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Abstract

In this dissertation theoretical and numerical models are proposed for the in-
duced polarization (IP) phenomenon. The theoretical model takes into account
the contribution of Stern layer and membrane polarization in variably saturated
sandy soils, while the numerical model can be used to get insight into the origins
of the membrane polarization mechanism. In this dissertation the frequency-
dependent bulk electrical conductivity of the porous medium is calculated using
the Hashin-Shtrickman Average model, which describes the dielectric response
of variably saturated porous media. Both stern and membrane polarization
can be calculated independently, which allows us to study the effect of different
physical parameters to each one. The results show that membrane polarization
can be obscured by the Maxwell-Wagner polarization. The model was tested
against data from laboratory measurements of sands with variable saturation
and a good fit was obtained even though more work has to be done for low sat-
uration levels. Then a numerical model is presented which uses the linearized
Poisson-Boltzmann Equation to compute the electrostatic potential of an ob-
ject in the presence of free ions. The solution is then used to calculate a the
dielectric to be used on a numerical solver of Poisson’s equation to calculate
the impedance of the system. This result corroborates the assumptions behind
the Short Narrow Pore model, a simplified and yet effective model describing
membrane polarization. The methodology used requires a much lower compu-
tational effort than solving the Poisson-Nerst-Planck equation since there are
no coupled systems.



Esposizione riassuntiva

In questa tesi sono proposti modelli teorici e numerici per il fenomeno di polariz-
zazione indotta ( IP ) . Il modello teorico prende in considerazione il contributo
della polarizzazione dello strato di Stern e di membrana in terreni sabbiosi
di saturazione variabile, mentre il modello numerico può essere utilizzato per
ottenere una migliore comprensione degli origini dal meccanismo della polariz-
zazione di membrana. La conducibilità elettrica del mezzo poroso dipendente
dalla frequenza viene calcolata utilizzando il modello Hashin - Shtrickman, che
descrive la risposta dielettrica di mezzi porosi con saturazione variabile. Sia
la polarizzazione di Stern e di membrana possono essere calcolati indipenden-
temente, cosa che ci permette studiare l’effetto di diverse parametri fisici. I
risultati mostrano che la polarizzazione di membrana può essere oscurato dalla
polarizzazione Maxwell - Wagner. Il modello è stato testato contro dati da
misure di laboratorio di sabbia con saturazione variabile con buoni risultati an-
che se più lavoro deve essere fatto per i livelli di bassa saturazione. Il modello
numerico presentato utilizza la equazione linearizzata di Poisson - Boltzmann
per calcolare il potenziale elettrostatico di un oggetto in presenza di ioni liberi
in soluzione. La soluzione viene quindi utilizzato per calcolare il dielettrico ad
essere utilizzato su un risolutore numerico dell’equazione di Poisson per calco-
lare l’impedenza del sistema. Questo risultato avvalora le ipotesi alla base del
modello short narrow pore, un modello semplificato ma efficace che descrive
la polarizzazione di membrana. La metodologia utilizzata richiede uno sforzo
computazionale molto inferiore che risolvere l’equazione di Poisson-Nerst-Planck
poiché non esistono sistemi accoppiati.
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Chapter 1

Introduction

Most current process-based models for IP include consider either membrane
polarization (e.g. Marshall and Madden, 1959, de Lima and Sharma, 1992,
Titov et al., 2002, and refs therein) or grain polarization (e.g. Fixman, 1980,
Dias, 2000, Revil’s works), but not both.

Previous works (in particular, works from A. Revil, but also for example
Klein and Sill, 1982) have shown that the characteristic relaxation time is cor-
related with the average grain diameter. This suggests that grain polarization
is one of the major contributing mechanisms, in particular in sands/sandstones.

Recent experimental works highlighted the importance of pore space char-
acteristics. In particular (1) [19] and [1] observed that the relaxation time is
associated to the size of pore-throats in sandstones, (2) Kruschwitz [37] observed
a clear correlation between texture, pore-space characteristics, pore-throat di-
ameter and the relaxation time, and (3) Koch et al., 2011, found a shift in relax-
ation time with compaction of unconsolidated sediments, an observation which
is difficult to explain considering grain polarization only. See also [18] for more
literature on this and further insights. Moreover, theoretical and experimental
work on micro/nanofluidic devices have shown that membrane polarization re-
ally occurs, although in this field it’s called ‘concentration polarization’: see for
example [24].

The aim of this dissertation is to develop a mechanistic model for induced
polarization in the frequency domain that incorporates both grain and mem-
brane polarization and uses a non-linear mixing rule to combine the (complex)
contribution of the three phases (water, air and solid grains).

After the presentation of the theoretical model will be presented a numerical
model to calculate the impedance of complex geometries with ionic solution.
In particular, is well suited to study the membrane polarization mechanism.
Madden [12] offered a theoretical model based on the serial connection of ion-
selective and nonselective pores, which generate a difference in the cation and
anion transport. Titov [43] proposed a model based on the existence of ion-
selective narrow passages (called the Short Narrow Pores model, or SNP). This
model describes the membrane polarization at different frequencies based on
the assumption that the narrow passages are much shorter than the large ones,
hence it is a special case of the Marshall-Madden model. This class of models
are capable of describing many of the observed phenomena, using empirically
derived parameters. However, these (and other) models suffer from an over-
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simplification of the geometry and assume that the narrow or active pores exist,
without any further explanation about their size or properties.

In this paper we aim at investigating the basic assumptions of these simpli-
fied models using an innovative, accurate computational approach. Numerical
solutions of the Poisson-Boltzmann Equation (PBE) have been successfully ap-
plied particularly in biophysics thanks to the development of robust algorithms
that can calculate the electrostatic potential of complex structures such as pro-
teins and their associated electrostatic energy. We propose the use of the PBE
to study the induced polarization phenomena. In particular, we aim at using
the PBE to gain insight about the chargeability of a water-wet system composed
of pores and pore throats, where membrane polarization plays a key role.

Volkmann [18] developed a numerical model using the Poisson-Nerst-Planck
(PNP) coupled system using the finite element method. The PNP equations
were transformed in the frequency domain, and no fixed charges on the surface
were included in the model. In it, the region close to the mineral surface (and up
to a Deby length from it) is assumed to have a lower anion mobility. The method
was tested against the Titov’s model with good results. Note that solving the
PNP coupled system in the frequency domain for complex geometries can be a
very expensive task from the computational point of view. For each frequency,
solvers of the Poisson and Nerst-Planck equations are used until no difference
between their solutions are found (under a certain threshold). This is due to
the dependence of the electrostatic potential on the ion distribution (Poisson’s
equation) and the ion flow and distribution on the electrostatic potential (Nerst-
Planck). In this work the Poisson-Boltzmann equation is used to calculate the
electrostatic potential due to the charges on the surface of the mineral and ions
in the pore space under a constant electric field. Under the assumption that
the field is low when compared to the effect of the fixed charges in the mineral’s
surface, the solution of the Poisson-Boltzmann equation is used to calculate the
conductivity in the pore’s water. Then, Poisson’s equation is used to calculate
the impedance of the system threating the ion flow in the liquid phase as current
in a semiconductor with variable conductivity.
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Chapter 2

Theoretical modelling

2.1 Model description

The complex bulk electrical conductivity σ∗b of a porous medium (or its recip-
rocal, the electrical resistivity) is a frequency dependent property,

σ∗b =
1

ρ∗b
= iωε∗ (2.1)

that can alternatively be expressed by the magnitude and phase angle, or by
the in-phase and quadrature components,

σ∗ = ‖σ‖ exp(iϕ) = σ′ + iσ′′ (2.2)

‖σ‖ =
√
σ′2 + σ′′2 (2.3)

tan(ϕ) = σ′′/σ′ (2.4)

where the superscript * indicates a complex quantity. The frequency dependent
behavior of electrical conductivity is associated to a number of polarization
mechanisms that occur within the pores and around the solid grains. Specifically
it is believed that three are the major mechanisms,

1. Maxwell-Wagner (MW) polarization. Polarization of the water-solid grain
interface due to the accumulation of charges that occurs at relatively high
frequencies (ω > 10 − 100Hz). This type of polarization has been al-
ready extensively studied, and a number of mechanistic model exist, as
for example [8].

