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Abstract  

α-synucleinopathies are a group of neurodegenerative disorders characterized by 

the presence of abnormally aggregated aS.  Recent evidence suggests that the early 

site of aS aggregation is synapses, where aS seems to play its physiological role. 

Moreover, aggregated aS is reported to be secreted by cells, suggesting its potential 

involvement in disease initiation and progression. Considering the nature of 

neurodegenerative disorders as well as the defined, step-wise spreading of Lewy 

body pathology in α-synucleinopathies, the idea of extracellular aS as a pathogenic 

‘prion-like’ agent is extremely appealing.  

This research project developed in this frame and it is focused on the propagation 

of aS toxic species mediated by a particular type of extracellular vesicles, 

exosomes. 

To this aim, aS containing exosomes were first purified from aS-EGFP transfected 

HEK293T cells. Moreover, since in PD dopaminergic neurons are primary affected, 

we focused on the connection between aS aggregation process and dopamine 

metabolism. Therefore, we purified exosomes also from 3,4 

Dihydroxyphenylacetaldehyde (DOPAL)-treated cells, a toxic dopamine metabolite, 

which induce the formation of toxic DOPAL/aS oligomers.  

The purified vesicles exhibited the typical hallmarks of exosomes. They contained 

aS oligomeric species and, upon DOPAL incubation, DOPAL modified aS and 

aS/DOPAL oligomers. Interestingly the latter were able to interact with exosomal 

membranes and, likely through a pore formation mechanisms alter exosomal 

microenvironment.  

Once purified exosomes containing aS and DOPAL modified aS oligomers, we 

focused on the effect of these vesicles on different cell types. After secretion in fact, 

aS can influence neighboring cells in a paracrine manner. In particular, we 

analyzed neurons and microglia cells. 

In neurons, exosomes appear to be secreted in a spatially and regulated manner 

through synapses, where aS exert its physiological role. Hence, we first investigate 

the effect of exosomes on synapses of primary neuronal culture. Upon incubation, 

aS containing exosomes and, more significantly, DOPAL-modified aS containing 



2 
 

exosomes reduced the amount of synaptophysin and PSD-95, two synaptic 

proteins of the pre- and post-synapses respectively. Moreover, TEM images of the 

synapses of treated neurons, revealed not only an impaired vesicle pools 

distribution (vesicles were more distant from the active zone), but also a reduced 

number of vesicles/synapses.  The observed synaptic dysfunction likely cause also 

the neurite retraction, as measured by Sholl Analysis upon aS containing exosomes 

incubation. Lastly, we checked also for neuronal survival, analyzing the activation 

of caspase 3 and PARP1, but, under our experimental conditions, no significant 

effect was measured. 

Therefore, exosomal aS toxicity is at least delivered to synapses, where they alter 

proteins amounts, function and neuronal morphology. We did not investigate the 

mechanism of internalization and toxicity, but, considering recent evidence, we 

propose two possible mechanisms. aS oligomers enter synapses and impact their 

physiology either (i) through a pore mechanism formation as suggest by the 

membrane localization of DOPAL-modified aS oligomers at membranes and their 

capacity to alter exosomal environment or/and (ii) seeding neuronal endogenous 

aS, hindering its physiological function. 

In the second part of this thesis, we also investigated another way of impacting 

neuronal physiology: neuroinflammation induced by microglia activation.  

Microglia cells, in fact, upon chronic and excessive aS exposure, are reported to 

became active and secret toxic substances, including the pro-inflammatory 

cytokines IL-1β, that are reported to impact neuronal survival. 

When we applied aS containing exosomes to primary microglia cells, an increased 

release of IL-1 β was measured by Western Blot analysis, suggesting an induced 

inflammation. 

 

In conclusion, our results demonstrate an exosomes-driven toxicity of aS not only 

to neuronal synapses, but also to microglia, inducing the secretion of IL-1 β.  

Therefore, aS containing exosomes appear as a vehicle of aS toxicity, which might 

be interesting not only as a future therapeutic target, but also as a potential 

biomarker for  α-synucleinopathies. 
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Riassunto 

Le α-sinucleinopatie sono un gruppo di malattie neurodegenerative caratterizzate 

dall’anormale aggregazione della proteina α-Sinucleina (aS). La localizzazione 

dell’aS è prevalentemente pre-sinaptica, ove sembra non solo svolgere la propria 

funzione fisiologica, ma anche iniziare l’alterazione patologica della sua struttura. 

Nonostante i meccanismi alla base di questo evento non siano noti, una delle 

ipotesi proposte è l’internalizzazione di specie tossiche di aS rilasciate da altre 

cellule. Queste forme di aS, infatti, al pari di quello che avviene nelle malattie 

prioniche, indurrebbero l’aggregazione dell’aS endogena.  

Tali premesse hanno indotto uno studio principalmente focalizzato sull’impatto a 

livello sinaptico di specie tossiche di aS. Tra i vari meccanismi di secrezione 

riportati per l’aS, si è scelto quello esosomiale, perché queste vescicole sono 

rilasciate in maniera controllata a livello sinaptico, proteggono l’aS dalle proteasi 

extracellulari e ne inducono l’aggregazione, suggerendo l’ipotesi di un loro ruolo 

principale nella propagazione delle α-sinucleinopatie. 

Gli esosomi sono stati purificati da cellule HEK293T trasfettate con aS-EGFP e 

trattate o meno con il DOPAL, un metabolita tossico della dopamina che è in grado 

di indurre l'aggregazione dell’aS.  Una volta verificato che le vescicole contenessero 

specie aggregate di aS, queste sono state poi incubate con culture neuronali 

primarie. Per valutare il loro effetto a livello sinaptico sono stati presi in 

considerazione vari fattori. Per primo è stata dimostrata una riduzione dei livelli di 

sinaptofisina e PSD-95, due proteine marker rispettivamente della pre- e della 

post-sinapsi. Queste alterazioni sono anche accompagnate da una disfunzione a 

livello sinaptico, caratterizzata non solo da una diminuzione del numero di 

vescicole per sinapsi, ma anche da una loro maggiore distanza dalla zona attiva. 

Anche la morfologia neuronale è stata alterata mentre non si è registrato alcun 

aumento di marker necrotici o apoptotici. 

Gli esosomi contenenti aS e aS modificata da DOPAL sono stati poi incubati con 

cellule di microglia primaria al fine di valutare se erano in grado di indurre una 

risposta infiammatoria. L'attivazione cronica della microglia è una componente 

importante nelle malattie neurodegenerative che può danneggiare le sinapsi e 
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portare a morte neuronale. Come readout è stato misurato il rilascio di una  

citochina pro-infiammatoria IL-1β e il trattamento con gli esosomi ne ha 

aumentato la concentrazione nel medium, facendo ipotizzare un loro 

coinvolgimento anche nella neuro-infiammazione.  

 

In conclusione questi dati suggeriscono che gli esosomi rilasciati dalle cellule e 

contenenti specie aggregate di aS propaghino la tossicità a livello neuronale e 

stimolino nella microglia la produzione di fattori pro-infiammatori, creando una 

sorta di circolo vizioso che ne aumenta l’effetto patologico. Gli esosomi contenenti 

specie aggregate di aS potrebbero quindi non solo diventare nuovi target 

terapeutici, ma anche potenziali biomarker  per la diagnosi delle α-sinucleinopatie.  
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CHAPTER I: 
Introduction 

 
1.1 α-synucleinopathies 
 
The term α-synucleinopathies is used to name a group of neurodegenerative 

disorders characterized by fibrillary aggregates, called Lewy Bodies (LB), in the 

cytoplasm of selected populations of neurons and glia cells. LB are spherical 

cytosolic inclusions of 5-25 µm in diameter, with a dense eosinophilic core and a 

clearer surrounding halo 1. The main constituents of LB are β-sheet-rich amyloid 

fibrils of α-Synuclein (aS), a small presynaptic protein, together with other 

proteins, including ubiquitin, parkin and neurofilaments 1. Apart from some rarer 

disorders such as neurodegeneration with brain iron accumulation type 1 2 and 

other neuroaxonal dystrophies, there are three main types of α-synucleinopathies: 

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system 

atrophy (MSA) 3 (Figure 1).   

 

1.1.1 Parkinson Disease  

The most common subtype of α-synucleinopathies is PD with a prevalence of 1.6% 

of incidence in people over the age of 65 4,5.  

The pathophysiology of PD is characterized by a progressive misfolding of aS, 

amyloid and tau protein deposition and a widespread brain and peripheral LB 

pathology 6. Multiple transmitter pathways are affected such as the dopaminergic, 

cholinergic, noradrenergic, and serotonergic systems, resulting in a highly 

heterogeneous Parkinson syndrome 6. Coherently, PD is characterized both by the 

presence of motor signs (bradykinesia, rigidity, resting tremor, gait instability) 

that are responsive to levodopa therapy 7, but also a variety of non-motor 

symptoms and cognitive deficits including olfactory dysfunction, cognitive 

impairment, psychiatric symptoms, sleep disorders, autonomic dysfunction, pain, 

and fatigue 8. Even if current diagnostic criteria for PD are largely based on motor 
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symptomatology, the Movement Disorder Society has recently proposed a revised 

set of clinical and research criteria for the diagnosis of PD, including the non-motor 

signs as part of the core parameters 8-10 . 

PD is a multifactorial pathology and most of the cases are classified as idiopathic 

with an undefined aetiology. Aging, gender, ethnicity, neurotoxin exposure, genetic 

predisposition, protein misfolding and accumulation, oxidative stress, 

neuroinflammation, mitochondrial and proteasome dysfunction are all reported 

contributors to the development of PD 4. However, a fraction of patients, 

approximately 5-10%, have a clear monogenic inheritance of the disease (Table I) 

11. At least, 24 loci have been associated with disease risk 4.  

 

 

Table 1. Monogenic forms of Parkinson's disease  4. 

 

In this frame, mutations in Leucine-rich repeat kinase 2 (LRRK2 – PARK8), 

encoding a serine-threonine kinase involved in membrane trafficking processes, 
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are the most frequent cause of genetic PD, with an autosomal dominant 

transmission (among all mutations, G2019S has been identified in up to 42% of 

familial cases 12). SNCA encodes aS and it was the first gene associated with 

autosomal dominant PD (PARK1 and 4). Both point mutations as well as 

multiplication of the gene, lead to an early onset and aggressive disease. Autosomal 

recessive forms of PD are caused by mutations in genes encoding parkin (PARK2), 

PINK1 (PARK6) and DJ-1 (PARK7) involved in the ubiquitin-proteasomal system, 

mitochondrial functions and protection mechanisms from oxidative stress. In 

addition to these monogenic forms of PD, genetic variations in SNCA, LRRK2 and β-

glucocerebrisidase (GBA) increase the risk of developing PD. Of note, homozygous 

mutations in GBA cause Gaucher’s disease, a lysosomal storage disorder whereas 

heterozygous mutations increase the risk of PD, suggesting that impaired 

lysosomal function may underlie PD pathogenesis. Aside from genetic causes and 

susceptibility, environmental factors and exposure to neurotoxins are considered 

an important aspect for PD onset. Exposure to 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) which interferes with Complex-I of the mitochondrial 

electron transport chain, results in nigral loss and parkinsonism. Also, the 

exposure to pesticides is associated with the development of PD, i.e. rotenone and 

paraquat that are mitochondrial Complex-I inhibitors or dieldrin that interferes 

with DA storage and depletion 5.  

Whatever factor is responsible for triggering neurodegeneration, the main 

pathological pathways involved are protein misfolding, aggregation and impaired 

protein degradation; on the other hand, mitochondrial dysfunction and alteration 

of dopamine metabolism with consequent oxidative stress and activation of 

programmed cell death are processes impaired in PD. Finally, another important 

aspect is neuroinflammation, due to activation of microglial cells that surround 

diseased neurons. Chronic exposure to aberrant aggregates of proteins like aS, 

which can be released in the extra-cellular space, promotes activation of the innate 

immune response of glial cells. Secretion of pro-inflammatory mediators from 

activated microglia leads to increased neuronal death and progression of the 

disease 13.  
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1.1.2 Dementia with Lewy Bodies 

DLB has a lower prevalence than PD 14,  but it is the most frequently occurring type 

of dementia aside from Alzheimer disease, accounting for approximately 4.2% of 

all dementia cases 15  

It is characterized by fluctuating cognition, parkinsonism, and visual hallucinations 

in the presence of global cognitive decline 15. It is differentiated from PD with 

Dementia for the presence of striatal β amyloid deposition 16 There is little 

difference in the distribution or severity of LB between PD with Dementia and DLB 

17, but many patients with DLB have intracytoplasmic aggregates of the aS in the 

midbrain, limbic, and neocortical regions 15. 

 

1.1.3 Multiple System Atrophy 

Multiple System Atrophy (MSA) is a rare neurological disorder, considered an 

orphan disease with prevalence just under 0.01% in persons older than 40 years of 

age 18. It differs significantly in clinical and pathological characteristics with PD 

and DLB. MSA is diagnosed at a similar age as PD (at about 60 years), but have 

significantly shortened mean survival (6–9 years). According to the second 

consensus statement on the diagnosis of MSA 19, patients who present 

predominantly parkinsonian symptoms (i.e. bradykinesia, rigidity, tremor and 

postural instability) are designated as MSA with parkinsonism (MSA-P) 20. Patients 

who present predominantly with a cerebellar syndrome are classified as MSA with 

cerebellar signs (MSA-C). In MSA-C the most common symptom is gait ataxia and 

uncoordinated, unbalanced movement. 20. MSA-P and MSA-C have the same disease 

duration. Autonomic manifestations are common to both variants and affect 

urogenital (bladder and erectile dysfunction have been identified as some of the 

earlier clinical signs), gastrointestinal and cardiovascular systems. Additional 

symptoms include dysphagia, bowel dysfunction and orthostatic hypotension 20.  

Even if cognitive impairment was previously considered as an exclusion criterion 

for diagnosis, it has been recently recognized as a typical hallmark of MSA20. In 14–

18% of cases, in fact, patients display some degree of cognitive disability 21 , more 

severe and widespread in patients with the MSA-P variant. The diagnosis of MSA is 

commonly confused with PD, due to the overlap of symptoms between the two 
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diseases. Remarkably, levodopa is poorly efficient, if at all, to treat MSA symptoms 

22 (Figure 1).  

MSA is pathologically characterized by aS-positive cytoplasmic inclusions in glial 

cells (GCIs), widespread distributed throughout the brain. In addition to GCIs, MSA 

patients display aS-positive inclusions also in the cytoplasm and nucleus of 

neurons 23. 

 

 

Figure 1. Differences among the three main α-synucleinopathies, Parkinson’s disease (PD), 
dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). [McCann, 
Parkinsonism Relat Disord (McCann)]3. 

 

The clinical symptoms of MSA-P and MSA-C, generally reflect the pathological 

change in the brain regions mainly affected: in MSA-P, the striatonigral regions, 

while in MSA-C the olivopontocerebellar regions 23. Concerning the inclusions 

localization, the glial one are mainly found in the putamen, pons, motor cortices 
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and underlying white matter, as well as the cerebellar matter; while neuronal 

inclusions have been observed in the putamen, SNpc, pons and cerebellar Purkinje 

cells. 

 

To summarize, both patients medical history and physician evaluation are 

required to identify α-synucleinopathies, but the diagnosis of this group of 

neurodegenerative disorders remains very difficult, especially in the early stages of 

the pathologies, characterized by unspecific symptoms such as olfactory 

dysfunction 24 or sleep disorder 25. 

Therefore, an increasing number of studies are searching for novel biomarkers, to 

improve the early clinical diagnosis of PD and DLB in addition to other α-

synucleinopathies such as MSA 26. 

 
1.2 α-Synuclein 
 
α-Synuclein (aS) is a small, 140 aminoacids protein, encoded by a gene (SNCA) 

located on chromosome 4 encompassing seven exons. First described by 

Maroteaux in 1988, aS is mainly localized in the presynaptic nerve terminals and in 

the nucleus of neurons. Since, in 1997, a point mutation on aS gene was linked to 

early-onset familial PD, the discovery of other genetic alterations of SNCA gene 

together with the presence of aS as the main component of LBs in surviving 

neurons of PD patients, point out the study of this protein fundamental in 

understanding the pathophysiology of both familial and sporadic PD.  

As reviewed by Breydo and Lashuel 27,28, aS is a natively unfolded protein thought 

to exist in equilibrium between a soluble cytosolic conformation and a membrane 

bound, alpha-helix conformation. Although the biological function of aS is not fully 

understood, it has been suggested to be involved in synaptic vesicles trafficking, 

neurotransmitter release and SNARE complex assembly 28. 

 

1.2.1 Structure and folding pathways  

aS 140 amino acids can be divided into three domains that confer unique 

properties to the protein. 
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The N-terminal region (residues 1–60) contains several imperfect repeats of a 

consensus motif (KTKEGV). This repeated motif, also present in Apolipoprotein A–

I, is essential to the formation of a structural amphipathic alpha-helices upon aS 

membrane binding 29. Interestingly, all reported six PD-related mutations (A53T, 

A30P, E46K, E50Q, E51D) are located in this domain 11,30-34. The central region is 

commonly known as the non-Aβ component of plaque (NAC) domain and consists 

of residues 61 to 95. This highly hydrophobic region contains 12 amino acids (71–

82) essential for aS to polymerize into amyloid filaments, which are the major 

components of aS pathological inclusions 35. The last 44 amino acids of aS confer a 

negative charge to the protein due to the abundance of glutamates and aspartates. 

These negative residues appear to have an important effect in modulating aS 

aggregation 36. This domain is essential for the formation of calcium-mediated 

annular oligomers via direct binding 37. In addition, the C-terminus of aS has been 

suggested to contribute to a chaperone-like activity 38 (Figure 2). 

 

 

Figure 2. aS protein domains structure. The sequence can be divided into three regions with 
distinct structural characteristics: the amphipathic N-terminal, the NAC domain and the acidic C-
terminal. The figure also illustrates the six missense mutations that segregate with PD, lied in the N-
terminal region of the protein [Shengli and Chan, Biomolecules (2015)]39.   

 

Cytosolic aS is soluble and considered to be natively unfolded with little secondary 

structure 40. A debate has recently ignited around the true physiologically relevant 

conformation of aS, due to a proposed metastable tetrameric form 41,42. In contrast, 

different studies do not find this cytosolic tetramer in the central nervous system, 

in erythrocytes, mammalian cells, and in E. coli 43-46.  The hypothesis is that the 

binding to cellular factors, such as lipids or membranes, can induce and stabilize 
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higher-order multimers like octamers 47, while endogenous multimers become 

unstable due to the protein purification protocols 48.   

 

 

Figure 3. Schematic representation of aS conformations associated with its physiological 
function and pathological activities [Adapted from Burrè et al., J Neurosci (2015)]49. 

 

Under pathological conditions, a number of factors, such as oxidative stress, post-

translational modifications, proteolysis, glucose deprivation and altered 

concentrations of fatty acids, phospholipids and metal ions, have been linked to aS 

misfolding and aggregation into distinct soluble oligomeric species and eventually 

insoluble amorphous or fibrillar amyloid-like assembles, similar to aS found in LBs 

(Figure 3) 50.  

 

1.2.2 α-Synuclein and membranes 

In vivo, aS is in an apparently strictly regulated equilibrium between cytosolic and 

membrane-associated forms 51. The interaction between aS and lipid surfaces is 

believed not only to mediate its cellular function 52, but also to modulate its 

propensity to self-assemble into amyloid fibrils 53,54(Figure 4) .  

Despite the fact that two independent groups provided evidence for a tetrameric 

nature of aS, the widely accepted model is that aS exists as an intrinsically 

disordered protein in its physiological cytosolic form 55 and that, upon membrane 

binding, specific regions of the protein acquire a significant level of α-helical 

structure 56,57. The first 90 residues of the aS, characterized by 11 residue repeats 
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encoding for amphipathic class A2 lipid-binding α-helical segments are considered 

to favour this transition 58.  

aS binding to membranes involved both electrostatic and hydrophobic interactions 

59 . The acidic head groups, such as phosphatidylethanolamine, phosphatidylserine 

or phosphatidylinositol, are essential in N-terminal domain 60-64, suggesting that 

the membrane head groups interact with lysine residues placed at opposites sides 

of the aS helix 52.  

 

 

 

Figure 4. Physiological and pathological conformations of aS at the synapse. [Burrè, J 
Parkinsons Dis. (2015)] 52. 

 

Indeed, increasing negative charge density of the membrane enhances the 

electrostatic interactions with positively charged aS residues (in particular the 

numerous lysines). Remarkably, synaptic vesicles, which are highly curved, and 

negatively charged on the membrane surface, appear as optimal target for aS 

binding 59. 

Another key element, that is reported to enhance the binding of aS to lipids is 

membrane curvature 65-68.  Increasing curvature, in fact, raised the size and 

number of so-called packing defects in more highly curved membranes 69,70. 

Packing defects are defined as membrane regions that transiently expose their 

interior hydrophobic acyl chain, acting as effective protein binding sites 59.  
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aS’s preference for more highly curved membranes has led to its classification as a 

"curvature sensing" protein 67,69,71. In addition to sensing membrane curvature, aS 

is also able to actively alter membrane shape/curvature 72-75. Such direct effect on 

membranes could be involved in synaptic vesicle homeostasis and/or exocytosis.  

Moreover, aS is susceptible to numerous post-translational modifications, such as 

serine/threonine and tyrosine phosphorylation 76-80, N-terminal acetylation 76, 

tyrosine nitration 81, ubiquitination 82, sumoylation 83, trans-glutamination 84 and 

methionine oxidation 85,  which can induce changes in protein charge and 

structure. This may lead to altered binding affinities with other proteins and lipids. 

As an example, Anderson and coworkers reported that aS is N-terminally 

acetylated 76, by binding of an acetyl group to the alpha amino group of the first 

amino acid of aS 44. N-terminal acetylation of aS has been detected both in healthy 

and Parkinson’s disease individuals, and increases its helical folding propensity, its 

affinity for membranes and its resistance to aggregation, suggesting that N-

terminal acetylation of aS might be implicated in both the native and pathological 

structures and functions of aS 52. In addition, also phosphorylation regulates aS 

structure, lipid binding, protein interactions, but also its oligomerization, fibril 

formation, and neurotoxicity 52. The main phosphorylation sites are Ser87, Tyr125 

and Ser129, which is the best characterized. It occurs constitutively only in a small 

fraction (>4%) of aS in the brain, whereas in proteinaceous, pathological inclusions 

there is a dramatic accumulation (≌90%) of aS phosphorylated at this site 86. 

Phosphorylation of aS has been associated to many kinds of kinases, i.e. casein 

kinases, G protein-coupled receptor kinases (GRKs), LRRK2 and Polo-like kinases 

(PLKs). As Oueslati recently reviewed, however, whether P-Ser129 suppresses or 

enhances aS aggregation and toxicity remain controversial. So far, evidence 

supports the hypothesis that P-Ser129 may occur after LBs formation and could 

represent a late event in disease progression 86. 

Under certain circumstances, the tight binding of aS N-terminal domain to the 

surface of lipid membranes can also have detrimental effects. It is, in fact, reported 

that it favours the population of conformational states in which the NAC aS region, 

which has been involved in aS aggregation 87,88, is exposed to the solvent by partial 

detachment from the membrane surface. Consequently, the interaction between aS 
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and lipid is potentially not only implicated in its functional state but also in the 

initial step for the aggregation of aS at the surface of vesicles membranes 53, a 

process strictly associated with α-synucleinopathies onset and progression. 

Indeed, the NAC domain, rather than actively contributes to aS fibril amyloidogenic 

core formation, may be involved in the aggregation at the surface of lipid vesicles 

due to its anchoring role to the membrane surface, permitting to the aS 

amyloidogenic region to be in equilibrium between membrane-associated and 

membrane-dissociated states 57. The aS NAC region detachment from the 

membrane surface and the consequent reduction of aS freedom degrees in the 

membrane-associated state may promote aS fibrils formation via primary 

nucleation 53. Coherently, Rientra and co-workers recently analysed several aS 

fibril forms by solid-state NMR (SSNMR) spectroscopy and they reported that the 

N-terminal region is not part of the amyloid core 89.  

However, others hypothesized that aS aggregates derived from the less stable, 

natively unfolded forms of cytosolic aS 52. 

 

1.2.3 α-Synuclein toxicity  

aS synthesis, clearance and aggregation regulate its concentration in the central 

nervous system. Once the equilibrium among these processes is impaired, aS 

accumulation results in increasing amount of toxic aggregated species (Figure 5).  

α-synucleinopathies are mainly sporadic disorder, characterized by aS misfolding 

and aberrant accumulation. aS toxic species may affect different cellular pathways. 

In particular, oligomers and intermediate fibrils are reported to impair protein 

degradation, mitochondrial functions, endoplasmic reticulum-Golgi trafficking, 

neurotransmitters release and synaptic transmission. One proposed toxicity 

mechanism is that aS monomers self-assembly in oligomers that can form pores in 

membranes, altering their permeability. As a result, these alterations may induce 

neuronal death through a direct effect on synaptic function (synaptic vesicles 

disruption and alter neurotransmitter release in the cytosol) or an increased 

calcium influx from the extracellular space 28.  

Regarding aS toxicity, it should also be considered its genetic multifold 

contribution to α-synucleinopathies. As an example, aS gene multiplication, i.e. 
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duplication and triplication, cause an early onset, autosomal dominant form of PD 

with aggressive disease progression, by enhancing protein expression and 

aggregates formation. Moreover, different point mutations in the SNCA gene have 

been associated with familial forms of PD: A30P, E46K, H50Q, G51D and A53T-E.   

 

 

Figure 5. aS as the proposed cornerstone of α-Synucleinopathies. [Villar-Piqué J Neurochem. 
(2016)]90. 

 
All these mutations have been implicated in aS oligomerization or enhanced 

fibrillization in numbers of both in vivo and in vitro studies 28.  

 
1.3 The Catechol Hypothesis 
 
Starting from the observation that dopaminergic neurons of SNpc are 

preferentially susceptible to aS toxicity in PD, over the last years, researchers tried 

to figure out a connection between aS aggregation process and dopamine 

metabolism. Increasing evidence supports the idea that altered dopamine 

metabolism is directly involved in the pathogenesis of PD. In this frame, the 

concept of “autotoxicity” of catecholamines and their metabolites led to the 

formulation of the “Catechol Hypothesis” 91. 
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1.3.1 Dopamine metabolism 

The neurons of SNpc release Dopamine (DA). DA is a neurotransmitter 

endogenously synthesized in the body, from the dietary amino acid L-tyrosine (L-

Tyr). As represented in Figure 6, two reactions produce DA from tyrosine: the 

enzyme tyrosine hydroxylase (TH) produces the intermediate 3,4-

dihydroxyphenylalanine (L-DOPA) from L-Tyr and L-DOPA is then converted into 

DA by the L-aromatic amino acid decarboxylase (AADC) with the release of CO2. In 

non-dopaminergic cells, DA can be further processed into norepinephrine and 

epinephrine by the dopamine-β-hydroxylase (DβH) and N-methyltransferase 

(NMT).  

