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RIASSUNTO 
 

Lo scopo di questa tesi di dottorato è stato lo studio del background genomico, biologico e 

fenotipico di caratteri legati al processo di caseificazione nella specie bovina. L’obiettivo primario 

è stato quello di determinare il background genomico di caratteri tecnologici del latte bovino legati 

al processo di caseificazione (CAPITOLI da 1 a 3). Per raggiungere questo obiettivo, l’abilità della 

bovina di produrre formaggio è stata ripartita in 26 fenotipi: 11 caratteri di attitudine casearia e 

proprietà di coagulazione, comprendenti le tradizionali proprietà di coagulazione del latte (MCP) 

e nuovi parametri modellizzati di consistenza della cagliata (CFt), e 7 fenotipi di resa in formaggio 

(CY) e recupero dei nutrienti del latte nella cagliata (REC). Tuttavia, l'elevato numero di variabili 

necessarie per descrivere la produzione di formaggio bovino pone delle restrizioni nella 

costruzione di indici di selezione, e quindi nel prendere decisioni di selezione. Per superare il 

problema della elevata dimensionalità, è stata utilizzata un’analisi fattoriale (FA) per studiare la 

struttura latente dei 26 caratteri coinvolti nel processo di caseificazione (CAPITOLI 4 e 5). 

I caratteri MCP includevano le 3 proprietà lattodinamografiche tradizionali basate su 

singola misurazione dello strumento (RCT: tempo di coagulazione, in min; k20: tempo di 

rassodamento, in min; a30: consistenza del coagulo (CF) 30 min dopo l'aggiunta del caglio, in mm). 

I fenotipi CFt comprendevano un set di 6 parametri modellizzati sulla base di 360 dati di CF 

misurati per ciascun campione di latte (CFp: CF potenziale, in mm; kCF: tasso di rassodamento del 

coagulo, in % × min-1; kSR: tasso di sineresi, in % × min-1; RCTeq: RCT stimato dal modello; CFmax: 

massima CF, in mm; tmax: tempo necessario per raggiungere CFmax, in min), delle proteine del latte 

(%) e del pH. I 3 caratteri CY includevano resa a fresco (% CYCURD), resa in solidi (% CYSOLIDS), 

e acqua ritenuta nella cagliata (% CYWATER), espresse come percentuale del latte trasformato. Le 



 

10 

 

4 misure di REC (RECFAT, RECPROTEIN, RECSOLIDS, e RECENERGY) sono state calcolate come 

rapporto espresso in percentuale tra il valore di nutrienti nella cagliata e il corrispettivo nel latte. 

L’analisi FA ha considerato tutti i 26 caratteri oggetti di studio, comprendenti produzione e qualità 

del latte (incluse le frazioni proteiche del latte), parametri CFt e caratteri CY-REC. 

La metodologia adottata comprendeva analisi di associazione genome-wide (GWAS), 

accompagnata da analisi di arricchimento genetico e di tipo pathway-based. Le analisi genomiche 

hanno considerato un totale, 1.152 bovine di razza Bruna Italiana allevate in 85 allevamenti, 

genotipizzate attraverso il v.2 Illumina SNP50 Beadchip. Le analisi GWAS sono state condotte 

mediante analisi di regressione a singolo marcatore, fittate utilizzando il pacchetto GenABEL del 

software R (GRAMMAR-GC). I database Gene Ontology (GO) e Kyoto Encyclopedia of Genes 

and Genomes (KEGG) sono stati interrogati per le analisi di arricchimento. 

Nell’analisi GWAS (CAPITOLI 1 e 2) sono stati individuati picchi nitidi sull’autosoma 6 

di Bos taurus (BTA) tra 84-88 Mbp, con il picco più alto rilevato a 87,4 Mbp nella regione 

ospitante i geni della caseina e più precisamente della κ-CN (CSN3). Il marcatore Hapmap52348-

rs29024684 (~ 87,4 Mbp), localizzato in prossimità dei geni della caseina su BTA6, ha mostrato 

una forte associazione con RECFAT (P = 1.91 × 10-15) e CFP (P = 1.62 × 10-17). Sullo stesso 

cromosoma, è stata trovata evidenza di loci per i caratteri quantitativi a 82,6 e 88,4 Mbp. Su 

BTA11, il marcatore ARS-BFGL-NGS-104.610 (~ 104,3 Mbp) è risultato fortemente associato 

con RECPROTEIN (P = 6,07 × 10-36). Oltre a BTA6 e 11, altri SNP situati in altri 15 cromosomi (1, 

2, 9, 12, 13, 14, 15, 16, 18, 19, 20, 23, 26, 27 e 28) sono risultati significativamente associati con 

MCP, CFt e con i caratteri CY-REC. 

L'analisi di arricchimento e pathway-based (CAPITOLO 3) ha rivelato 21 categorie GO e 

17 categorie KEGG significativamente associate (tasso di errore controllato al 5%) con 7 tra i 
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caratteri fenotipici considerati (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS e RECENERGY) 

e alcune categorie sono risultate in comune tra i caratteri. Le categorie significativamente arricchite 

includevano vie di segnalazione del calcio, di secrezione salivare, vie metaboliche, di digestione e 

assorbimento dei carboidrati, di giunzioni occludenti e del fosfatidilinositolo, così come vie legate 

allo stato di salute della ghiandola mammaria bovina, per un totale di 150 geni situati in tutti i 

cromosomi tranne 9, 20 e 27. 

Nella FA (CAPITOLI 4 e 5) sono stati ottenuti dieci Fs mutualmente ortogonali utilizzando 

una rotazione varimax. I 10 Fs spiegavano il 74% della variabilità originale. Tali Fs erano 

biologicamente riconducibili a elementi base del processo di trasformazione “dal latte al 

formaggio". Più precisamente, i primi 4 Fs, ordinati sulla base della varianza spiegata, sono stati 

in grado di definire la struttura latente della CY percentuale (F1% CY), del processo di CF nel tempo 

(F2CFt), del rendimento di latte e solidi (F3Yield) e della presenza di azoto (N) nel formaggio 

(F4Cheese N). Inoltre, 4 Fs (F5αs1-β-CN, F7β-κ-CN, F8αs2-CN, F9αs1-CN-P) erano associati alle caseine del 

latte (as1-CN, as2-CN, β-CN, κ-CN, e la forma fosforilata as1-CN) e 1 fattore alla proteina del siero 

α-LA (F10α-LA). É stato inoltre ottenuto un fattore in grado di descrivere lo stato di salute della 

mammella bovina (F6Udder health), basato principalmente sulla produzione di lattosio e di altri 

composti azotati e sulle cellule somatiche. 

In generale, i risultati nell’analisi FA sono risultati coerenti con l’attribuzione del 

significato biologico dato al fattore. La maggior parte degli Fs è risultata significativamente 

influenzata dallo stadio di lattazione, seguito dall’ordine di parto. Sono state inoltre riscontrate 

correlazioni genetiche rilevanti tra i fattori (CAPITOLO 4). Nell’analisi GWAS tutti gli Fs hanno 

mostrato associazioni significative (P <5 × 10-5), ad eccezione di F5Yield. I picchi elevati su BTA6 

(~ 87Mbp) e sulla coda di BTA11 (~ 104Mbp) erano principalmente associati a F6β-κ-CN e F1Cheese 



 

12 

 

N, rispettivamente. Inoltre, 33 termini GO e 6 categorie KEGG sono risultati arricchiti e associati 

con F1% CY, F4Cheese N, F8αs2-CN e F10α-LA. Le vie di segnalazione biologica descritte dai fattori erano 

principalmente correlate alle categorie più generali di attività ionica, neuroni e giunzioni 

occludenti. Poichè un numero considerevole di categorie arricchite GO e KEGG è risultato 

associato al fattore F8αs2-CN, maggiore attenzione dovrebbe essere posta sulla frazioneαs2-CN 

(CAPITOLO 5). 
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ABSTRACT 
 

The aim of this PhD thesis was the study of the genomic, biological and phenotypic 

background of bovine cheese-related traits. The primary goal of this PhD thesis was to unravel the 

genomic background of bovine milk technological and cheese-related traits to specific 

chromosomic regions (CHAPTERS 1 to 3). To achieve this, the cow’s ability to produce cheese 

was decomposed into 11 milk coagulation (MCP) and curd-firming properties (CFt), and 7 cheese 

yield and milk component recoveries into the curd (REC) traits. Besides, to tackle the problem of 

the large number of variables required to describe the cow’s ability to produce cheese, posing 

restrictions in the construction of selection indices, and thereby selection decisions, factor analysis 

(FA) was used (CHAPTERS 4 and 5). 

The MCP traits were: 3 traditional single point lacto-dynamographic properties (RCT: 

rennet coagulation time, min; k20: time to a curd firmness (CF) of 20 mm, min; a30: CF 30 min 

after rennet addition), 6 parameters modeling 360 CF data for each milk sample (CFP: potential 

asymptotic CF at infinite time, mm; kCF: curd firming instant rate constant, %×min-1; kSR: syneresis 

instant rate constant, %×min-1; RCTeq: RCT from modeling; CFmax: maximum CF, mm; tmax: time 

at CFmax, min), milk- protein (%) and pH. The 3 CY traits were the weight (wt) of fresh curd 

(%CYCURD), curd solids (%CYSOLIDS), and curd moisture (%CYWATER) as % of wt of milk 

processed. The 4 REC (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY) were calculated as the 

% ratio between the nutrient in curd and the corresponding nutrient in processed milk. For FA 26 

traits related to milk yield and quality (including milk protein fractions), MCP-CFt and CY-REC 

traits were analyzed. 
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Single marker genome-wide association analyses (GWAS) complemented by gene-set 

enrichment and pathway-based analyses were conducted. In total, 1,152 Italian Brown Swiss cows 

reared in 85 herds were genotyped with the Illumina SNP50 Beadchip v.2. Single marker 

regression GWAS were fitted using the GenABEL R package (GRAMMAR-GC). The Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases 

were queried for the enrichment analyses. 

In GWAS (CHAPTERS 1 and 2), sharp peaks were detected on Bos taurus autosome 

(BTA) 6, at 84 to 88 Mbp, with the highest peak detected at 87.4 Mbp in the region harboring the 

casein genes and more precisely of κ-CN (CSN3). Marker Hapmap52348-rs29024684 (~87.4 

Mbp), closely located to the casein genes on BTA6, was strongly associated with RECFAT (P = 

1.91×10-15) and CFP (P = 1.62×10-17). Evidence of quantitative trait loci at 82.6 and 88.4 Mbp on 

the same chromosome was found. On BTA11, marker ARS-BFGL-NGS-104610 (~104.3 Mbp) 

was highly associated with RECPROTEIN (P = 6.07×10-36). Apart from BTA6 and 11, SNP located 

in 15 more chromosomes (1, 2, 9, 12, 13, 14, 15, 16, 18, 19, 20, 23, 26, 27 and 28) were 

significantly associated to the MCP-CFt and CY-REC traits. 

The gene-set enrichment and pathway-based analysis (CHAPTER 3) revealed 21 GO and 

17 KEGG categories significantly associated (false discovery rate controlled at 5%) with 7 of the 

traits (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS and RECENERGY), with some being in 

common between traits. The significantly enriched categories included calcium signaling pathway, 

salivary secretion, metabolic pathways, carbohydrate digestion and absorption, the tight junction 

and the phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland 

health status, and contained a total of 150 genes located in all chromosomes but 9, 20, and 27. 
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In FA (CHAPTERS 4 and 5), ten mutual orthogonal Fs were obtained using a varimax 

rotation. The 10 Fs explaining 74% of the original variability. Those Fs captured basic concepts 

of the “milk to cheese” process. More precisely, the first four Fs, sorted by variance explained, 

were able to capture the underlying structure of the CY percentage (F1%CY), the CF process with 

time (F2CFt), the milk and solids yield (F3Yield) and the presence of nitrogen (N) into the cheese 

(F4Cheese N). Moreover, 4 Fs (F5 αs1-β-CN, F7β-κ-CN, F8αs2-CN, F9αs1-CN-P) were related to the basic milk 

caseins (as1-CN, as2-CN, β-CN, κ-CN, and the phosphorylated form of as1-CN) and 1 factor was 

associated with the α-LA whey protein (F10α-LA). A factor describing the udder health status of a 

cow (F6Udder health), mainly loaded on lactose, other nitrogen compounds and SCS, was also 

obtained. 

In general, FA results were coherent to the given name of the factor. Stage of lactation had 

a significant effect for the majority of the Fs, followed by parity. Moreover, considerable genetic 

correlations existed among the Fs (CHAPTER 4). All Fs showed significant associations (P < 5 

×10-5) in GWAS, but F5Yield. High peaks on BTA6 (~87Mbp) and at the tail of BTA11 (~104Mbp) 

were mainly associated to F6β-κ-CN and F1Cheese N, respectively. In addition, 33 GO terms and 6 

KEGG categories were mainly enriched for F8αs2-CN, but also for F1%CY, F4Cheese N, and F10α-LA. 

Biological pathways were mainly related to the broader categories of ion activity, neurons and the 

tight junction. Moreover, the considerably large number of enriched GO and KEGG terms for 

F8αs2-CN suggests that, perhaps, more focus should be given on αs2-CN (CHAPTER 5). 
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GENERAL INTRODUCTION 
 

Milk and dairy products are important components of the human diet. The last decades the 

proportion of bovine milk destined for manufactured products, e.g. cheese, is steadily increasing 

in many countries worldwide (Food and Agriculture Organization of the,United Nations, 2015).   

Cheese yield is the outcome of a complex process on which a variety of interrelated factors, 

derived from different disciplines (e.g. microbiology, physical chemistry, engineering process, etc) 

are involved, such as: i) the quantity (e.g. caseins and fat) as well as the quality (e.g. the fraction 

of the caseins to the total milk proteins, and the dimension of fat globules) of milk components; ii) 

other milk characteristics (e.g. milk acidity, minerals and microbial flora); iii) milk pre-treatments 

(e.g. milk natural creaming, heat treatment, etc.); and iv) cheese-making conditions (e.g. 

coagulation temperature, type and concentration of rennet, curd cutting, curd cooking, and 

pressing). 

Milk characteristics, e.g. acidity and solid components (in particular casein and fat) are 

considered as the cornerstone of cheese-making, and their role in this process has been previously 

investigated (Walstra et al., 2014). In addition, cheese process strongly depends on milk 

coagulation (clotting of milk by rennet enzymes) as well as the syneresis (shrinkage of the curd 

with expulsion of whey). Milk coagulation after rennet (or similar coagulation agents) addition is 

the first step to cheese production. Therefore, milk coagulation properties (MCP) such as rennet 

coagulation time (RCT, min), time to curd firmness of 20 mm (𝑘20, min) and curd firmness 30 

min after rennet addition (𝑎30, mm) are important factors for the description of cheese 

manufacture. In addition, previous analyses have shown important genetic variation of the MCP 
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traits [for a recent review on MCP genetics see (Bittante et al., 2012)]. The heritability of MCP is 

higher compared to milk yield and similar to other quality traits of milk. 

Nevertheless, traditional MCP measures are problematic from a practical point of view. 

For example, due to late or non-coagulating samples (especially in Holstein-Friesian cows) it 

might be difficult to obtain the MCP values (Cecchinato et al., 2011), while those measurements 

show low repeatability as well (Bittante et al., 2012). In addition, 𝑎30 is strongly related to RCT 

(both phenotypically and genetically), thus providing no extra information (Ikonen et al., 2004; 

Bittante et al., 2012). Further, MCP traits partly describe the coagulation process (i.e. the change 

of the curd firmness over time – CFt). To overcome the problems related to the classical single 

point estimates of MCP, such as late and non-coagulating milk samples and low repeatability, it 

has been proposed to model the CF as a function of time (Bittante, 2011; Bittante et al., 2013b). 

In this way, CF values are estimated over a longer time period through a model equation, thus 

providing extra information of the coagulation and CF processes (which also takes into account 

the phenomenon of syneresis). 

Despite this, milk components and MCP-CFt traits can only be used as indicators of the 

cheese-making process. On the other hand, traits like the quantity of cheese obtained from a given 

amount of processed milk, or the recovery of milk components into the cheese are direct measures 

of the cheese-making aptitude of milk and so of great economic interest. However, although there 

is a considerable literature on cheese-making, knowledge is mostly based on bulk milk. The 

importance of the percentage of cheese yield (%CY) at the individual level (i.e., based on 

individual milk and not on bulk milk) has been pointed out by (Othmane et al., 2002). Moreover, 

Banks (2007) discussed the significance of the milk constituents’ recovery into the curd, as well 

as their loss in the whey for improved cheese quantity and quality. Previous studies have explored 
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the potential of individual %CY using bovine milk, albeit based on relative small numbers of 

individuals (Hurtaud et al., 1995; Wedholm et al., 2006). Recently, a large dataset (n = 1,264) of 

different measures of individual cow %CYs and milk nutrient and energy recovery in the cheese 

(REC) became available, using a cheese-making model approach assessed at the lab level (Cipolat-

Gotet et al., 2013). Further analysis showed important genetic variation in individual %CY that 

does not solely depend on milk components but also heavily relies on the recovery of milk 

components in the curd (Bittante et al., 2013a).  

Nevertheless, integration of the new knowledge, as well as of the MCP-CFt traits, into 

breeding programs is hampered by high costs, intensive labour requirements, and lack of 

appropriate technology. At present, few potential alternatives have been suggested to overcome 

this problem, e.g., prediction of the aforementioned traits through infrared spectroscopy. 

Determination of milk components using spectral data is routinely used in the dairy industry 

(International Committee for Animal Recording (ICAR), 2012) and ongoing research is focused 

on the precision of the technology for predicting detailed milk components (Rutten et al., 2009), 

technological traits of milk such as milk coagulation (Cecchinato et al., 2009; Chessa et al., 2014) 

or different cheese measures (Ferragina et al., 2013; Bittante et al., 2014).  

Genomic information offers a unique potential for a better understanding of the genetics 

underlying complex traits. A first step towards this direction is, for example, the application of 

genome wide association studies (GWAS) (McCarthy et al., 2008; Visscher et al., 2012) where 

thousands of DNA markers, in the form of single nucleotide polymorphisms (SNP), are scanned 

throughout the entire genome (The Bovine Genome Sequencing and Analysis Consortium et al., 

2009) linking the phenotype of interest to specific regions on the genome (Goddard and Hayes, 

2009). In addition, genomic information can be used in marker-assisted or genomic selection 
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breeding programs (Goddard and Hayes, 2009; de los Campos et al., 2013; Van Eenennaam et al., 

2014) or within the emerging technology of genome/gene editing (Jenko et al., 2015; Proudfoot et 

al., 2015). 

However, despite the potential of GWAS in identifying genomic regions associated with 

the traits of interest, limitations exist and new challenges are ahead. For instance, due to the 

stringent statistical thresholds used to deal with multiple testing, a considerable number of 

important markers may remain undetected when dealing with polygenic traits (Peng et al., 2010). 

Moreover, with high SNP density panels each gene might be represented by several proximal SNP, 

thus splitting its effect into parts that, in turn, might not be able to pass the defined GWAS 

threshold in a single marker regression (Ha et al., 2015). Additionally, especially in livestock 

species linkage disequilibrium (LD) spans a wide region in the genome. As a result, a plethora of 

SNP might be in LD with the causal genomic region which creates extra difficulties in detecting 

the causal mutation (Hayes, 2013). Besides, while GWAS may be able to locate SNPs significantly 

associated with the trait of interest, it does not make use of the fact that genes work together in 

biological pathways and are organized into networks. Further, the effect of a multi-allelic QTL 

may be not fully captured due to the bi-allelic nature of SNP. As a result, GWAS alone may provide 

a limited understanding of the complex nature of quantitative traits. 

A solution to alleviate the aforementioned problems, and deepen the understanding of the 

genetic background of complex traits, is to move up the analysis from the SNP to the gene and 

gene-set levels. In a gene-set analysis, a group of related genes (such as genes in a specific pathway 

or gene ontology) that harbor significant SNPs previously identified in GWAS, is tested for over-

representation in a specific pathway (Wang et al., 2011). Indeed, an increasing interest on pathway 
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analysis has been recently observed in dairy cattle, to complement GWAS analyses of quantitative 

traits (Gambra et al., 2013; Peñagaricano et al., 2013; Iso-Touru et al., 2016; Abdalla et al., 2016). 

Despite the recent technological advances, that offer detailed phenotyping required to 

deepen our biological knowledge of the traits, from a practical point of view animal breeding faces 

the following challenge: to simultaneously improve a variety of different traits in consequent 

generations. Selection indices usually contain a large number of phenotypes related with 

production, reproduction and health, etc. (Miglior et al., 2005). With the recent technological 

advances, this number is very likely to drastically increase in the following years (Boichard and 

Brochard, 2012). However, a large number of traits probably results in a complex phenotypic and 

genetic correlation structure, which, in turn, poses restrictions in selection decision as well as in 

computations. 

Dealing with large amount of data, multivariate analysis is a usual candidate to reduce the 

data space. Within this context, factor analysis (FA) is preferable when the aim is to identify latent 

structures (factors; Fs) of correlated variables. This characteristic of FA has attracted the interest 

in animal breeding. For instance, the potential use of Fs obtained from FA has been investigated 

for a variety of traits, such as milk quality, milk technological properties, e.g., MCP and cheese-

CY in bovine and sheep (Macciotta et al., 2012; Manca et al., 2016) as well as milk fatty acids in 

dairy cattle (Conte et al., 2016). In addition, Fs have been used within the framework of structural 

equation modelling for the analysis of carcass traits in pigs (Peñagaricano et al., 2015) and bovine 

mastitis (Detilleux et al., 2013). 

The main idea of FA is that n observed variables, x, can be expressed as linear functions of 

p (p < n) latent variables. FA focuses in understanding relationships (the underlying latent concept 

that the measured variables represent) among a set of observed variables. Based on the observed 
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covariance structure, FA aims in capturing the underlying latent concept that the original variables 

represent (Bollen, 2014). Thus, data reduction is attained while at the same time only the 

underlying concept of interest is kept for further analysis. 

Although FA has been used in studies in animal breeding those were mainly focused in the 

interpretation of the Fs, investigating the sources of variation related to the Fs and estimating their 

genetic parameters. However, the potential use of Fs in the genomic era, e.g. in genome wide 

associations (GWAS) and its counterpart, gene-set enrichment analysis, has been unexplored. 
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AIMS OF THE THESIS 
 

The general objective of this PhD thesis was to investigate the genomic biological and 

phenotypic background of a cow’s ability to produce cheese and to integrate phenotypic 

information of cheese-related traits (“milk to cheese” process) for practical breeding applications 

focusing on increased bovine cheese yield. More precisely, the five objectives/contributions of this 

thesis were: 

The aim of the first contribution (CHAPTER 1) was to apply GWAS on traditional single-

point MCP observations in connection to CFt, in an effort to shed more light in the genomic 

background of cheese-making related traits. Milk acidity and protein percentage were also 

considered. 

The objective of the second contribution (CHAPTER 2) was to conduct a GWAS analysis 

using individual cheese yield (%CYCURD, %CYSOLIDS and %CYWATER) and milk nutrient and 

energy recovery into the curd measures (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY) to 

shed light on the genetics underlying a cow’s cheese-making ability.  

The goal of the third contribution (CHAPTER 3) was to conduct a gene ontology and 

pathway analysis, to complement the obtained GWAS results from the first and second 

contributions, for phenotypes related to bovine MCP, CFt, CY and REC or whey loss traits. 

The objective of the fourth contribution (CHAPTER 4) was to create a new set of latent 

phenotypes related to milk quality and technological traits, using FA, and to assess their potential 

use in dairy cattle breeding by i) studying the sources of variation (i.e., dairy system, feeding, herd, 

parity and stage of lactation) related to the new variables and ii) estimating their genetic 

parameters. The phenotypes in our analysis were selected to represent major components of cheese 
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yield but also traits that are commonly included in selection indexes in dairy cattle breeding 

programs. 

Integrating all the previous work, the objective of the fifth contribution (CHAPTER 5) was 

to conduct genome-wide associations and pathway analysis with a set of latent variables related to 

26 milk yield and quality, curd firming characteristics, and individual cheese properties.  

To achieve our goals, milk samples from 1,264 Italian Brown Swiss cows were collected 

from 85 herds located in Trento Province, north-east of Italy. Not all phenotyped animals had 

blood samples available. In total, 1,152 cows were genotyped using the Illumina BovineSNP50 

v.2 BeadChip (Illumina Inc., San Diego, CA). The dataset contained detailed milk yield and quality 

traits, milk protein composition, milk coagulation and curd firmness phenotypes and cheese-

making traits measured through individual model-cheese manufacture. 

 

  



 

25 

 

CHAPTER 1 
 

 

Genome-wide association of coagulation properties, curd firmness modeling, 

protein percentage, and acidity in milk from Brown Swiss cows 

 

C. Dadousis,* S. Biffani,† C. Cipolat-Gotet,* E.L. Nicolazzi,‡ A. Rossoni§, E. Santus§, G. 

Bittante,* and A. Cecchinato* 

 

JOURNAL OF DAIRY SCIENCE, 2016, VOL. 99:3654–3666 

http://dx.doi.org/10.3168/jds.2015-10078 

 

 

 

 

 

*Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), 

University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy 

† Istituto di Biologia e Biotecnologia Agraria (IBBA) - Consiglio Nazionale delle Ricerche 

(CNR),, and 

‡ Bioinformatics core, Parco Tecnologico Padano, Via Einstein- Loc. Cascina Codazza, 26900 

Lodi, Italy 

§Italian Brown Breeders Association, Loc. Ferlina 204, Bussolengo 37012, Italy 

 

http://dx.doi.org/10.3168/jds.2015-10078


 

26 

 

ABSTRACT 

Cheese production is increasing in many countries and a desire towards genetic selection for milk 

coagulation properties in dairy cattle breeding exists. However, measurements of individual 

cheese–making properties are hampered by high costs and labour while traditional single point 

milk coagulation properties (MCP) are sometimes criticized. Nevertheless, new modeling of the 

entire curd firmness and syneresis process (CFt equation) offers new insight of the cheese-making 

process. Moreover, identification of genomic regions regulating milk cheese–making properties 

might enhance direct selection of individuals in breeding programs based on cheese ability rather 

than related milk components. Therefore, the objective of this study was to perform genome wide 

association studies (GWAS) to identify genomic regions linked to traditional MCP and new CFt 

parameters, milk acidity (pH) and milk protein percentage (Prot%). Milk and DNA samples from 

1,043 Italian Brown Swiss cows were used. Milk pH and three MCP traits (RCT, k20, a30) were 

grouped together to represent the MCP-set. Four CFt equation parameters (RCTeq, CFP, kCF, kSR), 

two derived traits (CFmax and tmax) and Prot% were considered as the second group of traits (CFt -

set). Animals were genotyped with the Illumina SNP50 bead-chip v.2. Multi-trait animal models 

were used to estimate variance components. For GWAS the GRAMMAR-GC approach was used. 

In total, 106 significant marker-traits associations and 66 SNP were identified on 12 chromosomes 

(1, 6, 9, 11, 13, 15, 16, 19, 20, 23, 26 and 28). Sharp peaks were detected at 84-88Mbp on Bos 

taurus autosome (BTA) 6, with a peak at 87.4Mbp in the region harboring the casein genes. 

Evidence of QTL at 82.6 and 88.4Mbp on the same chromosome was found. All chromosomes but 

BTA6, BTA11 and BTA28 were associated to only one trait. Only BTA6 was in common between 

MCP and CFt sets. The new CFt traits reinforced the support of MCP signals and provided with 

additional information on genomic regions that might be involved in regulation of the coagulation 
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process of bovine milk. 

Key words: genome-wide association study, milk coagulation, curd firmness, dairy cattle 

 

INTRODUCTION 

Milk composition (e.g. fat and protein content) as well as other milk features, e.g. its acidity 

(pH), are considered as the base for cheese manufacturing (Walstra et al., 2014). Moreover, cheese 

process strongly depends on milk coagulation (clotting of milk by rennet enzymes) as well as the 

syneresis (shrinkage of the curd with expulsion of whey). Milk coagulation after rennet (or similar 

coagulation agents) addition is the first step to cheese production. Therefore, milk coagulation 

properties (MCP) such as rennet coagulation time (RCT, min), time to curd firmness of 20 mm 

(𝑘20, min) and curd firmness 30 min after rennet addition (𝑎30, mm) are important factors for the 

description of cheese manufacture. In addition, previous analyses have shown important genetic 

variation of the MCP traits [for a recent review on MCP genetics see (Bittante et al., 2012)]. The 

heritability of MCP is higher compared to milk yield and similar to other quality traits of milk.  

To overcome the problems related to the classical single point estimates of MCP, such as 

late and non-coagulating milk samples and low repeatability, it has been proposed to model the 

CF as a function of time (Bittante, 2011; Bittante et al., 2013b). In this way, CF values are 

estimated over a longer time period through a model equation, thus providing extra information of 

the coagulation and CF processes (which also takes into account the phenomenon of syneresis). 

An extra difficulty is related with the wide scale recording of MCP values that is required for 

application in breeding programs, yet the phenotyping of MCP is highly costly and labour 

demanding. For a wide application (at a population level) of MCP, infrared spectroscopy has been 

promising (Cipolat-Gotet et al., 2012; Cecchinato et al., 2013; Chessa et al., 2014). An alternative, 



 

28 

 

is the identification of genomic regions regulating the aforementioned traits, linking the desired 

traits to the genome, which in turn may enhance establishment of marker-assisted selection 

programs or breeding programs based on whole-genome predictions (Van Eenennaam et al., 2014). 

To this purpose an experimental trial using daughter design and selective genotyping identified 

significant associations on chromosomes 2, 18 and 24 using coagulation as a binary trait, i.e. 

coagulating vs. noncoagulating milk in Finnish Ayrshire cattle (Tyrisevä et al., 2008). Significant 

associations of the β-lactoglobulin (LGB), beta casein (CSN2) and growth hormone 1 (GH1) with 

RCT have already been reported in candidate gene studies (Bonfatti et al., 2010; Cecchinato et al., 

2015b). Moreover, pH has been associated to Rho GTPase activating protein 35 (GRLF1), the 

lipase gene (LIPE) and SCD-1 (acyl-CoA desaturase) (Cecchinato et al., 2015b). Cheese yield as 

well as milk coagulation properties have also been associated to leptin (LEP), leptin receptor 

(LEPR) and kappa casein (CSN3) (Glantz et al., 2011). Recently, the CF and syneresis traits have 

also been tested for genomic associations resulting in new candidate genes regulating cheese–

making properties of the milk, additional to those identified by the traditional MCP measures 

(Cecchinato et al., 2015b). Note, however, that all the above studies were performed on a small 

number of preselected DNA markers and not on a whole genome scale. With genome wide 

association studies, where a large number of SNP (single nucleotide polymorphisms) distributed 

along the whole genome is used, new, previously unknown, chromosomal regions associated to 

traits under investigation can potentially be identified (Schopen et al., 2011). 

 Exploration of the genetic background and identification of genomic regions affecting 

milk coagulation and curd firmness might be useful for establishing gene-assisted selection 

programs or incorporate the new knowledge for direct genomic prediction purposes (Glantz et al., 
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2012). A first attempt on GWAS for MCP traits has been recently presented using a high density 

SNP chip but a relatively small number of individuals (379 cows) (Gregersen et al., 2015). 

The aim of the present study was to apply GWAS on Italian Brown Swiss dairy cows 

genotyped with a 50k SNP chip. Traits investigated were traditional single-point MCP 

observations in connection to curd firmness and syneresis traits, in an effort to shed more light in 

the genomic background of cheese-making related traits. Milk acidity and protein percentage were 

also considered. 

  

 

MATERIALS AND METHODS 

Field Data 

Milk samples from 1,264 Italian Brown Swiss cows were collected from 85 herds located 

in Trento Province, north-east of Italy. With few exceptions, 15 cows from each herd were 

individually sampled once during evening milking. After collection, milk samples (without 

preservative) were immediately refrigerated (4°C). One random subsample was transported to the 

Milk Quality Laboratory of the Breeders Association of Trento Province (Trento, Italy) for 

composition analysis. The other subsample was transferred to the Cheese-Making Laboratory of 

the Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of 

the University of Padova (Legnaro, Padova, Italy) for milk MCP analysis. All samples were 

processed within 20h after collection. Information on cows and herds were provided by the 

Breeders Association of Trento Province (Italy). Phenotypic data were matched to pedigree 

information supplied by the Italian Brown Swiss Cattle Breeders Association (ANARB, Verona, 

Italy). 
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Analysis of Milk Quality and MCP 

Individual milk subsamples were analyzed for fat, protein, and casein contents using 

MilkoScan FT6000 (Foss). The pH of the subsamples was measured before MCP analysis, using 

a Crison Basic 25 electrode (Crison, Barcelona, Spain). 

Measures of MCP were obtained using the Formagraph instrument (FRM) by Foss Electric 

A/S according to the procedure described in (Cipolat-Gotet et al., 2012). In brief, milk samples 

(10 mL) were heated to 35°C and 200 μL of a rennet solution [Hansen Standard 160, with 80 ± 

5% chymosin and 20 ± 5% pepsin; 160 international milk clotting units (IMCU)/mL; Pacovis 

Amrein AG, Bern, Switzerland], diluted to 1.6% (wt/vol) in distilled water, was added at the 

beginning of analysis. Ten samples were analyzed simultaneously, one sample for each measuring 

unit of the coagulation meter (pendula), which records the width (mm) of the graph during testing 

every 15 sec. The observation period continued for 90 min after rennet addition. Rennet 

coagulation time (RCT) is defined as the time (min) from addition of enzyme to the beginning of 

coagulation, k20 (min) is the interval from RCT to the time at which a curd firmness of 20 mm is 

attained, and 𝑎30 (mm) is a measure of the extent of curd firmness 30 min after coagulant addition. 

Samples that did not coagulate within 30 min were classified as noncoagulating (Ikonen et al., 

1999), although extension of analysis allowed RCT and 𝑘20 values to be detected for all samples. 

 

Modeling the CF of Individual Milk Samples 

Files containing 360 CF values for each milk sample, recorded every 15 sec for 90 min, 

were retrieved and used to estimate a set of parameters of CF at time t (CFt) according to equations 

and methodology developed by Bittante (Bittante, 2011) and Bittante et al (Bittante et al., 2013b). 
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Estimated parameters included: rennet coagulation time (RCTeq, min), potential asymptotical curd 

firmness (CFP, mm), representing the maximum potential curd firmness of a given sample after 

infinite time in the absence of syneresis, curd-firming rate constant (kCF, % x min-1) which 

measures the relative velocity of CF, syneresis rate constant (kSR, % x min-1), maximum curd 

firmness (CFmax, mm) and time to CFmax (tmax, min). A graphical representation of the 

aforementioned parameters is reported in Figure 1.  

  

Genotyping 

Not all phenotyped animals had blood samples available. In total, 1,152 cows were 

genotyped using the Illumina BovineSNP50 v.2 BeadChip (Illumina Inc., San Diego, CA). SNP 

that fulfilled the following criteria were included in the analysis: (1) call rate >95%, (2) minor 

allele frequency >0.005, and (3) no extreme deviation from Hardy-Weinberg equilibrium (HWE; 

p > 0.001, Bonferroni corrected). After quality control 37,418 SNP, distributed across 29 

autosomes and X-chromosome, and 1,043 animals were retained. In total, 109 animals were 

excluded from the analysis due to low call rate (<95%). 

 

Genetic Parameters and Yield Deviation Estimation 

Two multi-trait animal models were used to estimate variance components. The first model 

(MCP-set) was used to analyze the following traits: milk pH, RCT (min), k20 (min) and a30 (mm). 

The second model (CFt-set) included milk-protein percentage (Prot%) together with the four traits 

modeling the curd-firming process over time, namely RCTeq (min), CFP (mm), kCF (% x min-1), 

kSR, (% x min-1) and two traits estimated from the CF equation, CFmax (mm) and tmax (min). Cows 

without pedigree and with a lactation longer than 400 days in milk (DIM) were discarded. 
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According to previous findings (Cecchinato et al., 2013), models for MCP- and CFt -sets 

accounted for the following fixed effects: DIM (14 classes of days in milk defined as one class for 

every 30 d), parity (1 to 5 or more), and renneting meter sensor of the lactodynamograph (15 

levels). The latter effect was fitted only for the a30 trait. Two random effects were included in both 

models: an uncorrelated random herd effect and an additive genetic effect. In total, 18,905 animals 

were included in the pedigree. 

The basic model to describe the observations written in matrix notation was: 

𝑦 = 𝑋𝛽 + 𝑍ℎℎ + 𝑍𝑢𝑢 + 𝑒        (1) 

where y is a vector of MCP-set or CFt -set traits, β is the vector of fixed effects, h, u and e are 

vectors of random herd, additive genetic and residual effects, respectively. The X is the design 

matrix of fixed effects, Zh and Zu represent the corresponding incidence matrices linking the 

phenotypic records to the appropriate random effects. The following normal distributions were 

assumed for the random effects,ℎ~𝑁(0, 𝐈 ⊗ 𝐇𝟎), 𝑢 ∼ 𝑁(0, 𝐀 ⊗ 𝐆𝟎) 𝑎𝑛𝑑 𝑒 ∼ 𝑁(0, 𝐈 ⊗ 𝐑𝟎). 

The (co)variance structure of the random effects was as follows: 

𝑉ar |
𝐚
𝐡
𝐞

| = |

𝐀 ⊗ 𝐆𝟎 0 0
0 𝐈 ⊗ 𝐇𝟎 0
0 0 𝐈 ⊗ 𝐑𝟎

| 

where A is the numerator relationship matrix; G0 and H0 are 4 x 4 or 7 X 7 matrices of 

polygenic and random herd (co)variances of the traits in models for MCP-set and CFt -set, 

respectively; I is the identity matrix and R0 is a diagonal matrix of residual variances 

corresponding to each trait. MCP-set model was implemented using the program AIREML90 

(Misztal et al., 2002). Program MTJAAM version 3.8 was used to implement the model CFt-set 

(Gengler et al., 1997). 

Intra-herd heritabilities (ℎ𝐼𝐻
2 ) were defined as: 
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ℎ𝐼𝐻
2 =

𝜎𝑎
2

𝜎𝑎
2+𝜎𝑒

2           (2) 

 

where 𝜎𝑎
2and 𝜎𝑒

2 are additive genetic and residual variances, respectively.  

Additive genetic correlations (𝑟𝑔) were estimated as: 

 

𝑟𝑔 =
𝜎𝑎𝑖,𝑎𝑗

𝜎𝑎𝑖.𝜎𝑎𝑗
           (3) 

 

where, 𝜎𝑎𝑖,𝑎𝑗 is the additive genetic covariance between trait i and j, and 𝜎𝑎𝑖 and 𝜎𝑎𝑗 are the additive 

genetic standard deviations for trait i and j, respectively. 

 

The estimated variance and covariance components were used to estimate Yield Deviations 

(YD) for the 11 traits. The analyses were carried out using the BLUPF90 program (Misztal et al., 

2002). The YD were estimated by adjusting daughter performance for all non genetic effects 

(Mrode, 2005): 

 

𝑌𝐷 = (𝑍𝑢
′ 𝑅0

−1
𝑍𝑢)−1𝑍𝑢

′ 𝑅0
−1

(𝑦 − 𝑋�̂� − 𝑍ℎℎ̂)      

 (4)  

 

where YD is a vector of yield deviations and R0, y, X, β, Zu and h were as earlier defined in 

equation 1. 
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Genome-Wide Associations 

The YD, obtained as previously described, were considered as response variables to 

perform genome-wide associations (GWAS) using the GenABEL package in R (R Core Team, 

2013; GenABEL project developers, 2013) adopting the GRAMMAR-GC (Genome wide 

Association using Mixed Model and Regression - Genomic Control) approach (Amin et al., 2007; 

Svishcheva et al., 2012). The R package “qqman” was used for graphical representation of GWAS 

results (Turner, 2014). The GRAMMAR-GC involves a three step analysis. In the first step of the 

procedure, an additive polygenic model is fitted to the adjusted data (YD), using the genomic 

relationship matrix estimated from SNP data. The reason for including a polygenic term is to obtain 

residuals that are not biased by the possible population structure, which in our case might be due 

to the presence of closely related animals. In the second step, associations between residuals and 

marker genetic polymorphisms are tested in a single-SNP linear regression model. Finally, the 

Genomic Control (GC) approach is applied to correct for conservativeness of the GRAMMAR 

procedure. Genomic control is based on the estimation of the ζ deflation factor: 

 

ζ =
𝑀𝑒𝑑𝑖𝑎𝑛 (𝑇1

2,𝑇2
2,…𝑇𝑁

2)

0.456
            (5) 

 

which is the median of the squares of all genome-wide computed test statistics divided by the 

expected median of the test statistic under the null hypothesis of no association, assuming that the 

number of true associations is very small compared to the number of tests that are actually 

performed. P-values of ≤ 5 × 10−5 were considered as significant associations (Burton et al., 

2007). A search for genes located within 1Mbp of the most significant SNP was followed (Ensembl 

Bos taurus UMD3.1). 
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RESULTS 

Descriptive Statistics 

Descriptive statistics for MCP-set and CFt -set traits are presented in Table 1. Traditional 

RCT from FRM had an average of 20.19 min vs. 19.74 min of RCTeq estimated modeling the CF 

process over time. As expected, the latter presented a lower standard deviation (4.34 vs. 6.54) than 

RCT from FRM because it was estimated using individual equations. The average CF time (k20) 

was 5.72 min (± 3.67) while CF at 30 min after enzyme addition was 29.19 mm (± 10.92).  

The syneresis rate constant had values much lower than the curd-firmness rate constant 

(average 1.39 vs. 12.45 % min -1, respectively), but its coefficient of variation was high (~ 40%). 

The extension of the observation period to 90 min permitted to identify the maximum value of CF 

(CFmax), and the time at which this value is attained (tmax), after addition of rennet to milk. On 

average, CFmax was 37.05 mm, with a coefficient of variation of 19.4 %. The maximum CF was 

achieved, on average, 40.68 min after rennet addition (tmax), being almost twice the RCT value, on 

average. 

 

Genetic Parameters 

Table 2 shows the variance components estimates and the heritabilities for the two blocks 

of considered traits, namely MCP-set and CFt -set. The three MCP properties were moderately 

heritable, with ℎ𝐼𝐻
2  ranging between 0.15-0.27. For the traits of CFt -set heritabilities were, again, 

moderate (ranged between 0.21-0.26) except the CFP and kSR that had low ℎ𝐼𝐻
2  (0.06).  

The genetic correlations of the traits analyzed within MCP-set are presented in 

Supplementary Table S1. Genetic correlations among milk pH, RCT and k20 were positive 
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(unfavourable), ranging between 0.36-0.65. On the contrary, a30 was negatively correlated with 

milk pH, RCT and k20 (-0.48, -0.88 and -0.93, respectively).  

Genetic correlations of the CFt -set traits are summarized in Supplementary Table S2. The 

percentage of milk-protein was almost uncorrelated with half of the CFt traits (RCTeq, kCF and tmax) 

while moderately correlated to the rest. Also, RCTeq, apart from Prot%, was uncorrelated to kSR 

and CFmax. The highest positive rg (0.87) was found between RCTeq-tmax, while the highest negative 

between tmax-kCF (-0.87). The rest of the genetic correlations among the traits were moderate, 

ranging between ~0.20 to 0.79, in absolute values. 

 

Results of the Genome-Wide Associations 

A total of 106 significant marker-trait associations (66 significant SNP) were detected 

(Table 3, Supplementary Table S3). From those 106 cases, 81 significant marker-trait associations 

were identified on Bos taurus autosome (BTA) chromosome 6 (76%), while 46 cases were unique, 

i.e. SNP that were found to be significantly associated to only one trait. From those 46 cases, 17 

belong to CFmax and 10 to Prot %. On BTA6, 25 out of the 46 cases were detected (54%). In total, 

significant associations were spotted on 12 chromosomes (1, 6, 9, 11, 13, 15, 16, 19, 20, 23, 26 

and 28). The traits CFP and CFmax showed the maximum number of significant associations (34 

and 17, respectively). On the contrary, milk pH was the only trait without any signal. The most 

frequently identified region was on BTA6 between 85.42 to 88.44Mbp. For both sets of traits 

analysed, marker Hapmap52348-rs29024684 (87,396,306bp) showed the strongest association.  

On BTA6 signals were distributed across five regions (Table 3, Figure 2). At the first 

(region 6a; 51.7Mbp) k20 was linked. In the region 6b (64.18Mbp) tmax showed one significant 

association. The trait CFP was associated to a genomic region (6c) between 73.6-74.6Mbp. The 
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broader region on BTA6 between 77.52-88.44Mbp (region 6d) showed signals for all but milk pH 

and the syneresis rate constant traits, with P-values ranging between 3.89 × 10−05 (k20) and 1.62 ×

10−17 (CFP).  That was also the region with the strongest signals. At the tail of BTA6 (~113.5Mbp) 

Prot% showed a signal (region 6e). The only trait without any significant association on BTA6 

was kSR.  

 Apart from BTA6, signals in eleven more chromosomes were detected (Table 3, Figure 

3). More precisely, a region on BTA1 at ~9.5Mbp was associated to RCTeq. Signals of Prot % on 

BTA9 (~70 and 83.6Mbp), BTA20 (~17.4Mbp) and BTA28 (38.45Mbp) were identified. On 

BTA28 tmax was also linked at around 33.8Mbp. On BTA11 the region at ~86-88Mbp was 

associated to both RCTeq and tmax with a peak at 87.7Mbp. One region on BTA13 (47.88Mbp) and 

two regions on BTA15 (14.2 and 55.5Mbp), were associated to RCT. One SNP on BTA16 

(~76.3Mbp) was associated to CFP, while a small region on  BTA19 (~2.1-2.3Mbp) was linked to 

𝑎30. The syneresis rate had only two signals, both on BTA 23 at, approximately, 8.8 and 10.6Mbp, 

while kCF was associated to BTA26 (~20.4Mbp). 

With the exception of the region 6d on BTA6, the rest of the signals were mainly one trait 

– one genomic region associations with, relatively, mild strength. As a supporting evidence of the 

associations identified, the quantile-quantile (Q-Q), plots visualizing the distribution of the 

observed test statistics derived from the GWAS analyses, were checked (Supplementary Figure 

S1). Extreme departures in the tail of the distributions were observed for RCT and a30 from the 

MCP-set and for all the CFt-set with the exception of kSR. 

Summarizing the GWAS results for the two sets of traits, significant SNP for the three 

MCP properties were mainly located on BTA6, with the majority of them mapped within or in 

close proximity to the casein cluster (~87.14-87.39Mbp) in a broader area at approximately 84.71-
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88.44Mbp. The regions at 84.89, 85.42, and 87.39Mbp on BTA6 were significant for all three 

MCP properties. For the CFt traits sharp peaks were found on BTA6 (~77.5-87.4Mbp) mainly 

associated with CFP and CFmax. The majority of common SNP between CFP-CFmax are laying in 

the area at ~84.89-87.40Mbp. Between MCP-set and CFt -set traits only the BTA6 was in common 

and, more specifically, the region between 81-88.44Mbp.  

 

Conditional analysis 

Due to the wideness of the region 6d, a conditional analysis was carried out by fixing in 

the GWAS model the most significant marker on BTA6 (Hapmap52348-rs29024684; 

87,396,306bp), to test if multiple QTL exist on BTA6 (Table 4). The region 6c as well as a part of 

the region 6d between 77.5-81Mbp were not confirmed in the conditional analysis.  Mild signals 

remained at 81.6-84.7Mbp (for k20, Prot%,CFP and kCF), at 87.15-88.8Mbp (for RCTeq, Prot%, 

CFmax and kCF) as well as the area 6e. The region 6a was replaced with a weak signal at 51.7Mbp 

(for k20) while another weak association at 64.18Mbp (for tmax) was detected replacing the region 

6b. Concerning the rest of the chromosomes, on BTA1 a30 was linked to a region at 29.7Mbp, 

while milk pH was associated to BTA8 (113.25Mbp). On BTA11, although the general region of 

the signals was the same, the peak was detected at 86.8Mbp. On BTA13, the association of RCT 

(at 47.9Mbp) was replaced with a link between k20 and a region at 57.2Mbp. No change on the rest 

of the results was observed, except marginal changes of the P-values and absence of signal on 

BTA16. It should be mentioned, that all the associations in the conditional analysis were weak 

with the majority of them around the threshold. 
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DISCUSSION 

Genetic Parameters  

The majority of the traits analyzed in this study, showed moderate heritabilities, which is 

favorable for breeding purposes. In general, the CFt-set traits tended to have slightly higher ℎ𝐼𝐻
2  

compared to the MCP-set, except CFP and kSR that showed very low values. Genetic parameters 

reported here might slightly differ compared to a recently published work based on the same data 

(Cecchinato et al., 2015b), because of different editing of the data as well as to different approaches 

followed for variance component estimations, but rely on the range of heritability values of MCP 

reviewed by Bittante et al. (2012). 

 

Genomic regions associated with MCP and CFt traits 

It is well established that milk protein (and more specifically the caseins) as well as milk 

fat content are strongly related to cheese yield and that casein genetic variants are affecting MCP 

(reviewed by Bittante et al., 2012). Moreover, it is already known that the casein genes are located 

on BTA6 (reviewed in (Caroli et al., 2009)(Caroli et al., 2009) while significant associations of 

milk technological traits have been reported on BTA11 as well (Heck et al., 2009; Bonfatti et al., 

2010; Berry et al., 2010). 

 

BTA6 

Recently, a GWAS on rheological properties of milk, including RCT, was carried out using 

haplotypes reporting high peaks on BTA6 (Gregersen et al., 2015). The importance of the region 

on BTA6 at, roughly, 84 to 88 Mbp has also been confirmed in our study, although a broader area, 

starting from ~82Mbp, has been identified. The region at 88Mbp has been significantly associated 
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to the caseins (α, β, κ) as well as to beta-lactoglobulin content, Prot%, casein index and α-

lactalbumin in another GWAS study (Schopen et al., 2011). In Gregersen et al (2015) signals 

around 50.9 and ~60.9Mbp have been detected, linking to the log transformed maximum gel 

strength and log(RCT), respectively. These regions are in close proximity to the regions 6a and 6b 

in our study (Table 3), but they were not confirmed in the conditional analysis (Table 4). 

The main region identified in our study was at 84-88Mbp on BTA6 with a peak at 87.4Mbp. 

This area is gene-dense including the casein cluster: casein alpha S1 (CSN1S1; ~87.14-87.16Mbp), 

casein alpha S2 (CSN1S2; ~87.26-87.28Mbp), casein beta (CSN2; ~87.18-87.19Mbp) and casein 

kappa (CSN3; ~87.39Mbp). The highest significant SNP identified in our study (Hapmap52348-

rs29024684) is located ~18kbp upstream of CSN3. Moreover, the marker Hapmap28023-BTC-

060518 is located within the histatherin gene (HSTN; ~87,190-87,204Mbp) which in turn is 

mapped between CSN2 and CSN1S2 on BTA6. The HSTN gene is involved in salivary secretion. 

This SNP was significant for RCT, k20, a30, CFP and CFmax with P:[1.32 × 10-5 , 1.41 × 10-11], while 

remained significant after adjusting for the Hapmap52348-rs29024684 (P=3.65 × 10-5 for the 

CFmax). 

