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Abstract

At its core, signal acquisition is concerned with efficient algorithms and proto-

cols capable to capture and encode the signal information content. For over five

decades, the indisputable theoretical benchmark has been represented by the well-

known Shannon’s sampling theorem, and the corresponding notion of information

has been indissolubly related to signal spectral bandwidth.

The contemporary society is founded on almost instantaneous exchange of in-

formation, which is mainly conveyed in a digital format. Accordingly, modern com-

munication devices are expected to cope with huge amounts of data, in a typical

sequence of steps which comprise acquisition, processing and storage. Despite the

continual technological progress, the conventional acquisition protocol has come

under mounting pressure and requires a computational effort not related to the ac-

tual signal information content.

In recent years, a novel sensing paradigm, also known as Compressive Sensing,

briefly CS, is quickly spreading among several branches of Information Theory. It

relies on two main principles: signal sparsity and incoherent sampling, and employs

them to acquire the signal directly in a condensed form. The sampling rate is related

to signal information rate, rather than to signal spectral bandwidth. Given a sparse

signal, its information content can be recovered even from what could appear to be

an incomplete set of measurements, at the expense of a greater computational effort

at reconstruction stage.

My Ph.D. thesis builds on the field of Compressive Sensing and illustrates how

sparsity and incoherence properties can be exploited to design efficient sensing
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strategies, or to intimately understand the sources of uncertainty that affect mea-

surements. The research activity has dealt with both theoretical and practical issues,

inferred from measurement application contexts, ranging from radio frequency com-

munications to synchrophasor estimation and neurological activity investigation.

The thesis is organised in four chapters whose key contributions include:

• definition of a general mathematical model for sparse signal acquisition sys-

tems, with particular focus on sparsity and incoherence implications;

• characterization of the main algorithmic families for recovering sparse signals

from reduced set of measurements, with particular focus on the impact of ad-

ditive noise;

• implementation and experimental validation of a CS-based algorithm for pro-

viding accurate preliminary information and suitably preprocessed data for a

vector signal analyser or a cognitive radio application;

• design and characterization of a CS-based super-resolution technique for spec-

tral analysis in the discrete Fourier transform (DFT) domain;

• definition of an overcomplete dictionary which explicitly account for spectral

leakage effect;

• insight into the so-called off-the-grid estimation approach, by properly com-

bining CS-based super-resolution and DFT coefficients polar interpolation;

• exploration and analysis of sparsity implications in quasi-stationary operative

conditions, emphasizing the importance of time-varying sparse signal mod-

els;

• definition of an enhanced spectral content model for spectral analysis appli-

cations in dynamic conditions by means of Taylor-Fourier transform (TFT)

approaches.
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Chapter 1

Compressive Sensing Theory

1.1 Introduction

In 1948 Claude Elwood Shannon published his well-known sampling theorem

[1], destined to influence the future development of modern digital era. Just one

year later, he proposed a novel model of communication system [2], focusing the at-

tention on a quantitative definition of information. No more a description from an

epistemological point of view, but a thorough mathematical characterization. Ac-

cording to science historians, Shannon’s discoveries mark the origin of modern In-

formation Theory. In particular, his sampling theory has inspired countless designs

for acquisition systems which need to convert analogue continuous signals into dig-

ital quantized data sets. Even after more than 65 years, the canonical approach to

signal acquisition relies on Shannon’s sampling theorem and the corresponding re-

construction formula. Over the years, alternative sampling protocols have been im-

plemented, in order to overcome some practical limitations, primarily the constraint

regarding the sampling rate. Nevertheless, the theoretical framework has not expe-

rienced significant variations: the signal information content has been intimately

related with its spectral bandwidth.

In 2005 a totally novel sampling theory hits the headlines, promising to revolu-

tionize the way signal information is intended, defined and captured. In 2008 the

IEEE Signal Processing Magazine dedicates an entire issue to the so-called Com-

pressive Sensing theory, briefly CS theory, which denies the common wisdom and

1



2 CHAPTER 1. COMPRESSIVE SENSING THEORY

experimental custom, embodied by the Shannon-based acquisition protocols, and

asserts that any signal could be accurately reconstructed even starting from an in-

complete set of random measurements [3]. In other words, the signal is acquired

directly in a compressed form, at the expense of a more complicated reconstruction

procedure. At first sight, this could appear an unrealistic result, valid only under

strict and unattainable assumptions. Conversely, CS theory relies on two theoretical

principles, verified in most practical cases: sparsity, which pertains to the signals of

interest, and incoherence, which pertains to the sensing modality [3].

In a short while, CS has brought a new slant to canonical approaches and has

spread among any branch of Information Theory, from biomedicine to communica-

tion theory, from geology to military applications. Without an unequivocal theoreti-

cal benchmark, several publications have appeared in the literature, each providing

a specific formulation of the sampling protocol or the reconstruction formula. A

practitioner, who firstly approaches CS theory, is persuaded to cope with a disorga-

nized mess, where similar results are associated on the base of common denomina-

tions, rather than common mathematical properties.

During my Ph.D. course, the first research effort has been concerned with com-

piling and editing a unified CS theoretical framework. A mathematical model for

the sparse signal acquisition has been developed and thoroughly characterized. The

role of sparsity and incoherence have been investigated, particularly their influences

on the design of efficient CS sensing protocols. The proposed model can be easily

tuned according to a priori knowledge or boundary conditions. On the other hand,

its general formulation allows to cope even with blind operative conditions, i.e. ig-

noring any property or plausible prediction about the signal under investigation. In

fact, the CS approach to the acquisition problem aims at capturing the sparse signal

information content, without trying to understand its inner structure.

In this first chapter, the reader is introduced to the CS scenario and provided

with mathematical tools which could be useful for a thorough understanding of this

novel sensing theory. First of all, the notions of information, sparsity and incoher-

ence are rigorously defined and briefly discussed by means of clarifying examples.

Then, a mathematical model for sparse signal acquisition is presented. In this con-

text, two fundamental approaches are briefly summarized and compared: on one

side, the canonical approach based on the aforementioned Shannon’s theorem; on
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the other side, the CS approach which acquires the signal directly in a compressed

form. Particular attention is devoted to the computational efforts required both at

sensor and receiver side. Indeed, CS theory allows a drastic reduction of sampling

frequency, at the expense of a more demanding reconstruction stage.

Another crucial point is represented by sampling protocol design. From a vector

space perspective, two criteria for the most suitable measurement domain selec-

tion are introduced. For each one, an annotated dictionary of reconstruction theo-

rems and sufficient conditions is presented. More precisely, the maximum achiev-

able compression ratio is assessed as a function of signal sparsity and noise level.

After the sampling stage focus moves on the reconstruction stage. In fact, CS theory

aims at recovering the original information content starting from what could appear

to be an incomplete set of measurements. Accordingly, any CS acquisition protocol

has to deal with an under-determined system, whose solution requires ad hoc al-

gorithms. Two main algorithmic classes can be identified, relying respectively on

proper Lebesgue norm approximation and greedy iterative search. For each class,

three typical examples are presented and their pertinence and feasibility in sparse

acquisition problems are briefly discussed. Performance analysis focuses on two

specific algorithms, one from each class, which will be widely employed in the fol-

lowing chapters of this thesis. More precisely, their behaviour is characterized both

in noiseless and noisy conditions, devoting particular attention to solution accu-

racy and computational complexity. Furthermore, an intuitive tool deduced from

probabilistic theory, the phase transition graph allows to predict the success proba-

bility of a given acquisition protocol and immediately compare different behaviours

in similar conditions. All things considered, a general guideline is proposed: if a

blind approach is required, norm approximation represents the most suitable op-

tion; whereas greedy search exhibits lower computational complexity at the expense

of lower solution accuracy.

In conclusion, this introductory chapter aims at collecting all those contribu-

tions, sometimes alternative, sometimes contrasting, and including them into an

common framework. In this way, CS theory appears not only as an effective tech-

nology, but also as a novel paradigm for capturing sparse signal information. The

mathematical model introduced, developed and characterized here, underlies the

practical implementations to be discussed in the following chapters. In fact, ow-
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ing to its signal-independent formulation, it can easily fit any sparse acquisition

scenario. This thorough mathematical framework is expected to become a useful

tool not only for properly designing the acquisition protocol, but also for rigorously

validating considerations inferred by the results or intimately understanding the

sources of uncertainty that affect measurements.

1.2 Lebesgue Norm Definition

The `p -norm, which proves to be extremely useful in CS theory, is formally in-

troduced here:

Definition 1.2.1. Let S be a Lebesgue space of dimension n. For {p : p ∈ R, p ≥ 1},

the Lebesgue `p -norm of a vector x = (x1, x2, · · ·xn) ∈S is defined as follows:

‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

(1.1)

From a linear algebra point of view, the `p -norm can be interpreted as a mea-

surement of the distance between the space origin and the point indicated by x

coordinates. In the following, mostly `1 and `2 formulations are employed, cor-

responding respectively to the Manhattan and the Euclidean distance:

‖x‖1 =
n∑

i=1
|xi | ‖x‖2 =

√
n∑

i=1
x2

i (1.2)

Computing the limit for p −→∞, the `∞-norm is defined as the maximum x value:

‖x‖∞ = max(|x1|, |x2|, · · · |xn |) (1.3)

With a slight formal abuse, it is possible to define also the `0-norm as the number of

non-zero entries in x:

‖x‖0 = card(i ∈ 1,2, · · ·n : xi 6= 0) (1.4)

where card denotes the cardinality of the set passed as argument.

1.3 Signal Properties

Given a signal of interest, the acquisition process aims at capturing the actual

information content and condensing it into a limited number of samples. In this
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context, the effectiveness and appropriateness of an acquisition protocol are eval-

uated not only in terms of reconstruction accuracy, but also in terms of required

computational effort and achieved compression ratio.

Evidently, the signal inner structure strongly affects the protocol performances.

In the presence of reliable a priori knowledge, acquisition can be designed expressly

to cope with the peculiar operative conditions under investigation. Otherwise, it

is necessary to consider some general properties related to any kind of measurable

signal, namely spectral bandwidth, innovation rate and sparsity.

1.3.1 Spectral Bandwidth

The modern digital society relies on the well known Shannon’s theorem [2], where

the sampling rate is required to be at least two times higher than the signal spectral

bandwidth.

Definition 1.3.1. A signal s is said to be band-limited if its spectrum does not con-

tain significant components whose frequency is higher than a finite threshold fmax ,

also known as the signal spectral bandwidth or Nyquist’s rate.

1.3.2 Rate of Innovation

Shannon’s theorem consists in a sufficient condition for perfect recovery of the

original information content, but tends to overestimate the required sampling fre-

quency. On the other hand, a suitable parametric signal model could assess the

actual innovation rate. In fact, it is reasonable to expect that signal variations de-

pend on a limited set of unknown parameters, i.e. that the signal exhibits a limited

amount of degrees of freedom.

Definition 1.3.2. A signal s is said to have a finite innovation rate if it can be de-

scribed by a finite number of parameters per time unit [4].

In more detail, a signal with finite innovation rate can be expressed as a linear

combination of properly scaled and time-shifted functions belonging to a given dic-

tionary D:

s(t ) = ∑
i∈Z

K−1∑
k=0

αi ,k dk (t − ti ) D = {dk ,k = 0,1, . . .K −1} (1.5)
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Dictionary functions are assumed to be known a priori or by construction. Accord-

ingly, the only unknown parameters are the scaling factors αi ,k and the time shifts

ti . Let us introduce a counting function Cs (t1, t2) which assesses the number of pa-

rameter variations over a given time interval [t1 ÷ t2]. The signal rate of innovation

is thus defined as follows:

ρ = lim
τ→∞

1

τ
Cs

(
−τ

2
,
τ

2

)
(1.6)

Given a signal with a finite rate of innovation ρ, it is reasonable to expect that

a sampling rate equal to ρ is sufficient to correctly recover the original informa-

tion content. Similarly, given a generic unbiased estimator in the presence of noise,

the rate of innovation proves to be a lower bound for the ratio between the aver-

age estimation mean-squared-error and the noise variance, independently from the

adopted sampling scheme [5].

1.3.3 Sparsity

From a mathematical point of view, the simplest way to model a sampled signal

is represented by a vector s whose dimension n depends on the observation interval

length and the adopted sampling scheme.

Definition 1.3.3. A vector s ∈ Rn is said to be sparse if ‖s‖0 ¿ n and, particularly, it

is said to be k-sparse if ‖s‖0 ≤ k ¿ n [6].

From this two equally significant definitions follow immediately:

Definition 1.3.4. Given a generic vector s, it is always possible to define its best k-

sparse approximation sk as:

sk = min
u:‖u‖0≤k

‖s−u‖p (1.7)

The optimization problem returns the same vector s where the n −k lower coef-

ficients have been set equal to zero.

Definition 1.3.5. A vector s is said to be compressible if there exist two positive con-

stants, namely c > 0 and r > 1, which verify the following inequality:

‖s−sk‖p ≤ ck−r (1.8)
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As long as k decreases, condition (1.8) becomes more and more strict and hard

to satisfy. Indeed, the lower is the number of non-zero coefficients, the larger is the

approximation error with respect to the original signal representation. This peculiar

phenomenon shows why it is so difficult to achieve high compression ratios without

compromising reconstruction accuracy.

It is worth noticing that in equations (1.7) and (1.8) the order p of Lebesgue

norm is unspecified. In other words, both definitions hold independently from the

adopted distance formulation. In accordance with the peculiar operative condi-

tions, it is reasonable to tune this parameter in order to minimize the injection of

spurious contributions or to avoid sparsity level misinterpretations.

1.4 A Mathematical Model for Sparse Signal Acquisition

A generic sparse acquisition problem could be modelled by the following linear

matrix equation:

y = Ax+w (1.9)

where:

• y is the acquired samples vector of dimension [m ×1];

• A is the measurement matrix of dimension [m ×n];

• x is the sparse signal representation of dimension [n ×1];

• w is the additive noise contribution of dimension [n ×1].

1.4.1 Sparse Signal Acquisition Protocols

The sparse acquisition problem (1.9) can be dealt with by two approaches. On

the one side, the conventional protocol which implements the sampling theory in-

troduced by Claude Shannon in 1948 [1]. On the other side, the compressive sensing

protocol that exploits signal sparsity to accurately recover the original information

content from a reduced set of measurements.
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Shannon-Based Acquisition Protocol

After World War II, Claude Shannon worked at Bell Laboratories, focusing his

studies on improving telegraphic transmission quality in the presence of noisy dis-

turbances or spurious contributions. Shannon was particularly interested in the ac-

quisition process and studied the relationship between sampling rate and distortion

level in the recovered signal. For over five decades, his sampling theorem has been

universally considered the benchmark for any signal sensing theory [2]:

Theorem 1.4.1. If a signal s contains no frequencies higher than fmax Hz, it is com-

pletely determined by giving its ordinates at a series of points spaced ts = 1
fmax

seconds

apart.

The theorem authorship is actually a moot point. Indeed, similar formulations

were published in a mathematical context under the name of Whittaker in 1929 [7],

and Kotel’nikov in 1933 [8]. Shannon himself did never claim the result as a per-

sonal discovery, but rather as a common criterion gathered from experimental prac-

tice. It should be noticed that, also at Bell Laboratories, Harry Nyquist postulated an

equivalent sufficient condition and showed its application to early telegraphic trans-

missions in 1928 [9]. Shannon always considered himself as an humble heir of this

eminent tradition and decided to name the criterion threshold after his trailblazing

predecessor. Henceforth, Theorem 1.4.1 is known as Shannon’s theorem and fmax

is called Nyquist’s rate, ensuring eternal remembrance to both their authors.

The acquisition process consists of two main stages: sampling and reconstruc-

tion. Accordingly, after defining the anti-aliasing rate, Shannon provided also the

corresponding reconstruction formula:

f (t ) = ∑
k∈Z

f (kT ) si nc
( x

T
−k

)
(1.10)

where the acquired samples are interpolated by means of Dirichlet kernel functions.

Once more, this is not an απαξ λεγoµενoν: in 1915, Whittaker presented a totally

equivalent formulation, claimed as Cardinal Series Expansion [10]; moreover, simi-

lar expressions could date back to further preceding publications [11].

Modern digital technology still relies on the sufficient condition stated by Theo-

rem 1.4.1. Unfortunately, Shannon’s formulation exhibits some significant discrep-

ancies from the actual operative conditions. On one hand, the theorem applies only
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on perfectly band-limited signals. On the other hand, the Nyquist constraint on

sampling rate depends merely on the signal bandwidth, not considering how the

information is distributed over the acquisition domain. Evidently, these problems

affect the efficiency of the conventional protocol: a larger sampling rate corresponds

to a greater amount of data to process, transfer or store. On the other hand, the con-

ventional protocol is appreciated due to its simple and immediate implementation:

in accordance with Occam’s lex parsimoniae, in most cases, this straightforward so-

lution proves to be the best compromise between costs and performances.

The conventional protocol relies on the time - frequency domain dualism. In this

sense, its theoretical content descends immediately from common sense and exper-

imental practice. The larger is the signal rate of change, the larger is the sampling

rate required to reproduce it without distortions or omissions. Even from a mathe-

matical point of view, the theoretical framework is intuitive and consists merely of a

proper application of Fourier transform properties.

In the formulation considered in this thesis, the problem deals with a finite se-

quence of N consecutive and equally-spaced samples, acquired in the time domain

at a uniform sampling rate equal to fs = 1/ts Hz. In the frequency domain, the dis-

crete Fourier transform of the sequence presents a periodic repetition of the signal

spectral content centred around integer multiples of fs . Accordingly, if fs is compli-

ant with Nyquist’s constraint, i.e. fs ≥ 2 · fmax , no mutual interference takes place

and the signal content can be easily retrieved. On the contrary, if fs is not correctly

related to the signal spectral bandwidth, i.e. fs < 2 · fmax , the higher frequency com-

ponents are partially superposed, causing the well-known aliasing effect, as shown

in Fig. 1.1.

Block scheme: oversampling and then compression Shannon’s theorem does not

consider any signal property except for spectral bandwidth. As a consequence, the

same acquisition scheme is employed in any operative condition, independently

from the a priori information at disposal. For instance, even if the signal is known

to be sparse in the frequency domain, the sampling frequency is set to be compliant

with Nyquist’s constraint. The sparsity assumption provides the only expedient to

afterwards condense the signal in a compressed format, suitable for effective storage

or processing applications.
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Figure 1.1: Consequences of sampling process in the DFT domain with reference

to Nyquist’s rate constraint. From top to down, respectively: over sampling, perfect

sampling, and under sampling.

The block diagram in Fig. 1.2 summarizes the main acquisition stages, highlight-

ing the respective functions of sensor and receiver side.

More precisely, at sensor side, the input vector s of dimension [n×1] passes through

a coherent sampling process at Nyquist’s rate, resulting in m ≥ n samples equally

spaced in time. The modern ADC technology is able to cope with sampling frequen-

cies exceeding the order of GHz, and accordingly to account for very fast signal vari-

ations. On the other hand, it is reasonable to expect that the overall amount of ac-

quired data is not scaled to the actual information content and often requires an ad

hoc compression technique in order to be efficiently stored. In accordance with the

peculiar operative condition, a proper compression stage reduces the measurement

vector dimension up to the desired sparsity level k ¿ m.

At receiver side, the inverse procedure is carried out. Before any further processing,

the stored data are decompressed, returning to their original dimension [n ×1].

Final remarks: a universal but inefficient protocol Shannon’s sufficient condition

(1.4.1) ensures perfect recovery of the original information content. Furthermore,

signal reconstruction requires only the straightforward computation of the cardinal
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Figure 1.2: Traditional acquisition protocol block diagram.

series formula (1.10).

Nevertheless, it is worth observing that these protocol peculiarities do not pro-

vide any guarantee of performance enhancement. Computational complexity has

to be assessed with respect to the actual amount of data and the employed com-

pression algorithm.

As a matter of principle, the traditional protocol suggests to acquire the signal

directly in the domain where it exhibits its sparsity properties. To this end, oversam-

pling is not despised, as it makes more significant the ratio between the number of

respectively, negligible and significant coefficients. For instance, in spectral analysis

applications, oversampling is intentionally employed in order to reduce scalloping

loss and mutual interference among superposed components.

CS-Based Acquisition Protocol

The actual innovation rate of a continuous time signal may be much smaller

than suggested by its bandwidth. Similarly, a a discrete-time signal may depend on

a number of degrees of freedom comparably much smaller than its finite length.

More precisely, any signal, expressed in a proper domain, could be represented by a

reduced set of parameters, i.e. can be called sparse.

Sparsity examples In the time domain, a pure sinusoidal tone exhibits its typical

periodic trend, swinging from positive to negative values. Conversely, in the fre-

quency domain, a single Dirac function is sufficient to convey the entire information

content, as shown in Fig. 1.3.

A generic image can be seen as a two-dimensional matrix, whose entries repre-
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Figure 1.3: Given a cosine function at ω f Hz, 64 samples are acquired at a sampling

rateωs = 4·ω f . The signal representation in both time (top) and frequency (bottom)

domain are provided.

Figure 1.4: On the left, the well-known Lichtenstein image, considered a severe test

bench for processing techniques. On the right, the result of a two level wavelet trans-

form, comparable to the JPEG2000 compression format.

sent the gray levels of the corresponding pixels. A proper wavelet transform allows

to detect which pixels account for smooth or constant regions and which pixels ac-

count for step or transient regions. In this way, the number of significant coefficients

is drastically reduced, i.e. the image is sparse in the wavelet transform domain, as

shown in Fig. 1.4.

A chemical compound mass spectrum can be estimated by means of induced

electron ionization. For a given set of mass-to-charge ratio (m/Q) values, the abun-

dance of ions is measured and the overall percentage is computed. Typically, the re-

sulting trace is affected by large broadband noise with a signal-to-noise ratio (SNR)



1.4. SPARSE ACQUISITION MODEL 13

Figure 1.5: In mass spectroscopy context, comparison between a raw trace, on the

left, and a resolution enhanced version obtained by Hadamard tomography tech-

nique, on the right.

at least equal to 1. Hadamard tomography decomposes the input signal into a linear

combination of Walsh functions. Combination coefficients are distributed so that

informative components are associated to larger weights, while noisy components

are associated to smaller weights. In this way, the sparse structure of the acquired

signal can be revealed, as shown in Fig. 1.5.

In order to develop a high-resolution map, LiDAR remote sensing technology

measures distances by illuminating a target with a laser and analysing the reflected

light. As shown in Fig. 1.6, the backscattered waveform accounts for obstacle heights.

Over a wide region, the number of significant obstacles is expected to be reasonably

small if compared with the area under investigation.

Finally, also radio-frequency (RF) acquisitions exhibit a double level of sparsity.

In accordance to Nyquist’s constraint, the RF spectrum should be acquired at a sam-

pling rate on the order of some GHz. In order to avoid interference and superposi-

tion, each transmission is associated to a specific channel. Not necessarily, all trans-

mitters are operating at the same time. In the frequency domain, the signal is said to

be block-sparse [13], because the most significant coefficients condensate around

the active channel carrier frequencies. It is reasonable to expect that, as a whole,

significant blocks take up a reasonably small portion of the entire RF spectrum, as

shown in Fig. 1.7. Subsequent acquisitions of the same channel may prove to be

similarly sparse in the time domain. In fact, it is reasonable to expect a significant

value only when the transmitter is operating, otherwise the acquired trace consists

only of noise.
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Figure 1.6: On the left, LiDAR acquisition protocol is illustrated; on the right, an

example of LiDAR point elevation data rendered in 3D (Potsdamer Platz in Berlin,

Germany) [12].

Figure 1.7: Multi-band signal model consisting of three different contributions, each

located in a specific transmission channel [13].

From Shannon to CS theory Sparsity evidence has inspired many sub-Nyquist

techniques, i.e. acquisition protocols adopting an actual sampling rate much lower

than suggested by Nyquist’s constraint. Mostly, these are ad hoc solutions, explicitly

designed to exploit or cope with the operative conditions peculiar to a single class of

signals. Shannon’s general perspective towards the acquisition problem is replaced

by a disjoint approach, consisting of specific and uncorrelated practical solutions.

While the traditional protocol relies firmly on Shannon’s theorem, the sub-Nyquist

protocols lack a unified theoretical framework.

In this context the theory of compressive sensing, briefly CS, takes its origin and

develops. It is not only a sampling protocol, but actually an acquisition paradigm

that offers a totally innovative perspective: the signal can be acquired directly in
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a compressed form, shifting most of the computation effort to the reconstruction

stage. In principle, it is possible to recover the original information content even

from what could appear as an incomplete set of measurements. To make this pos-

sible, CS relies on two principles: sparsity, which pertains to the signals of interest,

and incoherence, which pertains to the sensing modality [3].

In a suitable basisΨ, a sparse signal is supposed to exhibit a more concise repre-

sentation than suggested by Nyquist’s constraint. For instance, a discrete-time sig-

nal could be fully described by a number of degrees of freedom much smaller than

its finite length. Similarly, a continuous-time signal could vary much more slowly

than suggested by its finite spectral bandwidth. A novel concept, also known as in-

formation rate, goes beyond the definitions of Nyquist’s and innovation rate: the

acquisition protocol should focus on information content variations, rather than on

signal variations. Independently from its representation in the observed domain, it

is important to sample and characterize the signal whenever the conveyed informa-

tion undergoes a significant change. For instance, according to CS theory, a station-

ary signal, no matter how large its Nyquist’s or innovation rate is, can be recovered

from a severely under-sampled acquisition.

From a linear algebra point of view, the incoherence property can be seen as

a theoretical generalization of the well known duality between time and frequency

domain, or similarly between Dirac and Dirichlet basis functions. A thorough math-

ematical characterization is beyond the scope of this introductory section and will

be rigorously addressed later. However, it is worth noting here that a signal should

be sampled in a basisΦ incoherent withΨ, i.e. where its information content is not

condensed into few coefficients, but almost uniformly spread out over the entire

domain. In this way, no matter which is the sampling rate or scheme, any sample is

reasonably expected to contain a small portion of the original information content.

At first sight, this "incoherent" sampling strategy could appear to be in contrast with

the sparsity assumption. Conversely, in practice, this proves to be the best suited

solution, not requiring any a priori knowledge about the localization of significant

coefficients. Challenging common sense and canonical theory intuition, CS theory

could be summarized by the following motto.

Given a generic signal, a reduced set of samples, acquired at a sampling rate lower

than Nyquist’s and according to a random scheme, is sufficient to correctly recover
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the original information content. Keep calm and randomize!

Block scheme: an under-determined problem CS theory completely revolution-

izes the perspective towards the acquisition problem. In the traditional approach,

the measurement process depends exclusively on signal spectral bandwidth: in the

absence of detailed a priori knowledge, it is necessary to employ an anti-aliasing fil-

tering stage, which may erase some information contributions. In the CS approach,

instead, the underlying theoretical model relies only on the sparsity assumption,

which almost any signal verifies in a proper domain. Moreover, in the matter of sam-

pling scheme, no prior constraints have to be satisfied if carried out in a sufficiently

incoherent domain.

Figure 1.8: Compressive sensing acquisition protocol block diagram.

The block diagram in Fig. 1.8 summarizes the main acquisition stages, highlight-

ing the respective functions of sensor and receiver side.

More precisely, at sensor side, the traditional sequence of measurement and com-

pression is replaced by a single stage where the information content is directly ac-

quired in a compressed form. Independently from its Nyquist’s or innovation rate,

the sufficient number of samples to be acquired is given by:

m =O (k lnn) (1.11)

where n is the input signal size and k is the expected or approximated sparsity level.

In particular, the compression ratio provided by the CS protocol behaves as a log-

arithmic function of the number of samples. Indeed, the traditional compression

stage could achieve much better performances, but it should be noticed that the

CS protocol condenses acquisition and compression into a single stage and adopts
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a totally signal-independent approach. On the one hand, compressed acquisition

avoids the computationally expensive sequence of oversampling and compression:

according to the traditional protocol, a huge amount of samples have to be acquired

in order only to enhance the sparsity property and immediately disregarded as neg-

ligible coefficient, resulting in a worthless waste of computational resources. On the

other hand, the compression stage does not require any a priori knowledge about

how the information content is conveyed or distributed over the sparsity domain,

resulting in a much better portability of the CS protocol to any branch of Informa-

tion Theory.

At receiver side, the de-compression stage is replaced by a more demanding recon-

struction stage. The acquired set of measurements is not consistent with the desired

solution size and the acquisition inverse problem appears to be under-determined

and not to provide a unique solution. Nevertheless, properly exploiting the sparsity

assumption, it is possible to determine the most suitable sparse approximation of

the input signal, at the expense of a larger computational complexity. The mathe-

matical details of this reconstruction stage are beyond the scope of this introductory

section and will be thoroughly addressed later in the following. However, it is worth

noticing that the computational costs at receiver stage are largely balanced or even

exceeded by the compression ratios achieved at sensor side.

Final remarks: a novel unified sub-Nyquist sampling theory According to CS the-

ory, it is possible to design efficient acquisition protocols that capture the useful in-

formation content embedded in a sparse signal and condense it into a small amount

of data. These sensing paradigms prove to be non-adaptive, rely on an undisputed

sparsity assumption, and simply correlate the signal with a reduced set of basis func-

tions which are only required to be sufficiently incoherent with the sparsity domain.

What is most remarkable about this novel sampling theory is that CS-based sensors

are capable to efficiently acquire the underlying information content without trying

to reflect the inherent structure of the signal [3].

1.5 Most Suitable Acquisition Domain Selection

The acquisition model (1.9) is pretty generic and could be easily adapted to many

different operative conditions. What is most remarkable about its mathematical for-
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mulation is that the sampling process is modelled by a linear operator, namely the

rectangular matrix A. In this context, it is worth noticing that the matrix elements

do not depend on the signal under investigation s nor on its sparse representation

x. More precisely, the matrix columns determine in which domain and according to

which scheme the signal is going to be sampled. For this reason, A is also often called

measurement matrix, because its knowledge yields the complete representation of

the measurement process.

A proper measurement matrix could improve the acquisition performances sig-

nificantly, in terms not only of reconstruction accuracy, but also compression ratio.

In CS literature, many criteria have been developed in order to design A in accor-

dance with the peculiar operative conditions and available a priori knowledge. In

the following subsections, some of these criteria are briefly introduced and summa-

rized, highlighting the theoretical generality, on one side, and the actual feasibility

in practice, on the other side.

1.5.1 Incoherence

Given a generic signal s, knowing a priori the domain where it exhibits a sparse

behaviour x, the linear model (1.9) can be decomposed as follows:

y = Ax+w =ΦΨx+w =Φs+w (1.12)

where:

• Φ of dimension [m×n] is called sensing matrix, because its rowsφi determine

the sampling scheme:

yi = 〈s,φi〉 i = 1,2, . . .m (1.13)

• Ψ of dimension [n ×n] is called sparsifying matrix, because its columns ψj

form a basis for the domain in which s is sparse:

xi = 〈s,ψj〉 j = 1,2, . . .n (1.14)

From a linear algebra point of view,Φ andΨ can be seen as bases spanning specific

vector subspaces over which the signal s has to be projected. Similarly, the inner

product formulations in (1.13) and (1.14) can be seen as realizations of the well-

known Hilbert space projection theorem [14].
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The sparsifying matrixΨ is a fixed signal feature; no degree of freedom is possi-

ble. On the contrary, the sensing matrix Φ can be tuned according to specific appli-

cation requirements or user desiderata. Thus, a question plays a crucial role: how

should the sampling scheme be implemented?

• uniform and coherent, as suggested by the traditional acquisition protocol?

• in accordance with a given statistical distribution, e.g. a Gaussian or a Bernoulli

distribution?

• totally random, letting a pseudo-random generator to decide when and how a

sample has to be acquired?

Many different alternatives are possible, but no one is directly related to sparsity.

According to CS theory, the most preferable option is represented by a sensing

matrix Φ incoherent with the sparsifying matrix Ψ. From a mathematical point of

view, a quantitative index for coherence could be defined as follows [3]:

µ(Φ,Ψ) =p
n max

i , j
|〈φi,ψj〉| i = 1,2, . . .m j = 1,2, . . .n (1.15)

This index measures the maximum correlation between any two vectors ofΦ andΨ,

i.e. it is a sort of measure of similarity between Φ and Ψ. Given two orthonormal

bases F and P, µ ranges:

• from 1, which corresponds to minimal coherence condition, optimal for CS-

based applications;

• to
p

n, which corresponds to maximal coherence, unsuitable for CS-based ap-

plications.

The upper bound descends directly from the inner product properties: given two

vectors of unitary norm, their product exhibits a module not larger than 1. The lower

bound, instead, descends from the Parseval relationship:

m∑
i=1

|〈φi,ψj〉|2 = ‖ψj‖2
2 = 1 j = 1,2, . . .n (1.16)

An Example of Incoherent Basis

In Fig. 1.9 a typical example of incoherent basis is presented, namely a sinusoidal

tone is uniformly sampled both in the time and in the frequency domain:
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Figure 1.9: Sinusoidal tone uniformly sampled in the time (top) and frequency (bot-

tom) domain.

• Φ is the canonical basis, such that its column vectors consist of suitably shifted

Dirac functions around the integer multiples of the sampling period:

φi(t ) = δ(t − ti ) (1.17)

• Ψ is the Discrete Fourier Transform (DFT) basis, such that its column vectors

consist of DFT kernels suitably centered around the bins of the frequency axis:

ψi(t ) = 1p
n

e
i 2π j t

n (1.18)

Owing to the ideal duality between time and frequency domain, maximal incoher-

ence is achieved, i.e. µ(Φ,Ψ) = 1. This condition between pulses and sinusoids is

universally verified and holds independently from the actually dimensions of the

considered space vector.

In practice, this corresponds to sampling in the time domain a signal that is

sparse in the frequency domain. Is this the best way to exploit sparsity?

At first sight, intuition would suggest to sample in the frequency domain where

the entire information is contained in only two coefficients. However, it is required

to know a priori their location, otherwise a uniform sampling is necessary, resulting

in lots of zero coefficients and the well-known spectral estimation problems (e.g.,

spectral leakage, scalloping loss, short and long range interference, etc.).

Conversely, CS theory suggests to sample in the time domain where the same infor-
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mation content is almost uniformly spread out among all the representation coeffi-

cients. The greater is the incoherence betweenΦ andΨ, the greater is the probability

that any sample tells something about the signal.

Random Solution as Effective Expedient

In the literature, some frequent examples of incoherent basis couples can be

found, e.g.: canonical / DFT, noiselet / Haar, wavelets / higher dimensional related

functions (a few of them are listed in [15]). Noiselets prove to be particularly useful:

in fact, they are maximally incoherent with both spikes and Fourier basis complex

exponentials. Their increasing implementation in many different branches of Infor-

mation Theory is easily motivated:

1. incoherence with most common sparse representation of image or whatever

structured data type;

2. availability of fast algorithms for transform coefficient computation: state of

the art solutions run in O(n) time, and just like the Fourier transform, the

noiselet matrix does not need to be stored to be applied to a vector.

However, sometimes the sparsifying matrix Ψ does not provide an obvious sensing

matrixΦ. For instance, given a signal sparse in Hough transform (digital image pro-

cessing) domain or in Y −∆ transform (electrical circuit analysis) domain, where

should it be sampled?

An unexpected solution for this class of problems is represented by the statisti-

cal properties of random matrices. Given sparsifying basis Ψ, select an orthobasis

Φ uniformly at random, e.g. by orthonormalizing n vectors sampled independently

and uniformly on the unit sphere. Then, with high probability, the coherence be-

tween Φ andΨ is about
√

2logn [3]. This is not the lower limit, but still offers good

performances.

By extension, any random sampling scheme with independent identically dis-

tributed (i.i.d.) entries, e.g., Gaussian or ±1 binary entries, is expected to be highly

incoherent with any fixed sparsifying domain. It should be noticed that this result

conceals a pretty surprising implication [3]: if sampling stage is required to be in-

coherent, then efficient sensing devices should acquire correlations with random

waveforms, just like the white noise!
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Incoherence-Based Criteria and Sufficient Conditions

Let us consider a signal s ∈ Rn which admits a k-sparse representation x in the

proper sparsifying basisΨ.

Theorem 1.5.1. Given a sensing basis Φ, select m measurements uniformly at ran-

dom. If the measurement number m satisfies the following inequality for some posi-

tive constant C :

m ≥C ·µ2(Φ,Ψ) ·k · logn (1.19)

then the acquisition problem 1.9 can be inverted and provides the exact unique solu-

tion with overwhelming probability [16].

More precisely, the probability of success is shown to exceed 1−δ if:

m ≥C ·µ2(Φ,Ψ) ·k · log
(n

δ

)
(1.20)

and the result is guaranteed for all k-sparse representations of s.

Another interesting result investigates the relationship between the coherence

index µ and the highest achievable compression ratio and is formalized in the fol-

lowing theorem.

Theorem 1.5.2. Given the measurement matrix A =ΦΨ, a mutual coherence index

µ(A) is defined as the maximum product of two different columns ai and a j :

µ(A) = maxaT
i a j , i 6= j (1.21)

Then, the sparsity level of the acquisition problem solution is lower bounded by the

following mutual coherence function:

‖x̂‖0 ≥ bµ(A)+1

2µ(A)
c (1.22)

Three important implications descend from theorems 1.5.1 and 1.5.2 and are

worth to be highlighted:

• the sufficient condition depends on the coherence index according to a quadratic

function behaviour: the smaller is the coherence, the fewer samples are needed;

• even starting from an incomplete set of measurements, no significant infor-

mation loss is expected;
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• the reconstruction stage requires ad hoc algorithms, which are capable to cope

with under-determined systems, and do not require any a priori knowledge

with the exception of the desired or expected sparsity level.

