
 

 

 

 

 

 

Sede Amministrativa: Università degli Studi di Padova 

 

DIPARTIMENTO DI GEOSCIENZE 

__________________________________________________________________________________ 

 

 

 

SCUOLA DI DOTTORATO DI RICERCA IN: SCIENZE DELLA TERRA 

CICLO: XXV 

 

 

WHAT GARNET, CLINOPYROXENE AND DIAMOND POTENTIAL CAN TELL US 
ABOUT THE EVOLUTION OF SUB-CRATONIC MANTLE SECTIONS: A CASE 

STUDY OF THE ZAGADOCHNAYA KIMBERLITE (YAKUTIA) 
 

 

 

Direttore della Scuola: Ch.mo Prof. Massimiliano Zattin 

 

Supervisore: Ch.mo Prof. Paolo Nimis 

 

 

 

        Dottorando: Luca Ziberna

     

 

 

 



1 

 

ABSTRACT 

This PhD provides major and trace element compositions for a new suite of Cr-rich garnet 

xenocrysts and associated minerals from the diamond-free Zagadochnaya kimberlite, Daldyn 

Field, Yakutia (Russia). Interpreting the nature and evolution of the underlying lithospheric 

mantle from these samples requires a good understanding of relationships between pressures 

and temperatures of formation, upper mantle phase relations and trace element signatures of 

petrochemical processes. I addressed these issues by integrating three main lines of research. 

 i) Evaluation of single-clinopyroxene geobarometry for garnet peridotites. Single-

clinopyroxene thermobarometry represents the most reliable method among single-mineral 

thermobarometric techniques for mantle rocks, but the geobarometer tends to produce 

considerable scatter in P–T estimates when applied to clinopyroxenes with unfavourable 

compositions. Multiple electron microprobe analyses on compositionally diverse 

clinopyroxenes, using different analytical conditions, demonstrated that this scatter is mostly 

related to propagation of analytical errors on the calculated Cr-in-cpx pressure. The results of 

this analytical tests were used to calculate model analytical errors and propagated P 

uncertainties for a large set of published analyses of mantle-derived, xenolith-borne 

clinopyroxenes. I found that the parameter aCr/Cr# [where aCr = Cr–0.81•Na•Cr#, 

Cr#=Cr/(Cr+Al), atoms per 6-oxygen formula unit] can be used to discriminate 

clinopyroxenes for which analytical errors alone will propagate unacceptable P uncertainties 

(i.e., higher than ±0.25 GPa) for several combinations of analytical conditions. I therefore 

defined a new optimized analytical procedure for single-clinopyroxene geobarometry, which 

significantly decreases the pressure uncertainties and allows a better definition of 

clinopyroxene-based geotherms. 

ii) Thermodynamic modeling of natural peridotitic systems. Calculations of phase equilibria in 

Cr-bearing peridotitic systems were used to predict the effects of P, T and bulk compositional 

variations on garnet–spinel relations in fertile and depleted mantle compositions. Calculations 

showed that in cratonic lithospheric sections the width of the garnet–spinel transition strongly 

depends on bulk composition: in a fertile mantle, spinel can coexist with garnet to about 120 

km depth, while in an ultra-depleted harzburgitic mantle it can be stable to over 180 km 

depth. In the garnet+spinel stability field the calculated modes of spinel are very low (0.1–2.8 

%), suggesting that spinel grains may be easily overlooked in mantle xenoliths. The model 

also suggests a significant potential role of P–T conditions on the distribution of garnets in the 

popular Ca–Cr discrimination diagram. 
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iii) Interpretation of the mantle record in the Zagadochnaya kimberlite. A suite of 28 garnet 

xenocrysts, often containing polymineralic inclusions, were selected from a heavy-mineral 

concentrate of the Zagadochnaya kimberlite for detailed electron microprobe analysis and 

laser-ablation inductively-coupled mass spectrometry. Robust P–T estimates for the garnets 

and associated clinopyroxenes and the Ca and Cr contents in the garnets indicate that the 

kimberlite sampled only a shallow mantle portion (< 130 km), which was mainly composed 

by fertile to depleted lherzolites and essentially corresponds to the shallow, lherzolite-rich 

layer previously defined on the basis of xenoliths/xenocrysts from the neighbor, highly 

diamondiferous Udachnaya kimberlite. The less (Ca, Cr)-rich garnets show chondrite-

normalized Rare Earth Elements (REE) patterns, characterized by very low Light REE 

(LREE) increasing through the Middle REE (MREE) to the Heavy REE (HREE). With 

increasing Ca and Cr the garnets show increasing LREE and decreasing HREE, eventually 

resulting in sinusoidal patterns. Numerical simulations of melt/rock reactions demonstrated 

that such REE variability can be produced by a unique episode of melt injection and 

percolation through a refractory mantle column. Most garnet grains were partially replaced by 

low-Cr garnets + Cr-spinel + diopside (± hydrous minerals and Ti-oxides). The textures and 

mineralogy of these secondary mineral assemblages, the calculated trace element 

compositions of the equilibrium melts, and the Ca concentration profiles across garnet zoning, 

indicate pervasive reaction with melts strictly related to the host kimberlite. A relatively slow 

ascent of the kimberlite up to shallow mantle levels before eruption is suggested, which 

would explain the lack of xenocrysts from depths > 130 km, the absence of diamond, the Mg-

rich composition of the kimberlite, and the pervasive reactions that produced the secondary 

assemblages. 
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RIASSUNTO 

Nella presente tesi di dottorato vengono riportate le composizioni chimiche in elementi 

maggiori e in tracce di una nuova serie di xenocristalli a granato e minerali associati 

provenienti dalla kimberlite di Zagadochnaya, Daldyn Field, Yakutia (Russia). Per 

interpretare la natura e l’evoluzione geochimica del mantello litosferico sottostante è 

importante capire le condizioni di temperatura e pressione di formazione dei vari frammenti di 

mantello, le relazioni di fase nel mantello superiore, e le evidenze dei processi petrogenetici 

registrate negli elementi in tracia. In questa tesi, queste problematiche sono state affrontate in 

tre diverse linee di ricerca. 

i) Valutazione del geobarometro a clinopirosseno per le peridotiti a granato. Tra i vari 

metodi termobarometrici basati sulla composizione di una singola fase mineralogica, il 

termobarometro a clinopirosseno rappresenta il metodo più affidabile per le rocce di mantello. 

Nonostante ciò, è stato visto che il geobarometro può essere molto impreciso se applicato a 

certi clinopirosseni con composizione sfavorevole, e questo si riflette in una considerevole 

incertezza nella stime delle geoterme. In questo lavoro ho effettuato ripetute analisi tramite 

microsonda elettronica su clinopirosseni a diverse composizioni, utilizzando diverse 

condizioni analitiche. I risultati dimostrano che le buona parte delle incertezze sono legate alla 

propagazione degli errori analitici sulle pressioni calcolate con il geobarometro. I dati ottenuti 

dal test analitico sono stati poi utilizzati per stimare gli le incertezze analitiche e la loro 

propagazione sulle pressioni calcolate per un gran numero di analisi di clinopirosseni di 

mantello riportate in letteratura. Il parametro aCr/Cr# [dove aCr = Cr–0.81•Na•Cr#, 

Cr#=Cr/(Cr+Al), atomi per unità di formula, 6 ossigeni] può essere utilizzato per discriminare 

i clinopirosseni per i quali la propagazione dell’errore analitico è troppo elevata (i.e., 

deviazione standard > 0.25 GPa). Ciò mi ha permesso di definire una nuova procedura 

analitica che permette di diminuire notevolmente le incertezze sulle pressioni calcolate e 

quindi definire meglio le geoterme basate su clinopirosseni di mantello. 

ii) Modellizzazione termodinamica di sistemi peridotitici con composizioni naturali. Per 

comprendere l’effetto della pressione, temperatura e composizione sulle relazioni tra granato 

e spinello nel mantello superiore, ho effettuato dei calcoli termodinamici per sistemi 

peridotitici contenenti Cr. I calcoli hanno mostrato che nella litosfera cratonica la transizione 

da facies a spinello a facies a granato dipende dalla composizione totale della peridotite: in un 

mantello fertile, lo spinello può coesistere con il granato fino a ca. 120 km di profondità, 

mentre in un mantello molto impoverito lo spinello può essere stabile fino a 180 km di 

profondità. Nella facies granato+spinello, l’abbondanza modale dello spinello è molto bassa 
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(0.1–2.8%). Il modello suggerisce anche un maggiore influenza della pressione e della 

temperatura nella distribuzione dei granati nei classici diagrammi classificativi basati sul 

contenuto in Cr e Ca. 

iii) Interpretazione dei campioni di mantello della kimberlite di Zagadochnaya. Una serie 

rappresentativa di 28 xenocristalli di granato, spesso contenenti inclusioni di diverse fasi 

mineralogiche, è stata caratterizzata per gli elementi maggiori e in tracce tramite microsonda 

elettronica e spettrometria di massa associata a microsonda laser. Le stime termobarometriche 

più affidabili per i granati e i clinopirosseni associati, assieme al contenuto in Cr e Ca dei 

granati, indicano che la kimberlite ha campionato solo una porzione superficiale del mantello 

(< 130 km), composta da lherzoliti variamente fertili fino a impoverite. In termini litologici, 

questa porzione è equivalente a alla porzione più superficiale del mantello campionato dalla 

vicina kimberlite diamantifera di Udachnaya. I granati meno ricchi in Cr e Ca mostrano dei 

pattern normalizzati delle terre rare (REE) con un aumento progressivo dalle terre rare leggere 

(LREE) alle pesanti (HREE). Con l’aumento di Ca e Cr, si nota anche un arricchimento in 

LREE e impoverimento delle HREE, fino ad avere dei pattern delle REE sinusoidali. Grazie 

alle simulazioni numeriche delle reazioni fuso/roccia, è stato possibile dimostrare che queste 

variazioni delle REE possono essere il risultato di un unico episodio di percolazione di fuso in 

una colonna di mantello originariamente refrattaria. La maggior parte dei granati mostrano 

evidenze di ricristallizzazione con formazione di granato impoverito in Cr + cromite + 

diopside (± minerali idrati e ossidi di Ti). La tessitura e la mineralogia di questi domini 

secondari, la composizione calcolata dei fusi in equilibrio, e i profili di concentrazione 

attraverso le zonature del granato, indicano che questi sono dei prodotti di reazione con fusi 

strettamente legati alla kimberlite di Zagadochnaya. Viene qui suggerita una risalita 

relativamente lenta della kimberlite fino ai livelli superficiali del mantello prima dell’evento 

eruttivo. Questo spiegherebbe la mancanza di xenocristalli da profondità > 130 km, l’assenza 

di diamante, l’arricchimento in Mg della kimberlite, e le reazioni spinte che hanno prodotto 

gli assemblaggi secondari. 

 

 

 



5 

 

ACKNOWLEDGEMENTS 

 

 

This PhD was funded by Fondazione Cassa di Risparmio di Padova e Rovigo – “Progetto 

Dottorati di Ricerca 2009”. 

 

 

I would like to gratefully thank 

Prof. Paolo Nimis, Prof. Fabrizio Nestola, Prof. Stephan Klemme, Prof. Andrea Marzoli, 

Dott. Alberto Zanetti, Raul Carampin, Dott. Angelo de Min, Dott. Davide Lenaz, Prof. 

Andrew Putnis, 

for providing carefully considered advice and for the valuable discussions throughout the 

duration of the project 

 

 

I doubt I could have gotten through the PhD without you, Sula. It’s all thanks to you, keeping 

me on the right path, picking me up when I fell down, and always being with me. 



6 

 

THESIS LAYOUT 

The main section of the present thesis consists of a collection of two manuscripts which have 

been submitted to peer-reviewed journals (Manuscripts 2 and 3) and one manuscript in 

preparation (Manuscript 1). The manuscripts develop and discuss in detail specific lines of 

research that have been pursued during the PhD. Before the manuscripts, an introduction 

chapter provides a brief overview of the current state of knowledge on the sub-cratonic 

lithospheric mantle, with particular emphasis on issues addressed in this work, and outlines 

the particular focuses and aims of the individual lines of research and of the thesis as a whole. 

A chapter on the methodological approach describes the rationale of the methodologies used 

in this work. After the manuscripts, I discuss the main results of the work and their bearing on 

future studies on mantle samples from cratonic settings. 
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INTRODUCTION 

Cratons and the samples of sub-cratonic mantle 

The flat, tectonically stable interior of a continent was called cratogen for the first time in 

1921 by the Viennese geologist Leopold Kober (Kober 1921). This word derives from the 

Greek kratos, meaning strong and unyielding. Now the term craton is generally used to 

indicate a segment of continental crust that has attained and maintained long-term stability 

since the Archean or, at least, the Proterozoic, with tectonic reworking being confined to its 

margins (Bleeker 2003; Cawood et al. 2013). Cratons extend laterally for hundreds of 

kilometers (Fig. 1), and are underlain to depths of 180–250 km by mantle roots that are 

chemically and physically distinct from the surrounding mantle. Despite continental collisions 

and other tectonic events and limited interactions with asthenospheric melts and fluids during 

Earth’s history, the mantle roots of the cratons have largely survived since their formation and 

are characterized by relatively cold thermal regimes. Extensive reviews on the nature and 

origin of cratons and their underlying lithospheric mantle, from different perspectives, can be 

found in, e.g., Pearson and Nowell (2002), Griffin et al. (2003a), Lenardic et al. (2003), Sleep 

(2004), Pearson and Wittig (2008), and Lee et al. (2011). 

Much of what we know of sub-cratonic mantle roots comes from the study of kimberlites. 

Kimberlites are volatile-rich (dominantly CO2) potassic ultrabasic volcanic rocks which occur 

mostly in cratons and their margins (Mitchell 1995; Woolley et al. 1996). They are the major 

host of diamonds and have received special attention over the last century from both the 

scientific community and mineral exploration companies. Thanks to their deep-seated origin 

and their violent eruption style, kimberlites carry abundant mantle fragments from depths as 

great as 200–250 km to the surface. These fragments, which occur as xenoliths or xenocrysts, 

are unique samples that reveal the mineralogical and geochemical composition of the sub-

cratonic lithospheric mantle and its evolution through Earth’s history (e.g. Boyd 1989; 

Pearson et al. 1995; Boyd et al. 1997; Pearson and Nowell 2002; Pearson et al. 2003; Simon 

et al. 2007).  

The vast literature on kimberlite-borne mantle xenoliths and kimberlite mineral 

concentrates indicates that the dominant rock type forming the lithospheric mantle beneath 

cratons is peridotite. Only a minor part (less than 2 vol%) is represented by eclogite and 

pyroxenite (cf. Harte 1983; Schulze 1989; Nixon 1987; Pearson et al. 2003). The majority of 

peridotites are clinopyroxene-poor lherzolites and harzburgites, which typically contain spinel 

at moderate pressures and garnet at high pressures.  
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In order to develop a full understanding of the physico-chemical structure of the sub-

cratonic lithospheric mantle, it is critical to integrate the studies on natural samples with 

geological and geophysical data, high-P and high-T experiments, and thermodynamic studies 

(e.g. Chatterjee and Terhart 1985; Nickel and Green 1985; James et al. 2004; Menzies et al. 

2007; Klemme et al. 2009; Afonso et al. 2010; Bascou et al. 2011; Mather et al. 2011; 

Herzberg and Rudnick, 2012). In this respect, however, it is important to realize the particular 

nature of the samples upon which much of the study of the lithospheric mantle is based. 

Firstly, mantle fragments included in kimberlites generally range from 20-30 cm (in rare cases 

up to 1–2 m) to less than 1 cm and are composed by mineral grains as large as 1 cm (Boyd & 

Mertzman, 1987; Nixon, 1987; Boyd et al., 1997; MacKenzie & Canil, 1999; Ionov et al., 

2010). Therefore, one may question whether these fragments are truly representative of the 

mantle sections traversed by the kimberlite. This issue is even more problematic when the 

only available mantle fragments in a given kimberlite consist of isolated xenocrysts of mantle 

minerals (such as garnets, clinopyroxenes, and chromites), which can be a consequence of 

both the disaggregation of the xenoliths during the violent transport to the surface and later 

hydrothermal alteration. Secondly, the original geochemical and mineralogical features of the 

Fig. 1: Global distribution of cratons (Pearson and Wittig 2008, modified after Bleeker 
2003). Outcrops of Archaean crustal rocks are indicated in grey and other definable 
fragments of composite cratons in brown.  Red dashed lines show the estimated extent of 
cratonic regions amalgamated from Archaean blocks during the Proterozoic. Blue dotted 
lines extended across oceanic areas show links between cratonic fragments that are thought 
to have once formed single cratonic blocks. NAC, North Atlantic Craton. 
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mantle sample are often strongly modified by processes that are directly or indirectly related 

to the host magma. It is therefore of primary importance that all the available mantle samples 

are properly characterized and that their geochemical and mineralogical evolution, from their 

origin to the entrapment in the host magma and eruption to the surface, is understood. An 

example of this type of survey is represented by Manuscript 3 in this work. 

Thermodynamics and thermobarometry of mantle peridotites 

The variations in upper mantle mineralogy with changing pressure, temperature, and bulk 

composition is constrained by high-pressure, high-temperature experiments in model and 

natural systems. Thermodynamic models can be developed from the experimental data and 

can be used to predict phase relationships at conditions not yet achieved by experiments. The 

simplified model system CaO-MgO-Al2O3-SiO2 has often been used to study the fundamental 

phase relationships in mantle rocks (e.g., MacGregor 1965; Jenkins and Newton 1979; 

O’Neill 1981; Gasparik 1984; Klemme and O’Neill 2000; Walter et al. 2002), but the 

significant influence of less abundant components such as FeO, Cr2O3 and Na2O has long 

been recognized (e.g., O’Neill 1981; Nickel 1986; Webb and Wood 1986; Doroshev et al. 

1997, Girnis et al. 2003; Klemme 2004). However, quantitative thermodynamic models that 

faithfully reproduce all phase relationships in complex, natural, mantle systems are still 

lacking. The development of improved thermodynamic models for peridotite compositions 

similar to those in Earth’s mantle is one of the main lines of research in this work (cf. 

Manuscript 2). 

Thanks to the rapid ascent rates of the host volcanics, the high-pressure and high-

temperature equilibrium states of the mantle mineral assemblages are often preserved and 

recorded by the compositions of the minerals in the xenoliths. This allows the application of a 

variety of geothermobarometers to estimate the depth of provenance of the kimberlite-borne 

mantle samples (e.g., MacGregor 1974; Ellis and Green 1979; Harley and Green 1982; Nickel 

and Green 1985; Brey and Köhler 1990; Taylor 1998; Brey et al. 2008), as well as to define 

the mantle thermal state and geotherm at the time of eruption (e.g., Boyd 1973; Mather et al. 

2011). Conventional geothermobarometers were calibrated on high-temperature, high-

pressure experiments in simple and complex systems that approach the typical compositions 

of the mantle rocks. They are based on the partitioning of major elements between two 

minerals in chemical equilibrium and, therefore, require the coexistence of these minerals in 

the mantle xenolith. For what concern garnet peridotites, one of the most reliable method for 

temperature estimates is the two-pyroxene thermometer of Taylor (1998), while the Al-in-

Opx geobarometer of Nickel and Green (1985), or its modification proposed by Carswell 
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(1991), are considered to be the most reliable geobarometers (cf. Nimis and Grütter 2010, 

2012; Wu and Zhao 2011).  

In some cases, thermobarometric formulations can be devised that allow estimation of P 

and T on the basis of the composition of a single mineral (e.g. Ryan et al. 1996; Nimis and 

Taylor 2000; Ashchepkov 2006; Grütter et al. 2006; Simakov 2008; Creighton 2009; Turkin 

and Sobolev 2009). In the case of disaggregated xenocrysts, heavy-mineral concentrates and 

monomineralic inclusions in diamonds, single-mineral thermobarometers are the only suitable 

methods. Although the composition of only one mineral is used in calculations, single-mineral 

methods are still based on the partitioning of major or minor components between two 

mineral phases, therefore chemical equilibrium with the missing mineral remains a necessary 

assumption. Problems in single-mineral thermobarometry may derive from simplified 

assumptions concerning the composition of the missing mineral and the effect of bulk 

chemical variations. As a consequence, most single-mineral thermobarometers tend to 

produce large uncertainties in the calculation of the P–T of equilibration. Based on the recent 

review of Nimis and Grütter (2010), the most reliable single-mineral thermometer for garnet 

peridotites is the enstatite-in-Cpx thermometer of Nimis and Taylor (2000). This method can 

be coupled with the Cr-in-Cpx barometer of Nimis and Taylor (2000) to obtain P–T pairs 

from a single clinopyroxene. Since the stability of diamond is primarily controlled by pressure 

and temperature, this method has become popular in diamond exploration programs 

(Cookenboo and Grütter 2010). The problem of the reliability of the Cr-in-Cpx barometer in 

common applications is explored in Manuscript 1 of this work. 

Geochemistry and mantle evolution 

The major element composition of cratonic peridotitic xenoliths indicate a more depleted 

nature with respect to abyssal or orogenic peridotites (cf. Griffin et al. 2003: Pearson et al. 

2003; Pearson and Wittig 2008). The term depleted and its antonym fertile are generally used 

to indicate low or, respectively, high contents of “basaltic”  components, such as CaO, Al2O3, 

FeO, TiO2, Na2O and K2O. There is wide consensus that the depletion of cratonic peridotites 

is a consequence of high degrees (> 30%) of melt extraction in Archean times (e.g. Boyd and 

Mertzman 1987; Boyd 1989; Walter 1998; Pearson and Wittig, 2008; Doucet et al. 2012). 

Controversy still revolves around the geotectonic environments that allowed melting to such 

extensive degrees (see, for example, the extensive review of Pearson and Witting, 2008 and 

Cawood et al. 2013). The two most favored scenarios are decompression melting in upwelling 

mantle, which sometimes is linked to mantle plumes (e.g. Griffin et al. 1999a; Aulbach et al. 

2007; Arndt et al. 2009; Doucet et al. 2012), and melting in a supra-subduction zone setting, 
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with or without prior melting at ridges (e.g. Parman et al. 2004; Canil 2004; Lee 2006; Simon 

et al. 2007; Pearson and Wittig 2008). 

Xenoliths only rarely have simple depleted mantle signatures and almost always record 

some degree of metasomatic enrichment due to reactions with ascending melts or fluids. 

Metasomatism is commonly invoked to explain increased contents of incompatible elements 

in both whole-rock and constituent minerals, which may be accompanied by modal 

enrichments in “ fertile”  minerals, such as clinopyroxene and garnet, hydrous minerals (i.e. 

phlogopite and amphibole), Ti-oxides, sulphides and, sometimes, diamond (Menzies 1983; 

Dawson 1984; Erlank et al. 1987; Pearson et al. 2003; Grégoire et al. 2002; Stachel et al., 

2004; Giuliani et al. 2013). Understanding the nature of the metasomatic agent(s), the style of 

metasomatism, and its bearing on diamond potential (e.g. diamond precipitation vs. 

resorption; cf. Malkovets et al. 2007) is not straightforward. Numerous studies of individual 

suites of metasomatized xenoliths suggested that typical metasomatic agents in the mantle 

include alkaline-basaltic melts (Burgess and Harte 2004), melts with kimberlitic to 

carbonatitic affinity (Erlank et al. 1987; Kinny and Dawson 1992; Grégoire et al. 2002; Simon 

et al. 2007; Weiss et al. 2011), as well as C-O-H-bearing fluids (Andersen et al. 1984; Stachel 

et al. 2004; Giuliani et al. 2013). One of the most difficult tasks in studies of individual 

mantle sections is to understand if different geochemical signatures in mantle xenoliths reflect 

metasomatism operated by different, genetically unrelated melts/fluids, or are related to a 

unique metasomatic event operated by a melt/fluid with progressively changing composition 

due to chemical differentiation. A case study is described in detail in Manuscript 3 of the 

present work. 
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AIMS OF THE WORK 

Among the peridotitic fragments transported to the surface as xenoliths, xenocrysts or 

inclusions in diamonds, garnet and clinopyroxene are particularly sensitive to chemical 

processes and physical conditions in the mantle and therefore represent fundamental tools to 

tackle all the issues described above. They are the major host of trace elements in peridotites 

and therefore contain important information about the melting/metasomatic history of the host 

rocks. Even when they occur as isolated grains, they can be used to map the distribution of 

rock types in the sub-cratonic lithospheric mantle and to constrain the geochemical processes 

that operated before or after their entrapment in the host kimberlites (e.g. Griffin et al. 1999b, 

2002; Malkovets et al. 2007; Creighton et al. 2008; O’Reilly et al. 2010; Nimis et al. 2009; 

Pivin et al. 2009; Hunt et al. 2012; Ivanic et al. 2012). In addition, they can provide 

information on the thickness and thermal state of the lithosphere at the time of eruption, and 

therefore represent extraordinary deep-seated probes for diamond exploration (Sobolev et al. 

1973, 1990; Dawson and Stephens 1975; Griffin and Ryan 1995; Ryan et al. 1996; Nimis and 

Taylor, 2000; Schulze 2003; Grütter et al. 2004, 2006). The present thesis aims to explore in 

more detail the potential of garnet and clinopyroxene as indicators of mantle processes and 

physico-chemical conditions. 

The ideas behind the present thesis build in part on recognized issues in current mantle 

research (see above) and in part on specific problems that arose during a preliminary study of 

the Zagadochnaya kimberlite (Daldyn field, Yakutia). The Zagadochnaya kimberlite is a 

Type-II, micaceous kimberlite in which the only available mantle samples are represented by 

eclogitic xenoliths and Cr-garnet and Cr-diopside xenocrysts and microxenoliths (Sobolev et 

al., 1968; Nimis et al., 2009). Despite its being located only 30 km from the highly 

diamondiferous Udachnaya kimberlite, the Zagadochnaya kimberlite is free of diamonds. It 

thus represents an interesting case to understand short-scale variability of diamond potential 

in kimberlites. However, given the absence of discrete ultramafic xenoliths, interpreting the 

mantle record in the Zagadochnaya kimberlite is a challenging task. A detailed 

characterization of garnet and diopside xenocrysts remains the best way to gain an insight into 

the mineralogical and geochemical composition of the mantle beneath Zagadochnaya, to 

understand its evolution through geological time, and to explore possible relationships with its 

low diamond potential. Nimis et al. (2009) previously performed a detailed major and trace 

element study of chromian diopside xenocrysts from this kimberlite and proposed a complex 

metasomatic history and a relatively shallow mantle derivation. The correctness of their 

conclusions heavily depend on the correct interpretation of the geochemical variability of a 
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single mineral phase (in the absence of petrographic constraints!) and on the reliability of the 

single-mineral thermobarometers used. Both aspects demand further verification. 

In the present thesis, I tried to improve the knowledge on the Zagadochnaya mantle by 

using a multidisciplinary approach aimed at: 

− improving the reliability of single-clinopyroxene thermobarometry (Manuscript 1); 

− exploring the thermodynamics of phase relationships and compositional variability in 

clinopyroxene-bearing peridotitic systems (Manuscript 2); 

− extending the study of the mantle fragments by focusing on the major and trace 

element geochemistry of garnet xenocrysts and garnet–clinopyroxene microxenoliths, 

building in part on results from the two previous lines of activity, (i) to better constrain 

the paragenesis of the parental rocks and the variability of ultramafic lithologies in the 

sampled mantle section, ii) to better constrain the pressure and temperature of 

formation and depth of mantle sampling, iii) to better reconstruct the metasomatic 

history by defining the relationships between the trace element chemistry of the 

garnets and the geochemical processes in the lithospheric mantle, and iv) to shed more 

light on the factors that controlled the diamond potential (Manuscript 3). 

The rationale of these three main lines of research is briefly outlined here and the reader is 

referred to the attached manuscripts for a full description of methods, results and implications. 

Improving the reliability of single-clinopyroxene thermobarometry (Manuscript 1) 

In case studies such as Zagadochnaya, the single-clinopyroxene thermobarometers of Nimis 

and Taylor (2000), i.e., the enstatite-in-Cpx geothermometer and the Cr-in-Cpx geobarometer, 

represent the only reliable methods for estimating the P and T conditions of equilibrium of the 

sampled mantle fragments and their depth of derivation. Although the enstatite-in-Cpx 

geothermometer has proved to be of very good quality compared with conventional two-phase 

geothermometers (Nimis and Grütter 2010), the Cr-in-Cpx geobarometer suffers from two 

major drawbacks: (i) it  progressively underestimates with increasing pressures at P > ca. 4.5 

GPa (Nimis 2002); (ii) it tends to produce considerable scatter in P–T estimates when applied 

to clinopyroxenes with unfavourable compositions (Nimis and Taylor, 2000; Grutter 2009; 

this work). The latter drawback is reflected by deviations from the garnet–orthopyroxene 

geobarometer (Nickel and Green 1985, or its modification by Carswell 1991), which are very 

large for clinopyroxenes with low values of aCr [= Cr – 0.81·Na·Cr/(Cr+Al), atoms per 6-

oxygen formula unit] (Fig. 2). To investigate the origin of these drawbacks, in an attempt to 

improve the reliability of the geobarometer, I performed a quantitative evaluation of single-

clinopyroxene geobarometry by using both an analytical and a thermodynamic approach. 
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As a first step, I carried out multiple electron microprobe analyses on compositionally 

different clinopyroxenes, using different analytical conditions, and I performed a statistical 

analysis of the propagation of analytical errors on the calculated Cr-in-Cpx pressures. I found 

that the geobarometer is very sensitive to analytical errors when applied to particular 

clinopyroxene compositions characterized by low values of the parameter of aCr and/or too 

low or too high values of the parameter Cr# [= Cr/(Cr + Al)]. This can account for most of the 

increased P–T scatter observed in previous works. I therefore defined a new optimized 

analytical procedure for single-clinopyroxene geobarometry, which significantly decreases the 

pressure uncertainties and allows a better definition of clinopyroxene-based geotherms. 

 

 

Exploring the thermodynamics of phase relationships and compositional variability in 

clinopyroxene-bearing peridotitic systems (Manuscript 2) 

The new optimized analytical procedure defined in the present thesis (Manuscript 1) does not 

eliminate the known progressive underestimation of P using the Cr-in-Cpx barometer of 

Nimis and Taylor (2000) at high pressure (Nimis 2002). This drawback may hamper correct 

definition of the shape of a mantle geotherm and recognition of thermal perturbation in the 

deep lithospheric mantle. In an attempt to improve the accuracy of the barometer at high P, I 

used a thermodynamic approach to investigate phase equilibria in clinopyroxene-bearing 

Fig. 2: Discrepancies between the Cr-in-Cpx barometer (Nimis and Taylor 2000; PNT00) and 
the orthopyroxene-garnet barometer (Nickel and Green 1985, as modified by Carswell 1991;  
PCa91) vs. the clinopyroxene parameter aCr. Clinopyroxene compositions from the compilation 
of well-equilibrated garnet peridotite and pyroxenite xenoliths of Nimis and Grutter (2010). 
The overall shift of high-P clinopyroxenes towards negative values can be ascribed to the 
known underestimation of Cr-in-Cpx pressures at high P (cf. Nimis 2002). Same Figure as 
Fig. 1 in Manuscript 1. 
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peridotitic assemblages. I performed phase equilibria calculations using free energy 

minimization techniques using the ‘Perple_X’  set of computer programs (Connolly and 

Petrini 2002) and the most recent thermodynamic datasets for mantle minerals, partly 

modified to improve agreement with experimental constraints (see Supplementary Table 1 in 

Manuscript 2). 

Unfortunately, discrepancies between the model compositions and the experimental 

compositions of the clinopyroxene (Fig. 3) indicated inconsistencies in the thermodynamic 

data for Cr- and Na-bearing clinopyroxenes. Therefore, improvement of the single-

clinopyroxene barometer based on a robust thermodynamic approach was not possible. 

Nonetheless, such inconsistencies did not appear to significantly affect phase relations and 

compositional variations in orthopyroxene, garnet, and spinel. Therefore, I could use the 

thermodynamic model to predict the effect of P, T and bulk compositional variations on 

garnet–spinel relations in fertile and depleted mantle compositions. The results provided 

unprecedented constraints on the spinel peridotite-to-garnet peridotite transition and on the 

compositional variability of garnet and spinel as a function of pressure, temperature and bulk 

composition in a variety of mantle settings. Some of these results could be used later on for a 

more robust understanding of compositional variability in garnet xenocrysts from 

Zagadochnaya (cf. Manuscript 3). 
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Extending the study of the mantle fragments in the Zagadochnaya kimberlite 

(Manuscript 3) 

The heavy-mineral concentrates from the Zagadochnaya kimberlite were known to contain a 

significant amount of chromian diopsides and chromian garnets, often macroscopically 

inhomogeneous, due to the presence of polymineralic inclusions, mineral intergrowths, and 

chemical zonation (Kostrovitsky and de Bruin 2004; Nimis et al. 2009; Sobolev NV, pers. 

comm.). Following the work of Nimis et al. (2009) on the isolated clinopyroxene grains, for 

the present work I focused on the garnets and their inclusions. A detailed petrographic, major 

and trace element characterization revealed a wide textural and compositional variability, 

which may be the result of a complex geochemical history of the source rocks. Some garnet 

grains are optically and compositionally homogeneous, and are sometimes associated with 

subround chromian diopside. Other garnet grains are optically inhomogeneous, due to the 

presence of whitish-purple domains rich in polymineralic inclusions (Fig. 4). The textural 

relationships suggest a secondary origin of the inclusion-rich domains with respect to the host, 

inclusion-free garnets.  

The source rocks of primary garnets (i.e. homogeneous grains and inclusion-free domains 

in the heterogeneous grains) were inferred by using the most common classification schemes 

(Sobolev et al., 1973; Schulze, 2003), further integrated by comparison with the major and 

trace element compositions of garnets from peridotites and megacryst suites from other 

kimberlites, and by investigating the geochemical and (where available) petrographic 

relationships with the chromian diopside xenocrysts studied by Nimis et al. (2009). To 

provide a reference framework for the geochemical variability, I subdivided the garnets into 

three main groups (Fig. 5a,b): the variably (Cr, Ca, LREE)-depleted, HREE-enriched Group 

A and B garnets (and group II clinopyroxenes of Nimis et al., 2009) were interpreted as 

fragments of fertile, variably metasomatized lherzolites, while the more (Cr, Ca, LREE)-rich, 

HREE-depleted Group C garnets were interpreted to have originated from depleted, weakly 

metasomatized lherzolites. To obtain reliable informations on the depths of provenance and 

temperatures of equilibration of the xenocrysts, I used the various versions of the Ni-in-garnet 

thermometer (Ryan et al., 1996; Canil, 1999) and, where primary clinopyroxenes were 

associated with the garnets, the single-clinopyroxene thermobarometers (Nimis and Taylor, 

2000). The results indicated a shallow origin (< 130 km), and a substantial P–T overlap of 

garnet and clinopyroxene groups. The results of the previous lines of research developed in 

Manuscripts 1 and 2 helped to assess the robustness of these data and of their interpretation. 
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In a further step, I aimed to understand the processes that lead to the wide spectrum of REE 

variability in the primary garnets. Various degrees of REE fractionation such as those 

observed in Zagadochnaya garnets are commonly interpreted as a result of reactions between 

peridotite and different fluids or melts (Shimizu and Richardson, 1987; Hoal et al., 1994; 

Shimizu et al. 1997; Griffin et al., 1999b; Stachel et al., 2004; Grégoire et al., 2002; Burgess 

and Harte, 2004; Simon et al., 2007; Gibson et al., 2008), but understanding their genetic 

relationships is not straightforward, especially in the absence of strong petrographic 

constraints and isotopic measurements. To address this issue, I performed numerical 

simulations of peridotite/melt interaction (Plate Model; Vernières et al. 1997). This allowed 

me to model the trace element variation in the garnets, taking into account potentially 

important processes, such as chromatographic ion exchange, fractional crystallization, and 

assimilation of peridotitic minerals. 

Then, I focused on the secondary garnets and associated inclusions, and performed a 

detailed petrographic, mineralogical and geochemical study. This allowed me to interpret 

these assemblages as products of dissolution/precipitation processes, driven by reaction with 

percolating melts. The very short geological time scale (≤ 104 years) required to preserve 

measured zoning profiles in the garnets (Fig. 4b) and the trace element compositions of the 

calculated liquids in equilibrium with the secondary minerals demonstrated that the 

metasomatic melts were genetically related the host kimberlite. 

The above results were used to provide new constraints on the metasomatic history of the 

mantle section sampled by the Zagadochnaya kimberlite, as well as on the horizontal and 

vertical heterogeneity of the Daldyn lithospheric mantle. The previously hypothesized shallow 

Fig. 4: a) Back-scattered electron images of one of the analyzed garnets containing domains
rich in polymineralic inclusions of chromian diopside (cpx) and chromite (chr); b) 
magnification of the same garnet showing the patchy zoning with transition from high-(Ca, 
Cr) (lighter areas) to low-(Ca-Cr) (darker areas). Same Figure as Fig. 2 in Manuscript 3. 
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origin of Zagadochnaya mantle samples (cf. Nimis et al. 2009), which provides a simple 

explanation for the absence of diamonds, could be confirmed on the basis of a more robust 

assessment of the lithological variability of the Zagadochnaya mantle and of 

thermobarometric uncertainties. 

 

 

Fig. 5: Main compositional features of Zagadochnaya garnets. (a) CaO vs. Cr2O3

discrimination diagram (Sobolev, 1971); the grey circles represent garnets from 
Zagadochnaya kimberlite concentrate (Sobolev NV, pers. com.); H, harzburgite; L, lherzolite; 
W, wehrlite; same figure as Fig. 3 in Manuscript 3. (b) Representative CI-normalized (Anders 
& Grevesse, 1989) REE patterns for Zagadochnaya garnets. 
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METHODOLOGICAL APPROACH 

The analytical approach to evaluating single-clinopyroxene geobarometry (Manuscript 

1) 

To establish if the large deviations of single-clinopyroxene geobarometry from the garnet–

orthopyroxene geobarometry reflect an excessive sensitivity to analytical errors on Al, Cr and 

Na in clinopyroxene, I performed an analytical test on compositionally different 

clinopyroxenes (six chromian diopsides with different aCr and Cr# values). Each 

clinopyroxene was analysed in five analytical sessions, changing the operating conditions of 

the electron microprobe (beam current and counting times). During each session, 15 points 

were analyzed on the same, unzoned area of the clinopyroxene. This procedure allowed to 

evaluate the precision of the analyses, and of the P estimates, for the different analytical 

settings and the different clinopyroxene compositions. The results clearly showed that (i) 

propagation of analytical errors on Al, Cr and Na can explain the increased pressure 

uncertainties observed for clinopyroxenes with low aCr, and (ii) these uncertainties can be 

minimized if appropriate analytical conditions are adopted. 

The results of the analytical test were then used to model the analytical errors for a large 

(N = 764) set of published analyses of mantle-derived, xenolith-borne clinopyroxenes. For 

each clinopyroxene, I calculated the analytical error for five combinations of analytical 

conditions. Assuming normal error propagation, I then calculated the propagated P 

uncertainties for each clinopyroxene and for each combination of analytical condition. This 

exercise allowed me to define the minimum analytical conditions for optimum single-

clinopyroxene geobarometry as a function of clinopyroxene composition (see Table ??? in 

Manuscript 1). 

Thermodynamic modeling (Manuscript 2) 

Thermodynamic modeling is commonly used in petrology to study the chemical behavior of 

rock-forming minerals on the basis of phase equilibria constraints. In particular, 

thermodynamic modeling can be used to compare experimental results with data from other 

studies and to extrapolate experimental results in P–T–X space. Assuming that endmember 

and mixing parameters data are available for all phases, once an appropriate thermodynamic 

model is derived, it is possible to determine the chemical compositions and modal abundances 

of the phases present in a system at any given P–T–X condition. If applied to natural rocks in 

which the observed mineral assemblage is assumed to preserve the state of chemical 
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equilibrium, thermodynamics can also help translate the compositional data of the coexisting 

minerals into temperature and pressure of their equilibration. 

Here I used the thermodynamic approach to investigate phase relations in model and 

natural peridotitic systems, at pressure and temperature conditions relevant for the upper 

mantle. Thermodynamic calculations were performed using the Perple_X set of Fortran 

programs (http://www.perplex.ethz.ch/), which is based on free-energy minimization 

techniques (Connolly 1990; Connolly and Petrini, 2002). The reliability of the calculations 

strongly depend on the consistency of the thermodynamic data of mineral endmembers and 

solid solutions used. Here I employed the thermodynamic database of Holland and Powell 

(1998), integrated with some recently determined thermodynamic properties of Cr-bearing 

spinel, garnet and pyroxenes. In a first step, I adopted the same database used by Klemme et 

al. (2009). To verify the consistency of the model, I compared the results of the calculations 

with available experiments in Cr-bearing peridotitic systems (e.g., Nickel 1986, 1989; Brey et 

al. 1990, 1999, 2008; Robinson and Wood 1998). Particular attention was given to Cr 

variations in garnet, spinel, and pyroxenes, as a function of pressure, temperature and bulk 

composition. As the model did not reproduce Cr variations in pyroxenes and garnets, I 

modified some thermodynamic properties for chromium endmembers of pyroxenes and for 

chromium-bearing garnet solid solutions, which are still not constrained by experiments. 

After numerous attempts, the model reproduced satisfactorily phase relations and Cr-Al 

variations in garnet, spinel and orthopyroxene. Although clinopyroxene compositions were 

still not reproduced adequately (Fig. 3), the model could be applied with reasonable 

confidence to investigate phase relations and chemical variations in Cr-bearing garnets and 

spinels in natural peridotitic systems. 

Analyses of garnet and associated minerals from the Zagadochnaya kimberlite 

(Manuscript 3) 

In order to understand the origin of, and the processes recorded by these garnets, a detailed 

characterization at a sub-millimeter scale was needed. 46 garnet grains (supplied by N.V. 

Sobolev, Novosibirsk) were prepared for petrographic and chemical analyses. They were 

mounted on epoxy resin, cut to about half their thickness and polished.  

Preliminary petrographic analysis was carried out using back-scattered electron images of 

the grains, which were obtained with a CamScan MX2500 scanning electron microscope 

(SEM),. This preliminary survey allowed me to investigate the textural relationships between 

the host garnets and their mineral inclusions, and to characterize the distinctive chemical 

zonation in the inhomogeneous garnets. As a second step, the same grains were analysed with 
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a Cameca SX-50 electron microprobe equipped with four WDS spectrometers, to characterize 

the major and minor element composition of the garnets and associated minerals and their 

chemical zonation trends1. On the basis of petrographic observations and major element 

compositions, 28 representative grains were selected and further analyzed for trace elements 

by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) at IGG-

CNR, Pavia (Italy). This in-situ technique has the advantage to require minimal sample 

preparation (for this work I used the same samples analysed by electron microprobe), high 

spatial resolution at the sub-mm scale (to 30 µm), high sensitivity and detection limits below 

the ppm level, and rapid analysis times (typically 2 min per point analysis). 

Numerical simulations of trace element transfer during melt/peridotite reactions were 

performed using the Plate Model of Vernières et al. (1997). The simulations were devised to 

reproduce the trace element variability observed in Zagadochnaya primary garnets (groups A, 

B, and C). The simulations require the knowledge of several parameters, such as the 

compositions of both infiltrating melt and ambient peridotite, the topology of the reactions, 

the mode of the segregated/assimilated minerals, the instantaneous melt/rock ratios (i.e., 

porosity), and the solid-liquid partition coefficients. Even if some of these data were missing 

in the studied case, mostly due to the lack of discrete peridotitic xenoliths, the successful 

reproduction of REE variability of Zagadochnaya garnets provided important insight into the 

petrochemical evolution of the sampled mantle section. The rationale of the numerical model 

and of the selection of input parameters is reported in detail in the Appendix of Manuscript 3. 

The concentration profiles across garnet zoning were used to constrain the timing of the 

formation of the secondary garnets relative to the eruption of the kimberlite. A garnet grain in 

which the boundary between primary and secondary garnets looked particularly sharp (Fig. 

3b) was re-analysed for Ca along a traverse parallel to the maximum concentration gradient, 

to obtain a concentration profile with a spatial resolution of 3 µm. The timescales were 

estimated by comparing the measured profile with theoretical profiles predicted by the binary 

diffusion model (Crank 1975). This model requires the knowledge of the element 

interdiffusion coefficients, which in turn depend on pressure, temperature and garnet 

composition (Vielzeuf et al. 2007; Ganguly 2010). I have performed various calculations, 

using interdiffusion coefficients from different sources (Vielzeuf et al. 2007; Ganguly 2010) 

and assuming P and T conditions relevant to process studied here (i.e., P ~ 3.5 GPa and T = 

800–1100°C) to bracket the possible timescale interval. 

                                                           
1 Detailed major and minor element concentration profiles, additional to those reported in Manuscript 3, are 
reported in the Appendix 1 of the thesis. The related dataset is reported in the Appendix 2 of the thesis. 
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MANUSCRIPT 1 

(In preparation) 

OPTIMUM ELECTRON MICROPROBE ANALYSIS FOR SINGLE-

CLINOPYROXENE GEOBAROMETRY 

 

ABSTRACT 

Clinopyroxenes from garnet peridotites and pyroxenites are commonly used to estimate the 

pressure (P) of equilibration using the Cr-in-Cpx barometer. When compared to the 

orthopyroxene–garnet barometer, the Cr-in-Cpx method shows decreased precision for 

clinopyroxenes with low aCr (i.e., Cr – 0.81·Na·Cr#), with discrepancies up to 3.0 GPa for 

aCr<0.002 atoms per formula unit (apfu). Multiple electron microprobe analyses on 

compositionally diverse clinopyroxenes using different analytical conditions demonstrate 

that such discrepancies are mostly related to propagation of analytical errors on the 

calculated Cr-in-Cpx P. The results of the analytical tests were used to calculate model 

analytical errors and propagated P uncertainties for a large set of published analyses of 

mantle xenolith-borne clinopyroxenes. The resulting P uncertainties are negatively 

correlated with the aCr parameter and positively correlated with the Cr/(Cr + Al) ratio (Cr#). 