2. Membrane polarization. The complex inner structure of the porous medium,
formed by large pore-bodies and narrow pore-throats, combined with the
EDL at the surface/water interface is responsible for the local accumula-
tion of ions and the formation of a membrane potential. More specifically,
the pore-throats with its have a negatively charged inner surface act as
ion-selective channels. As a result, the concentration of ions at opposite
boundaries of each pore-throat fluctuates (with opposite sign) and each
pore behaves like an electrical capacitor. Until recently, this has been con-
sidered the primary polarization mechanism, and included in a number of
models [13,25,26,43,44].
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3. Electrical double layer (EDL) polarization. This polarization mechanism
has been considered only in the recent years, and models based on this
mechanism proved able to identify textural and hydraulic properties of
porous material [4,23,29–31]. These models are mostly based on the the-
ories of [38, 39] for EDL polarization around a spherical particle. For the
good predictive capabilities of the models based upon this electrochemical
polarization mechanism, it is gaining increasing attention. Despite this,
understanding of EDL polarization (and the interplay between polariza-
tion mechanisms and the inner structure of the porous medium) is still in
its infancy. In particular, it is unclear whether both the Stern (inner) and
diffuse layers polarize (as suggested for example by De Lima and Sharma,
1992). Leroy and Revil, 2009a; Leroy and Revil, 2009b; Revil and Florsch,
2010, postulated instead that only the Stern layer contributes to polar-
ization, as it is disconnected at the scale of the grains (in other words,
the Stern layer of each grain does not overlap with that of the adjacent
grains). The diffuse layer instead forms a continuous structure, and there-
fore electrochemical gradients cannot build-up.

EDL and membrane polarization are the more likely mechanisms responsible for
the low (0 ≤ ω ≥ 10Hz) frequency variations of the electrical conductivity of
granular porous media (Leroy and Revil, 2009a). The specific objective of this
work was to develop a mechanistic model suitable to understand and predict the
frequency dependent behavior of granular porous materials (soils and sedimen-
tary geological formations) in the low frequency range. The model developed
in this work has at least three strengths, (i) it includes both EDL and mem-
brane polarization, and (ii) it is process-based, and all parameters have a clear
physical meaning and (iii) it uses a non-linear mixing equation to combine the
complex conductivity of each phase (solid, water and non-aqueous). Since MW
polarization has been extensively studied in other works, and experimental data
above 100Hz, the frequency range where MW polarization becomes dominant,
are often affected by artifacts and instrumentation noise, its contribution was
not considered.

2.1.1 Stern layer polarization

Following (Leroy and Revil, 2009a; Revil and Florsch, 2010), it was assumed
that only the Stern layer of the EDL can polarize, that is, the diffuse layer con-
ductivity is not frequency-dependent. The total complex surface conductivity
was modeled using the approach of (De Lima and Sharma, 1992), later adopted
also by (Leroy and Revil, 2009a; Revil and Florsch, 2010; Schmutz et al., 2010)

σ∗s =
4

d0

[
Σd + Σs

(
1− 1

1 + iωτ0

)]
(2.5)

According to this model, in the direct current (DC) limit, the surface con-
ductivity is simply due to the excess of charge in the diffuse layer, while the
contribution of the Stern layer is negligible,

σ∗s =
4

d0
Σd (2.6)
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On the contrary, at high frequencies (in the static limit) both the Stern and
diffuse layer contribute to surface conductivity,

σ∗s =
4

d0

[
Σd + Σs

]
(2.7)

The parameter τ0 is the time scale associated to the relaxation time of Stern
layer polarization, and is controlled by the diffusion length scale – taken as the
diameter of the solid grain – and the molecular diffusion coefficient of the ions
in the Stern layer,

τ0 =
d2

0

8Ds
i

(2.8)

The diffusion coefficient Ds
i is in turn related to ionic mobility µ and to temper-

ature via the Nernst-Einstein relationship, Ds
i = KbTµ

s
i/(zie), where zi is the

valence of i-th species and e the electron’s charge. It is important to note that,
as opposite to the assumption of (Leroy and Revil, 2009a; Revil and Florsch,
2010), mobility (and thereof diffusivity) of ions in the Stern layer is likely to be
smaller (due to electrostatic interactions) than in the bulk fluid. To model the
frequency dependent conductance of the Stern layer, the approach described by
(Leroy and Revil, 2009a; Revil and Florsch, 2010) was adopted. The in-phase
and quadrature components were computed as

Σs∗(ω) = Σs
′
+ iΣs

′′
(2.9)

Σs
′
(ω) = Σs

(
1−

∫ ∞
0

g(τ)

1 + ω2τ2
dτ

)
(2.10)

Σs
′′
(ω) = Σs

∫ ∞
0

g(τ)ωτ

1 + ω2τ2
dτ (2.11)

where g(τ) is the distribution of relaxation times, and it is related to the grain
size-distribution of the porous material. For a log-normal distribution f of grain
diameters d with mean d50 and standard deviation σg,

f(d) =
1√

2πσ̂d
exp

[
− (ln(d)− ln(d50))2

2σ̂2

]
(2.12)

where σ̂ = ln (σg) and the associated distribution of relaxation times is (Revil
and Florsch, 2010),

g(τ) =
1√

8πσ̂τ
exp

[
− ln (τ/τ0)2

√
8σ̂

]
(2.13)

The characteristic relaxation time associated to grain polarization is controlled
by the median grain diameter corrected by a tortuosity factor,

τ0 =
αd2

50

8Ds
i

(2.14)

with α = Fϕ. The contribution of the Stern layer to the complex surface
conductance is converted into the equivalent surface conductivity (again of the
Stern layer only)

σ∗Ss (ω) = 4Σh

(
Σs

′
+ iΣs

′′
)

(2.15)
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using the reciprocal of the expected grain size from the log-normal distribution,

Eh = exp

(
σ̂

2
− ln (d50)

)
=

1

d50
exp

(
σ̂

2

)
(2.16)

2.1.2 Membrane Polarization

The membrane polarization mechanism assumes that the porous medium can
be conceptualized as a sequence of ion-selective zones, where the pore-throats
have an active role and the the pore bodies act as passive zones (Marshall and
Madden, 1959; Fridrikhsberg and Sidorova, 1961). The ion-selectivity of each
pore is expressed through the transport (or transfer) numbers, t+(cations) and
t−(anions). In passive zones, both positive and negative ions transport the
electrical current, and ∆t± = |t+ − t−| = 0. But in the active zones ∆t± 6= 0
giving rise to the accumulation of charge. Marshall and Madden (1959), parting
from the equations that describe the ion flow in the presence of an electric field,
solved the differential equations related to a 1D system obtaining the impedance

Z(ω) =
l1

µ+
1 coF

×

[
t+1 +

B

A
+

(T2 − T1)2

X1(ω)S1

(t+2 )2t+1 tanh(X1(ω))
+
A

B

X2(ω)S2

(t+1 )2t+2 tanh(X2(ω))

 (2.17)

where the subscript 1 denotes the passive zone and subscript 2 the active zone.
li is the length of the pore (see figure 2.1). µ±i is the ionic mobility of the cations
or anions, and

Xi(ω) =

(
iω

2D+
i t
−
i

)1/2
li
2

D±i = KbTµ
±
i /(zie)

A =
l1
l2

B =
D+

1

D+
2

C =
D−1
D−2

T =
t−1
t−2

(2.18)

The impedance can be rewritten (see [2] for derivation) as

Z(ω) =

Zdc

[
1− η0 ×

(
1− l1/τ1 + l2/τ2

l1
τ1

√
iωτ1 coth(iωτ1) +

l2
τ2

√
iωτ2 coth(iωτ2)

)]
(2.19)
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Figure 2.1: Geometrical factors for the SNP model. The passive zones (with
length l1 and cross section S1) corresponds to the pore bodies, whereas the con-
striction connecting two pore-bodies (pore-throat) is the ion-selective channel,
with dimensions l2, S2 (length and cross-section).

where

τi =
l2i

8D+
i t
−
i

(2.20)

Υ =
8(tn2 t

+
1 − tn1 t+2 )2

l1/τ1 + l2/τ2
(2.21)

Zdc =
KbT

ecoF

[
l1

D+
1 +Dn + 1

+
l2

D+
2 +D−2

+ Υ

]
(2.22)

η0 =
KbT

ecoF

Υ

Zdc
(2.23)

t±i =
µ±i

µ+
i + µ−i

(2.24)

Bücker’s short narrow pore model

Titov (Titov et al., 2002) developed a model assuming that the length of the
passive zone is much greater than that of the ion-selective channel, and that the
ionic mobilities in 1 and 2 are equal or very close (B = C = 1). This means that
the difference in transport number is due to the difference of ionic concentration
between the two zones. This difference is caused by the ionic cloud (or diffuse
layer) atracted to the surface charge. Since the size of the diffuse layer is related
to the Debye length of the solution, the model has to account for the size of the
pore neck relative to the Debye length. This model is called the short narrow
pore (SNP) model.

