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ABSTRACT 

 

Carbon nanotubes (CNTs) are attractive candidates for the development of 

scaffolds for neural regeneration thanks to their ability to conduct electrical 

stimuli, to interface with cells and to mimic the neural environment. This thesis 

work concerns the development of a freestanding nanocomposite scaffold 

composed of multi-walled CNTs in a poly-L-lactic (PLLA) matrix that combines the 

conductive, mechanical and topographical features of CNTs with the 

biocompatibility of PLLA. Such CNT-PLLA scaffold resulted to support growth and 

differentiation of neuronal SH-SY5Y cells better than PLLA alone. In order to 

mimic guidance cues from the neural environment, biomimetic peptides were 

designed to reproduce regulatory motifs from L1CAM and LINGO1 proteins, that 

are involved in neurite outgrowth control. Both peptides - which neither alter 

cell proliferation nor induce cell death - could specifically and positively 

modulate neuronal differentiation when either used to coat well bottoms or 

added to the culture medium (with highest efficiency at 1 M concentration). 

Furthermore, cell differentiation resulted to be synergistically improved by the 

combination of the nanocomposite scaffold and the peptides, thus suggesting a 

prototype for the development of implants for long-term neuronal growth and 

differentiation. 

Then, the CNT-PLLA matrix was electrospun into fibres of submicrometric size in 

order to better mimic the neural environment, i.e. neuronal processes and 

collagenous components of the extracellular matrix. These scaffolds were shown 

to be biocompatible and to promote the formation of new neurites that extend 

along the scaffold fibres. Since cells are influenced by the scaffold topography, 

the orientation of the scaffold fibres opens up the perspective to promote a 

polarized neurite outgrowth. Moreover, the neuritogenic properties of the 

scaffolds are further enhanced when LINGO1 derivative peptide is added to 

culture medium; this represents a good starting point for developing next 
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generation scaffolds upon peptide functionalization. Moreover, human 

circulating multipotent cells (hCMCs) were grown onto the scaffolds and treated 

with peptides in order to asses if this autologous and accessible source of stem 

cells is capable of neuronal differentiation thanks to the scaffold and peptide 

characteristics. The CNT-PLLA scaffolds and its respective electrospun version 

resulted to be suitable for hCMCs adhesion and growth, showing a very good 

level of biocompatibility, and the hCMCs growing onto the scaffolds showed 

typical features of cells from the neuronal lineage, such as long neuritic 

protrusions that are tipped with fan-shaped structures resembling growth cones. 

Moreover, soon after cell seeding, the scaffolds were shown to promote the 

upregulation of markers typical of the neuronal lineage.The biomimetic peptides 

were also shown to influence cell morphology and to upregulate neuronal 

markers. These results suggest that hCMCs can acquire neuronal commitment 

thanks to scaffold/peptide properties per se, i.e. even in the absence of those 

typical growth factors that are normally used to promote the neuronal 

differentiation of stem cells. Further improvements in the scaffold geometry and 

composition, functionalization with peptides and culture conditions are 

necessary to achieve the complete neuronal differentiation of cells and to 

control the neuron subtype obtained, but our system resulted to be a good 

starting point for setting up implantable scaffolds for autologous neuronal 

differentiation. Future functional assessment of synaptic transmission and 

electrophysiological properties of cells onto the scaffolds will be of great interest. 

Moreover, coupling such scaffolds with electrical stimulation (which is readily 

achievable using CNT based materials) can boost further analyses aimed at 

studying neuronal differentiation and has great potential in nerve injury repair as 

well as neuron prosthesis. 

  



 

III 

 

RIASSUNTO 

 

I nanotubi di carbonio (CNTs) sono i candidati ideali per lo sviluppo di supporti 

volti a promuovere la rigenerazione neurale grazie alla loro abilità di condurre gli 

stimoli elettrici e alla loro nanotopografia in grado di mimare l'ambiente neurale. 

Questo lavoro riguarda lo sviluppo di supporti nanocompositi costituiti da CNTs 

dispersi in una matrice di acido polilattico (PLLA) e quindi in grado di combinare 

le caratteristiche nanotopografiche e di conduttività dei CNTs con la 

biocompatibilità del PLLA. Tali supporti, sono risultati essere in grado di 

supportare la crescita e il differenziamento delle cellule neuronali SH-SY5Y in 

modo migliore rispetto al solo PLLA. Al fine di mimare gli stimoli guida 

dell'ambiente neurale, sono stati sintetizzati anche dei peptidi biomimetici 

ricavati da specifici motivi regolativi delle proteine L1CAM e LINGO1, le quali 

sono coinvolte nel controllo dell'accrescimento neuritico. Entrambi i peptidi non 

hanno dimostrato effetti negativi sulla vitalità e la proliferazione cellulare, 

promuovendo invece il differenziamento neuronale in modo sequenza specifico 

e con i maggiori effetti quando utilizzati a concentrazione 1 M. Inoltre, quando 

usati in combinazione, supporti e peptidi sono in grado di agire in modo sinergico 

e di aumentare ulteriormente il differenziamento cellulare.  

Successivamente, al fine mimare al meglio l'ambiente neurale, la matrice CNT-

PLLA è stata elettrospinnata in fibre di dimensione submicrometrica con lo scopo 

di rappresentare i processi neuronali e la componente collagenosa della matrice 

extracellulare. Tali supporti si sono rivelati essere biocompatibili e in grado di 

promuovere la formazione di nuovi neuriti che si allungano seguendo 

l'orientamento delle fibre del supporto. Dal momento che le cellule sono 

influenzate dalla topografia del supporto, l'allineamento delle fibre suggerisce la 

possibilità di poter ottenere una crescita neuritica polarizzata. Inoltre, le 

proprietà neuritogeniche del supporto aumentano quando il peptide derivato da 

LINGO1 viene aggiunto al terreno di coltura; questi risultati rappresentano un 



 

IV 

 

buon punto di partenza per sviluppare supporti più avanzati a seguito della 

funzionalizzazione con tale peptide. In aggiunta, cellule circolanti multipotenti 

umane (hCMCs) sono state coltivate sui supporti e trattate con i peptidi al fine di 

determinare se tale fonte di cellule staminali autologa ed accessibile sia capace 

di differenziazione neuronale grazie soltanto alle caratteristiche dei supporti e 

dei peptidi. I supporti CNT-PLLA e la rispettiva versione elettrospinnata sono 

risultati essere adatti all'adesione e alla crescita delle hCMCs, mostrando buoni 

livelli di biocompatibilità; inoltre, le hCMCs coltivate sui supporti hanno mostrato 

caratteristiche tipiche delle cellule neuronali come lunghe protrusioni neuritiche 

terminanti con strutture a forma di ventaglio simili ai coni di crescita. I supporti 

inoltre promuovono l'espressione di marcatori tipici del lignaggio neuronale. 

Anche i peptidi si sono rivelati essere in grado di influenzare la morfologia 

cellulare e di upregolare marcatori neuronali. Questi risultati suggeriscono che le 

hCMCs sono capaci di acquisire un commitment neuronale solo grazie alle 

caratteristiche dei supporti e dei peptidi e senza l'ausilio dei fattori di crescita 

che sono tradizionalmente usati per promuovere il differenziamento neuronale 

di cellule staminali. Sono necessari ulteriori studi riguardanti la composizione e 

geometria dei supporti, funzionalizzazione con i peptidi e condizioni di coltura 

per acquisire una completa differenziazione neuronale e controllare il tipo 

neuronale ottenuto; ma tale sistema sembra essere un buon punto di partenza 

per progettare supporti trapiantabili per promuovere la rigenerazione neurale. 

Sarebbe interessante poter valutare la trasmissione sinaptica e le proprietà 

fisiologiche delle cellule cresciute sui supporti così come utilizzare tali supporti 

per stimolare elettricamente le cellule e valutare un eventuale miglioramento nel 

differenziamento.  
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ABBREVIATIONS 

 

a.m.u.: Actual peptide mass 

APP: amyloid precursor protein  

BDNF: Brain-derived neurotrophic factor  

bFGF: basic fibroblast growth factor  

Calcein-AM: Calcein acetoxymethyl ester  

CAMs: Cell adhesion molecules 

CD: Circular dichroism  

CMCs: Circulating multipotent cells  

CNS: Central nervous system 

CNT-PLLA scaffold: CNT dispersed in the PLLA matrix 

CNTs: Carbon nanotubes 

CRASH:Corpus callosum hypoplasia, Retardation, Adducted thumbs, Spasticity and Hydrocephalus 

CREB: cAMP response element-binding protein  

CT: Threshold cycle  

DAT: Dopamine transporter  

dBcAMP: dibutyryl cyclic AMP  

DMEM/F-12: Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12  

DMSO: Dimethyl sulfoxide  

DRG: Dorsal root ganglion  

DSC: Differential scanning calorimetry  

ECM: Etracellular matrix 

eCNT-PLLA: electrospun CNT-PLLA scaffold 

EGFR: Epidermal growth factor receptor  

EN: Ethylenediamine  

ePLLA: electrospun PLLA  

ESCs: Embryonic stem cells  

FBS: Foetal bovine serum 

FDA: Food and Drug Administration 

FGFR:Fibroblast growth factor receptor  

FITC: Fluorescein isothiocyanate  

Fmoc: Flurenylmethyloxycabonyl 

Fn: Fibronectin  

GDNF:Glial-derived neurotrophic factor  

GFAP: Glial fibrillar acidic protein 

GFP: Green fluorescent protein 
HBSS: Hank's Balanced Salt Solution 

Ig: Immunoglobulin  

iPSCs: induced pluripotent stem cells  

LDH: Lactate dehydrogenase  

LINGO1: LRR and Ig-like domain containing Nogo receptor interacting protein 

LRR: Leucine rich repeat  

MAP2: Microtubule associated protein 2  

MEAs: Multi-electrode arrays  

MTs: Microtubules  

MWCNTs: Multi-walled carbon nanotubes 

NCAM: Neural cell adhesion molecule 

NeuN: Neuronal nuclear antigen  
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NFM: neurofilaments  

NGF: Nerve growth factor  

NSCs: Neural stem cells  

NT-3: Neurotrophin 3  

PABS: Poly-m-aminobenzene sulfonic acid 

PBS: Phosphate buffered saline 

PCL: Poly(ε-caprolactone) 

PCR: Polymerase Chain Reaction 

PD: Parkinson’s disease  

PGA: Poly(glycolic acid)  

PGFs: Phosphate glass microfibers  

PhOMe: Methoxyphenyl group 

PI: polyimide  

PLDLA: poly(l/d-lactic acid)  

PLGA: Poly(lactic acid-co-glycolic acid)  

PLLA: Poly(L-lactic acid)  

PPy: Polypyrrole 

qPCR: Quantitative Real time RT-PCR  

RA: all-trans-retinoic acid  

RARE: Retinoic acid response element  

RARs: Retinoic acid receptors  

REST: Repressor Element-1 Silencing Transcription factor  

RMSD: Root mean square deviation 

RH: Relative humidity  

ROS: Oxygen reactive species 

RP-HPLC: Reversed-phase high-performance liquid chromatography  

RTKs: Receptor tyrosine kinases 

RXRs: Retinoid X receptors  

SAMs: Self-assembly monolayers  

SCI: Spinal cord injury  

SEM: Scanning electron microscopy 

SYP: Synaptophysin 

SWCNTs: Single-walled carbon nanotubes 

TBI: Traumatic brain injury  

TGA: Thermogravimetric analyses  

TPA: Phorbol ester 12-O-tetradecanoylphorbol-13-acetate  

TRKB: Tyrosine receptor kinase B  

TUBβ3: Tubulin β III 

VAMP7: Vesicle associated membrane protein 7  
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1. INTRODUCTION 

 

1.1 REGENERATIVE MEDICINE 

 
Regenerative medicine and tissue engineering evolved as interdisciplinary 

technologies combining principles from the life, material and engineering 

sciences with the goal of restoring the function of damaged tissues by delivering 

a combination of cells, biological factors and biomaterial scaffolds on which cells 

can adhere, proliferate, differentiate and organize similarly to native tissue.  

Multiple approaches have been developed, depending on variety of injured 

tissue type and injury entity: 

1) Scaffolds functionalized with factors are implanted to recruit progenitor 

cells at the defective site to stimulate their differentiation; 

2) Stem cells are loaded onto the scaffold in vitro, and after their 

differentiation the cell-scaffold composite is implanted into the defective 

site. 

Figure 1. An example of a tissue engineering strategy. Cells are isolated from the 

patient (A) and may be cultivated in vitro on two-dimensional surfaces (B) for efficient 
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expansion. Next, the cells are seeded onto scaffolds (C) together with growth factors, 

small molecules, and micro- and/or nanoparticles. The cell constructs are further 

cultivated in bioreactors to allow cell differentiation (D) and then transplanted (E) into the 

damaged site to restore its function. (Adapted from Dvir et al., 2011). 

 

1.1.1 MULTIPLE CUES TO IMPROVE REGENERATION 

 

The cells reorganize via multiple interactions with the extracellular environment 

that provides topographical and mechanical stimuli, concentration gradients of 

growth factors or extracellular matrix (ECM) molecules and electrical signals. 

Therefore, scaffolds for regenerative medicine should recapitulate/mimic as 

more such features of the native tissue environment as possible in order to 

properly provide cells with information important for differentiation and tissue 

development (Dvir et al., 2011).  

 

Figure 2. Multiple cues to improve regeneration. Regenerative medicine strategies try 

to incorporate different biosignals to recreate a controlled environment to direct stem cell 

tissue-specific differentiation.  
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1.1.1.1 Biochemical cues 

 

Biochemical cues are provided by reciprocal interactions between the cell, 

soluble bioactive agents, and the ECM. Such biochemical cues are able to 

interacts with cell receptors activating signalling cascade and determining cell 

differentiation. Most of them fall within three categories: 

 

 insoluble ECM macromolcules (e.g. collagens, elastin and laminin), 

glycoproteins (e.g. fibronectin and vitronectin), as well as polysaccharides 

such as heparan sulfate and hyaluronic acid. In vivo, these ECM proteins 

form a meshwork of fibres or fibrils with ECM glycoproteins incorporated 

into them. The resulting matrix functions as both a structural and 

signaling scaffold to cells; 

 

 diffusible/soluble molecules such as growth factors, chemokines and 

cytokines. Growth factors are naturally occurring protein hormones 

which may act through autocrine or paracrine mechanisms and have 

potent effects on cell growth, proliferation, and differentiation. Growth 

factors are often stored and sequestered in the ECM and interact with 

cells through receptor tyrosine kinases (RTKs). 

 

 Cell-cell receptors such as cadherins, cell adhesion molecules (CAMs), and 

ephrins. Cell-cell receptors are crucial to intercellular communication and 

regulate cell behaviours like proliferation and differentiation. 

 

1.1.1.1.1 Synthetic peptides for mimicking protein regulatory motifs 

Many works showed that some of the aforementioned molecules - if 

administrated both in vitro and in vivo - are able to elicit specific cell responses 

(Alberts et al., 2003); moreover, different strategies have been developed to link 

such proteins to biomaterial scaffolds in order to help delivery at the injured 
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sites (Matsumoto et al., 2007). However, coating surfaces with recombinant 

proteins or native matrix macromolecules extracted from animal tissues 

encounters the problem of eliciting immunoresponses, in particular when using 

proteins from different species. Furthermore, their isolation and purification 

from native tissues or their production as recombinant proteins at larger scale 

for tissue engineering purposes is expensive and subjected to batch to batch 

variability (Von der Mark et al., 2010). Moreover, protein conformation may be 

changed by immobilization onto the scaffold surface and the polypeptide chain 

orientation is difficult to control or even to predict. For these reasons, the 

production of specific motifs known to mediate regulatory signals as synthetic 

peptides presents significant advantages compared to using entire 

recombinant/native tissue proteins: (i) low immunogenic activity, (ii) increased 

stability, (iii) low production costs and (iv) simplified preparation and 

immobilization onto substrates. Moreover, peptides can be: (v) presented to 

cells at surface densities significantly higher than those possibly achieved with 

entire proteins or domains and (vi) tailored in composition for each tissue -

specific application (Chen et al., 2008). The biomimetic peptides most used for 

scaffold functionalization are the ones representing the ECM protein epitopes for 

integrin binding and therefore promoting cell adhesion (Shekaran et al., 2010); 

however, the laminin IKVAV epitope for integrin binding has been shown to 

promote and enhance neurite elongation and neuronal differentiation of neural 

progenitor cells (Silva et al., 2004). Furthermore, some peptides mimetic of 

growth factors have been developed to promote cell survival and differentiation; 

for example, after the identification of specific loops important for nerve growth 

factor (NGF) function, peptides corresponding to these active regions were 

produced, showing good NGF agonist activity and cell differentiation trough the 

activation of tyrosine kinase receptor A (Colangelo et al., 2008). Once a protein 

structure is solved, several mimetic peptides can be designed; for example, a 

number of peptides reproducing homophilic binding sites of the neural cell 

adhesion molecule (NCAM) have been synthesized and they are able to interfere 
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with neuronal cell adhesion molecules and to promote differentiation and cell 

survival (Berezin et al., 2004).  

 

Figure 3. Biochemical signals from the extracellular environment. Insoluble ECM 

macromolecules; soluble diffusible factors and cell–cell receptors interact with cells 

controlling their proliferation and differentiation. (Adapted from Shekaran et al., 2010). 

 

1.1.1.2 Physical cues 

 

Cells are capable of sensing and responding to biophysical cues, over a wide 

range of length scales. Many of these cues are provided by the ECM, which acts 

as a cellular scaffold and is the primary extracellular component in tissues. In 

vivo, the ECM, through its structure and molecular composition, presents a 

variety of geometrically defined, three-dimensional (3D) physical cues in the 

submicron to micron scale, referred to as topographies. Cell response to 

topographies is mediated by a phenomenon called contact guidance, which is 

known to affect cell adhesion, morphology, migration, and differentiation 

(Nikkhah et al., 2012). Another physical cue displayed by the ECM is mechanical 

stiffness through which, similar to topography, a diverse set of cellular functions 
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can be modulated. Matrix sensing requires the ability of cells to pull against the 

matrix and cellular mechano-transducers to generate signals based on the force 

that the cell must generate to deform the matrix. Mechano-sensitive pathways 

subsequently convert these biophysical cues into biochemical signals that 

commit the cells to a specific lineage (Engler et al., 2006). Neurons are able to 

transduce topographical stimuli through interaction of the growth cone with the 

immediate environment and mechanical cues that can direct neurite extension. 

Guided neurite and axonal growth ensures appropriate and regulated 

connectivity within the overall neural circuitry, giving rise to specialized nuclei 

with specific functions within the brain (Pettikiriarachchi et al., 2010). 

 

1.1.1.2.1 Electrospun fibres for mimicking ECM topography 

The architecture of ECM is of special importance because it supports 3D cellular 

networks to form tissues and control many cellular behaviours. Electrospun 

polymer fibrous substrates with controlled fibre architectures and diameter 

provide topographical cues to cells by presenting geometries mimetic of the 

scale and 3D arrangement of the collagen and laminin fibrils of the ECM. Such 

polymer fibres present an high surface-to-volume ratio and porosity and are 

hence well suited for promoting cell adhesion, growth and differentiation and 

enable growth factor/drug loading; such properties are inherent to bioactive 

matrix microniches (Landers et al., 2014). In the case of neuronal precursor cells, 

it has been shown that fibre diameter is able to control their differentiation; 

specifically, small nanofibers, which mimic a glial-like morphology, result in a 

differentiation biased toward an oligodendrocyte fate. On the other hand, 

scaffolds composed of largerfibres, which restricted cell spreading along a single 

fibre,improve differentiation towards the neuronal lineage (Christopherson et 

al., 2009). Electrospun scaffolds also have the ability to control cell morphology 

and, in the case of neuronal cells, the direction of neurite elongation (Cirillo et 

al., 2014). 
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1.1.1.2.2 Electrospinning technique 

Electrospun fibres are generally obtained through the electrospinning technique.  

This unique approach uses electrostatic forces to generate thin fibres from 

polymer solutions and the fibres thus produced have a thinner diameter (from 

nanometer to micrometer) and a larger surface area than those obtained with 

traditional spinning processes.  

Figure 4. Schematic diagram of set up of electrospinning apparatus.(Adapted from 

Bhardwaj et al., 2010). 

 

Furthermore, a direct current voltage in the range of several tens of kVs is 

required to generate theelectrospinning. This process is founded on the principle 

that strong mutual electrical repulsive forces overcome weaker forces of surface 

tension in the charged polymer liquid (Chew et al., 2006). Electrospinning is 

conducted at room temperature with atmosphere conditions and consists of 

three major components:a high voltage power supply, a spinneret (e.g., a pipette 

tip) and a grounded collecting plate (usually a metal screen, plate, rotating 

mandrel) and utilizes a high voltage source to inject charge of a certain polarity 

into a polymer solution, which is then accelerated towards a collector of 

opposite polarity. Most of the polymers are dissolved in some solvents before 

electrospinning, and when it completely dissolves, forms polymer solution. The 

polymer fluid is then introduced into the capillary tube for electrospinning. In the 
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electrospinning process, a polymer solution held by its surface tension at the end 

of a capillary tube is subjected to an electricfield and an electric charge is 

induced on the liquid surface due to this electric field. When the electric field 

applied reaches a critical value, the repulsive electrical forces overcome the 

surface tension forces. Subsequently, a charged jet of the solution is ejected 

from the tip of the spinneret and an unstable and a rapid whipping of the jet 

occurs toward the collector which leads to evaporation of the solvent, leaving a 

polymer behind. (Bhardwaj et al., 2010).  

 

1.1.1.3 Electrical cues 

 

Endogenous electrical signals are present in many developing systems and crucial 

cellular behaviours - such as cell division, cell migration, and cell differentiation -

are all under the influence of such electrical cues (Yao et al., 2011). This is 

particularly true for neuronal cells in which electric signals activate membrane 

receptors and downstream intracellular signalling elements leading to 

asymmetrical activation/redistribution of the cytoskeleton and the consequent 

cell polarization. Indeed, some studies suggested the involvement of electrical 

activity in pathfinding of growing axons and the formation of initial connections 

in the developing nervous system (Yao et al., 2009). Moreover, it was discovered 

that an endogenous electric field arises at the onset of neural tissue repair 

(Huang et al., 2012). 

 

1.1.1.3.1 Conductive materials for mimicking electrically conductive tissues 

Neural circuits generate spontaneous electrical activity due to the 

electrophysiological properties of their constituent neurons and connections. 

