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Summary

This thesis addresses different aspects of observation-driven time series modeling. The

main contributions concern the reliability of likelihood-based inference and the specifica-

tion of dynamic models to capture complex behaviors observed in time series data.

As concerns inference, the main focus of the thesis is on invertibility conditions for

observation-driven time series models. Invertibility plays a key role in ensuring the con-

sistency of likelihood-based estimators. However, the invertibilty conditions typically

employed in the literature are often unfeasible to be checked. Therefore, the reliability

of inference fails to be guaranteed in practice. This thesis contributes to the literature by

deriving feasible conditions that ensure the consistency of the maximum likelihood esti-

mator for a wide class of models. One of the most appealing features of our consistency

results is that they hold for both correctly specified and misspecified models. Several

empirical examples covering different observation-driven models are presented. These

examples highlight the practical relevance of the theoretical results.

As concerns model specification, we cover two lines of research. The first is related

to integer-valued time series data. We propose an extension to the class of Integer-valued

Autoregressive models that allows the survival probability to vary over time. We show

how our model can be easily estimated by maximum likelihood and we prove the con-

sistency of the estimator. The flexibility of the proposed approach is shown through a

simulation experiment and an application to a real time series of crime reports. Finally,

the second line of research on model specification is an extension of the Generalized Au-

toregressive Score framework. We propose a class of models that updates time-varying

parameters at different speeds in different time periods. The new updating equation can be

employed to describe time series where the amount of information contained in the data

is changing over time. This peculiarity is highlighted through a simulation study and we

provide theoretical foundations for the proposed approach. Furthermore, two empirical

applications to S&P 500 stock returns and US inflation illustrate how our method can be

useful in practice.





Summary in Italian

Questa tesi tratta diversi aspetti della modellazione di serie storiche attraverso modelli

observation-driven. I principali contributi della tesi riguardano l’inferenza basata sulla

verosimiglianza e la specificazione di modelli per serie storiche con comportamenti di-

namici complessi.

Per quanto riguarda l’inferenza, la tesi si focalizza su condizioni di invertibilità per

modelli observation-driven. Assicurare invertibilità è importante per poter assicurare la

consistenza degli stimatori di massima verosimiglianza. Le condizioni di invertibilità

tipicamente considerate in letteratura non sono testabili in situazioni pratiche. Il nostro

contributo consiste nella derivazione di condizioni di invertibilità testabili che garantis-

cono la consistenza dello stimatore per un’ampia classe di modelli. Una delle principali

caratteristiche dei nostri risultati è che sono applicabili sia a modelli correttamente speci-

ficati che a modelli non correttamente specificati. Diversi esempi empirici sono presentati

che illustrano la rilevanza pratica dei nostri risultati teorici.

Per quanto riguarda la specificazione di modelli, due linee di ricerca sono state con-

siderate. La prima riguarda serie storiche a valori interi. Proponiamo un estensione dei

modelli Integer-valued Autoregressive che consente alla probabilità di sopravvivenza di

variare nel tempo. Mostriamo come questi modelli siano facilmente stimabili attraverso lo

stimatore di massima verosimiglianza per il quale viene anche dimostrata la consistenza.

La flessibilità dell’approccio considerato è mostrata attraveso uno studio di simulazione

e un applicazione a una serie storica reale sul crimine. Infine, il secondo ramo di ricerca

sulla specificazione è un estensione dei modelli Generalized Autoregressive Score. La

specificazione che proponiamo consente la variazione della velocità di aggiornamento

del parametro dinamico in diversi istanti temporali. Questo nuovo sistema di aggiorna-

mento è in grado di descrivere situazioni dove l’informazione contenuta nei dati cambia

nel tempo. Questa peculiarità è illustrata attraverso uno studio di simulazione e il sistema

di aggiornameto proposto è giustificato da alcune proprietà di ottimalità. Inoltre, due ap-

plicazioni empiriche sui rendimenti azionari dell’indice S&P 500 e l’inflazione degli Stati

Uniti illustrano come l’approccio presentato possa essere utile nella pratica.
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Chapter 1

Introduction

1.1 Overview

Time series data are encountered in most fields of empirical science as phenomena are

typically observed sequentially over time. Examples range from the number of sunspots,

or the water flow of a river in natural sciences to the number of inhabitants of a city, or the

returns of a financial index in social sciences. The main assumption behind time series

analysis is that past observations contain information about future observations. The idea

is therefore to exploit this information and obtain more accurate predictions of future

outcomes. Statistical modeling plays a key role in time series analysis as it summarizes

the relevant information in the data and provides a probabilistic representation of the

phenomenon of interest.

Statistical modeling of time series data has a long history. The first applications of

autoregressive models go back to Yule (1927). Box and Jenkins (1970) provided a uni-

fied approach to specification, estimation, diagnostic checking and forecasting of Inte-

grated Autoregressive Moving Average (ARIMA) models. ARIMA models represent a

milestone for time series modeling and their main justification rests on the Wold decom-

position theorem (Wold, 1938). Several extensions of the ARIMA framework have been

proposed over the years. Examples include the vector autoregressive model, Sims (1980),

and the cointegration analysis of Engle and Granger (1987). A limitation of the ARIMA

approach and its extensions is that they describe the linear dependence in the data but they

do not explicitly take into account possible nonlinearities. This may be too restrictive in

some situations of practical interest. For this reason, in the late 70s researchers started

focusing on nonlinear time series models. One of the firsts to consider a nonlinear model

was Tong (1978), introducing the class of Threshold Autoregressive (TAR) models. TAR
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models allow the conditional mean of the process to depend on past observations in a

nonlinear fashion. Nonlinear models come in different forms and shapes as nonlinearities

can be introduced in different ways. A typical approach that produces nonlinear specifica-

tions is to allow time variation in some features of the probability distribution of interest,

i.e. some parameters. A well know example is to have time dependence in the variance of

the observations. Popular models with dynamic variance are the Generalized Autoregres-

sive Conditional Heteroscedastic (GARCH) model of Engle (1982) and Bollerslev (1986)

and the Stochastic Volatility (SV) model of Taylor (1986). These models have been suc-

cessfully employed in Econometrics and Finance to describe the well known volatility

clustering often observed in financial asset returns.

Most time-varying parameter models can be classified in two categories: observation-

driven and parameter-driven models (Cox, 1981). In observation-driven models, the pa-

rameter of interest is made time-varying considering a stochastic processes where the

source of randomness comes from past observations. Whereas, in parameter-driven mod-

els, the time-varying parameter is specified as a stochastic process with its own source of

error. In the context of volatility models, the GARCH model is an example of observation-

driven model as the source of randomness is provided by past squared observations. On

the other hand, the SV model is an example of parameter-driven model as the dynamic

variance is driven by a latent autoregressive process. In most situations, as also in the case

of the GARCH and the SV model, these two classes of models play equivalent roles. Their

goal is to enable some features of the distribution of the variable of interest to change over

time and, in this way, capture some form of dependence in the data. However, their statis-

tical properties are quite different. Observation-driven models have the great advantage

that they can be easily estimated since the likelihood function is available in closed form

through a prediction error decomposition. Therefore, only standard optimization methods

are needed to perform likelihood-based inference. Instead, in parameter-driven models,

the likelihood function is usually not in closed form as it contains integrals with no ana-

lytical solutions. Therefore, estimation is much more challenging from a computational

point of view and time-consuming simulation-based methods are usually required. Some

rare exceptions with close form solutions exist, see for example the Markov Switching

models where the Hamilton filter can be employed (Hamilton, 1989).

In parameter-driven models, the time-varying parameter is typically specified as an au-

toregressive process where the innovation is an independently and identically distributed

(i.i.d.) sequence of Gaussian random variables. On the other hand, the specification of

observation-driven models is often based on intuition. For instance, to make the variance

time-varying it makes sense to consider a linear combination of squared past observations;
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this leads to the well known GARCH model. However, sometimes it is not clear which

function of the past observations to use and an intuitive choice may not always be the

best option. Creal et al. (2013) and Harvey (2013) proposed an updating equation where

the innovation is given by the score of the conditional distribution of the observations.

This approach provides a general framework to specify the time-varying parameter in an

observation-driven setting. The resulting class of models is known as Generalized Au-

toregressive Score (GAS) models. Besides being intuitive, the use of the score as driving

mechanism to update time-varying parameters is also justified by an optimality reasoning

(Blasques et al., 2015). Since its introduction, the GAS framework has been successfully

employed to develop dynamic models in econometrics and time series analysis, see for

instance Salvatierra and Patton (2015), Harvey and Luati (2014) and Creal et al. (2011).

It also turns out that many existing observation-driven models are in fact GAS models.

Examples include the GARCH model and, in the context of integer-valued time series,

the Poisson autoregressive model of Davis et al. (2003). For a more detailed discussion

see Creal et al. (2013).

In this thesis, we address different aspects of observation-driven time series modeling

including model specification and statistical inference. These two aspects are particularly

relevant from a practical perspective as an appropriate specification of the model and a

reliable inferential procedure are two of the main ingredients to obtain an accurate prob-

abilistic representation of the time series of interest. The focus of the thesis is mostly on

score-driven models though general results for observation-driven models are considered

in Chapter 2. In particular, the second chapter of the thesis is concerned with model esti-

mation of observation-driven models, whereas the third and fourth chapters are concerned

with model specification in the setting of score-driven models. The 3 main chapters of

the thesis are self contained and they can be read separately. In the following, we provide

a brief outline for each chapter of the thesis. More detailed outlines can be found at the

beginning of each chapter.

The first line of research, Chapter 2, concerns the consistency of likelihood-based

inference for observation-driven models. One of the key steps to ensure the reliabil-

ity of the Maximum Likelihood (ML) estimator is the study of the asymptotic behavior

of the filtered time-varying parameter, i.e. the time-varying parameter recovered using

the observed data. In the context of Quasi Maximum Likelihood (QML) estimation of

GARCH-type models, Straumann and Mikosch (2006) proposed to rely on Theorem 3.1

of Bougerol (1993) to ensure the asymptotic stability of the filtered parameter, which is

known as invertibility. Compared to previous research, their approach allows us to handle

nonlinearities in the recursion of the filtered parameter. However, the required invert-
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ibility conditions often impose restrictions on the parameter space that are unfeasible to

be checked in practice. This occurs because these invertibility conditions depend on the

properties of the Data Generating Process (DGP) that are unknown. Wintenberger (2013)

noted this problem for the EGARCH model of Nelson (1991) and proposed to replace the

unfeasible conditions with a feasible empirical invertibility condition. This method deliv-

ers a consistent QML estimator for the EGARCH model. We note that this problem is not

a peculiarity of the EGARCH model but a general problem for observation-driven models

with nonlinearities in the filtered parameter recursion. Therefore, often, the asymptotic

theory can be ensured only for either degenerate or very small parameter regions that

are unrealistic in empirical applications. As examples, we consider the Beta-t-GARCH

model of Harvey (2013) and Creal et al. (2013), the location model of Harvey and Luati

(2014) and the autoregressive model of Blasques et al. (2014b) and Delle Monache and

Petrella (2016). We build on the work of Wintenberger (2013) and deliver a general the-

ory for observation-driven models that ensures the consistency of the ML estimator under

feasible invertibility conditions. The resulting theory is shown to cover applications of

practical interest such as modeling of financial stock returns and macroeconomic vari-

ables. An appealing feature of our theoretical results is that they hold also in the case

of model misspecification. In this situation, the consistency is proved with respect to a

pseudo-true parameter.

The second line of research, Chapter 3, concerns integer-valued time series modeling.

Over the last few years, there has been an increasing interest in modeling time series with

non-continuous response variables. This due to the fact that many observed variables take

values in a discrete support and models for continuous variables are not suited in these sit-

uations. One of the most popular class of models for count time series data is the class of

Integer-valued Autoregressive (INAR) models introduced by Al-Osh and Alzaid (1987)

and McKenzie (1988). INAR models can be seen as a discrete version of the continu-

ous response AR models as they share several common properties. An appealing feature

of INAR models is their interpretation as birth-death processes: at each time period the

count is given by the sum between the number of new born elements and the number of

elements surviving from the previous period. Assuming a constant survival probability

can be too restrictive in many situations as real time series often exhibit changes in their

behavior over time. Therefore, allowing different persistence levels in different time pe-

riods can be useful to better describe the observed variable and enhance the forecasting

performance of the model. We propose a novel dynamic specification for the surviving

probability. The peculiarity of our approach is to consider an observation-driven dynamic

for the surviving probability based on the GAS framework. The resulting class of mod-
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els is appealing from several prospectives. First, the proposed dynamic coefficient is

very effective in capturing smooth changes in the survival probability. We illustrate this

through a simulation study designed in a misspecified setting where the survival proba-

bility follows different deterministic paths. Second, the estimation of the model can be

easily performed by maximum likelihood using standard optimization algorithms as for

the classic INAR model. Finally, the proposed class of models allows us to consider gen-

eral distributions for the new born process without additional difficulties in the derivation

of the model specification and estimation. One of the main contributions of this chapter is

the study of some statistical properties of the proposed model. In particular, we show the

consistency of ML estimation for the static parameters and for the predictive probability

mass function. Furthermore, we also provide an empirical application to a crime time

series to illustrate how our class of models can be useful in practice.

The third and last line of research, Chapter 4, concerns model specification in the

framework of GAS models. As mentioned before, in the GAS framework, the time-

varying parameter is specified as an autoregressive process where the innovation is given

by the score of the predictive likelihood. As discussed in Blasques et al. (2015), the GAS

updating mechanism can be seen as a sort of Newton Raphson algorithm where the score

provides the direction of the updating step. We propose to allow the magnitude of the

updating step to be time-varying. The idea behind having time variation in the size of the

step is related to the amount of local information in the data. In some time periods, the

most recent observations can be very informative to predict future observations, whereas,

in other periods, this may not be the case. Therefore, in such situations, we would like

the time-varying parameter to be updated quickly when the data is informative and slowly

when the data is not informative. The specification we introduce to capture time variation

in the magnitude of the GAS updating step is given by a weighted autocorrelation of past

GAS innovations. This has an intuitive interpretation: the amount of local information in

the data is determined by the dependence of past score innovations. We perform a simu-

lation study as an illustrative example of this idea and show the benefits that our approach

can provide. Furthermore, in the spirit of Blasques et al. (2015), we derive an optimality

justification for the proposed method in terms of Kullback-Leibler (KL) divergence reduc-

tion between the true and unknown conditional distribution and the postulated statistical

model. Finally, some empirical examples considering volatility and location models are

presented. In particular, in the context of volatility models, we derive an extension of the

GARCH model and perform an empirical study using the stock returns of the S&P 500

financial index. Whereas, in the context of location models, we specify a fat tailed model

and illustrate an empirical application to the US consumer price inflation series. Overall,
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the empirical results show promising results both in-sample and out-of-sample.

1.2 Main contributions of the thesis

In the following, we summarize the main original contributions of the thesis.

Chapter 2.

1. Feasible consistency conditions for ML estimation of a wide class of observation-

driven time series models are derived.

2. The consistency of the ML estimator for the Beta-t-GARCH model is proved under

a testable invertibility condition.

3. The theory developed in the chapter is shown to be useful also outside the frame-

work of GARCH-type models. This is done by means of two examples in the

context of location models.

Chapter 3.

1. A new class of observation-driven INAR models with dynamic survival probabil-

ity is introduced. Estimation and forecasting procedures of the proposed class of

models is presented.

2. The consistency of ML estimation of the static parameter vector and the conditional

probability mass function is proved.

3. The flexibility of the proposed class of models is illustrated through a simulation

study. Furthermore, an empirical application to a crime time series is provided.

Chapter 4.

1. An extension of the GAS framework is proposed. This extension introduces time

variation in the updating equation of score-driven models.

2. An optimality argument that justifies the proposed specification of the time-varying

parameter update is derived.
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3. Empirical illustrations in economics and finance to show how the proposed ap-

proach can be useful in practice are presented. More specifically, applications to

financial stock returns and the US inflation series are considered.
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Chapter 2

Feasible Invertibility Conditions for

Maximum Likelihood Estimation of

Observation-Driven Models

2.1 Introduction

Observation-driven models are widely employed in time series analysis and economet-

rics. These models feature time-varying parameters that are specified through a Stochas-

tic Recurrence Equation (SRE) driven by past observed elements of the time series. A

well know example of observation-driven models is the class of GARCH-type models.

Observation-driven models are widely used also outside the context of volatility models;

see for instance the Dynamic Conditional Correlation (DCC) model of Engle (2002), the

time-varying quantile model of Engle and Manganelli (2004), the dynamic copula mod-

els of Patton (2006), the score models of Creal et al. (2013) and the time-varying location

model of Harvey and Luati (2014).

The asymptotic theory of the QML estimator for GARCH-type models has attracted

much attention. Lumsdaine (1996) and Lee and Hansen (1994) obtained the consistency

and asymptotic normality of the QML estimator for the GARCH(1,1). Berkes et al.

(2003) generalized their results to the GARCH(p,q). Among others, Francq and Zakoian

(2004) and Robinson and Zaffaroni (2006) weakened the conditions for consistency and

asymptotic normality and extended the results to a larger class of models. Straumann and

Mikosch (2006) provided a very general approach to handle nonlinearities in the variance

recursion. Their theory relies on the work of Bougerol (1993) to ensure the invertibil-

ity of the filtered time-varying variance and delivers asymptotic results that are subject to
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some restrictions on the parameter region where the QML estimator is defined. The sever-

ity of these restrictions typically depends on the degree of nonlinearity in the recurrence

equation.

We note that, in practical applications, the invertibility conditions of Straumann and

Mikosch (2006) often fail to be guaranteed. We will illustrate this issue through some

empirical examples featuring the Beta-t-GARCH model of Harvey (2013) and Creal et al.

(2013), the autoregressive model with dynamic coefficient of Blasques et al. (2014b) and

Delle Monache and Petrella (2016) and the fat-tailed location model of Harvey and Luati

(2014). The main problem lies on the fact that these conditions are empirically unfeasible

as they depend on the unknown DGP. This leads researchers to rely on feasible conditions

that are typically only satisfied in either degenerate or very small parameter regions that

are too restrictive for practical situations. To handle this issue and ensure the asymptotic

theory of the QML estimator of the EGARCH(1,1) model of Nelson (1991), Wintenberger

(2013) proposed to stabilize the inferential procedure by restricting the optimization of

the quasi-likelihood function to a parameter region that satisfies an empirical version of

the required invertibility conditions considered in Straumann and Mikosch (2006). This

method provides a consistent QML estimator for the EGARCH(1,1) model.

In the literature, there are also consistency proofs for observation-driven models with

nonlinear filters that do not rely on the invertibility concept of Straumann and Mikosch

(2006), see for instance Harvey (2013), Harvey and Luati (2014) and Ito (2016). However,

these results appeal to Lemma 2.1 of Jensen and Rahbek (2004) and rely on the very

restrictive and non-standard assumption that the true value of the unobserved time-varying

parameter is known at time t = 0. Unlike Jensen and Rahbek (2004), who carefully show

that they do not need to impose this assumption in their non-stationary GARCH paper, this

crucial issue is typically not addressed. As discussed in Wintenberger (2013) and Sorokin

(2011), invertibility is not just a technical assumption as the lack of knowledge of the

true initial value of the time-varying parameter at t = 0 can lead to the impossibility of

recovering asymptotically the true time-varying parameter even knowing the true vector

of static parameters. Furthermore, besides the invertibility issue, the results based on

Lemma 2.1 of Jensen and Rahbek (2004) are only valid under the correct specification of

the model and assuming that the likelihood function is maximized on an arbitrary small

neighborhood around the true parameter value.

In this chapter, we extend the stabilization method of Wintenberger (2013) to a large

class of observation-driven models and prove the consistency of the resulting ML estima-

tor. The resulting theory provides feasible invertibility conditions that allow us to drop the

unrealistic assumption that the time-varying parameter is known at t = 0. Our consistency
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results hold for both correctly specified and misspecified models. In the latter case consis-

tency is considered with respect to a pseudo-true parameter that has the interpretation of

minimizing a marginal KL divergence between the true unknown conditional distribution

and the conditional distribution of the postulated model. Additionally, we derive a test

and confidence bounds for the “true” unfeasible parameter region. Our results cover a

very wide class of models including ML estimation of GARCH-type models. In financial

applications, maximum likelihood estimation for GARCH-type models is often preferred

to QML estimation as the time series exhibit fat-tails and asymmetry. In this context, we

provide an example of how our results can be useful in practice. In particular, we prove

the consistency of the ML estimator for the Beta-t-GARCH model of Harvey (2013) and

Creal et al. (2013). The usefulness of our theoretical results is further illustrated consid-

ering two example in the context of dynamic location model. In particular, we discuss

the implications of our results considering the dynamic autoregressive model of Blasques

et al. (2014b) and Delle Monache and Petrella (2016) and the fat-tailed location model of

Harvey and Luati (2014).

The chapter is structured as follows. Section 2.2 motivates the theory presented in

the chapter with an empirical application for which the invertibility conditions used in

Straumann and Mikosch (2006) are too restrictive. Section 2.3 introduces the notion of

invertibility of the filter and analyzes it in the context of the class of observation-driven

models studied in this chapter. Section 2.4 presents the asymptotic results. Section 2.5

derives an invertibility test for the filter and obtains confidence bounds for the parameter

space of interest. Section 2.6 shows the practical importance of the asymptotic results

through some empirical illustrations. Section 2.7 concludes.

2.2 Motivation

Consider the Beta-t-GARCH model introduced by Harvey (2013) and Creal et al. (2013)

for a sequence of financial returns {yt}t∈Z with time-varying conditional volatility and

leverage effects,

yt =
√

ftεt and ft+1 = ω + βft + (α + γdt)
(v + 1)y2t

(v − 2) + y2t /ft
, (2.1)

where {εt}t∈Z is an i.i.d. sequence of standard Student-t random variables with v > 2

degrees of freedom and dt is a dummy variable that takes value dt = 1 if yt ≤ 0 and

dt = 0 otherwise. In order to perform ML estimation of the model, the observed data
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{yt}Tt=1 are used to obtain the filtered time-varying parameter f̂t(θ) as

f̂t+1(θ) = ω + βf̂t(θ) + (α + γdt)
(v + 1)y2t

(v − 2) + y2t /f̂t(θ)
, t ∈ N,

where the recursion is initialized at f̂0(θ) ∈ [0,+∞). The invertibility concept of Strau-

mann and Mikosch (2006) is concerned with the stability of f̂t(θ). In particular, it en-

sures that asymptotically the filtered parameter f̂t(θ) does not depend on the initialization

f̂0(θ). Figure 2.2.1 illustrates the importance of the invertibility of the filter. The plots

show differences between filtered volatility paths obtained from the S&P 500 returns for

different initializations f̂0(θ). The left panel shows a situation where the filter is invert-

ible and hence the effect of the initialization f̂0(θ) on f̂t(θ) vanishes as t increases. The

right panel shows that the effect of the initialization does not vanish when the filter is not

invertible.
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Figure 2.2.1: Filtered variance paths for different initializations and using the S&P 500

time series. Differences are with respect to the filter initialized at f̂0(θ) = 0.1. In the first

plot, the vector of static parameters is selected to satisfy the invertibility conditions. In the

second plot, a vector of static parameters that does not satisfy the invertibility conditions

is considered.

From a ML estimation perspective, the lack of invertibility of the filter also poses

fundamental problems. Without invertibility, even asymptotically, the likelihood function

depends on the initialization and hence this may lead the ML estimator to converge to

different points when different initializations are considered. Furthermore, we may also

be in a situation where we have a consistent estimator for the static parameter vector θ but

we may not be able to consistently estimate the time-varying parameter. This considera-

tion comes naturally from the fact that lack of invertibility can lead to the impossibility
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of recovering the true path of the time-varying parameter even when the true vector of

static parameters θ0 is known, see Wintenberger (2013) and Sorokin (2011) for a more

detailed discussion. As we shall see, the following condition on the parameter region Θ

is sufficient for invertibility, and hence ensures the reliability of the ML estimator,

E log

∣

∣

∣

∣

β + (α + γdt)
(v + 1)y4t

((v − 2)ω̄ + y2t )
2

∣

∣

∣

∣

< 0, ∀ θ ∈ Θ, (2.2)

where ω̄ = ω/(1− β). However, in practice, it is not possible to evaluate the expectation

in (2.2) as it depends on the unknown DGP. Note that this is true even when the model is

correctly specified as the true parameter vector θ0 is unknown. Therefore, the derivation

of the region Θ has to rely on feasible sufficient conditions to ensure (2.2). As we shall see

in Section 2.6, assuming either correct specification or that yt has a symmetric probability

distribution around zero1, we can obtain the following sufficient invertibility condition

that does not depend on yt

1

2
log |β + (α + γ)(v + 1)|+ 1

2
log |β + α(v + 1)| < 0.

Unfortunately, Figure 2.2.2 suggests that the set Θ obtained from such a sufficient con-

dition is too small for empirical applications. In particular, Figure 2.2.2 highlights that

a typical ML point estimate lies far outside Θ. This specific point estimate is obtained

from monthly log-differences of the S&P 500 financial index from January 1980 to April

2016. Figure 2.2.2 might indicate that the filter is not stable or invertible. However, as we

shall see in Section 2.6, this seems not to be the case. This point estimate lies well inside

the estimated region for an invertible filter. The tests and confidence bounds developed in

Section 2.5 further confirm this claim.

As we will discuss in Section 2.6, the problem illustrated in Figure 2.2.2 is not specific

to this sample of data. Different samples of financial returns produce similar point esti-

mates that lie also outside Θ. This problem is also not specific for the class of conditional

heteroscedastic models. We illustrate this point considering the autoregressive model of

Blasques et al. (2014b) and Delle Monache and Petrella (2016) and the location model

of Harvey and Luati (2014). We find that, in general, the typical invertibility conditions

needed to ensure the consistency of the ML estimator, which are considered for instance in

Straumann and Mikosch (2006), Straumann (2005) and Blasques et al. (2014a), lead often

to a parameter region that is too small for practical purposes. In contrary, the estimation

method of Wintenberger (2013), proposed for the QML estimator of the EGARCH(1,1)

1Note that without this assumption the feasible invertibility condition would be even more restrictive.
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Figure 2.2.2: The shaded area identifies the parameter region Θ that satisfies sufficient

conditions for invertibility. Crosses locate the point estimate of the parameters of the

Beta-t-GARCH model.

model, can provide a parameter region large enough for practical applications. In Sec-

tion 2.3 and Section 2.4, we will generalize the method of Wintenberger (2013) to ML

estimation of a wide class of observation-driven models.