Bücker [2] proposed two models for membrane polarization that are a sim-
plification of the Marshall model: the long and short narrow pore models. In
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contrast to Titov’s model [43] it is assumed that the anion mobility in the active
zone is lower than the cation mobility following the rule

µ+
1 ≈ µ+

2 ≈ µ−1 � µ−2 (2.25)

which is caused by the increased anion concentration in the active zone. It is
further assumed that A � 5 · C (see 2.18). From equation 2.17 it is obtained
(see [2] for the derivation)

Z(ω) = Zdc

[
1− η0

(
1− 1

1 +
√
iωτ ′

)]
(2.26)

τ ′ = τ2
D+

1 t
−
1

D+
2 t
−
2

(2.27)

where Zdc and η0 are given by equations 2.22 and 2.23, and the transport
numbers by equation 2.24. To account for the tortuosity as it was done in the
Stern layer polarization, l2 must be substituted by αl2 in equations from 2.19 to
2.24. Assuming that the only factor affecting the frequency dependance of the
conductivity of the solution in the porous media is the membrane polarization
mechanism

σ∗w(ω) = σ0
w

[
1− η0

(
1− 1

1 +
√
iωτ ′

)]−1

(2.28)

Notice that in this case it was assumed that membrane conductivity affects the
concentration of ions in the bulk pore-fluid, and not in the vicinity of the sur-
faces, and thereof modifies the electrical conductivity of the pore-water rather
than surface conductivity. This is certainly a strong assumption which deserves
further investigations, as in very small capillaries the diffuse layer can signifi-
cantly affect ion concentrations and the bulk conductivity. On the other hand,
the typical length scale of the double layer is at most of the order of a few tens
of nanometers, while small throats are of the order of a few microns. Moreover,
as already assumed for EDL polarization, the diffuse layer remains connected
at the scale of a REV, and therefore strong local gradients within the diffuse
layer are immediately dissipated.

Bücker’s model is valid for a single type of pores (with characteristic length
l2). In a real porous medium, pore-throats diameters and radii are variable, and
they follow a statistical distribution. Nevertheless, it can be assumed that the
size of the passive zones compared to the size of the active zones is approximately
constant, and so is also the relatioship between radii and length of the pores
and throats. Both assumptions where used on Titov’s original model. In this
case we must integrate

σ∗w(ω) = σ0
w

[∫ ∞
0

fp(a)×
(

1− η0(a)

(
1− 1

1 +
√
iωτ ′

))
da

]−1

(2.29)

where fp(a) is the normalized statistical distribution of the pore’s radii.
In Titov’s model a current ‘efficiency’ factor in the pore-throat is used. It

depends on the ratio between surface and bulk fluid conductivity. Assuming a
cylindrical capillary and the Debye-Huckel linearization of the EDL, the current
efficiency factor was computed (Brovelli and Cassiani, 2009, TiPM and refs
therein: Bowen and Jenner, 1995; Bernabé, 1998; Xuan and Li, 2004). This
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stablishes a relationship with the Stern layer mechanism through the z potential,
value that is needed in the efficiency factor and that is related to the surface
conductivity. This means that Titov’s SNP model can be used in the mixing
rule that will be put forward in the next section (as well as the long narrow pore
model of Bücker), but care has to be taken to be consistent in both polarization
mechanisms.

2.1.3 Mixing rule

Equations 9-11 and 2.29 describe the frequency dependent electrical conductiv-
ity of the interfaces and pore-fluid. The bulk conductivity of the porous medium
depends also on the relative abundance of each phase, and the geometrical con-
figuration of the different phases. To compute the frequency-dependent bulk
electrical conductivity of the porous medium, the Hashin-Shtrickman Average
(HSA) model of Brovelli and Cassiani [2010, 2011] was adopted,

σ∗b (ω) = HSA(σ∗w, σ
∗
s , ϕ, Sw,m, n) =

3− ϕ
2

ϕm−1σHSU +
ϕ− 3

2
ϕm−1σHSL (2.30)

where the complex water conductivity is computed from Eq. 2.29 and the com-
plex surface conductivity is the sum of the diffuse and Stern layers contribution,

σ∗s = σds + σ∗Ss (ω) (2.31)

For this latter equation, Stern layer conductivity σ∗Ss is computed using Eq.
2.15. The upper (HSU) and lower (HSL) Hashin and Shtrikman [1962] bounds
for the electrical conductivity of a mixture of solid grains and pore fluid, with
volumetric fractions (1− ϕ), ϕ and σ∗w > σ∗s are given by

HSU(σ∗w, σ
∗
s , ϕ) = σ∗w +

ϕ

(σ∗s − σ∗w)−1 +
1− ϕ
3σ∗w

(2.32)

HSL(σ∗w, σ
∗
s , ϕ) = σ∗s +

1− ϕ
(σ∗w − σ∗s )−1 +

ϕ

3σ∗s

(2.33)

The HSA constitutive model relies on the assumption that at the pore level the
porous medium can be idealized as a mixture of two components, with bulk
properties corresponding to that of the upper and lower bound. In other words,
the water phase is locally well connected (and the bulk properties are computed
from the upper HS bound), while in other regions the fluid connectivity is lower
and the solid phase has stronger impact (the bulk properties are computed
from the upper HS bound). Brovelli and Cassiani [2010b] assumed that the two
components are arranged in parallel rather than in a homogeneous isotropic
mixture. For 2-phase media, the permittivity of the pore-space is that of the
fluid phase filling the pore space. More generally, for unsaturated materials, the
conductivity of the pore-space σ∗p is given by the combination of the permittivity
of 2 immiscible phases (water and non-aqueous phase) with σ∗w and σ∗nalp,

σ∗p(σ∗w, σ
∗
nalp, Sw, n) = wσHSU (σ∗w, σ

∗
s , Sw) + (1− w)σHSL(σ∗w, σ

∗
s , Sw) (2.34)
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Figure 2.2: Example of model predictions obtained using the HSA-IP model.
The solid black line shows the convoluted response, in terms of bulk resistivity
(left panel) and phase shift (right panel). The red dashed line shows the model
results when only the Stern layer polarization is considered, while the blue
dashed line is relevant to the case with membrane polarization only. For this
example, porosity was set to 0.39, the cementation factor to 1.85 and the D50
of the grain size distribution to 160 m.

where σ∗napl is the complex electrical conductivity of the non-aqueous phase
liquid (e.g. air or oil), Sw is water saturation (0 < Sw ≤ 1) and w is the weight
function (defined at ω = 0)

w =
σ0

w

σHSU (σ∗w, σ∗s , Sw)S−nw
(2.35)

It is important to note that using this approach the contribution of the Stern
layer is not affect by water saturation. This is physically justified, as the solid
grains remain covered by a thin film of liquid water even at very low saturation,
and therefore the properties of the Stern layer (which is only a few Ångström
thick) are nearly unaffected. See figure 2.2 for an example of model predictions
using the HSA-IP model.

2.2 Sensitivity analysis

The sensitity analysis results can be seen on figures 2.3 to 2.10. The input
parameters are: the cementation factor, the conductivity of the pore water, the
grain size distribution, the diffusion coefficients of the Stern and diffuse layer
(related to the ionic mobility following Einstein’s equation), the porosity, the
conductivity of the Stern layer and the diffuse layer, the water saturation and
the pore throat length distribution (see figure 2.9). The saturation index was
found to have no measurable effect on the phase spectra, which is close to the
results obtained by [20].

From figure 2.4 we can confirm that the smaller the grain size, the higher
the frequency of the maxima of the Stern layer polarization and the higher the
phase (at the same frequency) of the membrane polarization. In terms of pore
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Figure 2.3: Sensitivity analysis. Cementation factor was varied between 1.4 and
2.2. The dashed line represents the Stern’s layer polarization, the dotted line
the membrane polarization, and the continuous line the total IP effect.

geometry, the membrane polarization mechanism is more influenced by the pore
throat radius distribution as can be seen on figure 2.9.

In terms of electrochemical properties, the relatioship between the ion mo-
bility in the Stern and diffuse layer is crucial for the membrane polarization
mechanism as it was expected (figure 2.5), while the conductivity of the Stern
layer played a major role in the Stern layer polarization (figure 2.8).

A lower water saturation level produces a lower membrane polarization while
the Stern layer polarization increases. This is consistent with the real data
(see for example figure 4.2 versus figure 4.3 and figure 4.4 versus figure 4.5).
Nevertheless, the curve tends also to be flatten, which is not produced by the
model and causes a higher missfit.

Unless otherwise specified, the parameters used for the sensitivity analysis
were: m = 1.85, n = 2.0, σ∗w(ω) = 5.84× 10−2, Σs = 1.85× 10−9, Σd = 3.5×−8,
the D50 and standard deviation of the grain size distribution were 1.6×10−4 and
exp(0.45), the pore throat radius D50 and standard deviation were 6.92× 10−7

and 1.25 × 10−7, the diffusion coefficient of the ions at the Stern layer Ds
i =

1.5×10−9 and the diffusion coefficient of cations in the diffuse layer in the active
zone D−2 = 2.5× 10−10, Sw = 1.0, φ = 0.3 and σ0

w = 10−2;
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Figure 2.4: Sensitivity analysis. Effect of the grain size distribution. Top: effect
of D50. Bottom: effect of standard deviation. The dashed line represents the
Stern’s layer polarization, the dotted line the membrane polarization, and the
continuous line the total IP effect.
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Figure 2.5: Sensitivity analysis. Effect of the ion mobility. The legend shows
the ratio between mobility in the EDL and in the bulk fluid. The dashed
line represents the Stern’s layer polarization, the dotted line the membrane
polarization, and the continuous line the total IP effect.