1.5.2 Restricted Isometry Property

The incoherence criterion relies on the assumption that the signal s admits a k-

sparse representation x in a given sparsifying domain Ψ. However, in practice this

knowledge is unavailable a priori. The aforementioned decomposition into sensing

and sparsifying matrix is no more feasible and the measurement matrix A has to be

taken into account as a whole:

y =ΦΨx+w = Ax+w (1.23)

In this context, a novel criterion, perfectly blind and independent from the in-

herent structure of the signal under investigation, is introduced. More precisely,

measurement matrix A is required to satisfied the Restricted Isometry Property, briefly

RIP, which can be defined as follows [3]:

Definition 1.5.1. Given a positive integer k, the isometry constant δk of the mea-

surement matrix A is the minimum number which satisfies the following equation

for any k–sparse vector x:

(1−δk )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk )‖x‖2
2 (1.24)

As a consequence, A is said to exhibit the RIP of order k if δk < 1.

In mathematics, the term isometry is commonly related to any function, trans-

formation or, more generally, map which preserves the distance measure even pass-

ing from a vector space to another. Similarly, a measurement matrix A which sat-

isfies the RIP of order k ensures to preserve the Euclidean length of any k-sparse

signal x. In other words, there exists no k-sparse vector which belongs to the null

space of A, a necessary condition to aim at a correct reconstruction of the original

sparse representation.

The adjective restricted gives the property a peculiar connotation which may

appear clearer in the following interpretation. If a matrix A of dimensions m ×n

with m < n satisfies the RIP of order k, then all the vector subspaces spanned by
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subsets of k columns taken from A are almost orthogonal. The exact orthogonality

is feasible only in the case of square matrices, whereas in the present case the linear

independence between two different subsets is not guaranteed because the number

of columns exceeds the number of rows.

The relationship between RIP and CS protocol is immediately evident in the fol-

lowing example. Let A be the measurement matrix employed to acquire k-sparse

signals from a given raw data flow. Suppose that A satisfies the RIP of order 2k, i.e.

twice the expected sparsity level, with an isometry constant δ2k sufficiently lower

than 1. Then, all pairwise distances between k-sparse signals are expected to be

well preserved in the measurement space, with a relative approximation error not

larger than ±δ2k . It is equivalent to say that the following condition:

(1−δ2k )‖x1 −x2‖2
2 ≤ ‖Ax1 −Ax2‖2

2 ≤ (1+δ2k )‖x1 −x2‖2
2 (1.25)

holds for any pair of k-sparse vectors (x1, x2).

Once the RIP is verified for a given sparsity level, the following theorem allows to

easily extend the property also to larger cardinality sets.

Theorem 1.5.3. Suppose that A satisfies the RIP of order k with isometry constant δk .

Let c be a positive integer. Then A satisfies the RIP of order k ′ = cb k
2 c with isometry

constant δk ′ < c ·δk .

The statement could appear to be trivial for c = 1 or 2, but for c ≥ 3 and k ≥ 4 it

actually allows to extend the RIP (and thus the capability to invert the corresponding

sparse acquisition system) to higher order formulations. On the other hand, δk is

required to be sufficiently small in order for the resulting bound to be useful. In fact,

theorem 1.5.3 holds only if δk < 1
c and accordingly δk ′ < 1.

In conclusion, two observations have to be highlighted:

• the Restricted Isometry Property does not concern the composition of rows or

columns of A: no constraints are introduced with reference to sensing domain

or sampling scheme;

• the Restricted Isometry Property can be interpreted as a sort of measure of the

numerical conditioning of A: the distortion of input signal distances does not

exceed a fixed threshold, related to the expected sparsity level.
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RIP-based Criteria and Theorems

In order to understand the RIP implications, let us return to the aforementioned

sparse acquisition problem:

y = Ax+w (1.26)

• AIM: to recover the k-sparse vector x which better approximates the measure-

ment vector y;

• PROBLEM: the measurement matrix A has m rows and n columns, with m ¿
n, thus the problem is highly under-determined;

• SOLUTION: if A satisfies the RIP of order 2k, i.e. twice the expected sparsity

level, the following three theorems can be employed to achieve a reliable so-

lution x̂.

Theorem 1.5.4. If A satisfies the RIP of order 2k, it is always possible to recover the

unique k–sparse solution of the linear system y = Ax [3].

It should be noticed that this theorem guarantees the existence and unicity of

the solution, but does not specify how it could be estimated. Furthermore, theorem

1.5.4 is valid only in noiseless conditions. Nevertheless, the fact that the RIP is a sort

of sufficient condition for the feasibility of highly under-determined systems should

not be underrated.

Theorem 1.5.5. If A satisfies the RIP of order 2k with an isometry constant δ2k <
p

2− 1, there always exist two positive constants C1 and C2 such that the following

inequality is verified:

‖x̂−x‖2 ≤C0
‖x−xk‖1p

k
+C1ε (1.27)

where x̂ is the recovered solution and ε quantifies the variability related to the additive

noise term w [3].

This theorem shows that the reconstruction error is limited by the sum of two

terms. The first one quantifies how likely it is to obtain a k-sparse approximation xk

of the actual sparse signal representation x, whose sparsity level is supposed to be

unknown. The second term assesses how much the recovered signal x̂ is affected by

additive noise. It is worth noticing that the first term is related to the adopted signal

model, precisely to the expected sparsity level, whereas the second one is related
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to a perturbation of the measurement system, which is independent from the user

choices.

Just to give an idea of the expected weight of each term in summation (1.27),

if δ2k 0.25 it is sufficient to take C1 < 5.5 and C2 < 6. In other words, model inap-

propriateness and noisy disturbance provide nearly comparable contributions for a

sufficiently small isometry constant. As long as δ2k increases, conversely, also the

model discrepancy is expected to grow, while the noise effect is expected to remain

unvaried.

Theorem 1.5.6. If A satisfies the RIP of order 2k, there always exists a positive con-

stant C such that the following inequality is verified [3]:

m ≥C k log
(n

k

)
(1.28)

This theorem introduces a necessary condition for correct recovery regarding

the minimum number of measurements to be acquired. At the same time, it allows

to assess in advance the maximum compression ratio that could be achieved in the

specific case under investigation. It is worth noticing that the number of measure-

ments m depends linearly on the sparsity level k and depends on the input signal

length n according to a logarithmic relationship. For instance, if n = 1024 and k = 10,

then a plausible value for the number of measurements is m ' 20, resulting in a

compression ratio nearly equal to 50.

Stability Implications of the RIP

Looking for a k-sparse solution of the acquisition problem (1.26), the measure-

ment matrix A is required to satisfy the RIP of order 2k or higher. Otherwise, there

always exists at least one 2k-sparse vector z which belongs to the null space of A, i.e.:

Az = 0 
 z ∈N (A) (1.29)

Let z be decomposed as the sum of two k-sparse vectors x1 and x2:

z = x1 +x2 ‖z‖0 = car d
(
i = 1,2, . . .n : x1i 6= 0∧x2i 6= 0

)
(1.30)

In the absence of the RIP of proper order, it is reasonable to expect that:

Ax1 = Ax2 (1.31)
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which denies any possibility to achieve a unique k-sparse solution.

In this context, it is crucial to accurately estimate or predict the signal sparsity

level. Unfortunately, additive noise could easily affect this prediction and it is useful

to introduce a specific notion of stability for sparse acquisition problems [17].

Definition 1.5.2. Let A be a generic measurement matrix and F :Rm →Rn be an ad

hoc sparse recovery algorithm. Given a positive constant c, the pair (A,F ) is said to

be c-stable if the following inequality is satisfied:

‖F (Ax+w)−x‖2 = ‖x̂−x‖2 ≤ c‖w‖2 (1.32)

for any k-sparse vector x and any measurement noise vector w.

RIP stability limits the effect of additive noise on sparse prediction error. It guar-

antees that if a small amount of noise is added to the measurements, its impact on

the recovered signal should not be arbitrarily large. In particular, it can be shown

that the sensing matrix A is required to satisfy the RIP of order 2k with an isometry

constant related to the stability constant c according to the following theorem.

Theorem 1.5.7. If the pair (A,F ) is c-stable for k-sparse vectors, then any 2k-sparse

vector is shown to satisfy the following inequality [17]:

‖x‖2

c
≤ ‖Ax‖2 (1.33)

The comparison between (1.33) and (1.24) shows how the isometry constant is

directly proportional to the corresponding stability constant. In other words, the

larger is the capability to preserve distances and norms, the larger is the capability

to cope with additive uncorrelated noise [18].

1.6 Under-Determined Solving Algorithms

The sparse acquisition problem (1.26) yields an under-determined systems of

equation to solve. Any combinatorial approach exhibits a non polynomial com-

plexity, i.e. it is NP-hard. Without a sufficiently performing algorithm, the benefits

achieved at sensor side would be wasted at receiver side. In the literature, many ad

hoc solutions have been implemented and characterized. Generally speaking, the

algorithms could be classified according to two main paradigms:
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Figure 1.10: Representation of the unit ball in a Cartesian space reproducing the R2

domain, for three different `p -norm formulations: from left to right, respectively for

p = 1,2 and ∞ [17].

• convex optimization;

• greedy search.

The first one relies on a convex cost function minimization, whereas the second

paradigm iteratively updates the solution including the current local approximation.

In this Ph.D. thesis, both these approaches have been taken into account and ap-

plied to specific operative conditions: particularly, the so-called LASSO minimiza-

tion problem from the convex optimization class and the orthogonal matching pur-

suit (OMP) algorithm from the greedy search class. For the sake of completeness,

these algorithms will be briefly introduced and their performances will be syntheti-

cally compared.

1.6.1 Norm Approximation

From a functional analysis point of view, a generic norm approximation problem

is an optimization problem where the objective function to be minimized is a proper

norm of the residuals.

A suitable norm approximation for the sparse acquisition problem (1.26) is pro-

vided by:

x̂ = min
x:‖x‖0=k

‖Ax−y‖p (1.34)

where the solution is obtained as the k-sparse vector x which minimizes the residu-

als `p -norm.
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Figure 1.11: Norm approximation of a fixed point according to the same measure-

ment matrix but different distance definitions. In a Cartesian space representation

of the R2 domain, the solution is computed minimizing the residual `p -norm, re-

spectively for p = 1,2 and ∞ from left to right [17].

According to the peculiar norm adopted, a different penalty function and a dif-

ferent residuals distribution are obtained. In a vector space the notion of distance

and, accordingly, the notion of measure is strictly related to the norm definition. In

Fig. 1.10, the unitary ball in the R2 domain is represented for three different def-

inition of `p -norm, specifically for p = 1, 2 and ∞. To each norm definition cor-

responds a peculiar distance measure. More precisely, in a generic n-dimensional

vector space, given two points x and y, their distance can be computed as follows:

d1 =
n∑

i=1
|xi − yi | d2 =

√
n∑

i=1
|xi − yi |2 d∞ = max{|xi − yi |, i = 1, . . .n} (1.35)

Owing to their massive employment in many Information Theory branches, these

three distance measures are also known as, respectively, Manhattan, Euclidean and

Chebyshev distance.

As a consequence, the best norm approximation of a given function in a given

point changes on varying the order of the adopted norm. In Fig. 1.11 a linear func-

tion in R2 is employed to approximate a given measure x. In this context, the so-

lution is represented by the line point which exhibits the minimum distance with

respect to the acquired measure. Evidently, the approximation error depends on the

distance definition: each solution minimizes a specific cost function and, thus, op-

timizes a specific signal feature. According to the desired solution properties, it is

possible to tune the objective function in order to endorse some features, e.g. mea-

surement tracking rather than smoothing regularization, to the detriment of other
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ones, not necessarily less informative, but less significant with respect to the case

under investigation.

Application to Sparse Problems

Minimum `0-norm solution In the CS context, the solution is explicitly required

to be sparse. A natural formulation for the solution recovery might be:

x̂ = min‖x‖0 s.t . ‖Ax̂−y‖2 ≤ ε (1.36)

where ε is related to the expected noise level in the acquired measurement vector y.

Unfortunately, this approach is known to be non-tractable in terms of computa-

tional complexity, independently from the RIP order of A. In general, `0-norm min-

imization problem requires searching among all the feasible subsets of A columns

the one which simultaneously fits the measurements and exhibits the lowest car-

dinality. More precisely, this would require to implement a combinatorial search

procedure among
(m

k

)
subsets. The computational complexity is expected to grow

exponentially with the column number, i.e. with the solution vector cardinality: the

larger is the desired resolution, the larger is the computational effort to achieve it.

In conclusion, the `0-norm minimization ensures a sparse solution, but is nearly

non-feasible in practice owing to its excessive computational load.

Basis Pursuit solution In machine learning literature, it is well-known that, given

a measurement matrix A satisfying the RIP, highly sparse solutions can be obtained

by convex optimization, namely by minimizing the solution `1-norm [19]:

x̂ = min
x

‖x‖1 s.t . ‖Ax̂−y‖2 ≤ ε (1.37)

In this way, the sparse recovery problem can be interpreted as a convex optimization

problem, and can be efficiently solved via linear programming techniques based on

the canonical simplex method or the more recent interior point method [20].

This formulation was initially proposed as an alternative approach to decom-

pose the measurement vector y as a linear combination of A columns. In literature,

this algorithm became famous under the denomination of Basis Pursuit (BP) [21].
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Figure 1.12: Histogram of residual amplitudes for ‖x‖p minimization with p = 1 and

2. The corresponding cost function is superposed for reference [22].

LASSO solution In terms of reconstruction accuracy, a further improvement is pro-

vided by the following regularized formulation:

x̂ = min
x

‖Ax−y‖2
2 +γ‖x‖1 (1.38)

where the cost function depends on three quantities:

• the `2-norm term, also known as least squares (LS) solution, minimizes the

residual energy, thus ensuring de-noising and measurement data fitting;

• the `1-norm term, also known as basis pursuit (BP) solution, limits the num-

ber of non-zero coefficient, i.e. forces the solution to be sparse;

• the regularization parameter γ determines the respective weight of the pre-

ceding terms in the comprehensive cost function.

The different behaviour between LS and BP solution is explained in Fig. 1.12

where two specific histograms display the residuals amplitude distribution. For the

sake of completeness, the corresponding objective functions are displayed, properly

scaled and centred around the zero-valued residual amplitude.

The `1-norm function provides larger penalties in the surrounding of the origin, but

grows linearly with the residual amplitude weights. Accordingly, the BP solution pro-

duces a large portion of residuals with an amplitude equal to zero or approximately

negligible, but also some residuals whose amplitude is pretty high. In other words,

the solution is sparse because it has many zero-valued residual, but affected by large
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outliers or noisy distortions.

On the other hand, the `2-norm is characterized by a quadratic relationship be-

tween residual amplitude and penalty function. With respect to the previous case,

the number of zero-valued residuals is expected to decrease, but the amplitude dis-

tribution is more uniform and covers a narrower interval. In other words, the lasso

solution guarantees the solution to fit the measurement data with an approximation

error driven from a nearly uniform distribution.

The regularization of LS and BP solution is also known under the denomination

of LASSO and represents a good compromise between de-noising and sparsity.

Elastic Net solution Finally, a slightly more complex version of sparse norm ap-

proximations is provided by the so-called elastic net (EN) approach:

x̂ = min
x

‖Ax−y‖2
2 +β‖Tx‖2

2 +γ‖x‖1 (1.39)

where an additional `2-norm term is included, accompanied by the corresponding

regularization parameter β. More precisely, this quadratic penalty function consists

of a Tikhonov matrix T which multiplies the unknown vector x. Mostly, the Tikhonov

matrix is implemented as a weighted identity matrix (T = cI,c 6= 0), thus endors-

ing solution with smaller energy. Otherwise, another widely employed formulation

defines T as a low-pass operator, e.g. a finite difference operator, thus endorsing

smoother solutions.

In any case, the EN approach improves the numerical conditioning of the prob-

lem and guarantees better stability in the presence of noise. On the other hand, each

term of the objective function corresponds to a specific assumption on the solution

inherent structure. Looking for a totally blind approach, not requiring any a priori

knowledge, the elastic net should be better considered as a performance reference,

to be applied only when the signal under investigation has been previously studied

and characterized.

1.6.2 Greedy Search

Convex optimization techniques prove to be a powerful tool for computing sparse

representations from a given set of measurements. On the other hand, a large variety

of greedy search techniques promise to yield similar performances at the expense of
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a lower computational complexity. Generally speaking, an algorithm is said to be

greedy if it solves an heuristic problem by iteratively selecting the locally optimal

solution.

A vocabulary shows that the adjective greedy is correlated with words like hun-

gry, craving, grasping, attributes which can hardly be associated with a sparse re-

covery algorithm. However, this odd denomination could help point out the funda-

mental difference between convex optimization and greedy search:

• the convex optimization approach refines a set of possible solution progres-

sively optimizing a global cost function;

• the greedy approach considers a starting solution and extends it till a pre-

defined stop criterion is satisfied: at each iteration only the maximal extension

is considered and included into the current solution.

Typically, greedy solutions allow a drastic reduction of computational complex-

ity, but they are practically feasible only on a specific class of problems, character-

ized by two peculiar properties: greedy choice and optimal substructure.

More precisely, a problem is said to admit greedy choices if its solution can be com-

puted iteratively, progressively extending the current solution but never reconsider-

ing the previous choices. Similarly, a problem is said to exhibit optimal substruc-

ture if an optimal solution to the problem is also an optimal solutions to its sub-

problems. Fortunately, the sparse acquisition problem is proven to satisfy both these

properties and appears to be an ideal candidate for greedy search application.

Application to Sparse Problems

Matching Pursuit The forefather of greedy search techniques is undoubtedly the

so-called Matching Pursuit (MP) algorithm [23], which provides the basic structure

for all of the greedy algorithms to follow.

Once more, just like in BP case, the basic idea is to approximate the measure-

ment vector y as a linear combination of the measurement matrix A columns. In

this context, the problem is the correct identification of the most suitable coefficient

vector x.

The algorithmic main steps are summarized in Algorithm 1, where the local op-
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timal selection procedure is defined as follows:

[har d(h,k)]i =
{ hi , if |hi | is among the k largest coefficients of h

0, otherwise
(1.40)

where h is the vector to be approximated and k is the number of representation

coefficients, i.e. its sparsity level. In the present case, the har d procedure is applied

directly to the current proxy vector h` in order to identify only its largest coefficient.

Evidently, MP result is strongly dependent on the stopping criterion choice. In

this context, many alternatives are feasible and different criteria could be properly

combined in order to simultaneously control different solution features. For in-

stance, a maximum iteration number is equivalent to a constraint on the maximum

sparsity level. Conversely, a condition on the residual energy could be employed to

enhance data fitting, but requires a preliminary assessment of the noise level which

affects the measurements. Typically, there is no golden standard and stop criterion

ought to be tuned according to the peculiar operative conditions.

Algorithm 1 Matching Pursuit algorithm

input: measurement matrix A, measurement vector y, stopping criterion

1: initialize:

residual vector r0 = y, current solution x0 = [], iteration `= 0

2: while stop criterion not satisfied do

3: proxy: h` = AHr`

4: update: x`+1 = x`+har d(h`,1)

5: r`+1 = y−Ax`+1

6: `= `+1

output: sparse solution x̂ = x`, sparsity level `

Iterative Hard Thresholding Some years later, a novel greedy algorithm also known

as Iterative Hard Thresholding (IHT) was inspired by MP [24]. The algorithmic rou-

tine is nearly the same, but the current solution update is replaced by the following

formulation:

x`+1 = har d(x`+h`,k) (1.41)

In other words, the selection procedure is applied not only on the proxy, but on its

summation with the current solution. Furthermore, the selection could consider a
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set of coefficients whose cardinality is equal to k, i.e. directly the desired sparsity

level.

Owing to this peculiar update formula, IHT proves to be greedier than MP, still

keeping the solution sparsity under control. Adopting such a sharp coefficient selec-

tion procedure, it is reasonable to argue that IHT could be more prone to excessive

simplification of the signal under investigation, leading to an information content

loss or misinterpretation. However, experimental practice shows how IHT repre-

sents a good alternative to the MP approach, especially in those problems where

signal sparsity is evident and pronounced.

Orthogonal Matching Pursuit Even if IHT keeps spreading more and more among

CS literature, another algorithm is worth to be considered as the actual legitimate

successor of MP, namely the Orthogonal Matching Pursuit (OMP) algorithm [25].

As can be seen in Algorithm 2, the main structure draws inspiration directly from

Algorithm 1, even though some differences are noticeable.

Firs of all, the solution support is introduced and defined as the set of non-zero

solution coefficient locations:

Sx = {i ∈Z+ s.t . xi 6= 0} (1.42)

At each iteration, the support of the selection procedure result is included into the

comprehensive signal support.

Furthermore, also the current solution update is renewed. According to MP al-

gorithm, the current solution is provided by the summation of previous iteration

result with har d selection result. Conversely, OMP algorithm defines the current

solution as the LS solution chosen among all the `-sparse vectors whose support is

given by S`x . Though computing `2-norm approximation, OMP is still an iterative

greedy algorithm: once a coefficient location has been included into the support,

it will be never discarded nor could be selected again. On the other hand, the co-

efficient value could change on varying the iteration number. Indeed, OMP tries

to approximate the measurement vector y as a linear combination of measurement

matrix A columns: it is reasonable to expect that the larger is the number of em-

ployed columns, the more accurate will be their combination coefficients.

Looking at MP and OMP, a difference stands out immediately: the term orthog-

onal. According to Algorithm 1, MP coefficients are estimated by projecting the cur-
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rent residual over the set of A columns selected in the previous iterations. This ap-

proach is proven to preserve the entire information content, but does not ensure

asymptotic convergence to the actual global solution. In order to solve this sub-

optimal behaviour, the orthogonality constraint is introduced in Algorithm 2. In-

deed, from a linear algebra point of view, the LS update formula ensures the resid-

ual to be projected over the vector subspace P` spanned by the so far selected A

columns. At each iteration, a novel subspace is defined and it can be shown that P`

is orthogonal by construction with all its preceding versions P`−1,P`−2, . . . .

The orthogonal constraint, provided by the LS approximation, guarantees the

asymptotic convergence to the actual global solution. Moreover, it allows the algo-

rithm to converge in a fewer number of iterations. In conclusion, OMP should be

generally preferred over MP, because its larger computational effort results in more

accurate estimations and fewer iterations.

Algorithm 2 Orthogonal Matching Pursuit algorithm

input: measurement matrix A, measurement vector y, stopping criterion

1: initialize:

residual vector r0 = y, current solution x0 = [],

solution support S0
x =∅, iteration `= 0

2: while stop criterion not satisfied do

3: proxy: h` = AHr`

4: identify: S`+1
x = S`x ∪ supp

(
har d(h`,1)

)
5: update: x`+1 = minx ‖y−Ax‖2 ∀x : supp(x) ⊆ S`x

6: r`+1 = y−Ax`+1

7: `= `+1

output: sparse solution x̂ = x`, sparsity level `, solution support Sx̂ = S`x

1.6.3 Performances Comparison

The previous sections have briefly summarized the main techniques for solving

highly under-determined acquisition systems, properly exploiting the signal spar-

sity assumption and the measurement matrix RIP. Roughly speaking, these can be

classified according to algorithmic families, namely convex optimization and greedy

search, each one exhibiting its own advantages and disadvantages. However, a ques-

tion still remains unresolved: how can the user choose the most suitable solving
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technique, which better copes with the present operative condition? In the follow-

ing, some useful theoretical results are provided in order to characterize the be-

haviour of each family in terms of required measurement number, noise sensitivity,

and reconstruction accuracy.

Noiseless operative conditions Let us consider a noise-free measurement vector.

In order to estimate its better sparse approximation, the norm approximation ap-

proach suggests to employ a simple BP algorithm. In fact, there is no need to include

additive terms to enforce data-fitting or solution smoothing.

In order to recover a k-sparse vector, the measurement matrix A is required to

exhibit a mutual coherence compliant with the following inequality [18]:

µ(A) ≤ 1p
n

(1.43)

where n is the cardinality of the sparse representation.

A similar condition can be expressed in terms of RIP whose isometry constant is

required to satisfy the following inequality [26]:

δk < 0.307 ∧ δ2k < 0.472 (1.44)

It has been shown that this bound can not be substantially improved. In this context,

it is worth noticing that any condition regarding the isometry constant for a given

matrix is computationally very hard to verify. Instead of checking the RIP directly

over a statistically significant set of k-sparse vectors, it is advisable to randomly de-

fine the measurement matrix and show that it satisfies the RIP with reasonably high

probability [27]. In this way, it is possible to focus on RIP conditions which involve

directly the isometry constant δ and are totally independent from the measurement

matrix inherent structure.

More precisely, the Johnson-Lindenstrauss lemma ensures that a reduced set of

high-dimensional vectors can be projected onto a lower-dimensional space, pre-

serving the distances with a limited uncertainty level. In particular, given two k-

sparse vectors x1 and x2 and a projection matrix A of dimensions [m × n], with

m ¿ n, it can be shown that:

(1−δJL)‖x1 −x2‖2
2 ≤ ‖Ax1 −Ax2‖2

2 ≤ (1+δJL)‖x1 −x2‖2
2 (1.45)

where δJL quantifies the uncertainty introduced by the dimensionality loss.

It is immediate to ascertain the similarities between (1.24) and (1.45). If a random
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matrix satisfies the Johnson-Lindenstrauss Lemma with sufficiently high probabil-

ity, it is reasonable to expect that the same matrix satisfies the RIP of order k with an

isometry constant δk ' δJS .

In terms of measurement number, the BP approach requires a sufficient num-

ber of measurements which is nearly provided by a logarithmic function of the ratio

between solution cardinality and sparsity level:

m ' 2k log
(n

k

)
(1.46)

In terms of computational complexity, the BP approach generally exhibits a com-

putational complexity equal to O (1000 ·m logm) for iteration, even if performance

enhancement is possible in some peculiar cases, where ad hoc optimization proce-

dures are feasible. It should be noticed that the global solution achievement requires

a number of iterations which is not directly related to the expected sparsity level, but

depends on the cost function evolution that cannot be easily foreseen a priori.

In the matter of the OMP approach, the constraint over the mutual coherence

becomes:

µ(A) < 1

2k −1
(1.47)

much easier to be satisfied than the corresponding BP inequality (1.43).

Similarly, the measurement matrix A is required to verify the RIP of order k +1 with

an isometry constant compliant with the following inequality:

δk+1 <
1

3
p

k
(1.48)

In this condition, it can be shown that the OMP approach yields the best k-sparse

approximation exactly in k iteration, resulting in a comprehensive computational

complexity equal to O (kn logn).

OMP performances appear to exceed BP performances, but it is important not to

neglect the sufficient condition regarding the minimum number of measurement:

m ≥ 2k log(n −k) (1.49)

Accordingly, it is worth noticing that in the noiseless case the BP approach requires

fewer measurements, that is allows a larger compression ratio.

Noisy operative conditions Let us consider a measurement vector affected by an

additive uncorrelated white noise. For the sake of simplicity, let us assume the noisy
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contribution vector w can be modelled by a Gaussian distribution whose variance is

equal to σ2
w. In this context, it is worth noticing that an excessive noise level could

cancel the sparsity assumption. Accordingly, the following considerations are re-

lated to largely positive signal-to-noise ratio values. In this way, the signal sparse

representation still exhibits a clear distinction between informative and noisy coef-

ficients.

In the presence of noise, the BP approach becomes severely unstable and it is

advisable to include a regularization term, switching to the LASSO configuration.

The additive noise contribution can be seen as an uncertainty source which de-

grades both norm approximation and greedy search results. In these operative con-

ditions, LASSO and OMP exhibit similar performances, even if they mostly differ by

the computational complexity.

The measurement number is the same for both the approaches:

m ≥ 2k log(n −k) (1.50)

Comparing this value with the noiseless case, the OMP approach proves to be almost

noise insensitive, while the norm approximation technique requires a significant

increase of the measurement number.

Similarly, both the approaches requires the measurement matrix A to satisfy the

RIP of order 2k, namely twice the expected sparsity level, with an isometry constant

equal to δ2k ≤p
2−1, just like in (1.44).

The main difference between norm approximation and greedy search is thus the

computational complexity. In this context, it is noticeable that OMP requires the

same effort as in the noiseless case, while LASSO further increases the yet larger re-

quirements of BP. In other words, the noise disturbance enlarges the performance

gap, once more emphasizing that the greedy approach is particularly prone to cap-

ture the essence of sparse problem: fewer measurements imply also fewer iterations,

otherwise the CS paradigm becomes totally ineffective.

Phase Transition

The performance indices provided in the previous paragraphs could be useful to

foresee the behaviour of a given CS acquisition protocol in a given operative context.

However, these indices are not always unanimous and the reconstruction algorithm
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ought to be chosen, making a proper compromise between different, and often con-

trasting, requirements. In this context the need for an unequivocal and immediate

criterion arises. To the best of authors’ knowledge, a plausible answer is represented

by the so-called phase transition graph, which intuitively shows if the implemented

algorithm is near to the theoretically optimal performances or should be replaced

by more effective solutions.

In geometry, phenomena like abrupt phase transitions can be observed in any

kind of measurement space, independently from its dimension. Typically, a phase

transition is defined as a rapid shift in the likelihood of a property’s occurrence when

a dimension parameter crosses a critical threshold [28]. Actually phase transitions

become more and more significant in higher-dimension geometric probability, as

they represent a powerful tool to predict the development of a given occurrence even

in contexts where an immediate intuition is precluded. Indeed, phase transitions are

expected to influence the model selection for the statistical analysis of large datasets,

but also the assessment of the most suitable sampling scheme, capable to correctly

acquire a digital data stream.

In CS theory context, phase transition graph becomes a useful tool to compre-

hend the actual potentiality of a reconstruction algorithm. Exempli gratia, let us

consider a generic sparse acquisition problem where a k-sparse representation of

cardinality n has to be retrieved from a measurement set of cardinality m with m ¿
n. As reconstruction algorithm, let us compare the aforementioned BP and OMP ap-

proach. The reconstruction is said to be successful if the solution support actually

contains the k most significant coefficient locations. For each considered algorithm,

the success probability exhibits a multi-dimensional distribution, which depends

on the compression ratio m/n and the sparsity level k.

In practice, a thorough mathematical characterization is infeasible, due to the

amount of variables to be taken into account. Nevertheless, some interesting cases

represent a theoretical benchmark in mathematics and their phase transition func-

tion can be inferred in a closed form. For instance, given a mixture of k independent

Gaussian n-dimensional distributions, the probability of retrieving the exact orig-

inal formulation starting from an incomplete set of m < n measurements is fully

characterized and its phase transition function can be expressed as a non-linear

function of k, n and m. A recent paper has demonstrated how noiseless under-
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Figure 1.13: Compressed Sensing from random Fourier measurements. Shaded at-

tribute: fraction of realizations in which l1 minimization (1.2) reconstructs an image

accurate to within six digits. Horizontal axis: under-sampling fraction. Vertical axis:

sparsity fraction [28].

determined problems behave like noisy well-determined problems, i.e. coping with

incompleteness of the measurement data is (for random sensing matrices) similar

to coping with Gaussian noise in complete measurements. In other words, it is pos-

sible to change the underlying distribution from Gaussian to any one of a variety of

non-Gaussian choices, and the phase transitions are expected to occur at the same

locations, i.e. in correspondence to the same acquisition settings.

Fig. 1.13 depicts the phase transition graph of BP success probability in the pres-

ence of compressed random Fourier measurements. The probability function is ob-

served on varying the compression ratio m/n on the y-axis, and the sparsity fraction

k/n on the x-axis. The black bold curve represent the theoretical phase transition

function as inferred by the corresponding mixture of Gaussian distributions. It is

worth noticing that this curve is a demarcation line which divides the success area

below from the failure area above.

Given an expected sparsity level k, it is possible to set the acquisition parameters

m and n in order to get into the success area and optimize the acquisition protocol

performances. For instance, let us consider an experimental setting which corre-

sponds to position 1 in Fig. 1.14. By increasing the problem size, i.e. by increasing n,

the position inside the graph moves leftward from 1 to 2, still inside the failure area.

By increasing both the problem size n and the measurement number m, it is possi-

ble to reach position 3, where high success probability is guaranteed. In particular,
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Figure 1.14: Different behaviours according to different position in the phase tran-

sition graph [29].

the passage from 1 to 3 requires that the compression ratio stays constant, while

the sparsity fraction decreases. Alternatively, the position 4 could be reached with a

path between 2 and 3, i.e. by decreasing both the compression ratio and the sparsity

fraction. The lower is the distance from the theoretical limit, the higher is the prob-

ability that unexpected disturbances or malfunctions make the setting to get into

the failure area. Finally, the area labelled as position 5 corresponds to the canoni-

cal acquisition protocol where m = n, where reconstruction probability is unitary,

independently from the signal sparsity properties.

Phase transition graphs are also an immediate and intuitive tool to compare al-

gorithm performances. For instance, Fig. 1.15 depicts the phase transitions graphs

of four different under-determined solving approaches. Blue and red curves cor-

respond respectively to BP and IHT approaches. Conversely, magenta and black

curves represent two different implementations of the OMP approach, respectively

the Subspace Pursuit, briefly SP [31],and the Compressed Sampling Matching Pur-

suit, briefly CoSaMP [32]. From the graph it is immediate to ascertain that the suc-

cess area related to greedy search approaches is much smaller than the success are

related to norm approximation approaches. Accordingly, an actual computational

complexity reduction is feasible only in accordance with strict constraints on the

experimental settings.
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Figure 1.15: Phase transition graphs of BP approach (blue), IHT (red), SP (magenta),

and CoSaMP (black) [30].

1.6.4 Guidelines for Practical Implementation

In CS literature, many solutions have been proposed in order to solve the under-

determined acquisition system. More precisely, two algorithmic approaches could

be identified, namely the norm approximation and the greedy search approach. By

properly exploiting the sparsity assumption, these algorithms are able to estimate

an accurate sparse representation of the observed signal, even starting from an in-

complete set of measurements. As mentioned in the previous sections, there exist

several theoretical results and criteria which allow to foresee the actual feasibility

of a sparse acquisition protocol, in terms of expected reconstruction error and re-

quired measurement number.

The choice between norm approximation and greedy search should consider

many different aspects. In fact, the practical implementation should be tuned in

accordance with the specific operative conditions. Even adopting a signal inde-

pendent perspective, with a totally random measurement matrix, some boundary

conditions could suggest to employ a norm approximation technique rather than a

greedy search technique, and vice versa.

In the following, a brief summary of pros and cons is presented.

Norm approximation copes with any kinfd of sparse problems, independently from

the actual distribution of the significant coefficients. By minimizing a proper `1-
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norm cost function, the provided solution takes a global meaning and accounts for

the sparsest approximation of the measurement vector. By properly setting the ac-

quisition parameters, this approach yields overwhelming success probability and

noticeable compression ratio. On the other hand, the computational effort is enor-

mous and requires suitable processing capabilities to be carried out in reasonably

short time. In the presence of noise, it is necessary to enrich the cost function by in-

troducing one or more `2-norm terms. In this way, the algorithm proves to be more

robust, but also more computationally demanding.

Greedy search adopts an iterative procedure where a local solution is iteratively up-

dated and extended till a pre-defined stop criterion is satisfied. Typically, greedy

search techniques allow a drastic reduction of the computational effort, requiring

no more than k +1 iterations to yield their k-sparse approximation. The noise ro-

bustness is such that no precautions are required in the presence of additive un-

correlated noise, provided that the sparsity assumption is preserved. On the other

hand, this local perspective does not guarantee the convergence to the actual global

solution. Greedy search is feasible only in those problems which exhibit optimal

substructure and admit greedy choice solutions. Furthermore, in terms of success

probability, greedy acquisition settings must be compliant with much more severe

constraints than in norm approximation case.

The previous considerations could be condensed into the following guidelines:

• if a blind and general approach is required, the most suitable option is rep-

resented by norm approximation techniques, particularly BP in the noiseless

case or LASSO in the noisy case;

• if problem substructure is proven to be suboptimal and the main focus con-

cerns computational effort and implementation complexity, the most suitable

option is represented by greedy search techniques, particularly OMP in any of

its various implemented formulations.



Chapter 2

CS-Based Pre-Processor for

Vector Signal Analysis and

Cognitive Radio Applications

2.1 Introduction

Nowadays, radio frequency (RF) spectrum represents a much precious resource.

In order to ensure its rational, fair and economical use, many committed authorities

have been established and many norms and standards have been promulgated.

In this context, a still not completely resolved problem is represented by the co-

existence of two kinds of users: primary users with a license for a specific transmis-

sion channel, and secondary users who occupy spectrum holes, i.e. temporarily un-

employed spectrum portions. In order to avoid interference or superposition, sec-

ondary users have to monitor a large bandwidth and set their transmission param-

eters according to their acquisitions results. Such a dynamical technology is called

cognitive radio, briefly CR [33]. Basically, CR could be considered a peculiar applica-

tion of software defined radio (SDR) to wideband communications. From a practical

implementation point of view, a cognitive radio is a smart transceiver, i.e. a device

which combines both transmitting and receiving functionalities, but, at the same

time, is provided with an autonomous processing and control unit, that can monitor

45
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surrounding conditions and accordingly tune its operative parameters. Typically, a

state-of-the-art CR includes five main functionalities: geographic localization, sig-

nals encryption and decryption, user authority identification, real-time spectrum

sensing, and prompt adjustment of transmission parameters, like throughput, sym-

bol rate, modulation format, etc.

