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Padua points and “fake” nodes for polynomial approximation:
old, new and open problems

STEFANO DE MARCHI*

ABSTRACT. Padua points, discovered in 2005 at the University of Padua, are the first set of points on the square
[−1, 1]2 that are explicitly known, unisolvent for total degree polynomial interpolation and with Lebesgue constant
increasing like log2(n) of the degree. One of the key features of the Padua points is that they lie on a particular Lissajous
curve. Other important properties of Padua points are

(1) in two dimensions, Padua points are a WAM for interpolation and for extracting approximate Fekete points and
discrete Leja sequences.

(2) in three dimensions, Padua points can be used for constructing tensor product WAMs on different compacts.
Unfortunately, their extension to higher dimensions is still the biggest open problem.

The concept of mapped bases has been widely studied (cf. e.g. [35] and references therein), which turns out to
be equivalent to map the interpolating nodes and then construct the approximant in the classical form without the
need of resampling. The mapping technique is general, in the sense that works with any basis and can be applied
to continuous, piecewise or discontinuous functions or even images. All the proposed methods show convergence to
the interpolant provided that the function is resampled at the mapped nodes. In applications, this is often physically
unfeasible. An effective method for interpolating via mapped bases in the multivariate setting, referred as Fake Nodes
Approach (FNA), has been presented in [37]. In this paper, some interesting connection of the FNA with Padua points
and “families of relatives nodes”, that can be used as “fake nodes” for multivariate approximation, are presented and
we conclude with some open problems.
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1. Introduction

Let Pn(R) be the space of the univariate polynomials of total degree ≤ n on R and C(R) the linear
space of continuous functions on R. Further, for the basis of monomialsM = {1, x, x2, . . . , xn} and a set
X = {x0, . . . , xn} of n + 1 distinct points, we denote by

(1.1) Vdm(X;M) =
∏
i< j

(xi − x j)

the corresponding Vandermonde determinant which plays an important role for the unisolvency of a
given set of points.

The classical univariate interpolation problem of f by polynomials of degree n can be stated as fol-
lows.

Problem 1. Let K be a closed and bounded interval of R. Consider X a set of n + 1 pairwise distinct
points of K, the values { f (xi), i = 0, . . . , n} and the basis of monomials M = {1, x, . . . , xn}. Find the
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polynomial pn =
∑n

k=0 ak xk, so that

pn(xi) = f (xi), i = 0, . . . , n.

Being xi , x j, i , j, pn is unique because Vdm(X;M) , 0. Using the Lagrange basis L = {li, i =

0, ..., n} with

li(x) =

n∏
i=0,i, j

x − x j

xi − x j
=

Vdm(Xi;M)
Vdm(X;M)

,

where Xi is the set X in which we substitute xi with x, we can then write

(1.2) pn(x) =

n∑
i=0

li(x) f (xi), x ∈ K.

This process generates an interpolation error en(x) = | f (x) − pn(x)|, x ∈ K or in norm En = ‖ f − pn‖∞.
Using the Lagrange form (1.2) of the interpolant, we can bound this error by

(1.3) En ≤ (1 + Λn)E∗n

with Λn = sup
x∈K

n∑
i=0

|li(x)| the Lebesgue constant which depends on n and on the node set X. As well-

known, Λn represents the sup-norm of the linear operator (cf. e.g. [26]) L : C(R) → Pn(R), L f =
n∑

i=0

f (xi)li, where E∗n is the error of best-uniform approximation that is E∗n := inf
pn∈Pn(R)

En( f ).

In the one dimensional case we know
• Λn ≈ 2n when the set X is made of equally spaced points of K (or even worse when X are

randomly chosen);
• Λn ≈ log(n) when X is made of Chebyshev-like points of K.

We call Chebyshev-like points, those points that have the so-called arccos-distribution which character-
izes for instance the Chebyshev-Gauss-Lobatto points (or Chebyshev extrema){

xk = − cos
(

kπ
n

)
, k = 0, ..., n

}
and all zeros of orthogonal polynomials on a finite interval with respect to some positive measure. All
these points are near-optimal in the sense that their Lebesgue constant grows logarithmically with respect
to the degree n. Two other important sets of points are Fekete points and Leja sequences (cf. e.g. [32])
whose definition and properties will be discussed later on in the paper.

Fundamental question: Are there quasi-optimal interpolation nodes explicitly known in the multi-
variate setting for polynomial interpolation of total degree?

The answer is partially negative, except for some known cases and in small dimensions (see also the
seminal paper by L. Bos [5]).

The previous question was the spring which pushed us in studying new families of near-optimal
points, starting from the square [−1, 1]2, being the square a simple domain, intrinsically tensorial, easy
to be mapped to other domains (see [23]).

There are then many other questions and many more open problems, in this paper we present the
answers to the following that were the main reasons why we discovered the Padua points on the square
Ω = [−1, 1]2.