The aCr/Cr# parameter can thus be used to discriminate clinopyroxenes for which analytical 

errors alone will propagate unacceptable P uncertainties (i.e., higher than ±0.25 GPa) for 

several combinations of analytical conditions. For clinopyroxenes with aCr/Cr# > 0.024 apfu, 

“standard”  analyses using a beam current of 15 nA, an accelerating voltage of 20 kV, and 

counting times of 10 s for peak and 5 + 5 s for background, will result in acceptable P 

uncertainties. In all other cases, higher beam currents and counting times are needed. Using 

a beam current of 40 nA, an accelerating voltage of 20 kV, and counting times of 40 s for 

peak and 40 + 40 s for background for measurement of Cr, Al and Na concentrations 

extends the applicability of the Cr-in-Cpx barometer to clinopyroxenes with aCr/Cr# as low 

as 0.013 apfu. Application of the barometer to clinopyroxenes with Cr# < 0.1 remains 

unwarranted in all cases, owing to limitations in the barometer calibration. Using appropriate 

analytical conditions, the barometer can thus be applied to at least 90% of clinopyroxene-

bearing garnet peridotites and pyroxenites, 80% of clinopyroxene inclusions in lherzolitic 

diamonds, and 23% of clinopyroxene inclusions in websteritic diamonds. Evaluation of P 

uncertainties for clinopyroxenes included in diamonds from the Premier kimberlite shows 

that propagation of analytical errors produces biased P–T distributions. If only low-
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uncertainty P estimates are selected, the P–T distribution is essentially compatible with that 

of mantle xenoliths from the same kimberlite, indicating that (i) diamond formation occurred 

when the lithospheric mantle had already attained a thermal state comparable with that 

extant at the time of kimberlite eruption, and (ii) the majority of Premier lherzolitic 

diamonds most likely formed in the cratonic lithosphere under virtually unperturbed thermal 

conditions. 

INTRODUCTION 

Single-clinopyroxene thermobarometry uses a combination of the enstatite-in-Cpx 

thermometer and Cr-in-Cpx barometer (Nimis and Taylor 2000). This method allows one to 

retrieve both the pressure (P) and the temperature (T) of formation of a mantle-derived 

chromian diopside from its electron microprobe (EMP) chemical analysis and has become a 

popular tool in mantle studies and diamond exploration (e.g., Read and Janse 2009; 

Cookenboo and Grütter 2010; Mather et al. 2011). The enstatite-in-Cpx thermometer has 

proved a top-quality method when compared to other mantle geothermometers (Nimis and 

Grütter 2010). Significant uncertainties on T estimates (>50°C) due to analytical errors can 

be expected only at low T (<900°C) in response to unusually large errors on CaO, SiO2 

(≥2% rel.) or Na2O (≥10% rel.) determinations (Nimis 2002). The Cr-in-Cpx barometer 

(Nimis and Taylor 2000) is expressed as 
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where aCr = Cr – 0.81·Na·Cr# and Cr# = Cr/(Cr+Al), with elements in atoms per 6-oxygen 

formula unit (hereafter apfu). It represents the best alternative to the orthopyroxene–garnet 

barometer for garnet-bearing ultramafic rocks and the only viable method for isolated 

chromian diopside grains included in diamonds or recovered during mineral exploration 

programs. 

Unfortunately, the Cr-in-Cpx barometer suffers from two major drawbacks. First, 

evaluations against experiments have shown progressive underestimation of the equilibrium 

pressures above ca. 4.5 GPa (Nimis 2002). Such systematic bias at high P evidently is a 

consequence of the simplified, single-mineral formulation of the Cr-in-Cpx barometer. 

Second, the deviations from results of orthopyroxene–garnet barometry can be very large for 

clinopyroxenes characterized by low values of aCr (Fig. 1). Based on a limited set of data, 

Nimis and Taylor (2000) suggested that the Cr-in-Cpx barometer should not be used if aCr is 

< 0.003 apfu, thus cutting off a significant fraction of naturally occurring clinopyroxenes, 
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especially those belonging to the pyroxenitic suite. Figure 1 shows that this threshold may 

be even too optimistic: at aCr = 0.010 apfu deviations from the orthopyroxene–garnet 

pressures may be as high as ±1.0 GPa, reaching ±3.0 GPa for aCr < 0.003 apfu. The 

decreased precision of the Cr-in-Cpx barometer at low aCr may be due to an oversimplified 

treatment of Cr equilibria between clinopyroxene and garnet or it may reflect an excessive 

sensitivity of the method to analytical errors on Al, Cr and Na or to departures from 

chemical equilibrium. 

 

 

Despite the obvious need of high-quality chemical analyses for reliable thermobarometry, 

the EMP analytical conditions employed in garnet peridotite or diamond inclusion studies 

are often not optimized for this specific purpose. Moreover, in many cases, the analytical 

conditions are not reported or only partial documentation is given. Of seventeen published 

papers in which the Cr-in-Cpx barometer is applied to clinopyroxene EMP analyses and 

documentation of analytical conditions is provided, sixteen used relatively low beam 

currents (≤20 nA) and/or low peak counting times (≤20 s) (e.g. Wang and Gasparik 2001; 

Menzies et al. 2004; Donnelly et al. 2007; Faryad et al. 2009; Nimis et al. 2009; Sand et al. 

2009). This cast doubts on the reliability of many existing single-Cpx thermobarometric data 

and demands proper evaluation of propagation of analytical errors on P estimates.  

Mather et al. (2011) made a qualitative evaluation of the errors propagated by analytical 

uncertainties on single-Cpx thermobarometry, but without a rigorous statistical assessment. 

Fig. 1: Discrepancies between the Cr-in-Cpx barometer (Nimis and Taylor 2000; PNT00) 
and the orthopyroxene-garnet barometer (Nickel and Green 1985, as modified by Carswell 
1991;  PCa91) vs. the clinopyroxene parameter aCr. Clinopyroxene compositions from the 
compilation of well-equilibrated garnet peridotite and pyroxenite xenoliths of Nimis and 
Grutter (2010). The overall shift of high-P clinopyroxenes towards negative values can be 
ascribed to the known underestimation of Cr-in-Cpx pressures at high P (cf. Nimis 2002). 
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A more quantitative evaluation would be desirable to assess the reliability of existing 

thermobarometric data and help direct analytical procedures in future thermobarometric 

surveys. Assuming random error sources, the uncertainties on pressure estimates can be 

expressed with a normal error propagation function, i.e., 
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Calculation of σP requires knowledge of analytical uncertainties on Cr, Al, Na and T. 

Uncertainties on T estimates can be derived from reproducibility of temperatures of 

experiments (±30–40°C; Nimis and Taylor 2000). Accurate evaluation of EMP uncertainties 

is not straightforward, because analytical errors primarily depend on the absolute element 

concentrations and on the analytical conditions adopted for the EMP analysis.  

In this paper, we investigate the effect of EMP uncertainties on pressure estimates for 

compositionally diverse clinopyroxenes using both a direct and an indirect approach. In the 

direct approach, we evaluate the analytical errors for different analytical conditions and for a 

specific set of clinopyroxene compositions through repeated EMP measurements on the 

same samples, and evaluate the consequent uncertainties on P estimates by calculating P for 

each analysis. In the indirect approach, we apply the error propagation function (Equation 2) 

to a great variety of natural clinopyroxene compositions, assuming model analytical 

uncertainties derived from our direct test. We will show that, for particular compositions, 

standard analytical conditions may propagate very large uncertainties on pressure estimates, 

which account well for the lower observed precision of the Cr-in-Cpx barometer at low aCr. 

Minimum conditions for electron microprobe analysis of low-aCr clinopyroxenes will also be 

provided, which minimize the effect of analytical uncertainties and extend the applicability 

of the Cr-in-Cpx barometer to clinopyroxenes with aCr as low as 0.0014 apfu. 

SAMPLE SELECTION AND ANALYTICAL PROCEDURES FOR THE DIRECT 

TEST 

For the direct test we selected six clinopyroxenes having aCr between 0.0013 and 0.0188 

apfu, characterized by various proportions of Al, Cr and Na, and equilibrated in a wide range 

of P–T conditions (Table 1). Appropriate compositions were found in two compositionally 

homogeneous clinopyroxenes and in two zoned clinopyroxenes from four well studied 

garnet peridotites. 

Peridotite sample 160-4-8 is an orogenic, poikiloblastic garnet lherzolite from Cima di 

Gagnone, Adula–Cima Lunga nappe, Central Alps (Evans and Trommsdorff 1978). The 
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garnet peridotite forms a lens-shaped body within partly migmatitic gneisses, which include 

bodies of eclogites, marbles and ophicalcitic rocks. It was formed during prograde, high-

pressure, Alpine metamorphism of serpentinitic protoliths to ca. 740°C and 3.0 GPa (Nimis 

and Trommsdorff 2001). It shows a weakly foliated texture and contains anhedral 

poikiloblastic garnets concentrated along pyroxene-rich layers. Garnet is surrounded by a 

matrix of idioblastic mosaic olivine, orthopyroxene, clinopyroxene and amphibole. Evans 

and Trommsdorff (1978) reported pronounced mineral zonations towards the rims of the 

first-generation porphyroclasts, due to re-equilibration under retrograde, hydrous conditions. 

For our test we selected an elongated clinopyroxene crystal (ca. 0.2 x 2.0 mm) which is 

almost totally enclosed in a poikilitic garnet with thin kelyphitic outer margins. Preliminary 

EMP analysis of the clinopyroxene indicated significant zoning. Two compositionally 

distinct, homogeneous areas could be found in the core and near the rim to garnet, which 

yielded aCr = 0.0014 apfu and aCr = 0.0040 apfu, respectively. 

Table 1: Results of preliminary clinopyroxene analyses adopting standard analytical 
conditions (15 nA, 20 kV, 10 s peak + 10 s background counting times). For each analysis, 
pressure (PNT00) and temperature (TNT00) were calculated using the single-clinopyroxene 
thermobarometers of Nimis and Taylor (2000). Pressures and temperatures for the host 
peridotites were also calculated with a combination of the Taylor (1998) thermometer 
(TTa98) and the Nickel and Green (1985; with modifications after Carswell 1991) barometer 
(PCa91), using published orthopyroxene and garnet compositions (Evans and Trommsdorff 
1978; Canil and O’Neill 1996; Franz et al. 1996; Boyd, personal communication) and 
clinopyroxene compositions reported here. 

Sample 160-4-8 
core 

160-4-8 
rim 

FRB1031 KGG-65 Uv61/91 
high-aCr 

Uv61/91 
low-aCr 

SiO2 55.17 54.49 55.69 54.57 54.88 55.28 
TiO2 0.06 0.08 0.25 0.28 0.05 0.12 
Al2O3 1.55 1.50 2.46 2.65 0.61 0.65 
Cr2O3 0.70 0.49 1.32 2.4 0.94 0.82 
FeOtot 3.13 2.28 3.26 2.26 2.45 2.62 
MnO 0.09 0.06 0.11 0.06 0.10 0.10 
MgO 16.55 17.36 19.23 16.15 19.20 18.98 
CaO 22.18 22.95 16.74 19.5 20.92 20.93 
Na2O 1.42 0.98 1.89 2.32 0.65 0.82 
Sum 100.85 100.19 100.95 100.19 99.80 100.32 

Cr# 0.23 0.18 0.27 0.39 0.51 0.46 

aCr 0.0013 0.0040 0.0092 0.0188 0.0081 0.0021 
TNT00 (°C) 769 732 1270 912 1180 1185 
P NT00 (GPa) 4.70 3.20 5.22 3.69 6.01 7.43 
T Ta98 (°C) 728 728 1265 972 1190 1190 
PCa91 (GPa) 3.26 3.26 5.62 3.84 6.09 6.09 
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Sample FRB1031 is a high-T garnet lherzolite xenolith from the Jagersfontein kimberlite, 

South Africa, which was studied by Boyd and Mertzman (1987). It shows a mosaic 

porphyroclastic texture, with garnet porphyroclasts reaching 1 cm in size and orthopyroxene, 

clinopyroxene and olivine porphyroclasts never exceeding 5 mm. The matrix is mainly 

composed by serpentinized olivine neoblasts. Clino- and orthopyroxene porphyroclasts are 

often fractured or completely broken. For the test we selected an unzoned clinopyroxene 

fragment with aCr = 0.0094 apfu. 

Sample KGG-65 is a clinopyroxene-bearing garnet harzburgite xenolith from the Gibeon 

kimberlite, Namibia, which was studied by Franz et al. (1996). It shows a coarse equant 

texture. Garnet, often with small kelyphitic rims, can reach 5 mm in size, while the other 

minerals never exceed 2 mm. Orthopyroxene grains are granoblastic to short prismatic. Most 

of the clinopyroxenes have serrated spongy rims containing numerous fine melt inclusions, 

but the cores are homogeneous and compositionally unzoned. For the test we have selected a 

clinopyroxene core with aCr = 0.0185 apfu. 

Sample Uv-61/91 is a high-T sheared garnet lherzolite xenolith from the Udachnaya 

kimberlite, Yakutia, Russia, which was previously studied for petrology (Boyd et al. 1997), 

redox conditions (Canil et al. 1994), and isotope geochemistry (Pearson et al. 1995). Garnets 

are round and mm-sized, and are usually mantled by kelyphite. Orthopyroxenes are 

segregated into bands, giving the rock foliation. Partially serpentinized olivine neoblasts 

(0.1–0.3 mm) compose the groundmass and olivine porphyroclasts are often broken into a 

mosaic of grains (0.5–1.0 mm). Primary clinopyroxene porphyroclasts commonly have a 

blotchy alteration along margins and fractures. The clinopyroxene grain studied here was 

taken from a mineral separate, which was kindly supplied by D.G. Pearson. Preliminary 

EMP analyses indicated that the separated clinopyroxene grains were compositionally 

inhomogeneous. For the test we selected two homogeneous areas with significantly different 

aCr, one close to a partially altered portion (aCr = 0.0024 apfu) and the other far from it (aCr = 

0.0080 apfu). 

Clinopyroxene analyses were carried out with a CAMECA “CAMEBAX” electron 

microprobe (IGG–CNR, Padua, Italy), equipped with four wavelength-dispersive 

spectrometers. Natural and synthetic minerals (diopside for Ca and Si, albite for Na, 

orthoclase for K, and pure Al, Mg, Cr, Fe, and Mn-Ti oxides) were used as standards. X-ray 

counts were converted into weight percent oxides by using the CAMECA-PAP program. 

Each clinopyroxene grain/portion was first analyzed for all elements adopting standard 

analytical condition, i.e., 1 µm electron beam, 20 kV accelerating voltage, 15 nA beam 
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current, and a counting time of 10 s for peak and 10 + 10 s for background. This preliminary 

investigation allowed us to select compositionally homogeneous areas and provided us 

average compositions to be used for calculation of matrix effects in subsequent analytical 

sessions and preliminary thermobarometry (Table 1). The same clinopyroxenes were then 

analyzed again for Al, Cr and Na using different beam currents and counting times (Table 

2). Five analytical sessions were carried out, during which 15 individual point analyses were 

acquired on the same, homogeneous areas of the clinopyroxenes. The analyses were carried 

out on a grid of 3 x 5 analytical spots (maximum side 20 µm). To limit element migration 

under the electron beam, before each session the grid was translated by 3–4 µm, within the 

previously defined homogeneous areas. Calcium measurements were also conducted on the 

same spots as a further check for compositional homogeneity of the analyzed area. Observed 

variations in CaO weight percentages were always less than 0.8%. To further minimize the 

effect of any minor compositional inhomogeneity, analyses for which any measured 

concentration departed by more than 3 standard deviations from the mean of the same 

session were rejected. Only in one case more than a single analysis had to be discarded. The 

number of accepted analyses and the average compositions obtained during the five test 

sessions on each selected clinopyroxene grain/portion are reported in Table 3. 

Table 2 Electron microprobe operating conditions for the different analytical sessions. 
Accelerating voltage was fixed to 20 kV. The last row indicates the minimum aCr/Cr# values 
required to maintain the propagated pressure uncertainties within ±0.25 GPa (σ) 

Session 15-10/5 15-20/20 40-10/5 40-20/20 40-40/40 

Beam current (nA) 15 15 40 40 40 

Peak (sec) 10 20 10 20 40 

Background (sec) 5 + 5 20 + 20 5 + 5 20 + 20 40 + 40 

aCr/Cr# 0.024 0.019 0.018 0.015 0.013 

Single-clinopyroxene P–T estimates (Nimis and Taylor 2000) for samples FRB1031 and 

KGG-65, for the rim composition of sample 160-4-8, and for the high-aCr composition of 

sample Uv61/91 compare well with those obtained using a combination of the Taylor (1998) 

two-pyroxene thermometer and the Nickel and Green (1985) orthopyroxene–garnet 

barometer (with modifications after Carswell 19911) and published mineral compositions for 

the same samples (Table 1). The core composition of clinopyroxene 160-4-8 yields a much 

                                                 
1 The combination of the Taylor (1998) thermometer and Nickel and Green (1985) barometer follows 

recommendations by Nimis and Grütter (2010). Carswell’s (1991) modification only affects P estimates for 

highly sodic orthopyroxene compositions and was preferred here because it reproduces best pressures of 

experiments in peridotitic systems (cf. Fig. 1 in Nimis and Grütter 2010). 
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higher P (4.7 GPa vs. 3.3 GPa), suggesting disequilibrium with the garnet. This 

clinopyroxene core may retain a relict composition, which formed during prograde 

metamorphism at sub-garnet conditions. The low-aCr composition of sample Uv61/91 yields 

a significantly higher Cr-in-Cpx pressure than the high-aCr composition of the same sample 

(7.4 GPa vs. 6.0 GPa), which may again reflect disequilibrium, possibly related to late-stage 

clinopyroxene alteration. Although these compositions probably are out of equilibrium with 

the garnet, and thus yield meaningless Cr-in-Cpx P estimates, they still lie within the 

compositional space of clinopyroxenes from natural garnet peridotites and therefore may 

still serve as useful test cases to evaluate the propagation of analytical uncertainties on 

calculated pressures. 

RESULTS OF THE DIRECT TEST 

For each point analysis, Cr#, aCr and Cr-in-Cpx pressure estimates were calculated. 

Pressures were calculated using fixed input temperature values, which were obtained by 

applying the enstatite-in-Cpx thermometer, at P given by the Cr-in-Cpx barometer, on the 

compositions derived from the preliminary analyses of the samples (Table 1). Statistical 

parameters (mean values, standard deviations, quantiles) for all relevant variables are 

reported in Table 3 and illustrated in Fig. 2. 

Relative uncertainties on the measured Al, Cr and Na concentrations decrease smoothly with 

increasing beam current, counting times, and element abundances (Table 3). This allowed us 

to model analytical uncertainties as linear functions of clinopyroxene composition for each 

set of analytical conditions (Table 4). The standard deviations on P estimates drastically 

change with changing analytical conditions (σ as high as 0.8 GPa using the lowest beam 

current and counting times) and clinopyroxene composition (Table 3 and Fig. 2). The 

relationships between P uncertainties and composition can be explained considering the 

topology of the Cr-in-Cpx barometer expression (Equation 1). 

In equation (1), P is related to aCr and Cr# through two logarithmic functions. This 

enhances error propagation with decreasing aCr and Cr#. Owing to its greater weight in the 

equation, the effect of the aCr logarithmic term tends to be dominant in terms of error 

propagation. This accounts well for the larger P uncertainties obtained for the core of 

clinopyroxene 160-4-8 (aCr = 0.0013 apfu) with respect to clinopyroxene FRB1031 (aCr = 

0.0092 apfu), in spite of their similar aCr uncertainties (Table 3). It also explains the 

progressively larger deviations from orthopyroxene–garnet pressures at lower aCr (Fig. 1). 

Moreover, because of the logarithmic relation, the distribution of propagated errors due to 

aCr uncertainties will tend to be skewed towards the positive side. This explains the 
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progressive decrease in mean P estimates for clinopyroxenes with very low aCr values when 

improved analytical conditions are adopted (see sample 160-4-8 core, aCr ≈ 0.0015 apfu, in 

Table 3 and Fig. 2). 

Whereas the effect of the Cr# logarithmic term on error propagation is marginal, Cr# has 

a major effect on the uncertainties of the aCr parameter. In particular, a higher Cr# will 

enhance 
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Table 3: Results of analytical sessions on selected Cpx’s using different operating condition (cf. Table 2). N: number of analyses; av.: average 

 Sample  Session N Al2O3 Cr2O3 Na2O Cr# aCr P (GPa) 

     av. σ σ % av. σ σ % av. σ σ % av. σ av. σ av. σ 

160-4-8 
core 

15-10/5 15 1.56 0.05 3.2% 0.72 0.05 7.3% 1.43 0.05 3.7% 0.238 0.015 0.0013 0.0010 4.99 0.78 

15-20/20 14 1.56 0.03 2.1% 0.71 0.04 5.6% 1.44 0.05 3.4% 0.233 0.011 0.0012 0.0008 4.79 0.46 

40-10/5 15 1.56 0.03 2.1% 0.71 0.03 4.5% 1.42 0.05 3.8% 0.235 0.009 0.0014 0.0008 4.71 0.44 

40-20/20 15 1.56 0.03 1.9% 0.72 0.02 2.6% 1.42 0.05 3.4% 0.235 0.005 0.0015 0.0006 4.62 0.31 

40-40/40 15 1.56 0.03 1.9% 0.72 0.02 3.4% 1.39 0.03 2.2% 0.237 0.008 0.0018 0.0004 4.45 0.18 

160-4-8 
rim 

15-10/5 15 1.52 0.06 4.0% 0.48 0.05 11.3% 0.97 0.05 4.8% 0.176 0.018 0.0042 0.0006 3.14 0.14 

15-20/20 15 1.53 0.02 1.4% 0.49 0.02 3.8% 0.99 0.04 4.3% 0.178 0.006 0.0041 0.0005 3.17 0.08 

40-10/5 15 1.53 0.03 2.1% 0.49 0.02 3.1% 0.98 0.05 5.2% 0.176 0.006 0.0041 0.0006 3.16 0.14 

40-20/20 14 1.52 0.02 1.5% 0.48 0.02 4.4% 1.01 0.03 3.4% 0.173 0.006 0.0037 0.0005 3.22 0.09 

40-40/40 14 1.52 0.03 1.8% 0.47 0.02 4.5% 0.99 0.03 3.3% 0.173 0.007 0.0038 0.0005 3.18 0.10 

FRB1031 

15-10/5 15 2.49 0.06 2.4% 1.37 0.08 5.7% 1.88 0.03 1.6% 0.270 0.013 0.0102 0.0012 5.13 0.12 

15-20/20 15 2.46 0.04 1.6% 1.34 0.04 2.7% 1.91 0.03 1.7% 0.267 0.005 0.0092 0.0010 5.24 0.12 

40-10/5 15 2.48 0.03 1.1% 1.32 0.07 5.0% 1.90 0.02 1.3% 0.262 0.010 0.0093 0.0009 5.20 0.07 

40-20/20 15 2.47 0.02 0.9% 1.32 0.02 1.6% 1.89 0.02 0.8% 0.264 0.004 0.0093 0.0004 5.20 0.04 

40-40/40 15 2.48 0.01 0.5% 1.33 0.02 1.7% 1.89 0.02 0.8% 0.264 0.003 0.0094 0.0004 5.19 0.04 

KGG65 

15-10/5 15 2.65 0.04 1.5% 2.40 0.08 3.2% 2.31 0.05 2.0% 0.378 0.008 0.0192 0.0018 3.67 0.07 

15-20/20 15 2.63 0.03 1.1% 2.39 0.05 2.2% 2.31 0.04 1.5% 0.379 0.005 0.0184 0.0012 3.71 0.05 

40-10/5 15 2.63 0.03 1.0% 2.36 0.06 2.4% 2.31 0.03 1.2% 0.376 0.006 0.0182 0.0010 3.71 0.04 

40-20/20 15 2.63 0.02 0.8% 2.36 0.04 1.9% 2.30 0.02 1.0% 0.376 0.005 0.0184 0.0009 3.70 0.04 

40-40/40 15 2.62 0.01 0.5% 2.35 0.02 1.0% 2.30 0.02 0.8% 0.376 0.003 0.0181 0.0005 3.71 0.02 

Uv61/91  
low-aCr 

15-10/5 15 0.65 0.03 4.7% 0.85 0.06 7.6% 0.81 0.04 5.5% 0.466 0.026 0.0029 0.0016 7.29 0.80 

15-20/20 15 0.66 0.02 2.6% 0.81 0.04 4.9% 0.82 0.03 3.8% 0.452 0.012 0.0021 0.0010 7.53 0.60 

40-10/5 15 0.66 0.03 5.0% 0.84 0.05 5.7% 0.83 0.02 2.7% 0.462 0.019 0.0023 0.0009 7.41 0.50 

40-20/20 14 0.66 0.02 3.6% 0.84 0.02 1.8% 0.82 0.03 3.5% 0.460 0.009 0.0024 0.0005 7.31 0.25 

40-40/40 8 0.64 0.01 1.5% 0.85 0.01 1.6% 0.82 0.02 2.1% 0.471 0.005 0.0024 0.0005 7.33 0.25 

Uv61/91  
high-aCr 

15-10/5 15 0.61 0.02 3.8% 0.95 0.07 7.2% 0.66 0.04 5.6% 0.512 0.020 0.0081 0.0018 6.06 0.26 

15-20/20 15 0.61 0.03 4.1% 0.93 0.05 5.7% 0.64 0.03 4.8% 0.504 0.021 0.0082 0.0016 6.00 0.20 

40-10/5 15 0.60 0.02 3.2% 0.92 0.02 2.7% 0.64 0.03 4.8% 0.505 0.010 0.0080 0.0013 6.02 0.19 

40-20/20 15 0.61 0.01 2.4% 0.90 0.02 2.8% 0.63 0.02 3.0% 0.498 0.006 0.0080 0.0008 5.99 0.11 

40-40/40 15 0.61 0.01 1.3% 0.88 0.02 2.7% 0.63 0.01 2.2% 0.493 0.007 0.0076 0.0005 6.03 0.06 
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propagation of Na uncertainties on aCr and, therefore, on P. This explains the lower P 

uncertainties (and their less pronounced variations between different analytical sessions) 

obtained for 160-4-8 rim composition, which is characterized by low aCr (0.004 apfu) and low 

Cr# (0.17), compared with those obtained for compositions with higher Cr# values (Table 3 

and Fig. 2). 

 

 

P UNCERTAINTIES FOR NATURAL CLINOPYROXENES AND OPTIMUM 
ANALYTICAL CONDITIONS FOR CLINOPYROXENE BAROMETRY 

The previous test indicates that the effect of analytical errors on the precision and accuracy of 

the calculated pressure strongly increases with decreasing aCr and with increasing Cr#. For 

any clinopyroxene composition, minimum analytical conditions should be defined for which 

analytical errors propagate acceptable errors on pressure estimates. For this purpose, a more 

extended test on comprehensive set of clinopyroxene compositions is needed. Here we use the 

Fig. 2: Box-plots of calculated pressures for the test clinopyroxenes analyzed using different 
operating conditions (cf. Table 2). Median values (thicker vertical line), interquartile range 
(box), whiskers (dashed lines) and individual pressure estimates for each point analyses 
(empty circles) are reported. 



34 

database of well-equilibrated xenoliths of Nimis and Grütter (2010) as our test material. 

Temperatures for each xenolith were calculated using the thermometer of Taylor (1998) at P 

given by the orthopyroxene–garnet barometer of Nickel and Green (1985; with modifications 

by Carswell 1991). The T uncertainty was fixed at 40 K (cf. Nimis and Taylor 2000). 

Uncertainties on clinopyroxene Cr, Al and Na analyses were calculated for each xenolith for 

five combinations of analytical conditions, taking into account the results of our previous 

analytical tests (Table 4). Uncertainties on Cr-in-Cpx pressures were then calculated by 

normal error propagation of the five resulting sets of analytical uncertainties (Equation 2). 

Table 4 Equations for estimating relative analytical errors (σ %) on oxide (wt%) and element 
(apfu) concentrations as a function of their abundances and analytical conditions, based on 
results of our analytical tests (Table 3). The analytical errors for wt% values >2.5% 
(corresponding to Al > 0.12 apfu, Cr > 0.08 apfu, Na > 0.18 apfu) become virtually 
independent of concentrations and can be considered equal to the estimated error for 2.5 wt% 
(or for the corresponding element concentrations) 

An. session 15-10/5 15-20/20 40-10/5 40-20/20 40-40/40 

Al2O3 err % -1.1·Al2O3 + 4.8 -1.4·Al2O3 + 4.4 -1.4·Al2O3 + 4.5 -0.8·Al2O3 + 2.8 -0.6·Al2O3 + 2.3 

Al err % -0.26·Al + 0.048 -0.22·Al + 0.035 -0.34·Al + 0.046 -0.20·Al + 0.028 -0.26·Al + 0.033 

Cr2O3 err % -3.1·Cr2O3 + 10 -1.6·Cr2O3 + 6.0 -0.9·Cr2O3 + 5.0 -1.0·Cr2O3 + 3.6 -1.4·Cr2O3 + 3.7 

Cr err % -0.90·Cr + 0.093 -0.57·Cr + 0.060 -0.26·Cr + 0.047 -0.31·Cr + 0.034 -0.35·Cr + 0.034 

Na2O err % -2.6·Na2O + 7.4 -1.8·Na2O + 5.7 -2.0·Na2O + 5.7 -1.7·Na2O + 4.8 -0.9·Na2O + 3.0 

Na err % -0.32·Na + 0.067 -0.28·Na + 0.058 -0.32·Na + 0.062 -0.22·Na + 0.045 -0.19·Na + 0.037 

 

 

Fig. 3: Calculated pressure uncertainties (σ) vs. aCr for clinopyroxenes from well-
equilibrated garnet peridotites and pyroxenites (database of Nimis and Grütter 2010). The 
pressure uncertainties were calculated from normal propagation of temperature uncertainties 
(±40°C) and analytical errors derived from equations reported in Table 4, assuming the 
lowest beam current (15 nA) and counting times (10 s peak, 5 + 5 s background) 
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As expected, the calculated uncertainties increase with decreasing aCr and increasing Cr# 

values (Fig. 3), reaching 1.8 GPa when aCr is <0.002 apfu and the lowest current and counting 

times are assumed. These results can be used to determine an approximate compositional 

threshold below which pressure estimates become too sensitive to analytical errors. We 

considered a maximum propagated uncertainty of ±0.25 GPa on the calculated P, including 

the effect of both analytical and thermometric errors, to be a reasonable limit. Taking into 

account the standard error of estimate of the barometer calibration (±0.23 GPa), this limit 

should ensure an overall uncertainty smaller than ±0.4 GPa. We found that simplified 

thresholds based on the aCr /Cr#  ratio (Table 2) are capable to discriminate compositions for 

which P uncertainties are acceptable with a confidence of 95%. Although these thresholds are 

strictly applicable to analyses acquired using an electron microprobe similar to that used for 

the present work, we expect them to reproduce with reasonable approximation the 

performance of most WDS electron microprobes. The same thresholds can thus be used in 

common practice to derive minimum analytical conditions for thermobarometric applications 

or to help select the most reliable analyses from published datasets. Note that if the lowest 

beam current and counting times are assumed, the safety threshold is aCr /Cr# > 0.024 apfu. 

Such threshold would cut off 17% of the 764 records in the mantle xenolith database of Nimis 

and Grütter (2010) and 40% of reported clinopyroxene inclusions in ultramafic-type diamonds 

(cf. Stachel and Harris 2008). Assuming the highest beam current and counting times the 

threshold decreases to > 0.013 apfu, thus cutting off only 5% of the xenolith records and 18% 

of the inclusions. 

IMPLICATIONS ON THERMOBAROMETRY OF MANTLE XENOLITHS AND 
DIAMOND INCLUSIONS AND ON ESTIMATED PALAEOGEOTHERMS 

The above results suggest that many published clinopyroxene analyses may not be of 

sufficient quality for single-clinopyroxene thermobarometry. Accordingly, we have refined 

the xenolith database of Nimis and Grütter (2010) by excluding those analyses for which the 

estimated P uncertainties were above our recommended limit of ± 0.25 GPa. For each record, 

the analytical errors on Al, Cr, and Na concentrations were calculated taking into account the 

analytical conditions used for the analysis as reported in the source papers. If the reported 

analytical conditions did not match exactly any of those utilized here, the errors were 

estimated by interpolation of values obtained by assuming lower and higher beam currents or 

counting times. For records for which analytical details had not been reported, we cautiously 

assumed the beam current and counting times to be the lowest possible ones (i.e., 15 nA, 10 s 

peak, 5 + 5 s background). 
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Figure 4 shows that the discrepancies between Cr-in-Cpx and orthopyroxene–garnet 

pressures are greatly reduced for the refined database, especially at pressures above 3 GPa. At 

lower pressures, significant deviations are still observed only for a few samples with Cr# < 

0.1 (Fig. 4b). This systematic bias for Cr-poor clinopyroxenes cannot be ascribed to 

propagation of analytical errors and suggests poor reliability of the Cr-in-Cpx barometer for 

low-Cr# compositions. Notably, the Cr-in-Cpx barometer was calibrated on 120 experimental 

clinopyroxenes with Cr# in the range 0.09–0.44, with only 6 of them having Cr# < 0.1 (Nimis 

and Taylor 2000). Rejecting such low-Cr# clinopyroxenes results in cutting off further 5% of 

clinopyroxenes from xenoliths, further 2% of inclusions in lherzolitic diamonds and further 

58% (!) inclusions in websteritic diamonds. 

 

 

 

 

The refined dataset shows a progressive negative deviation of Cr-in-Cpx pressure estimates 

relative to orthopyroxene–garnet pressures estimates at P > 4.5 GPa. This confirms the 

tendency of the Cr-in-Cpx barometer to underestimate at high P, which was previously 

observed against experimental data (cf. Nimis 2002) (Fig. 4b)2. Moreover, a slight positive 

                                                 
2 This systematic deviation would almost disappear if the native expression of the Nickel and Green (1985) 

orthopyroxene–garnet barometer was used. 

Fig. 4: P estimates using the Cr-in-Cpx barometer plotted versus P estimates using the 
orthopyroxene–garnet barometer of Nickel and Green (1985, as modified by Carswell 1991) 
for (a) the entire dataset of well equilibrated garnet peridotites and pyroxenites of Nimis and 
Grutter (2010), and (b) the same dataset cleaned from samples with calculated pressure 
uncertainties greater than ±0.25 GPa. 
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deviation of Cr-in-Cpx pressures (<0.5 GPa on average) is observed at P around 3 GPa, which 

partly confirms observations by Grütter and Moore (2003) and Grütter (2009). It is unclear if 

this small discrepancy at moderate P is due to inaccuracy of the Cr-in-Cpx barometer, of the 

orthopyroxene–garnet barometer, or of both. Owing to these systematic deviations, mantle 

palaeogeotherms calculated on the basis of single-Cpx thermobarometry will tend to show 

slightly different shapes than those based on orthopyroxene–garnet barometry. The most 

important discrepancies will affect the deepest portion of the lithosphere, where single-Cpx 

geotherms will tend to show slightly overestimated T/P gradients, leading to underestimation 

of lithosphere thickness. As discussed by Nimis (2002), this drawback will not hamper 

recognition of samples coming from the diamond window. 

Nimis (2002) discussed results of single-Cpx thermobarometry of isolated inclusions in 

diamonds from worldwide localities. In most cases, P–T estimates were similar to those 

obtained with the same method for mantle xenoliths from the same locality, suggesting that 

diamond crystals formed when the lithospheric mantle had already attained a conductive 

thermal regime comparable to that extant at the time of emplacement of the host 

kimberlite/lamproite. Occasional deviations from the local xenolith geotherms were ascribed 

to secular cooling or to thermal perturbation or relaxation of the lithosphere after 

encapsulation of the inclusions in their host diamond. Figure 5 illustrates one such example 

for a relatively large suite of inclusions in diamonds from the Premier kimberlite, South 

Africa. Low-T mantle xenoliths from this locality fall along a ~42-mWm-2 Pollack and 

Chapman (1977)-type conductive geotherm, while high-T xenoliths plot on or slightly above a 

~44-mWm-2 geotherm. P–T estimates for the diamond-hosted clinopyroxenes mostly follow a 

similar trend as the xenoliths, but several high-P inclusions depart from the xenolith trend and 

remain close to the ~42-mWm-2 geotherm. Nimis (2002) interpreted this distribution as the 

result of thermal perturbation of the deep lithosphere after diamond formation. However, if 

clinopyroxenes analyses for which the estimated P uncertainties are higher than ±0.25 GPa 

are excluded, all P–T pairs departing from the xenolith trend are removed (Fig. 5). Using the 

same filtering criterion, a significant fraction of high-T xenoliths is also eliminated, thus 

considerably reducing the overall scatter (Fig. 5). Most remaining inclusions plot at P–T 

conditions compatible with those indicated by the xenoliths within the resolution of the 

thermometer (±40°C). This exercise indicates that the apparent discrepancies between P–T 

estimates for xenoliths and inclusions are probably an analytical artifact and that the majority 

of Premier lherzolitic diamonds most likely formed in the cratonic lithosphere under virtually 

unperturbed thermal conditions. 
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CONCLUSIONS 

The Cr-in-Cpx barometer can be extremely sensitive to analytical uncertainties for particular 

clinopyroxene compositions. In critical cases, P uncertainties can be as high as ±3 GPa. 

However, if appropriate analytical conditions are adopted during EMP analysis, the errors can 

be minimized and the barometer can be applied with reasonable confidence to a wide variety 

of compositions well beyond the limits originally recommended by Nimis and Taylor (2000), 

thus incorporating also a large proportion of pyroxenitic clinopyroxenes. Application to 

clinopyroxenes with Cr# < 0.1 remains unwarranted in all cases, owing to inconsistencies of 

the barometer outside the compositional field originally considered for its calibration. 

Simplified thresholds based on compositional parameters reported in Table 2 may help to 

select the most appropriate analytical conditions for optimum thermobarometry. High-quality 

analyses will not eliminate recognized underestimation of pressure at P > 4.5 GPa, but will 

considerably reduce scatter of P–T estimates for a great variety of natural clinopyroxenes, 

allowing better definition of mantle thermal state and diamond potential. 

Fig 5 P–T estimates for clinopyroxenes from the Premier kimberlite (Kaapvaal craton). Only 
clinopyroxenes plotting in the on-craton garnet peridotite field of Ramsay and Tompkins 
(1994) were included. Diamonds indicate clinopyroxenes from diamond inclusions (Gurney et 
al. 1986; Richardson et al. 1993). Shaded fields refer to clinopyroxenes from garnet peridotite 
xenoliths (Danchin 1979; Canil and O'Neill 1996; Smith 1999; Dludla et al. 2006) and 
xenocryst concentrates (Nimis, unpublished data). Open diamonds and dash-dot fields refer to 
clinopyroxenes for which the calculated σP is  higher than ±0.25 GPa. Dashed curves are 
reference conductive geotherms for different surface heat-flows (mWm–2) after Pollack and 
Chapman (1977). The graphite-diamond boundary (solid curve) is after Day (2012) 
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ABSTRACT 

We performed thermodynamic calculations on model and natural peridotitic compositions at 

pressure and temperature conditions relevant to the Earth’s upper mantle, using well-

established free energy minimization techniques. The model is consistent with the available 

experimental data in Cr-bearing peridotitic systems, and can therefore be used to predict 

phase relations and mineral compositions in a wide range of realistic mantle compositions. 

The generated phase diagrams for six different bulk compositions, representative of fertile, 

depleted and ultra depleted peridotitic mantle, show that the garnet+spinel stability field is 

always broad at low temperatures and progressively narrows with increasing temperatures. In 

lithospheric sections with hot geotherms (ca. 60 mW/m2) garnet coexists with spinel across an 

interval of 10–15 km, at ca. 50–70 km depths. In colder, cratonic, lithospheric sections (e.g., 

along a 40 mW/m2 geotherm), the width of the garnet–spinel transition strongly depends on 

bulk composition: in fertile mantle, spinel can coexist with garnet to about 120 km depth, 

while in an ultra-depleted harzburgitic mantle it can be stable to over 180 km depth. In 

particular, formation of chromian spinel inclusions in diamonds is restricted to pressures 

between 4.0 and 6.0 GPa. The modes of spinel decrease rapidly to less than 1 vol% when it 

coexists with garnet, hence spinel grains can be easily overlooked during the petrographical 

characterization of small mantle xenoliths. The very Cr-rich nature of many spinels from 

xenoliths and diamonds from cratonic settings may be simply a consequence of their low 

modes in high-pressure assemblages, thus their composition does not necessarily imply an 

extremely refractory composition of the source rock. The model also shows that large Ca and 

Cr variations in lherzolitic garnets in equilibrium with spinel can be explained by variations of 

pressure and temperature along a continental geotherm and do not necessarily imply 

variations of bulk composition. The slope of the Cr# [i.e., Cr/(Cr + Al)mol] isopleths in garnet 

in equilibrium with spinel changes significantly at high temperatures, posing serious 

limitations to the applicability of empirical geobarometric methods calibrated on cratonic 

mantle xenoliths in hotter, off-craton, lithospheric mantle sections. 
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INTRODUCTION 

Knowing the nature of the lithospheric and asthenospheric mantle is critical for our 

understanding of the seismic structure of the Earth’s interior (Revenaugh and Jordan 1991; 

Ringwood 1991; Stixrude 1997; Stixrude and Lithgow-Bertelloni 2005; Afonso et al. 2010), 

of the generation of melts in the mantle (Green 1973; Asimow et al. 1995; Herzberg and 

Zhang 1996; Kinzler 1997), and of the tectonic evolution of the overlying crust (McKenzie 

1978; Wood and Yuen 1983; Podladchikov et al. 1994; Kaus et al. 2005; Simon and 

Podladchikov 2008). Phase relations in the upper mantle are, in principle, well understood 

(e.g., Green and Ringwood 1967). Upper mantle peridotites usually consist of four major 

mineral phases, i.e., olivine, orthopyroxene, clinopyroxene, and an aluminous phase (i.e., 

feldspar at low pressures, spinel at medium pressures, and garnet at higher pressures). The 

transition from plagioclase to spinel in lherzolitic compositions occurs at about 0.6–0.8 GPa 

(Green and Ringwood 1967; Presnall et al. 1978; Borghini et al. 2010). The transition from 

spinel to garnet lherzolite, which can be described by the generalized reaction spinel + 

pyroxene(s) = garnet + olivine, occurs at much higher pressures. The vast experimental and 

thermodynamic work on mantle phase relations in simplified chemical compositions, such as 

MgO-Al2O3-SiO2 (MAS) (MacGregor 1974; Danckwerth and Newton 1978; Perkins et al. 

1981; Gasparik and Newton 1984) and CaO–MgO–Al2O3–SiO2 (CMAS) (e.g., MacGregor 

1965; Jenkins and Newton 1979; O’Neill 1981; Gasparik 1984; Klemme and O’Neill 2000a; 

Walter et al. 2002) has shown that the spinel–garnet transition has a positive Clapeyron slope, 

and crosses the solidus at about 1570°C and 3.0 GPa (Milholland and Presnall 1998; Klemme 

and O’Neill 2000a; Walter et al. 2002). In more complex compositions, phase relations are 

more complicated and, due to the Gibbs phase rule, the higher variance opens a P–T area 

where garnet and spinel coexist (Chatterjee and Terhart 1985). Further experimental 

investigations have shown that the addition of Fe2+ decreases the spinel stability field (O’Neill 

1981), whereas the addition of Fe3+ and Cr3+ stabilizes spinel relative to garnet (O’Neill 1981; 

Nickel 1986; Webb and Wood 1986; Doroshev et al. 1997). In very Cr-rich bulk 

compositions, Cr-spinel may be stable to pressure of more than 10 GPa (Klemme 2004). 

Although the existing data already provide a good overall picture of phase relations in the 

upper mantle, our understanding of the effect of bulk compositional variations on mantle 

mineralogy is still incomplete. This is particularly important, because evidence from natural 

mantle samples, such as orogenic peridotite massifs and mantle xenoliths (e.g., Nixon 1987; 

Bodinier and Godard 2003; Pearson et al. 2003), and constraints from high-pressure, high-

temperature experiments (e.g., Green and Ringwood 1967; Ringwood 1991) indicate that the 

lithospheric mantle is rather heterogeneous in terms of chemical and mineralogical 

composition, ranging from fertile lherzolite to variably depleted harzburgite and dunite. The 

aim of this paper is to investigate multi-phase and multi-component phase relations in 

simplified compositions and in complex, near-natural peridotite compositions, ranging from 

fertile lherzolite to depleted harzburgite, using thermodynamic calculations. 
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THERMODYNAMIC DATABASE, CALCULATION METHODS AND MODEL 

VALIDATION 

Phase relations for different bulk compositions were carried out using well-established free 

energy minimization techniques and the Perple_X set of computer programs (Connolly 1990; 

Connolly and Petrini 2002). We employed the internally consistent thermodynamic database 

of Holland and Powell (1998), which was augmented for relevant Cr-bearing mantle minerals. 

Details of the model can be found at http://www.perplex.ethz.ch and in Klemme et al. (2009). 

We follow the approach of Klemme et al. (2009), who used new measured thermodynamic 

endmember data for Cr-bearing pyroxenes, garnets and spinels (e.g., Chatterjee et al. 1982; 

Oka et al. 1984; Mattioli and Bishop 1984; Klemme and O'Neill 1997, 2000b; Klemme et al. 