This chapter focuses its attention particularly on the spectrum sensing issue. Re-

stricting the analysis to this peculiar aspect, the problem is remarkably similar to the

more general problem of detecting RF sources in monitoring applications using a

vector signal analyser, briefly VSA. It requires to deal with RF signals in an extremely

large spectrum bandwidth and with nearly complete absence of a priori knowledge.

In fact, in most spectrum sensing and wireless communications analysis, signals of

interest typically occupy only a few among several possible bands, and do so for

short time bursts within a given observation interval. The frequency and time lo-

cation of these signals may be known only approximately a priori (e.g., the nominal

frequency of a wireless channel) or, in general, not accurately enough to set up more

detailed measurements. Such a scenario suggests that a CS approach could be ex-

tremely effective in reducing the sampling frequency and the computational effort

necessary to span the radio frequency spectrum and identify unemployed channels.

In this chapter a novel CS algorithm is developed and employed to provide ac-

curate preliminary information and suitably preprocessed data for a vector signal

analyser or a cognitive radio application.

The CS paradigm exploits signals sparsity not only to efficiently capture the sig-

nal information content, but also to accurately localise where the active contribu-

tions lie over the observed spectrum. The proposed algorithm is inspired by a novel

protocol for analog-to-digital data conversion, called Modulated Wideband Con-

verter [13]. It is able to extract specific signal bursts from a record of samples cov-

ering a longer time interval and a broader bandwidth. The accuracy of the extrac-

tion process is analysed and experimental results referring to vector analysis are pre-

sented. This provides spectrum-blind sensing and signal extraction capabilities that

can effectively simplify the time consuming process of setting up a spectrum anal-

yser.

Furthermore, the proposed algorithm is able to single out active sources which

could be partially or totally superposed both in time and frequency domain. The ob-
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served spectrum is divided into consecutive non-overlapping sub-bands. By prop-

erly analysing the eigenvalue distribution of the measurement autocorrelation ma-

trix, active sub-bands are identified and demodulated at baseband. In this way, also

a de-noising effect is achieved, as thoroughly characterized in the following sections.

Finally, a histogram analysis stage considers the in-phase and quadrature compo-

nents of each singled out baseband trend to predict the transmission modulation

format. A simple threshold process performed on the histogram distributions al-

lows to estimate a rather rough rendering of the original constellation graph, pro-

viding also the areas where it is more plausible to find a symbol. Application of

pattern matching algorithms, either to such plots or directly to histogram data, can

ultimately detect the modulation format [34].

2.2 Problem Scenario

Vector signal analysis extends the capabilities of spectrum analysers to the do-

main of digital modulations. It can be seen as an enhancement that capitalizes on

the availability, in modern digital architectures, of high-resolution, high-speed digi-

tising coupled with powerful signal processing resources.

A vector signal analyser (VSA) yields essential information for the characterisa-

tion of digitally modulated signals, such as constellation and vector diagrams, error

vector magnitude (EVM) plots, etc. [35]. However, VSA measurements require ac-

curate advance information about carrier frequencies and modulation formats of

interest. Unless these are exactly known beforehand, knowledge has to be gained by

preliminary measurements.

This can make the process rather cumbersome and time consuming in multi-

source wireless environments, such as in spectrum monitoring, surveillance appli-

cations and cognitive radio [33], feeding the instrument with the required advance

information becomes challenging.

In fact, correctly measuring intertwined and possibly elusive communication

channels requires an accurate analysis of the mutual timing, frequency and levels

of a set of signals employing different modulation formats. Signals of interest might

occupy only a few among a number of possible bands and do so only for the short

time required to send a radio-frequency (RF) burst, so that taking preliminary mea-
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surements becomes challenging.

Such signals can be intuitively associated to the notion of sparsity, that implies

their structure is recoverable from a comparatively small number of measurements

defined in a suitable domain. This important feature is exploited in the signal pro-

cessing paradigm called compressive sensing (CS), or compressed sampling, to achieve

greater efficiency in data acquisition and measurement.

In this chapter we propose a CS-based measurement pre-processor, that signifi-

cantly enhances the potential of VSA applications by providing the instrument with

the ability to detect signals from multiple sources and autonomously identify their

basic parameters.

The literature about potential CS applications is very extensive. Interested read-

ers are referred in particular to published journals [36], [37], textbook [38] and the

extensive references therein. Applications related to signal processing and measure-

ment have been discussed in the literature [39], [40], including sensing and signal

detection (e.g., [41]) which is relevant to this work. Design of hardware data acqui-

sition devices based on CS principles is also an active research area [42], [43].

In this work, the focus on the algorithmic side of CS is motivated by the following

considerations:

• data acquisition hardware in a vector/spectrum analyser is already a highly

sophisticated and optimised system;

• as the CS algorithm is meant to implement a pre-processing stage, solutions

impacting instrument architecture would be far beyond the aims of the work;

• sample records are usually several thousand samples in size and the envisaged

pre-processor functions could be computation-intensive. Hence, a process-

ing paradigm that allows data compression without sacrificing measurement

accuracy can significantly improve efficiency.

So far, few works have addressed a measurement application discussing in detail

its CS aspects. This chapter motivates the choice of a CS algorithm, discusses under-

lying assumptions and presents an analysis of potential measurement accuracy.
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Figure 2.1: Simplified block diagram showing integration of the CS-based pre-

processor into VSA firmware architecture.

2.3 CS algorithm for VSA measurement

The relationship of the proposed CS-based pre-processor to the general VSA in-

strument architecture is shown in Fig. 2.1. To simultaneously monitor different fre-

quency channels of interest, the VSA analog intemediate-frequency (IF) filter would

be employed as a pre-selector, using a wide-band setting and the pre-processor

would become part of the digital intermediate-frequency software/firmware. A sin-

gle record of N samples from the analog-to-digital (A/D) converter might then con-

tain multiple RF signal bursts generated by different sources, whose time separation,

length, carrier frequency, bandwidth and modulation format are not known.

An example of a time domain trace at the IF filter output is presented in Fig. 2.2,

where bursts at three distinct carrier frequencies have been given different ampli-

tudes to help distinguish them visually (a shorter peak is the result of partial super-

position in time between the first two bursts). The CS algorithm is tasked with the

detection of “active” sub-bands where RF bursts are found, followed by the extrac-

tion of relevant signal components, where appropriate. Its use guarantees a twofold

advantage since, on the one hand, it allows the adoption of sub-Nyquist schemes

that limit the computational load involved in spectrum sensing. On the other hand,

a sharp distinction is made between informative and spurious components, extract-

ing the former while providing some degree of noise reduction.

The algorithm operates on the sample record in three stages:

• mixing and sub-Nyquist down-sampling: this is obtained by a software im-

plementation of the modulated wideband converter (MWC) concept [13], [44],

which allows compressive acquisition of sparse wide-band signals and resam-
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Figure 2.2: Example of a time domain trace comprising three bursts. Carrier fre-

quencies are all different, but two bursts are partially superposed in time.

pling at sub-Nyquist rates;

• finite support recovery, by means of an OMP-based procedure based on a de-

velopment of the method presented in [45];

• signal reconstruction, that simply requires inverting a linear measurement equa-

tion restricted to “active” sub-bands.

2.4 MWC Analysis and Characterization

A block diagram of the MWC is presented in Fig. 2.3. The sequence of Nyquist-

rate samples from the A/D converter, indicated as x[nT ] with 0 ≤ n < N , is sent in

parallel to m MWC mixing channels, being multiplied in each channel by a different

periodically repeating pattern of M random equiprobable sign values. We indicate

each pattern by a sign vector: ai = [αi ,0, αi ,1, . . . , αi ,M−1]T , with αi ,h ∈ {−1,1}. The

index i = 1, . . . m identifies the mixing channel, which is uniquely associated to a

pattern as long as the pattern length is M < 2m −1.

Sign vectors are assumed to be mutually uncorrelated, that is, Eα[aT
i al ] = 0 for

i 6= l , the appended subscript to symbol Eα[·] denoting that in this case the statis-

tical expectation operator is referred to the probability of sign values. For the sake

of simplicity, it is also assumed that the length of x[nT ] corresponds to an integer
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number of P periods of the modulating sign pattern, so that the signal length can be

factored as N = P ·M .

The spectra of periodical sign patterns are composed of non-zero terms at in-

teger multiples of their common fundamental frequency 1
MT . Given the discrete

Fourier transform (DFT) of the Nyquist-rate sequence, X ( k
N T ), each mixer output

is the superposition of different frequency-shifted replicas of the signal spectrum,

obtained according to a channel-specific aliasing pattern Ai (·):

M−1∑
l=0

Ai

(
l

MT

)
X

(
k

N T
+ l

MT

)
, (2.1)

where Ai (·) is the DFT of the i -th sign pattern. In this way, a “controlled” aliasing is

introduced [44].

After mixing, signals are low-pass filtered and down-sampled by a decimation

factor M . The digital low-pass filter is the same for all channels and its frequency re-

sponse H
(

k
N T

)
is designed to approximate an ideal low-pass response with H

(
k

N T

)
=

0 for |k| > P
2 .

The amount of data at the MWC output is thus reduced from N = MP samples

in a single vector to a measurement matrix having size m ×P . The ratio M
m can be

called the compression factor.

Figure 2.3: Block diagram of the modulated wideband converter [44].
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2.4.1 MWC Measurement Equation

The output of the i -th MWC channel is a lower-rate sequence yi [pMT ] of finite

length P , that can be described by the time-domain equation:

yi [pMT ] =
M−1∑
l=0

Ai

(
l

MT

)
xl [pMT ] 0 ≤ p < P (2.2)

Accordingly, an equivalent matrix equation is derived as follows:
y1[0] . . . y1[P −1]

y2[0] . . . y2[P −1]

...
. . .

...

ym [0] . . . ym [P −1]

=


A1[0] . . . A1[M −1]

A2[0] . . . A2[M −1]

...
. . .

...

Am [0] . . . Am [M −1]




x0[0] . . . x0[P −1]

x1[0] . . . x1[P −1]

...
. . .

...

xM−1[0] . . . xM−1[P −1]


(2.3)

Each sequence xl [pMT ], with 0 ≤ l < M , represents the contribution to the sig-

nal x[nT ] from a spectrum slice of width 1
MT , baseband-shifted from its original

center frequency l · 1
MT . It is a complex-valued sequence that can be expressed as:

xl [pMT ] =
N−1∑
n=0

x[nT ]e j 2π
M nl h[(n −pM)T ]. (2.4)

The MWC thus implicitly creates a grid on the frequency axis that determines a par-

tition of the IF bandwidth into M equal-width sub-bands.

In a multi-source wireless environment, each spectrum slice could be related

to a source employing a different frequency channel. Any time-multiplexed signal

within a channel can be singled out directly from the samples xl [pMT ]. Further-

more, if the carrier frequency of an active source equals the center frequency l
MT ,

then xl [pMT ] directly provides the demodulated signal, provided that the corre-

sponding spectral contribution is entirely contained into the selected sub-band.

In each down-sampled sequence yi [pMT ] sub-band contributions are mixed up

by channel-specific aliasing patterns, as shown in (2.2) and (2.3). In the following it

will be useful to refer to (2.3), using the compact form:

Y = A ·X, (2.5)

where Y contains the MWC outputs, that is, time-domain sequences yi [pMT ] from

MWC channels i = 1, . . . ,m, arranged into rows. It is useful to define column vec-

tors yi =
[

yi [0] yi [MT ] . . . yi [(P −1)MT ]
]T , which allow to write Y = [

y1 y2 . . . ym
]T .

Likewise, each row of X contains a baseband time-domain sequence xl [pMT ] asso-

ciated to the l -th spectral sub-band, l = 0,1, . . . , M−1, of width 1
MT . These rows, too,
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can be arranged into column vectors xl = [xl [0] xl [MT ] . . . xl [(P −1)MT ]]T with

0 ≤ l < M , yielding X = [x0 x1 . . . xM−1]T .

Finally, matrix A can be factored as:

Aα ·W, (2.6)

where W is a DFT matrix of size M×M , with elements [w]h,l = 1p
M

e− j 2π
m hl , called the

sparsifying matrix in CS parlance. The sensing matrix Aα is a m×M Bernoulli matrix

that contains the sign vectors as its row elements:

Aα = 1p
M



α1,0 α1,1 . . . α1,M−1

α2,0 α2,1 . . . α2,M−1

...
. . .

...

αm,0 αm,1 . . . αm,M−1

=


a1
T

a2
T

...

am
T

 . (2.7)

For the sake of mathematical convenience both matrices have been suitably nor-

malized, so that W is orthonormal and rows of Aα have unit norm. The assumed

incorrelation of the sign vectors implies that, “on average”, rows of the sensing ma-

trix are orthogonal, i.e.: Eα
[
AαAT

α

]= I, where I is an m ×m identity matrix.

2.4.2 MWC Input Noise

In the conditions for which the CS-based pre-processor is intended, the VSA

would operate with a comparatively wide-band IF filter setting (typically, in the 10-

100 MHz range). As the displayed average noise level (DANL) of current VSA/spectrum

analysers is typically in the region of -140 dBm for a 1–Hz bandwidth, noise power

could be in the range -60 to -70 dBm, depending on the instrument specifications

and setting.

To analyse how noise and uncertainty come into play, it is commonly assumed

the measurement matrix Y is affected by additive measurement noise. This is not

applicable to the MWC case, as additive noise affects instead the acquired sample

record x[nT ]. Thus, one should write: x[nT ] = s[nT ]+ν[nT ], where ν[nt ] is a se-

quence of zero-mean, uncorrelated signal noise samples with finite variance σ2
ν. A

similar expression holds for each baseband sequence and can be written as vector

relationship:

xl = sl +nl , (2.8)
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where sl refers to the “clean” signal component from the l -th sub-band and nl to the

corresponding signal noise sequence, both baseband-shifted and filtered according

to (2.4).

Collecting these vectors into two separate matrices, respectively S and N, yields

the equation that correctly describes the MWC input-output relationship:

Y = AX = A(S+N), (2.9)

with S = [s0 s1 . . . sM−1]T and N = [n0 n1 . . . nM−1]T .

A vector nl is a segment of a noise process whose variance has been reduced to
σ2
ν

M by low-pass filtering. Noise vectors are uncorrelated zero-mean, and their mu-

tual correlation is also made negligible by low-pass filtering within the MWC, hence:

E[nT
l nl ′ ] ' 0 for l 6= l ′, the symbol E[·] indicating the expected value. Therefore, one

has: E
[ 1

P NNT
]= σ2

ν
M · I, with I an M ×M identity matrix.

One may also consider a sub-band signal-to-noise ratio (SNR), defined as:

SN Rl =
‖sl‖2

2

E
[‖nl‖2

2

] =
1
P sT

l sl

σ2
ν

M

. (2.10)

It has to be remembered this quantity is a “virtual” SNR, since sub-bands at the

MWC input are actually not accessible. It will however be useful as a reference later

on, to better understand the behaviour of the CS algorithm with regards to noise.

2.4.3 Sparsity Assumption and MWC Design Trade-Off

The measurement matrix A has size m × M with m < M , consequently, the set

of equations (2.9) is underdetermined. The problem is overcome by the a priori as-

sumption that X is sparse, that is, only a few among its rows contain non-zero signal

components. In the VSA measurement context, sparsity thus refers to sub-bands

within the monitored frequency span. As most RF sources employ signal bursts,

the hypothesis that active signal sources are found only in a few sub-bands is rep-

resentative of the actual situation, provided the observation interval (i.e., the total

measurement time N T ) is short enough. It has to be remarked that the sparsity hy-

pothesis refers to the fact that only few among the signal vectors sl are expected to

be non-zero. On the contrary, since noise components nl will all have non-zero vari-

ance, X = S+N could never be strictly sparse, unlike S. In its application to (2.9) the
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definition has to be modified accordingly, so that only row vectors of X significantly

above the noise level are considered “non-zero”.

The practical implication of this revised criterion is that a signal contribution

in the l -th sub-band is deemed significant (i.e., l ∈ S) when its total power, aver-

aged over the whole observation interval, exceeds a suitably defined threshold, ide-

ally: SN Rl > 1. From this viewpoint, short high-power bursts and longer, low-power

bursts can be equally detectable.

With these assumptions, (2.9) can be referred to a class of CS problems called

multiple measurement vectors (MMV) [46].

Finding a sparse solution for the unknown X in (2.9) allows to extract time do-

main sequences associated to specific individual sub-bands, so that each can be

processed to obtain the preliminary information required by the VSA, and subse-

quently analysed as an individual entity by the instrument modulation domain al-

gorithms .

Formally, the support of the matrix X is defined as the set S of indices such that,

if l ∈ S ⊂ {0, 1, . . . , M − 1} vector xl is non-zero (i.e., |xl [pMT ]| 6= 0 for at least one

value of p). In practice, an assumption on the maximum signal sparsity level can

generally be made a priori, limiting the cardinality of the support to at most |S|max .

Since the sparsity pattern is considered independent of the column index p, the

columns of matrix X are said to be jointly sparse. Provided it can be reduced to just

|S| unknowns, (2.9) could be solved as soon as m = |S|, allowing to de-alias measure-

ments without loss of information.

Design parameters for the MWC are then the two integers m and M , that also

determine the size of the measurement matrix A. From what has been said above,

M determines the partitioning of the frequency axis, while the number m of MWC

output channels should be chosen to reflect the sparsity level of the analysed sig-

nals. However, elements of S are not known in advance and have to be found by

optimization algorithms that typically require m ≥ 2 · |S| to solve the problem, if A

has full rank m [47, 18]. Accordingly, it suffices for m to be not less than 2 · |S|max .

Making M as large as possible, within the bound M < 2m−1 mentioned above, could

be attractive in the interest of increasing the compression factor. However, this may

not always be the best choice, as it should be reminded that increasing M results in

narrower spectrum slices, making subsequent steps of the CS algorithm potentially
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harder to manage. As in any measurement problem, a suitable tradeoff has to be

found, considering as well signal bandwidths, SNR, etc.

2.5 Blind Sensing and Finite Support Recovery

Finite support recovery is aimed at the determination of the support of X, ac-

cording to the notion of sparsity introduced in Section III. In a VSA application this

stage achieves blind sensing of active spectrum sub-bands, by indicating the index

values of the vectors xl that contribute significantly to the MWC outputs.

The process is based on the singular-value decomposition (SVD) of the matrix

YYT , with the aim of reducing the MMV problem dimension. As this matrix is sym-

metric, SVD yields:

YYT = VY ·diag[λ2
i ] ·VH

Y , (2.11)

where λi , i = 1, . . . m are the eigenvalues of YYT , with λ1 > λ2, . . . ,λm . The columns

of VY form the corresponding set of eigenvectors: VY = [vY [1] vY [2] . . . vY [m]].

It was shown in [45] that, when noise is negligible, X has the same support as

the matrix U obtained by solving the matrix equation VY = AU under a joint spar-

sity constraint. For the noiseless case, then, information about the sparse support is

recoverable from almost any eigenvector of YYT . In the more realistic situation con-

sidered in (2.9), eigenvalue-based subspace decomposition can help convey better

information content.

It is first necessary to determine whether signals are actually present within the

observation interval. A detection criterion can be based on the ratio λ1/λm of the

largest to smallest eigenvalue. When only noise is present, elements of Y can be

described by independent and identically distributed (i.i.d.) complex Gaussian ran-

dom variables and 1
P YYH is a complex Wishart matrix. Its statistical properties have

been widely studied, in particular the signal detection threshold:

λ1

λm
> (

p
M +p

P )2

(
p

M −p
P )2

1+ 1

3
√(p

M +p
P

)2p
MP

 , (2.12)

depends only on the dimensions of matrix Y and can be shown to result in a proba-

bility of false alarm not larger than 5% [48].

For our purposes, this leads in practice to the condition that a useful signal is de-

tected when the eigenvalue spread is at least an order of magnitude, that is, the de-



2.5. BLIND SENSING AND FINITE SUPPORT RECOVERY 57

tection threshold is λ1/λm ≤ 10, for which the probability distribution of the largest

eigenvalue was obtained in [49]. Based on results provided there, a suitable thresh-

old for detecting signal components could be determined, keeping the effect of sta-

tistical variability into account. For instance, a probability of false alarm not larger

than 5% is guaranteed by the following threshold value:

σ2
ν

M
·
(
1+

√
M

P

)2

·
[

1+ 3

√
1p
M

+ 1p
P

]
(2.13)

However, in practice the criterion requires a preliminary estimate of noise vari-

ance σ2
ν/M . The threshold is considered reliable till the signal-to-noise ratio is not

lower than −10 dB. For instance, let us consider an experimental setting where the

sampling frequency Fs is equal to 1 MHz, the number of sub-bands M is equal to

195, the number of mixer channels is equal to 50, and the number of measurements

per channel P is equal to 121. Fig. 2.4(a) depicts the eigenvalues distribution relative

to three equal amplitude sinusoidal tones, whose frequency is given by:

fi = li · 1

MT
i = {1,2,3} li = {2,37,45} (2.14)

A similar condition is represented in Fig. 2.4(b) where the only difference is that

the three sinusoidal tones are still contained in a single sub-band block, but their

frequency no longer coincides exactly with the sub-band centre:

fi = li · 1

MT
i = {1,2,3} li = {2,37.2,45.6} (2.15)

Looking at Fig. 2.4, it is worth noticing that, on the left side, there exists a single

eigenvalue, the first one, which clearly emerges from the others; whereas, on the

right side, three eigenvalues stand above the others. This phenomenon is moti-

vated by the peculiar MWC acquisition protocol. Once demodulated in baseband,

the three components of eq. (2.14) provide the same contribution and cannot be

discriminated. Conversely, the three components of eq. (2.15) present a specific

remaining modulation contribution, resulting into three different eigenvalues. Ac-

cordingly, this eigenvalue-based criterion is not a measure of signal sparsity level,

but rather a measure of similarity between informative components.

In order to thoroughly understand which factors and parameters affect the eigen-

value distribution, we consider first the properties of the sample correlation matrix

1
P XXH , whose expected value is:

E

[
1

P
XXH

]
= 1

P
SSH+ σ2

ν

M
·I. (2.16)
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Figure 2.4: Eigenvalues distribution of the measurement autocorrelation matrix: the

eigenvalue magnitudes and corresponding indices are presented respectively on the

ordinates and coordinates axis. In (a) all the frequencies are centred around the

corresponding sub-band; in (b) each frequency has a specific shift with respect to

the corresponding sub-band centre.

For the signal component, SVD of the Hermitian matrix 1
P SSH yields:

1

P
SSH = VS ·diag[ξi ] ·VH

S , (2.17)

with ordered eigenvalues ξi , i = 1, . . . M . Columns of the unitary matrix VS form

the corresponding ordered set of eigenvectors. Given the sparsity assumption, the

rank of SSH cannot be greater than |S|, therefore ξi = 0 for |S| < i ≤ M . On the other

hand, the presence of a noise component ensures the matrix has full rank, since

the noise contribution is spread over the whole space spanned by the eigenvectors

of matrix E
[ 1

P XXH
]
. Therefore ,its eigenvalues are equal to

σ2
ν

M for |S| < i ≤ M and

approximately equal to ξi + σ2
ν

M for 1 < i ≤ |S|.
This space can be decomposed into orthogonal signal and noise subspaces, based

on the assumption that eigenvectors whose associated eigenvalues are larger than
σ2
ν

M span the signal subspace and the remaining ones are related to the noise sub-

space. The former are (approximately) sparse, whereas the latter contain no useful

information for support recovery.

Of course, XXH is not known in practice, and attention has to be turned to the

m ×m MWC output sample correlation matrix 1
P YYT . Since, recalling (2.9), its ex-

pected value can be written as:

E

[
1

P
YYT

]
= AE

[
1

P
XXH

]
AH , (2.18)
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we need to analyze how signal and noise subspaces are mapped through A to see

whether subspace decomposition can still be considered.

Let v be a generic vector belonging to the noise subspace. From the inequality:

‖Av‖ ≤ ‖A‖‖v‖ it follows that worst case mapping occurs when: ‖Av‖2
2 =λA_max‖v‖2

2,

where λA_max is the largest eigenvalue of A. As this is a random matrix whose ele-

ments satisfy suitable bounds on their moments, its first eigenvalue converges to:

λA_max −→
(
1+

√
m

M

)2

(2.19)

where m < M holds for the measurement matrix [50]. This means norms in the

noise subspace are not increased significantly. This limit function has been experi-

mentally demonstrated in a practical case where m = 10, and M = 51: the computed

maximum eigenvalue and its theoretical expected value are, respectively, equal to

1.781 and 1.876.

Vectors in the signal subspace are approximately sparse, therefore in their case

we need to refer to the restricted isometry property (RIP) in relation to matrix A. This

is said to have the RIP of order K if the following inequalities hold [51]:

(1−δK )
m

M
‖v‖2

2 ≤ ‖Av‖2
2 ≤ (1+δK )

m

M
‖v‖2

2, (2.20)

with 0 ≤ δK < 1, for any vector v having at most K non-zero elements (i.e., K-sparse).

The worst case mapping for a generic |S|-sparse vector v in the signal subspace is

obtained by taking the lower bound in (2.20) with δK = δ|S|. To ensure (2.9) has a

unique |S|-sparse solution, the RIP of order 2|S| is required, which measurement

matrix A is known to satisfy as long as m ≥ |S| log N [52]. Of course, this implies RIP

of order |S|, hence a value 0 ≤ δ|S| < 1 does exist.

The ratio of the noise upper bound to the signal lower bound:(
1+

√
m
M

)2

(1−δ|S|) m
M

=


(
1+

√
m
M

)2

(1−δ|S|)

· M

m
(2.21)

shows that the MWC output SNR is degraded, with respect to the “virtual” input

SNR, by a factor which is slightly larger than the compression factor M
m . The phe-

nomenon is known as noise folding [53] and ratio (2.21) accounts for loss of sen-

sitivity by eigenvalue-based detection. Nevertheless, the result confirms that the

approach is applicable to the MWC output sample correlation matrix as long as SNR

is large enough.
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Contributions from different active sub-bands are thoroughly mixed through the

measurement matrix A. Therefore, information about the sparsity pattern of X can

be recovered from a single eigenvector of 1
P YYT , provided it is selected from among

those associated with the signal subspace.

This would allow to:

• determine whether signals are present within the observation interval;

• possibly perform decomposition into orthogonal signal and noise subspaces.

On this basis, when a signal is detected within the observation interval we shall

employ for support recovery the principal component of the MWC output sample

correlation matrix, which arguably ensures the best SNR.

Simulation analysis with the kind of signals typical of VSA measurements con-

firmed that the principal eigenvector vY [1] contains enough information to allow

recovery of the sparse support S in most cases. The joint support of X is then de-

termined as the set of locations of the non-zero elements of the vector u that, by

an orthogonal matching pursuit (OMP) algorithm [54], is found to be the sparsest

solution of equation vY [1] = Au.

The soundness of the approach was confirmed by several simulation tests. It

should be remembered that, with m being seldom much larger than order of 10 in

practice, the m×m matrix 1
P YYT has a comparatively small size and computational

effort is acceptable. It is also important to note that the process is entirely driven by

the acquired data, which gives the CS algorithm its spectrum-blind sensing capabil-

ities.

2.6 Signal Reconstruction

Once a finite support, represented by a (small) set of indices S ⊂ {0,1, . . . , M −1}

is determined, a correspondingly restricted measurement matrix AS can be obtained

by keeping only the columns of A whose column indexes l satisfy the condition:

l ∈ S. While solving the underdetermined matrix equation (2.5) is not possible in

general, the sparsity assumption here comes into play and makes extraction of sig-

nificant contributions feasible [44].
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The signal components of interest are reconstructed by means of the pseudo-

inverse:

ŜS = A†
S Y = (

AH
S AS

)−1
AH

S Y, (2.22)

where the rows of matrix ŜS contain the estimates of the subsequences sl [p] for

0 ≤ p < P , with l ∈ S. Thus, individual contributions from each wireless source corre-

sponding to a sub-band, within the observed IF band and time interval determined

by the VSA, can be returned separately.

To analyze reconstructed signals accuracy, (2.22) can be rewritten as:

ŜS = SS +A†
S AN, (2.23)

where the rows of matrix SS contain the extracted components, while the second

term on the right-hand side is the noise contribution.

A feature of particular interest is the de-noising effect, which is inherent in any

procedure where only the main components of a signal are picked out. To un-

derstand the noise relationship between the acquired record x[nT ] and the recon-

structed signal components, We consider again how a generic vector v belonging

to the noise subspace would be mapped through (2.23), using the norm inequal-

ity: ‖A†
S Av‖ ≤ ‖A†

S‖‖A‖‖v‖. The same inequalities given in (2.20), with δK = δ|S|, also

provide bounds for the eigenvalues of the restricted matrix AS. Furthermore, it was

shown in [17] that the singular values of A†
S are reciprocals of the singular values of

AS. It follows that:

‖A†
S Av‖2

2 ≤
M

m
·
(
1+

√
m
M

)2

(1−δ|S|)
‖v‖2

2. (2.24)

Further simulation analyses confirmed that noise superposed on the extracted

signal components can be described by an i.i.d. vector random process with approx-

imately uncorrelated components, and the expected value of its sample correlation

matrix is:

E

[
1

P
A†

S ANNH AH (A†
S )H

]
' σ2

ν

m
·
(
1+

√
m
M

)2

(1−δ|S|)
I (2.25)

It should be remarked that element values of Aα are actually fixed, once the MWC

channel patterns have been chosen. However, considering average properties of a

Bernoulli matrix will be useful later on in the discussion of signal reconstruction un-

certainty, when analysis of estimation noise statistical properties will be conditioned

on the value of Aα.
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Thus, as a rough rule of thumb, SNR for a recovered signal components satisfies:

ˆSN R l ≤ m ·
1
P sT

l sl

σ2
ν

, l ∈ S (2.26)

It should be noted that, depending on the monitored signals and the outcome of

the support recovery step, different column subsets of matrix A can be selected. RIP

bounds account for the eigenvalue spread due to this fact. Tighter bounds could be

obtained by introducing assumptions on the probability distribution of index values

l ∈ S. It should also be observed that the RIP constant δ|S| is referred to the whole set

of m ×M random matrices A . The analysis of possible dependence on specific sign

patterns in (2.7) is still an open research issue.

2.6.1 Noise Folding

In CS literature, noise effects over a reduced set of measurements are widely dis-

cussed. In particular, the impact of additive Gaussian noise in sparse signal recon-

struction is also known as noise folding phenomenon, which is dealt with by the

following theorem.

Theorem 2.6.1. Suppose that A satisfies the RIP of order k with isometry constant δk .

Furthermore, suppose that the rows of A are orthogonal and that each row of A has

equal norm. If N is a zero-mean, white random vector with E(NNT ) =σ2I, then AN is

also a zero-mean, white random vector with E(ANNT AT ) = σ̃2I, where:

ns

nm
σ2(1−δk ) ≤ σ̃2 ≤ ns

nm
σ2(1+δk ) (2.27)

where ns is the sparse representation cardinality and nm is the number of measure-

ment collected [17].

Theorem 2.6.1 implies two main considerations. On the one hand, the CS ac-

quisition process does not affect the additive noise structure, which remains white

and Gaussian. On the other hand, the noise level could be highly amplified if the

compression ratio is excessive.

Intuitively, this result makes sense and provides an immediate motivation from

a linear algebra point of view. The measurement matrix A projects the entire noise

(originally spread out over ns coefficients) down into nm measured coefficients (with
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nm ¿ ns , by definition). The orthogonal projection operation is expected to pre-

serve the noise power. Accordingly, the average noise level affecting the measured

coefficients is expected to increase with respect to the original conditions.

In the present case, the noise folding phenomenon is partially balanced by the

sub-bands decomposition. In other words, the CS acquisition considers each sub-

band separately: accordingly, the input noise level is the result of baseband demod-

ulation and subsequent low-pass filtering stage.

The following theorem allows to quantify the SNR loss due to noise folding:

Theorem 2.6.2. Suppose that A satisfies the RIP of order k with isometry constant δk .

Furthermore, suppose that the rows of A are orthogonal and that each row of A has

equal norm. If N is a zero-mean, white random vector with E(NNT ) = σ2I, then the

expected SNR loss is bounded by [17]:

ns

nm
σ2(1−δk ) ≤ SNR loss ≤ ns

nm
σ2(1+δk ) (2.28)

From its proof it immediately descends the loss assessment in decibels:

SNR loss [dB] ' 10log10

(
ns

nm

)
(2.29)

As a consequence, if nm is halved (or correspondingly the under-sampling ratio is

increased by one octave), the expected SNR loss increases by 3 dB.

2.7 Algorithm Characterization

2.7.1 Synthetic measurements - Single burst

Pre-processing for VSA measurements can be seen as a spectrum-blind sensing

application. The structure of the algorithm outlined in the previous section appears

to be ideally suited to this kind of problem and, in fact, motivates this investigation.

The CS algorithm was tested first with synthetic measurement data that repro-

duce, in simplified form, a signal digitized either by a high-speed baseband sam-

pling device or at the IF filter output of a VSA. This provides a controlled test envi-

ronment with exactly known carrier frequencies and RF burst positions.



64 CHAPTER 2. CS PRE-PROCESSOR FOR VSA AND CR

Figure 2.5: Spectrum of a short RF burst. Carrier frequency: fB = 727.405 MHz.

2.7.2 Signal Features

We consider first a single burst described by the equation:

b(t ) = A ·pTB (t −τB ) ·cos
[
2π fB (t −τB )+φ]

, (2.30)

where fB , A and φ are, respectively, the carrier frequency, amplitude and instanta-

neous phase (referred to the mid-point) of the burst. The function pTB (t ) limits the

burst length to a duration TB and is centred on time τB . In a modulated signal A and

φ are time varying functions of time.

To model typical transmitter turn-on/off transients, pTB (t ) has been defined as

a cosine tapered window, i.e., a rectangle whose edges are smoothed by convolution

with a raised cosine function wC (t ) of length TC :

pTB (t ) = wC (t )∗ rect

(
t

TB

)
. (2.31)

Total signal length is then TB +TC , where TC is the length of wC (t ). The duration TB

is correctly measured between the mid-point levels of the on/off transients. Taper

is typically a short fraction of the overall length, the assumed range of values of the

ratio α= TC /(TB +TC ) being between 0.01 and 0.05.

In the following we consider a record of N ' 30000 samples at the baseband sam-

pling rate of 4 GHz. A burst of length TB = 100 ns (i.e., 400 samples), with tapering

parameter α ' 0.025 and carrier frequency fB = 727.405 MHz is positioned in the
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middle of a 6.5 µs observation interval. Hence, the test signal in this first case is

s(t ) = b(t ), with A and φ constant. To understand its relevance to MWC charac-

terization it should be noticed that, in terms of the bandwidth to center frequency

ratio, it is representative of an ultra-wide band (UWB) signal. Cosine tapering en-

sures that its spectral content does not practically extend beyond ±(2/TB ) · (1/α)

from the center frequency fB . Fig. 2.5 shows a bandwidth of approximately 800

MHz, as expected. Because of the small value of α, the burst spectrum within that

band approximates the (sin x/x) behaviour of an non-tapered rectangle window.

2.7.3 MWC Detection and Recovery

We refer to a MWC where the aliasing rate is set to M = 195, so that the width of

each spectral sub-band is about 20.5 MHz. This bandwidth can account for approx-

imately 80% of the power of s(t ), which is still acceptable for the eigenvalue-based

detection discussed in Section IV. The MWC mixing stage is composed of m = 50

channels, which results in matrix Y having size 50× 151 and in a reduction of the

overall amount of data by almost 75%.

It has to be noticed that assumed burst length is close to the lower time resolu-

tion limit of this MWC, as it corresponds to at most 3 sample intervals at the output

sample rate. This analysis exemplifies the short high-power burst case since, with

TB = 100 ns, signal length is less than 2% of the observation interval, resulting in

an actual peak power to noise ratio nearly 20 dB better than the given SNR values,

where the total signal power within the observation interval is considered.

Another peculiarity is that carrier frequency fB has been intentionally located

almost exactly in between two MWC sub-bands. The test signal support is S = {35,

36, 160, 161}, inclusive of image components. Recalling (2.21), any residual contri-

bution outside the four sub-bands is unlikely to be detected. In any practical setting

this situation needs to be addressed, since the carrier position with regards to the

frequency grid induced by the MWC is not known in advance. Here, any two adja-

cent sub-bands with l ∈ S are considered as parts of the same spectral component

and, during recovery, their contributions are recombined to describe the entire sig-

nal information1.

1The issue can be suitably formalized by introducing the notion of block sparsity [55]. We leave this to

future research developments.
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Figure 2.6: Support recovery: success probability versus SNR.

SNR [dB] Success [%]

−5 100

−10 97.6

−15 15.2

−20 0.3

Table 2.1: Support recovery success probability for negative SNR values.

2.7.4 Support Recovery Success Probability

We investigate algorithm reliability as a function of SNR. For this purpose the

OMP algorithm was run and support recovery performed without applying the de-

tection threshold given in (2.12). Simulations were repeated until a set of 200 suc-

cessful trials were obtained, success meaning that the recovered support coincides

with the nominal one.