12



10−3 10−2 10−1 100 101 102 103

300

400

500

600

Frequency (Hz)

R
es

is
ti

v
it

y
(O

h
m

)

φ = 0.2
φ = 0.3
φ = 0.4

10−3 10−2 10−1 100 101 102 103

0

5

10

15

Frequency (Hz)

P
h
as

e
(m

ra
d
)

φ = 0.2
φ = 0.3
φ = 0.4

Figure 2.6: Sensitivity analysis. Porosity was varied between 0.2 and 0.4. The
dashed line represents the Stern’s layer polarization, the dotted line the mem-
brane polarization, and the continuous line the total IP effect.
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Figure 2.7: Sensitivity analysis. Effect of pore water conductivity. The dashed
line represents the Stern’s layer polarization, the dotted line the membrane
polarization, and the continuous line the total IP effect.
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Figure 2.8: Sensitivity analysis. Effect of the conductivity of the Stern layer
and the diffuse layer. The legends show the ratio r between conductivity of the
Stern layer and conductivity of the diffuse layer. The dashed line represents the
Stern’s layer polarization, the dotted line the membrane polarization, and the
continuous line the total IP effect.
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Figure 2.9: Sensitivity analysis. Effect of the throat radius distribution. Top:
effect of D50. Bottom: effect of standard deviation. The dashed line represents
the Stern’s layer polarization, the dotted line the membrane polarization, and
the continuous line the total IP effect.
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Figure 2.10: Sensitivity analysis. Effect of pore water saturation. The dashed
line represents the Stern’s layer polarization, the dotted line the membrane
polarization, and the continuous line the total IP effect.
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Chapter 3

Numerical modelling

The model described in section 2.1.2 assumes a very simple geometry of the
pore space. This is so because obaining an analytical solution for more complex
geometries is very difficult. The high computation capacity that is available to-
day calls for a numerical aproximation of the phenomenon to get better insight
about the origins and causes of the induced polarization. Volkmann [18] made
a numerical approximation solving the case of a three dimensional cylinder with
varying ionic mobilities between the passive and active zones, as well as a dif-
ferent ionic concentration between the electrical double layer and the rest of the
fluid. As mentioned before, the equations solved are the Poisson-Nerst-Planck
(PNP) equations. The numerical solution of the PNP involves the solution of
a coupled system of equations: Poisson’s equation to obtain the electrostatic
potential based on the charge distribution, and the Nerst-Planck equation to
calculates the charge distribution due to the ion flow in the presence of an elec-
trostatic field. Both solvers are runned one after another, taking the solution
of one as the input for the next until the solution of each does not varies more
than an allowed threshold. This means that the coupled system can be compu-
tationally expensive to solve. This has been done with good results to calculate
the electrostatic potential in ion channels (see for example [21] and [32]). To be
used in spectral IP, this coupled system has to be transformed to the frequency
domain and solved for each frequency. This means running two coupled numer-
ical solvers as many times as frequencies for which a solution is obtained. This
makes the process even more expensive in terms of the computing power needed.
Volkmann [18] solved the coupled system using the finite element method, but
with no fixed charges on the surface of the mineral due to the transformation
into the complex domain to calculate the frequency-dependant impedance.

In this work we present a different approach. Before the voltage is applied,
there is an electrostatic field given by the fix charges on the surface of the
mineral and the ions in the pore water. This electrostatic potential can be
calculated using the Poisson-Boltzmann equation, which describes precisely this
situation under the assumption of thermal equilibrium. When a constant voltage
is applied, even though usually a high voltage is used, the originated field in
the pore space is low when compared with the field created by the fix charges
close to the surface of the minerals. The assumption is made that even though
there is no longer thermal equilibrium since there are moving charges, the error
introduced if the Poisson Boltzmann equation is used is low.
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Once the electrostatic potential for the direct current case is calculated,
the complex resistivity is computed using a modified dielectric map using the
electrostatic potential map obtained using the PBE. This means solving only
one equation for each frequency, plus the PBE three times as it will be shown
in the following sections.

3.1 The Poisson-Boltzmann equation

The Poisson-Boltzmann equation (PBE) describes the electrostatic potential in
a system where fixed and free charges are present in the context of the Debye-
Huckel continuum electrostatic theory ( [10]). From Gauss law and the definition
the electrostatic potential Φ it can shown that

∇ · (εd(x)∇Φ(x)) + ρf (x) = 0 (3.1)

where εd is the dielectric permitivity of the material -and is not assumed to be
constant- and ρf is the total free charge density. We may now divide the free
charge density between fixed ρf and solvent ρs, so that the equation becomes

∇ · (εd(x)∇Φ(x)) + ρf (x) + ρs(x) = 0 (3.2)

this equation governs the electrostatic field due to charges in -or close to- a
solvent with ions. The ions in the solvent have an electrostatic energy given by

Ue(x) = qiΦ(x) = eziΦ(x) (3.3)

where e is the electron’s charge, and zi is the valence of the ion. Since this
energy takes discrete values, and because it’s microscopic nature, at thermic
equilibrium the concentration ci(x) of ions of charge qi = ezi must follow a
Boltzmann distribution, so that:

ci(x) = c0i exp

(
−Ue(x)

kBT

)
= c0i exp

(
−eziΦ(x)

kBT

)
(3.4)

in the presence of various type of ions the solvent charge density is given by

ρs(x) =

n∑
i=1

ezici(x) =

n∑
i=1

ezic
0
i exp

(
−eziΦ(x)

kBT

)
(3.5)

which put into equation (3.2) means

∇ · (εd(x)∇Φ(x)) +

n∑
i=1

ezic
0
i exp

(
−eziΦ(x)

kBT

)
+ ρf = 0 (3.6)

taking into account that εd(x) = ε0ε(x), and normalizing to calculate the di-
mensionless electrostatic potential e

kBT
Φ we get:

∇ · (ε(x)∇ϕ(x)) = − e

kBTε0

(
n∑
i=1

ezic
0
i exp (−ziϕ(x)) + ρf

)
(3.7)
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3.1.1 Further simplifications

In the presence of only one monovalent salt, and if the concentration of negative
and positive ions is the same and given by c0 this equation can be further
simplified because

ρs = ec+(x)− ec−(x) = e

[
c0 exp

(
eΦ(x)

kBT

)
+ c0 exp

(
−eΦ(x)

kBT

)]
= −2ec0 sinh

(
eΦ(x)

kBT

) (3.8)

which if normalized and substituted in (3.7) results in

∇ · (ε(x)∇ϕ(x)) =
e

kBTε0

(
2c0 sinhϕ(x)− ρf

)
(3.9)

and defining γ ≡ 2ec0

kBTε0
and ρfn ≡

e

kBTε0
ρf

∇ · (ε(x)∇ϕ(x))− γ sinhϕ(x) = −ρfn (3.10)

a linear approximation can be made on (3.6) noting that if qiΦ(r̄) � kBT the
exponential function can be approximated by

exp

(
−eziΦ(x)

kBT

)
≈ 1−

(
eziΦ(x)

kBT

)
(3.11)

so that equation (3.6) now becomes

∇ · (εd(x)∇Φ(x)) +

n∑
i=1

ezic
0
i −

n∑
i=1

(
(ezi)

2c0iΦ(x)

kBT

)
+ ρf = 0 (3.12)

if the solution is neutral, then
∑n
i=1 ezic

0
i = 0, and taking into account that

εd(x) = ε0ε(x), we get

∇ · (εd(x)∇Φ(x))−
(

n∑
i=1

(ezi)
2c0i

ε0kBT
Φ(x)

)
+ ρf = 0 (3.13)

which leads to the definition of the Debye length

λD =

√
ε0kBT∑n
i=1(ezi)2c0i

(3.14)

so that the lineal Poisson-Boltzmann equation is

∇ · (εd(x)∇Φ(x))− λ−2
D Φ(x) + ρf = 0 (3.15)

3.1.2 The boundary conditions

The algorithm used for the solution of the Poisson, Poisson-Boltzmann and
complex Poisson’s equation were parallelized and use the same structure. For
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a detailed explanation of the numerical solution see apendix A. For the sake of
simplicity only the boundary conditions are exposed here.

In order to solve the differential problem of interest, i.e. the (quasi-) steady
state IP, the PBE must be equipped with suitable boundary conditions. The
first aspect to consider is the need to charge the system. This means that
we must add to the model the electrostatic potential generated by an external
electrostatic field. The entire domain is a three-dimensional block surrounded
by six faces and the field is parallel to one of the principal axes.

Two things are needed to set up the boundary conditions. The magnitude
of the field, which translates as a voltage difference between the oppposite faces
perpendicular to it, and the value of the potential or the ionic concentration in
one point. We further assumed that the boundaries are far away enough from
the object of study so that the potential generated by it is zero. This meant
that:

1. Each of the two faces that are perpendicular to the field have a constant
potential.

2. The potential between this two faces was updated every certain number
of iterations. This was done by using the average value at the grid points
closest to the opposite boundary, and adding to the boundary the potential
needed to achieve the desiered voltage.