2.3 Invertibility of observation-driven filters

Let the observed sample of data {yt}Tt=1 be a subset of the realized path of a random

sequence {yt}t∈Z with elements taking values in Y ⊆ R and having and unknown con-

ditional density po(yt|yt−1), where yt−1 denotes the entire past of the process yt−1 =

{yt−1, yt−2, ...}. Consider now the following parametric observation-driven time-varying

parameter model postulated by the researcher

yt|ft ∼ p(yt|ft, θ), (2.3)

ft+1 = φ(ft, Y
k
t , θ), t ∈ Z, (2.4)
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where θ ∈ Θ ⊆ R
p is a vector of static parameters, ft is a time-varying parameter that

takes values in Fθ ⊆ R, φ is a continuous function from Fθ × Yk × Θ into Fθ, Y
k
t

is a vector containing k lags of the observed time series Y k
t = (yt, yt−1, ..., yt−k)

T , and

p(·|ft, θ) is a conditional density function such that (y, f, θ) 7→ p(y|f, θ) is continuous on

Y × Fθ ×Θ.

As mentioned before, we also address the possibility of having a misspecified model.

More specifically, we allow the parametric model in (2.3) and (2.4) to be fully misspec-

ified. This means that both the dynamic specification of ft and the conditional density

p(·|ft, θ) can be misspecified. Note that a true time-varying parameter ft may not even

exist as we only assume that a true conditional density po(·|yt−1) exists. When we assume

correct specification, the DGP {yt}t∈Z satisfies the model’s equations (2.3) and (2.4) for

θ = θ0 and we denote with f o
t the true time-varying parameter. In this situation, we

have that po(·|yt−1) = p(·|f o
t , θ0). Despite the possibility of model misspecification, it is

worth noting that the model in (2.3) and (2.4) is very general and it covers a wide range

of observation-driven models. Besides many GARCH-type models, this class of mod-

els includes location models as in Harvey and Luati (2014), Multiplicative Error Memory

(MEM) models as in Engle (2002), Autoregressive Conditional Duration models as in En-

gle and Russell (1998), Autoregressive Conditional Intensity models as in Russell (2001)

and Poisson autoregressive models as in Davis et al. (2003).

An important advantage of observation-driven models is that the likelihood function

is analytically tractable and can be written in closed form as the product of conditional

density functions. We consider the convention that the observations are available from

time t = 1 − k. Using the observed data, the filtered parameter f̂t(θ) that enters in the

likelihood function is obtained through the following SRE

f̂t+1(θ) = φ(f̂t(θ), Y
k
t , θ), t ∈ N, (2.5)

where the recursion is initialized at t = 0 with f̂0(θ) ∈ Fθ. Note that the set Fθ, where

the time-varying parameter takes values, is indexed by θ ∈ Θ. As we will see for the

Beta-t-GARCH model, this can be relevant in practice when dealing with specific models

to weaken invertibility conditions. The ML estimator is formally defined as

θ̂T = argmax
θ∈Θ

L̂T (θ), (2.6)
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where L̂T (θ) denotes the log-likelihood function evaluated at θ ∈ Θ,

L̂T (θ) = T−1

T
∑

t=1

l̂t(θ), (2.7)

and l̂t(θ) = log p(yt|f̂t(θ), θ).
One of the difficulties in ensuring the consistency of the ML estimator is related to

the recursive nature of the time-varying parameter and the consequent need of initializing

the recursion in (2.5). In particular, it is important to note that the sequence {f̂t(θ)}t∈N
as well as the sequence {l̂t(θ)}t∈N are both non-stationary. Therefore, the study of the

limit behavior of {f̂t(θ)}t∈N is a natural requirement to ensure an appropriate form of

convergence of the log-likelihood function L̂T (θ). The required stability of {f̂t(θ)}t∈N is

known as invertibilty.

Bougerol (1993) provides well known conditions for the filtered sequence {f̂t(θ)}t∈N
initialized at time t = 0 to converge exponentially fast almost surely (e.a.s.)2 to a unique

stationary and ergodic sequence {f̃t(θ)}t∈Z as t → ∞. In essence, this means that the

effect of the initialization vanishes asymptotically at an exponential rate.3 More formally,

for any given θ ∈ Θ and under appropriate conditions, Theorem 3.1 in Bougerol (1993)

shows that

|f̂t(θ)− f̃t(θ)| e.a.s.−−−→ 0, t −→ ∞,

for any initialization f̂0(θ) ∈ Fθ. Straumann and Mikosch (2006) make use of Bougerol’s

theorem and note that the e.a.s. convergence stated above is sufficient for the invertibil-

ity of the filter4. Their definition of invertibility is closely related to the definition of

invertibility in Granger and Andersen (1978) as it implies that f o
t is yt−1 measurable.

We mention that the stationary and ergodic limit sequence is denoted by f̃t(θ) and

not ft(θ) to stress the fact that the stochastic properties of f̃t(θ) are different from the

stochastic properties of the sequence ft(θ) that follows the model’s equations (2.3) and

(2.4). This because f̃t(θ) is driven by past random variables of the DGP, which does not

follow the model’s equations. Under correct specification, we have that f̃t(θ) has the same

stochastic properties of ft(θ) only when θ = θ0 as the DGP follows the model equations

only at θ0. For more details see Straumann and Mikosch (2006) and Wintenberger (2013).

2A sequence of non-negative random variables {xt}t∈N is said to converge e.a.s. to zero if there exists a

constant γ > 1 such that γtxt

a.s.−−→ 0 as t diverges.
3In the context of correctly specified models this implies that the true path {fo

t
}t∈Z can be asymptotically

recovered as f̂t(θ0) converges to f̃t(θ0) = fo

t
a.s. as t diverges.

4Straumann and Mikosch (2006) say that the model is invertible if f̂t(θ0) converges in probability to f̃o

t

and use Theorem 3.1 of Bougerol (1993) precisely to obtain the desired convergence.
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It is also worth stressing the fact that, even if the model is assumed to be well specified,

different conditions are required to establish invertibility and stationarity. As shown by

Sorokin (2011) for some GARCH-type models, we can have that for a given θ0, the model

in (2.4) admits a stationary solution but lacks invertibility. In these situations, the true

sequence {f̂t(θ0)}t∈N can exhibit chaotic behaviors and the true path of f o
t cannot be

recovered asymptotically even when the true vector of static parameters θ0 is known. See

also the discussion in Wintenberger (2013). For this reason, ensuring the invertibility of

the filtered parameter is not merely a technical requirement but an important ingredient to

ensure the reliability of the inferential procedure.

The invertibility of the sequence {f̂t(θ)}t∈N evaluated at a single parameter value

θ ∈ Θ is not enough to ensure an appropriate convergence of the log-likelihood func-

tion over Θ. This happens naturally because the likelihood function depends on the func-

tional sequence {f̂t}t∈N. In this regard, Wintenberger (2013) introduced the notion of

continuous invertibility for GARCH-type models to ensure the uniform convergence of

the filtered volatility. In our case, accounting for the continuity of the function φ, the

elements of the sequence {f̂t}t∈N can be considered as random elements in the space of

continuous functions C(Θ,FΘ) that map from Θ into FΘ, FΘ :=
⋃

θ∈Θ Fθ, equipped with

the uniform norm ‖ · ‖Θ, where ‖f‖Θ = supθ∈Θ |f(θ)| for any f ∈ C(Θ,FΘ). We say

that the filter {f̂t}t∈N is invertible if for any initialization f̂0 ∈ C(Θ,FΘ)

‖f̂t − f̃t‖Θ e.a.s.−−−→ 0, t −→ ∞,

where {f̃t}t∈Z is a stationary and ergodic sequence of random functions. Also in this

case, note the relation with the invertibility concept in Granger and Andersen (1978) as

the invertibility implies that the stochastic function f̃t is yt−1 measurable.

Proposition 2.3.1 presents sufficient conditions for the invertibility of {f̂t}t∈N. As in

Straumann (2005), Straumann and Mikosch (2006) and Wintenberger (2013), the con-

ditions we consider are based on Theorem 3.1 of Bougerol (1993). First, we define the

stochastic Lipschitz coefficient Λt(θ) as

Λt(θ) := sup
f∈Fθ

∣

∣

∣
φ̇(f, Y k

t , θ)
∣

∣

∣
,

where φ̇(f, Y k
t , θ) = ∂φ(f, Y k

t , θ)/∂f .

Proposition 2.3.1. Assume {yt}t∈Z is a stationary and ergodic sequence of random vari-

ables. Moreover, let the following conditions hold

(i) There exists f̄ ∈ FΘ such that E log+ ‖φ(f̄, Y k
t , ·)‖Θ <∞.



18 2.4. Maximum likelihood estimation

(ii) E supθ∈Θ supf∈FΘ
log+

∣

∣φ̇(f, Y k
t , θ)

∣

∣ <∞.

(iii) log Λ0(θ) is a.s. continuous on Θ and E log Λ0(θ) < 0 for any θ ∈ Θ.

Then, the functional sequence {f̂t}t∈N defined in (2.5) converges exponentially almost

surely and uniformly to a unique stationary and ergodic sequence {f̃t}t∈Z, i.e.

‖f̂t − f̃t‖Θ e.a.s.−−→ 0 as t→ ∞,

for any initialization f̂0 ∈ C(Θ,FΘ).

Proposition 2.3.1 not only ensures the convergence of {f̂t}t∈N to a stationary and

ergodic sequence {f̃t}t∈Z but also that this sequence is unique and therefore the initial-

ization f̂0 is irrelevant asymptotically. Note also that Proposition 2.3.1 holds irrespective

of the correct specification of the model as it only requires that the data are generated

by a stationary and ergodic process. Often, in practical situations, the so-called ‘contrac-

tion condition’ stated in (iii) is the most restrictive condition and it also imposes the most

severe constraints on the parameter space Θ.

Remark 2.3.1. When the model is correctly specified and conditions (i)-(iii) of Propo-

sition 2.3.1 hold, then the filter evaluated at θ0 ∈ Θ converges to the true unobserved

time-varying parameter {f o
t }t∈Z, i.e.

|f̂t(θ0)− f o
t |

e.a.s.−−→ 0 as t→ ∞,

for any initialization f̂0(θ0) ∈ Fθ0 .

Remark 2.3.1 highlights an important implication of Proposition 2.3.1 under correct

specification. We obtain that, knowing the vector of static parameters θ0, the true path of

f o
t can be recovered asymptotically.

2.4 Maximum likelihood estimation

The invertibility of the filter obtained from Proposition 2.3.1 can be used to establish the

consistency of the ML estimator defined in (2.6) over the parameter space Θ. We also

discuss how the invertibility allows us to ensure the consistency of the plug-in estimators

f̂t(θ̂T ) and p(y|f̂t(θ̂T ), θ̂T ), y ∈ Y , for the time-varying parameter and the conditional

density function. After the derivation of these results, we obtain the consistency of the

ML estimator replacing the unfeasible parameter region Θ with an estimated set Θ̂T that
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ensures an empirical version of the contraction condition E log Λ0(θ) < 0. Finally, we

study the case of model misspecification for the ML estimator based on the feasible pa-

rameter region Θ̂T .

The subsequent results are subject to the stationarity and ergodicity of the data gen-

erating process. In the case of correct specification, stationarity and ergodicity can be

checked studying the properties of the DGP, see Blasques et al. (2014c) for sufficient

conditions for a wide class of observation-driven processes. In the case of misspecifica-

tion, instead of imposing that the data are generated by a specific stationary and ergodic

process, we allow the data generating process to be any stationary ad ergodic process.

2.4.1 Consistency of ML estimation

The first consistency result we obtain is under the assumption of correct specification. We

denote the log-likelihood function evaluated at the stationary limit of the filtered param-

eter f̃t as LT (θ) = T−1
∑T

t=1 lt(θ), where lt(θ) = log p(yt|f̃t(θ), θ), and we denote by L

the function L(θ) = El0(θ). The following conditions are considered.

C1: The data generating process, which satisfies the equations (2.3) and (2.4) with θ =

θ0 ∈ Θ, admits a stationary and ergodic solution and E|l0(θ0)| <∞.

C2: For any θ ∈ Θ, l0(θ0) = l0(θ) a.s. if and only if θ = θ0.

C3: Conditions (i)-(iii) of Proposition 2.3.1 are satisfied for the compact set Θ ⊂ R
p.

C4: There exists a stationary sequence of random variables {ηt}t∈Z withE log+ |η0| <∞
such that almost surely ‖l̂t − lt‖Θ ≤ ηt‖f̂t − f̃t‖Θ for any t ≥ N , N ∈ N.

C5: E‖l0 ∨ 0‖Θ <∞.

Condition C1 ensures that the data are generated by a stationary and ergodic process and

imposes an integrability condition on predictive log-likelihood, which is needed to apply

an ergodic theorem. Condition C2 is a standard identifiability condition. Conditions

C3 and C4 ensure the a.s. uniform convergence of L̂T to LT . Finally, Condition C5

ensures that Ln converges to an upper semicontinuous function L. As also considered

in Straumann and Mikosch (2006), this final argument replaces the well known uniform

convergence argument, namely, the uniform convergence of LT to L. Note that Condition

C5 is weaker than the conditions typically needed for uniform convergence and in many

cases it holds automatically as l0(θ) is bounded from above with probability 1. Theorem

2.4.1 guarantees the strong consistency of the ML estimator.
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Theorem 2.4.1. Let the conditions C1-C5 hold, then the ML estimator defined in (2.6) is

strongly consistent, i.e.

θ̂T
a.s.−→ θ0, T −→ ∞

for any initialization f̂0 ∈ C(Θ,FΘ).

The proof is in the appendix. In Section 2.6, the strong consistency of the Beta-t-

GARCH model is proved by checking these conditions.

Often, the main objective of time series modeling is to describe the dynamic behaviour

of the observed data and predict future observations. For this reason, it is interesting to

study the consistency of the estimation of the time-varying parameter f o
t and the con-

ditional density function p(y|f o
t , θ0), y ∈ Y . This further highlights the importance of

the invertibility of the filter as without invertibility it may be possible to estimate consis-

tently the static parameters, as shown by Jensen and Rahbek (2004) for the non-stationary

GARCH(1,1), but it may not be possible to estimate consistently the time-varying pa-

rameter and the conditional density function. We consider plug-in estimates for the time-

varying parameter, given by f̂t(θ̂T ), and for the conditional density function, given by

p(y|f̂t(θ̂T ), θ̂T ), y ∈ Y . The next result shows the consistency of these plug-in estimators.

The consistency is obtained when both t and T go to infinity. This is needed because as T

grows we obtain the consistency of the static parameter estimator and as t grows, thanks

to the invertibility of the filter, we obtain that the effect of the initialization f̂0 becomes

negligible. To obtain the desired result, besides the consistency conditions employed in

Theorem 2.4.1, we additionally impose some Lipschitz conditions.

L1: There is a stationary sequence of random variables {vt}t∈Z such that almost surely

|f̃t(θ1)− f̃t(θ2)| ≤ vt‖θ1 − θ2‖, ∀ θ1, θ2 ∈ Θ, t ∈ Z.

L2: For any y ∈ Y there is a constant cy > 0 such that

cy
∣

∣p(y|f1, θ1)−p(y|f2, θ2)
∣

∣ ≤ ‖θ1−θ2‖+|f1−f2|, ∀ θ1, θ2 ∈ Θ and f1, f2 ∈ FΘ.

The vector norm ‖ · ‖ can be any vector norm. Corollary 2.4.1 below follows immediately

from the Lipschitz condition on the filter L1 and the Lipschitz condition on the conditional

density function L2.

Corollary 2.4.1. Let the conditions C1-C5 and L1 hold, then the plug-in estimator f̂t(θ̂T )

is consistent, i.e.

|f̂t(θ̂T )− f o
t |

pr−→ 0, T → ∞, t→ ∞.
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Assume furthermore that also L2 holds, then the plug-in estimator p(y|f̂t(θ̂T ), θ̂T ) is con-

sistent, i.e.

∣

∣p(y|f̂t(θ̂T ), θ̂T )− p(y|f o
t , θ0)

∣

∣

pr−→ 0, T → ∞, t→ ∞,

for any y ∈ Y and any initialization f̂0 ∈ C(Θ,FΘ).

Corollary 2.4.1 shows that the time-varying parameter f o
t and the conditional density

function p(y|f o
t , θ0), y ∈ Y , can be consistently estimated.

2.4.2 ML on an estimated parameter region

As discussed before, the Lyapunov condition E log Λ0(θ) < 0 imposes some restrictions

on the parameter region Θ. Furthermore, in situations where Λ0(θ) depends on Y k
0 , these

restrictions cannot be checked as the expectation depends on the unknown DGP. Note that

this is true even in the case of correct specification as the true parameter θ0 is unknown.

A possible solution is to obtain testable sufficient conditions such that E log Λ0(θ) <

0 and define the set Θ accordingly. However, as discussed before, this often leads to

very severe restrictions, reducing the set Θ to a small region that is usually too small for

practical applications. Therefore, a better alternative consists in checking the condition

E log Λ0(θ) < 0 empirically and define the ML estimator as the maximizer of the log-

likelihood on an estimated parameter region. In the context of QML estimation, this

approach have been proposed by Wintenberger (2013) to stabilize the QML estimator of

the EGARCH(1,1) model of Nelson (1991). In this section we formally define this ML

estimator and we prove its consistency for the general class of observation-driven models

defined in (2.3). In Section 2.6, we show how these results can be relevant in practical

applications.

We define a compact set Θ̂T that satisfies an empirical version of the Lyapunov con-

dition E log Λ0(θ) < 0 as

Θ̂T =

{

θ ∈ Θ̄ :
1

T

T
∑

t=1

log Λt(θ) ≤ −δ
}

, (2.8)

where Θ̄ ⊂ R
p is a compact set and δ > 0 is an arbitrary small constant. We assume that

the compact set Θ̄ is chosen in such a way that (f, y, θ) 7→ φ(f, y, θ) is a continuous on

FΘ̄ × Yk × Θ̄ and (y, f, θ) 7→ p(y|f, θ) is continuous on Y × FΘ̄ × Θ̄. For notational

convenience, we also define the set Θc = {θ ∈ Θ̄ : E log Λ0(θ) < −c}, c ∈ R. The ML
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estimator on this empirical region Θ̂T is formally defined as

ˆ̂θT = argmax
θ∈Θ̂T

L̂T (θ). (2.9)

To ensure the consistency of this ML estimator in the case of correct specification the

following conditions are considered.

A1: The DGP, which is given by the model in (2.3) and (2.4) with θ0 ∈ Θδ, admits a

stationary and ergodic solution and E|l0(θ0)| <∞.

A2: Condition (i) and (ii) of Proposition 2.3.1 are satisfied for any compact subset Θ ⊆
Θ0. Moreover, the map θ 7→ log Λ0(θ) is almost surely continuous on Θ̄ and

E‖ log Λ0‖Θ̄ <∞.

A3: Conditions C2, C4 and C5 are satisfied for any compact subset Θ ⊆ Θ0.

Note that A1 ensures stationarity, ergodicity and invertibility of the data generating pro-

cess. This condition can be seen as the equivalent of the condition C1 in Theorem 2.4.1.

The condition A2 imposes some assumptions on log Λ0(θ). These assumptions are needed

to guarantee a certain form of convergence for the set Θ̂T and consequently ensure the

continuous invertibility ‖f̂t − f̃t‖Θ̂T

e.a.s.−−→ 0 as t → 0 for large enough T . Therefore,

A2 can be seen as the equivalent of C3 in Theorem 4.1. Finally, A3, together with A2,

is sufficient to ensure that asymptotically the identifiability condition C2, the regularity

condition C4 and the integrability condition C5 holds. The next theorem states the strong

consistency of the ML estimator in (2.9) under correct specification.

Theorem 2.4.2. Let conditions A1-A3 hold, then the ML estimator defined in (2.9) is

strongly consistent, i.e.
ˆ̂θT

a.s.−→ θ0, T −→ ∞

for any initialization f̂0 ∈ C(Θ̄,FΘ̄).

Theorem 2.4.2 generalizes Theorem 5 of Wintenberger (2013), which is specific to

QML estimation of the EGARCH(1,1) model, to ML estimation of the wide class of

observation-driven models specified in (2.3) and (2.4). The conditions required to ensure

the strong consistency in Theorem 2.4.2 are feasible to be checked. This differs from other

results in the literature such as Straumann and Mikosch (2006), Harvey (2013), Harvey

and Luati (2014) and Ito (2016).

We now switch our focus to the possibility of having a misspecified model. This case

is probably the most interesting from a practical point of view as the assumption that the
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observed data are actually generated by the postulated model may be unreasonable. In the

following, we show that, under misspecification, the ML estimator in (2.9) converges to

a pseudo-true parameter θ∗ that minimizes an average Kullback-Leibler (KL) divergence

between the true conditional density po(yt|yt−1) and the postulated conditional density

p(yt|f̃t(θ), θ). Studies on consistency results with respect to pseudo true parameter for

misspecified models go back to White (1982). We define the conditional KL divergence

KLt(θ) as

KLt(θ) =

∫

Y

log
po(x|yt−1)

p(x|f̃t(θ), θ)
po(x|yt−1)dx (2.10)

and the average (marginal) KL divergence KL(θ) as KL(θ) = EKLt(θ). The pseudo

true parameter θ∗ is defined as the minimizer of KL(θ). The consistency result in this

misspecified framework follows in a similar way as in the case of correct specification.

This because Proposition 2.3.1 ensures the uniform convergence of f̂t with no regards of

the correct specification. The differences concern the stationarity and ergodicity of the

DGP and the identifiability of the model. The following conditions are considered.

M1: The observed data are generated by a stationary and ergodic process {yt}t∈Z with

conditional density function po(yt|yt−1) and the condition E| log po(y0|y−1)| < ∞
is satisfied.

M2: There is a parameter vector θ∗ ∈ Θδ that is the unique maximizer of L, i.e. L(θ∗) >

L(θ) for any θ ∈ Θ0, θ 6= θ∗.

M3: Condition A2 is satisfied and C4 and C5 are satisfied for any compact set Θ ⊆ Θ0.

Condition M1 imposes the stationarity and ergodicity of the generating process and

some moment conditions. Condition M2 ensures identifiability in this misspecified set-

ting. The continuous invertibility is ensured by M3 as it imposes that A2 holds and the

results of Proposition 2.3.1 are irrespective of the correct specification of the model. Fi-

nally, in the same way as in A3, M3 ensures that the conditions C4 and C5 hold for large

enough T .

Theorem 2.4.3. Let the conditions M1-M3 hold, then the average KL divergence KL(θ)

is well defined and the pseudo true parameter θ∗ is its unique minimizer. Furthermore,

the ML estimator defined in (2.9) is strongly consistent, i.e.

ˆ̂θT
a.s.−→ θ∗, T −→ ∞
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for any initialization f̂0 ∈ C(Θ̄,FΘ̄).

This result further highlights the relevance of ensuring invertibility. In this case, it is

not possible to assume correct initialization of the filtered parameter as in Harvey (2013),

Harvey and Luati (2014) and Ito (2016) since the true time-varying parameter does not

even exists. The requirement that the filtered parameter asymptotically does not have

to depend on the arbitrary chosen initialization is very intuitive as otherwise different

initialization could provide different results.

We also note that situations of correctly-specified non-invertible models can be thought

as a particular case of misspecification. This because, under non-invertibility, the true pa-

rameter value θ0 is such that E log Λ0(θ0) ≥ 0 and therefore asymptotically outside the

parameter region Θ̂T with probability 1. In such situations, indeed, the ML estimator con-

strained on the empirical region Θ̂T is inconsistent with respect to θ0 but we can ensure

that asymptotically the initialization is not affecting the parameter estimate.

2.5 Confidence bounds for the parameter region

For a given sample {yt}Tt=1, some of the elements of the empirical region Θ̂T may not

satisfy the required contraction condition E log Λ0(θ) < 0. Therefore, for a given point

θ ∈ Θ̄, it may be of interest to test whether the condition is satisfied. Proposition 2.5.1

establishes the asymptotic normality of test statistic TT defined below under the null hy-

pothesis that H0 : E log Λ0(θ) = 0. Furthermore, we note that the statistic diverges under

the alternative H1 : E log Λ0(θ) 6= 0. This result can naturally be used to produce inter-

esting confidence bounds. Below we let σ2
T denote the variance of T− 1

2

∑T
t=1 log Λt(θ).

Proposition 2.5.1. Let {yt}t∈Z be stationary, ergodic and α-mixing of size −2r/(r − 2),

r > 2, with E| log Λ0(θ)|r < ∞ for any θ ∈ Θ̄. Then, under the null hypothesis H0 :

E log Λ0(θ) = 0 we have

TT :=
T− 1

2

∑T
t=1 log Λt(θ)

σ̂T

d−→ N(0, 1) as T → ∞,

where σ̂2
T is a consistent estimator of σ2

T . Furthermore, TT → −∞ as T → ∞ when

E log Λ0(θ) < 0, and TT → ∞ as T → ∞ when E log Λ0(θ) > 0.

The variance σ2
T can be consistently estimated using the Newey-West estimator; see

Newey and West (1987). Proposition 2.5.1 shows that, for any given θ and at any given

confidence level α, we ascertain asymptotically if θ is a boundary point satisfyingE log Λ0(θ) =
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0. If the null hypothesis is rejected with negative values of TT , then the evidence suggests

that the contraction condition is satisfied for that θ, i.e. that E log Λ0(θ) < 0. If the

null hypothesis is rejected with positive values of TT , then the evidence suggests that

E log Λ0(θ) > 0. On the basis of the asymptotic result in Proposition 2.5.1, we can also

obtain level α confidence sets for Θ0 =
{

θ ∈ Θ̄ : E log Λ0(θ) < 0
}

. More specifically,

we consider the set Θ̂up
α =

{

θ ∈ Θ̄ : TT < z1−α

}

such that for any θ ∈ Θ0 we have

lim
n→∞

P{θ ∈ Θ̂up
α } ≥ 1− α.