 

 

Figure 6. Biosynthesis of catecholamines. [Meiser J, Cell Commun Signal.  (2013)] 92. 
 

DA concentration in the cytoplasm of the terminal axon of neurons depends on the 

equilibrium between DA catabolism and its sequestration into storage vesicles. The 

latter is mediated by the vesicular monoamine transporter 2 (VMAT2), a vesicular 

antiporter that exchanges two protons for one DA molecule.  An ATP-dependent 

proton pump located in the vesicular membrane assures the proton gradient and 

allows DA storage in vesicles at high concentrations (up to 1M). Moreover, pH 

inside storage vesicles is acidic (pH 5) to minimize DA spontaneous oxidation. 
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As vesicles fuse with the plasma membrane in response to neuron depolarization, 

DA is released in the synaptic cleft where it diffuses and interacts with post-

synaptic receptors. Extracellular DA is then removed by metabolism or re-uptaken 

by microglia and neurons, through the DA-transporter (DAT). This is a symporter 

pump that co-transports DA and sodium. Once DA is back into neurons, it can be 

either stored in vesicles or be metabolized (Figure 7). 

 

 

Figure 7. Dopamine metabolism [Adapted from Marchitti et al., Pharmacol Rev (2007)]93. 

 

DA catabolism primary involves oxidative deamination mediated by the 

mitochondrial monoamine oxidase (MAO) with the release of H2O2 and ammonia. 

The product 3,4-dihydroxyphenilacetaldehyde (DOPAL) is then metabolized by 

two alternative pathways. 

The prevalent one involves the enzymes aldehyde dehydrogenase (ALDH). In 

dopaminergic neurons of SNpc, there are two ALDH isoforms, the cytoplasmic 
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isoform ALDH1A1 and the mitochondrial one ALDH2. ALDHs reduce a NAD(P)+ 

molecule to NAD(P)H and convert DOPAL into the acetate form 3,4-

dihydroxyphenylacetic acid (DOPAC), which is further degraded by the catechol-O-

methyl transferase (COMT) and removed from dopaminergic neurons.  A minor 

pathway of DOPAL metabolism involves cytosolic aldehyde or aldose reductase 

(AR) 94 which convert NAD(P)H molecule to NAD(P) + and reduce DOPAL to 

hydroxytyrosol or 3,4-dihydroxyphenylethanol (DOPET). DA, DOPAL, DOPAC and 

DOPET can be metabolized by COMT, whose products can undergo 

biotransformations i.e. sulfation and glucuronidation 93.  

   

1.3.2 DOPAL reactivity  

In the past years, many studies addressed the potential neurotoxic effect of DA, 

due to its tendency to oxidize and generate reactive species such as radicals and 

quinones. These species can damage macromolecules such as DNA and proteins, 

but also deplete cellular oxidative defences, enhance ROS production and induce 

lipid peroxidation. However, in recent years, researchers focus their attention to 

DOPAL, the monoamino oxidase dopamine metabolite and its potential correlation 

to the pathogenesis of PD. In fact, DOPAL is several orders of magnitude more toxic 

than other catecholamines 95.  

 

 

Figure 8. DOPAL reactivity depends on both the catechol and the aldehyde moieties 96. 
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DOPAL has two highly reactive functional groups, a catechol and an aldehyde. The 

first one has a similar tendency as DA to auto-oxidase, with the consequences 

described above. Auto-oxidation also leads to DOPAL polymerization and 

production of catechol adducts. On the other hand, the aldehyde moiety is highly 

reactive against amino groups such as the ones of lysine residues within proteins, 

through a Schiff base mechanism (Figure 8) 97.  

 

 

Figure 9. Inhibition of ALDH as a possible mechanism for PD pathogenesis. (A) Benomyl 
metabolites and ALDH inhibition [Fitzmaurice et al., PNAS (2014)]. (B) Parkinson development 
from ALDH inhibition via gene-environment interactions [Adapted from Fitzmaurice et al., 
Neurobiology (2014)]98. 
 

Physiologically, DOPAL concentration in neurons is reported to be around 2-3 µM. 

In pathological condition, DOPAL levels may increase up to 6 µM, leading to 

cellular toxic effects, such as aberrant DA trafficking, protein cross-linking, 

proteasome impairment, ROS production and mitochondrial dysfunction 97.  

Coherently, brains of PD patients present high levels of DOPAL in comparison with 

controls 99. To date, the mechanism(s) that lead in vivo to increased DOPAL levels 

in dopaminergic neurons are still unknown. However, one of the proposed 

mechanisms is the ALDH inhibition, the enzymes implicated in DOPAL 

detoxification. The human ALDH belongs to a gene superfamily, which consists of 

19 genes, putatively functional, with different chromosomal locations. Among the 

19 isoforms, ALDH1A1 and ALDH2 are reported to be the most involved in DOPAL 
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metabolism, with a km of 0.4-1.0 µM 93.  Supportively, Liu and co-workers recently 

demonstrated that the lack of ALDH1A1 expression in a SNpc dopaminergic 

neuron subpopulation increased cell vulnerability and neurodegeneration, 

together with the finding that PD brains display a significant reduction of 

ALDH1A1 expression 100. Moreover, null mice for both the cytosolic ALDH1A1 and 

mitochondrial ALDH2 isoforms exhibits a parkinsonian-like motor phenotype, 

characterized by increased dopaminergic neurons degeneration and DOPAL 

accumulation 96,101.  

In vivo, ALDHs may be inhibited by age-related dysfunction or inactivation, genetic 

deletion, pharmaceutical agents and environmental toxins, metabolic and oxidative 

stress (i.e. 4-Hydroxynonenal, a product of lipid peroxidation) 93. As an example, 

benomyl, an environmental toxicant, after bioactivation to S-methyl N-

butylthiocarbamate sulfoxide (MBT-SO), is able to irreversible inhibit ALDH 

(Figure 9A) 102. 

Benomyl was largely used for more than 30 years as a fungicide in agriculture, 

until studies on animals attested its involvement in carcinogenesis, teratogenesis 

and neurotoxicity. As reported by Fitzmaurice in 2014, benomyl inhibits ALDH in 

primary mesencephalic neurons, leading to altered dopamine homeostasis. 

Supportively, epidemiological studies reported that high exposure to benomyl 

increased the risk to develop PD and ALDH variants enhances the effects of 

pesticides associated with PD pathogenesis 98. The link between genetic alteration 

and environmental inhibition of ALDH could provide an explanation for sporadic 

forms of PD (Figure 9B). This can be truth for many other ALDH inhibitors, 

commonly used in the clinical practice, like hypoglycemic agents, the hypnotic 

agent chloral and disulfiram for the treatment of chronic alcoholism 103. 

 

1.3.3 DOPAL induced aS aggregation  

Being lysine residues in proteins among the most reactive moieties toward DOPAL, 

aS is predicted to be a preferential target for three reasons. (i) aS is highly 

abundant in presynaptic terminals, (ii) it possesses a high ratio of lysine residues 

in its sequence (15 lysines out of 140 amino acids) and (iii) finally, being an 

unfolded protein, these residues are relatively accessible to aldehyde reactivity 104. 



                                                                                                                    Chapter I: Introduction 
 

22 
 

To date, it has been widely demonstrated that DOPAL can covalently modify aS, 

inducing its aggregation both in vitro and in vivo systems. Burke and co-workers 

demonstrate that the over-expression of aS in SH-SY5Y cells leads to the formation 

of SDS-resistant aS oligomers upon exogenous DOPAL treatment. Moreover, 

DOPAL injection into rats SN induced neurodegeneration and aS high molecular 

weight species accumulation 105.  

However, DOPAL may induce charge reduction and increased hydrophobicity in 

modified proteins, leading also to the formation in solution of large non-covalent 

aggregates of aS-DOPAL covalent oligomers106. Supportively, SDS treatment on in 

vitro produced aS-DOPAL oligomers, diminished the quantity of aS high molecular 

weight species, suggesting the presence of both covalent and non-covalent aS 

aggregates upon DOPAL treatment 107.  The formation of aS high molecular weight 

species was also detected in vivo upon DOPAL injection into the SN of rats 105. 

Moreover, genetically inhibition of ALDHA1 leads to the formation of aS aggregates 

in transgenic mice expressing A53T, the mutant form of aS 100. The over-expression 

of ALDH1A1 in ALDH1A1 knockout mice results in increased resistance to aS 

cytotoxicity in dopaminergic neurons, suggesting that ALDH absence increases 

cellular DOPAL levels and leads to the formation of aS oligomers.  

The aS lysine residues, that seem to be preferentially modified by DOPAL, have 

been identified by mass spectrometry analysis both in vitro 108 and in cells 106. 

Since, DOPAL-aS adducts appear to be off-pathway oligomers, preventing aS fibril 

formation 106,108, the toxicity mechanism may derive from their effect on aS 

physiologic function. As recently demonstrated by Follmer and co-workers, DOPAL 

modified aS monomers have a diminished affinity for membranes. This may lead in 

vivo to an increased level of cytoplasmic aS and to its aggregation. Alteration in aS 

membrane binding may hinder aS physiological function, i.e SNARE complex 

assembly and synaptic vesicles pools localization. As a consequence, a reduced 

amount of dopamine is released by neurons, contributing to PD 

pathogenesis/development. Moreover, DOPAL-modified aS oligomers are able to 

permeabilize synaptic vesicles, leading to dopamine release in cellular cytoplasm, 

where MAO catalyses its degradation into DOPAL. In that way, neurodegeneration 

can be induced faster due to the formation of always more DOPAL104. 
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1.4 Prion-Like Spreading of α-Synuclein  Pathology 
 
To date, increasing evidence supports the idea that proteins involved in 

neurodegeneration, such as aS, can transmit cell to cell their misfolded structures 

to native proteins, contributing to disease propagation in a so-called prion-like 

mechanism.  

 

1.4.1 Pathological Studies 

The hypothesis of a prion-like mechanism of α-synucleinopathies progression 

mainly derived from the Braak’s hypothesis.  (Figure 10) 109.  

It was 2003, when a German anatomist, Braak, and his co-workers reported that 

LB pathology evolved in a temporal, stereotypic pattern from the lower brainstem 

through susceptible regions of the midbrain and forebrain into the cerebral cortex, 

in a caudo-rostrally manner 110.  

 

 
Figure 10.  The spreading of aS-pathology in PD. PD involves first darker areas and subsequently 
regions identified in lighter colors. a. cross section of the brain; b. lateral view of the human brain. 
Olfactory bulb (OB), dorsal motor nucleus of the vagus nerve (DMX), BFB, basal forebrain; BN, 
brainstem nuclei; MTC, mesiotemporal cortex; SN, substantia nigra [Adapted from Brettschneider 
et al., Nat Rev Neurosci (2015)]111. 
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This evidences could merely exist due to a different vulnerability among distinct 

brain region, but the topological evolution of the affected areas in each stage of the 

pathology suggest a spatial-temporal propagation, which correlates with disease 

severity 112.  

In vivo confirmation of Braak’s hypothesis came also from the observation that LB 

pathology could be transmitted to embryonic dopamine neurons transplanted into 

the putamen of human PD patients 113,114. Kordower and co-worker reported that 

even after only 10 years from transplantation the grafted neurons in PD patients 

displayed LB pathology, a time not sufficient to normally have evidence of such aS-

positive aggregates 114,115. 

Cell-to-cell transmission of aS-aggregates was also reported by Hansen and co-

workers in 2011. They demonstrated that aS could transfer between host cells and 

grafted dopaminergic neurons, inducing aS aggregation in the recipient cells 116. 

Therefore, aS has been suggested to be the prion-like agents, transmitted from cell 

to cell and responsible for α-synucleinopathies propagation 112. 

Supportively, aS was detected in many human body fluids, such as cerebrospinal 

fluid (CSF), saliva and blood plasma 117-119, but no significantly differences were 

found in the body fluids of PD patients in comparison with healthy controls, 

suggesting that aS was physiologically secreted 112. On the contrary, increased 

levels of aggregated aS species have been detected in the CSF, saliva and skin of α-

synucleinopathies patients 119-122, supporting evidence that extracellular aS 

concentration and aggregation state might reflect pathological conditions. 

Moreover, aS positive inclusions have been also found in the gastrointestinal tract, 

mainly in the submandibular gland, esophagus and rectum 122. Coherently, an 

increasing number of studies focus on the potential use of aS as a biomarker for α-

synucleinopathies diagnosis 123. 

 

1.4.2 aS propagation from cell to cell 

To date, even if increasing evidence suggests a spatiotemporal regulated 

progression of α-synucleinopathies, the implicated molecular mechanism(s) is still 

largely unknown.  
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As reviewed by Costanzo 124 there are various possible mechanisms of aS 

propagation (Figure 11), probably dependent on the type of cell, its condition, and 

the aS propagated species 112 . 

To permit cell-to-cell transmission of  aS pathology, at least three events are 

needed: (i) aS should be released by cells in the extracellular space; (ii) aS uptake 

by a recipient cell; and (iii) the induction of aS aggregation in the recipient cell 

probably due to misfolding of the endogenous aS 112.  

In addition, α-synucleinopathies development might cause cell injury or death, 

inducing the passive release of aS. However, this mechanism does not appear as 

the main process of released, since aS levels are not significantly different between 

diseased and control cases 112. 

Considering aS affinity for membranes, it might be secreted through an 

unconventional ER/Golgi-independent secretion pathway 125, or exosome-

mediated pathway 126,127. Indeed, the role of exosomes in the spreading of aS 

pathology is gaining attention.  

 

 

Figure 11. Potential mechanisms of neuron-to-neuron transmission of aS. [from Visanji et al., 
Acta Neuropathol Commun. (2013)]110. 

 

Other putative mechanisms involved in a cell-to-cell transfer of aS include 

endocytosis. This was confirmed in experiments using dynasore, a potent 

endocytosis inhibitor that dramatically reduces aS uptake 128. Coherently, Dawson 
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and co-workers have recently proposed the neuronal receptor LAG3 (lymphocyte-

activation gene 3), as responsible for binding and endocytosis of pre-formed 

fibrillar aS species 129. 

 

 

Alternative intercellular propagation pathways, such as transmission through 

axonal transport 130, which is both anterograde and retrograde 131, or via a trans-

synaptic mechanism 132, have been proposed. Moreover, it was also found that aS 

fibrils can be transferred from donor to acceptor cells through tunneling 

nanotubes (TNTs) inside lysosomal vesicles, seeding soluble aS aggregation in the 

cytosol of acceptor cells 133. 

It is important to mention that the identification of a specific receptor 129 or a 

specific propagation pathway for aggregated aS species could pave the way for the 

developing of novel drugs designed to slow the progression of α-

synucleinopathies. 

The other way around, cell stress, lysosome impairment, proteasomal dysfunction, 

and protein misfolding, are associated with an increase of aS release from cells 112. 

Several factors are reported to enhance aS secretion. Among these, dopamine, 

which promotes secretion of aS aggregates and have no effects on monomers, 

suggesting that neurotransmitters could play a significant role in aS secretion 134. 

Coherently, in the mice striata, GABA release controls aS release from the 

glutamatergic terminals through activation of the presynaptic GABAB receptors 135. 

Moreover, the PD-associated Leucine-rich repeat kinase 2 (LRRK2) not only 

promote aS release but also the cell-to-cell transmission process 136. Also, 

ATP13A2 (PARK9), a gene linked to Kufor-Rakeb syndrome (KRS), characterized 

by juvenile-onset parkinsonism, increased aS secretion. The same effect is obtained 

with the mutation in the SNCA gene associated with familial forms of PD, which are 

reported to induce the release of aS in the medium of SH-SY5Y cells 137,138.  

Together this evidence suggests a role for aS secretion in the contribution to the α-

synucleinopatheis pathogenesis.  
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1.5 Exosomes 
 
As mentioned before one of the pathways of aS secretion is through exosomes 

126,127. These extracellular vesicles (EVs) are gaining more and more attention by 

scientific community due to the functions and potential applications that they have 

been ascribed, namely: (i) their capacity to act as mediators of cell–cell 

communication in many different contexts and pathologies 139; (ii) their 

composition in terms of biomolecules, with biomarker potential for disease 

diagnosis and prognosis 140; (iii) the possibility of engineering their content for 

numerous biomedical applications, including drug delivery 141. 

 

1.5.1 Biogenesis of exosomes 

Exosomes derive from the inward budding of endosomal multivesicular bodies 

(MVBs). The intraluminal vesicles contained in the MVBs can be either targeted to 

the lysosome or secreted as exosomes into the extracellular space. Accordingly, 

lysosome inhibition correlates with an increased release of aS from SH-SY5Y cells 

142. The activation of either of these pathways is linked to the coordinated activity 

of the different mechanisms that have been involved in the specific sorting of 

proteins into exosomes: (A) Endosomal Sorting Complexes Required for Transport 

(ESCRT) and (B) lipid-dependent mechanisms and tetraspanins (compare Figure 

12). (A) ESCRT is necessary to ubiquitinate proteins and directs them to the MVBs. 

It has been reported that silencing of early components of the ESCRT machinery 

decreases exosome production and alters their content 143. (B) Compelling 

evidence also supports the enzyme sphingomyelinase and the production of 

ceramide from raft-based microdomains rich in sphingolipids as important 

components of the vesicle budding process. Ceramide can self-associate through 

hydrogen bonding, thereby inducing the coalescence of microscopic rafts into a 

large membrane microdomain and facilitating exosome formation and release 

144,145. Tetraspanins are integral membrane proteins highly enriched in exosomes 

146.  

Through their interaction with other transmembrane proteins, cytosolic proteins 

and lipids, tetraspanins organize membranes into tetraspanin-enriched domains 
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(TEMs) 147. Tetraspanin CD81 plays a key role in exosome composition, not only 

through the physical organization of membranes in microdomains, but also 

through the interactome of its cytoplasmic domain 148. Similarly, the loading of 

metalloproteinase CD10 in exosomes is dependent on its interaction with the CD9 

cytoplasmic domain 149.  

Moreover, elevated expression of the of the P-type ATPase ion pump 

PARK9/ATP13A2 reduced intracellular aS levels and increased aS externalization 

in exosomes >3-fold 150.  

 

 

Figure 12. Mechanisms that control the sorting of cargo into exosomes. (A) [Adapted from 
Villarroya-Beltri et al, Seminars in Cancer Biology (2014)]151. 

 

Upon movement of MVBs to the plasma membrane and subsequent fusion, the 

internal vesicles are released into the extracellular space as exosomes. Other 

molecules that facilitate fusion of the MBV to the cell membrane are small GTPases 

such as RAB27A, RAB11, and RAB35 152. This is not surprising considering that Rab 

GTPase proteins are important regulators of intracellular trafficking in secretory 

pathways such as cargo selection in vesicle formation, vesicle transport, tethering, 

and docking 153. The mechanisms regulated by Rab GTPases are cell-specific, 

depending on the differential expression and function of particular effectors. The 
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first GTPase associated with exosomes release was Rab11 154. Moreover, Chutna 

and co-workers reported that Rab11 co-localizes with aS in intracellular inclusions 

and modulates its aggregation, secretion and toxicity in SH-SY5Y cells 155 .  

The subcellular location of MVBs is dependent on their interaction with the actin 

and microtubule cytoskeleton, which is also regulated by Rab proteins and their 

effectors. Rab effectors include motor proteins that facilitate the movement of the 

Rab-tethered vesicle along both the actin and/or microtubule cytoskeleton 139,156. 

A good example of this is again Rab11, which can separately recruit myosin Vb via 

its effector FIP2 (Rab11 family-interacting protein 2) and cytoplasmic dynein via 

FIP3 157. The involvement of the actin cytoskeleton in exosome release has been 

studied in cancer, immune cells 158 and in the kidney, for the trafficking of 

Acquaporin-2 159. Regarding the role of the microtubule network, maturation of 

MVBs are governed by their movement along microtubules toward the cell center 

in a dynein-dependent fashion, whereas their localization to the plasma membrane 

requires kinesin-dependent movement toward microtubule plus ends. The 

movement of MVBs along microtubules is in part controlled by the cholesterol 

content of the cells 151. 

Once MVBs are docked to the plasma membrane, Rabs are also implicated in the 

fusion of the limiting membrane of MVBs with the plasma membrane. This is 

mediated by direct or indirect regulation of SNARE proteins (soluble N-

ethylmaleimide-sensitive fusion protein-attachment protein receptor) 160, through 

the pairing of a SNARE on a transport vesicle (v-SNARE) with its cognate SNARE-

binding partner (t-SNARE) on the appropriate target membrane 161,162. As 

demonstrated in K562 erythroleukemic cells 163 and in Caenorhabditis elegans 

151,164.  

 

1.5.2 Exosomes composition 

Exosomes are lipid-bilayer enclosed vesicles with a floating density of 1.13–1.19 

g/mL on sucrose density gradient separations. They displayed a cup-shaped 

morphology upon fixation for transmission electron microscopy (TEM) and a mean 

diameter between 30 and 100 nm 165. Considering that exosomes formation is an 

active process, there are several membrane proteins that are unique to these 
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vesicles compared to the cell surface, providing additional markers for exosomal 

identity 166. Most exosomes do not contain proteins of mitochondrial, nuclear, ER 

or Golgi origin 167. They harbored instead in tetraspanins (CD9, CD63, CD81 and 

CD82), proteins required for membrane transport and fusion (flotillin, annexins; 

Rab proteins), proteins associated with MVB biogenesis (Alix, Tsg101), heat shock 

proteins (Hsp 70 and Hsp 90). These vesicles also carry a variety of cytoskeletal 

proteins (actin, tubulin, profiling, cofilin) and metabolic enzymes (GAPDH and 

pyruvate kinase) 168. Additionally, the exosomal membrane is highly enriched in 

phospholipases raft-associated lipids such as cholesterol, sphingolipids, ceramide 

and glycerophospholipids. In recent years, exosomes are found to contain not only 

proteins and lipids, but also a rich repertoire of RNA transcripts 169. These 

transcripts are enclosed in exosomes and can be translated to proteins by the cell 

receiving the exosomes 170. Valadi et al. were the first to demonstrate the shuttle of 

exosomal RNA transcripts from mouse cells that could be translated into murine 

proteins by human mast cells. The successful transfer of transcripts indicated their 

role in establishing an exosome-medicated pathway, suggested a novel mechanism 

of genetic exchange between cells, either in microenvironment or over a distance. 

The study also revealed that the RNA transcripts enclosed in exosomes were 

different to the cells from which they were derived, and these exosomes were 

enriched with a distinctive set of RNAs 171. The majority of these transcripts were 

highly enriched in the 3′-UTRs, which indicated that transcripts in exosomes were 

associated with more of a regulatory role than a functional role 170. 

Moreover, exosomal composition is widely affected by cellular state and can reflect 

changes in the cell microenvironment. Stress situations such as hypoxia, starvation 

or oxidative stress can alter exosome content, and thus the message they carry 151. 

For example, Fruhbeis and co-workers demonstrate that during neuronal 

development, oligodendrocytes secrete exosomes are taken up by neurons and 

induce neuronal viability under conditions of oxidative stress or starvation 151,172. 

 

1.5.3 Exosomes uptake 

The elucidation of the mechanisms of exosome targeting and uptake remains an 

important challenge. The binding of exosomes to the surface of recipient cells is 
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mediated by the classical adhesion molecules involved in cell–cell interactions, 

such as integrins and ICAMs. However, other molecular pairs more specific to the 

exosome membrane, such as TIM-binding phosphatidylserines, 

carbohydrate/lectin receptors and heparan sulfate proteoglycans (HSPGs), could 

be involved as well. ICAM-1-LFA-1 interactions are involved in exosome uptake by 

immune cells 172,173, and tetraspanins also contribute to exosome binding to target 

cells. For example, the integrin CD49d and Tspan8 contribute to exosome adhesion 

to endothelial cells 174. MHC-TCR interactions can also facilitate the binding of 

exosomes derived from T cells to dendritic cells and viceversa 175. Additionally, 

cells can use Tim4 and Tim1 as phosphatidylserine receptors for the engulfment of 

exosomes 176. Exosomes are enriched in specific mannose- and sialic acid-

containing glycoproteins; for example, α2,3-linked sialic acid is enriched on B cell-

derived exosomes, and allows their capture by CD169+ macrophages in both 

spleen and lymphonode. Exosome access to the lymphoid system is thus 

dysregulated in CD169 knock-out mice, resulting in aberrant trafficking of 

exosomes into the splenic red pulp or lymph node cortex 177. In contrast, sialic acid 

removal causes a small but non-significant increase in uptake. The uptake of 

exosomes by macrophages is also mediated by a C-type lectin expressed in 

macrophages and by galectin-5 exposed on exosomes 178. Virus and lipoproteins 

are internalized via HSPGs. In a similar way, HSPGs function as a receptor for 

cancer-derived exosomes 179. Experiments with exogenous HS, pan-PG deficient 

cells, and pharmacological inhibitors of HSPG have shown that cell-surface HS is 

required for efficient exosome uptake 179. 

To deliver their content, exosomes attached to a recipient cell can either fuse with 

the cell membrane, directly releasing their cargo into the cytoplasm, or get 

internalized by endocytic pathways. Fusion of exosomes with another membrane 

is more likely to occur at the acidic pH of the endosome rather than at the neutral 

pH of the plasma membrane 180. Depending on the phagocytic and endocytic 

capacity of the recipient cells, exosomes can be internalized by clathrin-dynamin-

caveolae-dependent endocytosis, pinocytosis, or phagocytosis. Neurons and 

microglia internalize oligodendroglial exosomes effectively, whereas uptake by 

oligodendrocytes and astrocytes occurs only sporadically. Microglia take up 
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exosomes non-specifically by macropinocytosis 181, while internalization of 

oligodendroglial exosomes by neurons is mediated by selective clathrin- and 

dynamin-dependent endocytosis 182. Exosomes released from EBV-infected B cells 

are internalized via caveola-dependent endocytosis 183. Dynamin has been also 

involved in mediating the endocytosis of exosomes 178,184 . For example, exosomes 

containing anthrax toxin are taken up by a dynamin-dependent mechanism that 

transports them to the endocytic pathway. The anthrax toxin is then released into 

the recipient-cell cytoplasm by ILV back fusion in an Alix- and Tsg101-dependent 

manner 185. Fusogenic lipids, such as LBPA, also seem to be required for fusion 

between exosomes and the recipient late endosome membrane 180. 

