

hypothesized specialization for edge habitats would explain the high adaptability of ALB to hedges 

and tree rows  such as along roads and in parks  typical of urban habitats (Williams et al., 2004). 

According to this hypothesis, the lack of ALB in the forests of the invaded countries should 

therefore be expected. Two recent papers (Dodds & Orwig, 2011; Dodds et al., 2014), nevertheless, 

report that in Massachusetts (USA) this beetle is invading two hardwood stands. The three infested 

areas (Bovenzi Conservation Area, Boylston and Delaval Tract) are actually three small mixed 

hardwood stands of about 40 ha, 10 ha and 5 ha respectively (for comparison, NY Central Park 

infested by ALB at the end of 90ies is about 340 ha), surrounded by city neighbourhoods and 

streets, making them comparable to urban parks or to small rural stands. In June 2009 a large ALB 

infestation was recorded at a small town in Northern Italy (Cornuda). Although a large part of the 2 

km-wide buffer zone falls within a natural hardwood forest closely bordering the infested town, no 

infested trees were found in the forest but only along its edges (Faccoli et al., 2011). The effect of 

habitat characteristics on tree suitability to ALB is thus an interesting question deserving attention.  

The main aims of this study were to test host acceptance, feeding performance, and tree 

colonisation of ALB on host and non-host trees growing in urban and forest habitats. In this respect, 

we hypothesize that tree colonisation by ALB may vary according to habitat and host tree, because 

of evolutionary history and differences in tree quality. The hypothesis was tested by a specific field 

bioassay done on healthy mature trees. In parallel, the concentration of some bark chemical 

components (carbon and nitrogen) was measured in the trees looking for relationships with tree type 

(host or non-host) and habitat (forest or urban) that might explain any variation in insect 

performance observed in the bioassays. 
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Materials and Methods 

Study area 

The study was conducted in the small town of Cornuda (45° 83‘ N, 12° 01‘ E) and neighbouring 

municipalities (province of Treviso, NE Italy), where a large ALB infestation has been recorded 

since June 2009. The study area is located in a hilly landscape at about 160 m a.s.l. The town is 

closely surrounded by riparian habitats along a large river and a natural mixed hardwood forest 

(Asolo-Bosco del Fagaré, about 1,300 ha) composed mainly of Carpinus betulus, Fagus sylvatica, 

Acer pseudoplatanus, Quercus robur and Fraxinus excelsior on the more mesic slopes, and 

Fraxinus ornus, Betula pendula, Ostrya carpinifolia and Quercus pubescens on those more xeric. 

However, despite the ample availability of potential host trees and the application of a specific 

monitoring programme leading to the discovery of more than 1000 infested trees (Faccoli et al., 

2011), no infested trees were found in the forests and natural habitats neighbouring the infestation 

area. The whole area lies along the lower edge of the NE Italian Alps, with climate characterized by 

a South-North transition from Mediterranean conditions, with temperate summers and mild winters, 

to a more continental climate with hot summers and cold winters. The mean January temperature is 

about 2-4 °C; precipitation is concentrated in spring and autumn, with an annual mean of about 

1,400 mm.  

 

Insect collection and rearing 

A specific eradication protocol is applied against the ALB population occurring in Cornuda. This 

includes the winter monitoring by ground visual checking of all trees belonging to the most 

common ALB host genera growing within 2 km of each infested tree (Faccoli et al., 2011). Large 

trees or trees showing unclear symptoms are checked with the help of tree-climbers. Trees found to 

be infested, i.e. showing exit holes or oviposition pits, are referenced geographically and cut-down 

in May, logged, gathered in a safety area and chipped to kill the pupae just before adult emergence. 

In late May 2010 more than 500 infested boles approximately 35-40 cm in length and 15-20 cm in 

diameter, chosen among the most infested branches of A. pseudoplatanus, B. pendula, Ulmus 

pumila L., Aesculus hippocastanum L. and Salix spp., were not chipped but placed singly or in pairs 

in aerated orange plastic tubes (50 cm long, 30 cm diameter) to await adult emergence. Trunks were 

not sampled because ALB mainly infests the upper part of the trees and the main branches and 

because too large boles would not fit in the emergence tubes. Both ends of the tubes were covered 

with a fine metal mesh screen to retain the emerged insects until checking and collection. The tubes 

were stored outdoors, piled horizontally on open iron shelves in 5 layers (each layer having 5 

tubes), under plastic roofs to protect them from rain and direct sunshine, but ensure good ventilation 
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and thermal exchange. Before being placed in the tubes, the cut surfaces of the boles were sealed 

with paraffin to reduce drying. Tubes were checked three times per week until the end of the 

emergence period. Beetles found in the tubes were collected, counted and sexed according to 

Lingafelter & Hoebeke (2002). Air temperature within the tubes was recorded hourly using a data 

logger (HOBO Temp


) inserted in a tube to record a temperature as close as possible to that of the 

boles. ALB males and females newly emerged from the infested boles were placed separately in 

metal mesh cages (100 cm x 100 cm x 200 cm), avoiding any mating and egg deposition. Moreover, 

there was no oviposition substrate within the cages. As many adults stored together in the same 

cage often fight and mutilate each other, affecting longevity and performance, there were never 

more than 20 adults per cage. The adults were fed upon freshly cut twigs of maple (A. 

pseudoplatanus) placed in a glass with fresh water and replaced twice a week. The cages were kept 

under laboratory conditions at 22 ºC and 16h:8h = L:D photoperiod, and the ambient air 

temperature recorded hourly. Before being tested in field experiments, adults were held in the cages 

for 20 days to ensure their full sexual maturation (Hu et al., 2009; Haack et al., 2010). As 

polyphagous insects may have higher performance on the host tree on which they were reared 

(Mopper, 1996), we cannot exclude that this may have affected our experiment. However, the 

maturation feeding of adults carried out in the cages on the same host species (maple) should level 

out such an effect. In July, healthy and fully matured adults were collected from the cages and 

randomly assigned to the experimental trials. 

