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Abstract 
Optofluidics is a promising interdisciplinary research and technological field, thanks 

to its wide potential of application in sector like medicine, chemistry, biology and 

environmental science. In this context the study of innovative materials including 

their properties, their efficiency, their limits and their possibility of leading to 

miniaturized devices is the key point for the overcoming of currently adopted 

strategies. A promising material that could satisfy new optofluidic requirements is 

Lithium Niobate (LiNbO3 - LN) thanks to its excellent optical and nonlinear optical 

properties. 

In this work we demonstrated for the first time the applicability of the Lithium 

Niobate as a high intagrable and tailorable substrate for optofluidics. As a matter of 

fact, we developed all the several stages that can be interconnected to realize a 

platform with complex optofluidic functionalities: from the droplets generation and 

manipulation, to their transfer through a microfluidic channel directly engraved on 

the crystal substrate, to the droplets optical analysis stage.  

In particular in this thesis we present the first high performant T-Junction droplet 

generator completely engraved in LN, and the first Ti in-diffused channel waveguide 

coupled with a microfluidic channel in the same substrate. Furthermore a study on 

the wetting properties of the Lithium Niobate is discussed.  

Concerning the optical stage we discuss the realization of optical frequency converter 

realized in LN, which plays a key role in the development of our optofluidic platform. 

In fact it can be used to integrate a laser source in the green-blue range that could 

found application particularly in the biological field. Moreover we present the first 

frequency converter in the PPLN configuration realized in Zirconium doped LN, a 

dopants that prevent the optical damage and therefore could increase the intensity of 

work and the efficiency of conversion of the devices. Also we implemented the 

process to produce single-mode channel waveguide by Ti in-diffusion as 

interconnection stage for the optical circuit.  

Concluding, we were able to implement a well-equipped tool-box for the 

incorporation of different devices on the same substrate, demonstrating for the first 

time the integration of all the different stages in a single substrate, and paving the 

way to an extreme optofluidic integration in Lithium Niobate. 

 



 

 

 

  



Riassunto 
L’optofluidica è un promettente settore di ricerca interdisciplinare con altrettante 

interessanti applicazioni tecnologiche. Questo grazie al suo ampio potenziale in 

settori quali la medicina, la chimica, la biologia e le scienze ambientali. In questo 

contesto uno studio di materiali innovativi che includa le loro proprietà, la loro 

efficienza, i loro limiti e la loro possibilità di produrre dispositivi miniaturizzati è 

fondamentale per superare le attuali strategie adottate. Un materiale promettente 

per soddisfare i requisiti dell’optofluidica è il Niobato di Litio (LN o LiNbO3), un 

materiale conosciuto per le sue eccellenti proprietà ottiche lineari e non lineari e che 

qui discutiamo per la prima volta in un contesto optofluidico. 

In questo lavoro abbiamo dimostrato l’applicabilità del Niobato di Litio come 

substrato altamente integrabile e adattabile per l’optofluidica. Abbiamo infatti 

sviluppato tutti i diversi stadi che possono essere interconnessi per realizzare una 

piattaforma con funzionalità complesse optofluidiche: dalla produzione di gocce, alla 

loro manipolazione, al loro trasporto in canali microfluidici realizzati nel cristallo, fino 

all’analisi ottica delle stesse. In particolare nella tesi sono presentati il primo 

generatore di gocce a giunzione a T completamente fabbricato su Niobato di Litio e la 

prima guida d’onda a canale in Titanio diffuso accoppiata con un canale. Infine 

abbiamo proposto il primo studio completo sulla bagnabilità del Niobato di Litio. 

Per quanto riguarda lo stadio ottico, abbiamo realizzato dei convertitori di frequenza 

ottica, dispositivi che giocano un importante ruolo nel progetto, in quanto possono 

essere usati come sorgenti laser integrate con emissione nell’intervallo verde-blu, 

uno spettro che trova molte applicazioni nell’ambito biologico. In questo contesto 

abbiamo realizzato il primo convertitore di frequenza con configurazione PPLN 

realizzato su Niobato di Litio drogato Zirconio, un nuovo tipo di drogante che 

prevenendo il danno ottico è in grado di aumentare l’intensità di lavoro e l’efficienza 

di conversione di questi dispositivi. Abbiamo infine implementato il processo per 

produrre guide ottiche a canale monomodo per diffusione di Titanio, dispositivi 

necessari per connettere le diverse parti del circuito ottico.  

In conclusione con questo lavoro abbiamo implementato un’ampia categoria di 

dispositivi, per la prima volta tutti contemporaneamente integrabili su un singolo 

substrato. Abbiamo perciò aperto la strada verso un’elevata integrazione di 

funzionalità optofluidiche su Niobato di Litio. 

  



 



 

 Contents 
 

Chapter 1: Introduction 

1. Optofluidic Platform in Lithium Niobate................................................ 3 

1.1. Optofluidics....................................................................... 8 

1.2.  Opto-microfluidic in Lithium Niobate..................................... 9 

1.3.   The project...................................................................... 11 

1.4.  Objectives....................................................................... 11 

1.5.  The Platform outline.......................................................... 12 

1.6. Results............................................................................ 14 

1.7. Future Perspectives.......................................................... 15 

1.8. Acknowledgement:........................................................... 17 

2. 2. Lithium Niobate......................................................................... 13 

2.1. Introduction..................................................................... 18 

2.2. Lithium Niobate................................................................ 19 

2.3.  Properties........................................................................ 26 

3. Microfluidics................................................................................... 35 

3.1.   Microfluidic...................................................................... 40 

3.2.   Theory............................................................................ 41 

 

Chapter 2: Fluidic Stage 

1. Preface..........................................................................................53 

1.1.   Microfluidic circuit............................................................. 53 

1.2.   Objectives……….................................................................54 

2. 2. Droplets microfluidic.................................................................. 57 



 

2.1.   Introduction..................................................................... 57 

2.2.   Droplets generator............................................................ 59 

2.3.   T-junction: theory and models........................................... 62 

2.4.    Fluids and Materials.......................................................... 66 

3. T-Junction in Lithium Niobate........................................................... 69 

3.1.   Introduction..................................................................... 69 

3.2.   Wettability of Lithium Niobate............................................ 69 

3.3.   Microfabrication in Lithium Niobate..................................... 72 

3.4.   Laser Ablation.................................................................. 77 

3.5.   Sealing of the channels..................................................... 88 

3.6.   Functionalization.............................................................. 89 

4. T-junction characterization.............................................................. 91 

4.1.   Setup.............................................................................. 91 

4.2.   Software analysis............................................................. 92 

4.3.   Results and Discussion...................................................... 94 

4.4.   Data elaboration and model validation................................. 98 

5. Conclusion................................................................................... 107 

 

Chapter 3: Optical Stage 

1. Preface........................................................................................ 119 

1.1.   The circuit..................................................................... 120 

1.2.   Objectives..................................................................... 121 

2. Waveguides................................................................................. 123 

2.1.   Introduction................................................................... 123 

2.2.   Titanium Diffusion in Lithium Niobate................................ 124 

2.3.   Numerical simulation....................................................... 125 

2.4.   Fabrication..................................................................... 127 



 

2.5.   Compositional Characterization......................................... 131 

2.6.   Planar waveguides.......................................................... 135 

2.7.   Optical characterization................................................... 136 

2.8.   Results and Discussion.................................................... 137 

2.9.    Channel waveguides........................................................ 138 

3. PPLN Frequency Converter............................................................. 141 

3.1.   Introduction................................................................... 141 

3.2.   Poling............................................................................ 143 

3.3.   Microfabrication.............................................................. 153 

3.4.   Poling at room temperature.............................................. 161 

3.5.   Results and Discussion.................................................... 165 

3.6.   High Temperature Poling.................................................. 172 

3.7.   Characterization............................................................. 176 

4. Conclusion..................................................................................  181 

4.1.   Waveguides................................................................... 181 

4.2.   Frequency converters (PPLN)............................................ 182 

 

Chapter 4: Conclusion 

1. Latest Result................................................................................ 193 

2. Conclusion................................................................................... 195 

2.1  Future perspectives......................................................... 198 

2.2.  Acknowledgements......................................................... 199 

 

Appendices...................................................................................... 201 

 

 

  



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Solo dopo aver conosciuto la superficie delle cose   

- conclude- 
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Ma la superficie delle cose è inesauribile”  
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1. Optofluidic Platform in 
Lithium Niobate 

1.1. Optofluidics 

Optofluidics is a new analytical field based on the synergistic coupling of 

optics and microfluidics that provides a number of unique characteristics for 

enhancing the sensing performance and simplifying the design of 

microsystems. It is well known that optics has long been used to analyse 

biological and chemical samples. In recent decades, optical sensing systems 

have evolved to microdevices, such as on-chip waveguides and resonators in 

order to get greater compactness and efficient integration. This period has 

also seen the emergence of microfluidics, which enables small-volume 

sample handling for performing automated functions such as particle sorting 

and separation, cell culturing and concentration gradient formation. 

Optofluidics has found a broad range of applications since its debut about 10 

years ago, as described by Erickson et al [1] and Schmidt and Hawkins [2], 

as well as in other recent publications [3]–[6]. In particular, optofluidics is 

well suited for biological/chemical detection and analysis in extremely small 

detection volumes (femtolitres to nanolitres) because it integrates sample 

preparation and delivery with the analytical mechanism. However, the 

majority of the optical functions demonstrated in microfluidic systems are not 

fully integrated since they use external micro-optical systems, or hybrid 

embedding of optical fibers, which, while providing much flexibility, do not 

offer the robustness, stability, operator-independence, and potential for mass 

manufacture of fully integrated approaches. Also integrated optics is widely 

used in biosensing and chemical sensing research, but there have been 

rather few demonstrations in true microfluidic systems. Until recently, most 

integrated optical circuits consisted of only one or two devices, but the field 

appears to be maturing with a drive for standardization of materials, devices 

and interfaces, allowing much denser integration. The confluence of 

integrated optics with integrated fluidics in the future ‘‘lab-on-a chip’’ (LoC) 

shows great potential [7], as LoC presents great benefits in terms of reagent 

and sample consumption; speed, precision, and automation of analysis; cost 



 4 

and ease of use. With the result of a rapid escalation and adoption of 

microfluidic approaches. Many optical properties, such as refractive index, 

fluorescence, Raman scattering, absorption and polarization, can be exploited 

individually or in combination to generate the sensing signal. Detection can 

be carried out in either the linear [8]–[11] or nonlinear optical regime [12], 

[13]. More recently, the adaptation of traditional analytical chemistry 

technologies such as chromatography and electrophoresis to optofluidic 

devices further increases their functionality in biological/chemical analysis 

[14]–[18]. Furthermore, optofluidic microsystems can also employ optical 

forces as non-contact means for trapping, manipulation, and separation in 

microsystems; and moreover for driving pumps. Thus further enhances the 

system’s analytical capabilities [19]. The use of light for ‘‘optoporation’’ of 

cells in microsystems has also been demonstrated [20]. Nonetheless, the full 

integration of optical functions within microfluidic chips is at the starting 

stage, and this work aims to highlight approaches and new application to 

materials (i.e. Lithium Niobate), which may contribute to further 

miniaturization and integration.  

Many excellent reviews [3], [5], [6] describe various optofluidic architectures 

developed over the past years in different fields: microfluidics [21] for cell 

manipulation and analysis [22], µTAS (micro Total analysis systems) [23], 

optical manipulation [24], and optofluidic devices for non-chemical 

applications [3].  

1.2. Opto-microfluidic in Lithium Niobate 

Microfluidic technology holds great promise as it can perform typical 

laboratory applications using a fraction of the volume of reagents in 

significantly less time. Reagents can be significantly reduced from millilitres 

and microliters to nanolitres and femtolitres whereas hours of reaction time 

could be decreased to few seconds or less [25]. Applications for microfluidics 

have significantly advanced from its root in micro-analytical chemistry to 

include high throughput screening, biological analysis of cells and proteins 

and reaction kinetics and mechanism studies [26]. Due to the high surface 

area to volume ratios, the reaction times are faster and the independent 

control of each droplet can be exploited to realise micro-reactors that can be 
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individually transported, mixed and analysed. Thanks to its scalability and 

parallel processing, the droplets microfluidics has been used in a wide range 

of applications including the synthesis of biomolecules, drug delivery and 

diagnostic testing and bio-sensing [27][28]. Although novel micro-fabrication 

techniques are continuously being developed and micro-chemical systems are 

established by integrating micro-devices with appropriate fluidic interfacing 

scheme, the incorporation of chemical and physical sensors perfectly 

integrated with the micro-reactor stage is still under debate although the 

optical VIS-NIR methods are the most used to get quantification and 

chemical identification. The most commonly used materials for micro-reactors 

based device (such as ceramics, polymers, stainless steel, glasses, silica and 

silicon) in fact, seem to prevent the fully integration the microfluidic and 

optical functionalities in the VIS-NIR region although presenting bio- and 

micro-machining compatibility. As a matter of fact several examples of 

sensors for reaction temperature, residence time and stoichiometry have 

been reported [29] as well as systems for in-situ reaction monitoring with 

fluorescent measurements, with line ultraviolet spectroscopy, with inline 

infrared and Raman spectroscopy [26][30]. In this scenario, the integration 

of a large number of different stages on a single substrate chip is a key point 

for promoting new insights in many applications that need portable devices to 

speed the analysis and allow investigation of new phenomena [3][31]. 

Among the others, even Lithium Niobate crystals have been proposed in 

microfluidics since allows for high efficient acoustic waves generation able to 

move droplets on the substrate in a very controlled way [32], flow mixing 

and pumping [33], pyroelectric [34] and photogalvanic [35] particle trapping. 

Quite surprisingly, all the above mentioned applications were realized without 

producing a microfluidic circuit directly on LiNbO3 substrates and without the 

integration of optical sensing stages although it is a material thoroughly 

exploited in the photonic and integrated optics industry. As a matter of fact 

waveguides and a large number of integrated electro-optical devices such as 

switches, modulators and directional couplers are still commercial in LiNbO3 

and diffractive optical elements such as holographic filters and 

multi/demultiplexers were proposed by exploiting its photorefractive effect 

strongly enhanced by local doping with metal impurities [36].  
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1.3. The project 

The present project aims to combine the excellent properties and versatility 

of Lithium Niobate crystals and the powerful tools of the droplet-based 

microfluidics in order to realise an integrated microfluidics prototype on the 

same substrate with tailored functionalities and a high level of integration 

that has not been reported yet in literature. The platform include a stage for 

the droplets generation (every droplet could act as microreactor); an 

optofluidic junction in which every single droplet is analyzed by an optical 

probe (luminescence or IR/VIS absorption) in waveguides; a stage with a 

coherent light emitting source (realized with a frequency converter); and a 

spectral analysis stage realized with Bragg reticle (realized by a holographic 

or machining technique). The realization of the platform will allow the study 

in depth of the physics of the system, the characterization of the material 

both for its fluidic and optical properties, the improvement of the 

microfabrication techniques, and also to project an optical circuit for 

molecular sensing. Finally, the testing of the prototype will underline the 

potentiality of the Lithium Niobate as a multi-functional substrate for 

microfluidic, with the related applicative spillovers. Moreover the frequency 

converter that the project aims to realize represents the first stage for 

obtaining an integrated coherent light emitting source in an optofluidic 

platform working at high intensities and tailored wavelength. In particular the 

device prototype that the group intends to obtain is constituted by a periodic 

pattern of ferroelectric domains (PPLN) realized on a z-cut LiNbO3 substrate 

in a waveguide configuration in order to assure a spatially confined frequency 

conversion. The proposed prototype could also be realized on substrates 

suitably doped in order to have an enhanced optical damage resistance in a 

waveguide configuration [37] and therefore a high conversion efficiency.  

1.4. Objectives 

The main objective of the project consists in the development of several 

interconnected stages that, starting from the droplet generation and 

manipulation, consider the droplets transfer through micro-channels to an 

integrated optical stage; where the optical properties of the droplets 

constituents are monitored and detected using the integrated laser source 
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(PPLN or Zr:PPLN), and analytical stages (photorefractive or nanofabricated 

gratings). 

The project objectives concern:  

1) The realization of a microfluidic circuit on lithium niobate crystals. T-

junctions geometry is used in order to exploit the mixing properties of 

two different fluids to get droplets with controlled properties (size, 

shape and rates of production). The droplets act as micro-reactors and 

therefore contain reagents to study or detect; 

2) The realization of an optical stage integrated on the same substrate to 

fine illuminate a given droplet and detect the optical signal therein 

generated. The pump signal is generated in a waveguide-based-

frequency converter in the visible range. The optical signal detection is 

aimed to be spectral resolved in order to follow the reaction dynamics 

and select the reaction product.  

The project therefore aims to demonstrate the feasibility of an opto-

microfluidic circuit that conjugates portability, high efficiency and high 

integration, that up to now have not been reported yet on the same 

substrate. Finally it aims to open new perspectives on opto-microfluidics 

integration by increasing the number of integrable functionalities such as 

particle trapping (by the pyroelectric properties of LiNbO3), droplets 

movement by the acoustic wave generation and micro-pumps integration (by 

exploiting the LiNbO3 piezoelectric properties). 

1.5. The Platform outline 

The optimal configuration between the microfluidic device and the optical 

stage will be studied to allow the light coupling and detection. The prototype 

will be realized and tested on doped-water/oil system, where fluorescent 

molecules emitting at a selected wavelength (in the visible and in the NIR 

infrared spectral region) are dispersed and checking the change in the droplet 

constituents concentration by analysing the relative intensity of a selected 

emitted (luminescent/absorption) line. 
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FIGURE 1 SCHEME OF AN OPTOFLUIDIC DEVICE INTEGRATED IN LITHIUM NIOBATE 

1.5.1. Fluidic Stage 

The project considers the realisation of microchannels of the typical size 

suitable for microfluidics applications (102 µm) in a T-junction configuration 

exploiting the interaction of immiscible fluids in order to form droplets. The 

system is designed in order to guarantee uniform droplets generation 

focusing on the fine control of the size, shape and monodispersion by altering 

the fluids flow rate and the surface energy between the liquids, for these 

purpose the variation of the concentration of a surfactant was studied. The 

circuit pattern is realized by a femtosecond laser ablation technique able to 

produce high quality structures with flat channel walls, a prerequisite to 

obtain an efficient coupling at the waveguide – liquid interface. The 

micromachining with a self-polishing saw was also explored in order to get 

flatter channel walls. A preliminary systematic study of the wetting properties 

of lithium niobate was required for a proper use of this material in 

microfluidics since in the literature these properties have not been 

investigated in details. 

1.5.2. Optical Stage 

The optical circuit is divided in three different parts:  

The laser source, in which the nonlinear optical properties of Periodically 

Poled Lithium Niobate (PPLN) crystals, the Zirconium doping, and the 

waveguides fabrication are combined to obtain a waveguide-based-frequency 

converter in the visible range for an efficient Second Harmonic Generation 
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(SHG). The frequency generated is controlled by the period of the PPLN 

grating. 

The channel-waveguide coupling stage, that is the more critical part of the 

project, where the droplets are illuminated and excited by the pump laser 

signal, and then the droplet emitted signal is collect and transferred to the 

analytical stage. 

The analytical stage, where the optical signal emitted from the excited 

droplets is filtered and elaborated using gratings obtained with 

photorefractive effect or nanofabrication technique (such as Focused Ion 

Beam, FIB). The period grating will be optimized depending on the 

wavelength needed to be monitored in the micro-reactor.  

The different stages are connected by optical waveguides defined by the 

photolithographic process and obtained by the standard Ti-indiffusion 

process.  

 

 

FIGURE 2 WAVEGUIDE-BASED FREQUENCY CONVERTER (QUASI PHASE-MATCHING SECOND HARMONIC 

GENERATION) IN LITHIUM NIOBATE 

1.6. Results 

At the conclusion of the thesis all the different devices and stages necessary 

to the realization of an optofluidic platform were fabricated and 

characterized, also first studies on light coupling in the waveguide/channel 

system were obtained in the final part of the thesis. In particular we 

achieved: 

1) the realisation of a microfluidic circuit in lithium niobate crystals made 

of micro-channels and T-junctions with characteristic sizes of 100 µm 

and lengths up to a few centimetres; 
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2) the characterization of lithium niobate as a substrate for microfluidics 

applications, with particular detail on the surface/interface physics;  

3) The realization of an optical stage in lithium niobate crystals. This 

stage requires the fabrication of PPLN frequency converter in 

congruent and Zr doped Lithium Niobate, optical waveguides, 

holographic grating, and Bragg grating integrated together.  

4) The first characterization of the light transmission through the 

waveguide/channel junction; 

The final step will concern the design and integration of the microfluidic stage 

and the optical stage to allow the realisation of an optofluidic circuit to 

analyse the droplets microreactors products. 

1.7. Future Perspectives 

The great versatility of the lithium niobate crystals allows the possibility of 

study the integration of new functionalities such as particle trapping (by the 

pyroelectric or the photorefractive properties of LiNbO3), droplet movement 

by the acoustic wave generation and micro-pumps integration (by exploiting 

the LiNbO3 piezoelectric properties). The application of these opto-microfluidic 

circuits in biology has a strong impact especially if one considers the need of 

integrated optical detection of signals for example of blood constituents: due 

to the coagulation, in fact, many analysis are hardly performed and need 

post-chemical action of the blood. The exploitation of microfluidics and the 

droplets technique, instead, will prevent the blood coagulation while the 

integration of an optical stage can allow the in-situ analysis with rapid 

response and no need of chemical treatment. This is only an application, 

similar results can be obtained in a full integrated circuit in agro-alimentary 

problems for detecting bacteria, in the direct optical detection in bio-analysis 

[38] or for obtaining optical sensor chip for medical point of care and in many 

other applications of interest in pharmaceutical and chemical analysis [26] 

such as photo-initiated and catalyst initiated polymerization, therapeutic 

agent delivery, biomolecule synthesis, diagnostic chips, and drug discovery 

[25] actually performed in hybrid circuit where the microfluidic circuit is 
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coupled with external stages (optical stage, pumps, particle trapping 

systems).  

Apart from the integration of a tailored laser source in an optofluidic platform 

the project also presents several future developments concerning the 

realisation of a visible light emitting source with a tailored wavelength 

depending on the realised periodic pattern of the PPLN structure and the 

combination of this pattern with a waveguide configuration allow for the 

development of many different optical devices. Several examples of PPLN 

based devices have already been demonstrated as efficient visible coherent 

sources with application in the biomedical, industrial, spectroscopic, and 

telecom fields. The possibility of improving the photorefractive resistance of 

such a system would allow extending the range of the available SH powers. 

Moreover the waveguide geometry allows for a more compact and stable 

packaging. Therefore, as a first general future development we have the 

potential extension of the already present application of PPLN based devices 

to higher operating power and more compact devices. A potential approach 

consists in realizing more sophisticated domain structures, where several 

periodicities are simultaneously present. This would allow more complicated 

nonlinear process, enabling the simultaneous conversion of a suitable pump 

beam into several signals at different wavelengths in the visible; this is of 

great interest for the realization of a more complex optical analysis in 

optofluidic device or for the integration of RGB laser sources to be used in the 

next generation of laser displays or mobile projectors. A very interesting 

application is represented by the integration of these sources in a monolithic 

Mach Zehnder interferometer [39], which was recently proposed as a very 

promising configuration for space applications, such as DOAS spectroscopy 

for space application and can result very promising for medical and 

biomedical field. More sophisticated applications take advantage of the 

possibility of design the PPLN system to enable a QPM frequency halving 

process; this is of interest for the realization of brilliant correlated photon 

sources, of great interest for quantum computing and cryptography. 
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2. Lithium Niobate 

2.1. Introduction 

In this section Lithium Niobate properties will be described with special care 

to its structure, its manipulation process, the behavior of ferroelectric 

domains, and the role of dopants and defects respectively. The knowledge of 

the material used for the platform is important to understand the reasons of 

its choice, and moreover to explain the problems and solutions we met in its 

handling.  

In the field of integrated optics Lithium Niobate (LiNbO3) is a well-known 

ferroelectric crystal thanks to its good optical and structural properties, which 

make it a suitable material for realizing different optical components, such as 

light waveguides, holographic wavelength filters, Second Harmonic 

generators and so on [40]–[44]. Consequently, lithium niobate is surely a 

promising candidate for applications also in the field of Optofluidics, a 

research area which aims to integrate all typical lab processing [42] on a 

single device, by combining the potentialities offered by optics and the tools 

typical of microfluidics [45]. Indeed, the passive materials most commonly 

used in microfluidics, like poly-dimethilsiloxane (PDMS) or elastomers, 

require the use of external equipment or the combination with various 

materials in order to realize the desired stages for droplet movement and 

optical analysis. As a matter of fact, often mechanical parts as well as 

external metallic electrodes have to be implemented in microfluidic devices to 

characterize droplets or actuate them, thus making these conventional 

methods less flexible and efficient than those exploiting optical approaches. 

Therefore, the capability to realized a microfluidic device in a material like 

LiNbO3, where different optical stages can be easily implemented, represents 

a key point for promoting new insights in many applications [3][31]. As a 

matter of fact, lithium niobate has been also proposed for microfluidic 

applications, since it is easily bondable to polymeric materials and allows for 

creating micro-pumps, by exploiting its piezoelectric properties or by realizing 

high efficient surface acoustic waves (SAW) generators [32], [46]. Moreover, 

in the last years trapping experiments have been successfully performed at 
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the surface of lithium niobate crystals on droplets and particles dissolved in 

oils [43], [47]–[49], by exploiting the excellent photovoltaic properties of this 

material, thus paving the way for its use also in the microfluidic field based 

on optically-driven manipulation phenomena. 

In this section Lithium Niobate structure, properties, and synthesis are 

discussed in order to introduce the reader to the lithium niobate fields and to 

the main features that are useful to know to understand the following 

chapters. 

2.2. Lithium Niobate 

Lithium niobate (LN, LiNbO3) is a synthetic dielectric material which does not 

exist in nature. It is a ferroelectric trigonal crystal first synthesized and 

described in 1928 by Zachariasen [50] and since the sixties – when for the 

first time large and homogeneous crystals were grown using the Czochralski 

technique [51], [52] – it has found growing interest and applications with 

thousands of publications in very different fields and tons of crystals grown 

every year for optical and acoustical applications. It has excellent optical, 

mechanical, and physical properties as wide transparency range; 

birefringence; high piezoelectric, pyroelectric, electro-optical, and nonlinear 

optical coefficients; photovoltaic and photorefractive behaviour; chemical and 

mechanical stability; photo-acoustic properties; insolubility in water or 

organic solvents; and high melting point. A number of review [53] have been 

published about LN properties and processing. A detailed review of physical 

and chemical of lithium niobate has been given by Rauber 1978 [54], also 

the physical, chemical, structural and optical properties were systematizes by 

Prokhorov and Kuz’minov [55]. LiNbO3 crystals are well known for their low 

acoustic losses and so are used as excellent substrate for surface acoustic 

wave devices. Furthermore, important applications are based on the electro-

optic, nonlinear optical, piezoelectric, and pyroelectric properties with high 

coefficients for specific effects and devices (optical amplitude modulators, 

optical phase modulators, second-harmonic generators, Q-switches, beam 

deflectors, phase conjugators, dielectric waveguides, memory elements, 

holographic data processing devices, and others) [53]. For the optical stage 

of the project we are interested to the nonlinear optical properties for the 
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frequency converter, and in the waveguides fabrication using ion in-diffusion 

[50]. Instead for what regards the fluidic properties, at the best of our 

knowledge, systematic studied have not been done yet. In this field only 

works on surface-acoustic device and properties are particular developed and 

also interesting for future micro-pump application in our platform [32], but 

are beyond the aims of this work.  

2.2.1. Crystal growth 

 

FIGURE 3 A BOULE OF LITHIUM NIOBATE GROWN BY CZOCHRALSKI TECHNIQUE 

The LN crystals are usually prepared by the standard Czochralski (CZ) 

technique, i.e. crystals are obtained from the solidification at the interface 

between the solid and liquid phase. In this project the crystal that were used 

are both commercial and home-growth using a CZ furnace installed at the 

Padova Physics Department, which allowed also doping the material with 

different kind of dopants and different concentration. The first step of CZ 

method is the preparation of the starting material: a mixture of pure LiNbO3 

powders with congruent composition and, if necessary, the chosen dopant 

concentration are put in a platinum crucible and heated above its melting 

temperature for some hours, in order to achieve good melt homogeneity, 

then cooled slowly to the growth temperature. A pure LN crystal seed (typical 

dimension 4mm x 4mm x 3cm) is then slowly approached to the liquid 

surface, in order to avoid large temperature gradients. When the seed come 

into contact with the liquid, the temperature is finely tuned to equilibrium 

(i.e. no mass variations in the crucible). Only after equilibrium is reached, the 

pulling process can start: the seed is lifted out from the melt, kept in rotation 

to compensate the convective currents within the melt and favour the melt 

homogenization. In the first stage of the growth the mass variation is 
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controlled so that the growing crystal diameter increases linearly with time 

giving the so called crystal shoulder. When the crystal diameter increases up 

to the desired value (in our case 1 inch), the growth parameters are fixed so 

that a constant mass variation is maintained in time. When the liquid is 

nearly finished, the crystal is detached and the growth chamber is cooled 

down till the freezing of the melt. At this point the crystal is lowered again, in 

order to touch the solidified melt and create an electrical contact: the poling 

of the boule is then performed by applying a constant current of some tenth 

of mA to the crystal crucible system inside the growth furnace while cooling it 

down to room temperature. The result of this process is the creation of a 

single domain crystal boule. The whole system will be kept at controlled 

temperature, and feedback methods are provided in order to maintain good 

quality and uniformity. In fact, constant rotation and pulling speed are 

maintained during the growth process, while monitoring the growth speed (in 

practice the crystal diameter) through a balance. It is worth mentioning that 

if a growth process is performed from a melt with non-congruent composition 

(look at section 2.2.2), the different composition of the crystal causes a 

progressive variation in the lithium content of the liquid phase, and the 

composition of the crystal itself. Particular care need to be therefore devoted 

to test the homogeneity distribution of the dopant within the crystal in order 

to get homogeneous crystals. The process is optimized varying systematically 

and with a very fine tune the growth parameters such as the pulling rate (1-

12 mm/h), the rotational rate (5-30 rounds per minute), the crystallographic 

growth axis and the dopant concentration in order to obtain high 

reproducibility and high homogeneity along the crystal. Particular care is be 

also devoted to obtain crystal with very low dislocation and defect densities 

and post annealing treatments in controlled atmosphere are performed to 

reduce the possible presence of colour centers and residual stresses and 

assure that the sample is well oxidized, a condition necessary to achieve a 

good resistance against optical damage (i.e. photorefractivity). The poled 

crystals are then oriented by X-Rays methods, cut and polished to obtain 

mono-domain slices of optical quality. 

 



CHAPTER 1: INTRODUCTION  

 

 17 

2.2.2. Composition 

 

FIGURE 4 . PHASE DIAGRAM LITHIUM NIOBATE [36] 

Lithium niobate is one of the four compounds of the pseudo-binary system 

Li2O–Nb2O5, besides Li2Nb28O71, Li3NbO4 and the lithium triniobate LiNb3O8, 

and it is colorless and insoluble in water and organic solvents. The phase 

diagram of the Li2O–Nb2O5 system (Figure 4), reveals a maximum of the 

liquidus-solidus curve at approximately 48.45% Li2O (congruent 

composition), whereas for 50% Li2O (stoichiometric composition) no 

singularity exists. Lithium Niobate crystals grown by Czochralski technique 

have a congruently melting composition which has an Li deficiency of about 

1.5% compared to the stoichiometric one [36]. In this congruent point the 

melt and the growing crystal have the same composition, so crystals grown 

in this conditions show the highest bulk uniformity. Several physical and 

optical properties strongly depend on the concentration of lithium and 

niobium ratio, like the phase transition temperature, birefringence, the 

photovoltaic effect, phase-matching temperature, and UV band edge [36]. 

The high sensitivity of these properties to a non-uniform composition of 

crystals is the reason for the preference of congruent LiNbO3 in optical 

applications, this because it easier to grown homogeneous congruent crystals 

compared to the stoichiometric one. Therefore commercial LiNbO3 are usually 

congruent crystals grown by Czochralski technique (section 2.2.1). 
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2.2.3. Structure 

 

 

FIGURE 5 (LEFT) REPRESENTATION OF LITHIUM NIOBATE CELL; (RIGHT) MIRROR PLANES OF THE LN 

CELL [50] 

LiNbo3 belong to the ABO3-type ferroelectric [36], its structure, at 

temperatures below the ferroelectric Curie temperature (1142.3 ±0.7°C for 

congruent crystal [56], is a distorted hexagonal close-packed configuration of 

oxygen atoms, which has the octahedral sites filled one third by lithium 

atoms, one third by niobium atoms, and one third with vacancies. Along the 

principal axis direction (c) the atoms occur in the following order: Nb, 

vacancy, Li, Nb, vacancy, Li [53]. In the paraelectric phase, above Curie’s 

temperature, the primitive cell does not present a dipole because Lithium 

ions lie in the oxygen layer and Niobium ions are centered between oxygen 

layers. Under the critical temperature elastic forces of the crystal become 

dominant and constrain lithium and niobium ions into polar new positions. 

This shift of ions relative to the oxygen octahedral is the cause of the 

spontaneous polarization of Lithium Niobate that at T of about 25°C is 0,71 

C/m2. The ferroelectric phase’s cell is member of the trigonal system crystal, 

in fact it exhibits three-fold rotation symmetry about its c axis. Moreover, it 

shows three mirror symmetry planes that are 60° apart and intersect forming 

a three-fold rotation axis. These two symmetry operations classify LiNbO3 

belonging to the 3m point group (C6v in Schtnflies notation) [53], and 
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furthermore it is member of the R3c space group [57]. In the paraelectric 

phase the crystal transforms to the centrosymmetric space group R3m [36]. 

 

FIGURE 6 ON THE LEFT IS RAPPRESENTED THE PARAELECTRIC PHASE OF LITHIUM NIOBATE; ON THE 

RIGHT THE FEROELECTRICT PHASE [53]  

In the trigonal system the setting of the crystallographic axes is not 

unambiguous, three  different cells can be chosen: hexagonal, rhombohedral 

or orthohexagonal [36]. For most applications the orthohexagonal cell is 

preferred, and tensor components of properties are given respecting these 

axes. In this case the three axes are mutually orthogonal and their directions 

are settled in the following way. The threefold axis is z, the axis y lies in the 

mirror plane, and the axis x is orthogonal to both of them. Piezoelectric and 

spontaneous polarization are properties of only z and y axes, and by 

convention their positive ends correspond to the plane negative charged 

under a uniaxial compression. Moreover, the z axis is also pyroelectric and by 

convention its positive end corresponds to the plane negative charged on 

heating the crystal. The x axis in this setting is non-polar. Experimentally it is 

easy to find the y axis in usual congruent crystals grown by the Czochralski 

technique along the polar axis z (0°-crystals), because the mirror planes 

correspond on the cylindrical boule surface as three facets aligned along the 

growth axis oriented mutually by exactly 120°, y axis connect the boule axis 

to the facets. 