 

1.5.4 Exosomes and nervous system 

Most cells in the CNS, including neurons, astrocytes, oligodendrocytes and 

microglia released exosomes. These extracellular vesicles are secreted by neural 

cells under both normal and pathological conditions and have been isolated not 

just from the cerebrospinal fluid 186, but also from adult human brain 187. Exosomes 

in the CNS appeared to be implicated in the removal of cellular materials and to 

cell-to-cell communication. These extracellular vesicles are reported to contribute 

not only to CNS development, but also in controlling synaptic function 

regeneration following traumatic brain injury. In that regard, it has been reported 

that neurons are able to regulate oligodendrocyte differentiation by exerting an 

effect on the release of oligodendrocyte-derived autoinhibitory exosomes 188 . In 

parallel, due to glutamate activation, oligodendrocytes released exosomes, that are 

able to release their cargo into neurons. In that way, they are suggested to 

influence neuronal metabolism and exert a cytoprotective function on recipient 

neurons 172. 

As mentioned before, exosomes can also affect synaptic function, which is central 

to neuronal activity. Interestingly, a number of neuronal cells are reported to 

release exosomes, containing essential molecules for synaptic activities. Once 

internalized by recipient neurons, these extracellular vesicles can contribute to 

neurotransmission. For instance, under high neuronal activity or cell stress, glial-

derived exosomes contain synapsin, a protein associated to vesicle and involved in 



                                                                                                                    Chapter I: Introduction 
 

33 
 

neural development 189. Supportively, these extracellular vesicles stimulate neurite 

growth and are neuroprotective under stressful environmental conditions 189. Also, 

microglial-derived exosomes are reported to influence synaptic function190. 

Antonucci and co-workers demonstrated that microglial-derived exosomes 

enhance sphingolipid metabolism, stimulating neurotransmission in the recipient 

neurons without showing any toxic effect 190. 

Another evidence for exosomes-mediated neuroprotective effect come from 

studies on astrocytes, cells implicated in maintaining brain homeostasis, providing 

nutritive elements to neurons and controlling their development and synaptic 

activities.  Under oxidative and thermal stress conditions, astrocytes increase the 

release of heat shock protein 70 (Hsp70) via exosomes 191, that are able to protect 

neurons during injury 192. Moreover, also peripherally, cells-derived exosomes are 

reported to mediate neuroprotective effect. Schwann cells, the principal glia of the 

peripheric nervous system, release exosomes, that enhance axonal regeneration 

after nerve damage both in vivo and in vitro. The proposed mechanism is at least in 

part mediated by the decreased RhoA activity, a GTPase with an inhibitory effect 

on axonal regeneration activated in response to injury 193. 

 

1.5.5 Exosomes and α-synucleinopathies 

Patients suffering from PD typically exhibit higher levels of plasma exosomal aS 

compared to controls 140. Importantly, cerebrospinal fluid exosomes derived from 

Parkinson’s disease and dementia with Lewy bodies induce oligomerization of aS 

in human H4 neuroglioma cells, suggesting that they contain a pathogenic species 

of aS, which could initiate oligomerization and confer disease pathology 194. The 

hypothesis of exosomes as information mediators to the brain was confirmed in 

the work of 2014 by Alvarez-Erviti and coworkers: injected exosomes containing 

aS small interfering RNA (siRNA) were able to decrease aS mRNA and protein 

levels throughout the mice brain in 7 days 195. These extracellular vesicles, in fact, 

have been shown to be involved in transporting aS to the extracellular 

environment and spreading the toxic oligomers to naïve neurons 126 . Uptake of aS 

containing exosomes has been shown to induce cell death in healthy neurons 127 

further highlighting the potential of exosomes in the pathogenesis of α-
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synucleinopathies. Not only neurons internalize aS deposits released by pathologic 

neurons, but also other cell types such as astrocytes 196. This process induced the 

aggregation of endogenous aS in the recipient cells, as demonstrated both in vitro 

and in vivo 196 as well as initiation of an inflammatory response. Supportively, 

microglia cells phagocytosed exosome-containing aS aggregated species and this 

mechanism induced an increased release of TNFα, a neurotoxic cytokine 197. 

Inflammation, in fact, is a key aspect in α-synucleinopathies 

pathogenesis/progression, that will be better addressed in the paragraph 1.6. 

Another interesting connection between exosomes and α-synucleinopathies 

insurgence derives from genetical studies. Mutations in several genes related to 

the endocytic pathway such as vacuolar sorting protein 35 (VPS35) and leucine-

rich receptor kinase 2 (LRRK2) have been linked to PD 198. LRRK2, for instance, has 

been reported to influence synaptic activity and its overexpression induced 

trafficking defects in neuronal models 199. In addition, a mutant form of LRRK2 

exhibits an increased number of morphologically distinct MVBs 200. This phenotype 

suggests a potential accumulation of exosomes containing aS aggregated species 

that, upon release, might be transmitted to neighboring cells. 

 

In conclusion, increasing evidence suggests a role for exosomes in neuron-to-

neuron propagation of α-synucleinopathies. In addition, aggregated extracellular 

aS can also induce an immune response in glial cells, causing the release of nitric 

oxide, ROS and pro-inflammatory cytokines, which are neurotoxic. 

 
1.6 Neurotoxicity: α-Synuclein and synapses  
 
To date, α-Synuclein and synapses appear strictly linked both in physiologic and 

pathologic conditions. Even if aS physiological function is still largely unknown, it 

appears to primarily localize in the presynaptic terminals of mature neurons, 

where it fulfils roles in synaptic function and plasticity. In addition, increasing 

evidence suggests that aS gain of toxic function starts at synapses, that, coherently, 

are the primary sites of aS aggregation, but also propagation in α-

synucleinopathies.1.6.1 α-Synuclein localization 
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aS is highly abundant in presynaptic terminals of neurons, with a concentration of 

~40µM 201 and it accounts for 0,5-1% of the total soluble brain proteins 27. In 

addition, aS has been shown to colocalize with presynaptic proteins such as 

synapsin 1 202, synapsin III 203, synaptotagmin 204 and synaptophysin205-207 . It has a 

high affinity for membranes and, in particular, it appears to be associated with 

lipid rafts. This interaction is considered essential to its synaptic localization, since 

pharmacological disruption of lipid rafts in primary neuronal cultures diminished 

aS levels within synapses 208 63. However, aS has not been identified in all neuronal 

synapses and not all terminals display aS-positive aggregates in α-

synucleinopathies 209, suggesting a selective level, localization, and susceptibility 

only in certain neuronal populations 52.  

In the nervous system, aS protein levels increase during development and remain 

high throughout adulthood 210. Both in rodents and in humans, aS moves from 

neuronal soma to presynaptic terminals during early weeks of development, 

where it interacts with synaptic vesicles 52. Its targeting to presynaptic boutons 

seemed to be driven by its affinity for synaptic vesicle membranes and the 

vesicles-associated proteins synaptobrevin-2 (sybII), synapsin III, or rab3A. 

Although its high amount in presynaptic terminals, aS is among the last proteins to 

reach the synapse, suggesting that it has an activity required for a more complex 

cellular function that is not essential for basic neurotransmitter release or synapse 

development 52. 

 

1.6.2 α-Synuclein function at the synapse  

aS’s localization at the presynaptic terminals (I), its affinity with highly curved, 

negative charged membranes (II) and its interaction with different synaptic 

proteins (III) strongly supports a physiologic function associated with synapses, 

such as synaptic activity and plasticity, learning, neurotransmitter release, 

dopamine metabolism, synaptic vesicle pool maintenance, and/or vesicle 

trafficking (Figure 13) 52.  

Under physiological conditions, aS is thought to exist in equilibrium between a 

cytosolic conformation and a membrane-associated, alpha-helix multimeric 

conformation  211,212. As shown by photo-bleaching experiments, aS is a highly 
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mobile protein and disperses rapidly from synaptic vesicles upon neural activity 

213,214. aS association with membranes is reported to contribute to aS physiologic 

function and prevent aggregation 50. 

 

 

Figure 13. aS Function at the synapse. [Burrè, J Parkinsons Dis. (2015)] 52. 

 

Probably the neural activity at synapses regulated the recruitment of aS to the 

membranes that are under high fusion activities. In this way, aS reduces the 

mobility of synaptic vesicle pools between presynaptic boutons and maintains the 

overall size of the recycling pools at individual synapses 52. 

In vitro, aS inhibits docking of synaptic vesicle mimics without interfering with 

their fusion 215,216 . This effect results from clustering of synaptic vesicle mimics, a 

process strongly dependent on aS’s ability to associate with acidic lipids 215 and 

synaptobrevin-2 (sybII) 216. Experiments on mouse models confirm the interaction 

between the acidic C-terminal domain of aS and the N-terminal 28 amino acids of 

synaptobrevin-2 (sybII) 207 (Figure 14). Since SybII has a central role during 

synaptic exocytosis 217, aS appears to be implicated in vesicles fusion and 

clustering at the neural active zone. 

Coherently, aS has been recently demonstrated to induce synaptic vesicles 

clustering in neurons. A function probably supported by the multimerization of aS 

on the vesicles membranes, which reduces synaptic vesicle motility, likely 



                                                                                                                    Chapter I: Introduction 
 

37 
 

conditioning neurotransmitter release 52. According to this hypothesis, separation 

of different population of synaptic vesicles reveals that aS associates only with 

specific subpopulations 211,218, and cooperatively regulates synaptic function with 

synapsin III in dopaminergic neurons 219. Moreover, when aS is knocked out,  

synapses reveal a selective reduction of undocked vesicles without any effects on 

docked vesicles 220 and knockdown of aS significantly diminished the distal pool of 

synaptic vesicles 206.  

The clustering function of aS may increase the local concentration of synaptic 

vesicles and thereby of the SNARE protein sybII at the active zone, inducing the 

assembly of neuronal SNARE-complexes by blocking additional synaptic vesicles 

close to the active zone 52. Supportively, the SNARE-complex assembly deficit in 

α/β/γ-aS triple knockout mice become more severe with increased synaptic 

activity 221.  

 

 

Figure 14.  The process of exo- and endocytosis are controlled by Synaptobrevin II (syb II), 
Synaptophysin (syp), aS and AP-180. [Adapted from Gordon et al, Traffic. (2014)] 222. 

 

To summarize, aS’ s effect on neurotransmission does not appear mediated by 

directly acting on the release machinery, but by affecting the synaptic vesicle pools 

organization. This effect is likely supported by the formation of aS multimers, 

induced by membrane association and promotes SNARE-complex assembly. In this 

way, aS contributes to the long-term operations of the nervous system, suggesting 

that alterations in its physiological function could contribute to the pathogenesis 

and progression of α-synucleinopathies 52. 
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1.6.3 α-Synucleinopathies pathology at the synapse 

As mentioned before, α-synucleinopathies are characterized by aS-positive 

intracytoplasmic inclusions in different type of cells of the nervous system223-225. 

Surprisingly, their small number relative to the total neuron count does not 

correlate with the extent of cognitive impairment 226. Moreover, it was shown that 

the dysfunction of dopaminergic cells may precede the development of Lewy 

pathology, in PD 227.  

Although LB are the most noticeable aS pathological species, some other forms of 

aS aggregates such as oligomers, small aggregates, or protofibrils may be involved 

in the pathogenesis of α-synucleinopathies 50. This hypothesis received strong 

support from numerous experimental data showing that such intermediate species 

may be more toxic to the cells than LB 228,229 . 

In addition, considering the fact that presynaptic terminals are the physiologically 

most active compartments of neurons, it would seem to suggest that they could 

also become the sites of aS aggregation.  

In contrast to juxta nuclear Lewy bodies, native aS is localized at presynaptic 

terminals 206,230, where it exerts its physiological function 52. One possibility is that 

this process of aggregation alters the equilibrium between free and membrane-

bound aS, leading to an increase in aS concentration in the cytoplasm, enhancing 

aggregation and altering aS physiologic function 231,232. This hypothesis was 

supported by studies in patients and animal models. Oligomer-prone transgenic 

mice carrying the synthetic aS E57K mutation displayed synaptic and dendritic 

loss, reduced levels of synapsin I and synaptic vesicles, and behavioural deficits 233.  

In post-mortem brain tissue from patients with PD, analysis of the distribution of 

aS oligomers shows significant differences with Lewy pathology 234. Small 

aggregates are especially abundant in synapses, where they can be found in the 

early stage of the disease, often prior to the formation of LB. 

A synaptic accumulation of aS was shown in DLB, thanks to a paraffin-embedded 

tissue blot. This technique allows visualization of small insoluble aggregates by 

removing non-aggregated, physiological aS by proteinase K (PK) digestion 235. 

Similarly, immune-histochemical analysis after pretreatment with PK allowed for 

the identification of numerous presynaptic aS aggregates also in PD brains. 
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Moreover this pathological aS accumulation in synapses was progressive over the 

course of the disease, suggesting that synaptic α-synucleinopathy precedes Lewy 

pathology in cell bodies disease 236. It has been proposed, in fact, that pathogenesis 

of several neurodegenerative diseases may feature a dying-back mechanism of cell 

degeneration and retrograde progression of pathology (Figure 15). LB could be 

formed by an aggresome-related process as a general cytoprotective measure in 

which smaller aS aggregates are sequestered from the neuronal periphery by 

active retrograde transport on microtubules 237,238.  

Axonal α-synucleinopathy was also observed in the peripheral nervous system, 

where aS was shown to aggregate in the distal axons of the cardiac sympathetic 

nerve before it accumulated in the neuronal somata of their mother cells in the 

paravertebral sympathetic ganglia in PD patients 239. 

 

1.6.4 Synaptic dysfunction in α-synucleinopathies 

A feature of PD and other α-synucleinopathies is an impairment of 

neurotransmission, especially dopaminergic and cholinergic transmission, as 

shown by different clinical data 240-244. These deficiencies are confirmed by 

overexpression of aS in different in vitro 245,246 and in vivo models 247-250. 

Importantly, as synaptic aS aggregation precedes α-synucleinopathy in cell bodies, 

there are strong evidence suggesting that this synaptic deficit anticipates cell death 

in disease progression 50. 

At the time of PD diagnosis, for example, the loss of nigral dopaminergic neurons is 

significantly minor than the impairment of striatal dopaminergic 

neurotransmission and neurite degeneration 251-253. Moreover, experimental data 

show that alterations in striatal DA release may not be paralleled by changes in 

total DA content in striatal tissue, suggesting that the dopaminergic dysfunction in 

PD is not initially a direct effect of cell death and/or reduction of DA content, but is 

rather caused by functional impairment of neurotransmitter release at the 

synapse. In a transgenic model, aS(1-120) mice, in which truncated, aggregation-

prone human aS is expressed under a tyrosine hydroxylase promoter in 

catecholaminergic cells, aS aggregates are present at striatal dopaminergic 
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terminals where, in the absence of nigral dopaminergic neuron loss, the release of 

DA from nigrostriatal synaptic terminals is progressively impaired 50.  

At a molecular level, as reported in Figure 15, the abnormal interactions of 

aggregated aS with the components of the synaptic apparatus such as the protein 

members of the SNARE complex could represent the basis for functional deficits of 

synapses in α-synucleinopathies. Supportively, in primary neurons overexpressing 

aS as well as in brains of α-synucleinopathy animal models and in patients, changes 

in presynaptic proteins relevant to neurotransmitter release and axonal transport 

are observed 226,245. The experimental data from aS 1-120 mice demonstrate that 

the impairment in DA release in the striatum displayed in this model is 

accompanied by redistribution of SNARE proteins in nigrostriatal terminals 249. 

 

 

Figure 15. Synaptic aS involvement in neurotransmitter release in physiological (a) and 
pathological (b) conditions. [Adapted from Calo et al, Mov Disord. (2016)] 50. 

 

Moreover, when primary neuronal cultures were exposed to preformed aS fibrils, a 

loss of SNARE proteins, i.e. sybII and SNAP25 as well as CSPα, were measured 254-. 

Finally, alterations in SNARE complex proteins are also detected in patients — 

SNAP25 and syntaxin are accumulating in the striatum of PD patients 249. 

Interestingly, opposite effect on syntaxin has been reported in DLB, in which loss 

of this protein is observed in the cortex 226,245. These observations suggest a 
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mechanism whereby accumulation of aS in the presynaptic terminal might lead to 

impairment of its function and that of its binding partners such as sybII, which is 

sequestered into aS aggregates, thus hampering SNARE-mediated vesicle fusion. 

Furthermore, changes in membrane curvature by misfolded aS might account for 

impairment of the binding and function of other vesicle-bound SNARE co-

chaperones, thus affecting vesicle cycle and neurotransmitter release 50. Indeed, an 

in vitro mechanistic study with lipid mixing assay showed that large aS oligomers 

inhibit SNARE complex formation blocking vesicle docking, a process necessary for 

exocytosis 232. 

 
1.6 Neuroinflammation in α-synucleinopathies 
 
Findings from epidemiological studies and analysis of post-mortem brains and 

animal models have provided number of observations, suggesting a role for 

inflammation in the pathogenesis of α-synucleinopathies 255,256. Increasing 

evidence supports, in fact, the hypothesis that the immune system plays a key 

active part in the initiation and development of these neurodegenerative diseases, 

mainly through the release of neurotoxic substances 257. For instance, PD patients 

brains are characterized by an extensive microglial activation and infiltration of 

blood-derived mononuclear phagocytes and lymphocytes 258. Moreover, several 

polymorphisms in inflammatory genes have been associated with PD. Examples 

include polymorphisms in the genes encoding TNF, TNF receptor 1 (TNFR1), IL-1β, 

IL-1 receptor antagonist and CD14 259, TREM2 260 and, more recently, HLA-DRB1 

261. However, only a few cases of the disease are familiar and the risk of developing 

the pathology is only mildly increased in carriers of this haplotype. 

Neuroinflammation has been reported to active contribute to 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP)-induced mouse models of PD. The suppression, 

in fact, of the Toll-like receptor 4 (TLR4), responsible for microglia activation, 

increases the dopaminergic neuronal survival 262. This evidence has been also 

supporting by epidemiological studies, correlating  the use of non-aspirin NSAIDs 

to a reduced risk of developing PD 263.  
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1.6.1 The function of microglia cells in the brain 

Microglia are the main immunocompetent cells within the CNS 264, involved in 

antigen presentation to lymphocytes 265 and rapid activation in response to 

pathological change in the CNS 266.  

These cells are distributed within all brain, in close proximity to neurons and 

astrocytes, although their densities vary between different brain areas 267. In the 

healthy brain, microglia form an almost evenly distributed lattice in a ramified 

phenotype. This is characterized by a high number of processes that are constantly 

moving and that facilitate the interaction of microglia with neighboring blood 

vessels, neurons and astrocytes. These interactions are important for cerebral 

tissue maintenance and neuronal plasticity 268,269, 270, 271.  

 

 

Figure 16. Physiological and pathological functions of microglia in the brain. [Heneka et al., 
Nature Reviews Immunology (2014)]13. 

 

Microglia cells are implicated in synaptic remodeling (especially synaptic pruning) 

and neurotrophic factors secretion, such as brain-derived neurotrophic factor 

(BDNF , that maintain proper neuronal circuits 269. Microglia is also involved in the 
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maintenance of tissue homeostasis, removing accumulating debris from the brain 

267. 

Microglial cells express specialized pattern recognition receptors (PRRs), which 

are implicated in the trigger of inflammatory responses. These receptors activate 

in the presence of microbial molecules, which accumulate in infected areas and are 

called pathogen-associated molecular patterns (PAMPs). Moreover, PPRs binds 

also to danger-associated molecular patterns (DAMPs), which are host-derived 

molecules, like misfolded proteins. Coherently, aggregated aS has been reported to 

bind to two specific PRRs, TLR2 and TLR4, inducing an inflammatory response 

through microglia activation. Different factors, such as the nature of the stimulus 

and the infection site, influence microglia response. These immunocompetent cells 

can, in fact, either remove the DAMPs or PAMPs or secrete inflammatory 

mediators.  

As reported in Figure 16, activated microglia can assume two different 

phenotypes.  Typically, the 'M2-like' is associated with a beneficial role and it is 

characterized by an increased secretion of proteases and neurotrophic factors, the 

production of interleukin-4 (IL-4), the expression of the enzymes arginase 1 

(ARG1) and insulin-degrading enzyme (IDE) and augmented phagocytic activity. In 

contrast, the 'M1-like’ is associated with detrimental effects and it is characterized 

by the expression of inducible nitric oxide synthase (iNOS), the production of 

reactive oxygen species (ROS) and pro-inflammatory mediators (such as IL-1β) 

and a diminished secretion of neurotrophic factors. These divergent responses 

may be responsible for a physiologic resolution of the inflammation or instead of 

the presence of a chronic inflammation state, which leads to neuronal death 13.  

 

1.6.2 LPS stimulus and IL-1β secretion   

Even if a lot of different signaling pathways are involved in microglia activation, 

neurodegenerative diseases are characterized by the deleterious increased of 

inflammatory cytokines release, such as IL-1β and IL-18. Both IL-1β and IL-18 are 

initially expressed as pro-enzymes, that are converted to the active forms by 

caspase 1 or caspase 8 cleavage. Caspase 1 itself is recruited and activated by the 
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inflammasomes, a multimeric protein complex, which acts as a signaling platforms 

272.  

Inflammasomes assembles in the cell cytosol in response of a DAMPs or a PAMPs. 

It is composed of one or two sensor molecule from the NOD-like receptor (NLR) 

family or the pyrin and HIN domain-containing protein (PYHIN) family, the 

adaptor protein, apoptosis-associated speck-like protein containing a CARD (ASC) 

and caspase 1 273. The NOD-, LRR- and pyrin domain-containing 3 (NLRP3) 

inflammasome appears to be particularly important in the maintaining of an acute 

and chronic inflammatory state, since it is extremely reactive against a wide range 

of aggregated molecules.  

 

 

Figure 17. Schematic representation of lipopolysaccharide (LPS)-induced NLRP3 
inflammasome activation. [Adapted from Guo et al., Nature Medicine (2015)]274. 

 

The microglial activation effects on neighboring cells, especially on neurons, are 

divergent and they remain still completely unknown. However, the continuous 

release of pro-inflammatory molecules has been demonstrated to inhibit 
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neurogenesis 275. Microglia’s phenotype upon activation exhibit a more amoeboid-

like form, with no processes, which may be involved in the loss of synaptic 

remodeling function. In this way, activated microglia, along with the toxic effects of 

released substances, may participate to synaptic damage, that characterized 

neurodegenerative diseases 13. 

Moreover, a neuroinflammatory state reduces neurotrophic factors supply to glial 

cells 276 and likely impacts neuroprotective physiological processes, like autophagy 

277. This chronic inflammation may not only be toxic to neurons, but also on 

microglia itself. For instance, chronic exposure to PAMPs and DAMPs induces a 

reduced microglia phagocytosis activity, leading to the accumulation of misfolded 

and aggregated proteins 278.   

 
A lot of different immunological stimuli have been used to directly induce glial 

activation and study neurodegeneration in α-synucleinopathies. Among these, the 

most extensively utilized has been Lipopolysaccharide (LPS) (Figure 17). It is an 

endotoxin, which is the major component of the outer membrane of gram-negative 

bacteria. In non-capsulated strains, LPS is exposed on the cell surface and is made 

up of three structural components: (I) a hydrophilic O-antigenic side chain with 

multiple repeating units of monosaccharides that is specific to the bacterial 

serotype; (II) a hydrophilic core polysaccharide chain with an unusual sugar (2-

keto-3-deoxyoctonate), and (III) an hydrophobic lipid part, lipid A, responsible for 

the toxic properties of the molecule. 

LPS associates with the soluble LPS binding protein (LBP) and CD14, localized in 

the outer leaflet of the plasma membrane. In this way, LPS-CD14 complex can 

interact with the transmembrane receptor TLR4 and its extracellular accessory 

protein MD2, leading to the activation of kinases, implicated in different 

intracellular pathways and to the gene transcription of a variety of pro-

inflammatory mediators and free radical-generating enzymes. LPS stimulates the 

release of pro-inflammatory cytokines, free oxygen species and other lipid 

mediators both in peripheral, such as macrophages and monocytes, and central 

immune cells, microglia and astrocytes 279-282. Moreover, LPS has been widely used 

in inflammation-mediated neurodegeneration studies, since its glia-specificity. 
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Neurons, in fact, do not express a functional TLR4 283, making them LPS-insensitive 

284 . 

 

1.6.3 aS induction of microglia activation 

One of the critical questions concerning neuroinflammation in α-synucleinopathies 

is what induces microglia to move from a beneficial to a detrimental role. 

Increasing evidence support neuron-released aS as a central player: (I) microglia is 

the main cell type implicated in extracellular aS clearance 285; (II) this process 

efficiency depend on the activation state and age 197 of microglia and on aS state 

285,286 and (III) aS, especially if aggregated, trigger a pro-inflammatory activation  

state in microglia. 

It is known, in fact, that aS can be secreted by exocytosis from neuronal cells 125 but 

it may also be released from dying cells 287. In addition to direct toxic effects on 

neurons, aggregated aS activates microglia. This effect creates a vicious circle, that 

support aS neurotoxicity in vitro 288, providing a link between neuronal cell death 

and microglial cell activation. aS-triggered inflammatory responses have been 

demonstrated in rat primary microglia cultures 288, human microglia cultures and 

monocytic cell line THP-1 287, when treated with exogenous aS. These studies 

demonstrate that, following aS activation, microglia release extracellular 

superoxide, increases intracellular ROS concentrations (iROS) and change 

morphology. Moreover, microglia exert also a phagocytic activity on aS and 

cytochalasin D inhibits ROS production upon aS incubation, suggesting that 

phagocytosis is a key process in aS-induced microglial activation 288. Supportively, 

aS neurotoxicity is enhanced when dopaminergic neurons and glia are co-cultured 

288. These observations with the recombinant aS have recently been confirmed 

with neuron-derived aS. aS secreted from differentiated SH-SY5Y neuroblastoma 

cells triggers microglia activation, induces morphological changes, increases 

proliferation, iROS, and cytokine production and motility 289,290.The evidence of a 

cell-dependent mechanism of aS-triggered neurotoxic effects comes from a recent 

study of Kim and colleagues. They demonstrated that neurons released aS induces 

microglia secretion of substances, that in turn cause neurodegeneration 291. 