This means that any element in the set Θ0 has an asymptotic probability of at least

1 − α of being contained in the set Θ̂up
α . Similarly, we also consider the set Θ̂lo

α =
{

θ ∈ Θ̄ : TT < zα
}

and for this set for that any θ ∈ Θc
0, where Θc

0 =
{

θ ∈ Θ̄ : E log Λ0(θ) ≥ 0
}

,

we have that

lim
n→∞

P{θ ∈ Θ̂lo
α} ≤ α.

The set Θ̂lo
α can be seen as a lower bound confidence set of level α for Θ0. This because,

Θ̂lo
α is a conservative set in the sense that we fix the maximum asymptotic probability α

such that a θ not contained in Θ0 can be in Θ̂lo
α . In an equivalent way, the set Θ̂up

α can

be seen as an upper bound confidence set for Θ0. In this case, the maximum asymptotic

probability of having an element θ ∈ Θ0 not in Θ̂up
α is fixed at a level α.

2.6 Some practical examples

2.6.1 The Beta-t-GARCH model

Consider first the properties of the Beta-t-GARCH model as a DGP. The process equation

in (2.1) with θ = θ0 can be expressed as

f o
t+1 = ω0 + f o

t ct,

ct =β0 + (α0 + γ0dt)(v0 + 1)bt,

where bt = ε2t/(v0 − 2 + ε2t ) has a beta distribution with parameters 1/2 and v0/2, see

Chapter 3 of Harvey (2013). In order to ensure that f o
t is positive with probability 1

and that f o
t is the conditional variance of yt given yt−1, the parameter vector θ0 =

(ω0, β0, α0, γ0, v0)
T has to satisfy the following conditions ω0 > 0, β0 ≥ 0, α0 > 0,

γ0 ≥ −α0 and v0 > 2. Letting v0 → ∞, the Student-t distribution approaches the Gaus-
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sian distribution and the recursion of f o
t in (2.1) becomes

f o
t+1 = ω0 + β0f

o
t + (α0 + γ0dt)y

2
t .

Therefore, in the limit case v0 → ∞, this model is equivalent to the GJR-GARCH model

of Glosten et al. (1993), and to the GARCH(1,1) model when γ0 = 0.

Theorem 2.6.1. The model in (2.1) admits a unique stationary and ergodic solution

{f o
t }t∈Z if and only if E log ct < 0.

Theorem 2.6.1 above derives a necessary and sufficient moment condition for the

Beta-t-GARCH model to generate stationary ergodic paths. A simpler restriction on the

parameters of the model that is sufficient for obtaining stationary and ergodic paths is

β0 + α0 + γ0/2 < 1.

Theorem 2.6.2 complements Theorem 2.6.1 by providing additional restrictions which

ensure that the variance of the Beta-t-GARCH process is not only strictly stationary and

ergodic but also has some bounded moments.

Theorem 2.6.2. Let Eczt < 1, where z ∈ R
+, then (2.1) admits a unique stationary and

ergodic solution {f o
t }t∈Z that satisfies E|f o

t |z <∞.

Having analyzed some properties of the Beta-t-GARCH as a DGP, we now turn to the

properties of the model as a filter that is fitted to the data.

Invertibility of the filter

Let us analyze invertibility of the functional filtered parameter f̂t. The filter equation of

the Beta-t-GARCH is given by

f̂t+1(θ) = ω + βf̂t(θ) + (α + γdt)
(v + 1)y2t

(v − 2) + y2t /f̂t(θ)
, t ∈ N, (2.11)

where the recursion is initialized at a point f̂0(θ) ∈ Fθ = [ω̄,∞), ω̄ = ω/(1−β). The ob-

servations {yt}Tt=1 are considered to be a realization from a random process. If we assume

correct specification, then the generating process is given by (2.1) and there exists some

true unknown parameter θ0 that defines the properties of the data. It is straightforward to

see that the set Fθ where the SRE in (2.11) lies is given by [ω̄,∞). This is true irrespective
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of the correct specification of the model as the last summand on the right hand side of the

equation in (2.11) is positive with probability 1.

Corollary 2.6.1 follows immediately from Proposition 2.3.1 and provides sufficient

conditions for the desired invertibility result.

Corollary 2.6.1. Let {yt}t∈N be a stationary and ergodic sequence of random variables,

and let Θ be a compact set such that

E log

∣

∣

∣

∣

β + (α + γd0)
(v + 1)y40

((v − 2)ω̄ + y20)
2

∣

∣

∣

∣

< 0, ∀ θ ∈ Θ.

Then, the sequence {f̂t}t∈N defined in (2.11) converges exponentially almost surely and

uniformly to a unique stationary and ergodic sequence {f̃t}t∈Z, i.e.

‖f̂t − f̃t‖Θ e.a.s.−−→ 0 as t→ ∞,

for any initialization f̂0 ∈ C(Θ,FΘ).

As we can see from Corollary 2.6.1, the Lipschitz coefficient Λ0(θ) depends on the

DGP through y0. Therefore, in practice, the parameter region Θ cannot be explicitly ob-

tained from the condition E log Λ0(θ) < 0. As mentioned in Section 2.2, assuming either

correct specification or that y0 has a symmetric distribution around zero, the unfeasible

contraction condition E log Λ0(θ) < 0 is ensured by the following feasible sufficient con-

dition
1

2
log |β + α(v + 1)|+ 1

2
log |β + (α + γ)(v + 1)| < 0. (2.12)

This is obtained from the fact that, taking the supremum over y0, it results that with

probability 1

E log

∣

∣

∣

∣

β + (α + γd0)
(v + 1)y40

((v − 2)ω̄ + y20)
2

∣

∣

∣

∣

≤ E log |β + (α + γd0)(v + 1)| .

Thus, assuming that the median of y0 is equal to zero, the feasible condition in (2.12)

follows immediately. Now, building on the theory developed in Sections 2.3 and 2.4, we

are ready to consider as an alternative to (2.12) the estimated region Θ̂T that satisfies an

empirical version of E log Λ0(θ) < 0, namely

T−1

T
∑

t=1

log

∣

∣

∣

∣

β + (α + γdt)
(v + 1)y4t

((v − 2)ω̄ + y2t )
2

∣

∣

∣

∣

< 0. (2.13)
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Clearly, this empirical condition imposes weaker restrictions on the parameter region. In

the following, we discuss how the difference between the condition (2.12) and (2.13) can

be relevant in practice. Figure 2.6.1 complements Figure 2.2.2 by showing that our empir-

ical region is significantly larger than the region obtained from (2.12). Most importantly,

Figure 2.6.1 reveals that the ML point estimates obtained from the S&P 500 index lie well

inside the empirical region.
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Figure 2.6.1: The light gray area represents the parameter region obtained from (2.13)

for the log-returns of the S&P 500. In the 2-dimensional plots the other parameters are

fixed at their estimated value. The dark gray area is the region obtained from (2.12). The

crosses denote the estimated value of the parameter.

From the theory developed in Section 2.5, we can also obtain confidence bounds for

the unfeasible parameter region. Note also that the conditions needed to apply Proposition

2.5.1 and thus obtain the confidence bounds are easily met in this case. In particular, the

condition E| log Λ0(θ)|r < ∞ is satisfied for any r > 0 as long as β > 0. Whereas, from

the results in Francq and Zakoı̈an (2006), it follows that the strong mixing assumption

is always satisfied when the model is correctly specified. Figure 2.6.2 provides an high

degree of confidence that the Beta-t-GARCH filter is in fact invertible. In particular,

Figure 2.6.2 plots 95% confidence bounds for the invertibility region. We highlight that

the point estimate lies well inside the 95% lower bound.
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Figure 2.6.2: Confidence bounds of 95% level for the invertibility region are represented

by the dashed lines. The light gray areas represent the parameter region obtained from

(2.13) for the log-returns of the S&P 500. Crosses denote the estimated value of the

parameter.

Table 2.6.1 reveals that the importance of our empirical invertibility condition is not

specific to the S&P 500 index. In particular, for each time series in Table 2.6.1, we ob-

tain the unrestricted maximizer of the likelihood function θ̂ and we show that inequality

(2.12) evaluated at θ = θ̂ fails whereas inequality (2.13) holds. This suggests that con-

dition (2.12) is too restrictive in practice and that condition (2.13) can be used to define

a reasonably large region of the parameter space on which we can maximize the log-

likelihood function. The last column of Table 2.6.1 also shows that the null hypothesis

that the point estimate is a boundary point of the invertibility region is strongly rejected.

Having discussed the invertibility of the Beta-t-GARCH filter, we are now ready to

derive some consistency results for the ML estimator.



30 2.6. Some practical examples

ω β α γ v (2.12) (2.13) p-value

DJIA 0.058 0.554 0.000 0.371 7.417 0.357 -0.507 0.000
(0.019) (0.160) (0.047) (0.116) (2.339)

S&P 500 0.020 0.759 0.023 0.309 8.893 0.691 -0.181 0.000
(0.013) (0.114) (0.046) (0.111) (2.640)

NASDAQ 0.026 0.754 0.106 0.198 9.865 1.022 -0.109 0.000
(0.010) (0.077) (0.033) (0.071) (3.396)

NI 225 0.088 0.637 0.000 0.230 26.552 0.746 -0.416 0.000
(0.010) (0.000) (0.010) (0.037) (1.083)

FTSE 100 0.042 0.595 0.059 0.332 7.621 0.737 -0.378 0.000
(0.012) (0.134) (0.049) (0.107) (2.255)

DAX 0.046 0.731 0.050 0.212 7.932 0.642 -0.218 0.000
(0.013) (0.088) (0.046) (0.073) (2.905)

Table 2.6.1: Estimate of the model specified in (2.1) for the log-returns of some of the

most popular stock indexes. Monthly time series from January 1980 to April 2016 are

considered. The columns labeled (2.12) and (2.13) contain the values of respectively

condition (2.12) and (2.13) evaluated at the estimated parameter value. The last column

contains the p-value of the test to see whether the point estimate is in a boundary point of

the “true” invertibility region.

Consistency of the ML estimator

The log-likelihood function L̂T is defined as in (2.7) with l̂t(θ) given by

l̂t(θ) = log

(

Γ (2−1(v + 1))
√

(v − 2)πΓ (2−1v)

)

− 1

2
log f̂t(θ)−

v + 1

2
log

(

1 +
y2t

(v − 2)f̂t(θ)

)

,

where Γ denotes the gamma function.

Here, we obtain the consistency results for the Beta-t-GARCH model. The first result

follows by an application of Theorem 2.4.1.

Theorem 2.6.3. Let the observed data be generated by a stochastic process {yt}t∈Z that

satisfies the model equations in (2.1) at θ = θ0 ∈ Θ and such that E log ct < 0. Fur-

thermore, let Θ be a compact set that satisfies the condition in (2.2) and such that ω > 0,

β ≥ 0, α ≥ 0 , γ ≥ −α and v > 2 for any θ ∈ Θ. Then the ML estimator θ̂T defined in

(2.6) is strongly consistent.

Theorem 2.6.3, besides considering a more general model, extends the asymptotic

results of Ito (2016) in several directions. In particular, Theorem 2.6.3 does not impose

the assumption that the time-varying parameter f o
t is observed at t = 0 and furthermore

it does not consider that the likelihood function is maximized on an arbitrarily small
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neighborhood around the true parameter θ0. The next result shows the consistency of the

ML estimator in (2.9) for the Beta-t-GARCH model.

Theorem 2.6.4. Let the observed data be generated by a stochastic process {yt}t∈Z that

satisfies the model equations in (2.1) at θ0 ∈ Θδ and such that E log ct < 0. Furthermore,

let Θ̄ be a compact set such that ω > 0, β > 0, α ≥ 0 , γ ≥ −α and v > 2 for any θ ∈ Θ̄.

Then the ML estimator ˆ̂θT defined in (2.9) is strongly consistent.

Unlike Theorem 2.6.3, Theorem 2.6.4 does not require the unfeasible invertibility

condition in (2.2) to be satisfied as the optimization of the likelihood is on a region that

satisfies an empirical version of (2.2).

2.6.2 Autoregressive model with dynamic coefficient

The practical relevance of the empirical invertibility conditions discussed in this chapter

is not restricted to volatility models. On the contrary, it applies to the general class of

observation-driven models. Consider the first-order autoregressive model with dynamic

coefficient and fat tails of Blasques et al. (2014b) and Delle Monache and Petrella (2016).

This model is specified through the following equations

yt = ftyt−1 + σεt, εt
iid∼ tv,

ft+1 = ω + βft + α
(yt − ftyt−1)yt−1

1 + v−1σ−2(yt − ftyt−1)2
,

where σ, ω, β, α and v are static parameters to be estimated and tv denotes a Student-t dis-

tribution. This model is not exactly of the form in (2.3) and (2.4) as the conditional density

of yt given ft depends also on the lagged value yt−1. However, the extension needed to

include this situation and possibly exogenous variables in the conditional density in (2.3)

is trivial.

This autoregressive model allows for time-varying autocorrelation. In particular, it can

describe time series that exhibit periods of strong temporal persistence, or near-unit-root

dynamics, and periods of low dependence, or strong mean reverting behavior. There is

evidence that many time series in economics feature such complex nonlinear dynamics;

see Bec et al. (2008) for an example in real exchange rates. Following the results of

Proposition 2.3.1 and taking into account that

φ̇(f, Y k
t , θ) = β + α

(yt − fyt−1)
2 − vσ2

((yt − fyt−1)2 + vσ2)2
vσ2y2t−1,
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we obtain that the stochastic coefficient Λt(θ) is given by

Λt(θ) = max

{

|β − αy2t−1|, |β +
1

8
αy2t−1|

}

.

In this case there is not a clear way to derive sufficient conditions to ensure thatE log Λt(θ) <

0. A trivial solution is to impose that α = 0 and |β| < 1. However, in this way, we get

a degenerate parameter region and ft becomes a static parameter. This situation is not

of practical interest and the only possibility is to rely on the results of Section 2.4 and

estimate the parameter region Θ̂T .
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Figure 2.6.3: Estimated parameter region and ML estimate obtained using the US unem-

ployment claims time series.

To show how the results of the previous sections can be useful in this situation, we

derive the estimated region considering the weekly time series of log-differences of US

unemployment claims. Note that this series is the the same considered in the empirical

application of Blasques et al. (2014b). As we can see from Figure 2.6.3, the maximizer

of the likelihood function is contained in the estimated region. This suggests that the

empirical invertibility condition is not too restrictive. Therefore, we can conclude that the

results obtained in the previous sections may be useful in this case.
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2.6.3 Fat-tailed location model

As a final example, we consider the Student-t location model of Harvey and Luati (2014).

This model is specified through the following equations

yt = ft + σεt, εt
iid∼ tv,

ft+1 = ω + βft + α
yt − ft

1 + v−1σ−2(yt − ft)2
,

where σ, ω, β, α and v are static parameters to be estimated and tv denotes a Student-t

distribution.

In an application to rail travel data of the United Kingdom, Harvey and Luati (2014)

show that their Student-t location model is capable of extracting a smooth and robust trend

from the rail travel series. Harvey and Luati (2014) also provide an asymptotic theory

for the ML estimator of the static parameters of the model. Unfortunately, by relying

on Lemma 1 of Jensen and Rahbek (2004), the ML estimator properties are obtained

under the restrictive and non-standard assumption that the true time-varying mean f o
t at

time t = 0 is known. In addition, the asymptotic results derived in Harvey and Luati

(2014) are only valid under correct model specification and assuming that the likelihood

is maximized on an arbitrarily small parameter space containing θ0. Therefore, also in

this case, the results derived in this chapter can be useful to obtain the consistency of the

ML estimator under weaker conditions. In the following, we only discuss invertibility

conditions and provide an empirical example where our theory can be useful in practice.

First note that, as long as |β| < 1, the sequence {f̂t(θ)}t∈N takes values in [ω̄l, ω̄u],

where ω̄l = (ω − c)/(1− β) and ω̄u = (ω + c)/(1− β), with c = |α|
√
3vσ2/4. Defining

the function sθ(x) := vσ2(x2−vσ2)/(x2+vσ2)2, we obtain that the stochastic coefficient

Λt(θ) is

Λt(θ) = max {|z1t|, |z2t|} ,

where z1t and z2t are respectively given by

z1t =







β − α if yt ∈ [ω̄l, ω̄u],

β + αmin (sθ(yt − ω̄u), sθ(yt − ω̄l)) otherwise,

and

z2t =







β + α/8 if yt ±
√
3vσ2 ∈ [ω̄l, ω̄u],

β + αmax (sθ(yt − ω̄u), sθ(yt − ω̄l)) otherwise.
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We note that it is possible to obtain an upper bound for Λt(θ) independent of the observa-

tions. This is given by

Λt(θ) ≤ max(|β − α|, |β + α/8|). (2.14)

Unfortunately, this condition can be too restrictive. Figure 2.6.4 shows an example where

this more restrictive condition fails to hold while, on the other hand, the empirical con-

dition is satisfied. We consider the US monthly series of changes in the consumer price

inflation index from January 1947 to February 2016. As we can see in Figure 2.6.4, the

estimated parameter region Θ̂T is larger than the region obtained from the upper bound

in (2.14). Furthermore, the empirical region is also large enough to contain the parameter

estimate.
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Figure 2.6.4: The light gray area denotes the estimated parameter region and the dark

gray are denotes the region obtained from (2.14). The crosses denote the ML parameter

estimate. The plots are obtained using the US consumer price index time series from

January 1947 to February 2016.
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2.7 Conclusion

In this chapter, we have proposed considerably weaker conditions that can be used in

practice to ensure the consistency of the ML estimator. These results are applicable to a

wide class of observation-driven models. Furthermore, we have shown that our consis-

tency results hold for both correctly specified and misspecified models. Additionally, we

have also derived an asymptotic test and confidence bounds for the unfeasible “true” in-

vertibility region of the parameter space. The practical usefulness of the theory developed

in the chapter has been highlighted by analyzing a number of popular observation-driven

models with real datasets.
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Appendix

2.A Proofs

Proof of Proposition 2.3.1. To prove this proposition, we first rely on the results of Propo-

sition 3.12 of Straumann and Mikosch (2006) and we then employ the same argument as

in the proof of Theorem 2 of Wintenberger (2013) to relax the uniform contraction con-

dition. This proposition is closely related to Theorem 2 of Wintenberger (2013), the main

difference is that we explicitly allow the set Fθ to depend on θ.

Consider the functional SRE

f̂t+1 = Φt(f̂t), t ∈ N,

where the random map Φt is such that Φt(f) = φ(f(·), Y k
t , ·) for any f ∈ C(C,FC),

where C denotes a compact set. This SRE lies in the separable Banach space C(C,FC)

equipped with the uniform norm ‖ · ‖C . Therefore, taking into account that by the mean

value theorem

sup
f1,f2∈FC ,f1 6=f2

|φ(f1, Y k
t , θ)− φ(f2, Y

k
t , θ)|

|f1 − f2|
≤ sup

f∈FC

|φ̇(f, Y k
t , θ)|,

from Proposition 3.12 of Straumann and Mikosch (2006), it results that the conditions

(a) E log+ ‖φ(f̄, Y k
t , ·)‖C <∞ for some f̄ ∈ FC .

(b) E supθ∈C supf∈FC
log+ |φ̇(f, Y k

t , θ)| <∞.

(c) E supθ∈C supf∈FC
log |φ̇(f, Y k

t , θ)| < 0.

are sufficient to apply Theorem 3.1 of Bougerol (1993) and obtain the convergence result

‖f̂t− f̃t‖C e.a.s.−−−→ 0. Note that this is true for any given compact set C that satisfies (a)-(c).
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Now, we define the following stochastic function

Λ∗
t (θ1, θ2) := sup

f∈Fθ1

|φ̇(f, Y k
t , θ2)|,

and, we define a compact neighborhood of θ ∈ Θ with radius ε > 0 as Bε(θ) = {θ̃ ∈
Θ : ‖θ − θ̃‖ ≤ ε}. Then, for any non-increasing sequence of constants {εi}i∈N such

that limi→∞ εi = 0, the sequence
{

sup(θ1,θ2)∈Bεi
(θ)×Bεi

(θ) log Λ
∗
0(θ1, θ2)

}

i∈N
is a non-

increasing sequence of random variables and by continuity, which is ensured by (iii),

we have that

lim
i→∞

sup
(θ1,θ2)∈Bεi

(θ)×Bεi
(θ)

log Λ∗
0(θ1, θ2) = log Λ0(θ).

Condition (ii) implies that E sup(θ1,θ2)∈Θ×Θ log Λ∗
0(θ1, θ2) ∈ R ∪ {−∞}. As a result, we

can apply the monotone convergence theorem and obtain

E lim
i→∞

sup
(θ1,θ2)∈Bεi

(θ)×Bεi
(θ)

log Λ∗
0(θ1, θ2) = E log Λ0(θ).

Therefore, for any θ ∈ Θ such that E log Λ0(θ) < 0 there exists an εθ > 0 such that

E sup
(θ1,θ2)∈Bεθ

(θ)×Bεθ
(θ)

log Λ∗
0(θ1, θ2) < 0.

From this and noting that

sup
θ∈Bεθ

(θ)

sup
f∈FBεθ

(θ)

log |φ̇(f, Y k
t , θ)| = sup

(θ1,θ2)∈Bεθ
(θ)×Bεθ

(θ)

log Λ∗
0(θ1, θ2),

we obtain that the conditions (a)-(c) are satisfied for the compact set Bεθ(θ) as (i) implies

(a), (ii) implies (b) and (iii) implies (c). Therefore, we conclude that

‖f̂t − f̃t‖Bεθ(θ)

e.a.s.−−−→ 0.

The desired result follows as Θ is compact and Θ =
⋃

θ∈ΘBεθ(θ). Therefore, there exists

a finite set of points {θ1, . . . , θK} such that Θ =
⋃K

k=1Bεk(θk) and it follows that

‖f̂t − f̃t‖Θ =
K
∨

k=1

‖f̂t − f̃t‖Bεk(θk)

e.a.s.−−−→ 0.
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Proof of Theorem 2.4.1. We prove the theorem from the following intermediate steps:

(S1) The model is identifiable, i.e. L(θ0) > L(θ) for any θ ∈ Θ, θ 6= θ0.

(S2) The function L̂T converges a.s. uniformly to LT as T −→ ∞, i.e. ‖L̂T −LT‖Θ a.s.−→ 0

as T −→ ∞.

(S3) For any ε > 0, the following inequality holds with probability 1

lim sup
T−→∞

sup
θ∈Bc(θ0,ε)

L̂T (θ) < L(θ0), (2.15)

where Bc(θ0, ε) = Θ \B(θ0, ε) with B(θ0, ε) = {θ ∈ Θ : ‖θ0 − θ‖ < ε};

(S4) The result in (S3) implies strong consistency.

(S1) First note that, by C1, L(θ0) exists and is finite and, by C5, L(θ) exists for any

θ ∈ Θ with either L(θ) = −∞ or L(θ) ∈ R. For the values θ ∈ Θ such that L(θ) = −∞,

the result L(θ0) > L(θ) follows immediately as L(θ0) is finite. Hence, from now on, we

consider only the values θ ∈ Θ such thatL(θ) is finite. It is well known that log(x) ≤ x−1

for any x ∈ R
+ with the equality only in the case x = 1. This implies that almost surely

l0(θ)− l0(θ0) ≤
p(y0|f̃0(θ), θ)
p(y0|f o

0 , θ0)
− 1. (2.16)

Moreover, we have that the inequality in (2.16) holds as a strict inequality with positive

probability as the possibility that p(y0|f̃0(θ), θ) = p(y0|f o
0 , θ0) a.s. is ruled out by C2 for

any θ 6= θ0. As a result

E
[

E
[

l0(θ)− l0(θ0)|y−1
]]

< E

[

E

[

p(y0|f̃0(θ), θ)
p(y0|f o

0 , θ0)

∣

∣

∣
y−1

]]

− 1 = 0, ∀ θ 6= θ0

where the right hand side of the inequality is equal to zero as p(y0|f o
0 , θ0) is the true

conditional density function. The desired result L(θ0) > L(θ) follows as l0(θ)− l0(θ0) is

integrable and therefore by the law of total expectation

L(θ)− L(θ0) = E[E[l0(θ)− l0(θ0)|y−1]] < 0 ∀ θ 6= θ0.

This concludes the proof of step (S1).

(S2) First, note that ‖f̂t − f̃t‖Θ e.a.s.−−→ 0 as t → ∞ by an application of Proposition

2.3.1 as conditions (i)-(iii) hold by C3 and {yt}t∈Z is stationary and ergodic by C1. Sec-

ond, by Lemma 2.1 of Straumann and Mikosch (2006) the series
∑∞

t=N ηt‖f̂t − f̃t‖Θ
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converges a.s. and therefore the inequality in C4 implies
∑∞

t=N ‖l̂t − lt‖Θ < ∞ a.s.. As

a result T−1
∑T

t=1 ‖l̂t − lt‖Θ a.s.−→ 0 and ‖L̂T − LT‖Θ a.s.−→ 0 follows as ‖L̂T − LT‖Θ ≤
T−1

∑T
t=1 ‖l̂t − lt‖Θ for any T ∈ N. This concludes the proof of (S2).

(S3) First, note that in virtue of (S2) L̂T is asymptotically equivalent to LT and there-

fore we just need to prove that (S3) holds for LT . To show this, a similar argument as

in the proof of Lemma 3.11 of Pfanzagl (1969) is employed. Consider any decreasing

sequence of real numbers {εi}i∈N such that limi−→∞ εi = 0, then {supθ∗∈B(θ,εi)
l0(θ

∗)}i∈N
defines a non-increasing sequence of random variables and, by continuity, we have that

limi−→∞ supθ∗∈B(θ,εi)
l0(θ

∗) = l0(θ). As C5 implies E supθ∈Θ l0(θ) < ∞ we can apply

the monotone convergence theorem and we get

lim
i−→∞

E sup
θ∗∈B(θ,εi)

l0(θ
∗) = L(θ).