 20 

2.2.4. Intrinsic Defect  

As explained, in the polar phase structure the octahedral interstitials are one-

third filled by Li ions, one-third by Nb ions and one-third are empty 

(vacancy). The Li octahedron is larger, than the Nb one, the distances 

between a Li ion and the closest oxygen ions are 206.8 and 211.2 pm, 

whereas those for an Nb ion are 188.9 and 211.2 pm, respectively [57]. A 

larger size of the Li octahedron may qualitatively explain a predominant 

incorporation of impurity ions onto Li sites. As seen from the phase diagram 

(Figure 4), the congruently melting (Li-deficient) composition corresponds to 

the oxide concentrations 48.45 mol.% Li2O and 51.55 mol. % Nb2O5 with the 

ratio [Li]/[Nb] = 0.94. Correspondingly, the congruent LiNbO3 (denoted often 

as CLN) contains about 6% empty Li sites in the lattice. Therefore LiNbO3 is 

to some extent a unique oxide containing no oxygen vacancies. Further 

experimental studies have shown that with decreasing Li2O content, i.e., 

increasing concentration of VLi, the density of LiNbO3 increases [58]. To 

overcome this paradox, it is assumed that Nb ions incorporate partially on 

the Li sites [36]. This is very probable, because an Nb5+ ion has a smaller ion 

radius than Li+. Therefore, the Li-deficient crystal may be formally explained 

with a Nb surplus, or, in other words, a decreasing Li content is accompanied 

by an increasing content of the heavier Nb. The existence of such a stacking 

fault, Nb on a Li site, Nb antisite was repeatedly proved by structure studies, 

which formed the basis for defect models in LiNbO3. According to precise data 

of X-ray and neutron diffraction only 1% of the Li sites are occupied by Nb, 

whereas about 4% of the Li sites are empty (Li vacancies) [36]. These data 

supported the Li site vacancy model in which an Nb antisite is compensated 

by four V’Li, in this model a congruent LiNbO3 is described as  

{[Li]1−5x[NbLi]x[VLi]4x}[NbNb]O3 

where the group in the braces corresponds to the population of the Li sites. 

Nowadays, the Li site vacancy model is commonly accepted as valid and 

considerations of all defect reconstructions in LiNbO3 are discussed in its 

framework. 
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2.3. Properties 

In this section general properties of lithium niobate are presented to give a 

basic summary of the characteristic of the crystal. We give particular 

attention for the non-linear optical phenomena that occur in the material, 

such as the second harmonic generation and the photorefractive effect. 

Principal characteristics of Lithium Niobate are presented in the following 

table. 

Property  

Congruent composition[56] 48.38 mol.% Li2O 

Congruent melting point[56] 1250°C 

Curie temperature [56] 1142,3 ± 0,7 °C 

Point group [56]  3m 

Space group[56] R3c 

Lattice constants (hexagonal) [56] aH= 5,151 Å; cH=13,866 Å 

Density[56] 4,65 g/cm3 

Dielectric constants[56] 

(at 25°C) 

Unclumped    
ε11=85;  ε33=28,7 

Clumped        
ε11=44; ε33=27,9 

Spontaneous polarization[56] 71 µC cm-2 

Pyroelectric coefficient (25°C)[36] -8,3x10-5 C/°Cm2 

Piezoelectric strain coefficients[56] 
(at 25° x 10-12C/N) 

d15=69,2; d31=-0,85; 
d22=20,8; d33=6,0 

TABLE 1. PHYSICAL, CHEMICAL, AND ELECTRICAL PROPERTIES OF LITHIUM NIOBATE 

2.3.1. Pyroelectric effect 

Lithium niobate is a pyroelectric solid which exhibits a change in the 

spontaneous polarization as a function of the temperature. The relation 

between the change in temperature (ΔT) and the change in the spontaneous 

polarization (ΔP) is linear and can be written as ΔP = pΔT, where p is the 

pyroelectric tensor. In lithium niobate this effect is due to the movement of Li 

and Nb ions relative to the oxygen planes and, since they move only in the 

direction parallel to the c-axis, the pyroelectric tensor has the form 
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𝒑 = [
𝟎
𝟎
𝒑𝟑

] 

EQUATION 1 

where p3 =-8,3 x 10-5 C/m2K [53] and the negative sign indicates that upon 

cooling the +c crystal face will become positively charge. 

Pyroelectricity in Lithium Niobate could be used to manipulate or dispense 

liquid at microscale or nanoscale, compared to conventional electro-wetting 

devices, the pyroelectric effect allowed to have an electrode-less and circuit-

less configuration [34], [59]–[61].  

2.3.2. Piezoelectricity 

A piezoelectric crystal is a solid that exhibits an induced polarization when a 

mechanical stress is applied. The relationship between polarization and stress 

is linear and may be written as 

𝑃𝑖 = ∑𝑑𝑖,𝑗,𝑘

𝑗,𝑘

𝜎𝑗,𝑘 

EQUATION 2 

where the vector 𝑃𝑖 is the induced polarization, 𝜎𝑗,𝑘 is the second-rank stress 

tensor, and 𝜎𝑗,𝑘 is the third-rank piezoelectric tensor. Since the lithium 

niobate is a 3m point group symmetry crystal, all tensors describing the 

physical properties of lithium niobate must have at least that symmetry 

(Neumann’s principle). The application of Neumann's principle to the 𝜎𝑗,𝑘 

tensor followed by the use of the reduced-subscript notation gives  

𝑑𝑖,𝑗,𝑘 = [

0 0 0
−𝑑22 𝑑22 0
𝑑31 𝑑31 𝑑33

    
0 𝑑15 −2𝑑22

𝑑15 0 0
 0 0

] 

EQUATION 3 

Note that d15=d24, d22=-d21=(-d16)/2, and d31=d32. So we can describe the 

piezoelectric effect with four independent coefficients d15, d22, d31, and d33 

[53]. Measured values for these quantities are presented in Table 1.  
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A piezoelectric crystal also exhibits a strain under the application of an 

electric field. This is called the converse piezoelectric effect. It can be shown 

that the coefficients connecting the induced strain and the applied electric 

field are identical to those connecting the induced polarization and the 

applied stress in the direct piezoelectric effect [62]. The converse 

piezoelectric effect is expressed as 

𝑆𝑖,𝑘 = ∑ 𝑑𝑖,𝑗,𝑘

𝑖

𝐸𝑖 

EQUATION 4 

where 𝑆𝑖,𝑘 is the second-rank strain tensor.   

2.3.3. Permittivity and refractive indices 

The relationship between the electric displacement D and the electric field E 

is linear and can be written as D=𝜀̂E, where 𝜀̂ is the second-rank permittivity 

tensor. Due to the crystallographic structure and the symmetry properties of 

lithium niobate, its permittivity tensor, in the orthohexagonal cell, can be 

represented by a 3 x 3 matrix with the form  

𝜀̂ = [

𝜀11 0 0
0 𝜀22 0
0 0 𝜀33

] 

EQUATION 5 

where it is notable that only the diagonal elements are not-zero and that the 

permittivity has the same value for any electric direction perpendicular to the 

c-axis. Permittivity is often given in terms of the permittivity of the vacuum 

(𝜀0), obtaining the so called relative permittivity or dielectric constant (𝜀𝑟), 

whose values are reported in Table 1. At optical frequencies the permittivity 

of a material is usually described in terms of its refractive index. In particular 

the lithium niobate presents two refractive indices, an extraordinary one (ne) 

and an ordinary one (no), which refer respectively to the z axis and to the x 

and y axes of the crystal. The dependence of the refractive indices on the 

temperature, the light wavelength and the composition of the material is 

taken into account in the relation proposed by Schlarb and Betzeler in their 
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paper [63], where the Sellmeier equations (Equation 6) are further 

generalized. In particular the Schlarb's approach is valid not only for pure 

LiNbO3 crystals, but also in the case of doping with optical damage-resistant 

ions, allowing exploiting the refractive indices as a sensitive method to 

determine the composition of the material.  

𝑛2 = 𝐴1 +
𝐴2 + 𝐵1𝐹

𝜆2 − (𝐴3 + 𝐵2)
2
+ 𝐵3𝐹 − 𝐴4𝜆

2 

EQUATION 6 

Where n is the refractive index, λ is the wavelength in vacuum in nm, Ax and 

By are experimentally determined coefficients and F is a factor depending on 

temperature expresses in °C. 

𝐹 = (𝑇 −  24.5)(𝑇 +  570.5)  

EQUATION 7 

The crystal is transparent between 320 nm and 5000 nm (Figure 7). 

Parameter of Sellmeier ne no 

A1 4,582 4,9048 

A2 9,921 x 104 1,1775 x 105 

A3 2,109 x 102 2,1802 x 102 

A4 2,194 x10-8 2,7153 x 10-8 

B1 5,2716 x 10-2 2,2314 x 10-2 

B2 -4,9142 x 10-5 -2,9671 x 10-5 

B3 2,2971 x10-7 2,1429 x 10-8 

TABLE 2. PARAMETERS OF SELLMEIER FOR LITHIUM NIOBATE [56] 
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FIGURE 7 REFRACTIVE INDEX AND TRANSMITTANCE (%) OF LITHIUM NIOBATE [64] 

2.3.4. Second Harmonic Generation 

Second-Harmonic Generation (SHG) could be seen like a quantum-

mechanical process in which the contemporary interaction of two photons of 

frequency ω causes the creation of a single photon of frequency 2ω (Figure 

8). This process, in appropriate conditions, could be so efficient to completely 

convert an incident radiation to its second harmonic. One of the most used 

applications of SHG is converting the Nd:YAG radiation at λ =1.064 μm to 

532 nm. 

 

FIGURE 8 SCHEMATIC EXPLANATION OF SECOND HARMONIC GENERATION 

SHG is a parametric phenomenon, this means that there is not any variation 

of quantum-state of our system during the transition between initial and final 

states. So no energy exchange occurs between incident radiation and 
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material. Therefore, crystal functions like a “catalyst” that permits Energy 

Exchange from a mode to another without absorption. 

Property pm V-1 

Non-linear-optical coeff. (at 1,06 µm) [36] d33=34;  d31=6;  d22=3 

TABLE 3. NON-LINEAR OPTICAL COEFFICIENTS OF LITHIUM NIOBATE 

For intense fields the simple relation 𝑃 = 𝜀0𝜒𝐸 is no longer valid and several 

contributions have to be taken into account to work out the induced 

polarization P of the material. Effectively we must use the expanded form  

𝑃(𝑟, 𝑡) = 𝜀0 ∑𝜒𝑖̅𝐸
𝑖(𝑟, 𝑡)

𝑖

= ∑𝑃𝑖

𝑖

(𝑟, 𝑡) 

EQUATION 8 

And it is important to note that the susceptibility is a tensor of ith rank. 

Therefore, if the term 𝜀0𝜒2𝐸
2  is sufficiently large, then the fundamental wave 

generates a second harmonic. The scale of the nonlinearities is controlled by 

the crystal structure and the polarization of the incoming light, in fact second 

order phenomena like SHG and electro-optic effect (Pockels) occur only in 

crystal without the inversion center. We can quantify the SHG performance 

for a particular material or crystal orientation by introducing the nonlinear 

coefficients 𝑑𝑖𝑗𝑘 = 𝜒𝑖𝑗/2 to obtain: 

[

𝑃𝑥(2𝜔)

𝑃𝑌(2𝜔)

𝑃𝑍(2𝜔)
] = [

0 0 0
−𝑑22 𝑑22 0
𝑑31 𝑑31 𝑑33

    
0 𝑑31 −𝑑22

𝑑33 0 0
 0 0

] ∙ 

∙   [𝐸𝑥
2(𝜔) 𝐸𝑦

2(𝜔) 𝐸𝑧
2(𝜔)    2𝐸𝑦(𝜔)𝐸𝑧(𝜔) 2𝐸𝑥(𝜔)𝐸𝑧(𝜔) 2𝐸𝑥(𝜔)𝐸𝑦(𝜔)]  

EQUATION 9 

With the matrix simplified by symmetry, in this case by Lithium Niobate 

symmetry (Neumann’s principle). The sign of the nonlinear coefficient 

determines the sense of the polarization and the overall efficiency of such 

harmonic generation is given [64] as  
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𝜂 =
𝑃2𝜔

𝑃𝜔
= 2(

𝜇

𝜀0
)

3
2 𝜔2𝑑2𝑙2

𝑛(𝜔)2𝑛(2𝜔)

sin2(∆𝑘𝑙/2)

(∆𝑘𝑙/2)

𝑃𝜔

𝐴
 

EQUATION 10 

∆𝑘 = 𝑘2𝜔 − 2𝑘𝜔 

EQUATION 11 

where Pω and P2ω, are the fundamental and the SH powers respectively, d the 

nonlinear coefficient, l the interaction length, n the refractive index, k the 

wavevector of the fundamental in the medium, and A the cross sectional area 

of the pump beam. The efficiency expression emphasizes that ideally Δk=0, 

which can only occur if  

2𝑘(𝜔) = 𝑘(2𝜔) → 𝑛2𝜔 = 𝑛𝜔 (Phase Matching) 

EQUATION 12 

A failure in minimizing Δk means that there will be destructive interference 

between wavelengths generated at different points in the crystal. Thus, there 

is a spatial coherence length given by 

𝑙𝑐 =
2𝜋

𝛥𝑘
=

𝜆

4(𝑛2𝜔−𝑛𝜔)
 

EQUATION 13 

To achieve the phase Matching condition (Equation 12), in a non-linear 

crystal such as LiNb03 the natural birefringence could be used to equate the 

ne and no indices for two polarizations of light, whose wavelengths differ by a 

factor of two. In the case of lithium niobate this condition occurs at a pump 

wavelength of 1100 nm (Figure 7). For negatively birefringent crystals (no > 

ne) the use of a pure ordinary wave for the pump is called type I phase 

matching. Where the incident wave is a combination of ordinary and 

extraordinary polarizations, the phase matching is called type II. However, if 

the incident wave is inclined at an angle relative to the primary optic axis of 

the crystal then the birefringence can be reduced, and hence phase matching 

achieved, at longer wavelengths. Practically, phase matching can be achieved 

if one rotates the crystal so that, using the index variation, the direction of 

propagation of the pump wave is at the correct angle with respect to the 
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optic axis. Another way to achieve phase matching is to use the temperature 

dependence of the refractive index. The temperature-dependencies of the 

refractive index are given by the Sellmeier equations (Equation 6). However 

in the next section a better method to achieve SHG for every frequency 

desired is discussed. 

Quasi-Phase Matching  

As previously discussed, when the wave-vector mismatch Δk between the 

pump and the generated waves is zero, the interaction is phasematched and 

the generated intensity grows quadratically as the waves propagate through 

the crystal. This condition is however difficult to be reached although 

exploiting the birefringence and temperature/angle tuning [65]. On the other 

hand, if Δk is not zero due to the material optical dispersion, the fundamental 

and the SH waves travel with different velocity: in particular, the coherence 

length lc is the distance for which the fundamental waves and the generated 

waves build a phase difference of  and the newly generated SH waves 

interfere destructively with the present ones (Figure 9). If the interaction is 

not phasematched, the second harmonic intensity oscillates between zero 

and a very limited value along the sample, with a period equal to two times 

the coherence length. The maximum power obtainable is therefore quite 

small, independently of the converter length. The quasi-phasematching 

(QPM) is an alternative approach to conventional methods, that does not 

require Δk=0 and allows to access the highest components of the nonlinear 

optical tensor. It is most commonly implemented by periodically reversing 

the sign of the nonlinear coefficient with a period matching an even multiple 

of coherence lengths. In this way at each domain, the newly SH waves sum 

up constructively with those already present so that the SH intensity grows 

monotonically along the sample. In ferroelectric crystals such as Lithium 

Niobate, this task can be achieved by periodically inverting the spontaneous 

polarization of the material therefore creating a regular grating of 

ferroelectric domains. This procedure gives the so-called Periodically Poled 

Lithium Niobate (PPLN) crystals: the maximum efficiency is obtained for the 

first QPM order i.e. using a grating pattern having a period of 2lc. That in our 

case, for a frequency conversion between 1064 nm and 532 nm at room 

temperature is equal to 6,8 µm. 
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FIGURE 9 GRAPHIC OF THE INTENSITIES OF THE SECOND HARMONIC SIGNAL IN CONDITION OF PHASE 

MATCHING (QUADRATIC GROWTH), OUT FROM THE PHASE MATCHING (SINUSOIDAL BEHAVIOR) AND 

QUASI-PHASE MATCHING (INTERMEDIATE BEHAVIOR), WHERE LC IS THE COHERENCE LENGTH 

A significant advantage of quasi-phase matching is that any interaction within 

the transparency range of the material can be quasi-phase matched at a 

specific temperature, even interactions for which birefringent phase matching 

is impossible. Another benefit is that the interacting waves can be chosen so 

that coupling occurs through the largest element of the second rank tensor. 

In LiNbO3, quasi-phase matching with all waves polarized parallel to the z 

axis yields a gain enhancement over the birefringent phase-matched process 

of (2𝑑33/𝜋𝑑31)
2 ≈  20 [66]. Quasi-phase matching is a useful technique for 

extending the range of available nonlinear optical materials. Using planar 

processing methods from the microelectronics industry, such as lithography, 

one can inexpensively fabricate practical microstructured materials for QPM 

interactions. The ability to pattern QPM structures allows the nonlinear 

material to be engineered for the desired interaction. 

The condition of quasi-phase matching become [67] 

∆𝑘 = 𝑘2𝜔 − 2𝑘𝜔 − 𝐾𝑚 

EQUATION 14 

𝐾𝑚 =
2𝜋𝑚

𝛬
 

EQUATION 15 
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Where Km is the grating wave vector, Λ is the period of the grating, and m is 

the QPM order. Therefore to calculate the period of the grating for a certain 

wavelength we have 

𝛬𝑛 = 𝑚𝛬 = 2𝑚𝑙𝑐 =
𝑚𝜆

2(𝑛2𝜔 − 𝑛𝜔)
 

EQUATION 16 

And the efficiency of the QPM-SHG will be [64] 

𝜂 =
𝑃2𝜔

𝑃𝜔
= 2(

𝜇0

𝜀0
)

3
2 𝜔2𝑑𝑒𝑓𝑓

2 𝑙2

𝑛(𝜔)2𝑛(2𝜔)

𝑃𝜔

𝑊𝑡
 

EQUATION 17 

where deff is the effective nonlinear coefficient, W the width of the waveguide 

that transport the incident light, and t the thickness of the guiding layer. The 

formula above will be explained in detail in appendix 2 

Fabrication methods and results and more information about the realization 

and characterization of frequency doubler devices in Lithium Niobate doped 

with Zirconium and undoped are extensively discussed in chapter 3.  

2.3.5. Electro-optical effect 

Another second order optical phenomenon that characterized Lithium Niobate 

is the Electro-optical effect. It consists on the change of the refractive index 

when the crystal is subjected to an electric field. Usually this effect is 

discussed in terms of optical indicatrix, an ellipsoidal surface whose major 

and minor axes of the central section normal to the light propagation 

direction represent the principal refractive indices of the material. The 

behavior of the indicatrix can be expressed in function of the electric fields as 

a power (Equation 18). 

 ∆ (
1

𝑛2
)
𝑖𝑗

= ∑𝑟𝑖𝑗𝑘𝐸𝑘 +

𝑘

∑𝑠𝑖𝑗𝑘𝑙𝐸𝑘𝐸𝑙 +

𝑘,𝑙

… 

EQUATION 18. 

where rijk and sijkl are the coefficients relative to the linear and quadratic 

electro-optic effects, usually named respectively Pockels effect and Kerr 
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effect. Although Lithium Niobate presents high linear electro-optic effect, 

higher-order terms can be neglected, because in this material no quadratic 

electro-optical effect can be significatively observed for applied electric fields 

up to 65kV/mm [68]. Due to the symmetry of the Lithium Niobate, its linear 

electro-optic tensor 𝑟̂ results: 

𝑟̂ =  

[
 
 
 
 
 
   0  −𝑟22 𝑟13

   0   𝑟22 𝑟13

   0    0 𝑟33

0 𝑟42    0
𝑟42 0    0

−𝑟22 0    0 ]
 
 
 
 
 

 

        EQUATION 19 

In Table 4 we report the value of the Pockels effect coefficients measured in 

clamped or unclamped mode, in fact the mechanical strains can affect the 

refractive index via elasto-optic effect leading to different measurements. The 

elasto-optical effect can be expressed as 

(
1

𝑛2
)
𝑖𝑗

= 𝑝𝑖𝑗𝑘𝑙𝑢𝑘𝑙 

EQUATION 20 

where pijkj and ukl are the elasto-optic coefficients and mechanical strains, 

respectively. 

Property pm V-1 

Electro-optical coeff.  
(at 633 nm) 

 (Crystal Technology, Inc.) 

 r11 r22 r33 r51 rz 

Unclamped 10 7 33 33 18 

Clamped 9 3 31 28 19 

TABLE 4.ELECTRO-OPTICAL COEFFICIENTS OF LITHIUM NIOBATE 
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2.3.6. Photorefractivity 

 

FIGURE 10 BAND SCHEME OF THE ONE-CENTER CHARGE TRANSPORT PROCESS 

The photorefractive effect is an optically induced change of the refractive 

index that appears starting from low intensities (10 mW cm−2 for blue–green 

light in LiNbO3:Fe) [36], and shows no intensity threshold. It is produced by a 

combination of effects that occur in three steps: photoexcitation of charge, 

charge migration followed by an electro-optic effect (linear or quadratic). The 

charge migration may be produced by diffusion, drift, bulk photovoltaic 

effect, or a combination of these effects. In Lithium Niobate the dominant 

charge migration mechanism is the photovoltaic effect and the dominant 

electro-optic mechanism is the linear effect (Pockels effect). Therefore the 

variation of the refractive index is due to the Pockels effect arising from an 

electric field generated by a non-homogeneous distribution of charge inside 

and outside the illuminated zone of the crystals. The induced change of the 

refractive index can be detrimental when light propagates in the material, 

leading to the so called optical damage. The negative consequences are the 

wave-front damage, a strong scattering of a transmitting light-wave, and an 

instability or loss of lasing when LiNbO3 crystals are used as a solid state 

laser medium. The photovoltaic effect, the first step of the photorefractivity, 

is strictly dependent on concentration of doping impurities and crystal defect. 

In fact they could form donor and acceptor levels inside the band gap of 

Lithium Niobate from while electron transition may occur promoting free 

charge which diffuse from the illuminated area to the dark area, where the 

electrons decay to the acceptor levels. This lead to a charge difference 
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between the illuminated area and the dark area with the arising of an 

associated electric field. As a matter of fact, this effect can be significatively 

enhanced by doping the material with ions which act as photorefractive 

centers, such as the iron, that, with its two possible valence states (Fe2+ and 

Fe3+), can behave as donor and as acceptor for the free charge carriers. Two 

models could explain these phenomena: one-centre model and two-centre 

model. The one-center charge-transport model [37] was the first model 

developed at the beginning of the studies on photorefractive effect and it is 

still valid in many situations. In this model only a single type of 

photorefractive dopants is considered, which presents two possible valence 

states acting both as donor or as acceptor for the carriers. This is the case of 

iron impurities which are incorporated in Lithium Niobate with the possible 

valence state Fe2+ and Fe3+, behaving respectively as filled or empty trap. 

The one-center model is illustrated in Figure 10.  

 

FIGURE 11 CHARGE TRANSPORT SCHEME IN A TWO-CENTER MODEL. FE
2+

 AND FE
3+

 ARE FILLED AND 

EMPTY DEEP ELECTRON TRAPS. X0
 AND X+

 ARE FILLED AND EMPTY SHALLOW ELECTRON TRAPS. 

However, at high light intensities (I > 102W/cm2) the one-center model is not 

valid [36], these suggesting the need of developing a new approach to the 

charge transport scheme, and to its consideration on the base of a two (or 

more) center model. The most simple and obvious is a transport scheme 

assuming the participation of an additional (secondary) shallow electron trap, 

which is empty in the equilibrium state (Figure 11). Two-center charge-

transport model could explains the fundamental role of 𝐹𝑒𝐿𝑖
3+ and 𝑁𝑏𝐿𝑖

4+ as 

causes of the photorefractive effect, with the former serving as the dominant 
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electron trap and the second as secondary electron trap respectively. This 

model is generally accepted and is always used for interpretation on the 

photoconductivity and photorefraction in LiNbO3. 

For our aims photorefractive effect can play the role of a problem and a 

resource. This because on one hand the optical damage can limited the 

usefulness of the crystals, giving rise to decollimation and scattering of laser 

beams in devices such as modulators and frequency doublers. On the other 

the photorefractivity could be very useful for the realization of holographic 

gratings, holographic data storage, interference filters, image processing, and 

so on. Finally recent studies demonstrated also a direct optofluidic application 

of photorefractivity, such as optoelectronic tweezers [48], or electrophoretic 

and dielectrophoretic particle manipulation [49] exploiting the interaction 

between a laser source, particles and a Fe:LN substrate. 
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3. Microfluidics 

3.1. Microfluidic 

Microfluidics is a branch of knowledge that studies the manipulation and the 

behavior of small quantities of liquid (in the range of 10−9 and 10−12 litres) 

either in channels with dimensions of tens to hundreds micrometers [69] or 

in open configuration as droplets. It is worth mentioning both as technology 

and as science: the first exploits the small size, for example the ability to use 

small volume of reagents and samples, the low cost of a fluidic microchip and 

the short time for analysis; but the second concern their behavior in the fluid 

dynamics at low Reynolds number (section 3.2.2), that ensures laminar flow 

regimes and a high control of the parameters involved. Thus, high control 

and short length scales can be exploited to reach short time scales regarding 

rapid mixing and short reaction times. The impact of the microfluidics in 

biology, medicine, chemistry, material science and other fields is the 

analogous of the use of integrated circuits in electronics. As a matter of fact, 

the miniaturization process has affected and still affects many research fields, 

it is a technological effort of great importance that has brought quite a few 

advantages in different areas, including portability, parallel processing, and 

small volumes. This gives rise to the idea of a “Lab on a chip”: the possibility 

to reduce a whole laboratory in a single microfluidic chip which makes step 

by step all the process phases. This kind of technological effort requires that 

engineering, chemistry and material science participate in the micro- 

fabrication research, whereas the flow dynamic studies and the influence of 

capillarity and interfacial phenomena involve mostly physics.  

The high surface to volume ratio, characteristic of the microfluidic channel, 

implies that the interfacial effects play a great role in the dynamics of the 

system. The capillary effects are further amplified in the droplet microfluidics, 

that is the production and manipulation of discrete volumes with the use of 

immiscible phases [25]. The presence of liquid droplets or gas bubbles in a 

liquid, adds a new degree of complexity to the system. However, droplet 

microfluidics presents many advantages compared to the single phase flow, 

for example the absence of interaction with the microchannel walls of the 
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droplet/bubble fluid, the possibility to rapid mixing in each droplet and the 

absence of cross-contamination between adjacent droplets. In particular the 

control of microfluidic flows together with the use of two immiscible fluids can 

produce droplets with a very low dispersion in size.  

In this work, we focused on the production of controlled droplets by using a 

T-junction geometry for the first time engraved in Lithium Niobate. The role 

of this geometry in the droplets generation will be discussed in (chapter 2). 

In the next section a basic theory of microfluidic is presented to enable the 

understanding of the phenomena and behaviors of our fluidic devices. 

3.2. Theory 

The change of the surface to volume ratio after the miniaturization of fluids 

dimensions changes significantly the behavior of hydrodynamic systems. In 

fact at a micrometric scale volume contributions (such as gravity and inertia) 

decrease their importance or become completely negligible as the surface 

driven effects (such as capillarity) become more important and tend to 

govern the behavior of microfluidic systems. In the following, important 

concepts necessary to understand the formation and the flow of droplets in 

microfluidic channels are briefly introduced. 

3.2.1. Navier-Stokes and Hagen-Poiseuille equations 

For Newtonian fluids (liquid for which the viscosity does not depend on the 

stress state and velocity of the flow) in single-phase flow, the Navier-Stokes 

equation for incompressible fluids is expressed as 

𝜌 (
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖) = −𝛁p + μΔ𝐮 + 𝐟 

NAVIER-STOKES EQUATION 21 

Where ρ is the density, u is the velocity, p is the pressure, μ is the dynamic 

viscosity and f is the resultant of any other forces per unit volume. To 

describe the flow in a circular microchannel it is convenient to  

 use cylindrical coordinates;  

 assuming a steady state of the system;  
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 assuming the radial and the swirl components of the fluid velocity to 

be zero (propagation just in the direction of the channel);  

 assuming axisymmetric flow, the velocity of the flow just depends on 

the distance from the centre of the channel; 

 assuming that the velocity of the liquid do not change along the 

direction of propagation.  

Therefore, integrating and considering the boundary no slip condition (at the 

channel wall the flow velocity is zero) a parabolic velocity profile is obtained, 

with the maximum velocity in the center of the channel. Integrating the flow 

profile over the pipe cross section the Hagen-Poiseuille equation is achieved 

[70]. 

Δ𝑝 =
8 ∙ 𝜇 ∙ 𝐿 ∙ 𝑄

𝜋 ∙ 𝑟4
 

HAGEN-POISEUILLE EQUATION 22 

where Q is the volumetric flow rate that passes the channel, r is the radius 

and ∆p is the pressure difference between two points of the channel 

separated by the distance L.  

The Hagen-Poiseuille equation gives the pressure drop along a circular pipe 

filled with a Newtonian fluid[70]. It is only valid for circular cross sections, for 

rectangular cross sections there is no exact analytical solution known. One 

approximation used to solve the problem is to look at the cross section and 

use a circle with the same surface taking its diameter as hydrodynamic 

diameter and insert it into the Hagen-Poiseuille equation.  

3.2.1.1. Hydrodynamic resistance  

According to Hagen-Poiseuille equation the volume flux Q in a given channel 

depends linearly on the pressure gradient ∆p. In analogy to the Ohm’s law 

the hydrodynamic resistance of a microfluidic channel can be introduced. The 

hydrodynamic resistance R is defined by the relation [71]: 

∆p = R · Qm 

EQUATION 23 

where ∆p is the pressure difference along the channel and Qm = Q · ρ is the 

mass flux (where ρ is the density of the fluid).  
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3.2.1.2. Limits of the Hagen-Poiseuille equation  

It is clear that all the drawn conclusions are only valid generally as long as 

the assumptions made in section 3.2.1 are fulfilled. Especially for high 

velocities, pipe diameters above a threshold (or viscosities below a certain 

threshold) the flow can become turbulent due to small disturbances. Those 

turbulent flows in pipes have a higher resistance than the one predicted by 

the Hagen-Poiseuille equation. Hence the derived equations can be applied 

only for laminar flow or rather, using the concept that is introduced in the 

following section, for small Reynolds numbers. Moreover, the linearity of the 

Navier-Stokes equations is not valid in the presence of droplets or bubbles on 

account of the presence of interfaces that cause instabilities and 

nonlinearities like the deformation of interfaces and the splitting or merging 

of droplets. 

3.2.2. Dimensionless numbers 

The most important dimensionless number in fluid dynamics is the Reynolds 

number  

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
 

REYNOLDS NUMBER EQUATION 24 

where ρ is the fluid density, µ its dynamic viscosity, U is the mean velocity 

and L the typical length scale of the channel (the equivalent diameter). The 

value of Re gives the idea of relative importance of the inertia to viscous 

stress in the system. Microfluidic devices work at low Reynolds numbers 

(Re<1) that assure laminar flow [71]. 

Another dimensionless number is the Weber number  

𝑊𝑒 =
𝜌𝑈2𝐿

𝜎
 

WEBER NUMBER EQUATION 25 

where 𝜎 is the interfacial tension between the two phases. This number 

compares inertia to interfacial tension and usually it is lower than 1 in 

microfluidics.  
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The Bond number gives the comparison between gravity and interfacial 

tension: 

𝐵𝑜 =
𝛥𝜌𝑔𝐿2

𝜎
 

BOND NUMBER EQUATION 26 

where Δρ is the difference in fluid densities and g the gravity acceleration. 

Bo<<1 means that gravity effects can be ignored.  

The relative strength between viscosity and interfacial tension is expressed  

by the Capillary number [72] 

𝐶𝑎 =
𝜇𝑈

𝜎
 

CAPILLARY NUMBER EQUATION 27 

where µ is the larger dynamic viscosity in the system. A low value of Ca 

indicates that the stress due to the interfacial tension is strong compared to 

the viscous stress. In this condition droplets minimize their surface forming 

spherical shape if there are not geometrical constraints. At high value of Ca 

deformation of the droplet surface can be observed. In droplet microfluidics 

Ca is usually comprised in the range from 10-5 to 1. 

3.2.3. Interfacial energy 

The interfacial energy is defined by the interfacial tension  ([]=N/m or 

J/m2). The interfacial tension determines the change in interfacial energy δW 

that is needed to increase the liquids interface by a surface element δA. 

δW = δA 

EQUATION 28 

Interfacial energy can be controlled using surfactants, amphiphilic molecules 

(i.e. with a part hydrophilic and another hydrophobic) [73]. Generally a 

higher surfactant concentration leads to a lower interfacial energy, with a 

concentration limit called critical micellar concentration (cmc) after which 

micelles are generated (micelles are aggregates of surfactant molecules 

oriented in an energetically efficient way) [71]. The decrease of the 

interfacial energy makes it easier to create droplets, that because the 
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capillary number increases lowering the surface tension, making it easier to 

deform the meniscus. Moreover surfactants stabilize the interface once it is 

formed against coalescence, allowing the production of time stable  

emulsions [74]. 

3.2.4. Droplets transport 

Up to this point, channels containing just one fluid were discussed. But for 

the later experiments there is a second important situation: rectangular 

channels that carry a fluid (continuous phase) and droplets of a different fluid 

(dispersed phase). After a droplet is generated in a channel, it is carried 

downstream by the continuous phase and its shape is determined by both: 

surface tension effects that act to minimize the surface of the droplet, and 

the geometry constraints. When its equivalent diameter is greater than the 

diameter of the channel, the shape change forming a plug. For a circular 

channel the plug assumes a circular cross section with a film of the 

continuous phase of constant thickness that wets the walls. If the channel 

has a rectangular cross section, this thickness in not constant and the phase 

fills also the corners like in Figure 12. Both experiments [75] and numerical 

simulations [76] confirm that the thickness which separates droplets from the 

walls is of the order from 1% to 5% of the channel's half height. Note that 

the presence of the continuous phase prevents the direct contact between 

plugs and the wall.  

  

FIGURE 12 (LEFT) TYPICAL SHAPE OF A DROPLET IN A MICROUIDIC CHANNEL FROM FRONT AND CROSS 

SECTION PERSPECTIVES. (RIGHT) AN EXAMPLE OF PLUG TRAIN IN A MICROUIDIC CHANNEL AND THE 

PRESSURE TREND ALONG IT [77] 

The continuous phase layer influences also the velocity of the droplet along 

the channel, in fact for circular channel the droplet move faster than the oil 

[75], while for rectangular channel it moves slower than the carrier fluid, 
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usually the velocity difference keeps below the 6% for typical microfluidic 

capillary numbers ranging from 10-6 and 1 [78]. The typical output of the 

droplet production in microfluidics is the “plug train”: a sequence of droplets 

of constant size and constant spacing (Figure 12). As long as droplets are 

confined and their order is preserved, so that they can be seen as 

independent reactors. Furthermore, we emphasize that at each interface 

between the two phases corresponds a Laplace pressure (Δ𝑝𝐿) due to 

curvature of the surface  

Δ𝑝𝐿 = 𝜎 (
1

𝑅1
+

1

𝑅2
) 

EQUATION 29 

Where is the interfacial tension, and R1 and R2 the radius of curvature of 

the droplet surface respectively. Therefore, the total pressure along the 

channel is nonlinear but it evolves with discrete steps as shown in Figure 12.  

 

FIGURE 13 FLOW FIELD INSIDE AND OUTSIDE THE DROPLET PRODUCE FAST MIXING [77]. 

Finally, another important feature of confined droplets is related to the fast 

self-mixing induced inside the droplet volume and the possibility to droplets 

handling by active or passive methods. Mixing inside micro-droplets also 

benefits from the internal vortex circulation directed by channel geometry. 