Therefore, in addition to a direct aS effect on neurons, an indirect mechanism 



                                                                                                                    Chapter I: Introduction 
 

47 
 

through the inflammatory responses evoked in glial cells could account for aS-

induced neurodegeneration. Concerning the microglia activation mechanism(s), 

recent studies suggest that Toll-like receptor 2 (TLR2) acts as the receptor for 

neuron-secreted aS. TLR2 mediates both the uptake of aS and the signaling leading 

to inflammation 290,292. The interaction between aS and TLR2 has been shown on 

the surface of microglia, and these proteins co-localized in the intracellular 

compartments after internalization, but there might be other receptor molecules 

mediating the internalization of this protein 292.  

TLR4 has also been suggested to be involved in aS-dependent activation of 

microglia and astrocytes 293. Fellner and coworkers suggested that TLR4 acts as a 

modulator of proinflammatory responses in glia and the production of reactive 

oxygen species induced by aS. The same group also suggested that TLR4 plays an 

important role in aS clearance in a mouse model of MSA 294. In addition, scavenger 

receptors and integrins might serve as receptors for aS 290,295. The precise 

functions of these cell surface proteins in the inflammatory activation of microglia 

and in aS clearance remain to be determined. Each of the cell surface receptors 

mentioned above may interact with specific forms of aS. TLR2 is one of the PPRs, 

and is recognized by and responds only to certain types of aS oligomers and fibrils, 

but not monomers 292,296. Independent of TLR2, neuron-secreted aS increases the 

motility of microglia through b1-integrin 290. However, the integrin pathway is not 

required for the cytokine production in response to aS. Therefore, it appears that 

separate receptor/signaling systems are working together to trigger the full 

spectrum of microglial activation in exposure to neuron-secreted aS. The fact that 

separate signaling systems are responsible for different aspects of microglia 

activation opens up the possibility that microglia can be manipulated in such a way 

that beneficial clearance function is activated and detrimental inflammation is 

blocked.  

 

In conclusion, the physiological functions of microglia are important for 

maintaining tissue homeostasis, neuronal integrity and network functioning in the 

brain (Figure 16). The loss, deviation or functional perturbation of microglia may 
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occur in response to neurodegeneration and may contribute to pathogenesis and 

disease progression.  
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CHAPTER II:  
Materials and Methods  

 

2. 1 Cell cultures and trasfection 
2.1.1 Immortalized cell cultures  

Human Embryonic Kidney 293T (HEK293T) cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, Life technologies), BE(2)-M17 and SH-SY5Y cells 

were cultured in DMEM/F12 Nutrient Mix (Life technologies) and BV2 cells were 

cultured in RPMI-40 medium (Sigma Aldrich) 2 mM Glutamine (Sigma Aldrich). All 

media cell lines were supplemented with 10% FBS (Life technologies), 100U/ml 

penicillin and 100µg/ml streptomycin (1% P/S, Life Technologies) and cells 

maintained at 37°C in a 5% CO2 controlled atmosphere.  

 

2.1.2 Primary neuronal cell cultures  

All animal procedures were performed following the guidelines issued by the 

European Community Council Directive 2010/63/UE and approved by Ethics 

Committee of the University of Padua (Project ID: 46/2012). Neuronal cells were 

derived from postnatal mouse (P0-P1) brains (CD1 strain). Cerebral cortices were 

isolated and cells mechanically dissociated in EBSS (Sigma Aldrich). Cells were 

centrifuged, resuspended in Neurobasal media (Life Technologies) supplemented 

with 2% v/v of B27 supplement (Invitrogen), 0.5mM L-glutamine (Life 

Technologies), penicillin (100 Units/ml) streptomycin (100 μg/ml) and 2.5 μg/ml 

fungizone (Life Technologies). Cells were then plated at 2 x 106 cells/well on poly-

L-lysine (0.1 mg/ml, Sigma Aldrich) coated wells of a 6-well plate and cultured at 

37°C in 5% CO2. After 7 days half medium was replaced and the neuronal culture 

was maintained until day 14. At 14 days neuronal cells were treated. 
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2.1.3 Primary microglia cell cultures  

All animal procedures were performed following the guidelines issued by the 

European Community Council Directive 2010/63/UE and approved by Ethics 

Committee of the University of Padua (Project ID: 46/2012). Microglia cells were 

derived from postnatal days 1-4 (P1-P4) (CD1 strain). Cerebral cortices were 

mechanically dissociated in cold HBSS (Sigma Aldrich), then cellular suspension 

was allowed to settle for 5 min and the top fraction was collected, centrifuged for 5 

min at 1000g and re-suspended in DMEM-F12, supplemented with 10% FBS, 2 mM 

Glutamine, 2mM Sodium Pyruvate (Sigma Aldrich), penicillin and streptomycin. 

Cell suspension obtained from three brains was plated on poly-L-lysine (0.1 

mg/ml, Sigma Aldrich) coated T-75 flask. After 4 days the medium was replaced 

and the mixed glial culture was maintained until day 14. At 14 days microglia cells 

were isolated from the mixed culture by shaking 4 h at 160 rpm. The primary 

microglia yield was ~5x105 cells/flask.  

 

2.2 Cellular Biology  

2.2.1 Cell transfection and DNA plasmids 

Cells were transfected with the plasmids aS-EGFP, aS-mCherry or their 

corresponding empty vector pEGFP-N1 or pmCherry-N1 (Novagen). HEK 293T 

were transfected with Polyethylenimine (PEI) in a 1:4 ratio with DNA (g), BE(2)-

M17 and SH-SY5Y with lipofectamine (Lipofectamine 2000, Invitrogen) in a 1:2 

ratio with DNA (g). DNA plasmids were obtained inducing their multiplication in E. 

coli DH5α bacteria and subsequently purified with NucleoBond® Xtra Midi / Maxi 

(Macherey- Nagel).  

 

2.2.2 Cell lysis and Protein quantification 

To extract protein contents of cells, cells were solubilized in Lysis Buffer (20mM 

Tris-HCl pH7.5, 150mM NaCl, 1mM EDTA, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM sodium othovanadate) supplemented with Triton® X-100 

(Sigma-Aldrich) and protease inhibitor (IP) cocktail (Sigma-Aldrich). The 
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resuspendend cells were incubated in ice for 30 minutes and  then centrifuged at 

20000g for 30 minutes at 4°C. Supernatants were transferred in new tubes 

whereas pellets were discarded. Protein concentration in cells lysates was 

determined thought the Pierce® BCA Protein Assay Kit (Thermo Scientific) 

following the manufacturer’s instructions. Each measure was performed in 

duplicate. Protein contents were determined preparing a standard curve of bovine 

serum albumin (BSA) and measuring the absorbance of BSA samples of known 

concentration. 

 

2.2.3 Exosomes purification  

Exosomes purification method was adapted from Hoang et al 297 . 4x106 HEK293T 

cells were plated in 150 mm dishes. After 24 hours they were transfected with 30 

μg of DNA/dish in a 1:4 ratio DNA:PEI. 24 hours later cell medium was changed 

with Opti-MEM (Life Technologies) and keep at least 15 hours.  For activation with 

Ca2+ ionophore, cells were incubated for 30 min in the presence of 2 µM ionomycin 

(Sigma) at 37°C. EGTA (4 mM final concentration, Sigma) was added to stop the 

reaction and the remaining cells were pelleted by sequential centrifugations of the 

supernatants at 750 g for 15 min, directly followed by a centrifugation at 1,500 g at 

4°C. Then centrifugation at 100,000 g for two hours (in 24 ml tubes, rotor 70Ti, 

XL90 Ultracentrifuge Beckman) allowed to pellet exosomes. After discarding the 

supernatants, PBS was added to the tubes, which were centrifuged again in the 

same condition. A small white pellet could be seen and was resuspended in 

appropriate volume of PBS (20-100 μL). 

 

2.2.4 Cell viability assay  

HEK 293T cells were plated in a 96-well plate with 100μl of culture medium added 

with 20μl of CellTiter  96Aqueous One Solution Reagent (Promega). Then the plate 

was incubated 1 hour at 37°C in a humidified, 5% CO2 atmosphere. To measure the 

amount of soluble formazan produced by cellular reduction of MTS, absorbance 

was recorded at 490nm using a 96-well plate reader (VICTOR X3, Perkin Elmer). 
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2.2.5 Compounds and treatments 

One day and a half after transfection, DOPAL treatments on cells were performed 

in growth medium without FBS, to avoid DOPAL interaction with proteins that are 

present in the serum. DOPAL was used at concentration of 100µM, overnight.  

BV2 and primary microglia cells during treatment were cultured in medium 

containing 1% FBS. Inflammation was induced using lipopolysaccharide (LPS, 

Sigma Aldrich) at 100 ng/ml for 5 hours for BV2 cells or 90 minutes for primary 

microglia.  

Exosomes were applied on microglia and neurons for 24 hours. 

 

2.2.6 Detection of IL-1β in culture supernatants 

The entire culture supernatants (1 mL) were collected, precipitated with 10% TCA 

overnight at 4°C; protein pellets were resuspended in 15 µl of Sample Buffer, 

Laemmli, boiled, and conserved at −80°C. Cell extracts and the total protein 

content of culture supernatants were loaded on a 4–12% SDS-PAGE (Mini-

PROTEAN® TGX Stain-Free™ Precast Gels, Bio-Rad) and analyzed by 

immunoblotting.  

 

2.3 Biochemical Techniques and in vitro assays 
 

2.3.1 SDS-PAGE  

Proteins were separated by Poly-Acrylamide Gel electrophoresis, in denaturing 

conditions through the presence of SDS.  After quantification with the BCA assay, 

the desired amount of protein of each sample was denatured by adding Sample 

Buffer; Laemmli, (stock solution 4x: 200mM Tris-HCl pH6.8, 8% w/v SDS, 400mM 

DTT, 40% v/v glycerol and Bromophenol Blue) to a final concentration of 1X. After 

10 minutes at at 90°C, samples were loaded into gels. Gels were prepared with the 

opportune percentage of acrylamide (between 7.5 and 13%) according to the size 

of the analysed proteins. Gels were run in a Tris-Glycine-SDS Running Buffer 

(25mM Tris, 250mM Glycine, 0.1% w/v SDS). As standards of proteins at different 

fixed molecular weight (Prestained Protein Ladder, BioRad -Prestained Protein 

SHARPMASS VII 6,5-270kDa, EuroClone) were used. After running, gel was stained 
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in agitation with Coumassie Brilliant Blue (0.25 % w/v Brilliant Blue R-250 Sigma 

Aldrich, 40% v/v ethanol, 10% v/v isopropanol, 10% v/v acetic acid and water) 

for 45 minutes and destained in agitation with a Destaining Solution (10% v/v 

isopropanol, 10% v/v acetic acid and water). In the end, gels were kept in a 10% 

v/v acetic acid solution in agitation.  

 

2.3.2 Western blotting 

After electrophoresis onto SDS-PAGE gels proteins were transferred onto 

Immobilon-P membrane with a Trans-Blot Turbo Transfer System (Bio-Rad). 

Membranes were incubated 1 hour at room temperature (RT) with the following 

antibodies: rabbit anti-alpha synuclein (1:1000 or 1:20000, Abcam, ab138501 for 

human cells and ab52168 for mouse neurons); Mouse anti-GFP (1:1000, Roche); 

mouse anti-GM130 (1:1000, BD Transduction Laboratories); rabbit anti-CD9 

(1:500, BD Transduction Laboratories);  mouse anti-Flotillin (1:500, BD 

Transduction Laboratories); mouse anti-SOD2 (1:5000, Sigma); rabbit anti-

Cytochrome C (1:1000, Abcam); rabbit anti-Caspase-3 (1:1000, Abcam); mouse 

anti-Synaptophysin (1:1000, Dako); rabbit anti-IL1β (1:1000, R&D Systems); 

rabbit anti PARP-1 (1:1000, Cell Signaling); mouse anti-GAPDH, mouse anti-β-

tubulin, mouse α-actin, mouse anti-Hsp90, mouse anti-Hsp70 (1:20000, OriGene 

Technologies). Subsequently, membranes were incubated 1 hour at RT with HRP-

conjugated secondary antibodies (Sigma Aldrich) and finally incubated with ECL 

western blot substrate (Thermo Scientific). 

 

2.3.3 Western blotting and ABPA resin  

For ABPA resin (A8530 Sigma) pulldown, 50 μg total protein were incubated with 

50 μl of the resin overnight at 4°C shaking. The resin was then pelleted, the 

supernatant removed and the resin was washed 2 times with PBS/acetronitrile 

and finally with water. Protein was collected from the resin by adding 20 μl 

Laemmli buffer, loaded into 10% or 4%-20% gradient SDS-PAGE and compared 

with the total lysate. Proteins were detected as previously reported (paragraph 

2.3.2). 
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2.3.4 Proteinase K digestion 

Proteinase K (Sigma) was serially diluted and added to samples to final 

concentrations of 0, 0.05, 0.25, and 1. 5 μg/ml. The samples were then incubated at 

37°C for 30 min, and 5 mm PMSF was added before adding Laemmli sample buffer. 

For detergent treatment, Triton® X-100 (1%) was added to the vesicle 

preparations. The samples were then incubated on ice for 30 min before they were 

subjected to proteinase K digestion as described above.  

 

2.3.5 Size Exclusion Chromatography (SEC) and Dot Blot Analysis  

The Superdex 200 (10/300GL) column coupled to an Äkta Purifier (GE Healthcare) 

was equilibrated with PBS. Molecular mass was estimated according to 

manufacturer’s instruction using following standard samples: ferritin (440 kDa), 

BSA (67 kDa), Citochrome C (13.6 kDa). aS-EGFP transfected HEK293T cells and 

derived exosomes treated and not-treated with DOPAL, were lysates as previously 

described and injected to the column and proteins were eluted with the 

equilibration buffer at a flow rate of 0.5 ml/min and the eluate was monitored at 

280 nm. SEC fractions of 0.25 ml were collected and further analyzed for GFP 

fluorescence with a Plate Reader (VICTOR X3, Perkin Elmer). 2 µl of each fraction 

was also applied to a nitrocellulose membrane (pore size 0.22 µm; Protran; 

Whatman) and analyzed for Dot Blot. The membrane was blocked with 10% w/v 

skimmed milk in TBST (made on 20 mM Tris pH 7.4, 150 mM NaCl and 0.1% v/v 

Tween 20) at RT for 1 h and incubated with rabbit anti-alpha synuclein antibody 

(1:1000, Abcam, ab138501) overnight at 4 °C. Then membranes were then washed 3 

times for 10 min with TBST, incubated HRP-conjugated secondary antibodies and 

ECL western blot substrate, as described in paragraph 2.3.2. 

 

2.3.6 Atomic Absorbtion  

Purified exosomes were diluted to 400 μl in 20% nitric acid (Suprapure, Merck) 

final concentration. The samples were transferred into glass tubes and wet-

digested during 48 h at 70°C until the solution became clear. 
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Copper, iron and calcium concentrations were determined by flame atomic 

absorption spectroscopy using a Perkin-Elmer Analyst 100 spectrophotometer 

(Perkin-Elmer, Norwalk, CT, USA). Each metal was measured in digested sample 

solution compared to five points standard curve in 20% nitric acid. The assay was 

performed by average of 10 successive readings and error as the SD. The results 

were expressed as metal/ protein concentration ratio. Lowest detection limits: 

Cu=0.003 mg/l, Fe=0.006 mg/l, Ca=0.001 mg/l. 

 

2.3.7 In vitro modifications of aS-EGFP and EGFP by DOPAL 

1μg/ μL of recombinant aS-EGFP and EGFP were incubated with 100 μM DOPAL in 

a PBS solution, pH 7.4. Reaction mixtures were allowed to react at 37 °C for 15 

hours, protected from light. Samples aliquots were collected, loaded onto a 

gradient 4%-20% SDS-PAGE and stained with Coumassie blue.  

 

2.4 Recombinant protein purification 

For expression of GFP and aS-EGFP with a poly-histidine (HIS) tag, pRSETB-EGFP 

and pET28a syn-GFP-his constructs were used, gently gifted by Mireille Claessens’ 

lab. The constructs were expressed in in E. coli B121 (DE3) using a pT7 based 

expression system. Bacteria were grown at 37 °C to an OD of 0.4-0.6 then induced 

with 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) overnight at 20 °C. 

Cells were then harvested by centrifugation and  the bacterial pellet was 

resuspended in 5-10 mL of PBS pH 8.0, added with phenylmethylsulfonyl fluoride 

(PMSF) and a cocktail of protease inhibitor (Sigma Aldrich) 1:100. Cells were 

subsequently sonicated using a Sonic Dismembrator (Fisher Scientific) model 300 

for 6 cycles (30 s sonication/30 s rest) at 60% power. The cell homogenate was 

centrifuged 30 min at 4 °C and the supernatant added to a Ni-NTA resin 

(Invitrogen) and incubated for at least one hour. After 2x PBS pH 8.0 washing, the 

proteins were eluted with 150mM imidazole. Imidazole was removed from the 

solution with a PD10 (HiTrap Desalting Columns, GE Healthcare Life Sciences) and 

proteins in PBS were stored at −80 °C in aliquots until further use. The protein 

concentration were quantified by UV absorbance, with an UV-Visible 
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spectrophotometer (Agilent 8453). EGFP and aS-EGFP have an absorption 

maximum between 275 and 280 nm and extinction coefficient of 21890 M-1 cm-1 

and 27850 M-1 cm-1, respectively. 

 

2.5 Fluorescence and Microscopic Techniques 

2.5.1 Immunofluorescence and confocal imaging  

Cells were washed once with PBS and fixed using 4% paraformaldehyde for 20 

minutes. Then, cells were permeabilized with 0,3% Triton-X in PBS for 5 minutes 

and saturated with blocking solution containing 5% FBS, 0,3% Triton X-100 in PBS 

for 30 minutes at RT. Primary antibodies anti-CD9 (1:200), rabbit anti-Na+/K+-

ATPase α (1:100, Santa Cruz), rabbit anti-GFP (1:100, Cell Signalling), mouse anti 

PSD-95 (1:200, Abcam); mouse anti Anti-β-Tubulin III (1:200, Sigma); rabbit anti 

Anti-MAP-2 (1:200, Santa Cruz); Alexa Fluor 488 phalloidin (1:200, Life 

Technologies) diluted in blocking solution were incubated 1 hour at RT. After 

several washes, the cells were incubated 1 hour at RT with secondary antibodies 

Alexa-fluor 488 and Alexa-fluor 546 (1:200, Life Technologies), and after repeated 

washes were mounted using Mowiol reagent containing Hoechst (Roche). Images 

were acquired with a Leica TCS SP5 confocal microscope using Zeiss objectives. 

Quantifications were performed using ImageJ software. Enclosing radius, Centroid 

radius and Sum of intersections were quantified using the Sholl Analysis extension 

of ImageJ as described by Ferreira et al, 2010 298.  

 

2.5.2 Fluorescence measurement 

Fluorescence emission of purified vesicles from FM 1-43FX labelled HEK293T 

were recorded on a Cary Eclipse fluorescence spectrophotometer (Varian, Agilent 

Technologies, Santa Clara, CA) using the Cary Eclipse Program. Sample 

measurements were carried out using optical path length of 10 mm. Fluorescence 

spectra were obtained using an excitation wavelength of 530 nm with an excitation 

bandwith of 5 nm and slit width of 20 nm. Emission spectra were recorded 

between 550 and 800 nm at a scan rate of 10 nm/s. 
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2.5.3 Membrane labelling  

FM 1-43FX dye (Thermo Fisher) was used for plasma membrane labelling of 

HEK293T cells. After at least 15 hours transfection with aS-Cherry, cells medium 

was replaced with Hanksʼ balanced salt solution (HBSS, Invitrogen) added with 5 

μg/mL of FM 1-43FX for 5 minutes at 37 ̊C. Cells were then stimulated with 

Ionomycin as reported in paragraph 2.2.3 and visualized with at an inverted 

microscope (Leica DMI4000).  

 

2.5.4 Transmission electron microscopy (TEM) 

TEM imaging on vesicle and analysis: Control and DOPAL treated neurons were 

fixed with 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer pH 7.4 for 1 hour 

at 4°C. Neurons were then postfixed with a mixture of 1% osmium tetroxide and 

1% potassium ferrocyanide in 0.1M sodium cacodylate buffer for 1 hour at 4° and 

incubated overnight in 0.25% uranyl acetate at 4°C. After three water washes, cells 

were dehydrated in a graded ethanol series and embedded in an epoxy resin 

(Sigma-Aldrich). Ultrathin sections (60-70 nm) were obtained with an Ultrotome V 

(LKB) ultramicrotome, counterstained with uranyl acetate and lead citrate and 

viewed with a Tecnai G2 (FEI) transmission electron microscope operating at 100 

kV. Images were captured with a Veleta (Olympus Soft Imaging System) digital 

cam-era. EM images have been processed on NIH ImageJ before performing the 

analysis on LoClust tool 299. Single vesicle has been manually annotated and the 

distance to the active zone is expressed in nm. 

TEM imaging on exosomes: Exosomes resuspended in PBS were absorbed onto a 

carbon-coated copper grid and were then negative stained with 0.05% uranyl 

acetate solution. TEM micrographs were taken as reported above. 

 

2.5.5 Fluorescence Microscopy of exosomes 

Resuspended vesicles were spotted on glass microscope slides, covered with glass 

coverslips, sealed and observed with a fluorescence Leica 5000B microscope; 

images were acquired with a 60X objective (Leica) and analyzed using Image J 
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software. Staining for Na+/K+ ATPase (abcam), CD9 (abcam) were performed as 

follows: vesicles were fixed in 4% paraformaldehyde (Sigma) for 20 min at RT and 

washed in PBS for 12 h at 4 ̊C. Primary antibodies were added in a 1:1 volume of 

PBS buffer containing 17% bovine serum, 0.3% Triton X-100, 0.45M NaCl and 

incubation was allowed for 1h at RT. Primary ab-conjugated vesicles were then 

washed with PBS and pelleted at 38900g for 1,5 h, before incubation with 

fluorochrome-coniugated secondary Abs for 2h at RT and then wash in PBS. Re-

pelletted labelled vesicles were then spotted on glass microscope slides and 

observed at fluorescence microscope (obj 63X or 40X). Adapted from Bianco et al., 

2009 300. 

 

2.5.6 Fluorescently-label exosome RNAs  

50 μL of Exo-Red (System Biosciences) were added to 500 μL volume of 

resuspended exosome suspension in 1x PBS. The tube was then mixed by 

flicking/inversion and exosome solution were incubated at 37°C for 10 minutes. To 

stop labeling reaction, 100 μl of the ExoQuick-TC reagent were added to the 

labeled exosome sample suspension and mix by inverting. Labeled exosome were 

placed on ice for 30 minutes, and then centrifugated for 3 minutes at 14,000 rpm. 

After discarding supernatant with excess of label, exosome pellet were 

resuspended in the desired volume of 1x PBS and were ready to be monitored with 

a fluorescence microscope. 

 

2.5.7 STED microscopy  

Exosomes Exo-Red labelled (see paragraph 2.5.6) were deposited on a 

polylisinated glass coverslip. After 30-60 minutes incubation at RT, the sample was 

carefully washed and then analyzed by STED. The experiment was done in 

collaboration with Paolo Bianchini, IIT, Genoa. The setup used for the experiments 

is based on a conventional multiphoton, confocal, and super-resolution Leica TCS 

SP5 STED-CW gated microscope (Leica Micro- systems, Mannheim, Germany). 

 

2.5.8 STED super-resolution techniques coupled with Atomic Force 

microscopy (AFM) 
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Exosomes were incubated 15 minutes in milliQ water and then the suspension was 

deposited on a deeply cleaned glass coverslip. After 30-60 minutes incubation at 

room temperature, the sample was carefully washed and analyzed. The 

experiment was done in collaboration with Paolo Bianchini and Claudio Canale, IIT, 

Genoa. AFM experiments were carried out using a NanoWizard II system (JPK 

Instruments,Berlin, Germany), working in buffer solution at room temperature and 

using V-shaped silicon nitride cantilevers with a nominal spring constant of 0.24 

N/m (DNP-S, Veeco, Woodbury, NY; US) and typical tip radius of curvature of 10 

nm. Images were collected working in tapping mode to minimize the lateral force 

applied to the sample during scanning. The drive amplitude was set between 0.6-

1.5 V to induce a free amplitude oscillation of 0.7 V RMS. The tip resonance 

frequency was in the range between 15and 20 kHz. The AFM system is mounted on 

a multiphoton, confocal, and super-resolution Leica TCS SP5 STED-CW gated 

microscope (Leica Micro- systems, Mannheim, Germany). 

 

2.5.9 TIRF imaging and analysis  

Experiment performed in collaboration with C. Perego; University of Milan. Single-

cell imaging under TIRF illumination was carried out on live cells at 1 frame per 

second for 40 seconds in the continuous presence of Krebs (KRH) solution, 125 

mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM 4-(2-

Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) (buffered to pH 7.4) and 

2 mM CaCl2 (Sigma Aldrich), at 37°C with or without DOPAL 100 μM at different 

time points. Up to eight cells were imaged on each coverslip in three independent 

experiments by means of an AxiObserver Z1 inverted microscope (Carl Zeiss Inc.) 

equipped with an Argon laser at 37°C using a 100× 1.45 numerical aperture (NA) 

oil immersion objective. Green fluorescence was excited using the 488-nm laser 

line and imaged through a band-pass filter (Zeiss) onto a Retiga SRV CCD camera. 

TIRF images were analysed using Image-Pro Plus Analyser Image Software (Media 

Cybernetics, Bethesda, MD, USA). A set of automated image processing 

macro/subroutines was developed on the basis of existing algorithms of the 

Image-Pro Plus Analyser software (nearest neighbouring deconvolution, High 

Gaussian filtering). The resulting corrected images were then analysed for 
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selection and quantification of fluorescent spots according to their shapes, size and 

intensity. For each recorded cell image, the total number of vesicles, the average 

vesicle mobility and fluorescence intensity, the ratio between fixed (vesicles visible 

in at least 30 out of the 40 frames) and mobile vesicles and its associated standard 

deviation in each frame were calculated. 

 

2.6 Statistical analysis 

All quantitative data are expressed as mean ± SEM. Statistical significance of 

differences between two groups was assessed by unpaired t-test, while for 

multiple comparisons by one-way ANOVA with Turkey’s post-hoc test. Data were 

analyzed using using OriginPro 8.0 or GraphPad Prism 5. 
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CHAPTER III: 
Results and Discussion 

I PART. 1. Characterization of exosomes containing aS and DOPAL 
modified aS produced by transfected HEK293T cell 
 

Cells, as neurons 301, continuously secrete different types of vesicles to the 

extracellular space. In recent years, research on these vesicles has expanded 

considerably with a major focus on exosomes due to their emerging role in 

intercellular communication 302,303. 