Even after adjusting for the effect of the highest significant marker on BTA6 two weak 

signals remained at i) 81-84Mbp (with a peak at 82.6Mbp) and ii) 87-89Mbp (peak at 88.4Mbp), 

indicating the presence of a different QTL. In the first area TECRL (trans-2,3-enoyl-CoA 

reductase-like; ~81.5-81.6Mbp) is located, which is involved in lipid metabolic process. In the 

second region the GC (vitamin D-binding protein; 88.69-88.74Mbp) is mapped. The protein 

encoded by GC belongs to the general albumin family, it is a vitamin D binding protein and 

regulates vitamin transportation to target tissues and vitamin D metabolism. Moreover, it is 

involved in the metabolism of lipids and lipoproteins.  
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BTA11 

Chromosome 11 was the second most frequently identified chromosome in the GWAS 

analysis where significant associations with RCTeq and tmax were detected at around 87Mbp. In 

previous studies, QTL on BTA11 related to α-, β- and κ-caseins as well as α-lactalbumin and beta-

lactoglobulin concentrations have been reported (Heck et al., 2009; Bonfatti et al., 2010; Berry et 

al., 2010) suggesting progestagen-associated endometrial protein (PAEP; also known as LGB) 

located at 103.3Mbp as a candidate gene.  Also, association between RCT and LGB has been 

shown (Bonfatti et al., 2010; Cecchinato et al., 2012b). Moreover, the tail of BTA11 (~107Mbp) 

has been linked with high peaks to percentages of α-, β-, κ- caseins, beta-lactoglobulin and casein 

index (Schopen et al., 2011). None of those signals was confirmed in our study. Therefore, our 

signal at 87Mbp indicates a potential new QTL. A variety of protein codings is mapped in the 

identified in our study region between 85.9-88Mbp. In this area Lipin 1 (LPIN 1; ~86.0-86.1Mbp), 

grainyhead-like 1 (GRHL1; ~87.5-87.6Mbp) and isoamyl acetate-hydrolyzing esterase 1 homolog 

(IAH1; ~87.94-87.95Mbp) are present. All of the three genes are involved in lipid metabolic 

process. Associations of LPIN 1 with k20 and 𝑎30 have been previously reported (Cecchinato et 

al., 2012a). Close to this region (~88.58Mbp) the DNA-binding protein inhibitor ID-2 (ID2) is 

mapped, which is involved in the mammary gland epithelium development. In addition, marker 

ARS-BFGL-NGS-37074 (88,028,793bp) is located within the ASAP2 (arf-GAP with SH3 domain, 

ANK repeat and PH domain-containing protein 2; ~88.01-88.18Mbp. This marker was significant, 

albeit at a weak strength. 
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Signals on other chromosomes apart from BTA6 and BTA11 

Significant associations in ten more chromosomes were detected in our study. Apart from 

BTA6, six more chromosomes are in common between our study and Gregersen et al. (2015), 

namely BTA1, 9, 13, 15, 16 and 23. However, signals were identified in different genomic regions. 

For example, on BTA1 a signal at 9.5Mbp was found for RCTeq while in the conditional analysis 

a30 was associated at 29.7Mbp. In Gregersen et al (2015) a QTL interval at 70.7-80Mbp on BTA1 

is reported. On BTA15 our analysis identified two regions related to RCT at 14.2 and 55.5Mbp 

which are quite far apart from the locations reported in Gregersen et al. (2015) (37-44Mbp and 61-

62Mbp, respectively). On BTA13 a significant SNP (P-value=1.45×10-5) was detected at 47,9Mbp 

while a signal at 58Mbp was reported in Gregersen et al. (2015). Note, however, that in the 

conditional analysis a signal at 57Mbp was observed for k20. These differences might not be 

surprising since the traits analysed in the two studies (with the exception of RCT), although all 

related to coagulation properties of the milk, are different.  

Peaks on BTA2, 18 and 24 have also been reported in a previous study (Tyrisevä et al., 

2008). No signal was found on those chromosomes in our analysis. However, in Tyrisevä et al 

(2008): i) the traits analysed were coagulation vs. non-coagulation, ii) a selective DNA pooling 

using microsatellite markers was used and iii) the analysis was carried out in a Finnish Ayrshire 

dairy cattle population. Moreover, while the above mentioned chromosomes in Tyrisevä et al. 

(2008) have been also reported in Gregersen et al. (2015) the positions of the signals do not match. 

A possible consideration could be why DGAT1 (acyl-coenzyme A:diacylglycerol 

acyltransferase 1), located on BTA14 and related to milk fat percentage, was not identified in our 

study. This was not surprising since in the Italian Brown Swiss population DGAT1 is not 

segregating. 
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GWAS results and genetic correlations among traits 

In the present study we found traits with high genetic correlations (𝑟𝑔 > |0.7|) showing 

different genomic signals. For example, RCT and a30 had a genetic correlation of -0.88 

(Supplementary Table S1).  Both traits showed a signal on BTA6 sharing 6 significant SNP in 

common. However, RCT was also associated to BTA13 and BTA15, while a30 was linked to 

BTA19. Another example is between RCTeq
 and tmax which are strongly genetically correlated 

(𝑟𝑔 = 0.87). Three significant SNP were in common (one on BTA6 and two on BTA11), but RCTeq 

was also associated to BTA1 while tmax to BTA28. In addition, RCTeq – CFP, CFP – kSR and CFmax 

– kSR had no common significant SNP but they are strongly genetically related (𝑟𝑔 of 0.7, -0.79 

and -0.74, respectively). These results could be dually interpreted. Thus, perhaps, the different 

genomic regions identified on highly genetically correlated traits could be attributed to the non-

correlated part between the traits. On the other hand, it could also be claimed that the information 

of genetic correlation between related traits involved in the same biological process might be an 

extra hint on distinguishing false positives as well as supporting evidence of true signals. In any 

case, an extra benefit can be gained by taking into account the genetic correlations among 

phenotypes describing the same process in GWAS studies, resulting in a more holistic view of the 

complex trait under study.  

 

Partitioning a complex phenotype into different components 

In the genome wide associations performed in this study the phenotypes used were either 

three single point measurements that are traditionally used in dairy industry or they were obtained 

after allowing an extended coagulation period (Bittante et al., 2013b). Between the two groups of 

phenotypes only BTA6 was in common. However, for both sets, marker Hapmap52348-
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rs29024684 was identified as the most significant. The CFt traits strengthened the evidence of the 

obtained signals for MCP traits on BTA6, while also pinpointed genomic regions not captured by 

the MCP, for instance on BTA11. There is, therefore, evidence that by partitioning the traits into 

different (potentially correlated) components – phenotypes more information might be extracted 

concerning the underlying genetic mechanism regulating the traits. The importance of 

“phenomics” and phenotype definition has been recently emphasized as an essential part of 

information for the better understanding of the genomic regulation of traits (Houle et al., 2010).  

 

Breeding 

The clear peaks on BTA6 together with the identification of Hapmap52348-rs29024684 

(closely located to CSN3) as highly significant in multiple traits indicate that, perhaps, more 

emphasis should be given for selection on this marker (or directly to CSN3). The minor allele 

frequency (MAF) of the marker in this dataset was 0.23. Moreover, depending upon the trait, the 

proportion of phenotypic variance captured by this marker ranged between 40% (for k20) to 2% 

(for a30) (Supplementary Table S3). The same marker has been significantly associated in a recent 

preliminary GWAS analysis, in the same population, with the recoveries of the milk-fat into the 

cheese, explaining a large proportion of the phenotypic and genetic variability (Dadousis et al., 

2015). This provides extra support for the significance of this genomic region for cheese related 

properties of milk. Therefore, our results show that selection of this marker is possible for the 

Italian Brown Swiss population. 

With the exception of the region 6d, the rest of the associations identified were mild to 

weak. This can be partly attributed to the limited sample size. As direct MCP measurements is 

costly and time requiring, much larger sample size seems not feasible. An alternative for increasing 
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the power of GWAS could be to use MCP and CFt traits predicted by  FTIR spectroscopy 

(Ferragina et al., 2015) that could be easily applied at population level (Cecchinato et al., 2015).  

 

CONCLUSION 

Eleven traits related to milk coagulation and curd firmness were used in genome wide 

association analyses. Even taking into account the limitations imposed by the sample size and the 

number of SNPs analyzed, the results confirmed the importance of the casein cluster on BTA6 and 

more precisely of CSN3, while potential new QTL appear at 82.6 and 88.4Mbp on the same 

chromosome. Evidence of a QTL on BTA11 at ~87Mbp has been found. Moreover, new signals 

along the genome have been detected. However these genomic regions should be reproduced in 

future studies, favourably of a larger scale. Despite this, to the best of our knowledge, this is the 

largest GWAS study carried out with milk coagulation properties. 

The new set of seven traits describing the whole process of milk coagulation to syneresis 

strengthened the support of QTL on BTA6. Moreover, the CFt traits showed signals on genomic 

regions not related to the traditionally measured MCP traits. Results indicate the importance of 

phenotypic integration in GWAS studies for a better connection between phenome and the 

genome. Replication of the GWAS results from independent, and favourably of large scale, studies 

remains crucial. This will also help to clear the picture of the weak signals detected in our study. 
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Table 1. Descriptive statistics of milk coagulation properties (MCP), parameters of curd firmness 

modeling on time t (CFt), milk pH and protein. 

Trait1 Mean SD P1 P99 CV, % 

MCP       

   RCT (min) 20.19 6.54 10.30 41.00 32.4 

   k20 (min) 5.72 3.67 2.00 19.42 64.2 

   a30 (mm) 29.19 10.92 0.81 50.24 37.4 

CFt       

   RCTeq (min) 19.74 4.34 15.00 28.50 40.5 

   CFP (mm) 54.24 13.84 26.03 96.94 25.5 

   kCF (% × min-1) 12.45 5.69 2.36 28.71 45.7 

   kSR (% × min-1) 1.39 0.56 0.15 2.85 40.5 

   CFmax (mm) 37.05 7.17 19.40 53.67 19.4 

   tmax (min) 40.68 10.43 23.27 72.96 25.7 

Milk pH 6.64 0.08 6.42 6.84 1.2 

Protein, % 3.72 0.41 2.91 4.71 11.1 

P1 = 1st percentile; P99 = 99th percentile; CV, %: coefficient of variation (%); RCT = 

rennet coagulation time (min) of samples coagulating within 45 min from enzyme 

addition; k20 = curd-firming time (min) of samples reaching 20 mm of firmness within 

45 min from enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; 

RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP = potential 

asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR = 

syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time 

to CFmax (min). 
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Table 2. Estimates of additive genetic variances (𝜎𝑎
2), and intra-herd heritabilities (ℎ𝐼𝐻

2 ) for milk 

coagulation properties (MCP), parameters of curd firmness modeling on time t (CFt), milk pH and 

protein. 

Trait1 𝜎𝑎
2 ℎ𝐼𝐻

2  

MCP   

   RCT (min) 10.40(0.50) 0.27(0.01) 

   k20 (min) 2.34(0.12) 0.15(0.01) 

   a30 (mm) 40.16(2.01) 0.17(0.01) 

CFt
   

   RCTeq (min) 3.84(0.62) 0.26(0.03) 

   CFP (mm) 9.43(0.20) 0.06(0.01) 

   kCF (% x min-1) 5.88(0.98) 0.24(0.03) 

   kSR (% x min-1) 0.02(0.00) 0.06(0.01) 

   CFmax (mm) 6.96(1.31) 0.21(0.03) 

   tmax (min) 14.76(2.56) 0.22(0.03) 

pH 0.002(0.00) 0.45(0.02) 

Protein, % 0.02(0.04) 0.24(0.05) 

1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme addition; 

k20 = curd-firming time (min) of samples reaching 20 mm of firmness within 45 min from enzyme 

addition; a30 = curd firmness (mm) at 30 min after enzyme addition; RCTeq = Rennet coagulation 

time (min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm); kCF 

= curd-firming rate constant (% x min-1); kSR = syneresis rate constant (% x min-1); CFmax = 

maximum curd firmness (mm); tmax = time to CFmax (min). 

In parenthesis the standard errors of the estimates. 



 

49 

 

Table 3. Summary results of the genome wide association analyses 

BTA # SNP  

(signals) 

Interval 

(Mbp) 

P-value 

 (range) 

Top SNP Top SNP location 

(bp) 

Top SNP 

MAF 

Trait1 

0* 1 - 5.31 × 10−06 BTA-76907-no-rs 0 0.26 CFP 

1 1 - 4.27 × 10−05 ARS-BFGL-NGS-41048 9,484,167 0.09 RCTeq 

6a 1 - 2.57 × 10−05 BTB-01451336 51,669,513 0.12 k20 

6b 1 - 4.65 × 10−05 Hapmap43353-BTA-76584 64,179,687 0.05 tmax 

6c 4 (4) 73.640-74.607 (1.96 × 10−05, 8.14 × 10−06) Hapmap43042-BTA-76779 73,688,640 0.20 CFP 

6d 36 (74) 77.521-88.442 (3.89 × 10−05, 1.62 × 10−17) Hapmap52348-rs29024684 87,396,306 0.24 
Prot%, RCT, k20, a30, 

RCTeq, CFP, CFmax, kCF, tmax 

6e 1 - 2.2 × 10−5 Hapmap47844-BTA-115673 113,538,490 0.25 Prot% 

9a 1 - 9.04 × 10−06 Hapmap53034-rs29011422 69,696,334 0.34 Prot% 

9b 1 - 1.06 × 10−05 ARS-BFGL-NGS-88859 83,575,446 0.38 Prot% 

11 6 (8) 85.936-88.029 (3.47 × 10−05, 5.72 × 10−06) BTA-110429-no-rs 87,670,344 0.42 RCTeq, tmax 

13 1 - 1.45 × 10−05 Hapmap31215-BTA-32775 47,879,982 0.01 RCT 

15a 2 (2) 14.243-14.272 (2.81 × 10−06, 2.77 × 10−06) ARS-BFGL-NGS-114291 14,242,668 0.01 RCT 

15b 1 - 6.76 × 10−06 ARS-BFGL-NGS-68607 55,488,319 0.01 RCT 

16 1 - 2.74 × 10−05 ARS-BFGL-NGS-17574 76,311,292 0.29 CFP 

19 2 (2) 2.094-2.271 (2.3 × 10−05, 2.08 × 10−05) Hapmap39832-BTA-46468 2,093,500 0.32 a30 

20 1 - 3.57 × 10−05 ARS-BFGL-NGS-1751 17,412,441 0.17 Prot% 

23a 1 - 2.69 × 10−05 Hapmap38418-BTA-57213 8,819,178 0.11 kSR 

23b 1 - 1.75 × 10−06 ARS-BFGL-NGS-99929 10,631,079 0.07 kSR 

26 1 - 4.3 × 10−05 ARS-BFGL-NGS-23064 20,365,711 0.47 kCF 

28a 1 - 2.1 × 10−05 ARS-BFGL-NGS-115508 33,729,338 0.11 tmax 

28b 1 - 2.64 × 10−05 Hapmap48306-BTA-36540 38,449,335 0.13 Prot% 

BTA= Bos taurus autosome chromosome; #SNP (signals)= number of the single nucleotide polymorphisms significantly associated to the trait. In parenthesis the total 

number of significant signals per each genomic region; Interval: The region on the chromosome spanned among the significant SNP (in base pairs); P-value (range)= 

The P-value of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple SNP were significantly associated to one trait; Top 
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SNP location (bp)= position of the highest significant SNP on the chromosome in base pairs on UMD3.1; Top SNP MAF= minor allele frequency of the top SNP;  

1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) of samples reaching 20 mm of firmness 

within 45 min from enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = protein percent; RCTeq = Rennet coagulation time (min) 

estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR = syneresis rate constant (% x min-

1); CFmax = maximum curd firmness (mm); tmax = time to CFmax (min). 

In bold the trait with the highest P-value in each genomic region. 

*Undefined chromosome and position on the genome 
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Table 4. Summary results of the genome wide association analyses after fixing the marker Hapmap52348-rs29024684 at 87,396,306 base pairs on 

BTA6. 

BTA # SNP 

(signals) 

Interval 

(Mbp) 

P-value 

(range) 

Top SNP Top SNP location 

(bp) 

Top SNP 

MAF 

Trait1 

1 1  4.46× 10−05 BTB-02049040 29,696,010 0.42 a30 

6a 1  4.99× 10−05 Hapmap23226-BTA-159656 46,599,570 0.24 tmax 

6b 2 69,483-71,421 (3.66 × 10−05, 2.67× 10−05) ARS-BFGL-NGS-20354 69,482,838 0.08 CFmax 

6d_1 4(7) 81,652-84,690 (4.73 × 10−05, 5.47 × 10−06) Hapmap27307-BTC-043200 82,605,943 0.20 k20, Prot%, CFP, kCF 

6d_2 5(5) 87,153-88,822 (4.9× 10−05, 9.22 × 10−06) BTA-122637-no-rs 88,442,145 0.07 RCTeq, Prot%, CFmax, kCF 

6e 1  1.98 × 10−05 Hapmap47844-BTA-115673 113,538,490 0.25 Prot% 

8 1  4.97 × 10−05 ARS-BFGL-NGS-63329 113,252,230 0.01 pH 

9a 1  1.51 × 10−05 Hapmap53034-rs29011422 69,696,334 0.34 Prot% 

9b 1  7.38 × 10−06 ARS-BFGL-NGS-88859 83,575,446 0.38 Prot% 

11 6(10) 85,936-88,029 (4.43 × 10−05, 4.5 × 10−06) ARS-BFGL-NGS-119913 86,779,385 0.50 tmax, RCTeq 

13 1  3.74× 10−05 BTB-00531553 57,198,685 0.05 k20 

15a 2 14,243-14,272 (7.29 × 10−06, 7.24× 10−06) ARS-BFGL-NGS-114291 14,242,668 0.01 RCT 

15b 1  1.08 × 10−05 ARS-BFGL-NGS-68607 55,488,319 0.01 RCT 

19 2 2,094-2,271 (3.47 × 10−05, 2.96 × 10−05) Hapmap39832-BTA-46468 2,093,500 0.32 a30 

20 1  3.72 × 10−05 ARS-BFGL-NGS-1751 17,412,441 0.17 Prot% 

23a 1  2.85 × 10−05 Hapmap38418-BTA-57213 8,819,178 0.11 kSR 

23b 1  2.59 × 10−06 ARS-BFGL-NGS-99929 10,631,079 0.07 kSR 

26 1  2.5 × 10−05 ARS-BFGL-NGS-23064 20,365,711 0.47 kCF 

28a 1  2.71 × 10−05 ARS-BFGL-NGS-115508 33,729,338 0.11 tmax 

28b 1  3.09 × 10−05 Hapmap48306-BTA-36540 38,449,335 0.13 Prot% 

BTA= Bos taurus autosome chromosome; #SNP (signals)= number of the single nucleotide polymorphisms significantly associated to the trait. In 

parenthesis the total number of significant signals per each genomic region; Interval: The region on the chromosome spanned among the significant SNP 

(in base pairs); P-value (range)= The P-value of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple 
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SNP were significantly associated to one trait; Top SNP location (bp)= position of the highest significant SNP on the chromosome in base pairs on 

UMD3.1; Top SNP MAF= minor allele frequency of the top SNP;  

1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) of samples reaching 20 

mm of firmness within 45 min from enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = protein percent; RCTeq = 

Rennet coagulation time (min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x 

min-1); kSR = syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time to CFmax (min).  

In bold the trait with the highest P-value in each genomic region. 

1 
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Figure 1. Modeling prolonged observations of curd firmness (CF) at time t (CFt), model 

parameters: RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP = 

potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR = 

syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time to CFmax 

(min). 
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Figure 2. Manhattan plot of P-values for the genome wide association studies (GWAS) on Bos 

taurus autosome 6 (BTA6). 

 

Description: Traits showed significant associations on BTA6 were RCT = rennet coagulation time 

(min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) 

of samples reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd firmness 

(mm) at 30 min after enzyme addition; Prot % = protein percent; RCTeq = Rennet coagulation time 

(min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm);  kCF = 

curd-firming rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time to 

CFmax (min). 

The red horizontal lines indicate a –log10(P-values) of 4.30 (corresponding to P-value = 5 ×

10−5). 
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Figure 3. Manhattan plot of P-values for the genome wide association studies (GWAS) on Bos 

taurus autosomes (BTA) 1, 9, 11, 13, 15, 16, 19, 20, 23, 26 and 28. 

 

Description: RCT = rennet coagulation time (min) of samples coagulating within 45 min from 

enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = protein 

percent; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP = potential 

asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR = syneresis 

rate constant (% x min-1); tmax = time to maximum curd firmness (min).  

The red horizontal lines indicate a –log10(P-values) of 4.30 (corresponding to P-value = 5 ×

10−5). 
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ABSTRACT 

Cheese production and consumption are increasing in many countries worldwide. As a result, there 

is an increased interest in strategies for genetic selection of individuals for technological traits of milk 

related to cheese yield (CY) in dairy cattle breeding. However, little is known on the genetic 

background of a cow’s cheese ability. Recently, a relatively large panel (1,264 cows) of different 

measures of individual cow CY and milk nutrient and energy recoveries in the cheese (REC) became 

available. Genetic analyses showed considerable variation for CY and for aptitude to retain high 

proportions of fat, protein and water in the coagulum. For the dairy industry these characteristics are 

of major economic importance. Nevertheless, use of this knowledge in dairy breeding is hampered 

by high costs, intense labor requirement, and lack of appropriate technology. However, in the era of 

genomics new possibilities are available for animal breeding and genetic improvement. For example, 

identification of genomic regions involved in cow’s CY might provide potential for marker assisted 

selection. The objective of this study was to perform genome wide association studies (GWAS) on 

different CY and REC measures. Milk and DNA samples from 1,152 Italian Brown Swiss cows were 

used. Three CY traits expressing the weight (wt) of fresh curd (%CYCURD), curd solids (%CYSOLIDS), 

and curd moisture (%CYWATER) as percentage of weight of milk processed, and 4 REC (RECFAT, 

RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the % ratio between the nutrient in curd and 

the corresponding nutrient in processed milk) were analyzed. Animals were genotyped with the 

Illumina BovineSNP50 Bead Chip v.2. Single marker regressions were fitted using the GenABEL R 

package (GRAMMAR-GC). In total, 103 significant associations (88 SNP) were identified (P < 5×10-

5) in 10 chromosomes (2, 6, 9, 11, 12, 14, 18, 19, 27, 28). For RECFAT and RECPROTEIN, high 

significance peaks were identified in Bos taurus autosomes (BTA) 6 and 11, respectively. Marker 

ARS-BFGL-NGS-104610 (~104.3 Mbp) was highly associated with RECPROTEIN (P = 6.07×10-36) 

and Hapmap52348-rs29024684 (~87.4 Mbp), closely located to the casein genes on BTA6, with 

RECFAT (P =1.91×10-15). Genomic regions identified may enhance marker assisted selection in 

bovine cheese breeding beyond the use of protein (casein) and fat contents, while new knowledge 
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will help to unravel the genomic background of a cow’s ability for cheese production. 

Key words: genome-wide association study, cheese yield, curd recovery, whey loss, dairy cattle. 

 

INTRODUCTION 

Milk and dairy products are important components of the human diet and the proportion of milk used 

for manufactured products, e.g. cheese, is steadily increasing in many countries worldwide (Food and 

Agriculture Organization of the,United Nations, 2015).  

Milk characteristics, e.g. acidity and solid components (in particular casein and fat) are the cornerstone 

of cheese-making, and their role in this process has been previously investigated (Walstra et al., 2014). 

Moreover, milk coagulation properties (MCP) and curd firming modeling parameters (CFt), together with the 

phenomenon of syneresis, are considered crucial technological features for cheese production (Bittante et al., 

2012). However, milk components and MCP-CFt traits can only be used as indicators of the cheese-making 

process. On the other hand, traits like the quantity of cheese obtained from a given amount of processed milk, 

or the recovery of milk components into the cheese are direct measures of the cheese-making aptitude of milk 

and so of great economic interest.  

Although there is a considerable literature on cheese-making, knowledge is mostly based on bulk milk. 

The importance of the percentage of cheese yield (%CY) at the individual level (i.e., based on individual milk 

and not on bulk milk) has been pointed out by Othmane and colleagues (2002). Moreover, Banks (2007) 

discussed the significance of the milk constituents’ recovery into the curd, as well as their loss in the whey for 

improved cheese quantity and quality. Previous studies have explored the potential of individual %CY using 

bovine milk, albeit based on relative small numbers of individuals (Hurtaud et al., 1995; Wedholm et al., 2006). 

Recently, a large dataset (n = 1,264) of different measures of individual cow %CYs and milk nutrient and 

energy recovery in the cheese (REC) became available, using a cheese-making model approach assessed at the 

lab level (Cipolat-Gotet et al., 2013). Further analysis has shown important genetic variation in individual 

%CY that does not solely depend on milk components but also heavily relies on the recovery of milk 

components in the curd (Bittante et al., 2013). Nevertheless, integration of the new knowledge into breeding 

programs is hampered by high costs, intensive labour requirements, and lack of appropriate technology. 
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At present, few potential alternatives have been suggested to overcome this problem, e.g., prediction 

of the aforementioned traits through infrared spectroscopy. Determination of milk components using spectral 

data is routinely used in the dairy industry (International Committee for Animal Recording (ICAR), 2012) and 

ongoing research is focused on the precision of the technology for predicting detailed milk components (Rutten 

et al., 2009), technological traits of milk such as milk coagulation (Cecchinato et al., 2009; Chessa et al., 2014) 

or different cheese measures (Ferragina et al., 2013; Bittante et al., 2014). On the other hand, genomic 

information offers a unique potential for a better understanding of the genetics underlying cheese-making 

properties. A first step towards this direction is, for example, the application of genome wide association 

studies (GWAS) (McCarthy et al., 2008; Visscher et al., 2012) where thousands of DNA markers, in the form 

of single nucleotide polymorphisms (SNP), are scanned throughout the entire genome (The Bovine Genome 

Sequencing and Analysis Consortium et al., 2009) linking the phenotype of interest to specific regions on the 

genome (Goddard and Hayes, 2009). In addition, genomic information can be used in marker-assisted or 

genomic selection breeding programs (Goddard and Hayes, 2009; de los Campos et al., 2013; Van Eenennaam 

et al., 2014). 

Genomic regions associated with bovine milk quality traits have already been identified in a variety of studies, 

either using a small number of preselected DNA markers or a whole genome scan, and candidate genes have 

been detected. In a GWAS study using Holstein-Friesian cattle, different protein variants (especially casein 

variants) showed high peaks on Bos taurus autosomes (BTA) 6 and 11 (Schopen et al., 2011). Concerning 

MCP traits, milk coagulation has been associated to chromosomes 2, 18 and 24 in Finnish Ayrshire cattle 

(Tyrisevä et al., 2008), while for rennet coagulation time, β-casein (CSN2), β-lactoglobulin (LGB) and growth 

hormone 1 (GH1) have been identified as candidate genes (Bonfatti et al., 2010; Cecchinato et al., 2012; 

Cecchinato et al., 2015). Moreover, MCP and some cheese characteristics have also been associated to κ-casein 

(CSN3), leptin (LEP), and leptin receptor (LEPR) (Glantz et al., 2011). Recently, two GWAS studies identified 

other chromosomal regions associated to different MCP, CFt and syneresis traits (Gregersen et al., 2015; 

Dadousis et al., 2016a). Nevertheless, these studies have identified genomic regions associated with indicators 

and not with direct measures of the cheese-making aptitude of milk. 
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 The objective of our study was to conduct a GWAS analysis using individual cheese yield (%CYCURD, 

%CYSOLIDS and %CYWATER) and milk nutrient and energy recovery into the curd measures (RECFAT, 

RECPROTEIN, RECSOLIDS, and RECENERGY) to shed light on the genetics underlying a cow’s cheese-making 

ability. An Italian Brown Swiss dairy cattle sample genotyped with a 50k SNP chip and with all cheese-making 

traits measured through individual model-cheese manufacture was used. 

 

MATERIALS AND METHODS 

Field Data 

Milk and blood samples were collected from 1,264 Italian Brown Swiss cows reared in 85 herds 

located in Trento Province (Italy). A full description of the sampling procedure can be found in Cecchinato et 

al. (2013). In brief, 15 cows per herd were individually sampled once (evening milking) and all samples were 

processed within 20h after collection. Information on cows and herds was supplied by the Breeders Association 

of Trento Province.  

 

Definition of Phenotypes 

The phenotypes were obtained through a model cheese-making procedure on 1,500mL of milk for 

each cow. The phenotype of interest (i.e. individual cheese yield) was split into seven components forming 

two groups of traits. The traits analyzed were: i) three %CY traits, expressing the weight (wt) of fresh curd 

(%CYCURD), of curd dry matter (%CYSOLIDS), and of water retained in the curd (%CYWATER) as percentage of 

wt of milk processed, and ii) four REC traits representing the proportion of nutrients and energy of the milk 

retained in the curd (RECSOLIDS, RECFAT, RECPROTEIN and RECENERGY calculated as the % ratio between the 

nutrient in curd and the corresponding nutrient in processed milk). The energy within the curd was calculated 

as the difference between energy in the milk and in the whey (NRC, 2001). A detailed description of the 

individual model cheese-making procedure used to obtain the phenotypes analyzed in this study as well as 

sources of phenotypic variation can be found in Cipolat-Gotet et al. (2013).  
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Genotyping 

In total, 1,152 cows were genotyped using the Illumina BovineSNP50 v.2 BeadChip (Illumina Inc., 

San Diego, CA). Markers that fulfilled the following criteria were kept in the analysis: (1) call rate >95%, (2) 

minor allele frequency >0.005, and (3) no extreme deviation from Hardy-Weinberg proportions (HWP; P > 

0.001, Bonferroni corrected). After quality control, 1,011 animals and 37,568 SNP, distributed over 29 

autosomes and the X-chromosome, were retained. 

 

Genome-Wide Association Analyses 

The association analysis was conducted using the GenABEL package in R (R Core Team, 2013; 

GenABEL project developers, 2013). The GRAMMAR-GC (Genome wide Association using Mixed Model 

and Regression - Genomic Control) approach was adopted, using the default function “gamma” (Amin et al., 

2007; Svishcheva et al., 2012). For graphical representation of GWAS results the R package “qqman” was 

used (Turner, 2014). The GRAMMAR-GC is a three step approach. Firstly, an additive polygenic model is 

fitted using the genomic relationship matrix. At this step, our model was: 

 

eaXy   ,      (1) 

 

where y is a vector containing the phenotypic records; 𝛽 is a vector with the effects of days in milk of each 

cow (defined as classes of 30 days each), parity level of the cow (with classes 1, 2, 3, ≥4) and herd-date (85 

total), all considered as fixed; and X is an incidence matrix that associates each observation to specific levels 

of factors in 𝛽. These non-genetic factors have already been studied in the same dataset (Bittante et al., 2013; 

Cipolat-Gotet et al., 2013). The random effects in the model consisted of the animal and the residual terms, 

which were assumed normally distributed as 𝒂 ~ 𝑁(0, 𝐆𝜎𝑔
2) and 𝒆 ~ 𝑁(0, 𝐈𝜎𝑒

2), where G is the genomic 

relationship matrix, I is an identity matrix, and 𝜎𝑔
2 and 𝜎𝑒

2 are the additive genomic and residual variances, 

respectively. The G matrix was constructed within the GenABEL R package, where for a given pair of 

individuals i and j, the identical by state coefficients (𝑓𝑖,𝑗) is calculated as: 
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𝑓𝑖,𝑗 =
1

𝑁
∑

(𝑥𝑖,𝑘 − 𝑝𝑘)  ×  (𝑥𝑗,𝑘 − 𝑝𝑘)

𝑝𝑘  × (1 − 𝑝𝑘)𝑘
 

 

where N is the number of markers used, 𝑥𝑖,𝑘 is the genotype of the ith individual at the kth SNP (coded as 0, ½ 

and 1), 𝑝𝑘 is the frequency of the “+” allele and k= 1, …, N.  

Then, at the second step of GRAMMAR-GC, the residuals obtained in (1) are regressed on the SNP 

(single marker regression) to test for associations. In the last step, the Genomic Control (GC) approach corrects 

for conservativeness of the GRAMMAR procedure and gives estimates of the marker effects (Svishcheva et 

al., 2012). A threshold of P-value equal to 5 × 10−5 was adopted to declare significant associations (Burton et 

al., 2007). The variance explained by each SNP was calculated as 2pqa2, where p is the frequency of one allele, 

q=1-p is the frequency of the second allele and a is the estimated additive genetic effect. A scan for genes 

around 1Mbp upstream-downstream from the significant SNP was performed using the Ensembl Bos taurus 

UMD3.1 database (http://www.ensembl.org/index.html).  

Model (1) was also used to estimate variance components and genomic heritability of the traits based 

on the genomic relationship matrix. Heritability was estimated as ℎ2 =
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑒

2 . 

 

RESULTS 

Descriptive Statistics and Genetic Parameters 

Descriptive statistics of the seven phenotypes analyzed in GWAS as well as milk yield and milk quality 

traits (fat and protein percentage) are presented in Table 1. The %CYCURD had a mean value of 14.95% 

(meaning that from 1.5 liters of milk ~225g of fresh cheese was obtained, on average) ranging between 10.2% 

and 20.5%. On average, the quantity of water retained in the curd was slightly higher than the quantity of the 

curd solids (7.77% vs. 7.17%, respectively). The highest level of recovery from milk to cheese was observed 

for fat (mean of 89.76%), followed by protein (78.16%), and energy (67.15%). The RECSOLIDS showed the 

http://www.ensembl.org/index.html
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lowest mean value (51.80%) because of the loss of most of the lactose and minerals with whey. For the same 

dataset, the average milk yield was 24.95 kg/day. The milk fat and protein percentages had average values of 

4.37% and 3.71%, respectively. 

Additive genomic variance and heritability estimates are presented in Table 2. The recovery of the 

milk protein in cheese had the highest heritability (0.46). For the rest of the traits the h2 estimates were 0.29 

for %CYSOLIDS and RECSOLIDS and 0.37 for %CYCURD, while for %CYWATER and RECENERGY they were 

estimated at ~0.25. The lowest h2 was found for RECFAT (0.14).  

 

Results of the Genome-Wide Associations 

In total, 103 significant associations (88 SNP) were identified (P < 5×10-5) on 10 

chromosomes (BTA 2, 6, 9, 11, 12, 14, 18, 19, 27, 28) (Table 3, Supplementary Table S1). Sharp 

peaks were identified on BTA6 and BTA11 for the RECFAT and the RECPROTEIN, respectively. The 

most frequently identified chromosome was BTA6, representing 55 out of 103 total associations 

(53%). This chromosome together with BTA11 accounted for 92% of the total significant 

associations. With the exception of BTA6, all the remaining hits were ‘one trait – one chromosome’ 

associations. The quantile-quantile (Q-Q) plots (scatter plot of the observed vs. expected values of 

test statistics derived from the GWAS analyses) were also inspected. The Q-Q plots showed extreme 

departures on the tail of the distributions for all traits, except for %CYWATER, providing extra evidence 

for true associations of the GWAS analyses (Supplementary Figure S1).  

On BTA6 all traits but %CYWATER and RECPROTEIN showed signals (Table 3, Figure 1). Three 

regions can be distinguished on BTA6. In the first region (6a) at ~73.7 – 74.6 Mbp the RECFAT was 

linked. The second region (6b; at ~77.5 – 88.4 Mbp) was the broader one and all of the five traits 

showed signals, with RECFAT showing the maximum number of associations among those traits. 

Finally, %CYCURD was associated to one marker at ~102.9 Mbp (region 6c). The highest significant 

marker on BTA6 was Hapmap52348-rs29024684 (87,396,306bp). This SNP was the highest 

significant identified for the RECSOLIDS, RECFAT and RECENERGY (P-value of 3.93 × 10-7, 1.91×10-15 
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and 8.03 × 10-7, for RECSOLIDS, RECFAT and RECENERGY, respectively). 

A total of 38 SNP were significant on BTA11 at an area spanned between 91.6 – 106.7 Mbp. 

All of the SNP were associated to RECPROTEIN (Table 3, Figure 2). The area could further be 

partitioned into three sub-regions: between 91.6 – 94.8 (11a), 96.2 – 98.5 (11b) and 100.5 – 106.7 

(11c) Mbp. In the last area 25 SNP were significant. Moreover, the most significant SNP was 

identified within this area, namely marker ARS-BFGL-NGS-104610 (104,293,559bp) with a P-value 

= 6.07x10-36. 

Apart from BTA6 and BTA11 signals in eight more chromosomes were detected for 

%CYSOLIDS, %CYWATER and  RECENERGY, albeit at relatively mild strength (Table 3, Figure 3).  More 

precisely, %CYSOLIDS was linked to BTA2 (~128.8 Mbp), BTA14 (~26 Mbp), BTA19 (~1.8 Mbp) and 

BTA27 (~42.1 Mbp). Three markers were significantly associated to the %CYWATER on BTA12 

(~85.3 Mbp), BTA18 (~65.3 Mbp) and BTA28 (~38.5 Mbp). Finally, on BTA9 (~91.1 Mbp) a signal 

for RECENERGY was detected. 

Comparing the two sets of traits (CY vs. REC), the three cheese yield traits were associated 

to 13 SNP in eight chromosomes (BTA 2, 6, 12, 14, 18, 19, 27 and 28) while the four nutrient and 

energy recoveries of milk into the cheese curd showed associations (76 SNP) on BTA6, 9 and 11. The 

only genomic region in common between the two groups of traits was the area 6b on BTA6, and more 

precisely the region ~82.5 – 88 Mbp. In this area, three significant SNP were in common between 

%CYCURD, %CYSOLIDS, RECSOLIDS and RECENERGY (namely, Hapmap26275-BTC-043486, 

Hapmap50464-BTA-77021 and Hapmap53172-rs29012675), all of which located in the area around 

82Mbp. 

 

Fitting Hapmap52348-rs29024684 (~87.4 Mbp) on BTA6 and ARS-BFGL-NGS-104610 (~104.3 

Mbp) on BTA11 

Based on the GWAS results and the high peaks identified on BTA6 and BTA11 a further 
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GWAS analysis (conditional GWAS) was followed up by fitting simultaneously as covariates in 

model (1) the two highest significant SNP, to account for the effect of the casein variants and their 

quantity in milk. In this case, a total of 43 associations (26 SNP) were detected in 8 chromosomes 

(Table 4, Supplementary Table S2). The number of significant SNP for RECFAT and RECPROTEIN 

drastically decreased (6 and 5, respectively). Moreover, RECPROTEIN showed new associations on 

BTA6 (at ~85.6 and 88 Mbp) and BTA22 (~38.8 Mbp), while associations for RECFAT were still 

detected on BTA6 (at ~82.5, 87.2 and 88.5 Mbp). In general, results changed in two directions, namely 

some regions that were significant in the first analysis did not show significance in the second 

analysis, and vice-versa. In addition, there were changes in chromosomes as well as positions within 

chromosomes where significant SNP were located. For example, %CYCURD was now associated to 

two more regions on BTA19 (ARS-BFGL-NGS-102974-1,822,133 Mbp; ARS-BFGL-NGS-24753-

3,024,589 Mbp) that were not previously detected. On BTA6 the region 6a and part of the 6b region 

(up to ~82 Mbp) were not confirmed. Three sub-regions could be identified in the 6b area at ~82 Mbp 

(6b_1), ~85-86 Mbp (6b_2) and 87.2-88.6 Mbp (6b_3). The region 6c remained significant. However, 

an extra signal was detected at ~114 Mbp associated to the %CYSOLIDS. Interestingly enough, all the 

minor alleles of the significant markers on BTA6 had now positive effects, for all traits 

(Supplementary Table S2). On BTA11 only a signal within the 11c area (~103.5 Mbp) was detected, 

but in this case RECPROTEIN was associated with only 2 SNP. Also in this case, the estimated effects 

of the minor alleles of the significant SNP on BTA11 were now positive. Signals on BTA2, 14 and 

18 were not identified while the significant associations remained on BTA27 and 28. In the 

conditional analysis most of the signals were mild with the exception of the regions 6b_1 and 11c.  
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DISCUSSION 

Genome-Wide Associations for the Cheese Yield Traits 

Cheese yield is the outcome of a complex process on which a variety of interrelated factors, 

derived from different disciplines (e.g. microbiology, physical chemistry, engineering process, etc) 

are involved, such as: i) the quantity (e.g. caseins and fat) as well as the quality (e.g. the fraction of 

the caseins to the total milk proteins, and the dimension of fat globules) of milk components; ii) other 

milk characteristics (e.g. milk acidity, minerals and microbial flora); iii) milk pre-treatments (e.g. 

milk natural creaming, heat treatment, etc.); and iv) cheese-making conditions (e.g. coagulation 

temperature, type and concentration of rennet, curd cutting, curd cooking, and pressing). To 

understand this complicated progression a plethora of studies have been carried out, and a well-

documented description of the cheese process is available (Banks, 2007; Law and Tamime, 2011; 

Walstra et al., 2014), although our knowledge is yet incomplete. Moreover, this knowledge has been 

built based on bulk milk. From a breeding perspective, however, information on the individual level 

of the ability of a cow to produce cheese is necessary. Previous analysis indicated that there is 

considerable variation on the traits of interest, and breeding could help for further improvement 

(Bittante et al., 2013). The restriction, though, for a wide scale phenotyping on individual CY is the 

lack of an appropriate technology combined with high costs. Identification of chromosomic regions 

associated to individual CY offers a possible alternative through the application of genomic breeding 

programs.  

Genomic heritability estimates varied between 0.14 to 0.46. These values are in the same range 

as those reported in Bittante et al. (2013) from an infinitesimal model. Slight differences might be 

attributed to the different set up of statistical model used (e.g. herd was fixed vs. random effect, 

frequentist vs. Bayesian analysis) and the different number of individuals included. Moreover, here 

we made use of the genomic relationship matrix while in Bittante et al. (2013) the analysis was carried 

out using pedigree information. 

Previous GWAS studies have linked various milk components and milk technological 
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characteristics related to cheese yield to a variety of chromosomic regions (Schopen et al., 2011; 

Gregersen et al., 2015; Dadousis et al., 2016a). In the present study, for the first time, seven traits 

derived from direct cheese measures, representing an individual cow’s cheese production ability and 

obtained from a model cheese-making process, were analyzed. All the traits showed significant 

associations and were linked to at least one chromosome. 

 

BTA6 

Sharp peaks were detected for RECFAT on BTA6 in a broad area between ~77.5-88.5 Mbp. In 

this area the casein cluster is mapped (~87 Mbp). All of the traits analyzed but %CYWATER and 

RECPROTEIN showed associations in this region (Table 3, Figure 3) with the highest peak spotted at 

~87 Mbp (marker Hapmap52348-rs29024684; 87,396,306 bp). This marker had a negative effect of 

the minor allele for all the traits, more precisely -0.84, -1.34 and -0.90 for RECSOLIDS, RECFAT and 

RECENERGY, respectively. For the same traits, the proportion of phenotypic variance explained by this 

marker was 3.31% and 3.92% for RECSOLIDS and RECENERGY while it increased to 8.45% for RECFAT. 

Concerning the percentage of the additive genetic variance explained by this SNP it was found to be 

11.5%, 58.8% and 16.3%, for RECSOLIDS, RECFAT and RECENERGY, respectively (Supplementary 

Table S1). It is interesting to note that the area 6b has recently been reported and thoroughly described 

in a recent GWAS study (Dadousis et al., 2016a). In that case, a trait defined as the “asymptotic value 

of curd firmness in the absence of syneresis” showed strong signals exactly in the same region (~77.5-

88.5 Mbp. Moreover, marker Hapmap52348-rs29024684 was highly significant for a variety of traits 

describing milk coagulation and curd firmness (P-values ranged between 7.46x10-07 and 1.62x10-17). 

The present analysis has confirmed the importance of the casein genes and especially the CSN3 casein 

gene for an individual cow’s cheese yield, since the peak is located only18kbp upstream of CSN3. In 

addition, in this area is also present the marker Hapmap28023-BTC-060518 (87.20 Mbp) that was 

significantly related to RECFAT (P-value = 3.36 × 10−07). The SNP is mapped within the histatherin 
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gene (HSTN) which is located between the CSN2 and the CSN1S2. The same SNP was also reported 

in Dadousis et al. (2016a). Even after conditioning on the peak on BTA6 signals still remained at 

~82.71, ~85.1, ~87.22 and ~88.1Mbp giving evidence for potential new quantitative trait loci (QTL) 

(Table 4, Supplementary Table S2). 

The region around 88Mbp has also been linked to different measures of Holstein cow milk 

protein composition, including the casein variants CSN1S1, CSN1S2, CSN2 and CSN3 as well as α-

lactalbumin (α-LA), LGB, the casein index and casein percentage (Schopen et al., 2011). Moreover, a 

similar peak at 87.2-87.4 Mbp has been recently reported in a GWAS study analyzing rheological 

traits of milk related to milk coagulation in Swedish Red cows (Gregersen et al., 2015). Other regions 

on BTA6 that have been detected in previous studies on association with milk quality and coagulation 

traits did not appear significant in our study for the direct measures of cheese-making traits, e.g. the 

area ~44Mbp in Schopen et al. (2011), the genomic region ~50-51Mbp (Gregersen et al., 2015; 

Dadousis et al., 2016a), the areas ~60Mbp (Gregersen et al., 2015) and ~64Mbp (Dadousis et al., 

2016a). Nevertheless, the region 6d detected in the conditional analysis is in close proximity to the 

~113Mbp that was reported in (Dadousis et al., 2016a) associated to milk protein (%).  

By using direct cheese traits obtained through a cheese-making process it has been shown that 

the importance of this genomic region is related, apart from codification of protein genetic variants, 

with the recovery of the milk fat into the curd, and not to the recovery of protein. This was, to an 

extent, expected, since in healthy cows all casein variants are essential for the structure and activity 

of milk protein micelles (Holt et al., 2013) and participate to the formation of coagula (Caroli et al., 

2009) and curd syneresis (Pearse and Mackinlay, 1989; Everard et al., 2011). However, the efficiency 

of capturing milk fat globules depends on the rapidity of clotting and the strength of the curd that in 

turn depend on casein genetic variants (Alipanah and Kalashnikova, 2007).  
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BTA11 

Chromosome eleven was linked only to RECPROTEIN, with all association hits being detected 

on the tail of BTA11 (Table 3). On this chromosome the peak was detected at 104,293,559bp (marker 

ARS-BFGL-NGS-104610; P-value=6.07×10-36) while a strong signal at 103.35 Mbp remained in the 

conditional analysis. The effect of the minor allele of this marker was negative for the RECPROTEIN (-

1.30). The phenotypic variance explained by this marker was 22.87%, while half of the additive 

genetic variance can be attributed to this SNP. The significance of this region confirms the findings 

of Schopen et al. (2011), in which significant associations were identified for the casein variants (α, 

β and κ) as well as for β-lactoglobulin content and casein index, although in that case high peaks 

appeared at ~107Mbp. It should be noted that RECPROTEIN is phenotypically very similar to the casein 

index. However, since part of the caseins are lost in the whey, RECPROTEIN is able to capture more 

variation compared to the casein index. The region around 86-88Mbp has been recently associated to 

CFt traits (Dadousis et al., 2016a), but it was not confirmed for direct cheese-making traits in our 

study. Nevertheless, this batch is relatively close to marker BTA-93319-no-rs (91,639,283bp), which 

was significant in the present GWAS analysis (P = 8.8×10-6). However, this signal was diluted after 

conditioning on the BTA11 peak. 

A closer look into the region ±1Mbp around the marker ARS-BFGL-NGS-104610 was 

performed. This SNP is located ~2.5kbp downstream of SURF6 (surfeit locus protein 6). In this small 

area the following protein coding genes are located: i) downstream the marker: AGPAT2 (1-acyl-sn-

glycerol-3-phosphate acyltransferase beta), FAM69B (family with sequence similarity 69, member 

B), ABO (histo-blood group ABO system transferase), and ii) upstream the marker: MED22 (mediator 

of RNA polymerase II transcription subunit 22), RPFL7A (60S ribosomal protein L7a), SURF1 

(surfeit locus protein 1), SURF2 (surfeit locus protein 2), STKLD1 (serine/threonine kinase-like 

domain containing 1), REXO4 (RNA exonuclease 4). From those protein coding genes, AGPAT2 is 

involved in fat digestion and absorption as well as in fatty acid metabolic pathways. The gene 
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RPFL7A, among a variety of functions, is also part of biosystem pathways regulating the metabolism 

of proteins. Moreover, although further apart on the chromosome, yet within the region spanning 

±1Mbp around the significant marker, the progestagen-associated endometrial protein gene (PAEP, 

also known as LGB) can be found. 

 

Signals on Other Chromosomes 

Concerning the rest of the chromosomes, one SNP-one trait associations were observed in all 

the cases. Moreover, the majority of the P-values was around the threshold. The signals on BTA2, 

BTA14 and BTA18 were not retained after conditioning the peaks on BTA6 and 11. Moreover, on 

BTA14 the significant SNP detected is far apart from DGAT1 (diacylglycerol O-acyltransferase 1). 

This should not be surprising, mainly for two reasons. Firstly, DGAT1 has been associated to milk fat 

content in dairy cattle. In our study, however, the recovery of the milk fat into the curd was the focal 

point. The two traits are entirely different, both phenotypically and genetically, with almost zero 

phenotypic and genetic correlations (Bittante et al., 2013). At the beginning of the coagulation 

process, the fat of the milk is blocked by the caseins. This has been confirmed in our analysis by 

associating, with high peaks, RECFAT to a region on BTA6 where the casein genes are located (see 

also results of (Schopen et al., 2011) on GWAS with milk protein variants). Moreover, in the Italian 

Brown Swiss population DGAT1 is not segregating. Albeit at a mild strength, the same signal on 

BTA28 has been previously linked to milk protein percentage (Dadousis et al., 2016a). 

 

Partitioning the Cheese Yield into Different Components 

As a side note, our study highlighted the importance of partitioning a complex trait into 

different components for a better understanding of its genomic background. More precisely, the 

percentage of cheese produced by a given amount of milk was split into seven different traits. For 

example, phenotypically %CYCURD = %CYSOLIDS + %CYWATER. However, the genomic signals 
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of %CYCURD ≠ %CYSOLIDS + %CYWATER. On the contrary, seven out of eight genomic regions 

identified for %CYSOLIDS and %CYWATER were not present in %CYCURD. Moreover, the marker 

Hapmap52348, located close to CSN3, was detected only from the recoveries of fat, solids and energy 

while the significance of BTA11 was depicted only with the protein recovery. 

 

CONCLUSION 

Different measures of bovine cheese ability were associated to ten chromosomic regions. Five 

out of the seven cheese traits used in GWAS analyses showed high peaks on BTA6 (~87.4 Mbp) in 

an area close to kappa casein, confirming the importance of this casein variant in cheese making. 

Moreover, high peaks on BTA11 (~104.3 Mbp) were linked to milk protein recovery into the curd. A 

number of other chromosomic regions have also been significantly associated to the cheese traits 

analyzed, albeit in the absence of high peaks. Highly significant markers identified, especially on 

BTA6 and BTA11, could further be used for genomic prediction purposes. The road for fine mapping 

of genomic regions associated to a cow’s cheese production potential is ahead. Future research based 

on gene enrichment analysis might complement the GWAS results and help to deepen the 

understanding of the biological pathways related to the CY traits. Partition of a complex process, as 

is the cheese yield, into different components has been shown as a useful tool for connecting 

phenomics to their genomic counterpart. 
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 Table 1. Descriptive statistics of individual percentage cheese yield (%CY; weight of fresh curd, curd 

solids, and curd water as percentage of weight of milk processed), milk nutrient and energy recovery 

(REC; protein, fat, solids, and energy of the curd as percentage of the protein, fat, solids, and energy of 

the milk processed) obtained from 1.5L of milk processed, and milk yield and quality traits (n=1,011). 