The geometrical factor is as much important in droplet fusion or splitting, for 

example through width variation or bifurcation. They takes part in the 

passive methods, while active methods for handling of droplets include the 

use of electrodes or laser heating to induce droplets merging or separation, 

also photorefractivity of lithium niobate can be used for these purposes [48]. 
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1. Preface 

Lithium Niobate (LN, LiNbO3) could be a suitable functional material in the 

field of optofluidics, in fact as discussed previously (Chapter 1) its optical 

properties and applications have been studied in depth in the past years, 

giving to Lithium Niobate a leading position as a material for photonics. 

Moreover, recently also microfluidic and optofluidic application has been 

found for the crystal, from the fabrication of integrated micropump, to 

electrowetting, to optical trapping. Nonetheless, at the best of our 

knowledge, there are not published studies in which Lihtium Niobate is used 

as substrate for microfluidic, but always as a co-operating material with other 

classical materials for microfluidic, in particular polydimethylsiloxane (PDMS). 

In this chapter we discuss the realization of the first microfluidic circuit 

completely engraved in Lithium Niobate. The prototype is made of several 

interconnected stages that, starting from the droplet generation and 

manipulation, consider the droplets transfer through a microfluidic channel 

directly engraved on the Lithium Niobate substrate to an integrated analysis 

stage (Chapter 3) where the optical properties of the droplets constituents 

are monitored and detected.  

In the first section of this chapter theory, geometries, and models of the 

microfluidic droplets generation are discussed, with particular attention to the 

T-junction geometry. Then, in the second section, the fabrication of 

microfluidic circuits in Lithium Niobate is presented, and moreover a 

systematic study of the wetting properties of lithium niobate is discussed 

since in the literature these properties have not been investigated in details. 

Finally in the third section we discuss the characterization of the 

performances of two T-junction droplet generators in comparison to standard 

microfluidic circuits. 

1.1. Microfluidic circuit 

The project regards the realization of microchannels in y-cut and z-cut LiNbO3 

crystals with characteristic sizes in the range of 50-250 µm and lengths up to 

a few centimetres. The circuit is fabricated in a T-junction geometry in order 
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to create a droplet generator. The system is designed to guarantee uniform 

droplets generation, focusing on the fine control of the size, shape and 

monodispersion by altering the fluids flow rate, the channels geometries, and 

the interface energies. A femtosecond laser at 800 nm was used to create 

microfluidic circuits on lithium niobate substrates by means of laser ablation, 

later the circuits were sealed by the means of a PDMS layer with inlet and 

outlet reservoir (Figure 1). The PDMS was used for the testing since the final 

device is closed by a LN top. The microfluidic performance was characterized 

in a wide range of droplet generation frequencies, from few Hz to about 1 

kHz. 

 

FIGURE 1. LEFT) AN EXPLODED VIEW DRAWING OF THE DROPLET GENERATOR, WITH THE T-JUNCTION 

ENGRAVED IN THE LITHIUM NIOBATE AND THE PDMS COVER WITH THE THREE INLETS; RIGHT) A 

MICROSCOPE IMAGE OF THE T-JUNCTION DURING THE DROPLET PRODUCTION IN THE SQUEEZING 

REGIME 

1.2. Objectives 

The principal objectives of the fluidic stage of our project are relative to the 

complete fabrication and characterization of the droplets generator, with 

particular attention to the roughness of the walls of the channel, which is a 

fundamental parameter for coupling optical waveguides with the fluidic stage. 

This result was achieved by several steps: 

• Preliminary study of different techniques for the fabrication of channels in 

Lithium Niobate, with particular attention to sidewall surface quality, 

realization time, and flexibility of the circuit design; (section 3.3) 

• Realization of microfluidic T-junctions devices on y-cut and z-cut Lithium 

Niobate crystals, optimizing all the necessary stage, from the control of 
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wettability of surface by their functionalization, to the better way to seal and 

deliver liquids to the circuit; (sections 3.3, 3.5, and 3.6) 

• A detailed characterization of the T-junction prototypes investigating 

different flow rates of the dispersed and continuous phases, and different 

interface energy. (Section 4) 
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2. Droplets microfluidic 

2.1. Introduction 

In the past years great efforts have been directed towards the development 

of droplet based microfluidics, since it allows overcoming problems typical of 

continuous microfluidics, such as surface effects which lead to axial 

dispersion of liquids and the difficulty to obtain fast and efficient mixing of 

fluids. Moreover, each droplet can be thought as an isolated liquid 

compartment where chemical or biological syntheses take place, so this 

approach significantly reduces the risk of cross contamination between 

different droplets and facilitates single-cell analysis. Also, the possibility to 

produce such kind of flow in a microfluidic device increases the control of the 

parameters which come into play; hence it allows a great control of the 

outcomes. Finally, droplet microfluidics has the ability to perform a large 

number of reactions without increasing device size or complexity [1] and it is 

characterized by a high versatility connected to the generation and 

manipulation of discrete droplets inside micro-devices [2]. For all the 

mentioned reasons and thanks to their scalability and parallel processing, 

droplets based systems have been used in a wide range of applications [3]–

[6], such as the drug delivery, diagnostic testing, bio-sensing [7] and the 

synthesis of biomolecules such as protein and DNA [8]–[10]. 

The key point of the droplet-based microfluidics is the control of the two-

phase flow in a microfluidic device in order to produce and manage discrete 

volumes of fluids. The main elements are two immiscible fluids and a 

microchannel, where the dispersed phase is the fluid that forms the droplet, 

and the continuous phase is the fluid that carries the droplets downstream 

and that completely wets the channel walls. In the case of a hydrophobic 

channel, water is the dispersed fluid that creates droplets and oil constitutes 

the continuous phase: this is the so called W/O condition, which means 

Water-in-Oil droplets. On the contrary we have O/W condition (Oil-in-Water 

droplets) when the channels are hydrophilic. The two-phase flow properties in 

micro-devices rely on three groups of parameters: the channel geometry, the 

fluids properties and the flows conditions. All these factors appear in some 
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important dimensionless numbers that describe the global behaviour of the 

system. As a subcategory of microfluidics, droplet microfluidic inherits the 

same features of standard microfluidics, but also new dynamic problems rise. 

First of all microfluidic devices operate at low Reynolds numbers that assure 

a laminar flow. In the single-phase flow this means the linearity of the 

Navier-Stokes equations, but the presence of interfacial tension, deformable 

interfaces and the complexity of singular events as merging or splitting of 

droplets, introduce elements of instability and nonlinearity otherwise not 

present in standard microfluidics [11]. The evidence of that is the presence of 

different regimes that can appear in the same channel upon varying the flow 

parameters in the experiments (Figure 2). In the transition from one regime 

to the other, small changes in the conditions produce great differences on the 

output. This behaviour is related to the fact that modification in the drop 

geometry couples back to flow profile and can amplify initially small 

variations [12]. Therefore, the interfacial energy became an important 

parameter because of the high surface to volume ratio. This effect can be 

found between the immiscible phases and also between the continuous phase 

and the channel walls. Although the presence of instabilities does not enable 

to predict the system behaviour at all scales, microfluidics allows to produce 

droplets in a controlled and reproducible manner [12], varying a few driven 

parameters in definite ranges. Achieving stability in the production of droplets 

means size monodispersion of droplets and there is a great interest in such 

control ability for potential applications in chemistry, biology and material 

science.  

In conclusion droplets can be easily generated, transported and manipulated 

by playing with geometry, fluids and eventually other integrated devices. 

Moreover the mixing inside the droplets happens in short time in comparison 

to classical procedures; in fact classic microfluidics presents limitations in the 

mixing of two liquids, because at the microscale (low Reynolds number) 

diffusion dominates on turbulence. Droplets can plug this gap and bring 

possible new applications. For this reasons droplet microfluidics has become 

an excellent platform for Lab-on-a-Chip applications. 

In this section we analyse all these aspects and discuss their effects on 

droplet dynamics, focusing on the main features of droplet microfluidics. 
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Later we present a detailed treatment of the droplet production in the T-

Junction geometry, which is the one used in this project. 

2.2. Droplets generator 

The high surface to volume ratio increases the importance of the interfacial 

effects, hence the choice of the chip material and fluids and the geometry 

factor play a great role. Direct agitation of immiscible fluids forms the 

traditional top-down method of droplets production or emulsion, but it causes 

a broad size droplet distribution [13]. On the other hand, geometry 

constraints devices have shown the generation of highly monodispersed 

droplets with a size variation smaller than 2% [14]. There are different 

droplets formation techniques; here we will focus on the three main passive 

methods: Co-flow system, Flow-focusing, and T-junction devices; with 

particular attention to the last one. In all cases the dispersed phase is 

injected in the device where it comes in contact with the carrier phase that is 

independently driven. The junction zone is particularly important; its design 

should optimize the reproducibility of droplet production. The shape of the 

channel evidently influences the local flow field, which can deform the 

interface causing the droplet break-up. The size of the droplet is the result of 

the competition between the viscous shear stress and the pressure of the 

external flow on the one hand, and the capillary pressure resisting 

deformation on the other [12]. Furthermore, another important parameter is 

the frequency of droplets generation, which is related to the volumetric flow 

rate of the dispersed fluid. In general T-junction devices are exploited to 

work at low frequency even though they permit to vary it in a wide range, 

whereas Flow Focusing devices work in general at higher rate of droplet 

production, never below 100 Hz. Both assure a good monodispersion.  

In this project the T-junction geometry in rectangular channels was chosen 

for the realization of the droplet generator in our platform. This because on 

one hand it is a simple shape to reproduce in a substrate of Lithium Niobate 

in comparison to flow-focusing, in the other a great amount of studies has 

been reported in bibliography about this technique, therefore our results can 

be compared to a strengthened literature. Moreover T-shaped is typically 
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implemented since the droplet formation is periodic and regular over a wide 

range of flow rates 

Some examples of droplet size and frequency for different T-junction 

generators are shown in Table 7. In the next sections we present the three 

different droplet generators. 

 

FIGURE 2 THREE DIFFERENT PASSIVE DROPLET GENERATORS ARE REPRESENTED: (A) CO-FLOW 

STREAMS, (B) FLOW FOCUSING, (C) T-JUNCTION. IN HORIZONTAL ARE REPORTED THREE DIFFERENT 

FLOW REGIMES: DRIPPING ON THE LEFT, JETTING ON THE CENTER, AND CO-FLOW ON THE RIGHT. 

2.2.1. Co-flowing 

As it can be seen in Figure 2(a) this configuration is obtained using two con- 

centric capillaries: the dispersed phase is injected with a needle into another 

co-flowing immiscible fluid. This geometry was first proposed by Cramer et 

al. [15] in 2004. With this set-up three different regimes are distinguished: 

dripping, jetting, and co-flowing. In the former drops are formed close to the 

capillary, in the second they break-up downstream from an extended liquid 

jet, in the last two different flows coexist. The first regime can be controlled 

externally by the continuous phase mean velocity. The transition between the 

regimes is linked to a critical value of velocities that depends on the 

dispersed phase flow rate, on the viscosity, and on the interfacial tension. 

The performance of this kind of devices are good, with dispersion lower than 

1% and frequency of production of the kHz, however it cannot be used to 

produce plugs as the squeezing regime is not achievable, and therefore it is 

not suitable for our application. 
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2.2.2. T-junction 

A typical example of T-junction is shown in Figure 2(c). It was first proposed 

by Thorsen et al. [11] and it consists of two perpendicular channels, one for 

each phase, forming a T-shaped junction generating a cross-flow condition. 

Droplets form in that junction and in general three different regimes can be 

obtained varying both the flow rate ratio and the width channel ratio 

(Λ=wc/wd) as summarized in Figure 3. The first regime, called squeezing 

(Figure 1-right), occurs when the dispersed phase obstructs the channel as 

the droplet grows, thus restricting the flow of the continuous phase. This 

restriction produces an increase of the dynamic pressure upstream of the 

droplets that generates a force necking the interface and pinching off the 

droplets [12]. This configuration generally occurs at low velocity of both 

phases and for Λ∼1. A second regime is the dripping one: droplets break up 

when the shear stress overcomes the interfacial tension. The easiest way to 

obtain this regime is when Λ≪1 and the velocity of the continuous phase are 

high enough (bigger than the dispersed phase mean velocity) [16]. The 

jetting regime occurs when both phases have high velocities and it appears 

as stable parallel flowing streams. In this configuration droplets are formed 

by the instability at the flat interface and their size is not controlled. The 

influence of both flow rate ratio and the geometry factor is not trivial at all. 

Since this generator is that used in this thesis, a more detailed explanation of 

the T-junction can be found in section 2.3. 

2.2.3. Flow-focusing device 

As shown in Figure 2(b), in this kind of geometry the dispersed phase is 

squeezed by two opposite streaming flows of the continuous phase. The flow- 

focusing device was first proposed by Anna et al. [17] where both 

monodisperse and polydisperse emulsions were produced. Differently from 

the T- junction the large number of possible configurations does not allow the 

development of simple scaling laws, while phase diagrams are usually 

produced changing flow rates or pressure to study the general output and 

characterize the single device. Four main regimes can be identified: 

squeezing, dripping, jetting and thread formation.  
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2.3. T-junction: theory and models 

 

FIGURE 3. SCHEME OF THE GEOMETRICAL PARAMETERS TYPICAL OF A T-JUNCTION AND OF THE 

DROPLET FORMATION IN THE SQUEEZING AND DRIPPING REGIMES, ALSO QC AND QD ARE THE FLOW 

RATE OF THE CONTINUOUS PHASE AND THE DISPERSED PHASE RESPECTIVELY 

In this section we present a brief introduction of the models developed to 

describe this kind of device. In fact, the mechanism of break-up of droplets 

strongly influences their final size, therefore several numerical [18]–[20] and 

experimental studies [21][22] discuss the models of the pinch-off, analysing 

the strength of the forces involved in it. A better and general characterization 

of microfluidic device for droplets generation and manipulation was given by 

Seeman et al. [23]. In this thesis and in particular in our later discussion 

(section 4) we refer to the model proposed by Cristopher et al. [21] in which 

the process of droplet formation is analysed in the frame of the competition 

between the local fluid shear stress, that acts to deform the interface, and 

the capillary pressure ∆PL, which resists to that deformation. In particular the 

authors investigate the transition between regimes, from squeezing to 

dripping. The model is an extension of a previously one developed by 

Garstecki et al. [22], which is valid only in the squeezing regime. Instead 

Christopher model is valid for the squeezing and for the dripping regimes; 

therefore it is useful to know that the transition from the two regimes occurs 

when the shear stress is exactly balanced by the Laplace pressure, so that 

the shear stress affects the size of droplets before they obstruct the channel. 

The transition is found at a critical capillary number Ca*≈0.015 [21], 

therefore the pure squeezing regime is achieved for Ca≪Ca*. We report in 
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Figure 3 the circuit parameters taken in account in this section and in the 

article [21]. The model is divided in two stages: in the first the dispersed 

phase (water in our setup) grows inside the continuous phase channel, in the 

second we have the detachment of the droplets from the junction with the 

constriction of the neck (s in Figure 3) until the detachment. Christopher 

analyses the contribution to the droplet length of each of these two stages. 

During the first stage the growing of the droplet is controlled by three forces: 

• Capillary force, which contrasts the interface deformation and therefore the 

break-up of the droplet. This force is due to the pressure difference between 

the head and the tail of the droplet along the flux direction that is calculated 

from the Laplace equation. 

𝐹𝜎 ≈ [−𝜎 (
2

𝑏
+

2

ℎ
) + 𝜎 (

1

𝑏
+

2

ℎ
)] 𝑏ℎ ≈ −𝜎ℎ 

EQUATION 1 

where σ is the surface tension between the two liquids, b the droplet length, 

and h is the depth of the channels.  

• Viscous force, due to the shear stress between the two fluxes, and it is 

calculated as the product of the viscosity of the continuous and dispersed 

phases and the shear rate γ due to the flowing of the continuous phase 

between the droplet and the upper wall (approximately wc-b) of the 

continuous phase cannel. γ is approximated as the ratio between the velocity 

of the continuous phase (ugap) at the interface with the dispersed phase, and 

the width of the shrinkage between the droplet and the channel wall as wc-b.  

𝐹𝜏 ≈ 𝜇𝑐

𝑢𝑔𝑎𝑝

(𝑤𝑐 − 𝑏)
𝑏ℎ ≈ 𝜇𝑐

𝑄𝑐

ℎ(𝑤𝑐 − 𝑏)2
𝑏ℎ ≈

𝑄𝑐𝑏𝜇𝑐

(𝑤𝑐 − 𝑏)2
 

EQUATION 2 

• When Λ≥1/2 or Λ∼1 the emerging droplet is influenced by the confinement 

within the microchannel. The obstruction of the channel by the droplet gives 

an additional force Fp exerting on the interface due to the increasing 

resistance of the continuous flow in the region between the droplet and the 

wall [22].  
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𝐹𝑝 ≈ Δ𝑝𝑐𝑏ℎ ≈
𝜇𝑐𝑄𝑐𝑏2

(𝑤𝑐 − 𝑏)3
 

EQUATION 3 

Where Δpc is the Hagen-Poiseuille pressure acting on the droplet while the 

channel is being closed by the droplet growing. The approximation is valid for 

h>>wc-b that is valid for the squeezing regime. Moreover when Λ =

𝑤𝑑
𝑤𝑐

⁄ <1/5 the emerging droplets do not interact with the downstream 

microchannel walls and remain unconfined by the channel [24]. In this 

configuration the dependence of the droplet size on the dispersed phase flow 

rate is less consistent and it should depend only on the capillary number. 

When the three contributions get balanced, i.e. the capillary force cannot 

contrasts the other forces, the second stage begin and the droplet neck start 

shrinking until its break-up. Therefore we can calculated two contributions to 

the final droplet length, the first that is relative to the first stage of the 

droplet grown until the compensation of the three forces can be derived 

resolving the equation Fp+Fτ+Fσ=0 in function of b: 

(1 − 𝑏̅)3 = 𝑏̅ ∙ 𝐶𝑎 

EQUATION 4 

where 𝑏̅ ≡ 𝑏
𝑤𝑐

⁄  and Ca is the Capillary Number, it is notable from this 

equation that Ca is a fundamental parameter for the control of the droplet 

size.  

The second length contribution is relative to the break-up stage in which we 

assume that the shrinking rate of the neck is equal to the continuous phase 

velocity [21] 𝑢𝑠𝑞𝑢𝑒𝑒𝑧𝑒 ≈ 𝑢𝑐 =
𝑄𝑐

𝑤𝑐ℎ⁄ . Moreover the rate of grown of the droplet 

during the breakup phase can be approximate as 𝑢𝑔𝑟𝑜𝑤𝑡ℎ ≈
𝑄𝑑

𝑏ℎ⁄ =
𝑢𝑑Λ

𝑏⁄ , 

where Λ =
𝑤𝑑

𝑤𝑐
⁄  and 𝑢𝑑 =

𝑄𝑑
𝑤𝑑ℎ⁄ . The contribution to the final droplet length 

of the second phase is then calculated using Equation 4 and estimating the 

time of detachment 𝑡𝑠𝑞𝑢𝑒𝑒𝑧𝑒 ≈
𝑤𝑑

𝑢𝑠𝑞𝑢𝑒𝑒𝑧𝑒
⁄  and the rate of droplet growing 

ugrowth.  



CHAPTER 2: FLUIDIC STAGE  

 

 65 

Finally from the sum of the two different length contributions we obtain the 

expression of Christopher et al. for the droplet length in a T-Junction 

generator: 

𝐿̂ = 𝑏̅ +
Λ

𝑏̅
𝜙 

EQUATION 5 

Where 𝜙 =
𝑄𝑑

𝑄𝑐
⁄  and 𝐿̂ = 𝐿

𝑤𝑐
⁄  which is an effective length.  

The expression for 𝑏̅ → 1 and Λ = 𝛼, where 𝛼 is a constant factor of order 1 

[22], tends to Garstecki et al. equation: 

𝐿̂ = 1 +
α

𝑏̅
𝜙 

EQUATION 6 

From the Equation 5, Christopher et al. proposed two relations that are 

important for the discussion of our results: 

• The relation between Ca and the frequency of droplet production f:  

𝑓̅ = 𝛽̅ ∙ 𝐶𝑎𝛼 

EQUATION 7 

where 𝑓̅ = 𝑓𝑡𝑐𝑎𝑝 is an effective frequency, 𝑡𝑐𝑎𝑝 =
𝜇𝑐𝑤𝑐

𝜎⁄ , and 𝛽̅ is the 

proportional coefficient. This relation is valid for viscosity ratio 𝜆 =
𝜇𝑑

𝜇𝑐
⁄  

between 1/6 and 1/350, and for Ca values between 0.04 and 0.001 [21].  

• The relation between the droplet volume V, Ca and the fluxes ratio φ 

between the two liquid phases: 

𝑉̂ =
𝜙

𝛽̅
∙ 𝐶𝑎1−𝛼 

EQUATION 8 

where 𝑉̂ = 𝑉
𝑤𝐶

2ℎ⁄  is an effective volume. 

These relations will be used in the discussion of the devices performances in 

the characterization section (4.2). 
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2.4. Fluids and Materials 

The choice of the liquids used in a microfluidic circuit is an important task. As 

a matter of fact, the properties of the liquids, first of all the viscosity and the 

surface tension, affect significantly the performances and the microfluidic 

characteristics of the circuit. In particular, for our purpose, viscosity and 

surface tension are relevant in the droplets generation phase, as discussed in 

the previous section, and are taken into account in the Capillary number that 

control the length of the droplets (Equation 4), their volume (Equation 8), 

and their generation frequency (Equation 7). Typically, in the literature water 

is used for the disperse phase and different kind of oil for the continuous 

phase, this because water is a suitable fluid for lot of application, since both 

biology experiments and chemistry reactions are in most cases performed in 

aqueous systems. Moreover it is possible to control the surface tension 

between the immiscible liquids using surfactant, amphiphilic molecules that 

are able to decrease the surface energy of a liquid.  

 

FIGURE 4 (LEFT) CONTACT ANGLE BETWEEN LN AND HEXADECANE (RIGHT) CONTACT ANGLE BETWEEN 

LN AND WATER 

To prevent the Co-flow regime it is important that the continuous phase wet 

completely the channels walls and that the dispersed phase do not wet them. 

Therefore the interaction between the material in which the channels are 

realized and the liquids is fundamental in the realization of the devices. The 

coefficient of wettability k is the parameters used to measure this kind of 

interaction between a liquid and a solid surface. The coefficient is defined by 

the Young’s Law from the angle that a droplet forms on the surface of a solid 

(Figure 4): 
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𝑘 = cos 𝛼𝑐 =
𝜎𝑠𝑔−𝜎𝑙𝑠

𝜎𝑙𝑔
 

EQUATION 9 

where 𝛼𝑐 is the angle between the solid surface and the interface liquid-gas, 

σls is the surface tension at the solid-liquid interface, σsg at the solid-gas 

interface, and σlg at the liquid-gas interface. The measurement of 𝛼𝑐 for 

different solids and liquids is used to determine a scale of wettability where 

0° is total wettability and angle >90° are reached by hydrophobic surfaces. 

Therefore to avoid Co-flow regime in a T-Junction we need to measure the 

contact angle between each liquids and the surface material, in our case 

Lithium Niobate, finding the best condition to achieve hydrophobic and 

lipophilic surfaces.  

For what concern the solid materials, a large number of microfluidic devices 

are fabricated using PDMS (polydimethylsiloxane), an elastomeric, 

transparent and inexpensive polymer. Also other materials can compose the 

channel, like glass or silicon. They better withstand the swelling and the 

deformation in the presence of strong organic solvent, but at the price of a 

more complicated manufacturing process. PDMS is hydrophobic, hence it is a 

good choice to obtain W/O configuration because it prevents the dispersed 

phase from adhering to the channel walls [13]. The wetting control between 

the channel and the continuous phase is important in switching between W/O 

and O/W configuration. The functionalization of PDMS, glass and silicon 

usually can be used to change the superficial chemical properties of surfaces 

bonding a layer of molecules that can change the wettability of the material, 

so that with a hydrophobic functionalization W/O configuration is achieved, 

on the contrary O/W is reached with a hydrophilic functionalization of the 

channel surfaces (section 3.6). 

Lithium Niobate wettability properties and its microstructuration are 

discussed in the next chapter, in order to demonstrate its applicability in the 

microfluidic field.  
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3. T-Junction in Lithium Niobate 

3.1. Introduction  

In this section we discuss for the first time, at best of our knowledge, the 

realization of a microfluidic device in Lithium Niobate crystals by means of 

femtosecond laser ablation at a wavelength of 800 nm. In particular, as part 

of our project, a droplet generator system has been fabricated due to the 

recent interest of scientific community on this research area. Among the 

main droplets generation devices, the T-junction geometry has been chosen 

as reference for this work, thanks to its simple realization and the capability 

to produce a rich and complex scenario of stable droplets patterns: [18][22] 

and references therein. A feasibility study of the microstructuration 

techniques for the realization of microchannel in Lithium Niobate is 

presented. The comparison between these different techniques supports the 

exploitation of laser ablation to get microfluidics device engraved in lithium 

niobate crystals (0). After that, we discuss all the steps that are necessary 

for the realization of a complete microfluidic device, from the sealing of the 

channel with a PDMS layer, to the functionalization of the walls of the 

channels. In the first section we present the preliminary study about the 

wettability of the lithium niobate as a starting point for its application in 

microfluidics. 

3.2. Wettability of Lithium Niobate 

As previously explained (2.4) one of the most important parameters in 

microfluidic is the contact angle between a liquid and a solid. A parameter 

that is directly related to the value of the surface tensions of the system 

(Equation 9) and therefore is able to give a measure of the wettability 

between a solid and a liquid. The contact angle is defined as the angle made 

by the intersection of the liquid/solid interface and the liquid/air interface. A 

high contact angle indicates a low solid surface energy or chemical affinity. In 

particular we are interested on the hydrophilicity and lipophilicity of the 

Lithium Niobate as, how discussed in section 2.4, we want a material that is 

lipophilic (as the majority of the solids) and hydrophobic. Therefore we collect 
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measurements of the contact angle of distilled water and hexadecane, the 

liquids chosen for the droplets generation. The measure of the contact angle 

was achieved with a software (developed by Lafsi group - Padova) able to fit 

the surface profile of a droplet, which allows the user to measure the contact 

angle. The droplets were deposited by a syringe pointed vertically down onto 

the sample surface, and two high resolution cameras captures the image at 

90° one from the other. The volume of the droplets was 500 nL and the 

LiNbO3 samples were all cleaned before the measurements using a simple 

procedure: soap and water, distilled water, isopropanol, and acetone under 

sonication. Moreover, the measures were taken on 6 different 

crystallographic surfaces of lithium niobate ±x, ±y, and ±z. For each of these 

faces more than 10 droplets were drop off and photographed by the two 

cameras along the two different crystallographic axes laying on the surface. 

All this attention to the crystallography of the crystal was necessary to 

estimate the effect of the crystal anisotropy on the surface energy of the 

crystals, in order to discover eventual phenomena that could affect the 

droplets generation and carriage in the LiNbO3 microchannels. In fact, it is 

well known from literature that positive and negative faces of the z [25], [26] 

and y [27] surfaces have different chemical behaviour, starting from their 

etching rates that strongly depend from the crystallographic plane [28]. 

Finally the contact angles were measured also for LN functionalizated with a 

hydrophobic Self Assembled Monolayer (SAM), using Octadecyltrichlorosilane 

(OTS) with the same procedure discussed in section 3.6. The results of these 

measurements are reported in Figure 5 and Figure 6. 

 

FIGURE 5 CONTACT ANGLES FOR THE DIFFERENT CRYSTALLOGRAPHIC FACES AND DIRECTIONS OF 

CONGRUENT LITHIUM NIOBATE FOR DISTILLED WATER (LEFT) AND HEXADECANE (RIGHT). IN RED THE 

VALUE OF THE AVERAGE CONTACT ANGLE. 
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FIGURE 6 CONTACT ANGLES FOR THE DIFFERENT CRYSTALLOGRAPHIC FACES AND DIRECTIONS OF 

CONGRUENT LITHIUM NIOBATE FUNCTIONALIZATED WITH OTS FOR DISTILLED WATER (LEFT) AND 

HEXADECANE (RIGHT). IN RED THE VALUE OF THE AVERAGE CONTACT ANGLE. 

As it can be seen in Figure 5 Lithium Niobate results to be extremely 

lipophilic and moderately hydrophobic with a contact angle between between 

10° and 0° with the hexadecane and 65° and 56° with the water, so that it 

could be a good substrate for the W/O configuration. As expected (Figure 6) 

the OTS functionalization affect the wettability of the Lithium Niobate in all 

the direction, obtaining an enhancement of the contact angle of about 40° for 

the water and of about 30° for the hexadecane.  

It is difficult to discuss these results, as the wettabilities are probably 

affected by different phenomena which could change the surface energies of 

the crystallographic planes during different sets of measurement: umidity, 

pressure and temperature. Moreover, also pyro- and piezo-electric effects 

can change the value of contact angles under pressure or temperature 

fluctuations, since they can lead to electro-wetting phenomena as net charge 

arise. Since the measurements do not follow the reproducibility condition, the 

statistical error cannot be used. Therefore we estimate an error of 1,5° from 

the sensibility. 

Moreover only the measurements of the angles on the same surface are 

comparable, as they were taken from the same sets of droplets, one for each 

of the two cameras. Therefore we can derive the value of the compatibility 

parameter [29] for the couples (x,y)(x,z); (-x,y)(-x,z); (y,x)(y,z); (-y,x)(-

y,z); (z,x)(z,y); (-z,x)(-z,y). The compatibility parameter for all this contact-

angle couples results compatible in each condition (water, hexadecane, OTS 

functionalization), with value always lower than 0,8. Therefore the results 



 72 

suggest that on every face the wettability is isotropic. Unfortunately we 

cannot discuss the other couples of faces and directions, as the low 

reproducibility of the measurements prevents their comparison. Consequently 

further studies are necessary to measure a possible anisotropy of the 

different faces. But the control of pressure, temperature and humidity needs 

to be done in a glow-box. In Table 1 we report the average value for alla the 

crystallographic direction. 

 Water Hexadecane 

Congruent 62±1° 10° - total wetting 

OTS 101±1° 35±1° 
TABLE 1 AVERAGE VALUE OF ALL THE CRYSTALLOGRAPHIC DIRECTIONOF THE CONTACT ANGLE FOR 

WATER AND HEXADECANE IN LITHIUN NIOBATE CONGRUENT AND FUNCTIONALIZATED WITH OTS. 

3.3. Microfabrication in Lithium Niobate 

One of the main challenges of our project was the fabrication of micrometric 

channels in Lithium Niobate. As a matter of fact, very few studies realized 

structures of hundreds of micrometres in such kind of material [30], and the 

majority of the works on microfabrication in Lithium Niobate concerns the 

realization of ridge waveguides of few micrometres [31]–[37]. Therefore we 

start from a feasibility study of different techniques starting from what has 

been proposed in literature for optical devices. We take into account several 

techniques: wet etching, mechanical micromachining, ion implantation, 

Focused Ion Beam lithography (FIB), Reactive Ion Etching (RIE), laser 

ablation. For some of them we discuss only the results reported in literature, 

for other we present also some experiments and results we achieved. The 

choice of the fabrication technique was subjected to different parameters: 

time of fabrication, flexibility of the circuit pattern realizable, costs, quality of 

the channels, and reproducibility. Moreover, since the material is proposed as 

an optofluidic substrate also the optical quality of the walls of the channels is 

fundamental, especially for the good coupling between the waveguides and 

the droplets in the final device. Therefore the femtosecond laser ablation is 

discussed in-depth as it got the best results and was chosen for the 

realization of our platform. Since our purpose was not a complete 

characterization of these techniques applied to Lithium Niobate this section 

cannot be considered a definitive response to the problem.  



CHAPTER 2: FLUIDIC STAGE  

 

 73 

3.3.1. Etching 

A method often used for microstructuring of LiNbO3 surface is the chemical 

etching process, which is also exploited to realize low-loss ridge waveguides 

[33]. Lithium Niobate is an extremely chemically stable material, so that only 

a bath in hydrofluoric acid is able to etch the crystal. Usually a solution of 

HF:HNO3 in a 1:2 ratio is used, as it gives fewer defects and a lower 

roughness of the surfaces after the etching. In fact the main advantage of 

this technique is the quality of the sidewalls, since it has been optimized for 

optical purpose. However, this approach has two main disadvantages: the 

first is that the etching rate strongly depends on the crystallographic axes of 

the material [28], so that the material removal is asymmetric, furthermore 

the maximum etching rate is achievable on the -z face and it is about 1μm/h 

at room temperature [25], so that the realization of a microfluidic device with 

the same depth of the T-junctions used in this work would require tens of 

hours. Moreover, we need a technique able to realize channels on y-cut and 

x-cut crystals, because the realization of photorefractive reticle is efficient 

only in orientations different front the z axes; but this kind of orientation 

have etching rate even slower than –z surface (some nm/min at room 

temperature [28]). 

We tried to solve these problems improving the wet etching with a previous 

step able to increase the etching rate and the isotropy of the process. It is 

known that the proton exchange (PE) in lithium niobate crystals is able to 

increase the etching rate of the material of about one thousand times [38] 

[32]. This is because a phase transition related to the process [39]. Another 

advantage of this treatment is that it diffusion in step-like [39], which would 

allow to obtain rectangular channels. So we made some tries using as source 

of proton benzoic acid at 240°C 

𝐿𝑖𝑁𝑏𝑂3 + 𝑥𝐶6𝐻5𝐶𝑂𝑂𝐻 ↔ 𝐿𝑖−𝑥𝐻𝑥𝑁𝑏𝑂3 +  𝑥𝐶6𝐻5𝐶𝑂𝑂𝐿𝑖 

First experiment realized on y-cut samples exhibit, as expected [32], a 

serious surface damage y due to the strain that occurred in the crystal. 

Therefore we repeat the PE treatment adding 1% mol. of C6H5COOLi to the 

benzoic acid (buffered PE), so that the reaction became less aggressive. The 

surface of the sample was not damage, but the diffusion time slow down as 

reported in Table 2. 
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 Diffusion Coefficient [𝛍𝐦𝟐/𝐡] 

Benzoic Ac. 230°C y-cut 1,52 

Benzoic Ac. 230°C y-cut buffered 1% 0,08 

Benzoic Ac. 230°C x-cut 0,10 

TABLE 2 PROTON EXCHANGE DIFFUSION COEFFICIENT IN LITHIUM NIOBATE CALCULATED FOR 

DIFFERENT ORIENTATION AND CONDITION [39]. 

Therefore we tried PE with x-cut sample that, as expected from literature 

[38], does not exhibit surface damage. However also in this case the proton 

diffusion is too slow. Moreover we found that the PE stops at a depth of about 

3 μm also after days of treatments at high temperature [40], this is due to 

an opposite electric field caused by the strain of the PE phase and the 

piezoelectric effect. Therefore the realization of channels of tens or hundreds 

of micrometres seems to be impossible, a solution to this problems could be 

proton exchange electrically assisted [41], becoming complicated with 

respect to other approaches and therefore less competitive. In fact the 

chemical etching process showed to require the combination with too much 

preparation steps: the realization of a suitable mask at the surface of the 

LiNbO3 substrate by means of conventional lithography for the PE; the PE at 

high temperature and under an electric field for long time (days), and finally 

the etching in extremely hazardous solutions. This makes the whole 

fabrication process extremely complex and time consuming and not suitable 

for our purpose. 