3. The other four faces (in the 3D space) are symmetric with respect to the
opposite ones. The value at each boundary point was updated using the
value closest to the opposite boundary point.

if no external field was applied, the electrostatic potential at the boundaries
was assumed to be zero. For the sake of simplicity the voltage was applied by
assuming that the value at the first face perpendicular to the field was −V/2
where V is the applied voltage.

Once the PBE equation is solved, a numerical solver of the complex Poisson’s
equation was used to calculate the impedance of the system.

3.1.3 Eliminating the noise

When the boundary conditions are applied, an ionic cloud is generated at the
plates of the capacitor. This ionic cloud can mask the electrostatic potential
caused by the fixed charges on the mineral and the polarization caused by the
field. For the matter at hand, this is noise that has to be eliminated.

The plates of the capacitor will accumulate a charge Q. The amount of
charge acumulated is straighforward if the capacitance C of the capacitor is
known. In our case there is an ionic solution with an object of arbitray geometry
in the solution, so the situation is more complex. Nevertheless we can calculate
the total charge inside the capacitor using Gauss’s law

Qi = εoεr

∫
∂Ω

(
Ē · n̄

)
da (3.16)

where Ē is the eletrical field, Qi is the charge inside the capacitor, εo and εr
are the vacuum permittivity and relative dielectric constant respectively, ∂Ω is
a surface that surrounds the dielectric with volume Ω but without touching the
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capacitor’s plates and n̄ is a unitary vector normal to ∂Ω. Since Ē = −∇Φ we
can calculate the accumulated charge inside the capacitor from the solution of
the PB equation as

Qi = −εoεr
∫
∂Ω

(∇Φ · n̄) ds (3.17)

which in the case of a discretized cuboid can be approximated as the sum along
the six faces f of the cuboid of the derivative of Φ in the direction of the normal
to each face times −εoεrdx2. If Ωf corresponds to the set of grid points that
belong to the face f , the duplet (f, i) the i − th grid point that belongs to Ωf
and (f, i− 1) the previous grid point to (f, i) in the direction of the normal to
f , this can be written as

Qi = −εoεr

 6∑
f=1

∑
i∈∂Ωf

(Φf,i − Φf,i−1)

 dx (3.18)

The charge Qi is a usefull magnitude, but it takes into account the noise we are
trying to eliminate. Now note that Qi can be divided as the sum of the fixed
charges Qf on the surface of the pore and the free ions Qs in the solution. In the
presence of an external field, the number of ions will change due to the charges
Qr that redistribute around the pore due to the change of the electrostatic
potential plus the ions Qb that accumulate at boundary due to the field. This
means that

Qt = Qf +Qs +Qr +Qb (3.19)

Strictely speaking Qr is not a polarization charge, but the difference on the total
charge of the system due to the redistribution of the ions around the pore.

We can approximate the value of Qf +Qs +Qr by running two simulations
and calculating the charge inside each system:

1. The pore is charged and the field is applied so the total charge is Q1 =
Qf +Qs +Qr +Qb.

2. The pore is not charged and field is applied so the total charge is given by
Q2 = Qb.

In this way,
Qf +Qs +Qr = Q1 −Q2 (3.20)

Since Qi is an integral operation, instead of calculating the integral on each
the solutions given at the previous list, the difference between the simulations
could be calculated and the integral applied on the resulting potential. This is
correct analytically, and was also tested numerically with excellent results. In
this way, two simulations need to be carried out as before

1. To obtain Φ1 the pore is charged and the field is applied.

2. To obtain Φ2 the pore is charged but no field is applied.

then
Φr = Φ1 − Φ2 (3.21)

where this electrostatic potential does not have the ionic cloud at the plates of
the capacitor.
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3.2 Poisson in the complex plane

Let us now consider a medium presenting both lossy dielectric and conductive
components immersed in a sinusoidally oscillating electric field at the angular
frequency ω. For sake of simplicity the presence of fixed charged is neglected.
By means of the phasor representation the Poisson equation, which relates the
electrostatic potential to the values and distribution of the complex dielectric
function takes the following form:

∇ ·
(
ε̊(x,ω)∇Φ̊(x,ω)

)
= 0 (3.22)

where Φ̊ is a the electrostatic potential phasor and ε̊(x,ω) is the complex permit-
tivity given by ε̊ = εeff−jσeff/ω, εeff and σeff being the effective permittivity
and conductivity, as detailed below. The boundary conditions used are: (a) pe-
riodic boundary conditions on the faces parallel to the electric field, and (b)
a sinusoidal voltage imposed between the two faces perpendicular to the field.
This differential problem can be solved by a finite-difference scheme in a cu-
bic domain after space discretization and mapping of the permittivity on the
derived lattice.

3.2.1 Input parameters.

The input parameters are the permittivity functions of the water and the min-
eral(s) present. As a first model, the following expression of water’s permittivity
was used:

ε̊w = ε0ε
w
rel − j

σ0
w

ω
(3.23)

where εwrel is the static relative water permittivity, and σw is the static water
conductivity for a given salt concentration. The permittivity of the minerals
can estimated from the literature.

The static relative permittivity is usually taken close to 80. Nevertheless,
for low frequencies, there is new experimental data that suggests that the per-
mittivity of water behaves more like a non continuous function with incredible
high values as the angular frequency approaches zero [5, 36]

εwrel =

{
80 ω ≤ 0

2.4 · 103 ω → 0
(3.24)

this has also been found in biological tissues, which have a very important
quantity of water [15]. This is particularly important in the brain, which is
mostly water [27]. In the last case the high values (close to 1010) could be
explained by the electrical properties of the neurites. In [5, 36] the effect of the
ionic cloud on the electrodes when the measure was taken could explain the
high values [6] (could be as high as 1 ·107 for 1Hz). Even though non polarizing
electrodes are now common when measuring IP, even low salt concentrations
with a small polarization on the electrodes can increase the measured static
relative permittivity. In our case using a value higher than 80 was determinant.
The best results were obtained using a value of εwrel = 2.4 · 103.

The conductivity of an ionic solution is given by:

σ0
w =

∑
i

nieZiµi (3.25)
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where ni is the number of charge carriers per unit volume, µi the mobility,
Zi the valence for the ionic species i in the electrolyte and e is the electronic
charge. This means it is possible to assign different conductivities at different
points of the finite difference grid used for the numerical solution according to
ionic mobility. Both the numerical results of Volkmann [18] and the “new” short
narrow pore model of Bücker [2] use a region with lower anionic mobility whose
thickness is given by the Debye length of the solution and is adjacent to the
mineral’s surface. It is important to note that in complex geometries there is no
reason for the diffuse layer to have constant thickness. Think of the electrostatic
potential at corners, close angles or sharp tips. In our case, since we have the
electrostatic potential for the continuous current case (calculated using formula
3.21), we assumed that the zones with an electrostatic potential greater than
certain threshold -thus closer to the mineral’s surface- had such a decreased
anionic mobility. The threshold potential was arbitrarily taken as the potential
caused by a point charge and a distance of one Debye length. This is a strong
assumption, since probably the right thing would be to use a function of the
potential and not a discrete arbitrary value. Nevertheless this matter requires
further study since is not clear what function should be used.

3.2.2 Impedance calculation

From the solution of Eq. 3.22, the impedance Z̊ can be calculated. Complex
current density J due to conduction is given by

J̊cond = σ∗E̊ (3.26)

while the displacement current is given by

Jdisp = jωD̊ = jωε∗E̊ (3.27)

where the starred constitutive quantities are the complex conductivity and per-
mittivity of the material (dependence on space and frequencies are omitted for
simplicity)

σ∗ = σ′ + jσ′′ (3.28)

ε∗ = ε′ − jε′′ (3.29)

Since we are assuming there that the convection (aka streaming) current (ion
flux due to displacement of the medium) and diffusion current (caused by the
local concentration gradient of the charge carriers) are zero, the total current is
given by

Jt = Jcond + Jdisp = σ∗E̊ + jωε∗E̊ = (σ∗ + jωε∗) E̊

Jt = jω

(
ε∗ − j σ

∗

ω

)
E̊ = jωε̊E̊

(3.30)

If we separate real and imaginary part of the whole dielectric function: ε̊ =
εeff − jσeff/ω, we observe that:

εeff = ε′ +
σ′′

ω
σeff = σ′ + ωε′′

(3.31)
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Let us define a surface Σ =
∑3
i=1 Σi that surrounds a cuboid with one of

the plates of the capacitor inside the cuboid (see a cross-section of the surface
and the capacitor at figure 3.1 ) where:

• Σ1 is the part of the surface parallel to the plate, outside the cuboid.

• Σ2 are the parts of the surface that are perpendicular to the plate.

• Σ3 is the part of the surface parallel to the plate, inside the cuboid.