 Trait Mean SD P1 P99 CV, % 

Cheese yield, %      

   %CYCURD 14.95 1.84 11.00 19.41 12.4 

   %CYSOLIDS 7.17 0.91 5.37 9.68 12.9 

   %CYWATER 7.77 1.26 5.04 11.11 16.3 

Nutrient Recovery, %      

   RECSOLIDS 51.80 3.50 43.85 60.27 6.8 

   RECFAT 89.76 3.60 78.44 95.90 4.0 

   RECPROTEIN 78.16 2.44 72.41 83.44 3.1 

   RECENERGY 67.15 3.28 58.92 75.07 4.9 

Milk traits      

   Milk yield, kg/d 24.95 7.84 9.30 45.89 31.4 

   Fat, % 4.37 0.89 2.48 7.40 20.4 

   Protein, % 3.71 0.41 2.93 4.68 10.9 

P1: 1st percentile; P99; 99th percentile; CV: coefficient of variation  
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Table 2 Additive genomic variance (𝜎𝑔
2) and heritability estimates (ℎ2) of individual percentage 

cheese yield (%CY; weight of fresh curd, curd solids, and curd water as percentage of weight of milk 

processed) and milk nutrient and energy recovery (REC; protein, fat, solids, and energy of the curd 

as percentage of the protein, fat, solids, and energy of the milk processed). 

Trait σg
2 h2 

Cheese yield, %   

   %CYCURD 0.662 0.366 

   %CYSOLIDS 0.151 0.290 

   %CYWATER 0.205 0.262 

Nutrient recovery, %   

   RECSOLIDS 2.222 0.287 

   RECFAT 1.109 0.144 

   RECPROTEIN 1.666 0.458 

   RECENERGY 1.810 0.241 

  



 

75 

 

Table 3.  Summary results of the genome wide association analyses 

 

BTA1 
No. of SNP 

(signals) 
Interval, Mbp P-value (range) Top SNP 

Top SNP location, 

bp 

Top SNP 

MAF 
Trait2 

03 1 - 3.09 × 10−06 BTA-76907-no-rs 0 0.26 RECFAT 

0 1 - 2.14 × 10−05 ARS-BFGL-NGS-110734 0 0.30 RECFAT 

2 1 - 3.42 × 10−05 Hapmap60596-rs29017365 128,812,635 0.34 %CYSOLIDS 

6a 2 (2) 73.734-74.607 (3.88 × 10−05, 2.09 × 10−05) Hapmap60182-rs29025531 74,606,760 0.19 RECFAT 

6b 37 (54) 77.521-88.442 (4.85 × 10−05, 1.91 × 10−15) Hapmap52348-rs29024684 87,396,306 0.24 RECFAT, RECENERGY,  
%CYCURD, %CYSOLIDS, 

RECSOLIDS 

6c 1 - 9.59 × 10−06 Hapmap23975-BTC-043815 102,937,469 0.20 %CYCURD 

9 1 - 4.74 × 10−05 BTB-00403185 91,058,994 0.34 RECENERGY 

11a 8 (8) 91.639-94.773 (2.24 × 10−05, 1.26 × 10−08) ARS-BFGL-NGS-42578 93,241,685 0.25 RECPROTEIN 

11b 5 (5) 96.230-98.511 (3.31 × 10−05, 1.33 × 10−07) ARS-BFGL-NGS-21607 97,059,246 0.08 RECPROTEIN 

11c 25 (25) 100.520-106.741 (3.74 × 10−05, 6.07 × 10−36) ARS-BFGL-NGS-104610 104,293,559 0.45 RECPROTEIN 

12 1 - 2.42 × 10−05 BTB-00507211 85,272,488 0.13 %CYWATER 

14 1 - 4.58 × 10−05 Hapmap25446-BTC-054694 26,003,598 0.46 %CYSOLIDS 

18 1 - 4.32 × 10−05 Hapmap51570-BTA-17962 65,269,893 0.25 %CYWATER 

19 1 - 3.05 × 10−05 ARS-BFGL-NGS-102974 1,822,133 0.34 %CYSOLIDS 

27 1 - 1.53 × 10−05 ARS-BFGL-NGS-87845 42,118,037 0.03 %CYSOLIDS 

28 1 - 1.66 × 10−05 Hapmap48306-BTA-36540 38,449,335 0.13 %CYWATER 
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1BTA= Bos taurus autosome chromosome; #SNP (signals)= number of the single nucleotide polymorphisms significantly associated to the trait. In parenthesis the total 

number of significant signals per each genomic region; Interval: The region on the chromosome spanned among the significant SNP (in mega base pairs); P-value 

(range)= The P-value of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple SNP were significantly associated to one 

trait; Top SNP location (bp)= position of the highest significant SNP on the chromosome in base pairs on UMD3.1 (http://www.ensembl.org/index.html); Top SNP 

MAF= minor allele frequency of the top SNP.  

2%CY: weight of fresh curd, curd solids, and curd water as percentage of weight of milk processed; REC: protein, fat, solids, and energy of the curd as percentage of the 

protein, fat, solids, and energy of the milk processed. The trait with the highest P-value in each genomic region is bolded. 

3Undefined chromosome and position on the genome 
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Table 4. Summary results of the genome wide association analyses after fixing the marker Hapmap52348-rs29024684 at 87,396,306bp on BTA61 and 

the marker ARS-BFGL-NGS-104610 at 104,293,559 on BTA11 

 

BTA 
No. of SNP 

(signals) 
Interval, Mbp P-value (range) Top SNP 

Top SNP location, 

bp 

Top SNP 

MAF 
Trait2 

6b_1 5 (16) 82,410-82,707 (4.28 × 10−05, 2.3 × 10−08) Hapmap53172-rs29012675 82,706,745 0.05 %CYCURD, %CYSOLIDS, 

RECFAT, RECENERGY, 

RECSOLIDS 

6b_2 2 (2) 85,178- 85,955 (4.77 × 10−05, 4.71 × 10−05) Hapmap60224-rs29001782 85,178,107 0.16 RECPROTEIN, RECENERGY  

6b_3 7 (10) 87,223- 88,592 (4.04 × 10−05, 5.21 × 10−06) ARS-BFGL-NGS-112872 88,069,548 0.14 %CYCURD, %CYSOLIDS, 

RECFAT, RECPROTEIN, 

RECENERGY, RECSOLIDS 

6c 1 - 1.33 × 10−05 Hapmap23975-BTC-043815 102,937,469 0.20 %CYCURD 

6d 1 - 4.29 × 10−05 BTB-02092741 114,223,059 0.01 %CYSOLIDS 

9 1 - 4.64 × 10−05 BTB-01249963 37,442,535 0.37 %CYWATER 

11c 2 (2) 103,352-103,743 (1.26 × 10−05, 7.92 × 10−12) ARS-BFGL-NGS-26919 103,352,220 0.04 RECPROTEIN 

12 1 - 2.51 × 10−05 BTB-00507211 85,272,488 0.13 %CYWATER 

19a 1 - 3.59 × 10−05 ARS-BFGL-NGS-43028 1,706,305 0.35 %CYSOLIDS 

19b 1 (3) - (3.04 × 10−05, 7.54 × 10−06) ARS-BFGL-NGS-102974 1,822,133 0.34 %CYCURD, %CYSOLIDS, 

RECSOLIDS 

19c 1 (2) - (3.5 × 10−05, 2.91 × 10−05) ARS-BFGL-NGS-24753 3,024,589 0.37 %CYCURD, %CYSOLIDS 

22 1 - 1.92 × 10−05 ARS-BFGL-NGS-4481 38,782,041 0.01 RECPROTEIN 
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27 1 - 2.79 × 10−05 ARS-BFGL-NGS-87845 42,118,037 0.03 %CYSOLIDS 

28 1 - 2.63 × 10−05 Hapmap48306-BTA-36540 38,449,335 0.13 %CYWATER 

1BTA= Bos taurus autosome chromosome; #SNP (signals)= number of the single nucleotide polymorphisms significantly associated to the trait. In parenthesis the total 

number of significant signals per each genomic region; Interval: The region on the chromosome spanned among the significant SNP (in mega base pairs); P-value 

(range)= The P-value of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple SNP were significantly associated to one 

trait; Top SNP location (bp)= position of the highest significant SNP on the chromosome in base pairs on UMD3.1 (http://www.ensembl.org/index.html); Top SNP 

MAF= minor allele frequency of the top SNP.  

2%CY: weight of fresh curd, curd solids, and curd water as percentage of weight of milk processed; REC: protein, fat, solids, and energy of the curd as percentage of the 

protein, fat, solids, and energy of the milk processed. The trait with the highest P-value in each genomic region is bolded. 
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Figure 1. Manhattan plot of –log(P-values) for the genome wide association studies (GWAS) on 

Bos taurus autosome 6 (BTA6). 

 

 Description: Traits showed significant associations on BTA6 were: individual percentage cheese 

yield traits (%CY; weight of fresh curd, and curd solids, as percentage of weight of milk processed) 

and milk nutrient and energy recovery traits (REC; fat, solids, and energy of the curd as percentage 

of the fat, solids, and energy of the milk processed). 

The red horizontal lines indicate a –log10(P-values) of 4.30  (corresponding to P-value = 5 ×

10−5). 

The highest significant marker on BTA6 is also presented. 

 

 



 

80 

 



 

81 

 

Figure 2. . Manhattan plot of –log(P-values) for the genome wide association studies (GWAS) on Bos 

taurus autosome 11 (BTA11). 

 

 Description: RECPROTEIN= Protein of the curd  as percentage of the protein of the milk processed. 

The red horizontal lines indicate a –log10(P-values) of 4.30  (corresponding to P-value = 5 × 10−5). 

The highest significant marker on BTA11 is also presented. 
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Figure 3. Manhattan plot of –log(P-values) for the genome wide association studies (GWAS) on Bos taurus 

autosome (BTA) 2, 9, 12, 14, 18, 19, 27 and 28. 

 

Description: Traits showed significant associations were: individual percentage cheese yield traits 

(%CY; weight of curd solids and water as percentage of weight of milk processed) and energy of 

the curd as percentage of the energy of the milk processed (RECENERGY). 

The red horizontal lines indicate a –log10(P-values) of 4.30  (corresponding to P-value = 5 ×

10−5). 

The highest significant marker on each chromosome is also presented. 
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ABSTRACT 

It is becoming common to complement genome wide association studies (GWAS) with 

gene-set enrichment analysis to deepen the understanding of the biological pathways affecting 

quantitative traits. Our objective was to conduct a gene ontology and pathway-based analysis to 

identify possible biological mechanisms involved in the regulation of bovine milk technological 

traits: coagulation properties (MCP), curd firmness modeling (CFt), individual cheese yield (CY) 

and milk nutrient recovery into the curd (REC) or whey loss traits. Results from two previous 

GWAS studies using 1,011 cows genotyped for 50k single nucleotide polymorphisms (SNP) were 

used. Overall, the phenotypes analyzed comprised: 3 traditional MCP measures (RCT: Rennet 

coagulation time defined as the time (min) from addition of enzyme to the beginning of 

coagulation; k20: the interval (min) from RCT to the time at which a curd firmness of 20 mm is 

attained; a30: a measure of the extent of curd firmness (mm) 30 min after coagulant addition), 6 

CFt traits [RCTeq: RCT estimated through the CF equation (min); CFP: potential asymptotic curd 

firmness (mm); kCF: curd-firming rate constant (% x min-1); kSR: syneresis rate constant (% x min-

1); CFmax: maximum curd firmness (mm) and tmax: time to CFmax (min)], 3 individual cheese yield-

related traits expressing the weight (wt) of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and 

curd moisture (%CYWATER) as percentage of wt of milk processed and 4 milk nutrient and energy 

recoveries (REC) in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the 

% ratio between the nutrient in curd and the corresponding nutrient in processed milk), milk pH 

and protein percentage. Each trait was analysed separately. In total, 13,269 annotated genes were 

used in the analysis. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway databases were queried for enrichment analyses. Overall, 21 GO and 17 KEGG 

categories were significantly associated (false discovery rate at 5%) with 7 traits (RCT, RCTeq, 
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kCF, %CYSOLIDS, RECFAT, RECSOLIDS and RECENERGY), with some being in common between traits. 

The significantly enriched categories included calcium signaling pathway, salivary secretion, 

metabolic pathways, carbohydrate digestion and absorption, the tight junction and the 

phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland health 

status, and contained a total of 150 genes spanning all chromosomes but 9, 20, and 27. This study 

provided new insights into the regulation of bovine milk coagulation and cheese ability that were 

not captured by the GWAS.  

Key words: milk coagulation properties, cow cheese ability, genome-wide association, gene-set 

enrichment, pathway-based analysis 

 

INTRODUCTION 

Cheese manufacture is the main final target of dairy cattle milk production in many 

countries worldwide. Recently, exploitable additive genetic variation has been reported for 

different measures of individual bovine cheese yield (Bittante et al., 2013). Moreover, milk 

coagulation properties (MCP) and curd firmness traits (CF) are used as indicators of cheese 

production. Although considerable additive genetic variation exists for a variety of direct or 

indirect cheese traits, high measurement costs and logistics place restrictions on the selection of 

cows for cheese productivity in breeding programs. A potential strategy is to identify and use 

genomic regions affecting the cow’s ability to produce cheese that could enhance genomic 

breeding programs. Genome-wide association studies (GWAS) are widely used for this purpose 

and were proved to be effective in identifying genomic regions associated with the traits of interest. 

However, due to the stringent statistical thresholds used to deal with multiple testing, a 

considerable number of important markers may remain undetected when dealing with polygenic 
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traits (Peng et al., 2010). Moreover, with high SNP density panels each gene might be represented 

by several proximal SNP, thus splitting its effect into parts that, in turn, might not be able to pass 

the defined GWAS threshold in a single marker regression (Ha et al., 2015). Additionally, 

especially in livestock species linkage disequilibrium (LD) spans a wide region in the genome. As 

a result, a plethora of SNP might be in LD with the causal genomic region which creates extra 

difficulties in detecting the causal mutation (Hayes, 2013). Besides, while GWAS may be able to 

locate SNPs significantly associated with the trait of interest, it does not make use of the fact that 

genes work together in biological pathways and are organized into networks. Further, the effect of 

a multi-allelic QTL may not be fully captured due to the bi-allelic nature of SNP. As a result, 

GWAS alone may provide a limited understanding of the complex nature of quantitative traits. 

A solution to tackle the aforementioned problems, and deepen the understanding of the 

genetic background of complex traits, is to move up the analysis from the SNP to the gene and 

gene-set levels. In a gene-set analysis, a group of related genes (such as genes in a specific pathway 

or gene ontology) that harbor significant SNPs previously identified in GWAS, is tested for over-

representation in a specific pathway (Wang et al., 2011). Indeed, an increasing interest on pathway 

analysis has been recently observed in dairy cattle, to complement GWAS analyses of quantitative 

traits (Gambra et al., 2013; Peñagaricano et al., 2013; Iso-Touru et al., 2016; Abdalla et al., 2016). 

Thus, the objective of this study was to conduct a gene ontology and pathway analysis to 

complement previously obtained GWAS results for phenotypes related to bovine milk coagulation 

properties (MCP), curd firmness modeling (CFt), individual cheese yield (CY) and milk nutrient 

recovery into the curd (REC) or whey loss traits. 
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MATERIALS AND METHODS 

Data 

Phenotypes. Results of two recent GWAS analyses were used, consisting of 11 MCP and 

CFt traits (Dadousis et al., 2016a) as well as 7 individual CY traits (Dadousis et al., 2016b). In 

brief, the milk MCP-CFt dataset contained the milk pH, milk protein percentage, 3 traditional MCP 

obtained from Formagraph [RCT: Rennet coagulation time defined as the time (min) from addition 

of enzyme to the beginning of coagulation; k20: the interval (min) from RCT to the time at which 

a curd firmness of 20 mm is attained; a30: a measure of the extent of curd firmness (mm) 30 min 

after coagulant addition], 4 CFt equation parameters [RCTeq: RCT estimated through the CFt 

equation (min); CFP: potential asymptotical curd firmness (mm); kCF: curd-firming rate constant 

(% x min-1); kSR: syneresis rate constant (% x min-1)] and 2 derived traits [CFmax: maximum curd 

firmness (mm) and tmax: time to CFmax (tmin)]. The second GWAS dataset included three individual 

CY traits expressing the weight (wt) of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and curd 

moisture (%CYWATER) as percentage of wt of milk processed, and four milk nutrient and energy 

recoveries (REC) into the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY), calculated as 

the % ratio between the nutrient in curd and the corresponding nutrient/energy in the processed 

milk. Details about the genotyping and the GWAS analyses are reported in (Dadousis et al., 2016a; 

Dadousis et al., 2016b).  

Genotypic data. Briefly, 1,152 cows were genotyped with the Illumina BovineSNP50 Bead 

Chip v.2. After quality control [call rate > 95%, minor allele frequency > 0.05 and extreme 

deviation from Hardy-Weinberg proportions (P > 0.001, Bonferroni corrected)], 1,011 animals 

and 37,568 SNP, located on 29 autosomes and in the X-chromosome were retained. Slight 
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differences in the number of individuals and SNP between the two GWAS analyses are attributed 

to phenotypic editing. 

 

Gene-set Enrichment and Pathway-based Analysis 

The gene-set enrichment analysis workflow is represented in Figure 1. In brief, for each 

trait nominal P-values <0.05 from the GWAS analyses were used to identify significant SNP. 

Using the biomaRt R package (Durinck et al., 2005; Durinck et al., 2009), the SNP were assigned 

to genes if they were within the genomic sequence of the gene or within a flanking region of 15 

kb up- and downstream of the gene, to include SNP located in regulatory regions. The size of the 

flanking region was based on the finding that most SNPs that affect the expression of a gene are 

located within 15 kb of the gene (Pickrell et al., 2010). The Ensembl Bos taurus UMD3.1 database 

was used as reference (Zimin et al., 2009). The background SNP represent all the SNP tested in 

the GWAS analyses, while the background genes were the genes associated to those SNP. For the 

assignment of the genes to functional categories, the Gene Ontology (GO) (Ashburner et al., 2000) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (Ogata et al., 1999) databases 

were used. The GO database designates biological descriptors (GO terms) to genes based on 

attributes of their encoded products and it is further partitioned into three components: biological 

process, molecular function, and cellular component. The KEGG pathway database contains 

metabolic and regulatory pathways, representing the actual knowledge on molecular interactions 

and reaction networks. To avoid testing narrow or broad functional categories, only GO and KEGG 

categories with more than 10 and less than 1,000 genes were tested. Finally, a Fisher’s exact test 

was performed to test for overrepresentation of the significant genes for each gene-set, i.e., 

pathway/functional category. False discovery rate (FDR) correction (controlled at 5%) was 
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applied to account for multiple testing. The gene enrichment analysis was performed with the 

goseq R package (Young et al., 2010).  

 

RESULTS AND DISCUSSSION 

In total, 17,006 SNP (out of the 37,568 tested) were located in annotated genes or in the 

15kb window (up-stream or down-stream from a gene). The total number of background genes 

annotated in the Bos taurus UMD3.1 assembly was 13,269. Each trait was analyzed separately. 

On average, 1,700 SNP, ranging between 1,301 for RECPROTEIN to 1,899 for RCTeq, were 

significantly associated to each trait in the GWAS analysis. For each trait, 585 significant SNP 

were assigned to 500 genes, on average (Figure 1, Table 1). The minimum number of mapped 

genes was found for RECPROTEIN (n = 399) while the maximum for RCTeq (n = 574).  

 

Enrichment Pathway Analysis 

After FDR correction, 21 GO and 17 KEGG categories were found associated with 7 of the 

tested traits, namely RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS and RECENERGY. Some of 

the categories were in common between traits. A total of 150 significant genes spanning all Bos 

taurus chromosomes (BTA) but 9, 20 and 27 were included into the significantly enriched GO and 

KEGG categories. Table 2 summarizes all the significant pathways/ontologies, some of which 

were shared among the aforementioned traits. More precisely, the calcium signaling pathway 

(KEGG:bta04020) was associated to both RCT and RECFAT; the arrhythmogenic right ventricular 

cardiomyopathy (ARVC) pathway (KEGG:bta05412) was enriched for both %CYSOLIDS and 

RECSOLIDS; the leucocyte transendothelial migration pathway (KEGG:bta04670) was in common 

between RECSOLIDS and RECENERGY; and the synapse part cellular component (GO:0044456) was 
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shared between RCTeq and kCF. Moreover, 6 GO biological process categories related to female 

sex characteristics and the ovulation cycle appeared significant for both RCTeq and RECFAT (Table 

2). Not surprisingly, different pathways/functional categories were enriched for RCT and RCTeq, 

reflecting the differences in their additive genetic variance found in the GWAS analysis. 

 

Phosphatidylinositol signaling pathway. The phosphatidylinositol signaling pathway 

(KEGG:bta04070) was significantly enriched for the RCT trait. In milk, phospholipids are mainly 

present on the surface of the milk fat globules (MFG) and are responsible for the stabilization of 

the milk fat against coalescence (Rombaut et al., 2007; Walstra et al., 2014). Due to their 

technological and nutritional properties, previous studies focused on determining the phospholipid 

content of various dairy products (Rombaut et al., 2007). Recently, the evolution of the 

phospholipids during the quark cheese process from buttermilk was also examined (Ferreiro et al., 

2016). Phosphatidylinositol represents a small fraction of the phospholipid components of milk. 

Among the significant genes included in the phosphatidylinositol pathway, three phospholipase C 

beta (PLCB) isoforms were present: PLCB1, PLCB3 and PLCB4. Phospholipases are responsible 

for the hydrolyses of phospholipids of the MFG membrane, thereby affecting the stability of the 

cream emulsion. In addition, the phospholipase treatment of milk was found to reduce fat losses 

in whey and cooking water and to increase cheese yield by improving fat and moisture retention 

in the cheese curd in Mozzarella cheese (Lilbæk et al., 2006). Interestingly, an association between 

a SNP on PLCB1 (rs41624761) and kCF has been previously reported in a candidate gene analysis 

(Cecchinato et al., 2015). Moreover, studies related to the effect of MFG size on milk technological 

properties reported significant relationship of MFG size with MCP (Bland et al., 2015), cheese 

ripening and structure, as well as stability of dairy products (Lopez et al., 2011). Indeed, the 
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biological explanation of the connection between phosphatidylinositol pathway and MCP can be 

found in the tight association between MFG size and phospholipids contents, with higher amounts 

of phospholipids in small versus large globules likely affecting, in turn, the technological 

properties of milk.  

The salivary secretion pathway (KEGG:bta04970), which was also enriched for the RCT 

trait, shared 6 genes with the phosphatidylinositol signaling pathway including PLCB1, PLCB3 

and PLCB4. Interestingly, histatherin (HSTN) was also present in the list of significant genes for 

this pathway (Supplementary Table S1). Histatherin is a ruminant-specific gene that encodes for a 

host-defense related protein in the cow’s oral cavity and milk, which may also be involved in the 

response to mastitis (Ju, Z., 2014). The HSTN has been also proposed as a candidate gene related 

to MCP and CY traits in our previous GWAS analyses (Dadousis et al., 2016a; Dadousis et al., 

2016b) and more precisely it was associated to the three MCP, CFP, CFmax and RECFAT. 

 

Calcium signaling-related pathway. The calcium signaling pathway (KEGG:bta04020) 

was significantly enriched for both RCT and RECFAT. It is widely known that calcium (Ca) is one 

of the major components of the casein micelles. During the cheese process, after rennet addition, 

the casein reacts with Ca ions and precipitates. This phenomenon consists the basis of milk clotting 

(Walstra et al., 2014). Moreover, low content of the total and micellar Ca has been associated to 

non-coagulating milk (Gustavsson et al., 2014; Malacarne et al., 2014). Interestingly, 

transcriptomic analysis of mammary gland in mice evidenced that the calcium ion binding 

ontology was significantly over-represented among the differentially expressed genes associated 

with enhanced maternal performance phenotype (Ramanathan et al., 2008). Further analysis 
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showed a positive correlation between the calcium signaling pathway and the lactation 

performance in mice (Wei et al., 2013).  

The ARVC pathway (KEGG:bta05412) was enriched for both %CYSOLIDS and RECSOLIDS 

with 9 significantly enriched genes being in common. Moreover, this pathway shared 6 genes with 

the cardiac muscle contraction pathway (KEGG:bta04260) (Supplementary Table S1) which was 

also enriched for the %CYSOLIDS. Notably, genes encoding for several subunits of the voltage-

dependent calcium channel complex were included in these pathways (e.g. calcium voltage-gated 

channel subunit alpha-1D and calcium voltage-gated channel auxiliary subunit alpha -2/delta-3].  

 

Bovine reproduction-related ontologies. The rennet coagulation time obtained from an 

extended CF testing time (RCTeq) and the RECFAT were associated with the GO terms related to 

female characteristics such as the ovulation cycle (GO:0042698) and female gonad development 

(GO:0008585). All the significant genes were shared among these biological processes 

(Supplementary Table S1). In a similar gene-set enrichment and pathway analysis, the broader GO 

categories of reproduction (GO:0000003) and reproductive process (GO:002214) were associated 

with milk yield, milk fat and protein yields, and fertility index in the Nordic Red cattle (Iso-Touru 

et al., 2016). Indeed, a close link between the duration of estrus and multiple ovulation rate and 

milk production in dairy cattle was previously reported (Wiltbank et al., 2006).  

When specifically looking at the significant genes involved in these pathways/processes 

(Supplementary Table S1), the alpha casein S1 (CSN1S1) and the luteinizing hormone receptor 

(LHCGR) were included. Interestingly, in a candidate gene approach an association between an 

SNP on CSN1S1 (rs109817504) and CFP has been previously reported (Cecchinato et al., 2015). 

Moreover, CSN1S1 genetic variants were shown to affect MCP of buffalo and goat milk (Caravaca 
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et al., 2011; Devold et al., 2011; Bonfatti et al., 2012). Considering LHCGR, this gene has been 

significantly associated with milk composition and in particular with milk fat and total solid 

percentages (Molee et al., 2015). Notably, a positive impact of fat on milk coagulation properties 

was highlighted by Bland et al. (2015).  

Additionally, ontologies related to the nervous tissue and more specifically to neuron parts 

(e.g. dendrite) and functions (e.g. synapse) were enriched for the RCTeq. A possible interpretation 

can rely on the fact that during pregnancy and lactation many factors and signals (including the 

neuroendocrine signal of prolactin) act to adapt the pattern of neuronal responses to the lactating 

state (Grattan, 2002; Akers, 2016). Interestingly, in 3 of these GO terms (GO:0044456, 

GO:0097458 and GO:0045202), the vacuolar protein sorting-associated protein 35 gene (VPS35) 

was included. This gene has been recently proposed as a candidate gene strongly related with milk 

coagulation in Swedish red cows (Duchemin et al., 2016).   

 

Mammary gland- and mastitis – related pathways and ontologies. Ontologies related to 

potassium channels (GO:0008076, GO:0034705) were significantly enriched for RCTeq. The role 

of the voltage-gated potassium channels is to transfer ions across the cell membrane (Yellen, 

2002). In milk, the concentrations of Na+, K+ and Cl- are the most important ions for electrical 

conductivity (EC). It is well established that milk EC can be also used as an indicator of mastitis 

(Norberg, 2005; Viguier et al., 2009). Interestingly, the tight junction pathway (KEGG:bta04530) 

was significantly enriched for the RECENERGY. Tight junctions of the mammary epithelium control 

the movement of lactose and K+ to the extracellular fluid, while Na+ and Cl- are moving into the 

milk. Tight junctions are known to be related with milk mammary gland development and milk 

secretion (Nguyen and Neville, 1998; Ramanathan et al., 2008; Stelwagen and Singh, 2014). More 
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precisely, increased milk secretion is connected to a decrease in the tight junction permeability. 

After intramammary infection, destruction of tight junctions and of the ion-pumping system causes 

an increase in the concentration of Na+ and Cl- in the milk and consequently increases the milk EC 

(Norberg, 2005). It has been reported that the technological properties of milk (such as MCP and 

CFt) are unfavorably influenced by mastitis indicators (Bittante et al., 2012; Bobbo et al., 2016). 

Indeed, other pathways related to the mastitis were significantly enriched. In particular, RECSOLIDS 

and RECENERGY were associated to the leucocyte transendothelial migration (KEGG:bta04670). 

Leucocytes are typically present in the milk and consist the majority of the somatic cell count 

(SCC). Their concentration in milk increases after bacterial infections and thus they are widely 

used as an indicator of mastitis (Dosogne et al., 2003). The leucocyte transendothelial migration 

pathway has been previously linked to milk and fat yield in dairy cattle (Edwards et al., 2015). 

Immune response-related categories, e.g. the immune system process (GO:0002376), have been 

recently found to be related with fat yield, milk yield and fertility (Iso-Touru et al., 2016). The 

tight junction and the leucocyte transendothelial migration pathways shared three significant 

genes, namely junctional adhesion molecule 2 (JAM2), actinin alpha 1 (ACTN1) and catenin alpha 

3 (CTNNA3) (Supplementary Table S1). Interestingly, JAM2 is located on BTA1 at ~10.1Mb and 

a weak signal for RCTeq at ~9.5Mb has been detected in our GWAS analysis (Dadousis et al., 

2016a). 

In addition to this, the cell adhesion molecules (CAMs) pathway (KEGG:bta04514) was 

enriched for RECENERGY. The CAMs pathway is involved in a wide range of biologic processes, 

including immune response and neuronal cell adhesion. In the study of Ramanathan et al. (2008) 

differentially expressed genes belonging to this pathway were also enriched and related with the 

mammary development and milk secretion in mice. Moreover, the gap junction pathway 
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(KEGG:bta04540), related to cell communication, was enriched for RCT. Functional analyses 

evidenced that the broader pathway of cell-cell signaling was significantly associated with MFG 

global gene expression during lactation in human (Maningat et al., 2009). 

Interestingly, the ARVC pathway detected in our study has also been associated with the 

mammary gland functionality in pregnant sows in a study focusing in sow’s mammary 

transcriptome in late gestation (Zhao et al., 2013).  

 

Metabolism-related pathways. The broad category of “metabolic pathways” 

(KEGG:bta01100) was associated to RECSOLIDS. Among the genes included in this specific 

pathway, three polypeptide N-acetylgalactosaminyltransferase (GALNT) isoforms were significant 

in our study (GALNT1, GALNT13 and GALNT18) (Supplementary Table S1). Although no 

association was detected in our previous GWAS analyses on BTA24, the GALNT1 gene located 

on BTA24 has been reported as a candidate gene in another recent GWAS study related to MCP 

(Gregersen et al., 2015). This gene encodes for the GalNAc-T enzyme that is involved to κ-casein 

glycosylation (Holland et al., 2005). Higher content of glycosylated kappa casein has been linked 

to improved milk coagulation (Poulsen et al., 2016). In the recent gene-set enrichment study of 

(Iso-Touru et al., 2016) the metabolic process ontology (GO:0008152) was significantly enriched 

for milk, fat and protein yields and fertility in Nordic Red cattle. Moreover, in our study the 

carbohydrate digestion and absorption pathway (KEGG:bta04973) was enriched for RECSOLIDS. 

The central carbohydrate of the milk is lactose. Although a strong influence of lactose on MCP 

has been recently reported (Bland et al., 2015), our knowledge on the exact mechanism is still 

limited. However, lactose also is related to SCC and mastitis. More precisely, a decrease of lactose 

is observed during mastitis (Kitchen, 1981). Not surprisingly, two genes (phosphoinositide-3-
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kinase, regulatory subunits 3 and 5; PIK3R3 and PIK3R5) were in common between the 

carbohydrate digestion and absorption, and the leukocyte transendothelial migration pathways 

(Supplementary Table S1). 

 

Cancer-related pathways. Among the significantly enriched pathways detected for 

RECSOLIDS, pathways in cancer (KEGG:bta05200), endometrial cancer (KEGG:bta05213) and 

melanoma (KEGG: bta05218) were present with some significant genes being in common, 

including also phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), PIK3R5, and AKT 

serine/threonine kinase 3(AKT3) (Supplementary Table S1). These genes have a role in the PIK-

Akt signaling pathway which was associated with mammary development and breast cancer 

(Wickenden and Watson, 2010). Moreover, in a gene expression study in human mammary gland 

investigating the MFG transcriptome, one of the most significant networks associated with the top 

expressed genes was the cancer pathway (Maningat et al., 2009). Moreover, the aforementioned 

cancer-related KEGG pathways were associated with genetic variants in mammary development, 

prolactin signaling and involution pathways which were linked to bovine milk production traits 

(Raven et al., 2014). However, as highlighted by those authors, the significance of this information 

is challenged by the fact that KEGG database includes a large compendium of cancer-related gene 

sets. 

Apparently, aside from pathways which could be strictly associated with milk 

technological properties (e.g. phosphatidylinositol signaling), pathways not directly related to the 

traits of our interest were also detected (e.g. pathways related to cancer). However, as publicly 

available ontologies and pathways in cattle are still limited (compared to human) and/or not all are 

well-described, some of our results may be misleading, especially when the detected genes are 
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involved in various biological processes (Fan et al., 2015). It is likely that, when more complete 

gene sets become available, more competitive pathways might be detected and the power to 

identify genomic regions influencing these traits might increase. In this respect, transcriptomic 

methods (e.g. RNA-seq) may represent a useful tool to complement the present analysis and 

validate the achieved biological information. 

Finally, it is worth noting that our  gene-set enrichment analysis was conducted using a 

panel of SNP obtained from a single marker regression GWAS, which relies on a simplified theory 

of the genomic background of traits, without considering for instance the joint effect of SNP. 

Hence, other approaches, e.g. GWAS exploring SNP by SNP interactions, might provide a better 

basis for biological pathway analysis. 

 

CONCLUSION 

To our knowledge, this is the first pathway-based association analysis related to milk 

technological traits. In animal breeding, studies are generally focused on single SNP-based 

associations with the traits of interest. The present pathway-based analysis provided new insights 

with respect to the previously conducted GWAS analyses, confirming that complex traits (i.e., 

milk technological properties) may be affected by the joint additive effect of several genes which 

cluster in specific biological pathways. In particular, calcium and phosphatidylinositol signaling, 

overall metabolism, carbohydrate digestion and absorption as well as pathways related to the 

bovine mammary gland health status were significantly enriched. 

The highlighted pathways and gene ontologies detected associated with technological traits 

may be useful in further studies on fine mapping of genes and development of marker-assisted 

breeding programs. However, further validation and replication of the most promising described 
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pathways is needed to explore their role in relation to bovine milk coagulation and cheese-making 

characteristics. 
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Table 1 Number of significant1 SNP identified from GWAS and genes mapped by trait. 

Trait2 No. of significant 

SNP 

No. of significant SNP 

assigned to genes 

No. of significant 

mapped genes3 

Milk composition    

pH 1,848 624 552 

Protein, % 1,808 641 563 

Traditional MCP    

RCT 1,739 551 487 

k20 1,789 614 539 

a30 1,724 572 496 

Curd firming    

RCTeq 1,899 639 574 

CFP 1,423 486 422 

CFmax 1,724 599 536 

Tmax 1,786 598 531 

kCF 1,822 603 545 

kSR 1,872 625 562 

Cheese yields, %    

%CYCURD 1,817 621 538 

%CYSOLIDS 1,796 590 533 

%CYWATER 1,826 605 525 

Recoveries, %    

RECSOLIDS 1,797 581 527 

RECFAT 1,496 503 447 

RECPROTEIN 1,301 444 399 

RECENERGY 1,800 627 548 

Background4 37,568 17,006 13,269 
1 P-value<0.05 
2pH= milk pH; Protein, % = milk protein (%); RCT = rennet coagulation time (min) of samples 

coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) of samples 

reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd firmness (mm) at 

30 min after enzyme addition; RCTeq = Rennet coagulation time (min) estimated using the CFt 

equation; CFP = potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% 

x min-1); kSR = syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax 

= time to CFmax (min); %CY = weight of fresh curd, curd solids, and curd water as percentage 

of weight of milk processed; REC = protein, fat, solids, and energy of the curd as percentage of 

the protein, fat, solids, and energy of the milk processed. 

3Ensembl Bos taurusUMD3.1 (http://www.ensembl.org/index.html); window: 15kb 

4Background represents the total number of SNP used in the GWAS analyses, the number of 

SNP linked to genes and the genes mapped to those SNP. 

http://www.ensembl.org/index.html
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Table 2 Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 

pathways significantly enriched using genes associated with RCT, RCTeq, kCF, %CYSOLIDS, 

RECFAT, RECSOLIDS and RECENERGY. 

Trait1 Category2 Term 
No. genes 

in the term 

No. sig 

genes3 
FDR4 

RCT KEGG bta04070:Phosphatidylinositol 

signaling 

53 10 1.87x10-

5 

  bta04730:Long-term depression 44 8 1.69x10-

4 

  bta04540:Gap junction 57 9 2.07x10-

4 

  bta04270:Vascular smooth muscle 

contraction 

74 10 3.47x10-

4 

  bta04020:Calcium signaling 

pathway 

118 13 3.79x10-

4 

  bta04970:Salivary secretion 55 8 8.18x10-

4 

RCTeq GO_BP GO:0048511~Rhythmic process 46 9 1.87x10-

4 

  GO:0008585~Female gonad 

development 

14 5 2.15x10-

4 

  GO:0022602~Ovulation cycle 

process 

14 5 2.15x10-

4 

  GO:0042698~Ovulation cycle 14 5 2.15x10-

4 

  GO:0046545~Development of 

primary female sexual 

characteristics 

14 5 2.15x10-

4 

  GO:0046660~Female sex 

differentiation 

14 5 2.15x10-

4 

 GO_CC GO:0030425~Dendrite 39 11 5.01x10-

7 

  GO:0044456~Synapse part 76 15 7.12x10-

7 

  GO:0097458~Neuron part 162 22 1.84x10-

6 

  GO:0045202~Synapse 102 16 7.30x10-

6 

  GO:0036477~Somatodendritic 

compartment 

62 11 6.15x10-

5 

  GO:0043005~Neuron projection 110 15 7.58x10-

5 

  GO:0008076~Voltage-gated 

potassium channel complex 

12 5 9.15x10-

5 

  GO:0034705~Potassium channel 

complex 

13 5 1.44x10-

4 
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  GO:0008021~synaptic vesicle 22 6 2.63x10-

4 

  GO:0098793~Presynapse 22 6 2.63x10-

4 

kCF GO_CC GO:0044456~Synapse part 76 13 1.16x10-

5 

  GO:0098794~Postsynapse 48 10 2.01x10-

5 

%CYSOLIDS KEGG bta05412:Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 

50 10 2.42x10-

5 

  bta4260:Cardiac muscle contraction 41 8 1.90x10-

4 

RECFAT GO_BP GO:0008585~Female gonad 

development 

14 6 3.37x10-

6 

  GO:0022602~ Ovulation cycle 

process 

14 6 3.37x10-

6 

  GO:0042698~Ovulation cycle 14 6 3.37x10-

6 

  GO:0046545~Development of 

primary female sexual 

characteristics 

14 6 3.37x10-

6 

  GO:0046660~Female sex 

differentiation 

14 6 3.37x10-

6 

  GO:0001541~Ovarian follicle 

development 

10 5 9.30x10-

6 

  GO:0008406~Gonad development 21 6 4.98x10-

5 

  GO:0045137~Development of 

primary sexual characteristics 

21 6 4.98x10-

5 

  GO:0007548~Sex differentiation 24 6 1.13x10-

4 

  GO:0048511~Rhythmic process 46 8 1.32x10-

4 

 KEGG bta04020:Calcium signaling 

pathway 

118 13 1.68x10-

4 

RECSOLIDS KEGG bta05412:Arrhythmogenic right 

ventricular cardiomyopathy 

(ARCV) 

50 9 1.34x10-

4 

  bta05218:Melanoma 44 8 2.94x10-

4 

  bta05200:Pathways in cancer 195 18 7.73x10-

4 

  bta01100:Metabolic pathways 635 42 8.10x10-

4 
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  bta04260:Cardiac muscle 

contraction 

41 7 1.04x10-

3 

  bta04670:Leucocyte 

transendothelial migration 

66 9 1.13x10-

3 

  bta05213:Endometrial cancer 31 6 1.20x10-

3 

  bta04930:Type II diabetes mellitus 32 6 1.43x10-

3 

  bta04973:Carbohydrate digestion 

and absorption 

24 5 2.20x10-

3 

RECENERGY KEGG bta04670:Leukocyte  

transendothelial migration 

66 10 3.49x10-

4 

  bta04514:Cell adhesion molecules 

(CAMS) 

79 11 3.81x10-

4 

  bta04530:Tight junction 83 11 5.87x10-

4 
1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme 

addition; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; kCF = curd-

firming rate constant (% x min-1); %CYSOLIDS = weight of curd solids as percentage of weight of 

milk processed; REC = fat, solids, and energy of the curd as percentage of the fat, solids, and 

energy of the milk processed. 

2KEGG: KEGG pathway; GO_BP.GO biological process; GO_CC: GO cellular component 

3Significant genes after mapping the significant SNP to genes using Ensembl Bos Taurus UMD3.1 

as reference (http://www.ensembl.org/index.html) 

4False discovery rate (FDR) correction for multiple testing (P-value <0.05). 

 

 

http://www.ensembl.org/index.html
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Figure 2. Flow chart for the gene-set enrichment analysis. 
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ABSTRACT 

The aim of this study was to investigate the potential use of latent variables (factors; Fs) in 

dairy cattle breeding with a focus in cheese related phenotypes. In total, 26 traits related to milk 

yield and quality (including protein fractions), coagulation and curd firmness (CFt) indicators, and 

cheese-making traits [cheese yields (%CY) and nutrient recoveries in the curd (REC)] were 

analyzed through multivariate factor analysis (MFA) using a varimax rotation. All phenotypes 

were measured in 1,264 Brown Swiss cows. Ten mutual orthogonal Fs were obtained explaining 

74% of the original variability. Those Fs captured basic concepts of the cheese-making process. 

More precisely, the first four Fs, sorted by variance explained, were able to capture the underlying 

structure of the CY percentage (F1: %CY), the CF process with time (F2: CFt), the milk and solids 

yield (F3: Yield) and the presence of nitrogen (N) into the cheese (F4: Cheese N). Moreover, 4 Fs 

(F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN and F9: as1-CN-Ph) were related to the basic milk caseins 

and 1 factor was associated with the α-LA whey protein (F10: α-LA). A factor describing the udder 

health status of a cow (F6: Udder health), mainly loaded on lactose, other nitrogen compounds in 

the milk and SCS, was also obtained. To assess the practical use of the Fs into breeding, we inferred 

the effects of some potential source of variations (e.g. stage of lactation and parity) including 

feeding and management systems. Moreover, genetic parameters of the new latent variables were 

estimated using single and bi-variate animal models under a Bayesian framework. 

Stage of lactation had a significant effect for the majority of the Fs, followed by parity. The 

patterns of the factor scores within the stage of lactation and parity were coherent to the given 

name of the factor. Differences among dairy farm systems for F3: Yield and F1: %CY existed. 

Heritability estimates (within-herd) varied between 0.11-0.72 (F3: Yield and F7: κ-β-CN, 

respectively). Although the Fs were phenotypically uncorrelated, considerable additive genetic 
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correlations existed among them, with highest values observed between F10: α-LA and F6: Udder 

health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our work demonstrates the 

usefulness of latent variables in reducing a large number of variables to a few latent factors with 

biological meaning and representing groups of traits that describe a complex process like cheese-

making. Multivariate factor analysis therefore, could be a valuable tool for studying the influence 

of different production environments and individual animal factors on cheese-making related 

phenotypes, and for developing breeding strategies to improve cow’s cheese-related traits. 

Key words: multivariate factor analysis, milk protein, coagulation, curd firmness, individual 

cheese yield 

 

INTRODUCTION 

A considerable amount of dairy cattle milk is destined for cheese production, and an interest 

in breeding focusing on cow’s cheese-making ability exists. However, cheese produced at the 

individual cow level is the result of a complex process with plenty of elements involved, from milk 

quality characteristics (e.g. percentage of protein and fat in the milk), milk coagulation properties 

(MCP), curd firmness (CF) and cheese-making characteristics, such as the quantity of cheese 

obtained from a given amount of milk (CY). 

Previous analysis have shown considerable genetic variation of MCP (Bittante et al., 2012; 

Gustavsson et al., 2014), milk protein composition (Bonfatti et al., 2011) and CY traits (Bittante 

et al., 2013a; Cecchinato et al., 2015). However, breeding goals usually include a considerable 

number of traits focused not only on production, but also on health status, longevity, reproduction 

of cows, etc. Thus, although detailed phenotyping is required to understand the biological and 

genetic background of the traits of interest, inclusion of a large number of traits into a selection 
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index creates difficulties in interpretation and computations. To overcome the problem of data 

dimension, and for a better understanding of complex phenomena, multivariate factor analysis 

(MFA) has been investigated for a variety of traits, such as milk composition, MCP and CY traits 

in dairy cattle, sheep and goat (Macciotta et al., 2012; Manca et al., 2016) and for milk fatty acids 

in dairy cows (Conte et al., 2016; Mele et al., under review). Moreover, MFA has been used within 

the framework of structural equation modelling, for e.g., analyzing carcass traits in swine 

(Peñagaricano et al., 2015) and studying bovine mastitis (Detilleux et al., 2013).  

Factor analysis belongs to the general framework of multivariate analysis. The main idea 

of MFA is that n observed variables, x, can be expressed as linear functions of p (p < n) latent 

variables (factors; Fs): this statistical approach focuses in understanding relationships (the 

underlying latent concept that the measured variables represent) among a set of observed variables. 

Thus, Fs can be considered as variables that are not measurable, but they can be extracted from a 

set of measured-indicator variables (Bollen, 2014) by making use of their covariance structure. In 

such a way, only the underlying concept of interest is kept for further analysis while at the same 

time data reduction is achieved.  

Our objective was to create a new set of latent phenotypes related to milk quality, 

technological properties, and cheese-making traits using MFA, and to assess their potential use in 

dairy cattle breeding by i) studying some individual  sources of variation (i.e., stage of lactation 

and parity)  and herd as well as the effects of feeding and management systems on the new latent 

variables and ii) inferring their genetic parameters.  
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MATERIALS AND METHODS 

Animals, Herds and Dairy Farming Systems  

Milk samples from 1,264 Italian Brown Swiss cows reared in 85 herds located in Trento 

Province (Italy) were collected. A full description of the sampling procedure can be found in 

(Cipolat-Gotet et al., 2012). In brief, ~15 cows/herd were individually sampled once (evening 

milking). Samples were processed within 20 h after collection. Information on cows and herds was 

supplied by the Breeders Association of Trento Province. Pedigree information was provided by 

the Italian Brown Swiss Cattle Breeders Association (ANARB, Verona, Italy). We considered 

cows with phenotypic records available for the investigated traits and all known ancestors. Each 

sampled cow had known ancestors for at least four generations and the pedigree file included 8,845 

animals. 

The farming systems have been previously analyzed and reported in Sturaro et al. (2009 

and 2013). In brief, two main categories of farming systems were distinguished: i) traditional farms 

and ii) modern dairy systems. The traditional systems represent small and old barns where feeding 

is heavily based on forage and cows are tied. Modern farms, with loose cows and milking parlor, 

were further distinguished in 3 sub-categories depending on the feeding system: a) modern dairy 

system but without use of total mixed ratio (TMR), b) modern dairy farms with silage-based TMR 

and c) modern dairy farms without silage using water to moisturize TMR. 

 

Cheese-making Phenotypes 

Analysis of Milk and Milk Protein Fractions. Individual milk subsamples were analyzed 

for protein, fat, lactose and casein contents using MilkoScan FT6000 (Foss, Hillerød, Denmark). 

The pH of the subsamples was measured using a Crison Basic 25 electrode (Crison, Barcelona, 
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Spain). Somatic cell count measures were obtained by Fossomatic FC counter (Foss, Hillerød, 

Denmark) and were logarithmic transformed [(SCS = log2SCC/100,000) – 3] (Ali and Shook, 

1980). 

Protein fractions [αs1-, αs2-, β- and κ- casein (CN), β-lactoglobulin (β-LG) and α-

lactalbumin (α-LA)] were measured by the RP-HPLC method (Bonfatti et al., 2008) and were 

expressed as proportions to the total milk nitrogen (N) content. Further, the phosphorylated form 

of the αs1-CN was obtained as proposed by Bonfatti et al., (2011). The remained N milk 

compounds were also included in the analysis and were calculated by subtracting the sum of the 

protein fractions from the total N milk content.  

Milk Coagulation Properties and Modeling the CFt. Measures of milk coagulation 

properties were obtained using the Formagraph instrument by Foss Electric A/S according to the 

procedure described in (Cipolat-Gotet et al., 2012). 

Files containing 360 CF values for each milk sample, recorded every 15 sec for 90 min, were 

retrieved and used to estimate a set of parameters of CF at time t (CFt) according to equations and 

methodology developed by (Bittante et al., 2013b). Estimated parameters included: rennet 

coagulation time (RCTeq, min), potential asymptotical curd firmness (CFP, mm), representing the 

maximum potential curd firmness of a given sample after infinite time in the absence of syneresis, 

curd-firming rate constant (kCF, % x min-1) which measures the relative increment of CF toward 

CFP, that is predominant until reaching the maximum curd firmness (CFmax, mm; at time tmax, min) 

and before syneresis became prevalent, measured by kSR (% x min-1). 

To avoid convergence and estimation problems, CFP was calculated multiplying CFmax by 

1.34, that is the coefficient resulting from the linear regression between CFP and CFmax values 

obtained in a preliminary analysis (Stocco et al., 2016). The other three CFt model parameters 
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(RCTeq, kCF, and kSR) were estimated by curvilinear regression using the nonlinear procedure 

(PROC NLIN) in the SAS software (SAS Institute Inc., Cary, NC). 

Individual Cheese Yield and Curd Nutrient Recoveries. A detailed description of the 

individual model-cheese processing can be found in (Cipolat-Gotet et al., 2013). The phenotypes 

were obtained through a model cheese-making procedure on 1,500mL of milk for each cow. In 

brief, the traits analyzed were: i) three %CY traits, expressing the weight (wt) of fresh curd 

(%CYCURD), of curd dry matter (%CYSOLIDS), and of water retained in the curd (%CYWATER) as 

percentage of wt of milk processed, and ii) four REC traits representing the proportion of nutrients 

and energy of the milk retained in the curd (RECSOLIDS, RECFAT, RECPROTEIN and RECENERGY 

calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed 

milk). The recovery energy in the curd was calculated as the difference between energy in the milk 

and in the cheese (NRC, 2001).  

 

Statistical Analysis 

Multivariate Factor Analysis. To avoid severe multicollinearity problems, 3 out of the 29 

phenotypes (CFmax, %CYCURD and RECSOLIDS) were excluded. As mentioned above, CFmax is 

proportional to CFP. Moreover, the %CYCURD is the sum of %CYWATER and %CYSOLIDS, while 

RECSOLIDS has phenotypic correlation with RECENERGY and %CYSOLIDS greater than 0.9. The 

remaining twenty-six phenotypes were simultaneously analyzed in the following factor model: 

 

𝒙 = 𝜦𝝃 + 𝜹,     [1] 

 

where x is a vector containing the measured phenotypes, ξ is a vector of the factors, Λ contains the 
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factor loadings (λ) relating the factors to the original variables and δ is a vector of the residuals.  