 

Field tests 

In July 2010, a field experiment on ALB tree colonisation was conducted on ALB host and non-

host trees growing in both forest and urban habitats. Apparently healthy, i.e. with no visible signs or 

symptoms of infestation, mature trees were chosen randomly in both the town centre (from hedges, 

gardens and public parks) and in the forest surrounding the town (see description of the study area). 

As urban areas and forests are extremely heterogeneous, trees of the same species were chosen as 

similar as possible in age, health conditions, trunk and canopy size. In each habitat, five trees 

belonging to each of three hosts (A. pseudoplatanus, F. excelsior and B. pendula) and three non-

host species (C. betulus, O. carpinifolia and F. sylvatica) were tested, for a total of 30 trees per 

habitat (urban Vs forest) and 30 trees per host category (host Vs non-hosts). Tested tree species 

were assigned to either host or non-host group according to Haack et al. (2010) and previous field 

observations (Faccoli et al., 2011). 

A pair of mature ALB adults was placed inside a cage of 0.5 mm wire mesh fixed at about 3 m 

from the ground on a canopy branch (about 10 cm in diameter) of each experimental tree, for a total 
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of 120 beetles (60 pairs). The cage was constructed by wrapping a sheet of wire mesh (100 x 50 cm) 

around the branch, stapling the ends to the branch and further sealing the ends with metal ribbon. 

Each caged branch had also a number of small fresh twigs providing leaves needed for adult 

feeding. The resulting cage was about 90 cm long and 50 cm in diameter, allowing enough room for 

the adults to move freely along the branch, feed, mate and lay eggs. Two days later each insect pair 

was checked and any dead individual was replaced with a new one of the same age and sex. The 

tested tree branches were as similar as possible in size and only reachable from the ground by 

ladder, to prevent tampering. Two months later, the cages were removed, the branches cut from the 

trees and the resulting boles taken to the laboratory. After collection, the boles were analysed for 

ALB feeding activity and tree colonisation, measuring the following parameters:  

- adult feeding activity: number and size of the feeding patches occurring on branches, twigs, 

new shoots, leaf petioles and leaves (globally indicated as feeding patches) were recorded 

individually measuring by a calliper width, length, diameter and surface of plant tissues removed by 

adults during the feeding activity. These measurements are not particularly difficult because bark 

removal from branches is usually quite regular in shape (generally rectangular patches) and hence 

easy to measure. In the case of twig and shoot feeding, instead, the bark is completely removed and 

in that case the area was measured using the diameter and length of the attacked part. Finally, leaves 

showing signs of feeding activity were collected and the removed surface assessed by analysis of a 

scanned image. 

- number of oviposition pits occurring on the bark: they were easily distinguishable from 

feeding patches by their characteristic shape and size, and by the possible occurrence of eggs or 

larval galleries in the phloem beneath the pit;  

- number of sterile oviposition pits: the occurrence of eggs (or larvae) was checked in the 

phloem beneath each oviposition patch to identify sterile pits and give an indication of 

attractiveness of the tree for oviposition;  

- female fecundity: number of eggs laid by the females assessed by dissection of each 

oviposition pit found in the boles (after debarking), and corresponding to the number of unhatched 

eggs (i.e., egg mortality) and the live larvae found in the phloem; 

- larval survival: percentage of young larvae (first and second instar) found live in the phloem 

(after debarking) in relation to the number of eggs laid. As the boles were debarked only two 

months after the beginning of the field experiment most larvae were still in the phloem and not in 

sapwood. The few sapwood entrance holes were however counted and considered as live larvae. 

Because the ALB third instar larvae bore tunnels deeply in the wood the possibility of any accurate 

observations concerning their survival is strongly reduced. Moreover, larval development is very 
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slow, taking at least one year, making the full development from egg to adult unpredictable and 

unreliable in cut boles. 

Because temperature may have a strong effect on ALB adult survival, reproduction, and egg 

hatching (Keena, 2006) the tested trees were selected in sites exposed to a similar mean 

temperature. The forest was usually cooler during the day and warmer at night but the mean daily 

temperature did not show significant differences between the two habitats (forest and urban) as they 

were located at the same elevation and latitude. 

 

Bark sampling and elemental CN analysis 

In July 2010, five bark plugs (5 mm diameter) were collected around each branch exposed to ALB 

feeding and colonisation, for a total of 60 trees and 300 samples. As different tree species may have 

a different phloem-periderm proportion, a preliminary analysis was performed on 20 trees of A. 

pseudoplatanus and C. betulus sampled in both urban and forest habitats. The results showed that 

periderm was always thicker than phloem and that their biomass ratio did not vary significantly 

between species (ANOVA, df = 1; 32, F = 288.36, P < 0.001 and F = 0.25, P = 0.61, for thickness and 

biomass ratio respectively). Thus, C and N concentration of bark samples (periderm + phloem) can 

be legitimately compared across different tree species.  

All bark samples were collected on the same day and stored individually in Eppendorf tubes at -

20 °C until analysis, which measured C and N concentrations expressed as percentage of dry weight 

(samples were oven dried overnight at 50 °C) upon combustion and differential sequential trapping 

of C and N oxides. Measurements were conducted on a ―MACRO Vario elemental analyzer
®

‖ 

(Elementar Analysen Systeme GmbH
®
, Hanau, Germany) following manufacturer‘s protocols. 

 

Statistical analysis 

The values of C and N concentrations obtained from the 5 bark plugs sampled in each tree were 

averaged to obtain a single (n = 1) value for that tree, so that each tested tree was considered as a 

true replicate for both the CN chemical analysis and tree colonisation experiment. Number of 

oviposition pits, eggs laid, egg mortality, larval survival and feeding activity (i.e., surface of plant 

tissues removed by feeding adults) were the response variables.. Mean concentrations of C and N 

per tree, and the C/N ratio were considered as variables for the CN analysis, and reported as 

percentage of dry matter. The analysed variables, reported as mean values (± SEM) per tree, were 

compared by a two-way analysis of variance (ANOVA) (Zar, 1999) looking for significant 

differences and interactions among tree types (i.e., host and non-host) and habitats (i.e., urban and 

forest habitats). Homogeneity of variance was tested by Cochran‘s test (test C) and normality by the 
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Kolmogorov–Smirnow test (test D). When necessary, data were log- [X‘ = log(x+1)] or arcsin- (X‘ 

= arcsinx) transformed to satisfy requirements of homogeneity of variance and normality. 

