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RIASSUNTO 
 
 
Le matrici acellulari rappresentano uno scaffold promettente per l’ingegneria 

tessutale. Infatti, la matrice extracellulare costituisce un supporto sito-specifico che 

favorisce la crescita e il differenziamento delle cellule di qualsiasi organo.  

Ad oggi, le tecniche dell’ingegneria tessutale sono utilizzate sia per lo sviluppo ex 

vivo di sostituti tessutali, che per studiare la proliferazione e la differenziazione 

delle cellule quando si trovano all’interno di uno scaffold tridimensionale.  

In questo lavoro di tesi, i due seguenti progetti sono andati a valutare entrambe le 

potenzialità di matrici acellulari tessuto-specifiche: 

1- valutazione della capacità della matrice acellulare di indurre il 

differenziamento di progenitori renali da fluido amniotico in cellule renali 

mature; 

2- valutazione della matrice acellulare per la sostituzione di vasi sanguigni. 

1- La matrice acellulare renale è stata utilizzata per valutare la capacità 

differenziativa di progenitori renali da fluido amniotico in modo da valutarne 

una futura applicazione terapeutica. I progenitori renali sono stati seminati 

sulla matrice acellulare renale, che, in vitro, ne ha promosso la proliferazione, 

il mantenimento del fenotipo podocitario e la differenziazione in cellule 

tubulari. Per valutare in vivo il potenziale differenziativo di queste cellule, la 

matrice da sola o ripopolata con le cellule è stata impiantata all’interno di un 

rene di topo nudo. I progenitori renali si sono ulteriormente differenziati, si 

sono integrati all’interno delle strutture tubulari dell’ospite e hanno 

promosso la migrazione di cellule differenziate murine all’interno dello 

scaffold.  

2- La matrice acellulare di aorta è stata utilizzata per lo sviluppo di sostituti 

vasali. Nonostante vasi autologhi o costituiti di polimeri sintetici vengano già 

utilizzati nella pratica clinica per la ricostruzione di vasi di piccolo diametro 

(<5 mm), numerosi sono gli svantaggi legati al loro utilizzo, quali l’iperplasia 

della tonaca intima e la degenerazione arteriosclerotica. Lo scopo di questo 

studio è stato quello di sviluppare sostituti vasali utilizzando come scaffold 
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vasi decellularizzati. Matrici acellulari da sole o ripopolate con cellule 

endoteliali da microcircolo sono state impiantate nell’aorta di ratto Lewis. 

Come osservato negli impianti di sola matrice acellulare, la mancanza della 

copertura endoteliale portava all’iperplasia dell’intima e all’aumento di 

incidenza dei processi trombotici, sottolineando la necessità di 

reendotelizzare in vitro il vaso decellularizzato prima dell’impianto in vivo. 

Infatti, i sostituti vasali costituiti da matrice acellulare e cellule endoteliali da 

microcircolo hanno dimostrato di avere una buona resistenza al flusso e non 

presentavano trombi al loro interno. Sebbene questi vasi fossero assottigliati 

e mostrassero una leggera iperplasia della tonaca intima, questo approccio 

presentava due principali vantaggi: permetteva di ottenere sostituti vasali in 

un tempo clinicamente utile ed eliminava la necessità di rimuovere vasi sani 

per ottenere cellule endoteliali autologhe. 
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ABSTRACT 
 
 
Acellular matrices (AMs) seem to be a very promising scaffold in Tissue Engineering 

(TE) and can be considered as temporary inductive site-appropriate templates to 

support the growth, differentiation, and function of the parenchymal cell population 

of each organ. Nowadays, TE techniques are used both to develop tissue substitutes 

ex vivo and as reliable tool to investigate cell behaviour, differentiation and 

proliferation in 3-dimentional environments.  

In this work the following two different projects have investigated both 

potentialities using tissue-specific AMs: 

1- influence of AMs on differentiation of kidney progenitor cells from amniotic 

fluid into mature renal cells; 

2- AMs as biomaterial to develop vessel substitutes. 

1- Kidney AMs (KAMs) were used to evaluate the differentiation of kidney 

progenitor cells from amniotic fluid into mature renal cells in order to better 

understand whether they could be suitable for future application in therapy. 

Renal progenitors were seeded into KAMs, which led them to proliferate, 

maintain podocyte phenotype and differentiate into tubular cells in vitro. To 

further evaluate the differentiative potential of KAMs, grafts composed of 

KAM with or without cells were intrarenal implanted into nude mice. In vivo, 

progenitors from amniotic fluid expressed mature renal markers, attracted 

inside KAMs differentiated murine cells and integrated into host structures. 

2- Although autologous vascular grafts and artificial materials have been used 

for reconstruction of small diameter (<5 mm) blood vessels, the poor 

availability of vessels and the occurrence of intimal hyperplasia and 

progressive atherosclerotic degeneration represent shortcoming of these 

vascular prostheses. Therefore, this study aimed to develop AM-based 

vascular grafts. Both aorta AMs (AAMs) alone and AAMs previously 

reendothelized with skin microvascular endothelial cells (ECs) were in vivo 

implanted and analyzed. The lack of reendothelization, leading to intimal 

hyperplasia and increased incidence of thrombosis observed in AAMs grafts, 
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have indicated the need to provide in vitro an endothelial coverage of 

decellularized tissue. Indeed, grafts composed of AAM and skin 

microvasculature ECs shown good patency and no thrombi. Although these 

grafts appeared narrowed and a moderate hyperplasia has been detected in 

the inner layer, they presented two main advantages: they were obtained 

into a clinically relevant time frame and eliminated the need to remove 

healthy vessels for collecting autologous ECs.  
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INTRODUCTION 
 
 
1. TISSUE ENGINEERING 

End-stage disease is a serious, growing and costly issue. At the present, definitive 

treatment for end-stage organ failure is allogenic transplantation. However, a 

combination of unremitting demands, expensive and potentially dangerous 

immunosuppression, and the requirement that donor organs be physiologically 

viable means that the clinical need will never be met and many patients on 

transplantation waiting list will die before a donor organ becomes available. 

Patients fortunate enough to receive a donor organ endure life-long 

immunosuppressive therapies with its associated morbidity and are at risk of acute 

or chronic organ rejection (Badylak et al, 2012). 

Langer and Vacanti postulated that living organs might be designed and built based 

on the principle of biological science and technologic advances in the engineering 

disciplines (Langer et al, 1993).  This new field, named Tissue Engineering (TE), 

combines aspects of cell biology and transplantation, material science and 

biomedical engineering to develop biological substitutes that can restore and 

maintain the function of damaged tissue and organs.  

TE strategy could be used also as a reliable tool to investigate cell behaviour, 

differentiation and proliferation pathways in 3-dimentional environments, in order 

to decrease in vivo experiments. Besides, scaffolds miming native supports could be 

used in vitro as an alternative approach to improve cells proliferation and 

differentiation. 

The two basic components of this strategy are cells and biomaterials. The 

introduction of cells is designed to stimulate regeneration, promote vascularisation 

and supplement the production of hormones and growth factors. Biomaterials, 

natural or synthetic scaffolds, guide the direction of new tissue growth, provide the 

proper spatial environment to restore tissue structure and function and may 

introduce bioactive molecules, attracting cells and growth factors from the host 

after implantation (Atala, 2012). 

1.1 Cell types used in TE 

Depending on the organ to be restored, several cell types are currently investigated 

in order to obtain a tissue that can perform the appropriate physiologic/metabolic 
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duties. Briefly, cells used in TE can be tissue-specific differentiated cells or stem 

cells.  

1.1.1 Tissue-specific differentiated cells 

These cells are harvested from the specific organ to be regenerated, cultured ex vivo 

and used in the same patient without rejection, in an autologous manner. One of the 

limitation of this technique has been the inherent difficulty of growing specific cell 

types in large quantities.  

1.1.2 Stem cells 

The interest about stem cells has been increasing over the past years, since their 

discovery in the early ’90s. Stem cells might be a promising tool for regenerative 

purposes because of their capability to become almost any cell of an adult organism. 

It is universally accepted that a stem cell possesses two fundamental 

characteristics: long term self-renewal and pluripotentiality.  

Self-renewal describes the unique capability of these cells both to reproduce itself 

indefinitely and to produce cell progeny that matures into more specialized, organ- 

specific cells.  

Pluripotentiality is defined as the ability of a stem cell to give rise to different 

tissues. Based on their capability to differentiate into different cell types, stem cells 

are divided into different categories. Pluripotent stem cells are defined by the ability 

to differentiate, under certain stimuli from the surrounding environment, into cells 

of all the three germ layers and germ cells. A cell is defined as multipotent if can give 

rise to more than one cell type and unipotent if it can differentiate into one cell type.  

Embryonic Stem Cells 

Embryonic Stem Cells (ESCs) are collected from the Inner Cell Mass (ICM) of the 

blastocyst at five days from the fertilization of the egg. The blastocyst includes three 

structures: the trophoblast, which is the cell layer surrounding the blastocyst; the 

blastocoel, which is the hollow cavity inside the blastocyst; and the ICM, which is a 

group of approximately 30 cells at one end of the blastocoel. ESCs are defined as 

pluripotent. For this reason, ESCs have been widely investigated for their wide 

capability to differentiate into any cell line of the body, being a reliable tool for cell 

development and differentiation pathway studies. However, their clinical 
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application is limited by ethical issues, their origin that can evoke an immune 

response, and   the potential to form teratomas.  

Fetal Stem Cells 

Fetal Stem Cells can be isolated from two different sources, the fetus proper and the 

supportive extra-embryonic structures (amniotic fluid, Wharton’s jelly, placenta 

and amnion).  

Several population have been obtained from extra-embryonic structures; fetal cells 

grow well in culture, are able to differentiate into multiple cell types and may be 

less likely to be rejected following transplantation. Besides, the extracorporeal 

nature of fetal stem cell source facilitates isolation, increases the number of stem 

cells that can be obtained and overcomes ethical concerns (Marcus et al, 2008). 

In particular, De Coppi et al (2007) have shown that amniotic fluid contains a novel 

type of stem cell which is capable of being maintained in an undifferentiated state in 

culture for long periods and can be induced to differentiate into many different cell 

types. Their pluripotency, high proliferation rates, multi-differentiation capability 

and lack of teratoma formation when injected in vivo make them attractive 

candidates for cell sourcing. In addition, there are no serious ethical issues with the 

use of these cells, which is an advantage over other stem cells such as ESCs and 

induced Pluripotent Stem cells (iPS). Very recent exciting results using amniotic 

fluid stem (AFS) cells or AFS-combined engineered tissues for therapeutic 

applications have encouraged their use in the field of regenerative medicine in more 

advanced and broader manners (Joo et al, 2011). 

Adult Stem Cells  

Adult Stem Cells (ASCs) are located within the tissues of the adult body. Under 

specific stimulation, they undergo differentiation and replace the loss of cells in an 

injured compartment. A specific organ localization, called niche, is thought to 

harbor the stem cells in an environment that protects cells from differentiation.   