• We looked for well-distributed nodes. We found various nodal sets for polynomial interpolation
of even degree n in the square Ω, which turned out to be equidistributed with respect to the
Dubiner metric [45] and which show near-optimal Lebesgue constant growth [20].
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• We also required efficient interpolant evaluation: the interpolant should be constructed without
solving the Vandermonde system whose complexity is O(N3), for each pointwise evaluation,
with N =

(
n+2

2

)
the dimension of the bivariate polynomials of total degree ≤ n. Moreover, we

looked for closed formulae.
• We required efficient cubature formulas: in particular a fast computation of cubature weights for

non-tensorial cubature formulae.
The last two points were inspired by the rule of 10 claimed by Nick L. Trefethen in [60] (also in a talk
given in 2009 at the Dolomites Workshops in Alba di Canazei): a good implementation should last for
10 seconds, have a 10 digits precision and does not consist of more than 10 lines of executable code.

In section 2, we start by introducing the Dubiner metric and which is the one we used for the square.
Then, in section 3 we recall the construction of the Padua points, their properties and outline some
open problems. Section 4 is devoted to the description of the problem of approximating discontinuous
functions, which was the main reason of studying the “fake" nodes. In Section 5, we then introduce
the idea of the “fake” nodes approach and its equivalence with the mapping polynomial basis. Also in
this section we outline some open problems and possible future developments. We finally conclude in
Section 6.

As a final note, many of the figures are taken from the papers cited in the bibliography of which I am
a co-author and that can be reproduced with the Matlab codes freely available online.

2. From Dubiner metric to Padua points

In his seminal paper [45], M. Dubiner introduced what we call the Dubiner metric which in [−1, 1]
corresponds to the arccosine distance between two points:

(2.4) µ[−1,1](x, y) = | arccos(x) − arccos(y)|, ∀x, y ∈ [−1, 1].

By using the Van der Corput-Schaake inequality for trigonometric polynomials T (θ) of degree m and
|T (θ)| ≤ 1, that is,

(2.5) |T ′(θ)| ≤ m
√

1 − T 2(θ)

we want to show that the Dubiner metric is

(2.6) µ[−1,1](x, y) := sup
‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))|

with P ∈ Pn([−1, 1]). Firstly, inequality (2.5) is equivalent to

(2.7)
∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ ≤ m.

The following result then holds.

Lemma 2.1. Take x, y ∈ [−1, 1] and P ∈ Pm([−1, 1]), then

| arccos(x) − arccos(y)| = sup
‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))|.

Proof. Letting T (θ) = P(cos(θ)) and x = cos(θx), y = cos(θy). By using (2.7), we get

| arccos(T (θx)) − arccos(T (θy))| =
∫ θy

θx

∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ dθ ≤ ∫ θy

θx

mdθ ≤ m|θx − θy|.

But arccos(x) = θx, arccos(y) = θy giving

| arccos(T (θx)) − arccos(T (θy))| ≤ m| arccos(x) − arccos(y)|
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and
sup

‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))| = | arccos(x) − arccos(y)|.

This concludes the proof. �

This metric generalizes to compact sets Ω ⊂ Rd, d > 1 (see e.g. [32]):

µΩ(x, y) := sup
‖P‖∞,Ω≤1

1
m
| arccos(P(x)) − arccos(P(y))|.

This metric is important because there is an interesting unproved conjecture quoted in [20]:

Conjecture 1. Nearly optimal interpolation points on a compact Ω ⊂ Rd are asymptotically equidis-
tributed with respect to the Dubiner metric on Ω.

Hence, once we know the Dubiner metric on a compact Ω, we have at least a method for producing
"good" interpolation points.

For d = 2, let x = (x1, x2), y = (y1, y2)
• Dubiner metric on the square, S = [−1, 1]2:

(2.8) µS (x, y) = max{| arccos(x1) − arccos(y1)|, | arccos(x2) − arccos(y2)|}.

• Dubiner metric on the disk, D = {|x| ≤ 1}:

(2.9) µD(x, y) =

∣∣∣∣∣arccos
(
x1y1 + x2y2 +

√
1 − x2

1 − x2
2

√
1 − y2

1 − y2
2

)∣∣∣∣∣ .
As an example, by using the previous definition of the Dubiner metric on the square, we can extract

points from a discretization of the square itself. In Fig. 1, we show 496 Dubiner nodes (corresponding
on taking n = 30), Random and Euclidean points as well as their Lebesgue constants. Notice that the

Figure 1. Left: Dubiner points. Right: Lebesgue constants growth.

Euclidean points, are Leja-like points, given by max
x∈Ω

min
y∈Xn
‖x − y‖2. There is a tight connection with the

Morrow-Patterson (MP)-points (see [63]) which are a set of N =

(
n + 2

2

)
= dim(P2

n) points in the square

[−1, 1]2, equidistributed with respect to the Dubiner metric (2.8). To be more precise, let n be a positive
even integer, the MP-points are given by the following

xm = cos
( mπ
n + 2

)
, yk =


cos

(
2kπ
n+3

)
, if m odd

cos
(

(2k−1)π
n+3

)
, if m even
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1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1 and are unisolvent for the total degree interpolation problem.
The interest of these points where noticed by Len Bos who showed, in an unpublished note, that their

Lebesgue constant grows polynomially in n and ΛMP = O(n6). Later on, in [39] we showed, by using
(the reciprocal of) Christoffel functions for estimating the Lebesgue constant of the hyperinterpolation
operator on various 2-dimensional domains, that indeed ΛMP = O(n3). Numerically, we actually found
a growth of O(n2). So this is an open problem to show that the ΛMP = O(n2).