In vitro experiments suggest that exosomal secretion by neurons depends on 

synaptic activity and that released exosomes are taken up by other neurons 304.  

Several studies have identified aS associated with these vesicles 126-127, suggesting 

that exosomes containing aS may contribute to the hierarchical propagation of α-

synucleinopathies seen in patient brains 127.  Coherently, also aS prefibrillar 

species, like oligomers, considered harmful and fundamental to the diseases 

process, are reported to be released within exosomes by neurons  126,197, 49.  

However, the details of aS transport via exosomes are not understood and whether 

exosomes play an important role in α-synucleinopathies spreading is still unclear.  

To address this question, we purified aS containing exosomes from aS-EGFP 

transfected HEK293Tcells and analyzed several biochemical properties.  

Since in PD dopaminergic neurons are primary affected, we focused on the 

interplay between aS aggregation process and dopamine metabolism. Increasing 

evidence supports the idea that altered dopamine metabolism is directly involved 

in the pathogenesis of PD. In particular, the levels of a toxic metabolite of 

dopamine, 3,4 Dihydroxyphenylacetaldehyde (DOPAL) has been found elevated in 

PD patient brains compared to controls 99. DOPAL has been demonstrated to 

chemically react with aS, inducing its aggregation. These aggregated species are 

strictly linked to cellular toxicity 49, but the role of DOPAL-modified aS containing 

exosomes in disease propagation has not been investigated yet.  
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Hence we decided to treat cells with DOPAL to induce aS aggregation and 

subsequently study the role of these modified aS species in disease spreading. 

 

In summary, in this part we will first illustrate the rationale in the choice of the 

experimental model and the strategies used to obtain purified vesicles. Then we 

will describe the characterization of aS and DOPAL-modified aS containing 

exosomes which have been used in the second part of this work to evaluate their 

effect when applied to neuronal and microglia cells.  

 
3.1 Experimental model 
 

One of the factors hindering the production of exosomes is the very low yield, 

therefore a high number of cells is needed to obtain an amount of exosomes 

suitable for their characterization and for their use as stimuli as described in the 

second part 305.  Human Embryonic Kidney (HEK293T) cells appeared to be the 

most fitting cell line, since they grow robustly and replicate fast 306. 

In addition, the project aims to purify exosomes that contain aS. In literature, a 

number of studies reported a strong correlation between the concentration of 

cytoplasmic proteins and their secretion through exosomes 307. Hence, we first 

quantified the amount of endogenous aS expressed by HEK293T cells.  As reported 

in Figure 18a, HEK293T cells contain a modest amount of endogenous aS, about 

40 pg/µg of total proteins.  

The amount of aS in HEK293T cells was assessed by comparing HEK293T cell 

lysate with samples of recombinant aS monomer of known concentrations ranging 

from 0.125 ng to 1 ng. The detection of aS in the standard curve and in the cell 

lysates was performed by Western Blot using an antibody against human aS (the 

epitope was mapped to amino acids 118-123: VDPDNE).  Two aliquots of total 

proteins of cell lysate were loaded for each cell line and the average of ng of aS/µg 

of total proteins between two samples was calculated (Figure 18).     

To validate our experimental choice, HEK293T cells were compared with a 

neuronal model, which could be considered a better paradigm of dopaminergic 

neuron physiology. Two human neuroblastoma-derived cell lines were tested, 

BE(2)-M17 and SH-SY5Y cells, which are both catecholaminergic. The SH-SY5Y cell 
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line (ATCC CRL-2266) is frequently used as a PD model, for its neuronal origin 

from SK-N-SH cells. 

 

 

Figure 188. Quantification of endogenous aS. Cell lysates of BE(2)-M17, SH-SY5Y and HEK293T 
were analyzed by Western Blot. a-c Western blot analysis using anti aS antibody (ab138501) 
revealed comparable amount of endogenous aS between BE(2)-M17, SH-SY5Y and HEK293T cells 
compared with a calibration curve of recombinant aS; b-d Standard curve extracted from the 
densitometry analyses of Western Blot. 

 

They express Tyrosine Hydroxylase and moderate levels of Dopamine βeta-

Hydroxylase, typical of noradrenergic cells. On the other hand, BE(2)-M17 cells 

(ATCC CRL-2267) have been cloned from SK-N-BE(2) cells, but their use has been 

limited. Recently, our group published an analysis of the catecholaminergic 

phenotype in SH-SY5Y and BE(2)-M17 cell lines upon differentiation 308 . This 

study pointed out that both cell lines can be easily differentiated to assume a 

neuron-like morphology. In terms of catecholamines levels and expression pattern 

of the relevant enzymes, SH-SY5Y cells acquire a more prominent noradrenergic 

phenotype upon differentiation with staurosporine. BE(2)-M17 cells reveal a more 

dopaminergic profile after treatment with retinoic acid and the basal level of both 

DA and NA in undifferentiated cells is higher in BE(2)-M17 cells.  

SH-SY5Y and BE(2)-M17 cells have a aS levels of 4,3 pg/µg and 3,5 pg/µg 

respectively (Figure18 c-d). 

The differences in aS expression level become very evident when over-expression 
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levels of aS-EGFP upon transient transfection were compared in the three cell 

lines. While PEI were suitable for HEK293T transfection, in BE(2)-M17 and SH-

SY5Y it causes nucleus fragmentation and cell death. In order to avoid toxicity, 

BE(2)-M17 and SH-SY5Y cells were transfected with Lipofectamine, a reagent 

optimized for efficiency and reproducibility across a broad range of cell types . 

 

 
Figure 19. aS-EGFP expression compared to WT aS in BE(2)-M17 cells. Western Blot of BE(2)-
M17 cells transfected with aS or aS-EGFP plasmids. Bands were visualized using an antibody 
against aS (ab138501) upon longer or shorter exposure (upper and lower panel, respectively). 

 

The choice to transfect cells with aS-EGFP instead of wild-type aS has three 

reasons. First, EGFP permits to follow directly the protein in transfected cells and, 

as described in the second part, exosomes treated cells, thanks to the fluorescent 

tag. Second, an anti EGFP antibody allows discriminating between endogenous aS 

and overexpressed aS. Third, the transfection with the wild type form is by far less 

efficient than the EGFP tagged one. Once equal amounts of cell lysates were loaded, 

a much longer exposure (at least 5-fold more) was necessary to reveal aS bands of 

transfected wild-type protein than aS-EGFP (Figure 19). 
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aS expression in transfected cells was then quantified using a calibration curve of 

recombinant aS-EGFP sample in the concentration range from 7.8 ng to 62.5 ng of 

purified protein (Figure 20a). Once the standard curve of aS-EGFP was obtained 

(Figure 20b), transfection levels in the three cellular models were calculated: 2.7 

ng/µg of total proteins for BE(2)-M17 cells, 15.1 ng/µg of total proteins for SH-

SY5Y cells and 30.0 ng/µg of total proteins for HEK293T cells (Figure 20c). These 

data indicate that aS-EGFP over-expression is three orders of magnitude higher 

than the endogenous aS in the considered cell lines. Moreover, HEK293T cells 

possess a level of expression at least 2 times higher than the other cell lines. 

 

 

Figure 20. Quantification of aS-EGFP expression. BE(2)-M17, SH-SY5Y and HEK293T cells aS-
EGFP transfected with Lipofectamine (LIPO) and aS-EGFP transfected HEK293T with PEI. a. 
Western blot analysis, using anti aS antibody (ab138501), of different amount of total proteins (μg) 
of cell lysates from BE(2)-M17, SH-SY5Y and HEK293T compared with a calibration curve of 
recombinant aS-EGFP; b. Standard curve extracted from the densitometry analyses of Blot a; c. 
Extracted values of ng of aS-EGFP and pg of endogenous aS per μg of total proteins present in the 
lysates of different cell types. 
 

Vesicles were then purified from the supernatant of BE(2)-M17, SH-SY5Y and 

HEK293T cells and each purification step was analyzed by Western Blot for both 

aS and aS-EGFP. As revealed by the Western Blot in Figure 21, endogenous aS 

could not be revealed, suggesting that a high amount of intracellular protein is 

needed to detect aS in exosomes fraction. Coherently, in BE(2)-M17 cells, which 

express less aS-EGFP/μg of total proteins in comparison to SH-SY5Y cells, also aS-

EGFP was not detectable in the exosomal fraction (Figure 21a).  
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Figure 21. aS is detectable in the SH-SY5Y and HEK293T derived exosomes. Western Blot 
analysis of exosomes purification from a. BE(2)-M17; b. SH-SY5Y and c. HEK293T cells. a. Exosomes 
purification from BE(2)-M17 non-treated and stimulated with 2 μM Ionomycin were compared. b. 
Exosomes purification from SH-SY5Y non-treated (cells were maintained in Opti-mem for 36 hours) 
and stimulated (with 0.5 μM Ionomycin or 50 mM KCl) were compared. c. Exosomes purification 
from aS-EGFP transfected and non-trasfected HEK293T cells stimulated with 2 μM Ionomycin were 
compared. Antibodies against aS (ab138501), GM130 and SOD2 for exosomes purification 
contamination, Hsp90, Hsp70, Flotillin, Tubulin and CD9 as exosomal proteins were used. cell lys= 
cell lysates; I and II pellet=the two first step of purification; SURN=surnatants; Exs=exosomal pellet.  
 

As reported in Figure 21 however, typical exosomal proteins, i.e. Hsp70 and CD9 

were present in our purification, while contaminants like a protein of the cis-Golgi, 

GM130, were absent. Instead, in SH-SY5Y and HEK293T cells, aS-EGFP was easily 
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detectable in the exosomes fraction. Also in this case the quality of the purification 

was confirmed by the presence of the exosomal proteins Hsp90, Hso79 and 

Flotillin, and by the absence of contaminants, i.e. SOD2 and GM130 (Figure 21b-c). 

Altogether these results suggest that aS can be detected in exosomal fractions, 

using the available tools,  only when substantially overexpressed by the cells. 

It is important to mention that even if SH-SY5Y derived exosomes were positive for 

aS-EGFP, these cells are very delicate to grow, to plate and to transfect in 

comparison with HEK293T cells, making exosomes purification more complicated 

and giving very low yields. 

 

The aim of this part of the project was to define an effective protocol to obtain 

exosomes at high yield and purity. Furthermore, we were interested in identifying 

an effective protocol to obtain both aS and DOPAL-modified aS. 

Although the detailed exosomes composition varies according to their origin and 

physiological conditions, most of the exosomes share a common set of lipids, 

proteins, and nucleic acids.  

In this frame, HEK293T cells appeared the most suitable experimental model and 

they were chosen for all vesicles isolation, similar to other works focused on aS 

propagation studies 297,309. 

 

3.2 Validation of Ionomycin as stimulus for exosomes purification 
  

Emmanoulidou and coworkers reported that exosomes release is a calcium 

dependent process 127. Hence, in order to increase exosomes purification yield, it 

was decided to stimulate cells with Ionomycin (Figure 22c)297, an ionophore that 

raises the intracellular level of calcium 310. 

To assess whether Ionomycin could be effectively used to increase exosomes 

release, different strategies were followed. First, HEK293T membranes were 

labeled with FM 1-43 (Figure 22a,c). This water-soluble dye, which is nontoxic to 

cells and non-fluorescent in aqueous medium, inserts into the outer leaflet of the 

cell membrane where it becomes intensely fluorescent with a maximum in 

emission at 598 nm.  
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Hence, HEK293T cells were FM 1-43 labeled, but transfected with aS-mCherry 

instead of aS-EGFP, to avoid overlay in the emission spectra of the two probes 

(Figure 22a). Then cells were treated with 2 μm Ionomycin and the labeled 

membrane fluorescence intensity of the purified vesicles was measured in bulk 

with a spectrofluorimeter (Figure 22b). The exosomes sample obtained from cells 

treated with Ionomycin (red line) show an increased fluorescence intensity (~3-

fold), confirming a higher volume of labeled membranes. We also tried to measure 

EGFP fluorescence ascribed to aS, but we detected no signal with the used quantity 

of sample. 

 

 

Figure 22. HEK293T cells treated with Ionomycin. a. HEK293T cells transfected with aSmCherry 
(red fluorescence) and labelled with the membrane dye FM 1-43 (green fluorescence). The image 
was acquired with an inverted microscope (Leica DMI4000), scale bar 25 μm; b. Fluorescence 
intensity graph of FM 1-43 shows an increased volume of labelled membranes in the presence of 
Ionomycin (Exs + iono) in comparison with the absence of the stimulus (Exs – Iono). As further 
control, the fluorescence intensity of the utilized buffer (PBS) and the supernatant of the last 
centrifuge (Surn) are reported; c-d Chemical formulae of Ionomycin calcium salt and FM 1-43 dye, 
respectively. 
 

To validate the assignment of the increased fluorescence to an actual increased 

amount of exosomes, a Western Blot analysis was performed, using antibodies 

against proteins specifically enriched in exosomes, i.e. flotillin and the chaperon 
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proteins Hsp70 and Hsp90 139. 

As detailed in materials and method (paragraph 2.2.3), exosomes were purified 

from the cell culture medium by differential steps of centrifugation with a final 

ultracentrifugation, which results in a pellet of small vesicles, among which 

exosomes. 

HEK293T cell lysate, the supernatant resulting from the last ultracentrifugation 

step and the purified exosomes are compared in the Western Blot reported in 

Figure 23, to determine the effectiveness of the purification protocol. The absence 

of exosomal proteins in the supernatants, even in the presence of Ionomycin, 

indicates that the protocol was effective to pellet all suspended exosomes. 

Moreover, the results reported in Figure 23 confirmed that, upon Ionomycin 

treatment, the amount of produced and consequentially purified exosomes was 

significantly higher, as demonstrated by the increased intensity of the bands 

relative to the exosomal proteins Hsp90, Hsp70 and Flotillin.  

 

 

Figure 23. Increased exosomes release upon Ionomycin stimulus. Western Blot analyses of 
transfected aSmCherry HEK293T cells stimulated with 2 μM Ionomycin. Hsp90, Hsp70 and Flotillin 
proteins were analyzed in the cell lysates (CL), supernatants of the pelleted exosomes (SURN) and 
purified vesicles (PELLET) using specific antibodies.   

 

A potential caveat in exosomes purification could be the presence of cell debris 

contaminations. Even if these extracellular vesicles are purified from the medium, 

cell debris in suspension, generated by occasional cell death, can co-precipitate 

with exosomes and spoil the purity of the pellet. Moreover, Ionomycin, that has 

been reported to induce apoptosis 311, can further contribute to cell death and 

exosome purification contamination. To define the toxicity threshold of the 

compound in our experimental model, an MTT test was performed to assess cell 

viability upon increasing Ionomycin concentration (from 0.2 µM to 10 µM) (Figure 

24a). The working concentration chosen for Ionomycin (2 μM) does not induce a 
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significant cell death when compared to untreated cells.   

 

 

Figure 24. Ionomycin does not contaminate HEK293T cells derived exosomes purification. a. 
MTT test was performed on HEK293T non treated (NT) and incubated with increasing Ionomycin 
concentration: 0.2 μM, 2 μM (our working concentration) and 10 μM (toxic concentration).  Data 
are expressed as mean ±SEM. Statistical significance was determined by one-way ANOVA with 
Tukey’s test (***p<0.001). Three independent experiment were assessed per condition; b. Western 
Blot analyses of cell lysates (CL), supernatants of the pelleted exosomes (SURN) and purified 
vesicles (PELLET) of HEK293T cells were probed against GM130 and cytochrome c (Cit C) proteins. 

 

However, this result was per se not sufficient to exclude a contamination in 

exosomes purification, being that it may still induce occasional cell death. To test 

this possibility, Western Blot analysis was performed, using antibodies against two 

proteins that should be present in the cell lysates, but not in exosomes: GM130, 

which is a cis-Golgi marker 312 and cytochrome C a mitochondrial membrane 

marker 313. As shown in Figure 24b, both are present only in the two lanes relative 

to cell lysates (positive control), suggesting that within the detection threshold of 

the antibody the purified exosomes were not contaminated by cell debris. 

 
3.3 Characterization of aS containing exosomes 
 

Two of the features that differentiate exosomes from other circulating vesicles are 

size and shape 139. To start the characterization of the purified exosomes we first 

analyzed their morphology by microscopy. In order to achieve a resolution 

compatible with expected exosomes size (30-100 nm), Transmission Electron 

Microscopy (TEM) was used (Figure 25a). This type of microscopy uses a beam of 

electron and their small de Broglie wavelength allows for imaging at a significantly 
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higher resolution than light microscopes (~5 nm).  

 

 

Figure 25. Determination of exosomes size and shape by TEM. a. TEM images of purified 
exosomes from HEK293T cells transfected with aSmCherry. Scale bar 50 nm; b. Distribution of 
exosomes diameter (nm), measured by ImageJ; c. The first row of the table indicates the mean size 
and the standard deviation of measured exosomes diameter (n=59), in the other two rows are 
reported the results of the paper 314 and 315. 

 

The morphometric analysis of our exosomes preparation allowed to define a 

distribution of diameters for the vesicles purified from aS-EGFP or aS-mCherry 

transfected HEK293T cells, using the image processing program (ImageJ).  

As reported in Figure 25b, purified exosomes comprised a homogenous 

population with an average particle diameter of about 60 nm, a value consistent 

with the range expected for exosomes, as reported by two others independent 

studies 314,315. In terms of actual shape, considering that TEM images are generated 

by electrons transmitted through an ultra-thin specimen of staining agent (0.05% 

uranyl acetate solution) and give two-dimensional projections of three-

dimensional exosomes, our results show that these projections are close to 

circular, as previously reported (see Table, Figure 25c) 314. Especially in the first 

image in Figure 25a appears some shrinkage effect likely due to the preparation of 

the sample for TEM imaging. 

The purified vesicles were also probed by Western Blot. As reported in Figure 

26a, proteins previously described as associated to exosomes, i.e. flotillin, Hsp90 

and Hsp70, were present in purified exosomes pellet. The presence of reporter 
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proteins associated to contaminations from cell debris, such as GM130 and 

cytochrome C 139 were below detection levels. Of relevance, aS was detected in the 

exosomes pellet using an antibody against aS (Figure 26a).  

The following question we addressed was the localization of aS, that, consistently 

with its aS membrane-binding properties and its emerging role in vesicle 

trafficking 316, could be associated to vesicle both on the inside or outside of the 

exosome membrane.  

 

 

Figure 26. Western Blot characterization of aS containing exosomes. a. Western Blot of 
exosomes purified from aS-EGFP trasfected HEK293T cells: GM130 (cis-Golgi Marker), Hsp90 (Heat 
Shock Protein 90), Hsp70 (Heat Shock Protein 90), Flotillin (exosomes marker) and aS (ab138501) 
antibodies were used; b. Proteinase K (PK) digestion of exosomes: exosomes were incubated with 
increased concentration of PK (0; 0,5 and 1.5 μg/mL) in the absence (-) and presence (+) of the 
detergent (1% Triton). Hsp90, CD9 (exosomes marker) and aS (ab138501) antibodies were used. 

 

To this aim, purified exosomes were incubated with a nonspecific protease 

(Proteinase K, PK), which could act only on proteins exposed to the outer surface 

of vesicles. 

As reported in Figure 26b, vesicles exposed to the proteolytic treatment were 

tested by Western Blot against Hsp90 (as negative control) which is a heat shock 

protein confined in exosomes and CD9, a tetraspanin commonly used to identify 

exosomes 139, which is present on their membrane with four hydrophobic 

transmembrane domains and two extracellular domains (as positive control). 

Hsp90 and aS are not affected by PK digestion, indicating that both are confined 
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within the vesicles. At 1.5 μg/mL concentration of PK the band assigned to CD9 

decrease in intensity, probably because PK has access to the protein extracellular 

domains. As expected, upon detergent treatment (+ Triton 1%), no bands were 

detected in the Western Blot, since Triton disrupts exosomes and these are not 

able to protect Hsp90 and aS from PK degradation.   

 

 

Figure 27. Immunofluorescence characterization of aS containing exosomes. Exosomes 
purified from aSmCherry trasfected HEK293T cells show colocalization between aSmCherry 
(Cherry, red fluorescence) and CD9 and Na+/K+-ATPase immunoreactivity (green fluorescence), as 
illustrated by yellow spots in the merge panel. Images were acquired using an epifluorescence 
microscopy (Leica 5000B). Scale bar 50 μM. 

 

To further validate the presence of aS within purified vesicles, immunostained 

exosomes were spotted on a glass slide and analyzed by fluorescence microscopy.  

As reported in Figure 27, a significant  colocalization was detected between aS and 

two exosomal marker proteins, CD9 and Na+/K+-ATPase 317, confirming their 

presence in the preparation. 

It is important to mention that the size of the spots (about 0.8 μm in diameter) 

suggest that the visualized exosomes could be clustered, rather that single vesicles. 

As reported above, the mean exosomes diameter should be, in fact, in the 60 nm 

range. It follows that the resolution of the epifluorescence microscope, is simply 

not enough to distinguish single vesicles from vesicle clusters. A typical 

epifluorescence illumination compound microscope, in fact, cannot resolve or 

distinguish between two objects that are close than 200 nm. Additionally, because 
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the whole sample is illuminated at the same time, both in-focus and out-of-focus 

objects are detected.  

 

 

Figure 19. STED characterization of aS containing exosomes. Exosomes purified from aS-EGFP 
trasfected HEK293T cells labelled with ExoRed. a. bright field image (BF); b. aS-EGFP (green 
fluorescence); c. exosomes RNA (red fluorescence); d. merge of aS-EGFP channel (green 
fluorescence) and exosomes RNA channel (red fluorescence) (merge 1); e. merge of BF, red and 
green channels (merge 2) . Images were acquired using a STED microscopy (Leica TCS Sp5 STED-
CW gated). Objective 100x. Scale bar 2.5 μM. 
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These limitations mean that it is not possible to resolve the spatial relationship of 

two different-colored probes, such as aS and CD9 or Na+/K+-ATPase.  

To overcome these problems, we moved to super-resolution microscopy using 

stimulated emission depletion (STED). STED microscopy operates by using two 

laser beams to illuminate the specimen. An excitation laser pulse (generally 

generated by a multiphoton laser) is closely followed by a doughnut-shaped red-

shifted pulse that is termed the STED beam. Excited fluorophores exposed to the 

STED beam are instantaneously returned to the ground state by means of 

stimulated emission. The non-linear depletion of the fluorescent state by the STED 

beam is the basis for super-resolution. Even though both laser pulses are 

diffraction-limited, the STED pulse is modified to feature a zero-intensity point at 

the center of focus with strong intensity at the periphery. When the two laser 

pulses are superimposed, only molecules that reside in the center of the STED 

beam can emit fluorescence, thus significantly restricting emission. This action 

effectively narrows the point-spread function and increases resolution beyond the 

diffraction limit. STED microscopy is in fact capable to reach 20 nm of lateral 

resolution and 40 to 50 nm of axial resolution. 

To identify exosomes by STED, a specific commercial dye (Exo-Red) was used. The 

Exo-Red stain is based on an Acridine Orange (AO).  AO is membrane permeable 

and it fluorescently-labels single-stranded RNAs inside of exosomes, emitting at 

650 nm (red). 

As reported in Figure 28, STED microscopy allows to better visualize the purified 

exosomes, permitting to distinguish individual exosomes, thanks to the improved 

resolution. To both confirm the presence of aS inside exosomes and determine the 

fraction of aS positive vesicles, we also analyzed the overlapping between aS and 

the Exo Red signals.  

Being that all the Exo Red labelled exosomes co-localize with the green 

fluorescence relative to aS-EGFP, it is confirmed that a homogeneous sample of aS 

containing exosomes were successfully purified. It should be mentioned that not 

all vesicles, which emitted in green (aS positive), were also Exo Red labelled.  This 

observation can be explained in two ways: either they are not exosomes, but other 

types of extracellular aS loaded vesicles without internal RNA or, being Exo Red 
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labelling a post purification procedure, not all exosomes were effectively marked. 

Considering that contaminants in the purified fraction of exosomes were below 

detection limit of the Western Blot analysis (Figure 26), all of the presented 

results suggest that the used protocol allows the purification of aS-EGFP loaded 

exosome from aS-EGFP transfected HEK293T cells. 

 

3.4 Characterization of exosomes containing DOPAL modified aS   

 
As mentioned above, DOPAL is a highly toxic dopamine metabolite that accumulate 

in neurons of parkinsonian brains, where it can chemically modify aS, leading to its 

oligomerization 318. Our hypothesis is that these misfolded aS species can be 

transmitted to other cells of the CNS. In this way, DOPAL-induced aS aggregates 

might exert deleterious effect, as impair synaptic vesicle function in recipient-

neurons 106. Moreover, DOPAL is also transmissible to glial cells and enhances 

intracellular oligomerization of aS, suggesting a possible mechanism for glial 

cytoplasmic inclusions formation in MSA 319. With these premises, the purification 

of exosomes containing DOPAL-modified aS appears of a great interest to define an 

experimental model of exosomes based spreading not only for PD, but for all α-

synucleinopathies, characterized by abnormal aS aggregation. 

 

3.4.1 Exosomes containing DOPAL modified aS are released from DOPAL 

treated HEK293T cells  

HEK293T cells were treated with exogenously administered DOPAL, that, being a 

neutral catechol is expected to easily cross membranes 319. 

In line with previous works 105,319-321, DOPAL was added to the growth medium at 

the final concentration of 100 µM, for overnight treatments 97,318.  

To verify whether DOPAL treatment leads to aS modifications in HEK293T cells, 

aS-EGFP overexpressing cells were incubated with 100 µM DOPAL. After 12 hours, 

cell lysates were subjected to the aminophenylboronic acid (APBA) resin (Figure 

29b), which allow the pull-down of DOPAL-modified proteins by binding to the 

diphenyl moiety 322. This is possible because the amino group links the 
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phenylboronate to the resin and the di-hydroxide on the Boron interacts with any 

molecule that contains a 1,2-cis-diol group, like DOPAL. 

 

 

Figure 20. aS is DOPAL modified in cell lysates and exosomes of HEK293Tcells. a. Pull down of 
DOPAL treated HEK293T cell lysates and derived exosomes were analyzed by Western Blot against 
aS and the exosomal markers Hsp90 and CD9. aS antibody (ab138501) revealed SDS-resistant 
oligomers formation upon DOPAL treatment; b. Chemical formula of 3,4 
Dihydroxyphenylacetaldehyde (DOPAL); c. The column graph represents aS EGFP band intensity in 
the pull down lines of cell lysates normalize to the relative inputs. Data are expressed as mean 
±SEM. Statistical significance was determined by unpaired t test (**p<0.01). Three independent 
experiments were assessed per condition. 