2000, 2005; Klemme 2004) together with new mixing properties for Cr-bearing garnets and 

pyroxenes. Some endmember data for Cr-bearing pyroxenes and mixing proprieties for Cr-

bearing garnets were further fitted by hand, so as to improve agreement with available 

experimental data in complex fertile and depleted, Cr-bearing mantle compositions (Nickel 

1986, 1989; Brey et al. 1990, 1999, 2008; Robinson and Wood 1998). The refined 

thermodynamic database with endmember data and mixing models for Cr-bearing phases is 

available online as electronic supplement Table S1. 

Figure 1 shows a comparison between the calculated garnet (Grt), spinel (Spl) and 

orthopyroxene (Opx) compositions and those determined by experiments in depleted and 

fertile mantle compositions. There is good overall agreement between the calculated and 

experimentally determined mineral compositions. In the Grt + Spl stability field, the 

calculated Cr/(Cr + Al) molar ratio (hereafter Cr#) in garnet increases with increasing 

pressure and temperature (Fig. 1a,c), in good agreement with experiments in complex Cr-

bearing systems (Nickel 1986; Webb and Wood 1986; Doroshev et al. 1997; Brey et al. 1999; 

Girnis et al. 2003). In the garnet stability field (i.e. in spinel-free assemblages), the calculated 

Cr#Grt remains almost constant, in excellent agreement with the experiments in natural 

compositions of Brey et al. (1990, 2008), in which garnets show no significant Cr# variations 

over the range 900 °C < T < 1500 °C and 2.5 < P < 10.0 GPa. The Cr#Spl isopleths also agree 

well with the experimental data (Fig. 1b). For natural compositions, in the garnet-free 

assemblages the calculated Cr#Spl decreases with increasing temperature and without 

significant pressure dependency. In the Grt+Spl stability field, Cr#Spl increases rapidly with 

increasing pressure and slightly with increasing temperature (Fig. 1b), again in good 

agreement with experiments (Webb and Wood 1986; Brey et al. 1999; Girnis et al. 2003). 

Reliable experimental data on Cr in orthopyroxene are scant, especially at pressures and 

temperatures where garnet and spinel coexist (Nickel 1989; Brey et al. 1999). When 

orthopyroxene coexists with spinel, its calculated Cr2O3 content increases with increasing 

temperature (Fig. 1d). In the Grt + Spl facies, Cr2O3 in Opx slightly decreases with increasing 

pressure (Fig. 1d). These relationships are not well constrained by experimental data, 

considering the low concentrations of Cr2O3 in opx and the large associated uncertainties 

(Nickel 1989; Brey et al. 1999; Klemme and O’Neill 2000b). In the garnet-only field, Cr2O3 
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in Opx decreases with increasing pressure and decreasing temperature, in good agreement 

with the experiments of Brey et al. (1990, 2008). 

 
Despite the encouraging results of our validation test, we would like to caution the reader 

that the thermodynamic database used here is still far from being complete. Although it 

includes good recently determined thermodynamic data for major Cr-bearing mantle minerals 

(e.g., Klemme and O’Neill 1997, 2000b; Klemme et al. 2000, 2005, Klemme 2004), the 

Fig. 1: Calculated phase diagrams (solid lines) and isopleths of mineral composition (dashed 
lines) compared with experimental data (circles). Ol = olivine, Opx = orthopyroxene, Cpx = 
clinopyroxene, Spl = spinel, Grt = garnet, Esk = eskolaite). a-b Cr-rich system (composition 
ABC; Brey et al. 1999); the mineral assemblage in the experimental products was 
Ol+Opx+Grt+Sp. c-d Cr-poor systems (composition SC-1; Brey et al. 1990, 2008); the 
mineral assemblages in the experimental products were Ol+Opx+Cpx+Grt (white circles), 
Ol+Opx+Grt (grey circles) and Ol+Opx+Cpx+Sp+melt (black circles); minor melt and/or 
magnesite were reported in the run products at P ≥ 6 GPa (Brey et al. 2008). Bulk 
compositions are reported in Table 1. Note that the thermodynamic model does not allow for 
melting, so the results in the high-T and low-P regions of the diagrams may not be accurate. 
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thermodynamic parameters for Cr-bearing pyroxenes and garnet refined in the present work 

are based on a set of relatively high-T experiments, which do not fully cover P–T conditions 

relevant to the shallowest mantle sections (Fig. 1). Furthermore, the employed model does not 

currently allow for Ca in orthopyroxene. This will not significantly affect phase relations in 

fertile bulk compositions, in which clinopyroxene (Cpx) and garnet dominate the Ca-budget 

of the rock, and will be even less problematic in depleted, low-Ca bulk compositions. 

Nevertheless, neglecting Ca in orthopyroxene will lead to a slight overestimation of the garnet 

stability and to somewhat increased calculated Ca contents in the garnet. A rough sensitivity 

analysis of the aforementioned issues showed that neglecting Ca in orthopyroxene determines 

a negative shift of the Grt-in reaction of about 0.15 GPa. Finally, Cr–Al variations in 

clinopyroxene are not well constrained by experiments and the thermodynamic model for 

clinopyroxene still needs improving, which requires more and better experiments than 

currently available. However, owing to the small modal amounts of, and low Al and Cr 

contents in clinopyroxene in typical mantle rocks, the obvious shortcomings in the Cpx 

thermodynamic model did not significantly affect modelling of garnet, orthopyroxene and 

spinel phase relations and compositions (Fig. 1). 

PHASE RELATIONS IN FERTILE AND DEPLETED MANTLE 

It is well known that the increase of Cr# in peridotites increases the pressure of the Grt-in 

reaction and expands the Grt + Spl stability field to higher pressures, as demonstrated by 

thermodynamic and experimental studies in synthetic systems (O’Neill 1981; Webb and 

Wood 1986; Doroshev et al. 1997; Brey et al. 1999; Klemme 2004). Our improved 

thermodynamic model allows to investigate the effect of bulk Cr# for more realistic mantle 

compositions. Calculations were performed in six different bulk compositions (Table 1), 

which encompass most of the chemical variability of the peridotitic upper mantle. We 

restricted the calculations to subsolidus conditions (no melt or fluid phase was allowed), at 

pressures between 1.0 and 10 GPa and temperatures between 600 and 1600 °C. 

Compositions JSL266 and JSL261 are based on two mantle xenoliths from the Letlhakane 

kimberlite, Botswana (van Achterbergh et al. 2001). Their bulk compositions were calculated 

from reported mineral modal abundances and mineral compositions (van Achterbergh et al. 

2001). The sample JSL266 is a clinopyroxene-free garnet harzburgite. Given its high bulk Cr# 

ratio (0.32) and the low CaO and high Cr2O3 contents of garnet (2.4 and 11.0 wt%, 

respectively), this sample can be considered as representative of a highly refractory, 

harzburgitic, sub-cratonic lithospheric mantle (cf. Nixon 1987; Griffin et al. 2003; Pearson et 

al. 2003). The sample JSL261 is a clinopyroxene-bearing peridotite, has lower bulk Cr# ratio 

(0.24) and contains garnets with “ lherzolitic”  major element compositions (e.g., Cr2O3 = 7.6 

wt% and CaO = 6.2 wt%). This composition was chosen to represent a refractory sub-cratonic 

mantle that underwent low degrees of refertilization (cf. Nixon 1987; Griffin et al. 2003; 

Pearson et al. 2003). 
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 SC-1 ABC JSL266 JSL261 R893 R347 R123 MPY 

SiO2 45.37 41.18 44.88 45.2 42.94 44.37 45.66 44.95 
Al2O3 4.16 9.08 1.82 1.71 0.89 1.88 4.85 4.39 

Cr2O3 0.45 12.50 1.29 0.80 0.29 0.34 0.31 0.45 

FeO 7.87 6.16 5.83 6.14 7.98 8.11 8.81 7.59 

MgO 38.23 31.08 45.89 45.3 47.09 43.70 35.85 38.81 

CaO 3.56 0.00 0.29 0.67 0.78 1.49 4.08 3.40 

Na2O 0.36 0.00 0.00 0.05 0.03 0.11 0.45 0.40 

Cr# 0.07 0.48 0.32 0.24 0.18 0.11 0.04 0.06 

Ca# 0.06 0.00 0.00 0.01 0.01 0.02 0.07 0.05 

 

Compositions R893, R347 and R123 are based on well-characterized samples of the Ronda 

peridotite massif (Frey et al. 1985) and range from depleted (R893) to fertile (R123) 

peridotite. These compositions cover most of the chemical variations of the sub-continental 

lithospheric mantle in more fertile sub-cratonic sections (CaO = 0.4–1.0 wt%, Al2O3 = 0.8–

1.8 wt%; Griffin et al. 2003) and beneath off-craton, Phanerozoic and Proterozoic mobile 

belts (CaO = 1.3–3.4 wt%, Al2O3 = 1.5–4.0 wt%; Griffin et al. 2003). Composition MPY 

(MORB-Pyrolite after Robinson et al. 1998) is thought to represents the primary composition 

of oceanic mantle before MORB extraction (cf. Ringwood 1979; Green and Falloon 1998). 

Figure 2 depicts P–T sections calculated for the selected bulk compositions. As predicted 

by the phase rule (Gibbs 1875–1878) a Grt + Spl field is always present, regardless of the 

bulk composition used. The Grt-in reaction is always positively sloped in P–T space, while 

the Spl-out reaction has a marked negative slope, as already shown by previous experiments 

and thermodynamic calculations in simple systems (O’Neill 1981; Doroshev et al. 1997; 

Girnis and Brey 1999; Klemme 2004). At high temperatures, the transition from spinel to 

garnet peridotite becomes very narrow. For the bulk composition MPY the transition at the 

solidus lies at 1400 °C and 2.4 GPa, in good agreement with experiments with analogous 

pyrolitic compositions (1400 °C and 2.6 GPa; Robinson and Wood 1998; Walter 1998). 

In fertile compositions (MPY, R123), the Grt + Spl stability field is narrower, especially at 

high temperatures (Fig. 2a–b). In depleted compositions, spinel is stable to higher pressures 

and coexists with garnet to 5.5 GPa and 1000 °C (composition JSL266; Fig. 2f). As a rule, 

with increasing bulk Cr# and decreasing Ca#, the pressure of the Grt-in reaction increases 

only slightly, while the pressure of the Spl-out reaction increases significantly, thus 

broadening the Grt + Spl stability field. 

Table 1: Bulk compositions of experimental and natural samples used in thermodynamic 
models. SC-1: natural mineral mixtures used in the experiments of Brey et al. (1990, 2008). 
ABC: synthetic mineral mixtures of Brey et al. (1999). JSL266 and JSL261: mantle xenoliths 
from the Letlhakane kimberlite (Botswana); bulk compositions calculated from reported 
mineral modal abundances and compositions (van Achterbergh et al. 2001). R893, R347 and 
R123: natural samples from the Ronda peridotite massif; bulk composition obtained by X-ray 
fluorescence (Frey et al. 1985). MPY: MORB-Pyrolite (Robinson et al. 1998). Cr# and Ca# 
are Cr/(Cr+Al) and Ca/(Ca+Mg+Fetot) molar ratios, respectively. 
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Fig. 2: Phase diagrams calculated for model and natural peridotitic compositions, arranged 
in order of increasing Cr# and decreasing Ca# (cf. Table 1). Mineral abbreviations as in Fig. 
1. The thermodynamic model does not allow for melting and therefore the predicted 
assemblages for T > 1250 °C and P < 3.0 GPa (white fields) were not considered. The dash-
dot line in (b) is the solidus for MORB-Pyrolite (MPY) derived from the experiments of 
Robinson and Wood (1998); no melting experiments are available for the other peridotitic 
compositions. Dotted curves are steady-state conductive geotherms after Hasterok and 
Chapman (2011). Note that on a 35-mW/m2 geotherm, the pressure of the spinel-out reaction 
(arrows) progressively increases with increasing depletion of the peridotite. 
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The effect of temperature on spinel stability plays a crucial role on the variation of the 

spinel to garnet peridotite transition in the upper mantle under different thermal regimes. For a 

relatively hot 60 mW/m2 steady-state geotherm, the Grt + Spl stability field is always narrow, 

regardless of the bulk composition (Fig. 2). Garnet and spinel coexist between about 1.5 and 

2.1 GPa in the most fertile bulk compositions (R123), and between 2.4 and 3.0 GPa in the 

most depleted bulk composition (JSL266). For a 35 mW/m2 geotherm, representative of the 

coldest cratonic mantle sections, garnet and spinel coexist over a wide range of pressures and 

this range increases with the degree of depletion (Fig. 2). 

COMPOSITION AND MODE OF GARNET AND SPINEL IN FERTILE AND 

DEPLETED MANTLE 

Figure 3 shows calculated Cr# isopleths for garnet for the most fertile (R123) and most 

depleted (JSL266) natural compositions reported in Table 1. Garnet becomes increasingly 

enriched in Cr with increasing pressure and temperature as long as spinel is also stable. In the 

Grt-only field the composition of the garnet remains virtually constant. This is because the Al 

and Cr contents in the pyroxenes are very low at high pressure and, therefore, pyroxene modal 

or compositional variations do not affect garnet Cr# significantly. The Cr content in garnet (or 

its Cr#) can therefore be a useful barometer when spinel is present, as already empirically 

observed by Ryan et al. (1996), Grütter (2006), and Turkin and Sobolev (2009). The present 

modelling, however, shows that the slope of the Cr#Grt isopleths changes significantly at high 

temperatures (Figs. 1a,c and Fig. 3), posing serious limitations to the applicability of 

empirical barometric methods derived from cratonic mantle xenoliths in hotter (e.g., off-

craton) lithospheric mantle sections. 
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Calculation of garnet composition at different P and T provides further insights into the 

large compositional variability observed in natural garnets from mantle xenoliths and heavy 

mineral concentrates from kimberlites. We have calculated garnet compositions at different 

P–T conditions along a 35 mW/m2 steady state geotherm (typical of the coldest cratonic 

sections), using fertile and depleted bulk compositions. The calculated garnet compositions 

are shown in a Ca–Cr diagram (Fig. 4). It appears that, for a fixed bulk composition and in the 

presence of spinel, very large variations in garnet composition may simply be caused by 

variation of P and T along a continental geotherm. In particular, a garnet with high Cr2O3 does 

not necessarily imply a highly depleted composition, but may well indicate a high pressure 

origin. For fertile to moderately depleted lherzolitic bulk compositions (bulk Cr# ≤ 0.24 and 

Ca# ≥ 0.01), the change in garnet chemistry with increasing P–T in the presence of spinel 

produces an almost linear trend that mimics in slope and extension the classic lherzolitic trend 

in Ca–Cr diagrams (e.g., Sobolev et al. 1973; Gurney 1984) (Fig. 4). The increase in Cr and, 

for lherzolitic compositions, also in Ca reflects the progressive reaction of spinel and 

clinopyroxene components to garnet with increasing pressure (see also Klemme et al. 2009). 

Only when spinel is completely exhausted, the garnet compositional variations with changing 

P–T become minimal (Fig. 4). 

 

 

 

 

 

 

 

 

Figure 5 shows calculated modes and Cr# ratios in spinel for the most depleted (JSL266) 

and fertile (R123) bulk compositions. Spinel modes are low in ultra-depleted compositions (< 

2.8 %) and even lower in fertile compositions (< 1.5 %). In the Grt + Spl stability field, spinel 

modes decrease rapidly with increasing pressure and temperature to less than 1.0 %, 

regardless of the bulk composition (Fig. 5). At such low modes, spinel grains may be easily 

overlooked in mantle xenoliths, especially if the xenoliths are small and the grain size is large. 

Therefore, we conclude that many garnet-peridotite xenoliths reported in the literature may in 

fact be garnet–spinel peridotites. A review of existing literature data on mantle xenoliths with 

reported mineral modes indicates that 73 % of 764 records have no reported spinel and 99 % 

have spinel modes lower than 3.0 vol%, which is consistent with the model. Doubts are cast 

on the petrological significance of several garnet–spinel peridotite xenoliths with abundant 

Fig. 4: Calculated CaO and Cr2O3 contents 
in garnet along a 35 mW/m2 steady-state 
geotherm (from 600 °C, 2.5 GPa to 1200 °C, 
7.0 GPa), for fertile (R893) to strongly 
depleted (JSL266) bulk rock compositions 
(see Table 1).  Note that Cr2O3 contents 
drastically increase with increasing 
pressure and temperature in the Grt + Spl 
stability field (empty symbols), while in the 
Grt-only stability filed (filled symbols) they 
show only small variations. Compositional 
boundaries for harzburgites, lherzolites and 
wherlites are after Sobolev et al. (1973). 
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modal spinel (up to 7 vol%; e.g., Nixon and Boyd 1979; Murav'yeva et al. 1985): these 

elevated modes are likely to reflect either a non-representative mantle sampling, due to the 

small size of the xenoliths (cf. Nixon and Boyd 1979), or the occurrence of relict spinels (e.g., 

from higher-T, garnet-free parageneses) that did not fully re-equilibrate with the surrounding 

garnet-bearing assemblage. 

Our data show that the Cr# ratio in the spinel increases rapidly with pressure and decreases 

only slightly with temperature (Fig. 5). Along a cold continental geotherm (35–45 mW/m2), 

Cr# in spinel can be as high as 0.85 even in fertile compositions (Fig. 5). Therefore, Cr-rich 

spinels in mantle xenoliths do not necessary imply ultra-depleted bulk compositions, but may 

also reflect decreased spinel modes in relatively fertile compositions. 

 

IMPLICATIONS FOR THE SPINEL PERIDOTITE TO GARNET PERIDOTITE 

TRANSITION 

The transition from spinel peridotite to garnet peridotite is one of the most important phase 

boundaries in the upper mantle, which has important effects on the tectonic evolution of the 

lithosphere (Yamasaki and Nakada 1997; Kaus et al. 2005; Simon and Podladchikov 2008) 

and on deep magmatic processes (Wood 1979; Allègre et al. 1984; Salters and Hart 1989; 

LaTourette et al. 1993; Asimow et al. 1995). Our calculated phase diagrams (Fig. 2) show that 

the depth of the spinel-to-garnet transition strongly depends on the thermal state of the 

lithosphere and that the effect of bulk composition is relevant only in a cold lithosphere. 

According to our calculations, in a relatively hot lithosphere the transition occurs across an 

interval of 10–15 km, at ca. 50–70 km depth, regardless of the bulk composition. In a colder 

lithosphere, the transition occurs across a broader pressure interval and at much greater 

Fig. 5: Isopleths of modes (vol%; dash-dot curves) and Cr# (dotted curves) in spinel from (a)
fertile (R123) and (b) strongly depleted (JSL266) bulk compositions. Assemblages, phase 
boundaries, and reference geotherms as in Figure 2. The graphite–diamond boundary is after 
Day (2012). Along a cold geotherm, in the low-P, low-T region, spinel modes are higher in 
the strongly depleted bulk compositions, yet spinels in fertile and strongly depleted peridotite 
have almost the same Cr# values. 
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depths: in a fertile mantle, spinel can coexist with garnet to about 120 km depth, while in an 

ultra-depleted harzburgitic mantle it remains stable to some 180 km depth. 

These results have interesting bearing on the interpretation of the so-called “Hales 

discontinuity”  or “Hales gradient zone” , a seismic impedance increase observed over wide 

areas around the world, which is usually attributed to the spinel-to-garnet transition (Green 

and Hales 1968; Hales 1969; Wood and Yuen 1983; Revenaugh and Jordan 1991; Lebedev et 

al. 2009; Ayarza et al. 2010). In principle, a sharp Hales discontinuity should only be 

observed when the Grt + Spl stability field is small. This would most likely be the case in a 

very hot lithosphere (e.g., under mid-ocean ridges), independently of bulk composition (Fig. 

2). In colder lithospheric sections, where the Grt + Spl stability field is wider (Fig. 2), a Hales 

gradient zone should be observed. This is in agreement with the observed extension of the 

Hales gradient zone in various geodynamic settings. In continental regions with relatively hot 

geotherms, such as the Variscan Orogen in the SW Iberian Peninsula (Palomeras et al. 2011), 

the Hales gradient zone is only 10–20 km thick and lies at around 70 km depth (Ayarza et al. 

2010). In cratonic blocks with colder geotherms, it appears at greater depths and over broader 

intervals, i.e., from the Moho to 150 km depth (Lebedev et al. 2009). We further predict that 

bulk composition may control the extension of the Hales gradient zone in cold, cratonic 

settings, but its influence will progressively decrease at higher geothermal gradients. 

GARNET AND SPINEL IN THE DIAMOND STABILITY FIELD 

Under typical cratonic geothermal gradients (i.e., 35–45 mW/m2 mean surface heat flow), Cr# 

in garnet increases with pressure solely in the Grt + Spl stability field, while it remains almost 

constant at higher pressures where only garnet is stable (Fig. 3). Using our new model, we can 

determine the minimum Cr#Grt needed for garnet to be in the diamond stability field. 

According to our model, when considering a 35 mW/m2 geotherm and depleted to very 

depleted bulk compositions (R893, JSL266), the minimum Cr# for a garnet in the diamond 

stability field (P > ca. 4 GPa; T > ca. 800°C) is 0.06. For fertile compositions (R123), the 

minimum Cr# in garnet decreases to 0.04. On a hotter 45 mW/m2 geotherm, the minimum Cr# 

jumps to 0.16 for depleted compositions (R893) and to 0.22 for very depleted compositions 

(JSL266). For fertile compositions, the same change in the geothermal gradient does not 

produce any appreciable change in the minimum Cr#Grt, because spinel reacts out with 

increasing P–T before entering the diamond stability field (Fig. 3).  

Figure 5 shows that, for depleted compositions, the stability field of chromian spinel 

extends well into the diamond stability field, in agreement with the relatively common finding 

of chromian spinel inclusions in diamonds (e.g., Stachel and Harris 2008). According to our 

calculations, for typical cratonic geotherms (35–45 mW/m2), the Cr# ratios of spinel in the 

diamond stability field is 0.87–0.90 for depleted bulk compositions (R893) and 0.84–0.92 for 

ultra-depleted compositions (JSL266). This is in good agreement with Cr# data for spinel 

inclusions in diamonds, which are mostly between 0.82 and 0.92 (Stachel and Harris 2008). 
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In an ultra depleted mantle rock (e.g., composition JSL266; bulk Cr# = 0.32), we calculate 

that spinel can be stable up to 5.5 GPa. This value decreases with decreasing bulk Cr# ratio 

(Fig. 2). As the typical bulk Cr# values of sub-cratonic lithospheric peridotites range between 

0.15 and 0.35 (cf. Pearson et al. 2003), it can be argued that spinel inclusions in diamonds 

cannot originate at pressures greater than about 6.0 GPa. 

CONCLUSIONS 

The new thermodynamic model for chromium-bearing peridotites enables phase equilibria 

calculations from fertile to strongly depleted mantle compositions. The model successfully 

reproduces experimentally determined phase equilibria between 2.0–10.0 GPa and 900–1500 

°C, and allows calculations of phase relations in a high P and low T regime difficult to 

investigate by experiments, but relevant for P–T conditions in the cratonic upper mantle. 

Our calculations for natural peridotitic compositions show that garnet and spinel coexist 

across a restricted depth interval (ca. 10–15 km) between 50 and 70 km in regions with hot 

geotherms and extends to 120–180 km depth in regions with cold geotherms, in good 

agreement with seismic observations. The very low calculated modes of spinel (0.1–2.8 %) in 

the garnet+spinel stability field suggest that many mantle xenoliths described in the literature 

as garnet peridotites may in fact be garnet–spinel peridotites. Our thermodynamic model also 

provides a quantitative explanation of the empirically-determined compositional variations in 

peridotitic garnets coexisting with spinels. The model also suggests a significant potential role 

of P–T conditions on the distribution of garnets in the popular Ca–Cr discrimination diagram. 

Finally, formation of chromian spinel inclusions in diamonds is restricted to pressures 

between 4.0 and 6.0 GPa, and their very high Cr contents do not necessarily imply ultra-

depleted bulk compositions. 
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ABSTRACT 

Garnet xenocrysts (N = 386) and associated minerals from the diamond-free Zagadochnaya 

kimberlite (Daldyn field, Yakutia) were studied to provide new insights into mantle processes 

beneath this sector of the Siberian Craton. Electron microprobe analyses on the whole set of 

samples indicate that the great majority of the garnets follow the “ lherzolitic”  trend in the 

CaO vs Cr2O3 diagram (Cr2O3 = 0.5–9.3 wt%, CaO = 3.2–10.3 wt%), with less than 10% 

falling in the wehrlitic field and less than 3% falling in a transitional region between the 

lherzolitic and harzburgitic field. A representative subset of the garnets (N = 28) was further 

analysed for trace elements by laser-ablation inductively-coupled mass spectrometry. Based 

on both major and trace element data, three main compositional groups are distinguished: 

Group A garnets (Cr2O3 = 1.3–5.2 wt%) are often associated with chromian diopsides and are 

characterised by progressively increasing, chondrite (CI)-normalized Rare Earth Elements 

(REE) abundances from La to Lu; Group B garnets (Cr2O3 = 5.4–8.6 wt%) are less depleted 

in Light REE (LREE) and show nearly flat patterns from Sm to Lu; Group C garnets (Cr2O3 = 

7.3–8.4 wt%) are characterized by humped to strongly sinusoidal REE patterns, with Yb 

between 0.5 and 3.0 xCI. Numerical simulations of melt–rock interactions show that the wide 

spectrum of REE compositions observed from Group A to Group B to Group C can be 

produced by a unique episode of melt injection and percolation through a refractory mantle 

column, whereby the melt progressively changes its composition due to chromatographic ion 

exchange, fractional crystallisation, and assimilation of peridotitic minerals, under decreasing 

melt/rock ratios. The calculated composition of the metasomatising melt has a kimberlitic 

affinity, but is distinct from the composition of the host Zagadochnaya kimberlite. Most of 

Group B and C garnets show evidence of replacement by a secondary mineral assemblage 

made of (Ca, Cr)-poor garnet, chromian diopside, and chromite (± phlogopite ± amphibole). 
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The (Ca, Cr)-poor garnets are enriched in almost all incompatible trace elements, and often 

show humped CI-normalized REE patterns. The textures and mineralogy of these secondary 

mineral assemblages, the calculated compositions of the melts in equilibrium with the 

secondary garnets and clinopyroxenes, and Ca concentration profiles across garnet zoning, 

indicate deep-seated (90–130 km) pervasive reaction with melts strictly related to the host 

kimberlite. The lack of mantle materials from depth greater than 130 km, the absence of 

diamond, the abundance of secondary mineral assemblages, and the high-Mg composition of 

the kimberlite are consistent with a relatively slow ascent of the melts to shallow lithospheric 

levels and extensive melt–mantle interactions before eruption. 

INTRODUCTION 

Garnet peridotites are the most abundant lithologies in cratonic mantle xenoliths and may 

record a variety of petrochemical processes from Archean to Phanerozoic times. It is now 

widely accepted that, during its initial stages of formation, the sub-cratonic lithospheric 

mantle underwent extensive partial melting, which produced MgO-rich melts, such as 

komatiites or picrites, and dunitic to harzburgitic refractory residua with low FeO and high 

Mg# [100*Mg/(Mg + Fe)mol] values (e.g. Efimova & Sobolev, 1977; Sobolev, 1977; Hanson 

& Langmuir, 1978; Boyd, 1989; Walter, 1998; Stachel et al., 1998; Griffin et al., 2003; 

Malkovets et al., 2007). Later on, the strongly-depleted mantle sectors experienced variable 

degrees of cryptic and modal metasomatism, owing to migration of fluids and melts (e.g. 

Harte, 1983; Dawson, 1984; Erlank et al., 1987; Boyd et al., 1997; Malkovets et al., 2007; 

Foley, 2008). 

Studying the trace element compositions of mantle garnets is particularly useful to gain 

insights into these mantle processes. In particular, the Rare Earth Element (REE) composition 

shows strong relationships with the melting and metasomatic history of their host rocks (e.g. 

Shimizu & Richardson, 1987; Hoal et al., 1994; Shimizu et al., 1997a, b; Griffin et al., 1999a; 

Stachel et al., 1998, 2004; Grégoire et al., 2002; Burgess and Harte, 2004; Simon et al., 2007; 

Gibson et al., 2008). For instance, sub-calcic garnets of the harzburgitic paragenesis (Sobolev 

et al., 1969, 1973) typically show strongly to mildly sinusoidal chondrite (CI)-normalized 

REE patterns. In the more fertile (or refertilised) lherzolitic garnets, “normal”  REE patterns 

with positive slopes for the Light REE (LREE) and nearly flat to positive slopes for the 

Middle REE (MREE) and the Heavy REE (HREE) are the most frequent, although sinusoidal 

to humped patterns have also been reported (e.g. Stachel et al., 1998; Grégoire et al., 2002; 

Ionov et al., 2010). The interpretation of the sinusoidal or humped REE patterns has long 
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been debated (see Gibson et al., 2008, for exhaustive reviews). It is now generally accepted 

that they represent transient compositions produced by interactions of former depleted 

peridotites with melts or fluids with high LREE/HREE ratios (e.g. Stachel et al., 1998, 2004; 

Burgess & Harte, 2004). Stachel et al. (1998, 2004) suggested that the metasomatism that 

produced the sub-calcic harzburgitic garnets was driven by CHO fluids, while the enrichment 

in both major and trace elements recorded by the more calcic lherzolitic garnets should imply 

metasomatism operated by melts. Burgess & Harte (2004) further pointed out that the overall 

variation in REE patterns in lherzolitic garnets (i.e., from normal to sinusoidal) can be 

produced by a percolative fractional crystallization process, dominated by fractional 

crystallization of garnet and clinopyroxene. As yet, however, no quantitative modelling of 

these variations has been provided, which takes into account the combined effects of 

fractional crystallization and of chromatographic and assimilation processes during 

percolation of metasomatic melts through the mantle column (cf. Harte et al., 1993; Dick & 

Natland, 1996; Bodinier et al., 1990; Vernières et al., 1997; Bedini et al., 1997). 

The lack of a comprehensive quantitative modelling can be a significant drawback for our 

understanding of metasomatic processes. For instance, numerous studies on kimberlite-borne 

mantle xenoliths, xenocrysts, and diamond inclusions allowed the identification of 

compositionally different metasomatic melts and fluids operating in the cratonic lithosphere 

(e.g. Gurney & Harte, 1980; Erlank et al., 1987; Menzies et al., 1987; Shimizu et al., 1997b; 

Stachel et al., 1998; Grégoire et al., 2002). Hence, one of the key questions that need to be 

answered is whether the different metasomatic signatures recorded in mantle xenoliths from a 

given mantle section are the products of genetically unrelated metasomatic agents or of a 

unique episode of melt or fluid injection (e.g. Harte et al., 1993; Burgess & Harte, 1999, 

2004; Ionov et al., 2002, 2006; Simon et al., 2007; Gibson et al., 2008). Without a rigorous 

quantitative support, the answer remains largely conjectural. 

In this work, we tackle this problem by examining petrographic and geochemical features 

of “ lherzolitic”  garnet xenocrysts from the Zagadochnaya kimberlite, a diamond-free 

kimberlite from the highly diamondiferous Daldyn kimberlite field (Yakutia, Russia; 

Bobrievich et al., 1960: Sobolev et al., 1968, Sobolev, 1977). The absence of discrete 

ultramafic xenoliths has long hampered reconstruction of mantle conditions and processes 

before eruption of the kimberlite and interpretation of its barren nature. Nonetheless, the 

Zagadochnaya kimberlite is rich in garnet and diopside xenocrysts, which show a wide range 

of textures and major and trace element compositions, as a result of a complex metasomatic 

history (Nimis et al., 2009). The aim of the present study is manifold: (i) to define the source 
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rocks of the garnet xenocrysts and their relationships with the chromian diopside xenocrysts 

studied by Nimis et al. (2009); (ii) to place new constraints on the metasomatic history of the 

Zagadochnaya lithospheric mantle, as well as on the horizontal and vertical heterogeneity of 

the Daldyn lithospheric mantle; (iii) to improve the knowledge of the petrochemical processes 

that drive the evolution of the sub-cratonic mantle, using numerical modelling of the trace 

element variability in the garnets; (iv) to explain the absence of diamond in the Zagadochnaya 

kimberlite. 

GEOLOGICAL SETTING OF THE ZAGADOCHNAYA KIMBERLITE AND 

PREVIOUS WORK ON MANTLE-DERIVED XENOLITHS AND XENOCRYSTS 

The Zagadochnaya kimberlite is a diamond-free kimberlite, located in the southern cluster of 

the Daldyn kimberlitic field, ca. 30 km from the highly diamondiferous Udachnaya kimberlite 

(Fig. 1). The Zagadochnaya kimberlite consists of two small pipes of high-Mg, low-Ti, 

micaceous (or Type II) kimberlite intruded in Lower Ordovician limestones (Sobolev, 1977; 

Kostrovitsky et al., 2007). Fission track data on zircons and whole-rock K–Ar radioisotopic 

data suggest an emplacement age of 370 ± 

19 Ma and 420 ± 20 Ma, respectively (see 

review by Griffin et al., 1999b). The former 

estimate is in good agreement with U–Pb 

ages of zircons (from 344 ± 2Ma to 358 ± 

2Ma;  Davis et al., 1980) and of perovskites 

(from 355 ± 5 Ma to 367 ± 5 Ma; Kinny et 

al., 1997) in other kimberlites from the 

Daldyn field, as well as with Rb-Sr isochron 

method for neighbouring Alakit and Nakyn 

fields which also include important diamond 

mines (from 358 ± 5Ma to 364 ± 5Ma;  

Agashev et al., 2004). The Zagadochnaya 

kimberlite contains kyanite-bearing eclogitic 

and grospyditic xenoliths (Bobrievich et al., 

1960; Sobolev et al., 1968, 2011; Tomilenko 

et al., 2011), as well as abundant xenocrysts 

of chromian diopside and lesser amounts of garnet and spinel (Sobolev et al., 1968; Egorov et 

al., 1992; Kostrovitsky & de Bruin, 2004; Nimis et al., 2009). No discrete peridotitic 

Fig.1: Location of the Zagadochnaya 
kimberlite and of major Yakutian kimberlite 
fields (after Nimis et al., 2009) 
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xenoliths have been found, probably owing to strong fragmentation of the xenoliths and 

extensive post-emplacement hydrothermal alteration (Sobolev, 1977; Nimis et al., 2009). 

Egorov et al. (1992) suggested that Zagadochnaya chromian diopsides crystallised from a 

kimberlitic melt. This hypothesis was based on the composition and appearance of the 

clinopyroxene grains, as well as on the absence of peridotitic xenoliths. Kostrovitsky & de 

Bruin (2004) proposed for the garnets an origin by magmatic segregation or by kimberlite 

metasomatism on pre-existing large garnet xenocrysts. More recently, Nimis et al. (2009) 

reported major and trace element compositions of sixty-one diopside xenocrysts and three 

diopside-bearing garnet xenocrysts. Based on geochemical data and limited petrographic 

evidence, they concluded that only a minor amount of chromian diopsides could represent 

direct magmatic segregates (their Group I), while the others (their Groups II and III) were 

fragments of variously metasomatized garnet peridotites or pyroxenites. Nimis et al. (2009) 

suggested that the low diamond potential of the Zagadochnaya kimberlite is a consequence of 

a shallow interval of mantle sampling and, possibly, of a strong metasomatic overprint on the 

sampled mantle section. 

MATERIALS AND ANALYTICAL METHODS 

We have selected 386 red-purple garnet grains (<0.6 cm) from heavy mineral concentrates of 

the Zagadochnaya kimberlite. The garnets were mounted on epoxy resin, cut to about half 

their thickness and polished. Preliminary major element analyses were performed using 

electron microprobes CAMEBAX-micro and JXA 8100 at standard conditions (e.g. Sobolev 

et al., 2009a). Twenty-eight garnets from the same concentrate were then selected for a 

detailed petrographic and geochemical investigation. 

The petrographic study was performed by using back-scattered electron images of the 

grains, which were obtained with a CamScan MX2500 scanning electron microscope (SEM), 

at the Department of Geosciences, University of Padua (Italy). The SEM was equipped with a 

tungsten cathode, a four-quadrant solid-state BSE detector and an EDX-EDAX system for 

qualitative microanalysis. The working distance was ~21 mm and the accelerating voltage 

was 20 kV. 

Detailed major element analyses of the garnets and associated minerals were performed 

with a Cameca SX-50 electron microprobe (IGG-CNR, Padua, Italy), equipped with four 

wavelength-dispersive spectrometers. Natural and synthetic minerals (wollastonite for Ca and 

Si, albite for Na, orthoclase for K, and pure Al, Mg, Cr, Fe, and Mn–Ti oxides) were used as 

standards. Analytical conditions were a 20 kV accelerating voltage, a 20 nA beam current, 
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and a beam size of about 1 µm. Time counting was 10 s for peak and 5 s for background. X-

ray counts were converted into weight percent oxides by using the CAMECA-PAP program. 

Estimated precision of the analysis are within ± 1–2 relative % for major and ± 2–5 relative % 

for minor oxides. 

In-situ trace element analyses were carried out using Laser-Ablation Inductively-Coupled-

Plasma Mass-Spectrometry (LA-ICP-MS) at IGG-CNR, Pavia (Italy). The laser probe 

consists of a Q-switched Nd:YAG laser, model Quantel (Brilliant), whose fundamental 

emission in the near-IR region (1064 nm) was converted into 266 nm wavelength using two 

harmonic generators. The spot diameter was typically 50 µm. The ablated material was 

analyzed using a double-focusing sector-field ICP-MS model Element I (ThermoFinnigan 

MAT), in which the standard field regulator power stage of the magnet and the ICP torch 

were upgraded to those of the Element II model. Helium was used as carrier gas and mixed 

with Ar downstream of the ablation cell. Data reduction was undertaken by means of the 

GLITTER software. NIST SRM 610 was used as external standard, whereas CaO has been 

used as internal standard for garnet, clinopyroxene, amphibole and calcite, SiO2 for 

phlogopite and MgO for chromite. Precision and accuracy were assessed from repeated 

analyses of the BCR-2g standard and resulted usually better than 10% for concentration at 

ppm level. Detection limits were typically in the range of 10–100 ppb for Sc, Sr, Zr, Ba, Gd 

and Pb, 1–10 ppb for Y, Nb, La, Ce, Nd, Sm, Eu, Dy, Er, Yb, Hf and Ta, and usually <1 ppb 

for Pr, Th and U. 

PETROGRAPHY 

The garnet xenocrysts, purplish red in colour, are subround or subangular in shape and 

measure 2 to 6 mm across. Coatings of altered kimberlitic material (with calcite, phlogopite, 

apatite, serpentine, and minor perovskite) are common (Fig. 2d). Veinlets cutting thorough the 

garnet grains may be filled by the same fine-grained kimberlitic material, by an undefined 

silica-rich material, or by coarser phlogopite and/or amphibole associated with euhedral to 

sub-euhedral spinel. Many garnets contain subround, 0.2–1.0 mm-sized inclusions made of 

silica-rich material, serpentine (Fig. 2e) and/or calcite, which may represent alteration 

products after former olivine or orthopyroxene, caused by interaction with late-stage 

kimberlitic melts or fluids. 
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 Fig. 2: Continued. 
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Some garnets are optically and compositionally homogeneous (Fig. 2a–c). These garnets 

are sometimes associated with homogeneous, subround chromian diopside grains (0.3–1.0 

mm) and occasionally contain small (up to 50 µm) inclusions of rutile. Other garnets are 

optically strongly zoned, due to the presence of whitish-purple domains rich in polymineralic 

inclusions made of anhedral, often mutually intergrown, sub-millimetric grains of chromian 

diopside and chromite (± serpentine ± phlogopite ± amphibole) (Fig. 2d–l). These domains 

may also contain rare sub-elongated inclusions (<40 µm) of Ti-rich oxides of the crichtonite 

series. The composition of the garnets near the inclusion-rich domains is strongly 

inhomogeneous and shows irregular patches with distinctly low Ca and Cr contents, identified 

by darker areas in back-scattered electron images (e.g. Fig. 2d,h,j). Transition from high-(Ca, 

Cr) to low-(Ca, Cr) areas is generally sharp (Fig. 2h,j and Supplementary Fig. 1). 

The distribution of the inclusion-rich domains in the garnet grains is variable. They are 

often located at the edges of the grains (Figs. 2d,i,k). In some cases they appear as bands 

Fig. 2: Continued. 
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cutting through the host crystal, possibly following healed fractures within the garnet (Fig. 

2d,g). In some samples (Z4-7, Z5-3, Z6-12), these domains apparently extend pervasively 

throughout the garnet grain (Fig. 2e,l). All of these features suggest a secondary origin of the 

low-(Ca, Cr) patches and of the associated inclusions.  

One of the analysed garnet grains (Z4-11) showed unusual features. This grain consists of 

a polycrystalline amphibole–garnet intergrowth, containing oriented elongated, vermicular, 

and atoll-shaped chromite inclusions (Fig. 2m,n). The garnet shows (Ca, Cr)-zoning similar to 

the heterogeneous garnets described above, although it is devoid of diopside. Some of the 

low-(Ca, Cr) portions contain chromite inclusions with the same shape and orientation as 

those included in the adjacent amphibole, as well as remnants of high-(Ca, Cr) garnet showing 

cusp-and-caries outlines (Fig. 2m,n). 

MAJOR AND TRACE ELEMENT COMPOSITIONS  

Major element analyses for the complete dataset of 386 garnet grains are reported in 

Supplementary Table 1. All garnets classify as chromian pyropes, with Cr2O3 contents 

between 0.5 and 9.3 wt% and CaO contents between 3.2 and 10.3 wt%. TiO2 is generally low 

(0.0–0.4 wt%) and the mg# values are quite variable (62.8–84.9), although 97% of the garnets 

lie in the range 78.0–84.9. In the CaO vs. Cr2O3 discrimination diagram (Sobolev et al., 1969, 

1973; Sobolev, 1971), most garnets plot within or very close to the lherzolitic field and show 

a positive correlation between these elements (Fig. 3). A small fraction of the garnets plots in 

the high-Ca wehrlitic field (e.g. Sobolev et al., 1970), and an even smaller fraction falls into a 

transitional region between the lherzolitic and harzburgitic fields. Major and trace element 

data for garnets and associated minerals from the 28 selected grains are given in the 

Supplementary Table 2. Based on petrographic and geochemical features, these selected 

grains have been subdivided into three main groups. 

Group A garnets 

Group A garnets are compositionally homogeneous and are sometimes associated with 

subround chromian diopside (e.g. Fig. 2a,b). Major element concentration profiles 

(Supplementary Fig. 2) across garnet–diopside boundaries show no chemical zoning in either 

mineral. The main geochemical features are moderate Cr2O3 (1.3–5.2 wt%) and CaO (4.3–5.0 

wt%) contents (Fig. 3) and CI-normalized REE patterns (cf. Anders & Grevesse, 1989) 

showing increasing values from La (0.03–0.07 xCI) to Lu (7.9–29 xCI), with a steeper slope 

from La to Sm and a flatter profile from Sm to Lu (LaCI/SmCI = 0.01–0.02; SmCI/LuCI = 0.08–
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0.46) (Fig. 4a). The HREE show significant grain-to-grain variability (Yb = 8.1–24.9 xCI). 

TiO2 contents are low (0.12–0.32 wt%) and mg# varies from 80.4 to 81.6. Primitive Mantle 

(PM)-normalized trace element patterns (cf. McDonough & Sun, 1995) show low abundances 

of highly incompatible elements, usually at 0.01–0.2 xPM, with Ba, Ta and Pb content often 

below the detection limits (Fig. 4b). However, U, and randomly Pb, show a positive anomaly 

up to 1.0 xPM. Zr and Hf show positive anomalies (ZrPM/NdPM = 3.6–9.2), with the 

ZrPM/HfPM ratio varying between 0.8 and 1.9. A pronounced negative Sr anomaly (SrPM/Sr*  = 

0.02–0.05, where Sr*  = (PrPM+NdPM)/2) and a minor negative Ti anomaly (Ti/Ti*  = 0.33–

0.63, where Ti*  = (EuPM/GdPM)/2) are present in all Group A garnets. 

Group B garnets 

Group B comprises one subangular and 

unzoned garnet (Z5-6; Fig. 2c) and 

inclusion-free domains in some 

heterogeneous garnets (e.g. Fig. 2d,k). 

Group B garnets are distinguished from 

Group A by their higher Cr2O3 (5.4–7.6 

wt%) and CaO (5.1–6.1 wt%) contents, 

higher LREE contents (La = 0.03–0.07 xCI, 

Sm = 2.37–4.54 xCI), and nearly flat REE 

patterns from Sm to Lu (SmCI/LuCI = 0.5–

1.0; Lu = 7.86–29.2 xCI; Fig. 5). The mg# 

values vary over a restricted range (80.2–

81.1), except for the unzoned garnet Z5-6, 

which has an mg# of 83.8. Group B garnets 

are also distinguished from Group A by their higher contents and larger grain-to-grain 

variations of highly incompatible elements (Fig. 5). Positive U anomalies are present. Unlike 

Group A, Pb is always above the detection limits and shows both positive and negative 

anomalies. Higher LREE abundances are not accompanied by significant variation in Zr and 

Hf concentrations with respect to Group A garnets, resulting in lower (Zr, Hf)/LREE ratios 

(ZrPM/NdPM = 0.4–3.9 vs. 3.6–9.2). Negative anomalies of Ti (Ti/Ti*  = 0.26–0.68) and Sr 

(Sr/Sr*  = 0.01–0.02) are similar and slightly more pronounced, respectively, than in Group A. 

Fig. 3: CaO vs. Cr2O3 discrimination diagram 
(Sobolev, 1971) for Zagadochnaya garnets. 
Grey circles: garnets from Zagadochnaya 
kimberlite concentrate. Other symbols: garnets 
analyzed by LAM–ICP–MS. H, harzburgite; L, 
lherzolite; W, wehrlite.  
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Group C garnets 

Group C comprises inclusion-free domains in some of the heterogeneous garnets (e.g. Fig. 