White Gaussian noise, uncorrelated with the burst, was added to s(t ) and its

power varied to obtain SNR values ranging from −20 to +20 dB. The plot of Fig. 2.6

relates measured success probability to specific SNR values and shows that support

recovery becomes unreliable when SNR gets lower than −10 dB. Success probability

quickly falls off to almost negligible values below this threshold. In the following,

reconstructed signals from successful recoveries with SNR >−10 dB are analysed to

evaluate measurement uncertainty.

A too large noise level conceals the signal spectral content under a uniform trace
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of uncorrelated fluctuations. In similar conditions, also the auto-correlation matrix

hardly exhibits significant contributions. The support recovery necessarily fails and

returns different values at each simulation, related with the noise and no more with

the signal. The scarce success rate in Tab. 2.1 can be considered a consequence of

this phenomenon. Under the threshold, any successful simulation is more likely due

to random circumstances than to effective algorithm capabilities.

2.8 Single-Carrier Digital Modulation

Preliminary knowledge of the carrier frequency (and modulation format) is es-

sential for VSA measurements on single-carrier modulations. The minimum re-

quirement is to provide an initial estimate that allows VSA algorithms to lock on

the carrier frequency. For instance, with the Agilent 89600 VSA software toolset the

instrument center frequency would be set to the estimated carrier frequency which,

as a general rule, is allowed to differ from the actual carrier frequency by no more

than ±3% of the symbol rate employed by the modulation under analysis [56].

2.8.1 Carrier Frequency Estimation

The CS-based pre-processor allows direct estimation of carrier frequency from

the extracted signal component samples ŝl [pMT ], l ∈ S. Sequences returned by

(2.23) are downshifted into the baseband spectrum slice, which is helpful as a first

demodulation step for vector measurements. However, unless the carrier frequency

of the wireless source represented by sl [p] is exactly in the middle of the associated

spectrum slice (i.e., fB = l/MT ), a second step is required to estimate fB .

Since selected sub-bands indexed by the support S can be dealt with individu-

ally2, it is possible to assume in advance that a single spectral peak is present within

a sub-band. Therefore, considering the magnitude of the discrete Fourier transform

(DFT) |Ŝl [k/N T ]|, the carrier frequency corresponds (with the notable exception of

frequency-shift keying modulation) to the location of the one spectral peak, pro-

vided the modulation spectrum is symmetric. Frequency resolution is proportional

to the grid step (1/N T ), since the observation interval length remains equal to N T

also at the MWC output.

2At most, two adjacent sub-bands are conisidered as a pair and recombined, as mentioned previously.
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Figure 2.7: Carrier frequency estimation standard deviation. The spectrum main

lobe has been pre-smoothed by a Savitzky-Golay digital filter.

Carrier frequency can then be determined to within±(1/2N T ) of its actual value.

With the observation interval considered in section 2.7.1, this value is approximately

±75 kHz. This result can be enhanced by about one order of magnitude with two- or

three-point interpolation [57], using DFT coefficients adjacent to the peak.

Applying interpolation turns out to be comparatively simple for an unmodulated

UWB-like burst, less so for a typical digital modulation. In the latter case, in fact, the

signal spectrum is characterized by a broader and flatter main lobe, which makes

the preliminary peak search step vulnerable to even moderate amounts of noise. To

counter this, we pre-filter |Ŝl [k/N T ]| by a digital Savitzky-Golay filter [58] to smooth

the magnitude spectrum. In Fig. 2.7 the relative standard deviation of carrier fre-

quency estimation is presented. As expected, the estimation variability uncertainty

decreases as SNR increases.

2.8.2 Time-Domain Accuracy: Burst Length and Position

In the time domain, primary signal parameters are the length TB and position

of the burst. Using the selected MWC output channels, baseband contributions are

recovered according to (2.22), then interpolated and up-shifted back to the original

carrier frequency. Burst length TB is estimated as NB T , where NB is the number
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Figure 2.8: Burst length estimation variance. The burst length has been assessed by

means of a threshold process.

of samples whose amplitude exceeds a given threshold. Position τB is defined as

the mean between the burst endpoints determined by this threshold. In this case,

the amplitude threshold is set to half the nominal rms value defined in the signal

generation stage.

Accurate time information allows VSA algorithms to correctly define the time

window required to demodulate and analyse specific signal bursts, even when mul-

tiple sources are simultaneously present. Fig. 2.8 shows that variance decreases sig-

nificantly as SNR improves. For SNR ≥ 0 dB the two-sigma confidence level is nearly

equal to ±10 samples, i.e. ±2.5 ns. In the present configuration, the confidence level

corresponds nearly to two periods of the observed carrier frequency. This estima-

tion error is consistent with any detection method based on threshold crossing.

2.8.3 Waveform Accuracy

For the purposes of this work the accuracy of waveform recovery is characterised

with regards to typical VSA measurements. The aims are:

• ensure that the modulation format associated to the extracted component can

be identified;

• determine whether signal reconstruction is accurate enough for VSA measure-

ments.
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Figure 2.9: Constellation for recovered burst - no trace noise.

To summarize these features into a readily understandable result, we analysed con-

stellation diagram measurements obtained from the CS-recovered signal burst, and

compared them with the reference one.

Argument-modulation was considered for the test, since this is common to widely

employed formats in RF wireless communications. To represent the signal, (2.30)

can be formally modified by replacing the constant φ with the function φ(t ) that

represents the argument modulation function associated to burst b(t ).

We report the analysis for a modulation format employing four symbols (which

can be, equivalently, a 4-QAM or a QPSK modulation, since in both cases amplitude

remains constant). As a suitably large number of recovered symbols is needed to al-

low reliable constellation measurement, typical burst length in this analysis is about

30% of the whole trace. Accordingly, the observation interval lenght is set equal to

2.5 ms, whereas the symbol rate is fixed at 625 kHz.

Only a single burst is contained in the sequence x[nT ], so that no adverse effects

can be caused by either time-domain or frequency-domain interference among mul-

tiple bursts.

To establish a baseline reference, a “clean” signal coming directly from an Agi-

lent E4433B RF signal generator was measured by an Agilent N9010A vector signal

analyzer with continuous modulation (no burst). This yielded 35.8 dB modulation

error ratio (MER), corresponding to 1.6% relative EVM, given as a root-mean-square

(RMS) value.
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A time domain trace with no additive noise was acquired first. The diagram in

Fig. 2.9, obtained from the signal recovered by the CS algorithm, shows that symbols

are closely clustered around their nominal positions. The residual dispersion pro-

vides an assessment of how the CS algorithm affects accuracy, since any difference

from the ideal constellation can be attributed to the processing algorithm. MER was

estimated to be 24 dB, which, for this kind of modulation, corresponds to a 6% EVM

value. In the present case, the main factors which affect and degrade the constella-

tion estimation are phase noise (error) and carrier frequency error. These two phe-

nomena cause the constellation to spread around the expected symbol points and

be slightly rotating around the constellation centre. Evidently, with a greater number

of symbols, a greater MER is required to correctly detect the constellation. The pro-

posed algorithm reduces the noise approximately at the same level, independently

on the number of symbols. The resolution gain is almost the same for any kind of

modulation format: in some cases it would be sufficient, in other it would not.

The corresponding bound on relative amplitude uncertainty for the constella-

tion of Fig. 2.9 is approximately ±5%, while angle uncertainty is below ±10 degrees.

These values reflect the basic accuracy level attainable in the current CS algorithm

implementation.

It should be noticed that these results were obtained by the use of m = 50 parallel

MWC channels, which may appear oversized if one considers the likely number of

simultaneously present components in a trace. However, according to (2.26) using a

larger number of channels improves reconstructed signal SNR at the price of a loss in

compression. As such, this MWC size represents a trade-off between reconstruction

accuracy and compression, that may need to be investigated more closely.

Tests were repeated with additive noise of increasingly higher levels, Fig. 2.10

showing the constellation obtained with a -5 dB SNR (noise power approximately

three times greater than signal power).

Even with such poor signal-to-noise ratio, recovery by the CS algorithm allows to

identify the constellation. Relative amplitude uncertainty has risen to about ±30%

and angle uncertainty is in the region of ±30 degrees but, as this effect depends on

SNR, a similar degradation in accuracy would occur with any algorithm.

The limiting SNR for the recovery of a single digitally modulated burst was found

to be approximately -15 dB. At this point a burst is barely discernible from the noise
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(a) original time domain trace; (b) measured constellation diagram.

Figure 2.10: Constellation diagram for recovered burst; -5 dB signal-to-noise ratio.

Figure 2.11: Time domain trace of burst at limiting SNR value (-15 dB).

background in the time domain trace, as shown in Fig. 2.11, although the mod-

ulation format can still be inferred from the analysis of the recovered signal. The

plots of Fig. 2.12 summarise the results obtained for the variability of the measured

constellation, indicated by maximum relative amplitude and phase uncertainty as a

function of different SNR values.

2.9 Experimental Analysis – Multiple Bursts

The case where multiple sources using different carrier frequencies come into

play, represents the typical spectral monitoring situation and a most significant test
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Figure 2.12: Amplitude and phase variability in constellation diagram measure-

ments for different SNR values.

for a CS-based algorithm. Even in this case, discontinuous transmission means ac-

tive sources are hardly more than a few at a time. Therefore a mathematical model

for the observed signal (e.g., the one shown in Fig. 2.2) can be given as the sum of J

bursts and an additive white noise term ν(t ):

s(t ) =
J∑

j=1
b j (t )+ν(t ). (2.32)

In terms of the CS algorithm, the sparsity level is equal to 2J , which is the total num-

ber of bandwidths occupied by the signal at some time during the observation in-

terval.

2.9.1 Design of Test Signals

To generate input signals that realistically reproduce typical conditions of spec-

trum monitoring in a wireless bandwidth. We relied on a RF arbitrary waveform

generator, which allows great flexibility in the design of a variety of complex signals

while ensuring controlled and repeatable test conditions.

The instruments employed in this work were an E4433B signal generator and

a N9010A vector signal analyzer from Agilent Technologies. Purposely computed

waveform samples were downloaded into the two signal generator RAM waveform

memories (dedicated, respectively, to the in-phase (I) and quadrature (Q) compo-

nents).

A preliminary check on the correct implementation of the basic waveform de-

sign was achieved by comparing the synthesized digitally modulated signals with
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Figure 2.13: Sequence obtained from the E4433B signal generator: baseband in-

phase component auxiliary output, as measured by a digital oscilloscope.

those obtained by the E4433B built-in internal signal generation options. EVM mea-

surements obtained by the N9010A VSA gave comparable values in the two cases.

Memory in the Agilent E4433B can be partitioned into a number of individual

segments, each containing a specific waveform. This allows the creation of wave-

form sequences by the concatenation of segments and also provides the possibility

to specify for each segment the number of iterations before progressing to the next

one. Sequence control represents a powerful tool for the generation of very realis-

tic test signals, which reproduce the superposition and interference of different RF

sources in a controlled way.

Each segment can be defined as the sum of up to four components, such as

bursts of the form (2.30) with individually defined modulation formats. To better

reproduce real-life conditions, we built segments with up to three bursts, to which

arbitrary white gaussian noise (AWGN) is added. Although segments can be se-

quenced, the generator does not allow to change the carrier frequency concurrently.

Therefore, individual bursts are digitally pre-modulated with an offset frequency, so

that the combination of the two modulations yields the desired result.

The generator sample clock has a maximum frequency of 40 MHz and the out-

put reconstruction filter bandwidth was set to 8 MHz, so that comparatively broad

band wireless channels could be reproduced. Fig. 2.13 shows, as an example, the

baseband in-phase component of a composite signal, where different modulated

carriers alternate and superpose during a 13.5 ms period. It can be seen that the

trace is obtained from three individual segments, some of which are repeated to



2.9. EXPERIMENTAL ANALYSIS – MULTIPLE BURSTS 75

(a) test signal with 16-QAM modu-

lated bursts;

(b) CS algorithm reconstruction error

for the test signal.

Figure 2.14: CS-based recovery of 16-QAM modulated bursts.

give a total of six. One segment contains noise only, while another presents the time

superposition of two different modulated signals.

2.9.2 Signal Extraction for VSA Analysis

Results presented next refer to the monitoring and recovery of RF bursts employ-

ing a 16-QAM modulation format. Accurate vector measurements are more difficult

to achieve with these signals than with four-symbol modulations, because of the

closer spacing of the constellation symbols. Although denser schemes exist, these

are far less common in wireless links, therefore characterisation for the 16-QAM case

is considered to provide a good indication of the actual usefulness of the proposed

CS-based preprocessor.

To characterise the CS algorithm, VSA measurements were taken using the widest

allowable IF bandwidth for the N9010A, i.e., 10 MHZ. The instrument operates at a

12.8 MHz sampling frequency, each acquired data record numbering over 10e5 sam-

ples.

Set-up parameters of the CS algorithm are the decimation factor L and the num-

ber m of MWC channels. The decimation factor was chosen so that each chan-

nel produced a down-sampled sequence shorter than 10e3 samples, which means

L > 100. Consequently, in the experiments that follow the 10 MHz IF bandwidth is

ideally divided into sub-bands whose width is approximately 70 kHz.

The original trace, shown in Fig. 2.14(a), has been designed as the repetition

of four segments, alternating between RF bursts and noise. Only one of out two
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consecutive 16-QAM bursts provides a clean signal, while the other includes AWGN,

whose amplitude is approximately 10% of the signal amplitude. To better under-

stand how the CS algorithm operates, it is interesting to look at the signal recon-

struction error over the whole time interval, shown in Fig. 2.14(b). In all but one of

the segments the reconstruction error has the same magnitude as the AWGN com-

ponent in the original trace. This means the algorithm has correctly recovered a

signal component, at the same time reducing the incidence of noise. The part of

the plot where the reconstruction error is one order of magnitude lower refers to the

single segment containing a clean signal and shows that contributions due to the

algorithm itself are limited. It is also important to note that the position and length

of each burst are always determined correctly.

Tests have also been carried out with composite signals where some of the seg-

ments contain time superposed RF bursts with different carrier frequencies. In this

case, the algorithm has shown the capability to correctly separate each component,

allowing the user to choose between measuring each of them or discard some as

interferences.

Fig. 2.15 shows that the constellation diagram of a 16-QAM modulated burst can

actually be improved, after extraction by the CS algorithm, if the trace is moderately

noisy. For this kind of test a 16-QAM modulation with inceasing levels of AWGN was

generated and the signal was the recovered by the CS-based algorithm. In this case,

the parameter that best summarises quality is MER, which was measured for the

test signal at each different noise level. Constellation diagrams of the original and

recovered signal are presented side by side for decreasing MER values of, 32 dB, 28

dB and 26 dB, respectively.

It is interesting to note that Fig. 2.15(b) shows very similar behaviour in the two

diagrams and that the diagram for the recovered signal in Fig. 2.15(a) is also almost

equal. This seems to suggest that for this kind of modulation 28 dB is approximately

the limiting MER value that can be obtained with CS-based recovery. This assess-

ment is further supported by the fact that, if one takes into account the difference

in power distribution between the symbols of the two modulations, the 28 dB limit

for 16-QAM turns almost exactly into the 24 dB limit already found for the QPSK

modulation shown in Fig. 2.9.

It should also be observed that CS-based recovery has impoved the constella-
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(a) test signal with 32 dB MER (left); recovered signal (right);

(b) test signal with 28 dB MER (left); recovered signal (right);

(c) test signal with 26 dB MER (left); recovered signal (right).

Figure 2.15: CS-based recovery of 16-QAM modulated bursts.
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tion diagram for the case of 26 dB MER, suggesting that in some cases the denoising

properties of the algorithm might also be beneficial.

2.10 Histogram Analysis

In cognitive radio (CR) research and development, the aim becomes the char-

acterization of legitimately intertwined communication signals. This involves the

ability to determine the mutual coordination and timing of primary and secondary

sources, verify appropriate power levels and generally help troubleshoot CR systems

under development. In the latter case, it has to be further assumed that unwanted

interference might have occurred.

Enhancements to basic VSA capabilities are thus desirable to effectively support

CR system development. To this aim, in the section we propose the use of multi-

modal amplitude histograms to implement a modulation detector with spectrum-

blind capabilities. We discuss its performances and show that it can be integrated

with VSA measurement algorithms, providing the instrument with the ability to au-

tonomously detect sources under analysis and identify their basic parameters.

In the previous sections, the proposed CS algorithm has been proven to be able

to extract significant components from the acquired data. Hereinafter, the integra-

tion of the sensing part with a simple modulation detection procedure based on

multimodal amplitude histograms is discussed and characterized by means of ex-

perimental results.

To this end, specific benchmarks have been implemented both in a purely sim-

ulation context and with synthesized signals obtained from an RF arbitrary wave-

form generator. A well defined and controlled environment, where impairments

and sources of uncertainty are being progressively introduced, is necessary to re-

tain the ability to manage the complex interplay of factors affecting measurement

performances.

Two modulation formats have been tested, 16-QAM and 8-PSK, these being rep-

resentative of amplitude and argument modulation, respectively. In the QAM case

symbols would be located on an orthogonal grid along the I and Q axes.

Histograms in Fig. 2.16 in fact both present four clear peaks distributed accord-

ing to a symmetric and uniform pattern. Using a comparatively small number of
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Figure 2.16: Analysis of the 16-QAM case: histograms of signal I and Q components.

bins in histograms is a simple way to reduce irregularity, clustering results into fewer

large peaks. This is appropriate for modulation detection, since only an approxi-

mate constellation shape is sought. In Fig. 2.16 64 bins were employed.

The PSK case provides an example of an argument modulated signal, for which

a representation in polar coordinates is better suited, as shown in Fig. 2.17. As ex-

pected, the amplitude histogram presents a single peak centred around the burst

envelope amplitude, hence the phase histogram is the main source of information

for argument modulation. In this example it exhibits eight clear peaks, each corre-

sponding to one of the phase values. As peak density is highest in phase histograms,

peak detection can be more difficult.

Traces in Fig. 2.18 demonstrate the multi-source detection capability of the algo-

rithm. In this case two different signal bursts fall within the same observation inter-

val and SNR in the acquired sample sequence is 0 dB. The two measured sources are

separated in frequency and employ different modulation formats (respectively, 16-

QAM and 8-PSK). Reconstructed bursts are superposed on the original trace, show-

ing correctly reproduced waveforms with an enhanced SNR.

Histograms in Fig. 2.18 were constructed using just 32 bins, since the symbol

density of the two modulations allows a reduced amplitude resolution for better

clustering of samples. Nevertheless, the resulting peaks allow correct identification

only for the 16-QAM modulation format, whereas inspection of the 8-PSK phase his-

togram does not give a clear suggestion.
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Figure 2.17: Analysis of the PSK case: histograms of module and phase.

This result points to a critical issue in the use of histograms, that is, the need to

ensure that the extracted modulation waveform contains a sufficiently uniform set

of constellation symbols.

The situations shown in Figs. 2.16 and 2.17 are in fact particularly favourable,

since histograms were built from a set of about ten consecutive observations of 850

µs bursts from the same source. With clearly defined peaks, detection thresholds are

easily defined as the expected value of the relevant quantity, indicated by horizon-

tal lines in the figures. Areas where peaks are located are thus delimited and plots

providing a rough rendering of an ideal constellation can be drawn. Application of

pattern matching algorithms, either to such plots or directly to histogram data, can

ultimately detect the modulation format.

In practice, measured histograms may not always correspond to a large enough

symbol population. Shorter observation intervals introduce an additional cause of

variability, since the condition on equal probability of symbols may not be satisfied.

Thus, even though the number of amplitude samples can be large enough for the

histogram estimate to be stable, peak heights may vary significantly from one sym-

bol to another as well as in successive observation intervals, making a simple thresh-

old detection much more difficult. This aspect is totally unrelated to the features of
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(a) signal burst recovery;

(b) 16-QAM histogram of I and Q components;

(c) 8-PSK histogram of module and phase.

Figure 2.18: Multi-source detection from a single 2.5 ms sample sequence.
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the CS algorithm, but has to be accounted for in experimental characterization.

In the case of Fig. 2.18, both bursts have the same length which corresponds

to 64 symbols. However, it is clear from the combined inspection of the I and Q

histograms that in this particular observation the 16 constellation symbols do not

have the same number of occurrences.

The worst-case effect of a short measuring interval is shown in the phase his-

togram of Fig. 2.19.c, that refers to another example of a 8-PSK modulation and

was constructed from the observation of a single burst composed of just 64 sym-

bols. Histogram sensitivity to statistical fluctuations with regards to the expected

equal probability of symbols is quite high and less frequent symbols in this case are

missed, resulting in a partial constellation plot. It should be emphasized this is not

a shortcoming of the algorithm, but the effect of statistical instability caused by an

excessively short observation interval.

Another source of uncertainty in constellation estimation is presented in Fig.

2.19.b, that refers to a single burst of 16-QAM consisting of 64 symbols. In this

case, the denial of equal probability assumption implies that all the peaks exceed

the threshold but their width is not uniform. As a consequence, narrower peaks in

the Q component histogram could result in an asymmetric constellation plot, i.e.

the expected position of some symbols could be erroneously predicted.
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(a) shaded area: 16-QAM histogram of I and Q components, dotted line:

peak detection threshold;

(b) 16-QAM estimated constellation;

(c) shaded area: 8-PSK phase histogram, dotted line: peak detection

threshold (left); corresponding estimated constellation (right).

Figure 2.19: Effect of deviation from symbol equal probability for short observation

intervals. In QAM case, narrower peaks in the Q component histogram result in

an asymmetric constellation plot. In PSK case, undetected peaks in the phase his-

togram result in a partial constellation plot.



Chapter 3

CS-Based Spectral Analysis

3.1 Introduction

A classical problem for spectral analysis is the accurate measurement of a multi-

tone waveform by the estimation of the individual sinusoidal component parame-

ters. With algorithms based on discrete Fourier transform (DFT), spectral leakage is

known to affect the accuracy of amplitude estimation as well as the ability to resolve

closely spaced frequency components [59].

As long as the frequency separation of waveform components is large enough,

several forms of frequency interpolation of DFT coefficients allow to significantly

improve estimation accuracy, approaching the theoretical limit set by the Cramér-

Rao bound [60, 61, 62]. However, if sinusoid frequencies are close to each other,

interpolation is likely to fail and different approaches are required, among which

are a variety of super-resolution methods [63]. In this chapter, the super-resolution

problem in the DFT domain is dealt with by a novel approach, relying on CS theory

principles. The chapter is divided into three main parts.

In the first part, the frequency super-resolution problem is contextualized into

the CS context and properly formulated as a sparse acquisition problem. From a

spectral analysis point of view, the generic signal under investigation is modelled by

a weighted linear combination of cisoids, also referred to as multi-tone signal. In

the DFT domain, this model is expected to be sparse or at least compressible. Thus,

a CS approach is not only feasible, but also recommended. In fact, the literature

84
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contains many CS-based solutions, but their performances are still unsatisfactory

if compared with the results obtained by similar CS approaches in other research

fields. To overcome this limitation, this chapter introduces a novel super-resolution

algorithm, in the following referred to as CS-DFT, and characterizes it in terms of

resolution threshold, estimation accuracy and noise sensitivity.

The DFT coefficients are defined over a discrete frequency grid, whose step is the

theoretical limit for any super-resolution technique. The proposed algorithm em-

ploys an over-complete dictionary which explicitly accounts for spectral leakage ef-

fects. In this way, CS-DFT achieves a resolution threshold equal to 1.5 times the DFT

grid step, whereas the current CS benchmark techniques require a minimum sep-

aration not lower than 3 times the DFT grid step. By properly exploiting the spar-

sity assumption, the proposed algorithm ensures a resolution enhancement of one

order of magnitude, independently from the observation interval length. Support

recovery is carried out by means of an OMP procedure, thus allowing a computa-

tionally tractable implementation. This stage is particularly sensitive to noise and

requires that SNR be not lower than 15 dB. CS-DFT estimations are defined over a

much denser discrete grid than the original DFT grid. Both long-range interference

and scalloping loss effect are accordingly reduced. Therefore, inaccuracy in ampli-

tude and phase estimates is mainly due to additive noise variability.

In the second part of this chapter, the super-resolution algorithm is applied to

power quality and phasor measurements in power systems. The test signals consid-

ered for its characterization reproduce a typical smart grid scenario and its challeng-

ing operative conditions. Typically, a fundamental frequency component is affected

by harmonic and interharmonic disturbances and undergoes dynamic changes of

its frequency, amplitude and instantaneous phase. Experimental results show how

the CS-DFT approach yields power quality indices and fundamental phasor esti-

mates, which are mostly compliant with current regulations and standards.

In the third part, a two stage procedure is implemented in order to further en-

hance the super-resolution accuracy. In fact, CS-DFT results are still defined over

a discrete grid. A component frequency not lying on a grid bin is approximated to

the nearest grid point. This means that a sort of quantization error is committed

and its size depends on the discrete grid step. To overcome this limitation, a polar

interpolation technique is applied to CS-DFT estimation. This procedure relies on a
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Basis Pursuit approach, which is more demanding in terms of computational com-

plexity, but provides estimates defined over a continuous set of values. This research

field is also known as CS off-the-grid and is applicable to all those contexts where a

discrete approximation is infeasible or unsatisfactory. This two-stage approach does

not affect the the CS-DFT resolution threshold, but significantly enhances frequency

estimation accuracy. The idea of computing polar interpolation only at the CS-DFT

estimated frequencies and not over the entire denser grid allows a strong reduction

of the overall computational complexity.

3.2 Part I: CS Super-Resolution in DFT-Based Spectral

Analysis

3.2.1 Spectral Super-Resolution Scenario

Frequency-domain waveform analysis is a problem for which a variety of well-

known solutions have been proposed in the literature [64, 65]. A multi-tone wave-

form can be expressed as a sum of cisoids, whose spectrum after sampling is given

by the following complex-weighted spike train:

X (λ) =∑
h

Ahe jφhδ(λ−λh). (3.1)

Here, as in the following, frequency λ ∈ [0,1] is normalized with respect to the sam-

pling rate fs = 1
Ts

(i.e., λ= f Ts ).

Non-parametric approaches based on the discrete Fourier transform have been

a workhorse of waveform analysis for decades [59]. Given a sample sequence of

length N , its discrete Fourier transform (DFT) coefficients are located on a frequency

grid with step ∆λ = 1
N . Therefore, they represent (3.1) exactly only when spike loca-

tions λh fall on this grid.

Reconstruction by DFT alone yields poor results for off-grid frequencies, as the

capability to resolve signal components at closely spaced frequencies is limited by

spectral leakage. Interpolation of DFT coefficients [60] can provide much more ac-

curate estimates of the weights Ahe jφh and the off-grid normalized frequencies λh ,

with variances approaching the relevant Cramér-Rao bounds [61]. However, re-

quired minimum separation between adjacent frequencies is increased by a factor
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kR , that depends on the kind of interpolation algorithm and on the weighting (if any)

applied to the time-domain samples.

Since kR > 1, the minimum allowed distance kR∆λ is always significantly larger

than ∆λ. Parametric approaches, e.g., Pisarenko harmonic decomposition, MUSIC

and ESPRIT, can allow much better resolution, but do so at the price of greater com-

putational complexity.

In this chapter the problem is addressed by introducing a finer frequency grid,

with smaller step size ∆′
λ

, and relating the set of N samples to N ′ = P ·N coefficients

of the DFT defined on the finer grid, that is associated to an integer super-resolution

or refinement factor P = ∆λ
∆′
λ

.

In the literature on compressive sensing (CS), super-resolution algorithms based

on this idea have been proposed. Random waveform samples can be related to DFT

coefficients by way of the measurement equation:

x = WH
(N×N ′) a+z, (3.2)

where x ∈ RN contains N time-domain samples x(n) and elements of a ∈ CN ′
are

DFT coefficients on the finer grid. Vector z represents additive zero-mean white

noise with variance σ2
z . In the standard approach WH

(N×N ′) is a compressive random

measurement matrix defined as a N×N ′ partial inverse Fourier transform, whose

rows are randomly drawn from the full N ′×N ′ matrix. A fine-grid solution can

be found by convex `1 minimization, exploiting an a-priori sparsity constraint on

vector a, provided a minimum distance 4∆λ exists between adjacent components

[66], [67]. The issue of poor numerical conditioning caused by highly coherent col-

umn vectors in WH
(N×N ′) is addressed by algorithms based on frequency inhibition

[68] or coherence band exclusion [69], the latter achieving a minimum separation of

3∆λ. Components whose frequency separation is closer to the Rayleigh threshold

∆λ seemingly remain unresolvable by CS methods.

We show in this chapter that a CS approach can indeed resolve closely spaced

frequency components, when x contains sequentially sampled values, if the mea-

surement equation is suitably defined to reflect this. Rather than adapt matrix WH
(N×N ′),

as in [70], we exploit the feature by explicitly introducing information about spectral

leakage into the measurement equation. With our approach this becomes:

x = WH Da+z, (3.3)
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where WH is a full inverse DFT of smaller size N×N and spectral leakage is mod-

elled by matrix D, of size N×N ′. The latter is in fact an overcomplete convolutional

dictionary [71].

The proposed algorithm has been characterized by means of numerical simula-

tions, which show that components as close as 1.5∆λ can be successfully resolved.

As a further advantage, total acquisition time for x in (3.3) is strictly N TS , whereas

random sampling acquisition of x in (3.2) approximately requires the time N ′TS .

The improved lower bound on frequency separation is of interest in monitoring

applications, where it reduces the need to acquire longer sample sequences for a

given resolution, thereby avoiding possible adverse effects on the capability to track

waveform variations.

3.2.2 Frequency Interpolation as a CS Problem

In the frequency domain, the measurement process is accurately modelled by a

generic sparse acquisition problem:

y = Ax+n (3.4)

where y is the measurement column vector of dimensions [N ×1], A is the measure-

ment matrix of dimensions [N ×N ′], and x is the unknown column vector of dimen-

sions [N ′×1], with N ′ > N by definition. The vector n accounts for all those spurious

disturbances which are expected to affect and degrade the measurements. For the

sake of simplicity, in the following n is modelled as an additive white Gaussian noise

vector, statistically uncorrelated from the informative vector x.

It is worth noticing that the sparse acquisition problem is formulated in the fre-

quency domain, unlike its previous version 3.3 in the time domain. In this context,

the measurement matrix A accounts for both the DFT and the compression stage.

The unknown vector x is assumed to be sparse, i.e. it is assumed to exhibit only

a reduced set of non-negligible coefficients, if expressed in the proper domain. In

the present case, it is immediate to argue that x is sparse precisely in the DFT do-

main. The choice of relating a time domain signal with a frequency domain set of

measurements exactly fits with the incoherence criterion presented in chapter 1.

By construction, the problem 3.4 requires to solve an under-determined systems

of equations. Any combinatorial approach would result in non-polynomial compu-
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tation times. Nevertheless, by properly exploiting the sparsity assumption, it is pos-

sible to obtain a sparse signal approximation, directly inferred from the apparently

insufficient set of measurements.

Owing to the presence of noise, no exact solution is feasible and, according to BP

approach, the best estimate coincides with the sparsest vector x̂ such that:

x̂ = min
x

‖x‖1 s.t . ‖Ax̂−y‖2 ≤ ε (3.5)

A multi-tone waveform is the sum of a number of complex exponential compo-

nents (with suitable symmetries if the waveform is assumed to be real). Indicating

by SN ′ the set of values of the index h corresponding to a waveform component, the

signal can be written in sampled form as:

x[n] = ∑
h∈SN ′

Ahe j(φh+2πλh n), −∞< n <+∞ (3.6)

where component frequencies have been expressed in the normalised form λh =
fhTs , and Ts is the sampling interval. The starting point for the problem at hand is

the equation that defines the DFT of a multi-tone waveform, as calculated from N

time-domain samples acquired with sampling interval Ts :

X

(
k

N

)
= ∑

h∈SN ′
Ahe jφh

[
sinπ (k −λh N )

N sin π
N (k −λh N )

e− jπ N−1
N (k−λh N )

]
e− j 2π

N (k−λh N )n0 (3.7)

where n0 is the starting index of the time-domain sequence.

The normalised frequency granularity of a N -point DFT is 1/N and the target of

this chapter is to estimate frequency components whose separation may be close

to, or even lower than the granularity. Accordingly, a denser frequency grid is de-

fined, whose minimum step is ∆λ = 1
N ′ , with N ′ À N (one can assume N ′ = N P ,

where P is the interpolation factor), which allows to express normalised component

frequencies as integer multiples of the step ∆λ, yielding:

λh = h

N ′ , h ∈ SN ′ ⊂ {0,1, . . . N ′−1} (3.8)

Of course, the calculation of a N ′-point DFT could provide the desired granular-

ity, however this would be achieved at the cost of a longer observation interval spent

acquiring the samples.

The idea discussed in this chapter is to process a small set of M data records,

each having length N and with different known starting indexes nm defined with
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respect to a common time reference, or trigger point. These are arranged into a

compressive measurement matrix Y composed of M complex column vectors, each

containing the DFT coefficients of a single record. Varying nm allows to exploit the

corresponding changes induced on the phases of individual DFT coefficients in dif-

ferent records.

By properly combining (3.7) and (3.8), if no additive noise is present, each ele-

ment of the measurement matrix Y, indicated as yk,m , can be written as:

yk,m = ∑
h∈SN ′

Ahe
j
(
φh+2π h

N ′ nm

)  sinπ
(
k − h

N ′ N
)

N sin π
N

(
k − h

N ′ N
)e− jπ N−1

N (k− h
N ′ N )

 (3.9)

It should be noticed that the complex exponential term e− j 2π
N (k−λh N )n0 , that appears

in the general expression (3.7), has been split in two terms:

• e j 2π h
N ′ nm has been added as a constant known phase term to the correspond-

ing signal component;

• e− j 2π
N knm is simply set to zero by always using n0 = 0 as the starting index for

DFT computation, regardless of the actual start time.

Equation (3.9) shows that the frequency interpolation problem can be seen as

the problem of solving the matrix equation:

Y = DX+N (3.10)

where the columns of matrix D contain the complex samples of the Dirichlet kernel

(within square brackets in (3.9)), each progressively shifted by fractional frequency

amounts ∆λ. Thus, the row index is k while the column index is h. The matrix N

accounts for measurement noise and uncertainty.

In Fig. 3.1 the peculiar structure of matrix D is presented: a three-dimensional

representation is combined with a row and column trend.

The amplitude and phase of sinusoidal components forming the multi-tone wave-

form are represented by the non-zero complex elements of a matrix X, composed

of M vectors xm whose size N ′ agrees with the desired, denser, frequency grid. It

should be noticed that each vector xm is associated to a specific value of nm , since

from (3.9) one has:

xh,m = Ahe
j
(
φh+2π h

N ′ nm

)
(3.11)
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Figure 3.1: On the left, three-dimensional representation of matrix D with N = 8 and

P = 10; on the right, typical row (top) and column (down) trends.

Thus, the matrix X can be factored as:

X =


A1e jφ1 . . . 0

0
. . . 0

0 . . . AN ′−1e jφN ′−1




e j 2π 0
N ′ n0 . . . e j 2π 0

N ′ nM−1

...
. . .

...

e j 2π N ′−1
N ′ n0 . . . e j 2π N ′−1

N ′ nM−1

 (3.12)

The fundamental assumption that allows to formulate frequency interpolation

as a CS problem and achieve super-resolution is that, whatever the individual value

of nm , the frequencies of the non-zero components are the same for all measure-

ments. Hence, vectors xm are sparse and, additionally, they are known to share the

same set SN ′ of frequency indexes [45], corresponding to the non-zero waveform

components. In CS terms, this is called a multiple measurement vectors problem.

3.2.3 Compressed Sensing Based Fourier Analysis

From a measurement point of view, the proposed CS-based data acquisition al-

lows to reduce the length of the acquisition interval (and of the total sample record),

since the sets of samples from which each DFT vector in Y is computed can be

broadly overlapped. If the average difference between consecutive starting indexes

is∆n , the total number of samples required is N+∆n(M−1), with∆n ¿ N . Assuming

the CS algorithm allows an interpolation factor P , this should be compared with the

length N ′ = N P required to achieve the same frequency granularity by a standard

DFT algorithm.

The first step in solving the compressed sensing problem is support recovery,

which has the purpose of determining which elements in xm are non-zero. In prac-
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Figure 3.2: TOP: on the left, signal real part in the time domain; on the right, detail

of signal Fourier transform amplitude. BOTTOM: multi-tone signal parameters.

tice, the aim is to determine the set SN ′ ⊂ {0, . . . N ′−1}, as defined above. As far as

Fourier analysis is concerned, this is in fact the key part of the algorithm, since SN ′

contains the frequency locations of the signal components.

Following the approach proposed in [45], this step is carried out via a singular-

value decomposition of the matrix YYH , where the superscript denotes transposi-

tion and complex conjugation. Decomposition allows to obtain the matrix V, whose

columns are the eigenvalues of YYH multiplied by the square roots of the corre-

sponding eigenvectors. Collapsing the columns of V into a single vector v, and solv-

ing the equation v = Du by an Orthogonal Matching Pursuit (OMP) algorithm allows

to find the support for u, which can be shown to be the same as SN ′ . By construction,

V and D are known: the first is obtained from the measurements result, the second

defines the measuring scheme.