 

Considering that DOPAL mainly reacts with aS lysines at its N-term domain 97,108, 

both total cell lysates and the pull-down samples were analyzed by Western Blot 

using an antibody against the C-terminal domain of aS, and in particular to a no-

lysines region (amino acids 118-123: VDPDNE). In this way both aS and DOPAL-

modified aS are expected to be similarly recognized in our Western Blot analyses. 

Supportively, aS antibody recognized a smear and a more defined band 

corresponding to SDS-resistant aS oligomeric species at about 250 kDa only upon 
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DOPAL treatment (Figure 29a).  

As depicted in the pull-down panel, the resin bound also to non-modified aS. APBA 

is reported to interact, in fact, with any molecule that contains a 1,2-cis-diol group, 

like DOPAL, but also, for example, glycosylated proteins, like aS and Hsp90 323,324. 

Upon DOPAL treatment the enrichment of aS band in the correspondent pull-down 

lane, suggested that aS is DOPAL-modified in our experimental condition. 

In particular, in non-treated cell the pull-down aS relative to the inputs was 35% 

and increased up to 58% upon DOPAL treatment (Figure 29c). 

These results suggest that aS monomers in the exosomes were covalently modified 

by DOPAL molecules and formed SDS-resistant oligomers upon DOPAL treatment. 

Hsp90, used as a control, was detected in the pull-down lines too, but in an equal 

amount, suggesting that Hsp90 is not DOPAL-modified or at least not as much as 

aS. 

Once verified that in HEK293T aS-EGFP overexpressing system, DOPAL-modified 

aS and aS-DOPAL oligomers were formed upon DOPAL treatment, we next 

investigated whether aS-DOPAL oligomers were also present in the isolated 

exosomes. 

Exosomes were purified from the supernatant of HEK293T cells overexpressing 

aS-EGFP treated overnight with 100 µM DOPAL. Purified vesicles were enriched in 

typical exosomal proteins, i.e. CD9 and Hsp90, which were not detectable in the 

pull-down lanes even upon longer exposures as demonstrated by Western Blot 

analysis (Figure 29a). The presence of aS and DOPAL modified aS in exosomes 

was assessed with the same method used for cell lysates. As reported in Figure 

29a, exosomes present a band at about 55 kDa relative to aS-EGFP and the 

correspondent pull-down lane shows an increase in the detected aS. Moreover, 

only upon DOPAL treatment an aS positive band was detected at about 100 kDa, 

suggesting that these vesicles contain not only DOPAL-modified aS, but also DOPAL 

induced aS aggregated forms. Of note, not all the detected SDS-resistant aS-species 

in cell lysates have correspondent species in the lysates of exosomes obtained after  

DOPAL treatment. It is likely that the high level of transfection in HEK293T cells, 

which in fact are characterized by higher molecular weight aS species, can explain 

this difference. 
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Figure 30. STED characterization of DOPAL modified aS containing exosomes. Exosomes 
purified from aS-EGFP trasfected HEK293T treated with DOPAL and labelled with ExoRed. a. bright 
field image (BF); b. aS-EGFP (green fluorescence); c. exosomes RNA (red fluorescence); d. merge of 
aS-EGFP channel (green fluorescence) and exosomes RNA channel (red fluorescence) (merge 1); e. 
merge of BF, red and green channels (merge 2) . Images were acquired using a STED microscopy 
(Leica TCS Sp5 STED-CW gated). Objective 100x. Scale bar 2.5 μM. 

 

It is also important to mention, however, that exosomes are not only able to select 

their cargos, but also, in response of different stimuli, to enhance the concentration 
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of specific contained proteins 325. Therefore, it is probable that upon DOPAL 

treatment exosomal pathway select specific aS aggregated species to be secreted 

out from cells. 

These vesicles were further analyzed by STED microscopy (Figure 30). As for aS 

containing exosomes, they presented a good overlap between aS and the ExoRed 

signals, confirming the presence of aS inside exosomes.  

All together these results indicate that overexpression of aS and treatment of 

HEK293T cells with DOPAL result in the production of exosomes containing 

DOPAL modified aS. 

 

3.4.2 DOPAL induces aS aggregation in exosomes  

What emerges from the Western Blot analysis reported in Figure 29 is that, upon 

DOPAL treatment, both in HEK293T cells lysates and in the derived exosomes, aS 

forms SDS-resistant aggregates. To further characterize aS state, we have used 

size-exclusion chromatography (SEC) analysis, which permits to achieve additional 

information on non SDS-resistant aS forms. 

SEC is, in fact, a separation technique based on the relative differences in size or 

hydrodynamic volume of macromolecules, which interact with a porous stationary 

phase. Being an indirect analysis, SEC required a column calibration in order to 

determine for each experimental condition a correlation curve between the elution 

profile and the apparent molecular weights 326. Thus, as indicated by dash lines in 

Figure 31, Ferritin, BSA and cytochrome C were used as reference molecular 

weight for column calibration.  

The purified exosomes and cells lysates were then analyzed. For each SEC fraction 

eluted a Dot Blot analysis was performed, using an antibody against aS to identify 

aS positive fractions. Moreover, thanks to the EGFP-tag, for each SEC fraction 

eluted EGFP fluorescence intensity was measured (green continuous line in Figure 

31). The elution profiles of EGFP fluorescence intensity and aS Dot Blot intensities 

were then normalized to a corresponding total intensity for the area under the 

curves and then plotted as function of the elution volume (mL), to identify 

differences in terms of aS forms. 
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Figure 31. EGFP fluorescence signal is not sensitive enough to distinguish different aS-EGFP 
population in SEC separation. Quantification of the EGFP fluorescence (in green) and aS dot 
intensity (in black, antibody ab138501) in each SEC fraction normalized on total intensity area, 
except for exosomes EGFP fluorescence (n=1 for cell lysates, n=1 for three different exosomes 
purification). Dash line (--) indicated standards: Ferritin (440 kDa) at 11.5 mL, BSA (67 kDa) at 14 
mL and Cytochrome C (13.6 kDa) at 18.7 mL. 

 
Analyzing the profile of fluorescence intensity in cell lysates (green lines in the 

upper panel of Figure 31), a main peak at about 15 mL (57 kDa) is observed, 

which probably corresponds to aS-EGFP monomer. It appears bigger of its 

expected molecular weight (at about 55 kDa) likely because of its large 

hydrodynamic radius as monomeric aS 327. Accordingly, the 15 mL peak 

corresponds to a peak in the Dot Blot profile. The longer retention time shoulder 

(at 17 mL) instead, may correspond to degradation product of EGFP and it is not 

recognized by aS antibody. 

Interestingly aS band intensity profile appeared to have a higher resolution in 

comparison with EGFP signal. This is even more evident when the elution profiles 
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of exosome are compared: in the case of EGFP fluorescence almost no signal was 

detected, conversely the Dot Blot show different aS positive fractions (Figure 31). 

It would be also interesting to analyze in parallel EGFP positive fraction by 

Western Blot, in order to discriminate between endogenous and transfected aS, but 

EGFP antibody was not sensitive enough and endogenous aS was never detected in 

purified exosomes. Therefore, in the following experiments we chose to consider 

only aS Dot Blot intensity, even if a problem in this case is the narrow dynamic 

range of detection, that often result in signal saturation 328. 

First, cell lysates were analyzed and they did not show differences upon DOPAL 

treatment (left panel, Figure 32).  

 

 

Figure 32. DOPAL treatment  induce aS-EGFP oligomerization in exosomes. Quantification of 
aS band intensity not treated (in black) and upon DOPAL treatment (in red) in each SEC fraction 
normalized on total intensity area (n=1 for cell lysates, n=1 for three different exosomes 
purification). In the right panel cell lysates, in the left panel exosomes. Dash line (--) indicated 
standards: Ferritin (440 kDa) at 11.5 mL, BSA (67 kDa) at 14 mL and Cytochrome C (13.6 kDa) at 
18.7 mL. 

 

Under both conditions, the resulting chromatographic profile was very similar: a 

peak at about 15 mL, corresponding to aS-EGFP monomers, some degradation 

products at lower retention times and a big amount of aS positive aggregates after 

the void volume of the column (at 8 mL).  

The fact that this high molecular weight aS species were present in the absence of 

DOPAL treatment, suggests that aS aggregates by itself probably as a consequence 

of the high level of its expression in HEK293T cells. aS concentration in cytoplasm 
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in fact depends on the equilibrium between synthesis, clearance and aggregation. 

Once the balance among these processes is impaired, accumulation of the protein 

may result in increasing amount of aggregated species. This link has been 

demonstrated in many cellular lines, frequently with transient transfection of aS 

gene to reproduce protein over-expression, as in this case 28,329,330.  Also in familial 

and sporadic PD cases, multiplication of aS gene, i.e. duplication and triplication, 

enhance protein expression and buildup of aggregates 331. It is plausible to assume 

that the high amount of intracytoplasmic aS-EGFP led to its aggregation, hindering 

the aggregating effect induced by DOPAL. DOPAL-modified aS oligomers are better 

resolved by SDS-Page and Western Blot techniques 108,318, being them SDS 

resistant, as they result from the formation of covalent bounds. However, the 

reduced charge and increased hydrophobicity that is associated to the 

modification of aS lysines residues by DOPAL, might also cause the formation of 

intramolecular hydrophobic interactions leading to larger DOPAL induced aS-

oligomers, not SDS-resistant 107, which probably elute in the large peak 

corresponding to the void volume. It is important to mention, however, that also 

physiologically functional multimers 211 are characterized by a large hydrodynamic 

radius and are disrupted by SDS, suggesting that they might also elute in the void 

volume of the column. To distinguish between these two possible explanations, we 

are planning to perform a SDS-Page of the different SEC fraction in treated and not-

treated cells in order to achieve more information on SDS resistant and non-

resistant aS species. 

The SEC analysis was then applied to purified exosomes obtained from HEK263T 

cell naïve and exposed to DOPAL. As reported in the right panel of Figure 32, in 

this case the profiles present some differences upon DOPAL treatment. In vesicles 

derived from non-treated cells, the peak at 15 mL corresponding to the aS-EGFP 

monomer is still present, but in a small percentage relative to all detected aS (1.6 

%). The main aS positive fractions in fact are at higher and lower retention time. 

Interestingly, upon DOPAL treatment, aS population is almost exclusively present 

at a high molecular weight, suggesting an enrichment in large aggregated species 

in comparison with the non-treated sample.  
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In Figure 33, HEK293T cells and corresponding exosomes are compared. It 

appeared evident that they present a different aS positive fraction patterns.  

In the cell lysates, the most abundant aS fractions are the peak corresponding to 

aggregated species, which eluted between 7 and 10 mL and the monomer at 15 mL. 

In exosomes, instead aS eluted only after 10 mL, suggesting that these vesicles are 

able to load specific aS-EGFP populations. Coherently, cargo selection is finely 

regulated in exosomes 332, supporting their role as vehicle of information and 

toxicity. 

 

 
Figure 33. Exosomes select a specific aS-EGFP population. Quantification of aS band intensity in 
HEK293T cell lysates (light blue) and in exosomes (blue) in each SEC fraction normalized on total 
intensity area (n=1 for cell lysates, n=1 for three different exosomes purification). In the right not 
treated, in the left panel upon DOPAL treatment. Dash line (--) indicated standards: Ferritin (440 
kDa) at 11.5 mL, BSA (67 kDa) at 14 mL and Cytochrome C (13.6 kDa) at 18.7 mL. 

 

In conclusion purified exosomes contain SDS non-resistant oligomeric/multimeric 

aS, as reported by others 126,127.  Upon DOPAL cell treatment, they display also SDS-

resistant DOPAL-modified aS oligomers and increased SDS non-resistant species. 

This has a particular relevance since oligomers are considered the most toxic aS 

species and exosomes can protect them against extracellular protein degradation 

mechanisms, enhancing α-synucleinopathies propagation 49. 
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3.4.3 DOPAL modified aS localizes at the membranes and alters 

exosome’s  microenvironment  

Different mechanisms of cytotoxicity have been proposed for aS oligomers, in the 

several studies present in the literature on this subject 90, 333. Among others, a 

widespread hypothesis is that cytotoxicity is caused by the interaction of 

oligomers with the lipid bilayer of the cell membranes. This interaction is however 

highly dependent on the nature of both the oligomers and the lipids. Anionic lipids 

are required for interaction of the positive charges associate to the several lysines 

residues of aS with the lipid membrane, while increased exposure of hydrophobic 

patches from highly dynamic protein oligomers have been proposed to be 

structural determinants of cytotoxicity of the oligomers 333.  The latter observation 

is particularly relevant for exosomes, in which lipids play a vital role in their 

biogenesis and are characteristic of the cell origin 166. 

Therefore, once demonstrated the presence of aS oligomers inside purified 

exosomes, the following step was to explore their interaction with exosomes 

membrane. 

To this aim, a correlative approach based on coupling STED super-resolution 

techniques with Atomic Force microscopy (AFM) was used. In this way it was 

possible to combine precise topological information, local stiffness measurements 

and specific fluorescence imaging 334. 

AFM, in fact, has been largely used to reveal the oligomeric assemblies on lipid 

membrane due to its nanometer-scale resolution combines with the ability to 

image biomolecular interactions in liquid environment 335. 

As reported in Figure 34, broken exosomes were firstly observed by STED 

microscopy, which permitted to identify aS in a crowded exosomes environment 

thanks to its EGFP tag. Then STED was combined with AFM in order to provide 

topological information on the very same frame of the analyzed sample.  

Interestingly, only in DOPAL treated cells derived exosomes, aS-EGFP was identify 

on a surface, which was compatible in thickness with a lipid bilayer (3-4 nm). 

Moreover, the STED-identified green fluorescence region associated to aS-EGFP 

corresponded to a high rise of 3-4 nm, identified by AFM, confirming the perfect 
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overlap between the images generated by the two microscopies and suggesting the 

presence of one oligomer of aS-DOPAL placed on the membrane surface. The fact 

that aS containing exosomes did not present aS localized at the exosomal 

membrane can be explained by the different nature of their oligomers. DOPAL 

oligomers are, in fact, characterized by a reduced proteins charge and increased 

hydrophobicity, due to lysines modification 108.  

 

 

Figure 34. aS DOPAL oligomers localize at the membranes. Broken exosomes purified from aS-
EGFP transfected cells and treated with DOPAL were analyzed by STED microscopy coupled with 
AFM. a. STED images of the green fluorescence associated with aS-EGFP inside exosomes. The 
image was acquired using a Leica TCS Sp5 STED-CW gated. Objective 100x c. Scale bar5 μm; b. AFM 
image corresponding to the area identified by the white square in (a). The image was acquired 
using a JPK Instruments, Berlin, Germany; c. Merge of the STED (a) and AFM (b) image underlining 
the presence of the aS-EGFP associated fluorescence on the lipid membrane. At least, three 
independent experiments were performed. 

 

The interaction between oligomers and the lipid bilayer of the cell membranes are 

supposed to lead to membrane disruption or even pore formation. The formation 

of an actual ion channel could lead to membrane disruption, eventually resulting in 

depolarization, dysregulation of signal transduction and perturbations in ion 

homeostasis 333. 

Since it was previously shown in our laboratory that DOPAL modified aS oligomers 

can permeabilize cholesterol-containing lipid membranes mimicking synaptic 

vesicles in vitro 107, we made the hypothesis that they were also able to alter 

exosomes microenvironment. 

To investigate the capacity of aS-DOPAL oligomers to permeabilize exosomes, we 

used atomic absorption to quantify the ionic composition of exosomes. 

Several studies reported the composition of the loaded cargo of exosomes, 
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indicating the presence of copper, iron and calcium-binding proteins like 

transferrin 336, SOD1 337 and calmodulin 338. Moreover, endolysosomes, exosomes 

biogenesis compartment, provide storage for intracellular Ca2+ (approximately 0.5 

mM of luminal Ca2+ concentration 339,340).  

In this frame, purified vesicles were analyzed for the presence of Ca2+, Cu and Fe. 

The quantity of ions (μg) were normalize on exosomes protein content.  

As illustrated in Table 2, purified, Ca2+ and Cu (μg) were at about 50 times less in 

vesicles derived from DOPAL treated in comparison to untreated aS transfected 

cells. Fe amount showed smaller differences between the two conditions. 

 

 

Table 2. The table resume the µg of Ca, Fe and Cu per µg of proteins in purified exosomes 
from DOPAL treated and not treated HEK293T cells. The ratio is calculated between treated and 
not treated samples. 

 

These results suggest that DOPAL lead to the formation of DOPAL aS oligomers, 

which in turn alters exosomes microenvironment, possibly by permeabilizing their 

membrane, leading to Ca2+ and Cu free diffusion. Conversely, Fe did not display the 

same trend and this observation can be partially explained by analyzing iron 

homeostasis. 

Redox active metals ion such as iron (but also copper) are cofactors in multiple 

redox reactions, thus they are also involved in the production of potentially 

damaging radical species through Fenton or Haber–Weiss reactions341. 

Consequentially, all organisms have redundant mechanisms for controlling their 

concentrations. For this reasons, it is highly probable that in the exosomes there is 

almost no free iron, but it is mostly bound to proteins, like transferrin (80 kDa, Kd 

= 10-23 M at neutral pH). Coherently, transferrin, or any other iron protein, due to 

their size do not pass through permeabilizing DOPAL aS oligomers. The same 

argument should hold for copper ions; however we observe a significant decrease 

in exosomes from DOPAL treated derived cells.  The hypothesis of 
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permeabilization is perfectly coherent with the observed decrease, instead, in the 

calcium content. 

 

To summarize, these results suggest that the microenvironment of DOPAL 

modified aS containing exosomes is altered in comparison with exosomes 

containing unmodified aS, probably due to the alteration of exosomes membrane 

as confirmed by localization of DOPAL-modified aS oligomers on the lipid bilayer. 

This aspect might indicate in the permeabilization activity one of or the toxic 

mechanism(s) associated to DOPAL aS oligomers and contribute to the increased 

toxicity of DOPAL modified aS containing exosomes upon incubation with neuronal 

cells, as it will be illustrated in the following section.  
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II PART: Effects of aS containing exosomes on cells 
 

The second part of this thesis focuses on the consequences of DOPAL modified-aS 

free or within exosomes on microglia activation and neuronal function. 

In recent years, extracellular aS received extensive scientific attention for its 

potential role in disease initiation and progression. Considering the nature of 

neurodegenerative disorders as well as the defined, step-wise spreading of Lewy 

body pathology in PD 109 the idea of extracellular aS as a pathogenic ‘prion-like’ 

agent is appealing.  

Among different mechanisms of aS secretion reported in the literature, exosomes 

seem to be of relevance for several reasons: (i) aS containing exosomes are 

released and internalized by neurons and microglia 342; (ii) exosomal 

encapsulation of aS confers protection against extracellular protein degradation 

mechanisms 343, enhancing exosomes probability to play a role in aS toxic species 

transmission; (iii) these vesicles provide a confined and controlled environments 

for aS nucleation, which may promote aggregation and lead to toxicity and 

neurodegeneration 127,344; (iv) it was recently shown that exosomes isolated from 

plasma of PD patients contain higher levels of aS when compared to exosomes 

from control individuals 345. 

However, the precise role of exosomes in the spreading of aS pathology needs to be 

further detailed and the aim of this second section is to explore the effect(s) of 

purified exosomes on neurons and microglia, which are for different aspects the 

two main cell players in α-synucleinopathies. 

 

3.5 DOPAL modifies also EGFP in aS-EGFP protein  

 
We initially characterized the DOPAL-modifying properties of aS-EGFP in vitro, to 

rule out any potential effect of DOPAL on the GFP tag. For this purpose, 

recombinant aS-GFP and the empty vector (with only the EGFP sequence) were 

expressed in E. coli.  

As reported in Figure 35, the molecular weight of recombinant aS-EGFP and EGFP 

produced by E. coli were comparable to the proteins expressed in HEK293T cell 
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lysate.  As indicated by the arrow (Figure 35a), in EGFP gel purification, a band of 

approximately 20 KDa was detected, which is probably due to a degradation 

products of EGFP protein.  

 

 

Figure 35. Production of recombinant EGFP and aS-EGFP. a. SDS-PAGE gel Coumassie stained 
with 0.5, 1 and 2 µg of BSA and 0.6 and 0.9 µg of EGFP; b. SDS gel Coumassie stained with 0.5, 1 and 
2 µg of BSA and 0.6 and 1.2 µg of aS-EGFP. a, b, c are different steps of the purification. In the 
correspondent bottom panel, there are the standard curves extracted from the gel densitometry 
analysis.  
 

Recombinant aS-EGFP and EGFP concentrations were assessed by comparison 

with BSA samples of known concentrations in the concentration range of 0.5 µg to 

1 µg.  Protein relative amounts were determined measuring band intensity. Once a 

standard curve was obtained, the EGFP and aS-EGFP contents were estimated 

(Figure 35). The quantification was confirmed by UV absorbance. As expected 

recombinant EGFP and aS-EGFP showed an absorption maximum between 275 

and 280 nm, due to the presence of the aromatic amino acids tryptophan (Trp) and 

tyrosine (Tyr): EGFP has 1 Trp, 11 Tyr and no disulfide bonds (Ext. coefficient 

21890 M-1 cm-1); aS-EGFP has 1 Trp, 15 Tyr and no disulfide bonds (Ext. coefficient 

27850 M-1 cm-1) (Figure 36). 
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Figure 36. UV-Vis spectra from 240 to 300 nm of recombinant aS-EGFP and EGFP.  

 

In order to operate within the relevant range of concentrations, before starting the 

study of the in vitro reaction between the recombinant proteins and DOPAL, the 

molarity of aS-EGFP and EGFP was estimated in transfected HEK293T cells.  To this 

aim, EGFP expression level in transfected cells was assessed in relation to a 

calibration curve of recombinant aS-EGFP samples of known concentration in the 

range from 0.125 ng to 2 ng (Figure 37a). Once the standard curve of aS-EGFP was 

obtained (Figure 37b), the first part of the curve was fitted and the EGFP 

transfection levels were calculated: 55 ng of EGFP/µg of total proteins for 

HEK293T cells (Figure 37c). We also measured aS-EGFP transfection levels, 

confirming that was around 30 ng of aS-EGFP per µg of total proteins for HEK293T 

cells (compare Figure 20c). Considering the total volume of plated cells, these data 

provide the indication that aS-EGFP and EGFP are present in cells at about 1 μM 

concentration. 

To maintain a similar concentration present in the cell model, the in vitro control 

reaction was conducted with 1 uM proteins and a EGFP or aS-EGFP: DOPAL ratio of 

1:100, at 37 ̊C overnight. 

As reported in Figure 38b, DOPAL per se did not form any detectable high 

molecular weight aggregates. The presence of attached EGFP-tag did not prevent 

aS aggregation, as demonstrated by bands at 250 kDa and over. Interestingly, also 

EGFP aggregated. As mentioned before, DOPAL is a reactive aldehyde with no 
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particular specificity: the aldehyde moiety is highly reactive against amino groups 

such as lysine residues of proteins, through a Schiff base mechanism 97. 

 

 

Figure 37. Molarity calculation of EGFP and aS-EGFP expression in HEK293T cells. HEK293T 
cells EGFP and aS-EGFP transfected with PEI. a. Western blot analysis using an anti-GFP antibody of 
different amount of total proteins (μg) of cell lysates from HEK293T compared with a calibration 
curve of recombinant aS-EGFP; b. Standard curve extracted from the densitometry analyses of Blot 
a; c. Extracted values of ng of EGFP and aS-EGFP per 2.5 and 5 μg of total proteins present in the 
lysates of HEK293T cells. 

 

 

EGFP has 20 lysines almost all exposed to the solvent (Figure 38a) and, hence, it is 

easily modifiable by DOPAL. 

In the light of these results, the subsequent experiments were carried out using as 

controls exosomes derived from HEK293T cells transfected with only EGFP in 

parallel with aS-EGFP containing exosomes.  

In this way, it was possible to directly follow aS thanks to its fluorescent tag, but 

also discriminate potential EGFP’s contribution.  
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Figure 38. DOPAL modifies also EGFP lysines. a. PDB extracted structure of EGFP protein with 
depicted lysines residues, Reference: UniProtKB (P42212); b. Coumassie stained SDS-PAGE gel 
reporting, from left to right, molecular weight, buffer (PBS), PBS + DOPAL, recombinant EGFP, EGFP 
+ DOPAL, aS-EGFP and aS-EGFP + DOPAL. 
 

To better determine which are the DOPAL modified amino acids, mass 

spectrometry analysis is ongoing on cells -and exosomes-derived aS-EGFP and 

EGFP. 

 

3.6 Quantification of exosomes cargo 
 

The actual amount of purified exosomes depends on several variables, such as the 

quantity of cells seeded, transfection efficiency, DOPAL treatment and pellet 

resuspension leading to variable yields across preparations. As reported in Figure 

39a, in fact, three different purifications led to different exosomes yields. The ratio 

between the analyzed cargos loaded into the exosomes and the housekeeping 

proteins (Hsp90) does not show statistically significant differences among the four 

conditions (Figure 39b), suggesting that in all cases exosomes were loaded with 

comparable amounts of aS-EGFP or EGFP even in the presence of DOPAL 

treatment. 

Considering these results, prior to any further experiment in which exosomes are 

used as stimuli, it was decided to define a procedure to quantify exosomes in terms 

of diverse cargo amounts loading that correspond to the same number of 
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exosomes (in terms of Hsp90 amount, Figure 39a). 

 

 

Figure 39. Distinct exosomes purification leads to different exosomes amount. a. Western 
Blot analysis of HEK293T cell derived exosomes containing EGFP and aS-EGFP, treated and non-
treated with DOPAL (100 μM). Vesicle cargos were detected with an anti-GFP antibody, Hsp90 with 
an anti-Hsp90 antibody; b. Column graph of cargo amount (EGFP or aS-EGFP respectively) 
normalize on Hsp90. Data are expressed as mean ±SEM. No statistical significance was determined 
by one-way ANOVA with Tukey’s test. Four independent experiments were assessed per condition.  
 