2g,i). Distinctive features of this group are the high contents of Cr2O3 (7.3–8.6 wt%) and CaO 

(6.2–7.4 wt%), and the humped to sinusoidal CI-normalized REE patterns (Fig. 6). The mg# 

values (80.3–81.7) are similar to Group A and Group B, except for the slightly more ferroan 

garnets Z4-4 (mg# = 78.7) and Z5-14 (mg# = 79.0). Almost all Group C garnets have CI-

normalized profiles enriched in L-MREE, with a maximum at Sm (at Eu for garnets Z4-1 and 

Z6-11), and depleted in HREE, with minimum at Er–Tm (at Tb for Z5-14). The most strongly 

sinusoidal pattern is displayed by garnet Z4-4, which is extremely depleted in HREE 

(minimum at Tm = 0.21 xCI). Samples Z5-14, Z6-9 and Z6-10 are distinguished by their 

higher LaCI/SmCI ratios (0.06–0.08) and flatter patterns from Sm to Tm (SmCI/TmCI = 2.0–

2.8). Negative Sr and Ti anomalies and Zr/LREE ratios are similar to Group B garnets, but 

ZrPM/HfPM ratios are slighly higher and more variable (0.96–2.04 vs. 0.98–1.27). The 

concentrations of trace elements more incompatible than La are similar to those of Group B. 

Fig. 4: CI-normalized (Anders & Grevesse, 1989) REE patterns and PM-normalized 
(McDonough & Sun, 1995) extended trace element patterns for (a) (b) Group A garnets and 
(c) (d) associated clinopyroxenes from the Zagadochnaya kimberlite. Subgroup IIa and IIb 
clinopyroxenes (grey fields) are from the same kimberlite (Nimis et al., 2009). The data of 
garnet and clinopyroxene in lherzolite from Udachnaya (sample 417/89) are from Shimizu et 
al. (1997). Other data are from Burgess & Harte (2004), and Solov’eva et al. (2008). 
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Secondary garnet domains 

Secondary domains are present in both Group B and Group C garnets. Their most evident 

feature is the significantly lower Cr2O3 (3.7–7.1 wt%) and CaO (4.2–5.8 wt%) contents and 

higher mg# values (80.4–83.28) with respect to the host primary garnets. Major element 

profiles across garnet zoning are step-like to S-shaped (e.g. Supplementary Fig. 1). These 

low-(Ca, Cr) domains are enriched in almost all trace elements. In most cases, the CI-

normalized REE patterns are humped, with maximum at Eu (Fig. 7a). In two cases (Z5-3 and 

Z6-12), the secondary domains show progressively increasing CI-normalized REE values 

from Sm (20.6–21.2 x CI) to Lu (64.3–44.3 xCI). In general, grain-to-grain variation are 

relatively small for the LREE (Nd = 6.1–15.8 xCI), but high for the HREE (NdCI/YbCI = 0.1–

2.0; Fig. 7a). With respect to the host primary garnets, Hf and Sc show minor variations, 

whereas Ti and V are systematically lower. As a consequence, PM-normalized trace element 

patterns show stronger, negative Ti anomalies (Ti/Ti*  = 0.01–0.14 vs. 0.08–0.68), higher 

Fig. 6. (a) CI-normalized REE patterns and (b) PM-normalized extended trace element 
patterns for Group C garnets and high-(Ca, Cr) garnet in the peculiar garnet–amphibole 
intergrowth Z4-11. Fields of Group A and B garnets are shown for comparison. 

Fig. 6: (a) CI-normalized REE patterns and (b) PM-normalized extended trace element 
patterns for Group B garnets.  Field of Group A garnets is shown for comparison. The data of 
garnet in harzburgite from Udachnaya (sample U501) are from Ionov et al. (2010). 
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ZrPM/HfPM ratios (1.82–7.76 vs. 0.96–2.04) and slightly higher ScPM/VPM ratios (2.91–6.71 vs 

2.16–4.26; Fig. 7b). 

 

Amphibole-garnet intergrowth 

The high-(Ca, Cr), primary garnet domains in grain Z4-11 have Cr2O3 contents similar to 

Group B garnets, but are slightly less calcic, straddling the boundary between the lherzolite 

field and the transitional field towards harzburgitic garnet compositions (Fig. 3). The CI-

normalized REE patterns are unlike any of the other studied garnets, with very low MREE 

and three maxima at Ce, Eu and Lu (Fig. 6). The low-(Ca, Cr), secondary garnet domains 

show similar major and trace element composition to secondary domains in Group B and 

Group C garnets, but with stronger enrichment in MREE (Sm to Er), deeper negative Ti 

anomalies, and higher ScPM/VPM ratios (Fig. 7). 

Fig. 7. CI-normalized REE patterns and PM-normalized extended trace element patterns for 
(a) (b) secondary garnet domains and (c) (d) associated secondary clinopyroxenes. In (a) and 
(b) field of primary garnets of Group B and Group C are shown for comparison. In (c) and 
(d) the field of group III clinopyroxene from the same kimberlite (Nimis et al., 2009) is also 
reported. 
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Other minerals 

Clinopyroxene 

The primary, subround clinopyroxenes associated with Group A garnets (e.g. Fig. 2a,b) are 

compositionally homogeneous chromian diopsides with 2 to 8 mol% kosmochlor component 

and 9 to 12 mol% jadeite component (Supplementary Table 2). They are TiO2-poor (<0.35 

wt%) and have mg# values ranging from 92.6 to 94.0. The CI-normalized REE abundances 

progressively decrease from La (20.5–42.8 xCI) to Lu (0.29–0.71 xCI) (Fig. 4c). PM-

normalized spidergrams show negative anomalies for the High Field Strength Elements 

(HFSE; i.e., Nb, Ta, Zr, Hf, and Ti) and Pb (Fig. 4d). 

The secondary chromian diopside inclusions associated with the low-(Ca, Cr) garnet 

domains are enriched in kosmochlor component (7.0–13.8 mol%) and LREE, and show more 

variable jadeite contents (8–18 mol%) and mg# values (90.2–94.1) (Supplementary Table 2). 

Similarly to the associated garnets, grain-to-grain variations are small for the LREE (e.g. Nd 

= 79–171 xCI), but high for the MREE and HREE (NdCI/YbCI = 35–149; Fig. 7). PM-

normalized trace element patterns show stronger Pb, Sr, and Zr–Hf negative anomalies and 

much stronger Ti negative anomalies than the primary clinopyroxenes (Fig. 7d). No major 

difference is observed between inclusions in Group B and those in Group C garnets, except 

for lower NbN/TaN ratios (0.8–1.2 vs. 1.9–2.9) and more pronounced negative Sr anomalies 

(0.40–0.78 vs. 0.50–0.91) in the former. 

Amphibole 

Amphiboles intergrown with garnet are present only in some Group B grains (Z4-3 and Z5-5) 

and in the peculiar grain Z4-11 (e.g. Fig. 2d,m,n). They are sodic-calcic amphiboles 

(magnesiokataphorites; Hawthorne & Oberti, 2007) with Na2O contents of 4.6 to 5.4 wt%, 

Cr2O3 contents of 1.9 to 3.1 wt%, and Al2O3 contents of 7.9 to 9.4 wt%. Amphibole in the 

anomalous sample Z4-11 shows slightly lower contents of K2O (0.97 vs. 1.4–1.5 wt%) and 

TiO2 (0.04 vs. 0.20–0.26 wt%). PM-normalized trace element patterns for all analysed 

amphiboles are very similar to those of the secondary diopsides, except for the slightly less 

fractionated REE profiles and the expected (cf. Raffone et al., 2009) positive Nb–Ta anomaly 

(Fig. 8b). Amphiboles in the late veinlets cutting the garnets are calcic amphiboles 

(pargasites; Hawthorne & Oberti, 2007). They are enriched in Al2O3 (11.3–16.9 wt%), have 

more variable Cr2O3 contents (1.8–4.9 wt%), and show lower Na2O (1.1–3.8 wt%) and K2O 

(0.28–0.38 wt%) contents. No trace element data are available for these amphiboles. 

 

 



72 

 

 

Phlogopite 

Phlogopites associated with low-(Ca, Cr) garnet domains (e.g. Fig. 2f,h) are unzoned and 

have low TiO2 contents (0.07–0.90 wt%) and relatively high Cr2O3 contents (0.40–1.25 wt%) 

(Supplementary Table 2). Only minor variations are observed for Al2O3 contents (12.5–13.5 

wt%) and mg# values (90.5–94.5). Ni, Rb and Ba abundances are high, while REE 

concentrations are low and frequently below detection limits. Phlogopites occurring within 

veinlets cutting the garnets and those associated with low-(Ca, Cr) garnet domains generally 

show similar major and trace element compositions (Fig. 8a and Supplementary Table 2). 

Note that some of these phlogopites contain up to 0.5 wt.% Cl, which is consistent with the 

Fig. 8: PM-normalized extended trace element patterns in representative (a) phlogopites, (b)
amphiboles and calcites, and (c) chromites. 
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elevated Cl abundance in the unaltered Udachnaya East kimberlite (e.g. Kamenetsky et al., 

2004; Maas et al., 2005). Phlogopite in veinlets cutting garnet Z5-6 has distinctly higher TiO2 

(2.62 wt%) and Cr2O3 (2.52 wt%) contents, and is similar in its composition with some 

lherzolitic phlogopite inclusions from diamonds (Sobolev et al., 2009a). 

Chromian spinels 

Spinel inclusions associated with secondary low-(Ca, Cr) garnet domains are chromites with 

Cr/(Cr+Al) molar ratios (Cr#) of 78.5 to 82.0 and mg# values of 45.2 to 48.9. TiO2 content 

varies between 0.2 and 1.2 wt%, higher than in typical mantle spinels (TiO2 < 0.5 wt%; 

Pearson et al., 2003). We have analyzed the trace element abundances of chromites from five 

samples (Supplementary Table 2). Except for Ti, the HFSE and REE contents show grain-to-

grain variations of up to one order of magnitude. Hf and the M-HREE are often near or below 

detection limits. Distinctive features of all the analysed chromites are the positive Pb and Ti 

anomalies and an almost constant ScPM/VPM ratio (0.004–0.020; Fig. 8c). Zn contents vary 

between 1120 and 1484 ppm, while Ni varies between 714 and 1017 ppm. 

Spinels in veinlets cutting the garnets have lower Cr# (21.7–64.8), higher mg# (44.9–

73.1) and similar TiO2 content (0.2–1.5 wt%) to those in the secondary domains. They are 

often zoned, showing a core-to-rim decrease in Cr# and increase in mg#, typical of 

groundmass spinels in kimberlites (c.f. Roeder & Schulze, 2008). 

Ti-rich oxides 

One sub-elongated Ti-oxide grain in a secondary domain of garnet Z4-1 was analysed by 

electron microprobe. It is Cr-rich (Cr2O3 = 20.8 wt%) and contains considerable amounts of 

Sr, Zr, La and Ce (Supplementary Table 2), suggesting a relationship with crichtonite-series 

minerals (cf. Haggerty et al., 1983; Erlank et al., 1987; Kalfoun et al., 2002), which are 

sometimes present as inclusions in Siberian diamonds (Sobolev et al., 1997). 

Carbonate 

Carbonate filling an inclusion in grain Z4-8 and found in association with serpentine filling an 

inclusion in sample Z6-2 is nearly pure calcite. The trace element contents are similar to a 

calcite included in one of the diopside grains from the same kimberlite studied by Nimis et al. 

(2009) (Fig. 8b). With respect to secondary clinopyroxenes, all calcites are enriched in LREE, 

have lower Sc and V, and show much deeper Sr, Ti and Zr–Hf negative anomalies. The L-

MREE contents are higher than in calcite-dolomite cumulates from primary carbonatites, and 

approach the high concentrations found in interstitial grains segregated from evolved 

carbonatite liquids (Ionov & Harmer, 2002). The compositional and textural features suggest 
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that all these calcites represent alteration products derived by late interaction of former mantle 

minerals with kimberlite-related hydrothermal fluids. 

ORIGIN OF THE XENOCRYSTS 

Pr imary garnets and associated clinopyroxenes 

CaO vs. Cr2O3 relationships in the studied garnets are similar to those of garnets from 

lherzolitic xenoliths, indicating an origin from ultramafic rocks that were saturated or nearly 

saturated in calcic clinopyroxene (Sobolev et al., 1973; Schulze, 2003; Grütter et al., 2004; 

Fig. 3). Discrimination between an origin from lherzolites, Ca-rich harzburgites, pyroxenites, 

or kimberlite-segregated megacrysts is not straightforward on a major-element basis, as 

garnets from different protolith types may show significant compositional overlaps. In the 

compilations of worldwide garnet compositions of Schulze (2003) and Grütter et al. (2004), 

garnet megacrysts with Cr2O3 contents as high as 6.0 wt% (interpreted as high-pressure 

segregates from kimberlite-related melts or asthenospheric melts lato sensu; e.g. Dawson, 

1980; Burgess & Harte, 2004; Moore & Belousova, 2005) generally have TiO2 contents 

higher than 0.5 wt% and only rarely as low as 0.30 wt%. Based on the low TiO2 contents of 

the garnets studied here (av. 0.17 wt%; range 0.04–0.35 wt%), a megacryst-like origin is 

unlikely for the Zagadochnaya garnets. Garnets with “ lherzolitic”  Cr2O3 vs. CaO relationships 

also occur in several pyroxenitic xenoliths (e.g. Roden et al., 1999; Kopylova et al., 1999; 

Pokhilenko et al., 1999; Agashev et al., 2001; Aulbach et al., 2007), although Cr2O3 contents 

in these pyroxenitic garnets never exceed 5.2 wt%. Therefore, based on the major element 

compositions of the garnets studied here, a peridotitic origin is the most likely for both Group 

B and Group C garnets (Cr2O3 = 5.4–8.6 wt%), whereas Group A garnets (Cr2O3 = 1.3–5.2 

wt%) are compatible with both a peridotitic or pyroxenitic origin. Further evidence in support 

of this conclusion and more specific information on the origin of the garnets are provided by 

trace element data. 

Group A garnets show CI-normalized REE patterns characterized by depleted and 

fractionated LREE, and flattened to slightly sloped HREE (Fig. 4a), similar to those of many 

fertile lherzolitic garnets from both off- and on-craton settings (e.g. Griffin et al., 2002; 

Pearson et al., 2003). The REE patterns also broadly resemble those of some megacrysts from 

the Kaapvaal craton (cf. Burgess & Harte, 2004), but are more LREE-depleted (La = 0.03–

0.07 vs. 0.06–0.5 xCI) than garnet megacrysts from Yakutian kimberlites and HFSE-depleted 

relative to megacrysts from Udachnaya (cf. Kostrovitsky et al., 2008; Solov'eva et al., 2008; 
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Fig. 4a). Moreover, in spite of their appreciable REE variability (e.g. Yb from 8 to 25 xCI), 

Group A garnets do not show the negative correlation between REE contents and mg# that 

was observed by Solov’eva et al. (2008) for megacrysts from Udachnaya, as well as by 

Kostrovitsky et al. (2008) for megacrysts from various Yakutian kimberlites. 

Primary chromian diopsides associated with Group A garnets have major and trace 

element contents very similar to those of some diopside grains reported by Nimis et al. (2009) 

from the same kimberlite (Fig. 4c,d). In particular, they show an intermediate character 

between subgroup IIa and subgroup IIb diopsides of Nimis et al. (2009). Consistently, these 

authors did report several diopside grains with intermediate IIa–IIb compositions. They 

interpreted these diopsides as fragments of variably refractory peridotites that were 

metasomatised by kimberlitic melts with low LREE/(Zr, Hf) ratios, i.e., distinct from the host 

Zagadochnaya kimberlite (cf. Kostrovitsky et al., 2007). They also found similarities between 

some of these diopsides and the most REE-enriched diopsides from Udachnaya coarse-

grained garnet peridotites (cf. Shimizu et al., 1997a), suggesting a common origin. Indeed, 

Group A garnets show very similar compositions to those of a coarse-grained, equigranular 

lherzolite of Shimizu et al. (1997a) (sample 417/89; Fig. 4a,b). Based on these considerations, 

we conclude that our Group A garnets and the intermediate IIa–IIb diopsides of Nimis et al. 

(2009) represent fragments of the same metasomatised (refertilised), lherzolitic protoliths, 

which are represented in both Zagadochnaya and Udachnaya upper mantle sections. 

Only two garnets with Group B geochemical affinity were already reported from 

Zagadochnaya (cf. samples Z2-11 and Z3-21 of Nimis et al., 2009). The flattened REE 

patterns from Nd–Sm to Lu (Fig. 5a) are common in lherzolitic garnets (e.g. Hoal et al., 1994; 

Shimizu et al., 1997a; Stachel et al., 1998; Burgess & Harte, 2004; Ionov et al., 2010). The 

most LREE-depleted Group B garnets show major and trace element similarities with a garnet 

from one clinopyroxene-bearing, granular garnet harzburgite from the nearby Udachnaya 

kimberlite (cf. sample U501 of Ionov et al., 2010), but show higher concentrations of U, Nb 

and Ta (Fig. 5b). 

With respect to Group A, Group B garnets are poorer in moderately incompatible 

elements (e.g. HREE and Ti) and richer in both compatible (e.g. Cr) and highly incompatible 

elements (LILE, LREE, Nb, Ta, Th and U; Fig. 5a, b). Group B garnets also show slightly 

stronger Ti negative anomalies and lower Zr–Hf contents relative to neighbouring REE (cf. 

Fig. 5b). A similar behaviour is shown by subgroup IIb diopsides with respect to subgroup IIa 

diopsides of Nimis et al. (2009) (Fig. 4c, d). These observations suggest that Group B garnets 
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belonged to the same Ca-rich (i.e., clinopyroxene-bearing) harzburgitic or lherzolitic 

protoliths of subgroup IIb diopsides. 

Group C garnets show humped to sinusoidal CI-normalized REE patterns, which have 

never been reported in garnets from pyroxenites or garnet megacrysts (c.f. Kopylova et al., 

2009; Pokhilenko et al., 1999; Burgess & Harte, 2004; Aulbach et al., 2007; Kostrovitsky et 

al., 2007), but are commonly observed in garnets from cratonic harzburgites and depleted 

lherzolites (e.g. Nixon et al., 1987; Hoal et al., 1994; Shimizu et al., 1997a; Pearson et al., 

2003; Gibson et al., 2008). No similar garnet has been previously reported from 

Zagadochnaya (cf. Kostrovitsky & de Bruin, 2004; Nimis et al., 2009). No clinopyroxene has 

been found in association with Group C garnets and no clinopyroxene grains among those 

studied by Nimis et al. (2009) show trace element compositions compatible with equilibrium 

with such garnets. Nonetheless, the “ lherzolitic”  to even “wehrlitic”  composition of the 

garnets (Fig. 3) still suggests an origin from clinopyroxene-saturated rocks. Indeed, the least 

HREE-depleted garnets of this group show REE patterns and CaO and Cr2O3 contents similar 

to some garnets from granular or fine-porphyroclastic harzburgites and lherzolites from 

Udachnaya (Shimizu et al., 1997a; Solov'eva et al., 2008, Ionov et al., 2010) and from other 

kimberlites (e.g. Jagersfontein, South Africa; Burgess & Harte, 2004). We therefore conclude 

that Group C garnets derived from relatively depleted, moderately metasomatised peridotites, 

which contained only scarse and/or small clinopyroxene grains that were not recovered in the 

heavy mineral concentrates (1–3 mm size fraction) studied by Nimis et al. (2009). 

Secondary garnets and associated inclusions 

Inclusion-rich, low-(Ca, Cr) domains in Group B and Group C garnets show textural and 

chemical features that, in the Daldyn field, seem to be peculiar to samples from high-Mg, 

micaceous kimberlites (i.e., Zagadochnaya, Bukovinskaya, Gonyatskaya, and Kusov; 

Kostrovitsky & de Bruin, 2004). Nimis et al. (2009) already reported such inclusion-rich 

domains in three garnets from the Zagadochnaya kimberlite (samples Z2-11, Z3-11 and Z3-

21) and, based on the geochemical affinity with their Group III diopside xenocrysts, 

suggested an origin by melt metasomatism related to the host kimberlite. The diopside 

inclusions in our secondary garnets show a clear geochemical affinity with Group III diopside 

xenocrysts of Nimis et al. (2009) (e.g. Fig. 7b), although the former are slightly more HREE-

depleted, probably owing to preferred partitioning of such elements in the much bigger host 

garnet.  
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Replacement of mantle-derived garnets by chromite + Cr-diopside (± phlogopite ± 

orthopyroxene ± Ti-oxide) has already been reported in other kimberlites of the Kaapvaal and 

Siberian cratons (Erlank et al., 1987; Solovjeva et al., 1997; Simon et al., 2003; Kostrovitsky 

& de Bruin, 2004; Solov’eva et al., 2010; Ivanic et al., 2012), but chemical zoning in the 

associated garnet was not generally described. To our knowledge, the most similar reported 

analogues are the garnet-rich peridotitic microxenoliths from Newlands and Bobbejaan 

kimberlites (Kaapvaal Craton), studied by Ivanic et al. (2012). These authors report re-

crystallisation of originally high-Cr garnets into an assemblage of low-(Ca, Cr) garnet, Cr-

spinel, Cr-diopside and orthopyroxene (altered to serpentine), but with neither phlogopite nor 

amphibole. Based on the preferred crystallographic orientation of some inclusions, P–T 

estimates, and compositional zonation trends in the garnet, Ivanic et al. (2012) interpreted 

these intergrowths as products of solid-state reactions during a decompression event. 

In our case, the presence of phlogopite, amphibole, and kosmochlor-rich diopside, the 

overall enrichment in both moderately and strongly incompatible trace elements, the distinct 

patchy Ca–Cr zoning in the garnets, and the distribution of these secondary products at the 

garnet rims or along healed fractures (cf. Matthews et al., 1992) rather suggest formation by 

reactions with a percolating melt. The decrease in Ca and Cr in the secondary garnets would 

reflect the preferential re-distribution of these elements in secondary chromian diopsides and 

chromites during garnet–melt reactions. The relatively abrupt compositional zoning and 

frequent cusp-and-caries features (Fig. 2h,j) suggest formation of the low-(Ca, Cr) garnet by 

dissolution–precipitation rather than by diffusion (cf. Putnis, 2009). 

The occasional presence of crichtonite series minerals in the secondary garnet domains is 

further evidence of metasomatism. These minerals are important reservoirs for LILE, LREE 

and HFSE (e.g. Erlank and Rickard, 1977; Haggerty et al., 1983; Konzett et al., 2005) to 

pressures extending into the stability field of diamond (e.g. Sobolev et al., 1997), and are 

typically found in association with phlogopite and/or amphibole in peridotite xenoliths that 

show the most advanced degrees of metasomatism (e.g. Erlank and Rickard, 1977; Haggerty, 

1983; Erlank et al., 1987; Wang et al., 1999; Grégoire et al., 2000; Kalfoun et al., 2002; 

Rivalenti et al., 2004; Konzett et al., 2005). 

Amphibole-garnet intergrowth 

The unusual texture and peculiar composition of the primary garnet in grain Z4-11 (Figs. 

2m,n and 6) must be the result of complex processes. Very LREE- and MREE-depleted 

garnets similar to the primary garnet Z4-11 were already found in some clinopyroxene-
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bearing granular peridotites from Udachnaya (Shimizu et al., 1997a; Solov’eva, 2007; Ionov 

et al., 2010). The extremely low REE contents were tentatively interpreted as a result of 

modification by reduced asthenospheric fluids related to the Middle Palaeozoic kimberlite 

event (Solov’eva, 2007) or as the closest approach to an unmetasomatised lithospheric mantle 

(Shimizu et al., 1997a). In agreement with the hypothesis of Shimizu et al. (1997a), we 

suggest that the small maxima at Eu and Lu might reflect the development of an incipient, 

mildly sinusoidal REE profile. The degree of metasomatic enrichment and refertilisation at 

this stage was lower than in the more Ca-rich Group C garnets (Figs. 3 and 6). 

Later metasomatic reactions produced an intergrowth of amphibole and low-(Ca, Cr) 

garnet, which partially replaced the original garnet (Figs. 2m,n). Considering the strict 

geochemical affinities, the metasomatic agent was cognate to the melts that produced the 

secondary domains in Group B and Group C garnets (Figs. 7a, b and 8b). Remnants of the 

primary garnets only partially re-equilibrated during this metasomatic stage and were 

selectively enriched in the most incompatible elements (Ba to Ce; Fig. 7b). 

The significance of the oriented spinel grains (Fig. 2n) is uncertain. Similar spinels do 

occur in some secondary garnet domains in other grains (Fig. 2h), so they are probably related 

to the same late metasomatic event. Indeed, the observed textures resemble those found in 

some amphibole + spinel symplectites from South African peridotites (Field, 2008), which 

were interpreted as a result of metasomatic replacement of pre-existing clinopyroxene + 

spinel or clinopyroxene + orthopyroxene + spinel symplectites. We therefore speculate that 

their orientation was inherited from an intergrowth with an early (metasomatic?) mineral of 

uncertain nature (pyroxene?), which was completely replaced by the secondary garnet during 

a more advanced metasomatic stage.  

GEOTHERMOBAROMETRY  

Given the assumption that the garnets belonging to groups A, B and C coexisted with former 

olivine (i.e., they were of peridotitic origin), we have estimated the Ni-in-garnet temperatures 

using the geothermometers of Ryan et al. (1996) and Canil (1999) (Supplementary Table 2). 

Assuming a Ni content in olivine of 3100 ppm (average value for olivines from the nearby 

Udachnaya peridotites; Sobolev et al., 2009b) the geothermometer of Canil (1999) gives 

temperatures of 900–928°C for Group A garnets, of 812–920°C for all but one Group B 

garnets, and of 839–931°C for Group C garnets. The unique, homogenous garnet Z5-6 (Group 

B) yields a higher temperature of 1037°C, as a consequence of its higher Ni content (48.3 vs. 

12.0–26.7 ppm). This garnet is distinguished from all other primary garnets studied by its 
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higher mg# (83.8 vs. 78.7–81.7) and TiO2 (0.35 wt% vs. 0.04–0.32 wt%). The 

geothermometer of Ryan et al. (1996) gives systematically lower temperatures, i.e., 811–

853°C for Group A, 691–840°C for Group B (1020°C for garnet Z5-6), and 728–857°C for 

Group C. 

The enstatite-in-Cpx geothermometer of Nimis & Taylor (2000) was applied to primary 

diopsides coexisting with Group A garnets (Supplementary Table 2), again assuming a 

peridotitic origin and equilibrium with orthopyroxene. The estimated temperatures (803–

885°C) are in good agreement with those estimated with the Ni-in-garnet thermometer of 

Ryan et al. (1996) for the associated garnets. Clinopyroxene–garnet geothermometry, which 

yielded problematic, higher temperatures in previous studies of similar samples (see 

discussion in Nimis et al. 2009) was not attempted here, following recommendations of Nimis 

& Grütter (2010).  

The low estimated temperatures suggest a relatively shallow origin for the garnets, in 

agreement with Cr-in-Cpx pressure estimates (Nimis & Taylor, 2000) for diopsides associated 

with Group A garnets (3.2–3.8 GPa; Supplementary Table 2) and previous estimates of 3.2–

4.0 GPa (Nimis et al., 2009) for Zagadochnaya diopside xenocrysts probably related to Group 

A and Group B garnets. Minimum pressures calculated using the Cr-in-garnet barometers of 

Grütter et al. (2006) and Turkin & Sobolev (2009) range between 1.9 and 3.6 GPa and 

between 1.3 and 3.4 GPa, respectively, consistent with the above results. 

Owing to the absence of secondary olivine and orthopyroxene, quantitative estimates of 

P–T conditions could not be obtained for the secondary mineral assemblages in low-(Ca, Cr) 

garnet domains. Only minimum P–T conditions (730–888°C; 3.0–3.8 GPa; Supplementary 

Table 2) could be estimated for the secondary diopsides using single-clinopyroxene 

thermobarometers (Nimis & Taylor, 2000). These estimates are compatible with those 

obtained for the primary diopsides (741–848 °C; 3.2–4.0 GPa), suggesting that the formation 

of the secondary assemblages occurred at the same mantle depths. This further strengthens 

our interpretation that replacement of high-Cr garnets by low-Cr garnets + Cr-spinel + 

diopside (± other minerals) was not due to subsolidus decompressional reequilibration, as 

suggested by Ivanic et al. (2012) for microxenoliths from South African kimberlites, but was 

driven by non-isochemical reactions with percolating melts. 

INSIGHT INTO THE EARLY REFERTILISATION PROCESSES 

There is general consensus that the lithospheric mantle roots under cratons originated in the 

Archean after extensive extraction of high-Mg melts, which left refractory residua basically 
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consisting of harzburgite and dunite (e.g. Hanson & Langmuir, 1978; Boyd, 1989; Walter, 

1998; Griffin et al., 2003). Such scenario was proposed also for the lithospheric mantle 

beneath the Daldyn-Alakit Province (Griffin et al. 2003; Malkovets et al., 2007; Ionov et al., 

2010). The high Cr2O3 contents (7.3–8.6 wt%) and low HREE contents (e.g. Yb = 0.07–1.07 

ppm; Fig. 11) of our Group C garnets from Zagadochnaya are consistent with the strongly 

depleted nature of the pre-metasomatic protoliths. The high CaO contents of most garnets 

studied here (Fig. 3) imply subsequent refertilisation, which led to saturation in 

clinopyroxene. The enrichment in Ca suggests that metasomatism was at least in part driven 

by Ca-bearing melts rather than by fluids (Harte et al., 1993; Grégoire et al. 2003; Burgess & 

Harte 1999, 2004; Stachel et al. 2004; Malkovets et al. 2007). Further information on the 

nature of the metasomatic agents can be obtained from the trace element distribution between 

garnets and clinopyroxenes and reconstruction of the equilibrium melt compositions. 

Garnet–clinopyroxene equilibr ia and composition of the metasomatic melts 

Textural features and absence of major element zoning across garnet–clinopyroxene 

boundaries suggest that Group A garnets were in chemical equilibrium with the associated 

clinopyroxenes (Figs. 2a,b and Supplementary Fig. 2). This is further supported by 

garnet/clinopyroxene partition coefficients (Grt/CpxD = X i
Grt/X i

Cpx, where X i is the 

concentration of the element i), calculated for four garnet–diopside (Table 1 and Fig. 9). The 

calculated Grt/CpxD’s show little variations from grain to grain, except for Th, U and Nb. One 

sample (Z5-2) shows slightly higher D values for the REE from Tb to Tm. In general, the 

MREE and HREE are preferentially incorporated in the garnet (Grt/CpxD > 1), Zr and Ti have 

similar affinity for garnet and clinopyroxene (Grt/CpxD ≈ 1), and Hf, Nb, Ta, Large Ion 

Lithophile Elements (LILE), and LREE from La to Eu show preferential partitioning in the 

clinopyroxene (Grt/CpxD < 1). The calculated Grt/CpxD’s are consistent, although slightly lower 

for the LREE, with the dataset of Zack et al. (1997), which was compiled for well 

equilibrated natural garnet pyroxenites with equilibration temperatures (920 ± 30 °C) similar 

to or slightly higher than those estimated for our samples. 

In order to characterise the nature of the metasomatic agents and to investigate their 

possible relationships with the various primary mantle minerals, we have calculated the 

theoretical composition of the melts in equilibrium with the Zagadochnaya garnets and, where 

available, clinopyroxenes. Literature data show that garnet/melt (Grt/meltD) and 

clinopyroxene/melt (Cpx/meltD) partition coefficients depend on pressure, temperature and 

phase compositions (e.g. Hertogen & Gijbels, 1976; Harte et al., 1996; Green, et al., 2000; 
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Table 1: Calculated garnet/clinopyroxene partition coefficients for well-equilibrated Group A 
microxenoliths 

Grt-cpx 
pair  

Z4-2 Z5-02 Z5-11 Z5-15 

Ti 1.27 1.31 1.00 1.47 
Sc 3.33 4.53 3.23 4.44 
V 0.51 0.50 0.49 0.49 
Sr 0.0012 0.0012 0.0008 0.0007 
Y 8.10 13.44 8.44 9.47 
Zr 1.28 1.85 0.97 1.41 
Nb 0.40 0.11 0.01 0.02 
La 0.0021 0.0029 - 0.0007 
Ce 0.0044 0.0114 0.0042 0.0028 
Pr 0.012 0.039 0.025 0.006 
Nd 0.048 0.114 0.061 0.029 
Sm 0.29 0.56 0.30 0.23 
Eu 0.64 0.85 0.58 0.51 
Gd 1.33 1.80 1.49 1.10 
Tb 2.22 4.50 1.96 3.15 
Dy 4.55 6.25 4.81 3.45 
Ho 6.08 14.55 6.91 7.61 
Er 13.57 22.26 17.31 15.13 
Tm 16.7 64.4 20.0 21.1 
Yb 27.1 26.7 19.5 31.8 
Lu 37.8 - 45.7 41.0 
Hf 0.50 1.23 0.33 0.79 
Ta - - - 0.30 
Th - 0.059 0.043 0.015 
U - 0.40 - 0.03 

Salters et al., 2002; Blundy & Wood, 2003; van Westrenen & Draper, 2007; Lazarov et 

al., 2012); therefore, the choice of the most appropriate solid/meltD dataset is not 

straightforward. Johnson (1998) determined the partition coefficients for the incompatible 

elements between clinopyroxene, garnet, and basaltic melt from experiments at 1300–1470°C 

and 2–3 GPa. Such high temperatures would be pertinent to processes of pervasive melt 

migration (e.g. Xu et al. 1998; Lenoir et al., 1999, 2001). The Zagadochnaya samples show 

evidence of low equilibration temperatures, which may reflect either metasomatism by 

percolating melts that were thermally equilibrated with the ambient mantle or subsolidus 

reequilibration after metasomatism. In both cases, the Grt/CpxD’s of Johnson (1998) may not be 

appropriate. A comparison between the Grt/CpxD’s (calculated as Grt/meltD / Cpx/meltD) in the high 

temperature experiments by Johnson (1998) and those measured on our Zagadochnaya 

samples (Table 1) suggests that with decreasing equilibration temperature the highly 

incompatible elements tend to redistribute into the clinopyroxene, while the HREE become 

only slightly more compatible in the garnet (Fig. 9). This is consistent with earlier 

observations by, e.g., Harte et al. (1996), Green et al. (2000) and Lazarov et al. (2012). As a 

consequence, using the experimentally derived Grt/LD’s and Cpx/LD’s to determine the 
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composition of the melts in equilibrium with Group A garnets and clinopyroxenes will 

respectively underestimate and overestimate the highly incompatible element in the melt, thus 

bracketing the real composition. 

 

The calculated liquids in equilibrium with Group A garnets are enriched in LILE and 

LREE (e.g. La = 6.4–14.6 xPM) and show HREE values close to primitive mantle (e.g. Lu = 

0.4–1.5 xPM) (Fig. 10a). The calculated liquids in equilibrium with Group A clinopyroxenes 

have similar trace element contents from Ti to Er, slighly lower Yb and Lu contents, but 

distinctly higher contents of highly incompatible elements from Nb to Sm (Fig. 10a). As 

discussed above, the actual trace element contents of the metasomatic agent should lie 

between the compositions of the melts calculated from the garnets and the clinopyroxenes, 

respectively. Compared with the compositions of Siberian kimberlites (Kostrovitsky et al., 

2007), the calculated melts have slightly lower contents of trace elements and show similar 

trace element fractionation with increasing element incompatibility, but with slightly less 

fractionated HREE (Fig. 10a). Other differences concern the negative Zr and Hf (and Ti) 

anomalies, which are less pronounced than in the kimberlitic melts. 

Due to the lack of clinopyroxene in the studied samples, the composition of the 

metasomatic agent in equilibrium with Group B and Group C minerals could be calculated 

only from the compositions of the garnets (Fig. 10b). The melts in equilibrium with Group B 

garnets are richer in highly incompatible elements and more fractionated in HREE with 

respect to Group A. Negative anomalies also occur for Zr, Hf and Ta. Group C calculated 

melts are even more fractionated in HREE (e.g. Yb as low as 0.03 xPM), and often show 

negative anomalies in Ti and ZrPM/HfPM ratios < 1. Because the Grt/meltD’s used are probably 

Fig. 9: Comparison between garnet/clinopyroxene partition coefficients for well-equilibrated 
Group A microxenoliths (Table 1) and from literature. 
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underestimated for the low-T Zagadochnaya samples (see discussion above), the melts in 

equilibrium with Group B and Group C garnets were even more HREE-fractionated and 

probably had similar or slightly higher contents of highly incompatible elements with respect 

to Siberian kimberlites (Fig. 10b). 

 

Evidence for  a unique refer tilisation event 

As discussed above, the significant progressive increase in Ca and Cr from Group A through 

Group B to Group C garnets (Fig. 3) was controlled by changes in the bulk rock composition. 

The observation that this major-element trend is accompanied by a progressive increase of 

highly incompatible elements (e.g. LREE) and decrease of moderately incompatible elements 

(e.g. HREE and Y) (Fig. 11), suggests that the observed compositional “gradient”  could be 

Fig. 10. PM-normalized extended trace element patterns of representative calculated melt in 
equilibrium with (a) Group A garnets and clinopyroxenes and (b) Group B and Group C 
garnets. In (a) the actual melt composition should lie between those calculated from the 
clinopyroxenes and the garnets, respectively (see text for further explanation). The grey area 
covers the range of trace elements concentrations in Siberian kimberlites (Kostrovitsky et al., 
2007). 
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the result of a unique refertilisation event, during which an uprising melt evolved through 

interaction with the ambient peridotite. The Cr-rich and HREE-depleted Group C garnets 

could thus represent the least refertilised peridotites, whereas the more Al- and HREE-rich 

Group A garnets should have originated from the most refertilised counterparts. 

To verify such hypothesis, a numerical 

simulation was performed using the Plate 

Model program (Vernières et al., 1997), 

assuming that a melt in equilibrium with the 

garnet Z5-15 (i.e., the most HREE-rich of 

Group A garnets) percolated through a 

refractory mantle column consisting of 

clinopyroxene-bearing garnet harzburgite 

(Model 1). Details of the simulation and the 

rationale for the choice of the relevant input 

parameters are reported in Appendix 1. The 

results (Fig. 12a,b) show that fractional 

crystallisation of clinopyroxene and garnet 

(± olivine) and melt-peridotite 

chromatographic chemical exchange during 

melt percolation can reproduce the 

compositional transition from Group A to 

Group B garnets. In particular, the decrease 

in HREE observed in Group A garnets 

would reflect an initial interaction at high time-integrated melt/rock ratio, in the lower part of 

the mantle column (first cells in Fig. 12a,b). The increase in LREE observed in Group B 

garnets would reflect interaction at low time-integrated melt/rock ratios, in the upper part of 

the mantle column (last cells in Fig. 12a,b). The above process would bring about a 

significant increase of the modal contents of clinopyroxene and garnet in the mantle column, 

which could eventually be converted into a clinopyroxene-rich garnet lherzolite or even 

pyroxenite (cf. Grègoire et al., 2003; Simon et al., 2003, 2007; Ionov et al., 2005, 2006, 

2010). The MREE and HREE contents and MREE/HREE fractionation of the calculated 

melts strongly depend on the Grt/meltD’s used. In particular, the flat M-HREE pattern exhibited 

by Group B garnets implies little variation of Grt/meltD’s from MREE to HREE, similar to what 

Fig. 11. (a) Cr2O3 vs. Yb and (b) Cr2O3 vs. Ce 
in garnets from Groups A, B and C. 
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predicted by Johnson’s (1998) high-T dataset. Assimilation of peridotitic minerals (e.g. 

orthopyroxene) was found to be non influential at this stage (See Appendix 1). 

 

In Group C garnets, the highly incompatible elements (e.g. LREE) show no relevant 

changes with respect to Group B (Fig. 6), suggesting only minor involvement of fractional 

crystallisation processes. The more pronounced negative MREE fractionation and the 

observed inversion of the pattern slope in the heaviest REE region (Fig. 6) suggest that the 

percolating melts progressively approached chemical equilibrium with the country peridotite. 

This could occur by chromatographic-type chemical exchange at low time-integrated 

Fig. 12. Comparison between CI-normalized REE abundances of representative primary 
garnets and those calculated by Plate Model numerical simulation (Vernières et al., 1997). (a, 
b) The transition from Group A to Group B garnets is reproduced by interaction between a 
melt in equilibrium with garnet Z5-15 (Group A) and a refractory garnet harzburgite 
containing a garnet with REE contents extrapolated from HREE abundance in garnet Z4-11 
(Model 1). (c, d) The sinusoidal REE patterns of Group C garnets are obtained by interaction 
between a melt in equilibrium with the most LREE-rich garnet Z4-3 (considered as the 
residual melt after the reactions that produced Group B garnets) and refractory garnet 
harzburgites (Models 2 and 3). In (c) the REE contents of the peridotite garnet were 
extrapolated from the HREE abundance in garnet Z4-11 (Model 2); in (d) they were 
extrapolated from the HREE abundance in the most HREE-depleted garnet Z4-4 (Model 3). 
See appendix for further details. 
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melt/rock ratios (e.g. Xu et al., 1998; Ionov et al., 2002). Moreover, some Group C garnets 

show similar LREE fractionation, but variable LREE contents (Fig. 6). These features may 

reflect (i) changes in the composition of the infiltrating melts, (ii) variations in solid/meltD’s, or 

(iii) assimilation of LREE-poor peridotite minerals (e.g. orthopyroxene; cf. Ionov et al., 2005; 

Piccardo et al., 2007). Assimilation of orthopyroxene in kimberlitic or proto-kimberlitic melts 

has been proposed by several authors to explain the scarcity of orthopyroxene xenocrysts in 

kimberlites (e.g. Brett et al., 2009; Kamenetsky et al., 2008, 2009; Arndt et al., 2010; Russell 

et al., 2012). In our case, a predominant role of assimilation would require a T of the melt 

high enough to avoid extensive concurrent crystallisation of magmatic minerals. 

Numerical simulations of these processes were performed assuming percolation through 

the refractory mantle column of a melt in equilibrium with the most LREE-rich Group B 

garnet (sample Z4-3), which was assumed to represent the residual melt of the reactions that 

produced Group A and Group B garnets (cf. Models 2 and 3 in Appendix). Allowing for 

orthopyroxene assimilation, during percolation at low time-integrated melt/rock ratios, the 

melt acquires transient chemical compositions, which closely approach those of Group C 

garnets and reproduce their sinusoidal REE patterns (Fig. 12c,d). In particular, the 

compositions of the most HREE-rich Group C garnets (samples Z4-8 and Z5-14) can be 

attained by assuming an ambient refractory peridotite with REE contents estimated on the 

basis of the peculiar garnet Z4-11 (Model 2; Fig. 12c). The most HREE-depleted 

compositions (sample Z4-4) are instead attained by assuming a more HREE-depleted original 

protolith, estimated on the basis of the HREE contents in garnet Z4-4 (Model 3; Fig. 12d). In 

these simulations, the compositions of the melts that reach the top of the mantle column are 

significantly different from that of the initial melt, mostly owing to assimilation of peridotite 

orthopyroxene. After these processes, the mantle column would consist of clinopyroxene-

bearing garnet harzburgites with Group C garnets. 

The above models simulate the formation of Group A, Group B, and Group C garnets by 

percolation of a single initial melt through a refractory mantle column. Such a process implies 

a progressive decrease in the melt/rock ratio and, therefore, a decreasing degree of 

refertilisation of the ambient peridotite in terms of bulk major element chemistry. In 

particular, given the likely low Cr2O3 content of the metasomatic melts (< 1.0 wt% for 

kimberlites; cf. Becker & Le Roex, 2006), and assuming an original depleted and 

homogenous mantle column, the higher the melt/rock ratio, the lower the Cr2O3 content in the 

metasomatised peridotite. This is consistent with the observed progressive decrease in Cr2O3 

from the less refertilised Group C garnets to the more refertilised Group A garnets (Fig. 11). 
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LATE-STAGE METASOMATISM RELATED TO THE HOST KIMBERLITE 

Time scales of the metasomatic event 

In order to determine an order-of-magnitude timescale for the process responsible for the 

formation of the secondary garnet domains and estimate the residence time of these garnets in 

the mantle after the last metasomatic event, we have modelled the concentration profiles 

across the transitions between high-(Ca, Cr) and low-(Ca, Cr) garnet zones. For an optimal 

evaluation of the residence time, zoning should be perpendicular to the thin section surface. 

Any deviation from this condition would result in contamination of electron microprobe 

analyses near the high-(Ca, Cr) – low-(Ca, Cr) interface by the adjacent garnet and in 

apparent smoothing of the diffusion profiles. This would, in turn, determine an overestimation 

of the timescale, thereby only a maximum residence time can generally be retrieved. The most 

appropriate zoning profile was found in some areas of garnet Z6-10, in which the boundary 

between primary and secondary garnets looked particularly sharp (Supplementary Fig. 1). We 

measured the zoning profile of Ca across the high-(Ca, Cr) – low-(Ca, Cr) interface and 

compared it with theoretical profiles obtained through the binary diffusion model (Crank, 

1975), i.e., 

 

where Ci(x,t) is the concentration as a function of distance and time, Ci
0 is the initial 

concentration difference between the two sides of the couple, Ci,0 is the lower of the two 

initial values of concentration (here we used normalized concentrations, setting Ci,0 = 0 and 

Ci
0 = 1) and Di-j is the binary interdiffusion coefficient between the components i and j. To 

model Ca concentration profiles, we have considered a multicomponent diffusion only of Ca 

and Mg, since Fe abundances in these garnets show no variation along the zoning profiles (cf. 