Examples of ASCs are hematopoietic stem cells (HSCs). HSCs, localized within the 

bone marrow, are the most important adult stem cell line. HSCs are commonly used 

for the treatment of leukemia diseases. Furthermore, HSCs were shown to 

differentiate into myocites, endothelial cells, hepatocytes and epithelial cells of liver, 

gut, lung and skin. 
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In bone marrow another population, called bone marrow stromal stem cells (BM-

MSCs) shows to differentiate into mesenchymal lineages. BM-MSCs were shown 

capable to differentiate in vitro into adipocytes, chondrocytes, muscle cells, tendons, 

osteoblasts and endothelial cells. In vivo experiments reported successful 

differentiation of mouse BM-MSCs into brain astrocytes, glial cells, CNS cells, 

hepatocytes, endothelial and myocardial cells in adult mice (Raff, 2003). 

Somatic Cell Nuclear Transfer and Induced Pluripotent Stem Cells 

Scientific knowledge allows us to modify cell genetic background and gene 

expression and to obtain different types of exogenous stem cells. Somatic Cell 

Nuclear Transfer (SCNT) cells were derived from the injection of an endogenous 

somatic cell nucleus within an oocyte. The result was the creation of a pluripotent 

cell, capable of being implanted in utero or used to retrieve new stem cell lineages. 

iPS cells were obtained with insertion of pluripotent genes within the DNA of a 

somatic cell. Retroviral introduction of transcription factors OCT-4, SOX-2, KLF4 and 

MYC induced pluripotency within somatic cells. Recent studies have shown that 

OCT-4 and SOX-2 could be combined with other genes to produce iPS cells. iPS cells 

were able to participate to the embryonic development when injected in a 

blastocyst. 

However, the efficiency of the reprogramming process is jeopardized by the low 

yield of transfection and the long time of reprogram. Moreover, the employment of 

viral delivery system like lentiviral vectors might increase the risk of insertions of 

foreign genetic sequences in host genome thus causing gene mutations and cell 

transformation. Recently, small molecules able to modulate specific targets in 

receptor signaling and epigenetic machinery have been used to improve the 

reprogramming process and/or replace some transcriptional factors, thus partially 

or totally avoiding the host genome involvement. In this context, histone 

deacetylase inhibitors (HDACIs), such as valproic acid (VPA), thricostatin A (TSA), 

and suberoylanilide hydroxamic acid (SAHA), induce the hyperacetylation of 

histones modifying chromatin moiety and affecting gene expression (Huangfu D et 

al, 2008). 

1.2 Biomaterials used in TE 

The biomaterial itself should be able to i) naturally provide cell attachment and 

support; ii) dispose of sufficient area to allow cell proliferation; iii) develop the 
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ability of shaping specific structures; iv) in vivo degrade without releasing toxic 

materials; iv) allow tissue remodelling and resorption avoiding foreign body 

reaction and iv) allow ingrowth of host cells. Furthermore, it can also provide 

mechanical support against in vivo forces such that the predefined 3-dimensional 

structure is maintained during tissue development. Two classes of biomaterials 

have been used for engineering tissues and organs: synthetic polymers and natural 

biomaterials.  

Synthetic biomaterials 

Synthetic biomaterials present the following advantages in comparison with natural 

scaffolds: tightly control of physical properties, such as mechanical strength, 

degradation rate and pore size, and production with fewer batch-to-batch 

variations. One drawback of the synthetic polymers is lack of biologic recognition, 

although a number of groups are attempting to design synthetic scaffolds, which 

incorporate proteins or other molecules to assist in recognition (Atala, 2012). So, 

adhesion molecules can be adsorbed or covalently bound to the surface of scaffold. 

Extracellular matrix (ECM) adhesion proteins, such as fibronectin, collagen and 

laminin, present some disadvantages in the view of medical applications. They can 

elicit immune response, since they are isolated from other organisms and need to be 

purified. They also need to be refreshed continuously, because they are object of 

proteolytic degradation.  On the contrary, small peptides, containing only the 

sequence responsible for cell adhesion, are characterized by higher stability, easier 

characterization, and possibility to be packed with a higher density on surfaces. 

Thus, their use can overcome most of problems connected to ECM proteins. For 

example, small peptides can be designed to contain RGD sequence (Arg-Gly-Asp) 

which mediates cell-adhesion via cell membrane integrin receptors, or heparin 

binding sequences able to interact with cell membrane heparin sulphate 

proteoglycans.   

The major classes of synthetic biomaterials include glycolic acid derivatives (PGA), 

lactic acid derivatives (PLA), and other polyester derivatives (as poly(lactic-co- 

glycolic acid, PLGA). These polymers have gained Food and Drug Administration 

approval for human use in a variety of applications, including sutures. The 

degradation products of PGA, PLA, and PLGA are nontoxic, natural metabolites that 

are eventually eliminated from the body in the form of carbon dioxide and water. 
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Because these polymers are thermoplastics, they can easily be formed into a 3-

dimensional scaffold with a desired microstructure, gross shape, and dimension by 

various techniques. Electrospinning has been used to quickly create highly porous 

scaffolds in various conformations.  

Natural biomaterials 

Natural scaffolds are made up of protein or carbohydrates with particular 

biochemical, mechanical, and structural properties. They can be derived from plant 

or animal sources, and are mostly found to be both biocompatible and 

biodegradable. These scaffolds have an increased advantage due to the presence of 

multifunctional groups on scaffold surfaces, which can be tailored according to 

specific applications. Examples of natural biomaterials are collagen, chitosan, 

hyaluronic acid, fibrin, and gelatin, which have been applied for the repair and 

reconstruction of several tissues. Even though natural scaffolds have been applied 

for a variety of tissue-engineering applications. Limitations include the inability to 

control or modify the chemical and biologic properties of these scaffolds for specific 

applications (Patel et al, 2008). 

Among natural biomaterials, acellular tissue matrices (AMs) have been successfully 

used both in pre-clinical animal studies and in human clinical applications. AMs are 

prepared by removing cellular components from tissues and are commonly used to 

facilitate the constructive remodeling of a variety of tissues.  

The preparation of a 3-dimensional, AM scaffold from an intact mammalian organ 

requires several processing steps, each of which can markedly affect the structure 

and composition of the biomaterial and the associated host response that these 

scaffolds will elicit when utilized as templates for organ reconstruction. The 

effective removal of antigenic epitopes associated with cell membranes and 

intracellular components of organs and tissues is necessary to avoid, or at least 

minimize, adverse immune responses by allogeneic or xenogeneic recipients. The 

decellularization process that must retain the native composition and structure of 

the associated matrix, typically involves exposure of the tissue to detergents, 

proteases, and chemicals by perfusion of the native vasculature. Commonly used 

protocols include the perfusion of chemical or enzymatic agents and physical 

methods, such as sonication, freezing, and thawing, coupled to shaking in order to 

disrupt cell membranes, release cell contents, and facilitate the rinsing and removal 
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of cell remnants from the ECM. Combinations of these various approaches are 

typically used to maximize the efficiency of the process for each tissue and organ. 

Organ decellularization may involve the delivery of chemical agents by vascular 

perfusion. As a general rule, the use of detergents and chaotropic agents such as 

TRITON X, sodium dodecyl sulfate, and sodium deoxycholate should be minimized 

whenever possible to avoid damage to the ultrastructure and composition of the 

native ECM. 

The specific composition varies depending on the source tissue/organ from which 

the AM is prepared. ECM proteins are arranged in a unique, tissue-specific, 3-

dimensional ultrastructure and are ideally suited to the tissue or organ from which 

the AM is harvested. The peculiar structure and composition can be largely 

preserved by the appropriate use of processing steps required for the 

decellularization of the tissue. In general, however, AMs from all organs consists 

mainly of type I collagen, glycosaminoglycans, fibronectin, laminin, and various 

types of growth factors. Furthermore, AMs maintain organ-specific structures, such 

as the collagen type IV and laminin-rich basement membrane of blood vessels. 

Ultrastructural characteristics of the matrix appear to play important roles in 

modulating the cell behaviour either by regulating cell ability to migrate into and 

attach to specific locations within the scaffold or by influencing tissue-specific 

phenotypic differentiation. Cell proliferation, migration, and differentiation, as well 

as processes such as angiogenesis are mainly regulated in part by cell-signaling 

mechanisms involving soluble molecules. Thus, the biologic signaling activities 

provided by degradation products of AMs have a marked effect on the host-

remodeling response following in vivo implantation. These scaffold materials can be 

considered as temporary inductive site-appropriate templates to support the 

growth, differentiation, and function of the parenchymal cell population of each 

organ (Badylak et al, 2011).  
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2. TISSUE ENGINEERING IN KIDNEY DISEASE 

2.1 End Stage Renal Disease and Chronic Kidney Disease   

End Stage Renal Disease (ESRD) is a condition of chronic and progressive injury of 

the kidney, leading to a complete failure of the renal system. ESRD usually occurs 

when renal functionality is less than 10% of normal activity (Perin et al, 2008). 

According to the 2007 United States Renal Data System, the number of United States 

patients in treatment for ESRD was 400,000, with more than 20,000 waiting for 

organ transplantation. Predictions for the year 2020 are showing an increase in 

patients undergoing dialysis and in need of kidney replacement. Progression to 

ESRD can be simplified within two major processes known as Acute Kidney Failure 

(AKF) and Chronic Kidney Disease (CKD).  

AKF is characterized by sudden and fast kidney function deterioration. Pathological 

kidney functionality is characterized by a decrease in filtration rate, starting from 

previously called pre-renal acute kidney injury and up to unresponsiveness. Kidney 

stones, infections, cancer or drug intoxication can be causes for AKF (Lameirea et al, 

2008). Common treatments to improve renal perfusion increase cardiac output, 

replenish the circulating volume, enhance cardiac inotropy, and induce 

vasoconstriction. About 4% of all critically ill patients with AKF will require dialysis. 

CKD is recognized as a major health problem affecting approximately 13% of the 

United States population. Numbers of prevalent CKD patients will continue to rise, 

reflecting the growing elderly population. CKD is defined as the presence of kidney 

damage, manifested by abnormal albumin excretion or decreased kidney function 

that persists for more than 3 months. Typically, kidney function is quantified by 

glomerular filtration rate (GFR), the rate at which an ultrafiltrate of plasma is 

produced by glomeruli per unit of time, and is the best estimate of the number of 

functioning nephrons or functional renal mass. The early stages of CKD (GFR 

between 90 and 60 mL/min per 1.73 m2) are manifested by kidney damage and are 

generally asymptomatic: the kidney functions normally but the risk for progressive 

disease is significant. As kidney disease worsens, renal function begins to 

deteriorate (GFR between 29 and 15 mL/min per 1.73 m2). Eventually, kidney 

failure (GFR < 15 mL/min per 1.73 m2) occurs and kidney replacement therapy is 

required (NKF-KDOQI, 2007). Common origins for CKD are pathologies affecting the 

kidney compartment like analgesic nephropathy, glomerulonephritis, kidney stones, 
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obstructive uropathy and reflux nephropathy, lupus, and polycystic kidney disease, 

genetic malformations or diseases affecting other organs, like diabetes and 

hypertension. Complications derived from CKD are various. The loss of function is 

usually coupled with an increase of fibrosis, amyloid deposition and glomeruli 

destruction. Major sequelae of CKD include continued progression of the disease 

and development of kidney failure requiring kidney replacement therapy, 

development and/or progression of cardiovascular disease, anemia, and bone 

disease.  

