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ABSTRACT 

Background: External Volume Expansion (EVE) refers to a class of devices that non-invasively stretch and 

expand tissue compartments by external application of suction. EVE has been suggested to increase 

compartments volume and stimulate the formation of a more developed vascular network, leading to less 

stiff and better vascularized tissues. It is proposed to patients as a method to prepare recipient sites, in 

particular breasts, in view of a fat grafting procedure, basing on the theory that fat grafts will better survive 

and retain volume if the recipient site is more vascularized and provides less compression. However, the 

method requires high patient compliance and no experimental validation for it has been attempted. 

Aims: basing on our group’s previous experience in downsizing and testing in animal models clinical devices 

for wound healing, in particular in settings requiring the application of mechanical forces to soft tissues, we 

proposed to design an animal model for EVE in which to test the validity of the hypothesis of its being 

beneficial to fat grafting and explore its mechanisms and potentials. 

Methods: we designed and built a miniaturized EVE device to be applied to the dorsum of mice. We then 

designed a series of stepwise incremental studies. We tested the capacity of EVE of inducing angiogenesis 

and cell proliferation with 28 days long continuous stimulation. We analyzed its effects on tissues in terms 

of mechanical stretch, hypoxia and ischemia, edema, inflammation, cell proliferation and angiogenesis after 

a single 2 hours stimulation. We produced a mathematical modeling for the effects of EVE on tissues in 

relation to fat grafting. We tested if EVE is beneficial to fat grafting and if beneficial effects are maintained 

also in the setting of chronic radiation damage. We tested if EVE can stimulate adipogenesis and what role 

inflammation can play in it. 

Results: in our series of studies, we successfully designed a miniaturized animal model in which to test 

External Volume Expansion. We demonstrated that the hypotheses of stimulation of cell proliferation, 

angiogenesis, and expansion of tissue compartments on which it is proposed as a preparatory method to 

fat grafting is confirmed in experimental settings. We showed how mechanical stretch of tissues, hypoxia 

and ischemia, edema, and inflammation are all intervening factors that can contribute to these effects. Our 

results suggest that pre-stimulation with EVE is successful in achieving increased fat graft weight and 

volume retention, and that its beneficial effects are maintained also in the setting of recipient sites having 

sustained radiation injury. We also demonstrated that EVE has a potential for direct stimulation of 

adipogenesis, and gathered supportive results to a role for macrophages in this.  

Discussion: our results validate the technique for its use in the preparatory phase to fat grafting, and can 

help moving towards making fat grafting a more effective and reliable procedure with improved outcomes 

for patients. We gathered evidence that help increasing our understanding of how EVE works and what it 

implies for tissues. This is the basis for optimizing the technique, make it safer, and increase patients’ 

compliance. For example, stimulation patterns can be improved, duration of treatment can be reduced, 

and practices such as continuation of EVE after fat grafting should be abandoned as detrimental. Our 

unexpected observations on adipogenesis also open interesting opportunities, such as that of re-starting 

EVE after fat grafting when this is at the peak of its remodeling phase. And linking this effect with the 

understanding of the similarity to other conditions in which adipogenesis is seen and desired, such as tissue 

engineering, or pathological, such as lymphedema, can expand the potential of our animal model to 

alternative broader fields. 
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SOMMARIO 

Introduzione: Espansione Volumetrica Esterna (EVE) si riferisce ad una classe di dispositivi che distendono 

ed espandono compartimenti tissutali in modo non invasivo attraverso l’applicazione dall’esterno di 

suzione. E’ stato suggerito che EVE aumenti il volume dei compartimenti tissutali cui viene applicata e che 

stimoli un arricchimento della rete vascolare, portando a tessuti meno rigidi e meglio vascolarizzati. Viene 

proposta a pazienti come metodo per preparare un sito ricevente, soprattutto il seno, in vista di una 

procedura di innesto di tessuto adiposo con la tecnica del lipofilling, sulla base della teoria che l’innesto 

sopravvivrà’ e manterrà il suo volume meglio se il sito ricevente è più vascolarizzato e vi è sottoposto a 

meno compressione. Tuttavia, il metodo è impegnativo per le pazienti e proposto in assenza di validazione 

sperimentale delle ipotesi.  

Scopi: sulla scorta delle precedenti esperienze del nostro gruppo nel realizzare modelli sperimentali animali 

per dispositivi clinici nel campo della guarigione delle ferite, e in particolare di dispositivi per l’applicazione 

di forze meccaniche a tessuti molli in vivo, ci siamo proposti di realizzare un modello animale per EVE in cui 

testare la validita’ dell’ipotesi che possa offrire benefici all’innesto di tessuto adiposo ed esplorarne i 

meccanismi e il potenziale.  

Metodi: abbiamo realizzato un dispositivo per EVE miniaturizzato da applicare al dorso di topi. Abbiamo 

quindi disegnato una serie di studi con ipotesi e obiettivi incrementali. Abbiamo testato la capacità di EVE di 

stimolare angiogenesi e proliferazione cellulare applicandola in modo continuo per 28 giorni. Abbiamo 

analizzato i suoi effetti sui tessuti in termini di stiramento meccanico, ipossia, ischemia, edema, 

infiammazione, proliferazione cellulare e angiogenesi dopo una singola stimolazione da due ore. Abbiamo 

elaborato una teorizzazione matematica per gli effetti di EVE sui tessuti in relazione all’innesto di tessuto 

adiposo. Abbiamo testato se abbia un effetto positivo sull’innesto e se i suoi effetti positivi siano mantenuti 

nel caso di sito ricevente che abbia sostenuto danno da radiazioni. Abbiamo testato se EVE può stimolare 

l’adipogenesi e che ruolo possano avere in questo i fenomeni infiammatori.  

Risultati: nella nostra serie di studi, è stato realizzato con successo un modello miniaturizzato con cui 

testare EVE. Abbiamo confermato sperimentalmente le ipotesi che induca proliferazione cellulare, 

angiogenesi e espansione dei compartimenti tessutali sulla base delle quali viene proposta come metodo 

preparatorio all’innesto di tessuto adiposo. Lo stiramento dei tessuti, l’induzione di ipossia e ischemia, 

edema e infiammazione sono tutti fattori che intervengono e possono contribuire a questi effetti. I nostri 

risultati suggeriscono che la pre-stimolazione con EVE possa essere efficace nell’ottenere un superiore 

mantenimento di massa degli innesti di tessuto adiposo, e che gli effetti positivi siano mantenuti anche in 

tessuti che abbiano subito danno da radiazione. Abbiamo inoltre dimostrato che EVE ha il potenziale di 

stimolare direttamente fenomeni adipogenici, e raccolto evidenze in favore di un ruolo primario dei 

macrofagi per questo effetto.  

Discussione: I nostri risultati offrono supporto sperimentale all’uso di EVE nella fase preparatoria agli 

innesti di tessuto adiposo, e possono contribuire a rendere l’innesto di tessuto adiposo una procedura più 

efficiente e prevedibile con maggiori garanzie per i pazienti. Abbiamo raccolto osservazioni che aiutano a 

comprendere come EVE funzioni e cosa implichi per i tessuti, il che è la base per ottimizzarla, renderla una 

tecnica più sicura, e aumentare la compliance dei pazienti. Ad esempio, i pattern di stimolazione possono 

essere migliorati, la durata del trattamento può essere ridotta, e pratiche come quella di riapplicare EVE 

subito dopo l’innesto di tessuto adiposo dovrebbero essere abbandonate in quanto dannose. La nostra 

inaspettata osservazione di effetti adipogenici diretti prospetta interessanti alternative, come quella di 
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riapplicare EVE quando un innesto di tessuto adiposo è al picco della sua fase di rimodellamento. E 

collegare questo effetto con altre condizioni in cui adipogenesi è desiderata, ad esempio in ingegneria 

tissutale, o patologica, come nel linfedema, può ulteriormente espandere le potenzialità del nostro modello 

animale ad applicazioni in campi più vasti.  
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INTRODUCTION 

External Volume Expansion and fat grafting 

Free fat grafting was first reported bt Neuber in 1893 and has been sporadically employed throughout the 

20th century [1, 2]. A major step forward was the introduction of syringe liposuction in the ’80 which allows 

simple harvesting. Combined with the intuition that fat could be re-grafted similar to skin grafts, it yield to 

the development of current fat grafting techniques by reinjection [3-5]. Fat grafting has the potential 

advantages of a physiologic, natural-looking reconstruction of soft tissues deficits or augmentation without 

the co-morbidity or risk of complications of flaps and implants. It particularly appeals for reconstructive 

cases and young patients. Investigations led to a better understanding of the evolution of fat grafts and 

refinement of techniques, and its application to a variety of conditions. Popularization of fat grafting to the 

breast for volume augmentation or reconstructive refinements was partially impeded by concerns that 

development of microcalcifications could interfere with radiologic diagnosis of breast cancer, strengthened 

by a position statement of the American Society of Plastic Surgeons in 1987 [6]. Fat grafting to the breast 

cautiously continued in European countries and revived in the US after more recent studies failed to detect 

increased risk of cancer in fat-grafted patients or interference with radiological discrimination of cancer [7-

11].  

Fat grafting is an attractive alternative. In its current state, however, it remains limited by partial efficiency 

and is generally considered an unpredictable procedure [12, 13]. Fat grafts have been reported to survive in 

an unpredictable fashion (30 to 80% take), with inverse correlation to injection volume [12, 14, 15]. This 

results in the requirement for multiple sessions to achieve satisfactory volumes, in particular if significant 

volumes are desired such as can be the case with the breast [16, 17]. To be clinically useful, it should yield 

reliable and consistent results, be safe for patients both in the immediate and long term, and should be 

performed in a reasonable period of time. 

Fat grafting can be considered in four phases: harvesting, processing, re-injecting, and managing the 

recipient site. Inconsistency of volumetric results is likely due to a failure of multiple variables in the 

process.  

To determine the optimal surgical methods for harvesting, processing, and re-injecting, Gir and colleagues 

completed an extensive literature review[12]. Their results show the variability of current surgical 

techniques. Current literature only supports general principles and not any specific technique. Research to 

date has focused on adipocytes harvest, processing and stem cell enrichment and other ways to manipulate 

fat itself to improve engraftment. While some discoveries have been promising, few have translated in 

clinical success. In contrast, maximizing the recipient site has been relatively neglected as an area of 

investigation.   

The experience with skin grafts suggests that improvement of the quality of the recipient site may 

positively affect the efficiency of graft take. Similar to skin grafts, grafted fat relies initially on diffusion and 

later on new vessels sprouting from the recipient site. Poor vessel density-to-grafted volume ratio added to 

high subcutaneous compartment pressures after fat injection are likely factors that negatively affect fat 

engraftment. Khouri et al initially proposed that an external volume expansion (EVE) system (BRAVA 

System®, Miami, FL, USA) could be used for non surgical breast augmentation transferring to the breast the 

principles of tissue expansion [18]. EVE devices mechanically stretch and stimulate tissues by suction in a 

non-invasive manner (Figure 1). Stretch releases the skin [19] and by direct mechanical action on single  
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cells [20, 21], induction of ischemia [22, 23], inflammation, and soluble mediators [24] stimulates cell 

proliferation and, most importantly, vascular remodeling. The latter was the conceptual basis on which 

after a decade the same started being empirically employed for pre-operative site preparation to fat 

grafting [25, 26]. In such cases, mega-volume (over 200 cc) fat transplantation is performed following 3 

weeks of pre-expansion. With this method Del Vecchio and Bucky reported a 60-200% increase of human 

breast volume by quantitative MRI after autologous fat injection with long-term consistent increase of 64 ± 

13% in volume [27]. Khouri et al reported a 82 ± 18% fat survival at 6 to 12 months in a series of 81 EVE-

treated patients enrolled in a multicenter trial which they compared to an average 55±18% of recent 

published series of non-EVE treated fat grafted breasts [28]. More recently, they reported on having 

achieved an average 375 ml breast increase in 427 patients after 2.1 operatory sessions/patient in which an 

average of 225 ml of fat per operation were injected [29]. 

Although excellent clinical results have been reported, many patients find pre-expansion awkward and both 

robust clinical studies and mechanistic studies had not been performed before clinical application. As a 

result, patients were advised on adopting a time consuming and relatively expensive device without proof 

that a beneficial effect was to be expected. On the other end, limited understanding and testing of the 

device hampered the possibility of suggesting an optimized treatment protocol. 

 

 

 

 

Fig. 1. External Volume Expansion. Rigid cups are applied to the breast and subatmospheric pressure is 
created inside by suction, resulting in traction force on the skin. 
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Mechanical forces in tissue physiology and examples of clinical applications 

External Volume Expansion is substantially a method that applies mechanical forces to tissues. Our bodies 

are constantly subject to a variety of mechanical forces: pressure, compression, gravity, osmosis, surface 

tension, shear, and tension (figure 2). They come from interaction with the outer world, or within body 

components in macro or microscopic scale. In addition, other biophysical forces such as electrical, magnetic 

or electromagnetic have been shown to have biological effects [30].  

The ability of mechanical forces to influence cell proliferation and stimulate the expansion of tissues has 

long been known. In the 19th century, Julius Wolff described the effect of external mechanical forces on the 

development of bone [31]. In the second half of the XX Century, Ilizarov used these principles to develop 

the principle of distraction osteogenesis [32], by which through progressive stretching of a bone callus at a 

fracture site bone lengthening can be induced. 

Tissue expansion is a pillar of Plastic Surgery. Balloons are implanted under the skin, inflated, and this 

stimulates widening of the surface with creation of new tissue. But not all skin components behave the 

same. The epidermis responds quickly with proliferation in all its elements, ranging from basal cells to 

appendages to melanocytes. The vascular network also responds with a rapid expansion [33]. On the 

contrary, the dermis undergoes persistent thinning. Similarly, if the expander is placed either on or under a 

muscle or bone, the main effect appears to be a form of compression, that induces muscle atrophy, and 

decrease in bone thickness and volume with unvaried density. As a speculation, these differences could be 

the consequence of how a mechanical stimulus that is supposed to be uniform is deeply influenced in its 

local form and application to individual cells by size and microenvironment. In the epidermis the 

bidimensional stretch is communicated as such via the basal membrane to basal cells, which therefore 

respond proliferating. In the dermis, the stretch is mainly borne by ECM fibers, that behaving as a tissue 

mesh become more compact, and compress elements within more than they elongate them. As for the 

bone, the mismatch in elastic properties and density between bone and expander, which is not fixed on the 

bone, translate in a purely compressive stimulus. An increase in bone volume and thickness has been 

observed limitedly to the periphery of the expander. A likely explanation is that in this area, the expansion 

Fig. 2. Mechanical forces in cell biology. 
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of the tissues at the expander margins transforms in a vertical pulling on the bone, so that only here 

expansive forces are applied to the bone as well. Tissue expansion inflatable silicone shells were developed 

simultaneously by Radovan [34] and by Austad [35-37]. Radovan’s expansion occurs by periodical injection 

of saline. Alstad’s occurs as a result of osmotic driven accumulation of fluid within the shell. The two 

methods differ greatly in that Alstad’s expansion occurs in a continuous manner, while it is cyclical in 

Radovan’s expanders. Histological examination of expanded skin showed how, in particular in the dermis, 

the persistence of a continuous pressure beyond 96 hours leads to progressive decrease in mitotic activity 

[38].  