Supplementary Fig. 1).  

We have calculated the single interdiffusion coefficient DCa-Mg from the molar fractions (X) 

and self-diffusion coefficients of Ca and Mg (Ganguly, 2010), using the formula 

, 

approximating the parenthetical term (thermodynamic factor) to unity. We used the Ca self-

diffusion coefficient of Perchuk et al. (2009; with corrections in Ganguly, 2010) and the Mg 

self-diffusion coefficient of Ganguly et al. (1998), normalized to pressures and temperatures 

(Ganguly, 2010) relevant to processes studied here (i.e., P ~ 3.5 GPa and T = 800–1100°C). 
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Comparison of the modelled and measured Ca concentration profiles (Fig. 13a) indicates a 

maximum time-span of 10 years at 1100°C and less than 100 years at 900°C. Modelling using 

the Ca–(Mg, Fe) interdiffusion coefficients of Vielzeuf et al. (2007) yields slightly longer 

timescales (Fig. 13b), with a maximum of 104 years at 900°C. Regardless of the model 

parameter used, these results indicate that the secondary garnet domains and the associated 

inclusions formed shortly before the kimberlite eruption and therefore suggest a possible link 

between the reacting melt and the host kimberlite. 

 

Composition and evolution of kimber lite-related melts 

The secondary garnets and clinopyroxenes (as well as the geochemically analogous Group III 

chromian diopsides of Nimis et al., 2009) show lower TiPM/ZrPM ratios (0.02–0.20, av. = 0.09 

for garnets; 0.03–0.28, av. = 0.12 for clinopyroxenes) than the primary minerals (0.08–0.70, 

av. = 0.40 for garnets; 0.31–1.00, av. = 0.68 for clinopyroxenes; Fig. 14). Most likely, this 

difference reflects the composition of the late metasomatic agent, which is therefore more 

Fig. 13: Measured Ca profile along the transect A-A’  in garnet Z6-10 (cf. Figs. 2j and A1 of 
the Electronic Appendix), and corresponding modeled Ca diffusion profiles, using diffusion 
coefficients after (a) Ganguly (2010) and (b) Vielzeuf et al. (2007), normalized for pressure of 
3.5 GPa and temperatures of 1073 and 1373 K. 
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compatible with a Type II (similar to the host magma) rather than Type I kimberlite (cf. 

Shimizu et al., 1997a). The presence of phlogopite in the secondary domains, even if not 

abundant, is also consistent with this hypothesis. 

To further constrain the nature of the 

metasomatic agent, we calculated the 

compositions of the melts in equilibrium 

with the secondary garnets and 

clinopyroxenes, using again the solid/meltD 

dataset of Johnson (1998) (Fig. 15). The 

trace element patterns of the calculated melts 

broadly resemble that of the Zagadochnaya 

Type II kimberlite (Fig. 15). The most 

relevant discrepancies concern the trace 

element contents from Ti to Lu, which show 

a transition to progressively more 

fractionated compositions with respect to the 

kimberlite. 

The significance of the variable Ti–Lu 

fractionation of the secondary garnets is well 

illustrated in Figure 16, which shows the 

REE patterns of primary and secondary 

domains in representative garnets, compared 

with the calculated REE pattern of a 

hypothetical garnet in equilibrium with the 

Zagadochnaya kimberlite. In garnet grains 

Z4-9 and Z4-8, which underwent only 

incipient melt reaction at the rim (Fig. 2k), 

the secondary domains are enriched only in 

LREE and MREE up to Dy–Er (Fig. 16). 

Garnet grain Z4-4 underwent more extensive 

reaction (secondary domains extend to most of the grain; Fig. 2g,h) and was enriched also in 

HREE, approaching more closely equilibrium with the Zagadochnaya kimberlite (Fig. 16). 

Finally, garnet Z6-12, which appears to have almost completely reacted with the melt (Fig. 

2k), shows even higher HREE enrichment, effectively reaching equilibrium with the 

Fig. 14. Ti vs. Zr covariation for the analyzed 
(a) garnets and (b) clinopyroxenes. Data for 
Group II and Group III clinopyroxenes are 
from Nimis et al. (2009). Data for Udachnaya 
peridotites and metasomatites are taken from 
Shimizu et al. (1997) and Solov’eva et al. 
(2010), respectively. Symbols as in Figs. 3 
and 4, except for those reported in the 
legend. 
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Zagadochnaya kimberlite. The slightly higher LREE calculated for the garnet in equilibrium 

with the kimberlite (Fig. 16) may again reflect overestimation of Grt/meltD’s using the high-T 
Grt/meltD dataset of Johnson (1988) (see discussion in chapter Garnet–clinopyroxene equilibria 

and composition of the metasomatic melts). 

 

Other discrepancies from the composition of the Zagadochnaya kimberlite are the 

generally lower U, Nb and Ta contents, and variable Sr anomalies in the melts calculated 

from the garnets. The very low measured 

abundances and, therefore, low analytical 

precision of such highly incompatible 

elements can in part account for such 

discrepancies. Moreover, the variable Sr 

anomalies, which positively correlate with Nb 

abundances (Supplementary Table 2), suggest 

contamination of LA–ICP-MS analyses by 

sub-microscopic (Nb, Sr)-bearing phases, 

possibly belonging to the crichtonite series 

(e.g. lindsleyite; Haggerty et al., 1983). Note 

also that the most realistic contents of the 

highly incompatible elements lie between 

those calculated from the garnets and those 

calculated from the clinopyroxenes (see 

Fig. 15: PM-normalized  trace element patterns of representative calculated melts in 
equilibrium with secondary garnets and diopsides (solid/meltD’s from Johnson, 1998). The 
composition of  the Zagadochnaya kimberlite (Kostrovitsky et al., 2007) is reported for 
comparison. 

Fig.16. CI-normalized REE patterns of 
some primary garnets (prim) and their 
secondary domains (sec). Grey line 
indicates the calculated REE pattern of 
garnet in equilibrium with the 
Zagadochnaya kimberlite (Grt/meltD’s from 
Johnson, 1998). Data for the Zagadochnaya 
kimberlite after Kostrovitsky et al. (2007). 
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discussion in chapter Garnet–clinopyroxene equilibria and composition of the metasomatic 

melts). For all these reasons, the observed discrepancies for the highly incompatible elements 

are not significant. 

The relationships between grain textures and REE contents suggest that the variable 

degree of REE fractionation observed in the secondary garnets and clinopyroxenes (and in 

their calculated equilibrium melts) represent transient features related to percolation at depth 

of a melt related to the host kimberlite. Moreover, the close similarity between the calculated 

melts in equilibrium with the most reacted garnets and the host kimberlite suggests that the 

erupting kimberlitic magma did not significantly change its trace element contents from 

depths of 100–130 km. 

DISCUSSION 

Combining garnet and diopside records: overall evolution of the shallow lithospher ic 

mantle beneath Zagadochnaya 

The lithospheric mantle beneath the Daldyn field is believed to consist of a deep (ca. 180–230 

km depth) layer in which moderately to strongly melt-metasomatised lherzolites are 

predominant, an intermediate, diamond-rich layer (ca. 140–180 km) in which harzburgites 

and depleted lherzolites are more abundant, and an upper layer (ca. 95–140 km) in which 

lherzolites (from depleted to strongly melt-metasomatised) dominate (Malkovets et al., 2007, 

and reference therein; Ionov et al., 2010; Agashev et al., 2012). The major and trace element 

compositions of garnet groups A, B and C studied here, and of diopside Group II described by 

Nimis et al. (2009), are consistent with a derivation from variably metasomatised, formerly 

highly refractory peridotites. Metasomatism operated by Ca-bearing melts with kimberlitic 

affinity led to neo-formation of modal clinopyroxene, giving rise to variably re-fertilised 

lherzolites. Based on the geochemical compositions of the garnets and of the chromian 

diopsides and on thermobarometric data (cf. Nimis et al., 2009, and this study), our Group C 

garnets may be representative for the shallow, weakly metasomatised, depleted lherzolites, 

whereas our Group A and Group B garnets (and Group II diopsides of Nimis et al., 2009) 

may be part of the melt-metasomatised lherzolites from the same layer. 

Plate model numerical simulations indicate that the overall geochemical variability 

observed in the studied garnets can be the result of a unique melt injection, whereby the liquid 

composition progressively changed due to reactions with the ambient peridotite and fractional 

crystallisation. The substantial P–T overlap of groups A, B and C indicates the heterogeneous 

distribution of metasomatism operated by the percolating melts, which led to formation of 
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variably refertilised lithologies at about the same lithospheric level. Similar metasomatic 

gradients were reported in several orogenic lherzolite massifs (e.g. Lherz and Ronda; Lenoir 

et al., 2001; Le Roux et al., 2007). Although the hypothesis of multi-stage metasomatism 

cannot be ruled out, the contribution of various unrelated melts operating in the lithosphere 

appears to be unnecessary to explain the observed compositional spectrum of the garnets. 

 Late reactions with ultra-alkaline melts cognate with the erupted Zagadochnaya 

kimberlite partially transformed Group B and Group C garnets into low-(Ca, Cr) garnet–

clinopyroxene–chromite (± phlogopite ± amphibole) assemblages shortly before eruption. 

Group III diopsides of Nimis et al. (2009) were also formed by these processes. Minimum 

pressure estimates and the precipitation of secondary garnet and spinel indicate that these late 

reactions occurred at relatively great depth, shortly before entrainment in the erupting 

kimberlite. Group A garnets remained apparently unaffected during this late metasomatic 

stage. The reason for their preservation is unclear. On the one hand, the major element 

compositions of Group A garnets are the most similar to those of the secondary garnets, 

which possibly made them less prone to reactions with the percolating kimberlite. On the 

other hand, the trace element compositions of the two garnet types is so different that some 

compositional gradients would have been expected at least for the most incompatible 

elements. An alternative explanation could be the higher predicted modal content of 

pyroxenes in the host rocks, which could have decreased melt connectivity and thus hindered 

melt percolation (cf. Toramaro & Fuji, 1986; Schäfer and Foley 2002). 

Migration of the pre-eruption kimberlitic melts to shallower mantle levels led to 

crystallisation of the (Al, Cr, Na)-poor Group I diopsides of Nimis et al. (2009). These 

diopsides have a megacryst-like geochemical signature and were interpreted to represent 

spinel-facies, orthopyroxene-free segregates from melts, which were related to the host 

kimberlite, but were partly modified by interaction with the ambient peridotites. 

The latest interaction between the kimberlite and the mantle minerals is recorded by the 

precipitation of kimberlitic mineral assemblages in veinlets cutting Group II and Group III 

diopsides of Nimis et al. (2009) and by pargasite + phlogopite + chromite veinlets in many 

garnets reported in this study. The presence of pargasite constrains the pressure of formation 

of the garnet-hosted veinlets to < 3.0 GPa (Niida & Green, 1999). Given the higher pressure 

of formation estimated for the host garnets and clinopyroxenes (> 3.0 GPa), the veinlet 

assemblages in the garnets must have crystallised on route to the surface, after entrapment of 

the xenocrysts in the kimberlite. 
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Although the whole spectrum of garnet compositions observed at Zagadochnaya has not 

been reported at Udachnaya, compositional similarities of our Groups A, B and C with some 

Udachnaya garnets (cf. Shimizu et al., 1997a; Ionov et al., 2010) suggest that the lherzolite-

rich, shallow mantle sections beneath Zagadochnaya and Udachnaya shared a common early 

geochemical history. The late, deep-seated, metasomatic event, which was operated by melts 

strictly related to the host kimberlite, has apparently no counterpart at Udachnaya (cf. 

Solov’eva et al., 1997, 2010; Nimis et al., 2009; Ionov et al., 2010). Most likely, analogous 

processes did instead occur under other Daldyn localities, where Type II kimberlites similar to 

the Zagadochnaya kimberlite were erupted. These include the Bukovinskaya, Gornyatskaya 

and Kusov kimberlite pipes, in which several garnet–diopside–chromite aggregates 

petrographically and geochemically similar to those found at Zagadochnaya have been 

reported (cf. Kostrovitsky & de Bruin, 2004). 

Implications on diamond potential and Type I I  kimber lite volcanology 

The substantial rarity of harzburgitic materials, which contrasts with the abundance of highly 

refractory, low-Ca lithologies at intermediate mantle depths (140–180 km) in the Daldyn 

kimberlite field (Griffin et al., 2002; Malkovets et al., 2007), the low Ni-in-garnet 

temperatures (≤860°C or ≤950°C, depending on the preferred thermometric formulation, with 

only one exception at 1020°C or 1065°C, respectively), and the low Cr-in-Cpx estimated 

pressures for the associated clinopyroxenes (3.0–4.0 GPa) suggest derivation of 

Zagadochnaya xenocrystic material from a relatively shallow mantle section (ca. 100–130 

km). Only a minor portion, if any, of the mantle sampled by the Zagadochnaya kimberlite 

may have been seated within the diamond stability field, thus providing a simple explanation 

for the absence of diamond at Zagadochnaya, as previously suggested by Nimis et al. (2009). 

This is in marked contrast with the xenolith record in the nearby, highly diamondiferous 

Udachnaya kimberlite, which extends to depths as great as 250 km (cf. Griffin et al., 1996; 

Boyd et al., 1997; Pokhilenko et al., 1999; Shimizu et al., 1997a; Solov’eva et al., 2008; 

Ionov et al., 2010).  

The apparent absence of mantle material from depths greater than ca. 130 km is unusual 

for kimberlites and must be the result of particular volcanological processes. Most likely, the 

maximum depth of sampling reflects the depth at which the rising magma becomes fast 

enough to initiate the mechanical disaggregation and incorporation of xenoliths (Wilson & 

Head, 2007), which in turn may be controlled by exsolution of CO2 (Arndt et al., 2010; 

Russel et al., 2012). Arndt et al. (2010) suggested that the exsolution level may be different 
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for Type I and Type II kimberlites. In Type II kimberlites, which are usually less CO2-rich, 

exsolution may take place at shallower, lithospheric levels, allowing for extensive interaction 

with the lithospheric mantle before eruption and driving the melt to more magnesian 

compositions. On a qualitative basis, this scenario seems compatible with (i) the lack of deep 

mantle materials, (ii) the abundance of secondary assemblages, and (iii) the high-Mg 

composition of the Type II Zagadochnaya kimberlite. Considering the high dissolution rate of 

diamond in kimberlitic melts (cf. Fedortchouk et al., 2005; Arima & Kozai, 2008), melt–rock 

reactions at depth may have led to resorption of any small diamond fraction originally 

present. 

CONCLUDING REMARKS 

(1) The shallow lithospheric mantle beneath Zagadochnaya (100–130 km) is mostly 

composed by moderately to strongly refertilised, formerly depleted peridotites, which are 

represented by garnets with progressively decreasing Cr, Ca, and LREE and increasing HREE 

contents, i.e., showing sinusoidal to normal CI-normalized REE patterns. These refertilised 

lithologies could be produced by a unique episode of melt injection through a former 

refractory mantle column. The evolution of the metasomatic melt by fractional crystallisation, 

assimilation, and chromatographic exchange during percolation through the mantle produced 

relatively small-scale geochemical gradients, which are recorded by xenocrysts sampled by 

the kimberlite across a restricted depth interval (ca. 30 km). This early-stage metasomatism 

affected a wide area under the Daldyn field, determining a high proportion of variously 

refertilised rock types sharing similar geochemical features. 

(2) Late interaction between the mantle rocks and melts cognate to the host kimberlite 

occurred at depth shortly before eruption, forming shallow, spinel-facies, clinopyroxene 

segregates and deeper, secondary mineral assemblages made of low-(Ca, Cr) garnet, chromite 

and diopside (± amphibole and phlogopite) with distinct Type II kimberlite affinity. Similar 

secondary products are widespread in other Type II kimberlites within the Daldyn field. 

(3) The lack of mantle materials from depth greater than 130 km, the absence of diamond, 

the abundance of secondary mineral assemblages, and the high-Mg composition of the 

kimberlite are consistent with a relatively slow ascent of the kimberlitic melts to shallow 

lithospheric levels and extensive melt–mantle interactions before eruption. 
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APPENDIX: PLATE MODEL NUMERICAL SIMULATION 

Design of the numer ical simulations 

Numerical simulations were carried out using the Plate Model program of Vernières et al. 

(1997). In all simulations, the hypothetical mantle column was divided in 20 cells and 20 

process increments were run. At each process increment, melt and peridotite were allowed to 

equilibrate with each other through ion exchange, after possible assimilation and/or fractional 

crystallisation. The chemical and modal parameters used in the final simulations (Models 1, 2 

and 3) are reported in Supplementary Table 3. 

The numerical simulation of melt–peridotite interactions requires the knowledge of 

several parameters, such as the compositions of both infiltrating melts and ambient 

peridotites, the topology of the reactions, the mode of the segregated/assimilated minerals, the 

instantaneous melt/rock ratios (i.e., porosity), and the solid-liquid partition coefficients. Most 

of these parameters may significantly vary depending on the P–T conditions and composition 

of the system. Most of these information are missing in the studied case, mostly due to the 

lack of discrete mantle xenoliths. 

Taking into account these limitations, several numerical simulations were performed using 

different input data, in order to constrain the critical petrochemical and physical parameters 

that governed the incorporation and fractionation of trace elements in Zagadochnaya garnets. 

The rationale for these simulations and the main results are described here and may be used as 

reference for future studies on garnets from other cratonic settings. 

Evaluating fractional crystallisation, assimilation, and melt/rock ratio 

Our first model (Model 1) was devised to reproduce the transition from Group A to Group B 

garnets (Fig. 12a,b). Preliminary simulations showed that the progressive increase of the 

concentrations of highly incompatible elements from Group A to Group B can only be 

obtained by melt–peridotite reactions that involve strong fractional crystallisation and 

decreasing volumes of the percolating melts (see also Vernières et al., 2007; Ionov et al., 

2002; Piccardo et al, 2007; Rivalenti et al., 2004; 2007a,b). Preliminary modeling also 

showed that olivine crystallisation did not change significantly the trace element fractionation 

in the differentiated liquids. Thus, although it is likely that olivine segregation did occur, we 

only assumed segregation of clinopyroxene and garnet for simplicity. 

The concomitant decrease of the moderately incompatible elements and increase of the 

highly incompatible elements from Group A to Group B (Fig. 12a,b) was obtained by 

progressively decreasing melt/rock ratios, i.e., by allowing a progressively more efficient 
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chemical buffering exerted by the ambient peridotite (cf. Vernières et al., 2007; Ionov et al., 

2002; Piccardo et al, 2007; Rivalenti et al., 2004; 2007a,b; Nimis et al., 2009). Increasing 

amount of garnet in the system, either in the crystallizing mineral mode or in the host 

peridotite, induces a faster decrease of the HREE contents in the percolating liquid and was 

therefore adjusted to obtain the best fit with the observed data. The best reproduction of the 

observed REE trends was obtained assuming a crystallising mode of 80% clinopyroxene and 

20% garnet (mass units). It is noteworthy that the simulation well reproduces also the 

variations of Th, U, Nb and Ti, but fails in reproducing the variations of Zr and Hf 

(Supplementary Table 3). No assimilation was allowed, because its simulated effects were not 

helpful in any way to explain the observed geochemical trends. We do not exclude that some 

assimilation did take place, but its effects were negligible compared to those of fractional 

crystallisation and chromatographic exchange. 

Models 2 and 3 were devised to reproduce the transition between Group B and Group C 

(Fig. 12c,d). Owing to the absence of significant variations in the concentration of highly 

incompatible elements (e.g. LREE) between the two groups (Fig. 6), no fractional 

crystallisation was assumed. The existence of some Group C garnets showing similar LREE 

fractionation, but variable LREE contents (Fig. 6) was reproduced allowing for assimilation 

of peridotite orthopyroxene. The best fit was obtained assuming orthopyroxene assimilation 

varying from 1% of solid mass in the first cell at the bottom of the mantle column to 1‰ of 

solid mass at the top of the mantle column. 

Mineral/liquid par tition coefficients 

The degree of MREE/HREE fractionation of the modeled garnet compositions was strongly 

dependent on the adopted Grt/meltD values. In our tests, the Grt/meltD’s calculated from the 
Grt/CpxD’s measured on our Group A garnet–clinopyroxene pairs (Table 1) and the Cpx/meltD’s 

of Ionov et al. (2002) produced HREE depletion rates and MREE/HREE fractionations higher 

than those observed in our Group A and Group B garnets. This observation suggests that 

during melt–peridotite interaction Grt/meltDHREE values were lower than those estimated based 

on Grt/Cpx partitioning in the re-equilibrated Group A samples (T = 811–853°C), as expected 

for reactions operating at higher-T conditions. The high-T experimental Grt/meltD values of 

Johnson (1998) allowed us to obtain a much better fit with the observed data. 

In the final simulations, mineral/melt partition coefficients for olivine, orthopyroxene and 

clinopyroxene were taken from Table 7 of Ionov et al. (2002), while the Grt/meltD were those of 
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Johnson (1998), with the exception of those for U and Th, which were taken from Hauri et al. 

(1994). 

Composition of the ambient per idotite 

The trace element composition of the ambient peridotite before the refertilisation processes is 

constrained by Group C garnets, being their high Cr/Al ratio and their extreme depletion in 

HREE evidence for strongly depleted original compositions. In the nearby Udachnaya 

kimberlite, abundant depleted garnet harzburgites occur at slightly greater depth (140–180 

km; Boyd et al., 1997; Shimizu et al., 1997a; Ionov et al., 2010) than those estimated for the 

Zagadochnaya xenocrysts (100–130 km; Nimis et al., 2009, and this study). Bulk rock major 

element compositions for some fresh granular peridotites characterized by depletion in 

moderately incompatible trace elements similar to that of Group C garnets are reported in 

Ionov et al. (2010; cf. their samples U29 and U506). However, these granular peridotites 

show enrichments in highly incompatible elements in both bulk rock and minerals, as well as 

chemical disequilibrium between garnet and clinopyroxene, evidencing for late metasomatic 

interaction with melts or fluids. For sake of simplicity, the compositions of the ambient 

peridotites was recalculated assuming that their modal composition was identical to that of the 

very HREE-depleted granular harzburgite U506 studied by Ionov et al. (2010; 77.2 wt.% Ol, 

16 wt.% Opx, 2.6 wt.% Cpx, and 4.2 wt.% Grt), but modifying the compositions of highly 

incompatible trace elements of the minerals. Thus, in Model 1 and Model 2, the 

concentrations of the HREE from Ho to Lu (as well as Zr and Ti) of the garnet were assumed 

to be equal to those of our very depleted garnet Z4-11 (Fig. 12a,b); the contents of the other 

trace elements were extrapolated from those of the HREE, according to the trace element 

fractionation shown by minerals in equilibrium with komatiitic melts (komatiite melt 7-PPR-

97; Hanski et al., 2001) (Fig. 12a,c). In Model 3, the HREE composition of the garnet was 

assumed to be equal to that of our garnet Z4-4 (Fig. 12d); the contents of the other trace 

elements were again extrapolated from those of the HREE (Fig. 12d) and the fractionation 

calculated for minerals in equilibrium with komatiites. The influence of these artificial 

modifications, however, was found to be negligible at least for the numerical simulation of 

Model 1 and for the first 8–10 cells of Models 2 and 3, which were sufficient to approach the 

compositions of the Zagadochnaya garnets (Fig. 12 a,c,d). Similarly, moderate changes in the 

initial mineral modes (e.g. presence/absence of minor clinopyroxene) did not affect 

significantly the modeling results, which were much more strongly dependent on the assumed 

extent of fractional crystallisation and assimilation. In all models, the trace element 
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compositions of olivine, orthopyroxene and clinopyroxene were calculated from those of the 

garnet, using Grt/Cpx, Grt/Ol and Grt/Opx partition coefficients determined on the basis of 

the adopted mineral/meltD’s. 

Initial liquid compositions 

In Model 1, the composition of the initial liquid (see Supplementary Table 3) was assumed to 

be that of the calculated melt in equilibrium with our garnet Z5-15, using the Grt/meltD’s of 

Johnson (1998). This garnet is the richest in HREE among Group A garnets, therefore its 

calculated equilibrium liquid should be the closest to the hypothetical composition of the 

unmodified metasomatic melt. In Models 2 and 3, the composition of the liquid (see 

Supplementary Table 3) was assumed to be that of the calculated melt in equilibrium with 

Group B garnet Z4-3. This garnet is one of the richest in highly incompatible trace elements. 

Its calculated equilibrium liquid was chosen to represent the composition of the residual melt 

after the processes that formed Group A and Group B garnets. 
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SUPPLEMENTARY FIGURE 1 

Element concentration profile across garnet zoning in sample Z6-10. 
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SUPPLEMENTARY FIGURE 2 

Element concentration profile in garnet–clinopyroxene microxenolith Z5-15 (Group A). 
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SUPPLEMENTARY TABLE 1 

Chemical composition of pyrope grains (< 0.5 mm fraction) randomly selected from the 

heavy concentrate of the Zagadochnaya kimberlite pipe. 

No. SiO2 TiO2 Al2O3 Cr 2O3 FeO MnO MgO CaO Na2O Total 

1 41.35 0.06 18.23 6.89 8.02 0.50 18.84 6.34 0.03 100.26 
2 41.99 0.33 20.89 3.06 8.42 0.43 20.12 4.57 0.04 99.85 
3 41.46 0.36 18.77 5.71 8.57 0.47 19.22 5.38 0.07 100.01 
4 42.17 0.25 21.63 2.29 9.02 0.44 20.06 4.44 0.06 100.36 
5 42.49 0.18 22.48 1.37 7.33 0.32 21.46 4.41 0.05 100.09 
6 42.00 0.10 20.29 4.24 8.42 0.54 20.41 4.33 0.10 100.42 
7 41.31 0.30 18.27 5.90 9.12 0.49 17.44 7.19 0.04 100.06 
8 41.96 0.13 19.06 5.68 7.62 0.42 19.71 5.51 0.05 100.14 
9 42.23 0.01 20.90 3.61 7.49 0.42 19.96 5.56 0.00 100.18 

10 41.76 0.25 19.62 4.87 8.22 0.46 20.12 5.12 0.07 100.48 
11 41.67 0.22 18.28 6.53 8.00 0.47 18.82 6.21 0.07 100.26 
12 41.36 0.12 17.45 7.79 7.82 0.49 18.22 6.66 0.02 99.91 
13 42.36 0.14 22.01 1.87 9.07 0.42 20.18 4.46 0.03 100.54 
14 41.75 0.17 19.60 4.70 8.57 0.51 19.19 5.63 0.01 100.13 
15 42.19 0.29 20.94 3.17 8.40 0.46 20.57 4.50 0.07 100.57 
16 42.32 0.00 20.75 3.83 7.79 0.42 19.95 5.59 0.00 100.64 
17 42.01 0.22 20.59 3.70 7.98 0.45 20.06 4.88 0.06 99.93 
18 41.32 0.29 17.96 6.25 8.26 0.55 18.54 6.44 0.04 99.64 
19 41.81 0.15 19.13 5.27 8.10 0.51 19.56 5.19 0.07 99.81 
20 41.67 0.13 18.27 6.84 7.64 0.46 19.53 5.35 0.03 99.91 
21 42.17 0.16 21.54 2.30 8.54 0.42 20.30 4.47 0.03 99.93 
22 41.61 0.20 19.16 5.21 7.87 0.47 19.76 5.19 0.06 99.53 
23 40.35 0.07 19.03 4.71 13.14 0.18 12.46 10.33 0.03 100.29 
24 42.14 0.37 20.70 3.38 8.41 0.45 20.00 4.70 0.08 100.23 
25 41.72 0.29 19.13 5.38 7.81 0.46 19.87 5.16 0.07 99.89 
26 41.66 0.07 18.85 5.89 8.25 0.49 19.08 5.71 0.06 100.05 
27 42.33 0.00 21.21 3.30 7.37 0.35 19.92 5.55 0.02 100.04 
28 41.98 0.25 20.03 4.35 8.21 0.49 20.03 5.06 0.04 100.45 
29 41.94 0.02 20.11 4.58 7.68 0.46 19.58 5.70 0.01 100.07 
30 41.81 0.23 20.06 4.29 7.98 0.45 19.75 4.99 0.04 99.61 
31 41.60 0.15 20.17 4.01 8.32 0.46 19.42 5.16 0.04 99.34 
32 41.82 0.19 19.68 4.65 8.06 0.48 19.53 5.20 0.06 99.67 
33 41.97 0.26 21.51 2.28 8.51 0.41 20.15 4.63 0.07 99.79 
34 41.95 0.00 20.61 4.10 7.60 0.40 19.92 5.59 0.00 100.17 
35 42.03 0.17 19.92 4.84 7.04 0.34 21.24 4.41 0.05 100.03 
36 41.11 0.17 17.66 7.18 7.98 0.50 18.77 6.29 0.04 99.69 
37 42.28 0.30 21.12 2.82 8.59 0.45 20.20 4.58 0.11 100.46 
38 41.39 0.31 19.31 4.65 9.21 0.53 18.68 5.47 0.07 99.62 
39 40.75 1.09 15.42 7.47 9.80 0.46 17.41 7.09 0.12 99.61 
40 41.33 0.01 18.12 6.98 7.84 0.50 18.46 6.82 0.03 100.08 
41 41.62 0.24 19.14 5.37 7.95 0.47 20.00 4.93 0.09 99.81 
42 41.64 0.02 18.68 6.37 7.27 0.39 19.37 6.42 0.02 100.18 
43 42.04 0.28 20.84 3.06 8.51 0.43 20.08 4.75 0.06 100.05 
44 41.64 0.25 18.50 6.21 8.53 0.50 18.85 5.61 0.02 100.10 
45 42.17 0.18 22.23 1.29 8.68 0.38 20.77 4.13 0.03 99.85 
46 41.43 0.21 17.67 7.34 7.57 0.49 19.42 5.60 0.06 99.79 
47 41.74 0.28 19.32 5.05 8.07 0.48 19.60 5.38 0.06 99.97 
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No. SiO2 TiO2 Al2O3 Cr 2O3 FeO MnO MgO CaO Na2O Total 

48 41.75 0.11 19.85 4.59 8.17 0.48 19.69 5.02 0.03 99.69 
49 42.20 0.05 20.78 3.88 7.10 0.46 22.11 3.39 0.03 99.99 
50 41.74 0.09 19.90 4.59 8.33 0.46 19.74 5.17 0.02 100.04 
51 41.05 0.13 17.24 7.86 7.91 0.50 18.59 6.21 0.01 99.49 
52 41.79 0.20 19.64 4.80 7.96 0.46 19.79 5.24 0.06 99.94 
53 42.13 0.03 21.05 3.20 7.39 0.38 20.24 5.41 0.01 99.84 
54 41.99 0.02 19.33 5.56 7.62 0.44 20.10 5.14 0.01 100.20 
55 41.54 0.35 18.32 6.10 8.34 0.51 18.61 6.03 0.06 99.86 
56 41.63 0.29 19.21 5.27 7.89 0.46 19.45 5.80 0.07 100.08 
57 41.67 0.23 20.00 4.25 8.18 0.47 19.78 5.27 0.03 99.87 
58 41.55 0.22 18.69 5.99 7.89 0.45 19.73 5.15 0.06 99.71 
59 41.26 0.07 17.53 7.65 7.76 0.48 19.10 5.90 0.03 99.77 
60 41.78 0.13 19.31 5.48 7.65 0.46 21.09 3.54 0.04 99.48 
61 41.55 0.27 18.67 5.92 8.20 0.48 19.02 5.85 0.06 100.01 
62 41.90 0.24 20.68 3.52 8.35 0.47 20.23 4.62 0.04 100.05 
63 41.29 0.12 18.75 6.10 8.12 0.50 19.57 5.27 0.04 99.77 
64 41.69 0.26 20.33 3.93 8.06 0.46 20.01 4.95 0.07 99.76 
65 41.89 0.31 19.67 4.74 8.14 0.48 20.11 4.71 0.06 100.10 
66 41.75 0.02 20.51 4.13 7.71 0.40 19.74 5.81 0.00 100.05 
67 42.23 0.23 21.99 1.75 9.19 0.42 20.12 4.47 0.05 100.44 
68 41.46 0.04 19.25 5.80 7.65 0.46 19.42 5.80 0.01 99.88 
69 41.21 0.24 17.63 7.14 8.56 0.52 17.87 6.54 0.06 99.76 
70 41.57 0.01 18.92 6.06 7.18 0.39 19.91 5.72 0.01 99.75 
71 41.91 0.05 19.89 4.86 7.71 0.44 19.69 5.64 0.02 100.21 
72 41.87 0.35 19.72 4.39 7.97 0.46 19.94 5.00 0.05 99.75 
73 41.58 0.23 19.15 5.46 8.17 0.47 19.43 5.55 0.05 100.09 
74 41.50 0.02 18.93 5.97 7.41 0.43 19.07 6.39 0.03 99.74 
75 41.75 0.02 20.59 3.81 7.75 0.39 19.75 5.72 0.00 99.78 
76 41.50 0.01 18.10 6.91 7.49 0.45 18.70 6.60 0.02 99.77 
77 42.18 0.00 21.00 3.42 7.51 0.40 19.88 5.54 0.01 99.93 
78 41.70 0.07 19.63 5.08 7.71 0.50 20.39 4.56 0.06 99.69 
79 41.65 0.10 18.06 7.14 7.87 0.49 18.76 6.17 0.03 100.29 
80 42.36 0.28 21.47 2.42 8.68 0.43 20.23 4.58 0.05 100.51 
81 42.20 0.22 20.81 3.30 8.46 0.45 19.95 4.89 0.05 100.33 
82 41.92 0.02 18.82 6.35 7.65 0.47 18.79 6.44 0.04 100.51 
83 41.84 0.21 19.32 5.16 8.15 0.49 19.56 5.00 0.03 99.75 
84 42.16 0.19 20.17 4.19 8.25 0.47 19.70 5.28 0.02 100.43 
85 41.21 0.34 17.94 6.45 8.45 0.52 18.59 6.14 0.07 99.70 
86 40.86 0.35 15.62 9.24 8.19 0.50 18.54 6.37 0.08 99.75 
87 41.29 0.22 17.66 6.96 8.51 0.56 18.29 6.15 0.05 99.69 
88 41.77 0.29 18.61 6.15 7.62 0.44 19.39 5.80 0.07 100.14 
89 41.47 0.12 19.08 5.41 8.28 0.47 19.28 5.85 0.05 100.01 
90 41.73 0.29 19.05 5.34 8.45 0.49 19.10 5.71 0.03 100.19 
91 41.97 0.01 20.18 4.48 7.30 0.41 19.92 5.89 0.00 100.17 
92 41.88 0.17 19.33 5.31 8.36 0.51 19.22 5.38 0.04 100.19 
93 42.03 0.30 21.22 2.62 8.59 0.44 20.06 4.58 0.07 99.91 
94 41.74 0.07 19.15 5.48 8.03 0.49 19.40 5.59 0.07 100.00 
95 41.41 0.02 19.03 5.59 7.90 0.50 18.78 6.28 0.01 99.50 
96 41.31 0.11 18.04 6.81 8.05 0.52 18.77 6.41 0.02 100.05 
97 42.17 0.24 20.28 4.13 7.77 0.44 20.30 4.77 0.06 100.16 
98 41.87 0.23 21.95 1.75 9.44 0.44 20.13 4.34 0.05 100.20 
99 41.87 0.07 19.52 4.72 8.30 0.45 19.30 5.56 0.02 99.79 

100 41.62 0.00 18.84 6.16 7.38 0.46 19.27 5.91 0.03 99.67 
101 41.71 0.35 18.99 5.51 8.16 0.47 19.45 5.38 0.08 100.10 



112 

 