Wherever significant differences occurred, Tukey‘s Honestly Significant Difference (HSD) multiple 

comparison test was applied for mean separation (Zar, 1999). Non-homogeneous, non-

transformable data were analysed with the χ
2
 goodness-of-fit test using Yates‘ correction for 

continuity. Differences were considered significant at P < 0.05. Analyses were performed using 

Statistica
®
 for Windows

® 
(StatSoft Inc., Tulsa, OK). 

 

Results 

Insect performance 

The mean area of plant tissues removed by adults during feeding (feeding patches) was significantly 

larger on trees growing in forest (17.6 cm
2
) than in urban (6.6 cm

2
) habitats (ANOVA: d.f. = 3; 56, F 

= 5.21, P < 0.05) (Fig. 1). However, within the same habitat, there were no significant effects of 

tree suitability on feeding activity of ALB adults (Fig. 1).  

The mean number of oviposition pits recorded on the branches (i.e., per female) was affected by 

tree type (host or non-host) (ANOVA: d.f. = 3; 56, F = 5.35, P < 0.05) but not by habitat, with values 

higher in host than non-host trees, in both urban (24.5 Vs 0.2) and forest (21.1 Vs 2.0) habitats. 

Instead, the mean number of sterile pits  i.e., oviposition pits with neither eggs nor larvae  was 

low (on average 14.6%) and with means similar between hosts and non-hosts, and between habitats. 

The highest recorded fecundity corresponded to 60 eggs laid on maple (host species) in urban 

habitats. Female fecundity was also affected by tree type, with a higher mean number of eggs laid 

per female on host (17.1 eggs) than non-host (1.2 eggs) trees (ANOVA: d.f. = 3; 56, F = 8.71, P < 

0.05) (Fig. 1), but not by habitat, with fecundity values similar in both urban (10.6 eggs) and forest 

habitats (7.6 eggs) (Fig. 1).  

Survival of the young larvae, reported as percentage of live larvae relative to eggs laid, was variable 

but showed a trend similar to that of eggs, with mean values higher on host (13.3%) than non-host 

(1.1%) trees (ANOVA: d.f. = 3; 56, F = 7.53, P < 0.05) (Fig. 1). No significant differences in the 

mean survival were found between forest (6.4%) and urban (7.9%) habitats (Fig. 1).  

In all the tested variables (feeding patches, female fecundity and larval survival) tree type and 

habitats showed no significant interactions. 

 

CN analysis 

The CN analysis showed significant differences among tree types (host or non-host) and habitats 

(urban or forest) according to the tested variables (Fig. 2). The mean N concentration (range of N 
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concentration per tree: 0.43 - 0.84%) was higher in urban than in forest habitats, for both host and 

non-host trees (ANOVA: d.f. = 3; 56, F = 32.65, P < 0.001) (Fig. 2). As expected, the opposite trend 

was observed with the C/N ratio (range of C/N ratio per tree: 50.9 - 108.8), with higher values in 

forest than in urban habitats (ANOVA: d.f. = 3; 56, F = 21.72, P < 0.001) (Fig. 2); no significant 

differences between tree types occurred within the same habitat (Fig. 2). 

 

 

 



Chapter 5                                                                                                                                Effects of habitat and host tree 

  

97 
 

 

 

Fig. 1 Feeding activity (area of plant tissues removed by adults) and tree colonisation (fecundity 

and survival of young larvae) of A. glabripennis recorded in different groups of trees (host and non-

host) and habitats (forest and urban). Different letters indicate significant differences at P < 0.05. 
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Fig. 2 Nitrogen concentration and C/N ratio of bark samples collected in different groups of trees 

(host and non-host) and habitats (forest and urban). Different letters indicate significant differences 

at the ANOVA test (P<0.05). 
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Discussion 

The main results emerging from this study show that ALB tree colonisation is mainly affected 

by tree type (host or non-host) rather than habitat, with the highest reproductive performance 

recorded on host trees in both forest and urban habitats. Although this is not a surprising result, the 

study shows that ALB can also successfully infest trees growing in natural forests, where both host 

and non-host trees have significantly lower nitrogen concentrations than in urban habitats. In this 

respect, bark nitrogen concentration does not seem to directly affect ALB tree colonisation, but only 

adult feeding.  

Urban habitats and the managed status of ornamental trees result in higher nitrogen availability 

in plant tissues (Braman et al., 1998), as found also in this study. The causes can be sought in a low 

tree density resulting in a lower competition for the environmental resources, in plant rearing 

practices (including fertilization from the nursery stages onwards), as well as in a higher and closer 

exposure to anthropogenic nitrogen deposition sources occurring in such habitats. For instance, the 

atmospheric nitrogen originating from the combustion of fossil fuels can be substantial, exceeding 

30 kg/ha in many urban regions of Europe and North America (Taylor et al., 1994; Bobbink, 1998), 

with an N flux 1.5-2.3 times higher than in rural and natural sites (Redling et al., 2011). Increasing 

nutritional quality of plant tissues from the nitrogen enrichment occurring in urban habitats may 

influence the population dynamics of herbivore insects on a wide scale (Kytö et al., 1996; Herms, 

2002; Raupp et al., 2010). Nitrogen limitations are particularly critical for wood boring insects 

(White, 1993), which face an extremely severe challenge because of the low nutritional value of 

wood (Hodges & Lorio, 1969; Scriber & Slansky, 1981; Slansky & Scriber, 1985). Nevertheless, 

nitrogen concentration only marginally affected the success of ALB tree colonisation and the 

possibility to infest trees growing in forest habitats. As low nitrogen concentration can limit growth 

and reproduction, herbivores can select for mechanisms or behaviours that increase nitrogen 

acquisition (Mattson, 1980), such as increasing the intake rate (Ayres et al., 2000). ALB appears to 

deal with the lower N concentration in forest trees simply by increasing the feeding activity needed 

for adult survival and egg production. This is commonly known as compensatory feeding, and can 

be observed in various animal taxa (Karasov & Martínez del Rio, 2007). In ALB the compensatory 

feeding appears to negate the difference in host quality between forest and urban trees.  