Neuronal electrophysiological and synaptic properties can be affected by 

neuron-surface interactions, in particular for cells growing onto a substrate 

characterized by an inherent electrical conductivity. For these reasons, 

electroactive materials are the best choice to mimic the features of electrically 
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conductive tissues and to interface with neural cells providing electrical shortcuts 

between developing cells and a platform for supporting neuronal network 

activity and regeneration (Schmidt et al., 1997; Lovat et al., 2005). Moreover, 

electrically conductive scaffolds may improve cell survival and functional 

integration after transplantation in vivo by providing structural support for 

transplanted cells and facilitating synaptogenesis with host cells. Furthermore, 

electrically conductive materials can also allow application of electrical stimuli 

that can mimic the electrophysiological environment experienced by cells in a 

variety of biological processes, including muscle contraction, wound healing, and 

synaptic transmission (Landers et al., 2014) 

 

1.1.2 CELLS HAVE MICRO- AND NANOMETER SENSITIVITY 

 

Cells have micro and nanoscale sensitivity because the extracellular environment 

presents a variety of spatially defined cues in the the sub-micron to micron scale: 

 At the nanometer level, extracellular environment affects sub-cellular 

behaviors such as the organization of cell adhesion molecule receptors; 

 At the micron level, extracellular environment affects cellular and 

supracellular characteristics such as cell morphology and migration 

(Nikkhah et al., 2012). 

Therefore, in order to mimic such submicron ECM organization, nanomaterials 

and nanotechnology tools can be used to develop special biomaterials able to 

recapitulate the architecture and spatial organization of structural proteins 

within ECM and the nanoscale features that model native ECM nanotopography 

(Shekaran et al., 2010). This approach - able to precisely regulate cell 

differentiation, morphology and polarization - is fundamental in order to proceed 

with clinical applications.  
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Figure 5. The relative scale of biological molecules and structures. 

 

Combinations of stimulatory cues may be used to incorporate nanoscale 

topographical, chemical and electrical cues in the same scaffold to provide an 

environment for tissue regeneration that is superior to inert scaffolds. 

 

1.2 NANONEUROSCIENCE 

 

Nanomaterials can take advantage of their unique molecular features to induce, 

with high specificity, a number of desired physiological responses in target cells 

and tissues, while minimizing undesirable effects (Silva et al., 2006). 

Nanoneuroscience is an emerging field combining nanotechnology, chemistry, 

engineering and neurobiology. The application of nanotechnology to neural 

tissues is of particular interest because neural cells are electroactive and the 

electronic properties of nanostructures can be tailored to match the charge 

transport requirements of electrical cellular interfacing. The peculiar mechanical 

and chemical properties of nanomaterials can be exploited for integration with 

neural tissue in long term implants; moreover, their nanoscale features have the 

potential to interact with the biological system at the molecular scale, while 

offering elevated levels of control (Kotov et al., 2009). Indeed, recent studies 

regarding the interaction of nanomaterials with neural systems have provided a 

foundation for generating a new class of multifunctional devices and hybrid 

systems that could help in the repair of damaged nervous tissue, and that have 

paved the road to nanoneuroscience as a new discipline (Sucapane et al., 2009).  

http://europepmc.org/articles/PMC2768360#R34
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Figure 6. Applications of nanotechnologies in neuroscience. Nanomaterials and 

nanodevices that interact with neurons and glia at the molecular level can be used to 

influence and respond to cellular events. In all cases, these engineered technologies allow 

controlled interactions at cellular and subcellular scales. (A) Chemically functionalized 

fluorescent quantum dot nanocrystals used to visualize ligand–target interactions. (B) 

Surfaces modified with neurotransmitter ligands to induce controlled signalling. (C) 

Engineered materials with nanoscale physical features that produce ultrastructural 

morphological changes. (D) Surfaces and materials functionalized with different neuronal-

specific effector molecules, such as cadherin and laminin, to induce controlled cellular 

adhesion and growth. (Adapted from Silva et al., 2006). 

 

1.2.1 NANOPATTERNING OF MOLECULES FOR GUIDING CELL ORGANIZATION 

 

Molecular deposition and lithographic techniques allow the patterning of 

neuronal-specific molecules with nanometre resolutions. The deposition of 

proteins/peptides and other molecules that promote and support neuronal 

adhesion, growth and differentiation on regenerating scaffolds enables the 

selective adhesion and growth of neural cells and a controlled neurite extension 

along the geometric pattern (Staii et al., 2011). 

 

1.2.2 NANOTOPOGRAPHY FOR CONTROLLING CELL BEHAVIOURS 

 

The nanoscale physical features of the scaffolds can affect neuronal behaviour. 

Natural tissues have indeed a hierarchical structure ranging from the macroscale 

(>1 mm), to microscale (1 m – 1 mm), and nanoscale (< 1 m). As a result, 

individual cells (typically in the size range 10-50 m) respond in different ways to 
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structures at different length scales. It was shown that integrin receptors possess 

characteristic dimensions on the order of 10 nm (Comisar et al., 2006). The 

basement membrane of organs consists of nanoscale fibres (line topography) 

and pores (holes) that range in diameter from a few nanometers to several 

hundred nanometers (Abrams et al., 2000). The tubular fibers of collagen also 

have nanoscale dimensions (Curtis et al., 2001) and Laminin shows nanoscale 

texture as well (Rodríguez Hernández., et al., 2007). Given that cells' ECM is 

patterned down to the nanoscale, cell-biomaterial interactions in scaffolds can 

be optimized by incorporating features of nanoscale dimensions. Indeed, 

surfaces topographically structured at the submicron scale can affect a wide 

variety of growth parameters, such as cell adhesion, morphology, viability, 

genetic regulation, apoptosis, motility and differentiation (Gaharwar et al., 

2013). Recent evidence from nanoscale topography analysis suggests that 

nanoscale features eliciting cell response are in the same size range (50-70 nm) 

that is associated with integrin cluster formation (Arnold et al., 2004). Further 

studies showed that scaffold nanotopography can control cell fate by altering cell 

and nucleus shapes, hence activating intracellular signal transduction and silent 

gene expression (Kim et al., 2012; Yang et al., 2013). This is particularly true for 

neurons that, thanks to their growth cones, sense and actively respond to the 

surface nanotopography with a surprising sensitivity to variations of few 

nanometers (Brunetti et al., 2010). In such a context, great potential is 

represented by Carbon Nanotubes (CNTs): thanks to their nanometer dimensions 

and high aspect ratio they could be used to develop nanotextured substrates 

influencing cell behaviours. Nanostructured surfaces have therefore the 

potential to define new types of interactions between scaffolds and cells: the 

scaffold surface area increases and can better resemble the native neural tissue. 
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1.2.3 NANOELECTRODS FOR SELECTIVE STIMULATION OF TARGETED NEURONAL 

POPULATIONS 

 

Another emerging area of neuroscience nanotechnology regards the materials 

and devices designed to stimulate neurons. Neural prostheses, for example, are 

assistive devices to restore lost neuronal functions. These devices electrically 

stimulate nerves replacing injured neurons and fine control at molecular level is 

crucial to develop devices able to properly interact with the nervous system. 

Given that size should be small enough to enable selective stimulation of a 

targeted population of neurons (Schmidt et al., 2003; Silva et al., 2006), 

nanomaterial based neural electrodes are likely to improve signal transfer 

specificity and to reduce as well glial scarring at the injured site. Again, the 

conductive features and nanometric size of CNTs render them ultimate materials 

for developing/coating such electrodes. 

 

1.2.4 NANOCARRIERS FOR DRUG DELIVERY 

 

Another area in which nanotechnology may significantly impact in clinical 

neuroscience is the development of nanocarriers able to selectively deliver 

drugs, peptides, and oligonucleotide to specific regions or tumors to improve 

their pharmacological activity and simultaneously diminishing their undesirable 

systemic side effects. Thanks to their nanometric dimensions, such nanocarriers 

can be exploited to cross the blood brain barrier to target therapeutics to the 

Central Nervous System (CNS) (Silva et al., 2007). CNTs possess a number 

intriguing features that make them attractive drug delivery carriers:(i) they 

exhibit high accumulation in tumor tissues; (ii) their needle-like shape facilitates 

transmembrane penetration and intracellular accumulation of drugs via the 

"nanoneedle" mechanism that is independent of additional CNTfunctionalization 

and cell types; (iii) aside from direct translocation through cellular membranes, 
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CNTs are also able to enter cells via energy-dependent endocytic pathways; (iv) 

as a platformfor drug attachment, CNTs, owing to their high aspect ratios and 

surface areas, display extraordinary ability for drug loading onto the surface or 

within the interior core of CNTs via both covalent and non-covalent interactions 

(Wong et al., 2013). 

 

1.3 THE NERVOUS SYSTEM: INJURY AND REGENERATION 

 

The CNS consists of the brain and the spinal cord. The peripheral nervous system 

(PNS) is located outside the CNS and includes the cranial, spinal and peripheral 

nerves that conduct impulses from and to the CNS. Injury in peripheral nerves 

could lead to loss of neuronal communication along sensory and motor nerves 

between the CNS and the peripheral organ scausing reduction in motor and 

sensory functions. CNS injury, like traumatic brain injury (TBI) or stroke, can 

result in several symptoms including cognitive, motor and psychotic dysfunction. 

(Pettikiriarachchi et al., 2010; Arslantunali et al., 2014).  

 

1.3.1 NEURONS AND NEURITE OUTGROWTH 

 

Neurons are polarized cells involved in the synaptic transmission of much 

information necessary for regulating all biological functions. The formation of 

neural circuits in the brain requires that a correct connectivity is established 

between neurons during development. Every neural circuit is represented by the 

structure of axons and dendrites, with individual axons stimulating multiple 

targets, and single dendrites assimilating inputs from various sources. During 

nervous system development, neurons extend axons to find their final 

destination toward a complex and changing environment and establish a 

functional synaptic network. Each axon is tipped with the growth cone; such a 
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specialized structure shows highly dynamic behaviour and responsiveness to 

multiple sources of spatial information and is hence able to guide the axon itself 

toward right targets with an impressive level of accuracy. The growth cone 

travels on a road made up of adhesive molecules presented on a neighbouring 

cell surface, such as transmembrane CAMs or assembled into a dense ECM 

(including laminin and fibronectin). These molecules provide defined "roadway" 

surfaces to which growth cone receptors can adhere, but they also activate 

intracellular signalling pathways utilized by the growth cone guidance machinery. 

Additionally, anti-adhesive surface-bound molecules (such as e.g. Slits and 

Ephrins) can prohibit growth cone advance and thus provide "guardrails" that 

determine roadway boundaries. Finally, diffusible chemotropic cues represent 

the "road signs" that present further steering instructions to the travelling 

growth cone. It is clear now that the response of attraction versus repulsion is 

not due to the intrinsic property of the cue, but rather to the specific receptors 

engaged and the internal signalling milieu of the growth cone (Lowery et al., 

2009).  

Figure 7. Directions for the trip. The growth cone encounters many different types of 

cues in its environmental terrain. It travels on a 'road' that is made up of adhesive 

molecules that are either presented directly on a neighbouring cell or assembled into a 

dense and complex extracellular matrix. Additionally, anti-adhesive surface-bound 

molecules can prohibit growth cone advance and thus provide the 'guard rails' that 

determine the road boundaries. (Adapted from Lowery et al., 2009). 
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Structural organization is central to growth cone function. The leading edge 

consists of dynamic, finger-like filopodia that explore the road ahead. Filopodia 

are separated by membrane sheets called lamellipodia-like veils. The cytoskeletal 

elements in the growth cone underlie its shape, and three growth cone regions 

can be distinguished based on cytoskeletal distribution. The peripheral (P) 

domain contains long F-actin bundles, which form the filopodia, as well as mesh-

like branched F-actin networks, which give structure to lamellipodia-like veils. 

Additionally, individual dynamic "pioneer" microtubules (MTs) explore this 

region, usually along F-actin bundles. The central (C) domain encloses stable, 

bundled MTs that enter the growth cone from the axon shaft, in addition to 

numerous organelles, vesicles and central actin bundles. Finally, the transition (T) 

zone sits at the interface between the P and C domains, where actomyosin 

contractile structures lie perpendicular to F-actin bundles and form a 

hemicircumferential ring. The dynamics of these cytoskeletal components 

determine growth cone shape and movement on its journey during development 

(Lowery et al., 2009).  

The growth cone engages its cytoskeleton to drive forward and turn, 

continuously influenced by environmental factors. The binding of the growth 

cone receptor to an adhesive substrate induces the generation of a complex that 

acts like a molecular "clutch", mechanically coupling the receptors and F-actin 

flow, thus anchoring F-actin to prevent retrograde flow and driving actin-based 

forward growth cone protrusion on the adhesive substrate. Traction also 

requires myosin II. Filopodia are guidance sensors located at the "front line" of 

the growth cone and they might have a major role in establishing growth cone-

substrate adhesive contacts during environmental exploration. Several studies 

show that filopodia function as substrate attachment points and produce tension 

needed for growth cone progression. In order for spatial discontinuities in the 

environment to drive growth cone steering and, in particular, to accurately 

interpret numerous cues simultaneously, the growth cone requires a 

"navigation" system that translates multiple environmental directions through 
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Rho-family GTPases to locally modulate the dynamics of the cytoskeletal 

machinery including F-actin retrograde flow and F-actin guidance of MTs, in 

order to introduce spatial bias for steering the growth cone in the right direction 

(Lowery et al., 2009). 

Figura 8. Growth cone structure. P domain contains (i) long, bundled actin filaments 

that form filopodia and (ii) mesh-like branched F-actin networks forming lamellipodia-like 

veils. C domain is formed by stable, bundled MTs, organelles, vesicles and stable actin 

bundles. T zone sits at the P-C domains interface, where contractile actomyosin structures 

lie perpendicular to F-actin bundles and form a hemicircumferential ring. (Adapted from 

Lowery et al., 2009). 

 

1.3.2 PNS INJURY 

 

Peripheral nerve injury leads to loss of neuronal communication along sensory 

and motor nerves between the CNS and the peripheral organs and depending on 

site of injury this can severely impair the quality of life of a patient (Arslantunali 

et al., 2014). Injuries are most commonly attributable to direct mechanical 

trauma, and less frequently, surgical resection secondary to tumour excision. 

However, the PNS has an intrinsic ability for repair and regeneration and such 

capacity relates to age of patient, mechanism of injury and in particular to the 

proximity of the injury to the nerve cell body; indeed often the nerve gaps are 

too big to be naturally regenerated (Faroni et al., 2014).  
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Reinnervation of denervated targets can be achieved by regeneration of injured 

axons or by collateral branching of undamaged axons in the proximity. However, 

often such mechanisms do not provide a complete functional recovery, 

especially after severe injuries. Neuronal response and axon regeneration imply 

complex interactions among different cell types as well as changes in the 

expression of many molecules. Failure in axon regeneration after peripheral 

nerve injury may depend on decreased intrinsic properties of neurons, absence 

of neurotrophic factors, or presence of inhibitory factors (Hsu et al., 2013). The 

withdrawal of target-derived neurotrophic support leads to profound changes in 

gene and protein expressions whose balance determines if the neuron survives 

and attempts regeneration or undergoes apoptosis (Reid et al., 2009). If 

regeneration is promoted, the distal stump of the injured nerve undergoes a 

series of molecular and cellular changes known as Wallerian degeneration. 

Within a few hours, both the axon and the myelin in the distal stump degenerate 

and macrophages migrate to the site of injury and contribute to debris clearance. 

In the first 24 hours, Schwann cells proliferate and switch from a myelinating to a 

regenerative phenotype and exhibit up-regulation of several molecules that 

assist the parallel degenerative and regenerative processes. In particular, the 

denervated Schwann cells downregulate structural proteins such as myelin basic 

protein and myelin-associated glycoprotein, whilst they upregulate L1-CAM, 

Neural-CAM, glial fibrillary acidic protein and many growth factors such as nerve 

growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived 

neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF) and 

neurotrophin 3 (NT-3). Once debris is removed by the combined action of 

macrophages and Schwann cells, these latters align to form columns. This in turn 

provides a permissive environment rich in trophic factors, enabling guided axonal 

regeneration (Scheib et al., 2003; Faroni et al., 2014). Distal to the injured site, 

there are many obstacles for the regenerating axon to overcome prior to 

successfully reinnervate the target organ. Misdirection towards the wrong target 

reduces functional outcome even when the number of regenerated axons is 
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good; however, this is checked by "pruning" of growth cones that do not reach 

the correct target or lose support of their endoneurial tubes. Lack of neuronal 

contact in the distal stump leads to chronically denervated Schwann cells which 

downregulate growth factors and enter a dormant state, unable to support 

axonal progression. Similarly, the denervated target organ is exhausted of 

trophic factors, muscle fibres atrophy and satellite cells undergo apoptosis. 

These responses bear a significant impact on functional recovery following 

proximal nerve injuries (Fig. 9A) (Faroni et al., 2014). 

 

1.3.3 CNS INJURY 

 

CNS axons do not regenerate appreciably in their native environment. Several 

glycoproteins in the native extracellular environment (myelin) of the CNS are 

inhibitory for regeneration. The physiological response to injury in the CNS is also 

different compared to that of the PNS. After injury in the CNS, macrophages 

infiltrate the site of injury much more slowly compared to infiltration in the PNS, 

delaying the removal of inhibitory myelin. This largely depends on the blood-

spine barrier, which limits macrophage entry into the nerve tissue to just the site 

of injury, where barrier integrity is weakened. In the case of spinal cord injury , 

cell adhesion molecules in the distal end of the injured nerve are not upregulated 

appreciably as they are in the PNS, limiting macrophage recruitment. Finally, 

astrocytes proliferate in a manner similar to that of Schwann cells in the PNS, but 

become "reactive astrocytes" producing glial scars that inhibit regeneration (Fig. 

9B) (Schmidt et al., 2003). 
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Figure 9. Responses to axotomy in the PNS and spinal cord. (A) In the PNS, support 

cells aid neuronal regeneration. Proliferating Schwann cells, macrophages, and monocytes 

work together to remove myelin debris, release neurotrophins, and lead axons toward 

their synaptic targets, resulting in restored neuronal function. (B) In the CNS, however, 

the few neurons that survive axotomy attempt regeneration and subsequently meet an 

impenetrable glial scar composed of myelin and cellular debris, as well as astrocytes, 

oligodendrocytes, and microglia. Fibroblasts, monocytes, and macrophages may also be 

present in the glial scar. Consequently, regenerating neurons in the spinal cord are 

blocked from reaching their synaptic target. (Adapted from Schmidt et al., 2003). 
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1.3.4 CURRENT CLINICAL APPROACHES FOR TREATING NERVE INJURIES 

 

For peripheral nerve injury, treatments typically consist of either direct end-to-

end surgical reconnection of the damaged nerve ends or the use of an 

autologous nerve graft. Suturing the ends of the two nerve ends together can 

repair small defects or gaps in the nerve. For longer nerve gaps, this approach is 

not desired because any tension introduced into the nerve cable would inhibit 

nerve regeneration. Thus, for a larger nerve defect, an autologous nerve graft 

that is harvested from another site in the body is used to span the injury site (Fig. 

10A). Disadvantages of this technique include loss of function at the donor site 

and the need for multiple surgeries.  

The development of therapies for spinal cord injury (SCI), traumatic brain injury 

(TBI), and other pathologies affecting CNS is more challenging due to the 

inhibitory environment that the injured axon has to face. Some attempts has 

been done attacking the inhibitory factors that suppress axonal regeneration. 

Active research is indeed focusing in the development of therapeutics able to 

counteract the myelin-associated inhibitors (e.g. LINGO1, NgR, Nogo, MAG). 

Various studies, both in vivo and in vitro, showed the ability of such therapeutics 

to suppress the inhibitory activity of glial scarring at the site of the injury and 

hence they are promising candidates for overcome the CNS injured axon inability 

to regenerate (GrandPre et al., 2002; Cho et al., 2012; Mi et al., 2013).  

Furthermore, CNS axons have the ability to regenerate into PNS grafts and 

various groups have observed long distance regeneration with this approach 

(David et al., 1981; Tom et al., 2009). Within peripheral nerve grafts, parallel 

columns of Schwann cells surrounded by basal lamina render excellent guidance 

to regenerating axons. However, harvesting autografts is limited by tissue 

availability and donor site morbidity, and the alternative acellularized allografts 

fail to support axonal regeneration (Hurtado et al., 2011). 

Treatment with growth factors showed the ability to promote neuronal survival 

and axon regeneration in vitro, but such a strategy is clinically problematic, when 
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considering the side-effect profile, the timing and method of growth factor 

release and the unpredictable interactions between growth factors and 

heterogeneous neuronal population (Faroni et al., 2014). However, some 

attempts have been done by delivering growth factors at the injured site using 

various types of nanocarriers. Other regenerative approaches regard the 

transplantation of stem cells at the injured site to favour tissue reconstruction 

and axon regeneration by replacing damaged neural tissues. Some works showed 

the ability of transplanted cells to undergo neuronal differentiation and then 

substitute lost neuronal and glial populations (McDonald et al., 1999; Chow et 

al., 2000; Cizkova et al., 2007); other studies demonstrated instead that stem 

cells are able to support axonal regeneration thanks to their own trophic activity 

and to sustain axon remyelination by differentiating into glial cells (Cízková et al., 

2006; Wright et al., 2011). 

An alternative strategy could be the use of biomaterial scaffolds incorporating 

multiple cues to more closely mimic native environment, thus promoting neural 

induction, axonal regeneration and neuroprotection.  

 

1.3.4.1 Nerve guidance scaffolds 

 

Spinal cord injury or pheripheral nerve repair requires "bridging" the lesion with 

a matrix that provides a permissive environment, fills the tissue gap and, 

concomitantly, provides structural support for axonal regrowth and functional 

reconnection. When the nerve graft is not possible, a valid alternative could be 

the development of nerve conduits able to guide the regenerating axons across 

the gap to connect with the distal end (Fig. 10B). Only then will signal 

transduction occur (Xu et al., 2014). An ideal nerve conduit needs to be 

biocompatible, flexible, neuroinductive, able to conduct electrical stimuli, tear 

resistant and sterilizable (Verreck et al., 2005). A number of materials have been 

proposed for use in neural tissue engineering. These include biodegradable, 

either natural or synthetic, as well as non-biodegradable polymers. Among the 
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biomolecules, the most studied and used are polyesters (poly(3-

hydroxybutyrate) and poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid)), 

proteins (silk, collagen, gelatin, fibrinogen, elastin, and keratin), and 

polysaccharides (hyaluronic acid, chitin and alginate). Although aforementioned 

molecules are potentially able to sustain regeneration, their use is greatly limited 

by batch-to-batch variation and possibility to induce immunogenic reactions 

(Schmidt et al., 2003; Pego et al., 2012; Arslantunali et al., 2014). Synthetic 

polymers are attractive alternatives, as many of them are biocompatible and can 

elude the host immune response; moreover, their mechanical properties can be 

controlled and they can be processed in various forms to enhance tissue 

ingrowth. Many polymers, such as poly(L-lactic acid) (PLLA), poly(glycolic acid) 

(PGA), poly(lactic acid-co-glycolic acid) (PLGA), poly(ε -caprolactone) (PCL), 

polyurethanes (PUs), tri-methylene carbonate-co-ε-caprolactone, poly(D,L-

lactide-co-ε-caprolactone), methacrylate-based hydrogels, polystyrene, silicone, 

and poly(tetrafluoroethylene), have already been used to create neural scaffolds 

(Schmidt et al., 2003; Pego et al., 2012; Arslantunali et al., 2014). PLLA for 

example is already FDA approved for use in tissue engineering application 

(Schmidt et al., 2003) and used as nerve conduit to promote regeneration of 

sciatic nerves and spinal cord in animal models (Evans et al., 1999; Oudega et al., 

2001). In recent years, importance of the alignment in nerve guide conduits was 

understood, and conduits endowed with topographical cues as grooves and 

electrospun fibres were developed to direct the outgrowth of elongating 

neurites (Li et al., 2008; Liu., et al 2010). Hurtado et al, for example, developed a 

conduit formed by aligned electrospun PLLA fibres that successfully promote the 

regeneration of spinal nerves after a complete spinal cord transection (Hurtado 

et al., 2011). Moreover, as an electrically conducting tissue, the scaffold should 

likewise be able to conduct an electrical signal. In a recent study, PLLA was 

blended with polypyrrole (PPy) to produce a conducting nerve conduit; in vitro 

studies showed PC12 cell differentiation was improved when cells were seeded 

onto such conduits while in vivo studies demonstrated that these conductive 
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conduits behave like autologous nerve graft in repairing rat sciatic nerve defect 

suggesting that conducting materials have a great potential for nerve tissue 

regeneration (Xu et al., 2014). 