Brutman introduced the so-called extended Chebyshev points [17].

T̃n =

{
x̃k = −

1
γn

cos
(

(2k − 1)π
2n

)
, k = 1, ..., n

}
,

where γn = cos
(
π
2n

)
, that is the set of Chebyshev points stretched to the boundary of the interval.

Similarly, we can define the Extended Morrow-Patterson points (EMP) as the points

xEMP
m =

1
αn

xMP
m , yEMP

k =
1
βn

yMP
k ,

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).
Note: Both MP and the EMP points are equally distributed with respect to Dubiner metric on the

square [−1, 1]2 and unisolvent for polynomial interpolation of degree n on the square [−1, 1]2 (see [20]).
The Padua points (PD) are modified Morrow-Patterson points and were discovered “miraculously” in
summer 2003, by Len Bos, Shayne Waldron, Marco Vianello and myself. They are the points in the
square [−1, 1]2 with coordinates

xPD
m = cos

(
(m − 1)π

n

)
, yPD

k =


cos

(
(2k−1)π

n+1

)
, if m odd

cos
(

2(k−1)π
n+1

)
, if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N =

(
n + 2

2

)
.

We recall here some fundamental properties proved in [8].
• The PD points are equispaced with respect to Dubiner metric µS on [−1, 1]2.
• The interior points are the MP points of degree n − 2 while the boundary points are “natural”

points of the grid. In Fig. 2 to the left, we show the set of Padua points for n = 8 as well as the
MP and EMP.

• There are 4 families of PD points obtained by taking rotations of 90 degrees: clockwise for even
degrees and counterclockwise for odd degrees.

• The Lebesgue constant of the Padua points has optimal growth (see Fig. 2, right)

(2.10) Λ(PDn) = O((log n)2).

As a final note, their construction can be obtained in this simple way. Consider the n + 1 Chebyshev-
Lobatto points on [−1, 1]

Cn+1 =

{
zn

j = cos
(

( j − 1)π
n

)
, j = 1, . . . , n + 1

}
and the two subsets of points with O=odd and E=even indexes

CO
n+1 =

{
zn

j , j = 1, . . . , n + 1, j odd
}
,

CE
n+1 =

{
zn

j , j = 1, . . . , n + 1, j even
}
.

Then, the Padua points of degree n are the set

PDn = CO
n+1 ×CE

n+2 ∪CE
n+1 ×CO

n+2 ⊂ Cn+1 ×Cn+2.
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As a nice and interesting observation, the Padua points lie on n concentric squares with sides at the
zeros of Un and Un−1 (the inner) except the external and the center [29]. With Uk we indicate the classical
orthogonal Chebyshev polynomials of second kind, see also Fig. 3.

3. Padua points: generating curve, WAMs, applications and open problems

There exists an alternative construction consisting of the self-intersections and boundary contacts of
the parametric and periodic curve, called generating curve:

γ(t) = (− cos((n + 1)t)︸         ︷︷         ︸
Tn+1(t)

,− cos(nt)︸ ︷︷ ︸
Tn(t)

), t ∈ [0, π].

For instance, in the figure below we display the curve γ(t) for n = 4. The generating curve γ(t) turns
out to be a Lissajous curve. In particular, it is an algebraic curve such that Tn+1(x) = Tn(y) (for the first
family!). Being a Lissajous curve, we recall some important properties of these curves

• Their implicit equations can be found by using Chebyshev polynomials. Chebyshev polynomials
are indeed Lissajous curves (cf. [62]).

• Lissajous curves are planar parametric curves studied by the astronomer Nathaniel Bowditch
(1815) and later on by the mathematician Jules A. Lissajous (1857). They can be written in a
general form as

γ(t) = (Ax cos(ωxt + αx), Ay sin(ωyt + αy)),
where Ax, Ay are amplitudes, ωx, ωy are pulsations and αx, αy are phases.

Figure 2. Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the
corresponding Lebesgue constants.

Figure 3. Padua for n = 6 are distributed on n concentric squares with sides at the
zeros of Un and Un−1 (the inner) except the external and the center (just a dot!).
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Figure 4. PD4 on the generating curve and the two grids (with different colors).

In two dimensions, there is an interesting general definition described in [46].

Definition 3.1.
γn
κ,u(t) =

( u1 cos(n2t − κ1π/(2n1))
u2 cos(n1t − κ2π/(2n2))

)
, t ∈ [0, 2π],

with n = (n1, n2) ∈ N2, κ = (κ1, κ2) ∈ R2 and u = (u1, u2) ∈ {−1, 1}2. The values n1, n2 are called
frequencies (like for the pendulum) and u reflection parameter.

It is nice and also quite instructive to see how Lissajous curves can be constructed by playing with the
sand pendulum (see the video https://www.youtube.com/watch?v=7f16hAs1FB4).

The construction in the square [−1, 1]2 goes as follows. Let n = (n1, n2) with n1, n2 ∈ N relatively
primes. Then, we may consider the curves γn

ε : [0, 2π]→ [−1, 1]2

(3.11) γn
ε (t) := γn

(0,ε−1),1(t) =

( cos(n2t)
cos(n1t + (ε − 1)π/(2n2))

)
with ε ∈ {1, 2} and fixed reflection parameter 1 = (1, 1).