3.3.2. Micromachining - optical grade dicing 

As an alternative, we tried to realize microfluidic channels by using a 

precision blade for optical grade dicing (thanks to MISTER lab of the IMM CNR 

of Bologna) as also proposed by Chauvet et al. [30], but even after several 

optimization steps the best roughness we were able to achieve on the bottom 

of the channel, Ra = (0.53 ± 0.01) μm (Figure 7), was almost a factor of two 

greater than the value obtained in the channels made by laser ablation (see 

section 3.4.1). Moreover, even if the optical grade dicing showed to be a 

good method to realize smooth vertical walls [35], as showed by SEM images 

(Figure 8); this technique cannot be exploited to realize a microfluidic device 

with an arbitrary shape and therefore it is mainly useful to create only 
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straight channels or waveguides. In addition the width of each single channel 

is strictly conditioned by the thickness of the blade. 

Bottom face Upper face Profilometry 

   

   

FIGURE 7. THE IMAGES OF THE BOTTOM SIDES AND THE UPPER SIDES OF TWO CHANNELS FABRICATED 

WITH OPTICAL GRADE DICING ARE REPORTED. THE NOMINAL VALUES OF DEPTH FOR BOTH IS 25 μm 

AND THE WIDTH IS 100 μm FOR THE FIRST AND 25 μm FOR THE SECOND. THE CHANNELS ARE CUT 

ALONG THE Z DIRECTION. ON THE RIGHT ALSO THEIR PROFILOMETRY IS REPORTED. 

Furthermore, as it can be easily seen in the figures above, the quality of the 

upper edges of the channel were not good, an important feature considering 

the implementation of surface waveguides and their coupling with the 

channel walls. Hiwever this problem can be probably solved using a 

protective layer during the cut. Nevertheless, optical grade dicing could be a 

good solution for the realization of low roughness sidewalls and - although 

femtosecond laser ablation is more suitable for the realization of complex 

geometry as the T-junction - a cooperation between the two technique, the 

first for the droplets generation stage and the second for the analytical stage, 

could be a possible solution in the case the roughness of the femtosecond 

technique exhibits unsatisfactory results. 
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FIGURE 8. SEM IMAGES OF A CHANNEL FABRICATED WITH OPTICAL-GRADE DICING, ON THE RIGHT A 

PARTICULAR OF THE WALLSIDE 

3.3.3. Other techniques 

A lot of other different techniques have been used to produce waveguides: 

reactive ion etching (RIE) [42], ion beam wet etching enhancement [43], and 

focused ion beam lithography (FIB) [44]. In the following we briefly discuss 

the reasons of their exclusion as channels fabrication methods: 

Reactive Ion Etching: Different efforts based on RIE on Lithium Niobate using 

SF6, CF4, and CHF3 plasmas have been reported in literature, with etching 

rates of up to 50 nm/min and a LiNbO3/Cr selectivity of 0.25 obtained on a 

variety of LiNbO3 substrates[45][46]. More recently, the introduction of high 

density plasma tools such as inductively coupled plasma (ICP) enhanced the 

etching ability of this systems, and ICP etchers were introduced to etch 

LiNbO3 using SF6 and mixed CHF3/Ar plasma [42], significantly increasing the 

etching rate up to 190 nm/min, with a mask selectivity of 10 over NiCr, good 

surface smoothness, and near-vertical sidewall angle [42]. However, at the 

best of our knowledge, the realization of structures of hundreds of 

micrometres have not been reported in literature since now, and surely new 

studies are necessary to optimize this technique for our purposes. Therefore, 

ICP-RIE is a notable process that can be taken in consideration as a valid 

alternative to femtosecond laser ablation. 

Ion Beam damage: A study on the enhancement of the etching rate in 

samples of LiNbO3 damaged by ion beam exposure was recently proposed by 

Bianconi et al. [43]. The study exhibits a very high etching selectivity of the 

heavily damaged ion implanted substrate regions, with an etching rate of up 
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to 100 nm/s. However, this process seems to be more suitable for sub-micro 

machining of LiNbO3 crystals than for our purpose, with a depth of damage of 

2 µm for Ti ions at 12.5 MeV.  

Focused Ion Beam lithography: FIB technique allows obtaining a good 

roughness (few nanometres) of the channel walls as reported in [44]. 

However, the FIB milling process is mainly suitable for realizing 

nanochannels, since its material removal rate is several orders of magnitude 

smaller than the values typical of micromachining by femtosecond laser 

ablation. Sridhar et al. [44] report a milling time of 30s to realize a 

nanochannel that is 100μm long, 100nm wide and 100 nm deep (volume 

equals to 1 μm3), an order of magnitude that is too far from our volume 

(equals to 5.4 x 108 μm3). 

In Table 3 a comparison between the three suitable techniques for the 

fabrication of microfluidic device in lithium niobate is reported. Therefore, 

methods and characterization of the femtosecond laser technique are 

reported in the following section, where an accurate study is presented. 

Technique 
Optical 
quality 

Pattern flexibility 
Sidewall 

Angle 

Femtosecond 
Laser Ablation 

Good 
(Ra~50 nm) 

Every pattern, in prospect 3D 

and embedded structures could 
be made [47] 

Vertical 

ICP-RIE Good 
Every superficial pattern 

compatible with the lithographic 

mask 

Near 

vertical 

Optical grade 

Dicing 
Good 

Only superficial and straight 

structures 
Vertical 

TABLE 3 COMPARISON BETWEEN THE TECHCNIQUES THAT, AFTER THE FEASIBILITY STUDY, RESULT 

SUITABLE FOR THE FABRICATION OF MICROFLUIDIC STRUCTURES IN LITHIUM NIOBATE 

3.4. Laser Ablation 

The result of our feasibility study on different techniques for the Lithium 

Niobate microstructuration is the choice of femtosecond laser ablation. Since 

it allows realizing fluidic circuits at the micrometre scale in a reasonable time, 

with any desired geometry and good quality of the channels walls. Our 

results support the exploitation of laser ablation as a suitable technique to 

get microfluidics device engraved in lithium niobate crystals, so that 
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subsequent integration of several optical stages can be foreseen, thus paving 

the way for the realization of powerful optofluidic devices on this material. 

In the following section we discuss the realization and characterization of 

channels and T-junction devices on LiNbO3 substrates by means of laser 

ablation, a femtosecond laser at 800nm was used to create the microfluidic 

circuits, using different scanning velocities (100-500 m/s) and laser pulse 

energies (1-20 J). All the fabrication processes were realized at the 

“Nonlinear Photonics Group” of prof. C. Denz (Institute of Applied Physics of 

the University of Münster, Germany) and then characterized at the Physics 

and Astronomy Department of the University of Padova. 

3.4.1. Experimental and characterization 

A pure y-cut LiNbO3 sample with congruent composition was cut from a 

commercial wafer (Crystal Tech.) polished on both sides. The T-junction was 

realized on the +y face of the LiNbO3 sample by using a Ti:Sapphire 

femtosecond laser (Coherent Inc.), with an operating wavelength of 800nm, 

1 kHz repetition rate and 120fs pulse length. The laser beam was focused at 

the surface of the crystal by using a 50x ultralong working distance 

microscope objective (NA=0.55) and the workstation was equipped with a 

computer-controlled XYZ translation stage, which allows moving the LiNbO3 

sample with high spatial resolution. The addressed volume of the microfluidic 

channels was scanned successively with a resolution of 10 micron and 15 

micron in the horizontal and vertical direction, respectively. The tool path was 

optimized to achieve flat boundaries and even surfaces. Moreover, a constant 

air flux was maintained at the upper surface of the sample during the 

micromachining process, in order to eject the ablated material out of the 

channels.  

Several tests were performed to study the laser ablation process on lithium 

niobate by varying the values of scanning velocity (50-1000μm/s) and 

energy (1-20 μJ) used to engrave the T-junction, in order to find the best 

parameters to be used in our particular experimental set-up. Figure 9 to 

Figure 12 illustrates the microscope images of U-grooves (200 x 250 μm2) 

realized with the femtosecond laser by using different parameters. For each 

structure the bottom of the engraved areas (Figure 9), the corresponding 
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upper edges (Figure 10), the sidewall (Figure 11) and the lateral edges 

(Figure 12) are shown.  

The nominal depth of the U-grooves was set to 100 μm, but the images of 

the lateral edges in Figure 12 clearly show that its final value strongly 

depends on the pulse energy used during the micromachining process, as 

expected since the ablation depth increases with increasing energy fluence. 

For example, the effective depth was reduced by a factor of two in the U-

groove realized with energy of 1μJ and a speed of 500μm/s. Indeed, in this 

case LiNbO3 is not completely crumbled and removed from the microchannel, 

thus preventing the further ablation of the underlying material in the 

micromachined area and significantly decreasing the quality of the channel 

walls. Although good quality microchannels could be realized with the same 

pulse energy of 1μJ by simply decreasing both the scanning speed and the 

step between parallel lines, this will result in an extremely time-consuming 

process. On the contrary, the images of the upper edges in fFigure 10 show 

that a slow scanning speed has to be avoided if a pulse energy of 20μJ is 

used, since slivers are produced during the micromachining process resulting 

in scratches at the edges of the channel. This problem could be avoided by 

using faster scanning speeds, but in this case the surfaces of the channel 

walls present more defects and irregularities and some dark debris still exist 

(Figure 11). Therefore, to shorten the preparation time of the microfluidic 

circuit and obtain high quality walls of the channels, the scanning speed and 

the energy pulse used to create the investigated T-junctions were set to 5μJ 

and 500μm/s, respectively. Moreover, the quality of the boundaries and 

surfaces of the ablated area were significantly improved by further scanning 

each final U-groove with a 4-times higher resolution. The T-junction was then 

cleaned in ultrasonic baths of water, isopropanol and acetone. 
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FIGURE 9 MICROSCOPE (40X) IMAGES OF U-GROOVE REALIZED AT THE EDGE OF A Y-CUT LN SAMPLE, 

BY USING DIFFERENT SCANNING SPEEDS AND DIFFERENT VALUES OF THE ENERGY PULSE. FOR EACH 

STRUCTURE THE BOTTOM SIDES OF THE ENGRAVED AREAS IS SHOWN. 
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FIGURE 10 MICROSCOPE (40X) IMAGES OF U-GROOVE REALIZED AT THE EDGE OF A Y-CUT LN 

SAMPLE, BY USING DIFFERENT SCANNING SPEEDS AND DIFFERENT VALUES OF THE ENERGY PULSE. FOR 

EACH STRUCTURE THE UPPER EDGES OF THE ENGRAVED AREAS ARE SHOWN. 
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FIGURE 11 MICROSCOPE (40X) IMAGES OF U-GROOVE REALIZED AT THE EDGE OF A Y-CUT LN 

SAMPLE, BY USING DIFFERENT SCANNING SPEEDS AND DIFFERENT VALUES OF THE ENERGY PULSE. FOR 

EACH STRUCTURE THE SIDEWALLS OF LATERAL VIEWS ARE SHOWN. 
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FIGURE 12 MICROSCOPE (40X) IMAGES OF U-GROOVE REALIZED AT THE EDGE OF A Y-CUT LN 

SAMPLE, BY USING DIFFERENT SCANNING SPEEDS AND DIFFERENT VALUES OF THE ENERGY PULSE. FOR 

EACH STRUCTURE THE EDGES OF THE LATERAL VIEWS ARE SHOWN. 
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FIGURE 13 (A) SCHEME OF THE FINAL T-JUNCTION; (B) TOP VIEW OF THE CONNECTION BETWEEN 

THE MICROCHANNEL AND THE INLET RESERVOIR; C) TOP VIEW OF THE T-JUNCTION FOR DROPLET 

GENERATION. THE T-JUNTION WAS REALIZED WITH A SCANNING SPEED OF 500 µM/S AND ENERGY OF 

5µJ 

The scheme of the final circuit is reported in Figure 13, where the microscope 

images of the inlet reservoir and the T-shape droplet generator are also 

shown. For the two investigated T-junctions (TJ1 and TJ2 respectively) the 

sizes of the microchannels have been measured by using a surface 

profilemeter (KLA Tencor P-10) and the corresponding values are listed in 

Table 4; the reservoirs have an area of 1mm2 and the same depth of the 

microfluidic channel. The widths of the channels have a spread at least of 5% 

and a depths spread of 1%, moreover we achieved values near the nominal 

ones, resulting in a good quality and uniformity of the channel sections, and 

of the pattern writing. 

 

FIGURE 14 ON THE LEFT THE SCHEME OF THE REGION IN WHICH THE T-JUNCTIONS WERE MEASURED 

WITH PROFILOMETRY. ON THE RIGHT AN EXAMPLE OF T-JUNCTION PROFILE COMPARED (TJ2). 
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T-junction  wc (m)  h(m)  

TJ1  126 ± 2  89 ± 6  

TJ2  125 ± 3  100 ±1  

TABLE 4. SIZES OF THE MICROCHANNELS FOR THE T-JUNCTIONS TJ1 AND TJ2. THE VALUES OF WIDTH 

(WC) AND DEPTH (H) WERE OBTAINED USING A SURFACE PROFILOMETER. 

The profilometer was also exploited to estimate the roughness Ra relative to 

the bottom of each microfluidic channel, thus comparing the obtained value 

with those relative to other techniques. In particular, in the analysed T-

junctions the mean roughness was estimated to be Ra = (0.26 ± 0.02) µm. 

Even if the roughness of our T-junction does not compromise the microfluidic 

performances of our device, obviously it needs to be improved to allow 

combining the fluidic channels with optical components. As a matter of fact, 

we are currently investigating also the roughness of the lateral walls of the 

channels made by laser ablation, being this parameter crucial for developing 

optofluidic devices on LiNbO3. With this aim AFM (Atomic Force Microscopy) 

measurements were done, both on the lateral face and the bottom face of 

the U-groove structures. First results reported in Figure 15 exhibit an 

average roughness (Ra) of 51,2 nm for the sidewall and a Ra of 170 nm for 

the bottom face. Moreover the two surfaces have also different structures 

with the first composed of little structures that could be due to re-deposition 

of ablated material, or to re-grown of the surface itself; the bottom surface 

have bigger structure that are probably related to the focus dimensions and 

the resolution of the technique. Further studies, also on the surface 

composition, will be implemented.  

Furthermore, an improvement of the surface quality could be necessary to 

optimize the coupling between channel and waveguide, therefore the idea is 

to combine the laser ablation procedure with a post-treatment of the ablated 

surfaces, by means of chemical etching process or magnetorheological 

polishing method [48][49], in order to recover the optical quality of the 

channel walls. In particular, the etching process has been already exploited in 

optofluidic devices realized by femtosecond laser ablation on fused silica: in 

[47][50] the authors obtained a sidewall roughness less than 30 nm and a 

larger roughness of about 200 nm on the bottom of the channels, which is 

comparable with our results.  
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FIGURE 15 AFM IMAGES AND PROFILOMETRY OF THE LATERAL FACE (UP) AND THE BOTTOM FACE 

(BOTTOM) OF A U-GROOVE STRUCTURE FABRICATED BY LASER ABLATION IN A Y-CUT LN CRYSTAL (5 

µJ, 500 µm/s). FOR EACH THE VALUE OF THE AVERAGE ROUGHNESS (RA) IS REPORTED. 

Therefore as a prelimary step the ablated U-grooves discussed previously 

were etched in a solution of EtOH-HNO3-HF 8:2:1, since this solution give a 

better surface quality after the etching [33], monitoring the effect of the 

etching with microscopy took at different time (5, 10, 35, 95, 300, and 720 

minutes). The results of this study are reported in Figure 16 where we show 

the images of the lateral surface of the U-groove structures taken after 5, 10 

and 35 minutes of etching. The times of etching showed are the most 

important; as after 35 minutes the samples start being too much damaged 

and therefore less transparent. The bath of 10 minutes seems to give the 

best results in terms of cleanness as most of the dark regions, which are 

probably residual of the ablated material, were dissolved. On the contrary, 

the quality of the lateral surface roughness does not exhibit improvement 

and therefore this treatment seems not able to achieve more transparent and 

less light-scattering samples. Therefore this treatment of the ablated 

structures could be useful only for the cleaning of the samples showing the 

dark regions. Therefore the combination of laser treatment and etching 

should be study using the radiation only to damage the crystal, without 

ablating the material. 
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3.5. Sealing of the channels 

For the first performance tests the two T-junctions were sealed with a thick 

layer of polydimethylsiloxane (PDMS), where the inlets and the outlet for the 

flowing liquids were previously realized (Figure 1). In the final prototype the 

closure will be achieved with a Lithium Niobate top. PDMS was chosen 

because it is the principal polymer used in microfabrication due to its 

excellent properties that make it suitable as a stamp material and as a 

structural material: it is optically transparent, it is inexpensive and durable, it 

is chemically inert, it is isotropic and homogeneous, it does not swell with 

humidity, and it has good thermal stability. To bond the LN and the PDMS 

surfaces, they both underwent an O2-plasma treatment (plasma system 

FEMTO) for 60 s at 200 W, with an oxygen flow rate of 10 sccm at 3x10−3 

mbar. As it happens also for other oxide materials (glass, quartz), it probably 

took place a condensation reaction between the hydroxyl groups of both the 

materials when the surfaces got in contact, and became covalently bonded. 

Different adhesion proofs were implemented on the different orientations of 

the crystal (x, y, and z-cut) without observing particular anisotropies of 

behaviour. The adhesion between PDMS and LN results good, as the channels 

resisted to flux rate of 380 l/min and more before start leaking. 

Moreover, it was easier to remove the PDMS in case of necessity, as 

mechanical peeling was successful in most cases and the eventual residual 

layer was removed with acid bath (HNO3, HCl, or diluted HF in the hardest 

cases) without affecting the LiNbO3 thanks to its chemical stability.  

The layer of PDMS was fabricated using a soft lithographic method. We use, 

as substrate for the polymerization, a crystal of silicon treated with 

Trichloro(1H,1H,2H,2H-perfluorooctyl) silane vapour to passivate the master 

surface, and so to facilitate the PDMS removal once cured. The liquid 

prepolymer of PDMS was mixed with a cross-linking agent (Syligard 184) in a 

1:10 weight ratio, and then poured on the silicon surface. In that way after 

the solidification of the polymer under a treatment of 1 hour at 90°C, the 

PDMS layer was peeled off, and the surface in contact with the silicon 

resulted extremely smooth, improving the adhesion with the Lithium Niobate. 

For the fabrication of the inlets and outlets used to carry the liquids in the 

devices, pipes of polyethylene with an internal diameter of 0,5 mm were 
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used. In particular they were attached on the silicon layer before pouring the 

PDMS prepolymer, and in that way directly bonded to the PDMS during the 

reticulation, with the same geometry of the reservoir fabricated in the 

Lithium Niobate (Figure 1). The use of additional PDMS around the tubes 

allows a hermetic closure. 

3.6. Functionalization 

The first experiments with the droplets generation were taken without any 

further treatment of the channel, using three hydrophobic walls of LN and 

one of PDMS. First images took with the set-up explained in section 4.1 

exhibited a co-flow regime (Figure 17.Up) between water and hexadecane, a 

regime that we did not expect. The conditions of the flows were varied in a 

wide range (flow rates from same µL/min to about 200 µL/min), but the 

regime did not change. Furthermore, we noticed that the water flow was 

irregular along the channel, and in some point was slower. This anisotropy 

was due to an irregular wettability along the channel, which in some points 

caused the pinning of the water at the walls. It was clear that the wettability 

of water on LN was still too high, and therefore the oil phase was not able to 

completely wet the channel walls. Hence, co-flowing was a more stable 

regime in comparison to squeezing or dripping. This kind of problems can 

affect microfluidic devices also in other materials like PDMS [51], and can be 

solved with a surface treatment able to increase and homogenize the 

hydrophobicity of the walls, that could have changed during the fabrication 

process. In fact both the acid cleaning and the O2-plasma treatment used to 

bond the PDMS can change the surface energy of the LN increasing its 

hydrophilicity. We decide to flow into the device a solution of OTS molecule 

(Octadecyltrichlorosilane) in toluene (C6H5CH3) with a concentration equals to 

10 mM for about 30 s, then we flow the solvent alone to remove the 

exceeding molecules. By heating the device at 65°C for 20 minutes we 

assure the toluene evaporation. The toluene solvent swells the PDMS but 

after the treatment we observe that the channel comes back to its initial 

dimension without damages. We report in Figure 17 a comparison between 

the flow in a channel before and after the OTS treatment, the images shows 

a complete change in the flow regime with the same flow rate, that indicates 
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that the OTS can silanize the PDMS resulting in grafting of the octadecyl 

chain onto the surfaces. This allows us to confirm that the LN and PDMS 

surfaces can be silanizated (see section 3.2)[52] resulting in a more lipophilic 

surfaces, and also assuring a more homogeneous hydrophobic surface. We 

choose to use toluene instead of other solvents (for examples hexadecane) 

because the solution of OTS in toluene was already used in the laboratory for 

other experiments. The resulting coating of OTS ensures the reproducible 

behaviour of droplets in the junction. However, other solvent should be tried 

in future, in order to decrease the swelling of PDMS and to improve the 

homogeneity of the wetting properties on the surfaces. The cleaning of the 

channels, after experiments and when necessary, was achieved using 

isopropyl alcohol (CH3CH3CHOH) at a concentration ≥ 95 %, this because its 

low swelling coefficient in PDMS (only 1.09 [53]), and because it evaporates 

quickly from the channel taking the device at 70°C for a couple of hours. 

 

 

FIGURE 17. UP) CO-FLOW REGIME IN A T-JUNCTION WITHOUT HYDROPHOBIC FUNCTIONALIZATION 

(QC=5 ΜL MIN−1
 AND QD=5 ΜL MIN−1); DOWN) SQUEEZING REGIME IN THE SAME CONDITION 

AFTER THE FUNCTIONALIZATION OF THE CHANNEL WALLS. 
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4. T-junction characterization 

In this section the process of generation of water droplets in oil, as commonly 

used in biological applications, is characterized and the microfluidic 

performances of our LiNbO3 based T-junctions prototypes (TJ1 and TJ2) is 

discussed, demonstrating a high process reproducibility and low dispersion of 

droplet size distribution. Moreover we compare our data with the Cristopher 

et al. model [21] finding an excellent agreement for Capillary number higher 

than 8∙10-3. The oil used for the continuous phase was hexadecane with 

different concentrations of a surfactant (SPAN® 80) in order to change the 

surface tension between the liquids.  

Furthermore, we present the set-up used for the characterization, in 

particular the liquids and the surfactan; the pump used to control the flow 

rates of the two liquid phases; and the set-up for the acquisition and 

elaboration of the droplets images and videos. 

4.1. Setup 

 

FIGURE 18 SET-UP FOR THE CHARACTERIZATION OF T-JUNCTION DROPLETS GENERATORS. 

T-junction TJ2 (Table 4) was chosen to characterize the droplet generation 

performance and to study in depth the agreement of our devices with the 

Christopher et al. model. Therefore, two immiscible liquids were introduced 

into the microfluidic devices through flexible polyethylene tubes (0.5 mm ID) 

by using two independent automated syringe pumps (PHD 2000, Harvard 

 

 

  

Transmission 

microscope 
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Apparatus) (Figure 18), which allow working at constant flow rates between 1 

and 500 L/min with a nominal accuracy of 0,5%. Hexadecane 

(CH3(CH2)14CH3, CAS number: 544-76-3, viscosity 3cP, density 0,77 g/cm3) 

and distilled water were used as continuous phase and dispersed phase, 

respectively [6]. Moreover we characterize the behaviour of the devices in 

function of the surface energy, therefore we added SPAN® 80 surfactant to 

hexadecane to decrease the surface energy at the water-oil interface and 

facilitate droplets formation [6]. The surfactant concentration was set to 

0,08% (w/w), which is above the critical micelle concentration (0.03% (w/w) 

[6][23] for hexadecane, and the results were compared with the ones 

without surfactant. The images of the droplet generated (Figure 13.c) by the 

T-junctions were obtained using a monochrome camera (MV D1024 CMOS, 

Photonfocus) coupled to an inverted microscope (Eclipse Ti-E, Nikon), 

whereas the videos were acquired by using the fast camera (Phantom VRI 

v7.3). Every video was acquired with a different sample rate in function of 

the droplets velocity, so that a suitable number of frames (more than 100) 

were collected for every droplet during its transit in the range of vision of the 

camera. Later, all the videos were divided in single frame and then analysed 

with a software, made by the LaFsi group of the University o Padova [6], 

which is able to detect the shape of the droplets and to follow their 

movement through the subsequent frames; therefore it can derivate the 

length of every droplet and the frequency of generation (section 4.2). 

Different videos were collected changing the flow rates of the two phases and 

the surfactant concentration in the continuous phase. For both hexadecane 

with and without surfactant the flow rate of the continuous phase (Qc) was 

fixed at the values of 5, 7, 10, 12, 20, 30, 35, and 40 μL min−1. Then the 

flow rates of the dispersed phase (QD) was set to the different ratios (QD/Qc) 

of: 0,1; 0,3; 0,5; 0,7; 1; 1,5; and 2. 

4.2. Software analysis 

The software adopted for the droplet detection was based on the colour 

contrast analysis of the video sequences collected for the droplet flowing 

through microfluidics channels. A Phantom VRI v7.3  video camera was used 

for the video collection and the video splitting into different sequences was 
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performed with the software imagej ( http://imagej.nih.gov/ij/ ), the goal of 

which was the object recognition using their colour contrast. In this section 

the analysis procedure adopted in this thesis is discussed considering only 

the software functions necessary for our work, i.e. the droplet data transfer 

from a video to a numerical format. At first the software gave a brightness 

value to each pixel of the image background. In order to distinguish the 

background pixels from the droplet ones the software automatically 

compared two consecutive video sequences: the background pixels were 

which remained similar in the two sequences. Consequently from the 

difference between the value of the background pixels and the pixel of every 

single frame the software was able to recognize the objects, in this case the 

droplets. Only the pixel with a difference value above a given threshold 

(which can be set up) were taken into account as objects by the software, we 

call this pixel object-pixel. Therefore the software by the mean of another 

threshold value categorized the object-pixel in recognized and excluded, in 

Figure 19 they are represented in magenta and blue respectively. After the 

identification the next step was the object tracking, i.e. the measurement of 

the droplets parameters.  

 

FIGURE 19 IMAGE OF THE SOFTWARE SHAPE DETECTION OF TH 35TH
 DROPLETS OF A SET, IN MAGENTA 

AND BLUE THE SOFTWARE DETECTION OF THE DROPLET BORDER. IN GREEN THE RECTANGLE THAT 

REPRESENTS THE DROPLETS DIMENSIONS. IN CYAN THE RECTANGLE AREA WITH THE CHARACTERISTIC 

DIMENSION OF THE DROPLET SET UP BY THE USER. 

First of all the users drew 3 rectangles which defined 

 the area in which the software had to work, in order to exclude the 

useless zone out from the channel borders; 

 the characteristic dimensions of our object (Figure 19); 

 a dimensional limit in order to exclude object with lower dimensions. 

Finally we could proceed to the automatic tracking of the droplets from which 

we got these parameters: 

 the length between the two extremities of a droplet for every frame in 

which it was tracked; 
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 the position of the droplet compared to the channel length; 

 the number assigned to every droplet. 

Therefore the equation of motion of every droplet was calculated from the 

linear interpolation of the droplet positions (in pixels) in function of the frame 

number (which is a time measure). From the law we could calculate the 

velocity and the frequency as the inversion of a reference time of transit at 

the half-channel length. In conclusion the software estimated the average 

value of length for every droplet, its standard deviation, its velocity and the 

reference time of transit, which were then converted in suitable units of 

measurement. 

4.3. Results and Discussion 

The T-junction TJ2 performance was tested in terms of the droplet formation 

frequency and droplet size distribution. The analysed devices have a 

dispersed to continuous channel width ratio of 1 within 2%, a viscosity ratio 

of 1/3, and were tested in a range of Capillary Number (Ca) between 0.0004 

and 0.07. We remind that the Capillary number can be calculated as: 

𝐶𝑎 =
𝜇𝑐𝑣𝑐

𝜎
=

𝜇𝑐𝑄𝑐

𝜎𝑤𝑐ℎ
 

EQUATION 10 

where μc is the viscosity of the continuous phase (hexadecane), vc the 

velocity of the continuous phase, and σ the surface tension between the two 

liquids respectively [23][12]. The values of wc and h for the T-junctions are 

reported in Table 4; and the value of the interface energy between the liquids 

σ is 50.7 ± 0.3 mN m−1 for the pure hexadecane, and 10 ± 0.3 mN m−1 for 

the 0,08% surfactant concentration [12] about 5 times lower. Finally μC is 

3.0041 mPa s at 25◦C (www.ddbst.com). 

4.3.1. Frequency droplets generation 

The droplet generation frequency f depends on the flow rates of the two 

immiscible liquids QC and QD. The highest value of f is therefore usually 

limited by the maximum pressure (typically a few bars) the microfluidic 

channels are able to sustain. In particular, in a T-junction geometry the 
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frequency does scale in a nonlinear manner with the ratio QD/ QC (Equation 

7) [12], [23], [54], [55]. 

 

FIGURE 20 EXAMPLES OF THE MEASUREMENT OF THE DROPLET FORMATION FREQUENCY. THE TIME 

INTERVAL AT WHICH EACH DROPLET PASSES THROUGH A REFERENCE POSITION IS REPORTED, AS A 

FUNCTION OF DROPLET NUMBER; THE CORRESPONDING LINEAR FIT IS ALSO SHOWN WITH THE DERIVED 

FREQUENCY OF (1157 ± 9) HZ. THE INSET PRESENTS THE HISTOGRAM OF THE TIME INTERVAL 

BETWEEN SUBSEQUENT DROPLETS. 

We determined the frequency f by measuring the time intervals t between 

the transit of two subsequent droplets. In order to avoid bias and therefore 

systematic errors, the time intervals refer to distinct pairs, i.e. tj = t2j- t2j-1, 

where j=1…N/2 and N is the total number of droplets. Figure 20 shows the 

histogram of the time intervals corresponding to the highest total flow rate 

achievable with our set-up, that is QC + QD= 380 l/min. The average of this 

distribution yields ∆𝑡𝑎𝑣 = (0.864 ± 0.001) 𝑚𝑠, which corresponds to the 

maximum value of the droplet generation frequency f=(1157 ± 9) Hz. 

However, the majority of our measurements stay in a range of frequencies 

from few Hz to about 350 Hz. This to avoid the risk of leakage of the device. 

The statistical dispersion of the frequencies was never over the 5%, except 

for flow rates lower than 7 μL min−1 in which it has a maximum of 10%. 

Similarly, the velocities dispersions are always lower than 7% (Figure 21).  
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FIGURE 21 THE TWO IMAGES ARE THE HISTOGRAMS OF THE VELOCITY (LEFT) AND ∆T (RIGHT) FOR 

QD=30μL MIN
−1, QC=20μL MIN

−1. IN BOTH THE FIGURES THE AVERAGE VALUE AND THE STANDARD 

DEVIATION ARE REPORTED WITH THE GAUSSIAN FITS. 

4.3.2. Lengths of the droplets 

The droplet length L was estimated by analysing each droplet image 

extracted from a video lasting a period of time sufficiently high to obtain at 

least 200 droplet measurements, one from every frame of the video. In 

particular, L was determined referring to the front and back menisci of each 

droplet respectively (Figure 19): since this procedure is affected by the grey 

contrast level of the recorded image, the light intensity and camera exposure 

time had to be properly tuned in each video recording in order to obtain the 

best image contrast. Figure 22 shows an example of the histograms obtained 

in the case of low (a), intermediate (b) and high (c) droplet generation 

frequency for the T-junction TJ2 with a 1% of surfactant, respectively. 

Moreover the maximum droplet length obtained was 761 μm and the 

minimum 187 μm for a surfactant concentration of 0,08%, and 833 μm and 

199 μm for the case without surfactant. The dispersion of the length of the 

droplets was obtained as the standard deviation of the length distribution: in 

all the analysed cases it was better than 3%, in most cases lower that 2%. 

These values are comparable with those reported in literature (Table 7) for T-

shaped droplet generators realized with PDMS, thus highlighting the 

potentialities offered by LiNbO3-based structures realized by laser ablation for 

microfluidic applications. Moreover, the three graphs clearly show that the 

dispersion of droplet lengths does not significantly change (less than 33%) by 

increasing the droplet generation frequency in the range between 92 Hz to 

1157 Hz. The fact that the dispersion values remain below 1% in all the three 

investigated cases confirms the good microfluidic performances of our droplet 
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generators and the possibility to employ them also as high-frequency droplet 

generators.   

 

FIGURE 22 THE HISTOGRAMS RELATIVE TO THE DISPERSION OF THE DROPLET LENGTH L ARE 

REPORTED. THE DATA WERE OBTAINED IN THE T-JUNCTION TJ2 AT A DROPLETS GENERATION 

FREQUENCY OF 92 HZ (A), 467 HZ (B) AND 1157 HZ (C), SHOWING DISPERSIONS LOWER THAN 

1%. 
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It is worth mentioning that the grey contrast of each video can affect the 

accuracy in the estimation of L by introducing a systematic error; this 

contribution eventually shifts the L value distribution but not its dispersion. In 

particular, by measuring the droplet meniscus thickness m and assuming that 

the values of droplet border positions follow a uniform probability density as 

wide as the width m, the random error σc in the droplet border estimation 

can be calculated as m/√12 [29]: the images analyses show that σc is about 

5m. Finally we did a test for eventual systematic errors due to temporal 

changes in the set-up, in particular fluctuating variations of the flow rates. In 

Figure 23 we report, as an example, a graphic of the time intervals ∆t in 

function of the droplet numbers. It can be easily see that all the ∆t are 

casually distributed, hence even if there can be systematic errors, they will 

be lower than the casual error.  

 

FIGURE 23 THE TIME INTERVALS (∆T) ARE REPORTED IN FUNCTION OF THE DROPLET NUMBER, THE 

GRAPHIC SHOWS A CASUAL TREND OF ∆T 

4.4. Data elaboration and model validation 

In order to compare our results with the literature, the production of droplets 

was also tested as a function of the ratio φ=QD\QC. In this analysis the 

droplets are generated in the squeezing regime, where the dynamics of their 

formation (break-up) is dominated by the pressure drop across the droplet as 

it forms [12], [23], [54], [55]. Therefore, the length L of the droplets can be 

conveniently expressed with the scaling Equation 5. In Figure 24 we report 

the dependence of the ratio 𝐿̅/wC  with respect to the relative flow rate 

QD/QC: in particular 𝐿̅ was taken as the average value derived from two 

hundred droplets. The measurements were performed at two different 
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constant values of continuous flow rate QC: 5, 7, 10, 12, 20, 30, 35, 40 μL 

min−1. While the value of QD was set to different ratios of QD/Qc: 0,1; 0,3; 

0,5; 0,7; 1; 1,5; and 2. The data were then interpolated excluding the points 

out of 5σ from the function of interpolation, with the exception of the 

measures with the lower value of QC (5 μL min−1) for which 3 points of 7 

were excluded from the fit. Therefore for flow rates of the continuous phase 

greater than 7μL min−1 our T-junctions perfectly reproduce the typical 

microfluidic performances of T-shaped droplet generators realised with PDMS. 

Indeed, the linear relation between L and QD/QC was widely investigated and 

characterized for PDMS-based T-junctions and the results presented in 

[22][21] show a good agreement with those obtained in our study. 

For what regards the experimental data at QC = 5μL min−1, we can suppose 

both: that the different behaviour could be due to possible systematic errors; 

or that there is a different regime at lower flow rates ratio. Unfortunately we 

have not sufficient data to discern the question, therefore new studies need 

to be done in future.  
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FIGURE 24 THE TWO FIGURES RAPPRESENT THE AVERAGE VALUE OF THE EFFECTIVE LENGTH IN 

FUNCTION OF THE FLOW RATES RATIO. EVERY SET OF VALUES WITH THE SAME QC, AND THEREFORE OF 

Ca, IS LINEARLY FITTED. THE UPPER IMAGE IS RELATED TO THE CASE WITHOUT SURFACTANT, THE 

LOWER TO THE CASE WITH SURFACTANT CONCENTRATION 0,08%. 