Recalling that L(θ0) > L(θ) by (S1), we have that for any θ 6= θ0 there exists an εθ > 0

such that

lim sup
T−→∞

sup
θ∗∈B(θ,εθ)

LT (θ
∗) ≤ E sup

θ∗∈B(θ,εθ)

l0(θ
∗) < L(θ0).

Finally, by compactness of Bc(θ0, ε) and by Bc(θ0, ε) ⊆ ⋃

θ∈Bc(θ0,ε)
B(θ, εθ), there is a

finite set of points {θ1, . . . , θK} such that Bc(θ0, ε) ⊆
⋃K

k=1B(θk, εk). Therefore, for any

T ∈ N we have

sup
θ∈Bc(θ0,ε)

LT (θ) ≤
K
∨

k=1

T−1

T
∑

t=1

sup
θ∈B(θk,εk)

lt(θ),

and taking the limit in both sides of the inequality it results

lim sup
T−→∞

sup
θ∈Bc(θ0,ε)

LT (θ) ≤
K
∨

k=1

E sup
θ∈B(θk,εk)

l0(θ) < L(θ0).

This concludes the proof of (S3).

(S4) This last step follows from standard arguments due to Wald (1949). From the

definition of the ML estimator, we have L̂T (θ̂T ) ≥ L̂T (θ0) for any T ∈ N. Therefore,

given the result in (S3), we have that

lim inf
T−→∞

L̂T (θ̂T ) ≥ L(θ0). (2.17)

Now, if we assume that there exists an ε > 0 such that lim supT−→∞ ‖θ̂T − θ0‖ ≥ ε, then
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in virtue of (2.17) it must hold that

lim sup
T−→∞

sup
θ∈Bc(θ0,ε)

L̂T (θ) ≥ L(θ0),

but because of (2.15) this event has probability zero. As a result, lim supT−→∞ ‖θ̂T−θ0‖ <
ε with probability 1 for any ε > 0. This concludes the proof of the theorem.

Proof of Corollary 2.4.1. First, we consider the consistency of the time-varying param-

eter estimator f̂t(θ̂T ). From the Lipschitz condition L1, it follows that with probability

1

|f̂t(θ̂T )− f o
t | ≤ ‖f̂t − f̃t‖Θ + vt‖θ̂T − θ0‖.

Therefore, the consistency result is obtained as both terms on the right hand side of the

inequality go to zero in probability when both t and T go to infinity. In particular, the first

term goes to zero a.s. from the invertibility of the filter and the second term goes to zero

as {vt}t∈Z is stationary, thus Op(1), and ‖θ̂T − θ0‖ is op(1) as ensured by Theorem 2.4.1.

Finally, the consistency of the plug-in density function estimator follows immediately

from the additional Lipschitz condition L2 as it implies that with probability 1

∣

∣p(y|f̂t(θ̂T ), θ̂T )− p(y|f o
t , θ0)

∣

∣ ≤ c−1
y (‖θ̂T − θ0‖+ |f̂t(θ̂T )− f o

t |),

and the right hand side of the inequality goes to zero in probability from the consistency

of θ̂T and f̂t(θ̂T ) as T and t go to infinity.

Proof of Theorem 2.4.2. To prove this theorem we show that the steps (S1)-(S4) in the

proof of Theorem 2.4.1 hold replacing the set Θ with the set Θ̂T .

First we show that the following results hold true

(a) Almost surely, for large enough T , the true parameter vector θ0 is contained in the set

Θ̂T .

(b) Almost surely, for large enough T , the set Θ̂T is contained in the compact set Θ̄δ/2

defined as Θ̄δ/2 := {θ ∈ Θ̄ : E log Λ0(θ) ≤ −δ/2}.

By the a.s. continuity of log Λt(θ) in Θ̄ ensured by A2, the sequence {log Λt}t∈N is

a stationary and ergodic sequence of elements in the separable Banach space C(Θ̄,R)

equipped with the uniform norm ‖·‖Θ̄. The uniform integrability conditionE‖ log Λ0‖Θ̄ <
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∞ in A2 enables us to apply the ergodic theorem of Rao (1962) and it follows that

∥

∥

∥

∥

∥

T−1

T
∑

t=1

log Λt − E log Λ0

∥

∥

∥

∥

∥

Θ̄

a.s.−→ 0, T −→ ∞. (2.18)

This implies that for a large enough T all the points θ ∈ Θ̄ such that E log Λ0(θ) <

−δ are contained in Θ̂T . Therefore, the result (a) holds as condition A1 ensures that

E log Λ0(θ0) < −δ. As concerns the result (b), the application of the uniform ergodic

theorem implies that the map θ 7→ E log Λ0(θ) is continuous in Θ̄. This yields that

the set Θ̄δ/2 is compact. Finally, Θ̂T ⊂ Θ̄δ/2 almost surely for large enough T follows

immediately from definition of Θ̂T and Θ̄δ/2 and the uniform convergence in (2.18).

Indeed, Θ̄δ/2 is a compact set contained in Θ̄ and such that E log Λ0(θ) < 0 for any

θ ∈ Θ̄δ/2. Therefore, from the result (b) together with A1-A3, it is easy to see that (S1)

is a.s. satisfied for large enough T as it holds for the set Θ̄δ/2. We also have that (S2) and

(S3) are satisfied for the set Θ̂T as they hold for the set Θ̄δ/2. Finally, the step (S4) follows

in the same way as in the proof of Theorem 2.4.1 by noting that (a) implies that

L̂T (
ˆ̂θT ) ≥ L̂T (θ0)

almost surely for large enough T .

Proof of Theorem 2.4.3. The expectation E log po(y0|y−1) exists and is finite by M1 and

moreoverE log p(y0|f̃0(θ), θ) exists for any θ ∈ Θ0 by M3. This implies that the marginal

KL divergence KL(θ) is well defined for any θ ∈ Θ0. The condition M2 guarantees that

L(θ) has a unique maximizer in Θ0, which is denoted by θ∗. This implies that θ∗ is

the unique minimizer of the average KL divergence KL(θ). As concerns the consistency

result, replacing θ0 with θ∗, the proof is equivalent to the the proof of Theorem 2.4.2. This

can be easily seen as the step (S1) holds by assumption replacing θ0 with θ∗. Then, the

steps (S2)-(S4) do not rely on the correct specification of the model and the consistency

is obtained with respect to maximizer of the limit function L, which in this case is given

by θ∗.

Proof of Proposition 2.5.1. For any θ ∈ Θ, the random coefficient Λt(θ) is a measurable

function of Y k
t for any given k ∈ N. Therefore, as {yt}t∈Z is α-mixing of size −2r/(r−2),

it results that {log Λt(θ)}t∈Z is α-mixing of size −2r/(r − 2) as well, see for instance
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Theorem 14.1 in Davidson (1994). Given the convergence in probability of σ̂2
T to

lim
T→∞

Var

(

T−1/2

T
∑

i=1

log Λt(θ)

)

and accounting that E| log Λt(θ)|r < ∞, the asymptotic normality result then follows

immediately by an application of a central limit theorem for strong mixing processes (see

for instance Theorem 7.8 of Durrett (2004)) together with an application of Slutsky’s

theorem.

Proof of Theorem 2.6.1. First note that the model equation f o
t+1 = ω0 + f o

t ct is a SRE

of the form f o
t+1 = ψt(f

o
t ), where ψt(x) := ω0 + xct for any x ∈ [0,∞). Therefore,

{ψt}t∈Z is a stochastic sequence of maps from [0,∞) into [0,∞). The proof of the if

part of the theorem follows noting that the condition E log ct < 0 is sufficient to satisfy

the assumptions of Theorem 3.1 in Bougerol (1993). In particular, the first assumption

is satisfied as E|ω0 + xct| < ∞ for any x ∈ [0,∞) whereas the second assumption

immediately holds by E log ct < 0.

As concerns the only if part, we consider a similar argument as in Bougerol and Picard

(1992). In particular, we show that if {f o
t }t∈Z is a stationary and ergodic solution of (2.1),

then E log ct has to be strictly negative. From the recursion

f o
t = ω0

(

1 +
n−1
∑

k=1

k
∏

i=1

ct−i

)

+
n
∏

i=1

ct−if
o
t−n,

it follows that almost surely the following inequality holds

n−1
∑

k=1

k
∏

i=1

ct−i ≤ f o
t , ∀ n ∈ N.

This means that limn→∞

∑n−1
k=1

∏k
i=1 ct−i has to be finite almost surely and therefore

∏k
i=1 ct−i has to converge almost surely to zero as k → ∞. As {ct}t∈Z is an i.i.d se-

quence of random variables, the almost sure convergence to zero of
∏k

i=1 ct−i implies that

E log ct is strictly negative by lemma 2.1 of Bougerol and Picard (1992). This concludes

the proof of the theorem.

Proof of Theorem 2.6.2. When the process admits a stationary solution, the following

representation holds true

f o
t = ω0

(

1 +
∞
∑

k=1

k
∏

i=1

ct−i

)

.
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In the case z ∈ [1,∞), by the Minkowski inequality and considering that {ct}t∈Z is an

i.i.d. sequence of positive random variables, we have that

(E(f o
t )

z)1/z ≤ ω0

(

1 +
∞
∑

k=1

(Eczt−i)
k/z

)

.

Therefore, when Eczt−i < 1, the result E(f o
t )

z < ∞ follows from the convergence of the

series
∑n

k=1(Ec
z
t−i)

k/z. As concerns the case z ∈ [0, 1), by sub-additivity we have that

E(f o
t )

z ≤ ωz
0

(

1 +
∞
∑

k=1

(Eczt−i)
k

)

.

Then, as before, the desired result follows from the convergence of the series
∑n

k=1(Ec
z
t−i)

k.

Proof of Theorem 2.6.3. First note that the expression of the probability density function

of a student-t random variable with v degrees of freedom is

kv(x) = s(v)(1 + v−1x2)−(v+1)/2,

where

s(v) =
Γ (2−1(v + 1))√
vπΓ (2−1v)

,

and where Γ denotes the gamma function.

In the following we check that the conditions C1-C5 are satisfied, then the proof

follows by an application of Theorem 2.4.1.

(C1) The stationarity and ergodicity of the sequence {yt}t∈Z is a direct consequence of

Theorem 2.6.1. In the following, we prove that the integrability condition E|l0(θ0)| ≤ ∞
is satisfied. First, note that l0(θ0) is given by

l0(θ0) = log s(v0)−
1

2
log f o

0 − v0 + 1

2
log
(

1 + v−1
0 ε20

)

,

therefore we just need to show thatE| log f o
0 | <∞ holds. Consider a decreasing sequence

of numbers {εi}i∈N, εi > 0, such that limi→∞ εi = 0, then {(cεit −1)/εi}i∈N is a decreasing

sequence of random variables such that limi→∞(cεit − 1)/εi = log ct. An application of

the monotone convergence theorem leads to

lim
i→∞

E

(

cεit − 1

εi

)

= E log ct.
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Therefore if E log ct < 0, then there exists an ε̄ > 0 such that E(cε̄t − 1)/ε̄ < 0 and thus

Ecε̄t < 1. In virtue of Theorem 2.6.2, E(f o
t )

ε̄ <∞ and thus we have that E log+ f o
t <∞.

The desired result follows as f o
t ≥ ω0/(1 − β0) > 0 a.s. and therefore E log+ f o

t < ∞
implies E| log f o

t | <∞.

(C2) Note that a1kv1(a1x) = a2kv2(a2x) for any x ∈ R if and only if (v1, a1) =

(v2, a2). Therefore, if ε0 ∼ tv then a1kv1(a1ε0) = a2kv2(a2ε0) a.s. if and only if (v1, a1) =

(v2, a2) as ε0 is an absolutely continuous random variable with a positive density function

on R. As a result, considering that l0(θ0) = l0(θ) a.s. if and only if

kv0(ε0) =

√

f o
0

f̃0(θ)
kv

(√

f o
0

f̃0(θ)
ε0

)

a.s.,

we have that l0(θ0) = l0(θ) a.s. if and only if v = v0 and f o
0 = f̃0(θ0) a.s.. This means that

the non-trivial implication l0(θ0) = l0(θ) a.s. only if θ = θ0 is satisfied if we can show

that, given v = v0, f
o
0 = f̃0(θ) a.s. only if θ = θ0. Considering that the sequence {f̃t}t∈Z

is stationary, we have that f o
0 = f̃0(θ) a.s. is the same as f o

t = f̃t(θ) a.s. for any t ∈ Z.

Assuming f o
t = f̃t(θ) a.s., the difference f o

t+1 − f̃t+1(θ) satisfies

f o
t+1 − f̃t+1(θ) = ω0 − ω + f o

t zt,

zt = β0 − β +
(

α0 − α + (γ0 − γ)dt

)

(v0 + 1)bt,

where bt = ε2t/(v0 − 2 + ε2t ). Now, the first step is to show that if f o
t+1− f̃t+1(θ) = 0 a.s.,

then ω0 = ω, the proof is by contradiction. Assume that ω0 6= ω and f o
t+1 − f̃t+1(θ) = 0

a.s., then it must be that f o
t zt = ω − ω0 6= 0 a.s.. Noting that f o

t is independent of

zt, the only way this is possible is if both f o
t and zt are constants different from zero.

However, the possibility that f o
t has a degenerate distribution is ruled out by α0 > 0,

therefore ω = ω0. As ω = ω0 and f o
t+1 is non-zero with probability 1, the only way to

have f o
t+1 − f̃t+1(θ) a.s. is if zt = 0 a.s.. The second step is to show that we need also

β = β0. Using the same argument as before, to have β 6= β0 and zt = 0 a.s. the random

variable bt has to be constant as bt is independent of dt. However, bt is non-constant for

any v0 ∈ (2,+∞). Therefore, we have that β = β0. Finally, having β = β0, to have

zt = 0 a.s. it must be that
(

α0 − α + (γ0 − γ)dt
)

= 0 a.s.. Indeed, as dt is non-constant,

this is possible only if α = α0 and γ = γ0. This concludes the proof.

(C3) This condition is immediately satisfied by Corollary 2.6.1.

(C4) From the expression of lt(θ) and by an application of the mean value theorem, it
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results that

|l̂t(θ)− lt(θ)| ≤ |rt(θ)||f̂t(θ)− f̃t(θ)|,

for any θ ∈ Θ and any t ∈ N. The stochastic coefficient rt(θ) has the following expression

rt(θ) = 2−1f ∗
t (θ)

−1

(

(v + 1)v−1f ∗
t (θ)y

2
t

1 + v−1f ∗
t (θ)y

2
t

− 1

)

,

where f ∗
t (θ) a point between f̃t(θ) and f̂t(θ). Considering that f̃t(θ) and f̂t(θ) lie in the

set [c,+∞), c = infθ∈Θ ω/(1− β) > 0, it results that

‖l̂t − lt‖Θ ≤ ‖rt‖Θ‖f̂t − f̃t‖Θ ≤ r̄‖f̂t − f̃t‖Θ,

where

r̄ = 2−1c−1

(

1 + c−1

(

max
θ∈Θ

v + 1

))

.

This shows that C4 is satisfied setting ηt = r̄ for any t ∈ N.

(C5) In view of f̃0(θ) ≥ infθ∈Θ ω/(1− β) > 0 a.s. for any θ ∈ Θ, it results that

sup
θ∈Θ

l0(θ) ≤ sup
θ∈Θ

s(v)− 1

2
log

(

inf
θ∈Θ

ω/(1− β)

)

<∞,

with probability 1. This proves the desired result E‖l0 ∨ 0‖Θ <∞.

Proof of Theorem 2.6.4. The proof follows by showing that conditions A1-A3 hold true.

Condition A1 is satisfied as the stationarity and ergodicity of the sequence {yt}t∈Z is

ensured by Theorem 2.6.1 and the integrability condition E|l0(θ0)| <∞ can be shown in

the same way as in the proof of Theorem 2.6.3, see the step C1. Condition A2 is satisfied

as the conditions (i) and (ii) hold by Corollary 2.6.1 and the continuity assumption follows

immediately from the functional form of the Lipschitz coefficient in Corollary 2.6.1 and

the constraints imposed on the compact set Θ̄. Finally, Condition A3 is satisfied as the

steps C2, C4 and C5 in the proof of Theorem 2.6.3 hold for any compact set satisfying

the contraction condition in Corollary 2.6.1.



Chapter 3

INAR models with Dynamic Survival

Probability driven by a Stochastic

Recurrence Equation

3.1 Introduction

Over the last few years, there has been an increasing interest in modeling and forecast-

ing integer-valued time series. The reason being that many observed time series are not

continuous and the use of specific models to take this into account allows us to better de-

scribe the time series behavior. One of the most popular models for time series of counts

is the INAR model of Al-Osh and Alzaid (1987) and McKenzie (1988). Its specification

is based on the thinning operator ‘◦’ of Steutel and Van Harn (1979). For a given N ∈ N

and α ∈ (0, 1), the thinning operator is defined to satisfy α◦N =
∑N

i=1 xi, where {xi}Ni=1

is a sequence of independent Bernoulli random variables with success probability α. The

thinning operator enables the specification of integer-valued time series models in an au-

toregressive fashion. In fact, INAR models can be seen as a discrete response version of

the well known linear autoregressive model. The first order INAR model is described by

the following equation

yt = α ◦ yt−1 + εt, t ∈ Z, (3.1)

where {εt}t∈Z is an i.i.d. sequence of integer-valued random variables. As in the original

formulation of Al-Osh and Alzaid (1987) and McKenzie (1988), the error term εt is typi-

cally assumed to be Poisson distributed. Other distributions have also been considered in
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the literature as the Poisson imposes equidispersion and this is can be restrictive in prac-

tice, see Al-Osh and Aly (1992) and Jazi et al. (2012). Besides the distribution of the error

term, the INAR specification in (3.1) has been generalized in several directions. Among

others, Alzaid and Al-Osh (1990) and Jin-Guan and Yuan (1991) extended the first order

INAR model to a general order p, Alzaid and Al-Osh (1990) considered a generalized

thinning operator and Pedeli and Karlis (2011) introduced a bivariate INAR model.

Real time series data often exhibit changing dynamic behaviors. As a result, employ-

ing more flexible specifications for the dynamic component of the model can provide a

better description the underlying behavior of the time series and produce better forecasts.

The contribution of this chapter is in this direction: we introduce a new class of INAR

models with time-varying coefficient. The peculiarity of our approach is that the dynam-

ics of the INAR coefficient is specified through a SRE driven by the score of the predictive

likelihood. The use of the score to update time-varying parameters has been recently pro-

posed by Creal et al. (2013) and Harvey (2013). Since then, the score framework has

been successfully employed to develop dynamic models in econometrics and time series

analysis.

In the literature, time variation of the INAR survival probability has also been con-

sidered by Zheng et al. (2007) and Zheng and Basawa (2008). In Zheng et al. (2007) the

random coefficient is specified as a sequence of i.i.d. random variables. This approach

provides a more flexible class of conditional distributions but, because of the i.i.d. as-

sumption, it does not lead to a dynamic specification of the INAR coefficient. Zheng

and Basawa (2008) allowed the INAR coefficient to depend on past observations. Their

method introduces a dynamic structure but, as we will see discuss later in this chapter, it

is not able to properly capture smooth changes of the INAR coefficient.

The class of models we introduce in this chapter should not be interpreted as a DGP

but as filter to approximate a more complex and unknown DGP (Blasques et al., 2015).

In this direction, we illustrate the flexibility of the proposed dynamic specification for the

INAR coefficient by means of a simulation study in a misspecified framework. The results

show how the model is able to capture complex dynamic behaviors and well approximate

the true distribution of different DGPs. Furthermore, we derive some statistical properties

of the ML estimator: we prove the consistency of the ML estimator in a misspecified

framework and show that also the conditional predictive pmf can be consistently estimated

through a plug-in estimator. In particular, the plug-in pmf estimator is shown to converge

to a pseudo-true conditional pmf that has the interpretation of minimizing on average

the KL divergence with the true pmf of the DGP. These results are useful to ensure the

reliability of inference and forecasting. Finally, the practical usefulness of the proposed
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model is shown thorough an application to a real time series dataset of crime reports. The

results are promising and show how the dynamic survival probability can enhance both in

sample and out-of-sample performances of INAR models.

The chapter is structured as follows. Section 3.2 introduces the class of models. Sec-

tion 3.3 discusses the consistency of ML estimation. Section 3.4 presents the Monte Carlo

simulation experiments. Section 3.5 illustrates the empirical application. Section 3.6 con-

cludes.

3.2 INAR models with autoregressive coefficient

3.2.1 The class of models

In this section, we extend the class of INAR models in (3.1) by allowing the survival

probability α to change over time. The dynamics of the time-varying coefficient αt is

specified on the basis of the score framework of Creal et al. (2013) and Harvey (2013).

The tv-INAR model is described by the following equations

yt =αt ◦ yt−1 + εt, (3.2)

logitαt+1 =ω + β logitαt + τst, (3.3)

where {εt}t∈Z is an i.i.d. sequence of random variables with probability mass function

(pmf) pe(x, ξ), ξ ∈ Ξ ⊆ R
k, for x ∈ N, the vector θ = (ω, β, τ, ξ)T is a k + 3 dimen-

sional parameter vector to be estimated and st = st(αt, ξ) denotes the score of the predic-

tive log-likelihood ∂ log p(yt|αt, yt−1, ξ)/∂ logitαt. The functional form of the predictive

likelihood p(yt|αt, yt−1, ξ) can be obtained by the convolution between the conditional

pmf of αt ◦ yt−1 and the pmf of the error term εt, i.e.

p(yt|αt, yt−1, ξ) =

max{yt,yt−1}
∑

k=0

pb(k, yt−1, αt)pe(yt − k, ξ),

where pb(x, yt−1, αt) for x ∈ {0, . . . , yt−1} is the pmf of a Binomial random variable with

size yt−1 and success probability αt. An analytical expression of the score innovation st

is given in the Appendix. The logit link function in equation (3.3) is considered to ensure

that the dynamic coefficient αt is between zero and one.

The dynamic tv-INAR model in (3.2) and (3.3) retains the well known interpretation

of INAR models as death-birth processes. In particular, the observed number of elements
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yt alive at time t is given by the sum between the number of surviving elements from time

t − 1 and the new birth elements εt. In our dynamic specification, each of the elements

alive at time t − 1 has a probability αt of surviving at time t. We also note that the

proposed model is observation-driven as the dynamic probability αt is driven solely by

past observations. The score st can be seen as the innovation of the dynamic system in

(3.3) as it provides the new information that becomes available at time t observing yt.

The interpretation of st as an innovation is further justified by the fact that its conditional

expectation E(st|yt−1, αt) is equal to zero.
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Figure 3.2.1: The plots represent the impact of yt and yt−1 on the score innovation st for

different values of the survival probability αt. A Poisson distribution with mean equal to

five is considered as distribution of the error term εt.

It is interesting to see how the information obtained observing yt is processed through

the score to update the dynamic coefficient αt. Figure 3.2.1 describes the impact of yt

on st for different values of yt−1 and αt. As we can see from the plots, the survival

probability αt gets a negative update when yt is small and yt−1 is large. This has an

intuitive explanation: the information about αt we get observing a small yt after a large

yt−1 is that the survival probability should be small as otherwise with a large αt we wold

expect many elements from time t − 1 to survive and thus a large yt as well. As a result,
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αt should get a negative update to discount this information. Similarly, observing a large

yt following a large yt−1 suggests an high survival probability. Thus, the probability αt

should be updated accordingly and get a positive innovation st. Finally, an innovation st

close to zero may be an indication of either a lack of information or that the observed value

of yt is compatible with the value yt−1 and the current state of the survival probability αt.

The former case reflects situations when yt−1 is zero (or close to zero). This because

observing yt provides no information on the survival probability of the elements yt−1 as

there are no elements alive at t−1. On the other hand, the latter case of observing a value

yt compatible with yt−1 and αt can be interpreted as the green area that separates the red

and the blue areas in Figure 3.2.1.

This line of reasoning concerning the direction of the update st is subject to the current

value of αt. For instance, in a situation where αt is close to zero perhaps observing a small

yt after a large yt−1 is exactly what we would expect. Thus the score update st may be

close to zero in this case. This dependence of the score update st on the current survival

probability αt can be noted across the different plots in Figure 3.2.1.

It is also worth mentioning that the functional form of the score innovation st depends

on the specification of the pmf of the error term εt as the predictive likelihood depends on

it. In practice, the pmf pe(x, ξ) can be chosen in such a way to take into account the main

features observed in the data. For instance, as we will consider in the application in Sec-

tion 3.5, a Negative Binomial distribution may be considered instead of a Poisson when

the data suggest overdispersion. Alternatively, a zero inflated Poisson or Negative Bino-

mial distributions may be employed when dealing with time series with a large number of

zeros.

3.2.2 Parameter estimation

The static parameter vector θ of the tv-INAR model can be estimated by ML. The log

likelihood function is available in closed form through a prediction error decomposition,

namely

L̂T (θ) =
1

T

T
∑

t=1

log p(yt|α̂t(θ), yt−1, ξ),

where α̂t(θ) is obtained recursively using the observed data {yt}Tt=0 as

logit α̂t+1(θ) = ω + β logit α̂t(θ) + τst(α̂t(θ), ξ), (3.4)
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where the recursion is initialized at a fixed point logit α̂0(θ) ∈ R. A reasonable choice

for the initialization is logit α̂0(θ) = ω/(1− β). That is the unconditional mean Elogitαt

implied by the tv-INAR model under the parametric assumption θ. This follows as the

expected value of the score is equal to zero. The ML estimator is finally given by

θ̂T = arg sup
θ∈Θ

L̂T (θ), (3.5)

where Θ is a compact parameter set contained in R× (−1, 1)× R× Ξ.

The asymptotic stability of the filtered parameter logit α̂t(θ) and the consistency of

the ML estimator in as well as the predictive distribution are studied in Section 3.3. Fur-

thermore, in Section 3.4, a simulation experiment is performed to study the finite sample

behavior of the ML estimator and to further confirm its reliability.