To this aim, different exosomes purification was combined and the same volume of 

exosomes resuspension was loaded in a gel. An example is reported in Figure 40a, 

vesicles containing EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified 

aS-EGFP were analyzed by Western Blot using an antibody against EGFP, and their 

quantification were evaluated by comparison with recombinant aS-EGFP samples 

of known concentration used to generate a calibration curve in the concentration 

range of 0.08 ng to 2.5 ng.   
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Figure 40. Quantification of exosomes cargo.  a. Western Blot analysis of HEK293T cell derived 
exosomes containing EGFP and aS-EGFP, treated and non-treated with DOPAL (100 μM) compared 
with a calibration curve of recombinant aS-EGFP. Vesicle cargos and recombinant aS-EGFP were 
detected with an anti-GFP antibody; b. Standard curve extracted from the densitometry analyses of 
Blot a; c. Extracted values of ng and molarity (nM) of EGFP and aS-EGFP per 15 μl of purified 
exosomes suspension. 

  
The relative amounts of proteins were determined by measuring band intensity. 

Once a standard curve was obtained (Figure 40b), the EGFP and aS-EGFP ng were 

established as reported in the table (Figure 40c). Then, the molarity of each 

sample was calculated in order to treat neurons and microglia with the same 

amounts of aS-EGFP and EGFP molecules. 

 

3.7 Effects of aS containing exosomes on  neurons 
 

The pathophysiological role of  aS containing exosomes on neurons remains 

essentially unknown 126,301, however, these vesicles have been proposed to be 

secreted in a spatially and temporally directed manner in neuronal synapses 346.  
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Under pathological condition, synapses appeared as the primary sites of aS 

aggregation and increasing evidence suggests the presence of these misfolded aS 

species inside exosomes 126. Coherently, many synaptic boutons contain the sites of 

exosomes storage and formation (MVBs) in close contact with the presynaptic 

membrane 347,348 and exosomes secretion is modulated by synaptic activity in 

mature neurons 134,349,350.  

On these bases, we investigated the hypothesis that exosomes are involved in both 

release of aS toxic species and their transmission among cells, probably through a 

trans-synaptic pathway. 

 

To this aim, we planned to study the effect of both aS-EGFP and DOPAL-modified 

aS-EGFP loaded exosomes on synapses of primary cortical neurons. 

As reported in 3.4 paragraph, these exosomes carried oligomeric forms of the 

protein, that are strictly linked to cellular toxicity 107 and might mediate a role  in 

α-synucleinopathies propagation.  

 

3.7.1 aS containing exosomes alter synaptic proteins amount 

Before treating neurons, purified exosomes were quantified by Western Blot 

analyses in terms of cargo amount, as reported in paragraph 3.6.  

Then, primary cortical neurons were incubated 24 hours with the same amount of  

EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified aS-EGFP containing 

exosomes.   

To investigate our hypothesis of a synaptic effect upon exosomes treatment, we 

first choose to quantify synaptophisin. This protein, in fact, is commonly used as a 

synaptic marker 351, being one of most abundant pre-synaptic vesicles proteins 222. 

Moreover, not only it plays a key role in the physiologic function of the sybII, a 

known binding partner of aS 222 , but its levels have been correlated with synaptic 

function, memory and neuronal survival 352,353 . 

As reported in Figure 41, after 24 hours of incubation with DOPAL-modified aS-

EGFP loaded exosomes, primary neurons displayed a reduced amount of 

synaptophysin in comparison with controls, as demonstrated by Western Blot 
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analysis of cell lysates. This result could be correlated with a decline in the number 

and quality of synapses in neuronal networks as occurs in dementia disease states 

249,354,355. 

 

 

Figure 41. Exosomes effect on synaptophysin amount. Primary cortical neurons at DIV 14 were 
incubated with EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified aS-EGFP containing 
exosomes. a. Western Blot analysis of non-treated (NT), and exosomes (Exs) treated neurons, 
antibodies against Hsp90, as loading control and synaptophysin were used; b. Column graph of 
synaptophysin band intensity normalize of Hsp90 in all conditions. Data are expressed as mean 
±SEM. Statistical significance was determined by one-way ANOVA with Tukey’s test * p<0.1; ** 
p<0.001. Three independent experiments were assessed for each condition.  

 

However, an altered amount of synapses could also be associated with an 

impairment in the postsynaptic density (PSD) microdomains. The best studied 

marker of the post-synapses is PSD-95, a key multimeric scaffold for clustering 

receptors, ion channels, and signaling proteins in the PSD 356. 

Hence, primary neurons at DIV 14 were incubated 24 hours with exosomes and  

immune fluorescence labeling of PSD-95 was performed. MAP2 positive neurons 

demonstrate punctate PSD-95 labeling co-localizing with dendritic spines (Figure 

42a). However, cells incubated with aS containing exosomes displayed decreased 

dendritic PSD-95 immunoreactivity compared to control neurons (Figure 42a-b), 

suggesting reduced inputs between treated neurons 357.  Moreover, this effect was 

more significantly different upon incubation with DOPAL-modified aS-EGFP 

containing exosomes in comparison with controls, i.e. non-treated neurons and 

EGFP, DOPAL-modified EGFP containing exosomes treated neurons. 



                                                                                   Chapter III: Results and Discussions 

98 
 
 

The measured PSD-95 reduction upon aS containing exosomes incubation is 

coherent with synaptophysin alteration and suggests that the treated neurons 

exhibited an altered level of synaptic proteins compared to non-treated cells. 

Coherently, reductions in PSD-95 have been observed in Alzheimer Disease (AD) 

358, although not consistently 359, and associated to learning and memory deficits in 

mice 360. Moreover, a study by Francis and co-workers demonstrate that DLB and 

PD post mortem brains were characterized by significant reductions of PSD-95 in 

prefrontal cortex compared with controls and AD 361 . 

 

 

 
Figure 42. aS containing exosomes reduced the amount of PSD-95. Primary cortical neurons at 
DIV 14 were incubated with EGFP, DOPAL-modified EGFP (EGFP + D), aS-EGFP and DOPAL-
modified aS-EGFP (aS-EGFP + D) containing exosomes for 24 hrs. a. Confocal images of non-treated 
(NT), and exosomes (EGFP, EGFP + D, aS-EGFP and aS-EGFP + D) treated neurons. Antibodies 
against the neuronal marker MAP2 (green) and PSD-95 (red) were used. Images were acquired 
using a Leica confocal microscopy (Leica TCS SP5) with a 63x objective. Scale bar 4 μM; b. Column 
graph of the number of PSD-95 puncta per μm of neurites. Data are expressed as mean ±SEM. 
Statistical significance was determined by unpaired t test (*p<0.001, **p<0.01 ). Three independent 
experiment were assessed per condition. 

 

In conclusion, these results suggest that aS containing exosomes alter the normal 

amount of the synaptic proteins, i.e. synaptophysin and PSD-95. The effect was 

more evident in the presence of aS DOPAL-modified containing exosomes, likely 

due to the increased amount and different natures of their aS aggregated species. 

DOPAL aS oligomers have been, in fact, proposed to interact with lipid bilayer of 
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the cell membranes, leading to membrane disruption or pore formation 104,107. This 

hypothesis is consistent with the fact that DOPAL aS oligomers localized at 

membranes and they can alter exosomes content, as previously assessed by AFM 

and atomic absorption experiments (paragraph 3.4.3.). 

Another hypothesis is that DOPAL-modified aS contained in exosomes might seed 

the aggregation of neuronal endogenous aS (as reported in Figure 53) causing the 

alteration of its physiological function 50,52 and a redistribution of the synaptic 

proteins 249. 

 

3.7.2 aS containing exosomes impact synaptic vesicle pools  

A reduced amount of the synaptic proteins synaptophysin and PSD-95, however, 

could also be correlated with an altered synaptic function 362. 

 

 

Figure 43. aS containing exosomes alter synaptic vesicles pools in primary neurons. a. TEM 
images of mice primary neurons synapses not treated (NT) and treated with EGFP, DOPAL-
modified EGFP (EGFP + D), aS-EGFP, DOPAL-modified aS-EGFP (aS-EGFP + D) containing exosomes 
for 24 hours. Asterisks indicate the active zone. Scale bar 500 nm; b. Frequency distribution of 
vesicles distance from the active zone of primary neurons in NT and treated neurons (from left to 
right); n=20-25 synapses from at least three independent experiments were analyzed. 

 

A clear readout for synaptic impairment is however, synaptic structure, since its 

alteration has profound effects on function 363. This is substantiated by the fact that 

many neurological and psychiatric illnesses are associated with alterations in 

synapse structure. The presynaptic terminal has a complex architecture, with 

synaptic vesicles located at different distances from the active zone and 
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functionally organized in three main pools: reserve, recycling, and readily 

releasable pool 363. Therefore, to evaluate synaptic structure, we measured the 

relative distributions of the distances between vesicles pools and the active zone of 

the synapses 364. To this aim, primary neurons at DIV 14 were treated 24 hours 

with exosomes and synapses were imaged by TEM (Figure 43a). As it emerges 

from the relative distributions of the distances between vesicles and the active 

zone, aS-EGFP and DOPAL-modified aS-EGFP containing exosomes lead to an 

alteration of the synaptic vesicles pools (Figure 43b).  

Upon aS-EGFP and DOPAL-modified aS-EGFP containing exosomes incubation, 

synaptic vesicles were not only more distant from the active zone, but also reduced 

in number, as depicted in Figure 44.   

 

 

Figure 44. aS containing exosomes affect vesicle number. Column graph of the number of 
vesicles/synapse show a significant reduction after aS-EGFP and DOPAL-modified containing 
exosomes (aS-EGFP + D) treatment. Bars represent mean ±SEM from n=20-25 synapses from at 
least three independent experiments. Asterisks indicate statistical significance by two-way ANOVA 
(**p< 0.01, *p< 0.1).  

 

This result correlate only in part with a reduced amount of the presynaptic vesicles 

marker synaptophysin, which was significantly different in comparison with 

controls only for DOPAL-modified aS containing exosomes (Figure 41). This 

apparent incongruence can be explained by the increased sensitivity of TEM 

analysis in comparison with Western Blot. On these basis, we proposed to increase 

the biological replications for the synaptophysin amount quantification, in order to 

likely underline a toxic effect ascribable also to aS containing exosomes. 
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Figure 45. Primary cortical neurons interact with exosomes. Primary cortical neurons (DIV 14) 
were labeled with β-tubulin III (red), a neuronal marker; GFP antibody (green) and DAPI (blue). a. 
Confocal images of non treated neurons; b. confocal images of neurons incubated with EGFP 
containing exosomes (upper left panel); DOPAL modified EGFP containing exosomes (upper right 
panel), aS-EGFP containing exosomes (bottom left panel); DOPAL modified aS-EGFP containing 
exosomes (bottom right panel). White arrows indicated EGFP positive signals and in the bottom left 
of each image ROI are zoomed. Images were acquired using a Leica confocal microscopy (Leica TCS 
SP5) with a 40x objective. Scale bar 5 μM. 
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However, these results suggest that aS and DOPAL-modified aS containing 

exosomes exert a toxic effect at the synaptic level. 

Therefore, we next investigate if these damages were effectively mediated by 

exosomes internalization. 

To this aim, treated neurons, identified by the specific β-tubulin III protein (red, 

Figure 45), were washed, fixed and imaged by means of a confocal microscope. As 

reported in Figure 45b exosomal cargo associated fluorescence (green EGFP) is 

close to β-tubulin III, with no apparent differences among the diverse type of 

stimuli used. 

This result suggests internalization, but was not sufficient to clearly assess it. 

Therefore, we are planning to correlate Cryo-electron microscopy (cryo-EM), to 

take advantage of the high-resolution technique and observe synapsis, and 

fluorescence microscopy, to detect specifically aS-EGFP. In this way, we would be 

able not only to detect exosomal cargos internalization, but also whether it occurs 

preferentially at synaptic sites. 

 

3.7.3 aS containing exosomes alter neuronal morphology  

Reduced synaptic proteins amount and functional impairment can also impact 

neurite length and neuronal morphology, as reported in primary neurons by 

induced-aS toxicity 353 . 

To verify if aS containing exosomes can exert a similar effect, we quantified the 

complexity of dendritic arbors by Sholl analysis 365,366, a widely used method in 

neurobiology 367.  

In the basic procedure, the number of intersections of neuritic processes with 

circles of increasing radii centered in the cell soma are counted.  

As reported in Figure 46, the chosen descriptors were (1) enclosing radius 

express in μm, which reflects the Feret length of the arbor, (2) centroid radius 

express in μm, which is the abscissa of the centroid (i.e., the geometric center or 

barycenter) of the linear profile, (3) sum of intersection express as power of ten, 

which is represents the degree of ramification of a neurite tree.  

In comparison with the control, exosomes per se did not alter neuron arbors, as 
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demonstrated by non-significant differences between non-treated and EGFP 

containing exosomes treated neurons. Moreover, also DOPAL treatment does not 

cause any significant effect (negative control DOPAL-modified EGFP containing 

exosomes).  

 

 

Figure 46. Sholl analysis of exosomes treated primary cortical neurons. GFP expressing 
neurons at DIV 14 were incubated 24 hours with the same amount, in terms of cargo, with 
exosomes containing GFP; DOPAL-modified EGFP, aS-GFP and DOPAL-modified aS-EGFP. a. 
Fluorescence images representative of the analyzed neurons for each condition (upper panel) and 
corresponded segmented images showing what will be sampled by Sholl Analysis (bottom panel). 
Images are taken with a Leica microscope 5000B with a 40x objective. Scale bar is 100 µm; b. 
Column graphs of, from left to right, Enclosing radius, Centroid radius and Sum of intersections. 
Data are expressed as mean ±SEM. Statistical significance was determined by one-way ANOVA with 
Tukey’s test (* stands for significance to control, $ stands for significance to GFP containing 
exosomes and ° stands for significance to DOPAL modified GFP containing exosomes) *,$,° p<0.1; **, 
$$, °° p<0.001; ***,$$$,°°° p<0.0001. Three independent experiments were assessed per condition. 
CTRL=control; GFP= upon GFP containing exosomes incubation; GFP+D= upon DOPAL-modified 
EGFP containing exosomes incubation; aS=upon aS-EGFP containing exosomes incubation and aS+D 
= upon DOPAL-modified aS-EGFP containing exosomes incubation. 
 

 

Interestingly, neurons morphology was altered not only by DOPAL-modified aS, as 
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synaptophysin amount, but also by aS containing exosomes per se, confirming the 

reduced PSD-95 and impaired synaptic structure reported above and suggesting a 

possible role of aS aggregated species in inducing neuronal alteration. 

It is important to mention that a significant toxicity of DOPAL oligomers was 

confirmed also in this experiment, as assessed by a significant reduction in terms 

of centroid radius and sum of intersections in comparison with control (Figure 

46b). 

In conclusion, aS containing exosomes seem to exert a specific toxic role at 

neuronal synapses, as demonstrated by reduction of synaptic proteins levels, 

alteration of the synaptic structure and neurites retraction.   

 

3.7.4 Exosomes effect on neuronal viability  

aS cannot only affects synaptic function and neuronal morphology, but also cell 

viability, as report by many groups 142,254,353. For instance, conditioned media of aS 

expressing cells impact neuronal survival, inducing drastic morphological changes, 

characteristic of cellular degeneration such as process retraction and membrane 

blebbing 127.  

Hence, we decided to investigate whether the same effect can be achieved if aS is 

vehiculated in exosomes 127,368. 

Cell death has  historically  been  classified  according  to morphological 

characteristics as either necrotic or apoptotic 369. Apoptosis is a programmed cell 

death generally characterized by distinct morphological characteristics and 

energy-dependent biochemical mechanisms. The alternative to apoptotic cell death 

is necrosis, which is considered to be a toxicity process in which the cell is a 

passive victim and follows an energy-independent path to death.  

As in the work by Emmanoulidou and coworkers 127, we analyzed the activation of 

caspase 3, which is a key enzyme in apoptosis activation and progression. In 

vertebrate cells, apoptosis typically proceeds through one of two signaling 

cascades termed the intrinsic and extrinsic pathways. Both of them converge on 

activating caspase 3 370, which exists as an inactive proenzyme (ProCaspase 3 in 

Figure 47a-c). The proteolytic processing, leads to the assembly of the active 
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heterotetrameric enzyme (Caspase 3 in Figure 47a, c) 371. The decreasing quantity 

of the pro enzyme and the increasing quantity of the active form relative to the 

inactive, are normally considered markers for apoptotic activation 370.  

As reported in Figure 47, primary cortical neurons at DIV14 were incubated for 24 

hours with EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified aS-EGFP 

containing exosomes.  

 

 

Figure 47. Exosomes effect on neuronal activation of caspase 3 and PARP1. Primary cortical 
neurons at DIV 14 were incubated with EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-
modified aS-EGFP containing exosomes for 24 hours. a. Western Blot analysis of exosomes (Exs) 
treated neurons was performed utilizing antibodies against Hsp90, as loading control PARP1 and 
caspase 3; b-e Column graph represents the amount of b. ProCaspase 3 normalize on Hsp90 as 
loading control; c. Caspase 3 on ProCaspase 3; d. PARP1 on Hsp90 as loading control and e. Cleaved 
PARP1 on PARP1.Data are expressed as mean ±SEM. Statistical significance was determined by one-
way ANOVA with Tukey’s test * p<0.1; *** p<0.0001. Three independent experiments were 
assessed for each condition. 

 

Cell lysates were then analyzed by Western Blot using antibodies against Caspase 

3. Hsp90 was used as loading control. Interestingly, aS-EGFP containing exosomes 

in comparison with control, i.e. the EGFP containing exosomes, presented a 



                                                                                   Chapter III: Results and Discussions 

106 
 
 

significant decrease of ProCaspase 3 band intensity and partial increase in the 

amount of cleaved Caspase 3, suggesting an activation of the apoptotic cascade. 

Moreover, this effect seems to be more pronounced when aS-EGFP is DOPAL-

modified.This hypothesis is not confirmed by Poly (ADP-ribose) polymerase-1 

(PARP1) profile (Figure 47). PARP1 is a nuclear protein, which, under basal 

conditions, detects and repairs DNA damages. However, cleavage of PARP-1 by 

caspases 3 results in the formation of 2 specific fragments. The first is a catalytic 

fragment, which has reduced DNA binding capacity and is released from the 

nucleus into the cytosol (which corresponds to the band at 89 kDa named Cleaved 

PARP1 in Figure 47a,e) 372.  

The second fragment is 24 kDa (not recognized by the anti-PARP1 used antibody), 

which is retained within the nucleus, where it irreversibly binds to nicked DNA 

and acts as a trans-dominant inhibitor of active PARP-1. Irreversible binding of the 

24-kD PARP-1 fragment to DNA strand breaks inhibits DNA repair enzymes and 

compromises DNA 373. If unchecked, this activity inevitably leads to passive 

necrotic cell death 374.  Rapid cleavage and inactivation of PARP-1 is achieved by 

the action of caspases (among all also caspase 3) 375. However, insults which 

initiate necrosis cause PARP-1 overactivation that proceeds unchecked due to 

inadequate caspase activation 375, lower PARP-1 cleavage and less PARP-1 24-kD 

fragment formation. Exogenous administration of 24-kD PARP-1 fragments might 

attenuate PARP-1 overactivation and divert necrosis towards apoptotic cell death. 

Hence, a decrease of the 89 kDa fragment leads to ATP-depletion and subsequently 

to necrosis, instead an increase of the 89 kDa fragment is due to the inactivation of 

PARP-1 by caspase-3 cleavage, which is one of the key events of apoptosis.  

If, as hypothesized, aS containing exosomes induce apoptosis and activate caspase 

3, we should observe an increase intensity of the band corresponding to the PARP1 

89 kDa fragment. As reported in Figure 47, no differences were registered in 

neuronal PARP1 upon aS containing exosomes incubation, either in terms of an 

overactivation (increase PARP1), considered a necrotic marker, or in terms of an 

inactivation (increase 89 kDa) as expected in apoptosis.  

These results exclude that aS-EGFP containing exosomes induce necrosis but 

rather suggest some apoptotic features in the process, that might exacerbate with 
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increasing incubation time of the neurons with exosomes 376. It is important also to 

mention that PARP1, caspase 3 and Hsp90 are not neuronal specific proteins. 

Therefore, by Western Blot analysis we are measuring their content not only in 

neurons, but also in the glial cells, that are normally present as contaminants in 

primary neuronal culture, likely hindering a specific neurotoxicity effect of aS 

containing exosomes. 

 

In conclusion, these results suggest that after interaction with neuronal cells, aS-

containing exosomes alter synaptic proteins as assessed by the reduced level of 

synaptophysin and PSD-95. The altered synaptic structure and neuronal 

morphology, measured by Scholl Analysis proposed also an impaired synaptic 

plasticity and function. These effects appeared to be mediated by the oligomeric 

species of aS inside exosomes. It is in fact hypothesized that oligomeric aS induces 

endogenous aS aggregation, compromising its capacity to be part of SNARE-

complex assembly 221. They are also reported to interact with lipid bilayers of cell 

membranes, leading to membrane disruption or even pore formation 107. All 

mentioned hypothesized mechanisms are based on a toxic gain-of-function of the 

oligomeric species involved in the aggregation pathway. It is likely that the 

cytotoxicity does not arise from a single mechanism but that several of the 

proposed mechanisms are involved in the aS propagation mediated by exosomes 

in α-synucleinopathies. However, these data suggest a trans-synaptic exosomal 

transfer of aS from cell-to-cell as a key mechanism in the spread of aS aggregates 

between neurons in the brain and point out synapses as an early site of aS gaining 

of toxic function.  

 
3.8 Effects of aS containing exosomes on microglia activation 
 

To prevent aS damages to neurons, astrocytes and primary microglia remove 

extracellular aS through endocytosis 377,196. However, aS exposure could induce in 

these cells the secretion of toxic substances, including reactive oxygen and pro-

inflammatory cytokines (like TNF-α and IL-1β) that impact neuronal survival 

295,378,379 .  

To investigate this hypothesis, we studied aS containing exosomes effect on 
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microglia cells following the release of IL-1β.   

Considering that DOPAL is also transmissible to glial cells, where it enhances 

intracellular oligomerization of aS 319, we incubated microglia cells also with 

DOPAL-modified aS containing exosomes. 

Microglia activation mechanism by exosomes is largely still unknown, but some 

works suggest that is mediated by exosomes macropinocytosis or phagocytosis 

181,184. Hence, we decided to first investigate whether aS-EGFP and DOPAL-

modified aS-EGFP containing exosomes were internalized by microglia cells. To 

this aim, the BV2 cell line was chosen as experimental model for a set of scouting 

experiments: they derive from v-raf/myc-immortalised murine neonatal microglia 

and are the most frequently used substitute for primary microglia. It has to be 

mentioned that the proliferation capacity of primary microglia is limited and so 

they have to be isolated freshly for each experiment. For a typical preparation of 

rodent microglia, 15-30 brains are required to yield cells for a limited amount of 

experiments.  

 

 

Figure 48. BV2 cells internalized exosomes. BV2 cells were labeled with antibodies against 
Phalloidin (red), GFP (green) and DAPI (blue). a. Fluorescence images of BV2 cells incubated with 
aS-EGFP containing exosomes for 0.5; 1.5, 3 and 16 hours. Images were acquired with a Leica 
microscope 5000B, using a 40x objective. Scale bar 25 µm; b. 3D image and c. Z-projection of Z-
stack images of BV2 cells incubated with DOPAL-modified aS-EGFP containing exosomes for 0.5 
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hours. Images were acquired with a Leica confocal microscope (TCS sp5), using a 63x objective. 
Scale bar 5 µm. 

 

Thus, we have chosen for the first experiments immortalized cell line in order to 

minimize the number animals, time and valuable consumables. As reported in 

Figure 48, BV2 cells were incubated with exosomes containing DOPAL-modified 

aS-EGFP and aS-EGFP, monitoring the process under fluorescence microscope. 

Thanks to the EGFP tag exosomes derived aS was easily discriminated from 

endogenous aS 380 and it was identified inside microglia cells already after 30 

minutes of incubation. Sixteen hours later no more aS-EGFP associated 

fluorescence was detected, suggesting that probably it has been degraded 196,377.  

Once proved the internalization of exosomes (or at least their content), we 

investigated whether aS containing exosomes can activate microglia cells, 

monitoring the secretion of interleukin-1beta (IL-1β). As previously described in 

fact, activated microglia is characterized by an increased production of key pro-

inflammatory cytokines like IL-1β, which modulates neurodegeneration and likely 

disease progression 381. Increased levels of IL-1β have been detected in post 

mortem tissue of cases of PD, DLB, and MSA382,383.  

 

 

Figure 49. aS containing exosomes did not activate BV2 cells. BV2 cells were incubated 24 
hours with EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified aS-EGFP containing 
exosomes. LPS was used as positive control. a. Western Blot analysis of cell lysates and cell culture 
media were both tested with anti-IL-1β antibody. In cell lysates GAPDH was used as loading 
control; b. Column graphs reported the analyzed band intensity quantification. No statistical 
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significance was determined by one-way ANOVA with Tukey’s test. Three independent experiments 
were assessed for each condition. 

 

As for neurons, firstly exosomes were quantified in terms of cargo amount 

(paragraph 3.6) in order to treat microglia with the same amount of exosomal 

EGFP and aS-EGFP molecules. 

Then, BV2 cells were treated for 24 hours with HEK293T purified exosomes 

containing DOPAL-modified aS-EGFP, aS-EGFP and the respective controls, i.e 

DOPAL-modified-EGFP and EGFP (Figure 49). 

As readout for BV2 activation, we followed the level of Pro IL-1β expression in cell 

lysate and the secretion of the active form IL-1β in cell medium. The result of this 

experiment is reported in Figure 49 and it is evident that, under these conditions, 

exosomes did not activate BV2 cells: with no increase in either Pro IL-1β or active 

IL-1β. LPS control confirmed that BV2 cells were active, as demonstrated by 

intense bands corresponding to the pro and active form of IL-1β (Figure 49a). 

 

In considering the result of the experiment described above, we reconsider our 

choice of the BV2 cell line. It is important to mention that BV2 cells contain 

oncogenes that render them in some ways different from primary microglia, such 

as increased proliferation, adhesion and variance of morphologies 384. Therefore, 

the validity of BV2 cells as substitute for primary microglia has been a subject of 

debate and a few studies comparing different microglia lines has emerged. The 

major idea that BV2 immortalized cells have similar functions as primary 

microglia, but not to the same extent, clearly emerged in the work by Henn et al.385. 

This group examined the BV2 cells as an appropriate alternative to the primary 

cultures. They found that in response to LPS stimulus 90% of genes induced by the 

BV2 cells were also induced by primary microglia; however, the up-regulation of 

genes in the BV2 was far less pronounced than in primary microglia 385. 