4.4.1. Frequency droplet generation 

Another important parameter to characterize our devices is the frequency of 

droplet generation f; as previously discussed the relation between the 

effective frequency and the Capillary number is given by Equation 7. For Ca 

higher than 8∙10-3 the model fit very well our data (Pearson’s r value always 

greater than 0,985); in Figure 24 two exemplifying graphics are presented: in 

(a) the case without surfactant, and in (b) the case with a surfactant 

concentration of 0,08% in weight. In the first case the Ca lower than 6∙10-4 
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are detached from the model, instead in the second figure the model is 

confirmed by the fit. In all the cases we found a good agreement of the 

model for Ca higher than 6∙10-4. 

 

FIGURE 25 THE DATA RAPRESENTS THE VALUES OF THE EFFECTIVE FREQUENCIES IN FUNCTION OF THE 

CAPILLARY NUMBER (Ca) IN A LOGARITHMIC SCALE. ALL THE ERRORS ARE LOWER THAN THE POINT 

SYMBOLS (∎). THE LEFT IMAGE IS RELATED TO THE CASE WITHOUT SURFACTANT, THE RED LINE FITS 

THE POINT WITH CA MAJOR THAN 6∙10-3, THE DOTTED BLACK LINE FITS ALL THE POINT, AND THE 

VIOLET DOTTED LINE FITS THE Ca LOWER THAN 6 ∙10-3. IN THE RIGHT FIGURE THE CASE WITH 

SURFACTANT CONCENTRATION 0,08% IS PRESENTED WITH ITS LINEAR FIT (RED LINE). 

We can see in Figure 25 that the Ca lower than 6∙10-4 have a systematic 

detachment from the model. We can suppose that this behaviour is due to a 

different regime, in fact the trend is exhibited by different sets of data. 

Moreover these values of Ca are not in the range of the Christopher 

dissertation, therefore this behaviour cannot be predicted. In addition the 

change of behaviour is exhibited for both the value of surface energy at the 

same Ca but at different flow rates, therefore the relation is correlated to the 

Ca and not to the flow rates. Finally we suggest that the same regime change 

could be responsible for the deviation from linearity of the droplet lengths for 

QC=5μL min−1 previously discussed. In fact these measures are a subset of 

the previously one at low Ca (Figure 24). Nevertheless, to explain this change 

of behaviour a deeper study is necessary. Therefore the Christopher model 

was used only for dataset with Ca major of 8∙10-4 (for every set of 

frequencies, flow ratios, and surface energy) and the agreement with the 

data was defined with a linear fit in logarithm scale graphics. Then the value 

of Equation 7 was calculated for every different set of φ = QD/QC, in Figure 

26 all the values are compared resulting all compatible in the range of the 

standard deviation (1σ). Moreover, also the average value of  for the two 
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surface energies (surfactant concentration) are compatible in the range of 1 σ 

and all the data were furthermore compatible with the value calculated by 

Christopher: 1.31 ± 0.03 [21]. Therefore we confirm the Christopher et al. 

model for Capillary number higher than 6∙10-4, and moreover we can suppose 

that  is independent of the value of the surface tension σ, a parameter that 

was not investigated in ref. [21]. 

 

FIGURE 26 IN THE IMAGE ARE REPORTED THE VALUES OF  FOR EVERY FIT OBTAINED FROM FIGURE 

25. IN BLACK ARE SHOWN THE DATA FOR THE SURFACTANT CONCENTRATION OF 0,08%, WITH THEIR 

AVERAGE VALUE (BLACK LINE), AND 3 TIMES ITS STANDARD DEVIATION (DOTTED BLACK LINE). IN 

RED THE SAME VALUES ARE REPORTED FOR THE CASE WITHOUT SURFACTANT.  

4.4.2. Relation between Volume and Ca 

Therefore the relation between the volumes V of the droplets and the 

Capillary number Ca (Equation 8) was analysed. We calculated the volume of 

the droplets with the following equation 

𝑉 = 𝐿ℎ𝑤𝑐 − ∆𝑉 

EQUATION 11 

Where ∆𝑉 is the difference of volume between the real volume of the droplet 

and the parallelepiped of dimensions L, h, and wc. The two droplet 

extremities were approximated as half-ellipsoids, with the semi-axis 

orthogonal to the side wall equal to wc, the semi-axis orthogonal to the 

bottom surface equals to h/2, and the axis parallel to the flow approximated 

to wc. The difference ∆𝑉 was then given by 
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∆𝑉 = 2 (
ℎ𝑤𝑐

2

2
−

2

3
𝜋

ℎ𝑤𝑐
2

8
) 

EQUATION 12 

And finally the value of the droplet volume V could be estimated as 

 

𝑉̂ = 𝐿̂ − (1 −
𝜋

6
) 

EQUATION 13 

Where 𝑉̂ is the effective volume 𝑉̂ =
𝑉

ℎ𝑤𝑐
2 

 

FIGURE 27 THE DATA RAPRESENTS THE VALUES OF THE EFFECTIVE VOLUME IN FUNCTION OF THE 

CAPILLARY NUMBER (Ca) IN A LOGARITHMIC SCALE. THE IMAGE ON THE LEFT IS RELATED TO THE CASE 

WITHOUT SURFACTANT, AND THE ONE ON THE RIGHT TO THE CASE WITH SURFACTANT CONCENTRATION 

0,08%. FOR BOTH THE RED CURVE RAPPRESENTS THE FIT OF THE RELATION IN EQUATION 8 

In Figure 27 two graphics of the effective volume in function of the Capillary 

number are reported. In comparison with the other graphics this theoretical 

model fits the data worse than the other (frequency and length). However, 

the curve trend reflects the data and the farthest point is in the range of 4 

times its error from the fit. This worse behaviour is probably due to the 

approximations used to calculate the volume of the droplets, which surely 

introduced a systematic error in the data. However, also for this relation we 

calculated the value of the  parameter; as it could be expected the volume 

approximations affect also these results, with the values calculated for the 

surfactant at 0,08% and without surfactant incompatible (Figure 28).  
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 The Value of 

Finally, in Figure 29 we compare all our results for the value of , in 

particular we present their weighted average values for every set, finding a 

good compatibility taking in consideration the volume approximation 

previously discussed. All the values are compatible in a range of 3σ with the 

value in ref. [21], and in particular the results from the frequency relation 

(Figure 25) are comparable into 1 σ. Therefore all our data confirm the model 

of Christopher et al. in a range of Capillary number between 0.0008 and 

0.016. While at lower Ca, as previously discussed, we need a new study that 

could confirm or deny the presence of a different regime. 

 

FIGURE 28 IN THE IMAGE THE VALUES OF  FOR EVERY FIT OBTAINED FROM FIGURE 27 ARE 

REPORTED: IN BLACK THE DATA FOR THE SURFACTANT CONCENTRATION OF 0,08%, WITH THEIR 

AVERAGE VALUE (BLACK LINE), AND 3 TIMES ITS THE STANDARD DEVIATION (DOTTED BLACK LINE); 

AND IN RED THE SAME VALUES FOR THE CASE WITHOUT SURFACTANT.  

 

FIGURE 29 THE GRAPHIC REPORTS THE AVERAGE VALUES OF  FOR THE DIFFERENT DATASETS 

PREVIOUSLY CALCULATED (VOLUME AND FREQUENCY, 0% AND 0,08% OF SURFACTANT 

CONCENTRATION). THE BLUE LINE RAPRESENT THE VALUE OF LITERATURE [21], WHILE THE DOTTED 

BLUE LINE ARE ONE TIME AND THREE TIMES THE VALUE OF ITS STANDARD DEVIATION. 
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4.4.4. TJ1 and TJ2 comparison 

After the previously reported characterization of the TJ2 in a wide range of 

condition, we measured also the behaviour of the TJ1 for a lower set of 

different parameters, in order to compare two different devices realized with 

the same technique. In Figure 30 we report the dependence of the ratio L/w 

with respect to the relative flow rate QD/QC for both TJ1 and TJ2: in particular 

L was taken as the average value derived from one hundred droplets. The 

measurements were performed at two different constant values of continuous 

flow rate QC, 30 l/min and 10 l/min respectively, while the value of QD was 

varied between 1 l/min and 30 l/min, the concentration of the surfactant 

was 1% in weight.  

 

FIGURE 30 THE VALUES OF L/WC ARE REPORTED AS A FUNCTION OF THE RATIO BETWEEN THE 

DISPERSED AND CONTINUOUS FLOW RATES, QD/QC. THE VALUE OF QC IS FIXED TO 10 μL/MIN (A) OR 

30 μL/MIN (B), WHILE THE VALUE OF QD IS PROPERLY VARIED. THE STRAIGHT LINES REPRESENT THE 

LINEAR FITS OF THE EXPERIMENTAL DATA, FOR BOTH TJ1 AND TJ2. 

The experimental points are well fitted by a linear regression (Pearson’s r 

value greater than 0.995), whose coefficients  and  are reported in Table 

5. Moreover, for each value of Qc the intercept () and the slope () of the 

linear regression are fully compatible (compatibility better than 0.3 [29]) for 

the two T-junctions and with the Christopher model, demonstrating the high 

reproducibility of the femtosecond laser technique used to realize the 

microfluidic device in the LiNbO3 substrate. Nevertheless, in Figure 30 it is 

evident that both the values of  and vary with the flow rate Qc of the 

continuous phase. However, this difference is forecasted by Equation 5, since 

the parameters  and depend not only on the geometry of the channels, 

which is almost the same in graphs (a) and (b), but also on the capillary 
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number of the microfluidic device, which in turn increases with increasing Qc, 

especially in the case of a high viscosity ratio [12], [23], [54], [55]. 

T-junction wc (m) h(m) 

QC= (10.00 ± 0.04) 
l/min 

QC=(30.00 ± 0.11) 
l/min 

   

TJ1 126±2 89 ± 6 1.44±0.01 1.68 ±0.01 1.27 ±0.05 1.54 ±0.07 

TJ2 125±3 100 ±1 1.48±0.04 1.68 ±0.07 1.25 ±0.04 1.52 ±0.07 

TABLE 5 SIZES OF THE MICROCHANNELS FOR THE T-JUNCTIONS TJ1 AND TJ2, THE VALUES OF WIDTH 

(WC) AND DEPTH (H) WERE OBTAINED BY PROFILOMETRY. VALUES OF THE PARAMETERS  

(INTERCEPT) AND   (SLOPE) OBTAINED BY PERFORMING A LINEAR FIT OF THE DATA REPORTED IN 

FIG.30 FOR THE TWO INVESTIGATED T-JUNCTIONS. 
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5. Conclusion 

The objectives of this task were the fabrication and the characterization of 

the first T-junction directly engraved in Lithium Niobate, with suitable 

roughness for the implementation of an optical stage. Moreover also the 

fluidic characterization of the devices was an important issue in order to 

measure their performance in relation with published results and the 

Christopher et al. model [21].  

The fabrication was divided in three different phases: the realization of the 

channels with a femtosecond laser technique and their geometrical 

characterization; the sealing of the device with a PDMS layer; and the 

functionalization of the surfaces with OTS in order to increase their 

hydrophobicity. A feasibility study of the microstructuration techniques for 

the realization of microchannel in Lithium Niobate was done. The comparison 

between different techniques supported the exploitation of laser ablation with 

femtosecond laser operating at a wavelength of 800 nm as a suitable 

technique to get high performant microfluidic channels engraved in lithium 

niobate crystals (section 3.3). In particular we showed that among the 

different scanning velocities (100-500m/s) and laser pulse energies (1-20 

J) exploited, the best results were obtained at 500m/s and 5J. Moreover, 

since the material is proposed as an optofluidic substrate also the optical 

quality of the walls of the channels is fundamental, especially for the good 

coupling between the waveguides and the droplets in the final device. As a 

matter of fact a first AFM study, still in progress, supports the use of laser 

ablation, since we found an average roughness of about 50 nm for the 

sidewalls. 

Fabrication 
time 

Scanning 
speed 

Beam 
diameter 

at 5J 

Translation 
stage 

resolution 

Vertical/horizontal 
scanning step 

Sidewall 
roughness 

Ra 

Fabrication 
costs 

< 3 h 
500 
m/s 

≈25 m 30nm 15/10 m 51,2 nm 
≈20-25 

€/T-junction 

TABLE 6. FABRICATION PARAMETERS RELATIVE TO THE T-JUNCTIONS INVESTIGATED IN THE PRESENT 

WORK. 
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Furthermore, we study the wettability of the Lithium Niobate in different 

condition: six crystallographic directions; different liquids (water and 

hexadecane); and also with a hydrophobic functionalization of the surfaces 

(OTS). The material exhibits good fluidic properties for our purposes, since it 

is moderately hydrophobic with an average contact angle of 62°, it is 

lipophilic with a angle between 10° and total wetting, and it could be 

functionalized with standard SAM techniques (solvent immersion and vapour 

deposition), showing the possibility to increase the hydrophobicity to 101° 

and also to homogenize the surfaces properties (section 3.6). Moreover, the 

crystallographic directions do not seem to exhibit different wettability 

properties on every different surface, since the values of all the different 

measures are all compatible. However it cannot be possible to evaluate the 

difference of wettability between every different surface, this because the 

measurement of the contact angle was not repeatable in that case. Therefore 

to study this behaviour a control of pressure, temperature and humidity in a 

glow box should be done. 

The microfluidic performances of these devices were then characterized in a 

wide range of droplet generation frequencies, from a few Hz to about 1 kHz.  

The frequencies, the velocities, and droplet lengths distributions were 

analysed in different conditions and showed a low dispersion with a standard 

deviation less than 10%, 7%, and 3% respectively, an optimal results for a 

new fabrication technique and a new material. As reported in Table 7 our 

values are totally comparable with the literature, and are compatible in its 

range of validity with the Christopher et al. model [21]. In fact, for Ca higher 

than 6∙10-4 all the equation for frequency, length and volume presented in 

section 2.3 are confirmed with a very good agreement of the fits with our 

data (Figure 29). Moreover we found a different systematic behaviour for the 

measures at lower Ca, we suppose that this behaviour could be due to a 

different regime for which the model is not valid. However, further studies 

need to be done and the question has not found an answer yet. Furthermore, 

the microfluidic performance of our two different T-junctions (TJ1 and TJ2) 

suggests that laser ablation guarantees a high reproducibility and good 

quality channel shape (Table 7). In fact the frequency and the droplet length 

stay in a range of 1Hz-5kHz like the other devices taken into account, 
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nevertheless the droplet length results different in our device, with an 

effective length several times (from 1 to 600) higher then the other 

references, that its probably due to the use of the surfactant which lower the 

surface energy of our droplets.  

All the major objectives of this task were achieved, so we can conclude that, 

for what explained in this chapter, our approach paves the way toward a 

direct integration on a single LiNbO3 substrate of passive microfluidic devices 

and then of active optical components, like waveguides, holographic filters 

and droplet actuators driven by light. The realization of optofluidic platform, 

therefore, is not limited by the fluidic properties of the material, on the 

contrary its compatibility with all our fluidic experiments shows excellent 

perspectives, in particular with the exploration of the crystals also as active 

material for fluidic purpose (trapping, droplets control, liquid mixing, liquid 

waveguide, etc.). 

Channel  dimension (µm) 
CP=cont. phase;  
DP=disp. Phase 

Frequency 

(Hz) 

Droplet 
Length 
(µm) 

L/wc ref. 

125 X 100 (CP-DP) 1-1157 187-833 1,5-6,7 TJ2 

150  X  100 (CP-DP) 2 130 0,87 [57] 

150  X  50 (CP); (65 : 375) X  
50 (DP) 

0,3-5000 50-100 
0,0025-

0,83 
[21] 

60 X  9 (CP-DP) and 35 X 6,5 

(CP-DP) 
20-80 10-40 0,16-0,67 [11] 

500 X 100 (CP); 100  X 100 
(DP) 

20-2000 100-400 0,2-0,8 [14] 

150  X  50 (CP); (65 : 375) X  
50 (DP) 

0,3-5000 50-100 
0,0025-

0,83 
[21] 

TABLE 7 COMPARISON BETWEEN OUR RESULTS FOR THE T-JUNCTION TJ2 (FIRST LINE) AND 

ANALOGOUS RESULTS FROM LITERATURE. 
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1. Preface 

The first objective of this task is the fabrication of monomodal optical 

waveguides by Titanium in-diffusion in Lithium Niobate crystals. The 

waveguides were exploited to connect the different stages of our optofluidic 

platform, in particular the coupling with the microfluidic channels, the 

collection of the emitted light from the channel, and its transmission to the 

analytical stage. Moreover the realization of custom-designed laser source 

would be an important improvement in our platform, in fact the possibility of 

use taylorable wavelength in the visible range with a compact set-up will 

surely improve its range of application. Therefore the second objective of the 

project was a feasibility study on the fabrication and characterization of a 

high-efficiency integrated frequency converter in the visible range. The 

proposed prototype was realized on substrates that could be also doped in 

order to have an enhanced optical damage resistance in a waveguide 

configuration [1]. The frequency converter that the project aimed to realize 

represented the first stage for obtaining an integrated coherent light-emitting 

source, and therefore should have all the characteristics to obtain a compact 

laser source in the visible range, for direct application in the optofluidic 

platform as building block for more complicated integrated optical circuits 

(Figure 1). Among the others, the second harmonic generation (SHG) process 

(i.e. the generated waves have twice the frequency of the pump) attracted 

great interest because of the inherent possibility of generating visible light 

starting from a pump operating in the near infrared spectral region where low 

cost, high power light sources are commercially available. Therefore the main 

objective of this part was the fabrication and characterization of a high-

efficiency integrated frequency converter prototype based on PPLNs (Periodic 

Poled Lithium Niobate) waveguide operating in the visible range. The 

proposed prototype was realized on substrates that also could be suitably 

doped in order to have an enhanced optical damage resistance, and 

moreover in a waveguide configuration performed by Titanium in-diffusion.  
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1.1. The circuit 

The device prototype was constituted by a periodic pattern of ferroelectric 

domains (PPLN) realized on both congruent Lithium Niobate crystals (cLN) 

and a Zirconium doped Lithium Niobate crystals (Zr-LN), a dopant which can 

assures a high resistance against optical damage (see section 3.2.5). These 

structures were able to generate a frequency conversion through the Quasi-

Phase Matching technique (QPM) with high efficiencies. On these PPLN 

substrates a waveguide structure by Titanium in-diffusion was needed, in 

order to confine the light of the pump and of the second harmonic in order to 

extend the interaction length of the two beams through the entire device. 

The frequency converter would therefore work in a waveguide configuration 

in order to assure a spatially confined frequency conversion and so a stable, 

high conversion efficiency even at high intensities. Therefore the waveguides 

should be single-mode in the range of operation, in order maximize the 

power confinement and so the efficiency of the system.  The wavelength of 

the pump signal was 1064 nm in order to obtain a SH wavelength of 532 nm 

in the visible range (green), so that the period of our PPLN was equals to 6,8 

µm. 

 

FIGURE 1 SCHEME OF THE OPTICAL CIRCUIT OF THE OPTOFLUIDIC PLATFORM 
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1.2. Objectives 

The objectives and the expected results of this task can be summarized as 

follow: 

 Realisation and characterization of optical waveguides on by Titanium 

in-diffusion on Lithium Niobate Crystals. This part considers the design 

of the optical waveguide geometry with UV-photolithography; the 

relative sputtering deposition and lift-off process; the high temperature 

diffusion to get the best optical confinement in the visible/NIR ranges 

(SHG and pumps frequency respectively). The characterization was 

achieved with the near-field and the m-lines techniques. 

 Preparation and characterization of Periodically Poled Doped Lithium 

Niobate (PP-doped-LN) structures. This task considers the preparation 

of lithium niobate crystals with a periodic pattern of ferroelectric 

domains on crystals undoped and doped with Zr using 

photolithography and electrical poling. The PPLN crystal were designed 

to act as efficient frequency converter in visible spectral range via SHG 

with a period of 6,8 µm. Finally the structures were characterized with 

polarized microscopy and wet etching and then the SHG efficiency was 

measured. 

 Test of the optical performances of the integrated PPLN structure: the 

measurement of the conversion efficiency for a specific nonlinear 

process. 

The expected results of the project can be summarized as follows: 

 Setting up of a new facility for micro-patterning of lithium niobate 

samples by photolithographic patterning and poling. 

 Realisation of periodically poled structures with a period of 6,8 μm in 

order to obtain optical conversion in the visible spectral region with 

efficiencies of 0,1% W-1. 

 Realisation and characterization of single-mode optical waveguides in 

the visible range. 

 Realisation and testing of an integrated waveguide frequency converter 

with high conversion efficiency and strong endurance. 

 Realization of PPLN in Zr-doped lithium niobate crystals. 
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In this thesis we discuss the realization and characterization of the two 

different stages of the optical circuit (PPLN and waveguide), but unfortunately 

there are no data on the integration between the two different stages, as this 

work regards the last months of the ongoing project. However, the realization 

of monomodal waveguides in the visible range is the key point for the 

realization of the opto-microfluidic circuit and the first results on the 

microchannel/waveguide coupling are presented in Chapter 4.  
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2. Waveguides 

2.1. Introduction 

Waveguides are the basic element in an integrated optical device and in 

particular also in a system realized in Lithium Niobate. Lithium Niobate is one 

of the most popular dielectric materials for integrated optics, that because it 

is characterized by low optical absorption (~0.1 dB/cm). The refractive index 

increase to realize an optical waveguide is usually achieved by locally doping 

the LiNbO3 crystal with titanium at high temperature [2]; or by Proton-

Exchange (PE) in which lithium ions of the substrate material are exchanged 

by hydrogen ions protons of the acid [3]; or by ion implantation [4]. A large 

variety of integrated optical devices has been demonstrated where these 

three techniques have been employed [5]. For the realization of our optical 

stage we choose to use Ti-indiffused waveguides, this for several reasons: 

the first is that even if PE give refractive index variation of one order of 

magnitude greater than Ti-indiffusion (δne~0,1÷0,12), it seriously damages 

the electro-optical properties of the crystals and therefore it is not suitable 

for the integration with the photorefractive holographic gratings which we 

want to realize in our project. The second is that the fabrication of ion-

implanted waveguides is expensive being performed in external facilities. The 

third is that Ti indiffusion process is quite known and it was deeply 

investigated in the past (significant contribute to the understanding of the Ti 

indiffusion process came from the Group of Padua in the ninetees [6]–[10], 

therefore the procedure and the parameters used to fabricate high quality 

Ti:LiNbO3 optical devices were well known. In particular the diffusion 

behavior of titanium, the relation between Ti concentration and the refractive 

index change, and the also the predictive models were completely studied in 

the past years [11]–[13]. In this thesis we started from the works cited, and 

therefore we implemented a complete procedure for the realization single-

mode channel waveguides, thanks to the use of the different techniques 

employed in this work: photolithography, heat treatments, sputtering 

deposition. 



 124 

Therefore in this section we discuss the fabrication and characterization of 

optical standard waveguides in Lithium Niobate. Firstly we present the 

diffusion of slab waveguides on x-cut crystals and their compositiona 

characterization –using the Secondary Ion Mass Spectrometry (SIMS) and 

the Rutherford Backscattering Spectrometry (RBS)– to achieve the in-depth 

profile and consequently estimate the diffusion coefficient. We measure the 

number of modes supported by the waveguides to characterize the optical 

response of the doped region. Finally we discuss multimodal and monomodal 

channel waveguides realized by the mean of photolithography and their 

optical characterization with the Near Field technique. 

In the next section we briefly discuss the diffusion behavior of the Ti in 

LiNbO3 and the numerical solution of the waveguide modes; therefore we 

show our procedure and results. 

2.2. Titanium Diffusion in Lithium Niobate 

The thermal diffusion of thin films of titanium evaporated or sputtered onto 

the substrate surface [14] is a widely used method for waveguide formation 

in LiNbO3, and most of the integrated optical devices available today are 

based on titanium-diffused LiNbO3 waveguides. A large number of other 

metals can be diffused into LiNbO3 to form waveguiding layers, for example, 

vanadium, nickel, niobium, cobalt, silver, or gold [14], but the best results 

were obtained by using titanium. Titanium diffusion was studied in details 

[15][10] and it was reported that into LiNbO3 is the following: at a 

temperature of about 500°C, titanium is oxidized to TiO2, and above 600°C 

LiNb3O8 epitaxial crystallites are formed at the surface, connected with a loss 

of lithium. For temperatures larger than 950°C a (Ti0.65Nb0.35)O2 mixed oxide 

appears, which acts as the diffusion source for titanium indiffusion. With 

increasing annealing time titanium diffuses deeper into the crystal, and the 

titanium–niobium oxide layer decomposes. The diffusion process follow the 

Fick’s Laws and therefore the diffusion profile can be described by 

𝐶(𝑥, 𝑡) = 𝐶0erfc⁡(
𝑥

√4𝐷𝑡
) 

EQUATION 1 
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for infinite dopants source, and by 

𝐶(𝑥, 𝑡) = 𝐶0exp⁡(
𝑥2

4𝐷𝑡
) 

EQUATION 2 

for thin layer, as it is in our case. Where C(x,t) is the depth concentration of 

the Ti ions, C0 the superficial concentration, and D the diffusion coefficient. 

Therefore the depth of diffusion can be controlled varying the diffusion time 

for a determined temperature. In fact the diffusion coefficient D depends on 

the temperature of diffusion with an Arrhenius relation. Therefore it is 

necessary to measure the value of D(T) and of the superficial concentration 

(C0) to determine the waveguide geometrical parameter. The diffusion 

coefficient and the superficial concentration measurements are discussed in 

section 2.5.2, together with the measure of the depth of diffusion. 

Finally, to simulate the refractive index profile of the waveguide we have to 

know also the relation between C(x,t) and n. Some papers dealt with the 

problem of the determination of refractive index changes in Ti-diffused 

LiNbO3 optical waveguides [11][12]. A linear dependence between the 

extraordinary refractive index change and titanium concentration was 

obtained by Minakata et al. [11], whereas a nonlinear relationship was found 

by Fouchet et al. [12] and Caccavale et al. [13]. These relations were used in 

the simulation discussed in section 2.3. 

2.3. Numerical simulation 

A numerical simulation was used to find the fabrication parameters of a 

single-mode channel waveguide. The simulation was done using COMSOL 

software by Dr. Nicola Argiolas of the Department of Physics and Astronomy 

of the University of Padova. The modes supported by the waveguide were 

calculated as the solution of the Maxwell’s equation in a graded-index 

waveguide. Therefore, the solutions of the Maxwell’s equations were 

searched in the hypothesis of harmonic monochromatic planar waves, then 

only the spatial component of the wave function was taken into account. The 

problem was solved only for the electric field component, as the magnetic 

field can be simply derived from its solution. Therefore we suppose that the 
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waveguide is invariant along the propagation direction (z), while the 

amplitude of the function varies only in the transversal plane (x,y): 𝐸̅ =

𝐸̅𝑥,𝑦𝑒
𝑖𝑘𝑧∙𝑧. Consequently the solutions of the system, for insulating and 

paramagnetic materials, can be found as the eigenvalues and eigenvectors of 

the following equation: 

∇̅ × (∇̅ × 𝐸̅) − 𝑘0
2𝜀𝑟𝐸̅ = 0 

EQUATION 3 

Where 𝜀𝑟 = 𝜀𝑟(𝑥, 𝑦) and depends on the Titanium concentration profile of the 

waveguide, as it is related to the square of the refractive index for non-

absorbent materials, and it depends on the concentration as 𝑛𝑒
𝑇𝑖 = 𝑛𝑒 + 𝑐𝑜𝑠𝑡.𝑒∙

𝐶(𝑥, 𝑦), 𝑛𝑜
𝑇𝑖 = 𝑛𝑜 + 𝑐𝑜𝑠𝑡.𝑜∙ 𝐶(𝑥, 𝑦)

𝛾𝑜 for extraordinary and ordinary polarization 

respectively [11]–[13]. The eigenvalues are therefore the effective refractive 

index of propagation and the eigenvectors the electric field vectors. Since 𝜀𝑟 

varies in the plane (x,y) the solutions of the Equation 3 can be found only 

with a numerical method (COMSOL software). 

Therefore from the compositional characterization presented in section 2.5 

we calculate the refractive index profile of a y-propagating channel 

waveguide on x-cut obtained from Ti diffused at 1030°C for 2,2 hours 

(approximating the lateral diffusion equal to the depth diffusion) for a total Ti 

dose of 1,5·1017 atoms/cm2. We tried different width of the starting Ti strip 

photolithographically deposited on the LN surface, in order to find at which 

dimension the waveguide simulated would be single-mode. We found a single 

mode for a 5µm-width strip. In Figure 2 we present the only one physical 

meaningful solution of Equation 3 in TE polarization, for the 5µm-width 

waveguide. The relative effective refractive index calculated is 2,2032. In 

figure we also present the effective dimension of the waveguide, as the 

difference between the refractive index and the effective refractive index.  
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FIGURE 2 ON THE LEFT THE NUMERICAL SIMULATION OF A TE SINGLE-MODE RADIATION PROPAGATING 

IN A NOMINAL 5 µm WAVEGUIDE. ON THE RIGHT THE REPRESENTATION OF THE EFFECTIVE DIMENSION 

OF THE WAVEGUIDE, I.E. THE DIFFERENCE BETWEEN THE REFRACTIVE INDEX AND THE EFFECTIVE 

REFRACTIVE INDEX OF THE CALCULATED MODE. FOR BOTH THE FIGURE THE SCALE IS IN MICROMETERS.  

2.4. Fabrication 

This section is devoted to the presentation of the experimental procedures 

used to prepare and characterize Ti in-diffused samples. In the first part of 

the section the main steps involved in the preparation of a diffused Ti:LN x-

cut samples are presented, then the usual techniques exploited to 

characterize the compositional and structural properties of each realized 

sample are briefly discussed. Finally the best experimental conditions to 

realize monomodal diffused Ti:LN waveguides are summarized. The 

parameter of Ti in-diffusion samples are shown in Table 2 and Table 3. 

Although this doping process was already known, the implementation of 

channels waveguides instead of planar one was a new issue for the group, 

and literature is not exhaustive in this topic since Ti:LN channel waveguides 

are the base of commercial modulators, and therefore, a patented process. 

Sample cutting and cleaning: The first stage of the samples preparation is the 

cutting of the substrates. The congruent lithium niobate crystals are obtained 

by a commercial x-cut wafer, 1mm thick, and polished on both faces. A South 

Bay 540 cutting machine, equipped with a diamond-coated Cu-alloy blade, is 

used to cut the wafer, whose crystallographic axes can be aligned with 

respect to the blade by using a protractor. Therefore the lithium niobate 

wafer is cut along its 𝑦̂ and 𝑧̂ directions and, according to their experimental 

purpose, substrates with different sizes can be obtained. After the cutting, 

just before the beginning of the deposition process, each sample was washed 
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with soap and distilled water, then cleaned with the propanol, and finally 

immersed in acetone in an ultrasonic cleaner for about ten minutes. 

Titanium thin film deposition: In this work, to realize titanium thin films on 

lithium niobate substrates it was exploited the magnetron sputtering 

technique, which is one of the most widely used surface coating technique. 

Sputtering is basically the removal of atoms from a solid material by 

bombardment of its surface with energetic particles. The process occurs in a 

vacuum chamber, where the substrate and the target are located and, once 

the appropriate pressure is reached, and inert gas is introduced. When a 

negative voltage is applied to the target, it attracts the positive ions of the 

gas which collide with the surface atoms of the material, leading to an energy 

transfer which results with the sputtering of some atoms. Then the sputtered 

neutral atoms tend to deposit on all the surfaces present in the chamber, 

therefore also on the considered lithium niobate substrate. Besides from the 

sputtering of a target atom, another important phenomenon involved in this 

process is the emission of secondary electrons from the target surface. If 

permanent magnets are positioned under the target, the secondary electrons 

are trapped around the magnetic field lines undergoing more ionizing 

collisions with neutral gas than would otherwise occur. This enhances the 

ionization of the inert gas near the target, leading to a higher sputter rate. 

The sputtering machined used was provided by Thin Film Technology and it is 

equipped with three sources: a DC (diode) magnetron for metallic targets 

and two RF (radio frequency) magnetron for semiconducting ones. In the 

cylindrical chamber the vacuum is achieved by using two pumps: first a 

rotary vane vacuum pump is activated to reach a pressure of about 9-10·10-2 

mbar, then a turbomolecular one is switched on to obtain and maintain a 

pressure less than 3·10-6 mbar. The sample is mounted in a sample-holder 

located at the opposite side of the Titanium target and during the sputtering 

process it is rotated, in order to achieve a good homogeneity in the thickness 

of the deposited film. The used inert gas is Ar and, before starting with the 

deposition process, a pre-sputtering of about 2 minutes is usually performed, 

to remove all the possible impurities present on the surface of the solid 

target. Finally, when the deposition is completed, all the pumps are stopped 

and, to return to the atmospheric pressure, Ar gas is still introduced in the 
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chamber. The Rutherford Backscattering Spectrometry discussed in section 

2.5.1 gave a flux of deposition of 8,3·1014 molecules s-1 cm-2.  

  

FIGURE 3 MAGNETRON SPUTTERING APPARATUS ON THE LEFT. SCHEME OF THE MAGNETRON 

SPUTTERING DEPOSITION ON THE RIGHT. 

The thermal treatments: After the deposition of the Ti film, the dopant is 

completely diffused inside the LiNbO3 substrate by performing thermal 

treatments. The diffusion process occurs in a tubular furnace, by Gero 

Hochtemperaturofen Gmbh (model F-VS 100-500/13), and the heating tube 

consists of an uncovered FeCrAl heating coil, mounted on a ceramic fiber 

module whose low thermal conductivity guarantees low energy consumption 

and allows high heating rates, up to 600 °C/h. The furnace is equipped with 

all the necessary to realize thermal treatments in vacuum or different gases: 

water-cooled flanges, gas inlet and outlet and two rotameters to adjust the 

gas flux at the entrance of the furnace. The rotameter scale is in Nl/h and the 

gases used are provided by Sapio in cylinders of 40L and purity 5.0. At the 

center of the tubular furnace there is a region, long some centimeters, where 

the highest temperature is homogeneous, thus the sample is located in that 

zone by using a quartz rod with at the end a square support. Moreover, 

between the support and the LiNbO3 sample a Platinum support layer is fixed, 

to avoid a possible high-temperature reaction between SiO2 and the sample, 

which would dissolve the crystal. Each sample is positioned on the support 

with the Ti film upward and heating/cooling rates of 300 °C/h and 400°C/h 

respectively are used, in order to avoid an excessive thermal stress on the 

sampe. The diffusion of Ti into the substrate can occur in vacuum or in 

different atmospheres. In our case the gas used during the diffusion process 

was oxygen, this to reduce the damage of the surface [16]. Unfortunately the 
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use of a wet atmosphere was not possible in our set-up, and therefore the 

optimal conditions that avoid the Lithium out-diffusion was not achievable. 

The samples were then diffused at a temperature of 1030°C. 