To test the approach, a signal formed by three known complex exponential com-

ponents, according to (3.6), was considered and different sets of M records of length

N = 256 samples were generated. In the multi-tone waveform given in Fig. 3.2 spec-

tral components have normalised frequencies λ1 = 72.6, λ2 = 74, λ3 = 103.4, so that

the second component contributes no spectral leakage, but is affected by leakage

from the first one. On the top right figure, sampling rate is set to 500 Hz, while com-
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ponent frequencies on the top left figure correspond to 141.80, 145.70 and 201.95

Hz. The third component is employed as a control element, being sufficiently far

away from the first two to be only affected by scalloping loss.

In the test configuration M = 64 and the starting points of each sample record are

separated by 3 samples. Component amplitudes were set to 1, their initial phases to

0. In the following, amplitude values are expressed in arbitrary units, while phase

values are expressed in radians. Simulations were iterated 100 times for each test

condition. Trials were first carried out with no noise. The desired interpolation fac-

tor is P = 10, ensuring that frequencies fall exactly on points of the denser grid (i.e.,

they are integer multiples of∆λ). With these values the support recovery step always

provided the correct component frequencies.

The subsequent algorithm step involves the construction of a restricted matrix

DS by deleting columns whose index h is not in SN ′ . This turns (3.10) into an over-

determined matrix equation, that can be solved by computing the Moore-Penrose

pseudo-inverse:

X̂S =
(
D†

S DS

)−1
D†

S Y (3.13)

which only contains the non-zero rows of X. The symbol † identifies the Hermitian

transpose operation.

The final step is to invert the relevant rows according to (3.12); this accurately re-

constructs component amplitudes and phases (to within machine error), provided

the number of measurement vectors M is greater than the number of signal compo-

nents.

When measurement noise is present, replacing (3.10) into (3.13) shows the esti-

mate to be:

X̂S = X+
(
D†

S DS

)−1
D†

S N (3.14)

provided the support recovery step can still be successfully completed. However,

noise variability affects the support recovery algorithm, whose results are no longer

deterministic, but susceptible to changes: each iteration could provide a different

support, with obvious consequences also on amplitude and initial phase estimates.

This phenomenon becomes more and more significant as the signal-to-noise ratio

decreases. Then, it is reasonable to assume there exists a limiting value of the signal-

to-noise ratio (SNR), below which the support is wrongly identified and accurate

component estimation becomes impossible.
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Figure 3.3: Success probability with progressively reduced SNR.

To find this limiting value, tests were carried out by repeating the CS algorithm

100 times for a number of different SNR values, recording the number of success-

ful support recoveries. In this case, to avoid any interference contribution the nor-

malised frequencies were set to λ1 = 72.6, λ2 = 98, λ3 = 103.4, so that the second

component, which still causes no leakage, is also far enough to be unaffected by

leakage from any of the other two components.

Results are shown in Fig. 3.3, which evidences that successful support recovery

cannot be guaranteed below 20 dB SNR. It should be noted that only an exact coin-

cidence means a successful result.

3.2.4 Super-Resolution Experimental Results

So far, it has been shown that the proposed CS algorithm can accurately estimate

the frequency position of signal components on a dense (interpolated) grid, thus

allowing to compensate for the effects of spectral leakage. It remains to show that

components that are placed very close in frequency can be picked out and correctly

estimated. Then, achievable performances should be characterized.

Given the initial test configuration described above, in the absence of noise the

second component was shifted in frequency, by steps of 0.1 bins, towards the first
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Figure 3.4: On the left, amplitude means errors according to different number of

measurements; on the right, logarithmic plot of mean error trends.

component. Results were found to depend on signal parameter settings, in partic-

ular on the initial phases. If the phase shift between the first and second compo-

nents is equal to 0, π/2 or π the resolution threshold at which support recovery is

successful is equal to 1.1 bins. By raising the threshold to just 1.2 bins, the two equal

amplitude components are correctly resolved with any phase configuration. For any

random set of phase values, reconstruction error is negligible.

Spectral interference becomes worse if one component is larger than the other.

Keeping the first component amplitude constant, we progressively reduced the sec-

ond one, up to a ratio of 1 : 1000. In this case, a minimum separation of 1.4 bins is

required to ensure a correct resolution for any possible setting. This condition was

verified by simultaneously varying the amplitudes and phases of both components

with a random pattern.

It is also important to find out which is the minimum required number of mea-

surements. While correct support recovery is possible even for M = 1, at least M = 4

is necessary to provide good accuracy in waveform reconstruction, as can be seen

in Fig. 3.4.

On the contrary, the relative spacing between the initial points nm does not

affect significantly the results, even though by reducing the superposition of two

sequences, their statistical correlation is less significant. On the other hand, by a

proper choice of the number and position of the measurement initial points the to-

tal observation interval can be markedly reduced. A good compromise was found to

be M = 4 and nm = [ 0, 3, 6, 9 ]. In this way, only 256 samples are acquired to obtain

an estimate over a grid of 2560 frequency points.

In the presence of noise, the method’s effectiveness depends critically on sup-
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Figure 3.5: Mean (diamonds) and standard deviation (squares) of amplitude estima-

tion error vs. SNR on second signal component: A2 = A1 = 1 a.u.

port recovery. Adopting a SNR equal to 20 dB, method’s performances are compara-

ble with the noiseless case. A distance of 1.4 bins represents a resolution threshold,

once more not dependent on component amplitudes and initial phases. For com-

ponents with different amplitudes, the minimum ratio has to be limited to 1 : 10 (i.e.,

−20 dB), otherwise the second component is hidden by noise fluctuations.

To understand the impact of support recovery in comparison to noise effects on

component parameter estimation with known support, two sets of simulations were

carried out, where SNR varied but support was known a priori. Results are presented

in Fig. 3.5 for A1 = A2 = 1 a.u. and in Fig. 3.6 for A1 = 1 and A2 = 0.1 a.u. In both

cases, the mean deviation of the amplitude estimation error for A2 is almost one

order of magnitude below the standard deviation. It is important to note that, when

the support is known, estimation variance is proportional to SNR, as implied by Eq.

(3.14).

In conclusion, obtained results suggest that a resolution threshold equal to 1.4

bins can be considered valid until SNR value is not lower than 20 dB. Within these

constraints, the proposed method recovers the original support and provides accu-

rate estimates of component amplitudes and initial phases.

3.2.5 Leakage Dictionary Advantages

Till now, the problem of resolving frequency components close to Rayleigh thresh-

old has been address by introducing a super-resolution technique which exploits the
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Figure 3.6: Mean (diamonds) and standard deviation (squares) of amplitude estima-

tion error vs. SNR on second signal component: A2 = A1
10 = 0.1 a.u.

components sparse representation in the DFT domain. In Section 3.2.4, the exper-

imental results show that the proposed algorithm achieves good estimation accu-

racy, without significantly extending the overall observation interval. In this regard,

it should be noticed that challenging operative conditions have been implemented

in order to determine the actual resolution threshold and its dependency from the

component parameters.

In this section, the proposed CS approach is compared with some of the most

renowned and widely employed super-resolution techniques. Particular attention

is devoted to the alternative CS approaches, in order to highlight the performance

enhancement provided by the proposed algorithm.

Approaches Not Relying on CS Theory

Let us consider a generic signal consisiting of a weighted sum of cisoids:

X (λ) =∑
h

Ahe jφhδ(λ−λh) λ= f Ts ∈ [0,1] (3.15)

For the sake of simplicity, in the following the frequencies are assumed to be nor-

malised by the sampling rate fs . Let us consider a conventional uniform sampling

protocol compliant with Shannon’s sampling theorem, omitting for the moment the

sparsity assumption.

In this context, the literature offers three main approaches:
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• the canonical DFT approach provides exact estimations only for those com-

ponents whose frequency lies exactly on a discrete grid bin, i.e. is an integer

multiple of ∆λ = 1/N ;

• the DFT coefficients interpolation techniques ensure a spectral resolution equal

to kR∆λ with kR > 1; within this threshold, also off-grid estimates are feasible

with variances approaching Cramér-Rao bounds;

• the parametric methods, e.g., Pisarenko, MUSIC and ESPRIT, achieve much

better resolution, but at the expense of greater computational complexity.

CS Norm Approximation Approaches

Even starting from N time domain samples, the basic idea is to obtain an esti-

mate resolution proportional to ∆′
λ
= 1/N ′, with N ′ = N P . Typically, the integer P is

called also super-resolution or refinement factor P =∆λ/∆′
λ

.

Let us consider the typical sparse acquisition protocol in the time domain, mod-

elled by Eq. 3.3. The canonical CS approach provides a convex norm relaxation

approach, which could be BP or LASSO according to the expected level of additive

noise. Generally, this estimation technique provides rather unsatisfactory perfor-

mances:

• the achieved resolution is scarce, with kR = 4 [66][67];

• the poor numerical conditioning of the measurement matrixWhas to be prop-

erly taken into account: for instance, frequency inhibition [68] or coherence

band exclusion [69] techniques ensure a resolution enhancement up to kR = 3;

• the Rayleigh threshold is seemingly unresolvable, or even unapproachable by

CS super-resolution approaches.

Over-Complete Dictionary of Leakage

Let the vector x contain sequentially sampled values. More precisely, let us con-

sider a set of M subsequent N -points data records, and let the measurement equa-

tion be suitably defined to reflect this.

Accordingly, the super-resolution problem can be interpreted as a sparse acqui-

sition problem, simply with a further dimension related to the number of acquired
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records. It is worth noticing that the M data records are expected to be jointly sparse,

i.e. different realizations of the same aleatory process which share the same sup-

port. As aforementioned, this kind of sparsity could be employed to enhance the CS

support recovery performances. In the following, two plausible solutions are briefly

discussed and compared.

Inverse matrix truncation Fig. 3.7(a) shows a typical representation of CS acqui-

sition protocol. Let us consider a full rank system of equations:

X = WN′×N′A+Z (3.16)

where both the measurement and the unknown vector have cardinality N ′, and the

measurement matrix is square. Evidently, this system is determined and admits a

unique solution to be computed by a simple matrix inverse:

Â = W†
N′×N′ (X−Z) (3.17)

In this context, the CS acquisition protocol is equivalent to selecting a set of N =
N ′/P rows of the measurement matrix W and accordingly obtaining the typical under-

determined sparse problem:

X = WN×N′A+Z (3.18)

As shown in Fig. 3.7(a), the novel matrix linear system is characterized by a rect-

angular measurement matrix, which is only required to satisfy the RIP of a suitable

order.

In the literature, this straightforward CS approach to super-resolution problem

is also known as inverse matrix truncation [70]. As aforementioned, this is a com-

pletely blind approach which exploits the only knowledge a priori about the signal

sparsity in the DFT domain. The resolution threshold depends essentially from the

row selection stage. However, even implementing the coherence band exclusion cri-

terion, the resulting truncated W matrix is expected to exhibit scarce conditioning

number and isometry constant. Consequently, components distance too close to

Rayleigh threshold are difficult to be correctly recovered.

Spectral leakage contribution The CS algorithm presented in this chapter, instead,

enhances frequency resolution by introducing a dictionary which explicitly accounts
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(a) inverse matrix truncation; (b) spectral leakage dictionary.

Figure 3.7: Comparison between different CS approaches to super-resolution prob-

lem in DFT spectral analysis.

for spectral leakage on a fine grid. As shown in From Fig. 3.7(b), some significant dif-

ferences are noticeable with respect to the previous paragraph approach. First of all,

the measurement equation is formulated as follows:

X = WH
N×NDn×N′A+Z (3.19)

where the inverse DFT matrix assumes its canonical square form, with dimensions

[N ×N ]. The compression stage is committed to the over-complete dictionary D of

dimensions [N ×N ′], which accounts for leakage contribution inherent in any DFT

measurement protocol. In other words, signal sparsity is expressed not in terms of

an orthonormal basis but in terms of an over-complete dictionary [71].

In CS literature, the adoption of this kind of dictionary is currently spreading,

owing essentially to two motivation. On the one hand, it is not always possible

to define a sparsyfing basis which is exactly orthonormal, while an over-complete

dictionary is required only to have more columns than rows. On the other hand,

this approach offers more flexibility and adaptability: in linear matrix inverse prob-

lem it is reasonable to expect that suitable over-complete representations could be

helpful in reducing approximation errors and making the CS procedure more ro-

bust in the presence of noise or artefacts. In the present case, for instance, the over-

complete dictionary allows to achieve kR ' 1.5 even starting from reasonably short

data records, that is nearly half the best resolution threshold provided by any other

CS approach in the literature.
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Table 3.1: Minimum distance – equal-amplitude components.

P 3 5 7 9 11 13

∆l 5 8 10 13 16 22

|λ2 −λ1| ·N 1.67 1.6 1.43 1.44 1.45 1.69

P 15 17 19 21 23

∆l 22 26 28 30 34

|λ2 −λ1| ·N 1.47 1.53 1.47 1.43 1.48

3.2.6 Support Recovery Stage

Fine-grid DFT coefficients are the non-zero elements of a, whose values are de-

termined by computing the pseudo-inverse:

âS = 1

N

(
DH

S DS
)−1

DH
S Wx. (3.20)

In this equation, DS is a restricted dictionary matrix obtained by keeping only the

columns of D with index belonging to the recovered support S, and âS is the corre-

spondingly restricted vector.

Support recovery is the critical part of the algorithm, as its task is to identify

waveform components. Its function is the equivalent, on the finer frequency grid,

of peak search in traditional DFT-based spectral analysis and, likewise, a signal-to-

noise ratio (SNR) threshold holds.

To find out the lower bound for frequency separation we considered a signal

with |Sa | = 3, i.e., three cisoidal components, each having unit amplitude and ini-

tial phase randomly taken from a uniform distribution between 0 and 2π. In the

frequency domain two components, at frequencies λ1 and λ2, had their distance

progressively reduced, while the third, located further away, was employed as a con-

trol element.

The limiting distance between the two close components was determined when

support recovery success rate dropped below 100%. Results obtained in noiseless

conditions are reported in Table 3.1, where ∆l is the minimum difference between

the indexes of the corresponding two non-zero vector elements al1 and al2 , and |λ2−
λ1| ·N = ∆l

P .

Considering a sequence length N = 256, trials were repeated for different super-
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Figure 3.8: Minimum distance between equal amplitude components in the pres-

ence of different values of refinement factor P (red squares); least-squares trend line

whose gradient is approximately equal to 1.5 (blue).

resolution factors. We assigned to P integer values between 3 and 23 (a range of

non-critical values for the numerical conditioning of D), selecting only coprimes

with N to prevent D from becoming singular. Fine grid step size is thus approxi-

mately one order of magnitude smaller than ∆λ. Within the given range for P the

threshold lies at approximately 1.5∆λ, that is, half the value required by coherence

band exclusion [69]. Variability in the computed value of ∆λ · N is due to the fact

that only frequencies falling exactly on the finer grid have been considered, to avoid

interaction with finite-grid errors that are the object of separate tests discussed in

the next section. In Fig. 3.8, the minimum resolved distance between equal ampli-

tude components, in noiseless condition, is presented as function of the refinement

factor P . Furthermore, also the least-squares trend line is superposed and confirms

that the resolution threshold is equal approximately to 1.5∆λ and can be considered

independent from P .

Results obtained for different values of the signal-to-noise ratio (SNR) show that,

for a sequence of N = 256 samples, Sa is correctly recovered down to approximately

SNR = 15 dB. This means 100% success rate in finding components whose frequen-

cies λh lie on the finer grid.

Success probability versus SNR, for N = 256 and different values of P , is pre-

sented in Fig. 3.9. Performance degradation is evident as P gets larger, since co-

herence among the columns of D is increased as well. Nevertheless, OMP can still

achieve a success rate in excess of 90% with SNR = 10 dB and P < 15.



3.2. PART I: CS SUPER-RESOLUTION IN DFT-BASED SPECTRAL ANALYSIS 103

Figure 3.9: Probability of successful support recovery for different values of SNR and

super-resolution factor P .

3.2.7 Finite-Grid Error and Noise

Amplitude estimation by (3.20) can yield accurate estimates, whose covariance

with noisy data is:

cov[âS ] = σ2
z

N

(
DH

S DS
)−1

. (3.21)

Matrix DH
S DS approximates the identity for component separations greater than∆λ,

so that amplitude estimates are, for practical purposes, uncorrelated and their vari-

ance is close to the single-component Cramèr-Rao bound [72]. This was confirmed

by a set of 100 simulations, repeated for different values of SNR, considering again

the three-component signal introduced in the previous section. A super-resolution

factor P = 11 was selected as it is a prime integer and approximately corresponds to

an order-of-magnitude improvement of the frequency grid step size, that is, equiv-

alent to what can safely be achieved in practice by the interpolated DFT approach

[60]. The first two waveform components were placed quite close to each other, at

(λ2 −λ1) · N = 14
11 = 1.27, while the third, included as a far-distance reference, was

at (λ3 −λ2) ·N = 292
11 = 26.5. Over a wide range of SNR values, estimated amplitude

variances differed very little among them, their values being only marginally larger

than the quantity
σ2

z
N .

Component frequencies may not actually coincide with grid points, therefore

to a more limited extent leakage can still be present. To show how amplitude es-

timates are affected, the plots of Fig. 3.10 were obtained by varying the frequency
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Figure 3.10: Amplitude estimation for a single off-grid component.

of a single sinusoidal component in a ±0.5∆′
λ

neighborhood of a fine-grid point

kh
N ′ . In the noiseless case, relative error in amplitude estimation is almost exactly

1−DN (∆′
λ

) and depends on the scalloping loss associated to the Dirichlet kernel

[73]. The largest error occurs for |λ| = 0.5∆′
λ

, but attenuation is much smaller than

the Dirichlet kernel worst-case scalloping loss, since DN (0.5∆′
λ

) À DN (0.5∆λ) even

with the moderate super-resolution factor P = 11 employed for the plots.

Fig. 3.10 also presents an example where signal samples are affected by zero-

mean random white noise with SNR = 20 dB. The plot shows that estimate variations

caused by noise can be considerably larger than scalloping loss effects. To further

analyze the latter aspect, a set of 100 simulations with a single sinusoidal compo-

nent and SNR = 20 dB was repeated at a number of frequencies within ±0.5∆′
λ

of a

fine-grid point. In this case the total root-mean-square error is a more useful perfor-

mance indicator than pure variance, since the resulting mean deviation from refer-

ence values is significant. This is plotted in Fig. 3.11 and, when compared with Fig.

3.10, shows the considerable impact of noise.

3.2.8 OMP Noise Sensitivity

The success rate of the non-linear support recovery stage included in the CS al-

gorithm drops significantly when SNR gets below a certain limiting value, as shown

in Fig. 3.9. This performance can be enhanced, at the cost of a moderate increase

in measurement time, by jointly processing a set of time-shifted but strongly over-

lapped N -sample sequences.

For this purpose we consider a set of M measurement vectors xm , with 0 ≤ m <
M , each containing N sequentially acquired waveform samples. The index of the
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Figure 3.11: Total root-mean-square error for amplitude estimation of a single off-

grid component, with SNR = 20 dB.

first sample in each sequence is known, since one may start from 0 for the first ac-

quisition, and simply record the index difference at the start of subsequent records.

With this convention, the start index of a sequence will be indicated by nm and

n0 = 0. Setting∆n = nm+1−nm , the total acquisition length becomes: N+(M−1)·∆n.

To understand the effect of an index shift on the measurement equation, it is

useful to consider DFT expression (3.9). Given a sample record starting at nm , each

complex term in the summation on the right-hand side has the form:

Ahe j(φh−2πλh nm)DN

(
k

N
−λh

)
e− j 2π k

N nm , (3.22)

where the exponential term at the end of the expression is independent of the fre-

quency λh . This can actually be set to zero assuming that, whenever a DFT is com-

puted, the time index runs from 0 to N −1, rather than from nm to nm +N −1.

Each vector xm can therefore be associated to a measurement equation of the

form (3.3): xm = WH Dam+zm , where vectors zm are uncorrelated, being time-shifted

with respect to each other. On the other hand, the net effect of an index shift on the

waveform-related term is a phase rotation of the complex weight associated to the

h-th waveform component, by the quantity −2πλhnm . Neither magnitude Ah nor,

more importantly, frequency locationλh are affected. Consequently, the support set

Sa is common to all vectors am .

After arranging the set of measurement vectors into an N×M matrix X = [x0,x1 . . . ,xM−
1], our problem can be formulated by means of a multiple measurement vector (MMV)

equation with jointly sparse support [74]:

X = WH DA+Z, (3.23)
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with Z = [z0,z1 . . . ,zM −1]. Matrix A, with size N ′×M , can be factorized as:

A = diag{a}R. (3.24)

where diag{a} is a diagonal N ′×N ′ matrix whose non-zero entries are the elements

of vector a. The M columns of R contain the phase rotation terms defined at each

point of the fine frequency grid for each time shift nm .

For the measurement correlation matrix XXT the following equality holds:

XXT =WH D

(
M−1∑
i=0

ai aH
i

)
DH W+

M−1∑
i=0

zi zT
i (3.25)

where, as already noted, white noise vectors are uncorrelated. Therefore, we can ap-

ply singular-value decomposition (SVD): XXT = VX ·diag[λ2
i ]·VH

X , withλ1 >λ2, . . . ,λN

to separate signal and noise subspaces. Since the signal subspace rank is equal to the

order of the signal model (3.1), a condition involving the cardinality of Sa , namely:

M > |Sa |, must be satisfied, which determines the minimum size of the measure-

ment correlation matrix.

Interpretation of SVD as a Karhunen-Loève expansion for XXT suggests that, by

increasing M , at low SNR values the larger eigenvalues will increase their energy

without increasing in number, whereas noise-related eigenvalues will increase in

number, but not in amplitude. This is shown in the plots of Fig. 3.12, where the

eigenvalue profile of the measurement correlation matrix for a waveform with three

cisoidal components is presented for different values of SNR. The value M = 10 was

chosen so that a suitable number of noise-related eigenvalues could also be calcu-

lated, evidencing that, by setting a suitable threshold, signal-related eigenvalues can

be singled out from noise. This holds approximately up to SNR = -8 dB, which is the

threshold for the maximum likelihood estimator [75].

In the low SNR case, therefore, SVD decomposition of the measurement corre-

lation matrix allows to carry out joint support recovery for the MMV equation (3.23)

by searching for the sparsest solution, u, to the equation:

vX (th) = WH DAu, (3.26)

which, compared to the approach proposed in [45], has been modified so that vX (th)

is formed as a suitable linear combination only of the columns of VX whose corre-

sponding eigenvalues are above the threshold. As the support of u is equal to Sa ,
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estimates of waveform components can be obtained again by (3.20), using any of

the measurement vectors xi .

Figure 3.12: Eigenvalue distribution of the measurement autocorrelation matrix,

with M = 10, P = 11.

3.2.9 CS-DFT Approach Overview

Spectral estimation of multi-tone waveforms is an extensively studied problem.

In this chapter we addressed it by a CS-based approach, which in the following will

be addressed also as CS-DFT, showing that fine-grid frequency estimates can be ob-

tained and component amplitudes and phases reconstructed exactly when normal-

ized component frequencies are given by lh/N ′. Referring to a finite grid may appear

as a limitation compared to interpolation and parametric methods where, in prin-

ciple, frequency can be considered a continuous variable. However, finite signal-to-

noise ratio (SNR) places a lower-bound as well, which is equivalent for all practical

purposes to just considering a discrete fine grid.

While application of the CS algorithm does not eliminate spectral leakage, by

reducing granularity on the frequency axis it increases, in normalised terms, the fre-

quency separation between adjacent components. This virtually eliminates long-

range frequency interference effects, leaving only scalloping loss to be dealt with. Of

course, computational complexity of the algorithm is higher, but still within man-

ageable limits for the processing capabilities of current equipment. The end result

is that a similar order-of-magnitude improvement can be achieved in frequency res-

olution, with a bare 5% increase in measurement time.
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In principle, interpolation allows to consider frequency as a continuous variable.

However, finite signal-to-noise ratio (SNR) places a lower-bound, which is equiva-

lent for all practical purposes to just considering a finer discrete grid with normal-

ized step ∆′
λ
<∆λ. Accordingly, any enhancement can be assessed by considering a

finite super-resolution factor: SRF = ∆λ
∆′
λ

.

So far, performance of OMP in support recovery has been found adequate for

applications in electrical engineering, allowing to correctly detect all components of

analysed multi-tone waveforms. Investigation into CS alternatives with better noise

robustness could allow to better exploit in the future the potential of some of the

features discussed in the chapter.

For lower SNR values, locating components lying on the finer grid requires pre-

liminary subspace decomposition of a measurement correlation matrix. As this is

obtained from M time-shifted sample sequences, each of length N , just a moderate

increase in measurement time is required [76].

3.3 Part II: CS-DFT Application to Power Quality and

Phasor Measurement

3.3.1 Power System Measurements Scenario

Measurement in power systems, particularly smart grids and microgrids, is of-

ten concerned with the analysis of voltage and current waveforms [77, 78], in which

Fourier analysis plays a leading role. For instance, power quality analyzers (PQAs)

can determine the harmonic content of current or voltage waveforms at selected

points in a network [79, 80]. Phasor measurement units (PMUs) can also make use of

Fourier-based algorithms to carry out time-synchronized measurements of phasors

at the fundamental line frequency [81], [82], although the basic estimation model

provided in IEEE Standard C37.118-2011 refers to a digital quadrature demodulator

[83].

Any measurement algorithm based on the discrete Fourier transform (DFT) is

characterized by a fundamental time-vs-frequency tradeoff. DFT coefficients ob-

tained from a sequence of N samples, taken at uniform intervals Ts , are determined

on a discrete frequency grid whose step size ∆ f is the reciprocal of the observation
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time N Ts . This determines the minimum theoretical frequency separation at which

two waveform components can be discerned. To resolve harmonics of the power-

line frequency, observation time would have to be equal to at least one waveform

cycle, T0.

Resolution and accuracy in DFT-based algorithms are affected by spectral leak-

age, which can be countered either by windowing of the sample sequence followed

by frequency-domain interpolation of DFT coefficients, or by synchronization of the

sampling rate to the line frequency. The former approach has been considered for

phasor measurement [84]. The need to allow for window mainlobe width means

that, in principle, a larger component separation would be necessary, resulting in

longer observation times, of between two and four waveform cycles [85]. Reporting

latency is also affected since, for any DFT-based algorithm, this cannot be shorter

than half the observation time.

One-cycle phasor estimators can be realized as well, as long as a very limited

range of variation is allowed for the powerline frequency, so that inaccuracies due to

residual leakage effects in off-nominal situations can be made small enough to be

negligible [86]. This does not take into account the possibile presence of interhar-

monics, whose interference might affect phasor estimates.

Line frequency synchronization is considered, for the measurement of harmon-

ics and interharmonics, in IEC Standard 61000-4-7, where interharmonic compo-

nents are dealt with by defining interharmonic groups [87]. As a 5-Hz frequency

resolution is required, suggested observation time is 200 ms (equal to 10T0 for 50 Hz

systems or 12T0 for 60 Hz systems), again showing that any resolution improvement

has to be paid for by an increase in measurement time.

These well-known conditions determine basic limitations of the Fourier approach,

particularly when dynamic conditions are considered. To overcome the shortcom-

ings of the static signal model underlying Fourier analysis different methods have

been proposed, allowing phasor measurement [88], [89] and harmonic analysis [90]

under dynamic conditions. These approaches were shown to be able to meet most

or even all requirements for dynamic synchrophasor measurements as specified in

IEEE Standard C37.118-2011, but require longer measurement times [91], [92]. Re-

cently, Prony’s method was shown to have the potential for accurate synchrophasor

estimation in a one-cycle observation interval [93].
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Phasor and harmonic measurements are commonly related to HV and MV dis-

tribution grids. However, the emerging scenario of smart microgrids [94, 95] points

to the pervasive use of intelligent meters in LV distribution grids, providing contin-

uously updated measurements of phasors and power quality indexes for use, e.g.,

in distributed control. Low-cost measuring equipment are expected to provide ac-

curacy performance indexes similar to those already achieved by PQAs and stan-

dard PMUs, but under more distorted and disturbed operating conditions, as expe-

rienced in LV distribution grids. At the same time, the need for fast reporting rates is

emphasized.

In this context, CS-DFT represents a promising candidate as accurate estimation

algorithm for harmonic analysis, interharmonic and phasor measurement. The per-

formance assessment in [40] employs specifically implemented benchmark signals,

extending on the work already presented in [96].

Experimental results, carried out in non-ideal conditions, validate what has been

previously demonstrated in theory. The proposed CS-DFT algorithm can achieve

an order-of-magnitude improvement in frequency grid resolution, compared to the

DFT step size ∆ f , without significantly extending total observation time.

While its application does not eliminate spectral leakage, the algorithm signifi-

cantly reduces scalloping loss effects, while long-range frequency interference are

dealt with by jointly processing frequency domain information when estimating

waveform components [76]. Although still relying on a static signal model, the finer

frequency grid of the CS-DFT algorithm allows to reduce the effects of dynamic con-

ditions on measurement accuracy, so that requirements of IEEE Standard C37.118-

2011 [83] can mostly be met. As the algorithm is non-parametric, it can be made

adaptable enough to provide either PQA or PMU measurements by a single device

as the need arises.

3.3.2 CS-DFT for Real-Valued Periodic Signals

Consider a multisine waveform expressed by the sum of a number of complex

exponential components (with suitable symmetries):

s(t ) =∑
h

[
Ah

2
e j (φh+2π fh t ) + Ah

2
e− j (φh+2π fh t )

]
(3.27)
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This equation can be referred to harmonic analysis, in which case fh = h · f0 and

f0 = 1
T0

is the fundamental frequency, as well as to a more general situation where

no relationship among frequencies may exist, e.g., in the analysis of power system

interharmonics.

Given a sequence of N waveform samples, the DFT algorithm provides a cor-

responding set of N frequency-domain coefficients, that can be expressed by the

equation:

S

(
k

N

)
= ∑

h∈SH

Ah

2
e jφh DN

(
k

N
−νh

)
e
− j 2π

(
k
N −νh

)
n0 , (3.28)

where 0 ≤ k < N , νh = fhTs is the frequency of the h-th waveform component nor-

malized by the sampling rate 1
Ts

, and DN (·) is the Dirichlet kernel:

DN (ν) = sinπNν

N sinπν
e− jπ(N−1)ν . (3.29)

Index n0 refers to the time position of the first sample in the sequence and will

henceforth be set to 0.

DFT coefficients in (3.28) are given at discrete normalized frequency values ν=
k/N , that is, for integer multiples of the frequency step 1/N Ts . Hermitian symmetry

implies the sum in (3.28) extends to image components at normalized frequencies

1−νh . In short, this is denoted by h ∈ SH , where SH is the set that includes all con-

tributing complex exponential terms.

We now define a finer frequency grid, with a smaller step ∆′
f =∆ f /P , so that the

total number of grid points is N ′ = P ·N . The integer P can be called the interpolation

factor. Referring waveform frequencies to this finer grid allows to express them as:

νh = lh +δ′h
N ′ = lh +δ′h

P
· 1

N
(3.30)

for some integer lh ∈ [0,1, . . . , N ′−1], with |δ′h | ≤ 1
2 . The closest approximation to νh

on this new grid is:

ν̂h = lh

N P
. (3.31)

Let Sh ⊂ {0, 1, . . . , N ′−1} be the subset of integers corresponding to waveform

components, i.e., l ∈Sh implies l = lh for some value of the index h. Replacing νh by

ν̂h allows to approximate (3.28) as:

S

(
k

N

)
' ∑

l∈Sh
0≤l<N ′

Ah

2
e jφh DN

(
k

N
− l

N ′

)
, 0 ≤ k < N . (3.32)
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Of course, under our assumptions the number of elements in Sh , i.e., its cardinality

|Sh |, is the same as |SH |. Equation (3.32) can be written in a more compact form as

a matrix relationship between the frequency grid indexed by k (the DFT index) and

the finer grid indexed by l :

s ' Da . (3.33)

DFT coefficients are contained in vector s and elements of the N ×N ′ matrix D are

defined by: dk,l = DN

(
k
N − l

N ′
)
. The unknown vector a contains complex amplitude

values that can be associated to waveform components.

The actual measurement equation:

x = s+n = Da+e . (3.34)

also accounts for measurement noise and uncertainty. Here x is the vector of com-

puted DFT coefficients and it should be reminded that, if the additive random con-

tribution affecting the N time domain samples has variance σ2
n , then n is a zero-

mean, uncorrelated random complex vector, with covariance (σ2
n/N )I, which turns

out to be approximately Gaussian [97]. The vector e in the rightmost term summa-

rizes both n and the approximation effect introduced by (3.31).

Given the vector x, estimates of the components of s(t ) are the non-zero ele-

ments al in vector a contributing terms to summation (3.32), whose index values

satisfy l ∈ Sh . Since |Sh | ¿ N ′, vector a is considered sparse, all its other elements

being zero. Sh is called the support of a.

In a nutshell, this is the problem feature that leads to considering a CS approach

for Fourier analysis of the waveform measurement. The CS solution to (3.34) can be

formulated as follows:

â = argmin
a

‖a‖0 subject to: ‖x−Da‖2 ≤ ε , (3.35)

where ‖a‖0 indicates the `0 pseudo-norm, that is, the number of non-zero elements

of a.

As problem (3.35) is known to have combinatorial complexity, in practice â is

found either by convex relaxation (i.e., constrained minimization of the `1 norm

‖a‖1 in place of ‖a‖0), or by employing a so-called greedy algorithm. We shall fol-

low the latter approach, which is computationally less demanding, using orthogonal

matching pursuit (OMP) [25, 54] to recover the vector estimate â.

OMP is an iterative approximation algorithm whose steps are given as follows:
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Step 1 the initial approximation residual r0 is equal to the measurement vector:

r0 = x, the initial estimated support set is empty: Ŝ0 = ∅. We also intro-

duce the matrix DSt , that will be composed only of the columns of D selected

through the steps of the algorithm. Initially, DS0 has zero columns. The itera-

tion counter is set to t = 1;

Step 2 find the index lt as:

lt = arg max
0≤l<N ′ ‖DH rt−1‖2, (3.36)

where the superscript H denotes a complex conjugate transpose matrix. Iter-

ations of this step cover the support recovery part of the algorithm;

Step 3 augment the estimated support set: Ŝt = Ŝt−1 ∪ {lt }. The column of D with

the corresponding index is appended to the matrix: DSt =
[
DSt−1 dlt

]
;

Step 4 calculate a new vector:

âlt = argmin
a

‖x−DSt a‖2 =
(
DH

St
DSt

)−1
DH

St
x , (3.37)

which has t non-zero elements. Iterations of this step provide a progressively

refined estimate;

Step 5 calculate the new residual: rt = x−DSt âlt , then increment the iteration counter:

t = t +1 and return to Step 2.

The OMP algorithm can have two stopping criteria:

• if the number of non-zero elements of a is known in advance, the number of

iterations tM AX can be predefined: tM AX = |Sh |;

• otherwise, the algorithm can be stopped when the approximation residual

drops below a given threshold ε, as introduced by (3.35), in which case tM AX is

the first value of t that satisfies: ‖rt‖2 < ε and the estimated cardinality of the

support of a is: |Ŝh | = tM AX .

The resulting sparse vector âtM AX is the desired estimate of the components of (3.27).

The important point is that, by defining a suitable approximation threshold, the al-

gorithm can solve (3.35) without advance knowledge of the support cardinality |Sh |,
although it may be useful to set a limiting number of OMP iterations as a safety cri-

terion.
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Figure 3.13: Magnitude estimates of a four-harmonic waveform obtained by the CS-

DFT algorithm. A zero-padded 256-point DFT (dotted) is plotted for comparison.

As discussed in [76], the required minimum frequency separation between two

waveform components lying on the fine grid is approximately 1.5 ·∆ f = 1.5 · (∆l /P ),

where ∆l is the integer difference between the fine-grid indexes of the two compo-

nents. When this condition is satisfied, OMP correctly recovers the support Sh and

amplitude estimates are accurate. Furthermore, the finer grid allows to estimate

component frequencies to within ±(∆′
f /2).

It should be remembered, however, that the latter quantity cannot be made in-

finitely small by the expedient of increasing P at will. Matrix D represents the effect

of spectral leakage, through values of the Dirichlet kernel computed on a suitable

two-dimensional grid. When large values of the interpolation factor are considered,

the numerical conditioning of D tends to get worse. Thus, it is advisable to aim at

values of P not much larger than order of 10.

3.3.3 Measuring a Simple Harmonic Waveform

The proposed CS-DFT approach promises to achieve enhanced frequency accu-

racy without requiring an extension of the observation time, allowing to overcome

the traditional time-vs-frequency tradeoff of DFT-based methods. The CS frame-

work provides a rigorous and effective procedure to determine from experimental

data the support Sh on a fine frequency grid and, subsequently, reconstruct the com-

position of a waveform.

The example shown in Fig. 3.13 refers to the analysis of a periodic waveform
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Table 3.2: CS-DFT estimation of a four-term harmonic waveform with SNR = 40 dB

Harmonic no. 1 2 3 4

Frequency [Hz] 49.50 99 148.51 198.01

Magnitude [a.u.] 6 2.21 0.812 0.299

Mean dev. (relative) −4×10−5 3×10−4 3×10−4 2×10−3

Std. dev. (relative) 6×10−4 1.5×10−3 4×10−3 1×10−2

Phase [rad] 3.96 4.85 4.75 3.11

Mean dev. [rad] 1.2×10−4 3×10−4 −7×10−4 −8×10−3

Std. dev. [rad] 1.7×10−2 2×10−2 2×10−2 2×10−2

composed of four harmonic terms. The initial phase of each component is inde-

pendently drawn from a random uniform distribution in the interval [0,2π). Data

record size is N = 256 samples and the assumed sampling frequency is 4100 Hz.