There are several therapeutic and pharmacological tools used by clinicians to slow 

the progression and symptoms of ESRD, but the only effective treatments up to now 

are dialysis and transplantation.  

Currently, in the early stages, CKD drug therapy is limited to administration of 

antihypertensive agents to decrease blood pressure, and consequentially decrease 

the risk of injury provoked by high blood pressure, and limit proteinuria. Although, 

pharmacological treatments are a good start point to treat kidney disease, 

mechanisms leading to ESRD are multiple and very complex and the administration 

of one or more drug is not enough to treat and cure the CKD. Even if on 

pharmacological therapy many patients eventually require renal replacement 

therapy, or dialysis. Dialysis is a clinical procedure that substitutes the loss function 

of the kidney for what concerns the blood purification. Dialysis is not a complete 

replacement therapy because it provides only blood filtration while kidney is an 

endocrine organ responsible for the secretion of hormones that are critical in 

maintaining hemodynamics (renin, angiotension II, prostaglandins, nitric oxide, 

endothelin, and bradykinin), red blood cell production (erythropoietin), and bone 

metabolism (1,25-dihydroxyvitamin D3 or calcitriol). In addition, although life-

sustaining, dialysis does not provide a good quality of life and several side effects 

may occur such as hypotension, arrhythmia, and complications of vascular access 

placement. 

 Kidney transplantation from a live donor is the first choice for eligible patients who 

require renal replacement therapy: it has lifestyle advantages and is cheaper than 

dialysis. Nonetheless, availability of donor kidneys is very limited. Many adults on 

the deceased donor waiting list will die on dialysis before they receive an organ. 

Thanks to the use of immunosuppressive drugs, by now it is possible to transplant 

not well-matched organs. However, immunosuppression takes its toll in both the 
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short and long term. In the short term, infection is a particular concern, especially 

with viruses such as cytomegalovirus, while, in the long term, the incidence of most 

cancers is increased in patients who are immunosuppressed.  

2.2 Renal regenerative medicine 

In order to overcome the limits of current therapies, scientists and clinicians have 

looked for alternative approaches for CKD management. In the last years TE has 

grown as an alternative for several diseases and the possibility of restoration of 

kidney tissue using cells, regenerative factors, biomaterials, or combination of these 

three, is approaching (Dankers et al, 2011).   

 

 

 

 

 

 

 

 

 

2.2.1 Cell-based approaches 

Many investigators have searched for small subpopulation of resident stem cells 

that might be responsible for the rapid proliferative response after renal injury 

while in healthy kidney they stay in a dormant state. In rat kidneys renal stem cells 

were discovered among tubular epithelial cells and in the papilla and they have 

been shown to differentiate into renal tubules when injected under the renal 

capsule. However, the clinical significance of these observations is still unclear 

(Gupta et al, 2006).  

BM-MSCs seem to contribute to renal regeneration. After damage, they can replace 

tubular, mesangial, interstitial, endothelial cells and podocytes, but the relative 

contribution is very low and does not exceed a few percent of the total proliferating 

cell fraction. However, they can produce a variety of paracrine factors, such as VEGF 

(Vascular Endothelial Growth Factor), IGF (Insulin-like Growth Factor), bFGF 

(Fibroblast Growth Factor), HGF (Hepatocyte Growth Factor) and TGFβ 

Renal regenerative medicine. Three possible strategies, or combination of them that can be applied to 
regenerate and/or engineer renal tissue (Dankers et al, 2011) 
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(Transforming Growth Factor β) that can enhance repair. Despite the optimism 

about their use for renal regeneration, they have been shown to be ineffectiveness 

in case of kidney fibrosis and to differentiate towards myofibroblasts producing 

excessive collagens.  

A number of studies have explored the possibility to generate renal epithelia from 

ESCs. After injection, ESCs have been shown to integrate into the tubuli of 

developing kidneys. However, differentiation towards a specific cell lineage is very 

complicated; it depends on factors secreted in the microenvironment and it is 

difficult to mimic in vitro (Dankers et al, 2011). Besides, there are still several 

ethical concerns about their clinical use.  

Perin et al (2010) have shown that amniotic fluid could represent a novel source of 

stem cells that may function to modulate the kidney immune milieu in AKF. When 

injected into the damaged kidney, amniotic fluid stem cells provided a protective 

effect, ameliorating AKF in the acute injury phase by decreasing the number of 

damaged tubules and apoptosis therein and by promoting proliferation of tubular 

epithelial cells. 

Recently, Sedrakyan et al (2012) demonstrated that stem cells from amniotic fluid 

could be beneficial also in kidney diseases characterized by progressive renal 

fibrosis. Amniotic fluid stem cells did not differentiate into podocyte-like cells, but 

the mechanism of renal protection was probably the paracrine/endocrine 

modulation of both pro-fibrotic cytokine expression and recruitment of 

macrophages to the interstitial space.  

Da Sacco et al (2010) demonstrated that human amniotic fluid provides a new 

source for renal progenitor cells. These cells were grown in culture for several 

passages and expressed typical renal markers. The identification of specific renal 

progenitors suggests that human amniotic fluid may represent a valuable new 

source of cells for regenerative therapies that may be applicable to a broad range of 

renal disease. 

2.2.2 Growth factor-based approaches 

Exogenous growth factor administration to enhance renal regeneration has been 

studied in large detail. The up-regulation of growth factor genes promotes renal 

repair processes. Systemic injection of  EGF and HGF successfully enhanced 

recovery and survival after acute kidney injury in animal models (Hammerman et 
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al, 1994). However, a major disadvantage is that these therapies might lead to 

unwanted side effects in other organs, especially when the drug is administered 

systemically.  

2.2.3 Biomaterial-based approaches 

In the future, a possible solution for patient with CKD, besides dialysis or 

transplantation, might be a tissue-engineered kidney, which should be able to 

replace all kidney functions, including endocrine and metabolic activities.  

A new approach is the bioengineering of an extracorporal renal device using a 

membrane and a single renal cell type that has to form a monolayer of cells in order 

to replace critical endocrine and metabolic renal function. Such a bioartificial kidney 

might be applied as a renal assist device and exert its function when placed in series 

with a conventional hemodialysis module (Aebischer et al ,1987).   

Humes et al (1999) designed a membrane composed of human epithelial cells in a 

hollow fiber cartridge that was characterized both by pore selectivity and hydraulic 

permeability as the native kidney. The transport of electrolytes was absent but the 

activity of renal epithelial cells could attenuate the consequences of septic shock by 

modulating plasma cytokine levels.  

Few experiments have been conducted where renal cells were cultured in vitro, 

seeded into a polyglycolic acid polymer scaffold and subsequently implanted into 

athimic mice. Over time, formation of nephron-like structures was observed within 

the polymer (Amiel et al, 2000). These preliminary results, when improved, could 

easily be used to produce 3-dimensional functional renal structures that can be 

used in ex-vivo or in vivo filtering units. Yoo et al (1996) harvested mouse renal cells 

and seeded them onto a polycarbonate tube. This device was connected at one end 

to a silastic catheter which terminated into a reservoir, and then implanted 

subcutaneously in athymic mice. Histological examination demonstrated extensive 

vascularization as well as formation of glomeruli and highly organized tubule-like 

structures. Nonetheless, since adult cells are completely differentiated and their 

response to growth factors can be absent or different from cells in the developing 

kidney, the seeding and the integration of these systems may fail or be partial.  

Therefore, whole-organ approaches, such as reseeding of AMs with stem cells have 

been investigated. Ross and colleagues (2009) infused mouse ESCs through the 

renal artery and the ureter into an isolated rat renal AM and showed proliferation 
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and cell-specific differentiation of the stem cells within the glomerular, vascular and 

tubular compartments. In an other study acellular scaffolds with maintained 

expression patterns were reseeded with cells obtained from donor kidneys of non-

human primate and fetal kidney cells. AMs demonstrated the capacity to support 

cells attachment and migration, promoting cell repopulation (Nakayama et al, 

2010). At the present, much work needs to be done for ex-vivo kidney regeneration 

with AMs and cell therapy approaches to become a viable clinical option.  

 

3. TISSUE ENGINEERING IN VASCULAR DISEASE 

3.1 Vascular disease 

Vascular disease can be divided into Coronary (CAD) and Peripheral Artery Disease 

(PAD). 

CAD, characterized by anatomic or functional alterations of coronary artery, can be 

congenital, due to a birth malformation and rather rare, or acquired, as result of a 

narrowing of the blood vessels. It is the leading cause of death worldwide. 

PAD refers to the obstruction of arteries that carry blood to the legs, arms, stomach 

or kidneys. There are two types of PAD:  

- functional PAD doesn't involve defects in the structure of blood vessels that are 

not physically damaged. This disease has often symptoms related to “spasm” that 

may come and go and it can be caused by temperature, emotional stress or smoking. 

- organic PAD is caused by structural changes in the blood vessels. Examples could 

include inflammation and tissue damage. It can be caused by fatty buildups 

(atherosclerosis) in the inner wall of arteries which block normal blood flow. 

3.2 Vascular disease therapy and vascular regeneration 

PAD management includes lifestyle changes, medicines or both. Currently 

pharmacological therapy is limited to the administration of antiplatelet agents and 

cholesterol-lowering agents (statins). When the drug therapy is not enough, 

angioplasty or bypass surgery may be needed.  

Coronary and peripheral artery bypass grafting is commonly used to relieve the 

symptoms of vascular disease. The grafts usually consist of either mammary artery 

or saphenous vein harvested from the patient. However, the supply of native vessels 

may not be sufficient for multiple bypass or repeat procedures. Furthermore, 

saphenous vein in the elderly patients is prone to thrombi, neointimal formation, 
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atherosclerosis or aneurysm when transplanted into high-pressure arterial sites. 

Thus, the use of materials other than arterial or venous conduits is required. 

Synthetic vascular prostheses, such as Dacron fabric grafts and expanded 

polytetrafluoroethylene (ePTFE), have been developed to overcome the limited 

supply of native graft materials. They perform reasonably satisfactorily in high-flow, 

low-resistance conditions such as the large peripheral arteries, but they are not as 

suitable for small calibre arterial reconstructions (e.g. coronary or lower leg 

circulation). Indeed, they are prone to thrombus induction, embolism and occlusion, 

may harbour bacteria (resulting in graft infection) and may act as a foreign body in 

the patient. They are also associated with poor healing, lack of compliance and 

excessive intimal hyperplasia, particularly near the sites of anastomosis (Thomas et 

al, 2003). Overall, synthetic grafts are not suitable for reconstruction of small-

diameter (internal diameter <5 mm) arteries, due to thrombosis, limited 

reendothelialization, and neointimal hyperplasia, owing mainly to the inherent 

properties of the synthetic materials.   

To avoid the synthetic scaffold limits, some groups have continued to use synthetic 

graft materials as a base for further coats of active materials, such as collagen, fibrin, 

gelatin, Growth Factor Stimulating Factor (GSF) or RGD. Synthetic grafts have also 

been used as a scaffold for supporting cells. However, vascular cells cannot remodel 

ePTFE or Dacron in the same way as they remodel normal ECM components such as 

collagen and elastin and they will detach when exposed to blood flow. An other 

approach is to passivate synthetic grafts with ‘‘biologicals’’ including heparin, 

hirudin, prostaglandins, growth factors, anticoagulant peptide sequences, dextran 

derivatives (to prevent coagulatory events), and antibiotics (to minimise graft 

infections). These molecules are designed to either remain in situ (and thus act 

locally) or to be released into general circulation (Thomas et al, 2003).  