 

FIGURE 4 THE TUBULAR FURNACE GERO HOCHTEMPERATUROFEN GMBH (MODEL F-VS 100-500/13) 

Lapping and polishing: The Near-Field characterization (section 2.10) of the 

waveguide needs lateral surface of the samples with a roughness of an 

optical quality, therefore after the realization of the waveguides all the 

samples were polished and lapped. Lapping and polishing are processes by 

which material is precisely removed from a workpiece to produce a desired 

dimension, surface finish, or shape. These processes have been applied to a 

wide range of materials and applications and they are useful due to the 

precision and control with which material can be removed. Surface finishes in 

the nanometer range can be produced using these techniques, which makes 

lapping and polishing an attractive method for materials processing. In 

particular the lapping is the removal of material to produce a smooth, flat, 

unpolished surface and a midrange abrasive particle (5-20m) is typically 

used, while polishing is exploited to produce a scratch-free, specular surface 

using fine (<3µm) abrasive particles. The machine used to polish and lap the 

samples of this work is a professional one by Logitech. The machine uses a 

rotating disc and a device, called JIG, on which one or more samples are 

mounted and that allows to regulate the force with which the sample is 

pressed on the disc. The lapping process is divided into two steps and it is 

used to remove the subsurface damage caused by the cutting of the sample 

from the original commercial wafer. In these stages an iron disc is used to 

remove material from the surface of the sample with a rate of 10 µm/min by 
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using first an aqueous solution of 9µm alumina particles and then a 3 µm 

one. Moreover at each step, before changing to the next one, a microscopy is 

used to verify that at the surface of the sample they are present only 

damages whose size is about the same of the alumina suspension used. 

Finally, in the third stage a polyurethane disc is used with a SF1 alumina 

colloidal suspension (0.1 µm) and a polished sample is obtained with a 

surface roughness less than about 1 µm. 

2.5. Compositional Characterization 

Different samples diffused with a planar layer of Titanium were compositional 

characterized in order to determine fundamental diffusion parameters. First 

of all, the deposited dose of Titanium was measured using the Rutherford 

Backscattering Spectrometry (RBS), therefore the Diffusion coefficient at 

1030°C and the concentration profiles of the Ti inside the Lithium Niobate 

were obtained using the Secondary Ion Mass Spectrometry (SIMS). In the 

following section we present the two techniques and the main results 

obtained. 

2.5.1. Rutherford Backscattering Spectrometry (RBS) 

Rutherford backscattering technique (RBS) was used to quantify the absolute 

amount of titanium deposited. The knowledge of the dose of Ti, together with 

the knowledge of the thickness by profilometry, allows determining the 

density of the film before the diffusion; moreover, assuming that Ti does not 

evaporate during diffusion, it allows converting the SIMS yeld into a 

concentration profile (section 2.5.2). Finally, knowing the time of deposition, 

we can calculate the flux of the sputtering deposition. 

In a RBS measurement, few MeV light ions collide on a sample surface, the 

incident ions undergo collisions with target atoms and are therefore 

scattered. Finally the backscattered ions are then collected by a Mass 

spectrometer. The number Ns of target atoms per unit area is determined by 

the probability of a collision between incident particle and target atoms as 

measured by the total number of detected particles QD for a given number Q 

of incident particles. The connection between number of target atoms per 

unit area Ns and number of detected particles is given by the scattering cross 
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section σ(θ,Ω) which is tabulated in literature. Therefore for small solid angle 

Ω of detection we have 

𝑄 = 𝜎(𝜗) ∙ Ω ∙ 𝑄 ∙ 𝑁𝑠 

EQUATION 4 

Where σ(θ) is an average cross section for small solid angle.  

The RBS experiments were performed at the National Laboratory of Legnano 

(LNL-INFN) on a two as-deposited samples on glass (SiO2) substrate. The 

detector was placed at 170° with respect to the incident beam, with a 

detection solid angle (measured with calibration standard) equal to 1,966 

mstrad.  

 

FIGURE 5 RBS  SPECTRUM IN CHANNELING CONDITION OF AN AS-DEPOSITED SAMPLE OF TI ON GLASS 

(SIO2). ABSCISSA REPORTS THE CHANNEL NUMBER, EACH CHANNEL DETECT AN ENERGY RANGE OF 

BACKSCATTERED PARTICLES. 

In Figure 5 a typical RBS spectra in channeling condition with x axis is 

reported. The Ti peak is clearly distinguishable from the background signal 

due to Si, and O backscattering, which rises going from higher to lower 

energies. Since Ti atoms are located in a very thin layer on the surface, they 

give rise to a narrow peak whose width depends only on the energy 

resolution of the detector. By means of the Rutherford cross-section, the 

solid angle of detector acceptance, the Ti screening factor, and the incident 
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ion charge, it is possible to relate linearly the integral area of the Ti peak to 

the fluence of 150·1015 molecules cm-2 for both the samples measured. 

Therefore the flux of deposition calculated is 8,3·1014 molecules s-1 cm-2. 

Moreover the spectra evidence also the partial oxidation of the sputtered 

layer (TiO0,8), which in our case is not a problem, since the oxidation of the 

Titanium is an essential step to achieve the diffusion inside the Lithium 

Niobate. Finally we calculate, from the measure of the thickness of the Ti 

layers using a profilometer, a bulk concentration of 4,06 ± 0,08 molecules 

cm-3. 

2.5.2. Secondary Ion Mass Spectrometry (SIMS) 

Secondary ion mass spectrometry (SIMS) is a powerful analytical tool to 

study the in-depth profile of dopants, for its extremely high sensitivity and 

significant depth resolution. The fundamental basis of SIMS analyses is the 

measurement of the mass and intensity of secondary ions produced in a 

vacuum by sputtering the sample surface with energetic ion or neutral 

beams. The sputtering beam is referred to as the primary beam and typically 

has a kinetic energy of several thousand electron volts. The primary beam 

removes atomic or molecular layers at a rate determined principally by the 

intensity, mass, energy of the primary species and the physical and chemical 

characteristics of the sample. Sputtering of the sample produces a variety of 

particles including electrons, photons, atoms, atomic clusters, molecules and 

molecular fragments. A small fraction of these sputter products is ionized, 

and these ions are the secondary ions in secondary ion mass spectrometry. 

In a typical Dynamic SIMS analysis, the samples are sputtered by a focused 

energetic primary ion beam which is rasted over a square area, usually a few 

hundred microns on a side. Secondary ions formed during the sputtering 

process are accelerated away from the sample surface by electrostatic fields 

(in particular the sample voltage is close to -4500 V). Fractions of the 

secondary ions are accepted for analysis by a mass spectrometer and are 

collected from a circular area centered in the rasted region. This field of view 

is defined by an adjustable field aperture in the ion optic column. This 

aperture provides an optical gate that is used to improve depth resolution by 

rejecting secondary ions emitted from the wall of the sputtered crater where 

material at different depths is exposed simultaneously. The transmission 
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(sensitivity) of the spectrometer is further controlled by a second adjustable 

aperture in the secondary ion optic column. Adjustable entrance and exit slits 

are used to adjust the mass resolution of the spectrometer when it is 

necessary to separate interfering ions of the same nominal mass/charge 

ratio. The secondary ions are energy focused by an electrostatic analyzer and 

mass-filtered by a magnetic sector analyzer. After passing through the 

analyzers, the ions are detected either in an analog current mode using a 

faraday cup or in a pulse counting mode using an electron multiplier. 

Dopant profiles of the diffused samples were measured by SIMS using a 

CAMECA ims4f equipped with a normal incidence electron gun used to 

compensate the surface charge build-up while profiling insulating samples 

without any need to cover the surface with a metal film. Concentration 

profiles were obtained by 14.5 keV Cs positive ion bombardment and by 

negative secondary ion detection. The calibration of the Ti profiles was made 

by means of the measurement of the total Ti dose in the as-deposited films 

using RBS (section 2.5.1). In fact, the integral of each profile was normalized 

to the fluence, known from RBS measurements, to obtain the absolute 

concentration profile, i.e. for each profile the proportionality factor between 

normalized signal and concentration was determined. This constant is usually 

called relative sensitivity factor RSF, defined by the equation: 

𝐶[𝑎𝑡𝑜𝑚𝑠/𝑐𝑚3] = 𝑅𝑆𝐹 ∙ 𝐼 

EQUATION 5 

Therefore a typucal concentration profiles is presented in Figure 6, with its 

good Gaussian fit (R2= 0,9998) which yelded the value of the diffusion 

coefficient D and of the superficial concentration C0 (Table 1). Moreover the 

SIMS profile fitting allows determining the depth of the waveguide which is 

related to the Diffusion coefficient by  

𝜎 = √4𝐷𝑡 

EQUATION 6 
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FIGURE 6 PROFILE TI CONCENTRATION ELABORATED FROM A SIMS MEASURE (BLACK) AND THE 

RELATIVE GAUSSIAN FIT (RED) 

In the past years other SIMS and RBS measurements -done by Dr. M.V. 

Ciampolillo in the same conditions- gave a value of the diffusion coefficient of 

88±3 nm2/s, fully comparable with our measures.  

 Value Error 

σ 1203 nm 6 nm 

C0 1,00·1021 at/cm3 2·1019 at/cm3 

D 91 nm2/s 2 nm2/s 
TABLE 1 PARAMETER OF THE TI DIFFUSION OBTAINED FROM THE GAUSSIAN FIT 

2.6. Planar waveguides 

After the characterization of the sputtering and diffusion processes, planar 

waveguides on x-cut crystals were realized with the same set-up and 

different parameters (Table 3) in order to optimize the production of 

monomodal waveguides in the visible range. This was the first step necessary 

to obtain the channel waveguide that are discussed in section 2.9. After the 

production, the samples were characterized with the m-lines technique in 

order to measure the number of modes guided. In Table 2 the main 

parameters for the production of the planar waveguides are reported 

 

Sputtering Pressure Sputtering Power Diffusion  Temperature 

5,00E-03 mbar 80 W 1030 °C 
TABLE 2 PARAMETERS OF DEPOSITION AND DIFFUSION OF THE TI 
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2.7. Optical characterization 

2.7.1. m-lines 

The numbers of modes of the waveguides were determined by the means of 

m-lines spectroscopy [17], which is based on a standard prism-coupling 

method that uses the setup illustrated in Figure 7, equipped with a rotating 

stage. The m-lines spectroscopy is a non-destructive method. The light 

source was a He–Ne laser at 632 nm and solid-state laser at 532 nm. 

Waveguide modes are selectively excited through the coupling prism by 

varying the incidence angle, and the coupling angles are determined by 

collecting the light in total reflection from the sample (dark-lines mode). An 

automatized system allows scanning the incidence angle interval within which 

the modes are excited with an uncertainty of 0.01°. The signal from the 

waveguide, collected by a photodiode, is filtered through a lock-in system 

and displayed in real time on the system display as a function of the rotation 

angle.  

 

FIGURE 7 THE M-LINES SETUP: THE LIGHT SOURCE IS A HE-NE LASER AT 632 nm OR A SOLID 

STATELASER AT 532 nm. THE POLARIZER λ/2 IS USED TO CHOOSE THE TE OR THE TM MODES, THE 

ROTATING TABLES CHANGES THE INCIDENCE ANGLE OF THE LASER BEAM WITH THE PRISM, THE 

PHOTODIODE MEASURE THE INTENSITY OF REFLECTION LIGHT (DARK LINES). THE PRIMES USUALLY 

USED THE ANGLE TO 90° OR 60°. 

In Figure 8 a single-mode planar waveguide m-lines spectrum is showed, the 

negative peak corresponds to a TE mode guided by the Ti layer. The peak is 

due to the light coupling at the prism-waveguide interface, with the 

consequent reduction of the reflected intensity. 
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FIGURE 8 DARK M-LINES AT 633nm FOR A PLANAR WAVEGUIDE OBTAINED WITH 2,75 S OF 

SPUTTERING AND 2,2 HOURS OF ANNEALING AT 1030°C. 

2.8. Results and Discussion 

Sample 
Sputtering 

time 
Diffusion 

time 
Number of 

modes 
Number of 

modes 

 minutes hours At 532 nm At 633 nm 

140.7 5,5 2,2 2 2 

140.10 4 2,2 2 2 

140.11 3 2,2 2 1 

140.14 2,75 2,2 1 0 
TABLE 3 PARAMETERS OF FABRICATION AND NUMBER OF MODES FOR PLANAR WAVEGUIDES AT TWO 

DIFFERENT WAVELENGTHS. 

In Table 3 the parameters of production and the number of modes guided at 

633nm and at 532 nm are presented. The sample 140.11 was the best of the 

samples analyzed, however we were not able to achieve the monomodal 

guiding at both the wavelength. We report in Table 4 the parameters and 

characteristics of the waveguide. Therefore sample 140.11 was chosen as the 

starting point used to achieve monomodal channel waveguides.  

Dose  Annealing 

time 
at 1030°C  

Calculated 

depth  

Measured 

depth 
(SIMS)  

Number 

of modes 

Number 

of modes 

(atoms/cm2) (h) (µm) (µm) at 532 nm at 633 nm 

1,5 1017 2,2 1,2 1,4 2 1 
TABLE 4  OPTIMIZED PARAMETERS TO OBTAIN A MONOMODAL PLANAR WAVEGUIDE WITH TI IN-

DIFFUSION IN LITHIUM NIOBATE AT 1030°C (DIFFUSION COEFFICIENT 88±3 NM
2/S). 
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2.9. Channel waveguides 

As previously reported the realization of channel waveguides was a process 

to be settled. A titanium film was deposited onto an x-cut LiNbO3 substrate 

and patterned photolithographically using the procedure described in section 

3.3.2. The parameters of diffusion and the width of the waveguides were 

chosen using the simulation discussed in section 2.3, therefore a width of 5 

µm was used to achieve monomodal waveguides with the same diffusion 

conditions of the monomodal planar waveguides of section 2.8, Table 4. 

Three kinds of waveguides were realized, multimodal 12-µm and 10-µm; and 

monomodal 5-µm waveguides. Therefore the samples were lateral lapped 

and polished to allow the optical characterization using the Near Field 

technique. 

In Table 5 we report the samples produced and analyzed. Different 

parameters were explored: geometrical dimensions, direction of propagation, 

parameters of production. Therefore we characterize the channel waveguides 

in order to find the best condition to achieve monomodal channel waveguides 

at 633 nm. 

Channel waveguide 

width 

Atmosphere and 
Temperature of 

Annealing 

Propagation 

direction 

13.0 ± 0.3 µm Air, 1030 °C, 2h z 

11.5 ± 0.5 µm Air, 1030 °C, 2h y 

9.8 ± 0.5 µm O2, 1030 °C, 2h z 

12.6 ± 0.4 µm O2, 1030 °C, 2h z 

5.9 ± 0.2 µm O2, 1030 °C, 2h z 

5.3 ± 0.3 µm O2, 1030 °C, 2h y 

TABLE 5 STRIP WIDTH OF THE DEPOSITED TI AND ANNEALING PARAMETERS OF WAVEGUIDES WITH 

DIFFERENT DIRECTION OF PROPAGATION 
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2.10. Near Field 

 

 

FIGURE 9 NEAR FIELD APPARATUS SCHEME, A LASER DIODE AT 633 NM IS POLARIZED AND FOCALIZED 

(20X) INSIDE THE WAVEGUIDES, THEN THE LIGHT IS COLLECTED AT THE WAVEGUIDE END BY A 20X 

OBJECTIVE AND THEREFORE RECORDED BY A DIGITAL CAMERA. 

The channel waveguides realized were characterized using the near field 

technique. The method, sketched in Figure 9, consist on a fiber-coupled laser 

diode at 633 nm which is polarized TE or TM and then focalized with a 20x 

objective to the head of the waveguide. Therefore at the output of the optical 

waveguide the near-field image is collected by a Vidicon tube by using a 20x 

(f=10mm) objective lens and recorded by a digital camera (LaserCam-HR, 

Coeherent), which allows measuring the intensity distribution of the guided 

beam and therefore the number of modes transmitted.  

In Figure 10 three samples with different widths of the waveguides are 

compared, it can be easily seen that reducing the width from 11,5 to 5 µm 

allows passing from a multimode waveguide to a single-mode waveguides. In 

particular in Figure 11 we compare the image of a single TE mode 5 µm 

waveguides with its simulation that was previously calculated as explained in 

section 2.3, demonstrating the good behavior of our simulation tool to 

forecast the light propagation in our waveguides. 
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FIGURE 10  NEAR-FIELD IMAGES OF THREE 1,4 µM DEPTH Y-PROPAGATING WAVEGUIDES ON X-CUT 

SAMPLES (=633 NM, NO POLARIZATION). LEFT) MULTIMODE WAVEGUIDE (NOMINAL WIDTH 11,5 

µM); CENTER) MULTIMODE WAVEGUIDE (NOMINAL WIDTH 10 µM) RIGHT) SINGLE-MODE WAVEGUIDE 

(NOMINAL WIDTH 5 µM).  

 

FIGURE 11 COMPARISON BETWEEN THE SIMULATION OF A 5 µM WAVEGUIDE TE SINGLE-MODE (ON 

THE LEFT) AND THE NEAR FIELD IMAGE OF A TE MODE IN A 5 µm WAVEGUIDE. 

Finally, in Figure 12 we present a comparison between a y propagating and a 

z propagating 5 µm waveguides, both the samples are single-mode and 

therefore we can use the same production process also for the z propagating 

waveguides. 

 

FIGURE 12 ON THE LEFT THE NEAR FIELD IMAGE OF A 5 µm Y-PROPAGATING WAVEGUIDE, ON THE 

RIGHT THE NEAR FIELD IMAGE OF A 5 µm Z-PROPAGATING WAVEGUIDE. BOTH THE WAVEGUIDES WERE 

PRODUCED WITH THE SAME PROCEDURE (1030°C, 2.2 HOURS, O2 ATMOSPHERE). 
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3. PPLN Frequency Converter  

3.1. Introduction 

Many applications in different fields (e.g. optofluidic, biomedical, optical data 

storage, telecommunications, printing and displays, etc…) would greatly 

benefit from the availability of compact and low-cost, solid-state sources 

emitting in the visible range. Nowadays semiconductor lasers allow covering 

a large fraction of the visible spectrum, but the availability of green-light 

sources is still limited, and green laser light is generally produced by 

exploiting nonlinear optical processes, such as the second harmonic 

generation (SHG) of lasers emitting in the infrared. Very efficient SHG can be 

performed by exploiting quasi-phase matching (QPM) technique in 

ferroelectric materials [18][19], which allows to phase-match the desired 

nonlinear interaction, and to exploit large 2 nonlinear coefficients [20]. The 

QPM technique requires to periodically reversing the material spontaneous 

polarization, which is the sign of the 2 coefficient, with a period matching an 

even multiple of the coherence length [21]. In ferroelectric crystals, such as 

lithium niobate (LN), this process creates a periodic structure of ferroelectric 

domains (so called periodically-poled lithium niobate, PPLN). In the past 

decades, several techniques were developed for the fabrication of PPLN 

[22][23], and currently electric-field poling is the most commonly used 

system [24][25]. According to this technique, an electric field higher than LN 

coercive field is applied to selected regions of the sample where patterned 

electrodes are deposited, yielding a localized polarization reversal. Although 

high quality PPLNs are now commercially available, their application to the 

generation of high-power visible radiation is still limited. This is mainly due to 

the photorefractive effect occurring in LN, which may produce beam 

deformation, increase of propagation losses and a strong decrease of the 

nonlinear efficiency. In order to avoid this effect, it is necessary to use low-

intensity beams (both in the visible and in the infrared range [26], or to 

operate the PPLN at temperatures above 100 °C. In both cases the 

performance is severely reduced: in the first case in terms of efficiency, and 

in the second case in terms of device reliability and power consumption. To 
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overcome this problem a possible solution is to use Magnesium doped LN 

[23], [27]–[29] that however requires high level of doping (about 6 mol%), 

that affects the crystal quality and homogeneity. As an alternative to Mg-

doped crystals, in this work we evaluate the exploitation of Zr-doped lithium 

niobate, as this substrate can withstand high optical intensities, without 

exhibiting appreciable photorefractivity even when the Zr content is as low as 

3 mol% [1], [30], [31]. Crystals with the same composition of those 

considered in this manuscript (Zr:LN crystals doped with 3.0 mol%) were 

characterized in order to evaluate their optical damage resistance, and the 

obtained results demonstrated that green light intensities up to 50 kW/cm2 

don’t induce any measurable beam smearing (Figure 13) [26][1]. Several 

papers regarding the properties of Zr-doped LN crystals were published in the 

last few years, but, to the best of our knowledge, no data has ever been 

reported on the post-growth periodic-poling of this material, and about the 

nonlinear performance of Zr-doped periodically-poled LN.  

 

FIGURE 13 THE IMAGES PRESENT THE DISTORTION OF A LASER BEAM COLLECTED AFTER THE 

TRANSMISSION THROUGH DIFFERENT MATERIALS AND AT TWO DIFFERENT WAVELENGTHS. THE 

COMPARISON CONFIRMS THAT THE ZR DOPING LN AT 3% MOL. IS AN EXCELLENT OPTICAL-DAMAGE 

RESISTANT MATERIAL. 

In this section we describe the realization of periodically-poled LN crystals 

both undoped (cLN:PPLN) and doped (Zr:PPLN) with a 6.8 µm period, and 

then characterization of the structure and the efficiency of the different 

samples realized with the described poling set-up. However, first of all a 

theoretical introduction to SHG, QPM, and poling of LN is discussed. 
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3.2. Poling 

Several techniques have been developed for the fabrication of such systems. 

Some exploit the direct growth procedures which consist in growing lithium 

niobate boules under the periodic action of some external influence (such as 

an alternate current flowing through the crystal while pulling), and post-

process electrical treatments. In alternative, by off-centering the crystal 

growth axis with respect the temperature field, PPLN can be achieved in a 

Czochralski growth apparatus. In the past this last technique was extensively 

exploited since, depending on the modulation type, it is able to produce quite 

easily domain structures on the whole boule volume. Unfortunately the 

process reproducibility is far from being exported into the in industries for 

large production. A different approach to obtain PPLNs relies instead on 

inverting the LiNbO3 spontaneous polarization after the growth [23]. By 

applying an electric field higher than the lithium niobate coercive field, the   

ferroelectric domains can be reversed according to the field versus. Among 

this technique the direct “writing” by electron beams or by High Voltage AFM 

tips [22] were used but the most exploited is the direct polarization reversal 

under patterned electrodes. Due to the high value of the coercive field 

required for reversing domains in crystal thicker than some hundreds of 

micrometers (up to 21 kV/mm), the periodicities which can be obtained are 

limited by the spreading of the electric field inside the material. The state of 

the art of commercial PPLN fabrication using this technique is now 6 μm 

period in 0.5 mm thick wafers and 17 μm in 1 mm thick wafers.  

In this section we will explain the principal characteristic of ferroelectric 

switching of Lithium Niobate and the correlated characteristic of ferroelectric 

domains. First of all, we will present thermodynamic and kinetic models 

describing behavior of uniaxial ferroelectric material like LiNbO3. Then we will 

discuss the role of dopants in these models. For an instrumental and practical 

description of the poling process (ferroelectric switching) we remand to 

section 3.4. 

3.2.1. Thermodynamic model 

The Landau-Ginsburg theory can explain the spontaneous polarization (Ps) of 

uniaxial ferroelectric crystal with two antiparallel polarization directions like 
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LiNbo3. Particularly we will concentrate on the switching process and 

ferroelectric domains. The phenomenology of a ferroelectric second-order 

phase transition is described with a thermodynamic potential [23], a Gibbs 

function with the independent variable temperature and the order-parameter 

polarization (P). Function G(P, T) for reasons of symmetry is approximated 

with a polynomial in P having at least terms up to the fourth order. 

𝐺(𝑃, 𝑇) = 𝐺0 +
𝐴(𝑇)

2
𝑃2 +

𝐵(𝑇)

4
𝑃4 

EQUATION 7 

 

FIGURE 14. GIBBS EQUATIONS AT TEMPERATURE UP AND LOW TEMPERATURE OF CURIE (T0) FOR 

IDEAL FERROELECTRIC CRYSTAL 

In Figure 14 it is described the ferroelectric phase transition with the 

appearance of two possible polarization directions (±Ps) under the Curie 

temperature (T0). From the Gibbs equation results the theoretical values of 

the spontaneous polarization (Ps) and coercive field (Ec) 

𝑃𝑠 = ±√
−𝐴(𝑇)

𝐵(𝑇)
 

EQUATION 8 

 

𝐸𝑐 = ±
2

3√3
𝐴(𝑇)𝑃𝑠 

EQUATION 9 

 

Applying an external field bigger than the coercive field the crystal inverts its 

spontaneous polarization (poling). Ferroelectric switching is explained by the 

displacement of the system from one minimum to the other. Microscopically 

the polarization reversal requires movement of Lithium ions along the polar 
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axis through the plane of the oxygen. As consequence crystal presents a 

hysteresis loop of external field versus polarization. Nevertheless, as it is 

illustrated in Figure 15, hysteresis loop of real congruent LiNbO3 is shifted 

along the E-axis, while stoichiometric LiNbO3 seems symmetrical. This is a 

first deviation of the ideal model just presented, and will be explained in 

section 3.2.4 with the presence of defects. In fact, stoichiometric Lithium 

Niobate has less intrinsic defects than congruent one. This shift is described 

in termed of bias internal field (Eint) 

𝐸𝑖𝑛𝑡 =
𝐸𝑐1+𝐸𝑐2

2
 

EQUATION 10 

Where Ec1 and Ec2 are the two different coercive fields for respectively the 

forward (first polarization of the crystal) and the reverse poling (second 

polarization to return at the initial state). 

 

FIGURE 15. P-E HYSTERESIS LOOP FOR STOICHIOMETRIC AND CONGRUENT LITHIUM NIOBATE 

Another problem of this first model is that it does not consider contribution of 

domains in ferroelectric switching. Therefore we have to take into account 

the depolarizing energy and the energy of the domain walls, with the 

depolarizing energy depending on the crystal geometry and the surface 

domain configuration. For a case of periodically poled domain structure it is 

obtained: 
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𝑤 = √
𝜎𝑑

𝜀∗𝑃𝑠
2
 

EQUATION 11 

with w the domain width, σ is the energy for unit of domain wall area, d the 

crystal thickness, and ε* a coefficient depending on dielectric constant. The 

dependence of w to √𝑑 was actually observed in some crystals [23]. 

Moreover the crystal symmetry imposes limitations on the orientation of the 

domain walls with regard to the crystallographic axes. According to 

calculations [32][33] and experimental studies the most energetically 

favorable domain walls are that which lying in the yz plane. Calculations were 

performed without consider contribution of defects, so they are more 

appropriate for the stoichiometric crystals. 

3.2.2. Domains Kinetic 

Kinetic of the domains formation during a poling process is described with 

Miller–Weinreich model [23]. It consists on several stages of the domain 

evolution with different velocity contributing at the switching velocity. Optical 

studies reveal four steps of the domain kinetics under external fields [34]: 

 Nucleation of new domains: The mechanism of the domain nucleation 

has not been clarified yet. Usually it is presented as a statistical 

process with the probability depending on the external field E directed 

oppositely to Ps 

𝑝 ∝ exp⁡(
𝐸𝑐𝑜𝑒𝑟𝑐𝑖𝑣𝑒
𝐸𝑙𝑜𝑐

) 

EQUATION 12 

Nucleation probability is determined by a coercive field Eac, which 

depends on material properties, shape of nuclei and temperature; and 

electric field averaged over the volume of the nucleus Eloc. It has been 

observed that the nucleation sites are related to surface defects [34] 

and that the domains starts always from the +z face. The encrease of 

the nucleation rate can be related to different phenomena: a spatial 

inhomogeneity of Eac due to the presence of structural defects; 

singularities of Eloc along the edges of the electrodes; and Eloc created 
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by field concentrators resulting from pits at the surface. Furthermore it 

is a still unknown if the initial domain state is (or contains) nano-scale 

residual domains. In fact, spontaneous appearance of antiparallel 

domains on the polar face may be related to the screening effects of 

charges on the polar surface, high surface screening fields could lead 

to a partial polarization reversal [35]. This might be a possible reason 

of the surface initiating of the domain nucleation. 

 Forward growth: After the nucleation from the +z face the formed 

domains expand in the polar direction (z axis). At this stage the 

domain walls are needle-shaped.  

 Sideways domain growth: Domains expand in orthogonal direction to 

the polar axis by wall motion. The wall motion is anisotropy, so we 

obtain the formation of polygon domains with sides oriented along 

crystallographic directions. Calculation demonstrated that the real 

lateral domain wall movement under moderate fields is energetically 

unfavorable [23]. So, this process is described as a generation of 

antiparallel domain nuclei on an already existing domain wall, and their 

subsequent coalescence [36]. Some developments to the model are 

introduced considering the pinning effect. This effect happens when 

the domain wall motion is stopped due to the wall coupling with a 

defect, which causes the formation of a potential barrier. To overcome 

this barrier (depinning) it required to increase the applied field or 

heating the crystal. Pinning effects manifest themselves in LiNbO3 and 

are responsible for extremely high coercive field of these crystals [23].  

 Domain coalescence: At this step the wall motion decelerates and 

residual region between walls disappears very rapidly after certain rest 

time. This process is the causes of a jump-like switching behavior of 

the crystal and it is known as a noise component of the switching 

current, called Barkhausen noise [36][37]. 

3.2.3. Backswitching 

Backswitching means a partial or total depoling of a reversed crystal after 

turning-off the poling field. There are different explanations for this 

phenomena, complementary rather than conflicting. One is related to the 
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existence of a critical time (t*) required to depin the wall. In fact, to provide 

the depinning at a given field, the length of the field pulse should exceed t*, 

otherwise a domain would come back to its initial boundaries [23]. Another 

explanation of the backswitching is given by Shur model [37], which 

describes the role of bulk charges screening. The nucleation probability, as 

seen, depends exponentially on Eloc, which in a ferroelectric capacitor is 

determined by the following sum of components 

Eloc(r, t) ⁡= ⁡Eex(r⁡) + Edep(r, t) + Escr(r, t) + Eb(r, t) 

EQUATION 13 

where Eex(r) is the external field produced by the voltage applied to the 

electrodes; Edep(r,t) is the depolarization field produced by bound charges 

existing at the polar surfaces and at the charged domain walls which is 

opposite to Eex; Escr(r,t) is the external screening field originating from the 

redistribution of the charges at the electrodes; and Eb(r,t) is the bulk 

screening field governed by bulk screening processes [37] explained 

successively.  

The cooperative action of Edep, Escr and Eb could lead to the backswitching 

after switch-off of the external field. In fact the external screening is opposite 

to the depolarization field, but it could never compensate completely Edep due 

to existence of the dielectric surface layer [37]. So bulk screening is the only 

process that could compensate completely Edep and so avoid the 

backswitching. There are three different bulk screening mechanisms: 

redistribution of the bulk charges [37], reorientation of the defect dipoles 

[38], and injection of carriers from the electrode through the dielectric gap 

[39]. The time constants (b) of all mechanism considered has a range from 

milliseconds up to months. So if external field impulse are shorter than b the 

bulk screening doesn’t change and remain quite the same of old state, than 

switching is ineffective and no irreversible change of the domain structure 

occurs, and as a consequence the domains backswitch. For pulses longer 

than b the bulk screening field could change sign thus stabilize the reverse 

domain. It is important to note that high temperatures could decrease b by 

increasing the defect mobility. 
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Defects are involved in both the model we had presented, as cause of the 

pinning effect, or as origin of the bulk screening field. In the following 

chapter role of defects and dopants on ferroelectric switching properties will 

be discussed.  

3.2.4. Dopants Dependence 

The polarization reversal in LiNbO3 containing structural defects cannot be 

presented simply as a symmetry inversion of the single-domain matrix [23], 

as experiments revealed different structure between antiparallel domain [40]. 

This is the origin of the internal field, and therefore of the shift along the E-

axis of the P-E hysteresis loop of Lithium Niobate (Figure 15). In some 

studies internal field is attributed to the dipole moments of defect clusters 

[NbLi−4VLi] [32], moreover Kim et al. [23] also proposed a model in which at 

room temperature it is postulated that the point defects NbLi are fixed by Li 

vacancies, so the cluster dipoles cannot be reoriented and conserve the initial 

direction of Eint. These dipoles may be realigned only at T > 100–150°C 

where the defects mobility is increased. So the reason of the observed 

reorientation of Eint at elevated temperatures is a reorientation of the cluster 

[NbLi−4VLi] dipoles, which is attributed to a thermo-activated mobility of the 

Li vacancies and their hopping over equivalent Li sites. Moreover, we knew 

that doping LiNbO3 with [Mg] or [Zn] above the thresholds sharps decrease 

Ec and Eint, but this is scarcely explained by this model. That because, even if 

Magnesium or Zinc reduce the concentration of NbLi and VLi, in the other hand 

new intrinsic defects MgNb or ZnNb are formed, which themselves could serve 

as pinning centers.  

 

FIGURE 16. VARIATION OF COERCIVE FIELD (EC) AND INTERNAL FIELD (EINT) IN FUNCTION OF ZINC 

CONCENTRATION 
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We have illustrated some qualitative mechanisms that may regulated 

switching parameter in terms of structural defects, but the knowledge of this 

phenomena is nowadays still far from comprehension.  

Crystal Ec(KV cm-1) Eint(KV cm-1) 

CLN 210 2-33 

SLN 60-65 →0 

CLN:5%MgO 60-68 5 

CLN:8%ZnO 25-35 5 

SLN:1%MgO 25 →0 
TABLE 6. COERCIVE FIELD AND INTERNAL FIELD FOR PRINCIPAL KIND OF LITHIUM NIOBATE 

3.2.5. Zirconium doping 

As far as the first point is concerned, traditional dopants used to improve the 

optical damage resistance include Mg and Zn. The optical damage drastically 

falls off by more than two orders of magnitude when a doping threshold of 

about 5% mol. for Mg and about 6% for Zn in congruent lithium niobate is 

used respectively. Although even In and Sc and Hf were found to play the 

same role [41], Mg, Zn, In, Sc and Hf have segregation coefficient less than 

one and therefore the growth of good quality crystals is rather difficult and 

the growth process is very expensive (a 3” Mg:LiNbO3 wafer costs higher 

than 1000 Euros). Very recently [30] it has been published that the 

incorporation of zirconium (Zr) in LiNbO3 crystals satisfies the requirement of 

increasing the optical damage resistance but with a lower threshold 

concentration (2 mol%) and with a segregation coefficient close to one. This 

allows for obtaining a high crystal quality with a high rate of reproducibility. 

Moreover Zr incorporation has the additional advantage of lowering the 

coercive field (one third of that of the pure congruent LiNbO3), a very 

promising aspect for the PPLN realization. These preliminary results clearly 

indicate that Zr represents an excellent alternative for obtaining a LiNbO3 

substrate with higher optical damage resistance and with less critical value 

on the electric polarization reversal.  

3.2.6. Poling Process 

The orientation of the ferroelectric domains, so called poling, is the procedure 

with which Lithium Niobate polarization could be switched in one of the two 

possible direction of the z axis. In fact by applying to a crystal a suitable 

electric field like those reporting in Figure 17, all the crystal domains could be 
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oriented to the same polarization direction. This happens when potential 

exceeds a threshold voltage related to the coercive field. 

 

FIGURE 17. TYPICAL VOLTAGE PROGRAM FOR POLING PROCESS 

By monitoring the electric potential and intensity of the electric current 

during the poling process, we can note that corresponding to the polarization 

reversing a current impulse is measured. The great part is composed by 

superficial charges that were electrostatic bounded to neutralize the 

spontaneous superficial charge of Lithium Niobate. If we use a 

photolithographic pattern as electrode, using a voltage slightly above the 

threshold we could manage to exceed the coercive field only under the 

electrodes and not under the insulating regions, so we could achieve a 

Periodically Poled Lithium Niobate. As explained in the section 3.2.2 the 

periodic poling could be described by six steps (Figure 18): (a) Domain 

nucleation at the electrode edges because of the higher electric field. (b) 

Domain tip propagation toward the opposite face of the crystal. (c) 

Termination of the tip at the opposite side of the crystal. (d) Rapid 

coalescence under the electrodes. (e) Propagation of the domain walls under 

the photoresist. (f) Stabilization of the new domains. 
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FIGURE 18. STEPS OF THE DOMAINS FORMATION: (A) NUCLEATION; (B) Z AXIS PROPAGATION; (C) 

TERMINATION OF THE TIPS; (D) GROWTH UNDER THE ELECTRODES; (E) PROPAGATION UNDER THE 

PHOTORESIST; (F) STABILIZATION 

So it is inevitable that a part of the domains grown under the photoresist. 