Figure 5. Left: Padua points, Right: Lissajous points. Both sets are relative to degree
n = (6, 7), as used in (3.11).

Two special cases, whose details are discussed in [46], allow to classify Lissajous curves on the square
in two main families.

• For ε = 1, that is γn
1 (t), is called a degenerate curve.

• For ε = 2, that is γn
2 (t), is called non-degenerate curve.

https://www.youtube.com/watch?v=7f16hAs1FB4
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The Padua points curve is then a degenerate Lissajous curve, being two points of the curve at two con-
secutive corners of the square. Moreover, the degenerate Lissajous curve are π-periodic, while the non-
degenerate are 2π periodic.

In Figure 5, we have displayed PD6 and Lis6,7. In particular the generating curves and the cardinalities
are as follows:

γPD
n,n+1 = (cos(nt), cos((n + 1)t), #PDn = (n + 2)(n + 1)/2

γLis
n1,n2

=

(
cos(n2t), cos(n1t +

π

2n2
)
)
, #Lisn1,n2 = 2n1n2 + n1 + n2.

This shows that the Padua points are a unisolvent set for the total degree interpolation problem. While
the Lissajous points can be used for polynomial interpolation, not of total degree, and they guarantee
stability (slow growth of the Lebesgue constant).

The more general topic of multivariate polynomial approximation on Lissajous Curves turned out to
be of interest in the emerging field of Magnetic Particle Imaging (MPI) (see, e.g., some recent publica-
tions and the activities of the scientific network MathMPI). Lissajous sampling seems to be relevant also
in the field of Atomic Force Microscopy (AFM).

3.1. Padua points are WAM (Weakly Admissible Meshes). In the field of multivariate polynomial
approximation, the notion of polynomial mesh has recently emerged as a significant concept. Originally
introduced in the seminal paper [25], it has been studied in several subsequent papers, from both the the-
oretical and the computational point of view, interpolation and extracting Fekete points on 2d domains
(cf. [14, 9, 12] and references therein). Moreover, approximate Fekete-like points extracted from poly-
nomial meshes have begun to play a role in the framework of high-order methods for PDEs (cf., e.g.,
[83]).

We simply recall, that a polynomial Weakly Admissible Mesh (WAM) is a sequence of discrete subsets
{An} of a polynomial determining (i.e. polynomial vanishing there vanish everywhere) compact set K ⊂
Rd such that the inequality

(3.12) ‖p‖k ≤ C(An)‖p‖An , ∀p ∈ Pd
n

holds, where both the card(An) ≥ dim(Pd
n) = O(nd) and C(An) are bounded by nd. Notice that ‖ f ‖X is

the sup-norm of a function f bounded on the (discrete or continuous) set X. Properties of WAMs and
various examples in one and two dimensional domains, are described in [41]. Hence, once we know a
WAM, the computation of discrete estremal sets, can be done by numerical linear algebra techniques by
using greedy algorithms. The interested reader can refer to [13, 12].

The following lemma is the fundamental result for the construction of WAMs by using tensor product
strategies.

Lemma 3.2. Let p ∈ P1
n be a univariate algebraic polynomial, and Cn, C̃n the Chebyshev and Chebyshev-

Lobatto nodal sets, respectively. Let t ∈ T1
n be a univariate trigonometric polynomial, and Θn the angular

nodal set

Θn(α, β) = φω(C̃2n) +
α + β

2
⊂ (α, β), ω =

β − α

2
≤ π,

where φω(r) = 2 arcsin(sin ω
2 r), r ∈ [−1, 1]. Then, the following polynomial inequalities hold

‖p‖[a,b] ≤ cn‖p‖Cn(3.13)
‖p‖[a,b] ≤ cn‖p‖C̃n

(3.14)
‖t‖[α,β] ≤ c2n‖t‖Θn(3.15)

with cn = 1 + 2
π

log(n + 1).
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Padua points can be used in 3-dimensional tensor product WAMs on different domains [43]. Knowing
a WAM on a planar compact, say Ω, we can construct 3-dimensional WAMs for cones with base Ω and
vertex y, which consists of all the segments connecting y with a point on Ω. Similarly the construction
can be done for pyramids (which are cones with polygonal base) and truncated cones. The last is obtained
by cutting the cone with a plane parallel to the base. We can also construct 3-dimensional WAMs for
solid of rotation with cross section Ω and external axis r. The WAMs is then obtained by rotation of Ω

by a given angle ≤ 2π, around a coplanar line r.
For instance in Fig. 6, we show on the left the WAMs for a pyramid obtained by the tensor product

of Padua points of degree 10 on the base and Chebyshev-Lobatto points along the z-axis, on the right
the WAM on a portion of the torus with circular base. In both sets we have highlighted the approximate
Fekete points extracted from the WAM by the greedy algorithm described in [13].

Figure 6. 3-dimensional WAMs obtained by using the Padua points.

3.2. Some recent applications of the Padua points. Lagrange interpolation at the Padua points has
been recently used in several scientific and technological applications.