 

Figure 10. Bioartificial nerve graft for nerve repair. Autograft (A). Artificial nerve graft 

that consists in nerve guide which could be enriched with several factors to enhance 

axonal regrowth (B). (Adapted from Faroni et al., 2014). 

 

1.3.4.2 Biomaterials for brain repair 

 

The objective of brain tissue engineering is to repair, replace, and regenerate 

tissue at the damaged site in order to re-establish functionality at both the 

cellular and organ levels. For these reasons, bioactive scaffolds are produced 

with the aim to provide a microenvironment that could facilitate survival, 

proliferation, differentiation, and connectivity of transplanted and/or 

endogenous cells. Many strategies have been developed so far to promote 

regeneration after brain injury, of which some require the implantation of 

scaffolds at the injured site in order to retrieve endogenous neural progenitors 

favouring their differentiation. Other strategies are based on implanting scaffolds 

to encourage the elongation of existing axons and - when massive cell lost occurs 
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- to use scaffolds for delivering stem cells at the injured site hence promoting a 

more rapid connectivity. A range of scaffolds including hydrogels, self-assembling 

peptides, and electrospun nanofibre scaffolds have been investigated as 

candidates for neural tissue engineering within the brain. It is essential for these 

scaffold that the surface properties are optimized to support endogenous or 

implanted cells and to possibly provide guided axonal growth (Pettikiriarachchi et 

al., 2010). Electrospun scaffolds are really interesting for such applications as 

their fibrillar architecture is mimetic for ECM topography and their large surface 

area to volume ratio and porosity can facilitate cell and axon penetration, 

neurite contact guidance as well as diffusion and waste of nutrients (all factors 

known to enhance scaffold–tissue integration). It is noteworthy that aligned 

fibrous scaffolds prepared by electrospinning are able to orient neurite growth 

whereas random organization promote neurite penetration (Nisbet et al., 2009). 

As for peripheral and spinal nerve conduits, various natural and synthetic 

polymers have been explored to develop electrospun scaffolds; a recent study 

demonstrates for example that PCL electrospun scaffold loaded with BDNF 

mimetic implanted toward the subventricular zone of rats mobilizes endogenous 

neuroblasts that are able to infiltrate the scaffold and differentiate (Fon et al., 

2014). Great attention has been given to electroactive materials which can 

facilitate communication between neurons in the brain: for example, PCL and 

PLLA nanofibrous scaffolds were coated with PPy to form conductive sheaths and 

dorsal root ganglion cells were shown to extend longer neurite when subjected 

to electrical stimulation (Xie et al., 2009). Similar results were obtained by 

culturing PC12 cells onto a scaffold formed by electrospun PLLA fibres coated 

with PPy (Lee et al., 2009). 

 

1.3.4.3 Nanostructured scaffolds for neural tissue engineering 

 

A main problem with PPy and other conductive polymers is that their 

conductivity may change under harsh environment (Chao et al., 2009). For this 
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reason, CNTs are being increasingly used for developing neural regenerating 

scaffolds. It is expected that scaffold incorporated with CNTs can enable 

electrical stimulation and CNTs can be used into in vivo devices that could 

interact directly with neurons. All such unique CNT characteristics hold great 

technological promise for neuron related medical applications.  

 

1.4 CARBON NANOTUBES (CNTS) 

 

Since their discovery in 1991 by Iijima, CNTs have attracted wide interest in most 

fields of science and engineering due to their unique physical and chemical 

characteristics. These properties allow them to be used in a wide range of 

applications. The major areas of CNTs research are the polymer composites and 

biomedical devices including scaffold for regenerative medicine, biosensors, cell 

tracking and drug delivery carriers. 

CNTs are cylindrical nanostructures whose simplest geometry is that of a single-

walled nanotube (SWCNT). Here, a single graphene sheet (one-atom thick layer 

of carbon atoms arranged in a regular hexagonal pattern) is rolled up and closed 

at each end by a hemispherical fullerene cap; SWCNT diameters typically range 

between 0.8 and 2 nm with a tube length that can be many millions of times 

longer. Multi-walled nanotubes (MWCNT), on the other hand, are composed of  

numerous (by two up to hundreds) layer of graphene wrapped concentrically. 

Depending on the number of layers, MWCNTs have a larger diameter that can 

reach 100 nm (Sucapane et al., 2009). 

Figure 11. Schematic diagrams of 

single-walled carbon nanotube 

(SWCNT) and multi-walled carbon 

nanotube (MWCNT). SWCNTs consist 

of a single graphene sheet rolled up 

into a cylinder (left figure); MWCNTs 

consist of multiple concentric 

cylindrical shells of graphene sheets 

(right figure). (Adapted from 

Choudhary et al., 2011). 
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1.4.1 CNT-BASED SCAFFOLDS FOR NEUROLOGICAL APPLICATIONS 

 

CNTs are attractive candidates for developing scaffolds to be used in neurological 

applications thanks to their morphology and nanoscale dimensions, their tunable 

electrical conductivity, their mechanical properties, and chemically modifiable 

surface. 

 

1.4.1.1 CNTs nanotopography favours cell adhesion and neuronal 

differentiation 

 

CNT structural features and dimensions resemble the smallest neuronal 

processes and many components of neuronal extracellular environment as 

proteins of the ECM (e.g. collagen), ion channels, signaling proteins and 

cytoskeletal elements (Fabbro et al., 2013).  

Indeed, it has been found that such CNT nanoroughness - that matches the size 

of the neural environment roughness - contributes to anchor the neuronal cells. 

It was shown that, when seeded onto a CNT film, neuronal processes entangle 

around CNT nanostructures improving the binding of their membranes to the 

CNT surface (Sorkin et al., 2009). Furthermore, neuronal growth cones were 

shown to establish tight contacts with the CNT surface, and these strong 

interactions allowed the neurons to spread and interact with one another (Zhang 

et al., 2005).  

CNTs - thanks to their chemical properties and enhanced surface area provided 

by a needle-like shape - have a good capacity to adsorb adhesion proteins from 

the serum, such as e.g fibronectin and laminin (Khang et al., 2007; Chao et al., 

2010; Stout et al., 2012). Therefore, when cells grow onto CNT-based scaffold, 

they show enhanced capacity to form focal adhesions by clustering integrin 

molecules and hence, increased cell adhesion (Kim et al., 2012). In addition to 

favouring adhesion, CNT-based capacity to adsorb proteins results in trapping 

growth factors produced by the cells during their differentiation and this in turn 
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creates a storage site that can progressively release such growth factors during 

cell maturation, in a "signal-buffered" environment suitable for long term 

neuronal differentiation (Chen et al., 2013). At a glance, CNT ability to mimic 

neural environment topography and to retain proteins and growth factors would 

help and enhance cell adhesion, growth and neuronal differentiation.  

 

1.4.1.2 CNT functionalization improves the scaffold properties 

 

CNTs can be functionalized by covalent or non-covalent chemistry to improve 

their solubility in organic solvents, to modify their surface charge or to attach 

biologically active molecules able to promote neuronal cell adhesion and 

differentiation. 

CNTS are highly hydrophobic and may contain residual impurities such as 

amorphous carbon and metallic nanoparticles; however, the surface 

 

Figure 12. MWCNT film trap neural growth factors which are secreted from the cells. In 

contrast, these proteins in the control group cannot be kept but are washed out every 

time the medium is replaced. (Adapted from Chen et al., 2013) 
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functionalization of CNTs by chemically attaching organic functional groups helps 

the CNT materials in becoming biocompatible and improves their solubilization in 

organic solvents for obtaining more homogeneous material. Two main paths are 

usually followed for the functionalization of CNTs: (i) attachment of organic 

moieties to the carboxylic groups that are formed by oxidation of CNTs with 

strong acids or (ii) direct bonding to the surface double bonds. Such strategies 

have been explored to engineer CNT surfaces by attaching bioactive molecules 

mediating specific biological responses (Saifuddin et al., 2013).  

Such bioactive molecules can be linked to CNT surfaces also through non 

covalent functionalization, which is based on weak forces (van der Waals, 

hydrophobic or π-π interactions) unable to retain for long periods the interacting 

molecules. However, non covalent functionalization does not affect CNT charge 

and interacting molecules can adsorb to the external sides of nanotube, but also 

the adsorption to the internal side is possible (endohedral functionalization) 

(Hirsch et al., 2002). 

The first use of CNT substrate for neuro-interfacing applications was reported by 

Mattson and colleagues, who cultured embryonic rat hippocampal neurons onto 

a coverslip coated with MWCNTs. Such a study demonstrated that pristine 

MWCNT substrates promoted cell adhesion while blocking neurite outgrowth. 

However, the non-covalent functionalization with 4-hydroxynonenal(4-HNE),a 

molecule promoting neurite elongation, showed a great increase in the number 

of neurite per cell and total neurite length (Mattson et al., 2000). Therefore the 

CNT functionalization resulted to be a valid method to improve scaffold 

performance. Later, Hu et co-workers studied the effect of surface charge 

modification: the MWCNT substrate charge was modified by functionalization 

with carboxyl groups, poly-m-aminobenzene sulfonic (PABS) acid or 

ethylenediamine (EN) to create negatively, zwitterionic or positively charged 

CNTs, respectively. Improved neurite elongation and branching were found when 

cells were seeded onto positively charged CNT scaffolds, according to the known 

preference of neuronal cells for positive substrates such as poly-lysine (Hu et al., 
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2004). Therefore, manipulation of CNT surface charge can be successfully used to 

tune neurite outgrowth. Covalent functionalization with bioactive molecules was 

also explored; Matsumoto at al., covalently functionalized MWCNTs with NGF 

and BDNF and used them to culture embryonic chick dorsal root ganglion (DRG) 

neurons. DRG neurite outgrowth on modified MWCNTs was comparable to that 

seen with soluble NGF and BDNF in culturing media; therefore, such study 

indicated that CNT covalent functionalization with biomolecules allows the 

attached factors to maintain their bioactivity (Matsumoto et al., 2007).  

 

1.4.1.3 CNTs incorporation in polymer scaffolds supports cell 

growth and maturation 

 

CNTs are among the toughest and strongest nanomaterials; moreover, they are 

flexible and can be easily combined with both natural and synthetic polymers in 

developing scaffolds able to support neuronal cell adhesion and growth.  

The incorporation of CNTs into polymeric scaffolds can be used to ameliorate the 

polymer scaffold characteristics:  

 

 CNT can reinforce polymeric scaffold mechanical properties; indeed it 

has been shown that, increasing the percentage of incorporated 

CNTs, the scaffold toughness and tensile strength also increase 

(Kharaziha et al., 2014). Therefore, the CNT percentage within the 

scaffold can be modulated in order to mimic the ECM mechanical 

properties of the tissue of interest; 

 

 CNTs can reduce the polymer electrical resistance. Indeed, it has been 

shown that, due to the CNT needle-like shape and high aspect ratio, 

their percolation threshold (the critical concentration where a 

transition from non-conducting to conducting state occurs) in 

polymer matrix composites is achieved at low concentrations ranging 
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from 0.0025 to 4 wt% . This allows for the modulation of the polymer 

electrical properties, without changing other important aspects as 

processability (Lizundia et al., 2012); 

 

 CNTs feature a nanoscale meshwork within the polymer scaffolds and 

this could be of help to cell adhesion, as cells prefer rough surfaces 

(Bareket-Keren et al., 2013). 

 

Different type of composites have been developed by combining CNT with 

polymers; for example, Jin and collaborators demonstrated that MWCNT-PLCL 

scaffolds showed improved adhesion, proliferation and neurite outgrowth of PC-

12 cells (Jin et al., 2011). The in vivo studies using CNT-polymer devices are still 

very few, but a very recent report from Yu et al., showed that MWCNT-enhanced 

electrospun collagen/PCL conduit promote regeneration of sciatic nerve defects 

in rats and prevent muscle atrophy without invoking body rejection or serious 

chronic inflammation (Yu et al., 2014). Furthermore, Ahn and colleagues 

reported that CNTs chemically tethered onto the surface of aligned phosphate 

glass microfibers (PGFs) were successfully placed into three-dimensional 

poly(l/d-lactic acid) (PLDLA) tubes. After implantation of a CNT–PGF nerve 

conduit into the 10 mm gap of a transected rat sciatic nerve, the number of 

regenerating axons crossing the scaffold, the cross-sectional area of the re-

innervated muscles and the electrophysiological findings were all significantly 

improved by interfacing with CNTs, thus demonstrating an effective role for CNTs 

in nerve regeneration (Ahn et al., 2015). 
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1.4.1.4 CNT conductivity boosts neuronal electrical signaling and 

differentiation 

 

CNTs are electrically conductive and their conductivity is stable in biological 

environment (Chen et al., 2009). Therefore, their inherent electrical conductivity 

can mimic the features of the electrically conductive nervous tissue promoting 

neuronal maturation and excitability.  

Lovat and co-workers found hippocampal neurons grown onto a MWCNT grid to 

show an enhanced network activity compared to those seeded onto control glass 

coverslips. The authors suggested that the increase in the efficacy of neural 

signal transmission may be due to the specific properties of CNT conductivity, 

able to provide a pathway allowing direct electrotonic current transfer, which in 

turn results in charge redistribution along the surface of the membrane. (Lovat et 

al., 2005). Similar results were obtained by using a substrate of SWCNTs for 

culturing hippocampal neurons: in this case very tight contacts between CNTs 

and neuronal membrane were shown by scanning electron microscopy (Fig. 13), 

hence supporting the hypothesis that improved neuronal electrical signals 

depends on CNT properties rather than on difference in neuronal survival or 

morphology (Mazzatenta et al., 2007). A further study clearly showed by 

transmission electron microscopy that CNTs can pinch neuronal membranes; 

when such neurons are forced to fire, CNT substrates strongly impact on single-

cell regenerative electrical properties possibly due to electrical shortcut between 

adjacent dendritic compartments mediated by the conductive substrate (Cellot 

et al., 2009). Therefore, this study suggests a direct electrical coupling between 

CNTs and neuronal membranes. It was shown that other substrates for neuronal 

growth, mimicking either conductivity or nanoroughness of CNTs, are not able to 

enhance dendritic regenerative ability, thus suggesting that both properties are 

necessary for CNT substrates to influence neuronal activity (Cellot et al., 2009). 

Moreover, it was demonstrated with hippocampal neurons that SWCNT 

substrates can promote de novo formation of synapses characterized by an 
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improved efficacy (Cellot et al., 2011). CNTs scaffolds were also tested with 

three-dimensional cell cultures: in a study performed with spinal cord explants, 

beside the increase of fibres outgrowing the spinal tissue and the high growth 

cone activity, an increased synaptic efficacy was revealed even in neurons 

located at as far as 5 cell layers from the cell substrate interactions (Fabbro et al., 

2012). Beside electrical signaling, the conductivity of CNT scaffolds can be 

modulated in order to control cell differentiation. Malarkey and co-workers 

studied SWCNT scaffolds with different conductivities and the same 

nonoroughness and found that rat hippocampal neuron neurite outgrowth 

changes depending on narrow ranges of conductivity (Malarkey et al.,2009). 

Therefore, the conductivity of the scaffold - modulating both neuronal 

differentiation neuronal electrical signaling - can be finely tuned to enhance 

scaffold performance. 

 

Figure 13. SEM images of cultured hippocampal neurons on SWNTs. (C, D) 

Subsequent micrographs at higher magnifications of neurons grown on SWNT. (E, F) 

Details of the square in (D) showing the interaction between neuronal membrane and 

SWNT. Scale bar (in E): C, 25 µm; D, 10 µm; E, 2 µm; F, 450 nm. (Adapted from Mazztenta 

et al., 2007). 
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1.4.1.5 CNT substrates can be used to electrically stimulate neurons 

 

CNT-based scaffolds can also be used to stimulate cultured neurons; indeed, it 

was shown that the application of a current through the CNT substrates resulted 

in an inward transmembrane current that was indistinguishable from those 

induced by direct patch-clamp electrode-mediated depolarizing voltage steps 

(Liopo et al., 2006; Gheith et al., 2006). The effects of electrical stimulation 

through CNT scaffolds were analyzed: Huang and colleagues used a SWCNT rope 

as a substrate to cultivate and electrically stimulate NSCs and demonstrated that 

electrical stimulation boosted NSCs towards differentiated neurons in the early 

culture stage, when compared to conventional tissue culture plates via the 

analysis of neuronal gene and protein expressions (Huang et al., 2012). Landers 

et al. showed that, even when incorporated into polymer electrospun scaffolds, 

SWCNTs can be exploited to electrically stimulate cells, and the authors noted 

and enhanced NSC differentiation ability after electrical stimulation (Landers et 

al., 2014). Cho et al. demonstrated that electrical stimulation of PC-12 cell 

through a CNT/collagen composite can strongly improve neurite extension (Cho 

et al., 2010). Therefore, electrical stimulation through CNT-based matrixes can 

directly carry electrical current to control neuronal differentiation and neurite 

extension. This could be of benefit for developing novel neural electrodes and for 

enhancing and controlling cell behaviours in an electrically driven way. 

CNTs have been successfully explored as coating material for metal electrodes. 

CNT coating enhanced both recording and electrical stimulation of neurons in 

culture, rat motor cortex and monkey visual cortex respect to bare metal 

electrodes. This improvement was due to reduced electrode impedance and 

increased charge transfer. Therefore, CNT-coated electrodes are expected to 

favour the development of long-lasting brain–machine interface devices (Keefer 

et al., 2008).  

However, the major step toward implantable neuro-prosthetics applications is 

the development of flexible multi-electrode arrays (MEAs). Recently, a flexible 
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MEAs based entirely on CNT technology - where both the conducting traces and 

the stimulating electrodes consist of conducting CNT films embedded in a 

polymeric support - have been developed and showed a great suitability for high-

efficacy neuronal stimulation applications (David-Pur et al., 2014).  

 

1.4.1.6 CNTs can act as guidance cues for neurite outgrowth 

 

Morphological guidance of regenerating axons is necessary to facilitate the 

formation of an effective neural network. CNT patterns have been shown to act 

as guidance cues for axonal growth, hence demonstrating a good potential in 

clinical applications . 

Zhang et al., used a combination of microlithography and chemical vapor 

deposition to engineer patterned vertical MWCNT substrates. They found that 

neurons preferentially adhered to MWCNT patterns and growth cones were 

attached to the CNT surface, allowing the neurons to spread along patterns and 

interact with one another (Zhang et a l., 2005). Park and colleagues developed 

patterns of CNTs onto the biocompatible polymer polyimide (PI) by means of 

self-assembly monolayers (SAMs) and microcontact printing techniques. Such 

patterns were used for culturing hNSCs, showing that cells preferentially adhere 

in correspondence of the CNT patterned surfaces, and that CNT geometries can 

be modulated to tune both cell nuclei localization and neurite extension along 

the CNT patterns. Interestingly, the authors showed that such control on cell 

polarization can be obtained at single cell level (Park et al., 2011). Also when CNT 

are combined to other materials, it is possible to obtain some kind of control on 

neurite directionality; for instance, Jin et al. used CNT for coating aligned 

electrospun PLCL nanofibers and cultured DRG neurons and PC-12 cells; such 

coating could improve the outgrowth of neurites along the scaffold fibres (Jin et 

al., 2011). 
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Figure 14. hNSC growth and differentiation on biocompatible and flexible PI 

substrate with CNT pattern. Phase contrast image of selective hNSC adhesion on CNT 

patterns on PI after cell seeding. Scale bar represents 200 μm (c). Immunofluorescence 

image of the differentiated hNSCs on CNT patterns on PI (TUJ1 for neural cells and GFAP 

for astroglial cells). The inset shows the magnified image of the region marked by the 

white solid square. Scale bar represents 200 μm, and that of the inset represents 50 μm. It 

should be noted that the orientation-controlled neural networks were constructed along 

the CNT patterns on the PI membrane (d). (Adapted from Park et al., 2011). 

 

Thanks to their conductivity stable in biological environment and able to boost 

neuronal electrical signaling, their nanotopographical features resembling 

neuronal processes and the possibility to be conjugated with bioactive molecules 

and polymers, CNTs show the great potential to be used as implants where long-

term extracellular molecular cues for neurite outgrowth are necessary. 

Furthermore, their nanometer dimensions, low impedance and high conductivity 

allow their use to develop stimulating electrodes to replace lost neuronal 

functions. Therefore, CNTs seem to be at the meeting point between neural 

regeneration strategies and neural prosthetics and further open up new avenues 

for biomedical applications. 

 

1.4.2 CNT CYTOTOXICITY 

 

The CNT cytotoxicity is still a debated issue and mainly concerns with types, 

functionalization and doses of CNTs being employed and the cell populations 
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tested. Pristine CNTs are water insoluble and packed in bundles or aggregates in 

aqueous solutions. They usually have impurities, typically amorphous carbon, 

graphite nanoparticles, and transition-metal catalyst particles that have been 

shown to create cytotoxicity both in vitro and in vivo: 

 

 CNTs can penetrate the cells membranes, then being eliminated through 

renal excretion; for these reasons and thanks to their high loading 

capacity, CNTs have been widely investigated as drug delivery agents 

(Lacerda et al., 2008). However, depending on their length, CNTs can 

accumulate in the cytoplasm leading to cell death (Porter et al., 2007); 

 

 insoluble pristine CNTs form bundles or aggregates in aqueous solutions. 

It was reported that, after intraperitoneal administration in mice, SWCNT 

bundles above 10 µm in length may induce granuloma formation 

(Kolosnjaj-Tabi et al., 2010); 

 

 transition-metal catalyst may induce the formation of oxygen reactive 

species (ROS) with oxidative stress (Pulskamp et al., 2007). 