At a first step, the difference between Pearson and partial correlations of the measured 

variables was used as a hint to assess the adequacy of the data for MFA. This difference can be 

viewed as a way to control if the correlation between 2 variables is mediated by other variables, 

with a high value indicating the existence of a latent structure. The Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy was applied to quantify this difference (Dziuban and Shirkey, 1974; 

Kaiser and Rice, 1974). Further, estimatory factor analysis was applied. The factors were extracted 

based on prior knowledge, biological interpretation and the proportion of original variance 

explained. Moreover, factor rotation (varimax) was used to identify simple structure. Factor 

loadings > |0.4| were considered as “significant” to explain the factors. Ten factors were extracted 

and kept for further analysis. The MFA was performed with the psych package (Revelle, 2014) in 

R (R Core Team, 2013). 

Mixed model analysis. To estimate sources of variation related to the factors, the 10 factor 

scores were analyzed with the following model: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑑𝑎𝑖𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚𝑖 + ℎ𝑒𝑟𝑑𝑗(𝑑𝑎𝑖𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚)𝑖 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑘 + 𝐷𝐼𝑀𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑚 [1]  

where 𝑦𝑖𝑗𝑘𝑙𝑚 is the observed phenotype (i.e, the factor scores); 𝜇 is the overall mean; 

𝑑𝑎𝑖𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚𝑖 is the fixed effect of the ith dairy system (i=1 to 4); ℎ𝑒𝑟𝑑𝑗(𝑑𝑎𝑖𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚)𝑖 is the 

random effect of the jth herd (j = 1 to 85) ~𝑁(0, 𝐈𝜎ℎ
2) nested within the ith dairy system; 𝑝𝑎𝑟𝑖𝑡𝑦𝑘 

is the fixed effect of the kth parity (k = 1 to 4 or more lactations); 𝐷𝐼𝑀𝑙 is the lth30-d class of DIM, 

11 classes; and 𝑒𝑖𝑗𝑘𝑙𝑚 is the residual random error term ~𝑁(0, 𝐈𝜎𝑒
2);  where I is an identity matrix, 

σh
2, and σe

2 are herd/date and residual variances, respectively. The significance of the dairy system 

was tested on the error line of the herd within dairy system, while for parity and DIM class the 

error line of the residual variance was used. Orthogonal post hoc contrasts (P < 0.05) were built 
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for dairy system: i) the “Traditional” dairy system was compared with the “Modern” systems; ii) 

within the modern systems, the “No TMR” herds were compared with the TMR herds; iii) within 

the TMR herds, those that use silage were compared with those that use water.  

Genetic analysis. Non-genetic effects previously described were considered for the 

estimation of genetic parameters of factor scores. 

At first, univariate models were fitted to estimate variance components and heritability for the 

traits of concern. The model assumed was: 

y = 𝐗𝐛 + Z1𝐡 + Z2𝐚 + 𝐞    [2] 

where y was the vector of phenotypic records (i.e, the factor scores) with dimension n; 𝐗, Z1, and 

Z2 were appropriate incidence matrices for the systematic effects (𝐛), herd/date effects (𝐡), and 

polygenic additive genetic effects (𝐚), respectively; and e was the vector of residual effects. More 

specifically, 𝐛 included the non-genetic effects previously described in [1]. 

All models were analyzed under a standard Bayesian approach. The joint distribution of 

the parameters in a given model was proportional to: 

𝑝(𝐛, 𝐡, 𝐚, 𝜎𝑒
2, 𝜎ℎ

2, 𝜎𝑎
2|𝐲) ∝ 𝑝(𝐲|𝐛, 𝐡, 𝐚, 𝜎𝑒

2)𝑝(𝜎𝑒
2)𝑝(𝐛) 

× 𝑝(𝐡|𝜎ℎ
2)𝑝(𝜎ℎ

2)𝑝(𝐚|𝐀, 𝜎𝑎
2)𝑝(𝜎𝑎

2), 

where 𝐀 was the numerator pedigree relationship matrix between individuals and 𝜎𝑎
2 the additive 

genetic variance. The a priori distributions of h and 𝐚 were assumed to be multivariate normal, as 

follows: 

𝑝(𝐡|𝜎ℎ
2)~𝑁(𝟎, 𝐈𝜎ℎ

2) 

𝑝(𝐚|𝜎𝑎
2)~𝑁(𝟎, 𝐀𝜎𝑎

2), 

The priors for 𝐛 and the variance components were assumed to be flat.  
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To estimate genetic correlations between the traits, we conducted a set of bivariate analyses 

that implemented model [1] in its multivariate version. In this case, the involved traits were 

assumed to jointly follow a multivariate normal distribution along with the additive genetic, herd, 

and residual effects. For these effects, the corresponding prior distributions were: 

𝐚|𝐆0, 𝐀 ~ 𝑀𝑉𝑁(0, 𝐆0⨂𝐀), 

𝐡|𝐇0, ~ 𝑁(0, 𝐇0⨂𝐈𝑛) and 

𝐞|𝐑0, ~ 𝑁(0, 𝐑0⨂𝐈𝑚), 

where 𝐆0, 𝐇0 , 𝐑0 were the corresponding variance-covariance matrices between the involved 

traits, and 𝐚, 𝐡, and 𝐞 were vectors of dimension equal to the number of animals in the pedigree 

times the number of traits considered.  

Marginal posterior distributions of all unknowns were estimated by applying the Gibbs 

Sampling algorithm. The program TM (http://snp.toulouse.inra.fr/~alegarra) was used for all 

Gibbs sampling procedures. The lengths of the chain and the burn-in period were assessed by 

visual inspection of trace plots. After some preliminary analysis, chains of 850,000 samples were 

kept, with a burn in period of 50,000. Subsequently, one in every 200 successive samples was 

retained. The lower and upper bounds of the highest 95% probability density regions (HPD95%) 

for the parameters of concern were obtained from the estimated marginal densities. The posterior 

mean was used as the point estimate for all parameters.  

Across-herd (AH) and intra-herd (IH) heritability was computed as following: 

hAH
2 =

σa
2

σa
2 + σh

2 + σe
2
 

 

hIH
2 =

σa
2

σa
2 + σe

2
 

http://snp.toulouse.inra.fr/~alegarra
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Additive genetic correlations (𝑟𝑔) were estimated as 𝑟𝑔 =
𝜎𝑎𝑖,𝑎𝑗

𝜎𝑎𝑖.𝜎𝑎𝑗
, where, 𝜎𝑎𝑖,𝑎𝑗 is the additive 

genetic covariance between factor i and j, and 𝜎𝑎𝑖 and 𝜎𝑎𝑗 are the additive genetic standard 

deviations for factor i and j, respectively.  

 

RESULTS 

Factors 

Descriptive statistics of the full dataset including all 29 phenotypes are shown in Table 1. 

The phenotypic Pearson and partial correlations of the 26 traits analyzed in MFA are presented in 

Figure 1. The average KMO value in our dataset was 0.55. The protein fractions (except α-LA) 

showed the lowest KMO values (< 0.5) together with RECFAT, RECPROTEIN, milk fat and lactose 

(%). The highest KMO values (> 0.7) were for the fat yield, milk pH, SCS, CFP and tmax (Figure 

1). Ten factors, explaining 74% of the original variance were kept for further analysis. The varimax 

rotated factor loadings (sorted by maximum variance explained) are shown in Table 2. 

The first factor was heavily and positively loaded on %CYSOLIDS, fat and protein (%) and 

RECENERGY, thus it was considered as a factor underlying the latent concept of percentage of cheese 

yield (F1: %CY). The second factor was linked to all CFt traits, but CFP, and the RECFAT, reflecting 

the curd firmness process (F2: CFt). Due to positive loadings of the instant rate constants (kCF and 

kSR) and negative to the time traits (RCTeq and tmax), the factor was ascribed to a favorable CFt 

meaning. Moreover, this factor was favorably related to RECFAT. The third factor was associated 

to the milk, fat and protein daily yields of individual cows, hence considered as a descriptor of the 

milk production (F3: Yield). These three factors were almost equally important and together 

explained 38% of total variability of the 26 milk traits considered. The following 7 factors were 

less important, explaining each one between 7 to 4% of total variability. The fourth factor was 
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heavily, but negatively, associated to β-LG, the quantitatively most important and variable whey 

protein fraction, and positively to other N compounds, representing a proxy of casein number, and 

being positively linked also to RECPROTEIN. Hence this factor was representative of the N found in 

the cheese (F4: Cheese N). The fifth factor was primary linked to as1-CN (positively) and then to 

the β-CN (negatively) and was considered as representative of as1- and β-CN importance in milk 

(F5: as1-β-CN). The sixth factor was positively associated with lactose and negatively with the 

SCS and the other N compounds. This factor was considered as indicator of the udder health status 

of the cow (F6: Udder health). The seventh factor was strongly and positively associated to the κ-

CN and negatively, with a weaker loading, with the β-CN (F7: κ-β-CN). Thus, an increase of this 

factor was associated to an increased importance of κ-CN. The last 3 Fs were 1 trait-1 factor 

associations and were named according to the phenotype they were linked to as F8: as2-CN, F9: 

as1-CN-Ph and F10: α-LA, respectively. 

 

Sources of Variation 

Table 3 summarizes the results of the analysis of variance. The dairy system strongly 

affected F3: Yield and F1: %CY and had also an effect on udder health. The parity of the cow 

affected four Fs: F3: Yield, F2: CFt, F6: Udder health and also F9: as1-CN-Ph. The days in milk 

influenced all factors but F4: Cheese N, F9: as1-CN-Ph and F7: κ-β-CN.  

The F3: Yield and F6: Udder health were the only Fs influenced by all effects in the model. 

On the contrary, none of the effects that the model accounted for affected F4: Cheese N.  

Investigating the effect of the dairy system, Table 4 outlines the least squares means (LSM) 

of the ten factors within the 4 different dairy systems and the orthogonal contrasts. Our analysis 

noted major differences between traditional and modern farms, in favor of the second, for F3: 
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Yield and F1: %CY, and a smaller effect, in favor of the traditional farms, for F6: Udder health. 

Moreover, for F3: Yield, F1: %CY and F8 as2-CN, the modern farms using TMR showed greater 

results than those not using TMR. No difference was found in relation to the source of moisture in 

the TMR. 

The LSM of the Fs on which the DIM had an effect are presented in Figure 2. A “lactation 

like” pattern (with the peak value in the second month of lactation) was observed for F6: Udder 

health, and also for F2: α-LA (Figure 2e, g), revealing, after lactation peak, a decrease in lactose, 

and an increase of SCS. Lactose was the trait on which the factor F6: Udder health was primary 

loaded. On the contrary, the latent variable F3: Yield was almost linearly decreased during 

lactation (Figure 2c). This pattern is primarily due to daily yield of fat and protein, and not to fresh 

milk (that peaked in the second month). The strong decrease at the beginning of lactation of milk 

fat and protein content (and also of their daily yield), paralleled by RECSOLIDS, is reflected by the 

inverse “lactation like” pattern of the F1: %CY. 

A decrease from 1st to 3rd class of DIM was observed for F2: CFt followed by a stabilization 

and a slight increase at the end of the lactation (Figure 2b). An opposite pattern was observed 

between F8: as2-CN and F5: as1-β-CN (Figure 2d, f). The latent variable F8: as2-CN was increasing 

rapidly at the beginning of lactation when F5: as1-β-CN decreased. A more stable situation was 

observed thereafter (Figure 2f).  

 Figure 3 presents the LSM across the parity levels for the four Fs affected by parity. Factors 

F9: as1-CN-Ph and F3: Yield had a similar pattern with an increase from the 1st to the 3rd parity, 

and a slight decline from the 4th parity (Figure 3 b, d). The F2: CFt showed almost no difference 

between 1st and 3rd parities but an increase after (Figure 3a). A linear decrease was observed for 

the factor F6: Udder health related to the mammary gland health status (Figure 3c). 
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Genetic Parameters 

Mean (SD) of marginal posterior densities of additive genetic, herd/test-date, and residual 

variances, across- and intra-herd heritabilities (hAH
2  and hIH

2 , respectively) and herd contribution 

for the investigated traits of the 10 Fs are summarized in Table 5. Highest heritability estimate was 

observed for F7: κ-β-CN (ℎ𝐴𝐻
2  = 0.64 and ℎ𝐼𝐻

2  = 0.72), F4:Cheese N (ℎ𝐴𝐻
2  = 0.35 and ℎ𝐼𝐻

2  = 0.62) 

and F5: as1-β-CN (ℎ𝐴𝐻
2  = 0.41 and ℎ𝐼𝐻

2  = 0.57). The lowest values were found for F10: α-LA (ℎ𝐴𝐻
2  

= 0.08 and ℎ𝐼𝐻
2  = 0.15) and F3: Yield (ℎ𝐴𝐻

2  = 0.05 and ℎ𝐼𝐻
2  = 0.11). The rest of the Fs had moderate 

values, ranging, for ℎ𝐴𝐻
2 , between 0.13-0.25 and from 0.20 to 0.40 for ℎ𝐼𝐻

2 . Moreover, the variation 

of incidence of variance due to herds within dairy system on total variance was large among Fs: 

the less affected were F7: κ-β-CN, F2: CFt and F1: %CY, and the more affected were F3: Yield, 

F10: α-LA, and F9: as1-CN-Ph. 

Additive genetic correlations among the ten Fs are given in Table 6. All the estimates of 

each genetic correlation, were characterized by a large variability: of the 45 correlations evaluated 

only 12 presented a distribution of estimates having less than 10% of values with a sign opposite 

than the mean value (in bold in Table 6). In particular, F9: as1-CN-Ph was negatively correlated 

with F4: Cheese N; F3: Yield negatively with F9: as1-CN-Ph; F7: κ-β-CN positively with F4: 

Cheese N; F8: as2-CN positively with F8: as2-CN, F9: as1-CN-Ph, F3: Yield, and F7: κ-β-CN; F2: 

CFt positively with F1: %CY and negatively with F5: as1-β-CN, and, lastly, F6: Udder health was 

negatively related with F10: α-LA and F2: CFt and positively with F8: as2-CN. 
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DISCUSSION 

Selection decision in breeding programs relies on a variety of recorded traits related to 

production, health, reproduction, etc., which in some cases might exceed the 40 regularly recorded 

phenotypes (Miglior et al., 2005; Banos, 2010). Moreover, breeding aims in improving several 

traits simultaneously and not one at a time. Recent technological advances such as infrared 

spectostropy (Ferragina et al., 2015) together with advances in statistics, for e.g. better prediction 

models, are very likely to increase the number of available phenotypes in the nearest future, and 

thereby, the number of traits included in breeding goals (Boichard and Brochard, 2012). Therefore, 

the question on how to handle all the available information, in an efficient but easy way, for 

selection decision needs to be addressed. For instance, Ceron-Rojas and colleagues (2008) 

proposed eigen analysis related methods of the phenotypic covariance (correlation) matrix to 

construct selection indices in plant breeding (Cerón-Rojas et al., 2006; Cerón-Rojas et al., 2008). 

Close to eigen analysis, factor analysis is a multivariate approach that offers the potential to explore 

complex correlation structures and to transform them into a simpler space. Multivariate factor 

analysis has been previously used in dairy cattle giving encouraging results, albeit with smaller 

datasets (Macciotta et al, 2012; Mele et al, 2016). The objective in our study was to test the 

performance of MFA in bigger datasets (i.e., > 1,000 samples and > 20 traits) emphasizing on 

important economic traits for the dairy industry associated to the cheese production. Sources of 

variation related to the Fs as well as their genetic parameters (heritability and genetic correlations) 

were investigated. 

 

Interpretation of Latent Variables  

Ten orthogonal latent variables were extracted, out of 26 milk (quantity and quality), milk 
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coagulation and curd firmness indicators, and individual cheese yield traits. The Fs were 

explaining 74% of the original variability while at the same time drastically reduced the data space. 

Although the average KMO was not high, it was quite close to the value reported by Manca et al 

(2016) (0.57) using a similar, but smaller, dataset of 12 milk composition, MCP and udder health 

phenotypes in dairy sheep. Furthermore, the factor model was able to capture basic concepts of 

the cheese-making process. More precisely, the first four Fs, sorted by variance explained, were 

able to capture the underlying structure of the cheese yield (%), the curd firmness process, the milk 

yield and the presence of N into the cheese. Moreover, 4 Fs were associated to the basic milk 

caseins (as1-β-CN, κ-β-CN, as2-CN and as1-CN-Ph) and 1 factor was related with the, 

quantitatively, most important whey protein (α-LA). A factor describing the udder health status of 

a cow, mainly loaded on lactose, other N compounds and SCS, was also obtained.  

The meaning of some of the Fs is comparable to previous studies that used MFA, albeit 

with smaller datasets. For e.g., in an experimental design study assessing the effect of DIM, body 

condition and milk protein genotypes on the MCP and the protein composition in Danish Holstein 

(n = 39) 8 Fs were extracted out of 28 measured variables (Ostersen et al., 1997). Among the 

measured phenotypes were milk yield traits (milk, fat, protein and lactose), whey and non- casein 

contents, proportion of caseins, proportion of alleles in genotyped milk proteins, MCP and energy 

balance and the body condition. The 8 Fs obtained were representing MCP properties of milk, milk 

protein genotypes, the energy and the body condition status of the cows, and effects of lactation 

on milk yield and protein composition. In another study, eleven milk composition, MCP and udder 

health phenotypes measured in Brown Swiss cows (n = 1,200) were substituted by 4 Fs, describing 

milk composition, coagulation, acidity and the udder health status (Macciotta et al, 2012). Moving 

on small ruminants, Todaro et al (2005) replaced 11 traits related to milk composition, MCP and 
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udder health measured on 117 Girgentana goats with 3 Fs named as “slow milks”, “milk yield” 

and “curd firmness”. Recently, Vacca and colleagues (2016), by analyzing 9 milk yield, 

composition and hygiene traits in 1,050 Sardinian goats obtained 4 Fs (quality, hygiene, 

production, and acidity), while Manca et al. (2016) in a study on 991 Sarda ewes, extracted 4 Fs 

(composition and cheese yield, udder health status, coagulation and curd characteristics) from a 

total of 12 measured phenotypes. All the 5 above mentioned studies used an estimatory MFA with 

a varimax rotation. The proportion of variance explained by the factor model in those studies 

ranged between 51.2% (Todaro et al., 2005) to 97 % in Ostersen et al (1997). Part of this difference, 

however, could be attributed to the different ways and methods of measuring the phenotypes used 

in MFA. 

Although a direct, factor by factor, comparison between our results and the above 

mentioned studies is risky to be made due to differences in the measured phenotypes analyzed 

(number and type), a consistent pattern can be observed: generally, in all the studies MFA clearly 

distinguishes between milk quality, production, coagulation and health related concepts. These 

results are encouraging and confirm the ability of MFA to capture basic underlying structure of 

correlated variables. 

Factor F1: %CY was positively related to fat and protein percentage as well as the 

%CYSOLIDS and the RECENERGY. This is in agreement to phenotypic and genetic correlations that 

have been reported in the literature for these traits (Bittante et al., 2013a). The inverse relationship 

of RCTeq and tmax with kCF, kSR and RECFAT found on F2: CF has been previously pointed out in 

Cecchinato and Bittante (2016). On factor F5: as1-β-CN, the as1- and β- CN were oppositely 

related. The antagonistic nature of those two caseins has been previously suggested by Bobe et al. 

(1999) and Bonfatti et al. (2010). Moreover, the factor F6: Udder health was inversely related to 
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other nitrogen compounds that are present in the milk. It is worth noting that within this nitrogen 

fraction, urea was also included. Urea is inversely related to lactose (Miglior et al., 2007), which 

was the trait stronger related to factor F6: Udder health.  

To further assess the practical application in breeding programs of the new set of the latent 

variables, an investigation on the sources affecting variation on those new traits was followed 

together with estimation of the genetic parameters. 

 

Sources of Variation of the Latent Variables 

Effects of Dairy System on the Extracted Factor Scores. Major differences between the 

different dairy systems were identified for 2 Fs, namely F3: Yield and F1: %CY. Modern farms 

were associated to a higher milk and solids yield and percentage of cheese. Moreover, within the 

modern farms, the use of TMR in the feeding system was found beneficial for both latent variables. 

Only Vacca et al. (2016) on lactating goats studied the relationships between Fs and dairy system 

and farms characteristics: they did not found any associations between Fs and dairy system, but 

observed an association between altitude of the farm and the production factor and between flock 

size and the acidity factor.  

Nonetheless, the results of our study are in agreement with previous findings on dairy cattle 

carried out on the measured daily milk yield production traits instead of Fs (Sturaro et al., 2009; 

Sturaro et al., 2013; Bittante et al., 2015). Moreover, although individual cheese traits were not 

included in the analysis of Bittante et al (2015), major differences between the dairy systems were 

reported for milk fat and protein percentages. These two traits were both loaded on F1: %CY in 

our study. No significant differences between the dairy systems were observed for the coagulation 

properties of milk (F2: CFt). The F2: CFt was primary loaded to the kCF, but also to RCTeq, kSR, 
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tmax and  RECFAT. These findings are consistent with Bittante et al (2015), where no significant 

differences were noted among the dairy systems for kCF and RCTeq. A significant effect of the 

dairy systems existed in that study for kSR (P < 0.05) and tmax (P < 0.01). However, since a factor 

is a mixture of phenotypes, and in our case F2: CFt was dominated by the kCF, this effect was 

diluted. 

Effect of Stage of Lactation and Parity on the Extracted Factor Scores. The stage of 

lactation significantly influenced most of the latent variables. As expected, the F3: Yield was 

linearly decreased during lactation, in agreement to Bittante and colleagues (2015). The absence 

of the peak of lactation is probably an artifact due to the length of the DIM classes. A tendency 

towards worsening of milk coagulation during lactation is known. This pattern has been reported 

in Macciotta et al (2012) using a factor (based on the traditional MCP values) as indicator of milk 

coagulation. Moreover, the same trend has been observed in previous studies using the traditional 

curd-firmness value at 30 minutes after the beginning of coagulation, generally known as a30 

(Ikonen et al., 2004; Cipolat-Gotet et al., 2012). Being consistent, the coagulation ability (F2: CFt) 

was smoothly decreased (worsening) during lactation, stabilized between 4th and 8th class of DIM, 

with an evidence of recovery at the end of the lactation. Moreover, the factor related to the 

percentage of cheese yield (F1: %CY) showed a decrease from the first to the second month of 

lactation and then a linear increase. Not surprisingly, this pattern during lactation is consistent with 

the trend of %CYSOLIDS on which this factor was positively and strongly related (Cipolat-Gotet et 

al., 2013). 

In line to our expectations, the F10: α-LA (α-LA is a whey protein) was decreased during 

lactation having an opposite trend compared to the F1: %CY. Same pattern has been reported for 

the measured α-LA in Ostersen et al. (1997). A smooth decrease of F5: as1-β CN during lactation 



 

124 

 

and the inverse pattern of F8: as2-CN was observed, as expected. 

 The pattern of the health status of the mammary gland mainly related to the lactose (F6: 

Udder health) was worsened within lactation. As it is known, lactose in milk is inversely related 

to mastitis or somatic cell count (Shuster et al., 1991) and SCS has an opposite trend within 

lactation compared to milk yield (Walsh et al., 2007). Similar results have been reported using 

MFA by Macciotta et al (2012) in dairy cattle and in Manca et al (2016) in dairy sheep. Also in 

those studies, lactose was the most related trait to the factor underlying the health status of the 

mammary gland.  

The trend of parity effect on F3: Yield was similar to previous results on milk yield traits. 

More precisely, Bittante et al (2015) showed a significant increase in milk yield from the first to 

the second parity. Moreover, in the same study the kCF values were lower in first lactation cows 

compared to following lactations, similar to the effect of parity on the F2: CFt found in our analysis. 

Furthermore, a decline of F6: Udder health with the increase of parity is in agreement to the 

literature where a decrease in milk lactose percentage has been observed in multiparous cows 

(Yang et al., 2013). Parity also affected F9: as1-CN-Ph latent variable in our analysis with a pattern 

among different levels of parities mimicking the trend of F3: Yield. 

 

Genetic Parameters of the Latent Variables 

Variance Components and Heritability of the Factor Scores. Previous studies working on 

MFA with dairy traits were mainly focused on investigating the sources of variation of the latent 

variables. Hence, in the absence of bibliographic sources, our results on the genetic analysis of the 

Fs were mainly compared to genetic parameters of the measured single traits in previous studies. 

The high heritability estimates of F7: κ-β-CN found in our study were in accordance with h2 values 
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of κ-CN (ℎ𝐴𝐻
2  = 0.63) and β-CN (ℎ𝐴𝐻

2  = 0.69) reported in Bonfatti et al. (2011). Moreover, for the 

3 Fs that were loading to only 1 trait, i.e. F8: as2-CN, F9: as1-CN-Ph and F10: α-LA, heritability 

estimates were in range with those documented in the literature of the single traits, i.e. ℎ𝐴𝐻
2  = 0.11 

for α-LA content, ℎ𝐴𝐻
2  =0.22 for as2-CN were reported in Simmental cows (Bonfatti et al., 2011) 

and intra-herd heritability of 0.13-0.15 for as1-CN-Ph (with 8 phosphorylated serine residues) in 

Danish Holstein (Gebreyesus et al., 2016). The low heritability for milk yield (~0.09) that has been 

previously reported in Brown Swiss cattle (Macciotta et al., 2012; Bittante et al., 2013a) can 

explain the low heritability found in our study for F3: Yield, a factor that was dominated by milk 

and protein yields. Factor F1: %CY, that was heavily loaded to %CYSOLIDS, had similar heritability 

with the single trait %CYSOLIDS (ℎ𝐴𝐻
2  = 0.21 and ℎ𝐼𝐻

2  = 0.26) as reported in Bittante et al. (2013a). 

The F6: Udder health had an across-herd h2 of 0.13. Similar value of heritability (0.14) has been 

reported in Macciotta et al (2012) in Brown Swiss cattle for a factor entitled “udder health” 

(loading on somatic cell count and lactose). In the same study, another factor representing the 

MCP, but including the traditional MCP traits (RCT, k20 and a30) instead of the CFt values, had a 

heritability estimate of 0.23. This value is in agreement to heritability estimates (ℎ𝐴𝐻
2  = 0.24) that 

found for F2: CFt in our study. Concerning the F4: Cheese N (ℎ𝐴𝐻
2  = 0.35 and ℎ𝐼𝐻

2  = 0.62), 

comparable values of heritability can be found in the literature (ℎ𝐴𝐻
2  = 0.29) for a trait representing 

the total cheese protein yield (g/l) (Bonfatti et al., 2011). Moreover, F4: Cheese N was also loaded 

to RECPROTEIN. In the literature, heritability estimates of 0.35 (across-herd) and 0.49 (intra-herd) 

have been reported for the RECPROTEIN (Bittante et al., 2013a). 

Additive Genetic Relationships among Factor Scores. Although the Fs were extracted in 

an orthogonal way, meaning that they were phenotypically uncorrelated, bivariate genetic analysis 

depicted considerable genetic correlations. The highest genetic correlations > |0.6| were observed 
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between F10: α-LA and F6: Udder health and F9: as1-CN-Ph and F3: Yield. The known inverse 

(medium to strong) genetic relationship between milk yield and the casein percentage (Ikonen et 

al., 2004) explains the high and negative genetic correlation between F9: as1-CN-Ph and F3: Yield. 

Moreover, F9: as1-CN-Ph was positively correlated with F5: as1-β CN as expected, since F5: as1-

β CN was mainly loaded on as1-CN and the as1-CN-Ph is a posttranslational form of the as1-CN. 

In addition, this estimate is comparable to the genetic correlation (~0.80) between as1-CN and as1-

CN-Ph (with 8 phosphorylated serine residues) reported in Gebreyesus et al. (2016), although in 

that study the protein fractions were expressed as ratios to the total milk protein %. Moreover, F5: 

as1-β-CN was positively related to F7: κ-β-CN. Both Fs contained β-CN as a minor loading, hence 

the value of 0.38 is comparable to the genetic correlation of 0.12 between as1- and κ-CN reported 

in Bonfatti et al. (2011). The positive weak genetic correlation between F5: as1-β-CN (primary 

loaded on as1-CN) and F8: as2-CN is also in line with Bonfatti and colleagues (2011) that reported 

genetic correlations between as1- and as2-CN of 0.22. A negative-medium rg was found between 

F5: as1-β-CN and F2: CFt. As has been outlined in Jõudu et al. (2008) a negative phenotypic 

relationship exists between the relative content of as1- and β-CN with a firmer curd.  

The F6: Udder health was negatively correlated with F10: α-LA and F2: CF (on favor of 

good coagulation) while positively related to F8: as2-CN. This means that a healthy mammary 

gland status is associated with an increase in F8: as2-CN and an increase of F10: α-LA and F2: 

CFt. Indeed, a negative correlation between α-LA and somatic cell count has been reported by 

Caffin et al. (1985), while a good cow health status results in an increase of caseins. The negative 

genetic correlation with the F2: CFt is not clear. However, recently a negative effect of very low 

SCS to some milk technological traits has been pointed out by Bobbo et al. (2016). More precisely, 

authors reported a slower coagulation with low values of SCS. Interestingly, F2: CFt was heavily 
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loaded to the rate of curd firmness.  

The F4: Cheese N was genetically correlated with F9: as1-CN-Ph (negatively) and F7: κ-

β-CN (positively). A competitive synthesis between as1-CN and β-CN has been previously 

reported (Bobe et al., 1999; Bonfatti et al., 2010b), while the favorable effect of β- and κ-CN on 

cheese yield is widely known (Walstra et al., 2014). This also explains the reason that although 

the F3: Yield is negatively correlated to F9: as1-CN-Ph it had a positive correlation to F5: as1-β-

CN. Finally, the positive correlation between F1: %CY and F2: CFt implies that selection on better 

CFt characteristics will lead to an increase in the percentage of cheese yield. 

 

CONCLUSION 

Our data set comprised of twenty-six variables of economical importance for the dairy 

industry that were measured in more than 1,000 dairy cows. Using multivariate factor analysis, ten 

latent variables replaced the original phenotypes, capturing important concepts of the “cheese-

making” process as well as basic bovine health indicators related to the mammary gland. Results 

from genetic and ANOVA analyses of the 10 Fs were in agreement to the given name of the factor 

and reflected the underlying structure that each factor was representing. Moreover, heritability and 

genetic correlation estimates of the Fs were in favor of the use of Fs for breeding purposes.  

 Nonetheless, for a successful application in breeding companies further important steps 

needs to be taken. The use, and potential benefit, of factors in terms of response to selection and 

economic value in breeding is missing in the literature and should be investigated. Furthermore, 

being in the genomic era and with a plethora of available phenotypes we propose for future 

research to test the behavior of latent variables in genome-wide association, and its complement 

pathway based analysis, or prediction studies.  
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Table 1. Summary statistics of milk (yield and quality), protein fractions, coagulation (curd firming) 

and cheese-making (%CY and REC) traits. 

Trait1 Mean P1 P99 CV, % 

Milk traits     

Milkyield, kg/day 24.95 9.30 45.88 31 

Fatyield, kg/day 1.09 0.37 2.41 37 

Proteinyield, kg/day 0.92 0.36 1.57 30 

Fat, % 4.37 2.48 7.40 20 

Protein, % 3.71 2.93 4.68 11 

Lactose, % 4.86 4.31 5.22 4 

pH 6.64 6.43 6.85 1 

SCS, units 2.87 -0.47 7.75 65 

Milk protein fractions, %     

αs1-CN 25.69 21.86 29.79 7 

αs1-CN-Ph 1.45 0.19 3.04 42 

αs2-CN 9.20 6.89 12.60 12 

β-CN 32.26 27.38 38.67 8 

κ-CN 9.44 4.69 12.17 16 

β-LG 8.68 4.63 13.07 18 

a-LA 2.39 1.14 3.61 21 

Other N compounds 10.89 5.30 15.93 21 

Curd Firming      

RCTeq, min 20.96 10.66 40.89 29 

CFP, mm 49.20 25.33 72.28 20 

kCF, % × min-1 12.90 4.06 23.70 32 

kSR, % × min-1 1.23 0.31 2.60 37 

CFmax, mm 36.91 18.90 53.94 20 

tmax, min 41.83 24.00 87.00 30 

Cheese yield (%CY)     
%CYCURD 14.95 11.00 19.41 12 
%CYSOLIDS 7.17 5.37 9.68 13 
%CYWATER 7.77 5.04 11.11 16 

Nutrient Recovery (REC, %)     
RECSOLIDS 51.80 43.85 60.27 7 
RECFAT 89.75 78.44 95.90 4 
RECPROTEIN 78.16 72.41 83.44 3 
RECENERGY 67.15 58.92 75.07 5 

1SCS = log2 (SCC × 100,000) + 3. Milk protein fractions: CN = casein; LA = lactalbumin and LG = 

lactoglobulin. Curd firming: RCTeq = estimated RCT; CFP = asymptotical potential value of CF; kCF 

= curd-firming instant rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd 

firmness achieved within 90 min; and tmax = time at achievement of CFmax. %CY = ratios of the weight 

(g) of the fresh curd (%CYCURD), curd dry matter (%CYSOLIDS) and curd water (%CYWATER) versus the 

weight of the processed milk (g); REC = ratio of the weight (g) of the curd constituent (dry matter, 

fat, protein or energy, respectively) versus that of the same constituent in the processed milk (g). 
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Table 2. Rotated factor pattern, communality (com) of variables and variance explained by the factors1. 

Trait2 
F1 

%CY 

F2 

MCP 

F3 

Yield 

F4 

Cheese N 

F5 

as1-β-CN 

F6 

Udder health 

F7 

κ-β-CN 

F8 

as2-CN 

F9 

as1-CN-Ph 

F10 

α-LA 
com 

Milk traits            

Milkyield, kg/day -0.19 0.08 0.96 0.00 0.03 0.11 0.01 0.01 0.02 0.08 0.99 

Fatyield, kg/day 0.28 0.08 0.89 -0.02 0.06 0.17 -0.01 -0.01 -0.01 0.07 0.92 

Protyield, kg/day 0.00 0.00 0.97 -0.04 0.03 0.02 0.02 0.05 -0.02 0.03 0.96 

Fat, % 0.90 0.01 0.07 -0.04 0.06 0.08 -0.06 -0.03 -0.05 0.00 0.84 

Prot, % 0.59 -0.22 -0.11 -0.14 0.02 -0.30 0.02 0.08 -0.07 -0.17 0.56 

Lactose, % -0.07 0.01 0.08 0.05 -0.01 0.62 -0.01 0.00 0.03 0.04 0.40 

pH -0.08 -0.31 0.00 0.11 -0.13 -0.02 0.03 0.04 0.17 0.15 0.18 

SCS, units 0.06 -0.02 -0.08 0.04 -0.05 -0.41 0.09 0.01 0.03 -0.09 0.20 

Milk protein fractions, %            

as1-CN 0.04 0.01 0.07 -0.14 0.94 0.25 -0.04 -0.08 -0.14 -0.04 0.99 

as1-CN-Ph 0.04 -0.02 0.00 0.09 -0.10 0.01 -0.04 -0.04 0.98 0.06 1.00 

as2-CN 0.02 -0.08 0.04 -0.06 0.01 -0.03 -0.07 0.98 -0.04 0.14 1.00 

β-CN -0.10 -0.05 -0.11 0.12 -0.70 0.38 -0.47 -0.33 -0.03 -0.05 1.00 

κ-CN 0.12 0.17 0.00 -0.09 0.05 -0.11 0.96 -0.09 -0.04 0.01 1.00 

β-LG 0.05 -0.03 0.02 -0.98 0.12 0.01 0.07 -0.05 -0.10 0.00 0.99 

α-LA -0.06 -0.02 0.18 -0.14 -0.02 0.30 0.01 0.17 0.07 0.90 0.99 

Other N comp. -0.05 0.01 -0.02 0.76 -0.09 -0.60 -0.10 -0.01 -0.02 -0.21 1.00 

Curd Firming            

RCTeq, min 0.01 -0.74 -0.05 -0.06 -0.01 -0.15 0.02 0.08 0.00 -0.01 0.59 

CFP, mm 0.38 0.03 0.01 -0.08 0.23 -0.11 0.23 -0.07 -0.11 -0.20 0.32 

kCF, % × min-1 -0.01 0.94 0.00 0.00 -0.03 -0.09 0.08 0.00 0.00 -0.01 0.90 

kSR, % × min-1 -0.06 0.88 0.00 -0.01 -0.05 -0.08 0.06 0.00 0.01 0.00 0.79 

tmax, min 0.04 -0.90 -0.04 -0.03 -0.01 -0.06 -0.05 0.03 0.00 -0.01 0.82 

Cheese yield (%CY)            

%CYSOLIDS 0.99 0.02 0.04 0.00 0.04 -0.08 0.02 0.01 0.01 -0.03 0.99 

%CYWATER 0.39 -0.05 -0.07 0.11 -0.08 -0.03 0.05 0.01 0.08 0.02 0.19 

Nutrient Recovery (REC, %)            



 

131 

 

RECFAT 0.28 0.44 0.19 0.01 0.11 0.00 0.21 0.10 0.08 0.12 0.39 

RECPROTEIN 0.23 -0.02 -0.02 0.46 -0.03 0.23 0.00 -0.14 0.03 -0.02 0.34 

RECENERGY 0.87 0.25 0.14 0.10 0.08 -0.03 0.10 0.01 0.03 0.06 0.88 

Cumulative variance, % 0.14 0.27 0.38 0.45 0.51 0.56 0.61 0.66 0.70 0.74  
1Factors have been sorted based on proportion of variance explained. F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = Factor 

related to the curd firmness; F3: Yield = Factor related to the milk yield; F4: Cheese N = Factor related to the milk nitrogen that is present into the cheese curd; 

F5: as1-β-CN = Factor related to the as1- and β-CN contents in milk, expressed as relative contents to the total milk nitrogen; F6: Udder health = Factor related 

to the udder health of a cow; F7: κ-β-CN = Factor related to the κ- and β-CN contents in milk, expressed as relative contents to the total milk nitrogen; F8: as2-

CN = Factor related to the milk as2-CN, expressed as relative content to the total milk nitrogen; F9: as1-CN-Ph = Factor related to the milk as1-CN-Ph expressed 

as content to the total milk nitrogen; F10: α-LA = Factor related to the milk α-LA. 

2SCS = log2 (SCC × 100,000) + 3. Milk protein fractions: CN = casein; LA = lactalbumin and LG = lactoglobulin. Curd firming: RCTeq = estimated RCT; CFP 

= asymptotical potential value of CF; kCF = curd-firming instant rate constant; kSR = syneresis instant rate constant; and tmax = time at achievement of CFmax. 

%CY = ratios of the weight (g) of the curd dry matter (%CYSOLIDS) and curd water (%CYWATER) versus the weight of the processed milk (g); REC = ratio of the 

weight (g) of the curd constituent (fat, protein or energy, respectively) versus that of the same constituent in the processed milk (g). 
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Table 3. Analysis of variance (F-values and significance) of the10 extracted factors1. 

Item 
Dairy system Parity DIM Residual 

F-value F-value F-value RMSE 

DF 3 3 10 - 

F1: %CY 6.25*** 2.41 13.34*** 0.83 

F2: CFt 1.78 7.38*** 5.96*** 0.84 

F3: Yield 19.54*** 46.37*** 30.42*** 0.59 

F4: Cheese N 1.18 0.75 1.74 0.76 

F5: as1-β-CN 1.43 0.74 7.47*** 0.84 

F6: Udder health 3.39* 32.88*** 14.40*** 0.71 

F7: κ-β-CN 0.81 0.23 1.28 0.93 

F8: as2-CN 1.68 1.62 4.16*** 0.78 

F9: as1-CN-Ph 0.48 3.60* 1.14 0.73 

F10: α-LA 1.71 1.60 11.09*** 0.72 
*P < 0.05; **P < 0.01; ***P < 0.001. 

1F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = Factor related to 

the curd firmness; F3: Yield = Factor related to the milk yield; F4: Cheese N = Factor related to the 

milk nitrogen that is present into the cheese curd; F5: as1-β-CN = Factor related to the as1- and β-

CN contents in milk, expressed as relative contents to the total milk nitrogen; F6: Udder health = 

Factor related to the udder health of a cow; F7: κ-β-CN = Factor related to the κ- and β-CN contents 

in milk, expressed as relative contents to the total milk nitrogen; F8: as2-CN = Factor related to the 

milk as2-CN, expressed as relative content to the total milk nitrogen; F9: as1-CN-Ph = Factor related 

to the milk as1-CN-Ph expressed as content to the total milk nitrogen; F10: α-LA = Factor related 

to the milk α-LA. 
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Table 4. Effects of the dairy system (traditional with tied cows, modern with loose cows), the use of 

total mixed ration (TMR) within modern farms, and of the moisture source of TMR on the 10 

extracted latent factors1. 

 Dairy system LSM: Orthogonal contrasts 

F-values Dairy system: Traditional Modern 

Feed 

distribution: 
- No TMR TMR 

Modern  

vs 

Traditional2 

TMR 

vs 

No TMR3 

Silage 

vs 

Water4 

Moisture source: - - Silage Water    

Herds 29 30 9 17 - - - 

F1: %CY -0.25 -0.11 0.40 0.18 13.21*** 10.22** 1.37 

F2: CFt 0.15 -0.13 0.02 0.04 2.48 1.50 0.01 

F3: Yield -0.53 0.16 0.59 0.60 53.31*** 8.38** 0.12 

F4: Cheese N 0.19 -0.02 -0.26 -0.04 3.29 0.52 0.63 

F5: as1-β-CN 0.21 -0.002 0.02 -0.12 3.34 0.10 0.42 

F6: Udder health 0.28 -0.25 -0.18 0.05 5.98* 1.28 0.90 

F7: κ-β-CN -0.002 -0.08 0.19 -0.01 0.10 1.75 1.17 

F8: as2-CN -0.12 -0.21 0.22 0.14 1.22 4.66* 0.09 

F9: as1-CN-Ph 0.08 0.02 -0.24 0.08 0.52 0.23 1.14 

F10: α-LA -0.12 -0.11 0.35 0.20 2.43 3.95 0.26 
*P < 0.05; **P < 0.01; ***P < 0.001. 

F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = Factor related to 

the curd firmness; F3: Yield = Factor related to the milk yield; F4: Cheese N = Factor related to the 

milk nitrogen that is present into the cheese curd; F5: as1-β-CN = Factor related to the as1- and β-

CN contents in milk, expressed as relative contents to the total milk nitrogen; F6: Udder health = 

Factor related to the udder health of a cow; F7: κ-β-CN = Factor related to the κ- and β-CN contents 

in milk, expressed as relative contents to the total milk nitrogen; F8: as2-CN = Factor related to the 

milk as2-CN, expressed as relative content to the total milk nitrogen; F9: as1-CN-Ph = Factor related 

to the milk as1-CN-Ph expressed as content to the total milk nitrogen; F10: α-LA = Factor related 

to the milk α-LA. 

2Contrast between the “Traditional” dairy system vs the three “Modern” ones. 

3Contrast between the “Modern No TMR” dairy system vs the two “Modern TMR” ones. 

4Contrast between the “Modern TMR Silage” dairy system vs the “Modern TMR Water” one. 
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Table 5. Mean (SD) of marginal posterior densities of additive genetic (𝛔𝐀
𝟐), herd/test-date (𝛔𝐇

𝟐 ), and 

residual (𝛔𝐄
𝟐), variances, across-herd (𝐡𝐀𝐇

𝟐 ), and intra-herd (𝐡𝐈𝐇
𝟐 ) heritabilities and herd contribution 

for the investigated traits. 

Item1 σa
2 σh

2 σe
2 hAH

2  hIH
2  Herd2, % 

F1: %CY 0.186(0.07) 0.204(0.04) 0.502(0.06) 0.207(0.07) 0.268(0.09) 22 

F2: CFt 0.217(0.07) 0.174(0.03) 0.513(0.06) 0.239(0.08) 0.295(0.09) 19 

F3: Yield 0.039(0.02) 0.477(0.08) 0.324(0.02) 0.047(0.02) 0.108(0.06) 56 

F4: Cheese N 0.339(0.06) 0.419(0.07) 0.207(0.05) 0.352(0.07) 0.618(0.10) 43 

F5: as1-β-CN 0.416(0.08) 0.207(0.05) 0.315(0.07) 0.414(0.08) 0.565(0.11) 27 

F6: Udder health 0.108(0.05) 0.329(0.06) 0.418(0.04) 0.126(0.06) 0.204(0.09) 38 

F7: κ-β-CN 0.687(0.13) 0.125(0.03) 0.257(0.11) 0.639(0.10) 0.723(0.11) 11 

F8: as2-CN 0.250(0.06) 0.378(0.07) 0.377(0.05) 0.248(0.06) 0.397(0.09) 37 

F9: as1-CN-Ph 0.172(0.06) 0.510(0.09) 0.363(0.05) 0.165(0.06) 0.318(0.10) 48 

F10: α-LA 0.075(0.03) 0.486(0.08) 0.432(0.03) 0.075(0.03) 0.147(0.07) 49 

1F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = Factor related to 

the curd firmness; F3: Yield = Factor related to the milk yield; F4: Cheese N = Factor related to the 

milk nitrogen that is present into the cheese curd; F5: as1-β-CN = Factor related to the as1- and β-

CN contents in milk, expressed as relative contents to the total milk nitrogen; F6: Udder health = 

Factor related to the udder health of a cow; F7: κ-β-CN = Factor related to the κ- and β-CN contents 

in milk, expressed as relative contents to the total milk nitrogen; F8: as2-CN = Factor related to the 

milk as2-CN, expressed as relative content to the total milk nitrogen; F9: as1-CN-Ph = Factor related 

to the milk as1-CN-Ph expressed as content to the total milk nitrogen; F10: α-LA = Factor related 

to the milk α-LA. 

2The variance of herd/date within dairy system and season is expressed as ratio with the total 

phenotypic variance (σa
2 + σh

2 + σe
2). 
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Table 6. Additive genetic correlations for the 10 factors extracted from the bivariate analysis1. 

 

1Mean of the marginal posterior density of the additive genetic correlation; the posterior probability (%) for positive correlations greater than 0 or for negative correlations 

lower than 0 is given within parentheses. Boldface indicates additive genetic correlations with ≥ 90% of posterior probability accumulated above 0 (positive estimates) or 

below 0 (negative estimates). 

2F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = Factor related to the curd firmness; F3: Yield = Factor related to the milk yield; F4: Cheese 

N = Factor related to the milk nitrogen that is present into the cheese curd; F5: as1-β-CN = Factor related to the as1- and β-CN contents in milk, expressed as relative contents 

to the total milk nitrogen; F6: Udder health = Factor related to the udder health of a cow; F7: κ-β-CN = Factor related to the κ- and β-CN contents in milk, expressed as relative 

contents to the total milk nitrogen; F8: as2-CN = Factor related to the milk as2-CN, expressed as relative content to the total milk nitrogen; F9: as1-CN-Ph = Factor related to 

the milk as1-CN-Ph expressed as content to the total milk nitrogen; F10: α-LA = Factor related to the milk α-LA. Factors have been orthogonally extracted, hence all their 

pairwise phenotypic correlations are equal to zero. 

Item2 F1: %CY F2: CFt F3: Yield F4: Cheese N F5: as1-β-CN F6: Udder health F7: κ-β-CN F8: as2-CN F9: as1-CN-Ph F10: α-LA 

F1: %CY - 0.372(92) 0.216(72) 0.066(62) -0.237(84) -0.322(81) -0.012(51) -0.198(80) -0.110(66) -0.222(74) 

F2: CFt  - 0.159(65) 0.164(79) -0.387(97) -0.411(90) 0.102(69) -0.161(77) -0.127(66) -0.032(53) 

F3: Yield   - -0.022(51) 0.423(91) 0.370(81) -0.123(63) -0.161(70) -0.603(95) -0.361(78) 

F4: Cheese N    - 0.094(71) -0.126(68) 0.228(94) 0.184(86) -0.373(97) 0.057(69) 

F5: as1-β-CN     - -0.068(58) 0.380(98) 0.444(98) 0.574(99) -0.211(77) 

F6: Udder health      - -0.078(60) 0.436(95) 0.187(68) -0.667(97) 

F7: κ-β-CN       - 0.095(71) 0.174(76) -0.228(77) 

F8: as2-CN        - -0.062(60) 0.181(70) 

F9: as1-CN-Ph         - -0.102(62) 

F10: α-LA          - 
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Figure 1. Pearson (above the diagonal) and partial (under the diagonal) phenotypic correlations 

and among the 25 traits used in the factor analysis. On the diagonal the Kaiser-Meyer-Olkin 

(KMO) measure of sampling adequacy per trait. 
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Figure 2 Least squares means of the seven factors across stage of lactation. 

 

Description: F1: %CY = Factor related to the percentage of individual cheese yield; F2: CFt = 

Factor related to the curd firmness; F3: Yield = Factor related to the milk yield; F5: as1-β-CN = 

Factor related to the as1- and β-CN contents in milk, expressed as relative contents to the total milk 

nitrogen; F6: Udder health = Factor related to the udder health of a cow; F8: as2-CN = Factor 

related to the milk as2-CN, expressed as relative content to the total milk nitrogen F10: α-LA = 

Factor related to the milk α-LA. 
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Figure 3 Least squares means of the four factors across the levels of parity. 

 

Description: F2: CFt = Factor related to the curd firmness; F3: Yield = Factor related to the milk 

yield; F6: Udder health = Factor related to the udder health of a cow; F9: as1-CN-Ph = Factor 

related to the milk as1-CN-Ph expressed as content to the total milk nitrogen. 
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CHAPTER 5 
 

Genome-wide association and pathway-based analysis using latent variables related to milk 
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ABSTRACT 

Genome wide associations (GWAS) and gene-set enrichment analyses were conducted with 

cheese-related latent variables (factors, Fs). Factor analysis (FA) was applied to identify latent 

structures of 26 traits related to bovine milk quantity and quality, protein fractions [αs1-, αs2-, β- and 

κ- casein (CN), β-lactoglobulin and α-lactalbumin (α-LA)], coagulation and curd firming at time t 

(CFt) and individual cheese properties [cheese yield (%CY) and nutrient recovery in the curd]. Cows 

(n=1,152) were genotyped with the Illumina BovineSNP50 Bead Chip v.2. Single marker regression 

GWAS were fitted. Gene-set enrichment analysis was run on GWAS results, using the Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases, to reveal 

ontologies/pathways associated with the Fs.  

 Ten orthogonal Fs were extracted, explaining 74% of the original variability. F1%CY 

underlined the %CY, F2CFt was related to the CFt process, F3Yield considered descriptor of milk and 

solids yield while F4Cheese N described the presence of nitrogen (N) into the cheese. Four factors were 

related to the milk caseins (F5 αs1-β-CN , F7β-κ-CN, F8αs2-CN, and F9αs1-CN-Ph) and 1 factor was linked to 

the whey protein (F10α-LA). One factor underlined the udder health status (F6Udder health). All Fs, but 

F5Yield, showed significance (P < 5 ×10-5) in GWAS. Signals in 10 Bos taurus autosomes (BTA) were 

detected. High peaks on BTA6 (~87Mbp) were found for F6β-κ-CN, F5 αs1-β-CN and at the tail of BTA11 

(~104Mbp) for F1Cheese N. After false discovery rate correction (at 5%), 33 GO terms and 6 KEGG 

categories were mainly enriched for F8αs2-CN, but also for F1%CY, F4Cheese N, and F10α-LA, including 

terms related to ion transport and homeostasis, neuron function/part, tight junction and GnRH 

signaling pathway. Results support the potential application of Fs in dairy cattle genomic studies. 