No. SiO2 TiO2 Al2O3 Cr 2O3 FeO MnO MgO CaO Na2O Total 

102 41.35 0.06 17.40 7.80 7.44 0.48 19.11 6.17 0.02 99.82 
103 41.49 0.06 17.51 7.80 7.40 0.46 19.00 6.21 0.02 99.94 
104 41.48 0.24 18.92 5.88 8.06 0.47 19.40 5.40 0.05 99.89 
105 41.55 0.06 18.58 6.51 7.74 0.48 18.70 6.36 0.00 99.97 
106 41.60 0.01 18.27 6.85 7.61 0.49 18.35 6.66 0.00 99.83 
107 41.73 0.01 19.33 5.79 7.41 0.43 19.07 6.25 0.02 100.03 
108 41.72 0.25 19.87 4.87 8.12 0.49 19.72 5.24 0.04 100.33 
109 41.88 0.24 19.71 4.92 7.86 0.47 19.72 5.29 0.04 100.11 
110 41.81 0.03 19.51 5.30 8.04 0.50 19.18 5.88 0.01 100.26 
111 41.91 0.22 19.86 4.82 7.82 0.45 19.75 5.41 0.05 100.29 
112 41.69 0.22 19.23 5.29 8.38 0.48 19.18 5.79 0.03 100.29 
113 41.89 0.02 18.95 6.34 7.37 0.41 19.09 6.24 0.00 100.31 
114 41.19 0.26 18.42 6.08 8.32 0.52 18.70 6.06 0.06 99.61 
115 41.72 0.35 19.96 4.18 8.25 0.48 19.65 5.09 0.05 99.73 
116 41.24 0.12 21.61 1.82 13.87 0.39 17.20 3.88 0.07 100.20 
117 41.48 0.00 20.14 4.52 7.86 0.46 19.12 5.84 0.00 99.42 
118 41.64 0.04 18.92 6.16 7.59 0.41 19.06 6.35 0.03 100.19 
119 41.40 0.05 18.53 6.59 7.99 0.48 18.73 6.24 0.00 100.02 
120 41.90 0.01 19.70 5.23 7.11 0.39 20.03 5.87 0.00 100.23 
121 42.03 0.32 21.53 2.25 8.60 0.43 20.27 4.48 0.08 99.99 
122 41.32 0.14 17.34 7.91 7.52 0.48 18.84 6.29 0.04 99.88 
123 41.86 0.28 20.37 3.70 8.95 0.49 19.32 5.14 0.05 100.16 
124 42.01 0.29 21.31 2.62 8.42 0.42 20.07 4.70 0.07 99.90 
125 40.84 0.09 16.60 8.76 8.18 0.55 17.53 7.39 0.04 99.97 
126 41.21 0.20 18.26 6.49 8.24 0.50 18.64 6.29 0.05 99.86 
127 42.22 0.16 21.84 2.46 7.17 0.35 21.13 4.55 0.04 99.91 
128 41.19 0.09 17.79 7.54 7.60 0.44 18.21 7.01 0.00 99.87 
129 41.63 0.18 18.83 6.15 8.00 0.52 19.59 5.53 0.04 100.45 
130 41.21 0.20 18.60 6.36 7.83 0.49 19.48 5.61 0.06 99.83 
131 41.70 0.22 18.80 5.95 8.15 0.48 19.37 5.55 0.06 100.28 
132 41.85 0.29 19.90 4.36 8.48 0.50 19.62 5.24 0.06 100.30 
133 40.95 0.32 17.11 7.97 8.37 0.56 18.12 6.63 0.08 100.12 
134 41.74 0.29 19.60 4.65 8.35 0.47 19.63 5.39 0.05 100.16 
135 41.74 0.00 20.45 4.25 8.57 0.51 18.77 5.98 0.02 100.29 
136 41.83 0.29 20.03 4.27 8.20 0.44 20.00 4.86 0.06 99.99 
137 42.17 0.30 21.21 2.78 8.02 0.41 20.48 4.67 0.03 100.06 
138 41.21 0.15 18.30 6.90 7.88 0.48 19.39 5.61 0.05 99.98 
139 41.54 0.26 19.34 5.04 8.33 0.47 19.10 5.58 0.07 99.71 
140 41.27 0.05 18.30 6.83 7.91 0.47 18.72 6.15 0.02 99.72 
141 41.43 0.13 18.18 7.18 7.90 0.48 19.20 5.83 0.02 100.34 
142 41.55 0.12 19.29 5.75 8.05 0.47 19.61 5.49 0.01 100.34 
143 41.87 0.20 21.01 3.14 8.33 0.46 20.07 4.83 0.05 99.94 
144 41.14 0.09 18.67 6.33 7.93 0.48 19.34 5.59 0.02 99.60 
145 41.43 0.23 19.28 5.51 8.24 0.48 19.10 5.57 0.04 99.88 
146 41.36 0.26 19.49 5.17 7.91 0.46 19.99 5.01 0.06 99.70 
147 41.09 0.00 18.27 6.82 7.72 0.47 18.63 6.73 0.00 99.73 
148 41.70 0.30 22.05 1.74 9.29 0.42 19.95 4.39 0.07 99.91 
149 41.41 0.21 19.30 5.38 8.31 0.47 18.83 6.03 0.03 99.96 
150 41.73 0.24 20.61 3.74 7.85 0.43 20.56 4.99 0.07 100.22 
151 41.42 0.23 19.59 4.95 8.17 0.46 19.65 5.28 0.06 99.79 
152 41.68 0.19 20.98 3.25 8.56 0.47 20.10 4.83 0.06 100.11 
153 40.86 0.05 16.88 8.35 7.82 0.50 17.57 7.52 0.01 99.55 
154 41.77 0.30 20.28 4.07 8.15 0.47 20.18 4.76 0.05 100.01 
155 40.61 0.06 16.10 9.31 7.98 0.51 17.34 7.84 0.03 99.77 
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156 42.06 0.16 20.68 3.73 7.89 0.47 20.19 5.02 0.00 100.19 
157 41.67 0.24 19.77 4.87 8.42 0.48 19.65 5.15 0.07 100.32 
158 41.77 0.01 20.27 4.23 7.40 0.38 20.06 5.34 0.02 99.49 
159 42.24 0.33 21.73 2.23 8.58 0.43 20.04 4.56 0.04 100.18 
160 41.78 0.33 20.36 3.80 8.52 0.44 19.94 4.90 0.05 100.13 
161 41.65 0.29 20.38 3.80 8.27 0.45 19.97 4.73 0.06 99.59 
162 41.50 0.25 19.38 5.45 8.00 0.46 19.51 5.48 0.06 100.08 
163 41.32 0.26 19.76 4.37 8.34 0.48 19.51 5.32 0.07 99.42 
164 41.41 0.02 20.29 4.22 7.37 0.40 20.49 4.89 0.03 99.11 
165 41.90 0.18 21.76 2.38 9.00 0.45 19.98 4.59 0.02 100.25 
166 41.51 0.00 19.58 5.47 7.62 0.44 19.21 6.19 0.00 100.01 
167 41.76 0.19 21.45 2.07 11.47 0.36 18.28 4.80 0.06 100.45 
168 41.82 0.32 20.90 3.40 8.30 0.45 20.26 4.57 0.06 100.09 
169 41.76 0.18 20.18 4.34 8.17 0.47 19.70 5.30 0.00 100.09 
170 41.98 0.00 20.98 3.62 7.24 0.37 19.99 5.63 0.01 99.83 
171 40.90 0.09 18.00 7.30 8.23 0.53 18.37 6.47 0.03 99.91 
172 41.43 0.02 18.51 6.71 7.35 0.44 18.76 6.66 0.00 99.87 
173 41.44 0.11 18.91 5.80 7.96 0.45 19.26 5.90 0.02 99.84 
174 41.52 0.10 18.86 5.85 8.04 0.49 19.20 5.94 0.03 100.02 
175 41.55 0.29 20.07 4.19 8.39 0.49 19.57 5.44 0.06 100.04 
176 41.73 0.16 20.40 3.96 8.18 0.43 19.96 4.93 0.06 99.80 
177 41.33 0.19 18.61 6.48 8.02 0.52 19.23 5.70 0.05 100.13 
178 41.67 0.12 19.22 5.86 7.59 0.44 20.50 4.61 0.06 100.06 
179 42.08 0.32 21.66 2.29 8.62 0.44 20.28 4.51 0.07 100.25 
180 41.99 0.26 21.99 1.74 9.09 0.39 19.98 4.33 0.07 99.83 
181 41.96 0.18 21.78 2.26 8.36 0.44 20.46 4.49 0.04 99.96 
182 41.35 0.13 17.59 7.76 7.72 0.49 19.16 6.04 0.06 100.29 
183 41.74 0.06 19.41 5.48 8.16 0.51 19.83 4.94 0.02 100.14 
184 41.28 0.17 17.87 7.25 7.65 0.48 19.24 5.86 0.04 99.85 
185 41.44 0.16 19.12 5.68 7.91 0.47 19.49 5.59 0.04 99.88 
186 41.84 0.00 19.97 5.00 7.65 0.46 19.36 5.95 0.01 100.24 
187 40.70 0.02 16.39 9.28 8.12 0.56 17.13 7.83 0.03 100.06 
188 42.07 0.28 21.35 2.59 8.66 0.44 20.24 4.55 0.06 100.24 
189 41.87 0.29 20.74 3.27 8.10 0.44 20.32 4.71 0.06 99.78 
190 41.97 0.30 20.97 3.26 8.27 0.44 20.24 4.62 0.05 100.13 
191 41.77 0.30 19.48 4.20 8.97 0.47 19.14 5.31 0.12 99.74 
192 41.48 0.17 19.13 5.68 7.86 0.45 19.92 5.19 0.04 99.92 
193 41.54 0.08 21.65 1.92 13.91 0.31 17.39 4.09 0.04 100.94 
194 41.60 0.09 18.10 7.15 7.73 0.50 19.29 5.76 0.03 100.24 
195 41.09 0.19 17.86 7.13 7.98 0.49 18.86 6.40 0.05 100.04 
196 41.14 0.13 19.92 3.35 13.02 0.33 17.33 5.26 0.03 100.52 
197 41.86 0.16 19.76 4.82 8.07 0.49 19.87 5.13 0.02 100.15 
198 42.27 0.02 20.92 4.04 7.04 0.37 22.14 3.16 0.02 99.97 
199 41.72 0.27 19.82 4.75 8.05 0.44 19.71 5.04 0.06 99.86 
200 41.74 0.21 21.18 2.88 8.74 0.48 20.02 4.53 0.05 99.81 
201 41.85 0.04 19.24 5.89 7.69 0.47 20.74 4.18 0.06 100.16 
202 41.93 0.17 21.12 3.28 8.27 0.43 20.27 4.77 0.04 100.27 
203 41.04 0.14 18.82 6.55 7.88 0.50 19.24 5.72 0.04 99.92 
204 41.14 0.13 18.00 6.83 8.04 0.48 18.87 6.26 0.01 99.75 
205 42.11 0.24 20.98 3.31 8.12 0.44 20.13 4.80 0.06 100.20 
206 41.86 0.29 20.72 3.45 8.43 0.46 20.00 4.99 0.05 100.24 
207 41.72 0.24 19.59 4.96 8.13 0.48 19.73 5.20 0.05 100.10 
208 41.76 0.00 19.94 4.81 7.58 0.40 20.64 4.80 0.01 99.94 
209 41.47 0.29 20.32 3.76 7.88 0.44 20.16 5.09 0.08 99.49 
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210 41.52 0.06 19.46 5.52 8.09 0.50 19.16 5.87 0.01 100.19 
211 41.94 0.01 20.96 3.53 7.67 0.41 19.80 5.47 0.00 99.80 
212 41.73 0.00 19.73 5.20 7.42 0.45 19.32 6.07 0.00 99.91 
213 41.38 0.00 20.02 4.85 7.60 0.44 19.15 6.00 0.00 99.45 
214 41.58 0.36 19.15 5.41 8.05 0.49 19.75 5.33 0.08 100.19 
215 41.44 0.06 18.98 5.86 7.75 0.46 19.69 5.65 0.03 99.91 
216 41.72 0.33 20.27 3.97 8.17 0.48 20.16 5.14 0.04 100.29 
217 41.46 0.25 19.57 4.99 7.81 0.45 19.73 5.27 0.04 99.56 
218 41.54 0.30 21.57 2.24 8.82 0.44 20.28 4.42 0.05 99.65 
219 41.27 0.11 19.02 6.02 7.66 0.48 19.51 5.43 0.01 99.52 
220 41.36 0.26 19.13 5.41 8.30 0.45 19.71 5.29 0.08 99.99 
221 42.06 0.30 20.93 3.29 8.36 0.46 20.27 4.85 0.07 100.57 
222 41.67 0.25 20.99 2.97 8.53 0.46 20.21 4.53 0.08 99.69 
223 41.53 0.14 19.68 4.96 7.83 0.47 19.64 5.62 0.03 99.90 
224 41.70 0.22 20.55 3.61 8.30 0.47 20.02 4.95 0.06 99.86 
225 41.68 0.19 20.43 3.72 8.24 0.44 19.92 4.92 0.04 99.57 
226 41.33 0.35 20.18 3.67 8.45 0.46 19.74 4.84 0.05 99.06 
227 41.70 0.29 20.44 3.72 8.39 0.44 19.79 4.81 0.05 99.63 
228 41.56 0.18 20.24 4.11 8.30 0.47 19.56 5.25 0.00 99.66 
229 41.36 0.25 19.64 4.64 8.08 0.44 19.68 5.21 0.01 99.32 
230 41.24 0.31 17.58 7.55 7.63 0.48 19.09 6.10 0.08 100.05 
231 41.18 0.31 18.90 5.45 8.10 0.44 19.57 5.55 0.10 99.59 
232 41.61 0.29 18.68 6.04 8.02 0.47 19.67 5.05 0.10 99.93 
233 41.80 0.30 20.77 3.10 8.36 0.45 20.15 4.76 0.05 99.74 
234 41.78 0.01 19.74 5.12 7.64 0.45 19.56 5.73 0.02 100.05 
235 41.81 0.20 19.52 4.99 8.26 0.46 19.70 5.09 0.03 100.06 
236 41.56 0.72 19.80 3.55 7.57 0.38 19.01 7.04 0.09 99.71 
237 41.81 0.01 19.60 5.03 7.58 0.42 20.58 4.59 0.04 99.66 
238 41.27 0.11 17.34 7.87 7.75 0.49 18.61 6.28 0.02 99.74 
239 41.81 0.29 19.07 5.43 8.31 0.48 18.97 5.78 0.06 100.19 
240 41.03 0.22 18.83 5.85 8.04 0.49 19.43 5.80 0.03 99.72 
241 40.66 0.18 17.29 7.71 7.76 0.49 18.44 6.52 0.01 99.06 
242 40.92 0.25 18.73 5.48 8.14 0.46 19.31 5.58 0.06 98.94 
243 41.17 0.12 18.92 5.67 6.59 0.38 20.21 5.71 0.06 98.85 
244 41.29 0.22 20.40 3.60 8.08 0.47 19.89 4.97 0.02 98.93 
245 41.59 0.26 20.19 3.93 8.32 0.48 19.93 4.91 0.04 99.66 
246 41.66 0.21 19.95 4.21 8.18 0.46 20.01 4.79 0.07 99.54 
247 41.28 0.00 19.05 5.68 7.63 0.45 19.06 6.22 0.00 99.37 
248 41.94 0.16 21.95 1.37 10.18 0.34 19.90 4.50 0.07 100.40 
249 41.28 0.13 20.60 3.33 8.53 0.43 19.52 5.09 0.04 98.93 
250 41.75 0.12 21.65 2.19 8.71 0.45 20.33 4.53 0.02 99.74 
251 41.11 0.04 19.07 5.57 7.94 0.46 18.54 6.48 0.02 99.22 
252 40.75 0.12 17.35 7.65 7.38 0.49 18.75 6.20 0.03 98.72 
253 40.90 0.11 17.89 7.04 7.57 0.45 18.98 5.92 0.02 98.87 
254 40.81 0.19 17.08 7.88 8.03 0.49 18.36 6.45 0.06 99.32 
255 41.40 0.08 18.99 5.72 7.68 0.49 19.20 5.58 0.04 99.18 
256 40.97 0.03 17.98 7.05 8.05 0.48 18.46 6.45 0.02 99.48 
257 41.60 0.24 19.64 4.85 8.04 0.46 19.68 5.10 0.06 99.67 
258 41.78 0.26 19.71 4.89 8.00 0.45 19.29 5.09 0.06 99.54 
259 41.64 0.25 19.52 4.87 8.11 0.47 19.55 5.08 0.06 99.55 
260 41.37 0.16 18.28 6.67 7.72 0.49 19.07 6.02 0.03 99.80 
261 41.66 0.18 19.76 4.54 8.09 0.45 20.00 4.87 0.06 99.60 
262 41.44 0.06 19.27 5.42 8.13 0.48 19.26 5.80 0.02 99.86 
263 41.47 0.06 18.98 6.14 8.00 0.44 19.43 5.62 0.04 100.17 
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264 41.43 0.07 19.31 5.36 7.68 0.46 19.90 5.38 0.03 99.61 
265 41.89 0.00 21.80 2.16 8.53 0.58 19.58 5.01 0.03 99.58 
266 41.69 0.18 19.56 5.01 8.34 0.46 19.26 5.57 0.03 100.10 
267 41.81 0.10 19.95 4.49 7.90 0.43 20.04 5.23 0.06 100.01 
268 41.97 0.03 19.93 4.83 7.39 0.42 19.70 5.90 0.00 100.15 
269 41.80 0.26 20.04 4.05 8.28 0.46 19.92 5.04 0.02 99.87 
270 41.60 0.06 21.99 1.40 14.25 0.34 17.33 3.58 0.06 100.62 
271 40.95 0.17 20.40 2.69 9.33 0.64 15.57 10.34 0.05 100.14 
272 41.81 0.01 20.52 3.89 7.74 0.41 19.47 5.58 0.04 99.45 
273 41.42 0.17 18.16 6.76 7.95 0.51 18.99 5.76 0.04 99.76 
274 42.04 0.18 22.01 1.82 9.01 0.42 20.08 4.48 0.05 100.09 
275 41.43 0.09 17.49 7.67 8.25 0.51 18.26 6.46 0.03 100.20 
276 41.21 0.09 17.34 7.76 8.11 0.51 18.53 6.50 0.03 100.06 
277 41.91 0.08 19.37 5.55 7.73 0.48 21.16 3.68 0.01 99.98 
278 41.52 0.08 21.23 2.57 11.93 0.19 16.02 7.17 0.02 100.73 
279 41.77 0.19 19.44 5.08 8.01 0.50 19.37 5.28 0.04 99.68 
280 41.17 0.16 17.69 7.28 8.03 0.49 18.57 6.36 0.04 99.79 
281 42.31 0.17 21.26 2.91 8.49 0.45 19.97 4.71 0.05 100.32 
282 41.08 0.06 17.16 7.90 7.78 0.50 17.71 7.58 0.00 99.76 
283 41.86 0.18 21.76 1.70 10.83 0.49 18.54 5.07 0.04 100.47 
284 41.30 0.03 18.86 5.88 7.95 0.51 20.23 4.31 0.02 99.07 
285 41.68 0.28 19.38 5.19 8.26 0.50 19.58 5.41 0.06 100.32 
286 41.87 0.26 20.84 3.29 8.35 0.45 20.01 4.87 0.07 100.01 
287 41.56 0.25 19.21 5.20 8.46 0.50 19.32 5.12 0.09 99.70 
288 42.06 0.16 20.32 4.01 7.89 0.43 20.04 4.94 0.03 99.89 
289 41.33 0.23 18.46 5.93 8.12 0.48 19.13 5.87 0.07 99.61 
290 41.69 0.24 18.74 5.79 8.07 0.48 19.20 5.80 0.04 100.04 
291 41.64 0.00 20.42 4.04 7.53 0.40 19.95 5.71 0.00 99.70 
292 42.21 0.00 20.63 3.80 7.78 0.42 19.96 5.53 0.01 100.34 
293 41.40 0.06 19.10 5.71 8.13 0.52 18.93 5.71 0.00 99.56 
294 41.97 0.00 19.91 4.64 7.70 0.42 19.30 5.93 0.00 99.86 
295 41.31 0.25 17.28 7.72 7.94 0.51 18.65 6.56 0.08 100.29 
296 42.23 0.00 20.13 4.80 7.38 0.42 20.96 4.08 0.03 100.02 
297 42.10 0.00 20.25 4.54 7.30 0.41 21.25 3.86 0.02 99.74 
298 41.33 0.37 18.54 5.83 8.41 0.49 19.65 4.81 0.09 99.51 
299 41.80 0.19 19.90 4.50 7.82 0.47 19.93 5.07 0.02 99.71 
300 41.64 0.10 18.39 6.74 8.22 0.47 19.28 5.31 0.07 100.21 
301 42.02 0.02 19.32 5.56 7.28 0.42 19.73 5.73 0.00 100.08 
302 41.66 0.27 18.55 6.10 8.20 0.49 18.98 5.59 0.06 99.90 
303 41.76 0.19 19.95 4.59 8.18 0.48 19.53 5.20 0.06 99.95 
304 41.34 0.03 19.38 5.43 8.15 0.51 18.52 6.30 0.04 99.70 
305 41.58 0.22 19.61 4.75 8.20 0.49 19.68 5.26 0.10 99.88 
306 42.07 0.15 22.19 1.40 10.54 0.38 19.65 4.07 0.03 100.48 
307 41.90 0.19 19.35 5.48 7.41 0.47 19.55 5.70 0.05 100.09 
308 41.61 0.29 20.62 3.36 8.55 0.45 20.05 4.71 0.04 99.67 
309 41.93 0.27 19.99 4.48 8.21 0.48 20.03 4.80 0.03 100.22 
310 42.02 0.26 20.44 3.69 8.12 0.44 19.78 4.97 0.06 99.77 
311 41.94 0.01 20.32 4.34 7.44 0.42 19.69 5.48 0.00 99.63 
312 42.11 0.14 21.70 2.34 9.09 0.46 19.98 4.46 0.03 100.32 
313 41.40 0.01 18.89 5.94 7.70 0.44 18.77 6.44 0.01 99.60 
314 41.17 0.15 15.97 9.31 7.63 0.46 18.83 6.29 0.05 99.86 
315 42.06 0.30 21.06 2.96 8.80 0.46 19.94 4.73 0.06 100.36 
316 41.72 0.00 19.39 5.45 7.22 0.39 19.33 6.19 0.00 99.69 
317 42.42 0.22 21.42 2.77 8.27 0.49 20.77 3.81 0.06 100.22 
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No. SiO2 TiO2 Al2O3 Cr 2O3 FeO MnO MgO CaO Na2O Total 

318 41.44 0.01 18.41 6.40 8.25 0.54 19.36 5.35 0.02 99.79 
319 41.73 0.17 18.63 6.30 8.01 0.49 19.00 5.88 0.05 100.25 
320 41.63 0.01 19.86 4.59 8.04 0.51 18.94 5.99 0.00 99.56 
321 42.39 0.06 22.37 1.63 7.71 0.36 20.58 5.18 0.02 100.29 
322 41.39 0.05 18.05 6.75 7.53 0.45 18.85 6.85 0.00 99.92 
323 41.29 0.00 20.14 4.18 7.91 0.46 19.35 5.55 0.02 98.91 
324 41.43 0.02 20.11 4.16 7.95 0.44 19.57 5.58 0.00 99.26 
325 41.63 0.33 20.59 3.37 8.45 0.45 19.91 4.79 0.07 99.59 
326 41.96 0.35 20.85 3.09 8.08 0.44 20.52 4.37 0.08 99.75 
327 41.26 0.13 16.98 8.23 7.88 0.50 18.44 6.49 0.04 99.94 
328 41.37 0.14 19.83 4.24 8.57 0.48 19.63 4.87 0.05 99.18 
329 41.21 0.28 19.07 5.31 8.39 0.51 19.61 5.20 0.04 99.61 
330 41.84 0.29 20.13 4.15 8.27 0.46 20.13 4.88 0.07 100.22 
331 41.60 0.01 19.93 4.69 8.23 0.49 19.06 5.86 0.00 99.87 
332 41.95 0.12 20.15 4.33 8.35 0.48 19.68 5.09 0.02 100.17 
333 41.39 0.19 19.28 5.18 8.00 0.47 19.76 5.33 0.09 99.68 
334 42.22 0.23 21.74 1.97 8.53 0.42 20.29 4.35 0.04 99.78 
335 42.20 0.16 22.40 1.38 8.62 0.40 20.45 4.13 0.06 99.79 
336 42.25 0.23 22.17 1.50 8.70 0.41 20.51 4.26 0.09 100.11 
337 41.80 0.04 19.96 4.52 7.41 0.41 20.55 4.59 0.01 99.29 
338 41.03 0.20 18.23 6.50 7.75 0.48 19.70 5.40 0.07 99.36 
339 41.64 0.19 18.82 5.64 8.22 0.50 19.22 5.90 0.05 100.18 
340 41.62 0.21 19.10 5.81 7.67 0.46 19.72 5.36 0.06 100.01 
341 41.59 0.02 18.67 6.38 7.75 0.47 19.66 5.37 0.04 99.95 
342 41.64 0.20 19.32 5.05 8.37 0.48 19.23 5.53 0.07 99.88 
343 41.78 0.18 19.34 5.32 7.94 0.49 19.58 5.38 0.05 100.07 
344 41.60 0.22 19.57 4.94 7.84 0.47 20.00 5.15 0.04 99.82 
345 41.75 0.03 18.36 6.69 7.51 0.43 19.68 5.65 0.03 100.14 
346 41.64 0.12 19.74 4.64 8.36 0.48 19.40 5.58 0.04 99.98 
347 41.85 0.21 20.81 3.09 8.88 0.48 19.55 4.99 0.05 99.90 
348 42.15 0.24 20.52 3.71 7.87 0.43 20.14 4.95 0.07 100.09 
349 41.66 0.06 19.86 4.86 7.84 0.42 19.19 6.06 0.04 99.99 
350 42.09 0.15 20.93 3.25 8.14 0.35 20.23 5.22 0.06 100.41 
351 40.86 0.39 16.79 7.71 8.91 0.55 17.47 7.16 0.07 99.91 
352 41.98 0.06 21.10 2.95 8.83 0.51 20.00 4.40 0.08 99.91 
353 41.63 0.00 18.32 6.73 7.35 0.43 19.00 6.55 0.02 100.02 
354 41.47 0.17 18.87 5.89 7.92 0.48 19.43 5.49 0.06 99.77 
355 41.60 0.29 19.10 5.16 8.49 0.50 19.42 5.46 0.10 100.10 
356 41.57 0.02 18.78 6.16 7.91 0.48 18.66 6.26 0.02 99.87 
357 42.14 0.36 20.96 3.25 8.46 0.44 20.07 4.71 0.07 100.46 
358 41.59 0.01 18.55 6.44 7.59 0.46 19.42 5.71 0.01 99.77 
359 41.75 0.17 19.53 5.27 7.85 0.47 19.59 5.43 0.05 100.10 
360 41.42 0.09 17.64 7.47 8.08 0.50 18.52 6.31 0.04 100.06 
361 40.98 0.15 18.18 6.57 8.06 0.49 18.99 6.23 0.03 99.68 
362 41.38 0.00 19.54 5.12 7.42 0.43 19.61 5.85 0.00 99.35 
363 41.54 0.27 19.78 4.40 8.08 0.42 19.74 5.28 0.09 99.60 
364 41.60 0.02 19.40 5.33 8.18 0.49 18.75 6.17 0.04 99.97 
365 41.98 0.18 20.73 3.59 8.07 0.44 20.24 4.95 0.04 100.21 
366 42.19 0.01 21.51 2.87 7.12 0.28 20.88 5.11 0.00 99.96 
367 41.71 0.01 19.84 4.94 7.77 0.43 19.31 6.01 0.01 100.03 
368 41.77 0.04 19.36 5.41 8.36 0.55 18.33 6.11 0.02 99.95 
369 42.33 0.32 20.85 3.26 8.39 0.43 20.12 4.54 0.06 100.29 
370 41.44 0.09 18.13 6.95 8.03 0.50 18.86 6.10 0.05 100.14 
371 42.14 0.20 21.17 2.64 7.79 0.37 20.24 5.09 0.07 99.73 
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No. SiO2 TiO2 Al2O3 Cr 2O3 FeO MnO MgO CaO Na2O Total 

372 42.75 0.10 23.14 0.54 8.73 0.27 21.10 3.87 0.06 100.56 
373 42.23 0.21 20.96 3.23 7.89 0.44 20.39 4.84 0.05 100.24 
374 42.16 0.00 20.97 3.38 7.78 0.42 20.19 5.24 0.05 100.18 
375 40.89 0.02 18.50 6.07 7.75 0.49 18.48 6.58 0.02 98.80 
376 41.54 0.13 19.97 4.23 8.33 0.47 19.36 5.19 0.06 99.27 
377 42.12 0.33 20.75 3.14 8.56 0.45 19.95 4.62 0.05 99.94 
378 42.14 0.24 20.91 3.19 7.96 0.43 20.19 4.86 0.06 99.97 
379 41.14 0.03 19.32 5.03 8.20 0.51 18.75 6.03 0.01 99.02 
380 41.56 0.10 18.87 5.90 8.17 0.51 19.20 5.77 0.05 100.13 
381 42.21 0.19 21.64 2.39 8.88 0.43 20.02 4.61 0.05 100.41 
382 41.45 0.07 18.18 7.00 7.49 0.48 18.48 6.80 0.03 99.97 
383 41.81 0.00 19.38 5.43 7.69 0.47 19.08 6.25 0.01 100.12 
384 41.56 0.19 19.35 4.82 9.53 0.53 19.03 5.16 0.04 100.19 
385 41.54 0.28 18.85 5.66 7.95 0.49 19.18 5.46 0.06 99.46 
386 41.07 0.20 18.58 5.53 8.47 0.51 19.16 5.67 0.06 99.25 
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SUPPLEMENTARY TABLE 2 

Major and trace element composition of selected garnets and associated minerals from the 

Zagadochnaya kimberlite. Estimated pressures and temperatures are also reported. 

Notes and abbreviations: 

mg#: 100*Mg/(Mg + Fetot)mol; 

Cr#: 100*Cr/(Cr + Al)mol; 
b.d.l.: below detection limit; 
---: not analyzed; 

ZrPM: primitive mantle-normalized concentration after McDonough and Sun (1995); 

LaCI: condrite-normalized concentration after Anders and Grevesse (1989); 

Ti* : (EuPM+GdPM)/2; 
Cpx: clinopyroxene 
Grt: garnet; 
incl: inclusion; 
intergr: intergrowth. 
Ry96: Ni-in-garnet themometer of Ryan et al. (1996) 
Ca99: Ni-in-garnet themometer of Canil (1999) 
NT00: Single-clinopyroxene thermobarometer of Nimis and Taylor (2000) 
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Group A garnets 

Sample Z4-2 Z4-10 z5-02 Z5-11 Z5-15 Z6-2 Z6-14 
Notes        
SiO2 42.11 41.68 41.53 42.10 42.81 41.66 42.03 
TiO2 0.30 0.29 0.17 0.32 0.14 0.24 0.16 
Al2O3 21.90 20.57 20.30 21.15 23.03 20.85 21.97 
Cr2O3 2.85 4.41 5.18 4.11 1.30 4.42 2.56 
FeOtot 8.66 8.55 8.26 8.75 8.54 8.48 8.50 
MnO 0.39 0.36 0.29 0.38 0.39 0.27 0.42 
MgO 20.46 19.68 19.76 19.86 20.68 19.95 20.03 
CaO 4.54 5.01 5.03 4.78 4.42 4.99 4.57 
Na2O 0.06 0.03 0.00 0.05 0.04 0.06 0.07 
K 2O 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
SUM 101.27 100.58 100.53 101.51 101.35 100.90 100.31 
        
Mg#  80.8 80.4 81.0 80.2 81.2 80.7 80.8 
Cr# 8.0 12.6 14.6 11.5 3.6 12.4 7.3 
T(°C)-Ry96 853 839 822 838 811 813 816 
T(°C)-Ca99 952 942 929 941 922 923 903 
        
Li  b.d.l. 0.51 0.21 b.d.l. b.d.l. b.d.l. 0.48 
B b.d.l. b.d.l. 3.58 1.81 b.d.l. 1.83 0.58 
Ti  1637 1658 926 1696 740 1250 1029 
Co 44.6 42.2 40.2 40.3 40.9 38.9 40.3 
Ni 26.3 24.8 23.0 24.7 22.0 22.2 22.4 
Zn 11.3 9.41 11.3 10.2 9.41 9.35 9.58 
Sc 81.6 105 133 101 83.2 85.2 96.2 
V 197 231 236 210 176 211 169 
Rb b.d.l. 0.046 0.071 0.081 b.d.l. b.d.l. b.d.l. 
Sr 0.18 0.16 0.084 0.11 0.10 0.12 0.071 
Y 16.0 13.4 17.4 15.8 25.4 10.1 19.0 
Zr  23.2 17.6 11.4 18.5 19.7 14.4 24.6 
Nb 0.020 0.029 0.082 0.019 0.024 0.052 0.026 
Cs b.d.l. 0.004 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 
Ba b.d.l. b.d.l. b.d.l. b.d.l. 0.33 0.098 0.040 
La 0.010 0.008 0.008 b.d.l. 0.007 0.015 b.d.l. 
Ce 0.052 0.080 0.073 0.040 0.066 0.10 0.028 
Pr 0.019 0.054 0.028 0.039 0.016 0.024 0.025 
Nd 0.35 0.58 0.36 0.47 0.26 0.38 0.32 
Sm 0.51 0.57 0.43 0.62 0.35 0.54 0.67 
Eu 0.35 0.34 0.22 0.32 0.26 0.30 0.47 
Gd 1.53 1.18 1.13 1.29 1.08 1.24 1.55 
Tb 0.34 0.30 0.30 0.29 0.32 0.24 0.31 
Dy 2.66 2.083 2.55 2.78 2.96 1.82 2.80 
Ho 0.61 0.52 0.63 0.63 1.01 0.37 0.73 
Er 2.09 1.504 2.36 1.80 2.83 1.11 2.40 
Tm 0.28 0.22 0.35 0.28 0.52 0.17 0.36 
Yb 2.22 1.96 3.29 2.01 4.04 1.32 3.00 
Lu 0.30 0.29 0.59 0.32 0.71 0.19 0.49 
Hf 0.47 0.59 0.38 0.31 0.36 0.31 0.34 
Ta b.d.l. b.d.l. b.d.l. b.d.l. 0.008 b.d.l. b.d.l. 
Pb 0.016 0.019 b.d.l. b.d.l. b.d.l. 0.147 b.d.l. 
Th b.d.l. 0.003 0.005 0.007 0.008 b.d.l. b.d.l. 
U b.d.l. 0.011 0.009 b.d.l. 0.005 0.015 0.009 
        
LaCI/SmCI 0.012 0.009 0.012  0.012 0.018  
SmCI/YbCI 0.25 0.32 0.15 0.34 0.10 0.45 0.25 
TiPM /Ti *  0.54 0.63 0.44 0.64 0.33 0.49 0.29 
Zr PM /HfPM  1.33 0.81 0.81 1.63 1.49 1.27 1.94 
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Group B garnets and associated secondary low-(Ca, Cr) domains (sec.). 

Sample Z4-3 Z4-3 Z4-7 Z4-7 Z4-9 Z4-9 Z5-5 Z5-5 
Notes  sec.  sec.  sec.  sec. 
SiO2 41.47 41.47 41.70 42.67 41.69 41.89 41.55 41.14 
TiO2 0.17 0.13 0.16 0.09 0.21 0.09 0.11 0.08 
Al2O3 19.03 20.15 19.60 21.36 19.22 19.48 19.36 20.87 
Cr2O3 6.92 5.14 5.78 3.86 6.20 6.18 5.36 4.39 
FeOtot 8.25 8.52 8.22 8.16 8.27 8.22 7.94 8.17 
MnO 0.33 0.48 0.39 0.45 0.31 0.36 0.40 0.44 
MgO 18.73 19.51 19.33 20.44 19.30 20.11 18.80 20.10 
CaO 6.10 5.18 5.32 4.18 5.63 4.53 5.20 4.79 
Na2O 0.01 0.05 0.00 0.07 0.04 0.07 0.00 0.02 
K 2O 0.00 0.01 0.00 0.01 0.00 0.00 0.26 0.00 
SUM 101.01 100.64 100.50 101.30 100.87 100.94 98.97 99.98 
         
Mg#  80.2 80.3 80.7 81.7 80.6 81.4 80.9 81.4 
Cr# 19.6 14.6 16.5 10.8 17.8 17.5 15.7 12.4 
T(°C)-Ry96 840  692  810  798  
T(°C)-Ca99 943  831  921  912  
         
Li  0.42 6.54 b.d.l. b.d.l. b.d.l. 0.47 0.34 0.43 
B 1.55 7.98 b.d.l. 1.43 b.d.l. b.d.l. 1.57 1.71 
Ti  945 778 999 528 1099 595 695 519 
Co 40.2 40.4 36.6 38.1 38.1 43.9 36.0 37.6 
Ni 24.9 51.2 12.0 36.3 21.8 26.9 20.7 22.6 
Zn 8.39 15.8 4.29 15.7 8.46 9.59 7.57 7.55 
Sc 145 159 160 167 116 114 112 149 
V 299 201 228 126 237 156 211 168 
Rb 0.057 0.96 0.11 1.18 0.083 0.09 0.069 b.d.l. 
Sr 0.63 23.8 0.79 2.46 0.12 1.01 0.23 4.62 
Y 9.78 15.9 12.8 27.0 8.28 10.9 7.76 35.7 
Zr  15.4 34.2 20.0 56.5 31.1 68.7 11.6 68.3 
Nb 0.200 11.6 0.069 0.92 0.11 0.63 0.084 1.20 
Cs b.d.l. 0.011 b.d.l. 0.025 b.d.l. 0.006 b.d.l. b.d.l. 
Ba 0.37 22.7 9.22 85.7 b.d.l. 0.99 0.18 2.66 
La 0.090 2.68 0.071 0.24 0.006 0.15 0.034 0.45 
Ce 0.98 7.41 1.01 0.98 0.14 1.02 0.16 1.76 
Pr 0.49 1.03 0.39 0.25 0.053 0.37 0.092 0.403 
Nd 4.67 7.16 2.91 3.50 0.96 4.02 1.34 4.43 
Sm 1.59 3.40 1.20 3.46 0.69 3.42 0.88 4.60 
Eu 0.50 1.35 0.52 1.86 0.29 1.36 0.36 2.43 
Gd 1.52 3.43 1.58 6.77 0.93 3.02 1.18 8.42 
Tb 0.27 0.61 0.33 1.40 0.17 0.37 0.22 1.31 
Dy 1.46 3.37 1.95 6.14 1.40 2.11 1.29 8.26 
Ho 0.39 0.71 0.52 0.97 0.39 0.38 0.27 1.48 
Er 1.23 1.41 1.52 2.18 1.06 1.34 0.87 2.64 
Tm 0.22 0.25 0.26 0.34 0.15 0.19 0.13 0.41 
Yb 1.63 2.2 1.76 2.23 1.35 1.56 0.99 3.24 
Lu 0.26 0.34 0.25 0.36 0.21 0.31 0.19 0.42 
Hf 0.35 0.42 0.48 0.35 0.68 0.53 0.31 0.41 
Ta 0.004 0.305 0.007 0.046 b.d.l. 0.065 0.003 0.08 
Pb 0.040 0.82 0.022 0.19 0.042 0.054 b.d.l. 0.264 
Th 0.068 1.33 0.015 0.025 0.003 0.038 0.018 0.044 
U 0.074 1.04 b.d.l. 0.053 0.015 0.046 0.016 0.057 
         
LaCI/SmCI 0.036 0.494 0.037 0.044 0.006 0.028 0.024 0.061 
SmCI/YbCI 1.08 1.71 0.75 1.71 0.56 2.42 0.98 1.57 
TiPM /Ti *  0.26 0.09 0.26 0.04 0.51 0.07 0.26 0.03 
Zr PM /HfPM  1.19 2.18 1.13 4.31 1.23 3.53 1.02 4.49 
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Group B garnets and associated secondary low-(Ca, Cr) domains (sec.). 

Sample Z5-6 Z5-13 Z6-12 Z6-12 Z6-17 
Notes    sec.  
SiO2 41.35 41.84 41.18 41.92 41.41 
TiO2 0.35 0.06 0.12 0.08 0.25 
Al2O3 19.21 18.44 19.80 21.52 18.55 
Cr2O3 6.67 7.63 5.82 3.75 7.17 
FeOtot 7.14 7.98 8.34 8.26 7.88 
MnO 0.19 0.35 0.47 0.46 0.33 
MgO 20.76 19.28 19.26 20.61 18.59 
CaO 4.99 5.47 5.06 4.39 5.96 
Na2O 0.00 0.00 0.04 0.00 0.05 
K 2O 0.00 0.01 0.00 0.02 0.00 
SUM 100.67 101.06 100.10 101.00 100.20 
      
Mg#  83.8 81.2 80.4 81.6 80.8 
Cr# 18.9 21.7 16.5 10.5 20.6 
T(°C)-Ry96 1020 792 812  827 
T(°C)-Ca99 1065 907 922  933 
      
Li  b.d.l. b.d.l. 0.99 0.12 0.19 
B 2.05 0.98 1.95 1.69 8.193 
Ti  1715 407 1294 618 1185 
Co 38.8 35.3 34.3 37.9 38.8 
Ni 48.3 20.1 22.0 20.4 23.6 
Zn 10.1 7.28 9.2 8.75 7.79 
Sc 128 168 117 150 133 
V 288 241 218 113 290 
Rb 0.12 b.d.l. 0.28 0.037 b.d.l. 
Sr 0.59 0.15 3.10 0.49 0.21 
Y 6.79 3.17 10.3 78.3 8.57 
Zr  21.4 8.7 22.5 49.5 29.4 
Nb 0.26 0.20 1.75 0.24 0.26 
Cs b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 
Ba 0.31 b.d.l. 2.62 0.15 0.026 
La 0.072 0.039 1.45 0.043 0.044 
Ce 0.74 0.37 2.15 0.55 0.34 
Pr 0.25 0.12 0.32 0.20 0.18 
Nd 2.02 1.22 2.20 2.84 2.10 
Sm 0.79 0.40 1.46 3.03 1.29 
Eu 0.33 0.21 0.49 1.71 0.55 
Gd 1.12 0.56 1.71 6.81 1.38 
Tb 0.17 0.11 0.29 1.64 0.24 
Dy 1.29 0.66 1.48 13.4 1.69 
Ho 0.25 0.12 0.38 3.11 0.32 
Er 0.72 0.47 1.26 9.50 0.95 
Tm 0.11 0.057 0.19 1.30 0.15 
Yb 0.83 0.55 1.18 10.31 1.32 
Lu 0.14 0.13 0.27 1.56 0.21 
Hf 0.53 0.22 0.48 0.53 0.81 
Ta 0.023 0.007 0.096 0.021 0.018 
Pb b.d.l. 0.038 0.192 0.028 0.091 
Th 0.029 0.012 0.23 0.040 0.009 
U 0.035 0.029 0.097 0.033 0.025 
      
LaCI/SmCI 0.057 0.061 0.624 0.009 0.021 
SmCI/YbCI 1.04 0.80 1.37 0.32 1.08 
TiPM /Ti *  0.68 0.28 0.39 0.04 0.32 
Zr PM /HfPM  1.09 1.08 1.27 2.50 0.98 
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Group C garnets and associated secondary low-(Ca,Cr) domains (sec.). 

Sample Z4-1 Z4-1 Z4-4 Z4-4 Z4-6 Z4-8 Z4-8 Z5-10 Z5-10 Z5-14 
Notes  sec.  sec.   sec.  sec.  
SiO2 41.07 42.10 40.96 41.58 41.28 41.38 42.06 41.72 41.91 41.49 
TiO2 0.28 0.15 0.04 0.01 0.16 0.06 0.05 0.16 0.05 0.05 
Al2O3 17.70 20.94 17.78 20.37 18.02 18.58 20.12 17.94 19.23 17.69 
Cr2O3 7.99 4.41 8.36 5.04 8.27 7.28 4.69 8.13 7.07 8.64 
FeOtot 8.11 8.20 8.58 8.49 7.99 8.10 8.01 8.04 8.24 8.23 
MnO 0.31 0.49 0.35 0.49 0.30 0.38 0.42 0.35 0.39 0.32 
MgO 18.80 20.64 17.78 19.68 18.82 19.03 19.47 18.34 18.98 17.40 
CaO 6.36 4.15 6.95 5.06 6.15 6.24 4.34 6.32 5.77 7.38 
Na2O 0.04 0.03 0.01 0.00 0.01 0.08 0.13 0.06 0.07 0.02 
K 2O 0.00 0.01 0.01 0.02 0.00 0.00 0.06 0.01 0.00 0.00 
SUM 100.66 101.12 100.82 100.73 100.99 101.12 99.35 101.06 101.70 101.21 
           
Mg#  80.5 81.8 78.7 80.5 80.8 80.7 81.3 80.3 80.4 79.0 
Cr# 23.2 12.4 24.0 14.2 23.5 20.8 13.5 23.3 19.8 24.7 
T(°C)-Ry96 822  738  857 802  805  804 
T(°C)-Ca99 930  867  954 915  917  916 
           
Li  b.d.l. b.d.l. b.d.l. b.d.l. 0.14 b.d.l. b.d.l. b.d.l. b.d.l. 0.11 
B b.d.l. b.d.l. 0.99 2.03 1.35 0.68 1.71 1.26 1.4 1.05 
Ti  1415 786 161 141 890 454 199 806 433 384 
Co 38.1 42.8 24.3 31.8 40.2 38.7 37.4 36.1 45.9 35.4 
Ni 23.0 23.8 15.4 70.1 26.7 21.0 20.3 21.3 23.8 21.2 
Zn 9.22 9.57 6.63 10.7 10.8 8.03 8.83 8.29 11.07 8.63 
Sc 140 162 115 152 116 204 218 133 169 185 
V 273 159 227 172 273 243 130 293 199 313 
Rb 0.041 0.037 0.21 2.94 0.22 b.d.l. b.d.l. 0.11 0.18 0.047 
Sr 0.21 0.29 0.36 3.32 0.68 0.32 0.55 0.13 3.69 0.13 
Y 6.27 25.4 0.71 44.3 7.94 2.24 17.5 2.39 41.3 1.63 
Zr  20.1 39.4 6.2 61.3 18.8 15.4 45.9 18.4 57.7 5.7 
Nb 0.19 0.23 0.44 2.01 0.061 0.21 0.30 0.10 1.09 0.13 
Cs 0.008 0.007 0.006 0.072 b.d.l. b.d.l. 0.012 b.d.l. b.d.l. 0.008 
Ba 0.024 0.36 12.8 238 9.26 0.22 0.41 0.15 3.03 b.d.l. 
La 0.025 0.050 0.041 0.26 0.10 0.087 0.083 0.012 0.62 0.042 
Ce 0.30 0.44 0.24 1.39 0.82 0.67 0.68 0.17 1.89 0.25 
Pr 0.13 0.24 0.11 0.45 0.42 0.21 0.23 0.10 0.36 0.074 
Nd 1.44 2.78 1.22 4.36 4.64 1.96 4.19 1.76 4.34 0.55 
Sm 1.00 3.24 0.46 3.97 1.96 0.85 3.99 1.86 3.97 0.37 
Eu 0.48 1.75 0.18 2.06 0.69 0.30 1.84 0.46 1.91 0.13 
Gd 1.58 5.66 0.31 6.86 1.65 0.72 5.26 1.5 7.01 0.33 
Tb 0.28 1.09 0.036 1.30 0.31 0.11 0.80 0.11 1.42 0.027 
Dy 1.59 6.18 0.18 9.11 1.77 0.49 4.41 0.40 8.66 0.25 
Ho 0.29 1.01 0.023 1.86 0.29 0.087 0.70 0.094 1.58 0.072 
Er 0.60 2.02 0.057 4.46 0.55 0.21 1.43 0.18 3.64 0.18 
Tm 0.059 0.24 0.005 0.56 0.11 0.028 0.19 0.035 0.47 0.030 
Yb 0.45 1.57 0.074 5.92 0.46 0.50 1.08 0.34 4.00 0.60 
Lu 0.079 0.22 0.021 0.52 0.059 0.09 0.21 0.063 0.56 0.083 
Hf 0.32 0.34 0.15 0.91 0.36 0.43 0.28 0.24 0.44 0.09 
Ta 0.002 0.006 0.022 0.11 b.d.l. 0.006 0.032 0.007 0.084 0.008 
Pb 0.13 b.d.l. 0.02 b.d.l. b.d.l. 0.050 0.061 b.d.l. 0.046 b.d.l. 
Th 0.004 0.009 0.015 0.06 0.075 0.019 0.035 0.015 0.103 0.008 
U 0.004 0.021 0.036 0.304 0.097 0.023 0.026 0.041 0.082 0.030 
           
LaCI/SmCI 0.015 0.010 0.056 0.041 0.033 0.064 0.013 0.004  0.071 
SmCI/YbCI 2.42 2.27 6.87 0.74 4.70 1.89 4.08 5.97 1.10 0.68 
TiPM /Ti *  0.39 0.06 0.16 0.01 0.20 0.23 0.02 0.23 0.03 0.44 
Zr PM /HfPM  1.69 3.11 1.14 1.82 1.41 0.96 4.48 2.04 3.52 1.70 
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Group C garnets and associated secondary low-(Ca,Cr) domains . 

Sample Z6-9 Z6-9 Z6-10 Z6-10 Z6-11 
Notes  sec.  sec.  
SiO2 41.49 42.31 41.45 42.34 41.13 
TiO2 0.17 0.05 0.14 0.01 0.09 
Al2O3 18.17 20.94 18.39 21.42 18.26 
Cr2O3 8.06 4.24 7.76 3.97 7.83 
FeOtot 7.54 7.54 7.80 7.99 7.67 
MnO 0.30 0.36 0.39 0.43 0.38 
MgO 18.85 21.08 18.47 20.40 18.06 
CaO 6.33 4.29 6.49 4.36 6.88 
Na2O 0.07 0.04 0.09 0.02 0.03 
K 2O 0.00 0.00 0.00 0.01 0.01 
SUM 100.97 100.85 100.97 100.95 100.34 
      
Mg#  81.7 83.3 80.8 82.0 80.8 
Cr# 22.9 12.0 22.1 11.1 22.3 
T(°C)-Ry96 830  728  811 
T(°C)-Ca99 935  859  922 
      
Li  b.d.l. 0.31 0.24 0.62 b.d.l. 
B 0.98 0.38 1.62 b.d.l. 0.47 
Ti  852 295 483 269 374 
Co 38.8 43.9 25.9 56.5 37.5 
Ni 23.8 29.9 14.6 30.6 21.9 
Zn 9.290 8.660 5.95 12.9 7.255 
Sc 143 132 135 278 358 
V 261 154 198 217 202 
Rb 0.051 0.33 0.13 0.079 0.052 
Sr 0.94 4.36 0.56 0.83 0.20 
Y 5.85 12.9 2.04 13.9 4.76 
Zr  43.3 59.3 13.5 59.3 43.4 
Nb 0.64 2.57 0.20 0.37 0.21 
Cs  0.009 0.002 b.d.l. b.d.l. 
Ba 0.83 7.57 0.14 0.082 b.d.l. 
La 0.12 0.26 0.091 0.13 0.093 
Ce 0.54 1.32 0.34 0.83 0.66 
Pr 0.24 0.35 0.083 0.51 0.20 
Nd 2.33 3.77 1.26 4.66 2.24 
Sm 1.38 2.40 0.72 3.98 1.61 
Eu 0.41 1.22 0.17 1.68 0.66 
Gd 0.97 3.51 0.33 6.45 1.77 
Tb 0.15 0.58 0.060 0.84 0.29 
Dy 0.97 2.80 0.37 4.37 1.18 
Ho 0.23 0.55 0.082 0.58 0.18 
Er 0.69 1.21 0.21 1.1 0.37 
Tm 0.10 0.16 0.042 0.13 0.035 
Yb 1.07 1.40 0.42 0.82 0.26 
Lu 0.17 0.24 0.11 0.23 0.036 
Hf 0.69 0.43 0.33 0.21 0.88 
Ta 0.016 0.18 0.004 b.d.l. 0.003 
Pb 0.056 0.16 0.065 0.21 b.d.l. 
Th 0.067 0.076 0.028 0.057 0.026 
U 0.045 0.062 0.044 0.084 0.073 
      
LaCI/SmCI 0.055 0.068 0.080 0.021 0.036 
SmCI/YbCI 2.42 1.89 1.88 5.36 6.86 
TiPM /Ti *  0.32 0.03 0.47 0.02 0.08 
Zr PM /HfPM  1.68 3.70 1.09 7.76 1.33 
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Garnets wherein inclusion-rich domains apparently extend pervasively throughout the grain, 
and garnet in amphibole-garnet intergrowth Z4-11. 