3.2.3 Forecasting

One of the advantages of properly modeling count time series taking into account the

discreteness of the data is that it is possible to obtain coherent forecasts of the entire

probability mass function. As shown in Freeland and McCabe (2004), forecasts h steps

ahead are typically available in closed form for INAR models as (3.1). The conditional

pmf h steps ahead can be obtained by repeated applications of the convolution formula.

Similarly, for point forecasts, a closed form expression is available as the conditional

expectation h steps ahead is E(yT+h|yT ) = αhyT + µ, with µ = E(εt).

In the following, we illustrate a possible way to obtain h steps ahead forecasts from

the tv-INAR model. A closed form expression for the conditional pmf h steps ahead

pT+h(x) is only available for h = 1. In particular, it is given by

pT+1(x) =

min{x,yT }
∑

k=0

pb(k, yT , αT )pe(x− k).

Numerical methods are required to obtain pT+h(x) for h ≥ 2. A possibility is to ap-

proximate pT+h(x) considering the following simulation scheme. First, simulate B re-

alization for yT+h, y
(i)
T+h, i = 1, . . . , B. Then, obtain an approximation of pT+h(x) as

p̂T+h(x) = nh
x/B, where nh

x denotes the number of draws y
(i)
T+h, i = 1, . . . , B, equal to

x. The simulations of y
(i)
T+h, i = 1, . . . , B can be performed considering the following

procedure. For k = 1, . . . , h

1. Simulate ε
(i)
k from the distribution pe(x, ξ) and α

(i)
T+k ◦ y(i)T+k−1 from a Binomial



CHAPTER 3. INAR models with Dynamic Survival Probability 53

distribution with size y
(i)
T+k−1 and success probability α

(i)
T+k.

2. Compute y
(i)
T+k = α

(i)
T+k◦y

(i)
T+k−1+ε

(i)
k and update α

(i)
T+k to α

(i)
T+k+1 using the equation

logitα
(i)
T+k+1 = ω + β logitα

(i)
T+k + τs

(i)
t+k.

Similarly, point forecasts h steps ahead can be obtained approximating the conditional

expectation E(yT+h|yT , αt) with the sample average B−1
∑B

i=1 y
(i)
T+h. Alternatively, the

sample median of y
(i)
T+h, i = 1, . . . , B can be considered to obtain integer forecasts that

are coherent with the discreteness of the data, see Freeland and McCabe (2004).

3.3 Some statistical properties

3.3.1 Stability of the filter

In this section, we discuss the reliability of the ML estimator defined in (3.5). In par-

ticular, we show that the static parameter vector as well as the conditional pmf can be

consistently estimated. We focus our asymptotic results on the case of model misspeci-

fication. Consistency is therefore obtained with respect to a pseudo-true parameter that

has the interpretation of minimizing an average KL divergence between the postulated

INAR model and a true unknown DGP. Score-driven models are typically not interpreted

as DGP but as filters to approximate a more complex and unknown true DGP. In this re-

gard, Blasques et al. (2015) provided a theoretical justification to score-driven models by

showing their optimality in a misspecified setting. In the following, we only assume that

the observed data are generated by a stationary and ergodic count process. Therefore, we

do not impose a specific DGP for the observed data.

A key ingredient to ensure the reliability of the ML estimator for observation-driven

models is the stability of the filtered time-varying parameter. This stability is typically

referred in the literature as the invertibility of the model, see Wintenberger (2013) and

Straumann and Mikosch (2006). In the following, we derive conditions to ensure that the

filtered parameter in (3.4) converges to a unique stationary sequence irrespective of the

initialization α̂0(θ). This result is particularly important as it implies that the initialization

is irrelevant asymptotically and provides the basis to ensure the consistency of the ML

estimator.

First, we impose some regularity conditions on the pmf of the error term pe(x, ξ).

Assumption 3.3.1. The function ξ 7→ pe(x, ξ) is continuous in Ξ for any x ∈ N and

pe(x, ξ) > 0 for any (x, ξ) ∈ N× Ξ.
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Assumption 3.3.1 requires the pmf pe(x, ξ) to have full support in N and to be con-

tinuous with respect to ξ. These conditions are satisfied for most parametric pmf such as

the Poisson, the zero inflated Poisson and the Negative Binomial. However, it is worth

mentioning that distributions with limited support such as the Binomial are ruled out by

this assumption.

The next result ensures the stability of the filtered parameter {α̂t(θ)}t∈N specified in

(3.4). In particular, it shows the almost sure uniform convergence of the functional se-

quence {α̂t}t∈N to a unique stationary and ergodic functional sequence {α̃t}t∈Z. The

convergence is considered with respect to the uniform norm ‖ · ‖Θ, where ‖f‖Θ =

supθ∈Θ |f(θ)| for any function f that maps from Θ into R.

Proposition 3.3.1. Assume that {yt}t∈Z is a stationary and ergodic sequence of random

variables that take values in N and such that Ey2t < ∞. Moreover, let Assumption 3.3.1

be satisfied and the following condition hold

E log sup
α∈(0,1)

|β + τ ṡt(α, ξ)| < 0, ∀ θ ∈ Θ, (3.6)

where ṡt(α, ξ) = ∂st(α, ξ)/∂ logitα. Then, the filtered parameter {α̂t(θ)}t∈N defined in

(3.4) converges exponentially almost surely and uniformly in Θ to a unique stationary and

ergodic sequence {α̃t(θ)}t∈Z, i.e.

‖ logit α̂t − logit α̃t‖Θ e.a.s.−−→ 0 as t→ ∞.

The proof is given in the appendix. Proposition 3.3.1 does not require correct speci-

fication of the model. The observed data can be generated by any stationary and ergodic

count process.

The contraction condition in (3.6) can be checked empirically using the observed data.

It is not possible to obtain a closed form expression for (3.6) as it depends on the DGP

and on the specification of pe(x, ξ). However, with the next proposition, we show that the

parameter region Θ that satisfies (3.6) is not degenerate.

Proposition 3.3.2. The contraction condition (3.6) of Proposition 3.3.1 is implied by the

following sufficient condition

E logmax(|β − τyt−1/4|, |β + τm2
t |) < 0, ∀ θ ∈ Θ,

where mt = min{yt−1, yt}.
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Proposition 3.3.2 guarantees that the parameter region Θ is not degenerate as for small

enough |β| and |τ | the inequality is always satisfied.

3.3.2 Consistency of ML estimation

We assume the observed data to be a realized path from an unknown DGP {yt}t∈Z. Fur-

thermore, we denote with po(x|yt−1), x ∈ N, the true pmf of yt conditionally on the past

observations yt−1 = {yt−1, yt−2, . . . }. The KL divergence between the true conditional

pmf po(x|yt−1) and the postulated one p(x|α̃t(θ), yt−1, ξ) is given by

KLt(θ) =
∞
∑

x=0

log

(

po(x|yt−1)

p(x|α̃t(θ), yt−1, ξ)

)

po(x|yt−1).

We define the pseudo-true parameter θ∗ ∈ Θ as the minimizer of the average KL diver-

gence KL(θ) = EKLt(θ) in the parameter set Θ. We also denote with α∗
t = α̃t(θ

∗)

the pseudo-true time-varying coefficient and with p∗t (x) = p(x|α∗
t , yt−1, ξ

∗), x ∈ N, the

pseudo-true conditional pmf. In the following, we treat also the consistency of the plug-

in estimators α̂t(θ̂T ) and p̂t(x, θ̂T ) = p(x|yt−1, α̂t(θ̂T ), ξ̂T ) for α∗
t and p∗t (x) respectively.

This is of particular interest in practice as the main objective of INAR models is not the

interpretation of the static parameter estimates but approximating the true pmf for fore-

casting purposes.

We start considering the following assumption, which imposes some moment condi-

tions and the contraction condition of Proposition 3.3.1.

Assumption 3.3.2. The moment conditions Ey2t < ∞ and E supθ∈Θ | log pe(yt, ξ)| < ∞
hold true. Furthermore, the contraction condition in (3.6) is satisfied.

Assumption 3.3.2 enables us to ensure the uniform a.s. convergence of the likelihood

function L̂T (θ) to a well defined deterministic function L(θ) = El0(θ), where lt(θ) =

log p(yt|α̃t(θ), yt−1, ξ) denotes the t-th contribution to the likelihood function when the

limit filter α̃t(θ) is considered. Note that the uniform moment conditionE supθ∈Θ | log pe(yt, ξ)|
is needed only because we are considering a general class of pmf for the error term. For

most pmf this condition is always satisfied. For instance, it holds true immediately as long

as Ey2t <∞ if pe(x, ξ) is a Poisson or a Negative Binomial pmf.

Finally, we impose the following identifiability condition.

Assumption 3.3.3. The function L(θ) = El0(θ) has a unique maximizer in the set Θ.
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Assumption 3.3.3 is needed to ensure the uniqueness of the pseudo-true parameter θ∗.

In general, if this assumption is not satisfied, we obtain that the limit points of the ML

estimator belong to the set of points that minimize the average KL divergence KL(θ).

We are now ready to deliver the strong consistency of the ML estimator with respect

to the pseudo-true parameter θ∗.

Theorem 3.3.1. Let the observed data {yt}Tt=1 be generated by a stationary and ergodic

count process {yt}t∈Z and let Assumption 3.3.1-3.3.3 be satisfied. Then the ML estimator

defined in (3.5) is strongly consistent with respect to the pseudo-true parameter θ∗, i.e.

θ̂T
a.s.−→ θ∗, T −→ ∞.

As special case of Theorem 3.3.1, we could also obtain the strong consistency of the

ML estimator when the model is correctly specified.

Remark 3.3.1. If we assume that the observed data {yt}Tt=1 are generated by a stationary

and ergodic process {yt}t∈Z that satisfies the model’s equations (3.2) and (3.3) for θ = θ0,

θ0 ∈ Θ. It can be easily shown that under Assumptions 3.3.1-3.3.3 the ML estimator is

strongly consistent, i.e.

θ̂T
a.s.−→ θ0, T −→ ∞.

In the next section, the finite sample properties of the ML estimator under correct

specification are investigated through a simulation study.

We now turn our attention to the study of the consistency of the plug-in estimators

α̂t(θ̂T ) and p̂t(x, θ̂T ). Note that the consistency of these estimators do not follow trivially

from the consistency of θ̂T . This because these estimators are random functions of θ̂T that

change at different times t without converging. Therefore, it is not possible to apply a

continuous mapping theorem and immediately obtain the desired consistency. The results

we obtain require that both t and the sample size T go to infinity. This because T → ∞ is

needed for the consistency of the ML estimator and t → ∞ is needed to make the effect

of the initialization of the filter to vanish.

The next results show that the plug-in estimator α̂t(θ̂T ) is strongly consistent with

respect to the pseudo-true time-varying coefficient.

Lemma 3.3.1. Let the conditions of Theorem 3.3.1 hold. Then, the plug-in estimator

logit α̂t(θ̂T ) is strongly consistent, i.e.

∣

∣

∣
logit α̂t(θ̂T )− logitα∗

t

∣

∣

∣

a.s.−→ 0, t −→ ∞, T −→ ∞.
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In order to ensure the consistency of the plug-in estimator p̂t(x, θ̂T ), we need the

following additional regularity condition on the pmf of the error term.

Assumption 3.3.4. The function ξ 7→ pe(x, ξ) is continuously differentiable in Ξ for any

x ∈ N.

Assumption 3.3.4 is a standard regularity condition that is satisfied for most popular

pmf such as the Poisson and the Negative Binomial. The next result delivers the consis-

tency of the conditional pmf estimator. In this case we are only able to ensure consistency

and not strong consistency.

Theorem 3.3.2. Let the observed data {yt}Tt=1 be generated by a stationary and ergodic

count process {yt}t∈Z and let Assumption 3.3.1-3.3.4 be satisfied. Then the conditional

pmf plug-in estimator p̂t(x, θ̂T ) is consistent, i.e.

|p̂t(x, θ̂T )− p∗t (x)|
pr.−→ 0, t −→ ∞, T −→ ∞,

for any x ∈ N.

3.4 Monte Carlo experiment

3.4.1 Finite sample behavior of the ML estimator

We perform a Monte Carlo simulation experiment to test the reliability of the ML estima-

tor in finite samples. We consider the dynamic INAR model specified in (3.2) and (3.3)

with a Poisson error distribution having mean µ. The experiment consists on generating

1000 time series of size T from the tv-INAR model and estimating the parameter vector

θ = (ω, β, τ, µ)T by ML. Different parameter values θ and different sample sizes T are

considered. The simulation results are collected in Table 3.4.1. In particular, Table 3.4.1

reports the mean, the bias, the standard deviation (SD) and the square root of the mean

square error (MSE) of the ML estimator obtained from the 1000 Monte Carlo replications.

The simulation results in Table 3.4.1 further confirm that the parameter vector θ can

be consistently estimated by maximum likelihood. This can be elicited from the fact that

the MSE of the estimator is decreasing as the sample size T increases. We also note that

the estimator of the parameter β tends to be negatively biased in finite samples. In all the

cases considered, the parameter β is underestimated on average. The magnitude of the

bias seems also to be relevant as, especially for T = 250, the square root of the MSE is

considerably larger then the SD. Therefore, this indicates that the bias contribution to the
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ω β τ µ ω β τ µ

True Value -0.50 0.90 0.15 6.00 -0.50 0.95 0.15 6.00

T = 250

Mean -0.505 0.825 0.161 5.985 -0.496 0.896 0.159 5.996

Bias -0.005 -0.075 0.011 -0.015 0.004 -0.054 0.009 -0.004

SD 0.326 0.175 0.100 0.588 0.411 0.117 0.097 0.570√
MSE 0.326 0.190 0.101 0.588 0.411 0.129 0.097 0.570

T = 500

Mean -0.496 0.868 0.153 5.986 -0.503 0.927 0.154 5.997

Bias 0.004 -0.032 0.003 -0.014 -0.003 -0.023 0.004 -0.003

SD 0.213 0.093 0.062 0.407 0.246 0.053 0.053 0.393√
MSE 0.213 0.098 0.062 0.407 0.246 0.058 0.053 0.392

T = 1000

Mean -0.494 0.885 0.151 5.987 -0.499 0.939 0.150 5.992

Bias -0.006 -0.015 0.001 -0.013 -0.001 -0.011 0.000 -0.008

SD 0.152 0.050 0.042 0.295 0.171 0.034 0.035 0.279√
MSE 0.152 0.052 0.042 0.295 0.171 0.036 0.035 0.279

True Value -0.50 0.90 0.30 6.00 -0.50 0.95 0.30 6.00

T = 250

Mean -0.481 0.862 0.304 5.943 -0.502 0.916 0.302 5.945

Bias 0.019 -0.038 0.004 -0.057 -0.002 -0.034 0.002 -0.055

SD 0.361 0.095 0.101 0.512 0.501 0.066 0.097 0.473√
MSE 0.361 0.103 0.101 0.514 0.500 0.075 0.097 0.476

T = 500

Mean -0.495 0.883 0.297 5.971 -0.492 0.935 0.298 5.971

Bias 0.005 -0.017 -0.003 -0.029 0.008 -0.015 -0.002 -0.055

SD 0.221 0.044 0.057 0.338 0.361 0.030 0.052 0.310√
MSE 0.221 0.048 0.057 0.339 0.361 0.033 0.052 0.311

T = 1000

Mean -0.490 0.891 0.299 5.978 -0.502 0.943 0.298 5.981

Bias 0.010 -0.019 -0.001 -0.022 -0.002 -0.007 0.002 -0.019

SD 0.156 0.029 0.040 0.242 0.233 0.019 0.035 0.219√
MSE 0.156 0.031 0.040 0.243 0.233 0.020 0.035 0.220

Table 3.4.1: Summary statistics of the sample ML estimator distribution for different pa-

rameter values θ and different sample sizes T . The statistics in the table are obtained

from 1000 Monte Carlo replications.

MSE is not negligible compared to the variance contribution. The negative bias for β is

not surprising as the values of β considered in the simulations are close to 1 and similar

results on the bias are well known for ML estimation of linear autoregressive models.

As concerns the other parameters, the results suggest that the bias can be considered

negligible as the SD is almost equal to the square root of the MSE in all the scenario

considered.



CHAPTER 3. INAR models with Dynamic Survival Probability 59

3.4.2 Filtering under misspecification

Score-driven updates for time-varying parameters have been shown to be optimal in a

misspecified framework where the aim is to reduce the Kullback Leibler divergence be-

tween the postulated model and the true unknown DGP, see Blasques et al. (2015). This

section illustrates the flexibility of the proposed specification through a simulation study.

In this experiment, we consider different DGPs of the form

yt = αo
t ◦ yt−1 + εt, εt ∼ P(5),

where P(5) denotes a Poisson distribution with mean µ = 5. The DGPs differ on the basis

of the specification of the sequence {αo
t}t∈Z. The following four dynamics are considered.

1. Fast sine: αo
t = 0.5 + 0.25 sin(πt/100).

2. Slow sine: αo
t = 0.5 + 0.25 sin(πt/250).

3. Fast steps: αo
t = 0.25I[−1,0] (sin(πt/100)) + 0.75I(0,1] (sin(πt/100)).

4. Slow steps: αo
t = 0.25I[−1,0] (sin(πt/250)) + 0.75I(0,1] (sin(πt/250)).

where IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise. The DGPs are thus Poisson INAR

models where the coefficient αo
t is allowed to change in different ways. The red lines in

Figure 3.4.1 show the path of αo
t , t = 1, . . . , 500, for the four different DGPs. As we can

see, the fast sine and the slow sine specifications allow the coefficient to change smoothly

over time, whereas, the fast step and slow step specifications exhibit abrupt changes over

time.

The simulation experiment consists on generating 1000 Monte Carlo time series draws

of size T = 500 from the different DGPs. For each draw, the following models are

estimated: a Poisson INAR model with static coefficient, the tv-INAR model with Poisson

innovation and a Poisson INAR model with dynamic coefficient as considered in Zheng

and Basawa (2008). For the latter model, the dynamic coefficient is given by logitαt =

ω + τyt−1, where ω and τ are parameters to be estimated. The model of Zheng and

Basawa (2008) is denoted as rc-INAR. The performances of the models is measured in

terms of approximation of the true condition pmf and the true survival probability αo
t . As

concerns pmf approximation, we compute the KL divergence between the true pmf and

the estimated one. Whereas, as concerns αo
t , we consider the mean square error (MSE)

between αo
t and the estimated survival probability. Table 3.4.2 reports the results of the

simulation experiment. As we can see, the tv-INAR model has the pest performance for
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Square root MSE

Fast sine Slow sine Fast steps Slow steps

INAR 0.242 0.257 0.322 0.356

rc-INAR 0.112 0.111 0.145 0.132

tv-INAR 0.077 0.060 0.101 0.072

KL divergence

Fast sine Slow sine Fast steps Slow steps

INAR 0.238 0.253 0.412 0.442

rc-INAR 0.117 0.114 0.212 0.185

tv-INAR 0.053 0.029 0.128 0.057

Table 3.4.2: Average MSE and KL divergence between the true DGP and the different

models.
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Figure 3.4.1: The red line denotes the true path αo
t . The gray area represents confidence

bounds of the filtered path of αt for the tv-INAR model obtained from the 1000 Monte

Carlo replications. The first plot is for the fast sine configuration, the second is for the

slow sine, the third is for the fast steps and the last is for the slow steps specification.

both KL divergence and MSE. This is true for all the DGPs considered. We also note

that the performance difference is relevant in relative terms. The KL divergence and MSE

from the tv-INAR model are about half of those from the rc-INAR model and about one
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third of those from the INAR model. These results show the flexibility of the tv-INAR

model and its ability to approximate complex DGPs.

Figure 3.4.1 further illustrates the ability of the tv-INAR specification to capture the

dynamic behavior of the true αo
t in the different settings considered. The gray areas in

the plots represents 95% confidence bounds for the filtered path of αt and the red lines

denotes the true paths αo
t . As we can see, in the fast sine and slow sine configurations, the

true path αo
t is always inside the 95% confidence bounds. This shows the ability of the

tv-INAR model capture smooth changes in αo
t . On the other hand, in the fast steps and

slow steps configurations, the true αo
t is not inside the confidence bounds right after the

sudden changes in the level of αo
t . This is natural as the filtered path requires some time

periods before adapting to break in the level of αo
t . However, also in this situation, we can

see how the filtered path from the tv-INAR model is able to approximate reasonably well

the true αo
t .

3.5 Application to crime data

3.5.1 In-sample results

We present an empirical illustration of the proposed methodology to the monthly number

of offensive conduct reports in the city of Blacktown, Australia, from January 1995 to

December 2014. The time series is from the New South Wales dataset of police reports

and is available at http://data.gov.au/. Figure 3.5.1 shows the plot of the series.

As we can see, there are two time periods with a particular high level of criminal activities.

The first is around 2002 and the second is around 2010. During these periods we expect

the estimated survival probability αt to be higher as they can be seen as periods of high

persistence. As discussed in Jin-Guan and Yuan (1991), INAR(p) models have the same

autocorrelation structure of continuous-valued AR(p) models. The sample autocorrelation

functions in Figure 3.5.1 suggest that a first-order INAR model should be appropriate for

this dataset. We consider several model specifications: the INAR and the tv-INAR model

with Poisson and Negative Binomial error distribution. The sample mean of the data is

9.3 and the sample variance is 24.3. This is an indication that there is overdispersion in

the data and thus a Negative Binomial distribution for the error term may be more suited.

The different specifications employed are summarized in Table 3.5.1.

The ML estimation results are collected in Table 3.5.2. We consider the likelihood

ratio test to check the significance of the dynamic coefficient αt. Given its meaningful in-

terpretation in a misspecified framework, we also report the Akaike information criterion
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Figure 3.5.1: The first plot shows the monthly number of offensive conduct reports in

Blacktown from January 1995 to December 2014. The second and third plots represent

the sample autocorrelation functions of the series.

Model description

tv-NBINAR Model in (3.2) and (3.3) with Negative Binomial error of mean µ and variance σ2.

NBINAR Model in (3.1) with Negative Binomial error of mean µ and variance σ2.

tv-PoINAR Model in (3.2) and (3.3) with Poisson error of mean µ.

PoINAR Model in (3.1) with Poisson error of mean µ.

Table 3.5.1: The table describes the specification of each model.

(AIC) as a means of comparison between non-nested models. The results suggest that the

inclusion of the dynamic specification for αt plays a relevant role as confirmed by the like-

lihood ratio test and the AIC. The likelihood ratio test shows that the dynamic coefficient

is highly significant for both the Poisson and the Negative Binomial specification. Overall

the model with the smallest AIC is tv-INAR model. Furthermore, for both the Negative

Binomial models, the estimated variance of the error term is more than double the esti-

mated mean. We can thus conclude that the Negative Binomial distribution provides a
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ω β τ µ σ2 log-lik pvalue AIC

tv-NBINAR -0.907 0.965 0.135 6.083 14.155 -662.91 0.002 1335.82
(0.338) (0.027) (0.055) (0.481) (1.853)

NBINAR -0.401 - - 5.586 15.265 -669.03 - 1344.07
(0.176) (0.456) (2.125)

tv-PoINAR -1.258 0.967 0.141 6.539 - -695.04 0.000 1398.24
(0.294) (0.019) (0.033) (0.313)

PoINAR -0.613 - - 6.046 - -714.58 - 1433.21
(0.140) (0.323)

Table 3.5.2: ML estimate of the models in Table 3.5.1. The last three columns contain

respectively the log-likelihood, the pvalue of the likelihood ratio test between the tv-INAR

models and their static INAR counterparts and the AIC.

better fitting than the Poisson. This is also coherent with the overdispersion observed in

the data. We can conclude that the results indicate a better fitting for the tv-INAR model.

This shows that the tv-INAR model can be useful in practical applications.
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Figure 3.5.2: Filtered time-varying coefficient αt with 80% and 95% confidence bounds

obtained from the tv-NBINAR model. The dashed line represents the static coefficient α
estimated from the NBINAR model.

From Table 3.5.2, we also note that the time-varying parameter αt is highly persistent

as the estimated β is close to 1. The filtered path of αt together with 80% and 95%

confidence bounds1 is plotted in Figure 3.5.2. As expected, the survival probability is

particularly high around 2002 and around 2010. This reflects the high level of criminal

activities that can be interpreted as an higher survival probability of past elements. The

plot in Figure 3.5.2 also highlights that there is a relevant difference in considering a static

α instead of a dynamic αt. This can be noted from the dashed line, which represents the

1The confidence bounds are obtained simulating from the asymptotic distribution of the ML estimator

as proposed by Blasques et al. (2016).
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static α estimate, that lies outside the 95% confidence bounds for αt in some time periods.

3.5.2 Forecasting results

We perform a pseudo out-of-sample experiment to compare the forecasting performances

of the models. The full sample size of the series is 240 observations. We split it into

two subsamples: the first 140 observations are considered as a training sample and the

last 100 observations as a forecasting evaluation sample. The training sample is then

expanded recursively. We evaluate the forecast performance of the models in terms of

both point forecast and pmf forecast. The point forecast accuracy is evaluated by the

forecast MSE 100−1
∑100

i=1(ŷi − yi)
2. Whereas, the pmf forecast accuracy is evaluated

by the log score criterion, i.e. 100−1
∑100

i=1 log p̂i(yi). The log score criterion provides a

means of comparison based on the KL divergence between the true DGP and the estimated

models.

Mean squared error

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

tv-NBINAR 15.77 20.15 20.56 21.51 21.36 21.23

NBINAR 16.51 21.47 22.61 23.70 23.85 23.72

tv-PoINAR 16.33 20.66 21.18 21.98 21.82 21.52

PoINAR 17.00 21.82 22.86 23.79 23.91 23.78

Log score criterion

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

tv-NBINAR -2.73 -2.82 -2.83 -2.85 -2.85 -2.85

NBINAR -2.75 -2.85 -2.88 -2.91 -2.91 -2.91

tv-PoINAR -2.83 -2.96 -2.98 -3.00 -3.00 -2.98

PoINAR -2.88 -3.08 -3.12 -3.18 -3.19 -3.18

Table 3.5.3: Forecast MSE and log score criterion computed using the last 100 observa-

tions for different forecast horizons.