Pathway analysis indicated a key role of αs2-CN. 

 

Key words: Factor analysis, milk protein, coagulation, cheese yield, GWAS, gene-set enrichment  
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INTRODUCTION 

Cheese production is the main target of bovine milk in many countries worldwide, while 

recent studies revealed an important role of animal genetics in bovine cheese yield (Bittante et al., 

2013a). Nevertheless, cheese manufacture is a complicated process with many interrelated factors 

involved, such as milk components (e.g. fat, protein, minerals), milk acidity and microbial flora, 

coagulation properties (MCP), etc. In addition, animal breeding aims in the simultaneous 

improvement of several traits in consequent generations, including a wide range of phenotypes related 

with production, reproduction and health, etc., that might exceed the 40 regularly recorded 

phenotypes (Miglior et al., 2005; Banos, 2010). However, the large number of traits of interest and 

their complex phenotypic and genetic correlation structure pose restrictions in selection decision, as 

well as in computations. Dealing with large amount of variables, factor analysis (FA) is commonly 

adopted to identify latent structures (factors; Fs) of correlated variables. Based on the observed 

covariance structure, the objective of FA is to replace n measured variables with p (p < n) Fs, where 

the measured variables are expressed as linear functions of the Fs, and the Fs capture the underlying 

latent concept that the original variables represent (Bollen, 2014). 

In dairy cattle, the potential use of Fs obtained from FA has been investigated for a variety of 

traits, such as milk quality, milk technological properties, e.g., MCP and cheese-related traits (CY) 

(Macciotta et al., 2012), as well as milk fatty acids (Conte et al., 2016). However, those studies were 

focused on the sources of variation related to the Fs and their genetic parameters. In addition, Fs have 

been used within the framework of structural equation modelling for the analysis of bovine mastitis 

(Detilleux et al., 2013). Despite this, the potential use of Fs in genome wide associations (GWAS) 

has not been yet explored. 

In recent years, GWAS have become a valuable tool in dairy cattle breeding programs. 

Generally, each trait is separately analyzed in a classical GWAS approach. However, in the case of 

complex phenotypes, e.g. the CY, a plethora of different, and possibly correlated, components might 

be involved (Cecchinato and Bittante, 2016). Simulation studies found that integration of (correlated) 
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phenotypes into a multivariate GWAS model might lead to an increased power for detecting causal 

loci compared to the classical univariate analysis (Galesloot et al., 2014). Furthermore, the 

replacement of the original - possibly correlated - phenotypes with a smaller set of linearly 

uncorrelated variables, i.e., principal components has been also investigated. However, all principal 

components need to be tested for associations, hence no benefit in data reduction is achieved (Aschard 

et al., 2014). Besides, although principal component analysis is considered as a useful tool for data 

exploration, FA is preferable when the goal is to detect the structure underlying the variables (i.e. 

latent structure) (Jolliffe, 2002). 

On top of the GWAS, it is becoming common to complement association analyses with gene-

set enrichment and pathway analyses to alleviate problems related to GWAS, and to deepen the 

understanding of the biological pathways affecting quantitative traits (Gambra et al., 2013; 

Peñagaricano et al., 2013; Abdalla et al., 2016; Iso-Touru et al., 2016). For instance, GWAS ignores 

the fact that genes work together in networks in the various biological pathways. Moreover, correction 

for multiple testing may result into stringent thresholds, while strong linkage disequilibrium, as found 

in livestock species, can mask the causal genomic region, thus important markers might be undetected 

(Peng et al., 2010; Hayes, 2013; Ha et al., 2015).  

Integration of Fs, GWAS and pathways analyses might address part of the aforementioned 

issues and therefore appears attractive in dairy cattle breeding. This combination has been adopted in 

human studies (Fanous et al., 2012), while its potential application in animal breeding is still 

unexplored. 

Our objective was to conduct genome-wide associations and gene ontology and pathway 

analysis using a set of latent variables obtained from 26 traits related to milk yield and quality, curd 

firming, and individual cheese properties in a sample of 1,152 Brown Swiss cows genotyped with a 

50k SNP chip. 
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MATERIALS AND METHODS 

Animals and sampling 

A detailed description of the sampling procedure was previously reported (Cipolat-Gotet et 

al, 2012). In brief, 1,264 Italian Brown Swiss cattle were sampled once (evening milking). Animals 

belonged to 85 herds. In total, 29 traits involved in cheese-making were included in the analyses. In 

Fig 1, a schematic representation of the basic features of the cheese-making process is presented. 

 

Phenoypic data 

Milk quality and composition. Individual milk samples were analyzed for fat, protein and 

lactose contents using MilkoScan FT6000 (Foss, Hillerød, Denmark). The pH analysis was carried 

out using a Crison Basic 25 electrode (Crison, Barcelona, Spain). Somatic cell count data were 

determined by a Fossomatic FC counter (Foss, Hillerød, Denmark) and somatic cell scores were 

obtained through logarithmic transformation [(SCS = log2SCC/100,000) – 3] (Ali and Shook, 

1980). Casein (CN) fractions (αs1-, αs2-, β- and κ- CN) and whey proteins [β-lactoglobulin (β-LG) 

and α-lactalbumin (α-LA)] were measured using a validated reversed-phase high-performance 

liquid chromatography (RP-HPLC) method (Bonfatti et al., 2008). Each fraction was expressed as 

ratio to the total milk nitrogen (N) content. Moreover, the phosphorylated form of the αs1-casein 

was obtained by the methodology proposed by (Bonfatti et al., 2011). The remaining milk N 

compounds were estimated as difference from the total milk nitrogen content.  

Curd firming parameters. Six parameters related to curd firming at time t (CFt) and derived 

from the CF modeling (Bittante et al., 2013b) were included in our analysis: rennet coagulation time 

(RCTeq, min), maximum curd firmness (CFmax, mm; at time tmax, min) and time to reach CFmax (tmax, 

min), potential asymptotical curd firmness in the absence of syneresis (CFP, mm), the rate constants 

of curd-firming (kCF, % x min-1) and syneresis (kSR, % x min-1). Due to convergence problems, CFP 

was expressed proportionally to the CFmax, multiplying CFmax by 1.34. This value is the regression 

coefficient resulting from the linear regression of CFP on CFmax (Stocco et al., 2016). The three CFt 
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model parameters (RCTeq, kCF, and kSR) were obtained through curvilinear regression (PROC NLIN; 

SAS Institute Inc., Cary, NC). 

Individual cheese yield and curd nutrients recovery 

Individual cow cheese phenotypes, obtained through a model cheese-making procedure 

(Cipolat-Gotet et al., 2013), were included in the analysis. Individual cheese yields, expressed as 

percentage of the weight of the total milk processed, comprised: the weight of the curd dry matter 

(%CYSOLIDS) and water (%CYWATER) as well as their sum (fresh curd; %CYCURD). Three additional 

traits related to the nutrients of the milk retained in the curd, calculated as the ratio (%) between the 

curd nutrient and the corresponding nutrient contained in the processed milk, were RECSOLIDS, 

RECFAT and RECPROTEIN. Finally, the energy within the curd (RECENERGY), calculated as the 

difference between energy in the milk and in the cheese (NRC, 2001), was also obtained.  

 

Genotyping 

Cows (n=1,152) were genotyped with the Illumina BovineSNP50 v.2 BeadChip (Illumina 

Inc., San Diego, CA). Markers that did not fulfill the following criteria were excluded from the 

analysis: (1) call rate > 95%, (2) minor allele frequency > 0.5%, and (3) no extreme deviation from 

Hardy-Weinberg proportions (P > 0.001, Bonferroni corrected). After quality control, 1,011 cows 

and 37,568 SNP were retained. 

 

Statistical analysis 

Factor analysis. Primary to factor analysis, 3 out of the 29 phenotypes (CFmax, %CYCURD and 

RECSOLIDS) were excluded to avoid severe multicollinearity problems: i) %CYCURD is the sum of 

%CYSOLIDS and %CYWATER; ii) CFmax is proportional to CFP; the phenotypic correlation coefficients 

of RECSOLIDS with RECENERGY and %CYSOLIDS were greater than 0.9 (Bittante et al., 2013a).  

The following factor model was used to simultaneously analyze the remaining twenty-six 
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phenotypes: 

 

𝒙 = 𝜦𝝃 + 𝜹, 

 

where x is a vector of the 26 phenotypes and ξ is the factor vector. The factor loadings, relating the 

factors to the original variables, are contained in Λ and δ is the residual vector.  

Following, the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was adopted to 

quantify the difference between partial and Pearson correlations of the 26 variables (Dziuban and 

Shirkey, 1974; Kaiser and Rice, 1974). The KMO is a commonly used criterion in FA to control if 

the correlation between 2 variables is mediated by other variables. A high KMO value indicates the 

presence of a latent structure. Partial correlation coefficients were calculated using the corpcor 

package in R (Schaefer et al., 2013). Further, exploratory FA was applied. To identify simple 

structure, a varimax factor rotation was used. The criteria used to extract the factors were: prior 

knowledge, biological interpretation and percentage of original variance explained by the Fs. To 

explain the Fs, a threshold of factor loadings > |0.4| was considered as “significant” (Fanous et al., 

2012). The FA was implemented using the psych package (Revelle, 2014) in the R environment (R 

Core Team, 2013).  

Genome-wide associations. A single marker regression was fitted for GWAS using the 

GenABEL package in R (GenABEL project developers, 2013; R Core Team, 2013) and the 

GRAMMAR-GC (Genome wide Association using Mixed Model and Regression - Genomic Control) 

approach, with the default function “gamma” (Amin et al., 2007; Svishcheva et al., 2012). The 

GRAMMAR-GC consists of 3 steps: Firstly, an additive polygenic model with a genomic relationship 

matrix is fitted. Then, the obtained residuals of this model are regressed on SNP to test for 

associations. Finally, the genomic control corrects for conservativeness of the procedure (Svishcheva 

et al., 2012). The polygenic model was: 
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eaXy   ,       

 

where y is a vector containing the latent variables; 𝛽 is a vector with the fixed effects of i) days in 

milk of the cow (classes of 30 days each), ii) parity level of each cow (with classes 1, 2, 3, ≥4), iii) 

the effect of the pendulum (considered only for the CFt traits), and iv) herd-date effect (n=85); X is 

an incidence matrix connecting each observation to specific levels of factors in 𝛽. The non-genetic 

effects have been previously studied in the same dataset (Cipolat-Gotet et al., 2013; Bittante et al., 

2013a). The two random terms in the model were the animal and the residuals, which were assumed 

to be normally distributed as 𝒂 ~ 𝑁(0, 𝐆𝜎𝑔
2) and 𝒆 ~ 𝑁(0, 𝐈𝜎𝑒

2), where G and I are the genomic 

relationship and the identity matrix, respectively, 𝜎𝑔
2 is the additive genomic and 𝜎𝑒

2 the residual 

variance. The G matrix was constructed within the GenABEL R package using identical by state 

coefficients. A threshold of P-value equal to 5 × 10−5 was adopted to declare significance (Burton et 

al., 2007). Manhattan plots were drawn using the R package “qqman” (Turner, 2014). 

Gene-set Enrichment and Pathway-based Analysis. Nominal P-values < 0.05 obtained from 

the GWAS were used to select the significant SNP for each factor. The SNP were assigned to genes 

if they were located within the gene or in a flanking region of 15 kb up- and downstream of the gene 

(Pickrell et al., 2010) using the biomaRt R package (Durinck et al., 2005; Durinck et al., 2009). For 

mapping, the Ensembl Bos taurus UMD3.1 assembly was used as reference (Zimin et al., 2009). In 

the enrichment analysis, the total SNP tested in GWAS represented the background SNP, while the 

background genes were the genes associated to those SNP. The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Ogata et al., 1999) and the Gene Ontology (GO) (Ashburner et al., 2000) 

databases were queried to assign the genes to functional categories. The KEGG database contains 

regulatory and metabolic pathways, signifying the knowledge on molecular interactions and reaction 

networks. The GO database entitles biological descriptors (GO terms) to genes based on features of 

the gene encoded products. The GO database is partitioned into three classes, namely biological 
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process (BP), molecular function (MF), and cellular component (CC). To avoid testing broad or 

narrow functional categories, GO and KEGG terms with < 10 and > 1,000 genes were excluded from 

the analysis. For each functional category, a Fisher’s exact test was applied to test for 

overrepresentation of the significant genes. To account for multiple testing, false discovery rate 

(FDR) correction was used (controlled at 5%). The gene-set enrichment analysis was carried out using 

the goseq package in the R environment (Young et al., 2010).  

 

RESULTS 

Factors’ extraction 

Ten factors were extracted from 26 variables explaining 74% of the original variability. 

Summary statistics of all the 29 phenotypes included in this study are shown in Table 1, while the 

Pearson and partial correlations among the 26 variables finally used in FA are presented in Figure S1. 

The average KMO value in our dataset was 0.55. The factor loadings with their given names (sorted 

by maximum variance explained) are shown in Table 2.  

A full description of the factors is given in CHAPTER 4. In brief, the first factor (F1%CY), in 

order of variance, was loaded on %CYSOLIDS, fat and protein (%) and RECENERGY, representing the 

percentage of cheese yield. The second factor (F2CFt) underlined the curd firmness process. It was 

associated with RECFAT and all CFt traits, but CFP, with positive loadings with the curd firmness rate 

constants (kCF and kSR) and negative relations with the time traits (RCTeq and tmax). The following 

factor was associated with the milk yield traits (F3Yield). Factor 4 (F4Cheese N) was considered 

representative of the nitrogen found in the cheese, with heavy and negative association with β-LG 

and positive relations to other N compounds in milk and the RECPROTEIN. The fifth factor (F5as1-β-CN) 

was representative of as1-CN (positive association) and β-CN (negative association). The sixth factor 

(F6Udder health) reflected the cow’s udder health status, being associated with lactose (positively), and 

with the SCS and the remaining milk N compounds (albeit with a weaker and negative relation). 

Factor 7 (F7κ-β-CN) was considered indicator of the κ- and β- CN, having a positive association with 
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κ-CN and negative with the β-CN. Finally, factors 8, 9 and 10 were heavily loaded to only 1 trait and 

were named accordingly (F8as2-CN, F9as1-CN-Ph and F10α-LA, respectively). 

 

Genome-wide associations 

The GWAS results of the 10 latent variables are summarized in Table 3 and more details can 

be found in Table S1. In total, 149 SNP were significant on 10 chromosomes (1, 2, 6, 9, 10, 11, 19, 

20, 25 and 27). Three of those SNP had unknown position on the genome. All latent variables showed 

signals except F5Yield. Shared signals among traits were found. The strongest signals were detected 

on BTA6 (~87,4 Mbp) and BTA11 (~104,3 Mbp). More precisely, the marker Hapmap52348-

rs29024684 located on 87,396,306bp on BTA6 was significantly associated with F7κ-β-CN (P = 9.81 

× 10-56). Near to this position, at 87,201,599 bp, marker Hapmap28023-BTC-060518 was strongly 

associated with F5αs1-β-CN (P = 2.84 × 10-47). Moreover, F5αs1-β-CN had another strong signal at 

87,245,049 bp (Hapmap24184-BTC-070077; P = 7.00 × 10-45). Albeit at a weaker strength, both 

positions were also highly significant for F8αs2-CN (P = 8.34 × 10-11 at 87,201,599 bp; P = 1.67 × 10-

10 at 87,245,049 bp). The same was observed for F9αs1-CN-Ph with a P = 3.86 × 10-11 at 87,201,599bp 

and P = 7.80 × 10-11 at 87,245,049bp. All casein Fs showed signals on BTA6 in the region 6e (~77.2-

89.1 Mbp) (Fig 2b). On BTA11, marker ARS-BFGL-NGS-104610 (104,293,559bp) was strongly 

linked to F4Cheese N (P = 9.81 × 10-26). On BTA 6, 11, 20 and 27 signals were distributed in more than 

one chromosomic regions. 

On BTA6, 8 sub-regions were overall detected (Table 3, Fig 2). In regions 6a (~40 Mbp), 6b 

(~46.6 Mbp) and 6c (~68.5 Mbp), weak signals were detected for the factors F6Udder health, F2CFt and 

F8αs2-CN , respectively. The region 6d (~71-74.6 Mbp) was associated to both F8αs2-CN and F7κ-β-CN. 

The denser region (6e) was found between ~77-89 Mbp and included 71 significant SNP. In this 

genomic area, all factors, but F10α-LA and F3Yield, showed associations with a peak at ~87,4 Mbp. 

Especially for F7κ-β-CN, the proportion of additive genetic variance explained by Hapmap52348-
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rs29024684 (~87.4 Mbp) reached 74.2%. In addition, the marker Hapmap28023-BTC-060518, 

located at ~87.2 Mbp, explained ~53% of the additive genetic variance for F5 αs1-β-CN. In both cases 

the SNP effects were negative and considerably large, around 1 standard deviation from the mean 

(Table 4). 

Close to region 6e, at ~90.7-92.6 Mbp (region 6f), 8 SNP were significant for 3 Fs:F8αs2-CN, 

F7κ-β-CN and F5αs1-β-CN. Moreover, F8αs2-CN and F7κ-β-CN were associated to a region at ~94.2Mbp 

(region 6g). A weak association, close the significance threshold, was detected at ~114.2 Mbp for 

F1%CY (region 6h). 

Five distinct genomic regions were identified on BTA11 (Table 3, Fig 3). The regions at ~4.4 

Mbp, ~77.5 Mbp, ~87.7 Mbp and ~97.8 Mbp were associated with F6Udder health, F9αs1-CN-Ph, F2CFt and 

F4Cheese N, respectively. In the range ~101.3-106,5 Mbp (region 11e), 18 significant SNP were 

detected for F4Cheese N and F2α-LA, with a peak at ~104,3 Mbp.  

Apart from BTA6 and 11, significant associations were detected on other chromosomes, albeit 

at a weaker strength (Table 3). Two regions were detected on BTA20 at ~7.9 Mbp and ~46.7 Mbp. 

The first region was associated to F10α-LA and the second to F9αs1-CN-Ph. Moreover, on BTA27, 2 

chromosomic regions were detected. Although close to each other, they were associated with different 

Fs. More precisely, F1%CY was associated to one marker at ~42.1 Mbp, while 3 SNP were linked to 

F10α-LA in the range ~43.4-43.9 Mbp. The rest of the signals were 1 trait-1 factor associations and 

close to the significance threshold. F7κ-β-CN was associated to BTA1 at ~90.1 Mbp. A weak signal on 

BTA2 at ~122.5 Mbp was detected for F1%CY. A SNP at ~36.8 Mbp on BTA9 was linked to F5αs1-β-

CN. One marker at ~10.7 Mbp on BTA10 was associated with F8αs2-CN. At the beginning of BTA19 

(~1.8 Mbp), a weak signal was detected for F1%CY. On BTA25, one marker was associated with 

F6Udder health at ~5.4 Mbp. 
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Gene-set enrichment and pathway-based analysis 

Out of 37,568 tested SNP in GWAS, 10,094 were located in annotated genes or in the 15 kbp 

window. In total, 13,269 background genes were annotated in the Bos taurus UMD3.1 assembly. On 

average, 1,550 SNP were significant per factor based on nominal P-value. From those SNP, 529 were 

assigned to genes and 454 genes were mapped (average values per factor) (Table S2).  

After FDR control (5%), 33 GO terms and 6 KEGG categories were associated with 4 of the 

10 tested Fs, namely F1%CY, F4Cheese N, F8αs2-CN and F10α-LA, with the vast majority being associated 

with F8αs2-CN. Results of the gene-set enrichment and pathway-based analysis are outlined in Fig 4 

and Table S3. A total of 117 genes spanning all BTA but 21 and 29 were included into the 

significantly enriched GO and KEGG categories (Table S4). F4Cheese N was associated with the 

arrhythmogenic right ventricular cardiomyopathy (ARVC; KEGG: bta05412). The tight junction 

pathway (KEGG: bta04530) was enriched for F1%CY and F10α-LA. Three KEGG categories were 

enriched for F8αs2-CN, namely the GnRH signaling pathway (KEGG: bta04912), the vascular smooth 

muscle (KEGG: bta04270) and the long-term potentiation (KEGG: bta04720). Moreover, 33 GO 

terms were enriched for F8αs2-CN: 12 GO_BP related to cell communication and ion transport, 11 

GO_CC belonging to neuron part/function and 10 GO_MF related to ion transport. 

 

DISCUSSION 

Extraction of factors 

Using FA, we condensed 26 cheese-making traits into ten Fs. Although the average KMO 

value was not high, it is close to the value reported in a recent and similar study on milk composition, 

MCP and udder health phenotypes in dairy sheep (Manca et al., 2016). The 10 Fs in our study 

represented basic concepts of the “cheese-making” process while retained 74% of the original 

variability. In a similar dataset, but with eleven MCP and udder health phenotypes, the total variance 

explained by the 4, in total, extracted Fs was 70% (Macciotta et al., 2012). The same factor scores 
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were previously tested in an ANOVA and genetic analysis with results being coherent to the given 

name of the factors (CHAPTER 4). Given the wide use of genomics in several breeding programs 

nowadays, a further step was to explore the behavior of the extracted Fs within the framework of 

GWAS, and gene-set enrichment and pathway-based analyses.  

 

Genome wide associations 

Previous GWAS studies detected several chromosomic regions related to bovine milk protein 

components (Schopen et al., 2011; Bijl et al., 2014), MCP and CFt characteristics (Gregersen et al., 

2015; Dadousis et al., 2016a), and individual CY traits (Dadousis et al., 2016b). Major effects are 

known on BTA6 for milk technological traits and protein variants, in a region spanning between ~82 

– 88 Mbp (Schopen et al., 2011; Gregersen et al., 2015; Dadousis et al., 2016a), including the casein 

cluster, two potential QTL (quantitative trait locus) have been suggested at ~82.6 and ~88.4 and at 

the tail of BTA11 (at ~87 and ~104 Mbp) (Schopen et al., 2011; Dadousis et al., 2016a). The location 

of the casein genes on BTA6 is widely known (Caroli et al., 2009), while the signals on BTA11 were 

mainly attributed to β-lactoglobulin gene (BLG). Moreover, the effect of milk protein variants in milk 

coagulation and cheese yield is known (Bonfatti et al., 2010; Bittante et al., 2012).  

BTA6 

The majority of the GWAS signals were detected in the region 6e. The strongest signal in our 

study was found within this area, at 87,396,306 bp (Hapmap52348-rs29024684), and it was associated 

with F7κ-β-CN. Indeed, the SNP is located ~18 kbp upstream to the κ-CN gene (CSN3). This marker 

explained ~74% of the total additive genetic variance for F7κ-β-CN, having a strong and negative effect 

(Table 4). In previous studies, this marker was strongly linked with a trait describing the potential 

asymptotical curd firmness (Dadousis et al., 2016a) and with the RECFAT (Dadousis et al., 2016b). In 

our study, the same marker was also associated with F6Udder health, albeit at a much weaker strength 

compared to F7κ-β-CN. The general region roughly between 83.4-88.9 Mbp has been associated with 
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clinical mastitis in Nordic Holstein (Sahana et al., 2013). It is worth mentioning that SCS was a minor 

loading on F6Udder health. Moreover, the region at ~88.8Mbp has been associated with SCS in US 

Holstein cows (Cole et al., 2011). Close to Hapmap52348-rs29024684, at ~87,2Mbp, the 

Hapmap28023-BTC-060518 was associated with F5αs1-β-CN, F7κ-β-CN, F8αs2-CN and F9αs1-CN-Ph (Table 

4, Table S1). The highest effect of this SNP was found for F5 αs1-β-CN and explained ~53% of the 

additive genetic variability. This marker is located within the histatherin gene (HSTN) and there is an 

evidence that this gene underlies QTL related with CFt traits and RECFAT (Dadousis et al., 2016a; 

Dadousis et al., 2016b). In the region (~88.4 Mbp), F2CFt and F7κ-β-CN were associated with BTA-

122637-no-rs (P-value = 6.91 × 10-6 and 2.46 × 10-10, respectively; Table S1). Notably, the same 

marker has been previously associated with RCTeq, while in the broader region ~87.2-88.8 Mbp, the 

CFmax, kCF and protein percentage, also had signals (Dadousis et al., 2016a). The last 2 traits were the 

major loadings of F2CFt. This marker is located within the SLC4A4 (electrogenic sodium bicarbonate 

cotransporter 1) protein coding (~88.2-88.5 Mbp). The product of SLC4A4 (sodium bicarbonate 

cotransporter) is involved in intracellular pH, and regulates the secretion and absorption of 

bicarbonate. Very close to this region, the GC (group-specific component) protein coding is mapped 

(~88.69–88.74 Mbp). The GC encodes a vitamin-D binding protein. The protein is involved in the 

metabolism of the vitamin D, lipids and lipoproteins and belongs in the albumin family. In a recent 

fine mapping study on BTA6, using sequencing data in Norwegian Red cattle, the GC has been 

suggested as a candidate gene in this region related with milk production and clinical mastitis (Olsen 

et al., 2016). Factor F1%CY was also associated in the region 6e, with a peak at ~82,7Mbp 

(Hapmap53172-rs29012675). The same marker has been previously associated with %CYSOLIDS, 

%CYCURD, RECFAT, RECENERGY and RECSOLIDS (Dadousis et al., 2016b). Not surprisingly, F1%CY was 

primarily loaded to %CYSOLIDS, as well as to RECENERGY. 

In the region 6b, a weak signal for F2CFt was detected (Hapmap23226-BTA-159656, 

~46.6Mbp). The same region was previously associated with tmax (Dadousis et al., 2016a). The tmax 



 

155 

 

was strongly related to F2CFt, but it was not the heaviest loading of this factor. The region 6h, at 

~114.2Mbp, was exclusively associated to the F1%CY, albeit with a P-value on the significance 

threshold. A similar weak signal has been previously reported and related to milk protein percentage 

(Dadousis et al., 2016a). Interestingly, this factor was loaded to milk protein (%), although with the 

weaker relation (0.59) among the rest of the traits describing the factor. 

BTA11 

Overall, five of the ten Fs were linked to five regions on BTA11. The strongest association 

was found between F4Cheese N and ARS-BFGL-NGS-104610 (104,293,559 bp). The same marker has 

been strongly related to RECPROTEIN (Dadousis et al., 2016b). Notably, F4Cheese N was loaded on 

RECPROTEIN. Part of the region 11e (around 104,46 Mbp) was also associated to F10α-LA. However, 

there is no known QTL on BTA11 related with α-LA (Schopen et al., 2011). The region 11d 

associated with F4Cheese N is in close proximity to the region 96,2-98,5 Mbp where signals have been 

previously detected for RECPROTEIN (Dadousis et al., 2016b). In both cases same peak was observed 

at ~97 Mbp. F2CFt was linked to the region 11c, with a peak at ~87,7 Mbp. An association between 

the identified SNP and RCTeq has been previously reported (Dadousis et al., 2016a). A weak 

association at ~4.4 Mbp was found for F6Udder health. Although far from this region, signals for SCS 

have been reported in US Holstein cows at the beginning of BTA11 at ~0.28 and ~2.75 Mbp (Cole et 

al., 2011). 

Signals on chromosomes other than BTA6 and BTA11 

Our study detected weak associations in 8 additional chromosomes (Table 3). With the 

exception of BTA20 and 27, the rest of the chromosomes were linked to only 1 factor. The SNPs 

associated to F1%CY on BTA19 and 27 have been significantly related to %CYSOLIDS (Dadousis et al., 

2016b), while the marker on BTA2 is ~6Mbp downstream to the one associated to %CYSOLIDS 

(Dadousis et al., 2016b). On BTA25, F6Udder health was associated to a SNP at ~5.4 Mbp, in close 

proximity to the ~5.3 Mbp region which showed significant association with SCS (Cole et al., 2011). 
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The signal on BTA1 linked to F7κ-β-CN was not confirmed in the literature since neither of these casein 

fractions have been associated to this region on BTA1. Moreover, individual GWAS for κ- and β-CN 

didn’t result in significant associations on BTA1 (results not shown). Further, based on the fact that 

only 1 SNP passed the significance threshold while the rest of the markers in the same region showed 

much lower P-values, we could hypothesize for a spurious association. Similarly, we found 

significant associations on BTA9 for F5αs1-β-CN but no associations on BTA9 have been previously 

reported for αs1- or β-CN. However, GWAS analysis using the individual αs1-CN content detected 

the same marker with similar P-value (results not shown). On BTA10, two genomic regions are 

known to be related to αs2-CN, at ~51.4 and ~91.8Mbp (Schopen et al., 2011). In our analysis, F8αs2-

CN was associated to a region at ~10.7Mbp. No QTL is known at this position affecting the αs2-CN. 

Moreover, no justification of QTL could be found for the associations on BTA20 and 27b with F10α-

LA. 

 

Gene-set enrichment and pathway analysis 

Four Fs, F1%CY, F4Cheese N, F8αs2-CN and F10α-LA, out of 10 tested, were associated with 

biological pathways and ontologies in the KEGG and GO databases (Fig 5, Table S4). The majority 

of the significantly enriched terms were associated with F8αs2-CN. To support these findings on F8αs2-

CN, we re-run the GWAS and gene-set enrichment analysis on the measured αs
2
-CN, as well as the 

rest of the caseins. Gene-set enrichment results for αs
2
-CN were similar (results not shown), but the 

KEGG categories as well as 13 out of the 33 GO terms were not enriched. Moreover, GO and KEGG 

categories were not enriched for the rest of the caseins, being consistent with the Fs results.  

Overall, some of the identified GO and KEGG categories have been previously detected in 

gene-set enrichment studies using the individual CFt, CY and REC traits (Dadousis et al., 2016c), 

milk yield traits (Iso-Touru et al., 2016) or gene expression studies of the mammary gland in mice 

(Ramanathan et al., 2008; Wei et al., 2013) and humans (Maningat et al., 2009). 
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Pathways and ontologies related to milk yield and mastitis. It has been established that 

caseins, apart from their importance in milk and the cheese process (Walstra et al., 2014), they also 

have bioactive and antimicrobial properties (Zucht et al., 1995; Silva and Malcata, 2005; López-

Expósito et al., 2006). Moreover, an antimicrobial role of α-LA has also been suggested (Pellegrini 

et al., 1999). For milk secretion rate, tight junctions play an important role, with a decrease in their 

permeability to be associated with an increased milk secretion rate (Nguyen and Neville, 1998). 

Mastitis, milk stasis and high doses of oxytocin are known parameters that influence the permeability 

of the tight junctions.  

In our gene-set enrichment analysis, a group of GO ontologies enriched for F8αs2-CN was 

related to ion transport activity. Some of these terms have been previously connected with milk 

production in mice. More precisely, the GO_BP:0006811 (ion transport), GO_MF:0005216 (ion 

channel activity), GO_MF: 0022838 (substrate-specific channel activity) and GO_MF:0015267 

(channel activity) were upregulated in mice with increased milk yield (Wei et al., 2013). Moreover, 

it is known that in the cheese process the caseins react with calcium ions. Calcium is a major 

component of the casein micelles. Indeed, the as2-CN is known to be as rather sensitive to Ca+2 

(Walstra et al., 2014). Further, it is well established that in milk the most important ions for electrical 

conductivity (EC) are the concentrations of Na+, K+ and Cl-. Milk EC can be considered as an 

indicator of mastitis (Norberg, 2005; Viguier et al., 2009). While Na+ and Cl- are moving into the 

milk, tight junctions of the mammary epithelium control the movement of lactose and K+ to the 

extracellular fluid. Destruction of tight junctions and of the ion-pumping system, after intramammary 

infection, causes an increase in the concentration of Na+ and Cl- in the milk resulting in an increase 

of the milk EC (Norberg, 2005). In our results, the tight junction pathway (KEGG_bta04530) category 

was associated with F1%CY and F10α-LA. Besides, it has been reported that milk with high cell count 

has lower casein content (Haenlein et al., 1973; Auldist and Hubble, 1998). Pathways related to 

mammary gland and mastitis, including the tight junction, have been previously associated with the 

RECENERGY (Dadousis et al., 2016c), a trait that was strongly related with F1%CY in the FA. 
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Moreover, for F8αs2-CN, GO terms related to cell communication and signalling (e.g. 

GO_BP:0023052, GO_BP:0007154) were enriched in our study. Those categories have been shown 

to have a role in human milk fat globule transcriptome, while among a set of genes in milk fat globule, 

the CSN2 (casein beta) was also expressed [56]. 

Enriched pathways and ontologies for F8αs2-CN related to reproduction. Seven GO_CC 

categories relative to neuron functions were enriched for F8αs2-CN. A possible explanation can be due 

to the fact that during the pregnancy and lactation periods, a variety of factors and signals (including 

the prolactin neuroendocrine signal) are involved to assist neuronal responses to the lactating state 

(Grattan, 2002; Akers, 2016). Interestingly, in a recent gene enrichment and pathway study, using the 

individual CFt traits, the categories of neuron part (GO:0097458), synapse part (GO: 0044456), 

neuron projection (GO: 0043005) and the synapse (GO: 0045202) were enriched for RCTeq (Dadousis 

et al., 2016c). Moreover, associations of the synapse part (GO:0044456) and the postsynapse 

(GO:0098794) with the kCF were detected in that study. The cellular response to stimulus category 

(GO_BP:0051716) was also significantly enriched for F8αs2-CN. The closely related gene ontology of 

response to stimulus (GO:0050896) has been previously associated with the milk fat globule 

transcriptome during lactation in humans (Maningat et al., 2009). Moreover, in dairy cattle this term 

was significantly enriched for milk yield, fat and protein yield and fertility (Iso-Touru et al., 2016). 

Additionally, the gonadotropin-releasing hormone (GnRH) signaling pathway (KEGG_bta04912) 

was enriched for F8αs2-CN. The GnRH is synthesized and released in the hypothalamus from the GnRH 

neurons. As it is widely known, GnRH is strongly related to reproduction in mammals (Schneider et 

al., 2006). Interestingly, GO categories related to female gonad development and ovulation cycle 

were previously linked to RCTeq (Dadousis et al., 2016c). Moreover, GO terms of reproduction 

(GO:0000003) and reproductive process (GO:002214) have been associated with milk yield, fat and 

protein yield and fertility index in the Nordic Red cattle (Iso-Touru et al., 2016). Indeed, a close 

relationship is known between the duration of oestrus and multiple ovulation rate and milk production 
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in dairy cattle. More precisely, high production is associated with shorter oestrus duration and double 

ovulation rate (Wiltbank et al., 2006). 

 

In our study ARVC was enriched for F4Cheese N. The ARVC is an inherited heart disease 

(Elmaghawry et al., 2013) and in a recent gene-set enrichment analysis was linked to bovine leucosis 

(Abdalla et al., 2016). The same KEGG category has been recently associated with %CYSOLIDS and 

RECSOLIDS (Dadousis et al., 2016c). Notably, in a transcriptome study of the swine mammary gland, 

ARVC was associated to the mammary gland functionality of pregnant sows (Zhao et al., 2013). 

 

 

CONCLUSION 

To our knowledge, this is the first analysis using latent variables in GWAS and gene-set 

enrichment pathway analysis in dairy cattle. Genomic regions identified were coherent to the 

expected signals based on the factor names. Results of gene-set enrichment analysis were also in line 

with previous findings based on the individual traits, and revealed that the associated genes were 

mainly involved in pathways related to reproduction and mammary gland functionality. The 

considerably large number of enriched GO and KEGG terms for F8αs2-CN suggests that, perhaps, more 

focus should be given in αs2-CN. 

We conclude that factor analysis could be successfully implemented in genomic studies in 

dairy cattle. Reduce of dimensionality without substantial loss of information mark factor analysis as 

an attractive tool for dairy cattle breeding. 
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Table 1. Summary statistics of milk (yield and quality), protein fractions, curd firming and cheese-

making (%CY and REC) traits. 

Trait1 Mean CV, % 

Milk traits   

Milkyield, kg/day 24.95 31 

Fatyield, kg/day 1.09 37 

Proteinyield, kg/day 0.92 30 

Fat, % 4.37 20 

Protein, % 3.71 11 

Lactose, % 4.86 4 

pH 6.64 1 

SCS, units 2.87 65 

Milk protein fractions, %   

αs1-CN 25.69 7 

αs1-CN-Ph 1.45 42 

αs2-CN 9.20 12 

β-CN 32.26 8 

κ-CN 9.44 16 

β-LG 8.68 18 

a-LA 2.39 21 

Other N compounds 10.89 21 

Curd Firming    

RCTeq, min 20.96 29 

CFP, mm 49.20 20 

kCF, % × min-1 12.90 32 

kSR, % × min-1 1.23 37 

CFmax, mm 36.91 20 

tmax, min 41.83 30 

Cheese yield (%CY)   
%CYCURD 14.95 12 
%CYSOLIDS 7.17 13 
%CYWATER 7.77 16 

Nutrient Recovery (REC, %)   
RECSOLIDS 51.80 7 
RECFAT 89.75 4 
RECPROTEIN 78.16 3 
RECENERGY 67.15 5 

1SCS = log2 (SCC × 100,000) + 3. Milk protein fractions: CN = casein; LA 

= lactalbumin and LG = lactoglobulin. Curd firming: RCTeq = estimated 

RCT; CFP = asymptotical potential value of CF; kCF = curd-firming instant 

rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd 

firmness achieved within 90 min; and tmax = time at achievement of CFmax. 
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%CY = ratios of the weight (g) of the fresh curd (%CYCURD), curd dry matter 

(%CYSOLIDS) and curd water (%CYWATER) versus the weight of the processed 

milk (g); REC = ratio of the weight (g) of the curd constituent (dry matter, 

fat, protein or energy, respectively) versus that of the same constituent in 

the processed milk (g). 
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Table 2 Rotated factor pattern, communality (com)1 of variables and cumulative variance2 explained by the factors. 1 

Traits3 F1%CY F2CFt F3Yield F4Cheese N F5 αs1-β-CN F6Udder health F7κ-β-CN F8αs2-CN F9αs1-CN-Ph F10α-LA com 

Milk traits            

Milkyield, kg/day -0.19 0.08 0.96 0.00 0.03 0.11 0.01 0.01 0.02 0.08 0.99 

Fatyield, kg/day 0.28 0.08 0.89 -0.02 0.06 0.17 -0.01 -0.01 -0.01 0.07 0.92 

Protyield, kg/day 0.00 0.00 0.97 -0.04 0.03 0.02 0.02 0.05 -0.02 0.03 0.96 

Fat, % 0.90 0.01 0.07 -0.04 0.06 0.08 -0.06 -0.03 -0.05 0.00 0.84 

Prot, % 0.59 -0.22 -0.11 -0.14 0.02 -0.30 0.02 0.08 -0.07 -0.17 0.56 

Lactose, % -0.07 0.01 0.08 0.05 -0.01 0.62 -0.01 0.00 0.03 0.04 0.40 

pH -0.08 -0.31 0.00 0.11 -0.13 -0.02 0.03 0.04 0.17 0.15 0.18 

SCS, units 0.06 -0.02 -0.08 0.04 -0.05 -0.41 0.09 0.01 0.03 -0.09 0.20 

Milk protein fractions, %            

as1-CN 0.04 0.01 0.07 -0.14 0.94 0.25 -0.04 -0.08 -0.14 -0.04 0.99 

as1-CN-Ph 0.04 -0.02 0.00 0.09 -0.10 0.01 -0.04 -0.04 0.98 0.06 1.00 

as2-CN 0.02 -0.08 0.04 -0.06 0.01 -0.03 -0.07 0.98 -0.04 0.14 1.00 

β-CN -0.10 -0.05 -0.11 0.12 -0.70 0.38 -0.47 -0.33 -0.03 -0.05 1.00 

κ-CN 0.12 0.17 0.00 -0.09 0.05 -0.11 0.96 -0.09 -0.04 0.01 1.00 

β-LG 0.05 -0.03 0.02 -0.98 0.12 0.01 0.07 -0.05 -0.10 0.00 0.99 

α-LA -0.06 -0.02 0.18 -0.14 -0.02 0.30 0.01 0.17 0.07 0.90 0.99 

Other N comp. -0.05 0.01 -0.02 0.76 -0.09 -0.60 -0.10 -0.01 -0.02 -0.21 1.00 

Curd Firming            

RCTeq, min 0.01 -0.74 -0.05 -0.06 -0.01 -0.15 0.02 0.08 0.00 -0.01 0.59 

CFP, mm 0.38 0.03 0.01 -0.08 0.23 -0.11 0.23 -0.07 -0.11 -0.20 0.32 

kCF, % × min-1 -0.01 0.94 0.00 0.00 -0.03 -0.09 0.08 0.00 0.00 -0.01 0.90 

kSR, % × min-1 -0.06 0.88 0.00 -0.01 -0.05 -0.08 0.06 0.00 0.01 0.00 0.79 

tmax, min 0.04 -0.90 -0.04 -0.03 -0.01 -0.06 -0.05 0.03 0.00 -0.01 0.82 

Cheese yield (%CY)            

%CYSOLIDS 0.99 0.02 0.04 0.00 0.04 -0.08 0.02 0.01 0.01 -0.03 0.99 

%CYWATER 0.39 -0.05 -0.07 0.11 -0.08 -0.03 0.05 0.01 0.08 0.02 0.19 

Nutrient Recovery (REC, %)            

RECFAT 0.28 0.44 0.19 0.01 0.11 0.00 0.21 0.10 0.08 0.12 0.39 
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RECPROTEIN 0.23 -0.02 -0.02 0.46 -0.03 0.23 0.00 -0.14 0.03 -0.02 0.34 

RECENERGY 0.87 0.25 0.14 0.10 0.08 -0.03 0.10 0.01 0.03 0.06 0.88 

Cumulative variance, % 0.14 0.27 0.38 0.45 0.51 0.56 0.61 0.66 0.7 0.74  
1communality = the sum of the squared factor loadings per trait; 2Factors have been sorted based on proportion of variance explained. F1%CY = Factor related 

to the percentage of individual cheese yield; F2CFt = Factor related to the curd firmness; F3Yield = Factor related to the milk yield; F4Cheese N = Factor related to 

the milk nitrogen that is present into the cheese curd; F5 αs1-β-CN = Factor related to the as1- and β-CN contents in milk, expressed as relative contents to the 

total milk nitrogen; F6Udder health = Factor related to the udder health of a cow; F7κ-β-CN = Factor related to the κ- and β-CN contents in milk, expressed as relative 

contents to the total milk nitrogen; F8αs2-CN = Factor related to the milk as2-CN, expressed as relative content to the total milk nitrogen; F9αs1-CN-Ph = Factor 

related to the milk as1-CN-Ph expressed as content to the total milk nitrogen; F10α-LA = Factor related to the milk α-LA.3SCS = log2 (SCC × 100,000) + 3. Milk 

protein fractions: CN = casein; LA = lactalbumin and LG = lactoglobulin. Curd firming: RCTeq = estimated RCT; CFP = asymptotical potential value of CF; 

kCF = curd-firming instant rate constant; kSR = syneresis instant rate constant; and tmax = time at achievement of CFmax. %CY = ratios of the weight (g) of the 

curd dry matter (%CYSOLIDS) and curd water (%CYWATER) versus the weight of the processed milk (g); REC = ratio of the weight (g) of the curd constituent (fat, 

protein or energy, respectively) versus that of the same constituent in the processed milk (g). 

 2 

 3 
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Table 3 Summary results of the genome wide association analyses. 4 
BTA # SNP  

(signals) 

Interval 

(Mbp) 

P-value 

 (range) 

Top SNP Top SNP location, 

bp 

Top SNP 

MAF 

Trait1 

0* 5 (3) - (4.66 × 10−05, 9.47 × 10−17) BTA-76907-no-rs 0 0.26 F5 αs1-β-CN, F7κ-β-CN, F9αs1-CN-Ph 

1 1 - 4.19 × 10−05 BTB-00041036 90,156,001 0.01 F7κ-β-CN 

2 1 - 4.43 × 10−05 ARS-BFGL-NGS-101039 122,509,616 0.34 F1%CY 

6a 3 (3) 39,503–40,378 (7.89 × 10−06, 1.19 × 10−06) Hapmap26618-BTC-070864 39,597,740 0.03 F6Udder health 

6b 1 - 1.07 × 10−05 Hapmap23226-BTA-159656 46,599,570 0.24 F2CFt 

6c 1 - 2.18 × 10−05 ARS-BFGL-NGS-111636 68,546,212 0.05 F8αs2-CN 

6d 8 (7) 71,154-74,607 (2.87 × 10−05, 1.12 × 10−07) Hapmap29639-BTC-041962 71,350,048 0.02 F7κ-β-CN, F8αs2-CN 

6e 

140 

(71) 77,186-89,104 (4.89 × 10−05, 9.81 × 10−56) Hapmap52348-rs29024684 87,396,306 0.19 

F1%CY, F2CFt, F4Cheese N, F5 αs1-β-CN, 

F6Udder health, F7κ-β-CN, F8αs2-CN, 

F9αs1-CN-Ph 

6f 10 (8) 90,730-92,579 (3.23 × 10−05, 1.63 × 10−09) Hapmap43045-BTA-76998 90,730,485 0.01 F5 αs1-β-CN, F7κ-β-CN, F8αs2-CN 

6g 5 (3) 94,229-94,360 (3.77 × 10−06, 1.36 × 10−08) BTB-01687386 94,360,125 0.02 F7κ-β-CN, F8αs2-CN 

6h 
1 - 4.85 × 10−05 

BTB-02092741 114,223,059 0.01 
F1%CY 

9 1 - 4.24 × 10−05 BTA-21753-no-rs 36,790,663 0.01 F5 αs1-β-CN 

10 1 - 3.22 × 10−05 Hapmap41952-BTA-73370 10,659,761 0.38 F8αs2-CN 

11a 1 - 4.72 × 10−05 BTB-01723556 4,419,032 0.06 F6Udder health 

11b 1 - 3.40 × 10−05 ARS-BFGL-NGS-56195 77,493,775 0.04 F9αs1-CN-Ph 

11c 12 (12) 85,367-88,214 (3.32 × 10−05, 3.82 × 10−07) BTA-110429-no-rs 87,670,344 0.42 F2CFt 

11d 5 (5) 94,687-97,845 (4.51 × 10−05, 2.63 × 10−07) Hapmap56906-rs29014970 97,844,929 0.31 F4Cheese N 

11e 21 (21) 101,301-106,543 (3.04 × 10−05, 2.08 × 10−26) ARS-BFGL-NGS-104610 104,293,559 0.45 F4Cheese N, F10α-LA 

19 1 - 4.32 × 10−05 ARS-BFGL-NGS-102974 1,822,133 0.34 F1%CY 

20a 1 - 8.02 × 10−06 BTA-51080-no-rs 7,881,875 0.01 F10α-LA 

20b 1 - 1.84 × 10−05 Hapmap51592-BTA-41521 46,709,345 0.36 F9αs1-CN-Ph 

25 1 - 3.12 × 10−06 Hapmap31994-BTC-065943 5,385,729 0.14 F6Udder health 

27a 1 - 2.38 × 10−05 ARS-BFGL-NGS-87845 42,118,037 0.03 F1%CY 

27b 3 (3) 43,436-43,902 (4.84 × 10−05, 2.84 × 10−05) ARS-BFGL-NGS-24170 43,459,156 0.48 F10α-LA 
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BTA = Bos taurus autosome chromosome; #SNP (signals) = number of the single nucleotide polymorphisms significantly associated to the trait. In parenthesis the 

total number of significant signals per each genomic region; Interval: The region on the chromosome spanned among the significant SNP (in base pairs); P-value 

(range) = The P-value of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple SNP were significantly associated to 

one trait; Top SNP = the highest significant SNP per trait; Top SNP location (bp) = position of the highest significant SNP on the chromosome in base pairs on 

UMD3.1; Top SNP MAF = minor allele frequency (MAF) of the top SNP;  

1 F1%CY = Factor underlying the percentage of individual cheese yield; F2CFt = Factor underlying the milk curd firmness; F4Cheese N= Factor underlying the protein in 

the cheese; F5as1-β-CN = Factor underlying the αs1 and β caseins; F6Udder health= Factor underlying the udder health condition of a cow; F7κ-β-CN = Factor underlying the 

κ and β caseins; F8as2-CN = Factor underlying the αs2-casein; F9as1-CN-Ph = Factor underlying the phosphorylated αs1-casein; F10α-LA = Factor underlying the α-

Lactalbumin. In bold the trait with the highest P-value in each genomic region. 

*Undefined chromosome and position on the genome 

5 
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Table 4 Highest significant SNP in the region 6e on chromosome 6 (sorted by location) 

per factor, P-value, effect and proportion of the additive genetic variance explained by 

the highest significant SNP  

Traits1 Top SNP Top SNP 

location, 

bp 

P-value 

 

Top SNP 

effect 

VGSNP, % 

F1%CY Hapmap53172-rs29012675 82,706,745 1.39 ×10-6 0.45 12.0 

F5 αs1-β-CN 

Hapmap28023-BTC-060518 87,201,599 

2.84 ×10-47 -0.90 52.8 

F8αs2-CN 8.34 ×10-11 -0.35 16.0 

F9αs1-CN-Ph 3.86 ×10-11 -0.32 24.7 

F6Udder health 
Hapmap52348-rs29024684 87,396,306 

5.84 ×10-6 0.18 17.8 

F7κ-β-CN 9.81 ×10-56 -1.01 74.2 

F4Cheese N ARS-BFGL-NGS-24522 87,878,364 4.40 ×10-6 0.31 5.3 

F2CFt BTA-122637-no-rs 88,442,145 6.91 ×10-6 -0.40 13.2 

Top SNP = the highest significant SNP in the region 6e on chromosome 6 per trait; Top SNP location (bp) 

= position of the highest significant SNP on the chromosome in base pairs on UMD3.1; P-value  = The P-

value of the highest significant SNP adjusted for genomic control; Top SNP effect = the effect of the highest 

significant SNP. The factor scores are standardized with zero mean and standard deviation of 1; VGSNP, % 

= proportion of the additive genetic variance explained by the highest significant SNP (SNP variance was 

estimated as 2pqa2, where p is the frequency of one allele, q = 1-p is the frequency of the second allele and 

a denotes the additive genetic effect). 

1 F1%CY = Factor underlying the percentage of individual cheese yield; F2CFt = Factor underlying the milk 

curd firmness; F4Cheese N= Factor underlying the protein in the cheese; F5 αs1-β-CN = Factor underlying the 

αs1 and β caseins; F6Udder health= Factor underlying the udder health condition of a cow; F7κ-β-CN = Factor 

underlying the κ and β caseins; F8αs2-CN = Factor underlying the αs2-casein; F9αs1-CN-Ph = Factor underlying 

the phosphorylated αs1-casein. 
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Figure 1 Flowchart of the basic milk and coagulation components included in the 

cheese-making process.  