The scarce ALB reproduction in forests may therefore be due to ecological factors other than 

nitrogen concentration in tree tissues. A first prudent hypothesis could be that ALB establishes 

where it is introduced, which has historically been urban areas because of the role of infested wood 

arriving via international trade. Most of the recorded ALB invasions occurred in cities or towns 

often located far away from natural stands and forests, and ALB is known to have a scarce dispersal 
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capacity, usually lower than 2 km per year (Smith et al., 2001; 2004; Bancroft & Smith, 2005; 

Sawyer, 2006; USDA-APHIS, 2008). Moreover, ALB tends to re-infest the same tree until the host 

quality is too poor (Haack et al., 2006), which often takes several years. ALB dispersal is thus 

generally low when good hosts are plentiful and near the original infestation area. The adults would 

thus have little possibility of reaching natural forests, often located dozens of kilometres from 

infested urban areas. Nevertheless, in our experimental site the infestation area closely borders a 

natural hardwood forest where – after a 6-year long monitoring (2009-2014) – ALB infested trees 

were found only along the forest edge and never within the forest.  

A second hypothesis suggests that the absence of ALB from forests may be due to the presence 

of limiting biotic factors in these habitats, such as generalist predators more closely associated with 

natural ecosystems than urban habitats. For instance, generic larval predators like woodpeckers or 

several insect families of predators and parasitoids of longhorn beetles may play a crucial role in 

limiting or preventing forest colonisation by ALB adults (Pan, 2005; Li et al., 2007; Huang et al., 

2008). However, no specific data are available concerning these hypotheses. 

While tree nitrogen concentration varies between habitats, its concentrations are similar in both 

host and non-host trees. The different suitability of tree type for egg laying and larval development 

would thus be due to additional factors, for instance secondary chemical compounds that may vary 

strongly among host and non-host trees but not among habitats. One example of this is the callery 

pear (Pyrus calleryana), native to China and resistant to both larvae and adults of ALB (Morewood 

et al., 2004b). Morewood et al. (2004b) and Zhao et al. (1994) suggest that the resistance to ALB is 

probably caused by the chemical composition of the tree, which may negatively affect beetle 

development. Bark chemical composition may thus crucially affect ALB wood colonisation, as 

known in many other wood-boring beetles (Mattson et al., 1988; Hanks et al., 1995). 

In conclusion, our data begin to cast light on the hitherto unexplained factors governing the 

spread of a major insect pest that is continuing to pose crucial threats to urban parks and landscapes 

in European and north American towns. Through compensatory feeding by ALB adults, the mean 

nitrogen concentration in trees does not seem to be a determining factor on oviposition and 

development of young larval instars in different hosts and habitats. Other hitherto undefined 

biological or ecological aspects must therefore play a significant role. 
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Abstract 

The Asian Longhorned Beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera 

Cerambycidae)  is recognised as potentially one of the most damaging invasive insects in Europe 

and North America. International trade has increased the risk of accidental introduction of ALB. An 

eradication programme was initiated in north-east Italy in June 2009, when an ALB infestation was 

discovered. The infestation was monitored by annual surveys of all host-tree species growing in the 

eradication area. Infested trees were cut down and chipped. This study analyses the spatiotemporal 

distribution of infested trees for a 5 year period from 2008-2012 using a generalised linear model 

approach. The results show that spread and infestation risk were significantly affected by 1) 

distance of suitable hosts from the nearest infested trees, 2) number of infested trees in the 

surroundings and 3) annual variations. The significant differences in beetle dispersal between years 

to some extent reflect the onset of the eradication programme. The model allowed the estimation of 

arbitrary probability-based management boundaries surrounding ALB infested trees. For example 

the model estimates a 0.1% probability of attack on a suitable host tree 1,910 m from an existing 

attack.   
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Introduction 

Increasing international trade has led to the introduction of many alien insects to both North 

America (Haack 2006, Langor et al. 2009, Haack et al. 2010) and Europe (Faccoli 2008, Roques et 

al. 2009, Kirkendall & Faccoli 2010, Rassati et al. 2013). After successful establishment, alien 

species begin to spread in their new environment with populations occurring outside their native 

range of distribution (Liebhold & Tobin 2008). Although the introduction and establishment of 

most alien species can be prevented through bio-security measures such as specific inspection and 

quarantine protocols, accidental introductions still occur. A reliable assessment of the dispersal rate 

of an invasive species therefore plays a crucial role in the success of eradication programmes 

applied after an invasion (Liebhold & Tobin, 2008). Indeed, spread prediction can allow 

management guidelines to be developed and quarantine boundaries determined (Tobin et al. 2007).  