Figure 3.1

from the Divergence Theorem∫∫∫
Ω

∇ · Jt dv =

∫∫
Σ

J · n ds =

3∑
i=1

∫∫
Σi

J · n ds (3.32)

the only current that goes through Σ1 is the conduction current that goes
through the cable that feeds the capacitor, which should be equal to the to-
tal current of the circuit ∫∫

Σ1

Jt · n ds = −̊I (3.33)

assuming neglible the component of the current normal to Σ2∫∫
Σ2

Jt · n ds ≈ 0 (3.34)

and for the sake of simplicity let’s assume that the field was applied on the
direction of the z axis so∫∫

Σ3

Jt · n ds = −jω
∫∫

Σ3

ε̊E̊z ds (3.35)

which means that

I̊ = −jω
∫∫

Σ3

ε̊E̊ ds (3.36)
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so we may calculate the impedance of the system as:

Z̊ =
−V̊

jω
∫∫

Σ3
ε̊E̊ ds

(3.37)

it is important to notice that in the case of an homogeneous material with purely
real permittivity ε and σ = 0 between the two plates (that is, a lossless insulator
whose dielectric has a flat spectrum) this reduces to

Z̊ =
jV̊

ωεE̊zA

Z̊ =
−jV̊

ωεV̊A/d

Z̊ =
−j

ωεA/d

Z̊ =
−j
ωC

(3.38)

where A is the area of the plates and C the capacitance of a perfect capacitor,
which means that the formulation is consistent with the impedance of a perfect
capacitor.

3.2.3 Observing the membrane polarization

The use of a numerical method has many advantages. For example, different
frequence dependant dielectric function can be used for the each dielectric, some-
thing for which currently there are no analytical models. Nevertheless, since we
will have different mediums there will be Maxwell-Wagner polarization at the
interface between the diverse dielectrics like the water-mineral interface. As was
seen on the previous chapter the MW polarization can obscure the membrane
polarization effect. To obtain results without the MW polarization obscuring
the membrane polarization the real parts of all dielectrics was taken to be the
same. In this case, the real part of the permittivity of water was used. An
example of a result where this was done versus taking different real parts of the
permittivity can be seen on figure 3.2.
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Figure 3.2: Effect of using equal or diverse real parts of the permittivity in all
materials.
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Chapter 4

Results

4.1 HSA model testing

The model was tested using the data from [14]. Measurements of the complex
conductivity were conducted on cylindrical Plexiglas cells equipped with a four-
electrode configuration. The water saturation was varied, and the porosity
measured. The measured grain size distribution was fitted using a log-normal
distribution. The DC resistivity was fitted using the HSA model to estimate
Archie’s parameters, cementation factor and saturation exponent (see figure
4.1). The high frequency component was obtained by following the procedure
described in [3]. When the spectra showed a clear low frequency peak, two cole-
cole curves where used. If instead it didn’t only one curve was used taking into
account only the data above 10Hz. The results can be seen on figures from 4.2
to 4.13. As can be seen, for full saturation (or close ot it) the results are very
satisfactory except for figures 4.6 and 4.8.

Figure 4.1: Model parameter estimation. Left panel: the measured grain size
distribution was fitted using a log-normal distribution. Right panel: DC resistiv-
ity was fitted using the HSA model to estimate Archie’s parameters, cementation
factor and saturation exponent.
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Figure 4.2: Experimental data and model predictions. Cella 1 of Cassiani et al.,
2009. Saturated conditions.
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Figure 4.3: Experimental data and model predictions. Cella 1 of Cassiani et al.,
2009. Sw = 26%.
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Figure 4.4: Experimental data and model predictions. Cella 2 of Cassiani et al.,
2009. Saturated conditions.
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Figure 4.5: Experimental data and model predictions. Cella 2 of Cassiani et al.,
2009. Sw = 14%.
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Figure 4.6: Experimental data and model predictions. Cella 3 of Cassiani et al.,
2009. Saturated conditions.
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Figure 4.7: Experimental data and model predictions. Cella 3 of Cassiani et al.,
2009. Saturated conditions 16%.
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Figure 4.8: Experimental data and model predictions. Cella 4 of Cassiani et al.,
2009. Saturated conditions.
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Figure 4.9: Experimental data and model predictions. Cella 4 of Cassiani et al.,
2009. Sw = 93%.
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Figure 4.10: Experimental data and model predictions. Cella 5 of Cassiani et
al., 2009. Saturated conditions
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Figure 4.11: Experimental data and model predictions. Cella 5 of Cassiani et
al., 2009. Sw = 93%.
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Figure 4.12: Experimental data and model predictions. Cella 10 of Cassiani et
al., 2009. Saturated conditions.
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Figure 4.13: Experimental data and model predictions. Cella 10 of Cassiani et
al., 2009. Sw = 93%.

29



4.2 Numerical model testing

In figure 4.14 the precision of the solver was tested, and the impedance calcu-
lated with the solver and the analytical solution for a capacitor whose relative
dielectric constant is εrel = 80 are plotted. In figure 4.15 you can see the phase
for a capacitor with a dielectric that follows the relation ε̊ = 80ε0 − jσ/ω.

The test of the numerical model proved to be a difficult endevour. The
characteristic frequency of Bücker’s new short narrow pore model is given by [2]

τnSNP = (1− η0) τ ′ (4.1)

where τ ′ is given by equation 2.27 and η0 by equation 2.23. This means that
for small chargeabilities

τnSNP =
l22

8D+
2 t
−
2

D+
1 t
−
1

D+2t−2
(4.2)

with the conditions that A � 5C and C � 1. This frequency is independent
of the throat radius, as long as the last conditions are met. This clearly has no
physical meaning if the radius of the throats are too large which is a problem
in the SNP model. Moreover, because of the last conditions, having a max-
imum phase shift in the frequencies where the membrane polarization could
be measured (as in the last chapter) is costly from the computational point of
view because the large size of the active zone. Note that the shorter the active
zone, the higher the frequency of the maximum phase shift. For this reason the
model was tested against the numerical results of Volkmann [18]. In it three
cylinders with different radius (just as in figure 2.1). Volkmann used a layer
of thickness equal to one Debye length for the low anionic mobility zone, we
used the algorithm described above. The results can be seen of figure 4.16. The
main difference is the high frequency component which is absent in Volkmann’s
data. This can be explain by the fact that Volkmann used a contant value of the
permittivity of water for all frequencies. Note that the frequency corresponding
to the maximum phase is very close in both graphs.

On figure 4.17 water and the mineral are substituded by vacuum to highlight
the contribution of each. On figure 4.18 two different curves are shown for two
different porosities. On figure 4.19 two different geometries are shown. One with
17 spheres and a very high permeability, the other is just a square filled with
random water pockets which means null permeability. The difference between
the two is clear, and makes perfect sense for it to be so. Also, this is where the
tool -a solver like this one- is usefull.

4.3 Discussion and Conclusions

The model comparison with experimental data suggest that IP is the results of
both grain and membrane polarization. The HSA model results reafirm the idea
that grain polarization typically occurs at lower frequencies than membrane po-
larization, which may make the latter hard to be identified in real data because
Maxwell-Wagner polarization and the noise at higher frequencies frequently of-
ten hide it. In addition, decoupling procedures based on Debye curve fitting can
add further uncertainty since the phase shift at the lower part of the curve may
due to pore throat polarization and not Maxwell-Wagner.
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Figure 4.14: Impedance for εrel = 80.

Figure 4.15: Phase for ε̊ = ε080− jσ/ω with σ = 5e− 3S/m.
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Figure 4.16: Volkmann’s data.

Figure 4.17: Mineral and water are substituded by vacuum
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The proposed model helps to explain different types of IP response observed
in the phase plots: (a) if a single peak is observed, it’s either due to grain or
pore-throat polarization, and therefore the associated relaxation time should be
related to the corresponding characteristic length; (b) if 2 peaks are observed,
the 2 components have similar contribution, and the characteristic time scales
are markedly different (i.e. grain size is >> than pore-throat length); (c) if
no peak is visible (the CPA model) the two time scales are similar and/or
the relaxation time distributions associated to pores and grains are broad and
ultimately overlap.

According to our model, as water saturation decreases, the contribution of
surface conductivity (i.e of Stern layer polarization) becomes dominant, as mem-
brane polarization is constant. This can also explain the shift of the relaxation
time towards lower frequencies sometimes observed (e.g. Binley et al, 2005). At
Sw = 1, the contribution of Stern layer and membrane polarization is similar,
and the observed phase shifted (fitted with a debye distribution) is the convo-
lution of the 2 components. As Sw decreases, the contribution of membrane
polarization decreases and the phase peak moves towards lower frequencies.

The numerical methodology gave good results, which means it can be a use-
ful tool to study the induced polarization phenomenon. The results allowed us
to see the membrane polarization effect, as well as the high frequency component
and a low frequency component which could be related to stern layer polariza-
tion. The numerical solver of the complex Poisson equation was particularly
difficult to use because it can diverge if a wrong over-relaxation factor is used.
The over-relaxation factor proved to be geometry and frequency dependent so

Figure 4.18: Varying porosity on Silicious Earth.
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Figure 4.19: Varying geometry on Silicious Earth. Both systems have the same
porosity and dielectric functions, but one has 17 spheres (one with diameter
equal to the length of the box and 16 smaller spheres around) and the other a
random matrix with permeability zero.
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that for the same geometry different over-relaxation factors had to be used to
generate the phase spectra.