Cell stretch increasing proliferation rate in vivo has largely been shown, particularly in the epidermis. In 

1968, Lorber and Milobsky showed an increase of tritiated thymidine-labeling of the epidermal cells of the 

skin of living rats stretched by the insertion of steel pins [39]. MacKenzie described the increase of the 

proliferative rate of epidermidis stimulated by friction [40], which had been also observed by Bullogh and 

Laurence in 1959 [41]. Stretching of the skin by tissue expansion in a guinea pig induces an increase of the 

number of cells in mitosis [42]. Stretching of fibroblasts cultured on a fabric mesh increases the mitotic rate 

[43]. Squier, implanted a spring in the back of mice showing in vivo a hyperplastic response in stretched 

mouse skin. Later, they demonstrated a transformation of fibroblasts in myofibroblasts under mechanical 

stresses [44, 45]. A rapid increase in DNA-synthesizing epithelial cells after mechanical stretching was 

observed also in vitro by Brunette [46]. 

Angiogenesis is mediated by interactions with the ECM, in which endothelial cells activate, degrade the 

basement membrane, penetrate by new cell-matrix interactions into the existing extracellular matrix, and 

establish a new lumen directed by guiding cues. [30] Matrix stiffness is a critical parameter.  Endothelial 

cells self-assemble into capillary tubes and networks when seeded on compliant matrices such as Matrigel. 

On stiffer surfaces structural organization into tubes does not occur [47, 48]. Endothelial cells can sense 

differences and alterations in stiffness of the extracellular matrix, as well as tensile forces generated by 

nearby cells transmitted by the extracellular matrix. Differential stiffness-based reorganization of the 

cytoskeleton provides directional information by gradient that guide cells in their migration. This principle, 

for analogy with chemotaxis, is denominated mechanotaxis [49]. Shear stress and circumferential stretch 

by blood flow on the endothelial surface are also recognized as regulators of vessels biology, and 

perturbation of the flux by distortion of blood vessels, as occurs with matrix reaction to wounding, adds 

mechanical cues that potentially contribute to capillary budding. Mechanical forces also act through 

indirect pathways. Stretching of tissues can result in alterations of the blood flow, with temporary ischemia 

that activates in nearby cells the HIF-1a pathway, which by releasing VEGF stimulates the proliferation of 

endothelial cells. These different mechanically-initiated pathways cannot completely be separated in vivo 

and constitute a known difficulty to researchers approaching this field in human and animal models.  

In recent years our group developed multiple models to help estimating the potentials of mechanical forces 

in vivo and dissect their mechanisms. We first created a model of monoplanar rat ear stretch [50], and later 

a model in which a selected 1cm2 area of the dorsal skin of a mouse could be stretched monodirectionally 

by a computer-controlled device [22, 24] that allowed versatility of stretch patterns with perfect feedback 

on time and force intensity.  
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In these two models we demonstrated how skin stretch, besides stimulating cell proliferation in the 

epidermis, also induced major remodelling of the vascular network (figure 3). Furthermore, we could 

appreciate the importance of the pattern of skin stimulation in determining the magnitude of effects, by 

comparing animals that received a continuous stimulation to animals that were stimulated cyclically. In 

general, cyclical patterns appeared more powerful than continuous in achieving biological effects. 

By PCR we demonstrated a powerful increase in growth factor genes transcription after cyclical stretch, still 

elevated 2 days after stretch, of growth factors that can contribute to angiogenic and proliferative effects 

observed. The activated pathways included HIF-1 alpha / VEGF, the main angiogenetic biomolecular 

pathway, whose main physiologic role is thought to be that of response to hypoxia. Indeed, by 
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hyperspectral imaging we demonstrated how a relative but significant ischemia, in terms of decreased 

tissue content in haemoglobin, could be detected after cyclical stretch (figure 4).  

Mechanical forces have a multi-faced participation in wound healing as well. Wound healing is a complex 

orchestrated sequence of events that restores the integrity of disrupted skin. It is classically divided in three 

phases: inflammation, proliferative, and remodelling [51].  Skin interruption causes retraction along 

anatomic vectors described by Langer [52].  It determines deformation and an elastic reaction of the 

extracellular matrix that communicates to resident cell. These forces can activate the trandifferentiation of 

fibroblasts into myofibroblasts.  Also, mechanical alterations of the environment can activate proliferative 

and migratory pathways bringing cells to the wound bed, among which endothelial cells that follow 

stiffness gradients into the wound margins. The new extracellular matrix deposited in the wound possesses 

specific mechanical properties contributing to mechanotactic guiding of cells towards the wound and 

orchestrating their activities and differentiation, especially as in wounds the matrix exhibits well-known 

chemical, mechanical and density gradients from surface to normal tissues in depth. This process is 

dynamically mutual and subject to multiple feed-back mechanisms. Restoration of tissue continuity reduces 

the healing-conductive mechanical conditions of the environment so that stimuli to cell migration and 

proliferation are removed.  

Negative pressure wound therapy (NPWT) is a class of wound healing devices taking advantage of these 

principles [30, 53]. They apply a highly porous material under suction to the wound surface. NPWT removes 

fluids and toxins, keep the wound warm and moist, and bring the wound edges together through 

macrodeformation. The forced contact of the porous material with the wound bed determined by suction 

also induces microdeformation of the surface which stimulates cellular proliferation (figure 5). 

Macrodeformation is the centripetal pulling of wound margins as the interface material collapses with 

suction. Stretching of the tissues directly stimulates the cells and increases interstitial pressure [54]. 

Combined with suction at the interface, macrodeformation reduces edema by increasing the differential 

pressure from the interstitial space to the interface material; it also temporary reduces the blood flow at 

the wound edges, as observed by Wakenfors et al [55], and confirmed by Kairinos et al. [54, 56, 57] 

stimulating cell proliferation and angiogenesis through the HIF-1α/VEGF pathway [58]. The deformation is 

proportional to the level of suction [59], the total volume of the foam, the pore volume fraction of the filler 

material and the deformability of the surrounding tissues  [60]. When exposed to a pressure of -125mmHg, 

open-pore polyurethane foams decrease in volume of about 80% [61]. From a clinical perspective, 

understanding the tissue type/macrodeformation relationship is key to a successful use of NPWT. For 

chronic wounds or wounds in areas with limited skin extensibility such as the scalp, NPWT can be expected 

to stimulate a healthy wound bed, and permit closure with skin grafts. In areas with large amounts of 

deformable tissues, such as the abdomen, the shrinkage foam placed in the wound can maximize the 

reduction of wound size, minimizing the need for additional soft tissue transfer.  
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At the foam-wound interface, wound surface microdeformations occur when suction is applied through the 

foam. Microdeformations stretch cells, promoting cellular proliferation while creating localized areas of 

hypoxia stimulating VEGF production.  The cell proliferation that results appears as a 3D microdome-like 

structure to clinicians. Saxena et al. demonstrated on histologic sections an increase of surface length of 

22% under typical NPWT conditions compared to areas where suction was applied without the foam 

interface [21]. By finite element modelling, the microdeformation induced by NPWT was shown to be in the 

ranges that in vitro studies described as pro-proliferative [62, 63]. Lu et al. applied suction to a deformable 

fibrin-fibroblast culture apparatus and observed that matrix deformation induced cell proliferation, 

changes in cell morphology as well as increased expression of bFGF, TGF-β, α-SMA, and collagen 1a1 [64].  

In vivo, our group looked at the distinct elements of NPWT in a diabetic mouse model [61]. Foam applied to 



12 
 

the wound without suction significantly stimulated granulation tissue formation and angiogenesis. When 

suction was added to this (NPWT), the microdeformation at the wound surface was maximized, further 

increasing the thickness of granulation tissue. The formulated hypotheses was that if the foam, by itself, 

can have a foreign body effect that stimulates granulation tissue accumulation, NPWT adds 

microdeformation, which is a direct proliferative stimulus. The effect of mechanical forces at a micro-scale 

is further potentiated by edema removal that allows full transfer to individual cells.  A further study by our 

group [65] recently demonstrated the importance of pore size in the biological response to NPWT. Larger 

pore diameters were associated with higher wound surface deformations and were associated with thicker 

granulation tissue formation, while smaller pore sizes tended to relatively inhibit it, probably because the 

overall effect becomes more of a compressive type.           

As a demonstration of the relevance of microdeformations, when the biological effects of different 

interface materials as foam, that deforms, are compared with those of gauze, that does not and applies a 

purely compressive force, inhibition of granulation tissue formation was described with gauze [66]. 

A clinical consequence of the appreciation of how differently porous materials behave in NPWT is that 

effects can be modulated and adapted to specific needs by interface choice.  

Granulation tissue formation is maximized by a cyclical application of suction [67-69]. The high 

effectiveness of cyclical regimens reported [55] may be due to a transient hyperfusion of the wound edges 

that occurs with NPWT is released, paired with the switching between stimulatory phases and phases in 

which accelerated metabolism is allowed. Dastouri et al. [70] suggest that, at least with pressure cycles in 

the range of minutes, the shape of the pressure waves may be critical to optimize the effects. Scherer et al 

showed that repeated brief stimulations (4hrs every other day) with NPWT were enough to induce long-

lasting effects [71], while Chen et al [72] observed initial modifications in the capillaries at wound edges 

and the shape of endothelial cells at TEM after just 2 minutes of NPWT, culminating in capillary budding at 

24 hrs, more rapidly than in control wounds. Such reports are in line with the findings of our previously 

described animal experiment on intact skin, by which it was demonstrated that tensional mechanical 

stretch elicits growth factor transcription, cellular proliferation and angiogenesis, and that cyclical 

stimulation is more effective than continuous [22, 24, 50]. NPWT, in particular with cyclical stimulation, has 

also been shown to affect the local expression of neuropeptides in wounds [73, 74]. It can be hypothesized 

that higher expression of neuropeptides may result in increased pain, which clinically is a limit to a broader 

adoption of intermittent NPWT [68], on the other neuropeptides are now recognized as key homeostatic 

factors for the skin [75] and their secretion may be one of the mechanisms through which NPWT positive 

effects are exerted.  

 If tension is good for wound healing, compression might be beneficial to control scarring. Pathologic 

scarring, keloidal or hypertrophic, occurs by a number of factors but is exacerbated by tension. The 

examination of the localization and spatial orientation of a large number of keloids allowed the 

demonstration of the clustering of pathologic scarring to the body areas in which the skin is subject to 

constant cyclical tension, while areas of loose skin or with minimal tension have no tendency to pathologic 

scarring [76, 77]. Indeed, most of the traditional techniques of Plastic Surgery deal with scarring 

minimization or with scar revisions, and the common background they share is the minimization of tension 

on the wound margins and the reorientation of forces vectors on sutured incisions.  

Wound healing should stop when a tissue gap is filled and re-epithelization is concluded. In some cases 

proliferation proceeds longer than needed leading to elevated scars (hypertrophic) or even scars whose 
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tissue tends to overgrow into the nearby healthy skin (keloids).  Together with a degree of genetic 

predisposition, a persistent inflammatory status has been called in as a causative mechanism, with 

particular emphasis on neuroinflammation which we showed is induced by cyclical mechanical stimulation 

[24, 78]. The fibroblast is considered the pivotal cell in pathologic scarring because of its role in matrix 

deposition and remodelling. Scar growth is also maintained by the presence and proliferation of a valid 

vascular network, pathologic scars in their active phase are red and richly vascularized, and the angiogenic-

relevant VEGF pathway has been suggested as a potential target for therapy [79]. Scars are hypoxic and 

have an excess of irregularly shaped endothelial cells [80] and have excess inflammation that is a potent 

stimulator of angiogenesis.  Therapies based on a mechanobiological approach are those proving most 

effective in the prevention and treatment of exuberant scars. Traditional therapies such as taping, elastic 

garments, silicone sheets and gels, act primarily by compressing the scars at both a macro and 

micromechanical level, thus establishing an anti-proliferative and pro-apoptotic environment.  

Gurtner and co-workers [81] developed a new mechanomodulating polymer, that in experimental settings 

was used to overload or offload closed wounds. The device can be applied on sutured wounds in the 

proliferative/early remodelling phase. The polymer contracts and off-loads the wound margins, transferring 

mechanical loading to the surrounding skin to which it is attached. Shielding of scars from mechanical 

stresses successfully antagonized the establishment of a pro-fibrotic environment. To the contrary scar 

loading resulted in an enhanced pro-fibrotic phenotype of tissues. Developed into a human scar-prevention 

device, this system obtained positive results in a phase I study.  

 

Mechanical forces in cell biology: the tensegrity model [30] 

Several hypotheses have been advanced to explain how tissues and cells sense and respond to mechanical 

forces. Mechanical stress can open stretch-activated ion channels, distortion can activate cell membrane 

force-receptors that regulate internally controlled chemical signal cascades, or can induce the release of 

autocrine / paracrine growth factors [82-85].  These observations suggest that different pathways of 

mechanical control of cell activity may coexist [86]. However, cells not only sense active mechanical 

stimulation, but also sense the degree of cell stretch, which is less easily explained by these hypotheses.  

Judah Folkman, in studying cancer development, made early observations of the relationship of cell shape 

and cell function. He noted in tumor growth that cell shape was a critical factor in determining whether 

cells would proliferate or stay quiescent [87, 88].    

A conceptual framework that better encompasses the complexity of the different mechanotransduction 

pathways was described by Donald Ingber as tensegrity [89, 90]. Tensegrity refers to a building principle in 

which three dimensional structures composed of rigid elements under compression and elastic elements 

under tension are maintained stable in an equilibrium of forces (tensional integrity, fig. 6A).  

Central to this theory is the observation that the cytoskeleton system transmits forces and interconnects 

cell structures (fig. 6B). The cytoskeleton is built by filaments and tubules that vary in size and stiffness, 

some acting more like uncompressible struts, others as elastic strings (Fig. 2, 3).  The cytoskeleton is 

anchored at the inner side of cell membranes at specific sites by interacting with specialized structures, 

focal adhesions (FA). The focal adhesions complexes are specific membrane molecules that anchor the cell 

to the extra-cellular matrix (ECM) or other cells. The main component of focal adhesions complexes are 
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transmembrane proteins (such as integrins), which 

internally function as anchorage for the cytoskeleton. 

Other proteins such as protein kinases and stress-

activated channels that can act as alternative force 

receptors also gather at focal adhesions. In this way, a 

preferred FA-cytoskeleton filaments pathway of 

mechanical forces transmission is built. Of notice, all 

molecules and organels inside a cell are not freely 

floating, but also anchored to the cytoskeleton. 