 

The problem with impurity and insolubility has now been alleviated using a 

number of purification techniques and a wide variety of noncovalent and 

covalent methods for CNT functionalization. This strongly improved CNT level of 

biocompatibility (Cui et al., 2010). Therefore, it is very important to optimize 

type, doses, length and functionalization of CNTs being employed for each 

specific application.  
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1.5 PROTEINS INVOLVED IN NEURITE OUTGROWTH 

 

1.5.1 L1CAM 

 

Neural L1 cell adhesion molecule (L1CAM) plays a pivotal role in correct CNS 

development in humans, as it is involved in several activities important to CNS 

maturation, including neurite outgrowth, adhesion, fasciculation, migration, 

myelination and axon guidance. L1CAM promotes these cellular activities by 

interacting with a diverse group of CAMs, ECM molecules and signaling receptors 

through homo- and heterophilic interactions involving its extracellular region. L1 

is composed of six immunoglobulin (Ig)-like domains and five fibronectin (Fn) 

type-III repeats in the extracellular region, a single pass transmembrane region 

and a short cytoplasmic tail. Tertiary structure of L1 is as yet unsolved; however, 

it is likely that the first four Ig domains Ig1-Ig4 exist in a dynamic equilibrium 

between extended and folded (horseshoe) conformations similar to that of the 

related proteins hemolin and axonin-1. L1 is exposed at the surface of both 

differentiating and differentiated neurons as well as on glial cells and it binds to a 

diverse set of molecules, sending intracellular signals through its cytoplasmic 

region (Kenwrick et al, 2000; Haspel et al., 2003). Two soluble forms of the L1 

extracellular domain can be generated by proteolytic cleavage within the third Fn 

repeat or between the fifth one and the transmembrane region. Such soluble 

forms are able to promote neurite elongation by “conditioning” the extracellular 

matrix (Kalus et al., 2003; Maretzky et al., 2005). In particular, neurite outgrowth 

is triggered by homophilic binding in trans occurring between two L1 molecules 

that activate fibroblast growth factor receptors (FGFR) (Kenwrick et al., 2000). 

Even though it has been demonstrated that the Ig1-Ig4 region is the minimal 

contiguous segment necessary to mediate homophilic binding (Gouveia et al., 

2008), a larger segment encompassing Ig1-Ig6 is needed to reproduce the 

biological potency of native L1 (Haspel et al., 2000; De Angelis et al., 2002). 
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Interestingly, a particular 14 amino acid long region was mapped within the 2nd Ig 

domain (Ig2) as a key fragment necessary for the initial interaction between two 

L1 molecules. Zhao et al., in 1998 produced this region as a synthetic peptide 

(called L1-A: 178-HIKQDERVTMGQNG-191) and demonstrated its capacity to 

mediate adhesion. In particular, they mixed GST-Ig2-conjugated covaspheres 

with L1-A peptide before seeding onto a substratum coated with GST-Ig2 and L1-

A was found to inhibit binding of covaspheres to substrate-coated GST-Ig2, 

possibly because of peptide competition for the homophilic binding between the 

two Ig2 domains. As a negative control, they used a number of designed 

mutants. One such mutant, R184A, is of special interest as it resulted in fully 

impaired activity (inability to bind to Ig2 domain), hence underling the 

importance of the conserved Arg residue in L1 homophilic binding (Zhao et al, 

1998). It is noteworthy that mutations regarding Arg 184 are causative for CRASH 

(Corpus callosum hypoplasia, Retardation, Adducted thumbs, Spasticity and 

Hydrocephalus) syndrome and the most severe phenotype known is given R184Q 

substitution (De Angelis et al., 2002).  

Figure 15. Schematic representation of L1 ectodomain and signaling activated by 

the homophilic binding.L1 ectodomain is composed by six Ig-like domains (Ig1–6) and 

five fibronectin type III domains (FnIII1–5). Proteolytic cleavages within repeat Fn3 and 

between Fn5 and the transmembrane region generate L1 ectodomain soluble forms (A). 

L1 homophylic binding is mediated by the Ig2 domain and activates FGFR stimulating 

neurite outgrowth (B) (adapted from Kamiguchiet et al., 1997 (A) and from Kenwrick et 

al., 2000 (B)). 
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1.5.2 LINGO1 

 

Leucine rich repeat (LRR) and Ig-like domain containing Nogo receptor 

interacting protein (LINGO1) is a transmembrane protein that is selectively 

expressed in the CNS and plays an important role in neurite outgrowth control. 

LINGO1 is formed by 12 LRR motifs flanked by N- and C-terminal capping 

domains, one Ig-like domain, a transmembrane region and a short cytoplasmic 

tail. This latter contains an epidermal growth factor receptor (EGFR)-like 

phosphorylation site (Tyr 591). LINGO1 is highly conserved evolutionarily, with 

human and mouse orthologues sharing 99.5% identity (Mi et al., 2004; Llorens et 

al., 2008). LINGO1 forms at the neuron surface a complex with Nogo66-Receptor 

NgR1 (ligand binding subunit) and the neurotrophin receptor p75 (transducing 

subunit). NgR1/LINGO1/p75 complex interacts with Mag/NogoA/OMgp complex 

at the oligodendrocyte surface and inhibits neurite elongation by activating RhoA 

pathway (Mi et al., 2004). NgR1/LINGO1/p75 complex also interacts with 

neuronal NogoA, thus blocking neurite elongation and generating repulsion 

between neurites (Petrinovic et al., 2010). Moreover, LINGO1 can homophilically 

interact in trans, suggesting that LINGO1 molecules from adjacent neuronal and 

oligodendrocytic membranes might interact and inhibit oligodendrocyte final 

differentiation (Jepson et al., 2012). Furthermore, LINGO1 interacts with both 

EGFR and Tyrosine receptor kinase B (TRKB) inhibiting Akt signaling pathway and 

hence survival and neurite outgrowth (Inoue et al., 2007; Fu et al., 2010). Recent 

evidence shows that, despite LINGO1 extracellular domain is composed by 

twelve LRR and one Ig domain, this latter alone mediates homophilic binding and 

heterotypic interactions (Stein et al.; 2012). The LRR domain, instead, is mainly 

involved in homotetramerization and in hindering potential interactions with 

partners by the highly glycosylated concave faces of its extended, arc-shaped 

architecture (Mosyak et al., 2006). LINGO1 expression is high during embryo 

development to maintain the growing axons en route and away from uncorrect 

targets; its expression decreases during post-natal life but it is upregulated again 
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after injury to avoid regeneration (Mi et al., 2004). Furthermore, LINGO1 is 

involved in several CNS diseases: LINGO1 is an interacting partner of the amyloid 

precursor protein (APP) in vivo and cellular co-expression of LINGO1 with APP 

was found to augment the release of the αβ peptide, the presumed causative 

agent of Alzheimer’s disease (Bai et al., 2008). Moreover, LINGO1 interacts with 

the APP only thanks to its Ig domain (Stein et al., 2011). LINGO1 seems to be 

involved also in Parkinson’s disease (PD) and multiple sclerosis as its expression 

has been found elevated in the substantia nigra of PD patients (Inoue et al., 

2007) and in oligodendrocyte progenitor cells from demyelinated white matter 

of multiple sclerosis post-mortem samples (Mi et al., 2013). In vitro and in vivo 

studies showed that LINGO1 inhibition (dominant-negative LINGO1 

transmembrane form, soluble LINGO1-Fc; anti-LINGO1 antibodies) promotes 

neurite elongation, neuron and oligodendrocyte survival, axon regeneration, 

oligodendrocyte differentiation, remyelination and functional recovery (Mi et al., 

2004; Ji et al., 2006; Inoue et al., 2007; Mi et al., 2013; Fernandez-Enright et al., 

2014).  

Figure 16. Signaling pathways for LINGO1 function. Neuronal NgR1/LINGO1/p75 

complex interacts with Mag/NogoA/OMgp complex at the oligodendrocyte surface 

and inhibits neurite elongation by activating RhoA pathway. LINGO1 blocks TRKB and 

EGFR activation by inhibiting Akt signalling and neurite outgrowth. The homophilic 

binding between two LINGO1 molecules inhibits oligodendrocyte final differentiation, but 

effects at the neuronal level are still poorly understood.  
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Therefore, LINGO1 seems to be one of the molecules responsible for CNS 

neurons inability to regenerate and thus it represents an ideal candidate for 

therapeutic targets in neural dysfunctions because of its restricted tissue 

distribution. 

 

Figure 17. LINGO1 ectodomain structure. Ribbon diagram showing the overall 

architecture of the LINGO1 monomer, coloured according to secondary structure: beige, 

coil; blue, ß strand; red, α-helix. Disulfide bonds are shown in green, and N-linked 

carbohydrates are yellow (A). View of the top and front surfaces of the LINGO1 tetramer, 

rendered in red, green, magenta, and yellow. The two views are related by 90° rotation 

with respect to the horizontal axis. Carbohydrate are shown as yellow sticks. The LRR 

modules interlock the ring head-to-tail, back-to-back and the Ig domains extend 

vertically. The bottom view illustrates the putative orientation of the tetramer relative to 

the cell surface (B). (adapted from Mosyak et al., 2006). 
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1.6 STEM CELLS AND NEURONAL DIFFERENTIATION 

 

1.6.1 STEM CELLS IN REGENERATIVE MEDICINE 

 

Regenerative therapeutics using stem cells is a promising approach for the 

treatment of a variety of neurological diseases and both PNS and CNS injuries. 

Stem cells have multipotency to differentiate into specific lineages under 

different inducing conditions, making them a powerful tool for the regeneration 

of the biological function of injured tissues (Kim et al., 2012). It is well known 

that the interaction between stem cells and the extracellular microenvironment 

is critical in controlling stem cell differentiation. Control of cell fate 

determination can be achieved by creating a niche that mimics the ECM surface 

topography, mechanical properties, and chemical microenvironment (Chao et al., 

2009). Concerning neuronal regeneration, it is important to ensure both 

complete neural induction of cells and morphological guidance of neurite 

outgrowth, thus facilitating the formation of an effective neural network (Park et 

al., 2011; Kim et al., 2012).  

 

1.6.2 STEM CELLS FOR NEURAL REPAIR 

 

Different types of stem cells have the potential to be exploited in neurological 

application. Embryonic stem cells (ESCs) are pluripotent stem cells that can be 

isolated from the blastocyst, an early-stage embryo. ESCs cells represented a 

promising source for cell transplantation because of their ability to differentiate 

into all somatic cell lineages, but their clinical use has remained somewhat 

hampered by the ethical implications of using human embryos. However, use of 

human induced pluripotent stem cells (iPSc) rather than ESCs begun to help 

overcome these issues. However, the tumorigenic potential of iPSCs remains a 
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great concern. Neural stem cells (NSCs) are thought to be an optimal cell source 

for the treatment of neurological disorders because of their potential to 

differentiate into cells of glial and neuronal lineage.However, there are ethical 

problems surrounding the use of foetal tissues associated with abortion and they 

are difficult to isolate from autologous brain biopsies. Mesenchymal stem cells 

(MSCs) are adult stem cells that are found mainly in the bone marrow; despite 

their mesenchymal origin, they showed the ability to differentiate into neurons 

under proper conditions and they offer the possibility of the autologous 

transplant (Wang et al., 2013). However, they are generally isolated from the 

iliac crest of the patient and therefore through a quite invasive method. A very 

valid alternative is represented by circulating multipotent cells (CMCs) thanks to 

their accessibility and the potential to differentiate into neurons (Di Liddo et al., 

2012a-b). 

 

1.6.2.1 Human circulating multipotent cells (hCMCs) 

 

hCMCs are adult stem cells isolated by ficoll density gradient separation from 

human donor peripheral blood. hCMCs are mononucleated and have fibroblastic 

morphology during long term culture with a doubling population time of 48 

hours over 31 passages; they show by flow cytometry immunophenotypical 

similarities to mesenchymal stem cells (CD105, CD166, CD73, CD29) and meso-

angioblasts (CD34) (Di Liddo et al., 2012a). hCMCs have an intrinsic trophic 

activity able to establish a regenerative microenvironment at sites of tissue 

damage. Indeed, they secrete several cytokines and growth factors able to 

control their own proliferation and differentiation. hCMCs have been shown to 

be extremely sensible to changes in culture conditions that lead to sudden gene 

expression shifts and cell differentiation. They can be differentiated into 

progenitors for several mesenchymal tissues as adipocytes, osteoblasts, 

chondroblasts or muscle cells and; when treated with specific cocktails of growth 

factors, they are capable of neuronal differentiation as confirmed by immunoblot 
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analysis of the expression of TUBβ3 (Tubulin β III), MAP2 (Microtubule associated 

protein 2), NeuN (Neuronal nuclear antigen), SYP (Synaptophysin), Musashi, 

NCAM, dopamine transporter (DAT) and neurofilaments (NFM) (Di Liddo et al. 

2012b). 

Figure 18. hCMCs differentiation into different cell types. hCMCs are isolated from 

peripheral blood and have the ability to differentiate into adipocytes, chondroblasts, 

osteoblasts, muscle cells and neurons under proper culture conditions.  

 

The high degree of plasticity and the expression of a peculiar pattern of surface 

antigens not attributable to other defined adult stem cell populations, are 

consistent with the hypothesis that hCMCs belong to a new adult stem cell niche. 

These cells represent an attractive option for a wide range of regenerative 

medicine applications as hCMCs are (i) free from tumorigenisis risk sometimes 

associated to induced pluripotent stem cells (iPSCs), (ii) accessible, (iii) not 

subjected to ethical restrictions and (iv) a valid method to avoid rejection 

problems thanks to the autologous transplant. 

 

1.6.3 NEURONAL MARKERS 

 

Some of the markers that are generally analyzed to evaluate the differentiation 

of stem cells toward the neuronal lineage are the follows: 
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 Nestin is a class IV intermediate filament protein and a neural progenitor 

marker, therefore it is highly expressed in undifferentiated cells during 

nervous system development. After cell differentiation into neurons or 

glial cells, Nestin expression decreases and it is substituted by cell type-

specific intermediate filament proteins like Neurofilament (neurons) and 

glial fibrillaracidic protein (GFAP) (astrocytes) (Dahlstrand et al., 1995). 

 TUBβ3 is a class III specific β tubulin peculiar for neuronal cells expressed 

both in immature and mature neurons (including cells committed to a 

neuronal fate that are just post mitotic) (Zahir et al., 2009). TUBβ3 

contributes to microtubule stability and has an important role in neuronal 

architecture formation and maintenance, neurite outgrowth, axon 

guidance and axonal transport (Tischfield et al., 2010). 

 MAP2 is expressed mainly in neurons, but has also been detected in some 

non-neuronal cells such as oligodendrocytes and astrocytes. Its 

expression is very weak in neuronal precursors and then becomes strong 

after the expression of neuron-specific TUBβ3. MAP2 has a microtubule 

stabilizing activity and regulates microtubule networks in the axons and  

especially in the dendrites, determining their shape during neuron 

development. Moreover, MAP2 interacts with filamentous actin exerting 

a critical role in neurite initiation, during which networks of microtubules 

and filamentous actin are reorganized in a coordinated manner (Dehmelt 

et al., 2005). 

 Vesicle associated membrane protein 7 (VAMP7) is a SNARE protein 

implicated in neurite elongation (Martinez-Arca et al., 2001). Indeed, 

VAMP7 is associated to vesicles involved in the transport of lipids and 

proteins from the Golgi apparatus to the extensions of plasma membrane 

generating neurites. One out of proteins carried by VAMP7-vescicles is 

neuronal L1CAM; since this protein is transported at the protruding sites 

of plasma membrane and exposed at the neuronal surfaces, it 
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homophilically binds to other L1 molecules from the adjacent cell 

membranes, thus stimulating neurite outgrowth (Alberts et al., 2003). 

 

 

Figure 19. Appearance of neuronal markers during development. Nestin is highly 

expressed in neural progenitors cells, therefore in cells able to differentiate into neurons, 

oligodendrocytes or astrocytes. After neuronal commitment, Nestin expression decreases 

while neuron-restricted progenitor cells begin to express TUBβ3 and MAP2. During 

neuronal maturation, VAMP7 and L1CAM are also expressed.  

 

1.6.4 STEM CELLS CULTIVATED ONTO CNT-BASED SCAFFOLDS 

 

A number of scaffolds have been suggested to control cell adhesion, migration, 

proliferation, and differentiation for tissue engineering. Despite the unique 

abilities of cell patterning techniques, there are still some limitations in creating 

three-dimensional structures able to properly mimic ECM. Recently, a variety of 

nanomaterials including nanoparticles, CNTs, nanofibers and nanoscale-

substrates have been developed to efficiently control dynamic cellular behaviour 

such as cell growth, migration and differentiation. 

Indeed, it has been shown that both embryonic, mesenchymal and neural stem 

cells cultivated onto CNT-based scaffolds acquire the commitment towards 

neurogenesis when coupled with chemical soluble factors. Jan et al., in 2007 
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showed that mouse NSCs - when cultivated in differentiating medium - can then 

successfully differentiate into neurons, astrocytes, and oligodendrocytes with 

clear formation of neurites onto SWNT films. Chao et al., in 2010 showed that 

hESCs seeded onto a Poly(methacrylic acid)-grafted CNT scaffolds and treated 

with laminin are induced to express the neuron specific markers TUBß3 and 

Synapsin I while staminality marker Oct4 is decreased. Chen et al., in 2012 

obtained almost the same results by seeding hESCs onto a silk-CNT composite 

coated with laminin: increased expression of Nestin and TUBß3 and enhanced 

axonal length demonstrated that hESCs differentiate in the presence of CNT 

better than onto silk-only composites or poly-L-ornithine coated coverslips. Kim 

et al., in 2012 showed that neuronal differentiation of human hMSCs cultivated 

in a neurogenic medium can be improved when seeding cells onto CNT sheets. 

Further works showed that stem cells can achieve neuronal commitment either 

in the absence of neuronal stimulating conditions: e.g., Shridharan et al., in 2009 

cultivated hESCs onto a collagen/CNT matrix in the absence of inducing medium 

and showed that cell differentiation occurs toward the ectodermal lineage, as 

suggested by the strong expression of Nestin. Tay et al., in 2010 demonstrated 

that MSCs preferentially adhere in SWCNT covered coverlips respect to naked 

ones and cells showed a transient expression of Nestin and MAP2 genes while no 

upregulation of osteogenic markers were revealed, showing for the first time 

than the only CNT nanoroughness is of use to promote neuronal differentiation. 

Moreover, Chen et al., in 2013 showed that carboxylated MWCNT films 

deposited onto a collagen coated dish promotes hMSC neural differentiation 

through the upregulation of neural growth factors and trapping these neural 

growth factors to create a suitable environment for long-term neural 

differentiation. Furthermore, also Lee et al., in 2014 showed that CNT-collagen 

three dimensional cultures of rat MSCs promotes the expression of neural 

phenotypes and secretion of neurotrophic factors.  
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1.7 SH-SY5Y CELL LINE 

 

SH-SY5Y cell line is a human catecholaminergic neuroblastoma derived from a 

thrice cloned subline SK-N-SH cells, which were originally established from a 

bone marrow biopsy of a neuroblastoma patient in the early 1970’s. SH-SY5Y 

cells resembles immature neuroblasts in culture and are typically locked in an 

early neuronal differentiation stage, biochemically characterized by low presence 

of neuronal markers (Lopes et al., 2010). However, SH-SY5Y cells are able to 

acquire neuron-like phenotypes with neurite outgrowth and branches upon 

treatment with a variety of agents, including all-trans-retinoic acid (RA), phorbol 

ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), BDNF, dibutyryl cyclic AMP 

(dBcAMP), purine, or staurosporine (Xie et al., 2010). The most widely used 

differentiating method is the treatment with RA which is an active metabolite of 

vitamin A. RA functions by binding to two families of nuclear receptors: the RA 

receptors (RARs) family (RARa, b and g), and the retinoid X receptors (RXRs) 

family (RXRa, b and g). Activated RAR heterodimerizes with RXR, then binding of 

RAR/RXR heterodimers to RA response element (RARE) results in transcriptional 

activation (Joshi et al., 2006). Indeed, RA treatment of SH-SY5Y cells stimulates 

the neurite outgrowth and a progressive length increase (depending on time of 

exposure); moreover, it also promotes the synthesis of neurospecific enzymes, 

neurotransmitters, changes in cytoskeletal markers and electrophysiologic 

modifications, as seen in normal neurons (Costantinescu et al., 2007). Therefore, 

SH-SY5Y share many biochemical and functional properties with neurons, hence 

representing a model system of special help in studying molecular mechanisms 

underlying neuronal differentiation. RA treatment also induces the expression of 

TRKB, which is the high affinity catalytic receptor for several neurotrophins, 

including BDNF. BDNF binding to TRKB activates pathways controlling cell 

differentiation (Edsjö et al., 2003). RA also plays a role in regulating transition 

from the proliferating precursor cell to post-mitotic differentiated cell; indeed, 

after in vitro treatment with RA, SH-SY5Y cells arrest in the G1-phase of the cell 
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cycle, DNA synthesis is inhibited and growth inhibition is detected 48 h after 

treatment (Costantinescu et al., 2007). 
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2. AIM OF THE PROJECT 

 

Neural regeneration is a complex mechanism that can be aided by scaffolds able 

to recapitulate the features of the native tissue environment. The purpose of my 

thesis work has been to design and test scaffolds incorporating multiple cues in 

order to provide cells with information important for their growth and 

differentiation. In particular, my PhD project followed two main steps:  

 

1) DEVELOPMENT OF THE BIOMIMETIC SYSTEM: 

 Designing a freestanding scaffold made of carbon nanotubes (CNTs) 

dispersed in a poly-L-lactic (PLLA) matrix and testing its ability to support 

SH-SY5Y cell adhesion growth and differentiation; 

 Designing peptides derived from specific L1 and LINGO1 motifs and 

testing their ability to induce SH-SY5Y differentiation; 

 Combining scaffolds and peptides to further improve cell differentiation. 

 

2) IMPROVEMENT OF THE BIOMIMETIC SYSTEM: 

 Electrospinning of the CNT-PLLA matrix to further mimic neuronal 

extracellular environment; 

 Mutagenesis of specific peptide amino acid residues for a preliminary 

characterization of their mechanism of action; 

 Testing scaffolds and peptides with human circulating multipotent cells 

(hCMCs) in order to use a cell populations suitable for regenerative 

medicine applications and to evaluate if scaffolds and peptides are able 

to induce such stem population to differentiate toward the neuronal 

lineage. 
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3. METHODS 

 

3.1 SCAFFOLD PREPARATION AND CHARACTERIZATION 

 

3.1.1 CNT-PLLA SCAFFOLD 

 

Commercially available MWCNTs (Sigma) were purified by two-steps treatment 

at high temperature, dispersion in aqueous HCl (37%), sonication and membrane 

filtration. MWCNTs were methoxyphenyl (PhOMe)-functionalized and dissolved 

with PLLA in chloroform under mild sonication. The resulting dispersion was 

drop-cast onto a glass dish to obtain the MWCNT-PhOMe@PLLA 1% scaffold. 