The results are collected in Table 3.5.3. As we can see the inclusion of the dynamic

coefficient αt provides better forecast performances in the subsample considered. In par-

ticular, the tv-NBINAR model outperforms the NBINAR model in terms of both point

forecasts and pmf forecasts. The same happens for the tv-PoINAR compared to the

PoINAR. This holds true for all forecast horizons considered. Furthermore, the use of

the Negative Binomial distribution is particularly relevant to improve the pmf forecasts.
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In particular, the Negative Binomial models dominate the Poisson models in terms of log-

score criterion. This result is quite natural as the the Negative Binomial models take into

account the overdispersion in the data. On the other hand, as concerns the point forecasts,

the dynamic parameter αt seems to play a major role in improving the forecast perfor-

mances. This can be noted as the models with dynamic αt dominate the models with

static α in terms on MSE. The best performing model is the tv-NBINAR for both criteria

and all forecast horizons. This suggests that the flexibility introduced by αt as well as

the choice of an appropriate distribution for the error term can be important to better pre-

dict future observations. Overall, these out-of-sample results together with the in sample

results show that the tv-INAR models can be useful in practical application.

3.6 Conclusion

We have proposed a flexible INAR model with dynamic coefficient. This model may

be interpreted as a filter to approximate more complex DGPs. The empirical results are

promising for both simulated and real data. Future research may include the extension of

the first-order dynamic INAR model to a general order p. Other work to be done concerns

the asymptotic theory of the ML estimator. At the moment, we have only proved the

consistency of the estimator. The asymptotic normality requires the study of the first

two derivatives of the log likelihood. In this regard, we encountered some difficulties

concerning the existence of some moments for the derivative processes.
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Appendix

3.A Derivatives of the predictive log-likelihood

Defining st(ᾱ, ξ) := ∂ log p(yt|ᾱ, yt−1, ξ)/∂ logit ᾱ and ṡt(ᾱ, ξ) := ∂st(ᾱ, ξ)/∂ logit ᾱ,

by elementary calculus we obtain that

st(ᾱ, ξ) =

(

mt
∑

k=0

pkt(ᾱ, ξ)

)−1( mt
∑

k=0

pkt(ᾱ, ξ)(k − yt−1ᾱ)

)

, (3.7)

and

ṡt(ᾱ, ξ) =

(

mt
∑

j=0

mt
∑

k=0

pkt(ᾱ, ξ)pjt(ᾱ, ξ)

)−1

×
(

mt
∑

j=0

mt
∑

k=0

pkt(ᾱ, ξ)pjt(ᾱ, ξ) (k(k − j)− ᾱ(1− ᾱ)yt−1)

)

, (3.8)

where mt = min(yt, yt−1) and

pkt(ᾱ, ξ) =

(

yt−1

k

)

ᾱk(1− ᾱ)yt−1−kpe(yt − k, ξ).

3.B Proofs

Proof of Proposition 3.3.1. The stability conditions we consider to obtain the conver-

gence result are based on Theorem 3.1 of Bougerol (1993). Straumann and Mikosch

(2006) applied Bougerol’s theorem in the space of continuous functions C(Θ,R) equipped

with the uniform norm ‖·‖Θ. In particular, they provide stability conditions for functional

SRE of the form

xt+1(θ) = φt(xt(θ), θ), t ∈ N, (3.9)
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where x0(θ) ∈ R, the map (x, θ) 7→ φt(x, θ) from R × Θ into R is almost surely con-

tinuous and the sequence {φt(x, θ)}t∈Z is stationary and ergodic for any (x, θ) ∈ R× Θ.

Wintenberger (2013) weakened Straumann and Mikosch (2006) conditions replacing a

uniform contraction condition with a pointwise condition. The uniform exponential al-

most sure convergence of a filter satisfying the SRE in (3.9) can be obtained on the basis

of Theorem 2 of Wintenberger (2013) from the following conditions:

(a) There exists an x ∈ R such that E log+ (supθ∈Θ |φ0(x, θ)|) <∞,

(b) E log+ (supθ∈Θ Λ0(θ)) <∞,

(c) E log (Λ0(θ)) < 0 for any θ ∈ Θ,

where the random coefficient Λt(θ) is defined as

Λt(θ) = sup
(x1,x2)∈R2,x1 6=x2

|φ0(x1, θ)− φ0(x2, θ)|
|x1 − x2|

.

In our case, the random function φt that defines the SRE in (3.9) has the following

form

φt(x, θ) = ω + βx+ τst
(

logit−1(x), ξ
)

.

First we note that our SRE satisfies the stationarity and continuity requirements to apply

Wintenberger’s results. In particular, we obtain that the a.s. continuity of φt(x, θ) follows

immediately from the a.s. continuity of (x, θ) 7→ st
(

logit−1(x), ξ
)

, which is implied

by Assumption 3.3.1, and the continuity of the Binomial likelihood (see the functional

form of st in (3.7)). Furthermore, the stationarity and ergodicity of {φt}t∈Z follows from

the stationarity and ergodicity of {yt}t∈Z together with an application of Proposition 4.3

of Krengel (1985) as st
(

logit−1(x), ξ
)

is a measurable function of yt and yt−1. In the

following, we will prove the proposition by showing that conditions (a)-(c) are satisfied.

As concerns (a), setting x = 0 and accounting that Ey20 < 0, by an application of

Lemma 3.C.1, we obtain that

E log+
(

sup
θ∈Θ

|φ0(x, θ)|
)

≤ sup
θ∈Θ

|ω|+ sup
θ∈Θ

|τ |E sup
θ∈Θ

|st (0.5, ξ) |

≤ sup
θ∈Θ

|ω|+ sup
θ∈Θ

|τ |E|yt−1| <∞.

Thus (a) is proved.
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As concerns (b), by an application of Lemma 3.C.1, we have that

E log+
(

sup
θ∈Θ

Λ0(θ)

)

≤ E sup
θ∈Θ

sup
x∈R

|∂φ0(x, θ)/∂x| ≤ sup
θ∈Θ

|β|+ sup
θ∈Θ

|τ |E sup
θ∈Θ

sup
ᾱ∈(0,1)

|ṡ(ᾱ, ξ)|

≤ sup
θ∈Θ

|β|+ sup
θ∈Θ

|τ |E|y2t−1| <∞,

as Ey20 <∞. This shows that (b) holds true.

Finally, as concerns (c), by condition (3.6) we obtain for any θ ∈ Θ

E log (Λ0(θ)) ≤ E sup
x∈R

|∂φ0(x, θ)/∂x| ≤ E sup
ᾱ∈(0,1)

|β + τ ṡ(ᾱ, ξ)| < 0.

This proves (c) and concludes the proof of the proposition.

Proof of Proposition 3.3.2. The result follows immediately by an application of Lemma

3.C.1, which provides an upper bound for the derivative of the score.

Proof of Theorem 3.3.1. Assumption 3.3.3 ensures that L(θ) = Elt(θ) has a unique max-

imizer in the compact set Θ, which indeed corresponds to the pseudo-true parameter θ∗

that minimizes the marginal KL divergence. In the following, we show that the log likeli-

hood function LT (θ) converges almost surely uniformly in Θ to L(θ), namely

‖L̂T − L‖Θ a.s.−−→ 0, T → ∞. (3.10)

Then, given the compactness of Θ and the identifiability of θ∗, the almost sure conver-

gence θ̂T
a.s.−−→ θ∗ follows by well known standard arguments due to Wald (1949).

DefiningLT (θ) = T−1
∑T

t=1 lt(θ), with lt(θ) = log p(yt|α̃t(θ), yt−1, ξ), an application

of the triangle inequality yields

‖L̂T − L‖Θ ≤ ‖L̂T − LT‖Θ + ‖LT − L‖Θ. (3.11)

Therefore, the uniform convergence in (3.10) follows if both terms on the right hand side

of the inequality (3.11) converge almost surely to zero.

First we show that ‖L̂T − LT‖Θ a.s.−−→ 0. An application of the mean value theorem
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together with Lemma 3.C.1 yields

|l̂t(θ)− lt(θ)| ≤ sup
ᾱ∈(0,1)

|st(ᾱ, ξ)|| logit α̂t(θ)− logit α̃t(θ)|

≤ yt−1| logit α̂t(θ)− logit α̃t(θ)|

for any θ ∈ Θ and t ∈ N. Furthermore, taking into account that ‖ logit α̂t−logit α̃t‖Θ e.a.s.−−−→
0 by Proposition 3.3.1 and that E|yt−1| < ∞ holds true by assumption, an application of

Lemma 2.1 of Straumann and Mikosch (2006) yields

∞
∑

t=1

yt−1‖ logit α̂t − logit α̃t‖Θ <∞

almost surely. As a result, we have that T−1
∑T

t=1 ‖l̂t − lt‖Θ a.s.−−→ 0 and therefore we

conclude that the desired result ‖L̂T − LT‖Θ a.s.−−→ 0 is proved as

‖L̂T − LT‖Θ ≤ T−1

T
∑

t=1

‖l̂t − lt‖Θ.

We are now left with showing that ‖LT − L‖Θ a.s.−−→ 0. Note that {lt}t∈N is a station-

ary and ergodic sequence of random elements that takes values in the space continuous

functions C(Θ,R) equipped with the uniform norm ‖ · ‖Θ. Therefore, the desired con-

vergence result follows by an application of the ergodic theorem of Rao (1962) provided

that the uniform integrability condition E‖lt‖Θ < ∞ is satisfied. In the following, we

show that this condition holds true. First, note that lt(θ) ≤ 0 with probability 1 for any

θ ∈ Θ as p(y1|ᾱ, y2, ξ) ≤ 1 for any (y1, y2, ξ, ᾱ) ∈ N
2×Ξ× (0, 1). Thus, accounting that

log(1 + exp(x)) ≤ 1 + |x| for any x ∈ R, we obtain

|lt(θ)| = −lt(θ) = − log
mt
∑

k=0

pkt(α̃t(θ), ξ) ≤ − log p0t(α̃t(θ), ξ)

≤ −yt−1 log(1− α̃t(θ))− log pe(yt−1, ξ)

≤ yt−1 log(1 + exp(logit α̃t(θ)))− log pe(yt−1, ξ)

≤ yt−1(1 + | logit α̃t(θ)|)− log pe(yt−1, ξ)

almost surely for any θ ∈ Θ. Finally, an application of the Cauchy-Schwarz inequality

yields

‖lt‖ ≤ Eyt + Ey2t + ‖ logit α̃t‖2Θ + E sup
θ∈Θ

| log pe(yt−1, ξ)| <∞,
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where Ey2t < ∞ and E supθ∈Θ | log pe(yt−1, ξ)| < ∞ are satisfied by assumption and

‖ logit α̃t‖2Θ <∞ follows by an application of Lemma 3.C.2.

Proof of Lemma 3.3.1. The proof of this result is an immediate consequence of Theorem

3 of Wintenberger (2013). We simply sketch the main steps only to illustrate that all

conditions needed are satisfied. The same notation and definitions as in the proof of

Proposition 3.3.1 are considered. First note that it is sufficient to show that | logit α̃t(θ̂T )−
logit α̃∗

t |
a.s.−−→ 0 as T → ∞. This because we have

| logit α̂t(θ̂T )− logit α̃∗
t | ≤ | logit α̃t(θ̂T )− logit α̃∗

t |+ ‖ logit α̂t − logit α̃t‖Θ,

and ‖ logit α̂t − logit α̃t‖Θ a.s.−−→ 0 from Proposition 3.3.1. From the results in Theorem 2

of Wintenberger (2013) and the assumptions considered in Proposition 3.3.1, we have that

for any θ ∈ Θ there exists a compact neighborhood B(θ) of θ such that the contraction

condition holds uniformly, namely E log(‖Λt‖B(θ)) < 0. Therefore, this is true also for

the pseudo-true parameter θ∗ ∈ Θ. As in the proof of Theorem 3 of Wintenberger (2013),

repeated applications of the mean value theorem yield

‖ logit α̃t(·)−logit α̃∗
t‖B(θ∗) ≤

∞
∑

k=1

k
∏

i=1

‖Λt−i‖B(θ∗)‖φt−k(logit α̃∗
t−k, ·)−logit α̃∗

t−k+1‖B(θ∗)

for any θ ∈ B(θ∗) with probability 1. The existence of the limit on the right hand side is

obtained from Lemma 2.1 of Straumann and Mikosch (2006) together with the integrabil-

ity conditionE log+ ‖ logit α̃t‖B(θ∗) implied by Lemma 3.C.2 and
∏k

i=1 ‖Λt−i‖B(θ∗)
e.a.s.−−−→

0 as k → ∞ implied by the uniform contraction condition. Finally, the desired result

| logit α̃t(θ̂T ) − logit α̃∗
t |

a.s.−−→ 0 follows as in Theorem 3 of Wintenberger (2013) taking

into account that the ML estimator θ̂T is strongly consistent by Theorem 3.3.1.

Proof of Theorem 3.3.2. An application of the mean value theorem together with Lemma

3.C.3 yields that for any x ∈ N there is a Cx > 0 and a stationary sequence of random

variables {ηt}t∈N such that the following inequalities hold true with probability 1

|p̂t(x, θ̂T )− p∗t (x)| ≤ sup
(α,θ)∈(0,1)×Θ

∣

∣

∣

∣

∂p(x|yt−1,α,ξ)

∂ logitα

∣

∣

∣

∣

∣

∣

∣
logit α̂t(θ̂T )− logitα∗

t

∣

∣

∣
+

+ sup
(α,θ)∈(0,1)×Θ

∥

∥

∥

∥

∂p(x|yt−1,α,ξ)

∂ξ

∥

∥

∥

∥

1

‖ξ̂T − ξ∗‖1

≤ηt| logit α̂t(θ̂T )− logitα∗
t |+ Cx‖ξ̂T − ξ∗‖1.
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The desired convergence to zero in probability of |p̂t(x, θ̂T )− p∗t (x)| then follows imme-

diately as ‖ξ̂T − ξ∗‖1 is op(1) by Theorem 3.3.1 and | logit α̂t(θ̂T ) − logitα∗
t | is op(1) by

Lemma 3.3.1.

3.C Technical lemmas

Lemma 3.C.1. Let Assumption 3.3.1 hold, then the following inequalities are satisfied

with probability 1 for any ᾱ ∈ (0, 1) and ξ ∈ Ξ

(i) |st(ᾱ, ξ)| ≤ 2yt−1.

(ii) −yt−1/4 ≤ ṡt(ᾱ, ξ) ≤ m2
t .

Proof. Assumption 3.3.1 implies that pkt(ᾱ, ξ) > 0 with probability 1 for any ᾱ ∈ (0, 1)

and ξ ∈ Ξ. This ensures that st(ᾱ, ξ) and ṡt(ᾱ, ξ) are well defined as their denominator,

see expressions (3.7) and (3.8), is almost surely larger then zero for any ᾱ ∈ (0, 1) and

ξ ∈ Ξ.

To show that (i) is satisfied, we note that

|st(ᾱ, ξ)| ≤
(

mt
∑

k=0

pkt(ᾱ, ξ)

)−1( mt
∑

k=0

pkt(ᾱ, ξ)(k + yt−1ᾱ)

)

≤ (1 + ᾱ)yt−1,

therefore (i) immediately holds true as ᾱ ∈ (0, 1).

As concerns (ii), taking into account that yt ≥ 0 almost surely, we obtain that the

numerator of expression (3.8) has the following upper bound

(

mt
∑

j=0

mt
∑

k=0

pkt(ᾱ, ξ)pjt(ᾱ, ξ)k(k − j)

)

≤
(

mt
∑

j=0

mt
∑

k=0

pkt(ᾱ, ξ)pjt(ᾱ, ξ)

)

m2
t ,

therefore it follows immediately that ṡt(ᾱ, ξ) ≤ m2
t . Similarly, we obtain that the numer-

ator of (3.8) is larger or equal than

(

mt
∑

j=0

mt
∑

k=0

pkt(ᾱ, ξ)pjt(ᾱ, ξ)

)

(−ᾱ(1− ᾱ)yt−1),

therefore ṡt(ᾱ, ξ) ≥ −yt−1/4 as ᾱ ∈ (0, 1) and, as a result, it follows that (ii) is satisfied.

Lemma 3.C.2. Let the conditions of Proposition 3.3.1 hold, thenE supθ∈Θ | logit α̃t(θ)|2 <
∞.
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Proof. The lemma is proved by showing that there exists a stationary and ergodic se-

quence {ν̃t}t∈Z such that Eν̃2t < ∞ and that ‖ logit α̃t‖Θ < (ν̃t + 1) with probability 1.

Then, it is immediate to conclude that E‖ logit α̃t‖2Θ <∞.

First, we define the sequence {v̂t}t∈N through the following stochastic recurrence

equation

v̂t+1 = ωu + βuv̂t + 2τuyt, t ∈ N,

which is initialized at v̂0 = ωu/(1−βu) and where ωu = supθ∈Θ |ω|, βu = supθ∈Θ |β| and

τu = supθ∈Θ |τ |. Considering that βu < 1 from the specification of Θ and that {yt}t∈Z
is stationary and ergodic, an application of Theorem 3.1 of Bougerol (1993) yields that

|v̂t − ṽt| a.s.−−→ 0 as t goes to infinity, where {ṽt}t∈N is a stationary and ergodic sequence

that admits the following representation

ṽt = ωu/(1− βu) + 2τu

∞
∑

k=1

βk
uyt−k.

From this expression, it is straightforward to obtain that Ey2t <∞, together with βu < 1,

entails Eṽ2t <∞.

In the following, we show that ‖ logit α̃t‖Θ < (ν̃t + 1) with probability 1. Tak-

ing into account the definition of the sequence {logit α̂(θ)}t∈N in (3.4) and the fact that

supθ∈Θ |st(ᾱ, ξ)| < 2yt−1 almost surely for any ᾱ ∈ (0, 1) by Lemma 3.C.1, it follows

immediately that ‖ logit α̂t‖Θ ≤ v̂t with probability 1 for any t ∈ N. Therefore, we have

that for a large enough t ∈ N with probability 1

‖ logit α̃t‖Θ − ṽt − 1 ≤ ‖ logit α̂t‖Θ − v̂t − 1 + ‖ logit α̃t − logit α̂t‖Θ + |ṽt − v̂t| < 0,

as ‖ logit α̃t − logit α̂t‖Θ and |ṽt − v̂t| go to zero almost surely. As a result, given the

stationarity of {‖ logit α̃t‖Θ − ṽt} we infer that ‖ logit α̃t‖Θ < (ṽt + 1) with probability 1

for any t ∈ Z. This concludes the proof.

Lemma 3.C.3. Let the conditions of Theorem 3.3.2 hold. Then, for any x ∈ N there

exists a stationary sequence of random variables {ηt}t∈N and a constant Cx > 0 such

that almost surely

(i) sup(α,θ)∈(0,1)×Θ

∣

∣

∣

∂p(x|yt−1,α,ξ)

∂ logitα

∣

∣

∣
≤ ηt.

(ii) sup(α,θ)∈(0,1)×Θ

∥

∥

∥

∂p(x|yt−1,α,ξ)

∂ξ

∥

∥

∥

1
≤ Cx.
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Proof. First we show that (i) holds true. From standard calculus, we obtain that

∂p(x|yt−1,α,ξ)

∂ logitα
=

mxt
∑

k=0

pkt(x, α, ξ)(k − αyt−1),

where mxt = min(x, yt−1) and

pkt(x, α, ξ) =

(

yt−1

k

)

αk(1− α)yt−1−kpe(x− k, ξ).

As a result, taking into account that 0 ≤ pkt(x, α, ξ) ≤ 1 with probability 1 for any

(x, α, ξ) ∈ N× (0, 1)× Ξ, it follows that

∣

∣

∣

∣

∂p(x|yt−1,α,ξ)

∂ logitα

∣

∣

∣

∣

≤
mxt
∑

k=0

pkt(x, α, ξ)(k + yt−1) ≤
yt−1
∑

k=0

(k + yt−1) ≤ 2(1 + yt−1)yt−1.

Therefore, the result (i) is proved setting ηt = 2(1 + yt−1)yt−1 and recalling that {yt}t∈Z
is stationary and ergodic and thus {ηt}t∈Z is stationary and ergodic as well.

As concerns (ii), we have that

∂p(x|yt−1,α,ξ)

∂ξ
=

mxt
∑

k=0

(

yt−1

k

)

αk(1− α)yt−1−k ∂pe(x− k, ξ)

∂ξ
.

As a result, we obtain that the following inequalities are satisfied almost surely

∥

∥

∥

∥

∂p(x|yt−1,α,ξ)

∂ logitα

∥

∥

∥

∥

1

≤
mxt
∑

k=0

(

yt−1

k

)

αk(1− α)yt−1−k

∥

∥

∥

∥

∂pe(x− k, ξ)

∂ξ

∥

∥

∥

∥

1

≤
x
∑

k=0

∥

∥

∥

∥

∂pe(x− k, ξ)

∂ξ

∥

∥

∥

∥

1

.

Therefore, from the continuity of the derivative provided by Assumption 3.3.4 and the

compactness of Θ, we obtain that for any given x − k ∈ N there is a constant Ckx > 0

such that

sup
θ∈Θ

∥

∥

∥

∥

∂pe(x− k, ξ)

∂ξ

∥

∥

∥

∥

1

≤ Ckx.

This shows that the result in (ii) holds as Cx =
∑x

k=0Ckx <∞.



Chapter 4

Accelerating GARCH and Score-Driven

Models: Optimality, Estimation and

Forecasting

4.1 Introduction

In time series analysis, a widely adopted approach to model the temporal dependence in

the data is to consider a parametric distribution for the observations and allow some of the

parameters to vary over time. The specification of the time-varying parameters plays a

central role in determining the dynamic properties of the model. Depending on the speci-

fication of the time-varying parameters, most of the models in this setting can be classified

in two categories: observation-driven and parameter-driven models, see Cox (1981). The

main advantage of observation-driven models is that the likelihood function is available

in closed form. This allows us to avoid time-consuming simulation-based methods and

facilitates likelihood-based inference. The GAS updating mechanism provides a general

framework to specify time-varying parameters in an observation-driven setting. The use

of the score as driving mechanism to update time-varying parameters is also justified by

an optimality reasoning, see Blasques et al. (2015). GAS models have been widely used

in statistics and econometrics. They have a comparable predictive ability to parameter-

driven models but with the additional advantage of being easy to estimate, see Koopman

et al. (2016).

Time series data often exhibit complex dynamic behaviors. A possible situation is to

have that the amount of information contained in past observations is changing over time,

i.e. large in some time periods and small in others. In such a situation, we would like
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to have a dynamic specification that updates the time-varying parameter quickly when

the data is informative and slowly when the data is not informative. Within the GAS

framework, this can be achieved introducing a dynamic parameter that determines the

magnitude of the score innovation at each time period. On the basis of this idea, we pro-

pose a generalization of the class of GAS models: the accelerating GAS (aGAS) models.

A special case of our approach is the accelerating GARCH (aGARCH) model, which is

an extension of the GARCH model. We illustrate the intuition behind this specification

and provide an empirical study to the S&P 500 stock returns. The results show how the

proposed accelerating volatility framework can be useful to enhance in-sample and out-

of-sample performances of GARCH models. Besides the volatility case, we also discuss

the general aGAS case and provide a theoretical line of reasoning in the spirit of Blasques

et al. (2015) to justify the proposed method. Furthermore, we present a simulation exam-

ple to show the role that this approach can play and how it can produce flexible models

to better approximate an unknown DGP. Finally, in the context of location models, we

consider an empirical application to the quarterly US consumer price inflation series by

specifying a fat-tailed model with dynamic conditional mean and volatility. The acceler-

ating updating equation renders our aGAS model capable of describing not only the the

fast changes in the inflation level during the 1970’s and 1980’s but also the smooth and

flat dynamics of the conditional mean during the great moderation of the two decades that

followed.

The chapter is structured as follows. Section 4.2 introduces the aGARCH model.

Section 4.3 presents the general aGAS framework. Section 4.4 derives the theoretical

justification for the accelerating models. Section 4.5 illustrates the simulation experiment.

Section 4.6 presents the application to the S&P 500 stock returns. Section 4.7 presents

the application to the US inflation series. Section 4.8 concludes.

4.2 Accelerating GARCH model

The GARCH(1,1) model of Engle (1982) and Bollerslev (1986) is given by

yt = σtεt, σ2
t+1 = ω + αy2t + βσ2

t ,

where {εt}t∈Z is an i.i.d. sequence of random variables with zero mean and unit variance.

We propose an extension of the GARCH model: the aGARCH model. The aGARCH
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model is described by the following equations

yt = σtεt, σ2
t+1 = ω + βσ2

t + αt(y
2
t − σ2

t ), (4.1)

αt = β logit−1(ft+1), ft+1 = ωf + βfft + αf (ε
2
t − 1)(ε2t−1 − 1). (4.2)

The logit link function rescaled by β is needed to ensure the positivity of the variance.

In this way, the dynamic parameter αt is constrained to take values between zero and β.

The aGARCH variance equation can be written as a GARCH model with time-varying

parameters, namely

σ2
t+1 = ω + αty

2
t + βtσ

2
t ,

where βt = β − αt. This formulation further highlights why αt needs to be between zero

and β.

The term y2t − σ2
t in equation (4.1) is the innovation of the variance recursion. The

parameter αt is particularly important as it determines the amount of information about

σ2
t+1 contained in the last observation yt. The idea of having a time-varying αt is that

in some time periods the data may be more informative than in others. For instance,

this could be due to a break in the level of the variance. Before the break, the variance

may be changing slowly and therefore the magnitude of the innovations should be small.

Whereas, right after the break, the new observations are very informative about the new

variance level and thus the parameter αt should increase to update quickly σ2
t . In the

following, we provide an illustration of this idea and show the role that a dynamic αt can

play. Assume that we are interested in approximating a true variance path that is observed

with an error disturbance. The true variance is represented by the red line in Figure 4.2.1.