According to Liebhold & Tobin (2008) there are two conceptual methods to predict dispersal of 

alien species. The first uses a dispersal model based on specific life-history traits of the target 

species. Biological and ecological parameters are used to build equations (i.e. models) describing a 

continuous dispersal of the alien species. However, the spread is usually a complex event resulting 

from the interaction of many different mechanisms, such as human-mediated long-distance 

dispersal, Allee effect and new introductions (Liebhold & Tobin 2008). This method was developed 

for the Asian Longhorned Beetle (ALB), Anoplophora glabripennis (Coleoptera Cerambycidae), 

with mark-recapture studies providing the rate of spread (Zhou et al. 1984, Wen et al. 1998, Smith 

et al. 2001, Smith et al. 2004, Williams et al. 2004, Bancroft & Smith 2005). The second method 

predicts the spread of a target species in relation to historical spread data. A well-known example is 

the spread of the gipsy moth, Lymantria dispar (Lepidoptera Lymantriidae), in North America, 

which was analysed using records available since 1900 (Tobin et al. 2007). This could be a more 

reliable approach but is usually limited by the large space-time dataset required, which recently 

discovered invasions may not provide (Hastings et al. 2005). However, Lu (2005) applied the 

second method to a short-time data series (a few years), creating a simulation model of ALB spread 

based on dendrochronological data recorded in the infestation area of New York, but differences 

between model predictions and real spread remained because of the role of other factors in the 

dispersal. Wichmann & Ravn (2001) also developed a study of the spread of Ips typographus 

following windfall in a spruce forest, based on a short series of historical data.  

In the last two decades ALB has been recognised as one of the most harmful invasive insects in 

Europe and North America (Haugen 2000, Nowak et al. 2001, Haack et al. 2010). The species, 

originally from China and Korea (Cavey et al. 1998, Lingafelter & Hoebeke 2002, Williams et al. 

2004a), was first found outside Asia in New York City in 1996 (Haack et al. 1996, Cavey et al. 
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1998). After this, the species was found in an increasing number of North American states (Hu et al. 

2009, Shatz et al. 2013), and since 2001 also in Europe (Tomiczek et al. 2002, Hérard et al. 2006, 

Maspero et al. 2007, EPPO 2008a). As the insect arrives in new areas mainly via wooden packing 

materials used for international cargo (Hu et al., 2009), the increasing trade between Asia, Europe 

and North America results in a higher risk of new ALB introductions. Intensive field surveys have 

been carried out in the eradication areas in the US (Haack et al. 2010). Surveys require the 

establishment of eradication  boundaries, which are usually defined by the outermost infested trees, 

and a safety buffer zone around them. Boundary identification depends on the insects spreading 

capacity. Higgins et al. (1996) report active dispersal as the most important factor contributing to 

the spread of exotic species in new areas. Knowledge of spreading capacity is, hence, of major 

importance in the management of current and future biological invasions. Although ALB is reported 

to be a ―weak flyer‖ (Zhou et al. 1984), data referring to its active dispersal show wide variation 

among populations (Wen et al. 1998, Smith et al. 2001, Williams et al. 2004, Bancroft & Smith 

2005), especially concerning mean daily movement, which ranges from 2.2 m/d (Zhou et al. 1984) 

to 32.4 m/d (Smith et al. 2004). Because of the contrasting values, these results are scarcely 

applicable to pest management protocols. Variability in results are due to many factors, including 

the experimental design adopted during field trials and surveys. For instance, Dingle and Holyoak 

(2001) suggested that a dispersal phase of newly emerged beetles may occur just after emergence, 

and hence beetle age can affect their spread. Williams et al. (2004) reported that the release of 

beetles from a single point during mass mark-recapture studies can lead to an overcrowding 

situation affecting the dispersal behaviour through a density-dependent mechanism. Schwartz & 

Arnason (1996) suggested that species movement varies in space and time, and that mark-recapture 

models give reliable predictions only for populations living in similar environmental conditions. 

Indeed, remarkable differences in total spreading distance and daily rates were even found in 

studies conducted in the same experimental area and in similar conditions (Smith et al. 2001, 2004). 

In this study we present a descriptive model assessing the spreading capacity of an ALB population 

in North-Eastern Italy. The model provides probability values of infestation of healthy host-trees 

using historical data from 5 years monitoring of the ALB infested trees. Whereas previous papers 

were based on mark-recapture studies (Zhou et al. 1984, Wen et al. 1998, Smith et al. 2001, 2004, 

Williams et al. 2004, Bancroft & Smith 2005), the aim of the present study is to investigate ALB 

dispersal through the analysis of the spatial distribution of ALB infested trees. We assume that the 

data from an annual field survey, providing spatial and temporal distribution of the infested trees, 

may be related to the dispersal of ALB adults in the infestation area and can thus be used as a proxy 
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for the spread assessment. A generalised linear model (GLM) is used to analyse the dataset and 

estimate the boundaries of probability-based management areas. 

 

Materials and Methods 

Investigation area and tree survey 

The study was conducted in the municipality of Cornuda (45° 83‘ N, 12° 01‘ E; Treviso province, 

NE Italy), where a large infestation of A. glabripennis was discovered in June 2009 (Faccoli et al. 

2011). The area is suburban with patches of agricultural land. The eradication programme, still in 

progress, started immediately. The eradication area was set to one kilometre around each tree found 

to be infested, with a buffer zone of another kilometre. Since summer 2009, a periodic survey has 

been performed twice a year (summer and winter) inspecting all potential host trees, as identified in 

the literature (Hu et al. 2009, Haack et al. 2010), occurring in both infestation and buffer areas. Tree 

inspection is done from the ground with binoculars, looking for symptoms of ALB colonisation, 

such as adult exit holes, larval frass and oviposition scars. If either is found, the tree is cut and 

chipped. Branches and canopy of large trees are carefully checked by trained tree climbers. Most of 

the checked trees are located in gardens, private and public parks, roadsides and crop fields, as 

isolated trees or in small groups. As decided by the plant protection organization, there was no 

preventive removal of potential host trees. The infestation area covered a total of about 5,600 ha. 

 

Dataset 

Tree monitoring conducted during 4 consecutive years (2009-2012) produced the dataset analysed 

in the study. A total of 12,732 trees were individually checked, of which 466 were found to be 

infested by ALB. Infested trees belonged mainly to four genera: Acer (36%), Ulmus (28%), Betula 

(18%), Salix (13%). A few trees of other genera such as Aesculus (1%), Populus (0.2%), Prunus 

(0.9%) and Cercidiphyllum (0.2%) were also found to be infested. However, only the four main 

genera (Acer, Betula, Salix and Ulmus), which account for 95% of the infested trees, were 

considered in the analysis. 