MWCNTs were characterized by micro-Raman spectroscopy, thermogravimetric 

analyses (TGA) and differential scanning calorimetry (DSC) analyses. Electrical 

resistance of the CNT-PLLA composite was measured by using a digital 

multimeter. For full methods, see Scapin et al, 2014.  

 

3.1.2 ELECTROSPUN CNT-PLLA SCAFFOLD 

 

The electrospun-CNT-PLLA (eCNT-PLLA) scaffolds were prepared using the same 

CNT-PLLA scaffold solution and processed with the electrospinning technique. 

Electrospinning was performed by passing the solution through an 18G needle at 

a flow rate of 0.03 ml/min, and applying an acceleration voltage of 18 kV, where 

a positive charge was applied to the solution, and the collector was electrically 

grounded at a working distance of 14 cm. The electrospinner was set up such 

that the needle was oriented vertically, and the fibre collector was placed 

directly underneath the needle. Fibres were collected onto 13 mm diameter 
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glass coverslips deposited onto a paper. The process was carried out at room 

temperature within a range of relative humidity (RH = 45–50 %).  

 

All scaffolds were synthesized and characterized by prof. Menna group 

(Department of Chemical Sciences University of Padua). 

 

3.2 PEPTIDE SYNTHESIS AND CHARACTERIZATION 

 

LINGO1-A (467SAKSNGRLTVFPDG480), scrambled LINGO1-A_scr 

(TVFSRSKPLGNDGA), L1-A (178HIKQDERVTMGQNG191), scrambled L1-A_scr 

(IVDQGNREMGTKHQ), L1-A R184A (HIKQDEAVTMGQNG) and L1-A R 184Q 

(HIKQDEQVTMGQNG) peptides, and N-terminally fluoresceinated derivatives of 

L1-A and LINGO1-A were synthesized by the solid-phase method, purified to 

homogeneity (>98%) by reversed-phase high-performance liquid 

chromatography (RP-HPLC) and characterized by high-resolution mass 

spectrometry. The conformation of the peptides was analyzed by circular 

dichroism (CD) on a Jasco J-810 spectropolarimeter, equipped with a Peltier 

temperature control system. For full methods, see Scapin et al, 2014 

 

All peptides were synthesized and characterized by prof. De Filippis group 

(Department of Pharmaceutical and Pharmacological Sciences University of 

Padua). 
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3.3 CELL CULTURE, DIFFERENTIATION AND EXPERIMENTAL 

DESIGN 

 

3.3.1 SH-SY5Y 

 

Exponential growing human neuroblastoma SH-SY5Y cells (Ross et al., 1983), 

were cultured with Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 

(DMEM/F-12) GlutaMAX™ supplement (Invitrogen) supplemented with 10% 

heat-inactivated foetal bovine serum (FBS, Euroclone) and 25μg/ml gentamicin 

(Sigma) (growth medium), in humidified atmosphere of 5% of CO2 in air at 37 °C. 

Cultures were maintained by subculturing 900000 cells into 25 cm² flasks 

(Sarstedt) every 2 days (once they reached 90% confluence). Cell differentiation 

was induced by treating cells with all-trans-retinoic acid (RA, Sigma) at 10 M 

concentration and lowering the FBS in the culture medium to 2% (differentiation 

medium) 24 h after seeding. In undifferentiated control samples, Dimethyl 

sulfoxide (DMSO) was added as equivalent amount (in which RA is dissolved). In 

experiments with peptides added to culture medium, cells were seeded in a 24-

well plate (15000 cells/well) coated with gelatine (Sigma, porcine skin 0.005% in 

H2O milliQ)/poly-L-lysine (Invitrogen, 1g/ml) solution. 24h after cell seeding 

(day 0), the growth medium was replaced by the differentiation medium; then, 

24h after RA induction (day 1) peptides were added to the culture medium to 

asses if they can influence cell viability/proliferation and promote/inhibit neurite 

elongation. Peptides are not present in control samples. Cell viability and 

proliferation were assessed at all time points (days 0, 1, 2), while neurite lengths 

were measured 24 h after the peptides addition (day 2). In experiments with 

peptides adsorbed onto the substrate, peptides dissolved in gelatine solution 

were adsorbed onto the bottom of a 24-well plate prior to cell seeding (15000 

cells/well). Culture wells coated with poly-L-lysine were used as control. 24 h 

after cell seeding (day 0), the growth medium was replaced by the differentiation 
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medium. Cell viability and proliferation were assessed at three time points (days 

0, 1 and 4) or four time points (days 0, 1, 4 and 7) while neurite lengths were 

measured at day 4. In order to determine the percentage of adsorbed peptides, 

the fluorescein isothiocyanate (FITC)-conjugated version of peptides were used 

to coat well bottoms. Briefly, peptides were dissolved in a gelatine solution and 

incubated in a 24-well plate; then the fluorescence was measured with a plate 

reader (Ascent Fluoroscan, excitation 485 nm, emission 538 nm). Three hours 

after incubation, wells were washed 2 times with PBS and fluorescence was 

measured again in order to calculate the percentage of peptides adsorbed onto 

the wells. In experiments with cells seeded onto the scaffolds, PLLA and CNT-

PLLA sheets were cut into round slices with 13 mm diameter to be well suited for 

positioning in 24-well plates. After sterilization by UV irradiation, PLLA and CNT-

PLLA scaffolds were incubated for 3h with FBS and then cells (15000/well) were 

seeded onto their surfaces. 24 h after cell seeding (day 0), the growth medium 

was replaced with differentiation medium. Culture wells coated with poly-L-

lysine were used as control. Cell distribution (between scaffold and well bottom) 

analysis was performed at day 0, cell viability and proliferation were assessed at 

days 0 and 2 and neurite lengths were measured at day 2. In experiments with 

cells growing onto CNT-PLLA scaffolds and treated with peptides, the CNT-PLLA 

scaffolds were incubated for 3 h with FBS and then cells (15000/well) were 

seeded on their surfaces. 24 h after cell seeding (day 0), the growth medium was 

replaced with differentiation medium and 24 h after RA induction (day 1) the 

peptides (1M L1-A or LINGO1-A) were added to culture medium. Culture wells 

coated with poly-L-lysine were used as control. Cell viability and proliferation 

were assessed at days 0, 1 and 2, while neurite lengths were measured at day 2. 

In experiments with cells seeded onto the electrospun scaffolds, fibre covered 

coverslips were removed from the paper support to be well suited for 

positioning in 24-well plates. After sterilization by UV irradiation, ePLLA and 

eCNT-PLLA scaffolds were incubated for 3h with FBS and then cells (15000/well) 

were seeded onto their surfaces. 24 h after cell seeding (day 0), the growth 
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medium was replaced with differentiation medium. Culture wells coated with 

poly-L-lysine were used as control. Cell distribution (between scaffold and well 

bottom) analysis was performed at day 0, cell viability and proliferation were 

assessed at days 0 and 2 and neurite lengths were measured at day 2. 

 

3.3.2 HUMAN CIRCULATING MULTIPOTENT CELLS (ɦCMCS) 

 

hCMCs were isolated by ficoll density gradient separation from human donor 

peripheral blood and gently provided by prof. Di Liddo group (Department of 

Pharmaceutical and Pharmacological Sciences University of Padua). In 

experiments with cells seeded onto the scaffolds, CNT-PLLA sheets were cut into 

round slices with 13 mm diameter to be well suited for positioning in 24-well 

plates. After sterilization by UV irradiation, CNT-PLLA scaffolds were incubated 

for 24h in the culture medium. Then cells (12000/well) were seeded onto 

scaffold surfaces in complete growth medium (DMEM/F12 supplemented with 

16.5% of heat-inactivated FBS and 50 U/ml penicillin - 50 g/ml streptomycin). 

Cells were maintained in humidified atmosphere of 5% of CO2 in air at 37 °C. 24 

h after cell seeding (day 1), the growth medium was replaced with differentiation 

medium (DMEM/F12 supplemented with 2% of heat-inactivated FBS, 50 U/ml 

penicillin - 50 g/ml streptomycin and RA 10 M). In undifferentiated control 

samples, DMSO was added as equivalent amount (in which RA is dissolved). Cells 

were maintained in culture for five days after cell seeding and analyses were 

performed at the following time points: cell proliferation, days 1, 3 and 5; 

morphological observations, day 1; qPCR experiments, days 1, 3 and 5; 

immunofluorecence, day5. In experiments with peptides added to culture 

medium, cells were seeded in 24-well plates (12000 cells/well) in complete 

growth medium. 24h after cell seeding (day 1), the growth medium was replaced 

by the differentiation medium; then, 24h after RA induction and the lowering of 

FBS (day 2) peptides (1 M concentration) were added to the culture medium to 

asses if they can influence cell proliferation and differentiation. Peptides are not 
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present in control samples. Cell proliferation was assessed at days 1, 3 and 5 

while qPCR experiments were performed at day 3 and 5. In experiments with 

cells seeded onto the eCNT-PLLA scaffolds, fibre covered coverslips were 

removed from the paper support to be well suited for positioning in 24-well 

plates. After sterilization by UV irradiation, eCNT-PLLA scaffolds were incubated 

for 24h in the culture medium. Then cells (12000/well) were seeded onto 

scaffold surfaces in complete growth medium. 24 h after cell seeding (day 1), the 

FBS concentration was reduced to 2%. Morphological observations and qPCR 

analyses were performed at day 1. 

 

3.4 ANALYSIS OF CELL VIABILITY/PROLIFERATION AND 

NEURONAL DIFFERENTIATION 

 

3.4.1 CELL PROLIFERATION 

 

Resazurin reduction assay was performed to quantify the metabolically active 

living cells and thus to monitor how do peptides and the scaffolds affect cell 

proliferation of the cell populations tested. The assay is based on reduction of 

the indicator dye, resazurin (not fluorescent), to the highly fluorescent resorufin 

(excitation 569 nm, emission 590 nm) by viable cells. Non-viable cells rapidly lose 

their metabolic capacity to reduce resazurin and, thus, do not produce 

fluorescent signals anymore. Briefly, the culture medium was substituted with 

500 L of resazurin solution (Resazurin Sigma 15 μg/mL in complete medium 

without phenol red) and cells were incubated for 4 h in dark at 37°C and 5% CO2. 

Then, 200 μL of resazurin solution were removed twice from each well and 

transfer to a 96 well plate (technical duplicates). Fluorescence, directly 

correlated with cell quantity, was read in a plate reader (Ascent Fluoroscan, 

excitation 540 nm, emission 590 nm). Background values from wells without cells 

were subtracted and average values for the duplicates calculated. Cell 
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proliferation was calculated from a calibration curve by linear regression using 

Microsoft Excel. Resazurin assay was also used for testing cell ability to adhere to 

the scaffolds. 24 h after cell seeding, scaffolds were removed from the original 

wells and positioned into clean ones. Both wells were incubated with resazurin 

solution to quantify the number of cells adherent to scaffold or to well bottom.  

 

3.4.2 CELL VIABILITY 

 

The CytoTox-ONE™ Homogeneous Membrane Integrity Assay (Promega) was 

used to quantify the lactate dehydrogenase (LDH) release by cells that lose 

membrane integrity. Briefly, 100 μL of culture medium were transferred to a new 

96 well plate. 50 μL of the reaction solution from the kit, containing the 

detection dye and the catalyst were then added to culture supernatants and 

fluorescence was measured after 10 minutes in a plate reader (Ascent 

Fluoroscan, excitation 540 nm, emission 590 nm). Background values from wells 

without cells were subtracted and average values for the duplicates calculated. 

Cell death was calculated from a calibration curve by linear regression after 100% 

cell lysis of known cell quantities. Cytotoxicity was then calculated according to 

the following equation: Cytotoxicity (%) = (number of dead cells)/(number of 

dead cells + number of living cells) x100.  

 

3.4.3 NEURITE LENGTH ANALYSIS (SH-SY5Y CELLS) 

 

Neurite outgrowth was measured after staining the cells with calcein 

acetoxymethyl ester (Calcein-AM, Biotium), a non-fluorescent cell permeable 

compound that when hydrolyzed by intracellular esterases in live cells converts 

to the strongly green fluorescent calcein (excitation 490 nm, emission 539 nm). 

This staining is particularly useful to clearly detect, along their whole length, the 

neural processes and to visualize cells growing onto the black CNT-PLLA 
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scaffolds. Briefly, cells were incubated with calcein-AM (2 M in HBSS, Hank's 

Balanced Salt Solution, Invitrogen) for 30 minutes in dark at 37°C and 5% CO2 

and visualized under a fluorescent microscope (Leica DM4000b) using green 

fluorescent protein (GFP) filter. Each experiment was performed in duplicate 

(two wells per conditions). Five images/well were recorded (ten images for each 

condition), taken with a 20X objective. The first field was set to correspond to 

the centre of the well. Next fields were then selected following each of the four 

directions (N, S, W, E) from the first field. Neurite length was measured using LAS 

AF lite software (Leica) by tracing the trajectory of the neurite from the tip to the 

junction between the neurite and cell body. If a neurite exhibited branching, the 

measure from the end of the longest branch to the soma was recorded, then 

each branch was measured from the tip of the neurite to the neurite branch 

point. The neuritogenic properties were analyzed in terms of total neurite 

length/no. of cells (aggregate length of all cellular processes divided by cell 

number), no. of neurites/no. of cells, no. of branch points/no. of neurites, the 

percent of neurites longer than 100 m, no. of growth cones/no. of cells. Only 

neurites longer than 50 m were considered (Hu et al., 2004; Munnamalai et al., 

2014). 

 

3.4.4 ɦCMC MORPHOLOGICAL ANALYSES 

 

Cells were stained with Calcein-AM and inspected under the Leica DM 4000b 

inverted microscope equipped with the GFP filter. Five images/well were 

recorded (ten images for each condition), taken with a 20X objective. Field 

selection was performed as reported above. The morphological analyses 

performed are: no. of polarized cell/no. of cells, total protrusion length/no. of 

cells, no. of protrusions/no. of cells, total diameter length/no. of cells. The length 

of each neurite-like protrusion was measured from the cell body edge to the tip 

of the protrusion. Any protrusion shorter than half the cell body diameter was 

not recognized as a neurite-like protrusion and therefore cells were not 
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considered as polarized (Huang et al., 2013). Cell diameter was considered as the 

longest distance between two edges in the cell body (major axis). Protrusion 

length and diameter were measured using LAS AF lite software (Leica). 

 

3.4.5 SCANNING ELECTRON MICROSCOPY ANALYSIS 

 

The morphology of eCNT-PLLA scaffold fibres was studied by scanning electron 

microscopy (SEM); eCNT-PLLA scaffolds were coated with a thin film of gold 

particles to improve scaffold conductivity. For the analysis of SH-SY5Y cells 

growing onto CNT-PLLA scaffolds, cells were fixed in 4% paraformaldehyde in 

phosphate buffered saline (PBS), dehydrated in solutions with increasing ethanol 

concentration, and air dried. Samples were then coated with a thin layer of gold 

particles and examined and photographed using a Jeol JSM-6490 SEM.  

 

3.4.6 RNA EXTRACTION AND RETROTRANSCRIPTION 

 

RNA from each sample was obtained after cell homogenization with TrizolTM 

reagent (Invitrogen), following the manufacturer’s instructions. After complete 

dissociation of nucleoprotein complexes, phase separation was achieved with 

chloroform and centrifugation at 12000 g. RNA was precipitated from the 

aqueous phase with isopropanol and washed with 70% ethanol. The RNA was 

dried and dissolved in RNase-free water. RNA was retrotranscribed in cDNA using 

GoScriptTM Reverse Transcription System and oligo(dT) primers (Promega). 

Briefly, 4 l of RNA were incubated with oligo(dT) primers for 5 minutes at 70 °C 

for allowing template denaturation and than chilled for 5 minutes in ice. Then, 

the RNA and the oligo(dT) primers were added to 15 l of mix solution containing 

the GoScriptTM reverse transcriptase, MgCl2, PCR nucleotide mix, buffer and the 

ribonuclease inhibitor. Such reaction mix was then incubated for 5 minutes at 

25°C (annealing), 60 minutes at 40°C (extension) and 15 minutes at 70°C 
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(retrotranscriptase inactivation). After retrotranscription, the integrity of cDNA 

was checked by control PCR (Polymerase Chain Reaction). The S13 gene was 

amplified as an housekeeping internal control. 

 

3.4.7 REAL TIME RT-PCR (qPCR) 

 

Gene expression was analyzed by two-step real-time RT-PCR. 1l of cDNA was 

used for each qPCR reaction that was performed using Power SYBR® Green PCR 

Master Mix (Life technologies) in a final reaction volume of 20 µl. The thermal 

cycler (Rotor-Gene 3000 from Corbett Research) was set as follows: 9’ at 95°C 

followed by 43 cycles consisting of 30” melting at 95°C + 30” annealing at 60°C + 

35” extension at 72°C. All primers were tested for their amplification efficiency: 

the threshold cycle (CT) values of four cDNA dilutions were plotted against the 

logarithm of input amount of standard material, in order to generate a standard 

curve. Only those primers having comparable value of the slope were 

considered. At least three independent experiments were performed in 

triplicate, each qPCR reaction was run in duplicate (technical replicates) and each 

gene was run together with its own reference gene and a negative control. The 

gene encoding human ribosomal protein S13 was used as the housekeeping 

control for normalization (Vacca et al., 2011). The comparative CT method (2-

ΔCᵀ) was used to quantify gene expression. Melting curve analysis was 

performed to ensure all transcripts under investigation would be represented by 

a single peak, as an index for specificity (melting ramp from 70 to 95°C). Data 

analysis was carried out using the Rotor-Gene software (version 6.1; Corbett). 

The following forward (F) and reverse(R) primers (SIGMA-Genosys) were used: 

 

S13-F: 5’-TACAAACTGGCCAAGAAGGG-3';  

S13-R: 5'-GGTGAATCCGGCTCTCTATTAG-3'; 

Nestin-F:5’-CAGGGGAGGACTAGGAAAAGA-3’; 

Nestin-R: 5’- GAGATGGAGCAGGCAAGAG-3’; 
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TUBß3-F: 5’- AGGAAGAGGGCGAGATGTA-3’; 

TUBß3-R: 5’- CAATAAGACAGAGACAGGAGCAG-3’; 

MAP2-F: 5’- ATAGACCTAAGCCATGTG-3’; 

MAP2-R: 5’ -GGGACTGTGTAATGATCTC-3’; 

TRKB-F: 5‘-TAGATCCTGAGAACATCACCG-3’; 

TRKB-R: 5‘-GGATCAGTTCAGACAAGTCAA-3’; 

VAMP7-F: 5’-CACTGATGATGATTTTGAACG-3’; 

VAMP7-R: 5’-CTGAGCTACCAGATCTATGTTTCT-3’; 

L1 (neuronal)-F: 5’ CCCTGGAGAGTGACAACG-3’; 

L1 (neuronal)-R: 5’ CCTGGACTCCACTATTCTAGGG-3’; 

LINGO1-F: 5’ TGGTGCTGCTGTTTCTCTG-3’; 

LINGO1-R: 5’ CGTGTGTAGAAGGGTAGGGA-3’. 

 

3.4.8 IMMUNOFLUORESCENCE 

 

Five days after seeding, hCMCs were rinsed three times with PBS and then fixed 

with BD Cytofix™ Fixation Buffer (BD Biosciences) for 20 min at 4°C. hCMCs were 

then rinsed three times with PBS, permeabilized with 0.2% Triton in PBS for 30 

min at room temperature and incubated in blocking solution (5% FBS in PBS) for 

30 min at room temperature. hCMCs were then incubated for 1 hour at room 

temperature with primary antibodies diluted in blocking solution. Mouse anti-

neuron specific β-III tubulin (1:200, MAB 1637 Millipore) was used as primary 

antibody. After 3 washes in PBS, cells were incubated for 1 hour at room 

temperature with secondary donkey anti-mouse antibody conjugated with Alexa 

Fluor-488 (Life technologies) at a 1:300 dilution. Nuclei were counterstained 

using Hoechst 33258 (Life technologies) for 5 min, and then washed three times 

with PBS. A small amount of PBS was left to keep well surfaces wet hence to 

avoid monolayer drying. Samples were inspected under the Leica DM 4000b 

inverted fluorescent microscope using the GFP (TUBβ3) and A4 (nuclei) filters. 

TUBβ3 and nuclei images were overlapped using LAS AF lite software (Leica). 



 

66 

 

3.5 BIOINFORMATIC ANALYSES 

 

3.5.1 HOMOLOGY SEARCHES AND STRUCTURAL MODELING 

 

Fold recognition searches were performed using Phyre 2 (Kelley et al., 2009), 

structural models were obtained by homology modeling using the Swiss model 

server (Guex et al., 1997). Structural superposition and analyses were performed 

using USFC Chimera software (Pettersen et al., 2004). Proteome-wide search for 

orthologous sequences of the L1 Ig2 and LINGO1 Ig domains were performed 

using corresponding sequences from the human proteins as probes for blastp 

runs at the blast NCBI server, using default settings, database limitation set to 

UniprotKB, taxonomic limitation set to Metazoa and excluding fragments 

(incomplete sequences). 

 

3.5.2 PRIMER DESIGN 

 

Each primer pair consists of specific forward and reverse primers derived from 

gene sequences contained in the NCBI Reference Sequence database. They were 

designed in order to produce a 250 bp amplicon crossing exon/exon boundaries 

whenever possible, to enable amplification of cDNA sequences and to prevent 

coamplification of genomic DNA. They all are standardized to work at the same 

temperature (60°C). L1 primers were designed to be specific for the L1 neuronal 

splicing isoform. Melting temperatures of PCR primers and possible occurrence 

of hairpins, self- and hetero-dimers was ruled out by Oligoanalyzer 3.1 

(http://eu.idtdna.com/calc/analyzer) and the specificity was checked with 

primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 
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3.6 STATISTICAL ANALYSES 

 

Statistical analysis was performed using paired Student’s t test, and results were 

considered significant when p< 0.05. Values are expressed as mean ± standard 

error of the mean (M ± SEM). 
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4. RESULTS 

 

4.1 SET UP AND VALIDATION OF A POLYMER-CNT SCAFFOLD 

 

Dispersion of CNTs into a biocompatible polymer matrix can help to generate a 

freestanding and implantable device (Gheith et al., 2005). Combination of a 

biocompatible polymer and a conductive nanostructure is expected to boost 

neuronal growth/differentiation by coupling polymer features (biocompatibility, 

processability, low cost, implantability) and CNT properties (mimicking of the 

topography of neural environment and conductivity). We chose PLLA as polymer 

matrix because of its biocompatibility and employment for neural tissue 

engineering applications (Yang et al., 2004; Koh et al., 2008; Gertz et al., 2010). 