• Computational Chemistry (the Fun2D subroutine of the CP2K simulation package for Molecular
Dynamics, https://www.cp2k.org/),

• Image Processing (algorithms for image retrieval by colour indexing),
• Materials Science (Modelling of Composite Layered Materials, [69]),
• Mathematical Statistics (Copula Density Estimation, [67]),
• Quantum Physics (Quantum State Tomography [59]),
• Padua points for solving PDEs with radial basis functions methods [58].

Padua points have been included in the Chebfun2 package (whose features have been described in the
book [60]). The Padua points can be obtained simply specifying the degree n: x=paduapts(n). For
more details, see the web page http://www.chebfun.org/examples/geom/Lissajous.html

• Software: www.math.unipd.it/~marcov/CAApadua.html, J. Burkardt https://people.
sc.fsu.edu/~jburkardt/m_src/padua/padua.html

• Scholar citations (to the date): about 7140.

3.3. Some open problems.
(1) We do not know the Padua points on [−1, 1]d, d ≥ 3.

https://www.cp2k.org/
http://www.chebfun.org/examples/geom/Lissajous.html
www.math.unipd.it/~marcov/CAApadua.html
https://people.sc.fsu.edu/~jburkardt/m_src/padua/padua.html
https://people.sc.fsu.edu/~jburkardt/m_src/padua/padua.html
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(2) The Lebesgue function has its maxima in the corners, where there are no Padua points (see Fig.
7 that displays the Lebesgue function and its maximum at the corner points).

(3) The Vandermonde determinant associated to the Padua and Padua-like points has variables that
separate. Using a notation similar to (1.1), for a point set A = {a1, ..., aN} ∈ [−1, 1]2 and a basis
B = {b1, . . . , bN}, we may construct the Vandermonde matrix

V(A;B) = (bi(a j))N
i, j=1,

where the i-th row of V consists of i-th polynomial of the basis B evaluated at all points. For
Padua-like points N =

(
n+2

2

)
and we denote with Vdm(A;B) the corresponding determinant.

Using the standard monomial basis of Pn(R2),

Bn = {xαyβ, | α + β ≤ n},

the tensor product basis
Tn = {xαyβ, | max(α, β) ≤ n}

and the univariate polynomials

a(x) :=
n/2∏
i=0

(x − x2i+1)

b(y) :=
n/2∏
j=0

(y − y2 j+1),

another basis for Pn(R2) is

(3.16) B′ = a(x)Bn/2−1 ∪ b(y)Bn/2−1 ∪ Tn

such that Vdm(A;Bn) = ±Vdm(A;B′n) being the transition matrix diagonal with 1 on the di-
agonal. This construction allowed to manipulate the Vandermonde matrix splitting it along the
even and odd grids of the Padua-like points, providing an unexpected commutative property of
the Vandermonde determinant associated to each direction. The claim in [11, Lemma 1] had a
"gap". After some years, the Lemma was completely proved [42]. Moreover, we noticed that
this "commutative" property of the Vandermonde determinant associated to Padua-like points,
holds for general functions and general rectangular grids [31].

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

10

Figure 7. Padua points for n = 25 and its Lebesgue function. On the right the profile
in 1d of the function.
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4. Approximation of discontinuous functions

In this section, we deal with an important problem in data analysis, that is the reconstruction of func-
tions with discontinuities or with jumps. The approach we describe is the mapping bases technique
which turns out to be equivalent to the “fake” nodes approach [35, 37]. We recall that general ap-
proaches to overtake unavoidable reconstruction instabilities around the discontinuities are based on a
clever choice of interpolation points before and after the jumps (cf. e.g. [33]), rational approximation (cf.
e.g. [54, 4]), sinc-approx, filtering (cf. e.g. [36]). This list is not complete, but shows the wide interest
to the topic. In particular, in image analysis in medicine (Computerized Tomography (CT), Magnetic
Resonance (MR), and their variants (SPECT, fMRI)) or the above mentioned Magnetic Particle Imaging
(MPI) or in geosciences, where satellite images are used to analyzed ground characteristics (humidity,
temperature, water distribution and so on), often the images need to be geometrically aligned, registered
or simply reconstructed by sampling them properly. In Figs. 8 and 9, we show some images connected
to these applications.

Figure 8. Discontinous functions in 1d and 2d.

• Interpolation by polynomials and rational functions of discontinuous functions is historically
well-studied. Two related well-known phenomena are the Runge and Gibbs effects [71, 51].
In both cases, unwanted oscillations appears near the boundary of the domain or close to the
discontinuities, respectively.

Figure 9. Left: the Shepp-Logan phantom used in medicine for testing. Center: an
MPI acquisition reconstructed by Gaussian kernels. Right: RBF reconstruction of the
soil of Portugal.
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• More recently, interpolation by kernels, mainly radial basis functions has become a powerful
tool for high-dimensional scattered data problems [52, 80, 18] and application to the solution of
PDES [55], machine learning [72, 48], image registration and many other more.

5. The Fake Nodes Approach (FNA)

We start observing three facts from which “fake” nodes ideas originated.

(1) In applications, samples are given. Resampling, which is often necessary, can be done at Cheby-
shev points, or by extracting mock Chebyshev points from the data, or finding good interpolation
points depending on applications (like Padua points, approximate Fekete points, discrete Leja
sequences, Lissajous points, (P, f , β)-greedy points, minimal energy points and so on). For more
details, see [35, 37].