Spatial coordinates (GPS), tree characteristics (genus, diameter, height), and symptoms of ALB 

colonisation, if any, were recorded for all the checked trees. For the infested trees, the infestation 

year was also assessed; trees with exit holes were considered infested during the previous year, as 

ALB is univoltine in northern Italy (Favaro, pers. observ.), whereas trees showing only oviposition 

scars on the bark were considered infested in the current year. In 2009, trees showing exit holes 

were considered as infested in 2008 or previously, thus extending the dataset by one year (2008-

2012). Each year the dataset was updated with data on the newly-found infested trees. The GPS 
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device used in the study had an accuracy of about 5 metres. The spatial resolution of the analysis 

was therefore limited to tree-clusters, i.e. a group of trees with same ALB status (infested/not 

infested) growing within 5 m of each other and belonging to the same genus. The total number of 

tree-clusters are reported in Table 1. Given the proximity of the trees in a cluster, they are assumed 

as a single point.  

 

Statistical analysis  

The binomial individual tree-cluster data (tree-clusters attacked or not) was analysed using a 

generalised linear model (GLM) with a probit link-function (McCullagh and Nelder 1989). The 

dependent variable is the probability (P) that a tree-cluster will be attacked. The tested independent 

variables were: attack index (ati), distance to nearest attacked cluster (dna), available hosts index 

(ahi), cluster size (cs) (size of the tree in cm DBH), genus (g) (Acer, Betula, Salix, or Ulmus), and 

year (y). The first four variables were considered continuous, the last three were class variables.  

Attack index (ati) for cluster i is an index of how many attacked trees are nearby, and is calculated 

as: 

 

(1) atii = sum (exp( -dij / ca)) 

 

where ca is a constant, and dij is the distance between cluster i and each cluster (j) attacked in the 

previous year.   

Available hosts index (ahi) is an index of the number of hosts available in an area around tree-

cluster i and it is calculated similar to the attack index: 

 

(2) ahii = sum (exp( - dij / ch)) 

 

where ch is a constant, and dij is the distance between the cluster i and each of the other not-attacked 

clusters (j) in the current year. 

The constants ca and ch in equations 1 and 2 are estimated for all models (full as well as reduced) 

using an iterative approach. The indices (ati and ahi) are each calculated for all tree-clusters and 

years for a range of values of c, which represents a distance threshold within which 0.36 (1/e) of the 

attacks occur. Limiting c values to a range from 0 to 5000 m ensures that the final model is 

biologically plausible, as all known records of self-propelled travel by ALB is significantly less 

than 5000 m  (Haack et al. 2010, Hu et al. 2009, Smith et al. 2001, Smith et al. 2004).  
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The genus variable (g) accounts for the host plant genus considered in this study. Acer, Betula, Salix 

and Ulmus are the main infested genera in the study area. The diameter at breast height (DBH) 

values of the trees in a cluster are considered in the cluster size variable (cs), as a parameter of host 

plants size.  

All the independent variables and their interactions were examined. The non-significant variables 

and variable interactions were determined and iteratively eliminated based on their significance 

level (P > 0.01). The least significant variables/combinations were eliminated first. Non-significant 

class variables or combinations were not eliminated at first, if at least one class was significantly 

different from the other classes. Similarly, lower-level non-significant effects were not eliminated if 

there were significant combined effects of the same variable. The elimination was repeated until all 

parameters left were significant at 1% level (P < 0.01). 

The data (including the indices) were fitted using the "GLM" routine of the free software "Project 

R" (R Core Team 2012). The fits were evaluated using Akaike's Information Criterion (AIC), and 

the best fit was identified minimising AIC. The procedure was repeated for a subset of c values, 

essentially narrowing in on the best possible values of c, until there was no or very little difference 

in AIC. This gives approximations of the constants that provide the model best fitting the data. 

The minimum distance from an attacked tree-cluster to a tree-cluster attacked in the previous year 

was determined for all attacked tree-clusters, and the cumulative distribution of minimum distances 

plotted for each of the years 2009-2012.  

Detection of the attacked trees during surveys is not perfect, and some tree is missed every year. 

The model considers that the percentage of infested trees missed during the annual surveys is 

constant. Because each new attack originates from an old attack (assuming that there are no new 

introductions), the beetles in a new attack should have travelled at least as far as the distance to the 

closest old attack. Hence, the distribution of distances from new attacks to nearest old attack reflects 

the dispersal capacity (maximum distance) of the beetle (Wichmann & Ravn 2001). 

The result of the final GLM model was illustrated by plotting the probability of attack as a function 

of distance from a single attacked tree-cluster ("one-attacked-tree" scenario). This was repeated for 

each of the years 2009-2012. The illustrations of the "one-attacked-tree" scenario for each year, and 

the parameterised GLM model were used to determine a set of "risk boundaries" based on fixed 

probabilities of attack. Finally the model was applied to the data and the attack probability for each 

tree was shown in a series of annual maps of the infested area. 
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Results 

 The number of infested trees detected during the considered years (2008-2012) shows that the 

highest value was reached in 2010, the year after the infestation discovery, with 166 infested 

clusters (Tab. 1). While in 2009 there was an increase in infested trees, the number progressively 

decreased after 2010 due to the eradication programme, reaching a minimum in 2012 with only 28 

infested clusters found in the entire area monitored. Over the course of five years a total of 466 

infested clusters were analysed.   

The variables genus (g), cluster size (cs), available hosts index (ahi), as well as their combined 

effects, were rejected by the model because there was no significant effect. Attack index (ati), 

distance to nearest previously infested tree-cluster (dna) and year (y) were significant variables. 

Attack index and distance to nearest attack (ati*dna), and attack index and year (ati*y) showed a 

significant interaction. The final GLM model therefore became the following: 

 

(3) P ~ ati + dna + y + ati*dna + ati*y 

 

The constant ca in equations 1 for the GLM model is approximately 337 m. The GLM fit summary 

statistic for the final model (equation 3) is reported in Table 2. 