Among the plethora of available CNTs, we chose MWCNTs because of high 

conductivity and shape mimicking nanoscale features of the extracellular matrix. 

We purified commercial MWCNTs to remove heavy metal impurities, which may 

result cytotoxic (Furtado et al., 2004). Moreover, to improve dispersibility, we 

functionalized the MWCNTs through addition of the diazonium salt of 4-

methoxyaniline (Salice at al., 2012; Salice et al., 2014). We determined, according 

to a previously reported approach (D’Este et al., 2006), a degree of 

functionalization (see supplementary file) of 1/97. Characterization of MWCNTs 

by TGA analysis and micro-Raman spectroscopy is shown in Fig. 20. The resulting 

CNT derivatives, soluble in chloroform, were used to prepare a polymer 

nanocomposite made of 1% w/w MWCNTs dispersed into a PLLA matrix by 

solvent evaporation (Fig. 20C). Raman spectroscopy, TGA and DSC confirmed 

CNTs to be well dispersed in the scaffold (Fig. 20D-E-F). The electrical resistivity 

of the nanocomposite scaffold is around 130 kΩ with respect to >2000 kΩ of the 

pristine PLLA; in addition, it shows features compatible with a free-standing 
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polymer film as required for implantable scaffolds. Indeed, we compared CNT-

PLLA and PLLA scaffolds for both biocompatibility and neuritogenic properties. 

Calcein-AM staining revealed that SH-SY5Y cells can adhere and grow onto both 

CNT-PLLA and PLLA scaffolds and show homogeneous spreading (Fig. 21A). No 

difference in cell proliferation (Fig. 21B) and viability (Table 1) was observed 

when growing cells onto either poly-L-lysine or the scaffolds; however, as shown 

in Fig. 21C, cells better adhere to CNT-PLLA (~63%) than to PLLA alone (~39%). 

Furthermore, cells grown onto CNT-PLLA can be differentiated with RA as well as 

control samples and they present a total neurite length higher than samples 

grown onto PLLA (Fig. 21D). SEM images of cells cultured onto CNT-PLLA show a 

healthy morphology and the outgrowth of neurites attaching to the scaffold 

surface (Fig. 22). At high magnifications, the intimate contacts between the 

scaffold and neuronal membrane are evident (Fig. 22D). Furthermore, when 

compared to control cell cultures (poly-L-lysine substrate), cells grown onto CNT-

PLLA show an increased number of long filopodia extending from the growth 

cone and making contacts with the scaffold, possibly depending on improved 

activity of growth cones in sensing topographical cues (Fig. 22G). 
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Figure 20. Scaffold characterization. TGA and micro-Raman analysis of MWCNT-

PhOMe: Thermogram representing the residual weight (continuous line) and the weight 

loss derivative (dashed line) of the MWCNT-PhOMe measured under nitrogen 

atmosphere with a 10°C/min heating ramp (A). Micro-Raman spectrum of the MWCNT-

PhOMe sample (excitation line: 633 nm) (B). CNT-PLLA scaffold characterization: 

Photograph of the PLLA@MWCNT-PhOMe 1% film (C). FT-Raman spectrum of the 

PLLA@MWCNT-PhOMe 1% film (excitation line: 633 nm) (D).Thermogram representing 

the residual weight (dashed line) and the weight loss derivative (continuous line) of the 

PLLA@MWCNT-PhOMe 1% film measured under nitrogen atmosphere with a 10°C/min 

heating ramp (E). Differential scanning calorimetry (DSC) curve of the PLLA@MWCNT-

PhOMe 1% film measured under nitrogen atmosphere with a 10 °C/min heating ramp (F) 

(Scapin et al., 2014). 
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Figure 21. CNT-PLLA scaffold effect on SH-SY5Y cell adhesion, growth and 

differentiation. SH-SY5Y cells stained with Calcein-AM. Image magnification is reported 

(A). Cell proliferation (B), distribution (C) and differentiation (D). Data represent the 

mean ± SEM of three independent experiments performed in duplicate. *shows 

significance at p<0.05 between cells seeded onto CNT-PLLA and PLLA. (Scapin et al., 

2014). 

 

 

Table 1. Percentage of cell death relative to three independent experiments performed in 

duplicate. * shows significance at p<0.05 between samples grown onto scaffolds and 

control cells (grown onto Poly-L-lysine).  
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Figure 22. SH-SY5Y morphology when grown onto the CNT-PLLA scaffold. 

(A to F) Scanning electron microscopy images of SH-SY5Y cells grown onto CNT-PLLA 

scaffolds. Scale bar: A, C, E, F = 50 m; B = 10 m; D = 5 m. Panels B and D show details 

of the framed area in A and C, respectively. (B, F) Outgrowth of neurites attaching to the 

scaffold surface. At higher magnification (D) the intimate contacts between CNT-PLLA 

scaffolds and neuronal membrane are evident. (E) Growth cone morphology of cells 

growing onto the scaffolds. (G) Typical growth cones observed when cell differentiation is 

induced with RA. Cells were stained with calcein-AM. Image magnification is 32X (Scapin 

et al., 2014). 
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4.2 THE NEURITOGENIC PEPTIDES 

4.2.1 IDENTIFICATION OF PEPTIDES DERIVED FROM L1 AND LINGO1 

 

Cellular differentiation can be induced by synthetic peptides able to mimic  

differentiation signals. To this aim, peptides should correspond to interaction 

motifs likely to mediate such signals. In order to provide signals driving correct 

neuronal growth and differentiation, we started from the evidence that 

neuritogenesis and process guidance/elongation are driven by CAM proteins 

such as L1 (Alberts et al., 2003). In this work we tested biocompatibility and 

neuritogenicity of two peptides derived from L1 and LINGO1. The Ig2 repeat of 

the L1 ectodomain is involved in the homophilic binding and the interaction 

region corresponds to a 14-aminoacid long peptide named L1-A (Zhao et al., 

1998). Therefore, we reproduced L1-A as a synthetic peptide for our 

experiments. Then, we searched for structural homologues of the L1 Ig2 repeat, 

to find further regulators of neural differentiation by homo/heterophilic 

interactions. Fold recognition search intriguingly identified the single Ig repeat of 

the LINGO1 ectodomain as the best structural template (99.7% confidence, 93% 

coverage). Given that identity between L1 Ig2 and LINGO1 Ig is 29%, we could 

use homology modeling method for obtaining a reliable model. Then, 

superposition (Fig. 23A) of the LINGO1 Ig template (Fig. 23B) and the L1 Ig2 

model (Fig. 23C) revealed high structural similarity (RMSD = 0.65 Å). Intriguingly, 

the L1-A and aligned LINGO1 Ig sequence 467-480 (hereafter referred to as 

LINGO1-A), displayed high similarity. In particular, the two sequences share four 

identical amino acids and eight residues with similar physico-chemical properties 

(Fig. 23D). It has to be stressed that: (i) both LINGO1 and L1 are neural proteins 

involved in neurite outgrowth control, (ii) the LINGO1 Ig structure is quite similar 

to the L1 Ig2 domain, and (iii) the alignment between L1-A and LINGO1-A shows 

high conservation, including aminoacid positions relevant to L1 function (Zhao et 

al., 1998). Therefore, we produced LINGO1-A as synthetic peptide for our 

experiments. In order to distinguish among specific and unspecific effects, we 
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also synthesized the scrambled versions of the two peptides (L1-A_scr and 

LINGO1-A_scr). All peptides were produced by solid-phase synthesis and their 

chemical identities established by high-resolution mass spectrometry (Fig. 23E-

F). As expected from both LINGO1-A and L1-A localization in flexible loop regions 

(see structural models in Fig. 23B-C), the conformation of the synthetic peptides 

in solution is essentially disordered as documented by the far-UV CD spectra 

resembling those typical of an unfolded polypeptide chain (Brahms et al., 1980) 

(Fig. 23G-H). Given that (i) L1-A was only investigated about its involvement in 

L1-L1 homophilic interactions (i.e. its role in cellular signaling was not 

determined) (Zhao et al., 1998) and (ii) LINGO1 Ig domain alone both mediates 

homo- and heterophilic interactions (Stein et al., 2012), but its binding region has 

not been identified yet, we decided to test the two peptides using the SH-SY5Y 

cell system to asses if (i) L1-A can trigger neurite elongation and (ii) LINGO1-A can 

regulate neural differentiation as well. 
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Figure 23. L1-A and LINGO1-A identification and characterization. (A) 

Superimposition between LINGO1 Ig domain (Blue) and L1 Ig2 domain (Orange). (B) 

LINGO1-A region (blue) and (C) L1-A region (orange) localization within the LINGO1 Ig 

and L1 Ig2 domains (gray) respectively. Models were obtained by UCSF Chimera software. 

(D) Alignment of L1-A and LINGO1-A peptide sequences. Black (identity), dark gray (same 

amino acid group), gray (compatible amino acid groups), white (different properties). 

Consensus code: c, compatible properties (polar and charged); h, hydrophobic; p, polar; +, 

positively charged. (E, F) RP-HPLC analysis of purified L1-A (E) and LINGO1-A (F) 

peptides by a C18 column eluted with an acetonitrile-0.078% TFA gradient (---) (Inset) 

Deconvoluted ESI-TOF mass spectrum of RP-HPLC purified peptides. The estimated 

molecular masses of L1-A (1611.79 ± 0.02 a.m.u.) and LINGO1-A (1447.72 ± 0.02 a.m.u.) 

peptides is in agreement with the theoretical values: 1611.78 and 1447.74 a.m.u., 

respectively. (G, H) Far-UV circular dichroism spectra of LINGO1-A (G) and L1-A (H) 

derivatives. All spectra were recorded at 25°C in PBS. L1-A and LINGO1-A spectra are in 

black; spectra from the corresponding scrambled peptides are in red. (Scapin et al., 2014). 
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4.2.2 L1-A AND LINGO1-A EFFECTS ON NEURONAL GROWTH AND 

DIFFERENTIATION 

 

4.2.2.1 Peptides in solution 

 

L1-A and LINGO1-A peptides were separately added to the medium at increasing 

peptide concentrations (0, 0.01, 0.1, 1, 10, 100 M) to assess their effect on cell 

viability/proliferation and neuronal differentiation. As shown in Fig. 24A, both 

peptides do not alter cell proliferation with respect to control. Moreover, they 

are not cytotoxic as cell death in samples treated with the peptide is comparable 

to control (Table 2). Then, neuritogenic properties were analyzed and both 

peptides showed the highest effect on total neurite length at 1 M 

concentration (Fig. 24B). In RA treated samples, L1-A addition increases total 

neurite length up to +~96%; in the absence of RA, the highest increase (+~115%) 

is mediated by LINGO1-A. In order to more precisely determine the optimal 

peptide concentration, a second series of experiments was performed narrowing 

dose response curves around 1M peak. Data in Fig. 24C indicate 1 M as the 

optimal concentration for both peptides. Then, the number of neurites per cell 

and the percentage of neurites longer than 100 m were calculated. In order to 

aggregate the two set of experiments, only 0, 0.1, 1, 10 M peptide 

concentrations were considered. Again, dose response curves reveal a bell-

shaped pattern with the highest neuritogenic effect at 1 M concentration (Fig. 

24D-E). The number of neurites per neuron (Fig. 24E) follows the same trend as 

observed for the total neurite length: the highest effect is mediated by L1-A in RA 

induced samples (+~66%) or by LINGO1-A in the absence of RA (+~82%). The 

highest percentages of neurites longer than 100 m (Fig. 24D) is found in 

samples treated with LINGO1-A (+~76%) and LINGO1-A RA (+~72%).  

Given that both peptides mediated significant neuritogenic effects and according 

to established literature (Soroka et al., 2002), their scrambled versions (L1-A_scr 
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and LINGO1-A_scr) were used to discriminate among sequence specific 

mechanisms and effects unspecifically depending on amino acid composition. 

Scrambled peptides, like native ones, did not alter cell proliferation (Fig. 25A). In 

samples treated by scrambled peptides, values for total neurite length, number 

of neurites per neuron and percentage of neurites longer than 100 m are 

comparable, or even lower than control (Fig. 25 B-C-D). Native peptides 

confirmed evidence from previous experiments, as the highest effect on total 

neurite length (Fig. 25B) and number of neurites per cell (Fig. 25C) is mediated by 

L1-A in RA-treated samples (+~88% total neurite length; +~71% neurites per cell) 

and by LINGO1-A in the absence of RA (+~82% total neurite length; +~44% 

neurites per cell). Furthermore, the highest percentage of neurites longer than 

100 m (Fig. 25C) is found in LINGO1-A treated samples (+~60% LINGO1-A, 

+~63% LINGO1-A RA). The neuritogenic effect of LINGO1-A and L1-A used in 

combination is lower than individual peptides. 
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Figure 24. Effect of peptides added to the culture medium on SH-SY5Y cell 

proliferation and differentiation. Proliferation (A), total neurite length (B, C), neurites 

longer than 100 m (D) and neurites per cell (E) from SH-SY5Y cells treated with 

increasing peptide concentrations in the absence or presence of RA. (A) White bars, 

control without peptides; other bars, the darker the colour the higher the peptide 

concentration following this gradient (0.001, 0.1, 1, 10, 100 M). (B to E) Peptide 

concentrations: A, no peptide; B, 10 nM; C, 100 nM; D, 1 M ; E, 10 M; F, 100 M; G, 316 

M; H, 3.16 M. Data represent the mean ± SEM of three (A, B, C) and six (D, E) 

independent experiments performed in duplicate. # shows significance at p<0.05 

between cells treated with peptides and the control without peptides. * shows 

significance at p<0.05 between samples 1X and sample 0.1X. + shows significance at 

p<0.05 between samples treated with L1-A and LINGO1-A at the same concentration. 

(Scapin et al., 2014). 

 

 

Table 2. Percentage of cell death relative to three independent experiments performed in 

duplicate. 
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Figura 25. Effect of scrambled peptides (1 M) added to the culture medium on SH-

SY5Y cell proliferation and differentiation. Proliferation (A), total neurite length (B), 

neurites per cell (C), neurites longer than 100 m (D) and representative microscopy 

fields (E) from SH-SY5Y cells treated with 1 M peptides or their scrambled versions in 

the absence or presence of RA. Data represent the mean ± SEM of three independent 

experiments performed in duplicate. * shows significance at p<0.05 between samples 

treated with peptides and the control without peptides. # shows significance at p<0.05 

between samples treated with peptides and samples treated with their scrambled version. 

SH-SY5Y cells in (E) are stained with Calcein-AM. Image magnification is 20X. (Scapin et 

al., 2014). 
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4.2.2.2 Peptides adsorbed onto the substrate 

 

The two peptides were designed to be used as guidance cues, mimicking 

ectodomains that could be biologically active either in solution or exposed at the 

surface of cells supporting neuronal growth. Therefore, in order to assess 

variation of their effects when used in solution or adsorbed onto a substrate, L1-

A or LINGO1-A (at 1 M or 10 M concentrations) were also used (individually or 

in combination) for coating well bottoms. The residual amount of peptides (prior 

to cell seeding) was found to be approximately 75% (calculated by coating the 

well bottom with the peptide FITC-versions and quantifying the residual 

fluorescent after washing). As shown in Fig. 26A-B, both peptides are confirmed 

to have no meaningful effect on cell proliferation. Similarly, absence of 

cytotoxicity is confirmed (Table 3). When deposited onto the substrate, peptides 

exert a good neuritogenic effect. In fact, in all peptide-treated samples, the total 

neurite length is improved with respect to control samples (Fig. 26C-D) and the 

highest neuritogenic effect is observed at 1 M concentration. Experiments with 

scrambled peptides confirmed the sequence-dependent specificity observed 

with peptides in solution. In particular, no effect is observed on cell proliferation 

(Fig. 27A) and cell death (not shown). Concerning total neurite length, number of 

neurites per neuron and percentage of neurites longer than 100 m, values for 

scrambled peptides are always comparable or lower than control (Fig.27B-C-D). 

Native peptides confirmed their neuritogenic potential as the total neurite length 

(Fig. 27B), the number of neurites per neuron (Fig. 27C) and the percentage of 

neurites longer than 100 m (Fig. 27D) are improved by native peptides. 

Differently from experiments in solution, the effect of the two peptides in 

combination is comparable or higher than individual peptides, while difference 

among L1-A or LINGO1-A treated samples is less evident, possibly because of the 

prolonged culture time (i.e. four days after RA induction). 
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Figure 26. Effect of peptides deposited onto the substrate on SH-SY5Y cell 

proliferation and differentiation. Proliferation (A, B) and total neurite length (C, D) of 

SH-SY5Y cells seeded onto substrates coated with either 1 M (A, C) or 10 M (B, D) 

peptides. Data represent the mean ± SEM of three independent experiments performed 

in duplicate. § shows significance at p<0.05 between samples treated with RA and their 

respective untreated controls. * shows significance at p<0.05 between cells growing onto 

peptide substrate and the control (cells growing on poly-L-lysine). Incremental values 

compared to control are reported. (Scapin et al., 2014). 
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Figure 27.Effect of scrambled peptides (1M) deposited onto the substrate on SH-

SY5Y cell proliferation and differentiation. Proliferation (A) Total neurite length (B) 

neurites per cell (C), neurites longer than 100 m (D) and representative microscopy 

fields (E) from SH-SY5Y cells seeded onto substrates coated with 1 M peptides or their 

scrambled versions in absence or presence of RA. Data represent the mean ± SEM of 

three independent experiments performed in duplicate. * shows significance at p<0.05 

between cells growing onto peptide surface and the control (cells grown onto poly-L-

lysine). # shows significance at p<0.05 between samples growing onto peptide surface 

and samples growing on their respective scrambled version. SH-SY5Y cells in (E) are 

stained with Calcein-AM. Image magnification is 20X. (Scapin et al., 2014). 

Table 3. (A-B) Percentage of cell death relative to three independent experiments 

performed in duplicate. 
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4.3COMBINED EFFECTS OF THE CNT-PLLA SCAFFOLD AND 

NEURITOGENIC PEPTIDES ON NEURONAL GROWTH AND 

DIFFERENTIATION. 

 

Separate characterization provided us with evidence that the CNT-PLLA scaffold 

is well suitable for neuronal culture and the peptides exert specific and 

important neuritogenic effects. Therefore, we performed experiments to 

determine if their combination could further promote neuronal differentiation. 

The scaffold+peptides combination neither altered cell proliferation nor cell 

death (Fig. 28A and Table 4), while showing instead evidence of synergy: total 

neurite length is significantly improved in RA induced samples treated by either 

L1-A or LINGO1-A when cells are grown onto the scaffold (Fig. 28B). Synergistic 

effect is also observed when cells are treated with L1-A in the absence of RA. 

Density of branch points per neurites and of neurites per cells were also 

determined and a synergistic effect is likely to occur as values for peptide and RA 

treated cells grown onto the scaffold are equal or higher than corresponding 

control samples (Fig. 28C-D). Synergistic effect can also be inferred when 

considering growth cone numbers. A growth cone was defined as a fan-shaped 

structure at the tip of a neurite, where the neurite began to increase in width 

(Abney et al., 1999; Dent et al., 2013). When used separately, neither peptides 

nor the scaffolds show meaningful effect (Fig. 28E), but when RA induced cells 

are simultaneously grown onto the scaffold and treated with the peptides, 

growth cone number is considerably increased (+~97% L1-A RA; +~49% LINGO1-A 

RA). 

 

Table 4. Percentage of cell death relative to four independent experiments performed in 

duplicate. 
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Figure 28. Comparison between SH-SY5Y cells seeded onto the CNT-PLLA scaffold 

(S) and control (poly-L-lysine coated wells) when treated with 1 M peptides in the 

absence or presence of RA. Proliferation (A), total neurite length (B), neurites per cell 

(C), branches per neurite (D), growth cones per cell (E) and representative microscopy 

fields(F). Data represent the mean ± SEM of three independent experiments performed in 

duplicate.*shows significance at p<0.05 between samples treated with peptides and their 

respective control without peptides. § shows significance between samples growing onto 

CNT-PLLA scaffold and control (poly-L-lysine coated wells). SH-SY5Y cells in (F)are stained 

with Calcein-AM. Growth cones are indicated by white arrows. Image magnification is 32X. 

(Scapin et a., 2014) 
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4.4 EFFECTS OF L1-A AND LINGO1-A PEPTIDES ON SH-SY5Y 

GENE EXPRESSION 

 

The L1-A and LINGO1-A peptides showed a positive and specific effect in SH-SY5Y 

cell differentiation, but the understanding of their molecular mechanism of 

action could be of help to properly use them in clinical applications. Quantitative 

PCR analyses were performed in order to test which genes are upregulated after 

peptide administration and hence to get suggestions on the molecular pathway 

activated by the cells. 24 hours from peptide administration, Nestin upregulation 

occurs in samples treated with L1-A either in the presence or in absence of RA 

stimulation (Fig. 29A). Otherwise, TUBβ3 is upregulated in L1-A treated samples 

after RA stimulation and in LINGO1-A treated samples in the absence of RA 

stimulation (Fig. 29B). Effect on MAP2 expression is not so evident, except for a 

significant increase in LINGO1-A treated samples in the absence of RA induction 

(Fig.29C). VAMP7 and TRKB are upregulated both in L1-A and in LINGO1-A 

treated samples, either in presence or in the absence of RA stimulation (Fig. 

29D,E); moreover, TRKB is strongly upregulated by RA treatment (Fig. 29E). 

Interestingly, TRKB is significantly more expressed in LINGO1-A treated samples 

than in L1-A treated samples, in the absence of RA induction (Fig. 29F). L1-A 

upregulates the expression of neuronal L1 either in presence or in absence of RA 

stimulation, suggesting the presence of positive feedback in L1 gene regulation 

(Fig.29G). In addition, L1-A treatment induces the expression of LINGO1 in the 

absence of RA stimulation (Fig. 29H). RA induced upregulation of L1 expression 

(Fig. 29G) and downregulation of LINGO1 expression (Fig. 29H) occurs in both 

peptide treated samples and controls.  
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Figure 29. Effects of L1-A and LINGO1-A on neuronal marker expression. Nestin (A), 

TUBβ3 (B), MAP2 (C), VAMP7 (D), TRKB (E), TRKB RA- (F), L1 (G) and LINGO1 (H) 

expression profile of SH-SY5Y treated with peptides compared with untreated controls. 