To overcome the limits of current therapies, scientists and clinicians have looked for 

alternative approaches using new biomaterials and cells in order to obtain small 

diameter vessel substitutes.  

3.3 Biomaterials used in vascular regeneration 

For a successful regenerated vascular construct the scaffold material plays a major 

role in all the tissue engineering strategies as it provides the basic framework for 

cell growth. Various materials have been utilized for blood vessel engineering, 
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including synthetic biodegradable polymers and natural biomaterials. Most of these 

scaffolds have also undergone preclinical studies in animals. 

3.3.1 Synthetic biomaterial 

Synthetic scaffold are easily available and inexpensive. These polymers can be 

precisely modified to adjust their degradation rate, biocompatibility and elasticity. 

The most preferred and widely used materials for bioresorbable grafts included 

polyglycolic acid (PGA), polydioxanone (PDO), and polylactide (PLLA) which are 

FDA approved. 

PGA is the most commonly studied scaffold. Its highly porous structure allows 

nutrient diffusion and subsequent neovascularisation. Moreover, it is easily handled 

and fabricated into different shapes. As an approach to develop small-diameter 

vascular conduits, Niklason et al (1999) seeded bovine aortic smooth muscle cells 

(SMCs) on tubular PGA scaffolds and cultured for 8 weeks under conditions of 

pulsatile pressure before seeding with endothelial cells (ECs). They found that the 

endothelialisation was present only in pockets of the graft surface with persistent 

PGA remnants. This failure of endothelialisation may be due to cytotoxic 

degradation products of PGA or lack of cell signalling support. 

Poly ε-caprolactone (PCL) is another popular biomaterial with a slow degradation 

profile, and it is eliminated through macrophage and giant cell encapsulation. 

Therefore, it is most suitable for the design of long-term implantable systems.  

The first clinical application of an artificial vessel based on biodegradable scaffold 

was reported by Shin'oka et al (2001) in a 4-year old girl. A Polycaprolactone–

polylactic acid copolymer tube was reinforced with woven PGA and then seeded 

with the patients own venous ECs. After that, several patients underwent tissue 

engineered graft implantation with cultured autologous venous cells. There was no 

evidence of aneurysm formation, graft rupture, graft infection, or ectopic 

calcification. Similar results were obtained using BM-MSCs (Shin'oka et al, 2005). 

Although synthetic materials are advantageous over the natural polymers in terms 

of strength and tunable degradation characteristics, they also lack the appropriate 

cell signaling cues which mainly limit the cell maturation, differentiation and 

appropriate ECM secretion necessary for tissue regeneration. These materials may 

also lead to cell delamination from the surface which is also a critical issue when it 

comes to luminal endothelialisation and blood shear flow characteristics. 
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Modification of synthetic surfaces by attaching specific cell responsive groups, like 

RGD peptide sequences or heparinized surfaces, is being explored to overcome 

these issues (Thomas et al, 2003). 

3.3.2 Natural biomaterials 

An important alternative to synthetic materials is the use of AMs derived from ex 

vivo tissues. Decellularized biological scaffolds have the advantage of being rich in 

the cell signalling components essential for cell adhesion, migration, proliferation 

and differentiation. Preserved AM components include collagen, elastin and 

glycosaminoglycans. Intact collagen and elastin fibers ensure retention of tensile 

strength and elastic recoil properties, and there is evidence to suggest that they 

inhibit SMC proliferation, an early step of intimal hyperplasia. Glycosaminoglycans, 

which include chondroitin, dermatan, heparan and heparin sulphate, play a crucial 

role in EC adhesion and proliferation, inhibition of SMC proliferation and migration 

following injury or inflammation, in addition to their antithrombotic properties. 

Biological vascular substitutes also display a greater resistance to infection 

compared to synthetic grafts (Yow et al, 2006). 

One notable example of a decellularized tissue that is being used in vascular tissue 

engineering is the small intestinal submucosa (SIS) that is seen to retain angiogenic 

growth factors, such as b-FGF and VEGF. At first, decellularized SIS without any 

modification was used as vascular substitute showing a good patency rate as a 

large-diameter graft (Lawler et al, 1971). After almost 30 years, Huynh and 

colleagues (1999) constructed a scaffold from a collagen-based biomaterial derived 

from SIS and bovine collagen type I. The inner lining was treated with heparin and 

this acellular graft was implanted into rabbit aortas demonstrating promising 

results as small-diameter graft. 

Various other decellularized matrices were also used like bovine ureters, porcine 

carotid artery and aorta and even canine carotid arteries (Clarke et al, 2001; 

Conklin et al, 2002).  Decellularized human umbilical arteries were also implanted 

into nude rats as abdominal aorta interposition grafts which remained mechanically 

intact and patent for up to 8 weeks (Gui et al, 2006). 

However, the luminal surface of these decellularized matrices without EC lining 

carries a substantial risk for thrombosis when exposed directly to the blood flow. 

Hence in recent years, much work has been focused on recreating tissue-engineered 



 

 21 

vascular grafts by recellularizing biomaterials with host vascular cells prior to 

implantation. Bader et al (2000) used decellularized porcine aortas, which were 

then repopulated with human myofibroblasts and ECs derived from saphenous vein. 

After 2-3 weeks, the graft was fully repopulated and immunologically acceptable to 

the host.     

Although non-human decellularized vessels are very easy to access and promote 

site-specific remodeling and regeneration by the host, they face chances of 

transmission of animal pathogens to human being when considering the clinical 

scenario.  

Alternative vascular substitutes are based on collagen, fibrin or gelatin. Collagen-

based conduit revealed to be fragile and they need a wrapping with a reinforcing 

synthetic polymer. However, the reinforcing materials on account of being 

non-degradable were seen to adversely affect the remodeling response which led to 

loss of compliance in post-implantation period (Matsuda et al, 1995).  

Swartz et al (2005) engineered implantable small-diameter blood vessels based on 

ovine SMCs and ECs embedded in fibrin. These grafts, implanted in the jugular veins 

of lambs, were well integrated into the native vessel and demonstrated patency up 

to 15 weeks, similar blood flow rates and matrix remodeling as the native vessels.  

Another breakthrough in the fabrication of tissue-engineered grafts was the cell 

sheet approach developed by L'Heureux and colleagues (1998) where an innovative 

graft was developed exclusively from cultured human cells. Sheets of SMCs and 

fibroblasts were grown to over-confluence and then assembled over a mandrel to 

form a tubular structure that was subsequently cultured for 6–8 weeks. During this 

incubation period, the autologous cells arranged themselves circumferentially and 

produced large amounts of ECM, thus establishing a structural integrity capable of 

withstanding pressures in excess of 2000 mmHg. The inner lumen of the construct 

was then seeded with ECs to promote non-thrombogenicity. Recently, this 

technology has been translated to clinical use as arteriovenous fistula shunts in 

hemodialysis patients with promising results. Although the robustness and non 

immunogenic nature of self-assembly grafts hold great promise, the primary 

limitation is the amount of time required for culturing the cells. The extended time 

frame raises cost and impairs the ‘off-the-shelf’ capability of such a technology 

(L’Heureux et al, 2007; McAllister et al, 2009). 



 

 22 

3.4 Cells used in vascular regeneration 

The combination of natural or synthetic scaffold together with vascular cells is 

considered the most promising option. The endothelium is not only a smooth inert 

surface that facilitates laminar blood flow through the blood vessel, but also a 

dynamic organ with an active role in coagulation homeostasis, the sensing and 

transduction of the haemodynamic forces of circulation, and the cell metabolism of 

the vascular wall. For these reasons, surface endothelialization has a great role in 

intermediate the long-term patency and it is crucial to prevent intimal hyperplasia 

and graft occlusion. One aspect of endothelial protection is the physical barrier it 

forms to prevent contact with subendothelial components of the arterial wall and 

activation of the coagulation cascade. The ideal cell source should be non 

immunogenic, functional and easy to isolate and expand in culture. 

The non immunogenic autologous ECs and SMCs isolated from patients themselves 

represent the first choice of cells for tissue engineering. Reports show that ECs, 

SMCs and fibroblasts could be isolated simultaneously and expanded in culture 

from a single and small vein sample (Grenier et al, 2003). However, majority of the 

cells in adult blood vessel are terminally differentiated, have limited proliferation 

potential and lose their function during in vitro expansion.  

Nevertheless, alternative sources to differentiated vascular cells have been looked 

into to avoid the need of surgical harvest of autologous vessel segments and to 

improve upon the proliferation potential of ECs and SMCs. The use of stem cell is an 

exciting field of research for vascular regenerative medicine as these cells are 

capable of self-renewal and differentiation into functional.   

MSCs are a promising cell type for regenerative medicine owing to their easy 

isolation and expansion, their multipotency and their low immunogenicity. MSC 

differentiation towards vascular phenotypes can be distinguished by the expression 

of experimentally identified specific markers or by functional assays. One unique 

advantage of MSCs is their potential for allogenic cell delivery in immunocompetent 

patients (Huang et al, 2008).  

Adipose tissue is a stem cell source for ECs and SMCs. These cells can be harvested, 

multiplied and handled easily, efficiently and non-invasively. They have a 

proliferative capacity comparable to BM-MSCs, and morbidity to donors is 

considerably less, requiring only local anesthesia and a short wound healing time. 

Furthermore, human adipose stem cells have been shown to differentiate towards 
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endothelial lineage in the presence of VEGF (Cao et al, 2005). 

Pericytes have recently been shown to express mesenchymal stem cell features. 

Their relative availability and multipotentiality make them a promising candidate 

for vascular regeneration. Pericytes were incorporated into bi-layered elastomeric 

poly(ester-urethane) urea scaffolds and the efficacy of the pericyte-seeded scaffold 

was studied in vivo. After implantation, pericyte-seeded grafs showed a significant 

higher patency rate than the unseeded control (He et al, 2010). 

Progenitor cells such as Endothelial Progenitor cells (EPCs) show great potential for 

use in vascular regeneration. They are easy to obtain from the patient and are easy 

to expand in culture. EPCs are mainly located in bone marrow and could be 

mobilized into peripheral blood by certain growth factors, such as granulocyte 

macrophage colony stimulating factor (GM-CSF) or VEGF. EPCs could be also 

isolated from umbilical cord blood. EPCs can be expanded for over 20 passages 

without losing their differentiation potential. No significant differences have been 

found between EPCs derived from bone marrow, peripheral blood or cord blood in 

terms of cell proliferation and differentiation. Kaushal et al (2001) reported the 

isolation of EPCs from peripheral blood of sheep, their expansion and seeding on 

decellularized porcine iliac vessels to construct an engineered vascular graft. EPC-

seeded grafts remained patent for 130 days as a carotid interposition graft in sheep. 

The EPC-explanted grafts exhibited contractile activity and nitric oxide mediated 

vascular relaxation that was similar to native carotid arteries.  
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AIMS 
 
 
AMs seem to be a very promising scaffold in TE and can be considered as temporary 

inductive site-appropriate templates to support the growth, differentiation, and 

function of the parenchymal cell population of each organ. Nowadays, TE 

techniques are used both to develop tissue substitutes ex vivo and as reliable tool to 

investigate cell behaviour, differentiation and proliferation in 3-dimentional 

environments.  