The cytoskeleton has the capacity to store energy 

distributed throughout its various components in 

equilibrium of tensile and compressive forces. The 

energy stored in the cytoskeleton derives from the 

balance of multiple forces, those applied from the 

outer environment (ECM and other cells), those 

produced inside the cell (actomyosinic apparatus and 

cytoskeletal remodelling) and osmotic and 

gravitational forces, which are thus effectively 

integrated. Additional external or internal forces alter 

the established state of cytoskeletal elements with a 

shifting of the reciprocal position transmitted globally 

inside the cell. The shape and relative position of all 

molecules and organelles connected to the 

cytoskeleton are affected, changing the likeliness of 

reactions to occur and providing a mechanism to 

transform resting tension and its perturbations into 

biochemical signals.  Cells then adapt to new states of 

mechanical stress by activating internal and external 

mechanisms that establish a new equilibrium.  For 

example, a new steady state can be achieved by 

cytoskeleton reorganization or by secreting proteins 

such as matrix-metalloproteinases that modify the 

surrounding extracellular matrix or producing new 

ECM structural molecules.  

This theory has been tested in a number of in vitro 

models in which cells were pulled, stretched, 

compressed, or maintained in mechanical isolation, 

proving how the “mechanical state” of a cell, whether 

it is under mechanical stimulation or not, can act as gatekeeper on all other types of chemical and physical 

signals. In simpler words, the mechanical state of a cell is able to determine whether a cell will respond, 

and how, to additional stimuli. And will therefore be a critical factor in deciding the fate of that cell, 

whether it will undergo differentiation, proliferation, or face apoptosis [20, 62, 91].   
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AIMS OF THE PROJECT 

Having observed the lack of experimental validation with which External Volume Expansion devices were 

introduced in clinical practice, we set on establishing a mouse model for it building on our previous 

experience in designing small animal models to test and validate clinical technologies and therapies. We 

initially aimed at testing the hypotheses of tissue expansion and angiogenic effects on which it was 

proposed to patients. We then proceeded stepwise by progressive adaptations of the model, to assess 

factors that potentially played a role in determining these effects, to establish if EVE had an effect on fat 

graft volume retention, to establish if its angiogenic potential was maintained in skin with chronic radiation 

injury, and if it could affect fat graft retention in such setting. We also incidentally observed that in our 

animal model EVE seemed to induce a deposition of adipocytes, and therefore tested the hypotheses that 

EVE has adipogenic effects, and then the role of macrophages in inducing adipogenesis in EVE. We are now 

exploring the correlation of the EVE model with lymphedema to test if it ca be adopted as a model for 

lymphedema/lipedema transition.  
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AN ANIMAL MODEL FOR EXTERNAL VOLUME EXPANSION 

Basing on the above mentioned experience of our group, it was apparent that the mouse was a suitable 

species for an in vivo animal model to test in controlled experimental settings the properties and effects of 

EVE.  

Compared to larger mammals, it had the significant advantages of less developed nervous system, easier 

manipulation, increased control over the experimental settings, less regulation not being USDA controlled, 

reduced costs. It also was a model with which we had large familiarity and in which many forthcoming 

issues could be readily predicted or easily faced. Its main downsides were the need of major downsizing of 

the device, and most importantly the different anatomical and mechanical properties in the skin. Rodent 

skin is much looser and elastic than human skin, limiting the possibility of directly translating results to the 

human model in particular with regards to magnitude. It also presents an extremely thin subcutaneous 

tissue. This was a reason why it was decided in several cases to use the dermis as target tissue for 

examining some effects which would be clinically relevant in the subcutaneous tissue, such as changes in 

vascular network density. This issue had already been object of discussion in previous model, but it is 

generally accepted that such general effects as those for which such process of trans-tissue analysis 

approach was adopted are similarly elicited across different tissues and therefore, provided this limit is 

understood, the method is accepted. On the other end a thin subcutaneous tissue allowed the perception 

of some effects such as edema and adipogenesis that would likely have been lost in thicker subcutaneous 

tissue layers. And full excisional biopsies of the stimulated areas could be analyzed, reducing issues with 

bias in tissue sampling.  

Downsizing of the device was performed aiming at a miniaturized device that maintained the main aspects 

of clinically available EVE devices with reference to expected effects on tissues. That is, allows the 

reproduction of a close chamber in which vacuum can be induced when applied to the skin. The main tissue 

expansion effect was to remain at a macroscopic scale. A dome-shaped structure with a circular caliper at 

the base of 1cm was adopted basing on the experience with previous models that showed such a size of 

target skin to be suitable for the chosen animal model [22, 61]. Previous experience also allowed to expect 

that the device would have been possibly been worn by animals for a prolonged time without significant 

interference in their activities and that the animals could be maintained connected to an external vacuum 

source while awake in their cages through thin flexible tubing [61]. Silicone dome structures were obtained 

by modifying commercially available baby nipples. The silicone wall of such devices proved strong enough 

to avoid collapse at adopted pressures and a sufficiently flexible and adhesive border to be worn by animals 

without gluing. The width of the silicone border in contact with the skin, to which specific attention was 

paid in the clinically available model [18], was disregarded in the present animal device as due to 

downsizing and different characteristics of murine skin which greatly reduced the issue of shear induced 

skin lesions. Pilot experiments revealed that the range of pressure suggested for clinical use was well 

tolerated by mice. Much higher pressures (-50 and -75 mmHg) induced high rates of skin ulcerations 

consistently with clinical experiences, lower pressures (<20 mmHg) did not allow self-adherence of the 

device to the skin in short application experiments. A setting of -25 mmHg was adopted as target setting for 

most experiments.  
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GENERAL METHODS 

Unless indicated otherwise, the following methods apply to individual studies which follow. 

Device: A dome-shaped rubber device obtained by modification of baby nipples with an internal diameter of 

1 cm and an internal volume of 1 ml was designed, fabricated, and connected by flexible 2mm rubber tubes 

to a suction pump (VAC Instill®, KCI, San Antonio, TX, USA) set at a pressure of -25 mmHg (Fig. 7). The device 

was applied to the dorsal skin of mice 5cm cephalad to the tail and 3 cm lateral to the midline spine without 

fixatives. The skin around the device was stabilized by a semi-rigid rubber doughnut-shaped frame, with 

internal diameter of 2.5 cm. 

Histology and Immunohistochemistry: Tissues were harvested en block, fixed in 10% neutral-buffered 

formaldehyde for 24 hours and stored in 70% ethanol at 4°C. Samples were embedded in paraffin and cut 

into 5 µm sections.  Hematoxylin and Eosin staining was performed according to standard protocols. For 

immunhistochemistry, sections were de-paraffinized in xylene and re-hydrated in graded ethanol series. 

Antigen retrieval for Ki67, PCNA, pimonidazole hydrochloride, and Perilipin-A was accomplished by 

microwaving in 10mM sodium citrate (pH 6.0). Sections for endothelial cell marker platelet endothelial cell 

adhesion molecule 1 (CD31 / PECAM-1) and pan-leukocyte marker CD45 were treated with 40 µg/ml 

Proteinase K (Roche Diagnostics Corp.) for 30 min at 37°C. PECAM-1, CD45 and Ki67 and Plin-A primary 

antibodies were incubated at 4°C overnight.  Signal was intensified using the tyramide amplification system 

(Perkin-Elmer, Boston, MA, USA) and positive staining was detected with DAB (Dako North America Inc., 

Carpinteria, CA, USA) 
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Primary and secondary antibodies 

Antibody Company Code Dilution 

Ki67 Thermo Scientific RM-9106-S 1:200 

CD31 BD Pharmigen 553370 1:100 

PCNA Dako Corp. M0879 1:50 

CD45 BD Pharmigen 550539 1:100 

Hypoxyprobe1 MAB1 HPI Inc. HP1 200 Kit 1:250  

Perilipin-A AbCam Ab3526 1:2000 

CD68p AbCam Ab125212 1:200 

Biotinylated anti-rat IgG Vector Lab BA-4001 1:100 

Biotinylated anti-rabbit  Thermo Scientific TR-125-BN Ready to use 

 

Data representation and Statistical analysis: Results are expressed as mean ± standard deviation in text 

and figures. A p value less than 0.05 was considered statistically significant. 
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PROOF OF CONCEPT: CONTINUOUS EVE EXPANDS STIMULATED TISSUES AND ENRICHES THE VASCULAR 

NETWORK  [92] 

The cornerstones of clinical External Volume Expansion as a recipient site preparation method prior to fat 

grafting are the hypotheses that it expands tissue compartments and increases the vascular network. Our 

first study aimed at proving the feasibility of the animal model we proposed, and in parallel providing 

preliminary insight into these two cornerstone issues.  

MATERIALS AND METHODS 

Study groups and model 

A total 20 adult wild-type mice (strain C57BL/6), of female sex and 8 weeks old (Jackson Laboratory, Bar 

Harbor, ME, USA), were housed in an Association for Assessment and Accreditation of Laboratory Animal 

Care–certified facility under an approved protocol. The mice were randomly assigned to two groups and 

treated with either suction device (S, n = 10) or occlusive dressing alone - Tegaderm™ (3M Health Care, St. 

Paul, MN, USA) - (C, n = 10). The device was applied to the dorsal skin of the mice, 3cm cephalad to the tail 

and 0.5 cm lateral to the midline spine, and stabilized with adhesive tape (Tegaderm™).  Mice (n = 6 per 

group) were treated for 28 days continuously and sacrificed (Fig. 8).  

Macroscopy 

Digital photographs captured on days 7, 14, 21 and 28 were compared with photographs taken on day 0 by 

two independent, blinded observers. 

Magnetic resonance imaging   

MRI scans of the treated area were performed for 4 mice of the suction group and 4 controls on day 0, 7, 14, 

21 and 28 on a 3 Tesla GE HDx scanner (GE Medical Systems, Waukesha, WI, USA).  Thin section T1 and T2 

weighted images were obtained using a transmit and receive 6 cm surface coil.  The mice were 

anaesthetized with 60 mg/kg body weight pentobarbital (Nembutal®, Lundbeck Inc., Deerfield, IL, USA). 

During imaging procedures the physiologic body temperature of the mice was maintained with warm gel 

packs. The sequences were analyzed by two independent, blinded observers. 

Histology 

Cross-sections of the treated areas were stained with Hematoxylin and Eosin. Digital images were acquired 

with an Olympus BX40 microscope. 

Immunhistochemistry 
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Stainings were performed for proliferating cells nuclear antigen (PCNA) and for endothelial cell marker 

platelet endothelial cell adhesion molecule 1 (PECAM-1). PCNA staining was performed using Vectastain 

ABC Kit (Vector Laboratories, Burlingame, CA, USA). Positive staining was detected using the Liquid DAB + 

Substrate Chromogen System (Dako North America Inc., Carpinteria, CA, USA) and counterstained with 

Hematoxylin. Images were acquired using an Olympus BX40 microscope. Cell proliferation was assessed by 

cell counting in 40x fields of treated areas using Adobe Photoshop software and expressed as ratio PCNA+ 

nuclei/total nuclei. Blood vessel density is expressed as number of PECAM-1 stained vessels identified in 40x 

fields. For each slide three 40x fields were quantified by three independent observers and results are 

expressed as averages +/- SD.  

Corrosion casting on day 7 post-suction 

For spatial evaluation of changes in the skin microvasculature, 4 mice of the suction group and 4 of the 

negative control group were perfused on day 7 in deep anesthesia (120 mg pentobarbital/kg bw; Narcoren, 

Merial, Germany). Vascular access was established by cannulating the ascending aorta after systemic 

heparinization and thoracotomy with an olive-tipped needle (Acufirm 1428LL; Dreieich, Germany). After 

flushing with body warm saline and fixation with 10ml of 2.5% glutaraldehyde in Ringer’s saline solution, 

the vascular system was perfused with 10-15 ml of a polyurethane based casting resin (PU4ii; VasQTec, 

Switzerland). After polymerization and dissection, the dorsal back of the mouse was immersed in 5% KOH to 

digest all tissues around the vessel casts. After freeze-drying, the specimens were mounted with conductive 

bridges on stubs and coated with gold in an SCD 040 sputter-coater (BAL-TEC AG, Leica Microsystems). The 

specimens were visualized using a Philips XL30 ESEM scanning electron microscope (Philips, Eindhoven, The 

Netherlands). 

Statistical analysis 

A MANOVA test (IBM® SPSS®, IBM Corp., Armonk, NY, USA) was used to determine the significance of 

differences between the suction group and the control group.  

RESULTS 

Gross and Imaging Analysis 

The model was effective in applying to tissues a mechanical, multi-directional, expansive and non-invasive 

stimulation driven by suction for a prolonged time. All animals were able to complete the expansion 

program according to the study design.  
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Grossly, treated areas by the EVE device demonstrated a local swelling. This swelling was evident by 21 days 

and not seen in the control group. No signs of infection or tissue damage were detected (Fig.9a). MRI scans 

at 28 days confirmed the development of tissue swelling in the experimental group with low-density T1 

signal. The sequences were compatible with fat tissue (Fig. 9b).  

Cellular proliferation  

EVE treatment using 25 mmHg continuous suction for 28 days induced a significant 2-fold increase of ratio 

of proliferating nuclei/total nuclei in the subcutaneous tissue (p<0.05). The proliferating rate of cells located 

in the epidermis was 1.9 times greater than controls (p=0.08; Fig. 10). 

Vascular Remodeling  

Compared to controls, in 28 days suction-treated tissues we detected a 1.9–fold increase of subcutaneous 

tissue blood vessel density (p=0.01, Fig. 11b and 11c). Mechanical stimulation resulted in changes of the 

microvascular architecture on day 7: intense remodeling of vessels with re-orientation and increase of 

luminal diameter were seen by scanning microscopy of the casts (Fig. 11a). 

DISCUSSION  

We developed a miniaturized, murine EVE device, using continuous suction and demonstrated expansion of 

tissue compartments, stimulation of cell proliferation and changes in the vasculature with remodeling 

phenomena and increase in density of the capillary network.  The results are consistent with previous in 

vitro and in vivo findings of mechanotransduction in biological tissues.  

There are differences in our model as used in this proof of concept study from the clinically available EVE 

system. For simplicity we used a continuous application of the device for 28 days rather than a periodic 

application of 6-10 hours a day for 21 days. In biology, most systems have a more robust response to 

periodic or cyclical application of mechanical forces [22, 30]. In addition, as discussed above force  
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transmission might be different due to the mobility of mouse skin and the scale of the model. Some of the 

excess thickness observed may have been due to recruitment of adjacent skin into the device.   

However, our preliminary results from this study provide experimental support to the hypotheses that EVE 

has the capacity of stimulating an enhancement of tissues vascular network, and might indeed be a useful 

tool if employed with this aim in the preparation of recipient sites to fat grafting. 