Sample Z5-3 Z4-5 Z5-9 Z4-11 Z4-11 
Notes sec. sec. sec.  sec. 
SiO2 42.10 41.93 42.09 41.77 41.97 
TiO2 0.07 0.10 0.15 0.00 0.02 
Al2O3 21.47 20.72 21.18 19.71 20.25 
Cr2O3 3.97 4.34 4.62 6.17 5.17 
FeOtot 8.68 8.12 8.33 8.77 8.51 
MnO 0.42 0.40 0.41 0.51 0.50 
MgO 20.67 20.64 19.94 19.63 19.78 
CaO 4.26 4.39 4.68 4.79 4.53 
Na2O 0.03 0.00 0.01 0.06 0.02 
K 2O 0.01 0.00 0.00 0.02 0.01 
SUM 101.67 100.64 101.42 101.43 100.77 
      
Mg#  80.9 81.9 81.0 80.0 80.6 
Cr# 11.0 12.3 12.8 17.4 14.6 
T(°C)-Ry96    779  
T(°C)-Ca99    898  
      
Li  b.d.l. b.d.l. 0.94 0.23 b.d.l. 
B b.d.l. b.d.l. 1.22 0.67 b.d.l. 
Ti  472 780 847 20.5 45.9 
Co 38.9 45.7 33.0 37.4 64.0 
Ni 19.6 26.3 23.2 18.9 32.5 
Zn 9.74 10.5 7.18 6.42 12.4 
Sc 173 116 121 155 370 
V 127 203 191 286 140 
Rb 0.088 b.d.l. 0.12 b.d.l. 0.14 
Sr 0.32 1.58 3.85 1.06 4.37 
Y 69.8 12.4 12.5 0.69 116 
Zr  57.9 36.0 46.8 0.36 61.43 
Nb 0.10 0.82 1.16 1.03 1.81 
Cs b.d.l. 0.004 0.020 0.010 b.d.l. 
Ba 0.093 0.68 2.60 0.57 1.72 
La 0.080 0.14 0.55 0.096 0.23 
Ce 0.65 0.95 1.58 0.57 2.11 
Pr 0.24 0.34 0.41 0.031 0.85 
Nd 2.91 3.12 4.47 0.071 9.51 
Sm 3.12 1.93 3.49 0.043 9.04 
Eu 1.82 0.81 1.79 0.062 5.53 
Gd 6.91 2.07 5.09 0.18 20.0 
Tb 1.61 0.33 0.55 0.014 3.98 
Dy 12.1 1.94 3.02 0.11 22.9 
Ho 2.67 0.51 0.58 0.015 4.27 
Er 7.08 1.48 1.33 0.078 9.93 
Tm 1.13 0.21 0.24 0.014 1.22 
Yb 7.37 2.01 1.04 0.44 8.15 
Lu 1.08 0.29 0.24 0.090 1.34 
Hf 0.42 0.35 0.55 b.d.l. 0.23 
Ta 0.012 0.051 0.020 0.015 0.13 
Pb 0.07 0.022 0.091 0.047 0.052 
Th 0.063 0.022 0.32 0.026 0.079 
U 0.038 0.049 0.11 b.d.l. 0.047 
      
LaCI/SmCI 0.016 0.045 0.098 1.399 0.016 
SmCI/YbCI 0.47 1.06 3.71 0.11 1.23 
TiPM /Ti *  0.03 0.14 0.07 0.05 0.00 
Zr PM /HfPM  3.76 2.77 2.31  7.17 
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Clinopyroxenes associated with Group A garnets 
Sample Z4-2 Z5-02 Z5-11 Z5-15 
Notes     
SiO2 54.98 55.24 54.90 55.62 
TiO2 0.24 0.15 0.34 0.10 
Al2O3 3.11 2.58 2.58 2.48 
Cr2O3 1.70 2.74 2.27 0.57 
FeOtot 2.19 1.80 1.89 2.08 
MnO 0.03 0.00 0.06 0.07 
MgO 15.32 15.71 15.87 16.72 
CaO 19.94 19.52 19.76 21.31 
Na2O 2.43 2.51 2.49 1.60 
K 2O 0.00 0.03 0.02 0.01 
SUM 99.95 100.27 100.18 100.57 

Mg#  92.6 94.0 93.7 93.5 
Cr# 26.9 41.7 37.1 13.4 
Ko 0.049 0.078 0.065 0.016 
Jd (+Ae) 0.122 0.097 0.109 0.094 
Di 0.758 0.738 0.740 0.808 
T(°C)-NT00 803 875 841 885 
P(GPa)-NT00 3.23 3.71 3.80 3.37 

Li  0.62 1.97 1.64 0.99 
B b.d.l. 1.74 1.31 1.32 
Ti  1285 706 1695 505 
Co 14.6 15.2 16.4 15.5 
Ni 259 267 261 299 
Zn 7.89 8.85 8.95 8.78 
Sc 24.5 29.3 31.3 18.7 
V 389 475 424 363 
Rb b.d.l. 0.081 0.20 0.021 
Sr 141 70.8 133 156 
Y 1.98 1.29 1.88 2.68 
Zr  18.2 6.17 19.1 14.0 
Nb 0.050 0.75 1.29 1.38 
Cs 0.004 b.d.l. 0.005 b.d.l. 
Ba 0.14 0.98 2.92 0.81 
La 4.81 2.77 3.04 10.0 
Ce 11.8 6.43 9.66 23.9 
Pr 1.53 0.72 1.54 2.57 
Nd 7.38 3.15 7.80 8.91 
Sm 1.77 0.78 2.03 1.49 
Eu 0.55 0.26 0.54 0.52 
Gd 1.15 0.63 0.86 0.98 
Tb 0.15 0.066 0.15 0.10 
Dy 0.58 0.41 0.58 0.86 
Ho 0.10 0.043 0.091 0.13 
Er 0.15 0.11 0.10 0.19 
Tm 0.017 0.005 0.014 0.025 
Yb 0.08 0.12 0.10 0.13 
Lu 0.008 b.d.l. 0.007 0.017 
Hf 0.95 0.31 0.93 0.45 
Ta b.d.l. 0.027 0.039 0.027 
Pb 0.70 0.27 0.62 0.71 
Th 0.58 0.086 0.17 0.54 
U 0.086 0.024 0.059 0.15 
LaCI/CeCI 1.1 1.1 0.8 1.1 
LaCI/SmCI 1.7 2.2 0.9 4.2 
SmCI/YbCI 24 7 22 13 
TiPM /Ti *  0.37 0.41 0.55 0.16 
NbPM /TaPM   1.54 1.84 2.87 
Zr PM /HfPM  0.52 0.54 0.55 0.83 
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Clinopyroxenes associated with secondary low-(Ca, Cr) domains 
Sample Z4-3 Z4-7 Z5-5 Z6-12 Z4-9 Z5-3 Z4-5 Z5-9 
Notes         
SiO2 54.76 55.39 53.89 54.89 54.73 54.28 54.51 54.55 
TiO2 0.07 0.16 0.07 0.19 0.14 0.10 0.21 0.23 
Al2O3 3.98 4.34 2.88 3.14 4.45 2.68 3.83 4.19 
Cr2O3 3.74 3.77 2.69 3.47 4.43 3.08 4.02 3.74 
FeOtot 2.59 2.48 2.33 2.11 2.56 2.15 2.43 2.54 
MnO 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MgO 13.58 13.25 14.96 14.18 13.18 15.03 13.69 13.35 
CaO 17.21 16.38 18.83 18.54 16.40 19.27 16.53 16.62 
Na2O 3.86 4.38 2.84 3.21 4.54 2.52 3.99 4.09 
K 2O 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
SUM 99.79 100.17 98.51 99.73 100.43 99.11 99.20 99.31 

Mg#  90.4 90.5 92.0 92.3 90.2 92.6 90.9 90.3 
Cr# 38.7 36.8 38.6 42.6 40.0 43.5 41.3 37.4 
Ko 0.107 0.107 0.078 0.099 0.125 0.089 0.115 0.107 
Jd (+Ae) 0.164 0.197 0.123 0.126 0.190 0.090 0.165 0.180 
Di 0.644 0.620 0.709 0.711 0.591 0.735 0.626 0.628 
T(°C)-NT00 788 788 809 764 730 845 840 793 
P(GPa)-NT00 3.20 3.37 3.58 3.30 3.05 3.41 3.48 3.25 

Li  --- 1.20 1.43 1.54 --- 0.58 5.30 0.47 
B --- b.d.l. 1.96 1.00 --- 0.65 5.98 10.60 
Ti  --- 1087 519 913 --- 546 1003 1696 
Co --- 17.6 13.9 14.6 --- 15.0 12.5 11.7 
Ni --- 170 231 229 --- 250 211 237 
Zn --- 7.36 6.22 8.35 --- 8.29 14.8 7.27 
Sc --- 45.7 36.1 49.7 --- 54.4 39.3 55.4 
V --- 605 369 359 --- 368 591 700 
Rb --- 0.64 0.14 b.d.l. --- 0.047 b.d.l. 0.18 
Sr --- 451 337 594 --- 636 516 651 
Y --- 2.50 5.32 6.04 --- 3.27 0.99 2.04 
Zr  --- 40.9 50.9 65.0 --- 59.1 55.7 101 
Nb --- 2.53 7.11 1.03 --- 0.41 3.18 6.41 
Cs --- b.d.l. b.d.l. b.d.l. --- b.d.l. b.d.l. 0.019 
Ba --- 7.59 22.6 b.d.l. --- 0.28 3.09 5.34 
La --- 19.1 45.0 22.2 --- 41.4 18.5 28.4 
Ce --- 75.5 103 72.1 --- 102 62.8 103 
Pr --- 13.1 11.8 10.8 --- 12.7 9.33 18.2 
Nd --- 42.6 48.1 50.1 --- 52.0 37.0 77.4 
Sm --- 6.93 8.29 8.78 --- 7.47 7.40 12.1 
Eu --- 1.50 2.21 2.51 --- 1.77 1.39 2.41 
Gd --- 2.59 4.08 5.43 --- 3.19 1.36 4.07 
Tb --- 0.15 0.48 0.59 --- 0.31 0.21 0.21 
Dy --- 0.31 1.63 2.18 --- 1.06 0.17 0.85 
Ho --- 0.081 0.29 0.23 --- 0.15 b.d.l. 0.044 
Er --- b.d.l. 0.48 0.36 --- 0.40 0.18 0.45 
Tm --- b.d.l. 0.052 0.032 --- 0.025 b.d.l. 0.017 
Yb --- b.d.l. 0.28 0.35 --- 0.17 0.38 b.d.l. 
Lu --- 0.040 0.046 0.010 --- 0.018 b.d.l. b.d.l. 
Hf --- 1.43 1.13 2.11 --- 2.74 2.25 2.52 
Ta --- 0.12 0.38 0.073 --- 0.064 0.26 0.46 
Pb --- 0.99 3.56 1.73 --- 1.76 1.37 1.52 
Th --- 0.24 1.45 0.71 --- 1.31 0.33 0.67 
U --- 0.033 0.10 0.093 --- 0.12 0.13 0.12 
LaCI/CeCI  0.7 1.1 0.8  1.0 0.8 0.7 
LaCI/SmCI  1.7 3.4 1.6  3.5 1.6 1.5 
SmCI/YbCI   32 28  50 22  
TiPM /Ti *   0.12 0.04 0.06  0.05 0.14 0.12 
NbPM /TaPM   1.24 1.06 0.80  0.36 0.69 0.79 
Zr PM /HfPM   0.77 1.21 0.83  0.58 0.67 1.08 
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Clinopyroxenes associated with secondary low-(Ca, Cr) domains 
Sample Z4-6 Z4-1 Z4-4 Z4-8 Z5-10 Z6-9 Z6-10 Z6-11 
Notes         
SiO2 55.00 55.05 54.78 54.78 55.36 55.13 54.88 54.76 
TiO2 0.07 0.27 0.04 0.05 0.10 0.09 0.04 0.02 
Al2O3 2.67 4.05 2.09 3.54 4.67 3.47 3.38 3.06 
Cr2O3 3.18 4.13 2.21 3.73 4.13 3.69 3.22 3.45 
FeOtot 1.89 2.43 1.81 2.34 2.55 2.30 2.30 1.94 
MnO 0.02 0.02 0.07 0.00 0.00 0.00 0.00 0.00 
MgO 15.18 13.27 16.20 13.97 13.10 14.19 14.26 14.63 
CaO 19.12 16.58 20.46 16.93 16.03 18.07 18.53 18.72 
Na2O 2.75 4.10 1.90 3.66 4.63 3.39 3.21 2.95 
K 2O 0.01 0.01 0.01 0.03 0.01 0.00 0.00 0.00 
SUM 99.90 99.91 99.57 99.04 100.58 100.33 99.80 99.53 

Mg#  93.5 90.7 94.1 91.4 90.2 91.7 91.7 93.1 
Cr# 44.4 40.6 41.5 41.4 37.2 41.6 39.0 43.0 
Ko 0.091 0.118 0.063 0.107 0.116 0.105 0.092 0.099 
Jd (+Ae) 0.102 0.169 0.070 0.151 0.204 0.131 0.133 0.108 
Di 0.727 0.633 0.778 0.650 0.592 0.682 0.702 0.713 
T(°C)-NT00 843 814 888 874 777 817 778 822 
P(GPa)-NT00 36.0 33.0 37.6 36.2 31.9 32.8 32.2 33.0 

Li  1.65 --- b.d.l. 15.7 --- --- 0.65 --- 
B 2.95 --- 1.79 13.6 --- --- 5.19 --- 
Ti  434 --- 106 291 --- --- 192 --- 
Co 15.3 --- 16.2 14.1 --- --- 16.6 --- 
Ni 290 --- 293 230 --- --- 263 --- 
Zn 8.83 --- 15.2 27.8 --- --- 13.7 --- 
Sc 32.2 --- 23.9 67.8 --- --- 47.8 --- 
V 514 --- 420 491 --- --- 516 --- 
Rb 2.19 --- 2.01 0.33 --- --- 0.13 --- 
Sr 567 --- 622 544 --- --- 583 --- 
Y 0.54 --- 1.48 2.23 --- --- 0.92 --- 
Zr  13.3 --- 30.0 65.1 --- --- 57.4 --- 
Nb 0.81 --- 3.01 3.63 --- --- 1.18 --- 
Cs 0.042 --- 0.027 0.016 --- --- b.d.l. --- 
Ba 218 --- 170 14.1 --- --- 0.22 --- 
La 26.6 --- 28.8 24.7 --- --- 25.9 --- 
Ce 62.9 --- 85.7 91.8 --- --- 89.3 --- 
Pr 8.63 --- 10.4 14.7 --- --- 14.2 --- 
Nd 35.8 --- 42.6 64.1 --- --- 60.4 --- 
Sm 2.66 --- 6.35 9.70 --- --- 10.8 --- 
Eu 0.54 --- 1.78 2.79 --- --- 1.84 --- 
Gd 0.77 --- 2.21 5.53 --- --- 4.47 --- 
Tb 0.052 --- 0.28 0.37 --- --- 0.36 --- 
Dy 0.22 --- 0.71 1.17 --- --- 0.53 --- 
Ho 0.033 --- 0.059 0.080 --- --- 0.14 --- 
Er 0.051 --- 0.097 0.22 --- --- 0.28 --- 
Tm 0.005 --- 0.011 0.010 --- --- b.d.l. --- 
Yb b.d.l. --- 0.28 0.15 --- --- b.d.l. --- 
Lu 0.002 --- b.d.l. b.d.l. --- --- b.d.l. --- 
Hf 0.67 --- 1.39 1.74 --- --- 3.27 --- 
Ta 0.016 --- 0.069 0.11 --- --- 0.030 --- 
Pb 3.25 --- 1.65 2.51 --- --- 1.53 --- 
Th 1.68 --- 1.30 0.69 --- --- 0.41 --- 
U 0.28 --- 0.38 0.21 --- --- 0.13 --- 
LaCI/CeCI 1.1  0.9 0.7   0.7  
LaCI/SmCI 6.3  2.8 1.6   1.5  
SmCI/YbCI   25 70     
TiPM /Ti *  0.15  0.01 0.02   0.02  
NbPM /TaPM  2.87  2.45 1.91   2.21  
Zr PM /HfPM  0.54  0.58 1.01   0.47  
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Phlogopites in veinlets and included in or associated with secondary domains of Group A 
(Z5-2 and Z6-2) and Group B (from Z4-5 to Z6-12) garnets. 

Sample Z5-2 Z6-2 Z4-5 Z4-7 Z4-9 Z5-3 Z5-5 Z5-6 Z6-12 

Notes veinlet veinlet veinlet veinlet veinlet veinlet 
assoc. 
to rim 

veinlet 
big 

assoc. 
SiO2 41.27 39.59 40.36 41.62 41.79 39.90 42.01 39.00 40.66 
TiO2 0.24 0.15 0.20 0.21 0.29 0.27 0.17 2.62 0.39 
Al2O3 13.81 13.50 14.63 13.16 13.07 16.35 13.29 16.09 12.97 
Cr2O3 1.30 0.93 1.28 0.88 2.26 1.82 0.90 2.52 0.84 
FeOtot 3.41 4.15 3.62 2.70 3.46 4.04 2.75 3.61 2.78 
MnO 0.00 0.06 0.00 0.00 0.00 0.00 0.07 0.00 0.01 
MgO 24.71 25.77 24.58 25.94 24.56 22.75 24.83 21.85 25.33 
CaO 0.03 0.14 0.00 0.00 0.04 0.03 0.04 0.01 0.05 
Na2O 0.78 0.70 0.46 0.66 0.31 2.66 0.60 0.62 0.55 
K 2O 8.29 8.80 9.59 8.90 9.46 4.93 8.76 9.52 9.14 
Cl 0.06 0.05 0.03 0.05 0.05 0.05 0.03 0.00 0.11 
SUM 93.91 93.85 94.75 94.12 95.29 92.81 93.46 95.83 92.83 

Mg#  92.8 91.7 92.4 94.5 92.7 90.9 94.1 91.5 94.2 
          
Li  2.53 --- --- 4.13 --- b.d.l. 4.51 b.d.l. 2.3 
B b.d.l. --- --- 11.06 --- b.d.l. b.d.l. b.d.l. 5.1 
Ti  1463 --- --- 1462 --- 2135 1202 12322 2095 
Co 45.59 --- --- 44 --- 56.7 49 39.1 48 
Ni 367 --- --- 1351 --- 880 1408 473 1364 
Zn 23.7 --- --- 28 --- 15.5 26.9 15.3 33 
Sc 3.58 --- --- 1.5 --- 19.9 1.73 18.9 3.04 
V 92.1 --- --- 60 --- 122 38.2 251 63 
Rb 227 --- --- 223 --- 34.7 166 294 167 
Sr 66.1 --- --- 79 --- 490 84.6 88.3 98 
Y 0.061 --- --- 0.07 --- 0.55 0.14 b.d.l. 0.85 
Zr  2.99 --- --- 3.2 --- 12.8 3.78 13.4 2.7 
Nb 35.0 --- --- 31.5 --- 117 23.3 35.7 21.7 
Cs 3.7 --- --- 4.0 --- 0.88 4.05 3.35 2.8 
Ba 4138 --- --- 5704 --- 1433 6295 2757 6953 
La 0.32 --- --- 0.26 --- 0.77 0.12 0.06 5.0 
Ce 0.65 --- --- 0.13 --- 0.69 b.d.l. b.d.l. 7.7 
Pr 0.038 --- --- 0.07 --- b.d.l. 0.023 0.04 0.37 
Nd 0.37 --- --- 0.24 --- 0.22 b.d.l. b.d.l. 1.7 
Sm b.d.l. --- --- b.d.l. --- b.d.l. 0.19 b.d.l. 0.34 
Eu b.d.l. --- --- 0.09 --- 0.11 0.16 0.18 0.23 
Gd b.d.l. --- --- b.d.l. --- b.d.l. b.d.l. b.d.l. b.d.l. 
Tb b.d.l. --- --- 0.04 --- b.d.l. b.d.l. b.d.l. b.d.l. 
Dy b.d.l. --- --- b.d.l. --- b.d.l. 0.18 b.d.l. 0.23 
Ho 0.052 --- --- b.d.l. --- b.d.l. b.d.l. b.d.l. 0.06 
Er b.d.l. --- --- b.d.l. --- b.d.l. b.d.l. b.d.l. 0.30 
Tm b.d.l. --- --- b.d.l. --- b.d.l. 0.085 b.d.l. b.d.l. 
Yb 0.16 --- --- b.d.l. --- b.d.l. b.d.l. b.d.l. b.d.l. 
Lu 0.026 --- --- b.d.l. --- b.d.l. b.d.l. 0.06 b.d.l. 
Hf 0.13 --- --- 0.54 --- 0.81 b.d.l. 0.29 0.55 
Ta 2.45 --- --- 1.80 --- 23.4 1.65 3.71 0.71 
Pb 0.35 --- --- 2.06 --- 2.0 0.45 0.76 8.0 
Th 0.28 --- --- 1.93 --- 0.15 1.19 b.d.l. 5.5 
U 0.021 --- --- 0.43 --- 0.13 0.29 b.d.l. 0.53 
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Phlogopites in veinlets and included in or associated with secondary domains of Group C 
garnets. 

Sample Z4-4 Z4-6 Z4-8 Z5-9 Z5-10 Z6-10 

Notes 
big 
incl. 

big 
incl. 

incl. 
small 
incl. 

incl. veinlet 

SiO2 40.97 41.02 41.61 40.36 40.88 39.87 
TiO2 0.08 0.26 0.07 0.68 0.90 0.16 
Al2O3 13.07 13.18 13.06 14.54 12.47 14.79 
Cr2O3 0.94 0.94 1.12 1.25 0.40 1.30 
FeOtot 3.39 2.96 2.60 3.92 4.72 4.02 
MnO 0.03 0.03 0.00 0.02 0.01 0.03 
MgO 25.00 24.99 25.80 24.04 25.34 25.59 
CaO 0.02 0.00 0.08 0.00 0.01 0.08 
Na2O 0.19 0.28 0.49 0.71 0.87 0.65 
K 2O 9.57 9.42 8.93 8.98 8.57 8.47 
Cl 0.46 0.42 0.07 0.05 0.02 0.03 
SUM 93.73 93.50 93.83 94.54 94.19 94.99 
Mg#  92.9 93.8 94.7 91.6 90.5 91.9 
       
Li  2.1 1.7 --- 5 --- --- 
B 1.6 2.2 --- 2 --- --- 
Ti  680 1641 --- 3802 --- --- 
Co 66 60 --- 47 --- --- 
Ni 1792 1749 --- 431 --- --- 
Zn 37 30 --- 21 --- --- 
Sc 1.3 1.2 --- 2.2 --- --- 
V 105 103 --- 108 --- --- 
Rb 159 126 --- 168 --- --- 
Sr 45 53 --- 62 --- --- 
Y 0.19 0.18 --- b.d.l. --- --- 
Zr  2.1 0.44 --- 2.0 --- --- 
Nb 64 2.3 --- 47 --- --- 
Cs 4.1 3.0 --- 3.2 --- --- 
Ba 10689 9620 --- 3761 --- --- 
La 0.56 0.039 --- b.d.l. --- --- 
Ce 0.87 0.052 --- 0.05 --- --- 
Pr 0.031 0.007 --- b.d.l. --- --- 
Nd 0.12 0.015 --- b.d.l. --- --- 
Sm b.d.l. 0.041 --- b.d.l. --- --- 
Eu 0.05 0.072 --- b.d.l. --- --- 
Gd b.d.l. b.d.l. --- 0.09 --- --- 
Tb 0.01 b.d.l. --- b.d.l. --- --- 
Dy 0.03 b.d.l. --- b.d.l. --- --- 
Ho 0.01 0.001 --- b.d.l. --- --- 
Er b.d.l. b.d.l. --- 0.08 --- --- 
Tm b.d.l. 0.002 --- b.d.l. --- --- 
Yb 0.05 0.008 --- b.d.l. --- --- 
Lu 0.017 b.d.l. --- b.d.l. --- --- 
Hf 0.14 0.04 --- b.d.l. --- --- 
Ta 4.1 0.26 --- 3.2 --- --- 
Pb 1.1 1.59 --- 0.80 --- --- 
Th 1.59 4.51 --- 0.081 --- --- 
U 0.45 0.64 --- 0.011 --- --- 
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Amphiboles, carbonates and serpentines 

Sample Z4-3 Z4-9 Z5-5 Z4-1 Z4-8 Z4-11 Z4-10 Z6-2 Z5-15 Z6-2 Z5-5 Z4-6 
 amphibole carbonate serpentine 

Notes 
Grt 
rim 

intergr 
veinlet 

intergr 
with 
Cpx 

veinlet veinlet 
grt-

amph 
intergr 

incl 
incl 
with 
serp 

incl 
in 

Cpx 

incl 
with 
carb 

incl incl 

SiO2 48.30 45.02 47.37 45.34 43.55 49.21 0.05 0.03 49.33 40.12 45.61 48.78 
TiO2 0.23 0.15 0.20 0.91 0.11 0.05 --- --- 0.02 0.04 0.07 0.06 
Al2O3 9.20 16.87 7.92 12.40 13.78 9.18 --- --- 5.35 1.71 1.28 1.98 
Cr2O3 2.77 4.94 2.25 1.78 3.59 2.29 --- --- 1.36 0.15 0.34 0.09 
FeOtot 2.89 6.25 2.69 4.47 5.39 2.96 0.04 0.05 3.57 7.73 8.81 3.03 
MnO 0.01 0.33 0.00 0.19 0.24 0.06 0.09 0.09 0.00 0.06 0.03 0.02 
MgO 19.21 16.55 18.27 18.47 18.35 19.92 0.14 0.19 25.16 33.55 30.44 33.31 
CaO 7.43 7.28 7.13 8.85 8.63 7.51 54.65 54.85 1.32 0.47 0.35 0.25 
Na2O 5.18 1.07 4.56 3.61 3.79 5.36 --- --- 0.11 0.00 0.03 0.01 
K 2O 1.42 0.28 1.37 0.29 0.32 0.97 --- --- 0.05 0.04 0.01 0.01 
Cl --- --- --- --- --- --- --- --- 0.07 0.08 0.16 0.10 
CO2

a --- --- --- --- --- --- 43.12 43.34 --- --- --- --- 
SUM 96.66 98.72 91.79 96.32 97.75 97.51 98.09 98.55 86.33 83.94 87.14 87.63 
             
Li  5.73 --- 2.03 --- --- 1.39 2.62 24.9 --- --- --- --- 
B 13.1 --- 7.18 --- --- 2.14 9.24 2.29 --- --- --- --- 
Cr  ---  --- ---  88.4 32.3 --- --- --- --- 
Ti  1458 --- 1092 --- --- 210 15.5 6.04 --- --- --- --- 
Co 30.0 --- 23.0 --- --- 26.7 2.54 1.43 --- --- --- --- 
Ni 675 --- 555 --- --- 623 16.7 18.0 --- --- --- --- 
Zn 19.6 --- 14.0 --- --- 10.7 2.51 29.2 --- --- --- --- 
Sc 42.1 --- 31.9 --- --- 39.4 0.6 1.9 --- --- --- --- 
V 195 --- 133 --- --- 222 1.43 b.d.l. --- --- --- --- 
Rb 4.97 --- 3.65 --- --- 1.98 b.d.l. 0.38 --- --- --- --- 
Sr 341 --- 288 --- --- 604 71.2 76.4 --- --- --- --- 
Y 8.86 --- 8.41 --- --- 10.4 2.69 7.3 --- --- --- --- 
Zr  115 --- 89.2 --- --- 97.1 0.86 2.45 --- --- --- --- 
Nb 41.2 --- 31.6 --- --- 97.1 1.61 1.26 --- --- --- --- 
Cs 0.067 --- 0.022 --- --- b.d.l. b.d.l. b.d.l. --- --- --- --- 
Ba 227 --- 162 --- --- 254 1.92 15.3 --- --- --- --- 
La 15.5 --- 8.37 --- --- 27.3 116.9 236 --- --- --- --- 
Ce 49.2 --- 30.9 --- --- 106 119 286 --- --- --- --- 
Pr 6.9 --- 5.22 --- --- 16.7 10.7 22.8 --- --- --- --- 
Nd 35.1 --- 26.2 --- --- 78.7 32.5 73.8 --- --- --- --- 
Sm 8.58 --- 6.18 --- --- 15.31 3.67 6.24 --- --- --- --- 
Eu 2.35 --- 1.77 --- --- 4.57 1.02 1.73 --- --- --- --- 
Gd 4.2 --- 4.42 --- --- 8.69 1.88 3.28 --- --- --- --- 
Tb 0.56 --- 0.50 --- --- 0.88 0.21 0.38 --- --- --- --- 
Dy 2.66 --- 2.19 --- --- 3.47 0.64 1.69 --- --- --- --- 
Ho 0.41 --- 0.42 --- --- 0.37 0.13 0.20 --- --- --- --- 
Er 0.79 --- 0.91 --- --- 0.54 0.11 0.42 --- --- --- --- 
Tm 0.12 --- 0.069 --- --- 0.065 b.d.l. 0.052 --- --- --- --- 
Yb 0.76 --- 0.39 --- --- 0.34 0.086 0.26 --- --- --- --- 
Lu 0.055 --- 0.048 --- --- 0.030 0.042 b.d.l. --- --- --- --- 
Hf 2.59 --- 2.88 --- --- 1.46 b.d.l. 0.043 --- --- --- --- 
Ta 3.36 --- 2.84 --- --- 7.65 0.028 0.18 --- --- --- --- 
Pb 0.98 --- 0.59 --- --- 1.18 0.29 0.31 --- --- --- --- 
Th 0.63 --- 0.12 --- --- 0.46 0.068 0.45 --- --- --- --- 
U 0.26 --- 0.018 --- --- 0.100 0.13 0.052 --- --- --- --- 

a Calculated from stoichiometry. 
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Chromian spinels included in secondary, low-(Ca-Cr) garnet domains.  

Sample Z4-1 Z4-3 Z4-4 Z4-6 Z4-7 Z4-8 Z4-9 Z4-11 Z5-3 Z5-5 Z5-9 Z5-13 

Notes incl.1 
on Grt 
rim2 

incl incl3 incl incl incl incl2 incl incl incl incl 

SiO2 0.11 0.05 0.12 0.08 0.09 0.10 0.12 0.10 0.07 0.08 0.14 0.05 
TiO2 1.35 0.53 0.15 0.46 0.62 0.22 0.82 0.10 0.80 0.54 1.28 0.17 
Al2O3 8.71 10.17 8.99 8.80 9.60 9.94 9.01 11.99 9.59 10.12 7.44 8.72 
Cr2O3 56.19 55.43 58.98 58.89 55.89 56.27 55.75 53.83 55.18 55.67 56.86 59.35 
FeOtot 22.22 22.01 20.31 21.12 22.18 21.39 22.54 22.22 23.28 22.72 22.93 21.33 
MnO 0.37 0.34 0.35 0.35 0.29 0.29 0.32 0.37 0.34 0.43 0.33 0.33 
MgO 11.73 10.70 10.91 11.05 11.05 11.22 11.29 11.26 10.77 10.95 10.49 11.11 
V2O3 0.35 0.15 0.33 0.31 0.25 0.27 0.23 0.14 0.18 0.12 0.34 0.31 
NiO 0.14 0.11 0.11 0.12 0.08 0.16 0.12 0.09 0.10 0.10 0.08 0.10 
SUM 101.16 99.48 100.25 101.16 100.06 99.86 100.21 100.10 100.32 100.74 99.88 101.47 
             
Mg# 55.4 52.4 53.7 53.6 53.51 54.91 54.43 54.67 52.0 52.97 50.71 54.1 
Cr# 81.2 78.5 81.5 81.8 79.61 79.15 80.59 75.08 79.4 78.67 83.68 82.0 
             
Li  1.5 1.9 --- 0.8 --- --- --- --- 0.31 --- --- 0.5 
B 2.9 2.5 --- 2.2 --- --- --- --- b.d.l. --- --- 1.1 
Ti  7965 3399 --- 2967 --- --- --- --- 4548 --- --- 1118 
Co 345 319 --- 330 --- --- --- --- 328 --- --- 326 
Ni 1032 825 --- 785 --- --- --- --- 914 --- --- 714 
Zn 1414 1573 --- 1420 --- --- --- --- 1484 --- --- 1267 
Sc 4.5 4.1 --- 1.4 --- --- --- --- 6.77 --- --- 1.8 
V 2306 977 --- 1862 --- --- --- --- 1775 --- --- 1874 
Rb 1.1 2.7 --- 5.3 --- --- --- --- 0.4 --- --- 0.52 
Sr 0.12 4.8 --- 1.9 --- --- --- --- 14 --- --- 0.09 
Y 0.19 0.46 --- b.d.l. --- --- --- --- 1.2 --- --- b.d.l. 
Zr  2.5 5.7 --- 0.35 --- --- --- --- 2.5 --- --- 1.11 
Nb 3.50 11.2 --- 0.44 --- --- --- --- 0.98 --- --- 0.81 
Cs 0.01 0.03 --- 0.13 --- --- --- --- b.d.l. --- --- 0.01 
Ba 0.23 33 --- 239 --- --- --- --- 0.88 --- --- b.d.l. 
La 0.10 1.6 --- 0.072 --- --- --- --- 0.78 --- --- b.d.l. 
Ce 0.41 3.2 --- 0.22 --- --- --- --- 2.64 --- --- b.d.l. 
Pr 0.033 0.49 --- 0.039 --- --- --- --- 0.27 --- --- b.d.l. 
Nd 0.19 0.61 --- 0.094 --- --- --- --- 1.11 --- --- b.d.l. 
Sm b.d.l. 0.14 --- b.d.l. --- --- --- --- 0.19 --- --- b.d.l. 
Eu b.d.l. 0.031 --- b.d.l. --- --- --- --- 0.083 --- --- b.d.l. 
Gd 0.040 0.17 --- 0.020 --- --- --- --- 0.22 --- --- b.d.l. 
Tb 0.008 0.038 --- b.d.l. --- --- --- --- 0.058 --- --- 0.014 
Dy 0.058 0.21 --- b.d.l. --- --- --- --- 0.27 --- --- b.d.l. 
Ho 0.015 0.022 --- 0.003 --- --- --- --- 0.054 --- --- b.d.l. 
Er b.d.l. 0.072 --- b.d.l. --- --- --- --- 0.12 --- --- b.d.l. 
Tm b.d.l. 0.021 --- b.d.l. --- --- --- --- 0.022 --- --- b.d.l. 
Yb b.d.l. b.d.l. --- b.d.l. --- --- --- --- 0.18 --- --- 0.061 
Lu 0.026 b.d.l. --- b.d.l. --- --- --- --- 0.030 --- --- b.d.l. 
Hf 0.045 0.16 --- b.d.l. --- --- --- --- b.d.l. --- --- b.d.l. 
Ta 0.078 0.40 --- 0.05 --- --- --- --- 0.079 --- --- 0.020 
Pb 0.181 7.8 --- 0.32 --- --- --- --- 0.46 --- --- 0.17 
Th 0.041 0.88 --- 0.061 --- --- --- --- 0.022 --- --- b.d.l. 
U 0.043 0.25 --- 0.030 --- --- --- --- 0.012 --- --- b.d.l. 
1 big (ca. 400 µm) inclusion associated with serpentine and amphibole, connected to late veinlets; 
2 associated with amphibole; 
3 associated with a big inclusion of phlogopite. 

Here Mg# = 100*Mg/(Mg+Fe2+). 
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Late spinels in veinlets, and one Ti-oxide of the crichtonite series included in the secondary 
domain of  garnet Z4-1. 

Sample Z4-5 Z4-8 Z4-9 Z4-9 Z5-2 Z5-6 Z5-10 Z5-11 Z5-13  Z4-1 
Notes           cric 
SiO2 0.12 0.14 0.22 0.20 0.10 0.32 0.13 0.08 0.08  0.07 
TiO2 0.74 0.82 0.17 0.85 0.70 0.47 0.43 1.54 0.33  53.16 
Al2O3 18.85 16.98 39.54 18.16 22.10 47.06 18.57 16.80 20.02  1.67 
Cr2O3 43.95 43.17 22.22 41.40 39.07 19.44 45.17 41.15 44.69  20.78 
FeOtot 24.03 25.64 23.06 27.63 26.20 15.40 23.76 29.96 23.56  8.71 
MnO 0.39 0.40 0.61 0.46 0.50 0.36 0.44 0.59 0.43  0.11 
MgO 12.39 11.72 14.56 10.72 11.51 18.55 12.03 9.61 11.90  3.99 
V2O3 0.27 0.27 0.03 0.24 0.15 0.11 0.20 0.32 0.19  --- 
NiO 0.07 0.09 0.01 0.04 0.02 0.00 0.16 0.12 0.04  --- 
CaO --- --- --- --- --- --- --- --- ---  0.66 
SrO --- --- --- --- --- --- --- --- ---  2.94 
Zr2O3 --- --- --- --- --- --- --- --- ---  2.27 
La2O3 --- --- --- --- --- --- --- --- ---  1.01 
Ce2O3 --- --- --- --- --- --- --- --- ---  1.31 
Nb2O5 --- --- --- --- --- --- --- --- ---  0.37 
Na2O --- --- --- --- --- --- --- --- ---  0.00 
K 2O --- --- --- --- --- --- --- --- ---  0.13 
BaO --- --- --- --- --- --- --- --- ---  0.00 
SUM 100.82 99.24 100.43 99.68 100.34 101.72 100.89 100.18 101.23  97.18 
            
Mg#  56.73 54.90 61.69 61.69 52.67 73.06 55.84 44.91 54.85   
Cr# 61.01 63.05 27.38 27.38 54.26 21.70 62.01 62.16 59.96   
            

Here Mg# = 100*Mg/(Mg+Fe2+). 
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SUPPLEMENTARY TABLE 3 

Chemical and modal parameters used in Plate Model numer ical simulations and trace 
element composition (ppm)of model garnets 

 

Chemical parameters 

 
Ol/LD Opx/LD Cpx/LD Grt/LD 

Infiltrated 
Melt 

Model 1 
(ppm) 

Infiltrated 
Melt 

Model 2 and 3 
(ppm) 

Initial 
Peridotite 

Model 1 and 2 
(ppm) 

Initial 
Peridotite 
Model 3 

(ppm) 

Th 1.00E-07 3.00E-05 1.20E-02 1.37E-03 5.8 49 0.0000004 0.0000004 

U 1.00E-07 4.00E-05 1.00E-02 5.88E-03 0.78 13 0.0000005 0.0000006 

Nb 2.00E-04 5.00E-04 7.70E-03 3.10E-03 7.6 65 0.000003 0.000003 

La 1.00E-04 2.00E-04 5.40E-02 1.60E-03 4.1 56 0.000008 0.000010 

Ce 2.00E-04 4.00E-04 8.60E-02 5.00E-03 13.3 195 0.00005 0.00006 

Sr 1.00E-04 3.00E-04 1.28E-01 2.50E-03 41.2 252 0.0013 0.0015 

Nd 4.00E-04 1.00E-03 1.87E-01 5.20E-02 4.9 89.8 0.0002 0.0002 

Zr 4.00E-03 5.00E-03 1.30E-01 2.70E-01 72.9 57.1 0.0033 0.0087 

Hf 6.00E-03 1.00E-02 2.00E-01 2.40E-01 1.5 1.5 0.0002 0.0002 

Sm 4.40E-04 3.00E-03 2.91E-01 2.50E-01 1.4 6.4 0.0002 0.0003 

Gd 7.60E-04 1.28E-02 4.00E-01 7.54E-01 1.4 2.0 0.0009 0.0010 

Ti 7.00E-03 7.00E-02 3.30E-01 2.90E-01 2553 3258 2.6 2.1 

Dy 1.40E-03 2.61E-02 4.42E-01 2.20E+00 1.3 0.66 0.0025 0.0029 

Ho 1.84E-03 3.56E-02 4.39E-01 3.18E+00 0.32 0.12 0.00073 0.00084 

Er 2.36E-03 4.74E-02 4.36E-01 3.60E+00 0.79 0.34 0.0037 0.0027 

Yb 3.64E-03 7.87E-02 4.30E-01 6.60E+00 0.61 0.25 0.020 0.0034 

Lu 4.40E-03 9.86E-02 4.27E-01 7.10E+00 0.10 0.04 0.0041 0.0010 

                  

 

Modal parameters (mass ratio) 

 Ol Opx Cpx Grt 

Initial modal composition of country 
peridotite 

0.772 0.16 0.06 0.042 

Crystallising mineral mode in Model 1   0.8 0.2 

Assimilated mineral in Model 2 & 3*  1   

*Orthopyroxene assimilation in Model 2 & 3 was designed to progressively vary in each run increment from 0.5% of solid 
mass in the first cell at the bottom of the mantle column to 0.01‰ of solid mass at the top of the mantle column
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Trace element composition (ppm)of model garnet from each cell of the hypothetical mantle 
column after 20 process increments in the numerical simulation Cell 1 is the bottom of the 
mantle column, Cell 20 is the top. 

 

 



135 

 

 

 

 

 



136 

 

 



137 

 

DISCUSSION AND CONCLUSIONS 

Single-mineral thermobarometry for mineral concentrates in kimberlites and diamond 

inclusions and robustness of thermobarometric estimates for Zagadochnaya 

As discussed in the introduction chapter, mantle assemblages suitable for conventional 

thermobarometry are scarce in many kimberlites, even if abundant remnants of disaggregated 

xenoliths can be found as discrete xenocrysts or in heavy-mineral concentrates. The same 

problem concerns mineral inclusions in diamonds: polymineralic inclusions are uncommon, 

and even more rarely do they contain the appropriate mineral assemblage for reliable 

thermobarometry (e.g. Stachel and Harris 2008). To obtain information on pressure and 

temperature from isolated xenocrysts and diamond inclusions, single-mineral 

thermobarometers remain the only viable option (e.g. Ryan et al. 1996; Canil 1999; Nimis and 

Taylor 2000; Ashchepkov 2006; Grütter et al. 2006; Simakov 2008, 2012; Creighton 2009; 

Turkin and Sobolev 2009). 

One of the most widely used geothermometers for isolated garnets is the Ni-in-garnet 

thermometer, which is based on Ni partitioning between garnet and mantle olivine. . Two 

versions of this thermometer are available: that of Ryan et al. (1996) is based on an empirical 

calibration against the somewhat unreliable olivine–garnet geothermometer of O’Neill and 

Wood (1979) (cf. Nimis and Grütter 2010); that of Canil (1999) was calibrated against 

experimental data. Application to Zagadochnaya garnets associated with clinopyroxenes 

showed a good agreement of the Ryan et al. (1996) version with temperatures estimated with 

the enstatite-in-Cpx thermometer of Nimis and Taylor (2000) (see Manuscript 3), which is 

considered to be one of the most reliable thermometers for garnet peridotites (Nimis and 

Grütter 2010). The Canil (1999) version gave temperatures up to 120°C higher than that of 

Ryan et al. (1996), the discrepancy being greater at low estimated T, suggesting possible 

overestimation with this thermometer in the low temperature region. 

In many studies, the Ni-in-garnet thermometer is coupled with a Cr-in-garnet geobarometer 

(e.g., Ryan et al. 1996; Grütter et al. 2006; Turkin and Sobolev 2009), which allows one to 

estimate P for garnets in equilibrium with spinel (e.g., Griffin et al. 1999c, 2003b, 2004, 2005; 

Zheng et al. 2006; Batumike et al. 2009; Tappert et al. 2011; Kahoui et al. 2012). If spinel is 

not present, only minimum pressures can be estimated. This limitation typically produces 

considerable scatter in P–T diagrams (see, for example, Fig. 4 in Griffin et al. 1999c), even if 

a palaeogeotherm can still be estimated by the envelope of maximum P at each T using large 

garnet datasets (Ryan et al., 1996). For the Zagadochnaya xenocrysts, for which coexistence 
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with primary spinel could not be verified, only minimum pressures could be estimated with 

these methods.  

The Cr-in-Cpx geobarometer (Nimis and Taylor, 2000) requires coexistence with garnet, 

therefore it allows quantitative estimation of equilibrium P for many mantle-derived chromian 

clinopyroxenes. Its application requires careful screening of clinopyroxene composition 

(Nimis 2002; Grütter 2009; Manuscript 1). In this work, I quantitatively evaluated the 

propagation of analytical errors on P uncertainties for a large range of clinopyroxene 

compositions, and I defined the appropriate EMP analytical conditions that should be adopted 

for optimum Cr-in-cpx geobarometry (Manuscript 1). I showed that 22% of the 764 

clinopyroxenes in the mantle xenolith database of Nimis and Grütter (2010) and 40% of 

reported clinopyroxene inclusions in ultramafic-type diamonds (cf. Stachel and Harris 2008) 

have unfavorable compositions for geobarometry and are likely to yield unreliable P–T 

estimates. However, if appropriate analytical conditions are used, the application of the 

barometer can be safely extended to at least 90% of clinopyroxenes from mantle xenoliths and 

80% of diopside inclusions in ultramafic-type diamonds. 

The progressive underestimation with the Cr-in-Cpx barometer at pressures greater than 

4.5 GPa (Nimis 2002) remains an unresolved limitation. Despite my attempts, owing to a lack 

of consistent thermodynamic data for Cr-bearing clinopyroxenes, a thermodynamic approach 

to investigating pressure dependence of clinopyroxene composition in natural peridotitic 

systems is not yet viable (Manuscript 2), indicating the need for new high-pressure, high-

temperature experiments on Cr-bearing clinopyroxenes.  

Taking into account this limitation and the results reported in Manuscript 1, the single-

clinopyroxene thermobarometers could be safely applied to the Zagadochnaya xenocryst 

population (Manuscript 3). The low pressures and temperatures obtained in the present work 

and in previous work by Nimis et al. (2009) (3.0–4.0 GPa, 741–885°C), consistent with the 

low Ni-in-garnet temperatures (691–857°C; Ryan et al. 1996) and minimum Cr-in-garnet 

pressures (1.3 to 3.9 GPa; Grütter et al. 2006, Turkin and Sobolev 2009) reported here 

(Manuscript 3), suggest derivation of Zagadochnaya xenocrystic material from a relatively 

shallow mantle section (ca. 100–130 km), thus offering a simple possible explanation for the 

absence of diamond at Zagadochnaya. The above estimates are reliable, because the 

composition of the Zagadochnaya diopsides is well within the limits for optimum 

thermobarometry (i.e., aCr/Cr# ≥ 0.027 and Cr# ≥ 0.13) defined in the present work (cf. 

Manuscript 1) and P estimates are not affected by systematic deviations in the estimated 

pressure range (Nimis 2002). 
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Ca-Cr and REE variations in garnets 

It is common practice to classify mantle garnet compositions on the basis of their Ca and Cr 

contents (Dawson and Stephens 1975; Sobolev et al. 1973; Gurney 1984; Schulze 2003; 

Grütter et al. 2004). The compositions of lherzolitic garnets from individual kimberlites 

typically show a positive correlation between Ca and Cr (i.e., the so-called lherzolitic trend). 

This correlation may be the result of Ca–Cr interaction in the garnet crystal lattice and of Ca 

buffering operated by coexistent clinopyroxene (Griffin et al. 1999d). The compositional 

variation along the lherzolitic trend is commonly interpreted as the result of variations in the 

Cr/Al ratio of the host rock, which is in turn a measure of the degree of depletion or 

enrichment in basaltic components (e.g. Griffin et al. 1999d; Burgess and Harte 1999, 2004).  

The results of thermodynamic modelling of natural peridotitic compositions (Manuscript 

2) showed that, as long as garnet coexists with spinel, Ca–Cr variations along this trend can 

also be obtained by varying P and T along a continental geotherm under isochemical bulk 

conditions. This suggests that the particular position of some garnets along the lherzolitic 

trend can be related to their P–T conditions of equilibrium rather than to bulk chemical 

variations. In the case of the Zagadochnaya primary garnets (Fig. 3 in Manuscript 3), 

however, the concurrent variations of Ca–Cr and trace elements (cf. Fig. 11 in Manuscript 3), 

the restricted range of estimated P–T conditions, and the apparent absence of primary spinel, 

still suggest a major role of metasomatic processes on garnet compositional variations. In the 

absence of detailed geochemical and thermobarometric data, the significance of the observed 

Ca–Cr trend would have remained uncertain. 

The wide spectrum of geochemical compositions of Zagadochnaya garnets gave also the 

opportunity to investigate the effect of melt/rock interactions on garnet REE composition. 

Numerical simulations (Plate Model; Vernières et al., 1997), which take into account the 

combined effects of fractional crystallization and of chromatographic and assimilation 

processes, allowed to place quantitative constraints on peridotite–melt processes in the 

Zagadochnaya mantle section. The results show that the wide spectrum of REE compositions 

observed in the different garnet groups can be produced by a unique episode of melt injection 

and percolation through a refractory mantle column, whereby the melt progressively changes 

its composition due to chromatographic ion exchange, fractional crystallization and 

assimilation of peridotitic minerals, under decreasing melt/rock ratios.  