 

Description: Milk protein fractions: CN = casein; LA = lactalbumin and LG = 

lactoglobulin. Coagulation: RCT = rennet coagulation time (min) of samples 

coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) of 

samples reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd 

firmness (mm) at 30 min after enzyme addition; Curd firming: RCTeq = estimated 

RCT; CFP = asymptotical potential value of CF; kCF = curd-firming instant rate 

constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness 

achieved within 90 min; and tmax = time at achievement of CFmax. %CY = ratios of the 

weight (g) of the fresh curd (%CYCURD), curd dry matter (%CYSOLIDS) and curd water 

(%CYWATER) versus the weight of the processed milk (g); REC = ratio of the weight (g) 

of the curd constituent (dry matter, fat, protein or energy, respectively) versus that of 

the same constituent in the processed milk (g). 
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Figure 2 Manhattan plots of P-values for the genome-wide association studies on Bos 

taurus autosome 6 (BTA6).  

 

Description: a) F1%CY= Factor underlying the percentage of individual cheese yield; 

F2CFt= Factor underlying the milk curd firmness; F4Cheese N= Factor underlying the 

protein in the cheese; F6Udder health= Factor underlying the udder health condition of a 

cow, b) F5as1-β-CN = Factor underlying the αs1 and β caseins; F7κ-β-CN = Factor 

underlying the κ and β caseins; F8as2-CN = Factor underlying the αs2-casein; F9as1-CN-Ph 

= Factor underlying the phosphorylated αs1-casein. The red horizontal lines indicate a 

–log10(P-values) of 4.30 (corresponding to P-value = 5 × 10−5). The highest 

significant marker on BTA6 per trait is also presented. 
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Figure 3 Manhattan plots of P-values for the genome-wide association studies on Bos 

taurus autosome 11 (BTA11).  

 

Description: F2CFt= Factor underlying the milk curd firmness; F4Cheese N= Factor 

underlying the protein in the cheese; F6Udder health= Factor underlying the udder health 

condition of a cow; F9as1-CN-Ph = Factor underlying the phosphorylated αs1-casein; F10α-

LA = Factor underlying the α-Lactalbumin. Red horizontal lines indicate a –log10(P-

values) of 4.30 (corresponding to P-value = 5 × 10−5).The highest significant marker 

on BTA11 per trait is also presented. 
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Figure 4. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 

pathways significantly enriched.  

 

Description: Genes containing significant SNPs (P<0.05) or mapping at 15kbp up- and 

downstream the significant SNPs (P < 0.05) were used to perform the gene-set enrichment and 

pathway-based analyses for all the factors. F1%CY= Factor underlying the percentage of individual 

cheese yield; F4Cheese N= Factor underlying the protein in the cheese; F8αs2-CN = Factor underlying 

the αs2-casein (CN); F10α-LA = Factor underlying the α-LA. KEGG: KEGG pathway; GO_BP: GO 

biological process; GO_CC: GO cellular component; GO_MF: GO molecular function. 
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GENERAL DISCUSSION 
 

Breeding goal: Selecting for bovine cheese production 

In recent years, the proportion of bovine milk used for cheese production, is steadily 

increasing in many countries worldwide (Food and Agriculture Organization of the,United 

Nations, 2015).  Nevertheless, in almost all dairy cattle breeding associations around the world the 

percentage of cheese yield produced by an individual cow is indirectly selected by measuring the 

major cheese components that are present in milk, i.e. protein and fat of the milk (Miglior et al., 

2005; Banos, 2010). However, this simplicity assumes that i) protein and fat are the major 

determinants of cheese yield, ii) their recovery from milk to cheese is approximately constant and 

iii) this recovery is not genetically controlled. Instead, it has recently been shown that although fat 

and protein contents have high genetic correlations with percentage cheese yields, these values are 

significantly lower than 100% (Bittante et al., 2013; Cipolat-Gotet et al., 2013). 

On the other hand, milk coagulation properties consist technological features of the milk 

that can be measured during the coagulation process. Coagulation is the transformation of milk 

from liquid to solid, at the beginning of the cheese process. Therefore, MCP provide with an extra 

information on cheese compared to the simple milk content components (i.e. fat and protein). 

However, MCP are also indicator traits of the cheese-making process. Moreover, 

traditional MCP traits have some limitations.  To overcome the problems related to the classical 

single point estimates of MCP, such as late and non-coagulating milk samples and low 

repeatability, it has been proposed to model the CF as a function of time. Thus, for a better 

description of the CF a set of 6 parameters has been developed. Yet, these parameters are also 

indirect descriptors of cheese yield. Contrary, the percentage cheese yield is a direct measure of 

cheese production. In other words, %CY is the only measure that provides the direct answer to the 
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question on “how much cheese each cow produces?”. Nevertheless, for the moment and in the 

nearest future, it does not seem feasible to directly measure the CY traits at a population level due 

to: 

 

1. Scarcity of appropriate procedures for model – cheese production 

2. Complexity of cheese making 

3. The frequent use of fat and protein (or casein) contents of the milk as a proxy for 

cheese yield 

4. Time and money highly consuming procedure 

 

One way to deal with this, and to overcome those limitations, is through the use of spectral 

data (Ferragina et al., 2013). Indeed, much of the research in the dairy industry has been recently 

focused in the use of spectra. An alternative, is the identification of potential genomic regions 

affecting the aforementioned traits, that might be useful for implementing gene-assisted selection 

programs, genomic predictions or gene-editing technology. This research focused in the second 

alternative. 

The primary objective of this PhD thesis was to unveil the genomic background of a 

plethora of bovine milk technological and cheese-related traits. To this purpose, the first 2 chapters 

were focused in conducting several GWAS analyses with a set of 11 milk technological traits 

related to the coagulation process and 7 cheese-related phenotypes.  
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GWAS results 

Sharp peaks were detected on BTA6, especially for RECFAT  and CFP, in a region spanning 

between 77.5-88.4 Mbp and more precisely at 84 to 88 Mbp, with a peak at ~87.4 Mbp 

(Hapmap52348-rs29024684) (Figure 1). This region harbors the casein genes and more precisely 

CSN3. Evidence of other quantitative trait loci at 82.6 and 88.4 Mbp on the same chromosome was 

found. Sharp peaks were also detected on BTA11 were marker ARS-BFGL-NGS-104610 (~104.3 

Mbp) was highly associated with RECPROTEIN. Also, on BTA11 in a region between 85.9-88 Mbp 

the traits RCTeq and tmax showed signals (Figure 2). Apart from those genomic regions on BTA6 

and BTA11, signals in 15 more chromosomes (1, 2, 9, 12, 13, 14, 15, 16, 18, 19, 20, 23, 26, 27 and 

28) were detected for the MCP-CFt and CY-REC traits (Figure 3). Nevertheless, the majority of 

those associations were weak and on the significance threshold. 

Our analysis showed that the importance of the region ~88 Mbp on BTA6 is related, apart 

from codification of protein genetic variants (Schopen et al., 2011), with the recovery of the milk 

fat into the curd, and not to the recovery of protein. This was not surprising, since in healthy cows 

all casein variants are essential for the structure and activity of milk protein micelles (Holt et al., 

2013) and participate to the formation of coagula (Caroli et al., 2009) and curd syneresis (Pearse 

and Mackinlay, 1989; Everard et al., 2011). However, the efficiency of capturing milk fat globules 

depends on the rapidity of clotting and the strength of the curd that in turn depend on casein genetic 

variants (Alipanah and Kalashnikova, 2007). The strong signal on BTA11 confirms previous 

findings, in which significant associations were identified for the casein variants (α, β and κ) as 

well as for β-lactoglobulin content and casein index (Schopen et al., 2011). The RECPROTEIN is 

phenotypically very similar to the casein index. Nevertheless, since part of the caseins are lost in 

the whey, RECPROTEIN is able to capture more variation compared to the casein index. 
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Albeit the relative success of GWAS to identify chromosomic regions related to the 

phenotypes under study, association studies alone may provide with a limited understanding of the 

complex nature of quantitative traits. Basic problems and limitations related to GWAS were 

summarized in the 3rd chapter. One way to alleviate some of the problematic features of GWAS 

and to deepen the knowledge on the biological  background of the phenotypes under study is to 

move up the analysis, from the SNP to the gene level, conducting gene-set enrichment and 

pathway-based analysis. The pathway analysis constituted the 3rd contribution. 

 

Pathway analysis 

Our pathway analysis, based on the previous GWAS results on the MCP-CFt and the CY-

REC phenotypes, revealed 21 GO and 17 KEGG categories significantly with 7 of the traits (RCT, 

RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS and RECENERGY). The significantly enriched 

categories included calcium signaling pathway, salivary secretion, metabolic pathways, 

carbohydrate digestion and absorption, the tight junction and the phosphatidylinositol pathways, 

as well as pathways related to the bovine mammary gland health status, and contained a total of 

150 genes located in all chromosomes but 9, 20, and 27. 

Nevertheless, pathway analysis has, in turn, its own restrictions. For instance, publicly 

available ontologies and pathways in cattle are still limited (compared to human) and/or not all are 

well described. Thus, some of our results may be misleading, especially when the detected genes 

are involved in various biological processes. It is likely that, when more complete gene sets 

become available, more competitive pathways might be detected and the power to identify 

genomic regions influencing these traits might increase (Fan et al., 2015). In this respect, 

transcriptomic methods (e.g. RNA-seq) may represent a useful tool to complement the present 
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analysis and validate the achieved biological information. More details in the methodological 

aspects, novel applications in livestock as well as further considerations concerning the gene-set 

enrichment and pathway analysis can be found in review studies (Cantor et al., 2010; Wang et al., 

2011; Charitou et al., 2016) as well as in the recent works of (Fontanesi, 2016) and (Kent, 2016). 

 

Investigating the use of latent variables, underlying cheese-related traits, in breeding programs  

Our genomic work was a step-by-step integrated approach for the detection of genomic 

regions associated to cheese-related phenotypes. Nevertheless, the large number of variables 

required to describe the cow’s ability to produce cheese poses restrictions in developing selection 

indices, and thereby in selection decisions for breeding purposes. It is interesting to note that in 

some countries breeding goals include more than 40 traits that are commonly recorded (Banos, 

2010). With the recent technological advances, such as the spectral data, it is very likely that this 

number will drastically increase in the nearest future, (Boichard and Brochard, 2012). To tackle 

the problem of phenotypic dimensionality and complexity, factor analysis was proposed (chapters 

4 and 5). The question to be addressed in those two chapters was: if a small set of factors could 

replace measured phenotypes in a breeding goal targeting in high cheese yield production. To this 

purpose, a set of 26 traits related to milk yield and quality (including milk protein fractions), MCP-

CFt and CY-REC traits was analyzed. Ten mutual orthogonal factors were extracted. Those latent 

variables captured basic concepts of the “cheese-making” process and retained 74% of the original 

variability. 

Further, ANOVA, genetic analyses, GWAS and gene-set enrichment and pathways-based 

analyses were carried out using the obtained factors as phenotypes. In general, results were 

coherent to the given name of the Fs. Moreover, GWAS and pathways results were in accordance 
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to the previous findings based on the individual MCP-CFt and CY-REC traits. Interestingly, using 

Fs as phenotypes in GWAS, same high peaks were detected on BTA6 (~87.4Mbp) and at the tail 

of BTA11 (~104.3Mbp) associated with F6β-κ-CN and F1Cheese N. Furthermore, biological pathways 

associated with F1%CY, F4Cheese N, F8αs2-CN and F10α-LA were mainly related to the broader 

categories of ion activity, neurons and the tight junction. An important finding is that traits with 

lower loadings on the factors retained their signals in the genome. This enhance the evidence that 

the factors can be considered as a mixture of phenotypes and not only descriptors of the 

phenotype(s) with the highest loadings on them. This finding, however, questions the threshold 

(loading > |0.6|is a commonly used value) of the factor loadings which is used as a criterion to 

name the factors. 

 

Future perspectives 

Our genomic analyses was based on a panel of 50k SNP. Higher density SNP panels or 

sequence data, together with an increased number of observations, are expected to help in 

narrowing down the associated genomic regions in GWAS (Bouwman et al., 2014).  Moreover, 

our GWAS model was based on single marker regression, which assumes a simplified theory of 

the genomic background of phenotypes. However, the polygenic and complex nature of 

quantitative traits, as possibly are the MCP-CFt and CY-REC traits, is probably the rule rather the 

exception for traits commonly recorded in dairy cattle breeding. This complex genomic content is, 

however, ignored by single marker regression GWAS. To address this limitation, non-additive 

effects, e.g. by applying GWAS incorporating SNP by SNP interactions, could be explored. This 

might provide with an extra level of knowledge of the genomic background of the traits (Boichard 

and Brochard, 2012; Aliloo et al., 2015; Bolormaa et al., 2015). Consequently, denser marker 
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panels (or sequence data) together with non-additive GWAS, might provide a better substrate for 

biological pathway analysis. Moreover, more complete livestock gene ontology and pathway 

databases, is also expected to improve pathway analysis in livestock animals (Fan et al., 2015).  

For future research, integrating all the available information into a structural equation 

model is suggested. Structural equation models are commonly used to study relationships among 

phenotypes, simultaneously. Moreover, they can handle latent variables, thus modeling complex 

correlation structures in a reduced data space. In animal breeding structural equation models have 

been used providing with encouraging results,  for e.g., in analyzing carcass traits in swine 

(Peñagaricano et al., 2015) and studying bovine mastitis (Detilleux et al., 2013). In addition, our 

results could be further used and tested in genomic prediction models. 

To our knowledge this is the first – large scale – genomic study investigating milk 

coagulation, curd firmness and individual bovine cheese yield traits.  The road for fine mapping 

of genomic regions associated to bovine cheese yield is ahead. Partition of a complex process, as 

is the cheese yield, into different components has been shown as a useful tool for connecting 

phenomics to their genomic counterpart. Replication of all of our results from independent, and 

ideally of large scale, studies remains crucial. 

 



 

184 

 

Figure 1 Manhattan plot of P-values for the genome wide association studies (GWAS) on Bos 

taurus autosome 6 (BTA6). 

 

Description: Traits showed significant associations on BTA6 were RCT = rennet coagulation time 

(min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) 

of samples reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd firmness 

(mm) at 30 min after enzyme addition; Prot % = protein percent; RCTeq = Rennet coagulation time 

(min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm);  kCF = 

curd-firming rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time to 

CFmax (min). 

The red horizontal lines indicate a –log10(P-values) of 4.30 (corresponding to P-value = 5 ×

10−5). 
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Figure 2. Manhattan plot of P-values for the genome wide association studies (GWAS) on Bos 

taurus autosomes (BTA) 11. 

 

Description: RCTeq = Rennet coagulation time (min) estimated using the CFt equation; tmax = time 

to maximum curd firmness (min); RECPROTEIN= Protein of the curd as percentage of the protein of 

the milk processed. 

The red horizontal lines indicate a –log10(P-values) of 4.30 (corresponding to P-value = 5 ×

10−5). 
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Figure 3 Manhattan plot of P-values for the genome wide association studies (GWAS) on Bos 

taurus autosomes (BTA) 1, 2, 9, 12, 13, 14, 15, 16, 18, 19, 20, 23, 26, 27 and 28. 

 

Description: RCT = rennet coagulation time (min) of samples coagulating within 45 min from 

enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = protein 

percent; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP = potential 

asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR = syneresis 

rate constant (% x min-1); tmax = time to maximum curd firmness (min); %CYSOLIDS = weight of 

curd solids as percentage of weight of milk processed; %CYWATER = weight of curd water as 

percentage of weight of milk processed; RECENERGY =  energy of the curd as percentage of the 

energy of the milk processed. 

The red horizontal lines indicate a –log10(P-values) of 4.30 (corresponding to P-value = 5 ×

10−5). 
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APPENDIX I: Supplementary files 
 

CHAPTER 1 
 

 

Table S1. Genetic correlations among traits used in the first multi-trait animal model (MCP-set) 

Trait1 Milk pH RCT (min) 𝑘20 (min) 𝑎30 (mm) 

Milk pH     

RCT (min) 0.56(0.02)    

𝑘20 (min) 0.36(0.03) 0.65(0.02)   

𝑎30 (mm) -0.48(0.03) -0.88(0.01) -0.93(0.01)  

1 RCT = rennet coagulation time of samples coagulating within 45 min from enzyme 

addition; k20 = curd-firming time of samples reaching 20 mm of firmness within 45 min 

from enzyme addition; a30 = curd firmness at 30 min after enzyme addition. 

In parenthesis the standard errors of the estimates. 
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Table S2. Genetic correlations among traits used in the second multi-trait animal model (CFt -set) 

Trait1 Protein 

 % 

RCTeq 

(min) 

CFP  

(mm) 

kCF  

(% x min-1) 

kSR  

(% x min-1) 

CFmax 

(mm) 

tmax  

(min) 

Protein, %        

RCTeq (min) 0.00(0.12)       

CFP (mm) 0.53(0.11) 0.70(0.11)      

kCF (% x min-1) 0.07(0.14) -0.74(0.09) -0.35(0.13)     

kSR (% x min-1) -0.31(0.18) 0.05(0.16) -0.79(0.08) 0.21(0.17)    

CFmax (mm) 0.51(0.12) -0.08(0.13) 0.67(0.08) 0.34(0.12) -0.74(0.08)   

tmax (min) -0.01(0.12) 0.87(0.03) 0.58(0.09) -0.87(0.03) -0.25(0.15) -0.11(0.12)  

1 CFt -set observations were obtained by modeling the curd-firming process over time: RCTeq = Rennet 

coagulation time (min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm); 

kCF = curd-firming rate constant (% x min-1); kSR = syneresis rate constant (% x min-1); CFmax = maximum 

curd firmness (mm); tmax = time to CFmax (min). 

In parenthesis the standard errors of the estimates. 
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Table S3. List of all significant SNP identified in the GWAS analyses sorted by chromosome 

N SNP BTA Location 

(bp) 

Pc1df LOG effB snp.VP 

(%) 

snp.Va 

(%) 

MAF Trait1 

1 BTA-76907-no-rs 0* 0 5.31E-06 5.27 -1.61 2% 14% 0.26 CFP 

2 ARS-BFGL-NGS-41048 1 9484167 4.27E-05 4.37 1.58 3% 11% 0.09 RCTeq 

3 ARS-BFGL-NGS-36707 6 86354888 1.23E-05 4.91 -2.94 1% 5% 0.14 a30 

4 Hapmap41098-BTA-86027 6 84889974 1.99E-06 5.70 -3.16 1% 6% 0.13 a30 

5 Hapmap24184-BTC-070077 6 87245049 1.29E-06 5.89 -2.87 1% 6% 0.17 a30 

6 BTA-111108-no-rs 6 85424500 6.17E-07 6.21 -3.30 2% 6% 0.13 a30 

7 Hapmap28023-BTC-060518 6 87201599 2.25E-07 6.65 -3.03 2% 6% 0.17 a30 

8 Hapmap33631-BTC-043555 6 87327708 5.26E-07 6.28 -2.44 2% 6% 0.35 a30 

9 Hapmap52348-rs29024684 6 87396306 7.26E-08 7.14 -2.85 2% 7% 0.23 a30 

10 Hapmap41098-BTA-86027 6 84889974 3.89E-05 4.41 -3.43 19% 112% 0.13 k20 

11 BTA-111108-no-rs 6 85424500 3.73E-05 4.43 -3.46 20% 116% 0.13 k20 

12 BTB-01451336 6 51669513 2.57E-05 4.59 -3.67 20% 118% 0.12 k20 

13 BTA-122637-no-rs 6 88442145 1.35E-05 4.87 -5.03 22% 127% 0.06 k20 

14 Hapmap52348-rs29024684 6 87396306 2.64E-09 8.58 -3.95 40% 232% 0.23 k20 

15 Hapmap52479-rs29018853 6 79203343 1.47E-05 4.83 1.07 1% 4% 0.24 RCT 

16 Hapmap24184-BTC-070077 6 87245049 1.66E-05 4.78 1.22 1% 4% 0.17 RCT 

17 Hapmap28023-BTC-060518 6 87201599 1.32E-05 4.88 1.21 1% 4% 0.17 RCT 

18 ARS-BFGL-NGS-36707 6 86354888 2.39E-05 4.62 1.35 1% 4% 0.14 RCT 

19 Hapmap41098-BTA-86027 6 84889974 1.39E-05 4.86 1.38 1% 4% 0.13 RCT 

20 ARS-BFGL-NGS-114609 6 84713584 3.98E-06 5.40 1.18 1% 5% 0.23 RCT 

21 BTA-111108-no-rs 6 85424500 3.92E-09 8.41 1.84 2% 7% 0.13 RCT 

22 Hapmap52348-rs29024684 6 87396306 5.88E-12 11.23 1.72 2% 10% 0.23 RCT 

23 Hapmap38629-BTA-76891 6 78289101 2.98E-05 4.53 -1.37 2% 12% 0.35 CFP 

24 Hapmap52482-ss46526125 6 73639744 1.55E-05 4.81 -1.66 2% 13% 0.20 CFP 

25 Hapmap43767-BTA-113302 6 85646902 3.18E-05 4.50 -1.39 2% 13% 0.38 CFP 

26 ARS-BFGL-NGS-17026 6 73734080 1.36E-05 4.87 -1.73 2% 13% 0.19 CFP 

27 Hapmap60182-rs29025531 6 74606760 1.96E-05 4.71 -1.72 2% 13% 0.19 CFP 
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28 Hapmap43042-BTA-76779 6 73688640 8.14E-06 5.09 -1.75 2% 14% 0.20 CFP 

29 Hapmap23419-BTC-059652 6 82314634 3.73E-06 5.43 -1.62 3% 16% 0.29 CFP 

30 Hapmap26317-BTC-059618 6 82253271 3.04E-06 5.52 -1.63 3% 16% 0.29 CFP 

31 ARS-BFGL-NGS-63312 6 82965163 2.00E-06 5.70 -1.91 3% 16% 0.19 CFP 

32 Hapmap49297-BTA-76961 6 83147633 1.57E-06 5.80 -1.74 3% 16% 0.25 CFP 

33 Hapmap31932-BTC-042947 6 82350917 1.75E-06 5.76 -1.67 3% 17% 0.30 CFP 

34 Hapmap51938-BTA-21491 6 81057816 1.46E-06 5.83 -1.80 3% 17% 0.23 CFP 

35 Hapmap33631-BTC-043555 6 87327708 1.21E-06 5.92 -1.67 3% 18% 0.35 CFP 

36 ARS-BFGL-NGS-70112 6 84448550 3.25E-07 6.49 -1.97 3% 19% 0.22 CFP 

37 BTB-01393607 6 80062406 8.58E-08 7.07 -2.13 3% 20% 0.19 CFP 

38 Hapmap46932-BTA-111719 6 84819700 2.39E-07 6.62 -2.06 3% 20% 0.21 CFP 

39 ARS-BFGL-NGS-42175 6 79544981 4.55E-08 7.34 -2.15 3% 21% 0.20 CFP 

40 Hapmap60030-rs29013992 6 77585276 3.78E-08 7.42 -2.35 3% 21% 0.16 CFP 

41 BTA-114800-no-rs 6 77520815 2.52E-08 7.60 -2.37 4% 22% 0.16 CFP 

42 Hapmap23387-BTC-072905 6 82078166 3.80E-08 7.42 -2.49 4% 22% 0.14 CFP 

43 Hapmap32475-BTC-050530 6 82047313 3.80E-08 7.42 -2.49 4% 22% 0.14 CFP 

44 BTB-00264815 6 81019581 2.16E-08 7.67 -2.27 4% 22% 0.18 CFP 

45 ARS-BFGL-NGS-80068 6 77650126 1.88E-08 7.73 -2.39 4% 22% 0.16 CFP 

46 Hapmap52479-rs29018853 6 79203343 1.34E-08 7.87 -2.10 4% 23% 0.24 CFP 

47 ARS-BFGL-NGS-27643 6 78786848 4.46E-09 8.35 -2.45 4% 25% 0.17 CFP 

48 ARS-BFGL-NGS-114609 6 84713584 2.91E-10 9.54 -2.40 5% 30% 0.23 CFP 

49 Hapmap24184-BTC-070077 6 87245049 3.65E-11 10.44 -2.78 5% 31% 0.17 CFP 

50 Hapmap28023-BTC-060518 6 87201599 1.41E-11 10.85 -2.79 5% 32% 0.18 CFP 

51 BTA-111108-no-rs 6 85424500 6.62E-13 12.18 -3.35 6% 37% 0.13 CFP 

52 ARS-BFGL-NGS-36707 6 86354888 9.44E-13 12.02 -3.39 6% 38% 0.13 CFP 

53 Hapmap41098-BTA-86027 6 84889974 1.41E-13 12.85 -3.47 6% 40% 0.13 CFP 

54 Hapmap52348-rs29024684 6 87396306 1.62E-17 16.79 -3.19 9% 53% 0.24 CFP 

55 Hapmap49297-BTA-76961 6 83147633 3.16E-05 4.50 -2.96 19% 35% 0.25 CFmax 

56 Hapmap27109-BTC-060711 6 87152621 2.66E-05 4.58 -2.77 20% 36% 0.32 CFmax 

57 Hapmap33631-BTC-043555 6 87327708 2.23E-05 4.65 -2.84 21% 39% 0.35 CFmax 

58 ARS-BFGL-NGS-42175 6 79544981 1.15E-05 4.94 -3.41 22% 39% 0.20 CFmax 
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59 BTB-01393607 6 80062406 9.52E-06 5.02 -3.49 22% 40% 0.19 CFmax 

60 ARS-BFGL-NGS-70112 6 84448550 6.28E-06 5.20 -3.43 23% 42% 0.22 CFmax 

61 Hapmap43767-BTA-113302 6 85646902 8.94E-06 5.05 -2.91 23% 42% 0.38 CFmax 

62 ARS-BFGL-NGS-27643 6 78786848 4.58E-06 5.34 -3.76 24% 43% 0.17 CFmax 

63 BTB-00264815 6 81019581 1.77E-06 5.75 -3.80 25% 46% 0.18 CFmax 

64 Hapmap41098-BTA-86027 6 84889974 2.66E-06 5.58 -4.34 25% 46% 0.13 CFmax 

65 Hapmap60030-rs29013992 6 77585276 1.34E-06 5.87 -4.06 26% 47% 0.16 CFmax 

66 BTA-114800-no-rs 6 77520815 1.23E-06 5.91 -4.04 26% 47% 0.16 CFmax 

67 ARS-BFGL-NGS-36707 6 86354888 3.03E-06 5.52 -4.37 26% 47% 0.13 CFmax 

68 ARS-BFGL-NGS-80068 6 77650126 1.05E-06 5.98 -4.07 26% 47% 0.16 CFmax 

69 BTA-111108-no-rs 6 85424500 1.03E-06 5.99 -4.55 28% 51% 0.13 CFmax 

70 Hapmap24184-BTC-070077 6 87245049 4.70E-08 7.33 -4.54 34% 62% 0.17 CFmax 

71 Hapmap28023-BTC-060518 6 87201599 1.09E-08 7.96 -4.67 37% 67% 0.18 CFmax 

72 ARS-BFGL-NGS-112872 6 88069548 9.97E-06 5.00 1.62 2% 11% 0.14 kCF 

73 Hapmap52348-rs29024684 6 87396306 7.46E-07 6.13 -1.51 3% 14% 0.24 kCF 

74 BTA-122637-no-rs 6 88442145 4.01E-07 6.40 -2.70 3% 15% 0.07 kCF 

75 BTA-110240-no-rs 6 81652194 3.21E-05 4.49 0.07 0% 0% 0.20 Prot 

76 Hapmap56688-rs29025335 6 81767374 3.44E-05 4.46 0.07 0% 0% 0.19 Prot 

77 Hapmap55384-rs29026113 6 79525009 3.04E-05 4.52 0.07 0% 0% 0.23 Prot 

78 Hapmap47844-BTA-115673 6 1.14E+08 2.20E-05 4.66 -0.07 0% 0% 0.25 Prot 

79 Hapmap26275-BTC-043486 6 82409949 1.60E-05 4.80 0.09 0% 0% 0.11 Prot 

80 ARS-BFGL-NGS-27958 6 84689991 1.64E-06 5.79 0.09 0% 0% 0.16 Prot 

81 BTA-122637-no-rs 6 88442145 2.39E-06 5.62 2.32 4% 17% 0.07 RCTeq 

82 Hapmap43353-BTA-76584 6 64179687 4.65E-05 4.33 4.32 2% 12% 0.05 tmax 

83 BTA-122637-no-rs 6 88442145 3.63E-07 6.44 4.75 4% 19% 0.07 tmax 

84 ARS-BFGL-NGS-88859 9 83575446 1.06E-05 4.97 -0.06 0% 0% 0.38 Prot 

85 Hapmap53034-rs29011422 9 69696334 9.04E-06 5.04 -0.07 0% 0% 0.34 Prot 

86 ARS-BFGL-NGS-116951 11 87793629 3.47E-05 4.46 -1.00 3% 12% 0.39 RCTeq 

87 ARS-BFGL-NGS-37074 11 88028793 1.96E-05 4.71 -1.02 3% 13% 0.42 RCTeq 

88 BTA-110431-no-rs 11 87692024 6.47E-06 5.19 -1.09 3% 15% 0.40 RCTeq 

89 BTA-110429-no-rs 11 87670344 5.72E-06 5.24 -1.09 3% 15% 0.42 RCTeq 
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90 BTA-110431-no-rs 11 87692024 1.79E-05 4.75 -1.95 2% 12% 0.40 tmax 

91 BTA-120876-no-rs 11 85935590 1.31E-05 4.88 -1.98 2% 13% 0.42 tmax 

92 BTA-110429-no-rs 11 87670344 1.11E-05 4.95 -2.00 3% 13% 0.42 tmax 

93 ARS-BFGL-NGS-119913 11 86779385 8.75E-06 5.06 1.98 3% 13% 0.50 tmax 

94 Hapmap31215-BTA-32775 13 47879982 1.45E-05 4.84 5.82 1% 4% 0.01 RCT 

95 ARS-BFGL-NGS-68607 15 55488319 6.76E-06 5.17 6.31 1% 4% 0.01 RCT 

96 ARS-BFGL-NGS-114291 15 14242668 2.77E-06 5.56 5.64 1% 5% 0.01 RCT 

97 ARS-BFGL-NGS-117603 15 14272339 2.81E-06 5.55 5.64 1% 5% 0.01 RCT 

98 ARS-BFGL-NGS-17574 16 76311292 2.74E-05 4.56 -1.43 2% 12% 0.29 CFP 

99 Hapmap27040-BTA-25119 19 2270929 2.30E-05 4.64 2.07 1% 5% 0.32 a30 

100 Hapmap39832-BTA-46468 19 2093500 2.08E-05 4.68 2.09 1% 5% 0.32 a30 

101 ARS-BFGL-NGS-1751 20 17412441 3.57E-05 4.45 0.08 0% 0% 0.17 Prot 

102 Hapmap38418-BTA-57213 23 8819178 2.69E-05 4.57 0.16 0% 0% 0.11 kSR 

103 ARS-BFGL-NGS-99929 23 10631079 1.75E-06 5.76 0.22 4% 64% 0.07 kSR 

104 ARS-BFGL-NGS-23064 26 20365711 4.30E-05 4.37 1.03 2% 9% 0.47 kCF 

105 Hapmap48306-BTA-36540 28 38449335 2.64E-05 4.58 -0.08 0% 0% 0.13 Prot 

106 ARS-BFGL-NGS-115508 28 33729338 2.10E-05 4.68 -3.14 2% 13% 0.11 tmax 

SNP= the name of the single nucleotide polymorphism; BTA= Bos taurus autosome chromosome; Location= position of the SNP on the 

chromosome in base pairs on UMD3.1; Pc1df= p-values adjusted for genomic control; LOG= the -log10 of Pc1df; effB= effect of the minor 

allele (B allele); snp.VP (%)= percentage of phenotypic variance explained by each SNP; snp.Va (%)= percentage of additive genetic variance 

explained by each SNP; MAF= minor allele frequency;  

1RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme addition; k20 = curd-firming time (min) of samples 

reaching 20 mm of firmness within 45 min from enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = 

protein percent; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP = potential asymptotical curd firmness (mm); 

kCF = curd-firming rate constant (% x min-1); kSR = syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time 

to CFmax (min). 

*Undefined chromosome and position on the genome 
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Figure S1 Quantile-quantile (Q-Q) plots of the observed test statistics of the genome wide 

association studies (GWAS) 

 
RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme 

addition; k20 = curd-firming time (min) of samples reaching 20 mm of firmness within 45 min 

from enzyme addition; a30 = curd firmness (mm) at 30 min after enzyme addition; Prot % = 

protein percent; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; CFP 

= potential asymptotical curd firmness (mm); kCF = curd-firming rate constant (% x min-1); kSR 

= syneresis rate constant (% x min-1); CFmax = maximum curd firmness (mm); tmax = time to 

CFmax (min). 
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CHAPTER 2 
 

Table S1. List of all significant SNP identified in the GWAS analyses sorted by chromosome. 

N SNP BTA Location (bp) effB Pc1df LOG VSNP VP VG VPsnp 

(%) 

VGsnp 

(%) 

Trait 

1 Hapmap60596-rs29017365 2 128812635 -0.16 3.42E-05 4.47 0.01 0.52 0.15 2.19 7.55 %CYSOLIDS 

2 Hapmap53172-rs29012675 6 82706745 0.85 8.57E-08 7.07 0.06 1.81 0.66 3.57 9.76 %CYSOLIDS 

3 Hapmap26275-BTC-043486 6 82409949 0.49 4.99E-06 5.30 0.05 1.81 0.66 2.64 7.22 %CYSOLIDS 

4 Hapmap23975-BTC-043815 6 102937469 0.38 9.59E-06 5.02 0.05 1.81 0.66 2.52 6.90 %CYSOLIDS 

5 Hapmap50464-BTA-77021 6 82560990 0.44 1.12E-05 4.95 0.04 1.81 0.66 2.33 6.37 %CYSOLIDS 

6 Hapmap38371-BTA-105598 6 87715723 0.35 2.56E-05 4.59 0.04 1.81 0.66 2.22 6.07 %CYSOLIDS 

7 BTA-110240-no-rs 6 81652194 0.34 4.85E-05 4.31 0.04 1.81 0.66 2.07 5.67 %CYSOLIDS 

8 Hapmap53172-rs29012675 6 82706745 0.42 8.03E-07 6.10 0.02 0.52 0.15 3.00 10.36 %CYSOLIDS 

9 Hapmap50464-BTA-77021 6 82560990 0.26 1.05E-06 5.98 0.01 0.52 0.15 2.85 9.83 %CYSOLIDS 

10 Hapmap26275-BTC-043486 6 82409949 0.26 7.09E-06 5.15 0.01 0.52 0.15 2.53 8.73 %CYSOLIDS 

11 Hapmap52348-rs29024684 6 87396306 -0.84 3.93E-07 6.41 0.26 7.75 2.22 3.31 11.54 RECSOLIDS 

12 Hapmap50464-BTA-77021 6 82560990 0.98 1.46E-06 5.84 0.21 7.75 2.22 2.77 9.67 RECSOLIDS 

13 Hapmap26275-BTC-043486 6 82409949 1.02 3.64E-06 5.44 0.21 7.75 2.22 2.69 9.37 RECSOLIDS 

14 Hapmap53172-rs29012675 6 82706745 1.48 6.29E-06 5.20 0.19 7.75 2.22 2.52 8.77 RECSOLIDS 

15 ARS-BFGL-NGS-82008 6 87600892 0.87 2.27E-05 4.64 0.17 7.75 2.22 2.18 7.59 RECSOLIDS 

16 ARS-BFGL-NGS-109039 6 85142067 0.88 4.38E-05 4.36 0.16 7.75 2.22 2.09 7.29 RECSOLIDS 

17 Hapmap52348-rs29024684 6 87396306 -1.34 1.91E-15 14.72 0.65 7.71 1.11 8.45 58.77 RECFAT 

18 BTA-111108-no-rs 6 85424500 -1.44 9.72E-12 11.01 0.48 7.71 1.11 6.22 43.26 RECFAT 

19 Hapmap41098-BTA-86027 6 84889974 -1.43 1.16E-11 10.93 0.47 7.71 1.11 6.14 42.67 RECFAT 

20 ARS-BFGL-NGS-36707 6 86354888 -1.38 1.33E-10 9.88 0.44 7.71 1.11 5.72 39.74 RECFAT 

21 Hapmap23387-BTC-072905 6 82078166 -1.27 5.34E-10 9.27 0.40 7.71 1.11 5.17 35.94 RECFAT 

22 Hapmap32475-BTC-050530 6 82047313 -1.27 5.34E-10 9.27 0.40 7.71 1.11 5.17 35.94 RECFAT 

23 Hapmap46932-BTA-111719 6 84819700 -1.02 1.28E-08 7.89 0.35 7.71 1.11 4.52 31.42 RECFAT 
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24 ARS-BFGL-NGS-63312 6 82965163 -1.02 1.96E-08 7.71 0.32 7.71 1.11 4.08 28.40 RECFAT 

25 ARS-BFGL-NGS-27643 6 78786848 -1.04 3.32E-08 7.48 0.31 7.71 1.11 4.06 28.24 RECFAT 

26 ARS-BFGL-NGS-114609 6 84713584 -0.93 5.26E-08 7.28 0.31 7.71 1.11 3.98 27.70 RECFAT 

27 ARS-BFGL-NGS-70112 6 84448550 -0.92 1.13E-07 6.95 0.28 7.71 1.11 3.68 25.60 RECFAT 

28 BTA-114800-no-rs 6 77520815 -1.01 1.51E-07 6.82 0.27 7.71 1.11 3.56 24.76 RECFAT 

29 ARS-BFGL-NGS-80068 6 77650126 -1.00 1.77E-07 6.75 0.27 7.71 1.11 3.51 24.42 RECFAT 

30 Hapmap52479-rs29018853 6 79203343 -0.87 1.84E-07 6.74 0.27 7.71 1.11 3.52 24.51 RECFAT 

31 Hapmap60030-rs29013992 6 77585276 -1.00 2.14E-07 6.67 0.27 7.71 1.11 3.44 23.92 RECFAT 

32 ARS-BFGL-NGS-42175 6 79544981 -0.92 2.18E-07 6.66 0.27 7.71 1.11 3.48 24.21 RECFAT 

33 Hapmap28023-BTC-060518 6 87201599 -0.95 3.36E-07 6.47 0.26 7.71 1.11 3.39 23.59 RECFAT 

34 BTB-00264815 6 81019581 -0.92 4.20E-07 6.38 0.25 7.71 1.11 3.30 22.97 RECFAT 

35 Hapmap31932-BTC-042947 6 82350917 -0.79 4.61E-07 6.34 0.26 7.71 1.11 3.37 23.42 RECFAT 

36 Hapmap24184-BTC-070077 6 87245049 -0.95 4.78E-07 6.32 0.26 7.71 1.11 3.31 23.04 RECFAT 

37 Hapmap23419-BTC-059652 6 82314634 -0.78 6.68E-07 6.17 0.25 7.71 1.11 3.28 22.84 RECFAT 

38 Hapmap51938-BTA-21491 6 81057816 -0.82 1.10E-06 5.96 0.24 7.71 1.11 3.10 21.58 RECFAT 

39 Hapmap26317-BTC-059618 6 82253271 -0.76 1.26E-06 5.90 0.24 7.71 1.11 3.10 21.59 RECFAT 

40 BTA-122637-no-rs 6 88442145 -1.38 1.42E-06 5.85 0.24 7.71 1.11 3.05 21.23 RECFAT 

41 Hapmap49297-BTA-76961 6 83147633 -0.78 1.46E-06 5.84 0.23 7.71 1.11 3.00 20.88 RECFAT 

42 BTB-01393607 6 80062406 -0.80 7.75E-06 5.11 0.20 7.71 1.11 2.58 17.91 RECFAT 

43 BTB-00264414 6 79843283 -0.66 9.28E-06 5.03 0.19 7.71 1.11 2.46 17.09 RECFAT 

44 Hapmap60182-rs29025531 6 74606760 -0.77 2.09E-05 4.68 0.19 7.71 1.11 2.41 16.73 RECFAT 

45 Hapmap32099-BTA-151095 6 83345994 -0.65 2.47E-05 4.61 0.18 7.71 1.11 2.28 15.87 RECFAT 

46 BTA-76959-no-rs 6 83290843 -0.65 2.47E-05 4.61 0.18 7.71 1.11 2.29 15.89 RECFAT 

47 ARS-BFGL-NGS-17026 6 73734080 -0.74 3.88E-05 4.41 0.17 7.71 1.11 2.15 14.96 RECFAT 

48 Hapmap52348-rs29024684 6 87396306 -0.90 3.62E-08 7.44 0.29 7.52 1.81 3.92 16.27 RECENERGY 

49 Hapmap50464-BTA-77021 6 82560990 0.98 1.06E-06 5.98 0.21 7.52 1.81 2.84 11.79 RECENERGY 

50 Hapmap26275-BTC-043486 6 82409949 0.97 8.01E-06 5.10 0.19 7.52 1.81 2.49 10.36 RECENERGY 

51 Hapmap41098-BTA-86027 6 84889974 -0.90 1.02E-05 4.99 0.19 7.52 1.81 2.51 10.44 RECENERGY 

52 ARS-BFGL-NGS-109039 6 85142067 0.91 1.77E-05 4.75 0.17 7.52 1.81 2.30 9.56 RECENERGY 
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53 BTA-111108-no-rs 6 85424500 -0.86 2.81E-05 4.55 0.17 7.52 1.81 2.27 9.43 RECENERGY 

54 ARS-BFGL-NGS-42175 6 79544981 -0.72 2.84E-05 4.55 0.16 7.52 1.81 2.18 9.06 RECENERGY 

55 ARS-BFGL-NGS-82008 6 87600892 0.84 3.12E-05 4.51 0.16 7.52 1.81 2.10 8.72 RECENERGY 

56 Hapmap52479-rs29018853 6 79203343 -0.67 3.13E-05 4.50 0.16 7.52 1.81 2.17 9.01 RECENERGY 

57 BTA-113303-no-rs 6 85954909 0.98 3.20E-05 4.50 0.16 7.52 1.81 2.12 8.81 RECENERGY 

58 Hapmap53172-rs29012675 6 82706745 1.31 4.48E-05 4.35 0.15 7.52 1.81 2.04 8.46 RECENERGY 

59 BTB-00403185 9 91058994 0.60 4.74E-05 4.32 0.16 7.52 1.81 2.11 8.78 RECENERGY 

60 ARS-BFGL-NGS-104610 11 104293559 -1.30 6.07E-36 35.22 0.83 3.64 1.67 22.87 49.96 RECPROTEIN 

61 ARS-BFGL-NGS-77843 11 103856100 -1.04 7.71E-17 16.11 0.35 3.64 1.67 9.50 20.76 RECPROTEIN 

62 ARS-BFGL-NGS-115328 11 103110855 -0.87 1.62E-15 14.79 0.33 3.64 1.67 9.17 20.04 RECPROTEIN 

63 ARS-BFGL-NGS-111682 11 104633267 -0.90 1.93E-12 11.71 0.25 3.64 1.67 6.96 15.20 RECPROTEIN 

64 ARS-BFGL-NGS-32953 11 101301047 -0.73 6.39E-12 11.19 0.24 3.64 1.67 6.51 14.22 RECPROTEIN 

65 ARS-BFGL-NGS-83830 11 102790757 -0.90 2.09E-11 10.68 0.22 3.64 1.67 6.14 13.42 RECPROTEIN 

66 ARS-BFGL-NGS-14392 11 102237822 -0.90 2.48E-10 9.61 0.20 3.64 1.67 5.53 12.09 RECPROTEIN 

67 ARS-BFGL-NGS-118288 11 106613461 -0.79 2.57E-10 9.59 0.20 3.64 1.67 5.52 12.05 RECPROTEIN 

68 ARS-BFGL-NGS-7395 11 102178546 -0.98 3.71E-10 9.43 0.20 3.64 1.67 5.50 12.02 RECPROTEIN 

69 ARS-BFGL-NGS-82968 11 105182939 -0.68 1.19E-09 8.92 0.18 3.64 1.67 4.98 10.87 RECPROTEIN 

70 ARS-BFGL-NGS-115623 11 102153173 -0.93 1.82E-09 8.74 0.18 3.64 1.67 5.06 11.06 RECPROTEIN 

71 ARS-BFGL-NGS-119318 11 102974570 -0.66 2.37E-09 8.63 0.18 3.64 1.67 5.00 10.93 RECPROTEIN 

72 Hapmap51810-BTA-119667 11 102861577 0.60 2.67E-09 8.57 0.18 3.64 1.67 4.91 10.72 RECPROTEIN 

73 ARS-BFGL-NGS-6104 11 104456040 -1.05 5.76E-09 8.24 0.18 3.64 1.67 4.85 10.59 RECPROTEIN 

74 ARS-BFGL-NGS-4101 11 104325453 -1.04 8.78E-09 8.06 0.17 3.64 1.67 4.66 10.17 RECPROTEIN 

75 ARS-BFGL-NGS-42578 11 93241685 -0.67 1.26E-08 7.90 0.17 3.64 1.67 4.58 10.00 RECPROTEIN 

76 ARS-BFGL-NGS-25612 11 93193697 -0.63 6.37E-08 7.20 0.15 3.64 1.67 4.17 9.10 RECPROTEIN 

77 ARS-BFGL-NGS-20482 11 92990077 -0.75 8.33E-08 7.08 0.16 3.64 1.67 4.2 9.35 RECPROTEIN 

78 ARS-BFGL-NGS-21607 11 97059246 -1.02 1.33E-07 6.88 0.15 3.64 1.67 4.09 8.94 RECPROTEIN 

79 ARS-BFGL-NGS-11064 11 106510932 -0.54 3.25E-07 6.49 0.13 3.64 1.67 3.58 7.82 RECPROTEIN 

80 ARS-BFGL-NGS-98548 11 103458444 0.67 1.37E-06 5.86 0.12 3.64 1.67 3.24 7.08 RECPROTEIN 

81 Hapmap32029-BTA-127208 11 105532933 -0.47 2.18E-06 5.66 0.11 3.64 1.67 3.06 6.68 RECPROTEIN 
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82 ARS-BFGL-NGS-116123 11 94686959 -0.54 3.73E-06 5.43 0.11 3.64 1.67 3.13 6.83 RECPROTEIN 

83 Hapmap43475-BTA-115549 11 94772650 -0.55 4.17E-06 5.38 0.11 3.64 1.67 3.12 6.82 RECPROTEIN 

84 ARS-BFGL-NGS-22584 11 105845271 -0.47 4.34E-06 5.36 0.11 3.64 1.67 3.04 6.63 RECPROTEIN 

85 ARS-BFGL-NGS-11629 11 92963716 -0.69 4.80E-06 5.32 0.11 3.64 1.67 3.02 6.60 RECPROTEIN 

86 ARS-BFGL-NGS-70509 11 98510712 0.46 5.91E-06 5.23 0.10 3.64 1.67 2.85 6.23 RECPROTEIN 

87 BTA-118663-no-rs 11 101384765 0.46 6.13E-06 5.21 0.10 3.64 1.67 2.83 6.19 RECPROTEIN 

88 ARS-BFGL-NGS-25833 11 106543262 -0.49 7.15E-06 5.15 0.10 3.64 1.67 2.82 6.15 RECPROTEIN 

89 BTA-118661-no-rs 11 101357473 0.46 8.21E-06 5.09 0.10 3.64 1.67 2.75 6.01 RECPROTEIN 

90 ARS-BFGL-NGS-13452 11 102673893 -0.45 8.69E-06 5.06 0.10 3.64 1.67 2.70 5.90 RECPROTEIN 

91 BTA-93319-no-rs 11 91639283 -0.55 8.80E-06 5.06 0.10 3.64 1.67 2.84 6.21 RECPROTEIN 

92 ARS-BFGL-NGS-35656 11 97289960 0.57 1.57E-05 4.80 0.09 3.64 1.67 2.60 5.69 RECPROTEIN 

93 ARS-BFGL-NGS-101698 11 96230130 -0.52 1.69E-05 4.77 0.10 3.64 1.67 2.62 5.72 RECPROTEIN 

94 ARS-BFGL-NGS-11867 11 106741315 -0.62 2.17E-05 4.66 0.09 3.64 1.67 2.39 5.23 RECPROTEIN 

95 BTA-04956-no-rs 11 94713144 -0.56 2.24E-05 4.65 0.09 3.64 1.67 2.59 5.67 RECPROTEIN 

96 Hapmap56906-rs29014970 11 97844929 -0.47 3.31E-05 4.48 0.09 3.64 1.67 2.54 5.54 RECPROTEIN 

97 ARS-BFGL-NGS-59502 11 100519715 -0.55 3.74E-05 4.43 0.09 3.64 1.67 2.43 5.31 RECPROTEIN 

98 BTB-00507211 12 85272488 -0.29 2.42E-05 4.62 0.02 0.78 0.20 2.34 8.92 %CYWATER 

99 Hapmap25446-BTC-054694 14 26003598 0.15 4.58E-05 4.34 0.01 0.52 0.15 2.08 7.19 %CYSOLIDS 

100 Hapmap51570-BTA-17962 18 65269893 0.21 4.32E-05 4.36 0.02 0.78 0.20 2.05 7.83 %CYWATER 

101 ARS-BFGL-NGS-102974 19 1822133 -0.15 3.05E-05 4.52 0.01 0.52 0.15 2.05 7.09 %CYSOLIDS 

102 ARS-BFGL-NGS-87845 27 42118037 0.50 1.53E-05 4.82 0.01 0.52 0.15 2.47 8.51 %CYSOLIDS 

103 Hapmap48306-BTA-36540 28 38449335 -0.27 1.66E-05 4.78 0.02 0.78 0.20 2.22 8.48 %CYWATER 

SNP= the name of the single nucleotide polymorphism; BTA= Bos taurus autosome chromosome; Location= position of the SNP on the chromosome 

in base pairs on UMD3.1; Pc1df= p-values adjusted for genomic control; LOG= the -log10 of Pc1df; effB= effect of the minor allele (B allele); VSNP 

= variance explained by the SNP (calculated as 2pqa2, where p is the frequency of one allele, q=1-p is the frequency of the second allele and a is the 

additive genetic effect); VP= phenotypic variance; VG= additive genetic variance; VPsnp (%)= percentage of phenotypic variance explained by each 

SNP; VGsnp (%)= percentage of additive genetic variance explained by each SNP; Trait= name of the trait  
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Table S2. List of all significant SNP identified in the GWAS analyses sorted by chromosome after fixing the marker Hapmap52348-

rs29024684 at 87,396,306bp on BTA6 and the marker ARS-BFGL-NGS-104610 at 104,293,559 on BTA11. 