(2) When the function has steep gradients, like f (x) = arctan(20x), x ∈ (−0.22, 0.22), its reconstruc-
tion gives rise to oscillations nearby the boundaries. This is a well-known fact from the Fourier
analysis of the coefficients of the corresponding series known as Gibbs phenomenon.

(3) For analytic functions on compact intervals, Adcock and Platte [1] investigated weighted least-
squares approximation of mapped polynomial basis via the Kosloff and Tal-Azer map [57]:

κα(x) =
sin(απx/2)
sin(απ/2)

, x ∈ [−1, 1], α ∈ (0, 1]

giving rise to the α-polynomial space

Pαn = {p ◦ κα, p ∈ Pn},

which corresponds to the space of trigonometric polynomials when α = 1 and the classical
polynomial space when α = 0 (which is excluded).

These observations are the main ingredients of the FNA which, as we shall see, is equivalent to a
polynomial mapping of the original polynomial space. We need some notations. Let S : Ω −→ Rd

be an injective map. The main idea behind the FNA, is that of constructing an interpolant R f ∈ B
S
N B

span{BS
1 , . . . , B

S
N} of the function f , so that

(5.17) R f (x) =

N∑
i=1

αS
i BS

i (x) =

N∑
i=1

αS
i Bi(S (x)) = Pg(S (x)),∀x ∈ Ω.

The function g has the property that g|S (XN ) = f|XN , that is, it assumes the same values of f at the mapped
interpolation points S (XN). Thus, having the mapped basis BS

N , the construction of the interpolant R f is
equivalent to build a classical interpolant Pg ∈ BN at the “fake” or mapped nodes S (XN). In what follows
we will use the words “fake” nodes, thinking of this mapping process.

Provided we have a unisolvent set of points for the given basis, XN = {x1, ..., xN}, and the correspond-
ing values f = { f (x1), . . . , f (xN)}, R f can be constructed by solving the linear system

(5.18) ASαS = f ,

where αS = (αS
1 , . . . , α

S
N)ᵀ, and

AS =


BS

1 (x1) . . . BS
1 (xN)

...
. . .

...
BS

N(x1) . . . BS
N(xN)

 .
Concerning the cardinal form of the mapped interpolant, we may state the following proposition.
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Proposition 5.1 (Cardinal form). Let XN = {xi, i = 1, . . . ,N} ⊆ Ω be a set of pairwise distinct data
points and let ui ∈ BN , i = 1, . . . ,N be the basis functions. Let S : Ω −→ Rd be an injective map.
The functions {u1, . . . , uN} are cardinal on S (Ω) for the “fake” nodes S (XN) if and only if the mapped
functions {u1 ◦ S , . . . , uN ◦ S } are cardinal for the original set of nodes XN .

The proof is trivial and comes immediately asking the cardinality property to the functions uS
i . Hence,

we can write the interpolant at the “fake” nodes in cardinal form:

(5.19) RS
f (x) = fᵀuS (x), x ∈ Ω,

where uS (x) = (uS
1 (x), . . . , uS

N(x))ᵀ.
The Lebesgue constant of the points mapped via RS

f is equivalent to that of the image Ω though S (see
[37] for details).

Proposition 5.2 (Equivalence of the Lebesgue constant). Let S : Ω −→ Rd be an injective map. Let
XN ⊆ Ω be a unisolvent set of nodes for the space BN , and uS

i ∈ B
S
N , i = 1, . . . ,N, be the associated

cardinal functions. Then, the Lebesgue constant ΛS (Ω) associated to the mapped nodes is

ΛS (Ω) = Λ(S (Ω)).

Remark 5.1. The proposition states that the interpolation at the mapped basis BS
N inherits the Lebesgue

constant of the “fake” nodes S (XN) over the ‘standard’ basis BN .

The Lebesgue constant, as well-known, represents the stability constant of the interpolation process.
For analyzing the stability, we thus study an interpolant of perturbed data f̃ (xi) sampled at xi, i =

1, . . . ,N, i.e. data affected by measurement errors.

Proposition 5.3 (Stability). Let S : Ω −→ Rd be an injective map and XN ⊆ Ω be a unisolvent set
of nodes for the space BN . Let f be the associated vector of function values and f̃ be the vector of
perturbed values. Let RS

f and RS
f̃

be the interpolant of the function values f and f̃ , respectively. Then,

||RS
f − RS

f̃
||∞,Ω ≤ ΛS (Ω) ‖ f − f̃‖∞,XN .

Proof. Taking into account that g|S (XN ) = f|XN and thus also g̃|S (XN ) = f̃|XN , we deduce that

||RS
f − RS

f̃
||∞,Ω = ||Pg − Pg̃||∞,S (Ω) = sup

x∈S (Ω)

∣∣∣∣∣ N∑
i=1

(gi(xi) − g̃i(xi)) ui(x)
∣∣∣∣∣

= sup
x∈Ω

∣∣∣∣∣ N∑
i=1

(gi(S (xi)) − g̃i(S (xi))) ui(S (x))
∣∣∣∣∣

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| |gi(S (xi)) − g̃i(S (xi))|

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| max
i=1,...,N

|gi(S (xi)) − g̃i(S (xi))|

= Λ(S (Ω)) max
i=1,...,N

∣∣∣ f (xi) − f̃i(xi)
∣∣∣

= ΛS (Ω) ‖ f − f̃‖∞,XN .