Data are mRNA levels normalized to the expression of the housekeeping gene S13. At 

least three independent experiments were performed in triplicate and the real time PCR 

was run twice for each sample (technical duplicate). * shows significance at p<0.05 

between peptide treated samples and control. # shows significance at p<0.05 between RA 

treated samples and their respective untreated controls. + shows significance at p<0.05 

between L1-A treated samples and LINGO1-A treated samples. 
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4.5 PROTEOME-WIDE AND PRELIMINARY MUTATIONAL 

ANALYSIS OF THE PEPTIDES 

 

We used the Ig2 domain of L1 and the Ig domain of LINGO1 as BLAST probes for 

collecting a dataset of mammals orthologues, and from the multiple alignment 

we analyzed the amino acid conservation for each position at the level of the 

peptide sequence. Such comparative analysis highlighted the seventh residue 

(Arg) in the peptide region as highly conserved. Intriguingly, it corresponds to 

Arg184 in L1CAM and its mutation to Gln is causative of the most severe CRASH 

syndrome phenotype (Jouet et al., 1994; De Angelis et al., 2002). Moreover, Zhao 

et al., showed that when replacing this Arg by Ala, the L1-A peptide is no longer 

able to bind to L1 Ig2 domain (Zhao et al., 1998). Given that the R184 position is 

likely crucial for homophilic binding and for a correct neurodevelopment as well, 

we decided to test the effect of both R184Q and R184A L1-A mutants on cell 

differentiation in our cell system. Comparison between mutant peptides, the 

wild type peptide and scrambled peptide (previously shown to have no 

neuritogenic effect) showed that R184A mutant completely lacks any 

neuritogenic effect, as values for total neurite length (Fig. 30A), number of 

neurites per cell (Fig. 30B) and percentage of neurites longer than 100 µm (Fig. 

30C) are not meaningfully different from control samples (untreated or treated 

by scrambled peptides). Concerning R184Q mutant, it retains a very low 

neuritogenic activity, as indeed the total neurite length (Fig. 30A) and the 

number of neurites per cell (Fig. 30B) are higher than control samples, but 

significantly lower that wild-type peptide treated samples. Therefore, R184 

position seems to be crucial for L1 function and we could provide the first direct 

link i.e. in the same cellular system between the role of R184 in homophilic 

binding (as demonstrated by Zhao et al, 1998) and relevance of the motif in 

neurodevelopment.  
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Figure 30. Analysis of the neuritogenic capacity of mutant L1-A peptides on SH-

SY5Y cells. Total neurite length (A), neurites per cell (B), neurites longer than 100 µm (C) 

and representative microscopy fields (D). Data represent the mean ± SEM of three 

independent experiments performed in duplicate. * shows significance at p<0.05 between 

samples treated with peptides and the control without peptides. # shows significance at 

p<0.05 between L1-A wild type and L1-A mutants/scrambled SH-SY5Y cells in (D) are 

stained with Calcein-AM. Image magnification is 32X.  
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4.6 еCNT-PLLA SCAFFOLD EFFECTS ON SH-SY5Y CELL 

ADHESION, GROWTH AND DIFFERENTIATION 

 

We electrospun the CNT-PLLA matrix into fibres of submicron size with the aim 

to better mimic the neuronal processes and the collagenous component of the 

extracellular matrix. The electrospun CNT-PLLA matrix (eCNT-PLLA) was 

deposited onto a glass coverslip to help its usage as a scaffold for cell cultures. 

Scanning electron microscopy images of the randomly oriented electrospun CNT-

PLLA fibres reveal a regular surface morphology with a diameter that range from 

300 to 600 nm (Fig. 31A-B). 

 

Next, we compared eCNT-PLLA with a scaffold made of electrospun PLLA (ePLLA) 

and with the non-electrospun CNT-PLLA scaffolds for both biocompatibility and 

neuritogenic properties. As shown in figure 32A and table 5, no differences in cell 

proliferation and cell viability were revealed when growing cells onto the three 

different scaffolds or onto the poly-L-lysine coated control wells. However, cells 

better adhere onto eCNT-PLLA (~66%) than onto ePLLA (~53%). Furthermore, the 

total neurite length is significantly increased in samples seeded onto the eCNT-

PLLA scaffolds either in presence or in absence of RA stimulation (Fig.33A). The 

number of neurites per cells is also significantly increased in samples grown onto 

Figure 31. Scanning electron microscopy images of the eCNT-PLLA scaffold 

fibres. Scale bar: A = 5 µm; B = 1 µm. 



 

91 

 

the eCNT-PLLA scaffolds (Fig 33B), but the analysis of the percentage of neurites 

longer than 100 µm reveals that such value is significantly lower in cells 

cultivated onto the eCNT-PLLA scaffolds compared to control and the non-

electrospun CNT-PLLA scaffolds (Fig. 33C). Therefore, the eCNT-PLLA scaffolds 

promote the formation of new short neurites. Figures 34B-E-H show the SH-SY5Y 

cells with the cytoplasmic staining calcein-AM that is particularly useful to clearly 

detect, in all their length, the neuronal processes and to visualize cells growing 

onto the non-transparent eCNT-PLLA scaffolds. Figures 34A-D-G are the bright 

field images of the corresponding portion of the scaffold and figures C-F-I the 

superimposition of the fluorescent images with the corresponding bright field 

images. As indicated by the white arrows, the newly formed neurites elongate 

following the direction of fibre orientation; this indicates that cells are influenced 

by scaffold topography and it opens up the perspective to obtain a polarized 

neurite outgrowth upon fibre alignment. 
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Figure 32. eCNT-PLLA scaffold effect on SH-SY5Y adhesion and growth. Cell 

proliferation (A) and cell distribution (B) and representative microscopy fields (C). Data 

represent the mean ± SEM of three independent experiments performed in duplicate. 

*shows significance at p<0.05 between cells seeded onto eCNT-PLLA and ePLLA scaffolds. 

Dotted bars refer to the corresponding RA treated samples. cells in (D) are stained with 

Calcein-AM. Image magnification is 32X. 
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Table 5. Percentage of cell death relative to three independent experiments performed in 

duplicate. 

 

 

Figure 33. eCNT-PLLA scaffold effects on SH-SY5Y differentiation. Total neurite 

length (A), neurites per cell (B), neurites longer than 100 µm (C). Data represent the 

mean ± SEM of three independent experiments performed in duplicate. *shows 

significance at p<0.05 between cells seeded onto eCNT-PLLA scaffolds and control (poly-

L-lysine coated wells). #shows significance at p<0.05 between cells seeded onto eCNT-

PLLA scaffolds and ePLLA scaffolds. +shows significance at p<0.05 between cells seeded 

onto CNT-PLLA scaffolds and eCNT-PLLA/ePLLA scaffolds. Dotted bars refer to the 

corresponding RA treated samples. 
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Figure 34. SH-SY5Y cells extend neurites following the scaffold fibre orientation. 

Bright field images of the eCNT-PLLA scaffold (A, D, G), fluorescent images of RA treated 

SH-SY5Y cells stained with Calcein-AM (B, E, H), superimposition of the two (C, F, I). 

Arrows indicate neurites following the scaffold fibre orientation. Image magnification is 

32X. 
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4.7 COMBINED EFFECTS OF THE еCNT-PLLA SCAFFOLD AND 

NEURTIOGENIC PEPTIDES ON NEURONAL GROWTH AND 

DIFFERENTIATION 

 

Given that the eCNT-PLLA scaffolds resulted to be suitable for neuronal cell 

growth and they promote the formation of new neurites, cells were seeded onto 

their surfaces and treated with peptides added to culture medium to test if a 

synergistic effect between the two components occurs. The combination 

between scaffolds and peptides does not have effects on cell proliferation (Fig. 

35A); furthermore, in almost all samples seeded onto the eCNT-PLLA scaffolds, 

the total neurite length is higher than in control (poly-L-lysine coated wells), 

except for L1-A treated samples after RA stimulation (Fig. 35B). The same trend is 

observed for the number of neurites per cell (Fig. 35C), but the percentage of 

neurites longer than 100 µm is higher in control samples than in cells grown onto 

the scaffolds (Fig. 35D). The only exception concerns cells cultivated onto the 

eCNT-PLLA scaffolds and treated with the LINGO1-A peptide after RA stimulation. 

In fact, in this sample the percentage of neurites longer than 100 µm reaches the 

value of its respective control (i.e., cells seeded onto poly-L-Lysine coated wells 

and treated with LINGO1-A) (Fig. 35D). Therefore, the LINGO1-A treated samples 

onto the eCNT-PLLA scaffolds show the highest number of neurites and the 

longest neurites, hence the highest level of cell differentiation as the scaffold 

induces the formation of new neurites and LINGO1-A promotes their elongation.  
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Figure 35. Comparison between SH-SY5Y cells seeded onto the eCNT-PLLA scaffold 

and control (poly-L-lysine coated wells) when treated with 1 µM peptides in the 

absence or presence of RA. Cell proliferation (A), total neurite length (B), neurites per 

cell (C), neurites longer than 100 µm (D). Data represent the mean ± SEM of three 

independent experiments performed in duplicate. *shows significance at p<0.05 between 

samples treated with peptides and their respective untreated controls. § shows 

significance between samples growing onto eCNT-PLLA scaffold and control (poly-L-

lysine coated wells).  
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4.8 TESTING SCAFFOLDS AND PEPTIDES WITH A STEM CELL 

POPULATION 

 

We developed a nanocomposite scaffold that combine the conductive and 

nanotopographical features of multi-walled CNTs (MWCNTs) with the 

freestanding biocombatibility of poly-L-lactic acid (PLLA). Such scaffold resulted 

to support adhesion, growth and differentiation of SH-SY5Y cells without exerting 

cytotoxic effects. Furthermore, the peptides derived from L1 and LINGO1 

motives resulted to play a positive role in promoting SH-SY5Y differentiation and 

neurite extension. Therefore, after the setting up of the system with stabilized 

cell line as the SH-SY5Y cells, we decided to test our scaffolds and peptides with a 

physiological source of cells suitable for the regenerative medicine applications. 

We chose the human circulating multipotent cells (hCMCs) isolated from 

peripheral blood as they are autologous, accessible, not subjected to ethical 

restrictions and differentiable into neurons under proper conditions. All these 

characteristics make them the perfect source of stem cells exploitable for 

regenerative medicine applications. Our aim is to test the scaffolds and peptides 

with such cells in order to asses if the only features of scaffolds and peptides are 

able to induce cell differentiation toward the neuronal lineage without the use of 

growth factors that are traditionally used for the differentiation of stem cells into 

neurons. 

4.8.1 CNT-PLLA SCAFFOLD EFFECTS ON ɦCMC ADHESION, GROWTH AND 

DIFFERENTIATION 

 

We seeded hCMCs onto the CNT-PLLA scaffolds and after 5 days in culture, 

calcein-AM staining reveals these cells adhere and grow well onto the CNT-PLLA 

scaffolds, showing homogeneous spreading (Fig. 36A). No difference in cell 

proliferation was observed when seeding hCMCs onto either the scaffolds or the 

well bottoms, during the whole differentiation period (Fig. 36B). Furthermore, 
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the scaffold seems to influence cell morphology as, when seeded onto its 

surface, hCMCs show typical features of cells from the neuronal lineage like e.g. 

more fusiform cell bodies compared to the wide spread appearance of control 

cells, and neurite-like protrusions that are tipped with fan-shaped structures 

resembling growth cones (Fig. 37A). Indeed, the measurement of cell diameter 

shows that cell bodies are smaller when cells are seeded onto the CNT-PLLA 

scaffolds (Fig. 37B); in addition, more cells with a polarized appearance are 

counted onto the scaffolds with respect to controls (Fig. 37C). Finally, cells 

growing onto the scaffolds show a significant increase of total protrusion length 

and the number of protrusions per cell (Fig. 37D,E). 

 

Figure 36. CNT-PLLA scaffold effect on hCMC adhesion and growth. hCMCs stained 

with Calcein-AM. Image magnification is reported (A). Cell proliferation (B). Data 

represent the mean ± SEM of three independent experiments performed in triplicate. 
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Figure 37. Effect of the CNT-PLLA scaffolds on hCMC morphology. hCMCs stained 

with Calcein-AM (A). Mean cell diameter (B), percentage of polarized cells (C), total 

protrusion length (D), number of protrusions per cell (E). Quantification was performed 

24 hours from cell seeding. Data represent the mean ± SEM of three independent 

experiments performed in duplicate.*shows significance at p<0.05 between cells seeded 

onto CNT-PLLA scaffold and control (well bottoms). Image magnification in (A) is 32X. 
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Figure38. Effects of the CNT-PLLA scaffolds on neuronal marker expression. Nestin 

(A), TUBβ3 (B) and L1 (C) expression profile of hCMCs cultured on plates (control) and 

onto CNT-PLLA scaffolds. Data are mRNA levels normalized to the expression of the 

housekeeping gene S13. At least three independent experiments were performed in 

triplicate and the real time PCR was run twice for each sample (technical duplicate). * 

shows significance at p<0.05 between cells seeded on the CNT-PLLA scaffolds and the 

control. 
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qPCR analyses revealed a sudden change in gene expression soon after cell 

seeding onto the scaffolds. Nestin - a marker of neuronal precursors - is strongly 

upregulated after 24 hours from hCMCs seeding onto the scaffolds; then, its 

expression decreases with the maintenance in culture but it remains significantly 

higher than control cells (Fig. 38A). Neuronal L1 expression is upregulated on 

cells seeded onto the scaffolds and this is particularly evident within the first 72 

hour from seeding in the absence of RA stimulation (Fig. 38C). TUBβ3 is a marker 

specific of cells that have acquired a neuronal commitment and it is highly 

upregulated soon after cell seeding onto the scaffolds, and its expression is 

higher than control during the whole differentiation period (Fig. 38B). The 

stimulation of cells with RA does not have a positive effect on TUBβ3 expression. 

TUBβ3 was also detected at the protein level by immunofluorescence, 5 days 

from cell seeding (Fig. 39A). As shown in Fig. 39B, approximately 77% of cells 

seeded onto the scaffold in the absence of RA stimulation are TUBβ3 positive, 

while in the presence of RA stimulation only ~ 37% of cells express TUBβ3. 

Otherwise, when grown onto the well bottom, the percentage of cells positive 

for TUBβ3 is strongly reduced (~23% RA-; ~7%RA+). 

 
Figure 39. TUBβ3 expression detected by immunofluorescence. Immunofluorescence 

for TUBβ3 (green) in hCMCs after 5 days in culture. Nuclei are counterstained with 

Hoechst 33258 (blue) (A). Quantification of TUBβ3 expression considered as the 

percentage of TUBβ3 positive cells in the total amount of cell counted (B).Three 

independent experiment were performed in duplicate. * shows significance at p<0.05 

between cells seeded on the CNT-PLLA scaffolds and the control (well bottoms). # shows 

significance at p<0.05 between cells treated with RA and their respective untreated 

control. Image magnification in (A) is 20X. 
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4.8.2 L1-A AND LINGO1-A EFFECTS ON ɦCMC GROWTH AND DIFFERENTIATION 

 

We treated hCMCs with L1-A and LINGO1-A , and both peptides confirmed to be 

perfectly biocompatible as no meaningful difference was found with respect to 

untreated controls, either in the presence or absence of RA stimulation (Fig. 

40A). The two peptides seem to influence cell morphology as (i) L1-A treatment 

elicits more fusiform cell body shape (compared to the wide spread appearance 

of control cells) and outgrowth of long protrusions that resembles neurites, while 

(ii) LINGO1-A treated samples show more rounded cell bodies and long neurite-

like protrusions. Moreover, when cells are contemporarily induced with RA and 

treated with peptides, more arborized protrusions can be observed (Fig. 40B).  

 

Figure 40. Peptide effects on hCMC growth and morphology. Cell proliferation. Data 

represent the mean ± SEM of three independent experiments performed in triplicate (A). 

hCMCs stained with calcein-AM 24 hours after peptide administration, Image 

magnification is 32X (B). 
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qPCR analysis show that L1-A and LINGO1-A peptides are able to influence the 

expression of markers typical of the neuronal lineage: Nestin and TUBβ3 are 

upregulated 24 hours from peptide administration in both L1-A and LINGO1-A 

treated samples in the absence of RA stimulation (Fig. 41A,B); MAP2 is a neuron-

specific marker that resulted to be upregulated at day 3 in L1-A treated samples 

in the absence of RA stimulation and in LINGO1-A treated samples after RA 

stimulation. At day 5 we can notice an increment in the expression of this marker 

in both peptide treated samples after RA stimulation, but such incremental 

differences are not statistically significant from the control (Fig. 41C). VAMP7 - a 

vesicle associated membrane protein whose expression is high in neuronal cells - 

is crucial to the transport of lipids and proteins at the plasma membrane 

allowing neurite extension. We found that VAMP7 is upregulated in peptide 

treated samples either at day 3 and day5 in the absence of RA stimulation, while 

a strong upregulation of this marker happens in LINGO1-A treated samples after 

RA stimulation at day5 (Fig. 41D).  
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Figure 41. Peptide effects on neuronal marker expression. Nestin (A), TUBβ3 (B), 

MAP2 (C) and VAMP7 (D) expression profile of hCMCs treated with peptides and controls 

(untreated samples). Data are mRNA levels normalized to the expression of the 

housekeeping gene S13. At least three independent experiments were performed in 

triplicate and the real time PCR was run twice for each sample (technical duplicate). * 

shows significance at p<0.05 between peptide treated samples and the control. 
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4.8.3eCNT-PLLA SCAFFOLD EFFECTS ON ɦCMC ADHESION AND DIFFERENTIATION 

 

hCMCs were tested also with eCNT-PLLA scaffolds, even in this case cells are able 

to adhere and grow onto scaffold surfaces. As previously shown for the CNT-PLLA 

scaffolds, also the eCNT-PLLA scaffolds influence cell morphology as cells show 

features typical of cells of the neuronal lineages (Fig. 42A). Such cells onto the 

scaffold present a reduced diameter size and fusiform cell bodies compared to 

the wide appearance of control cells (Fig. 42B). Moreover, more polarized cells 

are counted when cells are grown onto the eCNT-PLLA scaffold (Fig. 42C); indeed 

cells show very long neurite-like protrusions and present a total protrusion 

length and a number of protrusions per cell higher than control (Fig. 42D,E). 

Interestingly, hCMCs showed high sensitivity for scaffold topography: indeed, 

from the superimposition of the Calcein-AM stained cells and the bright field 

images of the corresponding portion of the eCNT-PLLA scaffold, we can notice 

that hCMCs extend protrusions following scaffold fibre orientation as shown by 

the white arrows (Fig. 43).  

qPCR analyses, performed 24 hours after seeding, revealed the upregulation of 

Nestin, TUBβ3, MAP2 and VAMP7 neuronal markers (Fig. 44) and hence 

suggesting the neuronal differentiation program activation. 
 



 

106 

 

 

 

Figure 42. Effect of the eCNT-PLLA scaffolds on hCMC morphology.hCMCs stained 

with calcein-AM (A). Mean cell diameter (B), percentage of polarized cells (C), total 

protrusion length (D), number of protrusions per cell (E). Quantification was performed 

24 hours from cell seeding. Data represent the mean ± SEM of three independent 

experiments performed in duplicate. *shows significance at p<0.05 between cells seeded 

onto eCNT-PLLA scaffold and control (well bottoms). Image magnification in (A) is 32X. 
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Figure 43. hCMCs extend protrusions following the scaffold fibre orientation. 

Fluorescent image of hCMCs stained with Calcein-AM (A, D, G), bright field image of the 

eCNT-PLLA scaffold (B, E, H), superimposition of cell fluorescent images and scaffold 

bright field images (C, F, I). Arrows indicate protrusions following the scaffold fibre 

orientation. Image magnification is 32X. 
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Figure 44. Effects of the eCNT-PLLA scaffolds on neuronal marker expression 24h 

cell seeding. Nestin (A), TUBβ3 (B), MAP2 (C) and VAMP7 (D) expression profile of 

hCMCs cultured on plates (control) and onto eCNT-PLLA scaffolds. Data are mRNA levels 

normalized to the expression of the housekeeping gene S13. Three independent 

experiments were performed in triplicate and the real time PCR was run twice for each 

sample (technical duplicate). * shows significance at p<0.05 between cells seeded on the 

eCNT-PLLA scaffolds and the control. 
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5. DISCUSSION 

 

SH-SY5Y is a neuroblastoma cell line that shares many features with immature 

neuroblasts and hence shows characteristic of cells committed to the neuronal 

fate (Constantinescu et al., 2007). After RA treatment, several neuronal markers 

such as Nestin, VAMP7, TRKB and L1 are upregulated in SH-SY5Y cells, according 

to knowledge about RA mediated positive regulation on neuronal differentiation. 

Moreover, RA induced cell differentiation is confirmed by the increased number 

of long processes protrudring from treated cells. Therefore, SH-SY5Y cells 

represent a good model system to study neuronal differentiation in vitro. 

The synthetic peptides L1-A and LINGO1-A - designed to mimic the neural 

environment by reproducing interaction motifs involved in guidance of neuronal 

processes - were confirmed to improve neuronal differentiation and thus are 

good candidates for functionalizing neural regeneration implants. In all 

experimental conditions, both L1-A and LINGO1-A showed full biocompatibility, 

neither exerting cytotoxic effects nor influencing cell proliferation, and their 

positive effect on neuronal differentiation (with 1 M as optimal concentration) 

is sequence specific, as confirmed by control experiments with the scrambled 

peptides. Since the highest neuritogenic effects are mediated by L1-A and 

LINGO1-A (when added to the culture medium) in the presence or absence of RA 

induction, respectively, these peptides are likely to act through (at least partially) 

different pathways.  

We showed that RA promotes neuronal L1 expression; indeed, RA also induces 

the degradation of the Repressor Element-1 Silencing Transcription factor (REST) 

(Singh et al.,2011), which in turn mediates transcriptional repression of neuronal 

L1. REST is highly expressed in SH-SY5Y cells to maintain them poorly 

differentiated (Mikulak et al., 2012); therefore, RA induction promotes L1 

expression and L1-A is likely to encounter an increased number of homophilic 
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ligands on neuronal surfaces. Such binding is thought to be mimetic of the L1 

homophilic binding and hence able to stimulate neurite outgrowth through the 

activation of intracellular signaling cascades (Kenwrick et al., 2000; Loers et al., 

2005). Indeed, many neuronal differentiation genes are upregulated in RA 

induced samples after L1-A administration: Nestin and TUBβ3 expression is 

consistent with cytoskeleton rearrangements necessary for cell architecture 

changes during differentiation, VAMP7 upregulation allows the transport of 

proteins and lipids at the plasma membrane for neurite elongation, TRKB renders 

cells responsive to neurotrophins, while L1 augmentation suggests the presence 

of a positive feedback as the increase of putative ligands enhances endogenous 

L1 expression. It was previously demonstrated that L1 molecules are transported 

at the plasma membrane in VAMP7 vesicles and that L1 homophilic binding at 

the plasma membrane recruits VAMP7 vesicles for L1 recycling (Alberts et al., 

2003). Therefore, in addition to recruit VAMP7 at the plasma membrane, the L1 

homophilic binding might stimulate VAMP7 and L1 expression due to the 

involvement of these proteins in the establishment of a dynamic gradient of L1 

adhesivity necessary for neurite elongation (Kamiguchi et al., 2000).  