 

  



23 
 

EFFECTS AND MECHANISMS OF EXTERNAL VOLUME EXPANSION 

Having demonstrated proliferative and vascular remodeling effects with a 28 days continuous stimulation, 

we set on better understanding the direct effects on tissues of External Volume Expansion and 

characterizing the mechanisms likely involved in the observed outcomes. Our group showed in both a rat 

ear stretch [50] and a murine skin stretching model [22, 24] that tensile forces have proliferative and 

vascular remodeling effects on skin. These models showed a 1.8 to 2.0-fold increase of epidermal 

proliferation rate after just 4-hours of application of tensile forces [22].  By RT-PCR and hyperspectral 

imaging, we observed that cell proliferation and vascular remodeling are likely to be induced by a combined 

action of transmitted forces on cells as well as transient ischemia which activates HIF-1α [93].  

We adopted a similar approach in designing a new set of experiments, consisting in applying a single short 2 

hours EVE stimulation and analyzing stepwise its effects on tissues during stimulation and over the 

following 48 hours. 

MATERIALS AND METHODS 

Study design 

A total of 24 male, 8 week old SKH1-E hairless mice (Charles River Laboratories, Wilmington, MA) were used 

in an AAALAC–certified facility and in accordance with our Institutional Animal Care and Use Committee 

guidelines under an approved protocol. Eighteen were treated for two hours with the EVE device set at a 

pressure of -25mmHg; 6 were used as untreated controls. At the end of treatment mice were euthanized 

immediately (2h group, n=6), one hour (2h+1, n=6) or two days (2h+48, n=6) after the removal of the device. 

Tissues were harvested with a 10mm biopsy punch.  

Hypoxia 

Pimonidazole hydrochloride staining was used to identify hypoxic cells. Pimonidazole selectively binds to 

thiol-containing proteins in cells with with pO2 < 10mmHg and was injected intraperitoneally (70 mg/kg) in 

the 2h EVE and untreated groups 30-60 minutes prior to sacrifice.  

Hyperspectral Imaging  

Spatial maps of tissue perfusion and oxygenation were generated using a medical hyperspectral imaging 

system (OxyVu-2, HyperMed Inc., Greenwich, CT). The optical properties of this device have been 

described.[94] Briefly, this device uses optical hardware to collect images of a sample over a 20 second 

period at select wavelengths between 500- and 660-nm. Diffuse reflectance tissue spectra were determined 

for each pixel within this collection of images using proprietary algorithms.  Mean oxy-hemoglobin (OxyHb) 

and deoxy-hemoglobin (DeoxyHb) values were obtained by decomposition from a 79-pixel diameter region 

of the images corresponding to the stimulated area using standard spectra for OxyHb and DeoxyHb. 

Perfusion was measured as total hemoglobin (tHb), calculated as the sum of OxyHb and DeoxyHb. Tissue 

oxygenation (StO2) was calculated as OxyHb divided by tHb. Hb values are reported in arbitrary units that 

have previously been shown to correlate with in vivo molar concentrations [95]. 

Prior to imaging, the system was calibrated to a standard pixel reflectance. Imaging was performed with 

mice under anesthesia, at standard room temperature, and respiratory motion-artifact was corrected with 

the use of a fiducial target. A baseline scan was obtained from all animals immediately before EVE on Day 0. 

Treated areas in mice of the 2h+1 and 2h+48 groups were scanned at multiple timepoints for one hour after 

removal of the EVE device. Mice of the 2h+48 group were further scanned 4 hours, 1 day and 2 days after 

the end of stimulation.  
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Histology and immunohistochemistry  

Sections were stained for proliferating cells nuclear antigen (PCNA), endothelial cell marker platelet 

endothelial cell adhesion molecule 1 (PECAM-1), pimonidazole hydrochloride and pan-leukocyte marker 

CD45. Images were acquired using a Nikon E200 microscope.  

Quantifications 

Cell proliferation in the epidermis and in the deep dermis was assessed by cell counting in 40x fields of 

treated areas with Adobe Photoshop software and expressed as ratio PCNA+ nuclei/total nuclei. Epithelial 

appendages were excluded from counting. The same method was used to quantify the ratio of 

inflammatory cells to total cells in the deep dermis. Blood vessel density was quantified as number of 

PECAM-1 stained vessels identified in 10x fields. For each slide, three fields/staining were evaluated by three 

independent observers.  

Statistical analysis 

Differences in hyperspectral imaging features between time points were evaluated using general mixed 

linear models [96] with pairwise comparisons using Fisher’s LSD multiple comparisons procedure without 

multiplicity adjustments (Proc Mixed procedure of the SAS® Statistical Software package, SAS Institute Inc., 

Cary, NC).  For quantitative immunohistochemistry, one-way analysis of variance (Anova, WinStat®) with 

Tukey post-hoc correction was used to determine the significance of differences.  

RESULTS 

At the end of the EVE cycle, the treated area developed local swelling (Fig. 12a). Swelling was reduced but 

persistent at 1 and 4 hours post-stimulation. At histological examination gross edema was evident in the 

deep dermis/hypodermis and was unvaried between the end of treatment and one hour aftermath; the 
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superficial dermis was less affected. Epidermal cells showed focal vacuolization. By two days post-

stimulation, normal histological architecture had been restored (Fig. 12b).   

Tissue hypoxia 

The staining for pimonidazole hydrochloride showed diffuse positivity of the majority of cells in the dermis 

and epidermis of EVE treated skin compared to rare positive cells in untreated skin, demonstrating presence 

of hypoxia in EVE treated tissues (Fig. 13a).  

Hyperspectral imaging 

OxyHb levels in stimulated samples were similar to pre-treatment baseline levels between 5” and 3’30” after 

removal of the EVE device. By 6’ following stimulus cessation, OxyHb levels were significantly decreased and 

remained such for 1h. Normal OxyHb levels were restored by 4h (Fig. 13b). In parallel, DeoxyHb was 

significantly decreased at all timepoints between 40” and 1h. A non-significant trend towards lower 

DeoxyHb levels was observed  at 4h post-EVE, with normal levels restored on day 1 (Fig. 13c). Total Hb 

content of the stimulated tissue was lower than baseline at all timepoints from the end of treatment up to 

1h (Fig. 13d), while StO2 was reduced between 6’ and 1h post-treatment. Representative hyperspectral 

imaging acquisitions are found in Suppl. Figure 1. 

Inflammation 

EVE treated tissues displayed a significantly increased inflammatory infiltrate by the end of the two-hours 

stimulation. Inflammation tended to resolve over time, but was still elevated above baseline levels by two 

days (Fig. 14).  

Cell proliferation 

Two days after stimulation, the proliferation rate was 1.4 and 1.7 fold higher in the epidermis (p<0.05) and 

dermis (p<0.01) of treated skin versus untreated skin, respectively (Fig. 15a and 15b).   

Vessel density 

The skin of EVE-treated samples from the 2h+48 group had a significantly higher vascular density  than 

samples from the untreated, 2h and 2h+1 groups.  No difference in vascular density was observed when 

comparisons were made between samples from the untreated, 2h and 2h+1 groups (Fig. 14c). 
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DISCUSSION 

Our results demonstrate that the three-dimensional mechanical forces that EVE exerts on tissues activate 

multiple pathways ultimately responsible for proliferative, vascular and possibly even adipogenic responses 

(fig. 16). It is likely that the induced extracellular matrix (ECM) deformation, which in our model is evident 

from the macroscopic appearance of treated tissues, translates to an increase of the micro-mechanical 

strain on the single cells anchored to ECM fibers at focal adhesion sites. This has largely been shown in vitro 

to induce a pro-proliferative state by acting as a gate-control signal on global cellular activity mediated by 

the cytoskeleton [20, 97]. On a different scale, blood vessel deformation by EVE likely obstructs blood flow 

either through kinking or stretching which reduces the cross-sectional area and increases vascular 

resistance. Reduction of the interstitial pressure favors accumulation of edema and increases cell-to-vessel 

distance, decreasing mass transport due to diffusion. Pimonidazole hydrochloride stainings show that pO2 is 

diffusely reduced during EVE stimulation. As we have demonstrated, edema is not immediately reabsorbed 

at the removal of EVE and generates a sustained physiological response to its presence. In addition, with 

the removal of the external sub-atmospheric pressure that stimulates tissues, edema transforms into a 

relatively compressive force on individual cells and blood vessels. This proposed relationship of edema and 

tissue perfusion is further supported by our hyperspectral imaging observations. The OxyHb content of 

tissues depends on systemic and local factors. In unmodified systemic conditions, OxyHb concentration is 

affected principally by the quantity of blood that passes through the capillaries in a unit of time (blood 

inflow). On the other end, DeoxyHb reflects both the local tissue metabolism at cellular level, and the time 

red blood cells need to pass through capillaries during which oxygen is exchanged with local tissues. In our 

case, the prolonged decrease in OxyHb we measured between 6 and 60 minutes  
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following EVE removal suggests a relatively reduced blood inflow, possibly attributable to reactive 

vasoconstriction secondary to stretch. Decreased levels of DeOxyHb and TotalHb are suggestive of the 

absence of significant venous stasis as well as absence of vessels damage with extravasation of RBC in the 

interstitium. A limit of the hyperspectral imaging as employed in this study is the time needed for signal 

acquisition (20”) and processing (20”) that does not allow for true real-time imaging, and impedes detailed  
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exploration of the initial physiology after EVE release. The combination of pimonidazole observations that 

show hypoxia during stimulation, with normal OxyHb levels along with decreased DeoxyHb and total Hb 

after ceasing stimulation are suggestive of a behavior mildly reproducing hypoxia-reperfusion models. The 

likely peak in blood flow within the first seconds which can be expected basing on those models is probably 

lost in our analysis because of the limits of the technique. A prolonged state of relative ischemia is 

established after EVE release that is likely maintained by the combination of likely vasoreactions (not 

explored in our study) and compression by edema. While the mechanical stimulus of EVE ends abruptly 

with cessation of sub-atmospheric pressure, relative ischemia and hypoxia seem to last at least one hour 

beyond the stimulus and normalize by four hours. We also observed that an equally powerful stimulus, 

inflammation, appears to last well-beyond the immediate hours following EVE cessation. We observed the 

onset of inflammation having already occurred after two hours of EVE stimulation, and persistance through 

48 hours post-EVE albeit in a progressively decreasing state. Ischemia/hypoxia are well known triggers of 

cell proliferation, as well as the best known stimulus of vascular remodeling and neo-angiogenesis via 

activation of the HIF-1a/VEGF pathway.  

A significant question that this study generates is whether post-fat grafting EVE, as some authors have 

reported [28], is clinically appropriate. Indeed, while EVE may release positive pressure from the engrafted 

fat, it also induces intense levels of edema that may decrease diffusion of metabolites critical to fat survival 

during the first days, hampering rather than improving fat survival.  For the same reason, an interesting 

approach may be to re-initiate EVE stimulation after the first week post-engraftment – when graft take can 

be expected to have already occurred - to maximize the adipogenic potential of the grafted tissue that is 

undergoing remodeling during that period.  
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MODELING DIFFUSION AND PERFUSION IN FAT GRAFTING AND EXTERNAL VOLUME EXPANSION 

Modeling has been critical for many advances in plastic surgery. Our group has previously modeled the 

effects of mechanical forces on skin expansion and Vacuum Assisted Closure devices before [21, 22]. The 

papers derived from these modeling efforts have greatly enhanced our understanding of the biological 

effects and medical uses of mechanical forces. Modeling provides the theoretical framework for testing 

theories. This study aimed to characterize which aspects of the microenvironment surrounding a fat graft 

affect retention and to create models to serve as a scientific basis to analyze the variables related to graft 

retention. 

 

Grafted fat initially lacks vascular support and must receive oxygen and other nutrients by diffusion from 

nearby capillaries until neovascularization occurs. Oxygen appears to be the critical molecule required for 

cell survival. Low oxygen partial pressures in the center of the graft can lead to necrosis. Attempts to 

improve graft retention have largely been based on the “cell survival theory,” which states that long-term 

graft volume consists primarily of grafted adipocytes that have survived the entire procedure[98]. This 

theory has generally been accepted and has directed most efforts to maintaining adipocytes viability 

through improved harvesting, processing, and re-injecting techniques. Studies supporting the cell survival 

theory claim that the “viable zone” (40% adipocyte survival) reaches as far down as 0.2 cm from the 

periphery of the grafted tissue [99]. These conclusions are based mostly on morphological observations 

with H&E staining. However, judging adipocyte health by shape or nuclear appearance can be misleading, 

and histologic sections are too thin to show most nuclei of healthy adipocytes [100]. Moreover, the “cell 

survival theory” may fail to get to the complex phenomena occurring in fat grafting. Fat grafts are not pure 

aggregates of adipocytes, but a mixture of adipocytes, preadipocytes, endothelial cells, pericytes, stem 

cells, fibroblasts, inflammatory cells, and matrix. 

 

Using immunostain for perilipin, a reliable method for determining adipocyte viability, Eto and colleagues 

tested the cell survival theory and concluded that a dynamic remodeling of grafted adipose tissue (AT) 

occurs [100]. In hypoxic cell cultures, they demonstrated that adipocytes cannot survive more than one day 

of severe ischemia-mimicking conditions (1% O2 with no serum), while adipose-derived stromal cells (ASCs) 

remained viable for up to 72 hours. In a second experiment, the inguinal fat pad of a mouse was grafted to 

the scalp. Only the peripheral area (surviving zone; <0.03 cm from the edge) of the graft had a high survival 

rate of both adipocytes and ASCs. In a deeper (regenerating zone), most adipocytes did not survive more 

than one day, but ASCs survived and eventually provided new adipocytes. By day three, the number of 

proliferating cells increased, and by day seven, they found an increased thickness of the zone with viable 

adipocytes. At the center of the graft, no AT survived; this was named the “necrotic zone.”  

 

Recent studies support this “host replacement theory.” Rigamonti and colleagues suggest that 4.8% of 

preadipocytes are replicating at anytime, and 1-5% of adipocytes are replaced each day [101]. When mouse 

AT oxygenation reaches less than 65% of baseline, adipocytes undergo apoptosis in 24 hours; however, 

ASCs can survive for multiple days in severe hypoxia [102]. Hypoxia is known to enhance ASC proliferation 

[103]. Damaged adipocytes release fibroblast growth factor-2, which stimulates ASC proliferation and 

hepatocyte growth factor, contributing to the regeneration of AT [104]. The retention of grafted fat largely 

depends on the distance metabolites must travel to reach the center of the graft and on the depths of the 

surviving and regenerating zones. 
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MATERIALS AND METHODS 

We studied the peer-reviewed literature to determine which aspects of the microenvironment surrounding a 

fat graft affect retention. Based on these findings, we created three models. The “Micro-Ribbon Model” 

relates the radius of a given fat injection to the oxygen concentration and cellular composition at various 

depths within the graft. The “Fluid Accommodation Model” relates the interstitial fluid accumulation to 

interstitial fluid pressure (IFP) and capillary perfusion. The “EVE Effect Model” predicts how preoperative 

external volume expansion (EVE) alters the microenvironment to allow for greater graft retention. 