In this work, the following two different projects have investigated both 

potentialities using tissue-specific AMs: 

1- influence of AMs on differentiation of kidney progenitor cells from amniotic 

fluid into mature renal cells; 

2- AMs as biomaterial to develop vessel substitutes. 

 

1- Evaluation of AMs as scaffold to promote kidney progenitor cells differentiation 

into mature renal cells  

In order to better understand whether renal progenitors derived from human 

amniotic fluid could be suitable for future application in therapy, their behaviour 

and response when cultured onto AM system obtained from murine kidney (KAMs) 

have been investigated. To achieve this goal, renal progenitors were seeded onto 

KAMs and their proliferation and differentiation were evaluated by means of 

immunohystological analysis. Besides, to investigate renal progenitors behaviour in 

in vivo system, repopulated KAMs were intrarenal implanted into nude mice. 

 

2- Evaluation of blood vessel substitutes composed by AMs and ECs  

Although autologous vascular grafts and artificial materials have been used for 

reconstruction of small diameter (<5 mm) blood vessels, the poor availability of 

vessels and the occurrence of intimal hyperplasia and progressive atherosclerotic 

degeneration represent shortcoming of these vascular prostheses. Therefore, this 

study aimed to develop AM-based vascular grafts. 

Rats received either only aorta AM or previously in vitro reendothelized AM as 

abdominal aorta interposition grafts (about 1 cm). After 1 and 3 months from 
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surgery, grafts were explanted and morphologically examined by scanning electron 

microscopy and Movat staining.  
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PART 1: Evaluation of AMs as scaffold to promote kidney 

progenitor cells differentiation into mature renal cells 
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MATERIALS AND METHODS 
 
 
1. KIDNEY ACELLULAR MATRICES 

a- Preparation 

All the procedures described and animal protocols were approved by the IACUC at 

Children's Hospital Los Angeles. IACUC is the Institutional Animal Care and Use 

Committee on charge of overseeing CHLA animal programs, animal facilities and 

policies, ensuring appropriate care, ethical use and humane treatment of animals. 

Both male and female C57BL/6 mice (3 months old) were sacrificed using CO2 

inhalation as recommended by IACUC and both kidneys were collected and rinsed 

with PBS. 

Mouse kidney acellular matrices (KAMs) were prepared by the Meezan method 

(Meezan et al, 1975) with minor modifications. Whole kidneys were processed with 

distilled water for 72 h at 4˚C, 4% sodium deoxycholate (Sigma, St. Louis, MO, USA) 

for 4h and 2,000 kU deoxyribonuclease I (DNase-I) (Sigma) in 1 M NaCl (Sigma) for 

3h. This treatment was repeated four times till the decellularization was completed. 

b- Characterization of KAMs by histological and immunohistochemistry staining 

The lack of cells or cell debris was confirmed histologically. Briefly, KAMs were fixed 

in 10% formalin, neutral buffer phosphate (Polysciences Inc.) for 2 h at RT and 

stored in 70% ethanol at 4°C until processing. Specimens were routinely processed 

as following described: 

1h in 95% ethanol, twice; 

1h in 100% ethanol, twice; 

40 min in toluene; 

overnight toluene/paraffin (50:50) and 

2h paraffin 

After this treatment, samples were included in paraffin in embedding cassette 

(Tissue-Tek) and prepared for sectioning. KAMs were cut in 5 µm sections with a 

Leica RM2235 microtome and let to dry on a slide warmer (Lab-Line) at 37 °C. Once 

dried, sections were ready to use for histological and immunostaining protocols. 

Lack of cells was confirmed by hematoxylin/eosin (H/E) and DAPI staining 

(VECTOR). Immunohistochemistry was performed as previously described using 
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anti-α2-laminin antibody (Santa Cruz) and anti-Collagen4 chain α1-2-3-4-5 

antibody (Japan) in order to confirm the maintenance of ECM composition. The 

absence of cellular membrane residuals was confirmed using an anti-MHC I 

antibody (Abcam).  

c- DNA content quantification 

DNA content was quantified by DNeasy Blood & Tissue Kit (Qiagen), to check the 

acellularity of matrices. Briefly, KAMs were dried, minced, weight and digested 

overnight in Proteinase K. After lysis of the samples, DNA was separated from RNA 

through centrifugation using silica-gel columns. The obtained DNA was quantified 

by NanoDrop (Roche) measurements and it was separated in a 1.5% 

agarose/ethidium bromide gel and visualized using Blue/Orange Loading Dye 

(Promega, San Luis Obispo, CA). 

2. CELL CULTURE 

a- Expansion of human Amniotic Fluid (AF) Total Cell Population 

Under Institutional Review Board approval of Children’s Hospital Los Angeles, 

human amniotic samples were obtained from discarded amniocentesis fluid 

between 15 and 20 weeks of gestation. Samples with normal male karyotype and 

normal fetal ultrasound were collected from discarded cultures (Genzyme 

Pasadena, CA). Cells were expanded in Tissue Culture Dishes (BD Falcon, Franklin 

Lakes, NJ) with Chang’s media (α MEM, 20% Chang B and 2% Chang C) (Irvine 

Scientific, Santa Ana, CA), L-Glutamine 20% of ES-FBS (Gibco/Invitrogen, Carlsbad, 

CA) and 1% of antibiotic (Pen/Strep, Gibco/Invitrogen, Carlsbad, CA). 

b- Immunoseparation of CD24+OB-Cadherin+ population from whole Amniotic 

Fluid 

A positive population from AF for both CD24 (Abcam) and OB-Cadherin (Abcam) 

was selected by two further immunoseparation using standard magnetic cell sorting 

(Miltenyi Biotech, Germany) following manufacturer's instructions. The total cell 

population was incubated with these two antibodies for 20 min at 4° C on shaking 

condition, followed by a second incubation with immunomagnetic microbeads for 

15 min at 4° C followed by immunoseparation by MS columns (Miltenyi Biotech, 

Germany). Positive population was replated on Tissue Culture dishes with Chang’s 

Media for subsequent expansion.  
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c- Analysis and characterization by immunohistochemistry of CD24+OB-Cadherin+ 

population 

Between passages 4 and 5, cells previously seeded in chamber slides were fixed in 

4% paraformaldehyde and stained as following described. Cells were treated for 30 

min with hydrogen peroxidase, blocked in a solution of 3% BSA in PBS for 10 min at 

room temperature (RT) and incubated for 60 min with primary antibody. Bound 

primary antibodies were detected by a RT 30 min incubation with the suitable 

secondary antibody and revealed by DAB. 

 

3. CD24+ OB-CADHERIN+ CELLS: KAM CULTURES  

300 µm slides of KAMs were obtained using Vibratome (Leica). Sections were 

washed in PBS added with 10% Pen/Strep (Gibco) and placed at the bottom of a 25 

cm2 flask. Slides were kept in PBS overnight and placed in ES-FBS 

(Gibco/Invitrogen, Carlsbad, CA) 3 h before seeding.  

First antibody Company Diluition Secondary antibody 

Aq1 Santa Cruz 1:100 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 

7500) 

Aq2 Santa Cruz 1:50 Biotinylated Rabbit Anti-Goat IgG 
Antibody (Vector BA5000) 

Peanut agglutinin Vector 15 μg/mL Biotinylated Rabbit Anti-Goat IgG 

Antibody (Vector BA5000) 

Nephrin Santa Cruz 1:50 Biotinylated Rabbit Anti-Goat IgG 

Antibody (Vector BA5000) 

WT1 Santa Cruz 1:50 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 
7500) 

Podocalyxin Invitrogen 1:50 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 

7500) 

Vimentin Santa Cruz 1:50 Biotinylated Rabbit Anti-Goat IgG 
Antibody (Vector BA5000) 

PDGFRβ Abcam 1:50 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 
7500) 

VEGF Abcam 1:50 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 

7500) 

Von Willebrand 
Factor 

Santa Cruz 1:50 Biotinylated Rabbit Anti-Goat IgG 
Antibody (Vector BA5000) 

Human nuclei Acris 1:100 ImmPRESS Universal Antibody anti-

rabbit Ig/anti-mouse Ig (Vector, MP 

7500) 
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Before seeding, CD24+ OB-Cadherin+ cells (106 cells/cm2) were trypsinized, 

centrifuged at 1500 rpm for 5 min and labelled with the cell tracker CM-Dil 

(Molecular Probes), following manufacturer's instructions. CM-Dil is a membrane 

stain well retained through fixation/permeabilization processes and allows tracking 

of cells after injection. Briefly, cells were resuspended in 500 µl PBS and incubated 

with a working solution of Cm-Dil solution of 1 mg/mL for 5 min at 37°C, followed 

by an incubation of 15 min at 4°C. Cells were finally rinsed three times with PBS. 

The medium was mantained in agitation using a magnetic stirrer starting from 48 h 

from seeding. After 7, 14 and 21 days of culture, seeded KAMs were embedded in 

paraffin as previously described. The presence of CD24+ OB-Cadherin+ cells was 

confirmed by H/E and DAPI staining (VECTOR). To detect renal markers, 

immunohistochemistry was performed as above described.  

The rating of proliferation was determined by PCNA Staining Kit (Invitrogen) 

following manufacture’s instruction. Briefly, deparaffinized and rehydrated slides 

were treated with  blocking solution for 10 min and with biotinylated mouse anti-

PCNA primary antibody for 1 h. Rinsed sections were incubated with streptavidin-

peroxidase solution and at last stained with chromogen DAB solution and 

hematoxylin.  

3. IN VIVO EXPERIMENTS 

All the procedures described and animal protocols were approved by the IACUC at 

Children's Hospital Los Angeles.  

Male 2 months old nude mice (J:Nu, Jackson Laboratories) were divided into 2 

groups: 

- group 1: received not seeded KAMs (n=4) 

- group 2: received  KAMs seeded with CD24+ OB-Cadherin+ cells 7 days after 

seeding (n=4) 

The mice were carefully anesthetized using isofluorane inhalation method. Once 

satisfactory anesthesia was achieved, the mice were prepped using clorhexedine. A 

small approximate 1 cm dorsal lumbotomy incision was made, the kidney carefully 

delivered via the incision. A microvascular clamp was placed across the hilum 

preventing blood flow to the kidney. A small longitudinal incision was made along 

the lateral border of the kidney into the renal cortex. A 300 μm section of KAM 

repopulated or not with renal progenitor cells was inserted into this cortical defect. 
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The defect was closed with 6-0 interrupted polydioxanone suture. The 

microvascular clamp was removed. Once hemostasis was confirmed, the kidney was 

replaced into the retroperitoneum, the incision closed with polypropylene suture 

(Taper C-1, size 5-0, 90 cm), and the mice recovered from anaesthesia. The animals 

were maintained on a heating pad throughout the period of anaesthesia. Ophthalmic 

ointment was placed in each eye to prevent corneal drying; 0.1 mg/kg of 

buprenorphine was administered subcutaneously. 

Mice were sacrified after 1, 2, 3, 6 months by CO2 inhalation and KAM implanted 

kidney collected and rinsed in PBS. Samples were embedded in paraffin and stained 

with H/E and DAPI (VECTOR) staining as previously described. 