Anyway, 50% optimal duty cycle could be obtained starting from a pattern 

duty cycle lower than 50%.  

It is important to note that a different behavior can be found if the Lithium 

Niobate is poled at high temperature. As a matter of fact previous studies on 

high temperature poling [42] showed that for temperature of 100-200°C the 

inverted domains started from the +z surface but are not able to reach the 

+z face probably because of a charged layer that is build due to the higher 

conductivity of charges in the high-temperature crystal. Therefore only 

superficial domains are achievable. In Figure 19 a comparison between the 

results of literature and our domain inversion is presented, our results 

confirm the literature and show an irregular depth of the domain inversion, 

with deeper tips that almost reach the other side and other of only a hundred 

of micrometers. 



CHAPTER 3: OPTICAL STAGE  

 

 153 

 

FIGURE 19 (a) AND (b) AN EXAMPLE OF SUPERFICIAL DOMAINS OF A HIGH-TEMPERATURE (120°C) 

POLED CLN CRYSTAL FROM LITERATURE [42](c) LATERAL SECTION (0,5 mm) OF A POLED CLN AT 

150°C AFTER WET ETCHING (SECTION 3.7.1). 

3.3. Microfabrication 

The microfabrication of a periodic polymeric grating using UV-

photolithography is the first of the two fundamental steps necessary for the 

realization of a pattern of periodic ferroelectric domains. The periodic pattern 

of photoresist can be exploited in two different configuration, the first is the 

use of the photoresist as insulating layer, so that during the poling process 

the electric field under the resist is reduced and when the voltage applied is 

just above the critical threshold only the areas uncovered will reverse their 

polarization leading to the formation of the periodic ferroelectric domains. In 

this case liquids electrodes are used (solution of LiCl in water) and therefore 

this configuration can be use only at low temperature (<100°C). A second 

possibility is to deposit a conductive layer after the photolithography (Cr, Al) 

and therefore to lift-off the photoresist obtaining a metal grating that is then 

used as electrode for the poling. In both the cases we need the 

implementation of photolithographic process able to achieve structures of few 

nanometers. So that, the first part of our work was focused to implement and 

improve UV-photolithography and lift-off process. As it can be seen in (Figure 

(c) 
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20) we obtained good photolithographic structures of the purposed period 

dimension (6,8 µm). 

 

FIGURE 20. LEFT: EXAMPLE OF A PERIODIC GRATING (6,8 µm, DUTY CYCLE 20%) OBTAINED WITH 

THE OPTIMIZATION OF THE PHOTOLITHOGRAPHY PARAMETERS. RIGHT: PICTURE OF AL PATTERNED 

ELECTRODES (LIGHT ZONES) ON ZRLN SUBSTRATES (DARK ZONE): PERIOD 6.8 µm, DUTY CYCLE 

EQUAL TO 20%. 

In the next sections we present the instrumentation, the materials, and the 

procedures used for the microfabrication of the electrodes. 

3.3.1. Instrumentation and Materials 

Lithium Niobate Crystals 

During the optimization of all the steps of the photolithographic process we 

used commercial congruent z-cut Lithium Niobate wafer. When the 

optimization was reached, the process was studied also on the zirconium 

doped oriented crystals of Lithium Niobate grown by Czochralski technique 

and then cut and polished at an optical grade. The samples were cut 

orthogonal to the z axis (z-cut) because it is the ferroelectric direction of the 

crystal. Commercial wafers have thickness of 0,5 mm and diameter of about 

76 mm. Doped samples have diameter of about 15 mm and thickness of 

about 0,6 mm (depending on the cutting and the polishing stages).  
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FIGURE 21 ON THE LEFT A CRYSTAL OF COMMERCIAL CONGRUENT Z-CUT LITHIUM NIOBATE, ON THE 

RIGHT A Zr DOPED LITHIUM NIOBATE Z-CUT 

Photolithographic Masks 

We designed three masks of 4x4 inch with 18 different patterns with CAD 

software. Masks are realized with a laser patterned chrome layer of 980 Å on 

a plate of Soda Lime glass by a specialized company (Delta Mask B.V.). The 

final masks were designed to contain different patterns each with several 

parameters modified: period, open width, and outline (Table 7). The first two 

masks (Figure 22/left) were thought for liquid electrodes configuration with 

period dimension from 100 µm to 6,8 μm and duty cycle of 50%; for smaller 

periods (mask D,E,F) also duty cycle was changed, this to overcoming the 

domains grown under the photoresist layer during the poling stage. Masks 

with duty cycle of 40%, 30% and 20% were realized to consent a study of 

the open width broadening. The size of every mask pattern is 5x5 mm and 

was designed with signs that show the right crystallographic placement of the 

sample.  

  

FIGURE 22. ILLUSTRATION OF MASK PATTERNS, ON THE LEFT FOR ROOM TEMPERATURE POLING, ON 

THE RIGHT FOR HIGH TEMPERATURE POLING  
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Since the most stable orientation of domain walls is parallel to the yz plane, 

the correct orientation of the mask with respect to crystallographic axes is 

fundamental [32][33]. In Figure 23 we show a PPLN obtained with an optimal 

orientation, in fact we could see that all the domains walls follow the y crystal 

directions at 120° one to the other (energy minimum). The third mask 

realized was designed for the metal electrodes, with a negative configuration 

in comparison with the liquid electrodes masks (Figure 22/right). Moreover a 

hexagonal zone around the periodic pattern was planned in order to permit 

the contact of the metal layer with the poling circuit described later (section 

3.6.1). 

 Pattern Period (µm)  Duty cycle 

(%) 

F
ir

s
t 

M
a
s
k

 A 100 50 

B 50 50 

C 30 50 

D 20 50 

E 20 40 

F 20 25 

S
e
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h
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d
 M

a
s
k
 A1 10 40 

A2 8 40 

A3 6,8 40 

A4 6,8 40 

B1 10 30 

B2 8 30 

B3 6,8 30 

B4 6,8 30 

C1 10 20 

C2 8 20 

C3 6,8 20 

C4 6,8 20 
TABLE 7 MASK PATTERNS PARAMETERS 

 

FIGURE 23. FERROELECTRIC REVERSE DOMAINS ON PPLN, WITH WALLS LYING IN THE YZ PLANE, 

120° Y DIRECTIONS CAN BE SEEN AT THE ENDS OF THE DOMAINS. 
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Photoresist 

We use the Microposit S1800 G2 series as photoresists, in particular S1813. 

They are positive photoresists engineered to satisfy microlithography 

applications on silicon, however, they showed good performance also on 

lithium niobate surfaces. In order to improve the adhesion of the photoresist 

to Lithium Niobate surface a primer was used, i.e. a chemical reagent that 

produces a layer able to improve the adhesion between the substrate and the 

photoresist. The primer must be deposited and spinned on the substrate 

before the deposition of photoresist. We used a Microposit primer based on 

hexamethyldisilizane (HMDS), a chemical pre-treatment developed for oxide 

materials.   

Property  

Sizing energy 150 mJ/cm2 

Resolution 0,48 µm 
TABLE 8. PHOTOLITHOGRAPHIC RESPONSES SUMMARY FOR MICROPOSIT S1813 PHOTORESIST 

S1813 is a good photoresist for our purpose, since its absorbance spectrum 

(Figure 24) is compatible with our lamp emission, and it has an optimal 

resolution of 0,48 µm that is more than sufficient for our application. We 

collected a spectrum of the primer and of the resist before and after the UV 

exposition to compare them with the literature (Figure 24), we did not 

observe any variation.  

 

FIGURE 24. (LEFT) ABSORTION SPECTRUM OF S1813 FROM THE PHOTORESIST DATASHEET; (RIGHT) 

ABSORTION SPECTRA OF RESIST, EXPOSE RESIST AND PRIMER. 

UV Lamp 

A collimated UV lamp system was used to expose the photoresist, it is 

composed by a 300 W mercury-vapor lamp followed by a mirror and a quartz 
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lens, so that the projected light rays follow parallel paths to the same plate. 

In this way, shadows cast by a mask in the light path are faithfully 

reproduced on the sample. All the system emits at the I line (365,4 nm) with 

a power of 9 mW cm-2 (it is included the mask absorption). 

Developer 

We used Microposit MF-300 series developer that is specifically formulated to 

work with a wide range of positive photoresists including MICROPOSIT S1800 

(Microposit Materials - Rohm and Haas company). 

Sputtering 

We use a sputtering chamber with three different torches for magnetron 

sputtering, one DC and two RF respectively (see section 2.4). The geometry 

is horizontal and the sample holder is opposite to the torches. The chamber 

can achieve a pressure of around 10-6 mbar, and all the deposition were 

performed at 50·10-3 mbar in Argon atmosphere after a clean of the chamber 

at a pressure of at least 3·10-6 mbar. All the targets (Al, Cr, ITO) were used 

in the DC configuration, the sample always rotating during the deposition. 

Lift-off solution 

The lift-off of the samples after the sputtering deposition was done using the 

SVC(TM)-14 positive photoresist stripper, a product developed for this 

purpose. 

3.3.2. Procedure: Proximity Photolithography 

The photolithographic procedure was optimized starting from the literature 

[43] and the information of the datasheet. All the follow steps were improved 

and optimized by a systematic study of spinning, exposure, development, 

and treatments of the samples (cutting, cleaning, and approaching of the 

mask). All the steps except cutting were performed in the ISO 7 class clean-

room financed by the MISCHA project (Microfluidics laboratory for scientific 

and technological application 

The following procedure has been adopted: 

 Samples preparation: Two kinds of z-cut samples were used: 

commercial wafers undoped and Czochralsky zirconium doped crystals. 

In both cases they were cut with a diamond saw to obtain the desired 
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size. In the case of commercial polished wafer after the cut we got 

rectangular samples of 14x14 mm and 0,5 mm thick. The Zr-doped LN 

boules were first grown by the Czochralski technique (performed in our 

lab as well) with a nominal ZrO2 concentration of 3.0 mol%, and then 

cut and polished to obtain optical-quality Z-cut slices [44] (crystal 

thickness in the range 0.55-0.65 mm and a diameter of about 15 mm) 

that have three ridges at 120° to each other that indicate the y axis. 

Therefore all the samples were cleaned in clean room with washing 

cycles of distilled water and acetone until the sample did not present 

any observable stain or grain of dust.  

 Primer and photoresist deposition (spin coating): before the deposition 

of S1813, the primer has to be spinned to improve the adhesion of the 

photoresist. Photoresist deposition needs to wait about 10 s after the 

primer spinning to permit the adhesion of the layer of primer. On Table 

9 we report the parameter usually adopted in this step. The mainly 

problem of this step was the square shape of the samples that strongly 

influences the homogeneity of the resist flow in the different radial 

directions of every square sample.  

 Primer (Microposit) Resist (Microposit S1813) 

 Spin rate 

(rpm) 

Duration  

(s) 

Spin rate 

(rpm) 

Duration 

(s) 

First rate 200 20 800 20 

Second rate 1000 20 4000 20 

Third rate 2000 50 8000 50 
TABLE 9 SPIN COATING PARAMETERS 

 Mask approaching: a factor that could modify the exact reproduction of 

the mask pattern and also limits the final dimensions is related to 

interference phenomena. In fact, the lamp light is partially diffracted 

on the plane of the resist and if the mask pattern is small (10 μm or 

less), the interference effects can strongly alter the photoresist 

pattern. A critical step of this procedure is the mask approaching to the 

sample, in fact it was necessary to reduce as much as possible the gap 

between sample and mask without breaking the crystal. When the 

mask is removed after the exposure, the crystal may remain stuck to 

the mask and has to be removed delicately.  



 160 

 UV exposure: exposure of a photoresist involves the absorption of 

radiation and subsequent photochemical change, generally resulting in 

a modification of dissolution properties. Both maximum light 

transmission (to reach to the bottom of the resist) and absorption (to 

achieve the highest sensitivity) are desired. Our lamp has a power of 

about 9 mW/cm2, and as reported in Table 8 the sizing energy for  

S1813 MICROPOSIT photoresist is 150 mJ/cm2, so the calculated time 

of exposure is 17 s. Experimentally an optimal time of about 15 s has 

been found, this is due to the different experimental setup used for the 

literature measure.  

 Developing: experimentally, after the exposure the sample was 

removed from the mask and dipped for about 20-40s on a gently 

stirred developing bath (Microposit MF-300) and suddenly plunged in a 

distilled water bath. After those steps, the samples were dried with a 

nitrogen flow.  

 First microscopic observation: a first check of the outcome of the 

process was made with simple optical microscopy. This step allowed to 

roughly recognize unsuccessful samples and then clean them and 

repeat again all the procedure without leaving the clean room. 

 Sputtering deposition: eventually a layer of Cr or Al was sputtered in 

the case of metal electrodes. On the opposite side (-z face) a layer of 

ITO (Indium Tin Oxide) was also deposited as transparent and 

conductive layer that allow to see the evolution of the poling with a 

microscope during the treatment. The sputtering conditions are 

reported in Table 10. 

 Lift-off: In the case of metal electrodes after the deposition on the 

photoresist gratings the samples were then put in a bath of SVC(TM)-

14 stripper at 60°C under sonication for 5 minutes and then clean with 

acetone. The results of the lift-off procedure are reported in Figure 20. 
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Target Power (W) Deposition time 

(min) 

Thickness (nm) 

Al 30 30 200 

ITO 30 11 50 

Cr 40 15 20 

TABLE 10 MAGNETRON SPUTTERING PARAMETERS FOR DIFFERENT TARGETS. 

A sketch of the electrodes configuration is reported in Fig.1 (left), together 

with a picture of the final deposited pattern acquired by a microscope (right).   

 

FIGURE 25 PATTERNED ELECTRODES SCHEME FOR THE PERIODICALLY POLING AT ROOM TEMPERATURE 

(LEFT) AND HIGH TEMPERATURE (RIGHT). 

3.4. Poling at room temperature 

The first study on the ferroelectric domains switching was performed on 

congruent lithium niobate crystals using a room temperature poling set-up 

with liquid electrodes. This configuration allows a low breaking-rate of the 

samples compared to metal electrodes and it is also the most used 

configuration in literature [42]. It is worth mentioning that previous 

measurements determined at 10,5 kV the threshold voltage for congruent 

Lithium Niobate thick 0,5 mm (coercive field of 21 kV/mm [23]. Therefore 

LiNbO3 was poled with patterns of period 100 μm and duty cycle 50% for a 

first study of the domains behavior. At the same time, also some Zirconium 

doped crystals have been poled to determine the threshold voltage. It is 

known (section 3.2.4) that optical-damage resistance dopants cause a 

reduction of the coercive field, particularly its dependence on Zr 

concentration is not known. Therefore in section 3.5.2 measurements were 

performed to quantify Ec indicating that for a 3 mol. % Zr Lithium Niobate the 

coercive field is of about 7-8 kV/mm, one third of the congruent coercive 

field. 
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In the following we discuss the poling set-up and materials for both 

congruent and Zr doped crystals, then we present and discuss s our results 

and the motivations that lead us to implement a different set-up of poling at 

higher temperature. 

3.4.1. Poling Cell 

 

FIGURE 26. SCHEME OF THE POLING CELL 

The poling cell (Figure 26) was designed to maintain the sample between two 

sections (closed by two O-rings) that contain an electrolytic solution, in this 

way we insulate the faces of the crystal one from the other avoiding a 

possible electric arc. The insulating was increased using, around the O-rings, 

a gap full of distilled water. The poling cell structure was made of Poly-

methylmethacrylate (PMMA or Plexiglas) since it is a good insulator and it is 

transparent (so we could observe directly the poling process). Two electrodes 

are plunged into the electrolytic solutions (one for every z face of the 

crystal), the mass electrode is connect to the +z face, the one without the 

photoresist; instead the electrode at high voltage was connected to the –z 

face. Both the electrode rods were made of brass covered with a titanium and 

gold layer, this to passivate the surface and to avoid that electrolytic 

corrosion occurs from electrolytic solution. The electrolytic solution was a 

saturated water solution of Lithium Chloride (0,82 g/ml), that was chosen 

thanks to its good conductivity (146 mS/cm).   
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FIGURE 27. PHOTO OF THE POLING CELL 

3.4.1.1. The Circuit 

The poling circuit has to give a potential of up to 11 kV in order to reverse 

the polarization of a congruent crystal thick 0,5 mm (Coercive field of 21 

kV/mm). Moreover, it has to measure electric voltage and the current during 

the poling stage; discharge the electric potential at ground in case of missing 

contact in the poling cell; and limit the current in case of short circuit. 

 

FIGURE 28. POLING ELECTRIC CIRCUIT 

The circuit (Figure 28) is composed of a high voltage amplifier (0-15 kV) 

controlled by a specifically home-made computer software, whose output is a 

square wave like the one in Figure 29. The shape of the wave was chosen in 

order to minimize the piezoelectric stress (lower potential ramps) and, after 
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the over-thresholds impulse of few seconds, to stabilize the new reverse 

domains at a high under-threshold voltage for tens of seconds (section 

3.2.3). A resistance (Rs) is put in series configuration with the sample, in 

order to limit the intensity of the current passing through the circuit. 

3.4.1.2. Procedure 

The procedure of poling in carried out in three steps: the insertion of the 

sample in the cell; the pouring of the LiCl saturated solution and of the 

distilled water; and finally the high-voltage application. The insertion of the 

sample could be a critical step, in fact if the O-ring are not perfectly aligned 

one over the other, the pressure of the O-rings on the crystal and therefore 

the piezoelectric stress are able to break the sample due to the developed 

shear stresses. Also the liquid pouring has to be well controlled, in fact the 

formation of bubbles has to be avoided in order to prevent the formation of 

electric arcs that could melt the PMMA (Plexiglas) and damage the electric 

circuit. We develop software in order to automatically control the application 

of the voltage, the software allows to set the following parameters: under-

threshold voltage (V1), over-threshold impulse voltage (V2), pre-poling time, 

duration of the pulse (tpol), and post-poling time (tpostpol) respectively. The 

parameters are reported in Figure 29. 

 

FIGURE 29. POLING PARAMETERS: UNDER THRESHOLD VOLTAGE (V1), OVER THRESHOLD IMPULSE 

VOLTAGE (V2),  DURATION OF THE PULSE (TPOL), POST-POLING TIME (TPPOL). 

3.4.2. Characterization 

Characterization methods may be divided into surface and volumetric. All the 

surface methods are based on describing a distribution of the surface charge, 
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which replicates the near-surface domain distribution. These methods include 

the chemical etching, powder deposition and colloidal decoration methods, 

the scanning force microscopy (SFM) and scanning electron microscopy 

(SEM). In addition to the SEM method, the transmission electron microscopy 

(TEM) method can be used for these aims, but it requires very thin samples. 

The bulk methods are first of all the structure studies. Domain observation by 

X-ray diffraction methods based on the anomalous dispersion of the X-rays 

resulting from a difference of the diffracted intensities from positive and 

negative domains [45]. But also optical methods based on the variation of 

refractive index at the domain borders. For our current purposes optical and 

chemical etching are sufficient to determine the domains sizes. 

Optical method 

Optical methods belong to the volumetric ones and permit to probe the 

switching process and the domain distribution over the crystal bulk. If strong 

mechanical strains occur next to the domain walls, they affect the refractive 

indices via the elasto-optic effect. So, when a polarized light wave impinges 

normally to the crystal domain, walls are visible because of the variation of 

refractive index. This case occurs in LiNbO3, especially for a non-equilibrium 

(freshly formed) domain structure [23]. The elasto-optic effect also allows 

recording videos during the poling process.  

Etching 

The etching method is a destructive technique universal for all ferroelectrics 

and it is based on a different etching rate for the positive and negative ends 

of the domains by an individual etchant. In LiNbO3 the -z face is etched much 

faster than the +z face, therefore the poling domains after the etching can be 

measured with both microscopy and profilometry. In our case the etching 

was achieved with an immersion of the samples in a water solution of 

hydrofluoric acid at room temperature for few minutes. 

3.5. Results and Discussion 

A systematic study of the poling process parameters was first carried out 

using commercial undoped lithium niobate crystals in order to compare the 

results with those reported in literature. The study was performed on the 
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bare photolithographic pattern and also on the pattern covered by a metal 

thin film of Cr. Once optimized the parameters, the poling process was 

investigated also on Zr doped crystals. 

3.5.1. Congruent Lithium Niobate 

As a typical result we present the realization of a 100 µm periodic PPLN. The 

samples were covered with a photolithographic pattern of period 100 µm and 

an average open width of 47,5 ±0,3 µm (Table 12). Then one cycle of poling 

has been sufficient to obtain a PPLN with a poling voltage of 10,6 kV. We 

measured the total charge by integrating the current signal as a function of 

the time, obtaining 24,3 µC. The theoretical total charge is given by the 

relation: 

|𝑄| = |𝑃𝑠| ∙ 𝐴𝑃𝑜𝑙𝑖𝑛𝑔⁡ 

where Q is the total charge, Ps the spontaneous polarization and APoling is the 

poling area, which is 

𝐴𝑃𝑜𝑙𝑖𝑛𝑔 = 2 ∙ 𝐷𝐶 ∙ 𝐴𝑃𝑎𝑡𝑡𝑒𝑟𝑛 

where DC is the Duty Cycle and APattern the total area of the photolithographic 

pattern. Obtaining a theoretical value of 20,9 µC that is comparable to the 

experimental. 

Mask OW pattern (µm) V1 (kV) V2 (kV) t poling (s) 

A 47,5 ±0,3 9,1 10,6 8 
TABLE 11. PARAMETERS OF POLING: OPEN WIDTH OF THE PHOTOLITHOGRAPHIC PATTERN (OW); 

UNDER THRESHOLD VOLTAGE (V1); POLING VOLTAGE (V2); DURATION OF THE PULSE (T POLING) 

 

FIGURE 30. (LEFT) VOLTAGE (BLUE) AND CURRENT (RED) MEASUREMENTS DURING THE POLING; 

(RIGHT) MICROSCOPE IMAGE OF THE PHOTORESIST PATTERN 
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After the poling, the domain pattern was observed under polarized light 

microscope, then etched with HF, an open width of 59,1±0,7 µm was 

measured using profilometry. This confirms that domains grow also under the 

photoresist, in this case of about the 25% of the photolithographic open 

width.  Figure 31 show the as-poled and the etched PPLN, even if open width 

is large compared to what we need, the entire domain pattern is uniform in 

period and open width. Moreover the periodic structures were found in both 

the z faces of the crystal, so that our domains pass through the entire 

crystal. Therefore the poling procedure associated to photolithographic 

patterning was proved to be a powerful technique that can be easily used to 

fabricate PPLN. Similar results were found for other samples with an average 

open width widening of 24%. 

OW pattern (µm) OW etching (µm) ΔOW (µm) Total charge (µC) 

47,5 ± 0,3  59,1 ± 0,7 12 ± 1 24,3 
TABLE 12. COMPARISON BETWEEN PHOTOLITHOGRAPHIC PATTERN OPEN WIDTH AND DOMAINS SIZE 

(OW ETCHING).                                                                                                                                                                                                                                                                                                                                                                                                                                       

 

FIGURE 31 (UP LEFT) POLARIZED LIGHT MICROSCOPY ON PPLN. (UP RIGHT) MICROSCOPE IMAGE OF 

PPLN AFTER THE ETCHING. (DOWN) COMPARAISON OF PHOTORESIST AND ETCHED PATTERNS. 
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Moreover the poling of the sample was performed with the same 

experimental setup after a chrome metallization of the pattern surface via 

sputtering deposition. Our aim was to check if the metallization had some 

effect on the poling results, especially on the PPLN duty cycle. The sample 

was covered with a pattern with period 100 µm and an average open width of 

48,6 ± 0,7 µm (Table 14) compatible with the parameter used in the 

previous PPLN. Then two cycles of poling of 1 and 5 seconds were sufficient 

to obtain the PPLN with a poling voltage of 10,6 kV. We measured the total 

charge by integrating the current signal as a function of time, obtaining 24,7 

µC, comparable with the previous non-metallized sample (24,3 µC). 

Mask OW grating (µm) V1 (kV) V2 (kV) t poling (s) 

A 48,6 ±0,7 9,1 10,6 6 
TABLE 13 PARAMETERS OF POLING: OPEN WIDTH (OW) OF THE PHOTOLITHOGRAPHIC PATTERN; 

UNDER THRESHOLD VOLTAGE (V1); POLING VOLTAGE (V2); DURATION OF THE PULSE (T POLING) 

 
 

FIGURE 32. (LEFT) VOLTAGE AND CURRENT MEASUREMENT DURING THE POLING; (RIGHT) 

MICROSCOPIC IMAGE OF THE PHOTORESIST PATTERN AND OF THE METALIZED PATTERN AFTER THE 

POLARIZATION. 

Some photos with polarized light microscope were taken and after the 

etching of the PPLN an open width of 60 ± 1 µm was measured, so the 

domains growth under the photoresist is about the 23% of the open width. 

Photos in Figure 33 shows a worse quality of the PPLN compared to non-

metalized sample. This is probably due to the roughness of the metal-LN 
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interface. In fact, peaks could locally increase the external electric field and 

cause a non-uniform nucleation density. Also in this case, the periodic 

structures were found in both the z faces demonstrating that our domains 

pass through the entire crystal. In conclusion, metallization does not improve 

our results, and we choose to use the simple LiCl solution as electrode. 

OW pattern (µm) OW etching (µm) ΔOW (µm) Total charge (µC) 

48,6 ± 0,7  60 ± 1 11 ± 2 24,7 
TABLE 14. COMPARISON BETWEEN THE PHOTOLITHOGRAPHIC PATTERN OPEN WIDTH (OW PATTERN) 

AND THE DOMAINS SIZE (OW ETCHING). 

 

 

FIGURE 33.  (UP LEFT) POLARIZED LIGHT MICROSCOPY ON PPLN. (UP RIGHT) MICROSCOPIC IMAGE 

OF PPLN AFTER THE ETCHING. (DOWN) COMPARISON OF THE PHOTORESIST AND THE ETCHED 

PATTERNS. 

Several PPLNs were achieved with the same procedure of the two presented, 

also with lower periodicity down to 6,8 µm. Therefore we demonstrated the 

effectiveness of the experimental setup to realize PPLN. Next step will be the 

optimization of poling parameters, in particular poling time (tpol) and poling 

voltage (V2), with the aim of minimizing the lateral grown under the 

photoresists. Before the optimization of these steps, other problems related 
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to the poling of Zr doped crystals need to be fixed. In the next section these 

problems are discussed. 

3.5.2. Zirconium doped Lithium Niobate 

The poling of Zr doped LN resulted a complex phenomenon that still presents 

some unclear aspects that we have just started to study. In fact, first poling 

tests on patterned samples gave a non-zero poling current over the threshold 

voltage, but characterization didn’t show any inverted domain. In order to 

understand what happens during poling, the current measurement is not 

sufficient: therefore we recorded with a videocamera fixed on the polarized 

light microscope the image of the samples during the poling cycles. We 

applied a poling cycle to a sample 0,6 mm thick with a pattern with 100 µm 

period and 50% duty cycle (mask A). We found a current pulse at V2=4,5kV. 

During the pulse we observed a non-homogeneous nucleation of micro-

domains that suddenly grew and merged without respecting the geometry of 

the patterns (Figure 34/b). After 5 s of poling the domains didn’t stop and 

continued to grow during the post poling at 3 kV. After that, voltage was 

removed and crystal backswitched to the starting uniform polarization (Figure 

34/c). As explained in section 3.2.3 backswitching is due to internal fields 

generated by crystal defects that, because of the low coercive field of the Zr-

doped-LN (4,5 kV corresponds to 7, 5 kV/mm) can probably reverse the 

polarization.  

V1 (kV) V2 (kV) tpol (s) tpostpol (s) 

3,0 4,5 5 45 
TABLE 15. PARAMETERS OF POLING 

 
(a) 

 
(b) 

 
(c) 

FIGURE 34. ZIRCONIUM DOPED LITHIUM NIOBATE (A) BEFORE THE POLING PULSE, (B) DURING THE 

POLING, (C) AFTER THE POLING (FIELD SWITCH OFF). 

Then we investigated the value of the poling parameters: we raised V2 to 5,5 

kV to increase the rate of nucleation (section 3.2.2) of micro-domains with 
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the aim to improve the homogeneity of the domains nucleation. We also 

decreased the time of poling (tpol) at 0,5 s to inhibit the domains growth 

under the photoresist. Lastly, post poling voltage was reduced to 2 kV with 

the aim of stopping the domains expansion. Crystal was poled with these new 

parameters and therefore observed during the poling cycle. 

V1 (kV) V2 (kV) tpol (s) tpostpol (s) 

2,0 5,5 0,5 50 
TABLE 16. PARAMETERS OF POLING 

 
(a) 

 
(b) 

 
(c) 

TABLE 17. ZIRCONIUM DOPED LITHIUM NIOBATE (A) BEFORE THE POLING PULSE, (B) DURING THE 

POLING, (C) AFTER THE POLING (FIELD SWITCH OFF). 

Our purposes were partially reached; in fact expansion during the poling was 

limited and domain walls were “frozen” during the post poling. Moreover, we 

tried to stabilize domains by increasing the time of post poling up to 2 hours, 

but this was not sufficient to avoid backswitching. 

Furthermore, considering that back-switching required several minutes in the 

case of large poled areas, a study of the voltage threshold was done on six 

samples by measuring repeatedly coercive fields for direct and reverse poling 

(hysteresis loop) until dielectric breakdown of the samples. From these 

measurements, we applied cyclic triangular ramps of voltage and we 

measured the current pulse: the coercive field is determined as the field at 

which the current pulse starts. We obtained an average value of the coercive 

field for the 3 mol. % Zirconium doped Lithium Niobate, that is  7,8 ± 

0,4kV/mm that is about one-third of pure congruent lithium niobate (CLN, 

21.2 kV/mm), in agreement with previously reported data Table 20 [46]. 
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Efor 

(kV/cm) 

Erev 

(kV/cm) 

Eint 

(kV/cm) 

1 80.0 4.2 37.9 

2 78.3 12.5 32.9 

3 77.5 21.7 27.9 

4 75.0 20.0 27.5 

5 73.3 24.2 24.6 

 

 

Efor 

(kV/cm) 

Erev 

(kV/cm) 

Eint 

(kV/cm) 

1 79.2 19.2 30.0 

2 74.2 20.8 26.7 

3 73.3 18.3 27.5 

4 73.3 22.5 25.4 

 

TABLE 18. MEASURE OF INTERNAL FIELD (EINT) AND COERCIVE FORWARD/REVERSE FIELDS (EFOR, 

EREV) FOR REPEATED HYSTERESIS LOOPS FOR TWO OF SIX SAMPLES. THICKNESS OF THE SAMPLES = 

0.600 MM; V1 = 7 KV; V2 = 7KV; TPOL = 1S; TPOST = 0.5S; RAMP=0.57KV/S 

We note that parameters of the hysteresis loops are asymmetric as expected 

(Figure 15). Therefore, we determined the internal field as the semi-

difference between the direct and the reverse coercive fields for each cycle of 

forward and reverse poling. By looking at the data of Table 18 we observe 

that the internal field decreases as we increase the progressive number of 

cycles and the hysteresis loop becomes more symmetric. This is probably due 

to the modification of the defects that, driven by the alternating external 

field, tends to reverse also the bulk screening field (section 147), thus 

reducing the internal field. Backswitching is due to external field pulse that 

are shorter than time of defect reorientation (b). So, we have to decrease b 

to stabilize the domains, since a post poling time of two hours wasn’t 

sufficient. Consequently, to help the stabilization of domains we decide to 

realize a poling cell for high temperature (up to 200°C) in order to improve 

the defect mobility and therefore to stabilize the inverted domains. In section 

3.6 we discuss the set-up, the procedure and the results of high temperature 

poling. 

3.6. High Temperature Poling 

As previously discussed, the study of the poling dynamics under different 

temperature conditions demonstrated that the temperature of the crystal is a 

critical parameter for the poling process in ZrLN. In fact at room temperature 

domain back-switching prevented the formation of stable periodically poled 

structures in Zr doped samples, differently from what happens in pure LN. In 
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Zr–doped samples, at room temperature, it is indeed possible to induce the 

nucleation of a large number of inverted domains immediately at the 

beginning of tpol. However as the poling went on, they merged and formed 

one single domain as large as the whole poling area. Moreover, although the 

inverted domains remained stable during the post-poling time, they back-

switched during (or after) the ramp used to bring the applied field down to 

zero, independently of the post-poling field stage duration. Back-switching 

required several minutes for large poled areas, but less than 1 s for poled 

stripes under patterned electrodes. In order to prevent this effect high-

temperature poling was performed, and the periodically-poled ZrLN samples 

were cooled down to room temperature during the post-poling period. On the 

opposite side, by operating at high temperature stable periodically-poled 

ZrLN were successfully obtained and no back-switching could be observed. 

  
FIGURE 35 (LEFT) HIGH TEMPERATURE POLING CELL UNDER A POLARIZED MICROSCOPY (RIGHT) 

PICTURE OF THE POLING SET-UP BEFORE IMMERSING IN THE DIELECTRIC OIL: THE COPPER SLAB IS 

VISIBLE. THE POSITIVE ELECTRODE, VISIBLE ON THE LEFT SIDE, WAS A STEEL SPRING WITH A 

ROUNDED END. RIGHT: POLING CYCLE: TPOL REFERS TO THE POLING TIME AT APPLIED FIELD E2 WHILE 

TPPOL INDICATES THE POST-POLING TIME WHEN THE APPLIED FIELD IS E1. 

3.6.1. Poling Cell 

The electric field poling was performed using a poling-cell specifically 

designed in order to operate also at high temperature (up to 150°C, with 

temperature stability ±1°C), and equipped with a real-time polarization-

reversal monitoring system. In our set-up the ZrLN samples were immersed 

in dielectric oil, as proposed for the PP:Mg:LN [32], and laid on a copper slab 

that acted simultaneously as sample holder, ground electrode and heat 

conductor. Two resistors placed below the copper slab were exploited to heat 
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the sample, and a PT100 thermo-resistor near the sample measured the 

temperature (Figure 35). The designed circuit applied a programmable 

voltage time profile as depicted in Figure 29, while monitoring the current 

flowing through the poling cell, with the same software and electric circuit 

described in section 3.4.1.1. 

Procedure 

After a pattern electrodes with period 6,8 µm and duty cycle 20% were 

deposited with a photolithographic technique (section 3.3), the periodic 

poling procedure was carried out applying a poling cycle as sketched in Figure 

29, similarly to what reported for CLN [33], [35], [37], where E1<Ec and E2 

>Ec. When the applied electric field exceeded the coercive field, the domain 

switching started. The poling field E2 was maintained for a time interval tpol 

long enough to complete the polarization reversal. After the switching 

process, a post-poling step was used to stabilize the inverted domains (the 

applied field being E1 for a duration tppol) thus suppressing the domain back-

switching process. In order to determine the best working conditions to get 

periodically poled ZrLN crystals we investigated the process parameters, and 

we found that the best results were achieved by applying an electric field 

E2 = 4.5 kV/mm, for tpol=180 s and a post-poling electric field E1=2.3 kV/mm 

with a ramp of 0,05 V/s. Then the samples were cooled down to room 

temperature during the post-poling in about 30 minutes. In fact, it is known 

that, due to fringe effect, the field intensity is maximum at the edges of the 

electrodes: for this reason the nominal threshold field (applied voltage 

divided by thickness) needed to start poling can be lower than coercive field 

as in this case. Finally the Al and the ITO layers were etched using a solution 

of HCl/HNO3 at 40°C for 1 hour. 