RESULTS AND DISCUSSION 

The thickness of the exterior rim of viable cells in multi-cell spheroids increases linearly with the theoretical 

oxygen diffusion distance [105, 106]. The core principle of fat graft survival is that oxygen concentration at 

any point in a graft is a function of the oxygen concentration of the surrounding capillaries, the diffusion 

rate of oxygen to reach that point in the tissue, and the metabolic rate. In other words, at every point in a 

fat graft, there is a race between the rate at which oxygen is being consumed by the cells and the rate at 

which oxygen is being delivered by the capillaries and diffused through the AT. 

The metabolic rate of a given section of AT is directly proportional to its volume (V). However, the diffusion 

rate of any substance is directly proportional to the surface area (SA) over which diffusion takes place, and 

the SA:V ratio of any interior section of a cylinder is (2/radius). Therefore, as the radius of a cylindrical 

injection of AT increases, the SA:V ratio decreases, and oxygen’s diffusion rate cannot meet the tissue’s 

metabolic needs. 

Using diffusion and metabolism equations and known biological and physical constants [105, 107-109], we 

modeled the theoretical borders between the surviving, regenerating, and necrotic zones for fat grafts of 

different radii (Figure 1). This Micro-Ribbon Model predicts that the largest fat micro-ribbon with no 

necrotic zone would have a radius of 0.16 cm. Such a graft would have a surviving zone of only 0.03 cm and 

a regenerating zone of 0.13 cm. As graft radius increases beyond this critical point, the necrotic zone grows 

rapidly.  

 

The following formulas model O2 diffusion into a metabolizing cylinder of tissue[107]: 

 

1.) C = C0 – (M/4D)[(R2 - r2) – a2ln(R2/r2)] 

2.) a2 = [1 + ln(R2/a2)] = R2 – (Rcrit)
2 

3.) Rcrit = sqrt(4DC0/M) 

 

C = [O2] at a radial distance (r) cm from the center of a cylinder.   (µmol/mL) 

C0 = [O2] at the surface of a cylinder of radius R cm.    (µmol/mL) 

CS = min [O2] at which ASCs can survive.      (µmol/mL) 

CA = min [O2] at which adipocytes can survive.     (µmol/mL) 

M = metabolic rate.        (µmol/(mL*min)) 

D = O2 diffusion coefficient.       (cm2/min) 

Rcrit = largest radius (R) such that ASCs survive throughout the graft.  (cm) 

a = max radial distance (r) at which [O2] = 0 when R > Rcrit.   (cm) 

rma = min distance from center (r) at which adipocytes can survive.  (cm) 

 

—The effective O2 diffusion constant in AT (D) = 9.42*10-4 cm2/min [105]. 
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—The maximum normal blood oxygen concentration (C0) = 0.115 µmol/mL [108].  Because the mean 

number of capillaries per adipocyte in lean patients is 1.77 [27], we assume the graft is adequately 

surrounded by capillaries. 

 

—The baseline AT O2 consumption in lean patients is 1.78 µmol/(100g AT * min) [107]. Assuming mean AT 

density is 0.95 g/mL [109], O2 consumption in lean patients (M) = 0.0169 µmol/(mL tissue * min). 

 

Using these values, equation 3 gives Rcrit = 0.16 cm. This suggests the largest injected cylinder of fat should 

have a radius of 0.16 cm. Assuming adipocytes cannot survive oxygen concentrations below 0.075 µmol/mL 

(65% of C0) [101], equation 1 predicts that when R = Rcrit, rma = 0.13 cm (0.03 cm from the periphery), and 

viable ASCs will be found throughout the cylinder. If R > Rcrit, the oxygen gradient creates three zones: the 

surviving zone (0.115-0.075 µmol/mL) in which all AT remains viable, the regenerating zone (0.075-0.01 

µmol/mL) in which only ASCs remain viable, and the necrotic zone (0.01-0 µmol/mL) in which no AT survives 

(Fig. 17). 

 

The Micro-Ribbon Model correlates well with experimental data. When multi-cell spheroids were cultured 

in excess medium, the spheroids ceased to expand at a radius of 0.15 cm [110]. Long-term fat graft 

retention requires small volumes of AT to be diffusely distributed as “micro-ribbons” into a well-

vascularized recipient site through well-separated tunnels; If too many micro-ribbons are injected into a 

recipient site of limited size, they will coalesce, forming particles too wide to survive. While the width of 

individual fat micro-ribbons can be determined by the surgeon, independent of the recipient site, the 

number of micro-ribbons that can be injected without coalescing is determined by the volume and 

compliance of the recipient site. 

Fat graft survival has also been shown to significantly increase with improved recipient site vascularity in 

animal and human studies [111]. Therefore, recipient site vascularity, volume, and compliance are the 

essential microenvironment variables that determine oxygen delivery via diffusion, and thus, graft 

retention. 

Several surgeons have suggested that injecting too much AT into a given recipient site can increase IFP 

enough to constrict capillaries and reduce oxygen delivery to the grafted tissues. Guyton demonstrated 
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that, for up to a certain volume, interstitial fluid can accumulate in a tissue without a significant IFP 

increase, but beyond that range, any additional fluid causes drastic IFP increases[112], quickly reaching 

levels associated with compartment syndrome. Milosevic and colleagues also demonstrated that capillary 

radius and perfusion decrease with increasing IFP [113]. Using these relationships, we modeled the change 

in relative capillary blood flow as a function of IFP and interstitial fluid accumulation (Fig. 18).  

 

The model by Milosevic and colleagues suggests: 

 

(capillary radius) =ƒ (intracapillary pressure – IFP + 3)0.1, 

 

and 

 

(flow rate) =ƒ (capillary radius)4. 

 

Therefore, 

 

(flow rate) =ƒ (intracapillary pressure – IFP + 3)0.4. 

 

 

According to this Fluid Accommodation Model, a given tissue compartment can accommodate about 60% 

of its weight in interstitial fluid before reaching a critical IFP (IFPC) of 9 mmHg, beyond which, any additional 

fluid causes a drastic IFP increase and capillary perfusion decrease. This IFPC closely correlates with recent 

suggestions of IFP-based fat grafting stop points of 10 mmHg [114] and 9 mmHg[115, 116]. Clearly, the 

relative amount of fluid a given tissue can accommodate before reaching IFPC also depends on its 

compliance, which can vary greatly between patients. In addition to decreasing capillary perfusion, 

increased IFP may also inhibit retention of grafted cells by mechanical compression, which induces 

apoptosis and regulates cytokine release [117]. Therefore, interstitial volume and compliance also 

determine how many micro-ribbons of fat can be dispersed before reaching IFPC, reducing perfusion and 

cell survival. 

 

Mechanical forces can induce angiogenesis and 

increased subcutaneous tissue thickness and 

compliance (Figure 3) [22, 28, 92, 118, 119]. In our 

previous studies we concluded that the macroscopic 

swelling is likely due to the deformation of the 

extracellular matrix (ECM). Micromechanical strain is 

transferred to the cytoskeleton, where it acts as a 

gate-control signal to induce proliferation[20]. 

Ischemia induced by EVE activates the HIF-1α/VEGF 

pathway to induce vascular remodeling, 

angiogenesis, and cell proliferation[119]. These 

processes are all promoted by inflammation (Figure 

4). 
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With clinically available EVE breast pre-expansion and resultant augmentation had a strong linear 

correlation (R2 = 0.87), and pre- expansion allowed significantly more AT to be grafted and retained than 

what was reported in a meta-analysis of six other published reports on fat graft breast augmentation 

without pre-expansion (p < 0.00001) [28].  

 

In order to understand the effectiveness of fat grafting using EVE devices, we must consider the ratio of 

grafted fat to recipient site volume. If the original recipient site is only 100 mL and noncompliant, and the 

volume of AT to be grafted is 30 mL, there is no need for pre-expansion because, with a 30% increase, the 

AT can be diffusely micro-injected. If the original recipient site is 100 mL, and the volume of AT to be 

grafted is 90 mL, this 90% increase cannot be done without overcrowding, which would cause coalescence, 

increased IFP, reduced perfusion and oxygen delivery, thinner surviving and regenerating zones, and 

significant volume loss. However, our EVE Effect Model predicts that a tight 100 mL recipient site can be 

transformed into a compliant 300 mL site and, according to the Starling equation, cause an influx of edema. 

Because the fat micro-ribbons can be diffusely dispersed into the pre-expanded tissue, less coalescence 

occurs and more AT can be grafted before reaching IFPC. As IFP increases, the Starling equation dictates 

that interstitial fluid is reabsorbed, allowing IFP to quickly return to baseline levels (Fig. 19). 

 

Our EVE Effect Model also predicts that the pre-operative cyclical negative pressure treatment increases 

the host vascular density, increasing total blood flow and oxygen delivery, decreasing the mean distance 

each molecule of oxygen must diffuse to reach a grafted cell, and accelerating graft revascularization: a 

major determinant of volume retention (Fig. 20) [120]. 
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The vascularity, volume, and compliance of the 

recipient site determine fat graft retention by 

regulating oxygen delivery via blood perfusion 

and molecular diffusion. Our theoretical analysis 

points to the potential of EVE devices to increase 

the recipient capacity for fat grafting. Increasing 

the volume and compliance of the recipient site 

allows thin injections of fat to be diffusely 

distributed. Thin injections have higher SA:V 

ratios, decreasing the distance oxygen must 

diffuse to reach the center. Diffusely injecting AT 

also avoids reaching high IFPs that may constrict 

capillary radii and reduce oxygen delivery. 

Increasing the vascularity of the recipient site 

increases the total oxygen delivery, decreases 

the mean distance oxygen must diffuse to reach 

each particle of AT, and accelerates 

revascularization.  
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EXTERNAL VOLUME EXPANSION INCREASES FAT GRAFTS VOLUME RETENTION  

Our previous studies showed that EVE expands tissue compartments by 3D stretching and increases their 

vascularity [92, 119]. The next question was whether this is beneficial to fat grafting. We added to the 

model by performing grafting by injection of human gat after EVE stimulation, as would be expected in 

patients. In order to allow survival of the fat without rejection phenomena we switched to 

immunodeficient mice as animal model. We also integrated the study with data acquired in parallel studies 

aiming at optimizing stimulation parameters (unpublished data). 

METHODS 

Study Design 

34 female, 12-week old NOD SCID Gamma Immune-deficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, Jackson 

Laboratories, Bar Harbor, ME) underwent moderate-intensity intermittent EVE on the left dorsum during the 

course of 5 days. The choice of the stimulation pattern was based on a previous parallel study by our group 

in which we observed that 0.5-hour long stimulations separated by 1-hour long breaks repeated 6 times a 

day for 5 days, optimized the vascular density of target skin while limiting cutaneous complications. We 

obtained fat as lipoaspirate from discarded panniculectomies from two non-smoking, non-diabetic patients 

with similar demographics and processed it according to the standard Coleman’s technique. Use of human 

tissue was performed according to existing regulations and approved by Institutional Review Board. On 

post-stimulation day 5 (PSD 5) 6 animals were sacrificed as baseline and the other 28 were grafted 1 cc of 

fat at the stimulated area and 1 cc at the contra-lateral not stimulated control area. On PSD 19 (Medium-

term follow-up, n = 14) and PSD 47 (Long-term follow-up, n = 14) grafts were harvested en bloc using 

standardized 2 x 2 cm biopsies (including the graft, the overlaying/surrounding full-thickness skin and the 

panniculus carnosus). Fresh samples were weighted with a precision scale (OHAUS Corporation, NJ), then 

fixed in 10% neutral-buffered formaldehyde and stored in 70% ethanol before processing for microscopic 

analysis. 

Microscopic Analysis 

Samplese were stained with hematoxylin and eosin. Image acquisition and analysis (thickness of 

subcutaneous tissue, cross-sectional area of adipose grafts) was also performed according to our previously 

established methods. A qualitative analysis of the morphology of the grafts was also performed to evaluate 

presence of cyst and vacuoles.  

Statistical Analysis 

One-way analysis of variance (SPSS Statistics 20, IBM, NY) with Tukey post-hoc correction was used for 

means comparison.  

RESULTS 

Graft weight 

Fat grafts in EVE-treated areas had a significantly higher weight that control grafts at both medium-term 

follow-up (2.2 ±0.2 vs 1.9 ±0.2) and long-term follow-up (2.0 ±0.2 1.6 ±0.2) with average fold increase over 
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control: 1.2 ± 0.1 (p < 0.05) (Fig. 21). Partial graft reabsorption was observed between medium-term and 

long-term follow-up within groups (p < 0.05).  

Morphology 

Both grafts at EVE treated sites and control grafts showed similar characteristics at H&e stainings. An 

inflammatory reaction was present at 2 weeks from grafting, consistent with graft remodeling. Adipocytes 

presented a regular morphology and were present throughout the graft at 6 weeks, at which timepoint 

some areas of fibrotic substitution and vacuoles could be equally appreciated in EVE treated animals and 

controls. 

DISCUSSION 

These results should be interpreted with extreme caution and not directly translated into clinical 

significance. The animal model, an immunodeficient mouse, presents several limitations and differences 

from the human setting. Besides already discussed anatomical characteristics, immunodeficiency implies a 

different inflammatory reaction to the graft even compared with autologous grafting and may have an 

impact on survival. However, the results support the hypotheses that EVE pre-treatment increases fat graft 

retention. Considering the two main mechanisms normally proposed, compartment expansion with 

decreased pressure on graft and increase in vascular density, it can be hypothesized that due to the 

relatively looseness of mouse skin the first factor should not have played a significant role in our model. 

Increase in vascular density may have, by itself, determined the increased retention of fat volume reducing 

its reabsorption. 
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EXTERNAL VOLUME EXPANSION IS EFFECTIVE IN IMPROVING FAT GRAFT RETENTION IN IRRADIATED 

TISSUES 

Breast reconstruction following radiation therapy continues to be a challenge. While autologous and 

implant-based strategies present plausible options, a debate still exists in the setting of radiation injury as 

the risks of intra and post-operative complications increase dramatically [121-123]. As discussed before, fat 

grafting has recently emerged as a potential adjunct which may benefit many breast reconstruction 

patients. It can be used to improve the results achieved with either microsurgical or implant-based 

reconstructions, or even be the sole plan for total breast reconstruction in the form of large-volume fat 

grafting. In parallel, it has been speculated that stem cells present in fat can improve tissue trophism and 

skin appearance after radiation injury, furthering interest in the procedure for post-radiation breast 

reconstruction [124, 125]. 

However, several questions remain with regards to fat grafting in the setting of radiation fibrosis [126]. In 

the first few days after grafting, adipose tissue relies on oxygen exchange by diffusion with the recipient 

site, which in turn depends on nurturing from an underlying vascular network. As we and others showed, 

radiation induces a chronic state of fibrosis that deteriorates the vascular network of tissues [127, 128]. At 

an irradiated site, long term graft retention and quality would likely be negatively affected by the poor 

vascular bed [129]. 

We previously developed a mouse model of chronic radiation injury localized to a 0.8 cm diameter dorsal 

skin area. In this model we demonstrated how tissues developed after a single 50 Gray dose a state of 

reduced perfusion (-21% to baseline, p<0.001) (fig. 22) and decreased vascularity (1.7 fold reduction in 

density, p<0.001) (fig. 23) [127].  