The observed variance is filtered considering the GARCH and the aGARCH recursions.

Figure 4.2.1 illustrates the filtered variance paths using a small α, a large α and a dynamic

αt. As we can see, having a fixed α leads to a trade-off between being exposed to the

disturbance component and updating quickly the variance after the break. This can be

noted observing the gray line and the green line in Figure 4.2.1. On the other hand, the

advantage of a dynamic αt is shown by the black line. We can update quickly the variance

after the break and, at the same time, we can be robust against the disturbance component

in periods when the true variance is constant. Figure 4.2.2 shows how the dynamic αt

is evolving over time. This plot further illustrates that the filtered variance is updated

quickly only after the brake when the aGARCH recursion is employed.

We also note that as αt approaches β the aGARCH model becomes a first order ARCH

model. This means that the variance depends only on the most recent observations when



78 4.2. Accelerating GARCH model

0 100 200 300 400

1
.5

2
.0

2
.5

3
.0

3
.5

Time

σ
t2

True

α = 0.2

α = 0.02

αt

Figure 4.2.1: Filtered variance for different parameters α. The green line is obtained

setting α = 0.02, the gray line setting α = 0.20 and the black line considering a time-

varying αt.
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Figure 4.2.2: The black line denotes the filtered αt from the aGARCH model. The green

and gray lines represent the constant α of the GARCH model.

αt is large. Whereas, when αt is close to zero, the impact of the last observation is lower

as its effect is averaged with that of the other observations. As a result, a large αt after

the break leads to a shorter memory of the filtered variance. This is quite natural as the

new observations are very informative about the new level, whereas, the past level of σ2
t ,

obtained filtering observations before the break, is not very informative.

The updating mechanism of the dynamic αt described in equation (4.2) has also an

intuitive interpretation. In particular, αt is driven by products of standardized past inno-

vations. Therefore, it increases when past innovations are positively correlated, decreases

when the correlation is negative and remains constant when the correlation is zero. A pos-

itive correlation indicates that for repeated observations the innovation tends to be either

above or below its expectation. This is indeed an indication that the variance should be

updated more quickly. In the same way, a negative correlation indicates that consecutive



CHAPTER 4. Accelerating GARCH and Score-Driven Models 79

innovations tend to have opposite sign. Clearly, this can indicate that the variance is being

updated too quickly as the disturbance component affect too much the path of the variance

and thus innovations are more likely to have opposite sign. Finally, a correlation equal

to zero may suggest a situation of equilibrium where the variance is being updated in the

right way. In Section 4.4, we will show that the updating mechanism considered for αt is

justified by an optimality reasoning.

Time variation in the parameters of the GARCH(1,1) model has also been considered

by Engle and Lee (1999). Their model presents time variation in ω. The dynamic ω is

interpreted as a long run variance component. The Engle and Lee GARCH model can

be written as a GARCH(2,2) model. In our case, the aGARCH model does not have an

higher order GARCH representation. This is due to the fact that the variance recursion

becomes a nonlinear function of past y2t when αt is time varying.

In the next section, we will see that the aGARCH specification is a special case of the

more general aGAS framework for time-varying parameter models.

4.3 Accelerating Score-Driven models

The GAS framework of Creal et al. (2013) and Harvey (2013) provides a general ap-

proach to specify time-varying parameter models. GAS models have been successfully

applied to a large number of problems in time series analysis. Examples include the loca-

tion and scale fat-tailed models of Harvey and Luati (2014); Andres (2014), the dynamic

factor models in Creal et al. (2014), and the time-varying copula models of Oh and Patton

(2016), Creal et al. (2011) and Salvatierra and Patton (2015). We propose a class of mod-

els that extends the GAS framework by introducing time variation in the GAS updating

equation. The idea is the same as illustrated for the GARCH model. In particular, the

aGARCH model presented in the previous section is a special case of aGAS model with

time-varying variance and Gaussian conditional distribution.

The aGAS model is described by the following equations

yt ∼ p(yt|λt; θ), λt+1 = ωλ + βλλt + αtsλ,t, (4.3)

αt = h(ft+1), ft+1 = ωf + βfft + αfsf,t, (4.4)

where p(·|λt, θ) is a parametric conditional density, h is an increasing link function, ωλ,

ωf , βλ, βf and αf are unknown parameters to be estimated and θ ∈ Θ is a vector contain-

ing all the static parameters of the model. The innovation terms sλ,t and sf,t are specified



80 4.3. Accelerating Score-Driven models

on the basis of the score of the predictive log-likelihood

sλ,t = Sλ,tuλ,t, uλ,t = ∂ log p(yt|λt; θ)/∂λt,
sf,t = Sf,tuf,t, uf,t = ∂ log p(yt|λt; θ)/∂ft,

where Sλ,t and Sf,t are positive scaling factors. Note that the time index t of the time-

varying parameters λt and ft denotes that they are functions of past observation up to

time t − 1, namely functions of {yt−1, yt−2, . . . }. It is also easy to see that the aGAS

specification in (4.3) and (4.4) is a generalization of the GAS framework. In particular,

the GAS model is given by the equations in (4.3) and setting αt equal to a static parameter

αλ to be estimated.

By straightforward calculations, we obtain that the innovation sf,t in (4.4) has the

following expression

sf,t = Cf,tuλ,tuλ,t−1, (4.5)

where Cf,t is a positive scaling factor. The formula in (4.5) provides a more explicit

form for sf,t, which can be directly derived from uλ,t without the need of calculating any

other derivative. The innovation sf,t of the dynamic αt is therefore given by rescaled

products of past score innovations. From this expression it is also straightforward to

see that the aGARCH model is a special case of aGAS model for time-varying variance.

Furthermore, the same intuitive interpretation as for the aGARCH case applies here for

the innovation sf,t of the dynamic αt. In particular, αt tends to increase when there is

positive autocorrelation in past score innovations and decreases when there is negative

correlation.

We also mention that the use of scaling factors for score innovations is very popular

in GAS modeling and the choice of which scaling to use may depend on the model at

hand. Creal et al. (2013) proposed the use of the Fisher information It to account for

the curvature of the score. Typical choices for the scaling factor are the inverse of the

Fisher Information, the square root of the Fisher Information inverse and the identity

matrix. Note that considering I
−1/2
t as a scaling factor leads the conditional variance of

the score innovations to be equal to 1. Therefore, the variability of the innovation of the

autoregressive process in (4.3) is determined solely by αt.
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4.4 Optimality properties

In this section, we provide a theoretical justification for the aGAS specification in (4.3)

and (4.4). Blasques et al. (2015) developed a line of reasoning to show some optimality

features of the GAS updating mechanism. We build on Blasques et al. (2015) and show

that the use of the score-based innovation in (4.5) for αt has an optimality justification.

Furthermore, we also show how, under certain conditions, the updating mechanism of

the aGAS model outperforms the classic GAS update in terms of local Kullback Leibler

divergence reduction. The results are based on a misspecified model setting where the ob-

jective is to consider the dynamic specification that minimizes the KL divergence between

a postulated conditional distribution and the unknown true distribution of the DGP.

4.4.1 A general updating mechanism

Assume that the sequence of observed data {yt}Tt=1 with values in Y ⊆ R is generated by

an unknown stochastic process that satisfies

yt ∼ pot (yt), t ∈ N,

where pot is the true unknown conditional density. We consider a conditional density for

the observations as in (4.3), yt ∼ p(yt|λt; θ), where θ ∈ Θ is a static parameter and λt

a time-varying parameter that takes values in Λ ⊆ R. Note that also the model density

p(·|λt; θ) is allowed to be misspecified and a true λot and θ0 such that pot = p(·|λot ; θ0) may

not even exist.

The objective is to specify the dynamics of the time-varying parameter λt in such a

way that the conditional density p(·|λt; θ) implied by the model is as close as possible to

the true conditional density pot . To evaluate the distance between these two conditional

densities, a classical approach is to consider the Kullback-Leibler (KL) divergence intro-

duced in Kullback and Leibler (1951) as a measure of divergence, or distance, between

probability distributions. The KL divergence plays an important role in information the-

oretic settings (Jaynes, 1957, 2003) as well as in the world of statistics (Kullback, 1959;

Akaike, 1973). The importance of the KL divergence in econometric applications is re-

viewed in Maasoumi (1986) and Ullah (1996, 2002).

The ideal specification of λt minimizes the KL divergence between the true condi-

tional density pot and the model-implied conditional density p(·|λt; θ). In other words, a

sequence {λt}t∈N is optimal if for each t ∈ N, the value of λt minimizes the following
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KL divergence

KLY

(

pot , p(·|λt; θ)
)

=

∫

Y

pot (y) log
pot (y)

p(y|λt; θ)
dy,

where Y denotes the set over which the local KL divergence is evaluated; see Hjort and

Jones (1996), Ullah (2002) and Blasques et al. (2015) for applications of the local KL

divergence. Assuming that {λ∗t}t∈N is an optimal sequence that minimizes the KL diver-

gence for any t ∈ N, we would like our model to deliver a filtered time-varying parameter

{λt}t∈N that approximates arbitrarily well the trajectory of {λ∗t}t∈N.

Of course, from the outset, there is no reason to suppose that the classic GAS recursion

λt = ωλ + βλλt−1 + αλsλ,t−1

would ever deliver such a result. Lemma 4.4.1 reminds us that a time-varying update of

the type

λt(ft) = ωλ + βλλt−1 + h(ft)sλ,t−1,

could deliver a better approximation to {λ∗t}t∈N.

Lemma 4.4.1. If an optimal sequence {λ∗t}t∈N exists, then for any given initialization

λ0 ∈ Λ there exists a sequence {ft}t∈N of points such that λt(ft) = λ∗t ∀t ∈ N. Moreover,

ft is almost surely constant if and only if there is some c ∈ R such that sλ,t−1 = (λ∗t −
ωλ − βλλt−1)/h(c) almost surely for every t ∈ N.

In practice, however, the problem is how to specify the dynamics of ft. Below, we

will address the issue by providing a theoretical justification for the score-based update of

ft.

We also note that in this section for notational convenience we write λt as a function

of ft and discuss the update of ft and not αt−1 = h(ft). However, this change of notation

does not lead to any practical difference as h is defined to be a monotone increasing link

function.

4.4.2 Optimality of score innovations

We build on the work of Blasques et al. (2015) that provides optimality arguments for a

score-based updating equation. Specifically, Blasques et al. (2015) show that considering

an updating scheme of the form

λt+1 = λt + αλsλ,t
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reduces locally the KL divergence between the model density and the true probability

density. In particular, they show that the variation in the KL divergence obtained by

updating the time-varying parameter from λt to λt+1 satisfies

KLY

(

pot , p(·|λt+1; θ)
)

− KLY

(

pot , p(·|λt; θ)
)

< 0,

when the update is local λt ≈ λt+1 and the set Y is a neighborhood of yt. This result is

subject to the fact that the parameter αλ has to be positive because otherwise the informa-

tion provided by the score is distorted. Clearly, as this optimality concept regards only the

direction of the update, we can conclude that the optimality holds also when αλ is time

varying as long as it is positive. This justifies the use of a positive link function h in (4.3)

that ensures the positivity of h(ft).

It is also worth mentioning that the optimality concept in Blasques et al. (2015) is

shown to hold for (ωλ, βλ) ≈ (0, 1). This because the reduction of local KL divergence

from the update is considered with respect to pot . In practice, what we really want is to

reduce the KL divergence with respect to pot+1 as the updated time-varying parameter λt+1

is used to specify the conditional probability measure of yt+1. The problem is that λt is

updated using information from pot and therefore, without imposing any restriction on the

true sequence of conditional densities, it is impossible to say whether the updating scheme

makes any sense with respect to pot+1. Blasques et al. (2015) show that having (ωλ, βλ) ≈
(0, 1) is optimal also with respect to the density pot+1 only if the true conditional density

varies sufficiently smoothly over time. This justifies the possibility that in practice it may

be reasonable to consider also (ωλ, βλ) 6= (0, 1).

We now add to the results of Blasques et al. (2015) by considering the updating

scheme in (4.4) for the time-varying parameter ft and showing that it has a similar opti-

mality justification. More specifically, we provide an optimality reasoning for the updat-

ing scheme in (4.4) setting (ωf , βf ) ≈ (0, 1),

ft+1 = ft + αfsf,t. (4.6)

At time t− 1, a given parameter value ft ∈ F ⊆ R is used to update a given λt−1 ∈ Λ by

the recursion in (4.3), namely

λt(ft) = ωλ + βλλt−1 + h(ft)sλ,t−1.

Then, at time twe observe yt and the parameter ft is updated to ft+1. We consider optimal

an updating mechanism that processes properly the information provided by yt. The idea
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is that ft has to be updated in such a way that the model density with the updated ft+1

is closer to the true density pot than the model density p(·|λt(ft); θ). We consider the

following definition.

Definition 4.4.1. The realized KL variation for the parameter update from ft to ft+1 is

∆t+1
f,t = KLY

(

pot , p(·|λt(ft+1); θ)
)

− KLY

(

pot , p(·|λt(ft); θ)
)

.

A parameter update for ft is said to be optimal in local realized KL divergence if and only

if ∆t+1
f,t < 0 almost surely for any (ft, θ) ∈ F ×Θ.

The results we present are local in the sense that we will show that at each step the

score update gives the right direction to reduce a local realized KL divergence. As in

Blasques et al. (2015), we focus on sets of the form

Y = B(yt, εy) = {y ∈ Y : |yt − y| < εy},
F = B(ft, εf ) = {ft+1 ∈ F : |ft − ft+1| < εf}.

First, we impose some regularity assumptions on the score sλ,t. In particular, we im-

pose that the score has some differentiability properties and also that it is nonzero with

probability 1 to ensure that the parameter ft is always updated.

Assumption 4.4.1. The score uλ,t = uλ(yt, λt, θ) is continuously differentiable in yt and

λt, and almost surely uλ(yt, λt, θ) 6= 0 for any (λt, θ) ∈ Λ×Θ and t ∈ N.

The next proposition states that the score update for ft is optimal in the sense of

Definition 4.4.1.

Proposition 4.4.1. Let Assumption 4.4.1 hold, then the update from ft to ft+1 in (4.6) is

optimal in terms of local realized KL divergence as long as αf is positive.

The next proposition stresses the fact that only the score sf,t provides the right direc-

tion to update ft.

Proposition 4.4.2. Let Assumption 4.4.1 hold, then any parameter update from ft to ft+1

is optimal in local realized KL divergence if and only if sign(ft+1−ft) = sign(sf,t) almost

surely for any ft ∈ F .
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4.4.3 Relative optimality

The optimality concept developed in the previous section is only related to the update of

ft, but, in practice, the update of ft is only a tool to improve the update of λt(ft). The idea

is to compare the score update from λt(ft) to λt+1(ft+1) with the score update from λt(ft)

to λt+1(ft). Indeed, the former corresponds to an aGAS update and the latter corresponds

to a GAS update as ft is maintained constant. As before, the quality of the updates is

measured in terms of KL reduction. We are thus interested in comparing the variation in

KL divergence obtained by updating the parameter from λt(ft) to λt+1(ft+1),

∆t+1
λ,t+1 = KLY

(

pot , p(·|λt+1(ft+1); θ)
)

− KLY

(

pot , p(·|λt(ft); θ)
)

,

against the variation in KL divergence obtained under the parameter update from λt(ft)

to λt+1(ft)

∆t
λ,t+1 = KLY

(

pot , p(·|λt+1(ft); θ)
)

− KLY

(

pot , p(·|λt(ft); θ)
)

.

Clearly, the first type of update is better if it can ensure a greater reduction in KL diver-

gence.

Definition 4.4.2. The parameter update from λt(ft) to λt+1(ft+1) is said to dominate the

parameter update from λt(ft) to λt+1(ft) in local realized KL divergence, if and only if

∆t+1
λ,t+1 −∆t

λ,t+1 < 0.

The notion of dominance in local realized KL divergence in Definition 4.4.2 provides

a line of comparison for the parameter updates. We can say that the parameter update

from λt(ft) to λt+1(ft+1) outperforms the parameter update from λt(ft) to λt+1(ft) if

∆t+1
λ,t+1 < ∆t

λ,t+1. The results we obtain are local in the sense that the KL divergence

is evaluated locally and the innovations sλ,t−1 and sλ,t are in a neighborhood of zero.

Moreover, we also impose that the observation yt lies in a neighborhood of yt−1. More

formally, the realized KL divergence in Definition 4.4.1 is evaluated is a sets of the form

Y = B(yt, εy) = {y ∈ Y : |yt − y| < εy},

with yt ∈ B(yt−1, εy) and sλ,t−1, sλ,t ∈ B(0, ελ). The result is stated in the following

proposition.

Proposition 4.4.3. Let Assumption 4.4.1 hold. Then, the parameter update from λt(ft)
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to λt+1(ft+1) generated by (4.6) dominates almost surely the the parameter update from

λt(ft) to λt+1(ft) in local realized KL reduction for every λt−1 ∈ Λ and ft ∈ F .

The result in Proposition 4.4.3 is related to the fact that when the updating steps are

small enough and the information provided by the data changes smoothly, yt−1 is close to

yt, then the the update from λt−1 to λt(ft) and the update from λt(ft) to λt+1(ft) are in the

same direction. In this situation, the score update for ft leads to ft+1 > ft and therefore

an update from λt(ft) to λt+1(ft+1) in the same direction as the update from λt(ft) to

λt+1(ft) but larger in absolute value. This means that for some small enough sλ,t−1 and

sλ,t the update from λt(ft) to λt+1(ft+1) reduces the local KL divergence more than the

update from λt(ft) to λt+1(ft).

4.5 Monte Carlo experiment

In this section, we present a simulation exercise as an intuitive example of the role that

the time-varying parameter αt can play. The simulation study consists on generating time

series from a stochastic process and comparing the predictive ability of GAS and aGAS

models. The time series are generated by the following DGP

yt = µo
t + ηt, t ∈ Z, (4.7)

where µo
t is a deterministic mean and {ηt}t∈Z is an i.i.d. sequence of Gaussian random

variables with zero mean and unit variance. The deterministic mean µo
t takes values in

{0, δ}, δ > 0, and is defined to switch every γ × 102 time periods from 0 to δ and vice

versa. More formally, µo
t is specified as

µo
t =







0 if sin (γ−110−2(πt− 1)) ≥ 0

δ if sin (γ−110−2(πt− 1)) < 0.

Figure 4.5.1 shows a realization from the DGP with δ = 3 and γ = 2. We consider this

particular DGP to provide an intuition of why the time-varying αt of the aGAS model can

be relevant. The idea is that, in time periods where the true µo
t is constant, we would like

the noise component ηt not to affect too much the filtered path of the mean. This reflects

a situation with a small αt. On the other hand, we would like the filtered mean to react

when the breaks in the level occur to attain quickly the new level of µo
t . This reflects a

situation with a large αt.
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Figure 4.5.1: Realization of size T = 1000 from the DGP with δ = 3 and γ = 2. The red

line represent the true µo
t .

To filter the simulated series, the following aGAS model is considered

yt = µt + εt, εt
iid∼ N(0, σ2). (4.8)

The time-varying mean µt is specified as

µt+1 = µt + αtsµ,t,

αt = exp(ft+1/2), ft+1 = ωf + βfft + αfsf,t,

where sµ,t = yt − µt and sf,t = sµ,tsµ,t−1. The expressions for the innovations of µt and

αt are obtained from the score of the predictive likelihood as in (4.3) and (4.4). Note that,

in this case, the Fisher information is constant and therefore the scaling of the score is

irrelevant as it only leads to a reparametrization of the model. We consider also the GAS

model obtained treating αt as a static parameter to be estimated, i.e. αt = αµ. This GAS

model is equivalent to an ARIMA(0,1,1) model. In particular, taking first differences we

obtain an MA(1) model yt − yt−1 = (1− αµ)εt−1 + εt.

We generate 1000 Monte Carlo replications of sample size T = 1000 from the process

in (4.7) for different values of δ and γ. For each of the 1000 replications, we estimate by

ML the aGAS model in (4.8) and its standard GAS counterpart. In order to evaluate the

performance of the models, the filtered mean µt from these two models is compared with

the true mean µo
t . We compute the square root of the mean square error (MSE) between

the filtered µt and true mean µo
t . The results of the experiment are collected in Table

4.5.1. The results show that the aGAS model outperforms the GAS model. In particular,

the MSE of the aGAS model is smaller for all DGPs except for the DGP with δ = 0.

This indicates that the aGAS filter is able to better approximate the true µo
t in terms of
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γ = 1.0 γ = 1.5 γ = 2.0 γ = 2.5
GAS aGAS GAS aGAS GAS aGAS GAS aGAS

δ = 0.0 3.86 3.99 3.86 3.99 3.86 3.99 3.86 3.99

δ = 0.5 22.34 22.33 20.19 20.19 18.17 18.13 17.05 16.94

δ = 1.0 31.69 31.40 28.57 28.07 25.70 24.91 23.99 22.89

δ = 1.5 39.21 38.13 35.25 33.56 31.66 29.14 29.48 26.31

δ = 2.0 45.78 43.50 41.05 37.62 36.81 31.97 34.21 28.47

δ = 2.5 51.78 48.29 46.30 41.26 41.45 34.64 38.47 30.60

δ = 3.0 57.38 53.09 51.18 45.02 45.75 37.58 42.40 32.83

δ = 3.5 62.71 58.05 55.80 48.98 49.79 40.91 46.08 35.54

Table 4.5.1: Square root of the MSE between the true µo
t and the filtered parameter µt for

different values of δ and γ.

quadratic error. The fact that the GAS performs better than the aGAS for δ = 0 is quite

natural as δ = 0 means that the true mean µo
t is constant in all time periods. Therefore,

there are no benefits from using a dynamic αt but only the drawback of having a more

parametrized model that leads to an higher parameter estimation uncertainty. Similarly,

from Table 4.5.1, we can also note that the improvement due to the dynamic parameter αt

tends to increase as the size of the jumps increases.

To better understand the effect of the dynamic parameter αt, Figure 4.5.2 reports the

simulation results for the DGP with δ = 3 and γ = 2. As we can see from the first plot, the

90% variability bounds for the aGAS are narrower than those of the GAS in time periods

when µo
t is constant. This shows that the true mean is predicted with greater accuracy and

the filter is less exposed to the noise component. The opposite situation can be noted after

the breaks: the variability bounds of the aGAS are larger for a few time periods. This is

consistent with the fact that after the brakes the aGAS filter is reacting faster to handle the

changes in the level and thus it is also more exposed to the disturbance component. From

the second plot in Figure 4.5.2, we can note how, in different time periods, the squared

errors tends to be larger for the GAS model. Furthermore, the 90% level confidence

bounds show that aGAS model seems to outperform the GAS not only on average but for

almost all Monte Carlo random draws. Finally, the third plot in Figure 4.5.2 illustrates

the behavior of the time-varying αt. In particular, the dashed line represents the average

filtered αt from the aGAS model and the continuous line the average estimate of the static

αµ from the GAS model. As expected, the dynamic αt is close to zero when µo
t is constant

and it increases after the breaks. This allows the filtered mean to be updated at different

speeds in different time periods and leads to the advantages illustrated in the first two
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plots of Figure 4.5.2.
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Figure 4.5.2: First plot: the red line represents µo
t , the continuous lines represent 90%

variability bounds for the GAS µt, and the dashed lines represent 90% variability bounds

for the aGAS µt. Second plot: cumulative squared error difference between the aGAS and

the GAS. The shadowed area denotes a 90% confidence region. Third plot: the continuous

line is the average estimate of α for the GAS, and the dashed line is the average estimate

of αt for the aGAS.

4.6 Empirical application to US stock returns

In this section, we evaluate the performance of the aGARCH model through a compar-

ison using the stocks that are currently in the S&P 500 index. Daily stock returns from

2008 to 2015 are considered. The series of the S&P 500 that are not available since 2008

are excluded from the study. The resulting number of time series is 460. The perfor-

mances of the models are evaluated both in-sample and out-of-sample. The in-sample

evaluation is based on the AIC. This choice is due to the fact that GAS models can be

seen as filters in a misspecified framework and the the AIC provides a meaningful inter-

pretation in this case. The out-of-sample evaluation is based on the log-score criterion:

n−1
∑n

t=1 log pT+i(yT+i), where pt(·) denotes the conditional density of yt given the past
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observations up to t − 1. This criterion is widely known and used in the literature for

evaluating density forecasts. The out-of-sample period consists on the daily observations

in 2015. The training sample is from 2008 to 2014. The static parameters are estimated

only once, i.e. no expanding or rolling windows are used.

Full dataset Top 10% Kurtosis

In-sample Out-of-sample In-sample Out-of-sample

No. Pct. No. Pct. No. Pct. No. Pct.

GARCH 72 15.6% 89 19.3% 0 0.0% 13 28.3%

ELGARCH 264 57.4% 268 58.3% 11 23.9% 15 32.6%

aGARCH 124 27.0% 103 22.4% 35 76.1% 18 39.1%

Total 460 100.0% 460 100.0% 46 100.0% 46 100.0%

Table 4.6.1: Number and the percentage of series in the S&P 500 index where each Gaus-

sian model outperforms the others.

We first perform the comparison considering a Gaussian error distribution. The mod-

els we consider are the GARCH, ELGARCH and aGARCH, where ELGARCH indicates

the GARCH model of Engle and Lee (1999). Table 4.6.1 reports the number of series

in the S&P 500 index where each model outperforms the others. The table also contains

the results considering the 10% of the S&P 500 series with the highest Kurtosis. The

aGARCH has the smallest AIC for 27.0% of the series, whereas the ELGARCH has the

smallest AIC in 57.4% of the cases. We note that the aGARCH model seems to perform

particularly well with series that present heavy tails. In fact, considering only the 10%

of the series with highest kurtosis, the aGARCH is the model that performs best for the

majority of the series. This peculiarity is further highlighted by Figures 4.6.1 and 4.6.2.