For all these reasons, we decide to do the experiment in the same condition, but 

now on primary microglia. Hence, cells were treated 24 hours with the stimuli and 

active IL-1β in the cells supernatant was increased upon aS-EGFP containing 

exosomes treatment in comparison with the controls as reported in Figure 50. In 

the cell lysates, no differences were detected both in term of Pro IL-1β or active IL-
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1β. This is probably due to the fact that after 24 hours the Pro IL-1β in the cells is 

all cleaved and secreted, leading to a detection in the supernatant, but not in the 

cell lysates. 

In the medium, EGFP and DOPAL-modified EGFP containing exosomes lead to the 

release of IL-1β, even if at a lower level relative to aS-EGFP containing exosomes.  

This evidence can be explained with the fact that exosomes maintain some 

characteristic of the origin cell, i.e HEK293T cells, which are of different origin 

(human) than microglia (mouse), inducing an immune response 386.  

 

 

Figure 50. aS containing exosomes activate primary microglia cells. Primary microglia cells 
were incubated 24 hours with EGFP, DOPAL-modified EGFP, aS-EGFP and DOPAL-modified aS-
EGFP containing exosomes. a-b Western Blot analysis of cell lysates (a.) and supernatants (b.)were 
tested with anti-IL-1β antibody. In cell lysates tubulin was used as loading control; c-f Column 
graphs reported the analyzed band intensity quantification of c. Pro IL-1β on Tubulin as loading 
control; d. IL-1β on Tubulin as loading control; e. IL-1β on Pro IL-1β and f. IL-1β in the cell media. 
Only two independent experiments were assessed for each condition, not suffiecient to make a 
statistical analysis. 
 

Moreover, another reason can be LPS contamination in purified exosomes. To 

exclude this possibility, we plan to estimate the endotoxin levels of our exosome 

preparations, by limulous amoebocyte lysate test (LAL test) 387. However, it is also 
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important to mention that these controls are more relevant when recombinant 

proteins are used as stimulus, since the latter are normally produced in gram 

negative bacteria, i.e. E. Coli 388. 

In this case exosomes are cell-derived and purified under sterile conditions, 

suggesting that they do not contain LPS or, at least, not as abundant as the quantity 

needed to induce the secretion of IL-1β. In contrast to neurons, that appeared 

more sensible to oligomeric aS as demonstrated by a more pronounced effect on 

synaptic function upon DOPAL-modified aS containing vesicles; primary microglia 

activation is not influenced by DOPAL treatment, but rather by the presence of aS. 

Microglia, play a crucial role as specialized macrophages in safeguarding CNS 

against infections and injury. As resident phagocytes in the brain, microglia serve 

to clear cellular debris389, suggesting a less sensitivity against dangerous molecule 

in comparison with neurons. Moreover, it is also possible that IL-1β production 

reached a plateau, not permitting to register more differences.  

Lastly, it is also important to mention that we are planning to investigate whether 

exosomal cargos are phagocytosed by primary microglia, in order to determine if 

this process is essential to IL1β release 

 

In conclusion, we demonstrated that primary microglia cells are activated by aS 

containing exosomes, causing the release of a pro-inflammatory factor such as IL-

1β 390, as reported by others 197. 

These data point out a role (to our knowledge, for the first time) for exosomes 

containing DOPAL-modified aS and aS-DOPAL oligomers in microglia activation, 

suggesting their contribution in neuroinflammation and in the progression of α-

synucleinopathies.   

Microglia is likely to be in constant contact with aS mainly because they express it 

and they sense it at synaptic terminals 391, but exosomes are vehicle of particular 

interest for aS transmission and propagation. They prevent, in fact, aS from 

degradation by extracellular enzyme 343 and catalyze its aggregation 344, enhancing 

its transmissibility and toxicity.  

In this contest, it will be also interesting to assess the toxicity effect of the 

substances released by microglia upon aS containing exosomes incubation, in 
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order to demonstrate the instauration of the proposed “positive loop”: neurons 

release aS toxic species inside exosomes, that are toxic to other neurons and 

activate microglia, which in turn secretes neurotoxic substances. 

Moreover, being inflammatory status believed to contribute to the progression of 

α-synucleinopathies, the exosome secretion pathway may become an interesting 

therapeutic target to block this vicious circle. This observation is particularly 

relevant if we considered that microgliosis is considered an early event, as it 

occurs in the absence of cell death 391. Hence, target the immune system and, in 

particular, microglia, is considered a promising strategy for treating α-

synucleinopathies, due to its involvement in disease progression and its potential 

as a tool to modulate neuroinflammation. 
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III PART: DOPAL impacts synaptic vesicle pools 
 
In parallel to the study of exosomes effects on neurons and glia, we have 

investigated the effect of DOPAL on synaptic function as part of a recently 

published project 106.  

To this aim, we used two different strategies and cell models  in the presence of aS-

DOPAL oligomers formed upon DOPAL treatment. 

 

3.9 DOPAL impairs vesicle trafficking in aS overexpressing cells  

We first studied the DOPAL effect on aS-EGFP transfected neuroblastoma-derived 

cell line BE(2)-M17.  

To assess the formation of aS-DOPAL oligomers upon exogenous DOPAL treatment, 

aS-EGFP overexpressing BE(2)-M17 cells were treated with 100 μM DOPAL for 1, 

18 and 24 hours.  

 

 

Figure 51. DOPAL induced aS aggregation in BE(2)-M17 cells overexpressing aS-EGFP. Cell 
lysates of aS-EGFP overexpressing BE(2)-M17 cells treated with 100 µM DOPAL for 0, 1, 18 and 24 
hrs were pulled down with APBA resin and analyzed by Western Blot against aS and the 
housekeeping protein Tubulin. aS antibody (ab138501) revealed SDS-resistant oligomers 
formation upon DOPAL treatment. 
 
 

Cell lysates were subsequently subjected to the APBA resin, that, as previously 

described (Paragraph 3.4.1), allows the pull-down of DOPAL-modified proteins. 

As reported in Figure 51, both total cell lysates and the pull-down samples were 
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analyzed by Western Blot using an antibody against aS. Upon increasing incubation 

time with DOPAL, high molecular weight aS-positive bands were detected and pull-

down lanes show an increase in aS, suggesting the formation of SDS-resistant aS-

DOPAL oligomers. 

Once demonstrated the formation of aS-DOPAL oligomers upon DOPAL treatment 

in BE(2)-M17 cells, synaptic vesicle trafficking was studied with a Total Internal 

Fluorescence (TIRF) experiment. TIRF microscopy (TIRFM) can be used in a wide 

range of cell biological applications, and is particularly well suited to analyze the 

localization and dynamics of molecules and events near the plasma membrane, as 

neurotransmitter release. The TIRF excitation field decreases exponentially with 

distance from the cover slip on which cells are grown. This means that 

fluorophores close to the cover slip (e.g. within ~100 nm) are selectively 

illuminated, highlighting events that occur within this region. The advantages of 

using TIRF include the ability to obtain high-contrast images of fluorophores near 

the plasma membrane, very low background from the bulk of the cell, reduced 

cellular photodamage and rapid exposure times 392. 

To perform TIRFM, BE(2)-M17 were transfected with aSmCherry or the empty 

vector mCherry to avoid overlap signal with a green pH-sensitive fluorescent 

protein directly targeted to synaptic vesicles, i.e synaptobrevin2-pHluorin 

(Syb2pHluorin) (Figure 52a) 364,393. Syb2pHluorin is a fusion construct of the 

vesicle protein syb II with a pH-sensitive GFP, normally used in neurotransmitter 

release studies 394, since its fluorescence intensity increases if pH becomes basic, 

i.e. if vesicles fusion and/or permeabilisation occurs.  

Upon 100 µM DOPAL treatment BE(2)-M17 cells were then analyzed by TIRFM. 

Normally, vesicles continue fusing with the plasma membrane, becoming 

fluorescent and then, after endocytosis, they are immediately switched off 107. 

DOPAL, instead, increased the intensity and the persistence of the fluorescent 

signal of Syb2pHluorin as reported in Figure 52c, likely due to a vesicles 

permeability action. Moreover, after 24 hours of DOPAL treatment, the inflexion 

point of the curve reporting the cumulative distribution moves toward higher 

intensities values compared to time 0 in the aS-mCherry overexpressing cells, but 

not in control, i.e. mCherry (Figure 52b).   
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Figure 52. DOPAL effect on vesicle trafficking in aS overexpressing cells. a. Confocal images of 
BE(2)-M17 cells transfected with mCherry or aS-mCherry (red) and synapto-pHluorin (green) and 
the merge of the two channels. Scale bar is 7.5 µM; b. Normalized fluorescence intensity/number of 
vesicles cumulative graphs for mCherry and aS. Black and red traces refer to control cells and cells 
treated with DOPAL 100 μM for 24 hours; c. Histograms express the ratio between fixed and total 
vesicles over a certain period of time, i.e. the number of vesicles showing a high fluorescent value 
for the whole time span of the measure, for mCherry or aS-mCherry overexpressing cells untreated 
or treated with 100 μM for 24 hours. White and black stand for control cells and cells treated with 
100 μM DOPAL for 24 hours; d. Average distance covered by vesicles in cells overexpressing 
mCherry or aS-mCherry at time 0 and after 100 μM DOPAL treatment at 24 hours. White and black 
stand for control cells and cells treated with 100 μM DOPAL for 24 hours. Bars represent mean 
±SEM from n=25-30 cells from at least three independent experiments. Asterisks indicate statistical 
significance by two-way ANOVA (** p< 0.01 ***p< 0.001). 

 

This result suggests that DOPAL-modified aS or aS-DOPAL oligomers increases 

vesicle pH, likely due to an efflux of H+, leading to the increased fluorescence 

intensity 394. We have, in fact, previously demonstrated that DOPAL-modified aS 

monomers and oligomers interact with and permeabilise cholesterol containing 

lipid membranes in vitro 106. Consistently, the number of “basic” vesicles with an 

increased fluorescent value for the whole time span of the measure (i.e. Fixed/total 

spots) is increased in the aS overexpressing cells after DOPAL treatment (Figure 

52c). Interestingly, there was also a significant reduction in the average distance 

covered by vesicles, i.e. in vesicles mobility, in cells overexpressing aS-mCherry 
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after the DOPAL treatment compared to the control (Figure 52d). No difference is 

present between mCherry and aS-mCherry overexpressing cells before DOPAL 

treatment, suggesting that the effect we measured depends on the synergic action 

of aS and DOPAL, likely through DOPAL-induced modification and oligomerization 

of aS. 

 

3.10 DOPAL impairs vesicle pools in primary neurons 

Then, we moved to mice primary cortical neurons that express endogenous aS. We 

first assessed the formation of aS-DOPAL oligomer also in this cellular model. To 

this aim, primary neurons at DIV14 were treated overnight with 20 and 50 µM of 

DOPAL, since 100 µM was toxic. Cell lysates was both analyzed by Western Blot 

using an antibody against aS (Figure 53a) and subjected to the APBA resin 

(Figure 53b). 

 

 

Figure 53. DOPAL induced aS aggregation in primary cortical neurons. Primary cortical neurons were 
treated overnight with 20 µM and 50 µM DOPAL; a. Western Blot analysis of cell lysates using antibodies 
against aS (ab52168) for detect endogenous aS and Tubulin, as loading control reveals SDS-resistant aS 
oligomers formation upon DOPAL treatment; b. ABPA resin pull-down from neuronal lysate of control and 
treated samples suggested that the accumulated monomeric aS is modified by DOPAL. 
 

As reported in Figure 53, DOPAL induced the formation of aS-DOPAL oligomer 

also in the presence of endogenous neuronal aS.  

We then used the same approach reported in Paragraph 3.7.2 for studying the 

effect of exogenous administrated DOPAL on synaptic vesicle pools. Mice primary 

cortical neurons were prepared for TEM imaging and neuronal synapsis of 
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untreated neurons or treated neurons were imaged (Figure 54a). 

 

 

Figure 54. DOPAL effect on synaptic vesicles in primary mouse neurons. a. TEM images of 
mice primary neurons synapses not treated (CTRL) and treated with 20 μM and 50 μM DOPAL. 
Asterisks indicate the active xone. Scale bar 500 nm; b. Frequency distribution of vesicles distance 
from the active zone of primary neurons in control, treated with 20 μM and 50 μM DOPAL (from left 
to right). Data were fitted with a three Gaussian function (OriginPro8); c. Grouped stack column 
plot of the percentage of area under curve of the three vesicle populations, representing the 
percentage of vesicles belonging to the ready-releasable (white), recycling (grey) and resting 
(black) pools in control neurons and in neurons treated with 20 μM and 50 μM DOPAL; d. 
Cumulative distributions of the number of vesicles per synapse show that the number of vesicles 
per synapse is higher in controls (full triangle) than in neurons treated with 20 μM and 50 μM 
DOPAL (empty triangles and empty circles, respectively); e. Column graph representing the average 
inflection point values of the cumulative distribution reported in d. of the number of 
vesicles/synapse showing a significant reduction after 20 μM and 50 μM DOPAL treatment. Bars 
represent mean ±SEM from n=30-39 synapses from at least three independent experiments. 
Asterisks indicate statistical significance by two-way ANOVA (***p< 0.001).  

 

The relative distributions of the distances between vesicles and the active zone of 
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the synapses was measured as previously reported by Piccoli and co-workers 364 

(Figure 54b). As it emerges from Figure 54c, DOPAL leads to a reduction in the 

readily releasable pool of synaptic vesicles, with an increase of the fraction of 

vesicles belonging to the resting pool. Moreover, the inflection point of the 

cumulative distribution of the number of vesicles per synapses is about 71±3 for 

the untreated neurons and drops to 49±2 and 38±2 for the 20 μM and 50 μM 

DOPAL treated neurons, respectively, and it is decreasing in a [DOPAL]- dependent 

way (Figure 54e-f).  

These results suggest that the formed aS-DOPAL oligomers permeabilize the 

synaptic vesicles and cause protons to leak out and raise the pH value within the 

vesicles. In conclusion, these observations suggest that aS-DOPAL oligomers 

preferentially damage the vesicles ready to be released at the synapse, possibly 

because oligomers formation occurs in the subcellular region where aS is known to 

participate in the SNARE complex assembly 221. It should also be mentioned that 

the chemical modifications of aS by DOPAL, which lead to the formation of 

oligomers may also hinder a proposed physiological function of aS, i.e. SNARE 

complex assembly. Therefore, reducing the amount of functional aS at the synapse 

may affect the number of synaptic vesicles belonging to the different pools 107.  
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CHAPTER IV: 
Concluding remarks 

This work focuses on α-synucleinopathies, a group of neurodegenerative disorders 

characterized by the presence of abnormally aggregated aS. Recent evidence 

suggests that the early site of aS aggregation is synapses, where aS seems to play 

its physiological role. Moreover, aggregated aS is reported to be secreted by cells, 

suggesting its potential implication in both disease initiation and progression. 

Considering the nature of neurodegenerative disorders as well as the defined, step-

wise spreading of Lewy body pathology in α-synucleinopathies, the idea of 

extracellular aS as a potential pathogenic ‘prion-like’ agent is extremely appealing.  

Among different mechanisms of aS secretion, we considered the exosomal pathway 

of relevance in the model of aS propagation for several reasons: (i) aS containing 

exosomes are released and internalized by immune and neuronal cells; (ii) 

exosomal encapsulation of aS confers protection against extracellular protein 

degradation mechanisms, enhancing exosomes probability to play a role in aS toxic 

species transmission; (iii) these vesicles provide a confined and controlled 

environment for aS nucleation, which may promote aggregation and lead to 

toxicity and neurodegeneration; (iv) they have been proposed to be secreted in a 

spatially and temporally directed manner in neuronal synapses. 

 

On these bases, our hypothesis is that exosomes are involved in both release and 

transmission of aS toxic species among cells, as an early event in the progression of 

α-synucleinopathies.  

To test this hypothesis, we studied the effects of cell-derived exosomes containing 

aS aggregated species on neurons and microglia cells. We decided to purify  

exosomes from aS-EGFP transfected HEK293T cells. Moreover, we focused on the 

connection between aS aggregation process and dopamine metabolism and 

exosomes were purified also from aS-EGFP transfected HEK293T cells treated with 

DOPAL. 



                                                                                             Chapter IV: Concluding remarks 

121 
 
 

DOPAL is a toxic dopamine metabolite, which can modify aS, inducing its 

aggregation. It is also transmissible to glial cells and enhances intracellular 

oligomerization of aS, suggesting a possible mechanism for glial cytoplasmic 

inclusions formation in MSA and in neuroinflammation. In neurons, we 

demonstrated that DOPAL treatment impacts vesicle trafficking and the synaptic 

vesicle pools.  The formed aS-DOPAL oligomers were proposed to permeabilize the 

synaptic vesicles and preferentially damage the vesicles ready to be released at the 

synapse, possibly because oligomers formation occurs in the subcellular region 

where aS is known to participate in the SNARE complex assembly 221. However, the 

role of DOPAL-modified aS has not yet being investigated in disease propagation. 

Therefore, the purification of aS-DOPAL containing exosomes is of great interest to 

define an experimental model of exosomes based spreading not only for PD, but 

possibly for all α-synucleinopathies, characterized by the abnormal aggregation of 

aS. 

 

The purified vesicles exhibited the typical hallmarks of exosomes and they 

contained aS and DOPAL-modified aS oligomeric species. The nature of these aS 

species was further studied by SDS-Page and SEC analysis, revealing the presence 

of non SDS-resistant aS aggregates in aS containing exosomes. Upon DOPAL 

modification, this type of oligomers increased and, as attended, it appeared also 

SDS-resistant high molecular weight aS species. Differences in exosomal aS 

between the two conditions was further underlined by the evidence that upon 

DOPAL treatment, aS binds to exosomal membranes and alters vesicle 

microenvironment, further suggesting a pore formation mechanism ascribable to 

DOPAL-modified aS oligomers.  

Since aS structure seems strictly correlated with is function/dysfunction, an in-

depth characterization of exosomal aS was required in order to better understand 

the effects induced on neurons and microglia. 

Our hypothesis, in fact, is that exosomes containing aS aggregated species are 

secreted in a spatially and temporally regulated manner by neuronal synapses, 

that are also the primary site of aS induced-toxicity.  
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On these bases, we have focused our attention on synaptic damage analyzing 

different factors. First, we have investigated the amount of two proteins, i.e. 

synaptophysin and PSD-95 as markers of the pre- and post-synapses respectively. 

Upon incubation with the purified vesicles, only aS containing exosomes induced a 

reduction of synaptophysin and PSD-95 levels, with a more pronounced effect 

upon incubation with the DOPAL-modified one. These data suggest that aS 

containing exosomes are able to diminish the number of synapses, likely altering 

input between neurons.  

To further investigate this hypothesis, we analyzed synaptic architecture, since the 

structure is strictly connected with function in synapses. We found that aS 

containing exosomes not only shifts the distribution of distances of synaptic 

vesicles from the active zone to larger values, but also diminish the number of 

vesicles, confirming an induced synaptic dysfunction in treated neurons.  

Reduction of the synaptic proteins and synaptic impairment were also 

accompanied by an altered morphology (i.e neurite retraction and reduced 

neuronal branching) in treated neurons.  

However, under our experimental condition, neuronal survival was not impacted 

upon exosomes treatment. This result is not in line with other works, that reported 

aS exosomal transfer as a way to induce neurotoxicity 127, suggesting that neuronal 

death might be exacerbated with increasing incubation time with exosomes. It is 

also important to mention, that we have not assessed for glial contamination that 

usually occurs in primary neuronal culture and can hinder neurotoxicity.  

These results, however, strongly suggest that exosomes containing aS aggregated 

species are able to transmit their toxic cargo at least to neuronal synapses. This 

effect appears more evident in the presence of DOPAL-modified aS, likely due to 

the increase toxicity of their oligomers. Even if we were not able to clearly detect 

the presence inside neuronal synapses of exosomal cargos, we propose that they 

are internalized at these sites, where they exert their harmful effects. 

The detailed toxicity mechanism of exosomal-driven aS aggregated species in 

synapses has not yet been investigated, but starting from recent observation we 

propose two possibilities. Once internalized at synapses, aS oligomers can act (i) 

through a pore mechanism formation as suggest by the membrane localization of 
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DOPAL-modified aS oligomers at membranes and their capacity to alter exosomal 

environment or/and (ii) seeding neuronal endogenous aS, hindering its 

physiological function. Regarding the latter hypothesis, aggregates of aS can 

disrupt its interaction with sybII, compromising SNARE complex formation, vesicle 

docking and fusion. This results in reduced neurotransmitter release and the 

redistribution of synaptic proteins, as synaptophysin and PSD-95. Supportively, 

synaptic deficits are induced by aS overexpression in different in vitro 245,353 and in 

vivo models 248,249, and also by ablation of all 3 (α,β,ɣ)-synuclein genes 363. 

All these effects may be early events in the propagation of α-synucleinopathies, 

that lastly lead to neuronal death. 

 

We also investigated another way of impacting neuronal physiology: 

neuroinflammation induced by microglia activation.  

Microglia cells, in fact, upon chronic and excessive aS exposure, are reported to 

become active and secret toxic substances, including the pro-inflammatory 

cytokines IL-1β, that might impact neuronal survival. In addition, aS chronic 

exposure seems to contribute to an impaired microglial phagocytic capacity, 

leading to aggregation of extracellular aS and further enhancing 

neurodegeneration. 

When we applied exosomes to microglia cells, we confirmed that aS containing 

exosomes induced an increased release of IL-1 β. However, we did not assess 

whether this response was mediated by exosomal cargo internalization in primary 

microglia cells. It would be interesting to investigate this aspect, since different 

pathways can induce microglia activation, and their identification can pave the 

way for the development of novel therapeutic strategies.  

Moreover, we are also planning to study the effect of all released substances by 

microglia upon aS containing exosomes incubation on neurons, in order to validate 

the proposed “vicious circle”. aS toxic species secreted in exosomes are transferred 

to recipient cells (neurons and microglia). In neurons, they mainly impacted 

synapses, altering synaptic inputs and neuronal plasticity. In microglia they 

induced the release of substances (i.e. IL-1 β), which in turn are deleterious for 

neurons. 
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All the mentioned hypothesized mechanisms imply a toxic gain-of-function of the 

aS oligomeric species involved in the aggregation pathway. It is likely that the 

cytotoxicity does not arise from a single mechanism but that several of the 

proposed mechanisms are involved in the aS propagation mediated by exosomes 

in α-synucleinopathies. However, our data suggest a trans-synaptic exosomal 

transfer of aS from cell-to-cell as a key mechanism in the spread of aS aggregates 

between neurons in the brain and point out synapses as an early site of aS gaining 

of toxic function. Moreover, being inflammatory status believed to impact neuronal 

viability, the exosomes secretion pathway may become an interesting therapeutic 

target to block this vicious circle. This observation is particularly relevant if one 

consider that microgliosis is an early event, as it occurs in the absence of cell death. 

Hence, targeting of the immune system or the aS toxic species propagation at 

synapses can be considered very promising strategies.  

Moreover, aS containing exosomes have been detected in different human body 

fluids and tissue 122,395 and it was recently shown that exosomes isolated from 

plasma of PD patients contain higher levels of aS when compared to exosomes 

from control individuals 140. In the light of all these considerations, aS containing 

exosomes appeared also as a potential biomarker for the early diagnosis of α-

synucleinopathies.
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List of abbreviations  

AADC: L-aromatic amino acid decarboxylase 

AFM: Atomic Force microscopy 

ALDH: aldehyde dehydrogenase 

APBA: aminophenylboronic acid 

AR: aldose reductase  

ARG1: enzymes arginase 1  

aS: α-Synuclein  

BDNF: brain-derived neurotrophic factor 

CNS: central nervous system 

COMT: catechol-O-methyl transferase 

CSF: cerebrospinal fluid  

DA: dopamine  

DAMPs: danger-associated molecular patterns  

DAT: DA-transporter  

DLB: Dementia with Lewy bodies  

DOPAC: 3,4-dihydroxyphenylacetic acid 

DOPAL: 3,4-dihydroxyphenilacetaldehyde  

DOPET: 3,4-dihydroxyphenylethanol  

DβH: dopamine-β-hydroxylase 

ESCRT: Endosomal Sorting Complexes Required for Transport 

EVs: extracellular vesicles  

GABA: γ-Aminobutyric acid 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

GBA: β-glucocerebrosidase  

GCIs: glial cytoplasmic inclusions  

GRKs: protein-coupled receptor kinases  

HEK293T: Human Embryonic Kidney 

Hsp70: heat shock protein 70  

Hsp90: heat shock protein 90  

HSPGs: heparan sulfate proteoglycans 
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ICAMs: intercellular adhesion molecules  

IDE: insulin-degrading enzyme 

IL: interleukin  

iNOS: inducible nitric oxide synthase  

KRS: Kufor-Rakeb syndrome 

LAG3: lymphocyte-activation gene 3 

LB: Lewy Bodies  

LBP: LPS binding protein  

L-DOPA: 3,4-dihydroxyphenylalanine  

LPS: Lipopolysaccharide  

LRRK2: Leucine-rich repeat kinase 2 

L-Tyr: aminoacid L-tyrosine 

MAO: monoamine oxidase  

MBT-SO: S-methyl N-butylthiocarbamate sulfoxide  

MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  

MSA: Multiple system atrophy   

MSA-C: MSA with cerebellar signs 

MSA-P: MSA with parkinsonism  

MVBs: multivesicular bodies 

NAC: non-Aβ component of plaque 

SNARE: soluble N-ethylmaleimide-sensitive fusion protein-attachment protein 

receptor 

NLR: NOD-like receptor 

NMT: N-methyltransferase  

NO: Nitric oxide 

NSAIDs: Nonsteroidal anti-inflammatory drugs 

PAMPs: Pathogen-associated molecular patterns  

PARP1: Poly (ADP-ribose) polymerase-1 

PD: Parkinson’s disease  

PEI: Polyethylenimine  

PK: Proteinase K  

PLKs: LRRK2 and Polo-like kinases 
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PRRs: pattern recognition receptors 

PYHIN: HIN domain-containing protein 

RBD: REM-sleep behavioural disorder  

ROS: reactive oxygen species  

RT: room temperature 

SDS: Sodium dodecyl sulfate 

SNpc: Substantia Nigra pars compacta  

STED: stimulated emission depletion 

Syb2pHluorin: synaptobrevin2-pHluorin 

sybII: synaptobrevin-2  

TEM: Transmission Electron Microscopy 

TEMs: tetraspanin-enriched domains  

TH: tyrosine hydroxylase  

TIRF: Total Internal Fluorescence 

TLR: Toll-like receptor   

TNTs: tunneling nanotubes  

VMAT2: vesicular monoamine transporter 2  

VPS35: vacuolar sorting protein 35 
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