Immunohistochemistry was performed as above mentioned with minor 

modifications. Deparaffinized and rehydrated slides were treated for 30 min with 

hydrogen peroxidase, they were blocked in a solution of 3% BSA in PBS for 10 min 

at room temperature (RT) and incubated for 60 min with first primary antibody. 

Bound primary antibodies were detected by a RT 30 min incubation with the 

suitable secondary antibody and revealed by Red DAB. After washing, slides were 

incubated with the second primary  antibody (against Human Nuclei or Human 

Mithocondria) for 1 h at RT and then with the suitable secondary antibody 

(Universal Antibody anti-rabbit Ig/anti-mouse Ig,Vector, MP 7500).  At last, stain 

was developed with DAB and nuclei stained with hematoxylin.  

Kidney was delivered through a dorsal lumbotomy incision (A). The hilum was clamped and a 
small incision was made into the renal cortex (B). A 300 µm KAM slide was insert into the 
cortical defect (C). The incision was closed (D,E) and the microclamp removed (F). 
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Collagen fibers were detected by Masson staining Kit (Sigma), which was performed 

following manufacture’s instruction. Briefly, deparaffinized and rehydrated slides 

were treated with Bouin’s solution for 1 h at 56°C and washed in running tap water. 

Sections were stained in working Weigert’s Iron Hematoxylin Solution for 5 min. 

Rinsed slides were treated with Biebrich Scarlet-Acid Fuchsin and then placed in 

Phosphomolybdic/phosphotungstic acid solution for 5 min. Sections were treated 

with Aniline Blue Solution for 5 min and placed in acetic acid for 2 min. Then, slides 

were dehydrate to xylene and mounted with balsam.  
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RESULTS 

 
 
1. KIDNEY ACELLULAR MATRICES 

Four cycles of detergent-enzymatic treatment were needed to completely remove cells, 

as confirmed by H/E (Fig. 1 B) and DAPI staining (Fig. 1 D). KAMs maintained the 

structure of native kidney (Fig. 1A), in particular the glomerular basement membrane 

was well visible (Fig. 1B).   

 

 

 

 

 

 

 

 

 

 

 

 

Immunohystochemistry revealed the absence of cell membrane antigens MHC I in 

KAMs (Fig. 2 B), normally present in native tissue (Fig. 2 A). 

 

 

 

Figure 1. H/E (A, B; magnification x200) and DAPI (C, D; magnification x200) 
staining before (A, C) and after (B, D) 4 cycles of detergent-enzymatic treatment. 
Arrows indicate glomerular basement membranes.  

Figure 2.  Immunohystochemistry performed using anti-MHC I antibody before (A) 
and after 4 cycles of detergent-enzymatic treatment (B). Magnification x400 
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The maintenance of ECM proteins was confirmed by immunohistoschemistry 

performed using anti-collagen type IV chains I (Fig. 3 A, D), II (Fig. 3 B, E), III (Fig. 3 

C, F), IV (Fig. 3 G, L), V (Fig. 3 H, M) and laminin α2 (Fig. 3 I, N) antibodies. KAMs  

(Fig. 3 D, E, F, L, M, N) showed all glomerular basement membrane proteins, as 

native kidney (Fig. 3 A, B, C, G, H, I).  

The amount of residual DNA content after decellularization was quantified as 

shown in Fig. 4. Although bands of DNA were not visible after separation on 1.5% 

agarose gel (Fig. 4 A), 30.27 ± 11.3 ng DNA/mg dry weight were determined in 

KAMs compared to 2544.43 ± 97.67 ng DNA/mg dry weight found in native kidney 

(Fig. 4 B). 

Figure 3. Immunoistochemistry of native kidney (A, B, C, G, H, I) and KAM (D, E, F, L, M, N) performed 
using anti-collagen type IV chain I (A, D), II (B, E), III (C, F), IV (G, L), V (H, M; magnification x1000) 
and laminin α2 antibodies (I, N; magnification x400). 
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2. CELL CULTURE 

The cell population positive for CD24 and OB-Cadherin was successfully isolated 

from whole AF and cultured under the conditions described above.  Selected cells 

presented a typical fibroblast shape (Fig. 5).  

 

 

 

 

 

 

 

CD24+ OB-Cadherin+ cells were previously characterized by RT-PCR for early and 

mature kidney markers (Da Sacco et al, 2010). Cell extracts contained mRNAs for 

Aquaporin 1 (Aq1), Occludin, Nephrin, Lim1, Pax-2 (paired box gene 2), GDNF (Glial 

Cell Line-derived Neurotrophic Factor), and Zo-1 (Zonula Occludens 1).  

Figure 4. Residual DNA content detected by 1.5% agarose/ethidium bromide gel (A) and DNeasy Blood & 
Tissue Kit (B, n= 5). 

Figure 5. Phase contrast microscopy of CD24+ 
OB-Cadherin+ cell cultures (magnification x200). 
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CD24+ OB-Cadherin+ cells expressed Podocalyxin (Fig. 6 A) and VEGF (Fig. 6 B), 

while WT-1 (Wilms tumor protein-1, Fig. 6 C), Aq1 (Fig. 6 D), Aq2 (Fig. 6 E) and 

Peanut Agglutinin (Fig. 6 F) were not detected. 

 

3. CD24+ OB-CADHERIN+ CELLS/KAM CULTURES 

CD24+ OB-Cadherin+ cells were seeded onto 300 µm KAM slides. Cells engrafted 

the biomaterial and were able to migrate inside it, as shown by DAPI staining 7 (Fig. 

7 A), 14 (Fig. 7 B) and 21 (Fig. 7 C) days after seeding.  

 

Cell engraftment was shown by SEM analysis (Fig.8). In particular, renal progenitors 

were able to rearrange and merge (Fig. 8 B) and shown foot processe buds (Fig. 8 

C). 

 

 

  

Figure 6. Immunohistochemistry of CD24+ OB-Cadherin+ cells Podocalyxin (A), VEGF (B), WT-1 
(C), Aq1 (D), Aq2 (E) and Peanut Agglutinin (F) expression (magnification x200).  

Figure 7. DAPI staining of CD24+ OB-Cadherin+ cell/KAM cultures 7 (A), 14 (B) and 21 (C) 
days after seeding (magnification x100) 
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Besides, PCNA staining demonstrated that CD24+ OB-Cadherin+ cells were able to 

proliferate till 14 d after seeding (Fig. 9 A, B), on the contrary, cell growth seemed to 

stop at 21 days, as determined by lack of staining  (Fig. 9 C). 

 

CD24+ OB-Cadherin+ cells seeded onto KAMs were characterized by 

immunohistochemistry. At each endpoint renal progenitors expressed VEGF, 

Podocalyxin and Aq1 (Fig. 10), but not Aq2, Peanut Agglutinin and WT1 (data not 

shown).  

 

 

 

 

 

 

 

 

 

 

Figure 9. PCNA staining of CD24+ OB-Cadherin+ cells/KAM culture 7 (A), 14 (B) and 21 (C) 
days after seeding (magnification x400). 

Figure 8. SEM analysis of CD24+ OB-Cadherin+ cell/KAM cultures 7 days after seeding. Arrows 
indicate foot processe buds. 
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4. IN VIVO EXPERIMENTS 

KAM alone and KAM plus cells were intrarenal implanted in nude mice. Group 1 

received only KAM while group 2 received KAM seeded with CD24+ OB-Cadherin+ 

cells, 7 days after seeding. At each endpoint, in both groups KAMs were largely 

repopulated by host cells, presented tubular-like structures and blood vessels, as 

shown by H/E staining (Fig. 11).    

Figure 10. Immunohistochemistry of CD24+ OB-Cadherin+ cell/KAM cultures performed using anti-
Aq1 (A, B, C), -Podocalyxin (D, E, F), -VEGF (G, H, I) antibodies 7 (A, D, G), 14 (B, E, H) and 21(C, 
F, I) days after seeding (magnification x400). 

7 days 14 days 21 days 
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Figure 11. H/E staining. A, C, E, G: group 1; B, D, F, H: group 2. A, B: 1 month; C, D: 2 
months; E, F: 3 months; G, H: 6 months (magnification x200). Arrows indicate tubular-like 
structures and blood vessels.  

KAM KAM/ CD24+ OB-Cadherin+ cells 
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One month after surgery both groups presented endothelial cells and blood vessels 

inside the graft, as demonstrated by immunohistochemistry performed using anti-

von Willebrand factor (Fig. 12 A, B) and CD31 (Fig. 12 C, D) antibodies. 

  

 
 
 
 

 
 
 
 

 
 
 
 
 

 

 

 

 

 

In group 2, the permanence of CD24+ OB-Cadherin+ cells was revealed by human 

nuclei staining. Human cells were still present at all timepoints, but their number 

seemed to decrease over the time (Fig. 13).  

Immunohistochemistry performed against different mature renal markers were 

performed in order to evaluate CD24+ OB-Cadherin+ cells differentiation.  

Aq1, Aq2 and Peanut Agglutinin were considered as markers of differentiation into 

tubular cells.  

In group 1, Aq1 positive cells were present only 6 months after intrarenal 

implantation (Fig. 14 G). On the contrary, in group 2, this marker was visible at each 

endpoint. A double staining performed using both anti-human nuclei and anti-Aq1 

Figure 12. KAM (A, C) and KAM plus cells (B, D) immunohistochemistry 
performed using anti-von Willebrand factor (A, B) and anti-CD31 (C, D) 
antibodies (magnification x400).  Arrows indicate positive staining. 

Figure 13. Immunohistochemistry performed on KAM plus cells, 1 (A), 2 (B), 3 (C), 6 (D) months 
after surgery using anti-human nuclei antibody (magnification x400).  

KAM KAM/ CD24+ OB-Cadherin+ cells 



 

 43 

antibodies demonstrated that Aq1 was expressed by both CD24+ OB-Cadherin+ 

cells and host cells migrated inside the scaffold (Fig. 14 B, D, F, H).  

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 14. Immunohistochemistry performed using anti-Aq1 antibody on KAM graft (A, C, E, 
G) and KAM plus CD24+OB-Cadherin+ cells (B, D, F, H) 1 (A,B), 2 (C, D), 3 (F, G), 6 (H, I) 
months after surgery. B, D, F and H were obtained using both anti-Aq1 and ant-human nuclei 
antibodies (magnification x400). Arrows indicates double staining positive cells. 

KAM KAM/ CD24+ OB-Cadherin+ cells 
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Similar results were obtained for Aq2. Indeed, the protein was immunodetected in 

both human and host cell in KAM plus cells starting from 1 month, while staining 

was negative in KAM (Fig. 15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Immunohistochemistry performed using anti-Aq2 antibody on KAM (A, C, E, G) 
and KAM plus CD24+OB-Cadherin+ cells (B, D, F, H) 1 (A,B), 2 (C, D), 3 (F, G), 6 (H, I) 
months after surgery. B, D, F and H were obtained using both anti-Aq2 and anti-human nuclei 
antibodies (magnification x400). Arrows indicate double staining positive cells. 

KAM KAM/ CD24+ OB-Cadherin+ cells 
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Besides, human Aq2 positive cells were shown to migrate into the native kidney and 

integrate into native tubuli (Fig. 16). 