This results in a DFT frequency grid step ∆ f = 16.02 Hz, while the finer frequency

grid with an interpolation factor P = 11 is ∆′
f = 1.456 Hz. With these parameters,

the fundamental frequency f1 = 49.5 Hz is an exact multiple of the fine grid step:

f1 = l1∆ f , with f1 = 34.

The minimum separation condition given in the previous section is satisfied,

allowing OMP to correctly locate on the fine grid the frequencies of the four compo-

nents, with the corresponding magnitude estimates shown by the four sharp peaks

in Fig. 3.13. For comparison, the figure also presents a plot of the magnitude of the

DFT computed from a 256-point sample sequence, zero-padded with (P −1)N ze-

roes. Since the latter is defined on the same finer grid as the CS-DFT, comparison

readily evidences discrepancies and the adverse effects of interference among the

waveform components, that would affect any purely DFT-based estimate. In par-

ticular, for the second harmonic the significant discrepancy in magnitude from the

CS-DFT can be attributed to interference from the fundamental.

An assessment of CS-DFT measurement uncertainty for this example is presented

in Table 3.2, which summarizes the outcomes from a set of 100 simulation runs

where random white noise was added to the reference harmonic waveform. The as-

sumed SNR = 40 dB can be considered representative of practical situations where



116 CHAPTER 3. CS-BASED SPECTRAL ANALYSIS

the equivalent number of bits (ENOB) of the waveform digitizer is low (e.g., an 8-bit

analog-to-digital converter).

It can be seen that estimation bias is negligible when component frequencies

fall on the fine grid. For all four harmonic components, the relative mean deviation

from the reference values of magnitude and phase is almost one order of magnitude

smaller than the relative standard deviation due to the presence of noise.

At SNR = 40 dB and with a coverage factor equal to 3, uncertainty on the phasor

magnitude of the fundamental component would be better than 0.2%. For phase

estimates, estimation uncertainty is about 0.06 radians.

It has to be mentioned that, for the smaller components, noise may sometimes

affect the outcome of the support recovery procedure. In a single case, out of 100

simulations, the frequency of the third harmonic component was not estimated cor-

rectly. Results reported in Table 3.2 for this component do not include the outcome

of the simulation run where support recovery partly failed.

Harmonic frequencies in Table 3.2 were intentionally chosen to fall on the CS-

DFT fine grid. However, the equality ν1 = (l1/N P ) denotes a coherent sampling

situation, where l1 periods of the fundamental frequency are exactly contained in

an interval of length N P . In practice, it can be more realistically assumed that the

measuring device will be designed so that the observation interval approximately

matches the condition given above, that is, the CS-DFT algorithm will operate in

Table 3.3: CS-DFT estimation of a four-harmonic waveform with SNR = 40 dB off-

grid components

Harmonic no. 1 2 3 4

Frequency [Hz] 50 100 150 200

Magnitude [a.u.] 6 2.21 0.812 0.299

Mean dev. (relative) 5×10−4 −5×10−3 1×10−2 9×10−2

Std. dev. (relative) 1×10−2 2×10−2 2×10−2 2.5×10−2

Phase [rad] 6.01 5.54 0.16 3.91

Mean dev. [rad] 5×10−2 9×10−2 −1×10−1 −1×10−1

Std. dev. [rad] 2×10−2 1.3×10−2 1×10−2 8×10−2
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quasi-coherent sampling conditions. Results presented in Table 3.3 reflect this as-

sumption, as the fundamental frequency f1 = 50 Hz differs from the previous case by

just 1%. Of course, in this case spectral leakage affects component estimates to some

extent, introducing bias in magnitude due to scalloping loss and a limited amount

of interference. To counter this, record length was set to N = 256 rather than the the-

oretical minimum N = 128, so that component frequency separation ∆l /P is twice

the limiting value previously defined. Comparison with Table 3.2 shows that both

the estimate mean deviation and the standard deviation are increased.

3.3.4 Application to Power Systems

To show that power systems applications are within the range of feasibility of the

proposed CS-DFT algorithm, in the following we shall consider in greater depth two

suitable fields, power quality analysis and phasor measurement.

PQA – Harmonic and interharmonic measurement

The synchronized measurement approach of IEC Standard 61000-4-7 is well suited

to test the CS approach, as far as harmonic and interharmonic measurement is con-

cerned. In fact, a frequency grid step corresponding to the required resolution of

5 Hz could be obtained by the acquisition of even a single fundamental cycle of the

waveform, using interpolation factor P = 10 (or P = 12). Accounting for the min-

imum components separation constraint, this would have to be increased to one

and a half cycle.

It should be remembered that the IEC Standard assumes an observation inter-

val equal to an integer number of power-line cycles. Therefore, sampling frequency

needs to be adjusted accordingly (e.g., by phase-lock techniques) if the fundamen-

tal frequency varies. For the purposes of this analysis, it is equivalent and simpler

to refer to a static condition with exactly coherent sampling. It is then possible to

consider a degree of offset resulting in quasi-coherent sampling, although it seems

reasonable to assume that in this case the measuring device would be designed to

keep as close as possible to the ideal condition.

It should be noticed that interharmonics usually have far smaller magnitudes

than some harmonic components, therefore spectral interference due to the quasi-

coherent sampling condition might have more significance. To counter this more
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Table 3.4: CS-DFT estimation of interharmonics in a four-harmonic waveform

Harmonic no. 1 2 3 4

Frequency [Hz] 50.23 100.46 150.69 200.92

Magnitude [a.u.] 6 5.16 4.44 3.83

Interharmonic no. 0.5 1.5 2.5 3.5

Frequency [Hz] 34.58 58.60 121.94 167.80

Magnitude [a.u.] 0.51 0.39 0.59 0.31

Deviation (relative) 1.4×10−2−0.1×10−2 −2×10−2 0.1×10−2

Phase [rad] 6.01 5.54 0.16 3.91

Deviation [rad] 0.16 0.1 -0.1 -0.2

effectively, the observation interval can be further lengthened.

Throughout this section, data record size is N = 512 samples and sampling fre-

quency is 4100 Hz, which yields N Ts ' 125 ms, still almost 40% shorter than the

interval suggested in the IEC Standard. The DFT frequency grid step is ∆ f = 8 Hz,

while the finer frequency grid with an interpolation factor P = 11 is ∆′
f = 0.728 Hz.

The test case adopted for this study considers a waveform with 8 components,

namely, four harmonics and four interharmonics. The latter are between 5% and

10% of the magnitude of the fundamental. The initial phase of each component

is independently drawn from a random uniform distribution between 0 e 2π. In

this controlled environment, the degree of sparsity is known in advance, namely,

|Sh | = 16 including image terms. In practice, with suitable information about the

maximum harmonic order and the extent of interharmonic distortion, a reasonable

guess can be arrived at.

As far as the algorithm is concerned, results are independent of the nature, ei-

ther current or voltage, of the analyzed waveform. Distorion levels considered in

this example are more consistent with an experimental situation involving current

waveforms, whereas smaller values would be involved in voltage harmonic and in-

terharmonic analysis.

For this set of simulations no additive broad-band noise was included, as its ef-

fect is similar to what is already shown in previous sections and further discussed
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in [76]. The analysis that follows is focused on the ability to detect and measure

interharmonic components.

It should be noticed that harmonic magnitudes are larger than in the example

of the previous section. Although possibly less realistic, this choice was made to

stress-test support recovery performances for interharmonic components.

Table 3.4 refers to the case where all harmonic frequencies are located on the

fine CS-DFT grid, thereby avoiding any interference with the much smaller interhar-

monic components. As the latter cannot instead be assumed to fall upon fine-grid

points, the worst case has been considered, with frequencies falling exactly amidst

two fine grid points. Hence, the OMP support recovery step will point to approxi-

mate frequency locations for interharmonic components (within ±0.364 Hz).
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Figure 3.14: CS-DFT analysis of a signal with harmonic and inter-harmonic content.

A zero-padded 256-point DFT (dotted) is plotted for comparison.

For the sake of simplicity, Table 3.4 does not report performance results for the

harmonic components of the test waveform. In fact, their positioning on the fine fre-

quency grid ensures they are exactly recovered, therefore the same results presented

in Table 3.2 apply to them. Furthermore, they do not interfere with the estimation

of interharmonics.

The algorithm correctly detects all interharmonic components achieving a sat-

isfactory degree of accuracy, as shown by reported deviations from reference values

in magnitude and phase. It should be remarked that scalloping loss effects with the

CS-DFT algorithm are much smaller than in the standard DFT case. The resulting

magnitude estimates are plotted in Fig. 3.14.
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The quasi-coherent case can be analyzed by assuming 50 Hz as the fundamental

frequency, which means a 0.5% deviation from the value given in Table 3.4. As far as

harmonic components are concerned, results are similar to those already reported

in Table 3.3 (actually slightly better, on account of the smaller off-grid offset) and

will not be mentioned again.

For interharmonics, it should be reminded that the resolution required by the

IEC Standard is 5 Hz. It seems reasonable, therefore, to assume this as a minimum

frequency separation, in particular, between an interharmonic and a neighboring

harmonic component. In terms of the fine grid step size given above, this distance

is greater than 6 ·∆′
f . In the “very nearly” coherent sampling conditions assumed for

this test, the distance is large enough to ensure that interference caused by leakage

from slightly off-grid harmonics is negligible. Therefore, results given for interhar-

monics in Table 3.4 also apply in this case. In some instances, DFT record size N

could be adjusted to help meet the “large separation” condition.

PMU – Phasor measurement in steady state conditions

With reference to PMUs, compliance trials for phasor measurements have been

carried out reproducing all test conditions specified in IEEE Standard C37.118.1 [83].

Steady-state results are reported here, in terms of TVE, while results for dynamic

conditions are reported in the next section.

The total vector error (TVE) of a phasor measurement is defined as the rela-

tive difference between the phasor estimate and the theoretical phasor value of the

signal being measured. Steady state compliance requires that TVE should not ex-

ceed 1%. For the purposes of this work, the only relevant difference between P-class

and M-class devices concerns off-nominal frequency conditions, where a variabil-

ity range of ±2 Hz has to be allowed in the former case, while a range of ±5 Hz is

required for the M class.

Results discussed in this section refer to a data record size N = 256 samples.

Sampling frequency is 5000 Hz, which corresponds to an observation interval of

51.2 ms. The DFT frequency grid step is ∆ f = 19.53 Hz, while the finer frequency

grid with an interpolation factor P = 11 is ∆′
f = 1.776 Hz. It should be noted that

phasor measurement refers to the fundamental frequency only, therefore the OMP

algorithm can be terminated after just one iteration. Referring to the first of the two
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stopping criteria aforementioned, this means setting tM AX = 1.

As far as the effects of noise are concerned, support recovery is the critical part

of the algorithm, as its task is to identify waveform components. Table 3.5 reports

the maximum and root-mean-square (RMS) values of TVE at different SNR levels. It

is assumed the fundamental frequency lies on the fine grid, so that only the effect of

noise can be evidenced.

Table 3.5: Maximum and RMS values of TVE for different SNR levels

SNR MAX RMS

60 dB 2.7×10−4 1.4×10−4

50 dB 8×10−4 4×10−4

40 dB 3×10−3 1×10−3

30 dB 1×10−2 5×10−3

20 dB 3×10−2 1×10−2

10 dB 1.2×10−1 6×10−2

In the current OMP-based implementation, support detection becomes more

difficult as the signal-to-noise ratio (SNR) drops below 20 dB [76]. This can be con-

sidered an acceptable performance limitation in power system measurement, with

the possible exception of noise temporarily induced by transient phenomena such

as lightning strikes or the opening of circuit breakers. In a realistic phasor measure-

ment context, SNR could be expected to remain around 40 dB or better.

TVE variability caused by the addition to waveform samples of white noise with

30 dB SNR is summarized in the histogram of Fig. 3.15. This shows an approximately

Rayleigh distribution, in agreement with the fact that, as noted above, DFT coeffi-

cients are affected by complex Gaussian white noise.

Accuracy analysis follows straightforwardly by considering (3.37) where, since

tM AX = 1, DS is simply the vector dl1 of the elements of D having the column index

l1 associated with the estimated fundamental frequency. Remembering (3.34), the

estimate is:

âl1 =
(
dH

l1
dl1

)−1
dH

l1
(s+n), (3.38)

where the noise contribution from n has zero mean and variance (dH
l1

dl1 ) ·σ2
n/N =
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σ2
n/N , the equality following from the fact that dH

l1
dl1 is the equivalent noise band-

width of the Dirichlet kernel, that is equal to 1.

Assuming negligible interference from residual waveform components, in the

neighborhood of l1 the sum in (3.28) can be restricted to the fundamental, allowing

to use for the DFT coefficients the simplified expression:

S

(
k

N

)
= A1

2
e jφ1 DN

(
k

N
−ν1

)
. (3.39)

The deterministic part of (3.38) is then:

E
[
âl1

]= A1

2
e jφ1

∑N−1
k=0 D∗

N

(
k
N − l1

N ′
)

DN

(
k
N −ν1

)
∑N−1

k=0

∣∣∣DN

(
k
N − l1

N ′
)∣∣∣2 , (3.40)

where D∗
N () is the complex conjugate of DN ().

It follows from (3.40) that TVE depends on the value of δ′1, which expresses the

distance between ν1 and l1/N P as a fraction of the fine grid step. The plot showing

the maximum value of TVE versus δ′1, for SNR = 40 dB, is given in Fig. 3.16. It is clear

that the possibility to better approximate frequency, thanks to the fine CS-DFT grid,

allows to keep TVE comfortably below the 1% limit.

Tests were also carried out with regards to the effects of harmonic distorion and

out-of-band interference. Since the proposed algorithm has very good frequency

selectivity, these effects are easily bypassed. The resulting maximum TVE is below

0.03% for out-of-band interference and better than 0.015% for harmonic distortion.

Figure 3.15: Histogram of TVE for the case of Table 3.5 and SNR = 30 dB.
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Figure 3.16: Variation of maximum TVE, calculated for SNR = 40 dB, as a function

of the normalized offset from the fine grid, δ′1, of phasor frequency. The range of

variation spans a full fine grid step.

3.3.5 Phasor Measurement – Dynamic Test Conditions

Dynamic compliance requirements specified by IEEE Standard C37.118.1 include

an extensive set of test conditions. In the following, unless otherwise specified, the

same measurement configuration employed in Section 3.3.4 is assumed. It should

be remembered that, in this case, the reference phasor changes with time and, there-

fore, TVE will also be a time-varying quantity, whose value can be determined at

reporting times tr .

Assuming the CS-DFT algorithm can process a continuous stream of samples in

real time, so that no dead time occurs between consecutive records (this will de-

pend on the computing power actually available in the algorithm implementation),

the maximum rate at which phasor measurements can be made available is 1/(N Ts ).

Since estimates obtained by a DFT algorithm are referenced to the centre of the rel-

evant sample record, the CS-DFT estimate at reporting time tr = r · N Ts has to be

compared with the reference phasor at time
(
r − 1

2

)
N Ts .

With these conventions, a number of TVE plots, referring to the different test

conditions specified in the IEEE Standard, have been determined to characterize

the algorithm.
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Figure 3.17: TVE plots for dynamic compliance measurement bandwidth test.

Amplitude and Phase Modulation

A test input with simultaneous amplitude and phase modulation is required to

determine synchrophasor measurement bandwidth, according to the standard [83].

For single-phase measurement, the test signal is defined by the equation:

s(t ) = A
[
1+kx cos(2π fm t )

]×cos
[
2π f0t+ka cos(2π fm t −π)

]
(3.41)

with kx = 0.1 and ka = 0.1 rad.

With the assumptions made above, the maximum reporting rate would be ap-

proximately 20 Hz. Modulation frequency fm should be varied between 0.1 Hz and

the maximum value of 2 Hz for P class PMUs, while for M class devices the maxi-

mum could be just one-fifth of the maximum reporting rate, i.e., 4 Hz. Nevertheless,

simulation tests were still carried out up to 5 Hz and results are reported for this

higher frequency.

TVE requirements for measurement bandwidth are somewhat mitigated, an er-

ror not greater than 3% being allowed. Fig. 3.17 shows plots of TVE for two different

values of modulation frequency, fm = 2 Hz and fm = 5 Hz, calculated over a simula-

tion time of 2 s. Although accuracy was found to progressively decrease as the rate

of change of amplitude and phase gets higher, the algorithm complies with specifi-

cations for both M and P classes, with TVE never exceeding 2%.
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Figure 3.18: Plot of TVE versus instantaneous frequency f (t ) for the frequency ramp

test. Frequency range: 50 to 55 Hz.

Frequency Ramp

In the frequency ramp test, signal frequency is ramped either up or down while

keeping amplitude constant. Starting from the nominal frequency f0, the frequency

range is either ±2 or ±5 Hz respectively for P class and M class requirements. Instan-

taneous frequency is f (t ) = f0+R f t , with R f = 1 Hz/s. The total frequency variation

over an observation interval is R f ·N Ts , which turns out to be rather limited, making

this a quasi-stationary test input.

The TVE plot for an up-ramp from 50 to 55 Hz is shown in Fig. 3.18, similar

results being obtained for the downward frequency ramp. Given the value of R f

the simulation covers a time interval of 5 s, but it is more useful to indicate the

corresponding instantaneous frequency on the abscyssa. It has to be remembered

that signal frequency falls exactly on the fine grid whenever f (t ) = l ·∆′
f , with ∆′

f =

1.776 Hz.

It can be easily seen from Fig. 3.18 that TVE increases by steps whose corre-

sponding width on the frequency abscyssa is exactly ∆′
f . By proper choice of the

algorithm parameters, TVE in the neighborhood of the power-line frequency of in-

terest can be kept below the required 1% limit.

Magnitude and Phase Step

In the step change test the signal consists of a pure sinusoidal tone, whose mag-

nitude or phase is given a step variation for which the standard specifies, respec-

tively, a ±10% change or a ±10 degrees (π/18 rad) phase shift. M and P classes re-
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Figure 3.19: TVE plots for magnitude (+10%) and phase (+π/18) step changes. Con-

tinuous line indicates magnitude step TVE, dotted line phase step TVE.

quire different response times, but are both required to keep TVE below 1%.

Fig. 3.19 shows that the algorithm complies with test requirements, remaining be-

low the upper bound by almost an order of magnitude. Results refer to a +10% am-

plitude step and to a +π/18 phase step, plots for the corresponding negative steps

being equal.

As can be expected with any DFT-based estimator, the effect of a step extends

over twice the observation interval, that is, slightly more than 100 ms in this in-

stance. It is apparent that a phase step has a much greater impact on TVE, yet this

still remains well within specified bounds.

Experimental validation

Analysis by numerical simulation usually allows thorough characterization of a

measurement algorithm. Nevertheless, further validation by means of some test

bench may still be desirable. Results are found to be extremely close to those pre-

sented above, confirming the correctness of the simulation set-up employed in this

work.

Simpler tests, notably for step changes, were performed by generating voltage

waveforms with an Agilent 6812B AC Power Source/Power Analyzer having an ad-

justable output voltage up to 300 V. Signals are acquired with a National Instru-

ments NI-cDAQ 9188 unit equipped with a voltage module (National Instruments

NI 9225, 24-bit resolution, ±300 Vrms, sampling rate 50 kHz), and further processed

by means of MatLAB code.
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(a) fm = 0.1 Hz;
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(b) fm = 1 Hz;
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(c) fm = 5 Hz;

Figure 3.20: TVE under combined amplitude and phase modulation at different

modulation frequencies fm .
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The measurement bandwidth test has been implemented by a low-voltage test

bench, which allows full characterization of measurement algorithms while neglect-

ing the impact on PMU performances of HV or MV voltage and/or current trans-

ducer accuracies. Required voltage waveforms are obtained by means of a set of

three laboratory voltage generators controlled by a LabVIEW software application. A

Hewlett-Packard 8904A Signal Generator provides the output waveform and is con-

nected to two Agilent 33220A Waveform Generators providing suitable modulation

inputs. Samples are acquired through a National Instruments data acquisition mod-

ule (NI USB-6211, 16-bit resolution, ±10 V , sampling rate 250 kHz) and processed

by means of MatLAB code, which yields TVE estimates at the desired reporting rate.

Synchronization signals from the generators have also been recorded, for further

processing and verification.

It should be noted that in both systems digitizer resolution is much higher than

what was assumed in simulation analysis. Therefore, measurement variability can

actually be lower than reported in the previous sections.

Results of the measurement bandwidth test are shown in Fig. 3.20. Each sig-

nal acquisition is 12 s long overall and consists of three portions. The first and last

segment have a duration of 1 s and provide as a reference signal the unmodulated

waveform in nominal conditions, that means, a pure sinusoidal tone at 50 Hz with

initial phase equal to 0. The middle portion, instead, contains the test specific per-

turbation for a length of 10 s. Modulation frequency fm can range from 0.1 to 5 Hz,

while modulation parameters are the same considered in the numerical experiment

in Section 3.3.5. The outcomes of simulation anaysis are fully confirmed.

3.3.6 Practical Feasibility and Computational Considerations

In the literature, DFT-based methods constitute a reference model for phasor

measurement and power quality analysis. A thorough comparison is beyond the

aim of this work, however it can be claimed that the combination of DFT and CS-

based methods appears promising in achieving significant reductions of measure-

ment time. Of course, computational complexity of the CS algorithm is higher than

a simple DFT, but still within manageable limits for the processing capabilities of

current equipment. In particular, computation of DFT coefficients by an FFT algo-

rithm is a highly parallelizable task that can be implemented efficiently on a field-
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programmable gate array (FPGA) architecture. This allows to quickly process sample

records, while possibly leaving to a main processor in the measuring equipment the

CS algorithm. For phasor measurement, however, the single OMP iteration could as

well find room within an FPGA.

Discussion of different measurements in this chapter has shown that the CS-

DFT algorithm is remarkably adaptable, allowing to easily trade speed for accuracy

by simply changing the record length N . In PMU measurements, the moderate fre-

quency separation requirement for a correct resolution of waveform components in

any possible setting gives the possibility to keep the observation time well below two

periods of the fundamental component. This in turn affects the choice of the num-

ber of samples in a record, N , for which the best solution should be a good com-

promise between peculiar application requirements and available computational

power. The interpolation factor P can also be changed to some degree, adding a

further possibility to optimize performance. By proper parameter settings, the al-

gorithm could provide class M PMU accuracy at the faster reporting rate of class P

devices.

The main features of the proposed algorithm make it of interest for application in

smart microgrid projects. In fact, its basic structure can be adapted to a range of PQA

and PMU measurements by a comparatively simple set of management and control

rules, while the underlying hardware may remain unchanged. This goes towards the

aim of realizing low-cost, high-performance measurement nodes in distribution-

level smart microgrids, which are one of the targets of current research in the field.

From the viewpoint of complexity, the CS-DFT algorithm is more demanding

than other DFT-based algorithms, but for PMU measurement is arguably on a sim-

ilar level as weighted least squares and dynamic Fourier-based algorithms, with the

advantage that shorter observation intervals are allowed.

Short-time high-resolution waveform analysis is usually associated with para-

metric, model-based methods, such as Pisarenko harmonic decomposition and its

developments. As already noted, Prony’s method, which has similar computational

requirements to other model-based algorithms, has also been successfully applied

to power system measurement [93]. While the CS-DFT algorithm is inferior in terms

of accuracy, it may prove more adaptable for multi-function smart microgrid mea-

surement.
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Development of this work will follow along two lines, pointing to the study of effi-

cient and cost-effective implementations, as well as to better performing algorithms

for support recovery and signal reconstruction. Capabilities of the approach at lower

levels of voltage harmonic and interharmonic distortion need to be further investi-

gated, in connection with phasor and waveform analysis. Further aspects requiring

consideration are performances beyond the scenario outlined by the requirements

of IEEE Std C37.118.1-2011, particulalry in the more dynamic environment of dis-

tribution grids with distributed energy resources, for which the proposed CS-DFT

algorithm should prove well suited.

3.4 Part III: From Finite Grid to Continuous Basis Pur-

suit Estimation

3.4.1 Off-the-Grid Estimation Scenario

Accurate measurement of a multisine waveform is a classic problem in spectral

analysis, that also represents a benchmark for most signal processing algorithms. It

is well-known that algorithms based on the discrete Fourier transform (DFT) have

to contend with spectral leakage, which affects both amplitude estimation accuracy

and frequency resolution [59]. It is also common knowledge that approaches based

on a parametric signal model, such as Pisarenko harmonic decomposition, MUSIC

and ESPRIT, can achieve much better frequency resolution, but this is obtained at

the price of greater complexity [65].

A straight DFT-based estimate has an ultimate limit given by frequency granular-

ity, that is consequent to the acquisition of a sample sequence having finite length

N . For a sampling rate fs , the resulting frequency step size is ∆ f = ( fs /N ). The ac-

tual capability to resolve signal components at closely spaced frequencies is further

limited, on account of spectral leakage, to a minimum separation kR∆ f , with kR > 1.

Interpolation of DFT coefficients [60] allows to overcome the granularity limit

and consider frequency values defined on a continuous interval. In this way much

more accurate estimates of waveform component amplitudes and frequencies, with

variances approaching the relevant Cramér-Rao bounds, are possible [61]. How-

ever, the minimum separation between adjacent frequencies needs to be further in-
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creased to avoid spectral interference, although this can be countered by weighting

the time-domain samples by means of proper window functions [73].

A recent addition to the array of waveform analysis tools is the class of super-

resolution algorithms based on compressive sensing (CS) [67], [68]. Basically, these

algorithms allow to introduce a finer frequency grid with smaller step size ∆′
f =

∆ f /P , although continuous frequency values still cannot be obtained. However,

minimum frequency separation limits are not always reduced accordingly [70].

In previous sections, it has been achieved what is so far the minimum separa-

tion limit for CS-based spectral analysis [76], fully analysed the features of a high-

resolution CS algorithm employing an overcomplete dictionary [98] and successfully

demonstrated the algorithm potential for power quality and phasor measurement

[40]. Yet the granularity issue, although less significant, is not entirely overcome.

This led to consider a two-stage approach, whose features and performances are

discussed in the following sections. A CS-based spectral analysis algorithm [98] pro-

vides the initial input to a second signal processing stage, which is inspired by an

algorithm called continuous basis pursuit (CBP) [99]. As the name implies, CBP pro-

vides continuous-valued frequency estimates whose uncertainty is limited only by

signal-to-noise ratio (SNR). Integration of the two steps into one effective algorithm

requires some careful consideration of algorithm parameters, which is discussed in

the following together with results obtained by simulation analysis.

3.4.2 Application of Continuous Basis Pursuit

Matrix D is also called a finite dictionary and its N ′ columns are termed the

atoms of the dictionary. Let dl be a generic column vector of D, i.e., an element,

indexed by l , defined as:

dl = [d0,l , d1,l . . . dN−1,l ]T 0 ≤ l < N ′. (3.42)

Support recovery in the CS-DFT algorithm associates each signal component to a

single corresponding element of the finite dictionary D. From (3.29) and the defini-

tion of dk,l , it can be seen that elements in the dictionary are related by a frequency

shift relationship, with the shift being an integer multiple of ∆′
λ

. CBP allows to rep-

resent signal components by a linear combination of atoms, that is, to interpolate

among neighbouring elements. This gives the ability to provide continuous-valued
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frequency estimates.

Consider a vector d(λ) that depends on the continuous-valued quantity λ in-

stead of l /N ′, and a generic shift ∆λ. The set of all possible frequency-shifted and

amplitude-scaled versions of this vector defines a non-linear two-dimensional man-

ifold, Md,∆λ. Setting: d∆λ(λ) = d(λ−∆λ), the manifold can be defined as:

Md,∆λ, {a ·d∆λ(λ) : a ≥ 0,∆λ ∈ [0,0.5]}. (3.43)

By construction, the sparse signal of interest belongs to Md,∆λ. The discrete grid

model, employed by the CS-DFT stage, constitutes a linear subspace approximation

of the manifold. To obtain more accurate frequency estimates, it is necessary to

explicitly account for the continuous dependency from frequency.

As discussed in [99], the `2-norm of d(λ) is unitary and translation invariant.

Consequently, Md,∆λ lies on a hypersphere and has a constant curvature, so that it

is reasonable to approximate it by an arc of a circle. For the problem considered in

this work, the polar interpolation approach is considered.

Let λh be the frequency of a signal component, and lh ∈ Sa the element of the

support providing its closest approximation on the dense CS-DFT grid. Generalizing

[100], if a manifold segment defined in the interval [λ̂h −m∆′
λ

, λ̂h +m∆′
λ

] is consid-

ered, an approximation can be defined by the circular arc which includes the three

dictionary elements: dlh−m, dlh and dlh+m.

In a proper system of polar coordinates, the “virtual” dictionary element at fre-

quency λh is approximated by the use of a trigonometric spline, which yields:

d(λh) ' cm(lh)+ρ cos(δhθ)um(lh)+ρ sin(δhθ)vm(lh) (3.44)

where ρ and θ are, respectively, the radius and half the subtended angle of the arc.

Vectors cm(lh), um(lh) and vm(lh) are obtained from:
(dlh−m)T

(dlh )T

(dlh+m)T

=


1 ρ cosθ −ρ sinθ

1 ρ 0

1 ρ cosθ ρ sinθ




cT
m(lh)

uT
m(lh)

vT
m(lh)

 (3.45)

The same approach can be easily extended to the entire set of component fre-

quencies Λ identified during the CS-DFT stage. Let us introduce a more compact

matrix formulation for the polar approximation:

x̂ = Cm(Λ)p+Um(Λ)q+Vm(Λ)r (3.46)



3.4. PART III: FROM FINITE GRID TO CONTINUOUS BP ESTIMATION 133

where p = {ph ,∀h : lh ∈ Sa} accounts for the component amplitudes, while q =
{qh ,∀h : lh ∈ Sa} and r = {rh ,∀h : lh ∈ Sa} determine the frequency positions over

the arc.

Equation (3.45) does not provide a closed form solution. The three coefficients

have to be estimated by a proper optimization, where the cost function is explicitly

designed to account for the polar space interpretation [99]. Peculiar constraints de-

scending from the manifold geometry or the sparsity assumption prevent the prob-

lem from being ill-posed.

Once the coefficients are known, the component frequency can be better ap-

proximated by:

λ̃h = λ̂h + δh

2θ
tan−1

(
rh

qh

)
(3.47)

From the computational point of view, the CBP stage exhibits a rather high com-

plexity. In fact, the norm relaxation process involves at least some tens of iterations

and operates with a set of three atoms for each component frequency. However, it is

worth noticing that this procedure is computed only around the selected frequen-

cies λ̂h ∈Λ.

The higher computational effort is balanced by the capability to obtain off-grid

estimation, even working on a reduced set of compressed measurements.

3.4.3 Spectral Analysis Results

The proposed method relies on two consecutive stages: the CS-DFT and the po-

lar interpolation. The first one allows to increase the DFT grid granularity by one

order of magnitude. The second one provides a further enhancement, explicitly ac-

counting for continuous frequency dependency.

For performance validation, a set of tests has been designed to stress the algo-

rithm in challenging situations, that combines different and concurrent phenom-

ena.

The interpolation result is affected by the three dictionary elements selection,

namely by the parameter m. In this context, the most suitable setting depends on

the actual operative conditions, in particular, on the presence of interfering or par-

tially superposed components. Accordingly, two different test conditions have been

implemented in the Matlab programming environment. For the CS-DFT stage, the
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Figure 3.21: Normalized frequency estimation error for m = 1,2, . . .P .

refinement factor P is set equal to 11, corresponding to a resolution gain slightly

larger than one order of magnitude.

In the first test, the signal under investigation consists of a single sinusoidal tone

with normalized frequency λ0 = 155.45 ·∆′
λ

. It is worth noticing that the component

frequency does not belong to the finite grid, independently from the observation in-

terval length N , i.e. from the actual spectral resolution. In fact, the component fre-

quency lies nearly halfway between two super-resolved finite grid points. Evidently,

this represents the accuracy worst case for the CS-DFT estimate.

In the following, the frequency error is normalized with respect to the CS-DFT

grid bin∆′
λ

. In Fig. 3.21, the estimation accuracy has been evaluated for m = 1,2, . . .P .

The best performance is achieved for m = 5, i.e. m ' P/2. In other words, the best

performance is achieved when the selected dictionary elements are separated by

nearly ∆ f /2.

The same test condition has been employed to assess also the dependency on

the observation interval length N . In particular, given m = 5, the estimate accu-

racy has been evaluated in correspondence to different values of N . As depicted in

Fig. 3.22, the frequency error decreases as N increases, and tends to settle around

a 0.005 ·∆′
λ

deviation. On the other hand, in the observed range the performance

differences are limited and the dependency on N could be considered negligible.

The second test condition provides a multi-sine signal with two components of

equal amplitude, partially superposed in the frequency domain. Once more, the

worst case condition is taken into account. In fact, the signal components are sepa-
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Figure 3.22: Normalized frequency estimation error for N = 101,151, . . .501.

rated by 1.5 ·∆ f , which is the minimum separation correctly resolved by the CS-DFT

stage [98]. In particular, the signal consists of two sinusoidal tones whose frequen-

cies are given respectively by λ0 = 155.45 ·∆′
λ

and λ1 = 171.95 ·∆′
λ

. For the sake of

simplicity, let us focus our attention to λ0 estimation, but totally equivalent results

can be obtained for λ1.

With regard to the optimization problem, two different objective functions have

been implemented and the corresponding dependencies on m are presented in Fig.

3.23. In more detail, the first function (bold) models only the λ0 component, while

the second one (dotted) accounts explicitly also for the λ1 contribution. It is worth

noticing that, in both cases, the best performance is achieved for m = 3. With respect

to Fig. 3.21, at the starting point the trend is similar but rapidly increases for larger

values of m. In fact, owing to the presence of an interfering component, the optimal

distance between the selected dictionary elements should be lower than the single

component case.

Moreover, the comparison between bold and dotted lines shows how the adop-

tion of a more detailed objective function provides a significant reduction of estima-

tion error and spectral interference effect.

Finally, a multi-sine signal comprising five components has been considered.

The observation interval length has been set equal to 501 samples. The broadband

disturbances have been modelled by an additive white Gaussian noise for a result-

ing SNR equal to 20 dB. Table 3.6 compares the component frequency actual values

with the estimates provided respectively by the CS-DFT stage and the subsequent
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Figure 3.23: Normalized frequency estimation error for m = 1,2, . . .P : bold line refers

to a single component model, while dotted line refers to a more detailed signal

model comprising also the interfering component.

Table 3.6: Normalized frequency estimation errors for a multi-sine signal in the Pres-

ence of 20dB AWGN.

COMPONENT NOMINAL CS-DFT CBP

INDEX FREQ. [Hz] NORM. ERR. NORM. ERR.

λ0 150 −0.301 −0.188

λ1 238 −0.294 0.047

λ2 1456 0.178 0.099

λ3 2561 0.241 0.262

λ4 3925 0.122 −0.083

polar interpolation stage. The first ones are limited to 0.5·∆′
λ

, while the second ones

provides an accuracy enhancement in almost any case.

3.4.4 Results Discussion and Improvement Issues

Results presented in these sections provide a full assessment of the enhance-

ments in frequency estimation that the combination of CS-DFT and CBP algorithms

can provide. The approach does not claim to be a universal tool for spectral analy-

sis of multi-tone waveforms. Nevertheless, it shows interesting performances in the

quest for overcoming the frequency limitations of DFT-based spectral analysis, in
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particular, of the acquisition time vs frequency resolution trade-off.

Use of the combined algorithm allows to more accurately estimate components

in a multi-tone waveform with short observation times, and could prove useful in

applications where iterative refinement of waveform measurements is possible.

A still open question is represented by computational complexity. In particular,

the CBP stage requires a noticeable effort to minimize the objective function. Similar

convex relaxation techniques have to be considered and implemented, in order to

minimize the computation time, preserving the off-the-grid estimation capability.



Chapter 4

Quasi-Stationary Sparse Signal

Models in Dynamic Scenarios

4.1 Introduction

In the literature, conventional sparse signal models are usually related to sta-

tionary operative conditions. Stationariness of the sparse coefficients as well as

the sparseness of their support, along with incoherence assumptions related to RIP,

are fundamental to compressive sensing and sparse optimization. However, an al-

ways increasing number of sparse applications necessitate solving ill-conditioned

optimization metrics and tracking rapidly fluctuating coefficients where such inco-

herence and stationariness assumptions are difficult to satisfy [101]. For instance,

the DFT underlying signal model is static and periodic: in the presence of dynamic

trends, any DFT-based method provides only an average estimation over the entire

observation interval.

This gap between mathematical optimality and practical constraints can be closed

by introducing more realistic sparse signal models which account also for time-

variant conditions. Specifically, this chapter is concerned with quasi-stationary sparse

signal models, where the sparsity and incoherence properties are assumed to be

constant if evaluated over reasonably short observation intervals. In particular, a

spectral analysis scenario has been taken into account and employed as benchmark

for testing and validating the mathematical properties of the implemented algorith-

138
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mic solutions.

Quasi-stationary spectral analysis consists mainly of two approaches.