 

 

Figure 45. Proposed mechanism of action of L1-A peptide. (1) RA stimulation induces 

L1 endogenous molecule expression, (2) L1-A peptide binds to L1 endogenous molecules 

(3) inducing the expression of neuronal differentiation markers as TUBβ3, TRKB, VAMP7 

and L1. (4) The upregulation of VAMP7 and L1 may be of help in the establishment of a 

dynamic gradient of L1 adhesivity necessary for neurite outgrowth. 
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Otherwise, we confirmed that RA downregulates LINGO1 expression (Puttagunta 

et al., 2011) and thus, in the absence of RA, the number of LINGO1 molecules at 

the neuronal surfaces is increased. When considering similarity between L1/L1-A 

and LINGO1/LINGO1-A systems, LINGO1 might interact with LINGO1-A peptide 

stimulating neurite outgrowth as suggested by the enhancement of neuronal 

differentiation markers expression as TUBβ3, MAP2, TRKB and VAMP7. In fact, 

homophilic binding between neuronal LINGO1 and oligodendrocyte precursor 

LINGO1 occurs and leads to oligodendrocyte final differentiation inhibition 

(Jepson et al., 2012). Even though effects at neuronal level are still unclear, this 

interaction could stimulate neurite elongation, because the axon needs to grow 

properly before being myelinated. Alternatively, LINGO1-A peptide could act by 

masking LINGO1 interaction site with the other members of the 

NgR1/LINGO1/p75 complex, with neuronal NogoA or with EGFR. This in turn 

would lead to non-functional complexes formation, blocking LINGO1 inhibitory 

effect on neurite elongation. These hypotheses are supported by evidences 

according to which LINGO1 mediates homo/heterotypic interactions through its 

Ig domain (Stein et al., 2012) and that when LINGO1 is inhibited neurite 

elongation is promoted (Mi et al., 2004; Ji et al., 2006; Inoue et al., 2007; Mi et 

al., 2013; Fernandez-Enright et al., 2014). In this work, LINGO1-A treated samples 

presented the highest percentage of neurites longer than 100 m; increased 

number of such long neurites could depend on "inhibition of the inhibitory 

effect" as inhibition of repulsive forces can prevent their sprouting from parental 

neurites, favouring elongation. Moreover, the upregulation of TRKB in peptide 

treated samples suggests the possibility of TRKB signaling activation by peptides. 

Indeed, L1 homophilic binding is known to activate FGFR pathway (Kenwrick et 

al., 2000) leading to cAMP response element-binding protein (CREB) 

phosphorylation and TRKB expression (Deogracias et al., 2004; Ditlevsen et al., 

2008). Otherwise, LINGO1 is known to interact with TRKB avoiding its 

phosphorylation and hence exerting negative effects on neuronal survival and 

differentiation (Fu et al., 2010). Therefore, LINGO1-A peptide could act by 
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masking LINGO1 interaction sites with TRKB, allowing TRKB activation and the 

initiation of a signaling cascade that leads to CREB phosphorylation and TRKB 

expression (Finkbeiner et al., 1996; Deogracias et al., 2004). Even when L1-A and 

LINGO1-A were used to coat wells prior to cell seeding, their positive effect on 

neuronal differentiation was confirmed. 

 

Figure 46. Proposed mechanism of action of LINGO1-A peptide. LINGO1-A peptide 

could act by masking LINGO1 interaction site with partners and hence blocking LINGO1 

inhibitory effects on neurite outgrowth. LINGO1-A peptide might interact with LINGO1 

endogenous molecules stimulating neurite outgrowth. 

 

A proteome-wide search showed that the Arg at the seventh position in the L1-A 

and LINGO1-A peptide sequences is highly conserved in mammals and 

vertebrates; furthermore, mutations regarding this position in L1 protein (R184) 

are causative of neurological disorders (De Angelis et al., 2002) and able to 

impair the L1 homophilic binding (Zhao et al., 1998). We showed that L1-A R184A 

(Zhao mutation) peptide completely loses the neuritogenic effect when used to 

treat SH-SY5Y cells; while L1-A R184Q (CRASH mutation) peptide maintains a very 

low differentiating activity. Such results provide a unifying rationale for the role 

of the conserved motif in neuronal function and differentiation, as the same 
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position results to be crucial to both (i) adhesion, (ii) neuritogenesis and (iii) 

correct neuronal function. In fact:  

 

i. Zhao and co-workers demonstrated that the L1-A peptide is able to 

inhibit the homophilic binding between two L1 Ig2 domains and identified 

this region as the homophilic binding site. Otherwise, the L1-A R184A 

mutant is unable to inhibit such interaction (Zhao et al., 1998); 

 

ii. we showed that the L1-A peptide alone stimulates neurite outgrowth in 

SH-SY5Y cells and thus it seems to be mimetic of the entire Ig2 domain in 

promoting the homophilic binding (Scapin et al., 2014). 

 

iii. R184Q mutation is causative for the CRASH syndrome, possibly 

depending on impaired L1 homophilic binding (De Angelis et al., 2002). 

 

The low neuritogenic activity maintained by L1-A R184Q may depend on the 

compatible features of Arg and Gln (positively charged and polar); the R184A 

mutation has not been retrieved in CRASH syndrome patients and may be not 

compatible with life. Therefore, R184 position seems to be crucial for L1 

function; however, it is noteworthy that in our scrambled peptide, Arg at seventh 

position is kept and this notwithstanding, sequence randomization at other 

positions also results in activity loss. Therefore, in addition to the conserved Arg, 

further positions are crucial to the binding motif, and our own data are in 

agreement with evidence that when keeping Arg184, mutation at position 2 (Ile) 

also results in CRASH syndrome (Ruiz at al., 1995). 

The positive role played by CNTs in supporting neuronal growth and 

differentiation is suggested by recently published, excellent works (see 

Introduction). However, the limits of these systems also emerged (e.g., 

cytotoxicity of CNTs upon scaffold disaggregation). While immobilization of CNTs 

onto coverslips partially alleviate these problems (Mattson et al., 2000; Hu et al., 
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2004; Lovat et al., 2005; Malarkey et al., 2009), such a strategy is not suitable for 

regenerative medicine purposes as coverslips are not implantable. Instead, 

nanocomposite CNT-PLLA scaffolds grant (i) full biocompatibility, (ii) good 

support of cell growth and differentiation and (iii) mechanical flexibility required 

for implant purposes. Moreover, the low percentage of purified CNTs within the 

scaffold reduces both costs and cytotoxicity by residual impurities, while 

preserving the ability of CNT-based scaffolds to support neuronal growth and 

differentiation.  

Indeed, our data show that CNT-PLLA scaffolds support SH-SY5Y cell adhesion 

and differentiation better than PLLA alone. Moreover, L1-A and LINGO1-A exert 

improved neuritogenic properties when cells are cultured onto CNT-PLLA 

scaffolds and in some conditions their effect is enhanced by the CNT-PLLA 

scaffold itself. This effect is particularly evident when considering data about 

total neurite length, branch points per neurite and neurites per cell concerning 

cells cultivated onto the CNT-PLLA scaffold and treated with L1-A or LINGO1-A 

after RA induction. The combination of CNT-PLLA scaffolds, L1-A or LINGO1-A 

treatment and RA induction also promotes the formation of growth cones, likely 

because of an increased amount of cue types available for the cells in their 

environment.  

Once the CNT-PLLA scaffolds are developed, the scaffold topography was further 

improved by including fibres through the electrospinning technique. Such novel 

electrospun eCNT-PLLA scaffolds show a regular surface morphology with a 

diameter that ranges from 300 to 600 nm; therefore, scaffold fibre diameters are 

within the diameter range of axons (from 0.08 to 20 µm) (Debanne et al., 2011) 

and of collagen fibrils (from 260 to 410 nm) (Dvir et al., 2011). The eCNT-PLLA 

scaffolds showed a good level of biocompatiblility with SH-SY5Y cell cultures and 

promoted cell adhesion and differentiation better than ePLLA alone. The 

presence of CNTs (whose diameter range from 6 to 30 nm) is thought to alter the 

nanotopography of scaffold networks providing sites for cellular anchorage and 

guiding cytoskeletal extensions (Lee et al 2014). Moreover, SH-SY5Y cells resulted 
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to be very sensible to scaffold topography as they are induced to extend more 

neurites compared to control cells. The newly formed neurites are shorter than 

those from control cell neurites; however, they elongate following fibre 

orientation and this responsiveness to scaffold topography is of particular 

interest because it opens up the perspective to obtain a polarized neurite 

outgrowth upon fibre alignment. 

In addition, a synergistic effect was revealed between the eCNT-PLLA scaffold 

and LINGO1-A peptide as the scaffold induce le formation of new neurites and 

LINGO1-A promotes their elongation. This suggests a good starting point to 

develop next-generation scaffolds upon peptide functionalization.  

After setting up the biomimetic nanosystem with SH-SY5Y cells, we decided to 

test our scaffolds and peptides with a more physiological source of cells, suitable 

for regenerative medicine applications. We chose hCMCs as these adult stem 

cells can be (i) easily isolated from peripheral blood and then (ii) differentiated 

into many cell types under proper conditions; moreover, they are (iii) suitable for 

autologous transplant without implying ethical restrictions. With this work we 

showed that features of our CNT-PLLA scaffolds and biomimetic peptides are 

able to provide these cells with neuronal commitment.  

The CNT-PLLA scaffold resulted to be a good support for hCMCs adhesion and 

growth without exerting cytotoxic effects. When cultivated onto the CNT-PLLA 

scaffolds, cells show typical features of cells from the neuronal lineage, such as 

reduced size of cell bodies and polarized morphology with neurite-like 

protrusions tipped with fan-shaped structures that resemble neuronal growth 

cones. Soon after cell seeding, upregolation of typical genes from the neuronal 

lineage occurs: in particular, upregulation of Nestin indicates that cells are 

undertaking the differentiation pathway that leads to neural progenitor cells like 

neurons, oliogdendrocytes and astrocytes. However, upregulation of TUBβ3 and 

the neuronal form of L1 - that is evident 24 hours from cell seeding and 

maintained higher than control until the third (L1) and the fifth (TUBβ3) day of 

cultures - shows that some cells are acquiring a neuronal commitment. TUBβ3 is 
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revealed at the protein level in the majority (~77 %) of cells seeded onto the 

CNT-PLLA scaffolds in the absence of RA stimulation confirming the neuronal 

commitment acquisition since TUBβ3 is a marker specific of immature and post-

mitotic neurons. Therefore the CNT-PLLA scaffolds seem to be able to confer a 

neuronal commitment to hCMCs only thanks to their own characteristics:  

 the CNT component of the scaffold - whose nanoroughness matches the 

size of the finest neuronal processes (Fabbro et al., 2013) - is indeed 

thought to mimic the neural environment topography and therefore 

favouring cell adhesion, neurite extension and differentiation toward the 

neuronal lineage; 

 CNTs are able to adsorb proteins and growth factors thanks to their 

chemical properties and enhanced surface area provided by their needle-

like shape (Chao et al., 2010; Chen al., 2013). In addition, hCMCs produce 

cytokines and growth factors capable to control their own proliferation 

and differentiation. Therefore, the CNT-PLLA scaffold could retain 

proteins and growth factors produced by hCMCs acting as a reservoir of 

elements available for cells during their growth and differentiation. 

 we previously showed that the CNT presence within the scaffold 

increases the scaffold conductivity (Scapin et al., 2014); therefore, the 

conductive properties of the scaffold could be responsible for cell 

differentiation maybe due to the formation of hybrid nanotube-cell unit 

(Mazzatenta et al., 2007). It is known in fact that electrical conductivity 

has a critical role in controlling neuronal cell growth and differentiation 

(Yamada et al., 2007; Gordon et al., 2009; Fabbro et al., 2013). 

 Cell differentiation observed onto CNT-PLLA scaffolds is likely related to 

changes in cell shape. Indeed, cells onto the scaffold have polarized 

appearance and reduced size of cell bodies. Modulating cell shape might 

play a central role in directing the fate of differentiation, because it can 

influence nucleus shape affecting nuclear matrix proteins and focal 
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adhesion complexes and thus the expression of silent genes (Kim et al., 

2012). 

 

Other studies previously reported the ability of CNT-based scaffolds to modulate 

embryonic, mesenchymal and neural stem cells commitment towards 

neurogenesis when coupled to chemical soluble factors (Jan et al., 2007; Chao et 

al., 2010; Chen et al., 2012; Kim et al., 2012). Other works show instead that such 

cells can achieve a neuronal commitment either in absence of neuronal 

stimulating conditions when CNT films (Tay et al., 2010) and CNT-collagen 

scaffolds (Chen et al., 2013; Lee et al., 2014) are used. Therefore, our study 

confirms that the CNTs features are able per se to promote stem cell 

differentiation toward the neuronal lineage and highlights that a very low 

percentage of dispersed CNTs (1%) is sufficient to improve scaffold electrical 

properities and cell differentiation. Furthermore, our scaffold combines the 

nanotopographical and electrical characteristics of CNTs with the properties of 

PLLA. This synthetic, fully biocompatible polymer is not immunogenic hence 

more suitable than animal-derived collagen for developing implantable scaffolds. 

Moreover, the dispersion of CNTs in the PLLA matrix makes the scaffold flexibility 

suitable for properly shaping and well fitting into the injured site.  

At least in our knowledge, the study presented in this thesis represents the first 

report on human adult stem cells derived from blood to be cultured onto CNT-

based scaffolds and hence highlights hCMCs as a precious source of stem cells 

exploitable for such applications. hCMCs in fact present some advantages in 

comparison to other sources of stem cells: (i) when compared to hESCs, hCMCs 

are not subjected to ethical restrictions in that representing an autologous cell 

source; (ii) unlike iPSCs, hCMCs are free from tumorigenesis risk, (iii) they can be 

isolated in larger amounts than NSCs, (iv) they can be more easily isolated and in 

a less invasive way with respect to both NSCs (brain) (Rietze et al., 2006) and 

MSCs (mainly bone marrow) (Augello et al., 2010). Therefore, such CNT-PLLA 

scaffolds both (i) support cell growth onto a low cytotoxicity environment and (ii) 
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contain the instructions necessary to drive cell neuronal differentiation. Thanks 

to these characteristics, hCMCs could be transplanted to neuron injured sites 

onto the CNT-PLLA scaffolds that would promote their differentiation without 

the addition of soluble factors that are more difficult to administrate and pattern 

in vivo (Chen et al., 2013).  

Concerning the biomimetic L1-A and LINGO1-A peptides, they were able to 

influence hCMC behaviour without altering cell proliferation. When added to 

culture medium, the peptides are able to influence cell shape as treated cell 

morphology is sharper than the wide spread appearance of control cells. 

Moreover, the two peptides induce the formation of long protrusions resembling 

neurites and stimulate the expression of neuronal cytoskeleton markers, such as 

Nestin, TUBβ3 and MAP2 that have an important role in neuronal architecture 

definition. Last but not least, the upregulation of VAMP7 is consistent with the 

enhancement of proteins and lipids transport at the plasma membrane for the 

neurite outgrowth initiation.  

Moreover, hCMCs resulted to be sensitive to scaffold topography; indeed when 

seeded onto the eCNT-PLLA scaffolds both the cell bodies and the neurite-like 

protrusions were found to be stretched out and aligned along the scaffold fibres. 

In addition, qPCR analyses showed an upregualtion of neuronal marker genes 

attesting the differentiation program activation. Considering that - for an 

effective electrical signal transfer - transplanted cells not only have to 

differentiate but also need to be synaptically connected to neural networks, the 

possibility to control both cell differentiation and polarization through scaffold 

composition and topography could be of great help to clinical applications. Such 

results suggest the possibility to covalently functionalize the scaffolds with 

peptides, in order to enrich the spectrum of differentiating cues provided by the 

scaffolds and to more finely regulate cell differentiation and their spatial 

organization.  
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6. CONCLUDING REMARKS 

 

In conclusion, we developed freestanding scaffolds that combine the 

biocompatible properties of PLLA (Yang et al., 2004) with the conductive, 

mechanical and topographical features of CNTs. Furthermore, designed L1-A and 

LINGO1-A peptides were confirmed to mediate positive effects on neuronal 

differentiation and, even though further studies are needed to clearly determine 

their mechanisms of action, they represent a promising tool for regenerative 

medicine. Indeed, replacement of recombinant proteins by biomimetic peptides 

reproducing only active motifs dramatically cuts costs, simplifies preparation and 

functionalization of scaffolds. Moreover, short peptides display increased 

stability and lower immunogenic potential with respect to entire proteins and 

protein domains (Chen et al., 2008). Our CNT-PLLA scaffold, used in combination 

with the peptides, demonstrates synergistic effects in supporting neuronal cell 

growth and differentiation and thus it is a good starting point for setting up next 

generation scaffolds upon peptide functionalization. Moreover, the hypothesis of 

LINGO1-A peptide ability to inhibit LINGO1 endogenous molecule function is of 

particular interest because a small synthetic peptide able to counteract the 

effect of inhibitory proteins is of potential wide applicability. In fact, in addition 

to being used in the development of scaffolds promoting neuronal regeneration 

after injury, it might also be of help in the treatment of some neurodegenerative 

diseases characterized by LINGO1 upregulation, like e.g. Parkinson's disease and 

Multiple Sclerosis (Inoue et al., 2007, Mi et al., 2013). Thanks to LINGO1 

restricted tissue distribution and to LINGO1-A small size that allows its 

encapsulation into nanocarriers able to overpass the emathoencephalic barrier 

(Silva et al., 2007); LINGO1-A represents an interesting starting molecule for 

developing therapeutics to cure neural dysfunctions. Our experiments with L1-A 

mutant peptides confirm the important role of the highly conserved R184 
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residue for L1 function as it is crucial at the same time to adhesion, 

neuritogenesis and correct neurodevelopment. The shaping of the CNT-PLLA 

scaffold into fibres mimicking neuronal extracellular environment results in 

enhanced cell ability to form new neurites that elongate following the scaffold 

fibre orientation. Such micro/nano-scale sensitivity of cells to the scaffold 

topography is of great interest because it opens up the perspective to obtain a 

polarized neurite outgrowth upon fibre alignment. The polarized neurite 

outgrowth is a fundamental prerequisite for neural regenerating scaffold as the 

regenerating axon needs to be properly guided towards the correct target, 

improving the formation of an effective neural network. Moreover, the 

synergistic effect shown by eCNT-PLLA scaffolds and LINGO1-A peptide suggests 

that the scaffold functionalization with LINGO1-A peptide could provide 

substrates endowed with multiple cues able to stimulate both neurite sprouting 

and their elongation and highlight the importance of nanomaterials and 

micro/nanotechnology for developing devices to control cell behaviours with a 

micro/nano-scale sensitivity. Moreover,the scaffolds and the peptides resulted 

to be suitable for hCMCs cultures and to induce their entering the neuronal 

differentiation pathway.  

Further improvements in the scaffold geometry and composition, 

functionalization with peptides and culture conditions are necessary to achieve 

the complete neuronal differentiation of cells and to control the neuron subtype 

obtained, but our system resulted to be a good starting point for setting up 

implantable scaffolds for autologous neuronal differentiation. In addition, such 

results highlight the high plasticity of hCMCs that, even if isolated from blood 

and thought to have a mesodermal origin, they are able to undergo neuronal 

differentiation, hence representing a precious source of adult stem cell with 

potential for neural tissue engineering applications. Future functional 

assessment ofsynaptic transmission and electrophysiological properties of cells 

onto the scaffolds will be of great interest. Moreover, coupling such scaffolds 

with electrical stimulation (which is readily achievable using CNT based 
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materials) can boost further analyses aimed at studying neuronal differentiation 

and has great potential in nerve injury repair as well as neuron prosthesis.  
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Carbon nanotubes (CNTs) are attractive candidates for the development of scaffolds for 

neural regeneration thanks to their ability to conduct electrical stimuli, to interface with 

cells and to mimic the neural environment (Mattson et al, J Mol Neurosci. 2000). We 

developed a freestanding nanocomposite scaffold of multi-walled CNTs in a PLLA matrix 

that combines the conductive, mechanical and topographical features of CNTs with the 

biocompatible properties of the PLLA. Such CNT-PLLA scaffold resulted to support 

growth and differentiation of human neuronal cells better than CNTs or PLLA alone. 

Moreover, to mimic guidance cues from the neural environment, we also designed 

biomimetic peptides, derived from L1 and LINGO1 proteins that are involved in neurite 

outgrowth control (Zhao et al, J Neurochem. 1998; Mi et al, Nat. Neurosci. 2004). Both 

peptides - which neither alter cell proliferation nor induce cell death - could specifically 

and positively modulate neuronal differentiation (with highest effect at 1 µM 

concentration). Furthermore, cell differentiation resulted to be synergistically improved 

by the combination of the nanocomposite scaffold and the peptides, thus suggesting a 

prototype for the development of implants for long-term neuronal growth and 

differentiation. The ongoing work is about the use of new scaffolds consisting of multi-

walled CNTs in a PLLA matrix and electrospinned into fibers. These scaffolds were shown 

to be biocompatible and to promote the formation of new neurites that extend along 

the scaffold fibers. Since cells are influenced by the scaffold topography, the orientation 

of the scaffold fibers opens up the perspective to promote a polarized neurite 

outgrowth. Moreover, the neuritogenic properties of the scaffolds are further enhanced 

when adding peptides to culture medium; thus they represent a good starting point for 

developing next generation scaffolds upon peptide functionalization. Currently, we are 

growing human circulating multipotent cells (hCMCs) onto the CNT-PLLA scaffolds to 

asses if this autologous and accessible source of stem cells is capable of neuronal 

differentiation thanks to the scaffold characteristics. Our preliminary results show that 

cells can adhere and grow onto the scaffold showing features (such as neurites and 

growth cones) typical of cells of the neuronal lineage. 
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Carbon nanotubes (CNTs) are attractive candidates for the development of 

scaffolds able to support neuronal growth and development thanks to 

their ability to conduct electrical stimuli, to interface with cells and to 

mimic the neural environment. We recently proposed a freestanding 

nanocomposite scaffold that combines the conductive and topographical 

features of functionalized multi wall carbon nanotubes (MWCNTs) with the 

biocompatible and mechanical properties of a polylactide matrix (PLLA) 

[1]. We will present here a novel morphology for the neuritogenetic 

nanocomposite substrate, based on electrospun nanofibers deposited 

onto a glass support. Details on the preparation and characterization of 

such nanofibers will be reported, together with preliminary evidences of 

polarized neurite outgrowth along the scaffold nanofibrous topography.  

 

Figure 1: Neuronal growth onto MWCNTs-PLLA electrospun nanofibers 

References: 

[1] G. Scapin, P. Salice, S. Tescari, E. Menna, V. De Filippis, and F. Filippini, 

Enhanced Neuronal Cell Differentiation Combining Biomimetic Peptides and a 

Carbon Nanotubes-Polymer Scaffold, Submitted.  
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