 
 
 
 
 

 
 

 

 

 

In KAM grafts Peanut Agglutinin was not detected (Fig. 17 A, C, E, G), whereas only 

murine cells expressed this marker in KAM plus CD24+OB-Cadherin+ graft (Fig. 17 

B, D, F, H).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Aq2-human nuclei double staining of KAM plus CD24+OB-
Cadherin+ cells 6 months after surgery (magnification 400x). 
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Figure 17. Immunohistochemistry performed using anti-Peanut Agglutinin antibody on KAM (A, 
C, E, G) and KAM plus CD24+OB-Cadherin+ cells (B, D, F, H) 1 (A,B), 2 (C, D), 3 (F, G), 6 (H, 
I) months after surgery. B, D, F and H were obtained using both anti-Peanut Agglutinin and anti-
human nuclei antibodies (magnification x400). Arrows indicate Peanut Agglutnin positive staining. 

KAM KAM/ CD24+ OB-Cadherin+ cells 
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To verify podocyte differentiation, immunoreactivity against Podocalyxin and WT1 

antibodies was evaluated. 

In group 2, both human and murine cells expressed Podocalyxin (Fig 18 B, D, F, H) 

and WT1 (Fig 19 B, D, F, H) 1 month after implantation, while in group 1 

Podocalyxin appeared at 3 months (Fig. 18 E, G) and WT1 at 6 months (Fig. 19 E, G).  
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Figure 18. Immunohistochemistry performed using anti-Podocalyxin antibody on KAM (A, C, 
E, G) and KAM plus CD24+OB-Cadherin+ cells (B, D, F, H) 1 (A,B), 2 (C, D), 3 (F, G) and 6 
(H, I) months after surgery. B, D, F and H were obtained using both anti-Podocalyxin and anti-
human nuclei antibodies (magnification x400). Arrows indicated double staining. 

KAM/ CD24+ OB-Cadherin+ cells KAM 
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Figure 19. Immunohistochemistry performed using anti-WT1 antibody on KAM (A, C, E, G) and 
KAM plus CD24+OB-Cadherin+ cells (B, D, F, H) 1 (A,B), 2 (C, D), 3 (F, G) and 6 (H, I) months 
after surgery. B, D, F and H were obtained using both anti-WT1 and anti-human mitochondria 
antibodies (magnification x400). Arrows indicate WT1 staining in KAM and WT1-Human 
Mitochondria double staining in KAM plus cells graft. 

KAM/ CD24+ OB-Cadherin+ cells KAM 
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DISCUSSION 

 
 
This work has demonstrated that KAMs are able to support proliferation and 

differentiation of amniotic fluid renal progenitor cells. 

To obtain KAMs various decellularization protocols have been tested. Detergents, such as 

SDS and Triton X100 (Nakayama et al, 2010; Orlando et al, 2012), appeared not suitable 

because they disrupted collagen structure and lead to incomplete cell removal (data not 

shown). On the contrary, using Meezan method with minor modifications, KAMs 

maintained the native architecture and composition. In particular, both glomerular 

basement membrane and the filtering membrane protein composition were well 

preserved. The decellularization treatment satisfied established parameters for DNA 

content: lacking of visible nuclei after DAPI staining, having less than 50 ng/mg AM dry 

weight and having all residual DNA fragments be less than 200 base pair in size (Crapo et 

al, 2011; Reing et al, 2010). The lack of antigenic epitopes associated with cell 

membranes demonstrated the non-immunogenicity, which is necessary to avoid, or at 

least minimize, adverse immune responses by allogeneic or xenogeneic recipients.  

KAMs revealed to be a suitable scaffold for renal progenitor cells. Indeed, cells engrafted 

the biomaterial and were able to migrate inside it. 

 Cells seeded onto KAMs proliferated till 14 days from seeding and maintained the 

expression of VEGF and Podocalyxin, markers used for podocyte identification.  

Furthermore, SEM analysis shown that cells seeded into KAM presented foot processes 

buds, which are peculiar podocyte features.  These results agree to Leapley et al (2009), 

that demonstrated that KAM allows fetal cortical renal cells to proliferate maintaining 

podocyte progenitor phenotype. 

Without the use of pro-differentiation agents, KAMs have been shown to drive ESC 

differentiation towards the early steps of renal differentiation (Ross et al, 2009). On the 

contrary, in this study, when seeded into KAM without any inductive factor, renal 

progenitors from amniotic fluid expressed mature proximal tubular marker, such as Aq1. 

More investigations will be needed to demonstrate whether Aq1 positive cells could 

express other proximal tubular markers, as CD13 and Angiotensinogen.  

To further evaluate the differentiative potential of KAMs, grafts composed of KAM with 

or without cells were intrarenal implanted into nude mice. Host cells largely repopulated 

KAMs grafts. Murine cells migration confirmed that KAMs presented biocompatible 
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structural features. However, migrated cells did not express tubular or podocyte 

markers till 3-6 months after surgery, although at earlier timepoints most of them 

presented PDGFRβ (data not shown), demonstrating their mesangial origin. The delayed 

migration of cells expressing tubular or podocyte markers could be promoted by KAM 

degradation products that have been shown to have chemotactic and mitogenic effects 

on cells (Badylak et al, 2011).  

 Grafts composed of KAMs plus cells shown the presence of differentiation markers just 1 

month after surgery. Differentiated cells were both murine and human. It can be 

supposed that murine cells migrated earlier than in KAM grafts because renal 

progenitors remodel and degrade KAM that may release soluble molecules regulating 

cells motility. Besides, renal progenitors could produce a variety of paracrine factors that 

can enhance cell migration and engraftment (Li et al, 2010). Intrarenal environment, as 

expected, promoted renal progenitor cell differentiation. CD24+ OB-Cadherin+ cells 

were shown to express proximal tubular (Aq1), collector duct (Aq2) and distal tubular 

(Peanut Agglutinin) markers. Moreover, they expressed WT1, commonly present in 

developing renal vesicles and podocytes, as well as VEGF and Podocalyxin. The co-

expression of the three markers would confirm the differentiation of cells into podocyte 

lineage. CD24+ OB-Cadherin+ cells potentiality to differentiate into different renal 

mature cells was expected because CD24 and OB-Cadherin are co-expressed by 

uninduced Metanephric Mesenchyme, the embryonic layer that gives rise to the entire 

nephron in adult life.  

Interestingly, human CD24+ OB-Cadherin+ cells were also able to migrate outside the 

scaffold and integrate into host kidney. In particular, as native papilla cells, Aq1 positive 

human cells were shown to integrate into host renal tubules (Curtis et al, 2008).  

Overall, these results demonstrated that KAMs obtained by Meezan protocol, 

maintaining ECM structure, could be a valuable tool to study both in vitro and in vivo 

differentiation towards renal cell phenotype.  

Furthermore, these preliminary data encourage us to evaluate whether this approach 

could be useful to enhance the function of hypoplastic kidneys. 
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PART 2: Evaluation of blood vessel substitutes composed by AMs 

and ECs  
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MATERIALS AND METHODS 
 
 
1. AORTA ACELLULAR MATRICES 

a- Preparation 

All the procedures described and animal protocols were approved by the CEASA at 

University of Padova. CEASA is University Ethical Animal Use Committee on charge 

of overseeing Padova University animal programs, animal facilities and policies, 

ensuring appropriate care, ethical use and humane treatment of animals. 

Male Lewis rats (3 months old) were sacrificed using CO2 inhalation as 

recommended by IACUC and abdominal aorta segments were collected and rinsed 

with PBS. 

Aorta acellular matrices (AAMs) were prepared by the Meezan method (Meezan et 

al, 1975) with minor modifications. Briefly, aortas were processed with distilled 

water for 72 h at 4˚C, 4% sodium deoxycholate (Sigma, St. Louis, MO, USA) for 4 h 

and 2,000 kU deoxyribonuclease I (DNase-I) (Sigma) in 1 M NaCl (Sigma) for 3 h. 

This treatment was repeated twice times till the decellularization was completed. 

Between the two decellularization cycles, aortas were treated with Collagenase IV 

(0.05% in PBS) at 37°C for 1 min in order to remove the endothelium.  

b- Evaluation of AAMs by histological and immunohistochemistry staining and 

Scanning Electron Microscopy 

Histological samples and analysis were performed as previously described. Lack of 

cells was confirmed by hematoxylin/eosin (H/E) and DAPI staining (VECTOR).  

Movat pentachromic staining was performed following manufacturer's instruction 

(Diapath). Briefly, deparaffinized sections were treated with alcian blue, which 

stains mucin and background. Elastic fibers were purple-black stained by 

hematoxilyn, collagen was yellow by treatment with fuchsin and alcoholic safran 

solution stained black nuclei.  

Immunohistochemistry was performed as previously described using anti-MHC I 

and II antibody (Abcam) to confirm the absence of cellular membrane residuals. 

AAM samples were fixed with 4% gluteraldehyde in 0.1 M cacodylate buffer (pH 

7.2) and dehydrated. After critical point drying and gold sputtering, they were 

examined by a scanning electron microscope (SEM; Stereoscan-205 S, Cambridge, 

UK). 
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2.  CELL CULTURES  

a- Skin microvascular ECs: isolation and characterization 

Dermis biopsies were harvested from male Lewis rats (3-5 months old). Specimens 

were rinsed in PBS, minced and subsequentially digested enzimatically with 0.25% 

Collagenase B (Roche), and 0.25% Dispase II (Roche), for 1 h at 37°C. Not digested 

dermis was removed using a cell strainer (100 µm, BD Falcon). Cells were seeded in 

Tissue Culture Petri Dishes (BD Falcon) previously conditioned with Fibronectin (1 

µg/cm2, BD Biosciences) in MV2 endothelial media (PromoCell). When cells were 

almost confluent, they were detached and immunoseparated using Dynabeads M-

450 (Invitrogen) previously conditioned with a monoclonal antibody against CD31 

(AbD Serotec) following manufacter’s instruction. Briefly, cells were incubated with 

magnetic beads previously conditioned with the antibody for 30 min at 4 °C (5 

beads for each cell). A magnetic field was applied to the cells for 5 min. CD31-

positive cells tied to the beads through the antibody remained attached to the 

magnet. CD31-negative cells were discarded. ECs were replated in Tissue Culture 

Petri Dishes previously conditioned with MV2 endothelial media. Only cells 

between passages 1 and 4 were used.  

The maintenance of endothelial markers was confirmed by immunofluorescence 

analysis using antibody against CD31 (Santa Cruz Biotecnology, 1:100) and von 

Willebrand Factor (1:400, Abcam). Briefly, cells were fixed with 4% formalin. Then, 

they were incubated for 1 h with 10% horse serum in PBS followed by 1 h 

treatment with the solution of the primary antibody. After rinsing with PBS, cells 

were treated with the secondary antibody for 30 min and with Flurescein Avidin 

DCS 1:500 in HEPES 10 mM and NaCl 0.15 M for 10 min. Nuclei were recognized by 

DAPI staining.  

b- ECs/AAM cultures 

ECs (4x105/cm2) were seeded onto the luminal surface of AAMs, previously treated 

with FCS for 3 h.  Cultures were maintained for 72 h in MV2 media and then fixed 

for histological analysis or in vivo implanted. 