N SNP BTA Location 

(bp) 

effB Pc1df LOG VSNP VP VG VPsnp 

(%) 

VGsnp 

(%) 

Trait 

1 Hapmap26275-BTC-043486 6 82409949 0.45 2.22E-05 4.65 0.04 1.77 0.63 2.28 6.36 %CYCURD 

2 Hapmap50464-BTA-77021 6 82560990 0.41 3.63E-05 4.44 0.04 1.77 0.63 2.07 5.76 %CYCURD 

3 Hapmap27307-BTC-043200 6 82605943 0.35 2.19E-05 4.66 0.04 1.77 0.63 2.22 6.18 %CYCURD 

4 Hapmap53172-rs29012675 6 82706745 0.88 2.30E-08 7.64 0.07 1.77 0.63 3.92 10.92 %CYCURD 

5 Hapmap38371-BTA-105598 6 87715723 0.33 4.04E-05 4.39 0.04 1.77 0.63 2.11 5.89 %CYCURD 

6 Hapmap32578-BTA-144239 6 88111170 0.34 1.05E-05 4.98 0.04 1.77 0.63 2.54 7.08 %CYCURD 

7 Hapmap23975-BTC-043815 6 102937469 0.36 1.33E-05 4.87 0.04 1.77 0.63 2.44 6.81 %CYCURD 

8 Hapmap26275-BTC-043486 6 82409949 0.23 4.28E-05 4.37 0.01 0.51 0.15 2.10 7.19 %CYSOLIDS 

9 Hapmap50464-BTA-77021 6 82560990 0.24 4.85E-06 5.31 0.01 0.51 0.15 2.50 8.57 %CYSOLIDS 

10 Hapmap53172-rs29012675 6 82706745 0.43 2.87E-07 6.54 0.02 0.51 0.15 3.27 11.22 %CYSOLIDS 

11 Hapmap32578-BTA-144239 6 88111170 0.18 1.09E-05 4.96 0.01 0.51 0.15 2.51 8.59 %CYSOLIDS 

12 BTB-02092741 6 114223059 0.62 4.29E-05 4.37 0.01 0.51 0.15 2.08 7.12 %CYSOLIDS 

13 BTA-77034-no-rs 6 82540280 0.72 4.15E-05 4.38 0.15 7.10 1.45 2.09 10.20 RECENERGY 

14 Hapmap50464-BTA-77021 6 82560990 0.87 6.34E-06 5.20 0.17 7.10 1.45 2.40 11.71 RECENERGY 

15 Hapmap27307-BTC-043200 6 82605943 0.77 2.92E-06 5.53 0.19 7.10 1.45 2.62 12.79 RECENERGY 

16 Hapmap53172-rs29012675 6 82706745 1.39 7.48E-06 5.13 0.17 7.10 1.45 2.43 11.90 RECENERGY 

17 Hapmap60224-rs29001782 6 85178107 0.75 4.10E-05 4.39 0.15 7.10 1.45 2.14 10.46 RECENERGY 

18 Hapmap32578-BTA-144239 6 88111170 0.65 1.81E-05 4.74 0.17 7.10 1.45 2.34 11.43 RECENERGY 

19 BTA-77034-no-rs 6 82540280 0.76 9.09E-06 5.04 0.16 7.06 0.64 2.34 25.73 RECFAT 

20 Hapmap27307-BTC-043200 6 82605943 0.77 1.33E-06 5.88 0.19 7.06 0.64 2.66 29.32 RECFAT 

21 Hapmap23522-BTC-047379 6 87222751 1.17 2.32E-05 4.63 0.15 7.06 0.64 2.11 23.23 RECFAT 

22 Hapmap30192-BTC-072881 6 87281196 1.16 2.43E-05 4.61 0.15 7.06 0.64 2.10 23.18 RECFAT 

23 Hapmap54015-rs29022799 6 88421804 1.04 1.63E-05 4.79 0.15 7.06 0.64 2.12 23.36 RECFAT 

24 ARS-BFGL-NGS-118182 6 88592295 0.62 3.65E-05 4.44 0.14 7.06 0.64 1.97 21.72 RECFAT 

25 BTA-113303-no-rs 6 85954909 0.58 4.77E-05 4.32 0.06 2.77 0.67 1.99 8.20 RECPROTEIN 

26 ARS-BFGL-NGS-112872 6 88069548 0.54 5.21E-06 5.28 0.07 2.77 0.67 2.61 10.78 RECPROTEIN 
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27 Hapmap50464-BTA-77021 6 82560990 0.88 1.20E-05 4.92 0.17 7.10 1.45 2.40 11.72 RECSOLIDS 

28 Hapmap27307-BTC-043200 6 82605943 0.74 1.33E-05 4.88 0.17 7.10 1.45 2.42 11.82 RECSOLIDS 

29 Hapmap53172-rs29012675 6 82706745 1.59 7.79E-07 6.11 0.23 7.10 1.45 3.17 15.51 RECSOLIDS 

30 Hapmap32578-BTA-144239 6 88111170 0.69 8.90E-06 5.05 0.19 7.10 1.45 2.67 13.04 RECSOLIDS 

31 BTB-01249963 9 37442535 -0.18 4.64E-05 4.33 0.02 0.77 0.20 1.96 7.70 %CYWATER 

32 ARS-BFGL-NGS-26919 11 103352220 1.48 7.92E-12 11.10 0.16 2.77 0.67 5.73 23.61 RECPROTEIN 

33 ARS-BFGL-NGS-40995 11 103742782 0.58 1.26E-05 4.90 0.07 2.77 0.67 2.45 10.12 RECPROTEIN 

34 BTB-00507211 12 85272488 -0.29 2.51E-05 4.60 0.02 0.77 0.20 2.33 9.13 %CYWATER 

35 ARS-BFGL-NGS-102974 19 1822133 -0.28 3.04E-05 4.52 0.04 1.77 0.63 2.05 5.72 %CYCURD 

36 ARS-BFGL-NGS-24753 19 3024589 -0.29 3.50E-05 4.46 0.04 1.77 0.63 2.16 6.01 %CYCURD 

37 ARS-BFGL-NGS-102974 19 1822133 -0.16 7.54E-06 5.12 0.01 0.51 0.15 2.37 8.12 %CYSOLIDS 

38 ARS-BFGL-NGS-24753 19 3024589 -0.16 2.91E-05 4.54 0.01 0.51 0.15 2.20 7.55 %CYSOLIDS 

39 ARS-BFGL-NGS-43028 19 1706305 -0.15 3.59E-05 4.45 0.01 0.51 0.15 2.09 7.15 %CYSOLIDS 

40 ARS-BFGL-NGS-102974 19 1822133 -0.58 3.03E-05 4.52 0.15 7.10 1.45 2.14 10.47 RECSOLIDS 

41 ARS-BFGL-NGS-4481 22 38782041 2.05 1.92E-05 4.72 0.06 2.77 0.67 2.23 9.18 RECPROTEIN 

42 ARS-BFGL-NGS-87845 27 42118037 0.48 2.79E-05 4.55 0.01 0.51 0.15 2.32 7.94 %CYSOLIDS 

43 Hapmap48306-BTA-36540 28 38449335 -0.26 2.63E-05 4.58 0.02 0.77 0.20 2.11 8.29 %CYWATER 

SNP= the name of the single nucleotide polymorphism; BTA= Bos taurus autosome chromosome; Location= position of the SNP on the chromosome in base pairs on 

UMD3.1 (http://www.ensembl.org/index.html); Pc1df= P-values adjusted for genomic control; LOG= the -log10 of Pc1df; effB= effect of the minor allele (B allele); VSNP 

= variance explained by the SNP (calculated as 2pqa2, where p is the frequency of one allele, q=1-p is the frequency of the second allele and a is the additive genetic effect); 

VP= phenotypic variance; VG= additive genetic variance; VPsnp (%)= percentage of phenotypic variance explained by each SNP; VGsnp (%)= percentage of additive genetic 

variance explained by each SNP; Trait= name of the trait 
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Figure S1. Quantile-quantile (Q-Q) plots of the observed test statistics of the genome wide 

association studies (GWAS). 
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CHAPTER 3 
 

Table S1. Significant genes involved in the enriched categories. 

SNP BTA Location(bp) Gene_Ensembl_ID Gene_SYMBOL Category Trait 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04070 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04070 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04070 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04070 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04070 RCT 

Hapmap58728-rs29027441 12 12375872 ENSBTAG00000013879 DGKH KEGG:bta04070 RCT 

BTB-01082458 17 16032820 ENSBTAG00000014111 INPP4B KEGG:bta04070 RCT 

ARS-BFGL-NGS-112820 17 72084838 ENSBTAG00000017023 INPP5J KEGG:bta04070 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04070 RCT 

ARS-BFGL-NGS-111260 5 91947526 ENSBTAG00000020715 PIK3C2G KEGG:bta04070 RCT 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04730 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04730 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04730 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04730 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04730 RCT 

ARS-BFGL-NGS-112679 7 13336301 ENSBTAG00000014828 CACNA1A KEGG:bta04730 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04730 RCT 

ARS-BFGL-NGS-33216 15 16809081 ENSBTAG00000044144 GUCY1A2 KEGG:bta04730 RCT 

ARS-BFGL-NGS-11874 10 14388574 ENSBTAG00000000218 MAP2K5 KEGG:bta04540 RCT 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04540 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04540 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04540 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04540 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04540 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04540 RCT 
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BTB-01430463 15 4586930 ENSBTAG00000034827 PDGFD KEGG:bta04540 RCT 

ARS-BFGL-NGS-33216 15 16809081 ENSBTAG00000044144 GUCY1A2 KEGG:bta04540 RCT 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04270 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04270 RCT 

UA-IFASA-9742 15 42657355 ENSBTAG00000007129 MRVI1 KEGG:bta04270 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04270 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04270 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04270 RCT 

BTA-22976-no-rs 4 99503031 ENSBTAG00000013953 CALD1 KEGG:bta04270 RCT 

ARS-BFGL-NGS-114211 18 15099438 ENSBTAG00000014818 MYLK3 KEGG:bta04270 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04270 RCT 

ARS-BFGL-NGS-33216 15 16809081 ENSBTAG00000044144 GUCY1A2 KEGG:bta04270 RCT 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04020 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04020 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04020 RCT 

Hapmap49158-BTA-41145 17 56234762 ENSBTAG00000008948 P2RX7 KEGG:bta04020 RCT 

ARS-BFGL-NGS-41667 17 56181953 ENSBTAG00000010812 P2RX4 KEGG:bta04020 RCT 

BTA-97453-no-rs 2 14283570 ENSBTAG00000012100 PDE1A KEGG:bta04020 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04020 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04020 RCT 

ARS-BFGL-NGS-114211 18 15099438 ENSBTAG00000014818 MYLK3 KEGG:bta04020 RCT 

ARS-BFGL-NGS-112679 7 13336301 ENSBTAG00000014828 CACNA1A KEGG:bta04020 RCT 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR KEGG:bta04020 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04020 RCT 

Hapmap60761-rs29011573 28 10227920 ENSBTAG00000022886 RYR2 KEGG:bta04020 RCT 

ARS-BFGL-NGS-72483 19 63501603 ENSBTAG00000001061 PRKCA KEGG:bta04970 RCT 

Hapmap36127-SCAFFOLD59715_196 5 83445048 ENSBTAG00000002313  ITPR2 KEGG:bta04970 RCT 

Hapmap27855-BTA-123415 13 806792 ENSBTAG00000008338 PLCB1 KEGG:bta04970 RCT 

ARS-BFGL-NGS-19964 29 43189370 ENSBTAG00000012510 PLCB3 KEGG:bta04970 RCT 

ARS-BFGL-BAC-11281 13 2217706 ENSBTAG00000013116 PLCB4 KEGG:bta04970 RCT 

UA-IFASA-6532 22 21770149 ENSBTAG00000020455  ITPR1 KEGG:bta04970 RCT 



 

217 

 

ARS-BFGL-NGS-33216 15 16809081 ENSBTAG00000044144 GUCY1A2 KEGG:bta04970 RCT 

Hapmap28023-BTC-060518 6 87201599 ENSBTAG00000048250 HSTN KEGG:bta04970 RCT 

ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0048511 RCTeq 

Hapmap53648-rs29021240 11 86569656 ENSBTAG00000005847 ROCK2 GO_BP:0048511 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0048511 RCTeq 

Hapmap46359-BTA-26846 22 30044319 ENSBTAG00000019330 PROK2 GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0048511 RCTeq 

ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0008585 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0008585 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0008585 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0008585 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0008585 RCTeq 

ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0022602 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0022602 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0022602 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0022602 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0022602 RCTeq 

ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0042698 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0042698 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0042698 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0042698 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0042698 RCTeq 

ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0046545 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0046545 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0046545 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0046545 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0046545 RCTeq 
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ARS-BFGL-NGS-31435 4 57296533 ENSBTAG00000004398 IMMP2L GO_BP:0046660 RCTeq 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0046660 RCTeq 

ARS-BFGL-NGS-83866 11 30851124 ENSBTAG00000016573 LHCGR GO_BP:0046660 RCTeq 

ARS-BFGL-NGS-23358 11 31259588 ENSBTAG00000032424 FSHR GO_BP:0046660 RCTeq 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0046660 RCTeq 

ARS-BFGL-NGS-64156 18 24359982 ENSBTAG00000003794 GNAO1 GO_CC:0030425 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0030425 RCTeq 

ARS-BFGL-BAC-35294 16 36284584 ENSBTAG00000005410 RGS7 GO_CC:0030425 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0030425 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0030425 RCTeq 

Hapmap50362-BTA-44583 19 17701476 ENSBTAG00000015527 MYO1D GO_CC:0030425 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0030425 RCTeq 

BTB-00358604 8 75109746 ENSBTAG00000018373 DPYSL2 GO_CC:0030425 RCTeq 

ARS-BFGL-NGS-90129 26 18776144 ENSBTAG00000018564 ZFYVE27 GO_CC:0030425 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0030425 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0030425 RCTeq 

BTA-42522-no-rs 18 15039844 ENSBTAG00000002493 VPS35 GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-34068 3 75737505 ENSBTAG00000009338 LRRC7 GO_CC:0044456 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0044456 RCTeq 

Hapmap57288-ss46526584 12 90621015 ENSBTAG00000010242 LAMP1 GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0044456 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-12343 7 75305297 ENSBTAG00000018585 GABRB2 GO_CC:0044456 RCTeq 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0044456 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0044456 RCTeq 

ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0044456 RCTeq 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0044456 RCTeq 
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BTA-71636-no-rs 4 94085456 ENSBTAG00000001754 AHCYL2 GO_CC:0097458 RCTeq 

BTA-42522-no-rs 18 15039844 ENSBTAG00000002493 VPS35 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-64156 18 24359982 ENSBTAG00000003794 GNAO1 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0097458 RCTeq 

ARS-BFGL-BAC-35294 16 36284584 ENSBTAG00000005410 RGS7 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-42578 11 93241685 ENSBTAG00000006716 PTGS1 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0097458 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0097458 RCTeq 

Hapmap57288-ss46526584 12 90621015 ENSBTAG00000010242 LAMP1 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0097458 RCTeq 

Hapmap50362-BTA-44583 19 17701476 ENSBTAG00000015527 MYO1D GO_CC:0097458 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0097458 RCTeq 

BTB-00358604 8 75109746 ENSBTAG00000018373 DPYSL2 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-90129 26 18776144 ENSBTAG00000018564 ZFYVE27 GO_CC:0097458 RCTeq 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-102000 7 16675279 ENSBTAG00000019220 SMARCA4 GO_CC:0097458 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0097458 RCTeq 

ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0097458 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0097458 RCTeq 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0097458 RCTeq 

BTA-42522-no-rs 18 15039844 ENSBTAG00000002493 VPS35 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-34068 3 75737505 ENSBTAG00000009338 LRRC7 GO_CC:0045202 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0045202 RCTeq 

Hapmap57288-ss46526584 12 90621015 ENSBTAG00000010242 LAMP1 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0045202 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0045202 RCTeq 
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ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-12343 7 75305297 ENSBTAG00000018585 GABRB2 GO_CC:0045202 RCTeq 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0045202 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0045202 RCTeq 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0045202 RCTeq 

ARS-BFGL-NGS-64156 18 24359982 ENSBTAG00000003794 GNAO1 GO_CC:0036477 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0036477 RCTeq 

ARS-BFGL-BAC-35294 16 36284584 ENSBTAG00000005410 RGS7 GO_CC:0036477 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0036477 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0036477 RCTeq 

Hapmap50362-BTA-44583 19 17701476 ENSBTAG00000015527 MYO1D GO_CC:0036477 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0036477 RCTeq 

BTB-00358604 8 75109746 ENSBTAG00000018373 DPYSL2 GO_CC:0036477 RCTeq 

ARS-BFGL-NGS-90129 26 18776144 ENSBTAG00000018564 ZFYVE27 GO_CC:0036477 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0036477 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0036477 RCTeq 

BTA-71636-no-rs 4 94085456 ENSBTAG00000001754 AHCYL2 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-64156 18 24359982 ENSBTAG00000003794 GNAO1 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0043005 RCTeq 

ARS-BFGL-BAC-35294 16 36284584 ENSBTAG00000005410 RGS7 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0043005 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0043005 RCTeq 

Hapmap50362-BTA-44583 19 17701476 ENSBTAG00000015527 MYO1D GO_CC:0043005 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-16742 3 43720374 ENSBTAG00000017655 PALMD GO_CC:0043005 RCTeq 

BTB-00358604 8 75109746 ENSBTAG00000018373 DPYSL2 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-90129 26 18776144 ENSBTAG00000018564 ZFYVE27 GO_CC:0043005 RCTeq 

BTA-77154-no-rs 6 93551941 ENSBTAG00000021372 SEPT11 GO_CC:0043005 RCTeq 
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ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0043005 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0043005 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0008076 RCTeq 

ARS-BFGL-NGS-15423 16 74158269 ENSBTAG00000008710 KCNH1 GO_CC:0008076 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0008076 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0008076 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0008076 RCTeq 

ARS-BFGL-NGS-36950 28 6499231 ENSBTAG00000004515 KCNK1 GO_CC:0034705 RCTeq 

ARS-BFGL-NGS-15423 16 74158269 ENSBTAG00000008710 KCNH1 GO_CC:0034705 RCTeq 

ARS-BFGL-NGS-899 28 33328952 ENSBTAG00000013300 KCNMA1 GO_CC:0034705 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0034705 RCTeq 

Hapmap23274-BTA-154879 14 38155245 ENSBTAG00000040496 KCNB2 GO_CC:0034705 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0008021 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0008021 RCTeq 

Hapmap57288-ss46526584 12 90621015 ENSBTAG00000010242 LAMP1 GO_CC:0008021 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0008021 RCTeq 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0008021 RCTeq 

ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0008021 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0098793 RCTeq 

Hapmap28049-BTA-148967 10 43956417 ENSBTAG00000010103 TRIM9 GO_CC:0098793 RCTeq 

Hapmap57288-ss46526584 12 90621015 ENSBTAG00000010242 LAMP1 GO_CC:0098793 RCTeq 

ARS-BFGL-BAC-3741 25 34055277 ENSBTAG00000017075 STX1A GO_CC:0098793 RCTeq 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0098793 RCTeq 

ARS-BFGL-NGS-28269 5 8926782 ENSBTAG00000034693 SYT1 GO_CC:0098793 RCTeq 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B GO_CC:0044456 Kcf 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0044456 Kcf 

BTB-00135420 3 75690381 ENSBTAG00000009338 LRRC7 GO_CC:0044456 Kcf 

BTB-01474679 6 66549547 ENSBTAG00000011817 GABRA2 GO_CC:0044456 Kcf 

UA-IFASA-6955 28 29913288 ENSBTAG00000012667 CAMK2G GO_CC:0044456 Kcf 

ARS-BFGL-NGS-106765 28 33405497 ENSBTAG00000013300 KCNMA1 GO_CC:0044456 Kcf 

ARS-BFGL-NGS-548 1 9900095 ENSBTAG00000017753 APP GO_CC:0044456 Kcf 
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BTB-01068662 6 67643584 ENSBTAG00000017837 GABRB1 GO_CC:0044456 Kcf 

BTA-47828-no-rs 2 62977592 ENSBTAG00000018753 TMEM163 GO_CC:0044456 Kcf 

BTB-00745347 19 28768067 ENSBTAG00000021151 MYH10 GO_CC:0044456 Kcf 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT11 GO_CC:0044456 Kcf 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0044456 Kcf 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0044456 Kcf 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_CC:0098794 Kcf 

BTB-00135420 3 75690381 ENSBTAG00000009338 LRRC7 GO_CC:0098794 Kcf 

BTB-01474679 6 66549547 ENSBTAG00000011817 GABRA2 GO_CC:0098794 Kcf 

UA-IFASA-6955 28 29913288 ENSBTAG00000012667 CAMK2G GO_CC:0098794 Kcf 

ARS-BFGL-NGS-106765 28 33405497 ENSBTAG00000013300 KCNMA1 GO_CC:0098794 Kcf 

ARS-BFGL-NGS-548 1 9900095 ENSBTAG00000017753 APP GO_CC:0098794 Kcf 

BTB-01068662 6 67643584 ENSBTAG00000017837 GABRB1 GO_CC:0098794 Kcf 

BTB-00745347 19 28768067 ENSBTAG00000021151 MYH10 GO_CC:0098794 Kcf 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT11 GO_CC:0098794 Kcf 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0098794 Kcf 

BTA-32792-no-rs 5 77371444 ENSBTAG00000002651 PKP2 KEGG:bta05412 %Cysolids 

BTB-01084639 2 15130630 ENSBTAG00000009256 ITGA4 KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-44080 5 75361846 ENSBTAG00000010865 CACNG2 KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-26419 22 46607237 ENSBTAG00000013117 CACNA2D3 KEGG:bta05412 %Cysolids 

BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-18294 5 108746845 ENSBTAG00000021994 CACNA2D4 KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-25890 28 10044965 ENSBTAG00000022886 RYR2 KEGG:bta05412 %Cysolids 

BTB-00944226 28 22989068 ENSBTAG00000045699 CTNNA3 KEGG:bta05412 %Cysolids 

ARS-BFGL-NGS-40683 3 100402643 ENSBTAG00000009603 UQCRH KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-44080 5 75361846 ENSBTAG00000010865 CACNG2 KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-26419 22 46607237 ENSBTAG00000013117 CACNA2D3 KEGG:bta04260 %Cysolids 



 

223 

 

ARS-BFGL-NGS-117685 18 51592949 ENSBTAG00000018635 ATP1A3 KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-18294 5 108746845 ENSBTAG00000021994 CACNA2D4 KEGG:bta04260 %Cysolids 

ARS-BFGL-NGS-25890 28 10044965 ENSBTAG00000022886 RYR2 KEGG:bta04260 %Cysolids 

UA-IFASA-7801 5 83492863 ENSBTAG00000002313 ITPR2 KEGG:bta04020 RECfat 

ARS-BFGL-NGS-71458 13 1053585 ENSBTAG00000008338 PLCB1 KEGG:bta04020 RECfat 

BTA-90299-no-rs 26 12463857 ENSBTAG00000008783 HTR7 KEGG:bta04020 RECfat 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta04020 RECfat 

ARS-BFGL-NGS-98581 2 14403663 ENSBTAG00000012100 PDE1A KEGG:bta04020 RECfat 

ARS-BFGL-NGS-114211 18 15099438 ENSBTAG00000014818 MYLK3 KEGG:bta04020 RECfat 

UA-IFASA-1667 7 13489100 ENSBTAG00000014828 CACNA1A KEGG:bta04020 RECfat 

ARS-BFGL-NGS-26976 19 24995142 ENSBTAG00000015258 P2RX5 KEGG:bta04020 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR KEGG:bta04020 RECfat 

BTA-18314-no-rs 26 15383866 ENSBTAG00000018966 PLCE1 KEGG:bta04020 RECfat 

BTB-00631715 8 53743552 ENSBTAG00000021127 GNA14 KEGG:bta04020 RECfat 

ARS-BFGL-NGS-35163 2 125798507 ENSBTAG00000027051 PTAFR KEGG:bta04020 RECfat 

ARS-BFGL-NGS-110110 10 20693677 ENSBTAG00000040056 LTB4R2 KEGG:bta04020 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0008585 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0008585 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0008585 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0008585 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0008585 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0008585 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0022602 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0022602 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0022602 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0022602 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0022602 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0022602 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0042698 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0042698 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0042698 RECfat 
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BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0042698 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0042698 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0042698 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0046545 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0046545 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0046545 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0046545 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0046545 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0046545 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0046660 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0046660 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0046660 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0046660 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0046660 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0046660 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0001541 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0001541 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0001541 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0001541 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0001541 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0008406 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0008406 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0008406 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0008406 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0008406 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0008406 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0045137 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0045137 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0045137 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0045137 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0045137 RECfat 



 

225 

 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0045137 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0007548 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0007548 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0007548 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0007548 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0007548 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0007548 RECfat 

ARS-BFGL-NGS-112996 4 79996650 ENSBTAG00000002912 INHBA GO_BP:0048511 RECfat 

Hapmap54988-rs29020907 4 57259091 ENSBTAG00000004398 IMMP2L GO_BP:0048511 RECfat 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0048511 RECfat 

ARS-BFGL-NGS-100288 4 114431179 ENSBTAG00000007766 CDK5 GO_BP:0048511 RECfat 

ARS-BFGL-NGS-15765 23 15005574 ENSBTAG00000009905 NFYA GO_BP:0048511 RECfat 

BTB-01944534 11 30826527 ENSBTAG00000016573 LHCGR GO_BP:0048511 RECfat 

BTB-00470654 11 31130270 ENSBTAG00000032424 FSHR GO_BP:0048511 RECfat 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0048511 RECfat 

BTA-32792-no-rs 5 77371444 ENSBTAG00000002651 PKP2 KEGG:bta05412 RECsolids 

BTB-01084639 2 15130630 ENSBTAG00000009256 ITGA4 KEGG:bta05412 RECsolids 

ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta05412 RECsolids 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta05412 RECsolids 

ARS-BFGL-NGS-44080 5 75361846 ENSBTAG00000010865 CACNG2 KEGG:bta05412 RECsolids 

ARS-BFGL-NGS-26419 22 46607237 ENSBTAG00000013117 CACNA2D3 KEGG:bta05412 RECsolids 

BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta05412 RECsolids 

ARS-BFGL-NGS-25890 28 10044965 ENSBTAG00000022886 RYR2 KEGG:bta05412 RECsolids 

BTB-00944226 28 22989068 ENSBTAG00000045699 CTNNA3 KEGG:bta05412 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta05218 RECsolids 

ARS-BFGL-NGS-27069 7 55586641 ENSBTAG00000005198 FGF1 KEGG:bta05218 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta05218 RECsolids 

Hapmap24263-BTA-161141 4 39120348 ENSBTAG00000017664 HGF KEGG:bta05218 RECsolids 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta05218 RECsolids 

ARS-BFGL-NGS-15268 7 44879216 ENSBTAG00000027357 FGF22 KEGG:bta05218 RECsolids 

ARS-BFGL-NGS-29703 15 4692182 ENSBTAG00000034827 PDGFD KEGG:bta05218 RECsolids 
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ARS-BFGL-NGS-112129 4 9837443 ENSBTAG00000044023 CDK6 KEGG:bta05218 RECsolids 

ARS-BFGL-NGS-108629 19 63530174 ENSBTAG00000001061 PRKCA KEGG:bta05200 RECsolids 

BTB-01244791 4 8495236 ENSBTAG00000002107 FZD1 KEGG:bta05200 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-107257 1 148756389 ENSBTAG00000004742 RUNX1 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-27069 7 55586641 ENSBTAG00000005198 FGF1 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta05200 RECsolids 

BTB-00180381 4 49318278 ENSBTAG00000011412 LAMB1 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-16738 5 109655733 ENSBTAG00000013988 BID KEGG:bta05200 RECsolids 

BTA-113935-no-rs 17 13686681 ENSBTAG00000016071 HHIP KEGG:bta05200 RECsolids 

Hapmap47325-BTA-55227 22 10563792 ENSBTAG00000016758 MLH1 KEGG:bta05200 RECsolids 

Hapmap24263-BTA-161141 4 39120348 ENSBTAG00000017664 HGF KEGG:bta05200 RECsolids 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-112953 10 1206871 ENSBTAG00000018852 APC KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-34712 11 46794995 ENSBTAG00000019354 PAX8 KEGG:bta05200 RECsolids 

Hapmap23975-BTC-043815 6 102937469 ENSBTAG00000020048 MAPK10 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-15268 7 44879216 ENSBTAG00000027357 FGF22 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-112129 4 9837443 ENSBTAG00000044023 CDK6 KEGG:bta05200 RECsolids 

BTB-00944226 28 22989068 ENSBTAG00000045699 CTNNA3 KEGG:bta05200 RECsolids 

ARS-BFGL-NGS-87906 29 9064567 ENSBTAG00000000246 ME3 KEGG:bta01100 RECsolids 

BTA-98453-no-rs 5 88436433 ENSBTAG00000000593 ST8SIA1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-81463 3 105819329 ENSBTAG00000001626 CTPS1 KEGG:bta01100 RECsolids 

BTB-00635473 16 37748202 ENSBTAG00000002689 NME7 KEGG:bta01100 RECsolids 

BTA-116788-no-rs 15 41971248 ENSBTAG00000002914 GALNT18 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-96503 3 107006890 ENSBTAG00000002983 NT5C1A KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-15769 4 15160644 ENSBTAG00000003222 ASNS KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-79934 3 48692833 ENSBTAG00000004422 ALG14 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-107813 18 34379769 ENSBTAG00000005152 TK2 KEGG:bta01100 RECsolids 

BTB-01648093 14 26352020 ENSBTAG00000005287 CYP7A1 KEGG:bta01100 RECsolids 

Hapmap50154-BTA-91586 2 41874101 ENSBTAG00000005562 GALNT13 KEGG:bta01100 RECsolids 

Hapmap35881-SCAFFOLD20653_10639 14 48380429 ENSBTAG00000006209 EXT1 KEGG:bta01100 RECsolids 
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Hapmap56942-ss46526051 26 33234819 ENSBTAG00000006707 ACSL5 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-107510 7 19352717 ENSBTAG00000008095 ACER1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-112419 8 49389656 ENSBTAG00000008103 ALDH1A1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-71458 13 1053585 ENSBTAG00000008338 PLCB1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-101697 10 9900839 ENSBTAG00000008341 ARSB KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-79824 21 5821878 ENSBTAG00000009125 ALDH1A3 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-40683 3 100402643 ENSBTAG00000009603 UQCRH KEGG:bta01100 RECsolids 

BTB-00424333 10 52372286 ENSBTAG00000010119 ALDH1A2 KEGG:bta01100 RECsolids 

Hapmap38797-BTA-99366 24 21743914 ENSBTAG00000011206 GALNT1 KEGG:bta01100 RECsolids 

BTA-82062-no-rs 8 85665183 ENSBTAG00000011859 IPPK KEGG:bta01100 RECsolids 

BTB-01381318 23 51118713 ENSBTAG00000012058 GMDS KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-112872 6 88069548 ENSBTAG00000012397 DCK KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-97709 18 1680104 ENSBTAG00000012985 FUK KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-115685 6 115813300 ENSBTAG00000013569 CD38 KEGG:bta01100 RECsolids 

ARS-BFGL-BAC-34398 18 53393358 ENSBTAG00000013921 CKM KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-26880 1 134090244 ENSBTAG00000015221 PCCB KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-86323 13 74478509 ENSBTAG00000016122 PIGT KEGG:bta01100 RECsolids 

Hapmap47835-BTA-112028 23 37534897 ENSBTAG00000016519 MBOAT1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-6067 2 98764258 ENSBTAG00000016662 CPS1 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-95132 3 15724767 ENSBTAG00000017819 PMVK KEGG:bta01100 RECsolids 

Hapmap49978-BTA-37376 15 66235937 ENSBTAG00000018261 PDHX KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-115485 2 63181292 ENSBTAG00000018744 MGAT5 KEGG:bta01100 RECsolids 

BTA-107196-no-rs 1 82468782 ENSBTAG00000019625 EHHADH KEGG:bta01100 RECsolids 

Hapmap47202-BTA-121802 7 45196738 ENSBTAG00000020776 POLR2E KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-116949 14 78949314 ENSBTAG00000021092 ATP6V0D2 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-72285 4 22618815 ENSBTAG00000021905 DGKB KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-5848 17 66164570 ENSBTAG00000022058 ACACB KEGG:bta01100 RECsolids 

Hapmap24162-BTA-160429 5 76501658 ENSBTAG00000030632 ALG10 KEGG:bta01100 RECsolids 

UA-IFASA-8370 3 45826189 ENSBTAG00000031358 DPYD KEGG:bta01100 RECsolids 

BTB-01276504 8 4098134 ENSBTAG00000035007 GALNTL6 KEGG:bta01100 RECsolids 

ARS-BFGL-NGS-40683 3 100402643 ENSBTAG00000009603 UQCRH KEGG:bta04260 RECsolids 
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ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta04260 RECsolids 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta04260 RECsolids 

ARS-BFGL-NGS-44080 5 75361846 ENSBTAG00000010865 CACNG2 KEGG:bta04260 RECsolids 

ARS-BFGL-NGS-26419 22 46607237 ENSBTAG00000013117 CACNA2D3 KEGG:bta04260 RECsolids 

ARS-BFGL-NGS-117685 18 51592949 ENSBTAG00000018635 ATP1A3 KEGG:bta04260 RECsolids 

ARS-BFGL-NGS-25890 28 10044965 ENSBTAG00000022886 RYR2 KEGG:bta04260 RECsolids 

Hapmap44892-BTA-50337 1 10102749 ENSBTAG00000000603 JAM2 KEGG:bta04670 RECsolids 

ARS-BFGL-NGS-108629 19 63530174 ENSBTAG00000001061 PRKCA KEGG:bta04670 RECsolids 

Hapmap24163-BTA-160726 17 64011938 ENSBTAG00000002048 PTPN11 KEGG:bta04670 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta04670 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta04670 RECsolids 

Hapmap47394-BTA-74024 5 75660485 ENSBTAG00000007531 NCF4 KEGG:bta04670 RECsolids 

BTB-01084639 2 15130630 ENSBTAG00000009256 ITGA4 KEGG:bta04670 RECsolids 

BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta04670 RECsolids 

BTB-00944226 28 22989068 ENSBTAG00000045699 CTNNA3 KEGG:bta04670 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta05213 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta05213 RECsolids 

Hapmap47325-BTA-55227 22 10563792 ENSBTAG00000016758 MLH1 KEGG:bta05213 RECsolids 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta05213 RECsolids 

ARS-BFGL-NGS-112953 10 1206871 ENSBTAG00000018852 APC KEGG:bta05213 RECsolids 

BTB-00944226 28 22989068 ENSBTAG00000045699 CTNNA3 KEGG:bta05213 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta04930 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta04930 RECsolids 

ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta04930 RECsolids 

ARS-BFGL-NGS-100053 5 109167093 ENSBTAG00000010660 CACNA1C KEGG:bta04930 RECsolids 

UA-IFASA-1667 7 13489100 ENSBTAG00000014828 CACNA1A KEGG:bta04930 RECsolids 

Hapmap23975-BTC-043815 6 102937469 ENSBTAG00000020048 MAPK10 KEGG:bta04930 RECsolids 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta04973 RECsolids 

ARS-BFGL-NGS-81552 19 28984588 ENSBTAG00000005978 PIK3R5 KEGG:bta04973 RECsolids 

ARS-BFGL-NGS-5170 22 47762087 ENSBTAG00000010026 CACNA1D KEGG:bta04973 RECsolids 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta04973 RECsolids 
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ARS-BFGL-NGS-117685 18 51592949 ENSBTAG00000018635 ATP1A3 KEGG:bta04973 RECsolids 

Hapmap44892-BTA-50337 1 10102749 ENSBTAG00000000603 JAM2 KEGG:bta04670 RECenergy 

Hapmap24163-BTA-160726 17 64011938 ENSBTAG00000002048 PTPN11 KEGG:bta04670 RECenergy 

BTA-20822-no-rs 3 100584312 ENSBTAG00000002979 PIK3R3 KEGG:bta04670 RECenergy 

ARS-BFGL-NGS-24769 29 33568217 ENSBTAG00000003176 JAM3 KEGG:bta04670 RECenergy 

ARS-BFGL-NGS-103383 12 76787101 ENSBTAG00000003568 CLDN10 KEGG:bta04670 RECenergy 

Hapmap47394-BTA-74024 5 75660485 ENSBTAG00000007531 NCF4 KEGG:bta04670 RECenergy 

BTB-01084639 2 15130630 ENSBTAG00000009256 ITGA4 KEGG:bta04670 RECenergy 

ARS-BFGL-NGS-33248 14 3885798 ENSBTAG00000009578 PTK2 KEGG:bta04670 RECenergy 

BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta04670 RECenergy 

BTA-61748-no-rs 28 22911596 ENSBTAG00000045699 CTNNA3 KEGG:bta04670 RECenergy 

Hapmap44892-BTA-50337 1 10102749 ENSBTAG00000000603 JAM2 KEGG:bta04514 RECenergy 

BTB-01138108 15 26138126 ENSBTAG00000000977 CADM1 KEGG:bta04514 RECenergy 

ARS-BFGL-NGS-24769 29 33568217 ENSBTAG00000003176 JAM3 KEGG:bta04514 RECenergy 

ARS-BFGL-NGS-103383 12 76787101 ENSBTAG00000003568 CLDN10 KEGG:bta04514 RECenergy 

BTB-01084639 2 15130630 ENSBTAG00000009256 ITGA4 KEGG:bta04514 RECenergy 

Hapmap60475-rs29022896 23 7191371 ENSBTAG00000012451 BOLA-DMB KEGG:bta04514 RECenergy 

ARS-BFGL-NGS-4157 13 74391936 ENSBTAG00000015127 SDC4 KEGG:bta04514 RECenergy 

Hapmap47139-BTA-95567 16 79553324 ENSBTAG00000023144 PTPRC KEGG:bta04514 RECenergy 

Hapmap25798-BTA-126388 11 32731961 ENSBTAG00000024021  KEGG:bta04514 RECenergy 

BTB-01755781 4 112317788 ENSBTAG00000027832  KEGG:bta04514 RECenergy 

BTB-01060598 11 32153221 ENSBTAG00000046199  KEGG:bta04514 RECenergy 

Hapmap44892-BTA-50337 1 10102749 ENSBTAG00000000603 JAM2 KEGG:bta04530 RECenergy 

ARS-BFGL-NGS-65466 13 66009719 ENSBTAG00000001640 EPB41L1 KEGG:bta04530 RECenergy 

BTB-00067270 1 141351312 ENSBTAG00000002029 IGSF5 KEGG:bta04530 RECenergy 

ARS-BFGL-NGS-24769 29 33568217 ENSBTAG00000003176 JAM3 KEGG:bta04530 RECenergy 

ARS-BFGL-NGS-103383 12 76787101 ENSBTAG00000003568 CLDN10 KEGG:bta04530 RECenergy 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B KEGG:bta04530 RECenergy 

BTA-121254-no-rs 2 125098723 ENSBTAG00000006667 EPB41 KEGG:bta04530 RECenergy 

ARS-BFGL-NGS-102915 8 45696078 ENSBTAG00000011770 TJP2 KEGG:bta04530 RECenergy 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta04530 RECenergy 
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BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta04530 RECenergy 

BTA-61748-no-rs 28 22911596 ENSBTAG00000045699 CTNNA3 KEGG:bta04530 RECenergy 

SNP= the name of the single nucleotide polymorphism; BTA= Bos taurus autosome chromosome; Location= position of the SNP on the chromosome in 

base pairs on UMD3.1 (http://www.ensembl.org/index.html); RCT = rennet coagulation time (min) of samples coagulating within 45 min from enzyme 

addition; RCTeq = Rennet coagulation time (min) estimated using the CFt equation; kCF = curd-firming rate constant (% x min-1); %CYSOLIDS = weight of 

curd solids as percentage of weight of milk processed; REC = fat, solids, and energy of the curd as percentage of the fat, solids, and energy of the milk 

processed. 

KEGG: KEGG pathway; GO_BP.GO biological process; GO_CC: GO cellular component. 

The Ensembl Bos Taurus UMD3.1 database (http://www.ensembl.org/index.html) was used as reference for SNP location and for mapping the significant 

SNP to genes. 

 

http://www.ensembl.org/index.html
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CHAPTER 5 
 

Figure S1. Heat map of Pearson (above diagonal) and partial (below diagonal) correlations among 

the 26 variables used in the factor analysis.  

 

Description: The heat map was generated using the psych package in R. Partial correlation 

coefficients were calculated using the corpcor R package. 
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Table S1. Table List of all significant SNP identified in the GWAS analyses sorted by chromosome 

N SNP BTA Location 

(bp) 

Pc1df LOG effB VSNP VP VG VPsnp 

(%) 

VGsnp 

(%) 

Trait 

1 Hapmap53172-rs29012675 6 82706745 1.39E-06 5.86 0.45 0.02 0.62 0.15 2.94% 12.00% F1_%CY 

2 Hapmap50464-BTA-77021 6 82560990 1.87E-05 4.73 0.25 0.01 0.62 0.15 2.27% 9.25% F1_%CY 

3 ARS-BFGL-NGS-87845 27 42118037 2.38E-05 4.62 0.55 0.02 0.62 0.15 2.53% 10.35% F1_%CY 

4 ARS-BFGL-NGS-102974 19 1822133 4.32E-05 4.36 -0.17 0.01 0.62 0.15 2.07% 8.44% F1_%CY 

5 ARS-BFGL-NGS-101039 2 122509616 4.43E-05 4.35 0.17 0.01 0.62 0.15 2.17% 8.87% F1_%CY 

6 Hapmap60224-rs29001782 6 85178107 4.62E-05 4.34 0.22 0.01 0.62 0.15 2.23% 9.10% F1_%CY 

7 BTB-02092741 6 114223059 4.85E-05 4.31 0.71 0.01 0.62 0.15 2.23% 9.10% F1_%CY 

8 BTA-110429-no-rs 11 87670344 6.13E-07 6.21 0.21 0.02 0.69 0.15 3.20% 14.82% F2_CFt 

9 BTA-110431-no-rs 11 87692024 1.43E-06 5.84 0.21 0.02 0.69 0.15 2.94% 13.60% F2_CFt 

10 BTA-122637-no-rs 6 88442145 6.91E-06 5.16 -0.40 0.02 0.69 0.15 2.85% 13.16% F2_CFt 

11 Hapmap23226-BTA-159656 6 46599570 8.57E-06 5.07 0.22 0.02 0.69 0.15 2.60% 12.02% F2_CFt 

12 ARS-BFGL-NGS-105624 11 86711869 1.06E-05 4.97 -0.19 0.02 0.69 0.15 2.47% 11.40% F2_CFt 

13 ARS-BFGL-NGS-29506 11 87603011 1.07E-05 4.97 -0.19 0.02 0.69 0.15 2.52% 11.64% F2_CFt 

14 ARS-BFGL-NGS-116951 11 87793629 1.41E-05 4.85 0.19 0.02 0.69 0.15 2.41% 11.14% F2_CFt 

15 Hapmap30207-BTA-126940 11 88213919 1.50E-05 4.82 -0.19 0.02 0.69 0.15 2.43% 11.24% F2_CFt 

16 ARS-BFGL-NGS-119913 11 86779385 1.93E-05 4.71 -0.18 0.02 0.69 0.15 2.34% 10.80% F2_CFt 

17 ARS-BFGL-NGS-37074 11 88028793 2.03E-05 4.69 0.18 0.02 0.69 0.15 2.33% 10.76% F2_CFt 

18 ARS-BFGL-NGS-110235 11 85367073 2.47E-05 4.61 0.18 0.02 0.69 0.15 2.25% 10.40% F2_CFt 

19 BTA-120876-no-rs 11 85935590 2.59E-05 4.59 0.18 0.02 0.69 0.15 2.27% 10.48% F2_CFt 

20 ARS-BFGL-NGS-113560 11 88074583 2.64E-05 4.58 -0.18 0.02 0.69 0.15 2.31% 10.70% F2_CFt 

21 Hapmap46930-BTA-111382 11 88186796 3.73E-05 4.43 -0.18 0.02 0.69 0.15 2.22% 10.24% F2_CFt 

22 ARS-BFGL-NGS-104610 11 104293559 2.08E-26 25.68 -0.42 0.09 0.49 0.27 17.34% 31.33% F4_Cheese N 

23 ARS-BFGL-NGS-115328 11 103110855 6.88E-20 19.16 -0.37 0.06 0.49 0.27 12.60% 22.77% F4_Cheese N 

24 ARS-BFGL-NGS-119318 11 102974570 1.96E-15 14.71 -0.33 0.05 0.49 0.27 9.17% 16.56% F4_Cheese N 

25 ARS-BFGL-NGS-32953 11 101301047 9.02E-12 11.04 -0.27 0.03 0.49 0.27 6.71% 12.11% F4_Cheese N 

26 ARS-USMARC-Parent-AY851163-rs17871661 11 103047474 1.49E-09 8.83 -0.30 0.03 0.49 0.27 5.40% 9.76% F4_Cheese N 

27 ARS-BFGL-NGS-117078 11 104812200 3.64E-09 8.44 -0.30 0.03 0.49 0.27 5.16% 9.33% F4_Cheese N 

28 ARS-BFGL-NGS-40995 11 103742782 8.95E-08 7.05 -0.32 0.02 0.49 0.27 4.31% 7.78% F4_Cheese N 
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29 BTA-118685-no-rs 11 101706587 1.66E-07 6.78 -0.33 0.02 0.49 0.27 4.11% 7.42% F4_Cheese N 

30 Hapmap56906-rs29014970 11 97844929 2.63E-07 6.58 -0.22 0.02 0.49 0.27 4.03% 7.28% F4_Cheese N 

31 ARS-BFGL-NGS-105689 11 102285689 4.60E-07 6.34 0.19 0.02 0.49 0.27 3.81% 6.89% F4_Cheese N 

32 ARS-BFGL-NGS-14392 11 102237822 1.27E-06 5.90 -0.26 0.02 0.49 0.27 3.35% 6.05% F4_Cheese N 

33 ARS-BFGL-NGS-116123 11 94686959 1.48E-06 5.83 -0.21 0.02 0.49 0.27 3.49% 6.31% F4_Cheese N 

34 ARS-BFGL-NGS-25833 11 106543262 2.08E-06 5.68 -0.19 0.02 0.49 0.27 3.25% 5.88% F4_Cheese N 

35 BTA-118663-no-rs 11 101384765 2.77E-06 5.56 0.18 0.02 0.49 0.27 3.12% 5.64% F4_Cheese N 

36 ARS-BFGL-NGS-45339 11 106067128 2.96E-06 5.53 -0.22 0.02 0.49 0.27 3.06% 5.54% F4_Cheese N 

37 BTA-118661-no-rs 11 101357473 3.45E-06 5.46 0.18 0.02 0.49 0.27 3.06% 5.52% F4_Cheese N 

38 ARS-BFGL-NGS-111682 11 104633267 4.00E-06 5.40 -0.22 0.02 0.49 0.27 3.16% 5.72% F4_Cheese N 

39 ARS-BFGL-NGS-24522 6 87878364 4.40E-06 5.36 0.31 0.01 0.49 0.27 2.94% 5.32% F4_Cheese N 

40 ARS-BFGL-NGS-11064 11 106510932 8.45E-06 5.07 -0.18 0.01 0.49 0.27 2.83% 5.11% F4_Cheese N 

41 ARS-BFGL-NGS-77843 11 103856100 1.17E-05 4.93 -0.20 0.01 0.49 0.27 2.72% 4.91% F4_Cheese N 

42 ARS-BFGL-NGS-101698 11 96230130 1.22E-05 4.91 -0.20 0.01 0.49 0.27 2.77% 5.01% F4_Cheese N 

43 ARS-BFGL-NGS-2573 11 101602103 2.94E-05 4.53 -0.38 0.01 0.49 0.27 2.50% 4.51% F4_Cheese N 

44 ARS-BFGL-NGS-98548 11 103458444 3.04E-05 4.52 0.22 0.01 0.49 0.27 2.52% 4.54% F4_Cheese N 

45 ARS-BFGL-NGS-35656 11 97289960 4.13E-05 4.38 0.20 0.01 0.49 0.27 2.40% 4.34% F4_Cheese N 

46 Hapmap24798-BTA-127049 11 95837993 4.51E-05 4.35 -0.17 0.01 0.49 0.27 2.51% 4.53% F4_Cheese N 

47 Hapmap28023-BTC-060518 6 87201599 2.84E-47 46.55 -0.90 0.23 0.65 0.44 35.60% 52.82% F5_αs1-β-CN 

48 Hapmap24184-BTC-070077 6 87245049 7.00E-45 44.15 -0.88 0.22 0.65 0.44 33.76% 50.09% F5_αs1-β-CN 

49 ARS-BFGL-NGS-36707 6 86354888 1.22E-26 25.92 -0.75 0.13 0.65 0.44 19.95% 29.60% F5_αs1-β-CN 

50 Hapmap41098-BTA-86027 6 84889974 7.27E-24 23.14 -0.70 0.11 0.65 0.44 17.35% 25.74% F5_αs1-β-CN 

51 Hapmap46932-BTA-111719 6 84819700 1.99E-22 21.70 -0.57 0.11 0.65 0.44 16.78% 24.89% F5_αs1-β-CN 

52 BTA-111108-no-rs 6 85424500 1.88E-21 20.73 -0.66 0.10 0.65 0.44 15.68% 23.26% F5_αs1-β-CN 

53 ARS-BFGL-NGS-114609 6 84713584 6.87E-18 17.16 -0.49 0.09 0.65 0.44 13.07% 19.39% F5_αs1-β-CN 

54 Hapmap25708-BTC-043671 6 87113639 6.54E-15 14.18 -0.41 0.07 0.65 0.44 10.67% 15.83% F5_αs1-β-CN 

55 ARS-BFGL-NGS-70112 6 84448550 7.31E-13 12.14 -0.41 0.06 0.65 0.44 8.53% 12.65% F5_αs1-β-CN 

56 Hapmap23387-BTC-072905 6 82078166 1.26E-12 11.90 -0.48 0.06 0.65 0.44 8.54% 12.68% F5_αs1-β-CN 

57 Hapmap32475-BTC-050530 6 82047313 1.26E-12 11.90 -0.48 0.06 0.65 0.44 8.54% 12.68% F5_αs1-β-CN 

58 BTA-121763-no-rs 6 84968944 2.49E-11 10.60 0.39 0.05 0.65 0.44 7.38% 10.95% F5_αs1-β-CN 

59 ARS-BFGL-NGS-63312 6 82965163 1.01E-10 10.00 -0.38 0.04 0.65 0.44 6.84% 10.14% F5_αs1-β-CN 
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60 Hapmap49297-BTA-76961 6 83147633 1.62E-10 9.79 -0.34 0.04 0.65 0.44 6.70% 9.94% F5_αs1-β-CN 