We also showed how an ischemic state develops early after injury, and monitoring deoxygenated 

hemoglobin by hyperspectral imaging we showed how its levels over the first three days correlated with 

irradiation dose in the spectrum 5 to 50 Grays (fig. 24), and how dose and deoxyhemoglobin levels 

correlated with entity of vascular density decrease at 28 days [128].   
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EVE may offer an option to improve the vascularity 

of recipient sites even in a setting of radiation 

fibrosis.   

A further recent work of our collaborators at the 

University of Massachusetts demonstrated how, 

despite the deleterious effects of radiation in soft 

tissues (fibrosis, hypo-vascularity, ulceration), pre-

conditioning with External Volume Expansion can 

effectively induce an angiogenic stimulus even in 

this setting, increasing the subcutaneous 

vasculature density by 37%.  Similarly it induces a 

strong proliferative effect, increasing the 

epidermal thickness by 37% and epithelial cell 

proliferation by 45% compared to irradiated but 

non pre-expanded skin (fig. 25) [130]. 

Building on the animal models already developed 

for skin radiation fibrosis and for EVE, we now 

focused on assessing 1) the capacity of tissues with 

chronic radiation injury to act as recipient sites to 

fat grafting, and 2) the capacity of external 

expansion to improve the take of fat grafts in 

tissues with radiation fibrosis. Thus, we 

hypothesized that pre-conditioning of the 

irradiated area will create a richer recipient site, 

which will improve volume preservation and long-

term results, mitigating the damage caused by 

radiation. 

 

METHODS 

 A total of thirty CD-1 athymic nude mice were used 

and allocated into 3 study groups. This strain has 

been selected from previous pilot studies due to the 

absence of rejection of human xenografts and an 

otherwise preserved immune system that allows 

radiation-related changes to occur (inflammation-

ulceration-healing-fibrosis). Dorsal skin areas to be 

studied were tattooed with a needle and 

permanent ink in order to allow the identification 

of the area of interest at all times. 
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Group 1 (n=10) received a single exposure of radiation and served to validate the effectiveness of 

irradiation-fibrosis/hypoperfusion evolution in this study. Group 2 (n=10) received only fat grafting without 

radiation, to evaluate the take rate of fat under native conditions in this model. Group 3 (n=10) received 

bilateral radiation exposure, followed by a course of external volume expansion in one of the sides as 

described in our previous work, leaving the contralateral side unexpanded. Both sites then received fat 

grafts and allowed assessment of the effect of radiation injury on fat grafting and the effect of pre-

treatment with EVE respectively (fig. 26). 

Radiation Exposure 

Radiation source was handled and supervised by experts in the radiation oncology department at the 

University of Massachusetts Medical Center. Groups 1 (n=10) and 3 (n=10) received a unilateral or bilateral 

exposure respectively of 50Gray of radiation using a 1cm-diameter topical beta-source placed 5 cm lateral 

to the spine. This dose is the equivalent to the average cumulative dose received by breast cancer patients 

at our institution. Dosing and radiation source protocol has been established based on our previous studies. 

It affects up to the superficial 2mm of skin without underlying organ damage.  Over the following 8 weeks, 

we expect all mice to develop a 

sequence of inflammation-dry 

desquamation-ulceration-

fibrosis.  

Radiation-induced ischemia was 

confirmed by the use of the 

HyperSpectral Imaging device 

Oxy-Vu (Hypermed, MA) used by 

our group in previous studies 

[127]. The fold change relative to 

the contralateral non-irradiated 

side was used as main unit of 

comparison. The perfusion 

values were followed up during 

the first 8 weeks of the study and 

trends were captured in a graph. 
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External Volume Expansion  

Expansion was performed for 6 hours daily for 5 days, following the protocol of stimulation of our 

collaborators previous study on irradiated skin [130]. 

In these studies we saw that irradiated tissues treated with EVE remain hypoxic and underperfused for up to 

5 days. This may have negative impact in the graft survival. Similarly, we found that in irradiated tissue a 

robust angiogenic response is seen by 2 weeks after the last day of expansion. Basing on these combined 

observations we selected day 14 post-EVE stimulation as an ideal time in our model to perform fat grafting. 

Fat grafting 

Adipose tissue was obtained from discarded material from one panniculectomy performed at UMASS, under 

an approved IRB. In order to counter issues of variability in donor and fat characteristics, all grafts were 

derived from same donor. Fat was extracted by manual liposuction with multiple passes using a 3mm 

cannula and dry technique, and centrifuged to eliminate oil.  

Fat grafts were performed under sterile conditions using a 16G IV cannula. The cannula was inserted at a 

distant site, the tip was advanced to reach the previously irradiated area or the selected untreated site 

depending on group assignment, subcutaneous fibrosis was released by blunt dissection, and fat was 

injected in single-bolus. A total of 0.3 ml of fat was injected basing on previous pilot studies performed to 
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establish a reasonable injection volume that would allow achieving a reproducible subcutaneous fat mass of 

size still compatible with the development of the graft evolution zones as modelled by Yoshimura’s group. 

Then a rubber donought-shaped splint of 1.5 cm internal diameter was positioned on the skin to surround 

the grafted area, protecting and preventing fat graft displacement for the first 2 weeks. Mice were 

monitored daily during the first 2 weeks and then once a week for the remaining time of the study. At 8 

weeks mice were sacrificed and tissue was collected for histology. 

Volume Quantification 

Micro-CT was performed at at the Musculoskeletal Imaging core facility of our institution for small animals. 

Mice that underwent fat grafting were imaged 2 days postoperative fat graft injection for baseline volume. 

The grafted mice then underwent imaging at week 8 to calculate final volume retention as compared to 

baseline.  

For micro-CT scans, the mice were anesthetized with isoflurane. Anesthesia was maintained by mask 

inhalation of isoflurane vaporized at concentrations of up to 5% in the induction phase and at 2% during 

acute imaging procedure. Imaging was performed with animals in the dorsal  position using a Scanco vivaCT 

75 microCT system scanner (Scanco Medical, Switzerland). The effective voxel size of the reconstructed 

images was 40.  A global threshold (170) was applied to remove soft tissue background for 3D image 

reconstructions.  

Fat grafts were reconstructed in three-dimensions by contouring regions of fat as seen on the microCT 

images. All reconstructions were performed by two independent investigators to avoid single observer bias. 

Fat volume was calculated using the distance transformation function of the Scanco Medical 3D analysis 

software.   

Histology 

Transversal sections through the center of the samples were stained with hematoxylin and eosin according 

to standard protocols and by immunohistochemistry for CD31 and Perilipin-A.  

RESULTS 

Irradiation 

After radiation exposure, all mice went through the expected course of erythema, moist desquamation, 

ulceration and fibrosis. All wounds were completely healed by 8 weeks after radiotherapy, resulting in a 

velvet-like skin surface appearance indicative of fibrosis.. 

Concurrently, Hyperspectral imaging confirmed a decrease in Total-Hb in irradiated side compared to the 

non irradiated contralateral side (p<.05), and a (decrease compared to baseline measurements (p<.05), 

confirming the ischemic damage and vessel obliteration seen in our previous studies (fig. 27).  

EVE 

After a course of uncomplicated External Volume Expansion for 5 days, tissues were visibly expanded and 

swollen, although the outer fibrotic appearance of radiated skin was still present and unchanged. Swelling 

had reabsorbed after 14 days, when fat grafting was performed (fig. 28A). 

Fat grafts 
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Adipose tissue was grafted without complications on mice from groups 2 and 3. No evidence of rejection 

reactions was appreciated during the subsequent 8 weeks of monitoring. 

By the end of this period, grafts presented as well-defined dome-shaped soft masses at the injection sites 

(fig. 28C).  

By Micro-CT volumetric analysis (fig. 28D) we established that the fat grafting/non-irradiated group had a 

74%  graft volume retention after 8 weeks. Fat grafts performed at a previously irradiated site displayed a 

retention of 66% by the end of the same time period (p<.05). When fat grafts were performed to irradiated 

sites prepared by a cycle of external volume expansion, grafts showed a 79% retention by 8 weeks (p<0.05) 

(fig. 28E). 

Histology   

Samples presented similar features at H&e stainings. Some oil cysts were present along with some signs of 

fibrous substitution. CD31 positive structures were present throughout the grafts. Perilipin-A staining 

showed almost uniform positive staining, with occasional non-staining adipocytes localized in the central 

areas of the grafts, sign of still ongoing remodeling. No significant differences could be perceived between 

groups. 

DISCUSSION  

Radiation therapy has been a key contributor to the increased survival of breast cancer patients and 

modern protocols allowed a paradigmatic shift in the approach to breast cancer from radical mastectomies 

to breast conserving surgeries. This responds to and helped developing a more mature sensibility to the 

concept of restorative surgery not limited to curing the disease but aiming at maximizing life quality. The 

downside is that, despite improved protocols minimizing acute side effects of radiation therapy, irradiated 

tissues still undergo chronic changes that, among others, negatively impact reconstructions. Autologous 

reconstruction with flaps can face higher rates of wound healing issues, fat necrosis, stromal/flap atrophy 

and contour deformities requiring a revision rate up to 62% of cases in comparison to non-irradiated 

breasts. On the other hand, implant based reconstruction carries higher rates of infection, capsular 



44 
 

contracture and implant extrusion with reconstruction failure in up to 77% of cases [122, 131, 132]. Even 

nipple reconstruction suffers of higher complications rate in presence of previous radiotherapy [133]. 

Recently fat grafting emerged as a tool that can be useful in addressing tissue quality related issues 

following radiation therapy. It can provide a thicker protective layer around implants, soften atrophic 

irradiated tissues, and improve contour deformities. Further, some evidence suggests a regenerative 

potential of adipose tissue, possibly due to the reservoir of stem cells present in the stroma. Animal studies 

demonstrated improvement of skin quality achieved by fat grafting after irradiation [134, 135] in a 

laboratory setting, and have been successfully translated into clinical settings with burns or radiation 

dermatitis [129, 136]. It is believed that a combination of growth factor secretion through paracrine action 

is and differentiation of mesenchymal cells to vascular or epithelial lineages may be the contributors to 

clinical improvements demonstrated on these reports [137]. 

Therefore, breast reconstruction in presence of radio-dermatitis could potentially benefit from fat grafting 

for both a restoration and reshaping of volume missing secondary to breast parenchyma resection and for a 

mitigation of the cutaneous damage caused by radiation. 

We and others have demonstrated that external radiation causes obliteration and fibrosis of blood vessels 

of the targeted area leading to vessels deprived tissues [127]. It was confirmed in this study by reproducing 

previous results that showed the establishment of a localized fibrotic hypoperfused environment following 

irradiation. This underperfused state could potentially compromise the survival of grafted fat. Our results 

indeed demonstrate that previous irradiation of the recipient site determined a significant reduction of 

11% of volume of the final grafted fat mass, at comparison with volumes achieved in not irradiated sites. It 

confirms the assumption that radiated tissues, as well as being less good sites for traditional autologous or 

prosthetic reconstructions, also offer a sub optimal recipient site to fat grafts. Clinically, it potentially 

translates in higher number of procedures needed, higher fat necrosis with calcifications or oil cysts, more 

inflammatory reactions with reabsorption, less visible results, and overall less patient and surgeon 

satisfaction with the procedure. 

Basing on current theories on the relationship between fat graft take and recipient site vascularity, 

increasing the density of the vascular network might restore the potential of irradiated tissues to act as 

adequate recipient sites.   

We previously tested whether the angiogenetic potential of EVE was still significant in presence of fibrotic 

irradiated tissues. EVE displayed the capacity of inducing a 37% enrichment of the capillary network density 

of previously irradiated tissues at two weeks from stimulation [130]. 

We now showed that EVE preparation of the recipient site is effective in reversing the negative impact of 

previous irradiation on fat graft survival, achieving a 20% increase in retained fat volume at comparison 

with non-EVE treated sites. This is even a 6.5% higher retention volume than standard fat grafting to non-

irradiated tissues. 

Interestingly, these results offer further support to the outcome of our previous study in which we 

demonstrated a positive effect of EVE pre-treatment in retaining fat grafts mass in normal, non-irradiated 

tissues.  
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In conclusion, we confirmed that previous irradiation has a deleterious effect on fat grafting, but our results 

also suggest that preparing the recipient site by increasing its vascularity with EVE can be a rescue 

technique that significantly impacts the fate of the graft.   
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EXTERNAL VOLUME EXPANSION DIRECTLY STIMULATES ADIPOGENESIS  

In contrast to the unidirectional tensile stimulation on underlying tissue of our pre-EVE mechanobiological 

studies [22, 50], the miniaturized EVE device provides a more complex three-dimensional array of 

mechanical forces that include tension, compression and shear depending on the location of the tissue 

within the device. As EVE using suction induces a transient decrease in interstitial pressure facilitating 

transport of fluids into the extracellular space, a potential further effector may be localized edema.  

Edema has been suggested to stimulate adipogenesis. In particular, lymphedema is often accompanied by 

an accumulation of fat tissue in the affected body part [138, 139], but the underlying mechanism is still 

unknown. Harvey et al. demonstrated in an in-vivo model that deficiency in the Prox1 allele lead to the 

development of obesity with increased subcutaneous tissue based on defective lymphatic system and 

generalized edema [140]. Lymphatics drain from the extracellular space proteins and lipids that leak from 

capillaries  [141, 142], and lymph stasis may signify local accumulation of molecules with lipogenetic or 

adipogenetic effects. Application of suction to wounds suggests a direct relationship between edema, 

inflammation and cell proliferation, with reduction of edema being accompanied by decreased 

inflammation and proliferation[53, 143].  Edema increases the distance between cells and blood vessels 

distance which can generate a hypoxic or inflammatory environment.  

Indeed, the development and introduction of EVE devices into the plastic surgery and breast augmentation 

markets was guided by the idea that three-dimensional tensile forces could be employed to directly 

stimulate breast growth and induce non-surgical breast enlargement (Brava® Breast Enhancement and 

Shaping System, Brava LLC, Miami, FL) [18].  

In the initial clinical experience with the device, most users achieved an average of one-cup size increase 

after several months of EVE usage by receiving stimulation for up to 10 hours daily. Although these findings 

were in agreement with accumulating in vitro [63, 91] and in vivo evidence [22, 32, 50] of the role played by 

mechanical forces in tissue augmentation, the device was highly patient compliance-demanding and did 

not achieved widespread use for breast augmentation alone due to the inconsistence of the results.  Only 

years later began the clinical interest in adopting the device as a preparatory approach for fat grafting to 

the breasts which we discussed as motivating reason for our previous studies [144].  

In our first proof of concept EVE study reported above we also analyzed changes in the fat composition of 

the hypodermis [92].  