Complex dielectric functions were also used to test the stability of the nu-
merical method. There are no theoretical curves to which the results could be
compared to, but the form of the curve resemble real data.

The low frequency component deserves more attention. Since periodic bound-
ary conditions where used at the faces parallel to the applied field, the mineral’s
geometry is surrounded by water and could show the effect of the polarization
of the Stern layer. Nevertheless we were not able to reproduce the effect on
a simple sphere. This could be because the polarization of a single sphere on
a cuboid is to low from only an electrical point of view. The use of complex
geometries with spheres of different sizes could help to understand this.

The use of the Poisson-Boltzmann equation to delineate the region with
lower anionic mobility showed promising results. Even though the factor multi-
plying the electrostatic potential at a distance λ from the mineral’s surface was
arbitrary, there is no reason to assume that this distance should be λ as it is
frequently done. This means further analysis is required. For example, maybe
a continuous function could be used instead of discrete one. Nevertheless, the
results were encouraging as a firt approximation. Is important to notice that
even though the geometries tested were not complex, the same software and
methodology -at least theoretically- could be applied to more complex struc-
tures. The challenge in this case is to build such structures have a resemble the
real physical world.
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Appendix A

Parallelization of the finite
differences solver

In this work was used an implementation of a linear PBE solver based on a
Finite-Difference (FD) scheme using the Message Pasing Interface (MPI) li-
brary. We follow the approach of the DelPhi PBE solver [28,34], which exploits
the checkerboard structure of the finite difference discretization of the Laplace
differential operator and adopts a Successive Over Relaxation (SOR) scheme to
converge to the solution.

A.1 Sequential solution of the Poisson-Boltzmann
equation

The PBE combines the continuum electrostatics description of fixed charges in
a dielectric medium with the Boltzmann prescription for mobile ions in aqueous
solvent at the thermal equilibrium with a reservoir [7]. In its linearized form,
which is valid for low ionic concentrations, the PBE reads:

∇ · [ε(x)∇Φ(x)] +
ρfixed

ε0
=
εsolv
λ2

Φ(x) (A.1)

where Φ is the electrostatic potential, ε(x) the space-varying relative dielectric
constant, εsolv that of solvent, ε0 the permittivity of vacuum, ρfixed the fixed
charge density on the solute, and λ is the Debye length of the ionic solution, a
quantity describing the electrostatic screening induced by the ionic cloud in the
solution. The right hand side of equation (3.15) is present only if x is located
in the ionic solution. The sequential implementation described here follows the
approach described in [28]. The PBE discretized on a uniform grid takes the
following form: [

6∑
i=1

εi + εsolv
(
h
λ

)2]
Φj −

6∑
i=1

εiΦi −
qj
ε0h

= 0 (A.2)

where Φj refers to the electrostatic potential at the node j, where a net charge
qj is mapped. The term containing λ is present only if the node j belongs to the
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solvent and εi is the relative dielectric constant at one of the midpoints between
the node j and its six nearest neighbors on the grid, h is the grid spacing. This
discretized relationship leads to a linear system of equations AΦ = b where a
suitable mapping converting three dimensional to one dimensional indexes has
to be adopted. The matrix A can then be decomposed into A = D + L + U ,
where D is the diagonal of A, U and L are the strict upper and lower triangular
parts of A, respectively. According to the Successive Over-Relaxation method,
the iterative equation is given by:

Φ(n+1) = (D + ωL)
−1
{
ωb− [ωU + (ω − 1)D] Φ(n)

}
(A.3)

where ω is the over-relaxation factor and bracketed superscripts indicate iter-
ation number. The term (D + ωL)

−1
can be calculated using forward substi-

tution since D + ωL is a lower triangular matrix implying that the iterative
scheme must be consistent with the previously described mapping, which makes
parallelization difficult. The iteration stencil becomes:

Φ
(n+1)
j = ω


6∑
i=1

εiΦ
(n)
i +

qj
ε0h

6∑
i=1

εi + εsolv
(
h
λ

)2
+ (1− ω) Φ

(n)
j (A.4)

The best over-relaxation factor can be obtained from the highest eigenvalue of
the iteration matrix [42], which in turn can be calculated using the Connected-
Moments Expansion [28]. This stencil was first used in [45] and a revision of its
uses (at the time or writing) can be found in [40]. Later the stencil has been
parallelized using MPI in [22], and using CUDA but with different kernels in [9]
and [41].

In order to obtain a well defined solution, suitable boundary conditions must
be ensured, the interested reader can find some details on different available
alternatives in the work of Rocchia, which focuses on biological applications [33].

A.1.1 Exploiting the structure of the system

The following observations help significantly to improve the efficiency of the
algorithm. First, if the number of grid points in the first two dimensions is
odd, the discretized FD scheme is endowed with the so called checkerboard
structure. All even grid points depend only on their neighboring grid points,
which are odd, and vice versa. This allows to iterate alternately on grid points
of different parity until convergence. Due to this property, one can break the
dependence imposed by the formula (A.3) and apply the parallelism inside each
of the even/odd steps. Second, it is worth pointing out that on most grid points
no charges are mapped and also are located in a uniform dielectric region, where
εi is constant. In most of the cases, indeed, ε varies only around the molecular
surface. Due to these observations, the stencil can be simplified as follows:

Φj =

6∑
i=1

Φi

6 + κ2
j

(A.5)
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where

κj =

{ (
h
λ

)
if j is inside the ionic solution,

0 otherwise.
(A.6)

allowing a faster parallelization. After each run of this uniform stencil, correc-
tions have to be made at the points where charges are present and where εi
changes. This solution is therefore faster than using the full non uniform stencil
on the whole grid.

Contiguous memory mapping

Instead of making the numerical computations and moving the memory access
along a three dimensional parallelepiped and updating the odd and even points,
the solution was calculated using two 1-D pointers: one for the even and one
for the odd grid points, Φe and Φo respectively. Every grid point po(xo, yo, zo)
is mapped into an odd podd or even peven pointer according to the rule:

peven =
xo + nxyo + nxnyzo

2

podd =
xo + nxyo + nxnyzo − 1

2

(A.7)

so that the update of each pointer depends only upon the one with opposite
parity. The offset of the indexing of the neighboring points in this case can
be seen in Table A.1. In Figure A.1 we show a 3D graphical representation
of the checkerboard structure and its relationship with the arrays used for the
continuous memory mapping.

Table A.1: Neighbor offsets for even and odd points

Neighbor Offset when po is even Offset when po is odd

Left (−X) −1 +1

Right (+X) 0 0

Back (−Y ) − (nx+1)
2 − (nx−1)

2

Front (+Y ) + (nx−1)
2 + (nx+1)

2

Bottom (−Z) − (nxny+1)
2 − (nxny−1)

2

Top (+Z) +
(nxny−1)

2 +
(nxny+1)

2

A.1.2 Sequential algorithm

Due to the corrections that have to be made after the uniform stencil is applied,
namely on the regions where the dielectric constant is not uniform and where
charges are present, a preprocessing stage is needed to identify the pointers
corresponding to the grid points located in these regions. These steps are:
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Figure A.1: Checkerboard structure used to build the continuous memory map-
ping.

• Determine inside/outside. Determine which grid points are on the
solute or in the solvent, this involves the calculation of the molecular
surface of the solute (see [11] for a summary of the different possibilities).
If there is salt in the solution we also calculate the κ factor.

• Find dielectric boundaries and prepare the boundaries correc-
tion. Look for the midpoints in which εi varies and calculate the correction
to be applied after the stencil operation.

• Set boundary conditions. Set up the boundary conditions to be used,
see [33] for a description of the possibilities.

• Prepare charges correction. Calculate the correction to be applied to
the grid points where charges have been assigned.
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After that, the main iteration then applies the uniform Laplace stencil to
the grid points of one parity, and afterward it corrects where needed. Then
the opposite parity points are updated, with the corresponding correction. The
convergence of the iterative scheme is evaluated using the maximum difference
of the potential on the grid every 10 iterations. The steps of the main loop are
the following:

1. Save dielectric boundaries. Save the state of the dielectric boundary
points considering a temporary vector for convergence test at the end.

2. Run Poisson or Poisson-Boltzmann. This is the main calculation
block that implements the stencil given by Equation (A.5) and is executed
on every grid point.

3. Adjust dielectric boundaries. Update the potential value of the grid
points located at the dielectric boundary, this is done at the end of each
iteration.

4. Add charges. Add the charge terms to the grid points that were prede-
fined as charged.

5. Calculate potential difference at the dielectric boundary. Calcu-
late the absolute differences between the current potential values at the
dielectric boundary with the one saved previously on a temporary data
structure. This is done since the boundary is the region where the con-
vergence is expected to be slower.