The first one relies on assumptions like piecewise stationariness and conditional in-

dependence. Accordingly, the signal is divided into consecutive short data records,

to be analysed singly. The spectral estimation is provided by DFT-based methods,

explicitly designed to cope with reduced observation intervals. In this context, a typ-

ical example is represented by the so-called Short Time Fourier Transform, briefly

STFT [102] which admits two different interpretations. On the one side, it can be

seen as a DFT computed over short time records, in case weighted by proper win-

dowing functions. On the other side, it can be seen as a bank of filters, properly

designed to exhibit good estimation performances also on reduced observation in-

tervals.

The second approach, instead, involves a Taylor expansion of the canonical DFT

representation. Higher order derivative terms are included in the signal model and

explicitly account for dynamic contributions. The computational effort is expected

to increase with respect to canonical DFT-based methods. On the other hand, a sig-

nificant enhancement in terms of estimation accuracy is expected. In this context,

a typical example is represented by the so-called Taylor-Fourier Transform, briefly

TFT [90]. Just like STFT, also TFT admits two plausible interpretation, the one driven

from functional analysis, the other in terms of filtering stage.

Independently from the implementation details, both these approaches neces-

sitate dealing with short time data records, which are expected to severely affect the

actual resolution power in the frequency domain. On the other hand, it is worth

noticing that sparsity or incoherence property have not been considered. As a mat-

ter of fact, CS theory can be coupled with quasi-stationary spectral analysis, in or-

der to efficiently capture the original information content even from a reduced set

of measurements. In quasi-stationary conditions, the signal support is expected not

to vary significantly over the short observation interval. In other words, dynamic

effects do not succeed in blurring or distorting the signal support, which could be

recovered with sufficient sharpness.

In such a scenario, a two stage procedure is advisable. The CS acquisition pro-

tocol yields the informative component frequencies. Properly exploiting this a pri-

ori knowledge, the ad hoc quasi-stationary methods estimate component ampli-
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tudes and initial phases. In this chapter, a plausible combination between CS-based

super-resolution and TFT-based spectral analysis is discussed and validated by means

of experimental results, coming from two different application contexts. The chap-

ter is divided into three main parts.

In the first part, the notion of quasi-stationary signal model is introduced and its

implications to spectral analysis are briefly discussed. Then, particular attention is

devoted to TFT formulas and properties. The pros and cons of this novel approach

are emphasized by means of intuitive interpretations as an orthogonal projection

onto a specific vector subspace or as a filter bank. Finally, the most common mea-

surement approaches related to TFT are summarized. In this context, the proposal

of a joint CS-TFT approach is introduced as a novel signal-independent approach

for spectral analysis in quasi-stationary operative conditions.

In the second part, this combined approach is applied to power measurements

in smart grid scenario. More precisely, CS-TFT is proposed as a Phasor Measurement

Unit (PMU) algorithm. The aim is to exploit, in a joint method, the properties of

CS and TFT to identify the most relevant frequency components of the signal, even

under dynamic conditions, and to model them in the estimation procedure, thus

limiting the impact of harmonic and interhamonic interferences. The approach is

verified using composite tests derived from the test conditions of the current syn-

chrophasor standard and simulation results are presented to show its potentialities.

In the third part, the problem of gradient artefact removal in simultaneous record-

ing of electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI) is addressed. A novel removal algorithm, based on CS-TFT approach, is pro-

posed and validated on both simulation and experimental data. Experimental re-

sults show a significant reduction of spurious components in all the considered con-

ditions. No significant distortions are introduced in spectral power distribution, al-

lowing reliable clinical interpretation of the acquired trace.
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4.2 Part I: Taylor-Fourier Transform for Quasi-Stationary

Spectral Analysis

4.2.1 Quasi-Stationary Signal Models

Let us consider a generic signal acquired in consecutive partially overlapping

records, each one related to a specific short time frame. The signal is said to be

quasi-stationary if its statistics are locally static in each frame but vary from one

frame to another. This signal model is particularly suitable for acquisition protocols

and applications which operate at high sampling rates. For instance, speech and

audio recordings are generally recognized as quasi-stationary signals.

In quasi-stationary conditions, spectral analysis must be performed by means of

ad hoc optimized methods. Indeed, conventional DFT approaches imply two main

limitations.

On the one hand, DFT-based estimates are defined over a discrete grid, which unif-

prmly span the observed spectral bandwidth. The larger is the number of transform

coefficients, the larger is the grid granularity, and accordingly the lower is the esti-

mation error. In quasi-stationary conditions, the observation interval length is re-

duced by definition. In order to increase granularity, it could be useful to increase

the sampling frequency. However, this solution lacks of practical convenience, be-

cause it implies an inefficient oversampling, and even of theoretical motivation: an

higher sampling frequency corresponds to a larger spectral bandwidth to span.

On the other hand, DFT-based methods rely on a static and periodic signal model.

Accordingly, in the presence of dynamic conditions, DFT-based estimations con-

sist in the average approximation computed over the entire observation interval. It

should be noticed that this second limitation does not provide an immediate ex-

pedient. The proposed signal model is excessively ideal and provides a too scarce

approximation of the actual operative conditions.

Many non-conventional approaches have been implemented for quasi-stationary

signal spectral analysis. Independently from the algorithmic detail, a common re-

quirement is the capability to provide accurate estimations from reduced set of mea-

surements. To this end, CS principles could be employed to further improve the esti-

mation performances. A CS approach could provide not only a resolution enhance-

ment, as shown in the previous chapter, but also a more flexible sensing protocol,
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scaled to the information rate, rather than the Nyquist’s rate. In particular, this chap-

ter is concerned with an extension of canonical DFT, also known as Taylor-Fourier

Transform. In the following section, its fundamental properties are summarized and

discussed, even if a thorough characterization is beyond the scope of this chapter.

4.2.2 Taylor-Fourier Transform

Let us consider a dynamic multi-tone sampled signal model:

x[n] = ∑
h∈Sh

ah[n]

2
cos(2π fhnTs +φh[n]) n = 0,1, . . . N (4.1)

where Sh is the signal support, i.e. the set of the significant component indices.

Typically, the first support index is related to the fundamental or most informative

component, while the others represent harmonic and interharmonic components,

enumerated according to a descending order of importance.

The same model could be expressed also adopting a phasor formulation:

x[n] =p
2

[ ∑
h∈Sh

ph[n]e j 2π fh nTs

]
ph[n],

ah[n]p
2

e jφh [n] (4.2)

where the amplitude RMS value is extrapolated, Ts = 1/ fs is the sampling period and

N determines the length of the observation interval.

Taylor-Fourier transform, briefly TFT [90], consists in a K -th order Taylor series

expansion of the canonical DFT. In particular, taking into account the transforma-

tion kernel of both DFT and TFT, it is immediate to notice their reciprocal connec-

tion:

DFT: ψh[n] = e− j 2π fh nTs

TFT: ψk
h[n] = (nTs )k

k ! e− j 2π fh nTs k ∈ [0,1, . . .K ]

(4.3)

where K represents the Taylor series expansion order. According to TFT approach,

each component belonging to the support is assumed to be modulated by a time

function, expressed by a Taylor polynomial expansion of a given order k > 0. Thus,

TFT coefficients contain both the instantaneous values and the time derivatives of

component amplitudes and phases, computed with respect to the observation in-

terval midpoint:

θk
h[n] = T k

s

2k !
· d k ah(t )e jφh (t )

d t k
(4.4)
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In the TFT domain, the dynamic signal model (4.2) can be expressed as follows:

x[n] =p
2 ℜ

[ ∑
h∈Sh

(
Kh∑

k=0
θk

h[n]

)
ψk

h[n]

]
(4.5)

Compared with the canonical DFT approach, the TFT-based model allows a more

accurate and detailed signal representation. In fact, by introducing the higher order

derivative terms, TFT is explicitly designed to cope with dynamic conditions. More

precisely, the higher order coefficients account for time-varying contributions, while

the static one accounts for stationary contributions.

It is worth noticing that TFT 0-th order coefficients are formally equivalent to

DFT counterparts. On the other hand, TFT accuracy is reasonably expected to over-

come DFT accuracy. Eventual dynamic contributions are entirely captured by higher

order derivative terms and do not affect static term estimation.

Functional Analysis Interpretation

Let Hn(R) be a generic n-dimensional Hilbert space of real-valued functions.

No constraints are introduced with reference to functions periodicity, stationary or

bandwidth properties. In this context, DFT and TFT are defined over two specific

sets of linearly independent basis functions, one for each signal component:

DFT basis: ΨD = {e− j 2π fh nTs ,h ∈ Sh}

TFT basis: ΨT =
{

(nTs )k

k ! e− j 2π fh nTs ,k ∈ [0,1, . . .K ],h ∈ Sh

} (4.6)

Let x ∈Hn(R) be a generic n-dimensional signal. From a linear algebra point of

view, the signal DFT or TFT coefficients result from its orthogonal projection over

the vector subspaces spanned respectively by the basisΨD andΨT . More precisely,

the TFT coefficients can be computed in closed form as the following WLS solution:

θk
h = (

ΨH
T W H WΨT

)−1
ΨH

T W H x (4.7)

where the superscript H denotes the Hermitian transpose matrix and W is a weight-

ing matrix, which could be properly defined according to specific application re-

quirements or boundary conditions.

It is worth noticing that TFT basis functions span a subspace which contains

the DFT subspace. It is thus rigorously proven that TFT approximation error is less
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than or equal to the DFT approximation error. As aforementioned, even estimates

for k = 0 improve on the DFT counterpart affected by infiltration of the neglected

derivative terms.

The most significant difference between DFT and TFT basis is, though, con-

cerned with orthogonality property. DFT relies on an orthonormal complete basis,

namely on a Hilbert basis. Conversely, TFT basis vectors form only a frame, lacking

of orthogonality property.

Accordingly, the well-known Karhunen-Loève theorem holds in the DFT sub-

space, but not in the TFT subspace. In other words, in the DFT subspace, any sig-

nal can be decomposed as a linear combination of the orthonormal basis vectors.

Conversely, in the TFT subspace, this is not guaranteed. In fact, basis vectors linear

independence is sufficient for ensuring that a TFT solution exists [90], but particu-

larly negative conditions may severely affect the conditioning number of ΨT . For

instance, if the signal support contains much similar frequencies, the differences

between respective vector sets are hardly noticeable, particularly if the higher order

terms are considered. In such conditions, dynamic contributions related to a spe-

cific component may leak in the adjacent component expansion and vice versa. As

a result, the condition number of ΨT degrades significantly and the corresponding

coefficients (4.7) may be unreliable and inaccurate.

In conclusion, the functional analysis interpretation of TFT shows that:

• a properly designed TFT approach can cope with dynamic conditions and

overcome the corresponding DFT approach accuracy;

• the TFT approach accuracy depends on the signal support likelihood: in the

presence of spurious or erroneous frequencies, the basis matrix ΨT might be

severely ill-conditioned.

Filter Bank Interpretation

The same TFT admits also a filter bank interpretation, as depicted in Fig. 4.1.

For each component of interest, a specific bank of filters is centred around the com-

ponent frequency. The bank consists of K filters, one for each derivative order. It

should be noticed that filter response shape varies on varying the derivative order:

• 0-th order filter captures static contributions;
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Figure 4.1: Filter bank interpretation of TFT [103].

• 1-st order filter senses eventual amplitude or phase variations;

• 2-nd order filter assesses variation gradients.

Each filter processes the acquired data record simultaneously and returns the re-

spective TFT coefficient. Preliminary weighting functions are often employed to en-

hance filtering stage performances. For instance, proper data windowing results in

narrower and nearly flat 0-th order bandpass response.

An accurate frequency support becomes crucial also in the filter bank interpreta-

tion. If the filters are centred around the desired components, the information con-

tent is entirely recovered, whereas the disturbance injections from adjacent com-

ponents are limited as much as possible. Conversely, if the filters are inadequately

located, it is reasonable to expect that the original information content undergoes

partial losses or distortions.

As observed in the previous section, too similar component frequencies may

lead to inaccurate results. In the filter bank approximation, the motivation appears

clear and immediate. Even if the filter is correctly located, adjacent components lie

within the bandpass and cause non-negligible disturbance injections. These mu-

tual interference phenomena degrade the TFT estimation accuracy and confirm the

require narrow bandpass filter responses to be mitigated.

4.2.3 Taylor-Fourier Expansion Advantages

As far as spectral analysis is concerned, the main advantages of the TFT ap-

proach can be summarized as follows:
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• each component is projected on its own set of basis vectors, resulting in lower

disturbance injection;

• dynamic effects are captured by higher order terms, ensuring a better static

estimation.

On the other hand, TFT approach performances depend from the underlying

spectral content model:

• the frequency support must be accurate and detailed: this knowledge a priori

allows to design a specific TFT basis, thus preventing from information distor-

tion or loss;

• the frequency support must include both informative and spurious compo-

nents: in this way, the second ones are projected over specific vector sets, thus

limiting their disturbance injection over the informative components.

4.2.4 TFT-Based Measurement Approaches

The component frequencies knowledge a priori plays a crucial role in any TFT-

based measurement algorithm. Hereinafter, the case of a sinusoidal tone at 50 Hz,

potentially affected by harmonic and interharmonic disturbances, along with addi-

tive spread spectrum uncorrelated noise. Furthermore, the signal is expected to un-

dergo dynamic variations of frequency, amplitude and phase values. This peculiar

operative condition is typical of power system scenario, particularly of distribution

grid scenario, which is thoroughly discussed in the second part of this chapter. Nev-

ertheless, similar considerations may be inferred in much different contexts, where

a quasi-stationary spectral analysis by means of TFT is implemented.

As aforementioned, the TFT vector subspace is constructed according to the sig-

nal spectral content model at disposal.

Conventional TFT-based approaches employ the nominal frequency, without trying

to infer any further knowledge from the measurement data:

1. TFT-based estimation computed around the only nominal fundamental fre-

quency 50 Hz;

2. harmonic component modelling for a TFT expansion around all the nominal

harmonic frequencies 50, 100, 150, . . . Hz.
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Experimental results suggest to include all the significant components, both infor-

mative or spurious, within the spectral content model. To this end, the component

frequencies are treated as unknown model parameters to be identified before com-

puting the TFT-based estimation:

1. adaptive version of weighted least square TFT approximation, capable to de-

tect fundamental transients or fast changes and accordingly update the corre-

sponding spectral model;

2. signal spectral content model (comprising fundamental, harmonic and inter-

harmonic components) identified by means of CS super-resolution technique

and employed as reference to locate TFT basis vectors on a fine frequency grid.

In the following, this last approach is also referred to as CS-TFT, emphasizing that

different theories can be coupled, without loosing their respective prerogatives.

4.3 PartII: CS-Based Enhanced Model for Synchropha-

sor Estimation by Taylor-Fourier Transform

4.3.1 Smart Grid Scenario

The contemporary society is developing an always-increasing consciousness and

concern towards the environmental issues. In this context, the use of renewable en-

ergy is crucial to cope with emission reduction targets and ensure stability and feasi-

bility of electrical supply. Unfortunately, these alternative energy sources are inter-

mittent and unless the energy flows are measured and controlled, their exploitation

could cause power quality degradation, even leading to wide-spread blackouts.

The so-called “smart grid” projects introduce a novel concept of electrical grid:

no longer an inert distribution means, but rather an automated organism which

gathers information about grid state and accordingly act to improve efficiency and

sustainability. It is likely to expect that smart grids will allow the reliable and endur-

ing use of large amounts of renewable energy. In this scenario, new measurement

tools are essential for their stable operation. The GPS technology has opened up

an efficient synchronization infrastructure over wide geographical areas: the knowl-

edge of grid parameters and behaviour in different grid points and referred to the
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same common time could give helpful advice to design, control and stabilize the

smart grids of the future.

Currently, smart grids are primarily required to balance renewable supply with

demand in real time, maintaining the grid stability and avoiding the power quality

degradation. However, the penetration of distributed renewable generation causes

high challenging dynamic conditions, prone to cascading failures or even power

blackouts. Network operators need tools to accurately and promptly assess the grid

state, the power quality and the supply stability.

The Phasor Measurement Units (PMUs) technology represents a great opportu-

nity to understand the complex dynamics of a smart grid. At a given grid point, they

measure the electrical waves in terms of RMS magnitude, instantaneous phase, fre-

quency deviation from the nominal value, and rate of change of frequency.

Typically, the PMUs have been employed to monitor the high voltage (HV) trans-

mission lines. It is only recently, however, that PMUs information has been exploited

to estimate the grid state and the network impedance. Moreover, it is widespread

among scientific community the belief that the PMUs could be applied also to medium

and low voltage (respectively, MV and LV) distribution lines. Such a context opens

up both more severe requirements and more promising potentialities. On the one

hand, the shorter lines and the non-negligible disturbances require an ad hoc mea-

surement algorithm, which should be capable to provide standard performances

also in non-ideal conditions. On the other hand, a capillary knowledge of grid vari-

ables allows more efficient control strategies and more precise fault localization.

In conclusion, the design of PMUs for application in electric distribution grids

is an extremely challenging task. Similar units have been successfully deployed in

high-voltage electric power transmission networks; a PMU design for use in distri-

bution networks is both more demanding, in terms of cost/performance tradeoffs,

and more promising in allowing the efficient inclusion of distributed renewable en-

ergy sources.

4.3.2 PMU Estimation Algorithms

Phasor Measurement Units (PMUs) are the most innovative measurement de-

vices in power network monitoring and are expected to become a fundamental tool

for managing and supervising both transmission and distribution networks. IEEE



4.3. PART II: CS-BASED MODEL FOR SYNCHROPHASOR ESTIMATION BY TFT 149

Standard C37.118.1-2011 [83], along with its amendment [104], defines PMU out-

puts and applicable measurement accuracy limits. In particular, synchrophasor,

frequency and rate of change of frequency (ROCOF) measurements are introduced

with the specific aim of describing the behavior of power network signals under

dynamic conditions. Accuracy requirements are presented for steady-state condi-

tions, in the presence of off-nominal frequency, harmonic and interharmonic dis-

turbances, as well for dynamic conditions, such as amplitude and phase modula-

tions, linear frequency ramp and step changes for both amplitude and phase-angle.

Two performance classes are defined by the standard, M-class and P-class. The

former is intended for measurement applications, where accuracy is emphasized,

while the latter is designed for protection, which requires fast responses to dynamic

events that can be critical for network operation.

Several algorithms for PMU applications have been proposed and characterized

in the literature (notably, [89, 105, 106, 107, 108, 109, 110, 40]) and rely on differ-

ent signal processing techniques and models. For instance, the Interpolated Dis-

crete Fourier Transform (IpDFT) approach is used for synchrophasor and frequency

estimation in [107, 111], exploiting the capability to cope with static off-nominal

conditions. In [108] a demodulation and filtering approach, with frequency tuning,

is followed to fulfill P- and M-class requirements, as suggested also by Annex C of

[83]. In [89, 105, 109, 106, 112], phasor estimation is improved by approximating

slowly changing phasors with a complex Taylor series expansion around the estima-

tion time point. In [89] and [105] better synchrophasor estimation performance is

achieved by correcting the estimation errors of sequential phasor estimates com-

puted with DFT and Short-Time Fourier Transform (STFT) by post-processing. In

[109] the IpDFT is extended to compute the phasor derivatives of a second order ex-

pansion, thus also frequency and ROCOF, from three DFT components around the

fundamental frequency.

An algorithm using a linear non-orthogonal transform, defined as Taylor weighted

least squares (TWLS) is introduced in [106] and generalized to harmonics as Taylor-

Fourier Transform (TFT), in [90]. It is based on a weighted least squares (WLS) ap-

proximation of an observation window with respect to a second order Taylor model,

performed as a linear filter bank.

As investigated in [113], TFT-WLS synchrophasor estimation outperforms other
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methods in all dynamic conditions except under step tests. To this end, an adaptive

version of the TFT-WLS, which detects when the signal is undergoing fast changes

and, then, refines phasor estimation, has been proposed in [112] and [114] to en-

hance performance under transient conditions. In [110] the adaptive algorithm and

a suitable detector are used to define a single output PMU that complies with both P-

class and M-class requirements for synchrophasor and frequency measurements, at

the reporting rate of 50 frames/s. A detection approach, using the filtering paradigm,

is also used in [115] to realize a hybrid M-class PMU with faster responses to tran-

sients and good measurement under steady state conditions.

The limits set by the standard and their physical meaning have been thoroughly

discussed and this even led to the revision or suspension of some specific require-

ments [104]. Great attention is being paid to the design of estimation algorithms

with the capability to follow the relevant current or voltage dynamics and to cope

with the disturbances that can actually arise in the context of emerging power net-

works, where highly evolving scenarios are expected.

It has been highlighted that some of the disturbances, in particular those re-

lated to out-of-band (interharmonic) interfering signals, can be extremely difficult

to deal with and can seriously affect synchrophasor, frequency and ROCOF estima-

tions [115]. To limit the injection of such disturbances in the signal estimation at the

fundamental frequency, the filtering properties of long measurement observation

intervals are usually exploited. On the contrary, the ability to follow signal dynamics

requires fast responsiveness to changing conditions and thus asks for shorter obser-

vation windows and wide frequency pass-bands around the relevant component of

the measured signal.

With performance limits stemming from such fundamental time-frequency trade-

off, requirements are seemingly impossible to reconcile. However, recent research

into the application of Compressive Sensing (CS) has shown that it is in fact possi-

ble to push beyond those limits and achieve frequency super-resolution or, alterna-

tively, enhanced short-term performance [76, 98].

The possibility to cope with such contrasting requirements, by means of the

combined use of a CS approach for frequency support estimation and a TFT adapted

to the CS stage outputs, has been investigated in [116] for a two-step estimation al-

gorithm. The idea was to find the spectral components of the signal, in order to
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model them and limit their impact on synchrophasor estimation, while keeping la-

tency and response times reasonably low [40]. In the following sections, a unified

compressive sensing Taylor-Fourier transform (CS-TFT) is introduced, where fre-

quency support estimation also considers higher-order derivatives, and allows si-

multaneous estimation of the phasor. The proposed approach is tested under dif-

ferent conditions, even beyond strictly standard specifications, with particular at-

tention to out-of-band interference and possible concurrent disturbances.

4.3.3 Modeling for Accurate Phasor Measurement

Synchrophasor Dynamic Model

According to [83], the time-varying synchrophasor representation of a sinusoid

signal x(t ), whose amplitude and frequency can vary with time, is given at the time

instant t (taking as a reference t0 = 0) by:

X(t ) = Xm(t )p
2

e j(2π
∫

g (t ) d t+φ0) (4.8)

where φ0 is the phase-angle at time t0 and g (t ) = f (t )− f0 is the difference between

the instantaneous frequency and the nominal power-line frequency f0. With this

notation the signal can be expressed as:

x(t ) = Re
[p

2X(t )e j 2π f0t
]

=
[

X(t )p
2

e j 2π f0t + X∗(t )p
2

e− j 2π f0t
]

(4.9)

Let x[n] be a sequence of samples, having finite length N . For the sake of sim-

plicity, but without loss of generality, in the following N is assumed to be even and

−N /2 ≤ n ≤ N /2−1, so that the time reference for the synchrophasor computation

is located at n = 0, in the center of the sample record.

The evolution of amplitude and phase-angle within the observation window (mod-

eled in (4.8) by time-varying terms) can affect synchrophasor estimation. Measure-

ments that rely on a static model, like those based on the DFT, provide a sort of

“average” synchrophasor (see [113] for a more detailed discussion). The TWLS ap-

proach [106] considers instead the Taylor expansion of the phasor X(t ) around the

reference time t0, so that time variations occurring within the observation interval

can be represented, in addition to the zero order synchrophasor term. Using a K -

th order expansion, the approximated model of the dynamic phasor becomes, in
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discrete form:

X(nT ) =
K∑

k=0
pk (nT )k

k !
(4.10)

where the complex number pk is the k-th order derivative of the dynamic phasor

X(nT ) at n = 0 and T is the sampling interval. Generally speaking, TWLS can be

defined as the projection of the signal x(t ) on a set of linearly independent basis

functions:

ψk (t ) = t k e± j 2π f0t , k = 0, . . . K . (4.11)

When a finite sample record is considered, basis functions are replaced by their basis

vector counterparts, ψk [n].

It can be seen from (4.11) that Taylor-Fourier basis functions/vectors are usually

referred to the nominal powerline frequency whereas, in practice, fluctuations may

occur. If the product ROCOF ·N T /2 is small enough in relation to f0, the sinusoid

frequency can be assumed to remain approximately constant within the observation

interval, but its value f1 will in general differ from the nominal value.

One may arguably expect that using f1 in place of f0 in (4.9) and (4.11) a more

accurate TFT measurement could be obtained. In [110, 117] frequency feedback is

used for the purpose of determining f1, exploiting the estimated first phase deriva-

tive. Thus, the synchrophasor X1(nT ), where f1 is taken as reference for the basis

function, is considered instead of X(t ). The resulting signal model becomes:

x[n] = Re
[p

2X1(nT )e j 2π f1nT
]

(4.12)

and, using the Taylor expansion, the signal can then be modelled as:

x[n]=
K∑

k=0

(nT )k

k !

[
pk

1p
2

e j 2π f1nT + (pk
1 )∗p
2

e− j 2π f1nT

]
(4.13)

where, similar to (4.10), pk
1 represents the k-th order derivative of the dynamic pha-

sor X1(nT ) at n = 0.

Synchrophasor Model with Harmonics and Interharmonics

In actual conditions a more complex signal model may be needed, because har-

monic and interharmonic disturbances can be present. Thus, the generic electric

signal is not a pure sinusoid and can be represented as:

x[n] =∑
h

ah[n]cos(2π fhnT +φh[n]) (4.14)
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where ah andφh are the (time-varying) amplitude and phase angle of the h-th com-

ponent, respectively. For harmonics, fh would be an integer multiple of f1, other-

wise it may represent a generic interharmonic frequency.

The Taylor expansion represented by (4.10) was extended to harmonic estima-

tion in [90] which, however, still refers to the nominal fundamental frequency. Defin-

ing a generic phasor:

Xh[n],
ah[n]p

2
e jφh [n] (4.15)

allows to further generalize the approach to the generic signal (4.14), considering the

expansion of each harmonic/interharmonic phasor Xh around the reference time,

up to order K .

In the general situation the signal can thus be approximated as:

x[n]=∑
h

K∑
k=0

(nT )k

k !

[
pk

hp
2

e j 2π fh nT + (pk
h)∗
p

2
e− j 2π fh nT

]
(4.16)

where pk
h is the k-th derivative of the synchrophasor at frequency fh (p0

h is the har-

monic/interharmonic phasor). A different order of expansion Kh may be used for

each component h, as in [118]. If the frequencies fh are known, from (4.16) it is pos-

sible to compute the phasor, along with its derivatives, by a weighted least squares

approach [90] (less relevant in this context, harmonic phasors of interest can be

computed as well).

In synchrophasor measurement the number of fundamental frequency cycles

for each observation interval should be kept as low as possible, in order to better fol-

low the dynamics of the input quantities. This requirement conflicts with the aim of

accurately estimating fh , since accurate estimation is, generally speaking, imprac-

tical without using very long observation intervals. However, the use of CS allows

to circumvent some limitations and to estimate signal components on a sufficiently

fine frequency grid, while keeping the observation interval reasonably short [76].

4.3.4 CS-TFT Estimation Algorithm

Taylor Fourier Transform by Compressive Sensing

Let νh = fhT be the signal component frequencies normalized by the sampling

rate 1/T . Given a sample record of size N , the DFT algorithm projects them onto the

orthogonal basis referring to the set of N normalized frequencies νm = m/N , with
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m = 0, . . . , N −1 whose elements are:

ξm[n] = e j 2πνm n , n =−N /2. . . N /2−1, (4.17)

The corresponding set of N coefficients is defined on a uniform frequency grid with

step ∆ f = 1/N T and can be related to a static synchrophasor model. Defining each

basis element as a column vector, the DFT basis set can be described by matrix WH ,

whose columns are the basis vectors. The superscript denotes conjugate transposi-

tion, as it should be reminded that 1
N W defines the DFT operation in matrix form.

Assuming a finer frequency grid with a smaller step∆′
f =∆ f /P (P a suitable inte-

ger), so that the total number of grid points is N ′ = P ·N , a generic signal component

frequency ν can be expressed as:

ν=
ĥ +δ′

ĥ

N ′ =
h +δ′

ĥ

P
· 1

N
(4.18)

for some integer ĥ ∈ [0,1, . . . , N ′−1], with |δ′
ĥ
| ≤ 1

2 . The closest approximation to ν on

the new grid is: ν̂ĥ = ĥ/N ′. The set Sh of the index values ĥ providing the frequency

estimates (including image components) is called the signal support.

Defining a full set of TFT basis vectors at each point on this finer grid yields the

generic basis vector expression:

ψh
k [n] = (nT )k e j 2π h

N ′ n , n =−N /2. . . N /2−1 (4.19)

where h = 0, . . . , N ′−1 and the discrete normalized frequencies are now h/N ′. The

integer k = 0, . . . ,Kh is the order of derivative of the Taylor expansion. Considering

the same expansion order K for every h, (4.16) can be translated into matrix form,

considering all basis vectors in (4.19), as follows:

x = Bp+e (4.20)

where x = [x[−N /2], . . . , x[+N /2− 1]]T is the vector of signal samples, k ∈ {0, . . . ,K }

and e is a vector representing noise and uncertainty that can arise, for instance,

in the data acquisition system (e. g. because of analog-to-digital converter (ADC)

quantization error).

Vector p includes all the complex parameters pk
h for h ∈ {0, . . . , N ′ − 1} and can

be seen as the concatenation of the N ′ vectors ph = [
p0

h , . . . pK
h

]T
, whose length is

(K +1)N ′:

p = [
pT

0 pT
1 . . . pT

N ′−1

]T
(4.21)
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The N × (K +1)N ′ matrix B is the generalization of the static model basis matrix

to the finer grid and to Taylor-Fourier derivatives. Its column vectors are defined by

(4.19).

The elements p0
h , which represent the phasors at all frequencies of the finer grid,

are different from zero in correspondence of the fundamental component and in

the presence of harmonic or interharmonic terms. The same may be true of ele-

ments pk
h associated with the dynamic extension of the phasor model. Significant

contributions can therefore be associated with the condition ‖ph‖2 À 0, i.e., when

static as well as, possibly, dynamic terms point to a significant contribution at the

frequency index h. Since p is the concatenation of blocks of size K and most of

these will still be approximately zero, the vector can be considered extremely sparse

or, more precisely, block sparse. This feature justifies considering a CS approach for

solving (4.20), which can be formulated as:

p̂ = argmin
p

‖p‖0 subject to: ‖x−B p‖2 ≤ ζ , (4.22)

where the pseudo-norm ‖p‖0 indicates the number of non-zero elements of p, ‖ · ‖2

is the Euclidean norm of the vector and ζ is a given threshold. The block-sparse

feature can be exploited to speed-up the solution of (4.22).

Enhanced Resolution by Compressive Sensing Approach

Expanding the set of TFT basis vectors, as shown in the previous sub-section, is

the most straightforward way of creating a finer frequency grid. However, improved

granularity does not imply a corresponding enhancement in frequency resolution.

As discussed in [98], an observation length of at least 3-4 cycles is still required to

resolve off-grid equal-amplitude frequency components. This would be the case,

for instance, with an off-nominal power-line frequency and its image.

To actually enhance frequency resolution or, equivalently, to achieve the same

resolution with a shorter measurement interval, the use of an overcomplete dictio-

nary has been proposed in [76], [98] to model truncation effects related to the finite

observation length. Hereinafter, the same approach is applied to TFT-based phasor

measurement and the effectiveness of the resulting CS-TFT algorithm is shown.

To obtain the required overcomplete dictionary, the N -point DFT of the sam-

ple sequence x[n] is considered. From (4.16), using standard properties of Fourier
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transforms, one has the Fourier components:

X
[m

N

]
= ∑

h∈Sh

{
Kh∑

k=0

pk
hp
2

[
1

k !

(
j

2π

)k

D (k)
(m

N
−νh

)]}
, (4.23)

where 0 ≤ m < N and D (k)(ν) is the k-th order derivative of the Dirichlet kernel:

D(ν) = sinπNν

N sinπν
(4.24)

Replacingνh in (4.23) by its finite-grid approximation h/N ′ allows to reformulate

the relationship in matrix form with TFT coefficients defined on the finer frequency

grid. In the time domain the resulting equation is:

x = WH
Kh∑

k=0
D(k)pk (4.25)

where (pk )T = [pk
0 pk

1 . . . pk
N ′−1] and [D(k)]m,h = D (k)( m

N − h
N ′ ). By suitably recom-

bining matrices and vectors, (4.25) can be rewritten in a form equivalent to (4.20):

x = WH Dp+e (4.26)

It should be noticed that WH is a matrix of size N ×N , while D has size N ×(K +1)N ′.

The latter is an overcomplete dictionary which explicitly model spectral leakage, ac-

counting for both sparsification and Taylor expansion. The CS-TFT problem can be

formulated, accordingly, as:

p̂ = argmin
p

‖p‖0 subject to: ‖x−WH Dp‖2 ≤ ζ . (4.27)

It might be noted that zero-padding of the time-domain samples could achieve

a similar improvement in frequency grid granularity. However this simple solution

does not reduce leakage, therefore actual resolution would remain poor.

OMP-Based Support Recovery for CS-TFT Solution

The solution p̂ can be found by employing a greedy algorithm, such as Orthogo-

nal Matching Pursuit (OMP) [54]. The algorithm is iterative, starting from the given

measurement vector x defined above. At each iteration i the largest frequency com-

ponent, approximated to the nearest bin in the N ′-point grid, is found and its index

ĥi is included in the estimated support, which becomes: Ŝh(i ) = {ĥ1, . . . , ĥi }. Accord-

ingly, a reduced matrix of dictionary elements DŜh (i ) is obtained as a submatrix of D

by keeping only the columns whose indices belong to Ŝh(i ).
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Model coefficients are computed by solving the reduced system x = WH DŜh (i )p̂(i ).

This can be achieved by means of WLS approximation, which yields the solution of

(4.20) when the support is known.

The current solution p̂(i ) is updated and the corresponding signal reconstruc-

tion x̂i−1 is subtracted from the measurement vector.

It should be noticed that the i th index is determined as:

ĥi = arg max
0≤h<N ′ ‖(D(0))HW(x− x̂i−1)‖2, (4.28)

where D(0) is the submatrix of D corresponding to 0-th order derivatives and x̂i−1

denotes the solution at previous iteration i −1. The search range for h can be obvi-

ously limited to the range [0, N ′/2) for real signals and further restricted to limited

frequency regions, depending on specific cases.

The iteration number defines the support cardinality. A proper stop criterion al-

lows the exclusion of all negligible contributions from signal model (4.16). The over-

all number of components is unknown a priori, but iterations can be stopped when

different termination criteria, or a combination of them, are met: e.g., the latest

component found is below a desired threshold, current residual norm is lower than

a threshold that accounts for the noise level affecting measurements, or the maxi-

mum iteration number (maximum assumed support cardinality) has been reached.

As discussed in [98], the CS approach requires a minimum frequency separa-

tion of approximately 1.5·∆ f between two equal-magnitude waveform components

lying on the fine grid. When this condition is satisfied, the indices h can be deter-

mined correctly to within ±(∆ f /2P ), that is, with the enhanced resolution provided

by the finer grid. It should be remembered this cannot be made arbitrarily small,

as the numerical conditioning of D tends to get worse for large values of P . Still,

improvement by about one order of magnitude is achievable.

4.3.5 Algorithm Validation in Realistic Conditions

In this section the tests performed to evaluate the performance of the proposed

algorithm under different test conditions are reported. Adopted test signals are in-

spired by those indicated in [83] for individual operating conditions (in particular

for the maximum reporting rate of 50 frame/s). However, tests are designed to stress

the algorithm in more problematic situations, that include different phenomena,
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to highlight its peculiarities. In fact, the aim is to create test conditions that com-

bine two or more scenarios and can thus be representative of harder conditions in

a changing environment. Thus, the severe conditions indicated by the standard for

both classes are mixed to create representative test signals. In particular, for each

steady state and dynamic test condition presented by the standard, the additional

presence of interharmonics is considered. Besides, additive white noise at a signal-

to-noise ratio of 60 dB is superimposed on every test signal.

Several configurations have been reproduced in the MatLab programming en-

vironment. As an accuracy index, the total vector error (TVE), which measures the

relative deviation between the theoretical phasor and the estimated one, is chosen.

This will be the main quantity discussed in the following, while reporting the results

obtained using different test conditions. In particular, because of the presence of

random noise in the test signals, results are reported in terms of average and stan-

dard deviation of percent TVE.

The sampling rate is assumed equal to 5000 sample/s and the powerline fre-

quency, in nominal conditions, is f0 = 50 Hz. The observation interval corresponds

to five powerline cycles, with N = 500 samples, where not otherwise stated, while

the interpolation factor is P = 10. Accordingly, interference among spectral compo-

nents is negligible up to a minimum frequency separation of 15 Hz and frequency

resolution better than ±0.5 Hz is achieved through the CS approach.

In the following, two classes of tests will be shown: tests in presence of steady

state conditions, both for the fundamental frequency component and the distur-

bances, and tests in presence of dynamic evolution of the signal.

Tests under steady state conditions

With regards to interharmonics, very few assumptions can be made a priori. In

the most general case, these spurious components do not fall on any pre-determined

point of the frequency grid and do not exhibit any degree of regularity. In terms of

frequency, the standard [83] indicates that the separation between the fundamen-

tal and the nearest interharmonic is at least equal to half the reporting rate. As a

preliminary test, a sinusoidal signal at nominal frequency, with an additive inter-

armonic disturbance at fi h = 76 Hz (with an amplitude of 10% with respect to the

fundamental component) plus noise has been used. Table 4.1 reports the average
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Table 4.1: TVE estimation errors in the presence of interharmonic and 60 dB noise.