The cumulative distribution of minimum distances covered by ALB  from each new infested tree-

cluster (in the year y) to the nearest previously infested tree-cluster (in the year y-1) (Fig. 1) 

indicates a non-linear spreading trend, where the insect spreads mainly locally within and around 

the previously attacked tree-clusters. Despite differences between years, 80% of the dispersal ranges 

between 0 to 300 metres from the closest infested tree-cluster (Fig. 1). Some individuals, however, 

can also move farther than 2,000 metres.  

 

The application of the final model (equation 3) in a "one-infested-cluster" scenario predicts the 

probability of attack of healthy trees as a function of distance from a single infested tree-cluster 

(Fig. 2).  According to the probability values provided by the GLM model (equation 3 and Table 2), 

and by the "one-infested-cluster" scenario (Fig. 2), the boundaries of the eradication area are fixed 

in relation to the chosen infestation risk (i.e., probability of infestation). The results show that, as 

expected, the probability of infestation of healthy trees decreases inversely to the distance, 

according to the model function (Table 3). The year effect (y) on the infestation probability is 

highest for 2010 (0.33167), and then decreases drastically in 2011 and 2012 (-0.12871 and -

0.72664, respectively) (Table 2, Fig. 2). The spread estimates based on the combined effect of 

attack index and year (negative since 2010) shows a time-lag lower than the overall effect of year 
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(Table 2). In other words, not only are beetles removed by the eradication programme, their 

dispersal (i.e., risk hereof) is also influenced. 
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Table 1: Number of tree-clusters and their status during the 5 years of survey. 

 

Year  Not infested  Infested 

2008 or previous 2754 83 

2009 2721 116 

2010 2471 166 

2011 2407 73 

2012 2379 28 

Total 12732 466 

 

 

Table 2: Summary of GLM fit for the final reduced Model (4). 

 

Variable  Estimate Std. Error z-value P-value 

Intercept -1.72814 0.12272 -15.110 2.0E-16 

Ati 0.08120 0.01176 6.902 5.14E-12 

Dna -0.88626 0.13844 -6.402 1.54E-10 

Year 2010 0.33167 0.11330 2.927 3.42E-03 

Year 2011 -0.12871 0.13537 -0.951 3.42E-01 

Year 2012 -0.72664 0.19562 -3.715 2.04E-04 

ati*year 2010  -0.02040 0.01291 -1.581 1.14E-01 

ati*year 2011 -0.05302 0.01194 -4.441 8.96E-06 

ati*year 2012 -0.04935 0.01253 -3.939 8.17E-05 

ati*dna -0.23473 0.03735 -6.332 2.41E-10 
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Table 3: Safety distance (metres) around each infested tree-cluster related to the probability of 

infestation of new trees. High distance means low probability of infestations and vice versa.  

 

Year P<0.00001 P<0.0001 P<0.001 P<0.01 P<0.02 P<0.05 P<0.1 

2008-2009 2,860 2,250 1,540 660 370 - - 

2009-2010 3,240 2,620 1,910 1,040 730 280 - 

2010-2011 2,720 2,100 1,390 510 210 - - 

2011-2012 2,050 1,420 700 - - - - 
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Figure 1:  Cumulative distribution function of minimum distance from each new infested tree-

cluster to the nearest infested tree-cluster recorded in the previous year. 
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Figure 2: Probability of attack (from 0 to 1) as a function of distance from a single infested tree-

cluster predicted by the model in Equation 3 with the parameter estimates in Table 2. 
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Discussion 

The study analysed data concerning the spatial spread of an ALB population occurring in Northern 

Italy. The resulting model shows that the ALB potential dispersal is influenced by the number of 

infested clusters (i.e., the attack index) around the healthy ones, by the distance from the nearest 

clusters infested in the previous year, and by the considered year. The number of healthy tree-

clusters occurring in the infestation area as well as host plant genus and size are not significant 

factors for predicting ALB dispersal. According to the three significant variables the model 

estimates attack probabilities of healthy trees in relation to the distance from a release point (i.e., 

previously infested trees). 

At similar distances from the infested trees, the probability of infestation of healthy trees varies 

between years, being for instance much higher in 2010 than in 2009. This might be due to the 

increase in population size observed in the early years of the invasion. The effect of year (y) shows 

a significant interaction with the attack index (ati), which accounts for the number of infested 

clusters occurring in the monitored area. Hence, population density affects the spread of ALB in 

accordance with the density-dependent dispersal reported by Bancroft & Smith (2005). Our study 

clearly shows a risk of ALB spread increasing with population size. Similarly, the decrease of 

population size observed in 2011 and 2012 corresponds to a decrease in ALB dispersal and a 

reduced probability of healthy trees being infested. Data from 2008, and partially from 2009, refer 

to years with no eradication activities, and this probably affected the annual variations of the 

parameters observed at the beginning of the infestation. On the discovery of the infestation in June 

2009, the eradication programme was applied only partially as just some of the infested trees were 

removed during summer and the majority were cut and chipped in winter 2009-2010. During spring 

and summer 2009, beetles were thus able to emerge and spread in huge numbers. Once eradication 

measures were working in full, the frequency and distribution of infested clusters reduced markedly 

(Table 1). This reduction is reflected in the dispersal parameters assessed by the model, where the 

highest attack probability occurred in 2010 and then decreased in the following years. In this 

respect, our model highlights the importance of managing a new infestation as soon as possible, to 

reduce the probability of spreading in the field.  

The probability that ALB adults actively disperse farther than 1,900 m is extremely low (< 0.001). 