6. Check convergence. The maximum absolute difference between the
potential at two subsequent iterations is compared to the threshold to test
the convergence and to decide whether to stop the iterative procedure.

In the remaining of the paper, for each parallel implementation of the full
Poisson-Boltzmann solver, we refer to this list to explain the adopted approach.

A.2 MPI Implementation

The implementation described in this Section was developed to enable the run
of the numerical solver on distributed memory architectures such as cluster of
(multicore) CPUs. This kind of architectures can be exploited using well-known
SPMD (Single Program Multiple Data) programming model on distributed
memory resources; the standard de facto in this context is MPI.

The approach adopted considers a data parallelism, i.e. the global data set
is subdivided in partial data sets elaborated in parallel. The volume storing
input data was subdivided in smaller parallelepipeds; the number of the sub-
domains relies on the number of MPI processes spawned for the computation,
in fact each subdomain is assigned to a MPI parallel process that is in charge
of its elaboration. The volume subdivision among the parallel processes was
implemented using the parallel I/O functionalities provided by MPI (version
2 and onwards). The exploitation of this feature enabled the speedup of data
distribution; in fact we avoided the master-slave approach, i.e. only one process
(the master) accesses the data set and distributes data among the other pro-
cesses (the slaves), that results in a more time consuming phase. Furthermore,
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the use of the MPI2 parallel I/O ensures optimized parallel accesses to the data
set thus reducing data contention.

In the checkerboard structure used to solve the Laplace equation, there is
the need to consider for each point of the grid its 6 neighbors of opposite parity.
Therefore, subdomains have to take into account overlapping areas to properly
manage this requirement, and MPI data communications were introduced to
exchange the neighbor points at the border of each subdomain. This marks a
different approach from the one taken at [22], where authors used the direct
remote memory access (DRMA) to manage the neighbor points.

The domain was divided along the most external dimension, i.e. Z. There-
fore, the dimensions of the subdomain elaborated by the MPI processes are
parallelepipeds with the same X and Y dimensions, but with a lower number
of layers on Z. For each subdomain, also charges, dielectric boundaries and the
value of κ were assigned. Note that the communications involve even and odd
grid points, so particular care is devoted to enforce the consistency of the parity
of the points. In fact, since each subdomain acts as an independent solver, all
subdomains assume that the first grid point is even. This has to be ensured
during the subdivision of the domain. This problem was solved by dividing
the domain so as that each subdomain starts with an even grid point, and a
consequent management in the whole data set.

Defining Nz as the total number of levels/layers on the Z axis of the whole
domain, nproc the number of MPI processes spawn, and i the process identifier,
the algorithm employed to calculate the number of layers niz on the subdomain
i is described in Algorithm 1.

Algorithm 1 Algorithm for the division of the computation domain.

for all i ∈ [0, nproc− 1] do
niz = floor(Nz/nprocs)
if modulo(niz, 2) 6= 0 then
niz = niz − 1

end if
res1 = Nz − niz · nproc
nres = res1/2
res2 = module(res1, 2)
if i = 0 then
niz = niz − 1
if nres > 0 then
niz = niz + 2

end if
else if i = nproc− 1 then
niz = niz + 1
if res2! = 0 then
niz+ = res2

end if
else if i < nres then
niz = niz + 2

end if
end for
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To understand how the algorithm works note that many conditions have to
be imposed for the parity consistency and to properly manage the boundary
requirements, e.g. the first and the last Z levels on the whole volume have only
one border to consider, while the other levels have to allocate two borders, one
layer above and one below.

Once each subdomain is constructed, the solver acts in each subdomain al-
most as the sequential version would, and only minor modifications are needed.
The boundary conditions on the faces perpendicular to the X and Y axes are
calculated as in the sequential case, and the boundary on faces perpendicu-
lar to Z requires the values that have to be exchanged exploiting MPI except
for the first and last subdomains, where one of the faces actually corresponds
to a boundary. A border is composed of 2 layers (one for each overlapping
subdomain), thus for each iteration 4 layers have to be sent and 4 received.
This is done after the update of the potential for each parity. Since the data
transferred is needed right after the data communication occurs, only blocking
communications were used.

A.3 MPI vs OpenMP implementations

In the case of one multicore node, i.e. shared memory cores, it is interesting
to compare the performance achievable using two different parallel libraries to
exploit a shared memory architecture, as MPI and OpenMP. For this reason,
we develop an OpenMP implementation of the solver.

The parallelization on multicore nodes using OpenMP is the easiest approach
to implement. Pragma clauses were added at FD stencil, as it is by far the more
computationally expensive part of the code. This can be considered equivalent
to sub-dividing the volume containing the input dataset in cuboids, as done
in the MPI parallelization and described in A.2. Static scheduling was used,
setting the chunk of each thread manually so that they are evenly distributed.

As in the CUDA, we combined this implementation with the one developed
using MPI thus to exploit cluster of multicore CPUs; again, the effort spent to
integrate the codes was actually affordable. The algorithm implements the MPI
subdomain definition, thus distributing data among MPI parallel processes; on
each data set the OpenMP code is executed, while the MPI process manages
data communications among the non-shared memory nodes. In that way, MPI
controls the communication between nodes and OpenMP the parallelization in
each node.

A.4 Experimental Results

We had the possibility to test the implementations described in this paper on
several parallel resources corresponding to different architectures. The config-
uration of each resource can be seen on Table A.2. All tests used the same
molecule with the same parameters: a Fatty Acid Amide Hydrolase molecule
that, once ported to the cubic grid, consisted of 29880 charges on 297x297x297
grid points. A salt concentration of 0.15mol/l and dipolar boundary conditions
were used. In the following Subsections we discuss the different results obtained
by adopting the implementations previously presented.
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Table A.2: Resources used for testing

Resource Nodes Cores per
node

Network Chip

Cluster 1 8 8 Infiniband Quad-Core
AMD Opteron
Processor 2352

Cluster 2 2 12 1G ether-
net

Intel Xeon
E5645

A.4.1 MPI performance

In Figures A.2 and A.3 we present the results of Section A.2 obtained on Cluster
1 and Cluster 2 respectively. Both refer to the linear PBE. In order to appre-
ciate the impact of the different parts of the algorithm we differentiate among
the whole execution time, depicted with a blue line, the time required for data
distribution and communication, indicated as MPI and depicted with a red line,
and the time used on the stencil indicated as Bolzmann and depicted with a
brown line. The calculation of the Boltzmann stencil was the most demand-
ing one in terms of execution time, the time spent on communications instead
depends on the resource. In fact, it is possible to notice that on Cluster 2,
the absence of InfiniBand was heavily affecting computation since more time
was spent in data transfer than iterating at the Boltzmann stencil, by far the
most computationally expensive part of the algorithm. To make a fair compar-
ison of the results obtained on the different resources, the time spent in MPI
communications was not more reported.

In Figure A.4, we present the execution time of a single iteration of the linear
Boltzmann stencil on Clusters 1 and 2. It was obtained an impressive decrease
of the execution time. However the speed up values are not linear. This is to
be expected since the problem we are solving is a data intensive problem.

A.4.2 MPI and OpenMP performance

It is interesting to compare the results obtained using the MPI and OpenMP
implementations on the same shared memory node, which can be seen on Figure
A.6. To test the MPI and OpenMP implementation, we used the three nodes
of Cluster 2, spawning three MPI processes and 12 OpenMP thread. Results
are depicted in Figure A.7. The number of cores was increased equally on all
nodes. Neither of the implementations achieved good results. Since the stencil
involves a lot of memory access, in a shared memory environment this could slow
down the performance. On the other hand, we have to stress the easiness of
the parallelization with OpenMP, definitively much more significant than MPI.
The MPI performance payed the effort spent to develop that implementation.
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Figure A.2: MPI results on Cluster 1. The whole execution time is depicted with
a blue line, the time required for data communication is indicated as MPI and
depicted with a red line, the stencil part of the solver is indicated as Bolzmann
and depicted with a black line.
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Figure A.3: MPI results on Cluster 2. The whole execution time is depicted with
a blue line, the time required for data communication is indicated as MPI and
depicted with a red line, the stencil part of the solver is indicated as Bolzmann
and depicted with a black line. When this Figure is compared with Figure A.2,
InfiniBand proved to be crucial. Its absence meant that more time was spent
on data communication rather than doing calculations.

44



0 20 40 60

10−2

10−1

Cores

ti
m
e(
s)

Cluster 1
Cluster 2

Figure A.4: Execution time per iteration of the linear Boltzmann stencil versus
number of cores done on Clusters 1 and 2.
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Figure A.5: Speed up of the execution time per iteration of the linear Boltzmann
stencil versus number of cores done on clusters 1 and 2.

45



0 5 10 15 20 25

2

4

6

8

10

12

Cores

T
im

e(
s)

OpenMP
MPI

Figure A.6: Comparaison of the speedup on the stencil between MPI and
OpenMP on Cluster 3.
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Figure A.7: Execution time per iteration of the linear Boltzmann stencil versus
number of cores used through OpenMP and MPI working toguether on Cluster
2.
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