METHODS 

For study design see “proof of concept” section  

Adipocytes quantification 

Measurements were made in H&E stained sections of tissue thickness and of the number of adipocytes in 

vertical columns between panniculus carnosus muscle and the dermis, in three random spots per sample 

(Image J, NIH, Bethesda, MD, USA). The number of adipocytes and the subcutaneous thickness were plotted 

together to generate a two-dimensional graph. 

RESULTS 
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Microscopy (Fig. 29) showed a 2-fold increase of the subcutaneous thickness (p<0.01), with an average 2.2 

times more adipocytes in columns (S: 17±5.1; C: 7.8±0.9; p<0.05) compared to the controls at day 28. The 

thickness of the dermis was not affected by treatment (data not shown). 

Based on our studies, it appears all four factors 1) micro-mechanical stimulation, 2) edema, 3) 

hypoxia/ischemia and 4) inflammation likely contribute to cell and vessels proliferation (Figure 5). 

Importantly, previous studies suggest that both edema and inflammation, acting in a coordinated fashion, 

have pro-adipogenic effects. In an elegant series of studies, Morrison and colleagues demonstrated that the 

presence of an empty proteic matrix [145-148] in contact with a fat mass [149, 150] provides signals for 

cellular differentiation and attracts cells from blood vessels that are induced to differentiate into 

adipocytes, promoted in part by inflammation [151]. The model, which may have close similarities with the 

“empty space” filled with edema in EVE-treated tissues, is now being translated from animals to clinical 

applications [152].  

The idea that EVE stimulation may have adipogenic effects is intriguing. Mature adipocytes generally are 

believed not to proliferate. Adipogenesis is thought to result from stem cells commitment to the adipocyte 

lineage, proliferation of preadipocytes, their recruitment, and terminal differentiation into mature 

adipocytes.  

Building on the evidences collected in our previous work, we designed a study aiming at specifically 

assessing the hypothesis that EVE stimulations can directly induce adipogenesis, independently from fat 

grafting [153].  

MATERIALS AND METHODS 

Animal model 

Under a protocol approved by the local Institutional Animal Care and Use Committee, twenty-eight male 

SKH1-E hairless and euthymic mice (Charles River Laboratories, Wilmington, MA) were stimulated for 2 

hours/day for either 1 (EVE1) or 5 (EVE5) consecutive days. These patterns were designed basing on our 

previous studies with EVE models and on a feasibility pilot, in order to establish single-stimulation effects 

and explore the kinetics of ciclicity remindful of clinically adopted daily wearing of EVE systems. Half of the 
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animals receiving either treatment pattern were euthanized immediately after completing stimulation (+0h) 

to evaluate early effects of EVE, and the other half 48hrs after stimulation (+48h) (Figure 30).  

The treated site and the non-treated contralateral skin were harvested with a 10-mm punch biopsy tool. 

One half was snap frozen and preserved at -80°C for protein analysis; the remaining half was mounted on 

cardboard, fixed in 10% formaldehyde for 24 hours for histology and stored in 70% ethanol at 4°C. 

Histology and immunohistochemistry  

Sextions were stained for Hematoxylin and Eosin, Perilipin-A and pan-leukocyte marker CD45. One animal in 

the EVE1+48h group was excluded from examination due to sample labeling issues, and one in the 

EVE5+48h due to sample loss in processing. 

Adipocyte quantification 

Adipocyte number was selected as the primary outcome of our study. Viable adipocytes were identified in 

sections stained for the specific marker Perilipin-A (PLIN-A), which is a protein coating lipid droplets in 

adipocytes that protects them against lipases [154].  Oval structures with positivity for antigen expression 

around the membrane were considered as mature adipocytes.  

Quantification of the number of adipocytes in the subdermal adipose layer, superficially to the panniculus 

carnosus muscle was performed in the EVE1+48h and EVE5+48h groups. Counting was done on entire 

sections scanned at 40x magnification with the aid of ImageScope software (Aperio, Vista, CA, USA) by three 

investigators and confirmed by blinded manual counting by independent investigators. The results were 

normalized as number of adipocytes per mm basing on section length as measured in the scanned slides, 

and expressed as fold-increase of treated sides over internal controls. Adipocyte counts in animals from the 

+0h groups was not performed, as edema and tissue distortion impeded adequate staining and 

identification of structures. 



49 
 

Qualitative assessment of tissue 

The architecture of epidermis, dermis and 

subcutaneous tissue was analyzed on H&E stained 

slides, paired with the macroscopic appearance, and 

reviewed by 2 independent examiners.  

Inflammation 

CD45 positive cells density in the EVE1+48h and 

EVE5+48h groups was quantified over three 

representative 10x fields of each stained section by 

three independent observers with the aid of Image J 

software (Image J, NIH, Bethesda, MD).   

Protein Expression 

Western Blots were performed on samples of EVE5+0h 

and EVE5+48h (n=4 each) for Peroxisome Proliferator-

Activated Receptor Gamma (PPAR-γ) and Preadipocyte 

Factor 1 (Pref-1, also called DLK1) under similar 

protocols.  

Tissue samples were placed in T-PER Pierce/Thermo 

scientific Protein Extraction Buffer (Thermo Scientific) 

that contained complete Mini EDTA-free proteinase-Inhibitor cocktail (Roche). Samples were then lysed on 

ice by means of motorized pestle. 

Protein concentrations were measured using the standard BCA protein assay method (Pierce) and UV 

spectrophotometer (NanoDropTM ND-2000, Thermo Scientfic). Gel electrophoresis was performed using 

precast Ready Gel® Tris-HCl 4–12% Gels (Biorad). Tris/glycine/SDS buffer (Biorad) served as running buffer. 

Equal amounts of protein (15–30 μg) were loaded in each lane, and the gel was run at 180 V for one hour. 

Polyvinylidene difluoride (PVDF) membranes (Biorad) were briefly incubated in 100% methanol, quickly 

rinsed and then incubated in 20% methanol containing Tris-glycine transfer buffer. Next, proteins were 

transferred onto PVDF membranes at 25 V for 50 min using transfer buffer and a Trans-Blot Semi-Dry 

System (Biorad). PVDF were then blocked with 5% milk in Tris-buffered saline (TBS)-Tween (TBS-T) for 90 

min at room temperature. The primary antibody was diluded in 5% milk in TBS-T. PVDF membranes were 

incubated in the primary antibody solution at 4°C overnight on an orbital shaker. PVDF membranes were 

washed three times with TBS-T and then incubated in the secondary antibody solution (also in 5% milk in 

TBS-T) for 45 minutes at room temperature followed by three washes. Thermo Scientific™ Pierce™ ECL 2 

Western Blotting Detection reagents (Thermo Scientific) served as the chemiluminescence kit. Semi-

quantitative imaging analysis was performed using Image J (National Institutes of Health).  

Statistical Analysis 

A paired two-tailed Student’s t-test was performed to compare means of EVE-treated vs control tissues 

within the same animals and at the same time points using PRISM software. Means between groups at 
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different time points were compared with a two-tailed Student’s t-test for independent samples with equal 

variance.  

RESULTS 

Adipocyte quantification 

An increased density of subdermal adipocytes in EVE-treated sites was detected at microscopic evaluation of 

H&E stained slides, and confirmed by quantitative analysis of slides stained for Perilipin-A (fig. 32). Two days 

after a single stimulation for 2hr (EVE1 +48h), tissues presented a 1.5-fold (+/- 0.25) increase in number of 

adipocytes per linear millimeter of tissue compared to non-stimulated (NS) tissue (p<0.01). Treatment for 5 

consecutive days (EVE5 +48h) yielded to a 1.9-fold (+/- 0.6) increase in adipocytes in the subcutaneous tissue 

compared to NS skin in the control side (p<0.01) (Figure 3). The difference in fold increase between time 

points was not significant.  

Qualitative Assessment of tissue 

Immediately after EVE, both with single 2h stimulation (EVE1 +0h) and with a 5-day course (EVE5 +0h), 

tissues appeared macroscopically swollen (Figure 31). Histological evaluation of H&E slides confirmed a 

large amount of interstitial fluid having accumulated, in particular into the hypodermis. A normal histologic 

architecture was restored in samples collected 48 hours after treatment, when tissue swelling was no longer 

evident at examination  

Inflammation 

EVE stimulation induced an inflammatory response, with a 2.2 (+/-0.9) (p<0.01) and 1.8-fold (+/- 0.7) 

(p=0.01) increase over controls in CD45 positive cells density in both EVE1+48h and EVE5+48h respectively. 

(Figure  33). 
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Western Blot 

Western blot analysis revealed that immediately after 5 days of stimulation (EVE5+0h) relative PPAR-γ 

expression was significantly increased in stimulated skin when compared to non-stimulated (1.0 ± 0.17 vs. 

0.24 ± 0.05, p<0.01, N=4). This effect, though to a lesser degree, was still detectable 48h later (EVE5+48h, 

0.75 ± 0.04 vs. 0.43 ± 0.08, p<0.05, N=4). In samples analyzed for Pref-1, no difference was found between 

EVE and NS sites after 5 days on the immediate sacrifice group (EVE5+0h) (p=0.88). The samples from 

animals sacrificed 48hr later (EVE5+48h) showed no difference in Pref-1 expression, (0.81 ± 0.20 control vs 

0.40 ± 0.01 EVE   (p=0.12, n=4). (Figure 34). 

DISCUSSION 

The results from this study support the hypotheses that EVE possess an intrinsic pro-adipogenic potential, 

showing  in our model an increased number of adipocytes after a period of recovery of 48 hours, even from 
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a single 2h stimulation. This potential seems to elicit its effect via the establishment of a pro-adipogenic 

edematous, inflammatory environment. 

Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) is a ligand-activated transcription factor 

expressed chiefly in adipocytes and macrophages [155, 156]. This transcription factor has been 

demonstrated as the main initiator and orchestrator of adipogenesis [156, 157]. PPAR-γ activation initiates 

pre-adipocyte expansion in vitro [158], and induces adipogenesis in vivo [159], while in its absence, adipose 

tissue fails to develop [160]. In our study, we found that a pro-adipogenic environment is induced, as 

demonstrated by an increased expression of (PPAR-γ) signaling pathway.. 

In parallel, Pref-1 is a specific marker of preadipocytes, acting as a gatekeeper in the process of 

adipogenesis. Pref-1 acts as an autocrine/paracrine factor, inhibiting adipocyte differentiation [161]. As 

differentiation occurs, Pref-1 expression decreases to undetectable levels, reflecting the degree of 

maturation and differentiation [162]. This marker in EVE-treated tissue after 48hrs showed a tendency to 

reduced expression, which did not reach significance. However, this may be attributable to our small 

sample size due to technical problems and tissue loss or to inappropriate choice of the timepoint for this 

effect. 

EVE creates mechanical tension and induces edema and inflammation; each of which, independently, have 

been found to trigger adipogenesis (Figure 35). Inflammation up-regulates PPAR-γ [151] and promotes M2 

macrophage activation [163]. In the matrigel chamber with arteriovenous loop model, inflammation was 

key in formation of adipose tissue, which could be blunted by macrophage depletion [151, 164-166]. 

Furthermore, adipose tissue formation has been noted in lymphedema as a result of chronic inflammation 

in patients [138, 139, 167] and replicated in animal models [141, 142]. In agreement with this, we found in 

our recently published model that inflammation was significantly increased by the end of a 2hr EVE 

treatment [119] and remain elevated for at least two days. In the aforementioned studies, inflammation 

and edema are chronic elements that remain consistently present, while in the present study, they are 

acute phenomena, which regress over the course of hours for edema and days for inflammation [119].  

Mechanical stimulation is also a potential independent player in the observed adipogenic effects. We and 

others have established its pro-proliferative and pro-angiogenic effects in vitro [63, 91] and in vivo [22, 50]. 

Moreover, static mechanical traction induces a pro-adipogenic effect [168-170]. Our model is in agreement 

with these observations, as the stimulation applied resembles periods of static tension through an 

externally-applied source repeated over several days. 

Hypoxia is known as an anti-adipogenic factor, as Hypoxia-Inducible Factor 1 (HIF-1) downregulates PPAR-γ 

expression [171]. We previously showed transitory presence of hypoxia and ischemia during EVE treatment 

[119]. Moreover the transitory inhibitory effect of hypoxia is likely overcome by the aforementioned 

factors, but its potentially negative role should be taken into account when developing clinical protocols of 

stimulation with EVE. 

While our results demonstrate the capacity of EVE alone to induce a pro-adipogenic environment and 

increase adipocytes number, previous clinical experience attempting to increase breast mass with this 

strategy alone has been less satisfactory. This can be explained by multiple reasons. Our results are from 

histological analysis at microscopic level, while volume augmentation of a larger mass likely takes more 

time and factors to occur to a perceivable extent. However, our model is suggestive of a trend towards 

superior number of adipocytes gained as the number of sessions of stimulation increases. Cyclical external 
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forces have demonstrated a greater regenerative effect than constant forces (9). Therefore, the kinetics of 

repeated stimulations should still be assessed for maximum gains. The mouse and human models present 

significant differences [172, 173]; however, similar mechanisms, even if of different magnitude, could 

reasonably be expected to be at play. 

According to recent theories that are gaining sound experimental support, much of the retained fat mass 

after fat grafting may not be due to adipocytes survival, but to repopulation by surviving adipose derived 

stem cells in the empty scaffold left by dead mature adipocytes [100, 174, 175]. As we demonstrated in 

earlier work, application of EVE prior to fat grafting expands the recipient site, reducing the compression on 

the graft, while stimulating the formation of a rich vascular network, key elements for fat graft survival 

[176]. Another  option suggested by our results may be to clinically employ EVE after fat grafting as well, 

with the intention not of “stabilizing the graft” [144, 177], but rather to specifically stimulate a pro-

adipogenic environment that may increase stem cells commitment to adipocytic differentiation in the 

scaffold repopulation phase. Such a strategy may help reducing scarring and reabsorption in fat grafts, 

leading to an overall quantitatively as well as qualitatively improved yeld. Several elements need to be 

looked into before this is safely proposed, in particular timing and pressure levels. Moreover, EVE may find 

application in tissue engineering to drive the development of new adipose tissue within a scaffold, 

combining its adipogenic with its angiogenic potentials. Morrison’s group recently published their 

experience in moving from the mouse to humans in testing the in vivo tissue engineering chamber for 

breast regeneration they developed. In their study, they moved to the breast area a small amount of fat 

vascularized by the thoracodorsal pedicle and covered it with their chamber. At six months one patient had 

developed a satisfactory if not perfect fat mass, while in other 5, even if signs of fat depositions were 

observed, most of the newly formed tissue was essentially fibrous. As they suggest, combination of their 
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model with an EVE stimulation might help overcoming the difficulty they experienced in translating to a 

larger model their previously successful and promising technique. [178, 179] Further experiments are 

needed to identify the nuances of the mechanical forces and the specific timeframe in which an EVE-based 

adipogenic approach can be of most benefit post-grafting and even potentially tailored to multiple uses.  