This is in agreement with previous studies reporting  maximum spreading distances of ALB ranging 

from 1,442 m to 2,600 m per year (Smith et al. 2001, 2004). The distribution of the minimum 

distances shows, however, that, even if the probability is very low, new attacks may occur farther 

than 2 km away from the nearest trees infested during the previous year (in our dataset up to 2,224 

m). The eradication programme applied in the study area adopted two boundaries for eradication 
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and buffer zones of 1 and 2 km around each infested tree respectively. According to the model, 

these distances correspond to an infestation risk (based on 2010 data) of 1.1% and 0.07% 

respectively, suggesting that, even if the probability of new infestations is low, there is still a 

possibility that beetles may infest trees growing outside the eradication zone. USDAAPHIS carried 

out an intensive survey in ALB-infested areas. A core area of 800 m radius around each infested 

tree and in a buffer zone of 800-1,600 m, while they performed an extensive survey in a larger area 

of 40 km (Haack et al. 2010). According to our model (based on 2010 data), these boundaries 

correspond to infestation probabilities of 1.7%, 0.2% and 2EXP-14%, respectively. As the ALB 

infestation was declared eradicated in 2009 (Haack et al. 2010), this suggests that the survey 

distances applied by USDA-APHIS were effective for pest eradication although a very low risk of 

infestation still existed. In this respect, limits for management zones are somewhat arbitrary. It is up 

to each government (or inter-governmental) agency to decide how much is at risk (natural 

resources, values, amenity values etc.), and relate this to how risk-averse their actions need to be. 

Some arbitrary boundaries are presented in Table 3 and may serve as broad guidelines. It is 

recommended to use the worst case scenario (in our study parameter estimates based on data from 

2009 to 2010). The maximum dispersal found was from a year with partial management (2009 to 

2010), and this may have underestimated the real dispersal. Hence, the maximum probabilities 

presented in this study may be inherently underestimated.  

Furthermore, the probability based distances proposed in this paper can be chosen also for defining 

the radius of preventive removal of potential host trees, according to the risk assumption. 

The present study reports data and analysis of a single ALB invasion in Northern Italy. Because the 

spread rates may vary over space and time, the results presented are valid only in the current 

situation. With some caution it would be possible to generalise the conclusions, and apply them 

elsewhere in Europe and North America. Prior to application, however, a range of variables should 

always be considered, such as climate and available tree species in the area etc., which may impact 

on the dispersal of ALB. Comparing results from this dataset to other infestations, it could be 

possible to derive similarities and differences in the beetle dispersal behaviour. 
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The Asian Longhorn Beetle has shown to be a threatening pest in the infestation area 

considered in this study. After five years since the first detection (2009), more than one thousand 

trees have been attacked by the beetle. As in other outbreaks, the eradication efforts require many 

years before to affect the population density. 

 

 

A new home 

 

The exit holes dating analyses presented in chapter 2 revealed the wood packaging materials 

as the most probable introduction pathway and that the infestation takes many years to be 

recognized. Future detection efforts must consider a monitoring activity in the vicinity of those 

incoming points whose are involved in international shipping.  

Once an introduction occurs, establishment may take place. This requires insect adaptation 

to a new environment. Chapter 3 reports some life-history traits of Anoplophora glabripennis in the 

new infestation area, confirming the thesis that the beetle phenology is strictly linked to temperature 

and that can be narrowly predicted using climate-based models (MacLeod et al. 2002, Smith et al. 

2004). The obtained data provide valuable information for when to proceed with eradication 

protocols or control programs, such as adult emergence period and overwintering stages. 

A considerable contribution to current and future infestation management is also provided 

by the dispersal study developed on chapter 6. The model connects the probability of attack with the 

distance. Which is a very easy, understandable and applicable tool. If until now the eradication 

measures have been taken in a way somewhat arbitrary, now the concept of risk is well defined and 

can be assumed depending on the needs. Not only, the model provides other three main outcomes. 

First, the dispersal has been influenced by population density, decreasing in time with the ongoing 

eradication. Which is, however, a well-known concept. Another confirmation of previous studies 

(Smith et al. 2001, 2004) is the scarce tendency of A. glabripennis to disperse, branding the beetle 

as a weak flyer, that tends to spread not farther than 2 km per year (probability < 0.01). Most 

surprising, the model does not recognize any significant difference in host genus, concerning the 

spread. This point appears to be in contrast with the renowned preference of ALB for some host 

plants.  
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Dealing with new hosts 

 

A fundamental aspect provided in the study is the host preference in the study area. This, in 

fact, contributes to the list of susceptible plant species in a worldwide knowledge. Despite many 

common host (see Gaag & Loomans 2014), differences are always present between infestation 

areas. Probably, the main interesting trait of ALB is the adaptation to host plants. Considering the 

study site, it has been reported (Chapter 4) that the main attacked host (as total amount) is maple, as 

confirmed from many other outbreaks, while birch, which is reported as well as main host, affects 

very bad the reproductive performance of ALB. Nevertheless, the insect continues to reproduce on 

it, even with a low larval survival. Moreover, as results from the dispersal model of chapter 6, there 

seems to be no host preference influence when beetle spreads, raising the doubt about an efficient 

host choice.  

This behavior opens to fascinating questions about the beetle adaptation strategy. Are ALB 

females bad mothers which do not recognize the host quality? Or does the preference involves 

genetic traits linked to the original population? Similar discrepancies have been reported also in 

other publications, but the point is still unclear and worth to be investigated.  

Another open question about ALB is the low tendency to colonize natural forest stands (Hu 

et al., 2009; Haack et al., 2010). One of the plausible answer is that the habitat type may affect host 

trees belonging to the same species. In chapter 5, urban and forest habitat have been tested against 

susceptible or not tree species. Beetle preference resulted to be related to the host type, rather than 

the habitat. Host quality, measured as nitrogen content, is higher in urban areas, and beetles in forest 

hosts deal with it through a compensatory feeding mechanism. After all, what really affects the 

reproductive performance is, once again, the tree species, confirming a preference for some host, 

even with substantial differences among them. 

 

 In conclusion, this thesis analyses an infestation of the longhorn borer Anoplophora 

glabripennis in southern Europe, providing detailed studies concerning insect arrival and 

establishment in a new introduction site, adaptation to local habitats and host plants, and a reliable 

estimation of adult dispersal.  
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