3. IN VIVO EXPERIMENTS 

Female Lewis rats (3 months old) were carefully anesthetized using isofluorane 

inhalation method (3% isofluorane carried by oxygen, 1 L/min). Each recipient 

animal underwent a median laparotomy incision. After peritoneal incision, animals 
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received 5 mg/mL Tramadol (Contramal) intraperitoneally. After systemic 

heparinisation (70 U/Kg) and proximal and distal clamping of the abdominal aorta, 

a segment of 1 cm length was removed. The same segment was replaced by only 

AAM (n=7) or AAM plus ECs (n=9). Anastomoses were performed with 8-0 or 9-0 

interrupted polypropylene suture (Ethicon).  Once the incision closed, rats were 

recovered from anaesthesia. Animals received an antibiotic (Terramicina , 60 

mg/kg) on the 3rd and 6th day after surgery and analgesics (Contramal , 5 mg/kg), 

for 3 days postoperatively. No anticoagulants or antiplatelets were administered 

post-operatively. 

Animals were sacrificed by Phenobarbital administration either 1 (n=8) or 3 

months (n=8) after implantation. Arterial conduits were explanted and histological 

and SEM analyses were performed, as previously described.  
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RESULTS 
 
 

1. AORTA ACELLULAR MATRICES 

Two cycles of detergent-enzymatic treatment were needed to completely remove cells. 

Between the two decellularization cycles aortas were treated with Collagenase IV to detach 

the endothelial layer, still present at the end of the first treatment (Fig. 1 C). Collagenase 

digestion allowed us to decrease the treatment duration that would compromise the 

mechanical properties of the biomaterial. H/E staining confirmed the absence of cells  (Fig. 

1D). AAMs maintained elastic fibers, while connective component was modified compared 

to native tissue (Fig. 1A) by a longer detergent treatment (Fig. 1C).   

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

Immunohystochemistry revealed the absence in AAMs (Fig. 2 C, D) of both MHC I 

and II cell membrane antigens, normally present in native tissue (Fig. 2, A, B). 

Figure 1 H/E staining (A,C,D; magnification x200) and SEM analysis (B, D, E; 
magnification x200) of not treated abdominal aorta (A,B), the same after one 
(C,D) or 2 (D,E) detergent-enzymatic treatments.  
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2. CELL CULTURES 

a- Skin microvascular endothelial cells: isolation and characterization 

In 2 weeks, 6 millions of microvascular endothelial cells were obtained from a 2 cm2 

skin biopsy (Fig. 3 A, B).  CD31 (Fig. 3C) and von Willebrand factor (Fig.3D) stainings 

confirmed the maintenance of the endothelial phenotype till the fourth culture 

passage.  

 
 

 

 

 
 

 
 
 

 
 

 

 

 

 

Figure 2 Immunohystochemistry performed using anti-MHC I (A,C) and II (B,D) 
antibodies before(A,B) and after 2 detergent-enzymatic treatments. Magnification x200. 

Figure 3 Cultures of skin microvascular endothelial cells. Phase-contrast  
microscopy (A,B, magnification x100). Immunohystochemistry performed using 
anti CD-31 (C) and anti  von-Willebrand factor antibodies (D). Magnification x400 

anti-MHCI anti-MHCII 
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b- ECs/AAM cultures 

ECs were seeded into the luminal surface of AAMs. At 72 h ECs adhered on AAMs, 

provided a continuous monolayer (Fig. 4 A, B, C) and maintained their phenotype 

(Fig. 4 D).  

 

 

 
 
 

 
 
 
 

 
 
 

 

 

 

 

 

 

 

3. IN VIVO EXPERIMENTS 

AAMs or AAMs plus cells were implanted into abdominal aorta of female Lewis rats.  

Animals have been sacrificed 1 or 3 months after surgery.  

Group A: rats receiving only AAMs 

Seven rats received only AAMs as aorta interposition graft: 4 animals were sacrificed 

after 1 month and 3 after 3 months. All animals survived.  

Explanted grafts presented a higher diameter than host vessel  (Fig. 5 A, B).  

One month after surgery, only the borderline with the native vessel was 

reendothelized (Fig.  5 C), while the surface in the middle of the graft shown collagen 

fibers and platelets adhesion (Fig. 5 D). 

Only one graft presented almost a continuous ECs monolayer (about 90% of surface 

area) and didn’t present thrombi. However, histological analysis shown intimal 

Figure 4 SEM (A, B; magnification x300, x1000) and DAPI staining (C, 
magnification x 200) of ECs/AAM cultures at 72h. The EC phenotype was 
confirmed by immunohystochemistry performed using an anti-von 
Willebrand factor antibody (D, magnification x400).  
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hyperplasia and a thick adventitial layer, while elastic fibers were well organized (Fig. 

5 E).  

Analogous results were obtained analysing samples collected three months after 

surgery. Two grafts still presented exposed collagen fibers remnants and ubiquitous 

platelet adhesion, while only one presented luminal surface almost completely 

reendothelizated. Moreover, histological analysis shown a severe intimal hyperplasia. 

However, no graft presented any thrombi.  

 

 

 

  

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

Group B: rats receiving AAMs/ECs 

Nine rats received AAM plus ECs as aorta interposition graft: 4 animals were 

sacrificed after 1 month, while 5 rats after 3 months. All animals survived and no 

thrombi were observed in all samples. 

The diameter of the graft was the same as the host one (Fig. 6 A, B). All grafts were 

completely reendothelized with no platelet adhesion (Fig. 6 C, D). Although elastic 

Figure 5 AAM grafts 1 month after surgery. Explanted graft (A,B); SEM of 
luminal surface (C,D); Movat staining (E, magnification x200) 
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fibers were visible, the tunica media appeared thinner than the native one. As 

observed in AAM grafts, adventitial layer was hyperplastic. 

 

 

 
 

 

 

Three months after surgery grafts composed of AAM plus ECs appeared to be 

narrowed. Grafts were completely reendothelized with no platelet adhesion (Fig. 7 

A, B). However, Movat staining shown a reduced elastic fiber layer (Fig. 7 C) 

comparated to the native one (Fig. 7 D), a moderate intimal hyperplasia and a tunica 

adventitia similar to the host one. 

 
 
 
 

Figure 6 AAM plus ECs grafts 1 month after surgery. Explanted graft (A,B); SEM of luminal 
surface (A, B); Movat staining (F, magnification x200). 
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Figure 7 AAMs plus ECs grafts 3 months after surgery (A, B, C): SEM of luminal surface (A, B); 
Movat staining (C, magnification x200). Movat staining of native abdominal aorta (D). 
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DISCUSSION 
 
 
This work has demonstrated that AAMs previously seeded with skin microvascular 

ECs could be used as vessel substitutes.  AAMs were obtained following Meezan 

method with minor modifications. In previous studies, this immuno-enzymatic 

protocol has already shown to obtain suitable AMs that have been used both in 

preclinical and in clinical applications (Gilbert et al, 2006). This decellularization 

process induces the loss of the major histocompatibility complex markers, but 

maintains angiogenic factors, such as b-FGF and TGF-β (Ribatti et al, 2003; Conconi 

et al, 2004 bis and 2005 bis). Thus, AMs can present angiogenic activity that is an 

important factor for the in vivo integration of the tissue substitutes. AMs obtained 

by this protocol can support in vitro adhesion, growth and function of several cell 

types (Burra et al 2004; Dettin et al 2005; Conconi et al 2005), while in vivo AMs can 

act as a template allowing the ingrowth of the host cells and can be remodeled in a 

living tissue (Parnigotto PP et al, 2000; Marzaro M et al, 2006; Conconi MT et al, 

2004). Moreover, they represent preformed structures whose length and gauges 

can be choice according to the dimension of the segment to be repaired. Another 

advantage is the possibility to have easy and unlimited availability of inexpensive 

grafts containing tissue-specific proteins. On June 2008 the first tissue engineered 

trachea, created using a AM human donor trachea as scaffold seeded with patient’s 

own cells, was implanted into a 31-year-old woman’s left main bronchus 

(Macchiarini et al, 2008). 

In this work, AAMs maintained the three different layers as non-treated aorta and 

lacked of antigenic epitopes. Nowadays, several groups tested various AMs as 

vascular graft (Clarke et al, 2001; Conklin et al, 2002).  Although they shown a good 

patency, the acellular luminal surface of these decellularized matrices without 

endothelial cells (ECs) lining carries a substantial risk for thrombosis when exposed 

directly to the blood flow. Our study confirmed these observations. Indeed, at 1 and 

3 months, AAM grafts were not completely reendothelized, presented thrombi and 

intimal hyperplasia. Skin microvasculature could be an alternative source of ECs: 

skin biopsy is a moderately invasive procedure and in a short time allowed to obtain 

a large amount of cells from small samples. One month after implantation grafts 

composed by AAM and ECs could be histologically compared to native vessels, 

demonstrated a good patency and no thrombi. After three months, a moderate 
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intimal hyperplasia was detected and grafts presented the tunica media thinner 

than the one of native vessel. Although the substitutes appeared narrowed, patency 

was good and no thrombotic processes were visible. It can be supposed that the 

remodelling process was still in progress. Thus, longer endpoints should be 

investigated to determine the in vivo remodelling of the scaffold. However, these 

results agreed to the ones obtained by Kaushal et al (2001) seeding porcine iliac 

AMs with endothelial progenitors from peripheral blood. To improve the outcome 

of reconstructive surgery, alternative approaches should be evaluated. For example 

co-seeding of ECs and SMCs may be a suitable strategy to maintain the artery wall 

structure, but it will take a longer time to obtain the substitute (Neff et al, 2006).  

In the present study we attempted to construct vessels in a clinically relevant time 

frame. Important to clinical application is having conduit available in a wide range 

of sizes on short notice. Despite other vascular regeneration techniques already 

used in clinical practise, which takes 4-6 weeks to create an implantable grafts (Neff 

et al, 2006), this protocol lead to obtain a vascular substitute in only 2 weeks. 

Besides this technique might eliminate the need to remove healthy vessels for 

collecting autologous endothelial cells. 
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CONCLUSION 
 
 
Overall, this work has shown that the detergent-enzymatic treatment allows to 

obtain AMs possessing the main features of the native tissue. For this reason, tissue-

specific AMs were able to act both as suitable environment for in vitro and in vivo 

growth and differentiation studies and as biomaterial to develop vessel substitutes. 

In particular, KAMs supported in vitro both proliferation and differentiation of renal 

progenitors from amniotic fluid into tubular-like and podocyte-like cells.  

Furthermore, in vivo experiments shown that progenitors expressed mature renal 

markers, attracted inside KAMs differentiated murine cells and integrated into 

tubular host structures. These results could suggest to evaluate this approach for 

the enhancement of the function of hypoplastic kidneys.  

On the other hand, AAMs seems to be an interesting biomaterial for vascular TE. 

The lack of reendothelization, leading to intimal hyperplasia and increased 

incidence of thrombosis observed in AAMs grafts, have indicated the need to 

provide in vitro an endothelial coverage of decellularized tissue. Indeed, grafts 

composed of AAM and skin microvasculature ECs shown good patency and no 

thrombi. Although these grafts appeared narrowed and a moderate hyperplasia has 

been detected in the inner layer, they presented two main advantages: they were 

obtained into a clinically relevant time frame and eliminated the need to remove 

healthy vessels for collecting autologous ECs.  
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