This concludes the proof. �

Consistently with Remark 5.1, the FNA approach also inherits the error of the classical approach, as
shown in the following proposition.
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Proposition 5.4 (Error bound inheritance). Letting S , XN , f and RS
f , as above. Then, for any given

function norm, we have
||RS

f − f ||Ω = ||Pg − g||S (Ω),

where g|S (XN ) = f|XN .

Proof. From (5.17), we know that RS
f = Pg ◦ S . Choosing g such that g ◦ S = f on Ω (this g exists being

S injective), we get
||RS

f − f ||Ω = ||Pg ◦ S − g ◦ S ||Ω = ||Pg − g||S (Ω),

which gives the claimed result. �

5.1. Mapped bases. As discussed above, let S : I → R be a given map. We are interested to the
function

(5.20) RS
n, f (x) := Pn,g(S (x)) =

n∑
i=0

ciS i(x)

for some g : S (I)→ R ∈ Cr(I) such that
g|S (Xn) = f|Xn .

RS
n, f ∈ span {S i = mi ◦ S , i = 0, . . . , n} is the interpolant at (Xn, Fn), that is no resampling is done. This

mapping construction is equivalent to the “fake” nodes approach.
• The mapped bases approach on I ask to “interpolate f on the set Xn via Rs

n, f in the function
space S n.”

• The FNA on S (I) ask to “interpolate g on the set S (Xn) via Pn,g in the polynomial space Mn.”

Remark 5.2. This approach is rather general, in the sense that we may use any space of linear inde-
pendent functions (polynomials, rational function, radial basis functions and so on). The only point to
clarify is the choice of the map S .

Problem 2. How can we find a suitable admissible map S for mitigating the Runge and Gibbs effects?

The map S should be taken so that the resulting set of “fake” nodes S (Xn) guarantees a stable inter-
polation process. A “natural” choice for a stable interpolation is to map Xn for example, to the set of
Chebyshev-Lobatto (CL) nodes on the interval I.

The following algorithms, S -Runge and S -Gibbs, provide a constructive solution to Problem 2.

Algorithm 1 (S-Runge).
Input: Xn,Cn. Note: Xn is ordered left-right, Cn are the CL nodes.
Core
• If x ∈ [xi, xi+1], for i ∈ {0, . . . , n − 1}, S is the (piecewise) linear map

S (x) = β1,i(x − xi) + β2,i,

where
β1,i =

ci+1 − ci

xi+1 − xi
, β2,i = ci.

Output: S (x).

For S -Gibbs, we need to identify the set of discontinuities

Dm :=
{
(ξi, di) | ξi ∈ (a, b), ξi < ξi+1, and di B | f (ξ+

i ) − f (ξ−i )|
}
, i = 0, . . . ,m

by an edge-detection algorithm. This can be done by well-known and stable techniques, such as the the
Canny algorithm described in [24] or, for irregularly samples signals and images, in [2]. When Radial
basis functions are used, the analysis of the coefficients of the interpolant, can give information on the
location of the discontinuities, as described in [70]. Recently, we proposed another approach to extract
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the location of the discontinuities through a segmentation method based on a classification algorithm
from machine learning (see [38]).

Algorithm 2 (S-Gibbs).
Inputs: Xn, Dm, x and k ∈ R+ .
Core
(a) αi B kdi, i = 0, . . . ,m.

(b) Letting Ai =
∑i

j=0 α j, define S as follows:

S (x) =

{
x, for x ∈ [a, ξ0[,
x + Ai, for x ∈ [ξi, ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Output: S (x).

Remarks. Some comments are in order.
• Our strategy consists in constructing the map S in such a way that it sufficiently increases the gap

between the node right before and the one right after the discontinuities via the real parameters
αi.

• About the shifting parameter k > 0. We experimentally observed that its selection is not critical.
The resulting interpolation process is not sensitive to its choice, provided that it is sufficiently
large, i.e. in such a way that in the mapped space the so-constructed function g has no steep
gradients.

• The “fake” nodes mapping, S-Runge, enables one to obtain an interpolant on equispaced points
that may converge efficiently while avoiding Runge phenomenon. The connection worth to be
emphasized regards the application of this mapping on a polynomial basis. In particular, if we
consider the Chebychev polynomials of the first kind, that is

Tk(x) = cos(k arccos(x)), f or x ∈ [−1; 1], k ≥ 0,

then, it appears that applying the “fake” nodes mapping to Tk on a general interval [a, b],
provides a Fourier basis T̂k:

T̂k(x) = Tk(cos(π(x − a)/(b − a))) = cos(kπ(x − a)/(b − a)).

In other words, interpolating with the “fake” nodes mapping is equivalent to a particular de-
composition in Fourier series. It also means that one can make direct connections with several
tricks used e.g. by the software Chebfun [64] and easily find the series coefficients via an FFT.
An application of this idea has recently been explored in [56].

In Fig. 10, we plot the cardinal functions on 4 nodes (so cubics), at varying the location of the
discontinuity ξ and the shift parameter k. The cardinals become discontinuous at ξ. When ξ is not at the
center of the interval, they do not look anymore cubics.