 

Lessons for future mantle studies 

The results obtained in this work provide valuable information for future thermobarometric 

and geochemical studies of peridotitic garnets and clinopyroxenes from kimberlites. Thanks 



140 

 

to a detailed evaluation of electron microprobe uncertainties using different analytical 

conditions and of their propagation on pressure estimates, single-clinopyroxene geobarometry 

can now be applied with reasonable confidence to a wider variety of clinopyroxene 

compositions, thus allowing better definition of mantle geotherms and diamond potential. On 

the other hand, doubts are cast on the reliability of many previous thermobarometric data, 

which were obtained using non-optimized chemical analyses. For instance, the large scatter of 

P–T estimates obtained so far for inclusions of chromian diopside in diamonds (see Fig. 27 in 

Stachel and Harris 2008) probably mainly reflects non-optimized electron microprobe 

analyses of clinopyroxenes with unfavorable compositions. High-quality analyses will not 

eliminate recognized underestimation of pressure at P > 4.5 GPa (cf. Nimis 2002), but a 

robust recalibration of the geobarometer is not possible at present, due to the lack of accurate 

thermodynamic data for Cr-bearing clinopyroxenes. 

New constraints and modelling hints were also provided for the quantitative petrochemical 

characterization of peridotitic garnets from cratonic settings: 

(a) The new thermodynamic model, which uses improved thermodynamic data for some 

Cr-bearing endmembers, allows a more reliable assessment of garnet–spinel relationships and 

compositional variations in minerals in a variety of compositions relevant to Earth’s mantle 

(from strongly depleted harzburgitic to fertile lherzolitic) and a variety of thermal regimes. 

(b) Numerical simulations using the Plate Model emphasized the importance of certain 

critical petrochemical parameters (fractional crystallization, assimilation of peridotitic 

minerals, time-integrated melt/rock ratio, chromatographic ion exchange processes, 

mineral/melt partition coefficients, composition of the ambient peridotite) for a correct 

interpretation of trace element variability in mantle-derived peridotitic garnets. In common 

practice, although some of these parameters cannot be directly measured, reasonable 

constraints can be obtained using the most extreme among the garnet compositions observed. 

For instance, the progressive decrease in HREE and increase in LREE observed in 

Zagadochnaya Group A and Group B garnets was reproduced assuming percolation of a melt 

in equilibrium with the most HREE-rich garnets through a mantle column containing a garnet 

with extremely fractionated REE (HREE/LREE >> 1 xCI), and simulating interactions with 

progressive decreasing time-integrated melt/rock ratio and fractional crystallization of 

clinopyroxene and garnet. The sinusoidal REE patterns in Group C garnets were instead 

reproduced by percolation of a melt in equilibrium with the most LREE-rich Group B garnet, 

which was assumed to represent the residual melt of the reactions that produced Group A and 

Group B garnets. In this case, the best fit was obtained assuming chromatographic-type 

chemical exchange at low time-integrated melt/rock ratios, with no fractional crystallization, 
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but allowing for orthopyroxene assimilation. Such assimilation was found to be necessary to 

reproduce the progressive decrease in LREE contents (with similar LREE fractionation) 

observed in group C garnets. The numerous attempts to reproduce the REE composition of 

Group C garnets showed that, if no or only minor fractional crystallization is assumed during 

melt percolation, the calculated HREE contents of the garnet strongly depend on the initial 

HREE composition of the ambient peridotite. The degree of MREE/HREE fractionation of the 

modeled garnet compositions is instead strongly dependent on the adopted Grt/meltD values. 

Numerous attempts indicated that the HREE depletion rates and MREE/HREE fractionations observed 

in Group A and Group B garnets could be obtained only using Grt/meltDHREE values higher than those 

estimated based on Grt/Cpx partitioning (Burgess and Harte, 2004; Gibson et al. 2008). The best fit 

with the observed data were obtained the high-T experimental dataset of Johnson (1998). The best fit 

with the composition of Zagadochnaya primary garnets was obtained using the high-T 

experimental Grt/meltD values of Johnson (1998). Future numerical simulations for other case 

studies can be designed taking into account these tips. 

The study of mantle fragments from the diamond-free Zagadochnaya kimberlite, and the 

comparison with the nearby, highly diamondiferous Udachnaya kimberlite, gave the 

opportunity to investigate the possible factors that controlled the diamond potential. The 

shallow origin of Zagadochnaya mantle samples (< 130 km), as constrained by the results of 

single-clinopyroxene thermobarometry and Ni-in-garnet thermometry, suggests a significant 

sampling bias for the kimberlite compared to its highly diamondiferous neighbor, and 

therefore provides a simple first-order explanation for the absence of diamonds at 

Zagadochnaya. The lack of deeper mantle material, however, poses new questions on the 

volcanology of the Zagadochnaya kimberlite, since a similar sampling bias has never been 

reported for other Paleozoic kimberlites from the Siberian Craton (cf. Griffin et al. 1999c; 

Ashchepkov et al. 2010; Ionov et al. 2010). Arndt et al. (2010) suggested that type-II 

kimberlites such as Zagadochnaya, due to their low CO2 contents, may have slower ascent 

rates than type-I kimberlites. A slow ascent of the kimberlitic magma to shallow lithospheric 

levels before eruption would explain the absence of deep mantle material, the abundance of 

secondary mineral assemblages, and the high-Mg composition of the kimberlite (cf. 

Kostrovitsky and de Bruin 2004). 

The late-stage, pervasive reactions with melts related to the host kimberlite, recorded by 

secondary assemblages in garnet and clinopyroxene grains, may have constituted an 

additional unfavorable condition for diamond. These pervasive reactions, which occurred at 

mantle depths shortly before the kimberlite eruption, may have led to resorption of any small 

diamond load originally present. Understanding which was the dominant factor that controlled 
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the diamond potential of this kimberlite is not straightforward, and requires further 

investigations from different prospective. Future studies on other type-II kimberlite pipes 

from the Daldyn Field (Bukovinskaya, Gornyatskaya, and Kusov), which are known to have 

very low diamond grades (<0.5 ct/ton; Kargin et al. 2011) and contain secondary assemblages 

very similar to those at Zagadochnaya (Kostrovitsky and de Bruin 2004), may provide further 

insight into specific relationships between metasomatic processes and type-II kimberlite 

magmatism and into volcanological factors that controlled mantle sampling by these 

kimberlites. 



143 

 

REFERENCES  

• Afonso JC, Ranalli G, Fernàndez M, Griffin WL, O’Reilly SY, Faul, U (2010) On the Vp/Vs–
Mg# correlation in mantle peridotites: Implications for the identification of thermal and 
compositional anomalies in the upper mantle. Earth Planet Sci Lett 289:606–618 

• Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle 
xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Mineral 
Petrol 88:72–85. 

• Arndt NT, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental 
lithospheric mantle: some petrological constraints. Lithos 109:61–71 

• Arndt NT, Guitreau M, Boullier AM, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) 
Olivine, and the origin of kimberlite. J Petrol 51:573–602  

• Ashchepkov IV (2006) Empirical garnet thermobarometer for mantle peridotites. Russ Geol 
Geophys 47:1071–1085 

• Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY, Doyle BJ (2007) Lithosphere formation in 
the central Slave Craton (Canada): Plume subcretion or lithosphere accretion? Contrib 
Mineral Petrol 154:409–427 

• Bascou J, Doucet LS, Saumet S, Ionov DA, Ashchepkov IV, Golovin AV (2011) Seismic 
velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths 
from the Udachnaya kimberlite. Earth Planet Sci Lett 304:71–84 

• Batumike JM, Griffin WL, O'Reilly SY (2009) Lithospheric mantle structure and the diamond 
potential of kimberlites in southern D.R. Congo. Lithos 112:166–176 

• Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134 

• Boyd FR (1973) A pyroxene geotherm. Geochim Cosmochim Acta 37:2533–2546 

• Boyd FR (1989). Compositional distinction between oceanic and cratonic lithosphere. Earth 
Planet Sci Lett 96 (1999). 

• Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, 
Southern Africa. In: Mysen, B.O. (ed.) Magmatic Processes: Physicochemical Principles. 
Geochem Soc Spec Publ 1:3–12 

• Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) 
Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. 
Contrib Mineral Petrol 128:228–246 

• Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites. II. New 
thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–
1378 

• Brey G, Köhler T, Nickel K (1990) Geothermobarometry in four-phase lherzolites I. 
Experimental results from 10 to 60 kb.  J Petrol 31:1313–1352 

• Brey GP, Bulatov VK, Girnis V (2008) Geobarometry for Peridotites: Experiments in simple 
and natural systems from 6 to 10 GPa. J Petrol 49:3–24 

• Brey GP, Doroshev AM, Girnis AV, Turkin AI (1999) Garnet-spinel-olivine-orthopyroxene 
equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system: I. Composition and molar volumes 
of minerals. Eur J Mineral 11:599–617 

• Burgess SR, Harte B (1999) Tracing lithosphere evolution through the analysis of 
heterogeneous G9/G10 garnet in peridotite xenoliths, I: Major element chemistry. In: Gurney 
JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th Kimberlite 
Conference (Dawson volume). Cape Town, Red Roof Design, 66–80 



144 

 

• Burgess SR, Harte B (2004) Tracing lithosphere evolution through the analysis of 
heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry. J Petrol 45:609–
634 

• Canil D (2004) Mildly incompatible elements in peridotites and the origins of mantle 
lithosphere. Lithos 77:375–93 

• Carswell DA (1991) The garnet–orthopyroxene Al barometer: problematic application to 
natural garnet lherzolite assemblages. Mineral Mag 55:19–31 

• Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation 
of continental crust. GSA Bulletin 125:14–32 

• Chatterjee ND, Terhart L (1985) Thermodynamic calculation of peridotite phase relations in 
the system MgO-Al2O3-SiO2-Cr2O3, with some geological applications. Contrib Mineral 
Petrol 89:273–284 

• Connolly JAD (1990) Multivariable phase diagrams: An algorithm based on generalized 
thermodynamics. Am J Sci 290:666–718 

• Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram 
sections and retrieval of rock properties as a function of physical conditions. J Metamorph 
Geol 20: 697–708 

• Cookenboo HO, Grütter HS (2010) Mantle-derived indicator mineral compositions as applied 
to diamond exploration. Geochemistry: Exploration, Environment, Analysis, 10:81–95 

• Creighton S, Stachel T, McLean H, Muehlenbachs K, Simonetti A, Eichenberg D, Luth R 
(2008) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. 
Contrib Mineral Petrol 155:541-554 

• Creighton S, Stachel T, Matveev S, Höfer HE, McCammon C, Luth RW (2009) Oxidation of 
the Kaapvaal lithospheric mantle driven by metasomatism. Contrib Mineral Petrol 157:491–
504 

• Dawson JB (1984) Contrasting types of upper mantle metasomatism. In: Kornprobst J (ed) 
Kimberlites II: The Mantle and Crust-Mantle Relationships. Amsterdam, Elsevier, pp 289–
294 

• Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and 
associated xenoliths J Geol 83:589–607  

• Doroshev A, Brey G, Girnis A, Turkin A, Kogarko L (1997) Pyrope-knorringite garnets in the 
Earth’s mantle: Experiments in the MgO-Al2O3-SiO2-Cr2O3 system. Russ Geol Geophys 
38:559-586 

• Doucet LS, Ionov DA, Golovin AV, Pokhilenko NP (2012) Depth, degrees and tectonic 
settings of mantle melting during craton formation: Inferences from major and trace element 
compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. 
Earth Planet Sci Lett 359-360:206–218 

• Ellis DJ and Green DH (1979) An experimental study of the effect of Ca upon garnet-
clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petrol 71:13–22 

• Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M 
(1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, 
South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. New York, 
Academic, pp 221–311 

• Gasparik T (1984) Two-pyroxene thermobarometry with new experimental data in the system 
CaO-MgO-Al2O3-SiO2. Contrib Miner Petrol 87:87–97 

• Gibson SA, Malarkey J, Day AA (2008) Melt Depletion and Enrichment beneath the Western 
Kaapvaal Craton: Evidence from Finsch Peridotite Xenoliths. J Petrol 49:1817–1852 



145 

 

• Girnis AV, Brey GP, Doroshev AM, Turkin AI, Simon N (2003) The system MgO-Al2O3-
SiO2-Cr2O3 revisited: reanalysis of Doroshev et al.’s (1997) experiments and new 
experiments. Eur J Mineral 15:953–964 

• Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Goemann K (2013) Nickel-rich 
metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S-Cl-rich C-O-H fluids. 
Contrib Miner Petrol, 165:155–171 

• Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich 
mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing 
peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625 

• Griffin WL, Ryan CG (1995) Trace elements in indicator minerals: area selection and target 
evaluation in diamond exploration. J Geochem Explor 53:311–337 

• Griffin WL, O'Reilly SY, Ryan CG, (1999a) The composition and origin of subcontinental 
lithospheric mantle. In: Fei Y, Bertka CM, Mysen BO (Eds) Mantle Petrology: Field 
Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd. The 
Geochemical Society, Special Publication, pp 13–45 

• Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999b) Harzburgite to lherzolite and 
back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, 
Kimberley, South Africa. Contrib Mineral Petrol 134:232–250 

• Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin 
IP (1999c) The Siberian lithosphere traverse. Mantle terranes and the assembly of the Siberian 
craton. Tectonophysics 310:1–35 

• Griffin WL, Fisher NI, Friedman JH, Ryan CG, O’Reilly SY (1999d) Cr-pyrope garnets in the 
lithospheric mantle: I. Compositional systematics and relations to tectonic setting. J Petrol 
40:679–704 

• Griffin WL, Fisher NI, Friedman JH, O'Reilly SY, Ryan CG (2002) Cr-pyrope garnets in the 
lithospheric mantle 2. Compositional populations and their distribution in time and space. 
Geochemistry Geophysics Geosystems 3, doi:10.1029/2002GC000298 

• Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K 
(2003a) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41 

• Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003b) The evolution of lithospheric 
mantle beneath the Kalahari Craton and its margins. Lithos 71:215–242 

• Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V and 
Pokhilenko N (2004). Lithosphere mapping beneath the North American plate. Lithos 
77:873–922 

• Griffin WL, Natapova LM, O’Reilly SY, van Achterbergh E, Cherenkova AF, Cherenkov VG 
(2005) The Kharamai kimberlite field, Siberia: Modification of the lithospheric mantle by the 
Siberian Trap event. Lithos 81:167–187 

• Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for 
mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857 

• Grütter H (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and 
their use in mantle barometry. J Petrol 47:801-820 

• Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 
112:1167–1178 

• Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. In: Glover JE, 
Harris PG (Eds) Kimberlites: Occurrence and Origin: A Basis for Conceptual Models in 
Exploration. University of Western Australia, Extension Services, Perth, pp 143–166 



146 

 

• Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and garnet 
peridotites. Nature 300:697–700.  

• Harte B (1983) Mantle peridotites and processes – the kimberlite sample. In: Hawkesworth 
CJ, Norry M J (eds) Continental Basalts and Mantle Xenoliths. Nantwich, Shiva, pp. 46–91  

• Herzberg C, Rudnick R (2012) Formation of cratonic lithosphere: An integrated thermal and 
petrological model. Lithos 149:4–15 

• Hoal KEO, Hoal BG, Erlank AJ, Shimizu N (1994) Metasomatism of the mantle lithosphere 
recorded by rare earth elements in garnets. Earth Planet Sci Lett 126:303–313 

• Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of 
petrological interest. J Metamorph Geol 16:309–343 

• Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the Lithospheric Mantle in the 
Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J 
Petrol 51:2177–2210 

• James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith constraints on seismic 
velocities in the upper mantle beneath southern Africa. Geochem Geophys Geosyst 5,  
doi:10.1029/2003GC000551 

• Jenkins DM, Newton RC (1979) Experimental determination of the spinel peridotite to garnet 
peridotite inversion at 900°C and 1000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C 
with natural garnet and olivine. Contrib Mineral Petrol 68:407–419 

• Kahoui M, Kaminsky FV, Griffin WL, Belousova E, Mahdjoub Y, Chabane M (2012) 
Detrital pyrope garnets from the El Kseibat area, Algeria: A glimpse into the lithospheric 
mantle beneath the north-eastern edge of the West African Craton. J Afr Earth Sci 63:1–11 

• Kargin AV, Golubeva Yu. Yu. & Kononova VA (2011) Kimberlites of the Daldyn–Alakit 
Region (Yakutia): Spatial Distribution of the Rocks with Different Chemical Characteristics. 
Petrology 19:496–520 

• Kinny PD, Dawson JB (1992) A mantle metasomatic injection event linked to late Cretaceous 
kimberlite magmatism. Nature 360:726–728 

• Klemme S (2004) The influence of Cr on the garnet–spinel transition in the Earth’s mantle: 
experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–
646 

• Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-
bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 
112:986–991 

• Klemme S, O’Neill HSC (2000) The near-solidus transition from garnet lherzolite to spinel 
lherzolite. Contrib Mineral Petrol 138:237–248 

• Kober L (1921) Der Bau der Erde (The construction of the Earth). Gebrüder Borntraeger, 
Berlin, 353 pp 

• Kostrovitsky SI, de Bruin D (2004) Chromium assemblage of minerals in micaceous 
kimberlites of Yakutian province. Russ Geol Geophys 45:565–576 

• Lee C-TA, Luffi P, Chin EJ (2011) Buliding and destroying continental mantle. An Rev Earth 
Planet Sci 39:59–90 

• Lee C-TA (2006) Geochemical/petrologic constraints on the origin of cratonic mantle. In: 
Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments. Geophys 
Monogr. Washington DC, AGU, pp 89–114 

• Lenardic A, Moresi L-N, Muhlhaus H-B (2003) Longevity and stability of cratonic 
lithosphere: insights from numerical simulations of coupled mantle convection and 
continental tectonics. J Geophys Res B Solid Earth 108:9–15 



147 

 

• MacGregor ID (1965) Stability fields of spinel and garnet peridotites in the synthetic system 
MgO–CaO–Al2O3–SiO2. Carnegie Inst Wash Year Book 64:126–134 

• MacGregor ID (1974) The system MgO–Al2O3–SiO2: solubility of Al2O3 in enstatite for 
spinel and garnet peridotite compositions. Am Mineral 59:110–119 

• MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle 
beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134:313–
324 

• Malkovets VG, Griffin WL, O'Reilly SY, Wood BJ (2007) Diamond, subcalcic garnet, and 
mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35:339–342 

• Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the 
depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and 
seismology. Lithos 125:729–742 

• Menzies MA (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle 
heterogeneity modified by magmatic activity. In: Hawkesworth CJ, Norry MJ (eds) 
Continental Basalts and Mantle Xenoliths. Nantwich, Shiva, pp 92–110 

• Menzies M, Xu Y, Zhang H, Fan W (2007) Integration of geology, geophysics and 
geochemistry: A key to understanding the North China Craton. Lithos 96:1–21 

• Mitchell RH (1995) Kimberlites, Orangeites and Related Rocks. Plenum Press, New York, 
N.Y. 

• Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and 
implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 
73:158–170 

• Nickel KG (1986) Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 
(SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrb Mineral 
Abh 155:259–287 

• Nickel KG (1989) Garnet-pyroxene equilibria in the system SMACCR (SiO2–MgO–Al2O3–
CaO–Cr2O3): The Cr-geobarometer. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly 
SY, Danchin RV, Janse AJA (eds) Kimberlites and Related Rocks, Vol. 2, Their Mantle/Crust 
Setting, Diamonds and Diamond Exploration. Geological Society of Australia Special 
Publication 14. Blackwell Scientific, Victoria, pp 901–912 

• Nimis P (2002) The pressures and temperatures of formation of diamond based on 
thermobarometry of chromian diopside inclusions. Can Mineral 40:871–884 

• Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and 
pyroxenites. Contrib Mineral Petrol 159:411–427 

• Nimis P, Taylor WR (2000) Single-clinopyroxene thermobarometry for garnet peridotites. 
Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. 
Contrib Mineral Petrol 139:541–554 

• Nimis P, Zanetti A, Dencker I, Sobolev NV (2009) Major and trace element composition of 
chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic 
processes, thermobarometry and diamond potential. Lithos 112:397–412 

• Nimis P, Grütter H (2012) Discussion of “The applicability of garnet–orthopyroxene 
geobarometry in mantle xenoliths” , by Wu C.-M. and Zhao G. (Lithos, v. 125, p. 1–9). Lithos 
142–143:285–287 

• Nixon PH (1987) Mantle xenoliths. John Wiley, Chichester. 

• O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use 
as a geobarometer. Contrib Mineral Petrol 77:185–194 



148 

 

• O’Reilly SY, Griffin WL, Poudjom Djomani YH and Morgan P (2010). Are lithosphere 
forever? Tracking changes in subcontinental lithospheric manle through time. GSA Today 
11:4–10 

• Parman SW, Grove TL, Dann JC, de Wit MJ (2004) A subduction origin for komatiites and 
cratonic lithospheric mantle. S Afr J Geol 107:107–118 

• Pearson DG, Nowell GM (2002) The continental lithospheric mantle: characteristics and 
significance as a mantle reservoir. Philosoph Trans Royal Soc Lond 360:2383–2410 

• Pearson DG, Wittig N (2008) Formation of Archean continental lithosphere and its diamonds: 
the root of the problem. J Geol Soc 165:895–914 

• Pearson DG, Canil D, Shirey SB (2003) Mantle Samples Included in Volcanic Rocks : 
Xenoliths and Diamonds. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. 
Elsevier, Amsterdam, pp 171–275 

• Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re-Os, 
Sm-Nd, and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the 
Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–77 

• Pivin M, Féménias O and Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and 
Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 
112:951–960 

• Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite 
solidus. Earth Planet Sci Lett 164:277–284 

• Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure–temperature data from 
Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res 101:5611–5625 

• Shimizu N, Richardson SH (1987) Trace element abundance patterns of garnet inclusions in 
peridotite suite diamonds. Geochim Cosmochim Acta 51:755–758 

• Shimizu N, Pokhilenko NP, Boyd FR, Pearson DG (1997) Geochemical characteristics of 
mantle xenoliths from the Udachnaya kimberlite pipe. Russ Geol Geophys 38:205–217 

• Schulze DJ (1989) Constraints on the abundance of eclogite in the upper mantle. J Geophys 
Res 94:4205–4212 

• Schulze DJ (2003) A classification scheme for mantle-derived garnet in kimberlite: a tool for 
investigating the mantle and exploring for diamonds. Lithos 71:195–213 

• Simakov SK (2008) Garnet–clinopyroxene and clinopyroxene geothermobarometry of deep 
mantle and crust eclogites and peridotites. Lithos 106:125–136 

• Simakov SK (2012) A New Garnet Thermometer for Mantle Peridotites and Estimation of the 
Diamond Potential on Its Basis. Dokl Earth Sci 445: 1003–1005 

• Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the 
Kaapvaal cratonic lithospheric mantle. J Petrol 48:589–625 

• Sleep NH (2004) Evolution of the continental lithosphere. Ann Rev Earth Planet Sci 33:369–
93 

• Sobolev NV, Kuznetsova IK, Zyuzin NI (1968) Petrology of grospydite xenoliths from the 
Zagadochnaya kimberlite pipe in Yakutia. J Petrol 9:253–280 

• Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from 
the kimberlites of Yakutia and their paragenesis. Contrib Mineral Petrol 40:39–52 

• Sobolev NV, Mankenda SA, Kaminskiy FV, Sobolev VN (1990) Garnets from kimberlites of 
Northeastern Angola and correlations between their compositions and diamond content. Dokl 
Earth Sci 315:238–242 



149 

 

• Stachel T, Harris JW, (2008) The origin of cratonic diamonds – constraints from mineral 
inclusions. Ore Geol Rev 34:5–32 

• Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace 
element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19 

• Tappert R, Foden J, Muehlenbachs K, Wills K (2011) Garnet peridotite xenoliths and 
xenocrysts from the Monk Hill kimberlite, South Australia: Insights into the lithospheric 
mantle beneath the Adelaide Fold Belt. J Petrol 52:1965–1986 

• Taylor WR (1998) An experimental test of some geothermometer and geobarometer 
formulations for upper mantle peridotites with application to the thermobarometry of fertile 
lherzolite and garnet websterite. N Jb Min Abh 172:381–408 

• Turkin AI, Sobolev NV (2009) Pyrope–knorringite garnets: overview of experimental data 
and natural parageneses: Russ Geol Geophys 50:1169–1182 

• Vernières J, Godard M, Bodinier J-L (1997) A plate model for the simulation of trace element 
fractionation during partial melting and magma transport in the Earth's upper mantle. J 
Geophys Res 102:24771–24784 

• Walter M, Katsura T, Kubo A, Shinmei T, Nishikawa O, Ito E, Lesher C, Funakoshi K (2002) 
Spinel–garnet lherzolite transition in the system CaO-MgO-Al2O3-SiO2 revisited: an in situ 
X-ray study. Geochim Cosmochim Acta 66:2109–2121 

• Walter MJ (1998) Melting of Garnet Peridotite and the Origin of Komatiite and Depleted 
Lithosphere. J Petrol 39:29–60 

• Webb SAC, Wood BJ (1986) Spinel-pyroxene-garnet relationships and their dependence on 
Cr/Al ratio. Contrib Mineral Petrol 92:471–480 

• Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, 
kimberlites and the sub-continental lithosphere. Earth Planet Sci Lett 309:337–347 

• Woolley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NMS, Scott Smith BH 
(1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, 
and leucitic rocks. Can Mineral 34:175–186 

• Wu C, Zhao G, (2011) The applicability of garnet–orthopyroxene geobarometry in mantle 
xenoliths. Lithos 125:1–9 

• Zheng J, Griffin WL, O'Reilly SY, Yang J, Li T, Zhang M, Zhang RY, Liou JG (2006) 
Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: 
Constraints on mantle evolution beneath Eastern China. J Petrol 47:2233–2256 
 



150 

 

APPENDIX 1 

BACK-SCATTERED ELECTRON IMAGES OF GARNET 
XENOCRYSTS FROM THE ZAGADOCHNAYA KIMBERLITE AND 

MAJOR ELEMENT CONCENTRATION PROFILES 

 

This appendix include back-scattered electron images and major element concentration 
profiles of garnet xenocrysts from Zagadochnaya. Only zoned garnets showing clear zonation 
trends are reported. The source data of the element concentration profiles are reported in 
Appendix 2. 
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APPENDIX 2 

RESULTS OF ELECTRON MICROPROBE TRAVERSES USED FOR 
MAJOR ELEMENT CONCENTRATION PROFILES 
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Garnet Z4-1 

Label 01 02 03 04 05 07 08 09 10 11 12 13 14 16 17 18 20 
SiO2 41.43 41.93 41.56 41.33 40.94 41.19 41.23 41.29 41.73 41.36 40.93 41.03 41.20 41.41 41.14 41.76 41.32 

TiO2 0.23 0.22 0.26 0.25 0.33 0.33 0.28 0.32 0.34 0.33 0.38 0.35 0.21 0.21 0.29 0.21 0.18 

Al2O3 19.22 18.83 18.54 17.96 17.67 17.85 17.48 17.75 17.53 17.94 17.51 17.54 17.92 18.37 17.57 19.33 18.78 

Cr2O3 6.61 6.93 7.11 8.02 8.15 8.07 7.93 8.13 8.18 8.50 8.22 8.26 7.75 7.52 8.17 5.87 7.28 

FeOtot 8.10 8.16 8.24 8.12 8.06 7.81 7.87 8.11 7.91 7.88 8.14 8.06 8.14 8.20 8.19 8.40 8.24 

MnO 0.35 0.39 0.41 0.32 0.34 0.24 0.42 0.36 0.35 0.30 0.31 0.27 0.39 0.36 0.45 0.33 0.38 

MgO 19.65 19.76 19.28 18.82 18.78 18.79 19.00 18.77 18.62 18.86 18.80 18.79 18.95 19.35 18.65 19.85 19.49 

CaO 5.24 5.29 5.48 5.90 6.14 6.11 6.07 6.23 6.20 6.04 6.31 6.17 5.87 5.71 5.93 4.38 5.51 

Na2O 0.00 0.04 0.00 0.05 0.09 0.10 0.06 0.08 0.17 0.01 0.15 0.05 0.06 0.06 0.00 0.04 0.09 

K2O 0.01 0.00 0.04 0.00 0.00 0.00 0.20 0.02 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 

SUM 100.84 101.56 100.89 100.77 100.50 100.48 100.35 101.03 101.02 101.22 100.73 100.52 100.48 101.19 100.39 100.17 101.25 

Mg# 81.2 81.2 80.7 80.5 80.6 81.1 81.2 80.5 80.8 81.004 80.5 80.6 80.6 80.8 80.2 80.8 80.8 

Cr# 18.8 19.8 20.5 23.1 23.6 23.3 23.3 23.5 23.8 24.1 23.9 24.0 22.5 21.5 23.8 16.9 20.6 
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Garnet Z4-3 

Label 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
SiO2 41.47 41.60 41.64 41.39 41.37 41.57 41.43 41.47 41.48 41.28 41.33 41.27 41.42 41.47 41.79 

TiO2 0.17 0.18 0.15 0.15 0.22 0.15 0.15 0.19 0.21 0.18 0.19 0.12 0.09 0.12 0.08 

Al2O3 19.03 18.74 20.08 18.73 18.73 18.55 19.20 18.75 18.60 18.56 18.53 18.99 19.74 19.86 19.86 

Cr2O3 6.92 6.81 5.24 6.98 6.75 7.07 6.49 7.31 6.74 7.26 7.03 6.42 5.36 5.72 5.56 

FeOtot 8.25 8.56 8.61 8.52 8.37 8.18 8.69 8.23 8.23 8.33 8.39 8.53 8.54 8.59 8.40 

MnO 0.33 0.41 0.43 0.46 0.24 0.33 0.42 0.36 0.30 0.32 0.31 0.39 0.44 0.51 0.43 

MgO 18.73 18.54 19.28 18.76 18.43 18.64 18.81 18.85 18.75 19.08 18.79 18.96 19.25 18.97 19.44 

CaO 6.10 5.94 5.48 6.14 6.07 6.11 5.72 6.00 6.12 5.85 5.86 5.62 5.03 5.59 4.69 

Na2O 0.01 0.00 0.11 0.03 0.07 0.01 0.07 0.00 0.02 0.05 0.04 0.00 0.06 0.00 0.11 

K2O 0.00 0.02 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.05 0.01 0.01 0.03 0.00 

SUM 101.01 100.77 101.02 101.16 100.25 100.60 100.98 101.15 100.44 100.90 100.46 100.31 99.92 100.84 100.38 

Mg# 80.2 79.4 80.0 79.7 79.7 80.2 79.4 80.3 80.2 80.3 80.0 79.8 80.1 79.7 80.5 

Cr# 19.6 19.6 14.9 20.0 19.5 20.4 18.5 20.7 19.5 20.8 20.3 18.5 15.4 16.2 15.8 
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Garnet Z4-4 
Label 01 02 03 04 05 06 07 08 09 10 
SiO2 40.89 40.90 40.98 41.02 41.16 40.96 41.01 41.29 42.06 41.51 

TiO2 0.04 0.05 0.05 0.05 0.03 0.01 0.05 0.04 0.03 0.03 

Al2O3 17.76 17.73 17.76 17.69 17.58 17.63 17.86 18.70 20.94 20.47 

Cr2O3 8.33 8.44 8.49 8.18 8.39 8.31 8.30 7.17 4.34 5.13 

FeOtot 8.24 8.24 8.18 8.35 8.34 8.40 8.50 8.51 8.54 8.66 

MnO 0.35 0.34 0.37 0.28 0.30 0.33 0.48 0.34 0.42 0.42 

MgO 17.79 18.00 17.89 17.70 17.88 17.92 17.86 18.68 20.23 19.43 

CaO 6.97 6.98 7.10 6.94 6.99 7.05 6.56 5.74 4.34 5.36 

Na2O 0.00 0.02 0.02 0.00 0.00 0.00 0.06 0.00 0.00 0.00 

K2O 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 

SUM 100.36 100.70 100.82 100.20 100.67 100.62 100.69 100.46 100.88 101.02 

Mg# 79.4 79.6 79.6 79.1 79.3 79.2 78.9 79.6 80.9 80.0 

Cr# 23.9 24.2 24.3 23.7 24.2 24.0 23.8 20.5 12.2 14.4 
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Garnet Z4-8 
Label 01 02 03 07 08 09 10 11 12 13 14 
SiO2 41.61 41.22 41.39 41.44 41.32 41.38 41.29 41.21 41.27 41.49 42.06 

TiO2 0.10 0.11 0.10 0.13 0.08 0.06 0.09 0.09 0.04 0.05 0.05 

Al2O3 18.45 18.37 18.33 18.45 18.50 18.58 18.30 18.36 18.51 20.22 20.12 

Cr2O3 7.71 7.83 7.80 7.70 7.87 7.28 7.84 7.72 7.48 5.66 4.69 

FeOtot 7.91 7.64 7.83 7.75 7.98 8.10 7.96 7.94 8.09 8.12 8.01 
MnO 0.35 0.35 0.32 0.38 0.32 0.38 0.38 0.35 0.34 0.40 0.42 
MgO 18.93 18.73 18.64 18.79 18.75 19.03 18.86 18.52 18.99 19.69 19.47 
CaO 6.31 6.22 6.26 6.41 6.31 6.24 6.37 6.27 5.97 5.32 4.34 
Na2O 0.04 0.07 0.02 0.05 0.03 0.08 0.04 0.03 0.07 0.05 0.13 

K2O 0.02 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.06 
SUM 101.40 100.54 100.69 101.08 101.16 101.12 101.12 100.51 100.76 101.02 99.29 
Mg# 81.02 81.4 80.9 81.2 80.7 80.7 80.8 80.6 80.7 81.2 81.3 
Cr# 21.9 22.2 22.2 21.9 22.2 20.8 22.3 22.0 21.3 15.8 13.5 
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Garnet Z4-9 
Label 01 02 03 04 05 06 07 09 11 15 16 
SiO2 41.81 41.89 41.98 41.83 41.89 41.66 41.91 41.63 41.50 41.34 41.75 
TiO2 0.09 0.14 0.15 0.12 0.09 0.09 0.08 0.10 0.11 0.19 0.19 
Al2O3 19.91 19.81 19.45 19.49 19.48 19.36 19.64 19.42 19.57 19.16 19.22 
Cr2O3 5.61 5.81 6.25 6.05 6.18 5.94 5.99 6.03 5.94 6.27 6.45 
FeOtot 8.32 8.34 8.46 8.50 8.22 8.40 8.23 8.19 8.49 8.14 7.99 
MnO 0.42 0.39 0.40 0.36 0.36 0.39 0.36 0.30 0.37 0.43 0.33 
MgO 20.21 20.24 20.22 19.87 20.11 19.83 20.32 20.18 20.08 19.36 19.45 
CaO 4.32 4.56 4.72 4.78 4.53 4.57 4.72 4.65 4.59 5.62 5.72 
Na2O 0.04 0.03 0.04 0.05 0.07 0.04 0.01 0.06 0.04 0.02 0.04 
K2O 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.01 0.00 
SUM 100.74 101.21 101.67 101.04 100.94 100.28 101.28 100.60 100.69 100.54 101.14 
Mg# 81.2 81.2 81.0 80.6 81.4 80.8 81.5 81.5 80.8 80.9 81.3 
Cr# 15.9 16.4 17.7 17.2 17.5 17.1 17.0 17.2 16.9 18.0 18.4 
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Garnet Z4-9 continued 
Label 17 19 22 24 25 26 27 28 29 30 
SiO2 41.69 41.59 41.82 41.63 41.48 41.80 41.46 41.78 41.85 41.51 
TiO2 0.21 0.20 0.18 0.16 0.15 0.19 0.15 0.09 0.11 0.13 
Al2O3 19.22 19.32 19.51 19.26 19.26 19.40 19.34 19.68 19.46 19.30 
Cr2O3 6.20 6.34 6.08 6.34 6.51 6.29 6.04 5.92 6.06 6.24 
FeOtot 8.27 8.07 8.30 8.30 8.37 8.20 8.38 8.47 8.22 8.26 
MnO 0.31 0.37 0.34 0.29 0.33 0.40 0.34 0.38 0.35 0.34 
MgO 19.30 19.18 19.08 19.22 19.25 19.09 19.12 19.59 19.49 19.14 
CaO 5.63 5.61 5.53 5.73 5.66 5.76 5.78 5.42 5.31 5.60 
Na2O 0.04 0.01 0.04 0.04 0.00 0.06 0.03 0.00 0.00 0.00 
K2O 0.00 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
SUM 100.87 100.70 100.89 100.97 101.01 101.19 100.64 101.32 100.84 100.51 
Mg# 80.6 80.9 80.4 80.5 80.4 80.6 80.3 80.5 80.9 80.5 
Cr# 17.8 18.0 17.3 18.1 18.5 17.9 17.3 16.8 17.3 17.8 
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Garnet Z5-1 
Label 01 02 03 05 06 07 08 09 10 11 12 13 14 15 16 17 18 
SiO2 41.96 41.88 41.33 41.54 41.46 41.33 41.68 41.18 41.18 41.30 41.46 41.27 41.12 41.60 41.32 42.03 42.19 

TiO2 0.02 0.02 0.02 0.03 0.02 0.03 0.00 0.02 0.00 0.03 0.04 0.03 0.00 0.02 0.05 0.01 0.02 

Al2O3 20.98 19.11 19.18 19.62 19.59 19.54 19.62 19.01 19.17 19.28 19.14 19.12 19.57 19.57 19.41 20.61 20.82 

Cr2O3 4.87 7.18 6.85 6.06 6.04 6.03 6.67 6.76 7.18 6.99 6.98 6.99 6.77 5.67 6.30 5.19 4.89 

FeOtot 8.57 8.53 8.58 8.58 8.64 8.53 8.45 8.47 8.32 8.02 8.33 8.35 8.60 8.54 8.63 8.70 8.65 
MnO 0.40 0.38 0.30 0.31 0.47 0.30 0.32 0.39 0.36 0.33 0.27 0.25 0.38 0.46 0.39 0.38 0.38 
MgO 19.89 19.16 19.69 19.56 19.18 19.55 19.38 18.67 18.90 18.73 18.73 18.66 19.79 19.99 19.67 20.38 20.14 
CaO 4.35 5.52 5.00 5.26 5.22 5.22 5.13 6.16 6.14 6.14 6.29 6.30 4.62 4.66 4.98 4.17 4.60 
Na2O 0.00 0.02 0.05 0.02 0.00 0.05 0.06 0.06 0.00 0.01 0.01 0.06 0.00 0.00 0.03 0.00 0.08 

K2O 0.00 0.01 0.03 0.00 0.03 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.03 0.09 0.11 0.02 
SUM 101.04 101.81 101.04 101.00 100.64 100.60 101.31 100.72 101.25 100.84 101.27 101.04 100.85 100.54 100.85 101.58 101.78 
Mg# 80.5 80.0 80.4 80.2 79.8 80.3 80.3 79.7 80.2 80.6 80.0 79.9 80.4 80.7 80.3 80.7 80.6 
Cr# 13.5 20.1 19.3 17.2 17.1 17.2 18.6 19.3 20.1 19.6 19.7 19.7 18.8 16.3 17.9 14.5 13.6 
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Garnet Z5-10 
Label 01 03 04 05 06 07 08 09 10 11 12 13 14 15 
SiO2 41.91 41.66 41.15 41.39 41.17 41.18 41.50 41.28 41.44 41.35 41.24 41.22 41.10 41.61 

TiO2 0.05 0.11 0.10 0.11 0.15 0.15 0.14 0.12 0.15 0.14 0.12 0.17 0.15 0.15 

Al2O3 19.23 20.02 18.26 18.04 18.31 17.89 18.13 18.12 18.12 18.01 18.09 17.95 18.09 18.07 

Cr2O3 7.07 5.42 8.25 8.18 7.98 8.24 8.11 8.02 8.31 8.33 8.25 8.25 8.06 8.08 

FeOtot 8.24 8.48 8.34 8.25 8.30 7.95 8.23 8.15 8.13 8.29 8.13 8.23 8.26 8.08 
MnO 0.39 0.33 0.39 0.36 0.24 0.33 0.34 0.38 0.28 0.31 0.24 0.26 0.28 0.33 
MgO 18.98 19.47 18.36 18.62 18.52 18.49 18.78 18.59 18.49 18.85 18.72 18.52 18.65 18.67 
CaO 5.77 5.92 6.13 6.28 6.27 6.19 6.23 6.22 6.31 6.29 6.28 6.30 6.30 6.24 
Na2O 0.07 0.00 0.05 0.07 0.03 0.00 0.01 0.01 0.05 0.00 0.05 0.01 0.00 0.05 

K2O 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
SUM 101.70 101.41 101.03 101.31 100.96 100.42 101.49 100.90 101.28 101.56 101.11 100.91 100.89 101.27 
Mg# 80.4 80.4 79.7 80.1 79.9 80.6 80.3 80.3 80.2 80.2 80.4 80.0 80.1 80.5 
Cr# 19.8 15.4 23.3 23.3 22.6 23.6 23.1 22.9 23.5 23.7 23.4 23.6 23.0 23.1 
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Garnet Z5-10 continued 
Label 17 18 20 21 22 23 24 25 
SiO2 41.39 41.16 41.17 41.07 41.37 41.55 41.39 41.13 

TiO2 0.14 0.15 0.14 0.17 0.19 0.16 0.13 0.15 

Al2O3 17.86 17.94 18.18 17.99 17.85 17.93 18.04 17.74 

Cr2O3 8.24 8.00 8.10 8.14 8.25 8.33 8.28 8.18 

FeOtot 7.80 8.05 8.07 8.00 7.96 8.08 7.94 8.21 
MnO 0.37 0.30 0.36 0.37 0.29 0.36 0.33 0.37 
MgO 19.02 18.69 18.99 18.82 18.57 18.87 18.97 18.74 
CaO 6.28 6.36 6.32 6.12 6.31 6.40 6.31 6.27 
Na2O 0.00 0.00 0.00 0.01 0.01 0.05 0.01 0.00 

K2O 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
SUM 101.11 100.67 101.34 100.68 100.80 101.75 101.41 100.82 
Mg# 81.3 80.5 80.7 80.7 80.6 80.6 81.0 80.3 
Cr# 23.6 23.0 23.0 23.3 23.7 23.8 23.5 23.6 
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Garnet Z5-16 
Label 01 02 03 04 05 06 08 10 11 12 13 14 15 16 17 22 
SiO2 41.95 41.98 41.67 41.75 41.48 41.85 41.90 41.95 41.74 42.22 42.02 42.25 42.22 42.20 41.89 41.92 
TiO2 0.19 0.18 0.21 0.20 0.21 0.14 0.13 0.21 0.21 0.19 0.18 0.19 0.13 0.16 0.18 0.14 
Al2O3 18.34 18.21 18.28 18.12 18.02 18.22 18.32 18.38 18.40 18.39 18.28 19.34 19.69 19.26 18.55 19.54 
Cr2O3 8.09 7.86 8.08 8.23 8.07 7.71 7.72 7.94 7.87 7.72 7.74 6.42 6.12 6.37 7.48 6.54 
FeOtot 7.96 7.97 7.94 7.95 7.92 8.03 8.05 8.23 7.97 7.99 8.08 7.98 8.15 7.97 8.03 8.15 
MnO 0.35 0.23 0.31 0.30 0.28 0.33 0.34 0.30 0.37 0.34 0.33 0.37 0.45 0.36 0.41 0.34 
MgO 18.97 18.95 19.00 19.43 19.08 18.79 19.10 18.83 18.77 19.28 18.84 19.28 19.39 19.38 19.03 19.77 
CaO 5.81 5.94 5.95 5.94 6.05 5.87 5.84 5.90 5.82 5.88 5.78 5.50 5.36 5.44 5.80 5.41 
Na2O 0.07 0.00 0.00 0.01 0.10 0.00 0.03 0.00 0.04 0.10 0.00 0.03 0.02 0.03 0.12 0.04 
K2O 0.02 0.00 0.00 0.01 0.02 0.00 0.05 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.01 
SUM 101.72 101.32 101.43 101.94 101.24 100.94 101.47 101.76 101.21 102.11 101.25 101.37 101.53 101.17 101.49 101.88 
Mg# 81.0 80.9 81.0 81.3 81.1 80.7 80.9 80.3 80.8 81.1 80.6 81.2 80.9 81.3 80.9 81.2 
Cr# 22.8 22.4 22.9 23.4 23.1 22.1 22.0 22.5 22.3 22.0 22.1 18.2 17.3 18.2 21.3 18.3 
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Garnet Z5-16 continued 
Label 23 24 25 27 28 29 30 
SiO2 41.82 42.17 42.10 42.16 41.88 42.06 42.51 
TiO2 0.10 0.11 0.13 0.07 0.09 0.09 0.10 
Al2O3 18.49 19.02 19.41 19.89 18.83 19.04 19.62 
Cr2O3 7.50 6.49 6.34 6.04 6.83 6.70 6.01 
FeOtot 8.09 7.95 8.06 8.18 8.10 8.04 8.03 
MnO 0.38 0.34 0.30 0.25 0.40 0.38 0.31 
MgO 19.24 19.60 19.52 19.62 19.89 19.53 20.07 
CaO 5.82 5.37 5.35 5.31 5.51 5.43 5.09 
Na2O 0.01 0.06 0.05 0.05 0.10 0.01 0.00 
K2O 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
SUM 101.45 101.12 101.27 101.60 101.63 101.28 101.73 
Mg# 80.9 81.5 81.2 81.0 81.4 81.2 81.7 
Cr# 21.4 18.6 18.0 16.9 19.6 19.1 17.0 

 