3.6.2. Results 

As a first step by using uniform large electrodes, we measured the mean 

coercive field Ec in a pure and Zr doped samples at 150°C. At room 

temperature the coercive field of ZrLN crystals (7.8 kV/mm) is about one-

third of pure congruent lithium niobate (CLN, 21.2 kV/mm), instead at 

150°C, the difference between the two coercive fields was found to be 

slightly lower, as in ZrLN and CLN crystals we measured coercive fields 
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values of about 4.6 and 10.8 kV/mm respectively. Moreover we try to reverse 

the sample to the starting polarization (reverse poling), but the domains 

cannot switch, not even at coercive field of 8 kV/mm, also this behavior was 

expected from literature as the extreme stabilization of the domains was 

measured in different conditions also by Scrymgeour [42]. Therefore we 

could exploit only one doped sample for this measure because of the low 

number of crystals at our disposal. 

T poling Pure LN Zr 3 mol % 

25°C 21,2 7,8 

150°C 10,8 4,6 
 TABLE 19 COERCIVE FIELD MEASURED BOTH AT ROOM TEMPERATURE AND AT 150 °C FOR PURE 

CONGRUENT LN, AND FOR 3 MOL. % ZR-DOPED 

After this investigation four different samples of Lithium Niobate (two 

congruent and two doped at the 3% mol.) were poled with a period of 6,8 µm 

and duty cycle of 20%, as expected [42] we measured a current during the 

poling of about 42 mA, that corresponds to a total released charge of 2,8·103 

C, order of magnitude over the charge presents at the polar surfaces of 71 

µC cm-1 (Figure 36). This is due to the charge conductivity enhancement that 

occurs at high temperature, that lead to superficial and more extended 

domain surfaces (Figure 38) stabilized by screening bulk charges attracted to 

the domain walls. The process resulted in a giant increase of the total poling 

current. This phenomenon occurred for all the samples. Therefore the 

polarized microscopy showed the realization of periodic structures in both the 

materials and, more important, the stabilization of the domains also in the 

Zirconium doped crystals.  

 

FIGURE 36  VOLTAGE AND CURRENT VS TIME PLOTS AND SNAPSHOT TAKEN FROM THE RECORDED 

VIDEOS AT DIFFERENT POLING STAGES. 
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3.7. Characterization 

3.7.1. Wet Etching 

  
FIGURE 37 IMAGES OF 6,8 µm PPLN AFTER THE WET ETCHING FOR A CONGRUENT CRYSTAL (LEFT) 

AND A Zr DOPED CRYSTAL (RIGHT) 

As for the room temperature samples (section 3.4), also in this case  we 

report  pictures of the +z surface of two of the four PPLN, one Zr doped and 

one congruent after the chemical etching in HF, performed by standard 

methods [36], where the periodic structure can be easily seen. Since the wet 

etching is a destructive technique only two samples were etched, one cLN 

and one ZrLN. The period of 6.8 µm was confirmed and the measured open 

width for the first was 1,9±0,2 µm and 2,4±0,2 µm for the second, i.e. a 

duty cycle of 27% and 35% respectively. Differently from the low-

temperature poling in this case the structures were etched only in the +z 

surface, this is due to the superficial structure of the domains as it was 

expected from literature [42]. Moreover the sample without periodic pattern 

used to measure the coercive field at 150°C was lateral etched in order to 

confirm the superficial structure (Figure 38). 

6,8 µm 
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FIGURE 38 LATERAL ETCHING OF A CONGRUENT CRYSTAL POLED AT 150°C. 

3.7.2. SHG efficiency 

The SHG efficiency of the last two samples, one doped and one undoped, was 

tested using a CW Yb-doped fiber with an emission wavelength of 1070 nm, 

and a maximum output power of 5 W, at the Laboratory of Quantum 

Electronics and Nonlinear Optics Electronics Department of the University of 

Pavia. The scheme of the experimental setup is reported in the following 

figure. 

 

 

FIGURE 39 SKETCH OF THE SHG EXPERIMENTAL SET-UP. 

We positioned two polarizers after the beam collimator at the fiber output to 

fix the polarization again instabilities: the second polarizer is used to align 

the beam polarization with the extraordinary axis of the sample, while the 

first one is used to modify the beam power incident on the sample. The 
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1070-nm beam was focused by a lens with focal length of 150 mm, thus 

producing a beam waist of 60 µm. The Rayleigh length was larger than 2 cm, 

allowing to easily center the beam on the sample facet and guarantee that 

the beam size is almost constant along the whole crystal (length L  11 mm). 

The crystal itself was mounted on a temperature-controlled holder to finely 

tune the phase-matching condition. After the sample a wedge glass was used 

to reflect a small fraction of the pump and SH beams, while the transmitted 

beam was first spatially separated by a prism, and subsequently by two pin 

holes and an IR-blocking filter. Thanks to the use of two separate power-

meters and to an accurate calibration of all the losses, we could measure at 

the same time both the SH power and the pump beam power. In order to 

evaluate the SHG process efficiency it is useful to exploit Equation 14 relating 

the SH beam power (PSH) to that of a fundamental beam (PF), having a beam 

waist w, under the hypothesis of the pump is undepleted and the phase-

matching condition is satisfied: 

𝑃𝑆𝐻(𝐿)

𝑃𝐹
2 = 𝜂 = 𝐿2

8𝜋𝑑𝑒𝑓𝑓
2

𝑤2𝜆2𝑛𝑆𝐻𝑛𝐹
2𝑐𝜀0

 

EQUATION 14 

In the above equation deff, given by 2×(d33/), represents the effective 

nonlinear coefficient in case of first order QPM, nSH and nF are the material 

refractive indexes at the second harmonic and at the fundamental 

wavelength respectively. Measuring the losses in the experimental setup and 

substituting the appropriate values to the constants in Equation 14, it is 

possible to obtain both the experimental  values and the theoretical ones. 

Given that the length of the periodically poled area (L) is the same for both 

the congruent and the Zr-doped samples, and neglecting the small 

differences (<1%) that could affect the extraordinary refractive index curve, 

the theoretical  value derived by Equation 14 for both materials is 9·10-3 W-

1. On the other hand the experimental values allowed estimating  ≈ 1·10-

3 W-1 for both samples. It is interesting to highlight that the SHG efficiency in 

the Zr-doped LN is exactly the same observed in the CLN sample, but lower 

than the efficiency expected by exploiting first-order QPM in a cLN sample.  
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FIGURE 40 SECOND HARMONIC GENERATION MEASUREMENT OF TWO SAMPLES: CONGRUENT PPLN 

(CLN) AND Zr DOPED PPLN (ZLN). ON THE RIGHT A PHOTO OF THE SH GENERATION DURING THE 

PROCESS. 

Taking into account the poling duty cycle, i.e. the actual ratio between the 

width of the inverted domain and the structure period (l/Λ), the effective 

nonlinear coefficient for first-order QPM, can be written as: 

𝑑𝑒𝑓𝑓 =
2𝑑33
𝜋

𝑠𝑖𝑛 (𝜋
𝑙

Λ
) 

EQUATION 15 

It is worth underlining that for PPLN realization the duty-cycle was set to 

20%, as domain broadening seemed to appear when the domains were 

observed exploiting the HF-etching technique. The resulting duty cycles were 

of 27% and 35% for the cLN and Zr:LN respectively, instead of the ideal 

50%. Therefore these values could reduce the SHG efficiency of the 56% and 

79% respectively. Which in any case are still not sufficient to completely 

justify the difference between theoretical and observed SHG values. We 

suggest that the residual discrepancy is due to the non-homogenous depth 

structure of the domains, in fact this leads to a duty-cycle change in depth as 

domains become narrower, and also to missing rods as more superficial 

domains end. 
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4. Conclusion 

4.1. Waveguides 

The production and the characterization of planar and channel waveguides by 

Ti-indiffusion were achieved on x-cut Lithium Niobate crystals in both the 

possible direction of propagation, y and z. The planar waveguides were 

characterized using structural (SIMS and RBS) and optical (m-lines) 

methods, the firsts confirm the fickian behavior of the titanium diffusion 

inside the Lithium Niobate, with a diffusion coefficient of 91±2 nm2/s, 

comparable with the previous measure of 88±3 nm2/s; and a superficial 

concentration of (1,00±0,02)·1021 at/cm3, comparable with literature [7]. 

The second allowed finding the fabrication parameters to achieve a single-

mode planar waveguide (Table 4). Moreover we characterize our deposition 

process finding a flux of the sputtering deposition of 8,3·1014 molecules s-1 

cm-2. 

Therefore by means of a photolithographic process, settled up and optimized 

in the PhD thesis, we produce channel waveguides using the same diffusion 

condition of the planar single-mode waveguides. Firstly we simulate, using a 

numerical approach (section 2.3), different starting width of the Ti strip 

deposited, finding that for a width of 5 µm (the lower dimension of our 

photolithographic mask) a TE single-mode y-propagating channel waveguide 

was achievable. Therefore we produce such a kind of waveguides confirming 

the TE polarized single-mode using the Near-Field technique (section 2.10). 

Moreover we find that also non-polarized beams both y and z propagating 

were single-mode in these kinds of waveguides.  

Finally we achieve our goal of production a single-mode waveguide in x-cut 

crystals by Ti in-diffusion, furthermore the next steps will be the 

measurement of the intensity losses of the waveguides. After the complete 

characterization of this standard process, we will do the same study on z-cut 

substrate in order to obtain waveguides for different kind of devices, PPLN-

based or photorefractive-based. Moreover a study of Ti co-diffusion in Zr or 

Fe doped sample will be fundamental for the integration of the waveguides 

with PPLN or holographic filters respectively. Furthermore the first good 
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results of the coupling of a microchannel with this kind of waveguides are 

reported in chapter 4, an important step toward the Lithium Niobate 

Optofluidic Platform. 

4.2. Frequency converters (PPLN) 

The realization of a frequency converter integrated in LN is a fundamental 

step for the achievement of the optical stage of our microfluidic platform. As 

discussed previously the realization of this PPLN structure can be achieved in 

two kinds of substrate cLN and Zr:LN, as the second allow obtaining optica-

damage resistant devices. Therefore the Zr:PPLN could be realized in two 

possible ways, the first is to implement all the structures, both optical and 

fluidic, in a bulk doped crystal of LN. The second is to diffuse at high 

temperature Zr only in the area where the PPLN are realized. Since the 

realization of periodic structures on Zr:LN has not been reported in literature 

yet, and the implementation of these structures on a varying Zr profile as 

that observed in in-diffused sample is a strong complication, we decided to 

investigate the real possibility of getting PPLN on Zr doped samples as a first 

step. However the first possibility is surely less flexible compared to a 

tailorable doping but is necessary to understand the unknow phenomena 

observed in the Zr periodic poling. Therefore we started to study the behavior 

of the poling in the bulk Zr doped crystal, as they are the simplest model in 

which operate.  

In conclusion we realized photolithographyc patterns with useful size on the 

sample (6,8 µm), and we were able to obtain periodic poled domains of 

suitable dimensions in congruent Lithium Niobate crystals. Next steps will 

concern the measurements of the efficiency of SHG and the realization of 

PPLN in channel-waveguide configuration, since these structures are well 

known in literature we expected high efficiency PPLN, but only for low 

intensity because of the optical damage.  

The formation of domains in Zr doped crystals results more different and 

complicated than in the undoped samples. In fact in the low-temperature 

configuration this domains are not stable and tend to return to initial 

polarization state. This problem probably depends on the wall dynamics and 

domain nucleation in Zr doped LiNbO3 crystals, which are still unknown topics 
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in Lithium Niobate research. Some models suggest that the internal field is 

due to dipole moments of defect clusters [NbLi−4VLi] [32], or it is postulated 

that at room temperature the point defects NbLi are fixed by Li vacancies 

[23], so the cluster dipoles cannot be reoriented and maintain the initial 

direction of Eint. These dipoles may be realigned only at T>100–200°C. So the 

reason of the observed reorientation of Eint at elevated temperatures could be 

a reorientation of the cluster [NbLi−4VLi] dipoles, which is attributed to a 

thermo-activated mobility of the Li vacancies and their hopping over 

equivalent Li sites. 

Crystal Ec(kV cm-1) Eint(KV cm-1) 

CLN 210 2-33 

SLN 60-65 →0 

CLN:5%MgO 60-68 5 

CLN:8%ZnO 25-35 5 

SLN:1%MgO 25 →0 

CLN:3% ZrO2 78 ± 4 24-38 
TABLE 20. COERCIVE FIELD AND INTERNAL FIELD FOR PRINCIPAL KIND OF LITHIUM NIOBATE 

Moreover, we found a value of the coercive field of about 7,8 ± 0,4 kV/mm 

for the congruent Lithium Niobate doped with 3 mol. % with Zirconium 

(CLN:3 mol. %Zr). A comparison with the coercive fields of LN with different 

stoichiometry and different dopants is reported in Table 20: the coercive field 

of CLN:3%Zr is about the 37% of the CLN coercive field, and it is comparable 

with the 5 mol. % MgO CLN, but with a lower threshold concentration. 

Furthermore the coercive field is the one measured at first forward poling, so 

it is possible that samples with lower internal field give lower value of forward 

poling. The solution to Zr:LN backswitching was the implementation of a 

high-temperature poling set-up that allowed the realization of a stable 

periodic inversion of the ferroelectric domains at 150°C, for both doped and 

undoped crystals. Moreover we measured the coercive fields of ZrLN also at 

150°C (Table 19). As expected the PPLNs obtained at high temperature were 

stabilized but superficial, as discussed the mobility of charges and defect 

inside the material could be the explanation of both the phenomena [42]. 

Moreover the domains stabilization itself could be explained not only by the 

reorientation of the polar defects, but also by the charges compensation of 

the instable domain walls. In support of this hypothesis we find furthermore 

that after the poling process a reverse poling is not possible for high-
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temperature samples both congruent and doped, a behavior that is not 

explainable only considering the internal field generated by polar defects. 

In summary, we achieved the periodic poling of Lithium Niobate crystals by 

exploiting both room-temperature and high-temperature (150°C) electric-

field poling, thanks to the use of a dedicated apparatus that allows also 

monitoring the domain formation during the process. In the first case better 

structures were achieved for congruent crystals, since the ferroelectric 

domains pass through the whole crystal width, as demonstrated by the wet 

etching.  

The Quasi-Phase Matching Second-Harmonic Generation (QPM-SHG) 

operating at room temperature was then tested for high-temperature-poling 

crystals both congruent and Zr doped. A comparison between the efficiencies 

of doped and undoped PPLN results in a comparable efficiency, demonstrating 

that Zr-doped substrates are a valid alternative to Mg-doped. Moreover we 

found a low efficiency in comparison from what expected from theory, 

probably due the superficial structures of the domains that is related to the 

poling at high temperature. The depth of the domains is still unknown for the 

periodic structures, but considering the measure took for the poling of the 

entire surface it is probably of around one hundreds of micrometers (Figure 

38) with a beam waist of 60 µm. Therefore two possibilities may be explored 

to improve our efficiency: the first is to improve our high-temperature poling 

set-up so that deeper domains are achieved, for example we could exploit 

the poling at lower temperature (i.e. deeper domains) and then achieve their 

stabilization increasing the temperature during the post-poling phase. The 

second is to use directly this kind of structures with waveguides able to 

confine the light in few micrometers, a region in which the domains probably 

could be considered uniform also in depth. 

Finally it is important to note that other kind of optical-damage resistant 

dopants like Mg are not compatible with ion diffusion technique for the 

realization of waveguides, on the contrary first studies on Zr doped samples 

demonstrated its compatibility with proton exchange technique [47]. 

Therefore a study also on the Titanium diffusion in Zr doped crystal would be 

interesting and will be done in the next months. 
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1. Latest Results 

With the aim of prove the possibility of integration between the optical stage 

and the fluidic stage, that is one of the main challenges of our project, we 

present the first results of the coupling between a single-mode waveguide 

and a microfluidic channel. Different x-cut sample with single-mode 

waveguides were realized with the optimized procedure and the parameters 

discussed in Chapter 3. Therefore two samples were tested to host T-juntion 

structures realized with the femtosecond laser ablation; and other two 

samples prepared with single channel realized with a precision saw (Disco 

DAD 321) at the University of Franche-Comté, Besançon (France) in order to 

assure a high optical grade dicing.  

Since polished faces are requested at both the entrance and exit sides as well 

as at the walls of the trenches, in order to limit losses due to light diffusion, a 

polymer blade with diamond particles was used. Cutting parameters have 

been experimentally determined to give optical quality cuts in LiNbO3. The 

blade, with a diameter of 56 mm and a thickness of 200μm, rotates at 10 

Krpm and the cutting speed was fixed at 0.2 mm s-1. A constant and high 

flow of water was exploited, keeping a constant and low temperature for both 

the blade and the sample during the process. Such a process constitutes a 

straightforward way to simultaneously dice and polish 200 μm wide by 50 μm 

deep trenches oriented along the z-axis, with smooth walls and realized in a 

single step process. 

The microchannel cut was then characterized with an AFM (Figure 1) in order 

to measure the roughness of the lateral and the bottom walls. The results, 

reported in Table 1, are excellent with an average roughness of the lateral 

wall of about 7 times lower than the laser-ablated channels. These 

preliminary measurements are surely encouraging and we could probably 

change the fabrication technique in favour of the optical-grade dicing, or of a 

mixed procedure between the laser ablation and the dicing. 
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FIGURE 1 AFM MEASUREMENTS OF THE LATERAL SIDE (LEFT) AND BOTTOM SIDE (RIGHT) OF A 

MICROCHANNEL REALIZED USING A PRECISION SAW (DISCO DAD 321). 

 Lateral side (nm) Bottom side (nm) 

 Average Error Average Error 

Ra 6,8 0,5 19 6 

Rq 8,5 0,9 23 7 
TABLE 1ROUGHNESS AVERAGE MEASUREMENTS OF THE LATERAL AND BOTTOM FACES OF A 

MICROCHANNEL REALIZED USING A PRECISION SAW (DISCO DAD 321) 

After the surface characterization we collected the Near Field images for a 

waveguide passing through the channel. A Near Field measurement was 

taken also before the channel cut and therefore in Figure 2 we present a 

comparison between the same waveguides at the same input intensity 

(2,2·105 W/m2) before and after the channel realization. As it can be easily 

seen the presence of the channel, filled with hexadecane, slightly affect the 

emission of the waveguide, with a ratio between the two measured output 

intensities of 0,46. The coupling between the microchannels and the 

waveguides was therefore demonstrated, and therefore the last part of the 

project – the integration between the optical and the fluidic stages – could be 

implemented in the next months. 

 

FIGURE 2 NEAR FIELD IMAGES OF THE MONOMODAL WAVEGUIDE BEFORE (LEFT) AND AFTER (RIGHT) 

THE MICROCHANNEL CUTTING. THE CHANNEL IS FILLED WITH HEXADECANE. 
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2. Conclusion 

From the work presented in this thesis Lithium Niobate has demonstrated one 

more time its extremely adaptability as material for optical and, in our case, 

also for optofluidic applications. As a matter of fact, a wide set of different 

technologies was explored in order to tailor the material for different 

application: chemical functionalization, doping, ion exchanging, etching, 

domains engineering, and microfabrication. A little subset of possibility, since 

a lot of other techniques were not explored in the project (for example ion 

implantation) or discussed in this thesis (photorefractive trapping). Moreover 

also properties like piezoelectricity or the electro-optic effect - that are well 

known and used to realize microfluidic or optical circuits respectively – were 

not taken into account in this project. However they extend the range of tools 

that it is possible to implement in an optofluidic platform in Lithium Niobate. 

We obtained therefore both optical and fluidic devices in the same kind of 

substrate. The first type of device was taken from literature a and were 

implemented (Ti in-diffused waveguides, PPcLN) or improved by us 

(Zr:PPLN); the second one (T-junction) was the first device of this kind 

realized in LN crystals and demonstrated performance and behaviors 

completely comparable to classical microfluidic materials. Finally the first 

coupling between a Ti waveguide and a microchannel was achieved, 

demostrantig that Lithium Niobate have really good perspective as a material 

for optofluidics. 

For what concerns the optical stage of our project we were able to obtain 

single-mode Ti-indiffused waveguides, starting from the state of the art of 

our group (20 years of work on the Ti-indiffusion waveguide study and 

fabrication). Therefore we obtained for the first time, at the best of our 

knowledge, the coupling between a Ti single-mode channel waveguide and a 

microfluidic channel. Therefore we measured a loss due to the transmission 

through the channel of the 46%, which is quite good for a first experiment. 

We completely characterize the procedure of waveguide fabrication, therefore 

we were able to reproduce our sample with a good confidence. The next step 

will be the implementation of the same procedure on z-cut crystals with the 

aim to integrate the waveguides with the PPLN, moreover also the study of 
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the diffusion of Ti in Zr bulk doped sample will be implemented in order to 

achieve high efficient optical-damage resistant frequency converters. Finally 

the co-diffusion of Ti and Fe will be strategic for the realization of holographic 

Bragg gratings which can be used in the analysis of the signal. 

The implementation of a frequency converter in Lithium Niobate plays a key 

role in the development of our optofluidic platform. In fact it can be used to 

integrate a laser source in the green-blue range that could found application 

particularly in the biological field. Moreover PPLN could also be used to 

produce multifrequency emission, which could have interesting application, 

for example the simultaneous analyis of our droplets with different 

wavelengths. Therefore we achieved the realization of PPLN structure for the 

SHG in the QPM configuration. PPLN were realized in congruent LN using 

photolithography and a room-temperature poling cell. Moreover our aim was 

to achieve also high intensity and high efficiency of conversion, therefore we 

needed to dope the material with ions able to contrast the optical damage 

and a new kind of dopant, Zirconium, was chosen. This was the first study on 

the realization of PPLN on substrate doped with Zr, therefore we found that 

the implementation of a high-temperature poling cell was necessary, because 

of the backswitching phenomenous accouring after the poling at room 

temperature. We successfully obtained both congruent and Zr doped PPLN 

with the suitable periodicity (6,8 µm) able to achieve the SHG from 1064 nm 

to 532 nm. Unfortunately the ferroelectric domains were too superficial, this 

because of the high temperature process, and therefore the efficiencies of SH 

conversion (9·10-3 W-1) were not satisfactory for both the kind of material 

realized at high temperature. Therefore the next step will be the optimization 

of the poling process at high temperature in order to obtain better and 

deeper domains. Finally also the integration of a channel waveguide can 

increase the efficiency of conversion and will be another step toward a higher 

integration, therefore the study of the Ti diffusion in Zr bulk doped LN will be 

an important task. 

In the fluidic stage the first study on the realization of a T-Junction droplets 

generator directly engraved in Lithium Niobate was completely achieved. First 

we find a useful fabrication technique from a feasibily study: femtosecond 

laser ablation, which demonstrated a good reproducibility, flexibility on the 
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pattern writing, and good roughness of the channel walls. Then for this first 

prototype, we close the microchannels with a layer of PDMS, using a O2-

plasma bonding. Therefore we characterize the fluidic properties of the T-

Junctions finding extremely good performances in both the control of the 

droplet generation frequency and the control of the their dimensions. In 

particular we reached frequencies generation of about 1 kHz and a dispersion 

of the length lower than 3% in the majority of the cases. Moreover we found 

the bottom bound of application of the model used, as for Ca<6·10-4 the 

Christopher et al. model started to evidence its limits. In addition the study 

of the wettability and of the functionalization showed how the material is 

easily adaptable to different needs, in our case the increase of the 

hydrophobicity. Moreover with different functionalization it could be probably 

easy to turn the LN surfaces hydrophilic. Lithium Niobate is therefore 

comparable to other standard material for microfluidic like PDMS, glass or 

silicon; but with better and well-known optical properties. The major problem 

that still needs to be study is the one relative to the roughness of the channel 

sidewall. In fact, the laser ablation gives surfaces with an average roughness 

of about 50 nm, a value that is good but could still affect the coupling of the 

waveguide with the channel. However the first waveguide/microchannel 

samples are under fabrication and the consequence of the roughness will be 

analyzed. Nevertheless, in order to improve the optical quality of the channel 

polishing technique for the sidewall will be implemented, as 

magnetorheological finishing or optimizing the combination of laser damaging 

and wet-etching. Furthermore we recently obtained an excellent sidewall 

roughness with a different technique: the optical-grade dicing. In this 

samples we recently demonstrated for the first time the possibility of 

coupling a Ti-indiffused waveguide and a microchannel. Therefore, if 

femtosecond laser ablation will not be able to achieve similar results, a 

combination of the two techniques could probably be a good solution, 

exploiting the pattern flexibility of the laser to achieve the T-juntion, or other 

channel geometries, and the low roughness of the dicing technique to 

fabricate waveguide-coupling zone of the fluidic circuit. 

In conclusion all the fundamental steps for the fabrication of the fluidic and 

the optical stages were implemented. In particular during our work we were 
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able to achieve the realization of the first T-junction devices engraved in 

Lithium Niobate, of the first PPLN frequency converters realized in Zr doped 

Lithium Niobate, and the first coupling between a Ti indiffused single-mode 

channel waveguide and a microfluidic channel. All this devices can be realized 

on the same substrate, paving the way to an extreme integration of 

optofluidic tools in Lithium Niobate. Therefore in the next months the 

principal issue will be the integration between all these different devices in 

order to achieve the final optofluidic platform. In the next section we discuss 

the next steps and the future objectives of our work. 

2.1. Future perspectives 

As previously discussed the next main objective will be the improvement of 

the coupling of the single-mode waveguide with the microfluidic channel, and 

in this context first results are encouraging, as discussed in section 1. In 

particular we are going to analyze also waveguides coupled with the laser-

ablated channel in order to found which is the best method of microchannel 

fabrication. Moreover also the fabrication of a T-junction using the optical-

grade dicing will be taken into account. After these studies the realization of 

a droplets counter used to measure the performance of the T-junction will 

allow realizing a first simple prototype able to measure frequency and 

dimensions of the droplets.   

A second objective will concern the realization of a 

PPLN/waveguide/microchannel system in which the radiation emitted from 

the PPLN excite a dye dissolved in a water droplet and therefore the opposite 

waveguide collect the light emitted from the droplets. This will be the first 

step toward the realization of a sensor, as the realization of an analytical 

stage (Bragg gratings) realized with microfabrication, or photorefractive 

holographic techniques, will allow separating the different wavelength 

contribution of the collected light and therefore to identify the presence of the 

dye in the droplets. 

Finally also an improvement on the channel fabrication is forecast, in fact we 

will try to close the upper side of the channels using another layer of Lithium 

Niobate instead of PDMS, this will consent to increase the design possibility, 

as the two LN crystal could have different crystallographic orientation, and 
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moreover to increase the frequency of droplets production and the flux 

achievable as the closure layer is rigid and do not bend at high fluxes as 

PDMS. 
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1. Optical damage resistance 

An important target for Lithium Niobate optical applications is the increasing 

of optical stability under intensive illumination, in particular a protection 

against the optical damage. The doping of the crystal with several different 

ions (Mg2+, Zn2+, In3+, Sc3+, Hf4+, Zr4+) has been demonstrated a successful 

way for obtaining optical damage resistance Lithium Niobate crystals. These 

ions seems to vary the amount of the Nb antisites [1] and therfore control 

the Lithium Niobate defects. As a consequence, many optical properties 

depending on that defect could be altered by the doping with this optical 

damage resistant ions. 

Magnesium: The first useful dopants which assure low optical damage 

with excellent optical transparency has been LiNbO3:Mg [2]. A critical 

threshold concentration of 5 mol.% MgO was found for the congruent 

Lithium Niobate, above which the optical damage decrease of two 

orders of magnitude. Stability of LiNbO3:Mg against pulse-laser 

intensities arrives up to 100 MWcm−2 [3]. It has been observed that in 

Li-enriched LiNbO3:Mg crystals the threshold of Mg concentration is 

lower, that because of fewer concentration of Niobium antisites, that 

decrease also the impurity concentration required to replace them. This 

effect is a prove of the role of these defects in optical property. 

Zinc: LiNbO3:Zn belong to the same bivalent family of the Magnesium 

doped crystals. Also Zinc shows an increased optical damage 

resistance [4], with a particularly strong effect at ZnO concentrations 

above 6 mol.% for the congruent melt [5]. Highly doped LiNbO3:Zn 

crystals revealed no optical damage under irradiation with 532nm 

pulses of 10 ns up to 100 mWcm−2 [4].  
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FIGURE 1  VARIATION OF LITHIUM VACANCY, NIOBATE ANTISITE AND ZINC ANTISITE DEFECTS IN 

FUNCTION OF ZINC CONCENTRATION 

Magnesium and Zinc optical damage resistant ions operate as controllers of 

the concentration of the intrinsic defects NbLi and VLi (Figure 1Errore. 

L'origine riferimento non è stata trovata.). As discuss in the previously 

optical properties, photorefractive effect and even ferroelectric coercive fields 

depending on the variation in the intrinsic defect structure. Moreover, it has 

been observed that Fe impurities and 𝐹𝑒𝑁𝑏
3+ centers appear in the crystal 

during the substitution of NbLi by Mg [6]. The change of the Fe3+ lattice site is 

another important cause of the origin of the optical damage resistance, in 

fact, as previous discuss,  𝐹𝑒𝐿𝑖
3+ in the congruent LiNbO3 is the dominant 

electron trap. The alteration of the Fe3+ lattice with the decreasing of the 

Niobium antisite affect the charge transport properties and so the 

photorefrective effect. 

Trivalent ions (In3+, Sc3+): Another family of optical damage resistance 

ions is composed of In3+ and Sc3+[1]. This dopants ensure a drastic 

decrease of the photorefraction at concentration below 2mol.% oxides 

for the congruent melt. The effect of 1,7 mol.% In2O3 [7] and 1,5 

mol.% Sc2O3 [8] is comparable to the effect of 4,5–5 mol.% MgO.  

Tetravalent ions (Hf4+, Zr4+): LiNbO3:Zr is the most recently 

investigated optical-damage-resistant composition [9], with a 

threshold of elevated optical damage resistance at concentration of 



APPENDICES  

 

 205 

less than 2 mol.% ZrO2. LiNbO3:2%Zr crystals show no optical damage 

up to intensities of 20 MWcm−2 I, in Figure 2 a comparison between Mg, 

Zr and cLN is reported in order to prove the optical-damage resistance 

of Zr [10]. The threshold for Hf is about 2 mol.% in the crystal [1]. A 

reduction of the photorefractivity in LiNbO3:Hf and LiNbO3:Zr with 

concentrations of Hf or Zr [9] above the thresholds is more 

pronounced than in LiNbO3:6.5%Mg for equal light intensities.  

Difference in the threshold of ions with different valences may be explained 

in terms of charge compensation effects. No speculation can be proposed 

concerning the incorporation of the Hf and Zr in the crystal lattice, except for 

the observation of the occupation of Li sites with Hf ions at low 

concentrations , it is probably that at high concentrations it occupies both 

cation sites [1].  

 

FIGURE 2 COMPARISON OF THE LASER TRANSMISSION BETWEEN CONGRUENT, ZIRCONIUM DOPED, AND 

MAGNESIUM DOPED LITHIUM NIOBATE AT TWO DIFFERENT WAVELENGTHS. THE EFFECT OF THE OPTICAL 

DAMAGE IS VISIBLE ONLY FOR THE CONGRUENT LITHIUM NIOBATE CRYSTAL[11]. 
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2. Quasi-Phase Matching 

We anlyze SHG as a second-order non linear interaction. We assume low 

conversion efficiency, loose focusing, long-pulse interaction and no losses for 

the fundamental or second harmonic waves. The varying amplitude equation 

governing the growth of the SH field under this conditions is 

𝑑𝐸2𝜔
𝑑𝑧

= 𝛤𝑑(𝑧)exp⁡(−𝑖𝛥𝑘′𝑧) 

EQUATION 1 

𝛤 =
𝑖𝜔𝐸𝜔

2

𝑛2𝑐
 

EQUATION 2 

Where E2ω is the SH field amplitude and Eω the fundamental, z the distance 

along the propagation direction, d(z) the spatially varying nonlinear 

coefficient for SHG. Δk’, the wave vector mismatch caused by dispersion in 

the material, is defined by  ∆𝑘′ = 𝑘2𝜔 − 2𝑘𝜔 = 𝜋/𝑙𝑐 where lc is the coherence 

length: 𝑙𝑐 = 𝜆/4(𝑛2𝜔 − 𝑛𝜔). Integrating Equation 3, we find that SH field at the 

end of a sample of length L is given by  

𝐸2𝜔(𝐿) = 𝛤∫ 𝑑(𝑧)exp⁡(−𝑖∆𝑘′𝑧)
𝐿

0

𝑑𝑧 

EQUATION 3 

For perfect phase matching Δk’=0 and d(z)=deff, so SH electric field wil be 

𝐸2𝜔(𝐿) = 𝛤𝑑𝑒𝑓𝑓𝐿 

EQUATION 4 

So the intensity grows quadratically with the sample length. 

For QPM interaction we consider the Fourier transform approach. Let us write 

the normalized form of d(z) as 𝑔(𝑧) = 𝑑(𝑧)/𝑑𝑒𝑓𝑓 with g(z) between -1 and 1 for 

z between 0 and L. Than Equation 4 takes the form 
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𝐸2𝜔(𝐿) = 𝛤𝑑𝑒𝑓𝑓𝐿𝐺(∆𝑘′) 

EQUATION 5 

Where G(Δk’) is the Fourier transform of g(z) given by 

𝐺(∆𝑘′) =
1

𝐿
∫ 𝑔(𝑧)exp⁡(−𝑖∆𝑘′𝑧)𝑑𝑧
𝐿

0

 

EQUATION 6 

If g(z) is a function periodic in z with period Λ, than 

𝑔(𝑧) = ∑ 𝐺𝑚

∞

𝑚=−∞

𝑒𝑖⁡𝐾𝑚𝑧 

EQUATION 7 

Whose mth-harmonic grating wave vector  

𝐾𝑚 =
2𝜋𝑚

Λ
 

EQUATION 8 

Is close to Δk’, so the integral in Equation 6 is dominated by this mth term, 

and thus Equation 5 can be written 

𝐸2𝜔 ≈
𝑖𝑒𝑥𝑝(−

∆𝑘𝐿
2
)

𝛤
𝑑𝑄𝐿𝑠𝑖𝑛𝑐(∆𝑘𝐿/2) 

EQUATION 9 

Where 𝑑𝑄 = 𝑑𝑒𝑓𝑓𝐺𝑚 is the amplitude of the relevant harmonic of d(z). 

∆𝑘 ≡ 𝑘2𝜔 − 2𝑘𝜔 − 𝐾𝑚 

EQUATION 10 

Is the total wave vector mismatch, and sinc(x)= sin(x)/x. So the behavior of 

QPM interaction is similar to that of a conventionally phase-matched 

interaction, but with an effective mismatch ∆𝑘 shifted of Km with respect to 

∆𝑘′, and an effective non linear coefficient dQ in place of deff . 

Assuming ∆𝑘′ = 𝐾𝑚, than  
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𝐺𝑚 =
2

𝜋𝑚
sin(𝜋𝑚𝐷) 

EQUATION 11 

With D the Duty Cycle 𝐷 = 𝑙/𝛬, so since 𝑑𝑄 = 𝑑𝑒𝑓𝑓𝐺𝑚 then, if m=1 we would 

have maximum of dQ at D=50%. With 𝑑𝑄
2  proportional to the conversion 

efficiency. 
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