5.2. Examples.

5.2.1. Runge phenomenon. The first example of the FNA deals with the interpolation of the Runge
function. We take I = [−5, 5], f1(x) = 1/(1 + x2), Xn: equally spaced. As evaluation points we consider
a set of 100 equally spaced points.

We computed the Relative Max Approximation Error (RMAE), that is

RMAE = max
z∈E

|Rs
n, f (z) − f (z)|

| f (z)|
,
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Figure 10. Left-right, up-down: the original cardinals on 4 nodes, the cardinals
around ξ = 0, k = 0 the cardinals around ξ = 0.2, k = 1,the cardinals around ξ = 0, k =

0.5.
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Figure 11. Interpolation at 13 points of f1. Using equispaced (left), CL (center) and
“fake” nodes (right). The original and reconstructed functions are plotted with contin-
uous red and dotted blue lines, respectively.

5.2.2. Gibbs phenomenon. The second example deals with the Gibbs effect. We consider the discontin-
uous function below

f2(x) B
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Figure 12. The RMAE for the Runge function varying the number of nodes. The
results with equispaced, CL and “fake” nodes are represented by black circles, blue
stars and red dots, respectively.
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Figure 13. Lebesgue functions of equispaced (left), CL (center) and “fake” CL (right) nodes.

In this exampleD = {(−3/2, 1.775), (5/2, 0.479)}. As before, we compare:

a) the interpolating polynomial at equispaced points En and associated function values f2(En);
b) the interpolating polynomial at the CL nodes Cn in I and resampled function values f2(Cn);
c) the approximant built upon the polynomial interpolant at the “fake” nodes, S (En), and function

values related to the equispaced points f2(En). In this setting, we fix k = 50 and the map S of
the S -Gibbs algorithm.

5.3. Extensions. The mapped basis approach suggested many interesting applications. Here, we enu-
merate the most interesting ones and the corresponding references in which interested readers can refer
to.

• Quadrature weights of the “fake" Chebyshev-Lobatto nodes are those of the composite trape-
zoidal rule [34].

• In 2d and 3d, as we have already seen, we can extract approximate Fekete points on various
domains (disk, sphere, polygons, spherical caps, lunes, etc. ). With these points we can apply
the mapped basis approach for least-squares approximation [37]. In the 2d case, we have results
on the approximation of discontinuous functions on the square, using polynomial approximation
at the Padua points or tensor product meshes, see Figs. 17 and 18. It is interesting to see Fig.
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Figure 14. Interpolation at 20 points of the function f2 on [−5, 5], using equispaced
(left), CL nodes (center) and the discontinuous map (right). The nodes are represented
by stars, the original and reconstructed functions are plotted with continuous red and
dotted blue lines, respectively.
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Figure 15. The RMAE for the function f2 varying the number of nodes. The results
with equispaced, CL and “fake” nodes are represented by black circles, blue stars and
red dots respectively.
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Figure 16. Lebesgue functions of equispaced (left), CL (center) and “fake” nodes (right).
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18 where we show how to extract and map at the Padua points, fake Padua, starting from an
original grid.

• In higher dimensions, where Padua points are not known, we may sample the function at the
so-called Lissajous points or in the case of scattered data approximate by variably scaled dis-
continuous kernels [38].

• Extensions to rational interpolation/approximation: Floater-Hormann (FH) and trigonometric
FH (for periodic signals) interpolants and the AAA-approximation (see [4] and references therein).

• The original proposed S-Gibbs map suffers of a subtle instability when the interpolation is done
at equidistant nodes, a consequence of the Runge’s phenomenon. A new approach, termed
Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) has been introduced in [33],
which allows to mitigate both Runge and Gibbs phenomena

• In multimodal medical imaging, it is a common practice to undersample the anatomically-
derived segmentation images to measure the mean activity of a co-acquired functional image.
This avoids the resampling-related Gibbs effect that would occur in oversampling the functional
image. It turns out that the FNA for image resampling it is designed to reduce the Gibbs effect
when oversampling the functional image. This has been proved by a tight error analysis in [66].

• Links: https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_
without_resampling

Figure 17. Left: interpolation with PD60 of a function with a circular jump. Right:
the same by mapping circularly the PD points, and using least-squares fake-Padua.

5.4. Some open problems.

• As mentioned above, S-Runge and S-Gibbs have been improved in [33] via the GRASPA ap-
proach. Extension, at least to two dimensions, is needed.

• Recently two dimensional mock-Chebyshev points plus regression have been investigated [44].
Is this approach an alternative to the “fake” one?

• Error analysis and tight Lebesgue constant bounds should be investigated.

https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_without_resampling
https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_without_resampling
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Figure 18. Here n = 10. On the left the set X66 (represented by blue dots) is extracted
from a 11 × 12 equispaced grid (represented by both blue dots and red stars). The set
X66 (centre) is then mapped on the set of Padua points Pad66 via the mapping S (right).

6. Conclusions

In this paper, we have reviewed the most important facts concerning the Padua points and the mapped
bases approach for polynomial approximation of functions and data. We also outlined some open prob-
lems with the hope that some researcher can be interested in these topics and can propose a solution.
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