Figure 4.6.1 shows that the aGARCH model performs better than the other models more

often when fat-tailed series are considered. In particular, we see that the performance in-

creases as we condition the comparison on series with fatter tails. The Boxplots in Figure

4.6.2 shows the distribution of the Kurtosis for the S&P 500 series grouped according to

the best performing model. This plot indicates that the series where the aGARCH per-

forms best tend to present fat tails, whereas, the series where the GARCH performs best

tend to have a low Kurtosis. We thus conclude that, in general, the more complex models,

i.e. the ELGARCH and the aGARCH, seem to outperform the standard GARCH model

when fat tails are present.

The aGARCH model in (4.1) and (4.2) is obtained from the aGAS framework with

a Gaussian distribution for the error term. Other distributions can be employed. Con-

sidering a Student-t distribution, we can extend the Beta-t-GARCH model of Creal et al.
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Figure 4.6.1: Percentage of series where each model outperforms the others in terms

of AIC. The percentage is computed only for the series with skewness above a certain

quantile. The quantile levels are indicated on the horizontal axis.
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Figure 4.6.2: Boxplots of the Kurtosis distribution of the series grouped by model. The

series in each model are those where that model has the best in-sample performance.

(2013) and Harvey (2013). The accelerating Beta-t-GARCH (aBeta-t-GARCH) model is

described by the following equations

yt =σtεt, σ2
t+1 = ω + βσ2

t + αtσ
2
t sσ,t,

αt = β logit−1(ft+1), ft+1 = ωf + βfft + αfsσ,tsσ,t−1,
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where {εt}t∈Z is an i.i.d. sequence of Student-t distributed random variables with zero

mean unit variance and ν degrees of freedom. As in Creal et al. (2013), the score innova-

tion sσ,t has the following expression

sσ,t =
(ν + 1)ε2t

(ν − 2) + ε2t
− 1.

It is easy to see that the limit case ν → ∞ of the aBeta-t-GARCH model coincides with

the aGARCH model. Furthermore, setting αt = α to be a static parameter leads to the

Beta-t-GARCH model of Creal et al. (2013) and Harvey (2013).

In the following, we perform a second empirical study where we compare models

with a Student-t error distribution. The models considered are the Beta-t-GARCH and

aBeta-t-GARCH as well as the GARCH, ELGARCH and aGARCH with Student-t error

distribution, which we denote as tGARCH, ELtGARCH and atGARCH respectively. We

note that the Beta-t-GARCH specification takes into account the fat tails not only in the

error distribution but also in the updating mechanism of the variance σ2
t . Namely, the

impact of extreme observations on σ2
t is attenuated. As discussed in Creal et al. (2013)

and Harvey (2013) this can provide benefits when dealing with fat tailed time series.

Similarly as before, Table 4.6.2 reports the number of series in the S&P 500 index where

each model is outperforming the others. The in-sample results shows that the Beta-t-

GARCH is the best model for 67.6% of the series. However, this result seems not to

be very consistent with the out-of-sample results where the Beta-t-GARCH is the best

in only the 22.4% of cases. The atGARCH model and the aBeta-t-GARCH are the best

models for a significant proportion of the series. As before, we can look at the results

for the 10% of the series with highest Kurtosis. The Beta-t-GARCH and the aBeta-t-

GARCH are the best in-sample specifications for all series. The out-of-sample results are

also rather coherent with this finding. Overall the aGARCH and aBeta-t-GARCH models

are the best models for a large proportion of the series.

We can conclude that, for a relevant number of the S&P 500 series, the inclusion of the

dynamic αt can enhance the in-sample and the out-of-sample performances of GARCH-

type models. This is true for the Normal experiment as well as the Student-t experiment.

Moreover, in both cases, the effect of the dynamic αt seems particularly relevant for fat

tailed time series. These results suggest that different specifications can be useful to better

approximate the dynamics of different series. The accelerating volatility framework thus

provides a flexible class of models that can be useful in practical applications.
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Full dataset Top 10% Kurtosis

In-sample Out-of-sample In-sample Out-of-sample

No. Pct. No. Pct. No. Pct. No. Pct.

tGARCH 29 6.3% 14 3.0% 0 0.0% 0 0.0%

ELtGARCH 49 10.7% 186 40.4% 0 0.0% 4 8.7%

atGARCH 21 4.6% 66 14.3% 0 0.0% 6 13.0%

Beta-t-GARCH 311 67.6% 103 22.4% 39 84.8% 19 41.3%

aBeta-t-GARCH 50 10.9% 91 19.8% 7 15.2% 17 37.0%

Total 460 100.0% 460 100.0% 46 100.0% 46 100.0%

Table 4.6.2: Number and the percentage of series in the S&P 500 index where each

Student-t model outperforms the others.

4.7 Application to US inflation

4.7.1 A fat tailed aGAS location model

Relying on the aGAS framework, we propose a fat-tailed model where the parameter that

determines the magnitude of the update of the mean process is allowed to vary over time.

More specifically, we consider a Student-t conditional distribution for yt where both the

mean and the variance are time varying. As we will see, the resulting model has some

similarities with the stochastic volatility model of Stock and Watson (2007). The Student-

t distribution in a GAS framework allows us to handle outliers by attenuating their impact

on the filtered parameters. Applications in the literature of Student-t GAS models for

location and scale parameters can be found in Creal et al. (2013), Harvey (2013) and

Harvey and Luati (2014). In particular, Harvey (2013) considered a Student-t model with

both a time-varying mean and the variance. The novelty of the model we propose in the

following is the inclusion of the time-varying parameter αt to enable the time-varying

mean to capture more complex dynamics.

We consider the following aGAS model with time-varying conditional mean and

volatility

yt = µt + σtεt, εt
iid∼ tv, t ∈ Z, (4.9)

The time-varying parameters are described by the following equations

µt+1 = µt + αtsµ,t,

αt = exp(ft+1/2), ft+1 = ωf + βfft + αfsf,t,

log σ2
t+1 = ωσ + βσ log σ

2
t + ασsσ,t,
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where ωf , βf , αf , ωσ, βσ and ασ are static parameters to be estimated and sµ,t, sf,t and

sσ,t are the score-based innovations of the processes. In the following, the functional form

of these innovations is illustrated. A graphical representation is presented in Figure 4.7.1.

The innovation sµ,t of the mean process µt is obtained setting the scaling factor Sµ,t equal

to the square root of the inverse Fisher information, sµ,t takes the form

sµ,t =
(v + 1)(yt − µt)σ

−1
t

(v − 2) + (yt − µt)2σ
−2
t

.

The first plot in Figure 4.7.1 shows the effect of a standardized observation εt = (yt −
µt)/σt on sµ,t. As we can notice the relationship between εt and sµ,t is nonlinear and the

impact of extreme values of εt on sµ,t is attenuated. The degree of attenuation depends

on the parameter v: the smaller the parameter v, the lower the sensitivity of sµ,t to out-

liers; see Harvey and Luati (2014) for more details. The innovation sf,t is derived from

expression (4.5) setting Cf,t = Sµ,tSµ,t−1

sf,t = sµ,tsµ,t−1.

The second plot in Figure 4.7.1 shows the effect of εt and εt−1 on sf,t. As we can see

sf,t is positive when εt and εt−1 have the same sign and negative when εt and εt−1 have

opposite sign. Also in this case extreme values of εt and εt−1 are detected as outliers and

their impact on sf,t is attenuated. Finally, the innovation of the process log σ2
t takes the

form

sσ,t =
(v + 1)(yt − µt)

2σ−2
t

(v − 2) + (yt − µt)2σ
−2
t

− 1.

Note that in this case the Fisher information is constant and so it does not affect the

functional form of sσ,t. The impact of εt on sσ,t is shown in the third plot of Figure 4.7.1.

This update sσ,t is the same as for the Beta-t-EGARCH model of Harvey (2013).

As the degrees of freedom of the Student-t distribution goes to infinity, the Student-t

distribution approaches the standard Gaussian distribution. In this limit case, the model

in (4.9) becomes a Gaussian score-driven model where the innovation for µt is given by

sµ,t = (yt − µt)σ
−1
t and the innovation for σ2

t is given by sσ,t = (yt − µt)
2σ−2

t − 1. The

impact function of the standardized observation (yt − µt)σ
−1
t on sµ,t and sσ,t can be seen

in Figure 4.7.1.
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Figure 4.7.1: In the first image the values taken by sµ,t as a function of εt are plotted. In

the second image there is a contour plot that shows the values taken by sf,t as a function

of εt and εt−1. In the third image the values taken by sσ,t as a function of εt are plotted.

In all plots the degrees of freedom of the Student-t is set equal to 10.

4.7.2 Empirical application

In our empirical analysis, we consider the US quarterly consumer price index, which is

obtained from the FRED dataset. As standard procedure adopted in the literature, the

inflation time series yt is computed as the annualized log-difference of the price index

series pt, namely, the transformation yt = 400 log(pt/pt−1) is considered. The resulting

inflation series is from the first quarter of 1952 to the first quarter of 2015. The series

is plotted in Figure 4.7.2. We consider several specifications of the aGAS model. These

specifications are listed in Table 4.7.1.
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Figure 4.7.2: Quarterly consumer price US inflation series.
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Description Reference

Model t.1 The full model in (4.9)

Model t.2 βσ = 0 and ασ = 0
Model t.3 βf = 0 and αf = 0 Harvey (2013)

Model t.4 βσ = 0, ασ = 0, βf = 0 and αf = 0 Harvey and Luati (2014)

Model n.1 Limit case of Model t.1 with v → ∞
Model n.2 Limit case of Model t.2 with v → ∞
Model n.3 Limit case of Model t.3 with v → ∞
Model n.4 Limit case of Model t.4 with v → ∞

Table 4.7.1: The second column describes the specification of the model. The third column

provides some references for the specific models obtained constraining the parameters of

the full model in (4.9).

δf βf αf δσ βσ ασ v loglik LRT AIC

Model t.1 -1.518 0.967 0.258 1.055 0.861 0.215 5.571 -475.3 - 964.6
(0.799) (0.027) (0.113) (0.236) (0.092) (0.089) (1.572)

Model t.2 -1.493 0.914 0.294 1.182 - - 3.826 -482.7 0.001 975.4
(0.402) (0.028) ( 0.071) (0.178) (0.553)

Model t.3 -0.468 - - 1.080 0.869 0.163 7.583 -481.8 0.002 973.6
(0.280) (0.207) (0.126) (0.099) (2.399)

Model t.4 -0.305 - - 1.111 - - 5.639 -488.8 0.000 983.6
(0.213) (0.134) (1.431)

Model n.1 -1.366 0.969 0.182 1.169 0.937 0.088 - -504.2 - 1020.4
(0.618) (0.022) (0.072) (0.203) (0.030) (0.033)

Model n.2 -0.304 0.971 0.060 1.251 - - - -515.3 0.000 1038.6
(0.416) (0.028) (0.036) (0.089)

Model n.3 -0.231 - - 1.213 0.939 0.054 - -510.2 0.002 1028.4
(0.314) (0.161) (0.026) (0.021)

Model n.4 -0.080 - - 1.264 - - - -516.8 0.000 1037.6
(0.266) (0.089)

Table 4.7.2: Estimate of the models in Table 4.7.1. Standard errors are in brackets. The

last three columns contain respectively the log-likelihood, the pvalue of the likelihood

ratio test with respect to the full models and the AIC. The parameters δf and δσ are given

by δf = ωf/(1− βf ) and δσ = ωσ/(1− βσ).

The estimation results of Model t.1-t.4 and Model n.1-n.4 are collected in Table 4.7.2.

The table reports the pvalue of the likelihood ratio test between each model and the cor-

responding full model. The results show that the inclusion of the dynamic variance σt as

well as αt are highly significant. In particular, we obtain that the null hypothesis of the of

the likelihood ratio test is rejected at a 1% level in all cases. Furthermore, we report that

the model with the lowest AIC is Model t.1. The AIC also indicates that the Student-t

specifications, Model t.1-t.4, have a better fitting than the Normal ones, Model n.1-n.4.

This is also confirmed by the fact that the estimated degrees of freedom v are small for all
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four Student-t models.

Figure 4.7.3 contains the plots of the filtered parameters µt, σt and αt for Model t.1.

From the plot of µt, we can see how the model is effectively able to handle outliers. This

is particularly clear in the fourth quarter of 2008 where the extreme peak of inflation

does not dramatically affect µt. From the plot of αt, we can note that during the period

of exceptional high inflation, approximately between 1972 and 1983, also the filtered αt

takes high values. This is consistent with the fact that during periods of persistent and

quick changes in the level of yt the parameter µt has to be updated quickly to capture

these changes and αt plays a key role in this. Finally, as we can see in the third plot of

Figure 4.7.3, the variability σt seems to increase in periods of economic recession. See

the NBER recession index in the first plot.

Time

µ
t

1950 1960 1970 1980 1990 2000 2010

−
1
0

−
5

0
5

1
0

1
5

Time

α
t

1950 1960 1970 1980 1990 2000 2010

0
.5

1
.0

1
.5

Time

σ
t

1950 1960 1970 1980 1990 2000 2010

1
.0

2
.0

3
.0

4
.0

Figure 4.7.3: Estimated time-varying parameters from Model t.1. First plot: µt. Second

plot: αt. Third plot: σt.

In order to better appreciate the effect of the inclusion of the time-varying parameter

αt on the filtered µt, we compare the filtered µt obtained from Model t.1 and Model t.3.

Note that both Model t.1 and t.3 include a time-varying variability σt, the only difference

between the two models is that in Model t.3 αt is not time varying. We consider two

periods where the inflation series exhibits different behaviors: the period from 1973 to

1982, first plot in Figure 4.7.4, and the the period from 1999 to 2008, second plot in
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Figure 4.7.4. In the period between 1973 and 1982, we note that the time series seems to

change level quickly, denoting an high persistence in the inflation process. In this period

the time-varying αt takes large values, see the second plot in Figure 4.7.3. This allows the

µt of Model t.1 to react more promptly to the changes in the level of the series. This fact

can be easily noted from the plot as the µt of Model t.1 goes above the µt of Model t.3

when the inflation level is increasing and vice versa when the inflation level is decreasing.

As concerns the period between 1999 and 2008, the second plot in Figure 4.7.4 shows

that the inflation series seems to change level slowly, a slight increasing trend with a lot

of noise around it. In this situation, the small values of the time-varying αt, see the second

plot in Figure 4.7.3, allow the µt of Model t.1 to change slowly, capturing the increasing

trend but not being too much affected by the noise. The benefit of the time-varying αt can

be noted from the plot as the filtered µt of Model t.3 is more noisy than the filtered µt of

Model t.1. These two plots in Figure 4.7.4 show how the inclusion of the time-varying αt

allows the model to be more flexible and better adapt to changing behaviors of the series.

The improvement in terms of in-sample fitting is also confirmed by the likelihood ratio

test and the AIC.
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Figure 4.7.4: Filtered µt from Model t.1 and Model t.3 for different time periods. The

gray line is the inflation series, the dashed line is the filtered µt from Model t.3 and the

continuous line is the filtered µt from Model t.1.

4.7.3 Pseudo out-of-sample forecasts

Finally, we perform a pseudo out-of-sample study to compare the forecasting performance

of the models in Table 4.7.1. In this study we include also other models: a local level

model, an ARIMA(4,1,0) and an ARIMA(1,1,1). The forecast mean square error (FMSE)
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and the forecast mean absolute error (FMAE) are computed using the last 100 observa-

tions and the estimation of the models is performed using a fixed rolling window. We

consider forecasts from 1 to 4 steps ahead. Differences in forecast accuracy are tested by

Diebold and Mariano (DM) test, Diebold and Mariano (1995). The DM test is used to

test the null hypothesis that Model t.1 has the same FMSE as the other models against

the alternative of different FMSE. Note that the DM test is performed for both nested and

non-nested models; the asymptotic normal distribution of the DM test statistic for nested

models is ensured by the fixed rolling window, see Giacomini and White (2006).

As we can see from the results collected in Table 4.7.3, Model n.1 has the smallest

FMSE and FMAE and Model t.1 has the best forecasting performance among the fat-

tailed models. This suggests that the inclusion of the time-varying αt tends to enhance the

forecasting performance of the GAS models. For forecasting horizon of 1 year (h = 4),

we obtain that Model t.1 significantly outperforms most of the models at a 5% or 10%

significance level. As concerns the other forecasting horizons, we conclude that we cannot

reject the hypothesis that the differences in terms of forecast accuracy observed in the

subsample are just due by chance.

FMSE FMAE

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Model t.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Model t.2 1.02 1.02 1.02 1.05 1.01 1.02 1.01 1.03

Model t.3 1.11 1.12 1.09 1.14∗∗ 1.04 1.04 1.03 1.07∗∗

Model t.4 1.13∗ 1.14∗ 1.09 1.16∗∗ 1.05 1.06∗ 1.02 1.08∗∗

Model n.1 0.96 0.99 0.98 1.00 1.00 0.99 0.99 1.00

Model n.2 1.02 1.20 1.18 1.15∗ 1.02 1.09 1.07 1.05

Model n.3 1.03 1.09 1.07 1.10 1.04 1.03 1.03 1.04

Model n.4 1.02 1.20 1.18 1.15∗ 1.02 1.09 1.07 1.05∗

Local level model 1.02 1.20 1.19 1.16∗ 1.02 1.09 1.07 1.06∗

ARIMA(4,1,0) 1.06 1.25 1.33 1.25∗∗ 1.02 1.07 1.10 1.10∗∗

ARIMA(1,1,1) 0.98 1.16 1.14 1.12 1.00 1.06 1.04 1.03

Table 4.7.3: FMSE and FMAE ratio from the last 100 observations of the quarterly US

consumer price inflation series. The benchmark is Model t.1. The FMSE and FMAE of

Model t.1 is at the denominator of the ratio.
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4.8 Conclusion

This chapter has introduced a novel class of models for time-varying parameters capable

of describing complex dynamics. We have provided both theoretical and simulation-based

evidence that the aGAS formulation can outperform GAS models with a time-invariant

structure for the updating equation. The real data applications to the S&P 500 and the

US inflation series have illustrated that the proposed accelerating approach is capable of

improving in-sample and out-of-sample performances of GAS models.



Appendix

4.A Proofs

Proof of Lemma 4.4.1. The first statement follows by noting that λt(ft) = λ∗t if {ft}t∈N
is a random sequence such that ft = h−1

(

(λ∗t − ωλ − βλλt−1)/sλ,t−1

)

for any t ∈ N. As

concerns the second statement, the if part is immediately proved by noting that sλ,t−1 =

(λ∗t −ωλ−βλλt−1)/h(c) implies ft = c. Finally, to prove the only if part of the statement,

suppose that, for some t ∈ N, there exists no c ∈ R such that sλ,t−1 = (λ∗t − ωλ −
βλλt−1)/h(c). Then, setting ft = c ∀ t ∈ N implies that λt(ft) 6= λ∗t for some t ∈ N and

any possible c ∈ R.

Proof of Proposition 4.4.1. The proof follows the same argument as in Blasques et al.

(2015). By an application of the mean value theorem, the local realized KL divergence

can be expressed as

∆t+1
f,t =

∫

B(yt,εy)

pot (y) log
p(y|λt(ft))
p(y|λt(ft+1))

dy =

=

∫

B(yt,εy)

pot (y)
∂ log p(y|λt(ḟt))

∂ḟt
(ft − ft+1)dy =

= −
∫

B(yt,εy)

pot (y)αfCf,tSλ,t−1uλ
(

yt−1, λt−1

)2
uλ
(

y, λt(ḟt)
)

uλ
(

yt, λt(ft)
)

dy =

= −
∫

B(yt,εy)

pot (y)C̃tuλ
(

y, λt(ḟt)
)

uλ
(

yt, λt(ft)
)

dy,

where C̃t = αfCf,tSλ,t−1uλ(yt−1, λt−1)
2 and ḟt is a point between ft and ft+1. Applying



102 4.A. Proofs

again the mean value theorem it results

∆t+1
f,t = −

∫

B(yt,εy)

pot (y)C̃tuλ
(

y, λt(ḟt)
)

uλ
(

yt, λt(ft)
)

dy =

= −
∫

B(yt,εy)

pot (y)C̃tuλ
(

yt, λt(ft)
)2
dy+ (4.10)

−
∫

B(yt,εy)

pot (y)C̃tuλ
(

yt, λt(ft)
)∂uλ

(

ẏt, λt(f̈t)
)

∂ẏt
(y − yt)dy+ (4.11)

−
∫

B(yt,εy)

pot (y)C̃tuλ
(

yt, λt(ft)
)∂uλ

(

ẏt, λt(f̈t)
)

∂f̈t
(ḟt − ft)dy, (4.12)

where f̈t is a point between ḟt and ft, and ẏt is a point between y and yt. The desired result

follows from the fact that the term (4.10) is a.s. negative and the terms (4.11) and (4.12)

can be made arbitrary small in absolute value compared to the first term by selecting the

ball radius εy and εf small enough.

Proof of Proposition 4.4.2. The if part of the proposition follows immediately from a

similar argument as in the proof of Proposition 4.4.1. As concerns the only if part, if

sign(ft+1 − ft) = sign(sf,t) does not hold with probability 1 for any ft ∈ F , it means

that there exists an ft ∈ F such that sign(ft+1−ft) 6= sign(sf,t) holds with positive prob-

ability. Following a similar argument as in the proof of Proposition 4.4.1, this implies that

there is a positive probability to have an yt such that

∆t+1
f,t = −

∫

B(yt,εy)

pot (y)C̃tuλ
(

yt, λt(ḟt)
)

(ft+1 − ft)dy > 0,

for small enough εy > 0 and εf > 0. This concludes the proof.

Proof of Proposition 4.4.3. The line of argument is similar as in the proof of Proposi-

tion 4.4.2, the result follows by repeated applications of the mean value theorem. The

difference in local KL variation can be expressed as

∆t+1
λ,t+1 −∆t

λ,t+1 =

∫

B(yt,εy)

pot (y) log
p(y|λt+1(ft))

p(y|λt+1(ft+1))
dy =

=

∫

B(yt,εy)

pot (y)
∂ log p(y|λt+1(ḟt))

∂ḟt
(ft − ft+1)dy =

= −
∫

B(yt,εy)

pot (y)αfCf,tSλ,t−1uλ
(

yt, λt(ft)
)2
uλ
(

yt−1, λt−1

)

uλ
(

y, λt+1(ḟt)
)

dy =

= −
∫

B(yt,εy)

pot (y)C̃tuλ
(

yt−1, λt−1

)

uλ
(

y, λt(ḟt)
)

dy,
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where C̃t = αfCf,tSλ,t−1uλ
(

yt, λt(ft)
)2

and ḟt is a point between ft and ft+1. Applying

again the mean value theorem it results

∆t+1
λ,t+1 −∆t

λ,t+1 = −
∫

B(yt,εy)

pot (y)C̃tuλ
(

y, λt(ḟt)
)

uλ
(

yt−1, λt−1

)

dy =

= −
∫

B(yt,εy)

pot (y)C̃tU1,tU2,tdy,

where U1,t and U2,t are respectively given by

U1,t = uλ
(

yt, λt(ft)
)

+
∂uλ(ẏt, λ̇t)

∂λ̇t
(λt+1(ḟt)− λt(ft)) +

∂uλ(ẏt, λ̇t)

∂ẏt
(y − yt)

and

U2,t = uλ
(

yt, λt(ft)
)

+
∂uλ(ÿt, λ̈t)

∂λ̈t
(λt−1 − λt(ft)) +

∂uλ(ÿt, λ̈t)

∂ÿt
(yt−1 − yt),

with ẏt a point between yt and y, λ̇t a point between λt(ft) and λt+1(ḟt), ÿt a point

between yt−1 and yt and λ̈t a point between λt−1 and λt(ft). Taking into account that

by Assumption 4.4.1 the score uλ
(

yt, λt(ft)
)

is nonzero with probability 1, we have that

the second and the third term in the expressions of U1,t and U2,t can be made arbitrary

small in absolute value with respect to the first term by selecting the ball radius εy and

ελ small enough. As a result, the product U1,tU2,t can be made positive for any ẏt, y ∈
B(yt, εy). This, together with the positivity of pot (y) and C̃t, implies that ∆t+1

λ,t+1 −∆t
λ,t+1

is negative.
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Chapter 5

Conclusion

In this thesis several aspects of observation-driven time series modeling have been dis-

cussed. In Chapter 2, the theoretical results we obtained are useful in practical situations

as the invertibility conditions can be checked empirically. This approach allows us to

cover both correctly specified and misspecified models as the conditions depend only on

the DGP, which is partially observable through the data. The only assumption needed is

the stationarity and ergodicity of the DGP. This assumption may be restrictive in some

situations. However, departures from this assumption are difficult to tackle in a general

framework and model-specific studies are usually required. Furthermore, we also note

that there are few results in the literature that handle non-stationarity for observation-

driven models and they also usually rest on very restrictive assumptions. A possible

future line of research may be the derivation of the asymptotic normality of the ML es-

timator. The main challenge here is to handle the general case without imposing either

very high level assumptions or too restrictive conditions that are unreasonable in practical

situations. The main difficulty we encountered in the derivation of asymptotic normality

for this general case is related to moment conditions on the derivatives of the likelihood

function. In Chapter 3, we developed a flexible class of models for count time series data.

The Monte Carlo experiment and the empirical application to the crime data show that

the model can outperform existing models in predicting future outcomes. The model we

proposed should be interpreted as a filter and not a DGP. In this direction, we derived

the consistency of the ML estimator under a general distribution of the error term. A

future line of research may be the derivation of the asymptotic normality. As for the gen-

eral case discussed in Chapter 2, the difficulties lie on obtaining moment conditions on

the derivative processes of the likelihood function. Another possible future extension is

to consider a general order p for the INAR models with dynamic coefficients. Finally,
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in Chapter 4, we introduced a novel class of models that are an extension of the GAS

framework. The proposed models have an intuitive interpretation as illustrated in the sim-

ulation study. They can describe changes in the amount of local information contained

in the data. The optimality reasoning we presented justifies the approach in a misspec-

ified setting. The empirical examples confirm that these models can be useful in some

practical situations. Overall, we can conclude that the thesis provides several advances in

observation-driven modeling that may be considered relevant from both a theoretical and

an empirical perspective.
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