However, caution should be exercised when attempting to translate the results of this animal model to 

clinical significance, as important intrinsic differences are present that could affect the relative contribution 

of the different factors we have identified. In particular, human tissues are stiffer and less deformable than 

those in the mouse, which affects both the stretch imposed at a given pressure and the amount of edema 

which can accumulate in the third space. Furthermore, the adipogenesis shown in our previous study 

resulted from continuous EVE that maintains a stable level of edema remindful of lymphedema and of 

Morrison’s chamber model. In contrast to this static state of edema, current clinical EVE utilizes cyclical 

wear patterns (6 to 10 hours daily) that generate transient periods of edema formation and subsequent 

absorption. This can be expected to lead to in/out-flux of metabolites, and more closely reflects the design 

of this study. While the proposed non-surgical EVE methods have yielded but a limited degree of breast 

enlargement [180-183], the possibility that continuous wearing of EVE may overcome this barrier shown 

with cyclical EVE appears an appealing hypothesis to evaluate.  
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THE ROLE OF INFLAMMATION IN THE ADIPOGENIC EFFECTS OF EXTERNAL VOLUME EXPANSION 

Several models point to edema, ischemia and catabolites accumulation as factors determining a pro-

adipogenic environment in which mesenchymal stem cells are stimulated to preferentially undertake the 

adipose cell differentiation pathway [138, 141, 142, 146, 147]. However, several models also suggest that 

inflammation is a key effector in this process [151, 166].  

We showed inflammation to be a common denominator to EVE stimulation as well, and this factor alone 

could potentially all of the observed effects in terms of cell proliferation, increase in vascular density, and 

adipogenesis. Macrophages, in particular M2, play a pivot role in switching mesenchymal stem cells fate. 

Previous experiments in other models showed that macrophages depletion could prevent adipocytes 

deposition [151, 164]. 

We therefore set on testing the role of macrophages in determining EVE induced effects, and in particular 

adipogenesis, by undertaking a new study in which EVE was applied to animals in which macrophages 

response was hampered by macrophages depletion.  

Clodronic acid, or clodronate, is a drug of the biphosphonates family routinely used in the treatment of 

multiple myeloma, primary hypothyroidism, osteoporosis, tumoral osteolysis, due to its inhibitory effect on 

bone reabsorption [184]. It acts by antagonizing osteoclasts, bone macrophages cells which are specialized 

differentiated cells of the monocyte-macrophage lineage [185]. 

Experimentally, clodronate can be included within liposomes in high concentrations, and clodronate 

liposomes can be employed as a strategy to induce macrophages depletion in animals. Liposomes are 

phagocytated by macrophages as part of their natural scavenger activity. Liposomes are broken down in 

cell lysosomes, liberating relatively high concentrations of clodronate that are toxic to the macrophage and 

induce its apoptosis [186, 187]. This method demonstrated high safety profiles for the animals, and has 

been used also in newborn mice [188-191]. Basing on the route of administration, selective macrophages 

depletion in chosen body compartments can be achieved in otherwise non-immune deficient animals 

(www.clodronateliposomes.org). 

To date, liposomal clodronate has been used for macrophages depletion in almost 1000 published studies 

and more that 3000 projects are registered. Several describe successful macrophages depletion in the skin 

through local or intraperitoneal injection (www.clodronateliposomes.org).  

MATERIALS AND METHODS 

Animals 

A total of 16 male SKH1-E hairless mice aged 8 weeks (Charles River Laboratories, Wilmington, Mass.), were 

cared for and used at the animal facility of the Azienda Ospedaliera Universitaria of Padova under an 

approved experimental protocol. 

Macrophages depletion  

At 48 hours pre-EVE stimulation, 8 casually selected mice received an intraperitoneal injection of 0.3 ml of 

liposomal clodronate (Clodronate Liposomes, Nico van Rooijen, www.clodronateliposomes.com) along with 



56 
 

a subcutaneous 0.1 ml injection to the dorsum along the thoraco-lumbar midline. Further 0.2 ml were 

administered intraperitoneum 2 hours beore EVE stimulation.  The 8 control animals received no treatment. 

EVE stimulation 

All animals were stimulated with EVE on one side of the dorsum for 2 hours according to our standard 

protocol. The contralateral side was left untreated and used as internal control. Mice were sacrificed at 48 

hours and tissue samples were collected. 

 Immunohistochemistry 

Sections were stained with Hematoxylin and Eosin, and for CD68p, CD45, Ki67, PECAM-1, Perilipin-A 

Quantifications 

- For Ki63 and CD31, sections were digitalized with a Nikon D-Sight slide scanner (Menarini 

Diagnostics, Firenze); 4 casual fields per slide were then extracted. Ki67-positive nucleai in the 

epidermis were manually quantified and the data was normalized per lenght of the epidermis in the 

field. CD31 positive structures were quantified and expressed as n. vessels/field. Averages were 

calculated for each section.  

- For CD68p three casual digital fields/section were acquired on a Nikon E200 microscope (Nikon 

Corp., Tokyo, Japan). Manual counting of CD68p positive cells was performed and data were 

expressed as density of CD68p+ cells per field. Averages were calculated for each section.  

- For CD45 three casual digital fields/section were acquired on a Nikon E200 microscope (Nikon Corp., 

Tokyo, Japan). Manual counting of CD45 positive and total nucleai was performed and data were 

expressed as ratio of CD45+/total nucleai per field. Averages were calculated for each section.  

- For Perilipin-A, positive staining adipocytes located superficial to the panniculus carnosus muscle 

were manually quantified over entire sections on a Olympus Vanox AHBT3 microscope. Values were 

normalized by section lenght measured on digital scan acquired with a Nikon D-Sight slide scanner, 

and expressed as adipocytes linear density per mm.  

Statistics 

Means of treated and untreated within groups were compared using Student’s t-test for paired samples. 

Means between groups were compared with unpaired Student’s t-tests with equal variance. 

RESULTS 

Macroscopic observations and Histology 

On Hematoxylin and eosin stained sections EVE treated samples exhibited a normal architecture and no 

edema at 48 hours from stimulation. 

One animal in the control group and three animals in the clodronate group had to be excluded due to 

scratch wounds present at the stimulated site which caused major confounding bias in histological 

assessment.  
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Macrophage depletion and inflammatory response 

Examination of CD68p stained sections revealed that clodronate pre-treatment did not result in complete 

elimination of macrophages. However, normal skin in clodronate treated animals exhibited none to very few 

macrophages with extremely rare foci of macrophages accumulation, while macrophage were 

widespreadely present and with frequent foci in the deep dermis in normal skin in the control group. 

Similarly, EVE treatment resulted in a still evident robust and diffuse macrophage infiltration in non 

clodronate-treated animals, while macrophage infiltration was greatly dampened in clodronate treated 

animals (fig. 36A). 

At quantification of the global inflammatory response, clodronate treated animals had a similar percentage 

of CD45+ cells in EVE treated and untreated skin, while control animals displayed a still significant increase 

in CD45+ cells at 48h from EVE treatment (p<0.01). This corresponds to a 1.5 folds reduced inflammatory 

response to EVE in clodronate treated animals at comparison with control animals (p=0.01) (fig. 36B).   
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Perilipin-A 

In control animals, EVE induced a significant increase in adipocytes linear density (p<0.05). In animals pre-

treated with clodronate, a significantly decreased adipocyte linear density was observed after EVE 

treatment at comparison with the untreated skin (p<0.05), with a global significant difference in adipocytes 

density outcome after EVE between clodronate treated and control animals (p<0.01) (fig. 37).  

Cell proliferation and vascular density 

A significant increase in both epidermis cell proliferation rate and dermis vascular density resulted from EVE 

treatment independently from clodronate pre-treatment, with no differences between groups (fig. 38A and 

38B). 

DISCUSSION 

We demonstrated the validity of the macrophages depletion model adopted showing that, albeit not 

completely absent, these cells were significantly less represented in normal animal skin and their 

accumulation following EVE stimulation was greatly decreased. The role of macrophages as pivot cells in 

tissue repair being well known, we observed that to this decreased migration into EVE-injured skin 

corresponded a decreased global inflammatory response.  

As hypothesized basing on previously published studies by other groups [164], macrophages depletion also 

corresponded to a hampered accumulation of adipocytes following EVE stimulation. While it cannot be 

excluded with this model alone that liposomal clodronate has no direct effect on adipogenesis basing on 

available literature it seems reasonable to suggest that macrophages play a key role in driving the 

adipogenic response that follows EVE stimulation. Taking into account the low numerosity in our groups, 

further studies are needed to consolidate the results. An alternative model that would add further insight 

would be a repetition of the study in congenitally macrophage deficient mice. Interestingly, we did not 

observe either a reduced response in epidermis cell proliferation nor in angiogenesis in macrophages 

depleted animals. This suggests that differing from adipogenesis, cell proliferation and angiogenesis occur 

independently from inflammation. Alternatively that the reduced degree of inflammation observed in 

macrophage depleted animals is still above threshold to induce such effects. Cell strain and 

hypoxia/ischemia are alternative factors that we demonstrated occur in EVE and that could potentially 

stand alone as mechanisms for cell proliferation and angiogenesis.  
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If these observations were confirmed in further studies, modulation of inflammation might prove an 

additional route to control or stimulate fat deposition for tissue engineering purposes.  
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Next steps: EXTERNAL VOLUME EXPANSION AS A MODEL FOR STUDYING LYMPHEDEMA AND 

LIPEDEMA 

A specific pathological condition goes under the name of lipedema. It consists in symmetrical enlargement 

of the extremities, more commonly the lower limbs, due to accumulation of adipose tissue not occurring in 

other body districts. Its pathogenesis is still unclear. It is considered a separate condition from lymphedema 

[192], but some similar features coexist. Even if, contrary to lymphedema, the main lymphatics are not 

disrupted, an increased interstitial pressure is observed in clinical lipedema[193-195].  

Lymphedema is a pathologic condition characterized by deficient interstitial fluid drainage and its 

accumulation in the periphery. It is due to a malfunction of lymphatic vessels, a collector system that 

channels excessive fluids and carries them back into the blood stream. Malfunction can be acquired or 

congenital. Congenital cases are the result of malformation of the lymphatic system and can arise early or 

later in life. Acquired lymphedema is due to a stop in the drainage system. It can derive from parasitic 

infections (filariasis), inflammation, or mechanical compression and disruption during surgery. In either 

case, the outcome is deficient removal of fluids and catabolites that accumulate increasing interstitial 

pressure and widen the extracellular space. 

If fluid stasis/accumulation is the most appreciated and primary effect in lymphedema, a key phenomenon 

is the stabilization of soft tissues swelling by transition from “pitting edema” to “non pitting edema”. In the 

earlier phase, fluids can be displaced from tissues by compression. Later on, tissues become hardened and 

uncompressible. Brorson showed how this is due to deposition of fat that accumulates in the spaces 

expanded by fluid stasis [138]. This transition from lymphedema to lipedema is of critical clinical 

importance. Cases in which development of lymphedema is diagnosed early can be treated by a 

combination of manual fluid drainage and surgical operations aiming at improving lymphatics function. 

Once transition occurs such approaches offer no significant benefit and treatment needs to focus primarily 

on elimination of the accumulated fat. How and when adipose tissue accumulates in lymphedema is not 

well understood. It is generally thought to be an overall late phenomenon occurring in chronic 

lymphedema.  

Animal models to study lymphedema intrinsically accept this temporal relationship and expect to identify 

accumulation of adipose tissue at long term follow-up.  

Our EVE model, as discussed before, shares many similarities with clinical lymphedema/lipedema and 

relative animal models such as those of Aschen and Zampell [141, 142]. And it shares many similarities with 

the models described by Morrison’s group which, even if not specifically directed at lymphedema, display 

many common features [145, 151, 166]. We observed how it stimulates deposition of adipose tissue, and 

this likely occurs as a result of an accumulation of extracellular fluid. Our data also suggest inflammation, 

and in particular macrophages play a primary role, similar to what observed by Morrison’s group and other 

authors [196, 197].  

Interestingly, and likely due to the acute process by which the pro-adipogenic environment is induced, our 

model showed an unexpectedly very rapid and efficient promotion of adipogenesis, so that quantifiable 

effects are present in days rather than weeks or months.  It is a peculiarity of our model which 

differentiates it from others available, and partly relates to the histological characteristics with 

physiologically poor hypodermis of mice skin that makes it suitable for precise quantification. It also 

suggests that fat deposition in lymphedema is likely to start at very early stage, and only take long to 
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become evident in much larger compartments such as human limds. On the other side, it leads to consider 

the hypothesis that in lipedema, similarly to lymphedema, lymph accumulation in the interstitial space 

might contribute to the mechanisms leading to fat accumulation. Our model appears as an interesting one 

in which to explore these issues, and potentially in which to test pharmacological approaches to control 

adipogenesis. 

We are currently planning further studies to better delineate the similarities and differences between the 

local environment stimulated by EVE in our model and that induced in other animal models for 

lymphedema.  
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CONCLUSIONS 

Mechanical forces are main determinants in the control of cell and tissue physiology. They act at multiple 

levels, either directly or by influencing the local environment. The responses to different mechanical 

stimulations vary in type and extent, and they can achieve effects as different as apoptosis, proliferation or 

differentiation. The understanding of the implications of mechanical stimulations is still incomplete, and 

the exploitation of mechanical forces in clinical settings is limited by the availability of devices that allow a 

practical use. The traditional use is restricted to the cases of distraction osteogenesis and tissue expansion. 

However, some techniques and devices are emerging in Plastic Surgery, as well as potential applications in 

the field of tissue engineering, which stimulates further exploration of these phenomena.  

In our series of studies, we successfully designed a miniaturized animal model in which to test External 

Volume Expansion. We demonstrated that the hypotheses of stimulation of cell proliferation, angiogenesis, 

and expansion of tissue compartments on which it is proposed as a preparatory method to fat grafting was 

confirmed in experimental settings. We showed how mechanical stretch of tissues, hypoxia and ischemia, 

edema, and inflammation are all intervening factors that can contribute to these effects. We suggest that 

pre-stimulation with EVE is successful in achieving increased fat graft weight and volume retention, and 

that its beneficial effects are maintained also in the setting of recipient sites having sustained radiation 

injury. We also demonstrated that EVE has a potential for direct stimulation of adipogenesis, and gathered 

supportive results to a role for macrophages in this.  

Our results validate the technique for its use in the preparatory phase to fat grafting, and can help moving 

towards making fat grafting a more effective and reliable procedure with improved outcomes for patients. 

We gathered evidence that help increasing our understanding of how EVE works and what it implies for 

tissues, which is the basis for optimizing the technique, make it safer, and increase patients compliance. For 

example, stimulation patterns can be improved, duration of treatment can be reduced, and practices such 

as continuation of EVE after fat grafting should be abandoned as detrimental. Our unexpected observations 

on adipogenesis also open interesting opportunities, such as that of re-starting EVE after fat grafting when 

this is at the peak of its remodeling phase. And linking this effect with the understanding of the similarity to 

other conditions in which adipogenesis is seen, both experimentally and in human disease, can expand the 

potential of our animal model to alternative fields. 
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