Test Method Avg TVE [%] Std TVE [%]

f1 = 50 Hz, CS-TFT 0.011 0.005

fi h = 76 Hz f-TWLS 1.305 0.147

TWLS 1.305 0.147

extimated TVE, in a 2-s test, for the proposed method CS-TFT, the TWLS based on

the frequency estimation of only the first component (f-TWLS), and the classical

TWLS [106].

When the full estimated frequency model, given by CS-TFT, is used, the rejection

of interharmonic interference allows better estimation performance. Traditional

and frequency tuned TWLS present, in this case, the same accuracy, because the

fundamental frequency component is always correctly identified by the right fre-

quency bin, corresponding to the nominal frequency.

Table 4.2 shows the impact on the TVE, under the same test conditions, of the

window duration. In particular, three window lengths, corresponding to 3, 5 and 7

nominal cycles (N = 300, 500, 700 respectively), are used. It is clear how larger ob-

servation intervals give lower TVEs, because of the enhanced frequency resolution

and of the narrower bandwidth that allows better noise rejection.

A first set of combined tests is then performed using a single interharmonic in-

terfering signal at fi h = 76 Hz or fi h = 21.5 Hz) with amplitude 10% with respect

to the fundamental component, added to a severely frequency deviated sinusoidal

signal at 45 Hz or 55 Hz (maximum deviations for off-nominal frequency tests for

M-class in [83]). Such interharmonics were chosen in the out-of-band frequency re-

gion suggested by the standard [83] and the first one is off the standard N-point fre-

quency grid, while the other is chosen to be even off the finer grid. Table 4.3 reports

the corresponding results for the same three algorithms and N = 500 as in Table 4.1.

Interharmonic interference is strongly reduced by the inclusion of the found in-
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Table 4.2: TVE estimation errors of CS-TFT in the presence of interharmonic and

60 dB noise with different observation window lengths.

Test Window duration Avg TVE Std TVE

[nominal cycles] [%] [%]

f1 = 50 Hz, 3 0.088 0.121

fi h = 76 Hz 5 0.011 0.005

7 0.008 0.005

terharmonic in the model. While the TVE increases if the interharmonic is closer to

the fundamental in the classic approach, the error is almost the same if the extended

model is adopted. In addition, under off-nominal conditions, the super-resolution

given by CS approach allows a suitable frequency tuning that leads to similar estima-

tion accuracy with respect to previous test case at nominal frequency. The frequency

tuning only is not sufficient to give better performance, since the interhamonic dis-

turbance can have a predominant role and centering the filter towards the correct

frequency can yield lower attenuation of the out-of-band signals.

A second composite test is performed using an interharmonic signal at fi h =
76 Hz along with a 10% second or third order harmonic ( fh = 100 Hz or fh = 150 Hz,

respectively), superimposed to a sinusoid at nominal frequency, plus noise. Table

4.4 reports the test results. TWLS are not reported because, as for Table 4.1, they are

identical to those of f-TWLS, since the fundamental frequency is always correctly

identified. Also in this case, the benefits of CS-TFT are patent.

Tests in the presence of dynamic conditions

According to IEEE Standard C37.118.1a-2014 [104], synchrophasor measurement

bandwidth is determined by tests in the presence of amplitude modulation (AM)

and phase modulation (PM) of the sinusoidal signal at nominal frequency. For the

tests, while keeping the same configuration of noise and interhamonic disturbances,
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Table 4.3: TVE estimation errors in the presence of off-nominal conditions, inter-

harmonics and 60 dB noise.

Test Method Avg TVE [%] Std TVE [%]

f1 = 45 Hz, CS-TFT 0.011 0.005

fi h = 76 Hz f-TWLS 1.184 0.196

TWLS 2.331 1.106

f1 = 55 Hz, CS-TFT 0.013 0.006

fi h = 76 Hz f-TWLS 2.252 0.197

TWLS 2.341 0.950

f1 = 45 Hz, CS-TFT 0.013 *0.007

fi h = 21.5 Hz f-TWLS 2.377 0.530

TWLS 2.101 0.771

f1 = 55 Hz, CS-TFT 0.010 0.005

fi h = 21.5 Hz f-TWLS 1.593 0.417

TWLS 2.092 0.632



162 CHAPTER 4. QUASI-STATIONARY SPARSE MODELS

Table 4.4: TVE estimation errors in the presence of harmonic, interharmonic and

60 dB noise.

Interfering Signals

Method

Avg TVE Std TVE [%]

fh fi h [%] [%]

fh = 100 Hz fi h = 76 Hz

CS-TFT 0.011 0.006

f-TWLS 1.325 0.260

fh = 150 Hz fi h = 76 Hz

CS-TFT 0.011 0.005

f-TWLS 1.307 0.158

two modulated signals are adopted: an AM with modulation level kx = 0.1 and mod-

ulation frequency fm = 5 Hz and a PM with modulation level ka = 0.1 and modula-

tion frequency fm = 5 Hz (corresponding to the maximum values indicated by [104]

for M-class).

Table 4.5 shows the results in terms of average TVE and its standard deviation

for both the TWLS using only fundamental frequency and the proposed method. It

is clear that, also under dynamic conditions, the rejection of the interharmonic, by

its estimation and inclusion in the model, leads to lower measurement errors. Once

the interharmonic is removed by the filtering process, the residual estimation error

is due to the passband of the filters, affecting the modulated signals.

The algorithm performance has been characterized also during a linear ramp of

the fundamental frequency. The ramp rate of change of frequency has been set to

1 Hz/s, as indicated by the standard, and a 10-s test has been performed, thus let-

ting the frequency change in the range [45,55] Hz. Fig. 4.2 shows the percent TVE

when noise and interhamonic (at 76 Hz) are present during the whole ramp dura-

tion. It is clear that in the f-TWLS, when only fundamental frequency is considered,

the percent TVE is higher. Different steps in TVE are visible, due to the discrete grid

of frequency bins. For CS-TFT, an average TVE of about 0.01% (with a standard de-
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Table 4.5: TVE estimation errors in the presence of modulations, interharmonic and

60 dB noise.

Test Method Avg TVE [%] Std TVE [%]

AM kx = 0.1, fm = 5 Hz, CS-TFT 0.119 0.046

fi h = 76 Hz f-TWLS 1.326 0.208

PM ka = 0.1, fm = 5 Hz, CS-TFT 0.124 0.039

fi h = 76 Hz f-TWLS 1.299 0.273

viation of 0.016%) can be reached also during the ramp and similar results can be

obtained changing the interharmonic frequency. Obviously the different TVE be-

haviour depends on the relative shift between fundamental and interhamonic com-

ponents, which changes during the frequency ramp duration. With the aim of test-

ing all the possible dynamic conditions suggested by [83], the step response of the

algorithm has been verified with both amplitude (±10%) and phase-angle (±10◦)

steps applied to a sinusoidal signal at nominal frequency, corrupted, as before, by

an interharmonic interfering component at 76 Hz and 60 dB random noise. Fig.

4.3 shows the results. CS-TFT, allowing interharmonic rejection, shows, as in Ta-

ble 4.1, a TVE in steady-conditions before and after the step change below the 1%

TVE limit permitted by the standard and used to define the dynamic behaviour of

the estimator. Thus the response time of the algorithm, using the same definition

as in [83], corresponds to about 32 ms and 88 ms for amplitude and phase-angle

steps, respectively. On the contrary, with f-TWLS the TVE is larger than 1% even in

the pre- and post-step steady-state conditions, thus impeding the calculation of the

response time.
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Figure 4.2: TVE trends during ramp frequency test (with interharmonic and noise).

Figure 4.3: TVE trends in the presence of step changes (with interharmonic and

noise): a) +10 % amplitude step; b) +10◦ phase-angle step.
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4.4 Part III: CS-Based Template for EEG Signal Artefact

Removal

4.4.1 Brain Activity Acquisition Scenario

Simultaneous recording of electroencephalography (EEG) and functional mag-

netic resonance imaging (fMRI) represents a powerful tool to thoroughly study brain

activities.

Magnetic resonance imaging provides a mapping of the brain areas related to

specific tasks or stimuli. Unfortunately, localization of activation events is accu-

rate in the space domain, but still too poor in the time domain, where resolution

is limited by the complex procedure required for measuring a magnetic moment re-

laxation. Moreover, fMRI does not evaluate actual neuronal activity, but an indirect

effect, e.g. the blood oxygenation level dependent (BOLD) effect.

Electrophysiologycal analysis is able to detect the brain electrical activity di-

rectly. No system constraints limit the sampling frequency, i.e., the signal is acquired

in real time. Conversely, EEG is affected by low spatial resolution: its activation map-

ping is blurred and relies only on a scalp surface model, i.e., three-dimensional in-

formation is not available.

By properly combining the two measuring techniques, it is possible to enhance

event resolution and source localization in both time and space domains. Many

applications of simultaneous EEG and fMRI analysis have been developed, ranging

from the study of epilepsy and resting state conditions to the relationship between

evoked potential and BOLD effect variations. Unfortunately, EEG data collected dur-

ing concurrent fMRI are affected by very large artefacts related to both technical and

physiological phenomena.

From the instrumentation point of view, such a large discrepancy between infor-

mative and spurious components requires a specific design of the measuring sys-

tem. The amplifier stage needs a large dynamic range to ensure accurate EEG repre-

sentation. Conversely, its bandwidth has to include at least all the significant bands,

but a too large value makes the system prone to saturation. It is worth noticing that

artefact correction cannot be partial or inaccurate, as residual components could

still spoil any inference or result.

The main spurious contributions are named, respectively, gradient artefact (GRA)
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and ballistocardiographic (BCG) artefact. The first one is related to the sawtooth

profiles of magnetic flux inside the MRI scanner. The second is related to the elec-

trodes pulsating motion due to scalp blood circulation. Both artefacts are gener-

ally orders of magnitude larger than the EEG trace, but can be reduced by post-

processing if some system features (e.g., the gradient sequence or the ECG trace)

are known. In both cases, the provoking causes exhibit inherent periodicity, whose

timings are measurable or can be inferred.

This last chapter part is concerned with the gradient artefact. GRA magnitude

depends directly on the gradient sequences imposed within the MRI scanner. The

periodic inversion of magnetic flux produces a Faraday effect over the loops formed

by the head tissues and the EEG leads. In the frequency domain, GRA contributes

large equally spaced peaks over the entire spectrum. Experimental data acquired

from a water phantom showed a clear relationship between artefact fundamental

frequency and fMRI parameters, such as volume time and number of slices [119].

Unfortunately, affected frequencies include also the bands significant to neurologi-

cal investigation. Low pass pre-filtering, e.g. with cut-off frequency at 250 Hz, could

reduce the overall artefact magnitude, but would not resolve the problem.

Patient condition also affects artefact magnitude, e.g., proper positioning of the

patient head inside the MRI scanner ensures a 30% GRA reduction [120]. Dynamic

range can be accordingly reduced, enlarging the amplifier bandwidth and the fre-

quency range under investigation. This acquisition setting does not affect functional

measurement quality, as the head remains in homogeneous field conditions.

Hereinafter, a novel GRA removal algorithm is presented and validated over both

simulation and experimental data. For each artefact occurrence, a specific template

is computed and then subtracted in time domain.

The algorithm consists of two main stages. In the first one, the spectral content

of the artefact is estimated. The GRA spectrum consists of a train of spikes, whose

spacing depends on magnetic resonance parameters. This peculiar trend suggests

the application of a harmonic estimation method. For this purpose, a super-resolution

method, based on compressive sensing (CS) theory, provides accurate Fourier coef-

ficients from a short set of EEG samples [76]. In the second stage, detected frequen-

cies are used to form a basis in Taylor-Fourier transform (TFT) space [90]. The tem-

plate for GRA removal is defined by projecting the sampled signal over the subspace
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spanned by this basis. It is worth noting that the TFT has been developed exactly for

dynamic harmonic analysis. Therefore, it is able to cope with the aforementioned

inaccuracy causes, such as patient movement or misalignment of EEG channel tim-

ing.

4.4.2 Problem Statement

The signal under investigation consists of two main contributions: EEG and

GRA. Information about neuronal activity is conveyed by the former, whose power

content is mainly located in a low frequency range, not exceeding 250 Hz. In prac-

tice, the signal is not so strictly band-limited, but physiological studies have shown

an inverse relationship between frequency and magnitude of brain electrical activ-

ity.

Figure 4.4: Characteristic GRA profile in the time (left) and frequency (right) do-

mains.

An example of a gradient artefact superposed on an EEG trace in concurrent

EEG-fMRI acquisition is shown in Fig 4.4. These large artefacts, related to the ef-

fect of alternating magnetic field gradients, are periodically superposed on the EEG

trace. Every signal portion affected by GRA can be determined by a threshold pro-

cess and artefact removal has to be applied to it.

In theory, the component frequencies of each GRA are exact multiples of a fun-

damental frequency, obtained from the fMRI acquisition parameters:

f0 = Nv

Tv
(4.29)

where Nv is the number of slices in a volume, and Tv is the volume acquisition time

[119]. In practice, a dynamic correction term has to be introduced for each har-
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monic. Therefore, harmonic estimation cannot be simply carried out by means of

the discrete Fourier transform (DFT), since this relies on a strictly periodic signal

model, i.e., it is suitable only in static conditions. A suitable model for the GRA con-

tribution is then:

x(t ) =
H∑

h=1
Ah(t )cos(2πh f0t +φ(t )) (4.30)

where components are characterized by time varying amplitudes, Ah(t ) and instan-

taneous phases, φh(t ) with h = 1, · · ·H .

In the presence of harmonic fluctuations in amplitude and/or phase, DFT can

only provide an average value over the observation interval. This limitation can be

partially solved by the adoption of shorter observation intervals, but this causes a

reduction of the estimation grid granularity and an increase in long-range interfer-

ence due to spectral leakage.

Given the sampling period Ts , a record of the signal under investigation can be

expressed as follows:

y[n] =
H∑

h=1
Ah[n]cos(2πh f0n +φ[n])+e[n] = x[n]+e[n] (4.31)

The useful EEG trace is actually represented by the noise contribution e[n]. The

proposed algorithm is aimed at the estimation of GRA, which is the dominant part

of y[n].

In the literature, the most widely used algorithm is average artefact subtraction

(AAS) [121]. Considering the artefact occurrences on all EEG channels, an average

template is computed and then subtracted from each affected signal portion. AAS

poses two main requirements. On one hand, it must be possible to accurately com-

pare and superimpose different artefact occurrences over different times and/or

channels. On the other hand, dynamic range should be larger than the artefact vari-

ability range. The former issue is addressed by synchronizing EEG channels with the

fMRI scanner. The latter calls for high-resolution signal digitisation.

A further problem for AAS implementation is represented by patient movements,

that are sufficient to change the magnetic field distribution. In this case, the adop-

tion of sliding time windows to compute the average template is suggested in [121],

but results are still unsatisfactory. The occurrence and time localization of move-

ments can be inferred from MRI realignment parameters, so that specific templates

can be computed for dynamic conditions [122]. Another approach classifies the oc-
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Figure 4.5: Block diagram of algorithm main steps.

currences according to their mutual similarity [123]. Both proposals reduce the car-

dinality of the set over which the average is computed, weakening the hypothesis of

uncorrelated EEG traces.

4.4.3 CS-TFT Approach for GRA Removal

In the proposed algorithm, each artefact occurrence is treated singly. A GRA-

affected portion is divided into consecutive non-overlapping segments of N sam-

ples. Since the portion length is not necessarily an integer multiple of N , zero-

padding is employed for the last segment. Generally, N is assumed odd to preserve

central symmetry in spectral analysis investigation.

As can be seen in Fig. 4.5, the data record passes through three steps. First, a

super-resolution method determines GRA component frequencies. Secondly, the

resulting frequencies are employed to form a basis in TFT subspace. The weighted

least-squares (WLS) approximation provides the k-th order derivatives of each GRA

component, for k ∈ {0,1,2}. The first derivative of the phase term allows an imme-

diate correction of the estimated component frequency. The procedure is iterated

until the first derivative term becomes negligible. Finally, the dynamic estimates of

component amplitude and phase are employed to construct an artefact template,

which is subtracted from the original record.

Spectral Content Model Identification

The super-resolution method employed in the first stage of the algorithm has

been presented in [76]. It is summarized here for the sake of completeness.

The composition of x[n] could be estimated by Fourier analysis. A difficulty of
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this approach is that frequencies have to be determined very accurately, thus re-

quiring very long sample sequences to achieve the necessary resolution. To over-

come this limit, the super-resolution algorithm models the DFT coefficients of y[n],

arranged in the vector Y , by the linear relationship:

Y = DA (4.32)

where A is a vector of complex Fourier amplitudes defined on a dense frequency grid

with step ∆ f = 1/(P ×N Ts ). The integer P is called the super-resolution factor and

determines the resolution gain with respect to the standard DFT, whose frequency

step is just 1/(N Ts ).

Matrix D in (4.32) contains samples of the Dirichlet kernel representing spectral

leakage at the different frequencies of the dense grid. Since dim[Y ] ¿ dim[A], sys-

tem (4.32) is under-determined. However, in the frequency domain information is

sparse, i.e., only a reduced set of elements in A are significant. Their indexes form a

set called the signal support S, whose cardinality is equal to the number of harmon-

ics in (4.30), i.e., ‖A‖0 = H ¿ N .

The super-resolution CS approach employs this sparsity assumption to provide

the best estimate of A as the sparsest vector that satisfies the condition:

∥ Y −DA ∥2
2≤ ε (4.33)

where ε depends on the energy related to the underlying EEG trace. In the present

case, the GRA-to-EEG ratio is equal to at least 40 dB.

The algorithm crucial point is the recovery of signal support S. This stage is car-

ried out via a singular-value decomposition of the matrix Y Y H , where the super-

script denotes transposition and complex conjugation. Decomposition allows to

obtain the matrix V whose columns, that are the eigenvectors of Y Y H , are collapsed

into a single vector v . As shown in [45], the required support S is also the set of in-

dexes of the non-zero elements in vector u, that is the solution of matrix equation

v = Du. The latter is obtained by a greedy algorithm, such as orthogonal matching

pursuit (OMP) [23].

S determines the set of GRA frequencies over the dense grid. Given sh ∈ S, the

corresponding frequency estimate is fh = sh ·∆ f , with a resolution of ±∆ f /2.

The proposed CS method provides accurate frequency estimation, starting from

an observation interval as short as possible. In static conditions the next step would
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Figure 4.6: Detail of a super-resolved estimate of a GRA occurrence.

be to estimate the Fourier coefficients of (4.30) by solving (4.32) through the matrix

pseudo-inverse:

X̂ S = (DH
S DS )−1DH

S Y (4.34)

where Ds is obtained from D by taking only the columns whose index is in S. A por-

tion of super-resolved spectrum is presented in Fig. 4.6 and compared with standard

DFT, showing that leakage and inter-harmonic interference are strongly reduced.

However, any DFT-based solution is only the best approximation of the input sig-

nal with reference to a static periodic signal model. Conversely, dynamic conditions

should not be neglected for complete artefact removal.

TFT-Based Artefact Template

The Taylor-Fourier transform assumes a dynamic signal model, where each har-

monic varies according to a specific complex envelope. In this way, the algorithm is

able to cope with amplitude and/or phase variations within the observation inter-

val.

In the TFT approach each harmonic is assumed to be modulated by a time func-

tion, expressed by a Taylor polynomial expansion of a given order k > 0. Thus, TFT

coefficients contain both the instantaneous values and the first derivatives of com-

ponent amplitudes and phases.

Let L2(R) be the Hilbert space of complex-valued functions. No constraints are

defined with reference to periodicity or amplitude and phase trend. The TFT is de-
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fined on a set of linearly independent basis functions:

ψ(k,h)(t ) = t k e− j 2π fh t h = 0, · · ·H k = 0, · · ·K (4.35)

The proposed algorithm employs the recovered support S to construct a GRA spe-

cific basis B, whose vectors are given by:

ψ
(k,h)

= {ψ(k,h)[n]}0≤n≤N = (nTs )k e− j 2πhn
N ′ (4.36)

where h ∈ S and k = 0, · · ·K .

In the corresponding subspace, the signal projection is characterized by a set of

weighting coefficients θ(k,h), computed by means of weighted least squares approx-

imation:

θ(k,h) = (BH WB)−1BH WY (4.37)

where W is a weighting matrix, whose diagonal contains the samples of a Kaiser

window (α= 10) [90] and B = [ψ
(k,h)

] with h ∈ S and k = 0, · · ·K .

TFT provides a signal approximation

ŷ[n] =∑
k

∑
h
θ(k,h)ψ(k,h)[n] (4.38)

where the TFT coefficient θ(k,h) represents the k-th derivative term of the h-th har-

monic component:

θ(k,h) =
T k

s

k !

d k Ah(t )e jφh (t )

d t k
. (4.39)

Equation (4.38) represents an accurate GRA template, specific to the signal por-

tion under analysis. It is worth noticing that EEG does not belong to the subspace

spanned by vectors of the basis B, so its contribution to the template is negligible.

The estimation process accounts for dynamic conditions and does not require fur-

ther processing, e.g. filtering or averaging steps.

It should be noticed that the vectors in (4.35) span a subspace T ∈L2(R) which

contains the DFT subspace. Accordingly, TFT approximation error is less than or

equal to the DFT approximation error. Even estimates for k = 0 improve on the DFT

counterpart affected by infiltration of the neglected derivative terms. Taylor expan-

sion terms are not orthogonal, so the TFT basis vectors form only a frame, rather

than an orthogonal basis. Vector linear independence is, however, a sufficient con-

dition for the existence of a TFT solution.
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The physical meaning of TFT coefficients allows closed loop control of harmonic

frequency estimation. First derivative of phase corresponds to a frequency devia-

tion. Accordingly, harmonic frequencies are iteratively updated

fh = fh + dφh(t )

d t
(4.40)

until the stop criterion is satisfied:

θ(1,h) ·N Ts

θ(0,h)
≤ 1% ∀h ∈ S (4.41)

The computed template is finally subtracted from the input signal, providing a

cleaned EEG trace ê[n]. In the presence of zero-padded recordings, the template is

truncated to the last index of the signal portion affected by GRA.

4.4.4 Algorithm Validation on Simulated and Experimental Data

During concurrent EEG-fMRI acquisition it is hard to define an input signal ref-

erence, since GRA entirely covers the underlying EEG. Accordingly, the reconstruc-

tion error should be quantified in terms of similarity with other portions of EEG not

affected by GRA.

To characterize algorithm performances we employed a data set where EEG had

been acquired outside the MRI scanner in a healthy subject, and GRA measured on

a phantom was numerically added. Two conditions have been explored, respec-

tively, with patient eyes open and closed. EEG was acquired using a SD-MRI32 Mi-

cromed Amplifier (sampling rate: 1024 Hz, digitizer resolution: 22 bits, dynamic

range: ±25.6 mV). In order to avoid aliasing phenomena, a hardware band-pass fil-

ter from 0.15 to 269.5 Hz has been applied.

Data acquired on a water phantom during fMRI analysis provided a set of GRA

profiles. In particular, functional images have been acquired using a Siemens Sym-

phony 1.5 T scanner. The sensing protocol consists of a T2∗ weighted EPI sequence

(number of slices: 36, volume repetition time: 3700 ms). Further details are available

in [119].

Spectral analysis of the acquired profiles shows that GRA can be accurately mod-

elled by a sum of harmonic components, whose fundamental frequency is given by

(4.29), in this case f0 ' 11.25 Hz. Accordingly, a new set of profiles has been simu-

lated, where harmonic amplitudes and phases are drawn, respectively, from a nor-

mal and a uniform distribution, i.e., Ah ∼N (1×104,5×102) and ph ∼U (0,2π).
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Table 4.6: Performance parameters of the algorithm.

Patient Data Mean residual St.Dev. NRMS SNR

state set [uV] [uV] [%] [dB]

open static -1.806 1.2 22.0 13.1

eyes dynamic -0.150 3.3 64.8 3.77

closed static 1.525 1.3 20.7 11.8

eyes dynamic 0.189 4.1 54.6 5.23

For algorithm validation, two sets of 10 occurrences have been selected from

both the real and simulated data set. Simulated data represent operation in static

conditions, since both frequencies and Fourier coefficients do not vary over the

observation interval. Conversely, real data include non-ideal phenomena, like un-

equally spaced frequencies or time-varying Fourier coefficients.

With reference to the super-resolution stage of the algorithm, the observation

interval consists of N = 301 samples, for which the adoption of an interpolation fac-

tor P = 13 results in a frequency resolution of 0.26 Hz. The number of harmonics is

inferred from the sampling frequency and the expected f0, i.e., H = 93. For the TFT,

the Taylor expansion is truncated at the first-order order, i.e., K = 1. In static con-

ditions, only the 0-th order coefficients are significant, while in dynamic conditions

first derivatives allow the iterative update of harmonic frequencies.

artefact residual after application of the proposed algorithm has been character-

ized in terms of mean value, standard deviation and normalized root-mean-square

(NRMS) ratio, that is defined as:

N RMS =
√∑

(ê −e)2∑
(e)2 (4.42)

where e and ê represent, respectively, the original and the recovered EEG trace. Its

reciprocal is the signal-to-noise ratio (SNR) between the original EEG and the arte-

fact residual, expressed in dB in the following.

For both data sets, Table 4.6 summarizes these performance parameters aver-

aged over 10 GRA occurrences. In static conditions, the residual artefact exhibits

low magnitude and variability, and its energy content is about five times lower than

the one associated to the EEG trace alone, as shown by NRMS. In dynamic condi-

tions the variability range increases, and the energy content of the residual exceeds
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Figure 4.7: Closed-eyes signal recovery (red solid line) vs original EEG trace (blue

dotted line) in static conditions [124].

50% of the EEG one. It is worth noticing that SNR is firmly positive in all the consid-

ered cases, i.e., the proposed algorithm is always able to estimate GRA components

and reduce them.

Examples of closed-eyes signal recovery in static and dynamic conditions are

given, respectively, in Fig. 4.7 and Fig. 4.8. Again, better accuracy and smoothness

are achieved in static conditions, nevertheless, the residual artefact in dynamic con-

ditions is small enough to avoid significant distortion of the underlying trace.

From a clinical point of view, the main feature of interest is the distribution of

EEG signal power over five spectral bandwidth related to specific brain activities: δ

(0.5−4 Hz), θ (4−7 Hz), α (7−14 Hz), β (15−30 Hz), and γ (30−100 Hz or more).

Any approach where the template is averaged over more occurrences is prone to

distort the actual power distribution, whereas the proposed algorithm constructs a

specific GRA template for each short observation interval. Therefore it is interesting

to compare the bandwidth powers obtained from the recovered EEG with those of

the original.

Fig. 4.9 presents this comparison for open eyes acquisition, while Fig. 4.10

presents the closed eyes case. In static conditions recovery is almost perfect, whereas

in dynamic conditions a somewhat larger variability is noticeable. Nonetheless, mu-

tual power ratios are reliably reproduced.



176 CHAPTER 4. QUASI-STATIONARY SPARSE MODELS

Figure 4.8: Closed-eyes signal recovery (red solid line) vs original EEG trace (blue

dotted line) in dynamic conditions [124].

4.4.5 Results Discussion and Computational Considerations

The proposed algorithm is able to cope successfully with time-varying GRA. Each

artefact occurrence is processed singly, providing more accurate and specific sub-

traction templates. A closed loop control based on harmonic phase derivatives en-

sures correct tracking of the harmonic frequencies, as the observation interval scans

the artefact occurrence.

Preliminary experimental results collected both in static and dynamic condi-

tions show a significant reduction of spurious components, with residual artefact

Figure 4.9: Power spectral distribution during open eyes acquisition (logarithmic

power scale) [124].
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Figure 4.10: Power spectral distribution during closed eyes acquisition (logarithmic

power scale) [124].

magnitude almost one order of magnitude lower than the EEG trace under inves-

tigation. The resulting SNR is positive in all the considered operating conditions.

Moreover, no significant distortions are introduced in spectral power distribution,

potentially allowing a reliable clinical interpretation of the recovered EEG trace.

The novelty of this approach is the combination of a super-resolution method

based on compressive sensing theory with the Taylor-Fourier transform. TFT in

combination with the Kalman filter has been previously employed, in a biomedi-

cal context, for the estimation of blood pressure waveforms [125]. Conversely, in

this work TFT is directly employed to project the acquired data over the subspace

which best represents the GRA occurrence under investigation.

From a computational load point of view, the crucial points are represented by

the computation of the cross-correlation matrix Y Y H and the frequency update it-

erative loop (4.40). Nevertheless, the capability of operating on a reduced sample

set lightens the computational burden. At the moment, the algorithm is conceived

for post-processing implementation but, since no averaging procedure or prior in-

formation are necessary, once a signal portion affected by GRA is detected, the al-

gorithm can immediately provide the specific template. A suitable compromise be-

tween segment size and required estimate accuracy might allow on-line realization.



Chapter 5

Conclusions

This Ph.D. thesis builds on the field of Compressive Sensing and illustrates how

sparsity and incoherence properties can be exploited to design efficient sensing

strategies, or to intimately understand the sources of uncertainty that affect mea-

surements. Specifically, the research activity has been concerned with definition,

analysis and implementation of sparse signal acquisition paradigms.

In this thesis, the main specific contributions include: a common theoretical

framework of Compressive Sensing, which can easily fit any sparse acquisition sce-

nario; a CS-based algorithm for providing accurate preliminary information and

suitably preprocessed data for a vector signal analyser or a cognitive radio applica-

tion; a CS-based frequency super-resolution technique, relying on an overcomplete

dictionary which explicitly accounts for spectral leakage effect; an off-the-grid fre-

quency estimation approach, which properly combines CS-based super-resolution

and DFT coefficients polar interpolation; an enhanced spectral content model for

spectral analysis applications in dynamic conditions by means of Taylor-Fourier

transform (TFT) approaches.

To conclude, it is worth reflecting on achieved results, remaining open problems

and possible directions for future research.

5.1 General Framework of Compressive Sensing Theory

In chapter 1, a mathematical model for sparse signal acquisition has been pre-

sented and thoroughly characterized. An annotated dictionary of theorems and cri-
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teria has been provided and is expected to be extremely helpful in designing effi-

cient and accurate sensing systems. In this context, two fundamental approaches

have been briefly summarized and compared: on one side, the canonical approach

based on the Shannon’s theorem; on the other side, the CS approach which acquires

the signal directly in a compressed form. Particular attention is devoted to the com-

putational efforts required both at sensor and receiver side.

By definition, the CS paradigm has to deal with an under-determined system of

equations, whose solution requires ad hoc algorithms. Two main algorithmic classes

have been identified, relying respectively on proper Lebesgue norm approximation

and greedy iterative search. Their behaviour has been characterized both in noise-

less and noisy conditions, devoting particular attention to solution accuracy and

computational complexity. All things considered, a general guideline has been pro-

posed: if a blind approach is required, norm approximation represents the most

suitable option; whereas greedy search exhibits lower computational complexity at

the expense of lower solution accuracy.

On the other hand, it is worth noticing that CS theory is still a dynamic and ex-

panding research field. Just the last year, it celebrated its first tenth anniversary. In a

such short time, countless are the algorithms and the applications which have been

designed, validated and, in some cases, even implemented and put on the market.

In this regarding, CS theory candidates itself not only as an original and fascinat-

ing research topic, but also as an occasion for significant innovation in the field of

technology development. Many exciting solutions have been yet presented. Others

might just be around the corner.

5.2 CS-Based Pre-Processor for VSA or CR Applications

In chapter 2, a CS algorithm has been proposed as a vector signal analysis pre-

processor and has been thoroughly characterized. Current VSA architectures rou-

tinely allow access to sampled data acquired at the output of the instrument IF fil-

ter, therefore it should be possible to integrate the algorithm within the set of signal

processing functions normally accessible to a user. The added capabilities consid-

ered in this work can enhance VSA performances in wireless network monitoring

and support measurement for cognitive radio applications.
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A number of open research issues will have to be addressed in future research

on the characterisation of the CS algorithm. These include the optimal selection

of the decimation factor L and an investigation into the relationship between re-

construction accuracy and the number m of parallel channels. These aspects are

important, as they help understand what could be the actual compression level that

can be achieved in a practical VSA measurement application. A thorough analysis

of performances with regards to different modulation formats is also important to

determine whether the algorithm can be considered an effective general purpose

tool.

Although some of the measurement algorithms proposed in this work are rather

sophisticated, their implementation within the firmware of modern measuring equip-

ment such as a VSA is well within the instrument capabilities in term of computing

power and processing time. The support recovery stage in the CS algorithm is the

most demanding in terms of computational effort, involving the singular value de-

composition of the measurement correlation matrix. This effectively places an up-

per bound on the number of MWC channels, although this does not seem to be too

critical as far as multiple source detection is concerned.

At the time, the CS-based sensing algorithm appears to be beyond the reach of

a CR receiver computing power. Nevertheless, research into more computationally

efficient CS algorithms could overcome this limitation. The CS algorithm provides

a VSA with blind spectrum sensing capabilities at no additional hardware cost and

can determine some of the basic parameters of a modulated signal. Capitalizing on

the de-noising effects of the CS algorithm, the histogram analysis part of the pro-

posed measurement algorithms provides the basis for detection of modulation for-

mats taken from a dictionary. Thus, VSA capabilities are considerably enhanced and

allow instruments of this class to tackle some of the demanding requirements of CR

measurement.

5.3 CS-Based Super-Resolution Technique in the DFT

Domain

In chapter 3, the spectral estimation of multi-tone signals has been addressed

by a CS-based approach (CS-DFT) which provides one order of magnitude super-
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resolution, independently from the considered data record length. Referring to a

finite grid may appear as a limitation compared to interpolation and parametric

methods where, in principle, frequency can be considered a continuous variable.

However, finite signal-to-noise ratio (SNR) places a lower-bound as well, which is

equivalent for all practical purposes to just considering a discrete fine grid. While

application of the CS algorithm does not eliminate spectral leakage, by reducing

granularity on the frequency axis it increases, in normalised terms, the frequency

separation between adjacent components. This virtually eliminates long-range fre-

quency interference effects, leaving only scalloping loss to be dealt with.

The main features of the proposed algorithm make it of interest for application in

smart microgrid projects. In fact, its basic structure can be adapted to a range of PQA

and PMU measurements by a comparatively simple set of management and control

rules, while the underlying hardware may remain unchanged. This goes towards the

aim of realizing low-cost, high-performance measurement nodes in distribution-

level smart microgrids, which are one of the targets of current research in the field.

Finally, the problem of continuous estimation has been taken into account. In

fact, the granularity issue, although less significant, is not entirely overcome by the

aforementioned super-resolution technique.

This has led to consider a two-stage approach, which combines CS-based super-

resolution and DFT coefficients polar interpolation. Results obtained so far support

the idea that the proposed approach can be considered an interesting alternative

for high-resolution multi-tone waveform analysis and can attain super-resolution

performance, provided the computing power necessary for this class of algorithms

is available.

5.4 Quasi-Stationary Sparse Signal Acquisition Models

In chapter 4, the notion of quasi-stationary signal model has been introduced

and its implications to spectral analysis have been briefly discussed, with particular

focus on TFT formulas and properties. Some common measurement approaches

related to TFT have been summarized. In this context, the proposal of a joint CS-TFT

approach has been introduced as a novel signal-independent approach for spectral

analysis in quasi-stationary operative conditions.
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Two challenging operative scenarios have been selected to validate the proposed

algorithm.

Firstly, this combined approach has been applied to power measurements in

smart grid scenario. More precisely, CS-TFT has been proposed as a Phasor Mea-

surement Unit (PMU) algorithm. Its performance has been characterized under

different static and dynamic conditions, using composite test signals that include

various disturbances, such as interharmonics, harmonics or additive noise, in an

attempt to represent a severe operating environment. Experimental results have

shown that CS-TFT allows, while keeping the observation interval reasonably low, to

detect with a good resolution the relevant spectral components of the signal, even

when they are changing with time. The algorithm is promising in its ability to cope

with severe operating conditions, like the concurrent effect of dynamic conditions

and interharmonic interference, with remarkable performance in terms of estima-

tion accuracy.

Secondly, the same approach has been applied to the problem of gradient arte-

fact removal from concurrent EEG-fMRI recordings. The proposed algorithm has

been proven to be a promising alternative to averaging techniques widely employed

in the literature. In fact, it is able to cope successfully with time-varying GRA. Each

artefact occurrence is processed singly, providing more accurate and specific sub-

traction templates. A closed loop control based on harmonic phase derivatives en-

sures correct tracking of the harmonic frequencies, as the observation interval scans

the artefact occurrence. Preliminary experimental results collected both in static

and dynamic conditions show a significant reduction of spurious components, with

residual artefact magnitude almost one order of magnitude lower than the EEG trace

under investigation. The resulting SNR is positive in all the considered operating

conditions. Moreover, no significant distortions are introduced in spectral power

distribution, potentially allowing a reliable clinical interpretation of the recovered

EEG trace.

Both the practical implementation of CS-TFT have confirmed the goodness of

the proposed approach. Thus, plausible directions for future research are repre-

sented by its application to similar acquisition problems and its implementation on

programmable boards with sufficient computing resources.
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