61 Hapmap26317-BTC-059618 6 82253271 9.19E-10 9.04 -0.31 0.04 0.65 0.44 6.28% 9.32% F5_αs1-β-CN 

62 Hapmap23419-BTC-059652 6 82314634 1.41E-09 8.85 -0.31 0.04 0.65 0.44 6.18% 9.17% F5_αs1-β-CN 

63 Hapmap31932-BTC-042947 6 82350917 3.94E-09 8.40 -0.30 0.04 0.65 0.44 5.82% 8.63% F5_αs1-β-CN 

64 BTA-121766-no-rs 6 83256899 1.83E-08 7.74 -0.28 0.03 0.65 0.44 5.28% 7.83% F5_αs1-β-CN 

65 ARS-BFGL-NGS-118182 6 88592295 2.46E-08 7.61 0.31 0.03 0.65 0.44 5.13% 7.61% F5_αs1-β-CN 

66 BTB-00264815 6 81019581 3.56E-08 7.45 -0.33 0.03 0.65 0.44 5.04% 7.48% F5_αs1-β-CN 

67 BTB-01393607 6 80062406 8.02E-08 7.10 -0.32 0.03 0.65 0.44 4.88% 7.25% F5_αs1-β-CN 

68 Hapmap30192-BTC-072881 6 87281196 1.31E-07 6.88 0.54 0.03 0.65 0.44 4.88% 7.24% F5_αs1-β-CN 

69 Hapmap27307-BTC-043200 6 82605943 1.35E-07 6.87 0.31 0.03 0.65 0.44 4.48% 6.65% F5_αs1-β-CN 

70 Hapmap23522-BTC-047379 6 87222751 2.53E-07 6.60 0.53 0.03 0.65 0.44 4.64% 6.88% F5_αs1-β-CN 

71 ARS-BFGL-NGS-60491 6 85703164 1.08E-06 5.97 -0.24 0.03 0.65 0.44 4.14% 6.14% F5_αs1-β-CN 

72 BTA-76907-no-rs 0 0 1.14E-06 5.94 -0.26 0.02 0.65 0.44 3.81% 5.65% F5_αs1-β-CN 

73 ARS-BFGL-NGS-24522 6 87878364 1.16E-06 5.93 -0.41 0.02 0.65 0.44 3.77% 5.60% F5_αs1-β-CN 

74 Hapmap31617-BTC-043368 6 82458774 1.51E-06 5.82 0.31 0.02 0.65 0.44 3.77% 5.60% F5_αs1-β-CN 

75 BTB-01654826 6 88891318 2.81E-06 5.55 0.29 0.02 0.65 0.44 3.66% 5.43% F5_αs1-β-CN 

76 ARS-BFGL-NGS-42175 6 79544981 2.85E-06 5.55 -0.27 0.02 0.65 0.44 3.67% 5.45% F5_αs1-β-CN 

77 BTA-77077-no-rs 6 85527109 3.28E-06 5.48 -0.82 0.02 0.65 0.44 3.58% 5.31% F5_αs1-β-CN 

78 ARS-BFGL-NGS-110734 0 0 3.37E-06 5.47 -0.23 0.02 0.65 0.44 3.52% 5.22% F5_αs1-β-CN 

79 Hapmap43767-BTA-113302 6 85646902 3.73E-06 5.43 -0.23 0.02 0.65 0.44 3.76% 5.58% F5_αs1-β-CN 

80 Hapmap32099-BTA-151095 6 83345994 4.00E-06 5.40 -0.23 0.02 0.65 0.44 3.46% 5.13% F5_αs1-β-CN 

81 BTA-76959-no-rs 6 83290843 4.35E-06 5.36 -0.23 0.02 0.65 0.44 3.43% 5.09% F5_αs1-β-CN 

82 Hapmap60030-rs29013992 6 77585276 4.85E-06 5.31 -0.29 0.02 0.65 0.44 3.38% 5.01% F5_αs1-β-CN 

83 BTA-114800-no-rs 6 77520815 7.11E-06 5.15 -0.28 0.02 0.65 0.44 3.29% 4.89% F5_αs1-β-CN 

84 ARS-BFGL-NGS-80068 6 77650126 7.58E-06 5.12 -0.28 0.02 0.65 0.44 3.26% 4.84% F5_αs1-β-CN 

85 Hapmap27109-BTC-060711 6 87152621 1.44E-05 4.84 -0.22 0.02 0.65 0.44 3.12% 4.63% F5_αs1-β-CN 

86 Hapmap33631-BTC-043555 6 87327708 1.58E-05 4.80 -0.22 0.02 0.65 0.44 3.33% 4.94% F5_αs1-β-CN 

87 Hapmap51938-BTA-21491 6 81057816 2.34E-05 4.63 -0.24 0.02 0.65 0.44 3.05% 4.52% F5_αs1-β-CN 

88 ARS-BFGL-NGS-2391 6 91187144 3.23E-05 4.49 0.44 0.02 0.65 0.44 2.93% 4.35% F5_αs1-β-CN 

89 BTA-21753-no-rs 9 36790663 4.24E-05 4.37 -1.02 0.02 0.65 0.44 2.67% 3.97% F5_αs1-β-CN 

90 ARS-BFGL-NGS-37271 6 85743833 4.29E-05 4.37 0.38 0.02 0.65 0.44 2.85% 4.23% F5_αs1-β-CN 
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91 BTB-00264414 6 79843283 4.49E-05 4.35 -0.20 0.02 0.65 0.44 2.70% 4.00% F5_αs1-β-CN 

92 BTA-22106-no-rs 6 89104201 4.61E-05 4.34 0.41 0.02 0.65 0.44 2.92% 4.33% F5_αs1-β-CN 

93 Hapmap26618-BTC-070864 6 39597740 1.19E-06 5.93 0.47 0.01 0.46 0.07 3.03% 20.10% F6_Udder health 

94 Hapmap27849-BTC-071108 6 39503443 1.72E-06 5.76 0.47 0.01 0.46 0.07 2.95% 19.55% F6_Udder health 

95 Hapmap31994-BTC-065943 25 5385729 3.12E-06 5.51 0.23 0.01 0.46 0.07 2.71% 17.97% F6_Udder health 

96 Hapmap52348-rs29024684 6 87396306 5.84E-06 5.23 0.18 0.01 0.46 0.07 2.68% 17.77% F6_Udder health 

97 Hapmap28075-BTC-035688 6 40377515 7.89E-06 5.10 0.40 0.01 0.46 0.07 2.61% 17.32% F6_Udder health 

98 BTB-01723556 11 4419032 4.72E-05 4.33 0.29 0.01 0.46 0.07 2.14% 14.21% F6_Udder health 

99 Hapmap52348-rs29024684 6 87396306 9.81E-56 55.01 -1.01 0.37 0.77 0.50 48.03% 74.19% F7_κ-β-CN 

100 BTA-111108-no-rs 6 85424500 4.65E-22 21.33 -0.78 0.14 0.77 0.50 18.34% 28.34% F7_κ-β-CN 

101 ARS-BFGL-NGS-114609 6 84713584 3.71E-21 20.43 -0.62 0.14 0.77 0.50 17.62% 27.23% F7_κ-β-CN 

102 ARS-BFGL-NGS-63312 6 82965163 9.19E-21 20.04 -0.64 0.13 0.77 0.50 16.24% 25.09% F7_κ-β-CN 

103 Hapmap41098-BTA-86027 6 84889974 3.55E-19 18.45 -0.72 0.12 0.77 0.50 15.61% 24.12% F7_κ-β-CN 

104 ARS-BFGL-NGS-36707 6 86354888 1.11E-18 17.96 -0.72 0.12 0.77 0.50 15.50% 23.95% F7_κ-β-CN 

105 Hapmap23387-BTC-072905 6 82078166 1.33E-17 16.88 -0.66 0.11 0.77 0.50 14.07% 21.74% F7_κ-β-CN 

106 Hapmap32475-BTC-050530 6 82047313 1.33E-17 16.88 -0.66 0.11 0.77 0.50 14.07% 21.74% F7_κ-β-CN 

107 Hapmap52479-rs29018853 6 79203343 5.79E-17 16.24 -0.54 0.10 0.77 0.50 13.52% 20.89% F7_κ-β-CN 

108 BTA-76907-no-rs 0 0 9.47E-17 16.02 -0.51 0.10 0.77 0.50 12.63% 19.51% F7_κ-β-CN 

109 Hapmap28023-BTC-060518 6 87201599 1.13E-16 15.95 -0.60 0.10 0.77 0.50 13.34% 20.61% F7_κ-β-CN 

110 Hapmap24184-BTC-070077 6 87245049 2.41E-16 15.62 -0.60 0.10 0.77 0.50 13.17% 20.34% F7_κ-β-CN 

111 Hapmap31932-BTC-042947 6 82350917 2.85E-16 15.55 -0.49 0.10 0.77 0.50 12.78% 19.74% F7_κ-β-CN 

112 ARS-BFGL-NGS-42175 6 79544981 5.02E-16 15.30 -0.55 0.10 0.77 0.50 12.54% 19.37% F7_κ-β-CN 

113 Hapmap26317-BTC-059618 6 82253271 2.99E-15 14.52 -0.47 0.09 0.77 0.50 11.87% 18.34% F7_κ-β-CN 

114 Hapmap23419-BTC-059652 6 82314634 3.66E-15 14.44 -0.47 0.09 0.77 0.50 11.87% 18.34% F7_κ-β-CN 

115 Hapmap46932-BTA-111719 6 84819700 4.09E-15 14.39 -0.53 0.09 0.77 0.50 12.11% 18.70% F7_κ-β-CN 

116 Hapmap32099-BTA-151095 6 83345994 6.21E-15 14.21 -0.45 0.09 0.77 0.50 11.25% 17.38% F7_κ-β-CN 

117 BTA-76959-no-rs 6 83290843 6.44E-15 14.19 -0.45 0.09 0.77 0.50 11.25% 17.38% F7_κ-β-CN 

118 Hapmap51938-BTA-21491 6 81057816 9.67E-15 14.01 -0.50 0.09 0.77 0.50 11.63% 17.97% F7_κ-β-CN 

119 ARS-BFGL-NGS-110734 0 0 1.11E-14 13.96 -0.45 0.09 0.77 0.50 11.09% 17.14% F7_κ-β-CN 

120 BTB-00264414 6 79843283 1.85E-14 13.73 -0.44 0.08 0.77 0.50 10.82% 16.72% F7_κ-β-CN 

121 Hapmap33631-BTC-043555 6 87327708 6.89E-14 13.16 -0.44 0.09 0.77 0.50 11.43% 17.65% F7_κ-β-CN 
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122 BTB-00264815 6 81019581 5.41E-13 12.27 -0.50 0.08 0.77 0.50 9.82% 15.17% F7_κ-β-CN 

123 BTB-01393607 6 80062406 7.92E-13 12.10 -0.50 0.08 0.77 0.50 9.89% 15.28% F7_κ-β-CN 

124 Hapmap27109-BTC-060711 6 87152621 2.08E-12 11.68 -0.41 0.07 0.77 0.50 9.33% 14.41% F7_κ-β-CN 

125 Hapmap43767-BTA-113302 6 85646902 3.39E-12 11.47 -0.40 0.07 0.77 0.50 9.69% 14.97% F7_κ-β-CN 

126 Hapmap49297-BTA-76961 6 83147633 6.42E-12 11.19 -0.42 0.07 0.77 0.50 8.79% 13.58% F7_κ-β-CN 

127 ARS-BFGL-NGS-27643 6 78786848 1.00E-11 11.00 -0.49 0.07 0.77 0.50 8.91% 13.77% F7_κ-β-CN 

128 BTB-01900612 6 79817258 2.44E-11 10.61 -0.37 0.06 0.77 0.50 8.10% 12.51% F7_κ-β-CN 

129 ARS-BFGL-NGS-70112 6 84448550 2.49E-11 10.60 -0.43 0.06 0.77 0.50 8.28% 12.78% F7_κ-β-CN 

130 ARS-BFGL-NGS-60491 6 85703164 6.00E-11 10.22 -0.37 0.07 0.77 0.50 8.48% 13.10% F7_κ-β-CN 

131 BTB-00264506 6 79732129 8.30E-11 10.08 -0.36 0.06 0.77 0.50 7.91% 12.21% F7_κ-β-CN 

132 BTB-00265288 6 81286240 1.04E-10 9.98 -0.37 0.06 0.77 0.50 7.71% 11.91% F7_κ-β-CN 

133 BTA-77011-no-rs 6 82773692 1.10E-10 9.96 -0.36 0.06 0.77 0.50 7.98% 12.32% F7_κ-β-CN 

134 Hapmap26729-BTA-154447 6 77391041 1.53E-10 9.82 -0.37 0.06 0.77 0.50 7.86% 12.15% F7_κ-β-CN 

135 BTA-122637-no-rs 6 88442145 2.46E-10 9.61 -0.71 0.06 0.77 0.50 7.96% 12.30% F7_κ-β-CN 

136 Hapmap38629-BTA-76891 6 78289101 3.35E-10 9.47 -0.35 0.06 0.77 0.50 7.34% 11.33% F7_κ-β-CN 

137 BTA-114800-no-rs 6 77520815 4.15E-10 9.38 -0.46 0.06 0.77 0.50 7.25% 11.20% F7_κ-β-CN 

138 BTB-00217058 6 79592589 4.81E-10 9.32 -0.34 0.05 0.77 0.50 7.05% 10.88% F7_κ-β-CN 

139 ARS-BFGL-NGS-80068 6 77650126 4.99E-10 9.30 -0.45 0.06 0.77 0.50 7.16% 11.07% F7_κ-β-CN 

140 BTA-05242-no-rs 6 81225864 5.50E-10 9.26 -0.34 0.05 0.77 0.50 6.98% 10.78% F7_κ-β-CN 

141 Hapmap60030-rs29013992 6 77585276 1.82E-09 8.74 -0.44 0.05 0.77 0.50 6.65% 10.27% F7_κ-β-CN 

142 ARS-BFGL-NGS-112473 6 79680793 8.91E-09 8.05 -0.32 0.05 0.77 0.50 5.96% 9.21% F7_κ-β-CN 

143 Hapmap39314-BTA-121985 6 79982917 9.96E-09 8.00 -0.32 0.05 0.77 0.50 6.28% 9.70% F7_κ-β-CN 

144 BTA-76988-no-rs 6 90876389 1.65E-08 7.78 -0.86 0.04 0.77 0.50 5.82% 8.99% F7_κ-β-CN 

145 Hapmap43045-BTA-76998 6 90730485 1.73E-08 7.76 -1.31 0.05 0.77 0.50 6.10% 9.43% F7_κ-β-CN 

146 BTB-00264877 6 81042351 1.84E-08 7.73 -0.31 0.04 0.77 0.50 5.80% 8.96% F7_κ-β-CN 

147 BTB-00264606 6 79632703 1.90E-08 7.72 -0.31 0.04 0.77 0.50 5.78% 8.92% F7_κ-β-CN 

148 Hapmap25708-BTC-043671 6 87113639 2.07E-08 7.68 -0.34 0.05 0.77 0.50 6.28% 9.70% F7_κ-β-CN 

149 BTB-01885835 6 92279760 3.00E-08 7.52 -0.62 0.05 0.77 0.50 5.89% 9.10% F7_κ-β-CN 

150 Hapmap25412-BTC-031860 6 82008221 5.05E-08 7.30 -0.31 0.04 0.77 0.50 5.45% 8.41% F7_κ-β-CN 

151 Hapmap47405-BTA-76965 6 83117772 8.60E-08 7.07 -0.76 0.04 0.77 0.50 5.35% 8.26% F7_κ-β-CN 

152 ARS-BFGL-NGS-12798 6 78561987 2.49E-07 6.60 -0.72 0.04 0.77 0.50 4.74% 7.31% F7_κ-β-CN 
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153 ARS-BFGL-NGS-60568 6 92465869 3.50E-07 6.46 -0.41 0.04 0.77 0.50 4.96% 7.67% F7_κ-β-CN 

154 Hapmap60182-rs29025531 6 74606760 5.95E-07 6.23 -0.34 0.04 0.77 0.50 4.79% 7.40% F7_κ-β-CN 

155 BTA-121695-no-rs 6 92552055 8.32E-07 6.08 -0.40 0.04 0.77 0.50 4.64% 7.16% F7_κ-β-CN 

156 Hapmap35196-BES10_Contig207_566 6 92578562 8.32E-07 6.08 -0.40 0.04 0.77 0.50 4.64% 7.16% F7_κ-β-CN 

157 Hapmap50778-BTA-77229 6 94334151 9.27E-07 6.03 -0.91 0.03 0.77 0.50 4.36% 6.73% F7_κ-β-CN 

158 Hapmap57014-rs29019575 6 87801255 1.03E-06 5.99 -0.73 0.03 0.77 0.50 4.52% 6.98% F7_κ-β-CN 

159 BTA-121766-no-rs 6 83256899 1.36E-06 5.87 -0.28 0.03 0.77 0.50 4.43% 6.84% F7_κ-β-CN 

160 BTB-01687386 6 94360125 1.79E-06 5.75 -0.87 0.03 0.77 0.50 4.14% 6.39% F7_κ-β-CN 

161 BTB-01995503 6 92527885 2.15E-06 5.67 -0.39 0.03 0.77 0.50 4.36% 6.74% F7_κ-β-CN 

162 BTA-10392-no-rs 6 88547858 2.69E-06 5.57 -0.86 0.03 0.77 0.50 4.49% 6.94% F7_κ-β-CN 

163 ARS-BFGL-NGS-99026 6 72930338 2.98E-06 5.53 -0.29 0.03 0.77 0.50 3.87% 5.98% F7_κ-β-CN 

164 Hapmap49058-BTA-121772 6 94228599 3.77E-06 5.42 -0.68 0.03 0.77 0.50 4.07% 6.28% F7_κ-β-CN 

165 Hapmap44699-BTA-122320 6 77228984 5.73E-06 5.24 -0.28 0.03 0.77 0.50 3.86% 5.96% F7_κ-β-CN 

166 BTA-111809-no-rs 6 77186116 6.47E-06 5.19 -0.28 0.03 0.77 0.50 3.86% 5.96% F7_κ-β-CN 

167 ARS-BFGL-NGS-68326 6 72906612 8.34E-06 5.08 -0.28 0.03 0.77 0.50 3.54% 5.47% F7_κ-β-CN 

168 Hapmap29639-BTC-041962 6 71350048 1.21E-05 4.92 -0.88 0.03 0.77 0.50 3.69% 5.70% F7_κ-β-CN 

169 UA-IFASA-2111 6 84351311 1.63E-05 4.79 -0.78 0.03 0.77 0.50 3.36% 5.19% F7_κ-β-CN 

170 BTB-00262270 6 74546008 2.11E-05 4.67 -0.26 0.03 0.77 0.50 3.39% 5.24% F7_κ-β-CN 

171 BTB-00263209 6 72382208 2.87E-05 4.54 -0.28 0.02 0.77 0.50 3.21% 4.97% F7_κ-β-CN 

172 BTB-00041036 1 90156001 4.19E-05 4.38 -1.37 0.03 0.77 0.50 3.57% 5.51% F7_κ-β-CN 

173 Hapmap28023-BTC-060518 6 87201599 8.34E-11 10.08 -0.35 0.04 0.55 0.22 6.37% 16.01% F8_αs2-CN 

174 Hapmap24184-BTC-070077 6 87245049 1.67E-10 9.78 -0.35 0.03 0.55 0.22 6.24% 15.70% F8_αs2-CN 

175 Hapmap43045-BTA-76998 6 90730485 1.63E-09 8.79 1.05 0.03 0.55 0.22 5.43% 13.66% F8_αs2-CN 

176 UA-IFASA-2111 6 84351311 2.02E-09 8.69 0.81 0.03 0.55 0.22 5.06% 12.71% F8_αs2-CN 

177 BTB-01687386 6 94360125 1.36E-08 7.87 0.77 0.03 0.55 0.22 4.53% 11.38% F8_αs2-CN 

178 Hapmap50778-BTA-77229 6 94334151 1.77E-08 7.75 0.78 0.02 0.55 0.22 4.47% 11.23% F8_αs2-CN 

179 ARS-BFGL-NGS-36707 6 86354888 2.17E-08 7.66 -0.34 0.03 0.55 0.22 4.84% 12.17% F8_αs2-CN 

180 ARS-BFGL-NGS-70112 6 84448550 5.04E-08 7.30 -0.27 0.02 0.55 0.22 4.34% 10.91% F8_αs2-CN 

181 BTA-68275-no-rs 6 89001383 5.73E-08 7.24 0.52 0.02 0.55 0.22 4.16% 10.47% F8_αs2-CN 

182 Hapmap33631-BTC-043555 6 87327708 9.47E-08 7.02 -0.23 0.02 0.55 0.22 4.47% 11.25% F8_αs2-CN 

183 Hapmap29639-BTC-041962 6 71350048 1.12E-07 6.95 0.80 0.02 0.55 0.22 4.22% 10.60% F8_αs2-CN 
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184 Hapmap46932-BTA-111719 6 84819700 1.13E-07 6.95 -0.27 0.02 0.55 0.22 4.46% 11.20% F8_αs2-CN 

185 Hapmap57014-rs29019575 6 87801255 1.43E-07 6.85 0.59 0.02 0.55 0.22 4.08% 10.25% F8_αs2-CN 

186 BTA-121766-no-rs 6 83256899 2.15E-07 6.67 -0.22 0.02 0.55 0.22 3.99% 10.03% F8_αs2-CN 

187 Hapmap25708-BTC-043671 6 87113639 3.59E-07 6.44 -0.23 0.02 0.55 0.22 4.03% 10.12% F8_αs2-CN 

188 Hapmap41098-BTA-86027 6 84889974 4.94E-07 6.31 -0.30 0.02 0.55 0.22 3.84% 9.65% F8_αs2-CN 

189 BTA-76988-no-rs 6 90876389 8.03E-07 6.10 0.56 0.02 0.55 0.22 3.47% 8.71% F8_αs2-CN 

190 Hapmap49297-BTA-76961 6 83147633 1.67E-06 5.78 -0.22 0.02 0.55 0.22 3.33% 8.37% F8_αs2-CN 

191 BTA-111108-no-rs 6 85424500 2.31E-06 5.64 -0.29 0.02 0.55 0.22 3.42% 8.60% F8_αs2-CN 

192 BTB-00264815 6 81019581 2.94E-06 5.53 -0.24 0.02 0.55 0.22 3.21% 8.06% F8_αs2-CN 

193 Hapmap44699-BTA-122320 6 77228984 3.26E-06 5.49 -0.22 0.02 0.55 0.22 3.16% 7.95% F8_αs2-CN 

194 BTB-00264565 6 79705920 3.72E-06 5.43 0.65 0.02 0.55 0.22 3.17% 7.98% F8_αs2-CN 

195 ARS-BFGL-NGS-60491 6 85703164 4.23E-06 5.37 -0.20 0.02 0.55 0.22 3.28% 8.25% F8_αs2-CN 

196 BTB-01393607 6 80062406 4.64E-06 5.33 -0.24 0.02 0.55 0.22 3.15% 7.91% F8_αs2-CN 

197 Hapmap25412-BTC-031860 6 82008221 6.32E-06 5.20 -0.20 0.02 0.55 0.22 2.98% 7.49% F8_αs2-CN 

198 Hapmap47405-BTA-76965 6 83117772 8.14E-06 5.09 0.47 0.02 0.55 0.22 2.89% 7.26% F8_αs2-CN 

199 ARS-BFGL-NGS-12798 6 78561987 1.14E-05 4.94 0.46 0.01 0.55 0.22 2.68% 6.73% F8_αs2-CN 

200 BTA-76623-no-rs 6 71154473 1.26E-05 4.90 0.51 0.02 0.55 0.22 2.91% 7.31% F8_αs2-CN 

201 Hapmap23387-BTC-072905 6 82078166 2.16E-05 4.66 -0.25 0.01 0.55 0.22 2.71% 6.80% F8_αs2-CN 

202 Hapmap32475-BTC-050530 6 82047313 2.16E-05 4.66 -0.25 0.01 0.55 0.22 2.71% 6.80% F8_αs2-CN 

203 ARS-BFGL-NGS-111636 6 68546212 2.18E-05 4.66 0.39 0.01 0.55 0.22 2.57% 6.47% F8_αs2-CN 

204 Hapmap60030-rs29013992 6 77585276 2.45E-05 4.61 -0.23 0.01 0.55 0.22 2.56% 6.43% F8_αs2-CN 

205 Hapmap41952-BTA-73370 10 10659761 3.22E-05 4.49 0.17 0.01 0.55 0.22 2.43% 6.11% F8_αs2-CN 

206 Hapmap51938-BTA-21491 6 81057816 4.11E-05 4.39 -0.20 0.01 0.55 0.22 2.54% 6.40% F8_αs2-CN 

207 Hapmap28023-BTC-060518 6 87201599 3.86E-11 10.41 -0.32 0.03 0.48 0.12 6.06% 24.69% F9_αs1-CN-Ph 

208 Hapmap24184-BTC-070077 6 87245049 7.80E-11 10.11 -0.32 0.03 0.48 0.12 5.94% 24.20% F9_αs1-CN-Ph 

209 ARS-BFGL-NGS-36707 6 86354888 1.96E-07 6.71 -0.28 0.02 0.48 0.12 3.84% 15.65% F9_αs1-CN-Ph 

210 Hapmap25708-BTC-043671 6 87113639 4.37E-07 6.36 -0.21 0.02 0.48 0.12 3.65% 14.85% F9_αs1-CN-Ph 

211 ARS-BFGL-NGS-114609 6 84713584 1.70E-06 5.77 -0.21 0.02 0.48 0.12 3.27% 13.31% F9_αs1-CN-Ph 

212 BTA-111108-no-rs 6 85424500 2.73E-06 5.56 -0.25 0.01 0.48 0.12 3.10% 12.64% F9_αs1-CN-Ph 

213 Hapmap41098-BTA-86027 6 84889974 7.81E-06 5.11 -0.24 0.01 0.48 0.12 2.79% 11.36% F9_αs1-CN-Ph 

214 Hapmap46932-BTA-111719 6 84819700 1.52E-05 4.82 -0.20 0.01 0.48 0.12 2.73% 11.11% F9_αs1-CN-Ph 
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215 Hapmap51592-BTA-41521 20 46709345 1.84E-05 4.74 -0.16 0.01 0.48 0.12 2.45% 9.96% F9_αs1-CN-Ph 

216 ARS-BFGL-NGS-70112 6 84448550 2.15E-05 4.67 -0.19 0.01 0.48 0.12 2.44% 9.93% F9_αs1-CN-Ph 

217 ARS-BFGL-NGS-56195 11 77493775 3.40E-05 4.47 -0.38 0.01 0.48 0.12 2.42% 9.87% F9_αs1-CN-Ph 

218 ARS-BFGL-NGS-110734 0 0 4.66E-05 4.33 -0.16 0.01 0.48 0.12 2.22% 9.02% F9_αs1-CN-Ph 

219 Hapmap32099-BTA-151095 6 83345994 4.86E-05 4.31 -0.16 0.01 0.48 0.12 2.18% 8.89% F9_αs1-CN-Ph 

220 BTA-76959-no-rs 6 83290843 4.89E-05 4.31 -0.16 0.01 0.48 0.12 2.18% 8.89% F9_αs1-CN-Ph 

221 BTA-51080-no-rs 20 7881875 8.02E-06 5.10 -1.01 0.01 0.47 0.08 2.79% 15.90% F10_α-LA 

222 ARS-BFGL-NGS-6104 11 104456040 1.85E-05 4.73 -0.27 0.01 0.47 0.08 2.46% 14.01% F10_α-LA 

223 ARS-BFGL-NGS-4101 11 104325453 2.67E-05 4.57 -0.26 0.01 0.47 0.08 2.33% 13.29% F10_α-LA 

224 ARS-BFGL-NGS-24170 27 43459156 2.84E-05 4.55 0.14 0.01 0.47 0.08 2.17% 12.34% F10_α-LA 

225 BTB-01261619 27 43901931 4.73E-05 4.32 0.15 0.01 0.47 0.08 2.20% 12.54% F10_α-LA 

226 Hapmap41400-BTA-101218 27 43435991 4.84E-05 4.32 0.14 0.01 0.47 0.08 2.03% 11.59% F10_α-LA 

Description: SNP= the name of the single nucleotide polymorphism; BTA= Bos taurus autosome chromosome; Location= position of the SNP on 

the chromosome in base pairs on UMD3.1 (http://www.ensembl.org/index.html); Pc1df= P-values adjusted for genomic control; LOG= the -log10 

of Pc1df; effB= effect of the minor allele (B allele); VSNP = variance explained by the SNP (calculated as 2pqa2, where p is the frequency of one 

allele, q=1-p is the frequency of the second allele and a is the additive genetic effect); VP= phenotypic variance; VG= additive genetic variance; 

VPsnp (%)= percentage of phenotypic variance explained by each SNP; VGsnp (%)= percentage of additive genetic variance explained by each SNP; 

Trait= name of the latent variable. F1%CY = Factor related to the percentage of individual cheese yield; F2CFt = Factor related to the curd firmness; 

F3Yield = Factor related to the milk yield; F4Cheese N = Factor related to the milk nitrogen that is present into the cheese curd; F5as1-β-CN = Factor 

related to the as1- and β-CN contents in milk, expressed as relative contents to the total milk nitrogen; F6Udder health = Factor related to the udder 

health of a cow; F7κ-β-CN = Factor related to the κ- and β-CN contents in milk, expressed as relative contents to the total milk nitrogen; F8as2-CN = 

Factor related to the milk as2-CN, expressed as relative content to the total milk nitrogen; F9as1-CN-Ph = Factor related to the milk as1-CN-Ph expressed 

as content to the total milk nitrogen; F10α-LA = Factor related to the milk α-LA. 
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Table S2. Number of significant1 SNP identified from GWAS and number of genes mapped by 

trait. 

Trait2 No. of 

significant SNP 

No. of significant 

SNP assigned to 

genes 

No. of significant 

mapped Genes3 

F1%CY 1,849 626 550 

F2CFt 1,756 588 505 

F3Yield 1,845 620 526 

F4Cheese N 1,504 550 463 

F5as1-β-CN 995 314 267 

F6Udder health 1,853 612 528 

F7κ-β-CN 622 183 164 

F8as2-CN 1,504 543 455 

F9as1-CN-Ph 1,713 589 527 

F10α-LA 1,859 664 555 

Background4 37,568 10,094 13,269 

1 P-value<0.05 

2 F1%CY = Factor underlying the percentage of individual cheese yield; F2CFt = Factor underlying 

the milk curd firmness; F3Yield = Factor underlying the milk yield; F4Cheese N = Factor underlying 

the protein in the cheese; F5as1-β-CN = Factor underlying the αs1 and β caseins; F6Udder health = 

Factor underlying the udder health condition of a cow; F7κ-β-CN = Factor underlying the κ and β 

caseins; F8as2-CN = Factor underlying the αs2-casein; F9as1-CN-Ph = Factor underlying the 

phosphorylated αs1-casein; F10α-LA = Factor underlying the α-LA. 

3Ensembl Bos taurusUMD3.1 (http://www.ensembl.org/index.html); window: 15kb 

4Background represents the total number of SNP used in the GWAS analyses and the genes 

mapped to those SNPs. 

 

http://www.ensembl.org/index.html
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Table S3 Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 

pathways significantly enriched using genes associated with 𝐹1%𝐶𝑌, 

𝐹4𝐶ℎ𝑒𝑒𝑠𝑒 𝑁, 𝐹8𝑎𝑠2−𝐶𝑁 and  𝐹10𝑎−𝐿𝐴. 

Trait1 Category2 Term 
No. genes 

in the term 

No. sig 

genes3 
FDR4 

𝐹1%𝐶𝑌 
KEGG bta04530: Tight junction 83 

12 1.50×10-4 

𝐹10𝑎−𝐿𝐴 13 3.74×10-5 

𝐹4𝐶ℎ𝑒𝑒𝑠𝑒 𝑁  KEGG bta05412: Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 

50 9 4.97×10-5 

𝐹8𝑎𝑠2−𝐶𝑁  GO_BP GO:0055076~transition metal ion 

homeostasis 27 7 2.60×10-5 

  GO:0051716~cellular response to 

stimulus 918 55 3.36×10-5 

  GO:0030001~metal ion transport 132 15 4.61×10-5 

  GO:0006811~ion transport 269 23 5.37×10-5 

  GO:0034220~ion transmembrane 

transport 178 17 1.34×10-4 

  GO:0023052~signaling 750 45 1.76×10-4 

  GO:0044700~single organism 

signaling 750 45 1.76×10-4 

  GO:0007165~signal transduction 712 43 2.14×10-4 

  GO:0007154~cell communication 785 46 2.55×10-4 

  GO:0098660~inorganic ion 

transmembrane transport 137 14 2.56×10-4 

  GO:0003008~system process 226 19 2.93×10-4 

  GO:0055065~metal ion 

homeostasis 83 10 5.27×10-4 

 GO_CC GO:0097458~neuron part 162 21 1.59×10-7 

  GO:0044456~synapse part 76 13 1.63×10-6 

  GO:0098794~postsynapse 48 10 4.13×10-6 

  GO:0043005~neuron projection 110 15 5.01×10-6 

  GO:0045202~synapse 102 14 9.57×10-6 

  GO:0097060~synaptic membrane 39 8 4.34×10-5 

  GO:0030424~axon 50 9 4.34×10-5 

  GO:0042995~cell projection 269 22 1.49×10-4 

  GO:0098590~plasma membrane 

region 146 14 4.93×10-4 

  GO:0098589~membrane region 181 16 5.01×10-4 

  GO:0044463~cell projection part 114 12 5.32×10-4 
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 GP_MF GO:0022836~gated channel activity 59 9 1.66×10-4 

  GO:0046873~metal ion 

transmembrane transporter activity 73 10 1.83×10-4 

  GO:0015075~ion transmembrane 

transporter activity 168 16 2.16×10-4 

  GO:0005215~transporter activity 241 20 2.43×10-4 

  GO:0005216~ion channel activity 76 10 2.56×10-4 

  GO:0022857~transmembrane 

transporter activity 188 17 2.58×10-4 

  GO:0022838~substrate-specific 

channel activity 79 10 3.52×10-4 

  GO:0015267~channel activity 81 10 4.32×10-4 

  GO:0022803~passive 

transmembrane transporter activity 81 10 4.32×10-4 

  GO:0022891~substrate-specific 

transmembrane transporter activity 182 16 5.32×10-4 

 KEGG bta04912: GnRH signaling pathway 64 10 5.86×10-5 

  bta04270: Vascular smooth muscle 

contraction 

74 10 2.05×10-4 

  bta04720: Long-term potentiation 41 7 4.35×10-4 

1𝐹1%𝐶𝑌= Factor underlying the percentage of individual cheese yield; 𝐹4𝐶ℎ𝑒𝑒𝑠𝑒 𝑁 = Factor underlying the 

protein in the cheese; 𝐹8𝑎𝑠2−𝐶𝑁 = Factor underlying the αs2-casein; 𝐹10𝑎−𝐿𝐴 = Factor underlying the α-

LA. 
2KEGG: KEGG pathway; GO_BP: GO biological process; GO_CC: GO cellular component; GO_MF: 

GO molecular function. 
3Significant genes after mapping to Ensembl Bos Taurus UMD3.1 (http://www.ensembl.org/index.html) 
4False discovery rate (FDR) correction for multiple testing (controlled at 5%). 

 

http://www.ensembl.org/index.html
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Table S4. Significant genes involved in the enriched KEGG and GO categories 

SNP BTA Location 

(bp) 

Gene_Ensembl_ID Gene_SYMBOL Category Trait 

ARS-BFGL-NGS-108629 19 63530174 ENSBTAG00000001061 PRKCA KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-116740 13 65965727 ENSBTAG00000001640 EPB41L1 KEGG:bta04530 F1_%CY 

BTB-00067270 1 141351312 ENSBTAG00000002029 IGSF5 KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-103383 12 76787101 ENSBTAG00000003568 CLDN10 KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-116126 3 94980177 ENSBTAG00000005337 RAB3B KEGG:bta04530 F1_%CY 

BTA-121254-no-rs 2 125098723 ENSBTAG00000006667 EPB41 KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-118891 5 75114559 ENSBTAG00000010402 MYH9 KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-31906 25 14257075 ENSBTAG00000015988 MYH11 KEGG:bta04530 F1_%CY 

BTB-00632811 16 34181806 ENSBTAG00000017788 AKT3 KEGG:bta04530 F1_%CY 

BTB-00437757 10 81069177 ENSBTAG00000018255 ACTN1 KEGG:bta04530 F1_%CY 

Hapmap54744-rs29013475 3 84455380 ENSBTAG00000021975 INADL KEGG:bta04530 F1_%CY 

BTB-01561529 28 23349468 ENSBTAG00000045699 CTNNA3 KEGG:bta04530 F1_%CY 

ARS-BFGL-NGS-81228 19 63625695 ENSBTAG00000012311 CACNG5 KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-2876 22 46810135 ENSBTAG00000013117 CACNA2D3 KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-117484 19 56495427 ENSBTAG00000018169 ITGB4 KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-35716 24 29013292 ENSBTAG00000021190 CDH2 KEGG:bta05412 F4_Cheese N 

BTB-00939873 26 33918405 ENSBTAG00000021574 TCF7L2 KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-1585 24 25921286 ENSBTAG00000021923 DSG2 KEGG:bta05412 F4_Cheese N 

Hapmap38792-BTA-92186 28 10127554 ENSBTAG00000022886 RYR2 KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-61492 7 70011889 ENSBTAG00000044046 SGCD KEGG:bta05412 F4_Cheese N 

ARS-BFGL-NGS-77933 28 22792613 ENSBTAG00000045699 CTNNA3 KEGG:bta05412 F4_Cheese N 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0055076 F8_αs2-CN 

ARS-BFGL-NGS-37969 24 57316936 ENSBTAG00000006393 FECH GO_BP:0055076 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0055076 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_BP:0055076 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0055076 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0055076 F8_αs2-CN 
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ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0055076 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-102138 3 103021431 ENSBTAG00000000253 PTPRF GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0051716 F8_αs2-CN 

Hapmap22746-BTA-141712 3 106235104 ENSBTAG00000000532 EXO5 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-107390 1 136623809 ENSBTAG00000000905 RAB6B GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-108131 27 36764232 ENSBTAG00000001244 PLAT GO_BP:0051716 F8_αs2-CN 

BTB-01882599 9 32606924 ENSBTAG00000002059 MCM9 GO_BP:0051716 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0051716 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-5136 7 44901489 ENSBTAG00000003018 FSTL3 GO_BP:0051716 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_BP:0051716 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-116538 2 105169858 ENSBTAG00000003843 SMARCAL1 GO_BP:0051716 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0051716 F8_αs2-CN 

Hapmap44203-BTA-115893 3 49431468 ENSBTAG00000004190 ARHGAP29 GO_BP:0051716 F8_αs2-CN 

Hapmap53694-rs29015972 4 58023230 ENSBTAG00000004398 IMMP2L GO_BP:0051716 F8_αs2-CN 

BTB-00019705 1 42721268 ENSBTAG00000004471 ST3GAL6 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-106082 10 76711436 ENSBTAG00000004498 ESR2 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-24364 17 35250836 ENSBTAG00000005691 FGF2 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-37969 24 57316936 ENSBTAG00000006393 FECH GO_BP:0051716 F8_αs2-CN 

Hapmap58351-rs29010900 18 24897738 ENSBTAG00000006611 NUP93 GO_BP:0051716 F8_αs2-CN 

BTB-01072640 9 24369582 ENSBTAG00000008121 RSPO3 GO_BP:0051716 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-103651 19 14742543 ENSBTAG00000010155 LOC504773 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-102190 24 43638478 ENSBTAG00000010792 SEH1L GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-38516 18 56280702 ENSBTAG00000011421 CD37 GO_BP:0051716 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0051716 F8_αs2-CN 

BTA-69065-no-rs 3 101995252 ENSBTAG00000012355 RNF220 GO_BP:0051716 F8_αs2-CN 
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ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0051716 F8_αs2-CN 

Hapmap49164-BTA-42015 17 74123863 ENSBTAG00000013038 UBE2L3 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-112106 13 76371179 ENSBTAG00000013336 EYA2 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0051716 F8_αs2-CN 

BTA-34485-no-rs 14 33474585 ENSBTAG00000014691 ARFGEF1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-80025 10 12386269 ENSBTAG00000015155 HACD3 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-101279 5 110399710 ENSBTAG00000015290 BAIAP2L2 GO_BP:0051716 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0051716 F8_αs2-CN 

Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-37939 11 85215807 ENSBTAG00000016045 TRIB2 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-BAC-21453 14 44105320 ENSBTAG00000016284 IL7 GO_BP:0051716 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-27742 19 43948803 ENSBTAG00000016847 ARL4D GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_BP:0051716 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0051716 F8_αs2-CN 

Hapmap59849-rs29025576 6 69601707 ENSBTAG00000018106 SPATA18 GO_BP:0051716 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0051716 F8_αs2-CN 

ARS-USMARC-Parent-AY849380-no-rs 6 90562665 ENSBTAG00000019716 CXCL8 GO_BP:0051716 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_BP:0051716 F8_αs2-CN 

UA-IFASA-6208 28 28149081 ENSBTAG00000021499 PSAP GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0051716 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0051716 F8_αs2-CN 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0051716 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_BP:0030001 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0030001 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0030001 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0030001 F8_αs2-CN 
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ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_BP:0030001 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0030001 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_BP:0030001 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_BP:0030001 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_BP:0006811 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0006811 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_BP:0006811 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0006811 F8_αs2-CN 

Hapmap52874-ss46526209 2 122817488 ENSBTAG00000011582 SERINC2 GO_BP:0006811 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-97095 1 71431023 ENSBTAG00000012347 SLC51A GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_BP:0006811 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0006811 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0006811 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0006811 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0006811 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_BP:0006811 F8_αs2-CN 



 

247 

 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_BP:0006811 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_BP:0034220 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0034220 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_BP:0034220 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0034220 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0034220 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0034220 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_BP:0034220 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_BP:0034220 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-107390 1 136623809 ENSBTAG00000000905 RAB6B GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-108131 27 36764232 ENSBTAG00000001244 PLAT GO_BP:0023052 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0023052 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-5136 7 44901489 ENSBTAG00000003018 FSTL3 GO_BP:0023052 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_BP:0023052 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0023052 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0023052 F8_αs2-CN 

Hapmap44203-BTA-115893 3 49431468 ENSBTAG00000004190 ARHGAP29 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-106082 10 76711436 ENSBTAG00000004498 ESR2 GO_BP:0023052 F8_αs2-CN 
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ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-24364 17 35250836 ENSBTAG00000005691 FGF2 GO_BP:0023052 F8_αs2-CN 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0023052 F8_αs2-CN 

BTB-01072640 9 24369582 ENSBTAG00000008121 RSPO3 GO_BP:0023052 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-103651 19 14742543 ENSBTAG00000010155 LOC504773 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-102190 24 43638478 ENSBTAG00000010792 SEH1L GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-38516 18 56280702 ENSBTAG00000011421 CD37 GO_BP:0023052 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0023052 F8_αs2-CN 

BTA-69065-no-rs 3 101995252 ENSBTAG00000012355 RNF220 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-112106 13 76371179 ENSBTAG00000013336 EYA2 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0023052 F8_αs2-CN 

BTA-34485-no-rs 14 33474585 ENSBTAG00000014691 ARFGEF1 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-80025 10 12386269 ENSBTAG00000015155 HACD3 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-101279 5 110399710 ENSBTAG00000015290 BAIAP2L2 GO_BP:0023052 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0023052 F8_αs2-CN 

Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-37939 11 85215807 ENSBTAG00000016045 TRIB2 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-BAC-21453 14 44105320 ENSBTAG00000016284 IL7 GO_BP:0023052 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-27742 19 43948803 ENSBTAG00000016847 ARL4D GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_BP:0023052 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0023052 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0023052 F8_αs2-CN 

ARS-USMARC-Parent-AY849380-no-rs 6 90562665 ENSBTAG00000019716 CXCL8 GO_BP:0023052 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_BP:0023052 F8_αs2-CN 

UA-IFASA-6208 28 28149081 ENSBTAG00000021499 PSAP GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0023052 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0023052 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0023052 F8_αs2-CN 
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ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0023052 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-107390 1 136623809 ENSBTAG00000000905 RAB6B GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-108131 27 36764232 ENSBTAG00000001244 PLAT GO_BP:0044700 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0044700 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-5136 7 44901489 ENSBTAG00000003018 FSTL3 GO_BP:0044700 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_BP:0044700 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0044700 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0044700 F8_αs2-CN 

Hapmap44203-BTA-115893 3 49431468 ENSBTAG00000004190 ARHGAP29 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-106082 10 76711436 ENSBTAG00000004498 ESR2 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-24364 17 35250836 ENSBTAG00000005691 FGF2 GO_BP:0044700 F8_αs2-CN 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0044700 F8_αs2-CN 

BTB-01072640 9 24369582 ENSBTAG00000008121 RSPO3 GO_BP:0044700 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-103651 19 14742543 ENSBTAG00000010155 LOC504773 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-102190 24 43638478 ENSBTAG00000010792 SEH1L GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-38516 18 56280702 ENSBTAG00000011421 CD37 GO_BP:0044700 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0044700 F8_αs2-CN 

BTA-69065-no-rs 3 101995252 ENSBTAG00000012355 RNF220 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-112106 13 76371179 ENSBTAG00000013336 EYA2 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0044700 F8_αs2-CN 

BTA-34485-no-rs 14 33474585 ENSBTAG00000014691 ARFGEF1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-80025 10 12386269 ENSBTAG00000015155 HACD3 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-101279 5 110399710 ENSBTAG00000015290 BAIAP2L2 GO_BP:0044700 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0044700 F8_αs2-CN 
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Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-37939 11 85215807 ENSBTAG00000016045 TRIB2 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-BAC-21453 14 44105320 ENSBTAG00000016284 IL7 GO_BP:0044700 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-27742 19 43948803 ENSBTAG00000016847 ARL4D GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_BP:0044700 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0044700 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0044700 F8_αs2-CN 

ARS-USMARC-Parent-AY849380-no-rs 6 90562665 ENSBTAG00000019716 CXCL8 GO_BP:0044700 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_BP:0044700 F8_αs2-CN 

UA-IFASA-6208 28 28149081 ENSBTAG00000021499 PSAP GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0044700 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0044700 F8_αs2-CN 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0044700 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-107390 1 136623809 ENSBTAG00000000905 RAB6B GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-108131 27 36764232 ENSBTAG00000001244 PLAT GO_BP:0007165 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0007165 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-5136 7 44901489 ENSBTAG00000003018 FSTL3 GO_BP:0007165 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_BP:0007165 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0007165 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0007165 F8_αs2-CN 

Hapmap44203-BTA-115893 3 49431468 ENSBTAG00000004190 ARHGAP29 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-106082 10 76711436 ENSBTAG00000004498 ESR2 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-24364 17 35250836 ENSBTAG00000005691 FGF2 GO_BP:0007165 F8_αs2-CN 

BTB-01072640 9 24369582 ENSBTAG00000008121 RSPO3 GO_BP:0007165 F8_αs2-CN 
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BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-103651 19 14742543 ENSBTAG00000010155 LOC504773 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-102190 24 43638478 ENSBTAG00000010792 SEH1L GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-38516 18 56280702 ENSBTAG00000011421 CD37 GO_BP:0007165 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0007165 F8_αs2-CN 

BTA-69065-no-rs 3 101995252 ENSBTAG00000012355 RNF220 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-112106 13 76371179 ENSBTAG00000013336 EYA2 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0007165 F8_αs2-CN 

BTA-34485-no-rs 14 33474585 ENSBTAG00000014691 ARFGEF1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-80025 10 12386269 ENSBTAG00000015155 HACD3 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-101279 5 110399710 ENSBTAG00000015290 BAIAP2L2 GO_BP:0007165 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0007165 F8_αs2-CN 

Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-37939 11 85215807 ENSBTAG00000016045 TRIB2 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-BAC-21453 14 44105320 ENSBTAG00000016284 IL7 GO_BP:0007165 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-27742 19 43948803 ENSBTAG00000016847 ARL4D GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_BP:0007165 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0007165 F8_αs2-CN 

ARS-USMARC-Parent-AY849380-no-rs 6 90562665 ENSBTAG00000019716 CXCL8 GO_BP:0007165 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_BP:0007165 F8_αs2-CN 

UA-IFASA-6208 28 28149081 ENSBTAG00000021499 PSAP GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0007165 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0007165 F8_αs2-CN 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0007165 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-107390 1 136623809 ENSBTAG00000000905 RAB6B GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-108131 27 36764232 ENSBTAG00000001244 PLAT GO_BP:0007154 F8_αs2-CN 
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BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0007154 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-5136 7 44901489 ENSBTAG00000003018 FSTL3 GO_BP:0007154 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_BP:0007154 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0007154 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0007154 F8_αs2-CN 

Hapmap44203-BTA-115893 3 49431468 ENSBTAG00000004190 ARHGAP29 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-106082 10 76711436 ENSBTAG00000004498 ESR2 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-24364 17 35250836 ENSBTAG00000005691 FGF2 GO_BP:0007154 F8_αs2-CN 

Hapmap58351-rs29010900 18 24897738 ENSBTAG00000006611 NUP93 GO_BP:0007154 F8_αs2-CN 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0007154 F8_αs2-CN 

BTB-01072640 9 24369582 ENSBTAG00000008121 RSPO3 GO_BP:0007154 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-103651 19 14742543 ENSBTAG00000010155 LOC504773 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-102190 24 43638478 ENSBTAG00000010792 SEH1L GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-38516 18 56280702 ENSBTAG00000011421 CD37 GO_BP:0007154 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0007154 F8_αs2-CN 

BTA-69065-no-rs 3 101995252 ENSBTAG00000012355 RNF220 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-112106 13 76371179 ENSBTAG00000013336 EYA2 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0007154 F8_αs2-CN 

BTA-34485-no-rs 14 33474585 ENSBTAG00000014691 ARFGEF1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-80025 10 12386269 ENSBTAG00000015155 HACD3 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-101279 5 110399710 ENSBTAG00000015290 BAIAP2L2 GO_BP:0007154 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0007154 F8_αs2-CN 

Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-37939 11 85215807 ENSBTAG00000016045 TRIB2 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-BAC-21453 14 44105320 ENSBTAG00000016284 IL7 GO_BP:0007154 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0007154 F8_αs2-CN 
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ARS-BFGL-NGS-27742 19 43948803 ENSBTAG00000016847 ARL4D GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_BP:0007154 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0007154 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0007154 F8_αs2-CN 

ARS-USMARC-Parent-AY849380-no-rs 6 90562665 ENSBTAG00000019716 CXCL8 GO_BP:0007154 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_BP:0007154 F8_αs2-CN 

UA-IFASA-6208 28 28149081 ENSBTAG00000021499 PSAP GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0007154 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0007154 F8_αs2-CN 

ARS-BFGL-NGS-65615 25 41309842 ENSBTAG00000040361 LFNG GO_BP:0007154 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_BP:0098660 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_BP:0098660 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0098660 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0098660 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0098660 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_BP:0098660 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_BP:0098660 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-84901 15 35537347 ENSBTAG00000000986 USH1C GO_BP:0003008 F8_αs2-CN 

Hapmap52482-ss46526125 6 73639744 ENSBTAG00000002333 HOPX GO_BP:0003008 F8_αs2-CN 

Hapmap31616-BTC-042811 6 71873004 ENSBTAG00000002699 KIT GO_BP:0003008 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0003008 F8_αs2-CN 



 

254 

 

Hapmap53694-rs29015972 4 58023230 ENSBTAG00000004398 IMMP2L GO_BP:0003008 F8_αs2-CN 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_BP:0003008 F8_αs2-CN 

Hapmap49307-BTA-78198 6 16085913 ENSBTAG00000008332 ENPEP GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-BAC-38065 25 33314090 ENSBTAG00000009780 GTF2I GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_BP:0003008 F8_αs2-CN 

Hapmap34322-BES8_Contig446_1023 3 110104792 ENSBTAG00000015969 STK40 GO_BP:0003008 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_BP:0003008 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0003008 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0003008 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_BP:0003008 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_BP:0003008 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 GO_BP:0055065 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-37969 24 57316936 ENSBTAG00000006393 FECH GO_BP:0055065 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_BP:0055065 F8_αs2-CN 

BTB-00411248 10 11484520 ENSBTAG00000015716 ERO1A GO_BP:0055065 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-104728 8 10680165 ENSBTAG00000019636 SCARA5 GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_BP:0055065 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0097458 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-102138 3 103021431 ENSBTAG00000000253 PTPRF GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0097458 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_CC:0097458 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-BAC-38065 25 33314090 ENSBTAG00000009780 GTF2I GO_CC:0097458 F8_αs2-CN 
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ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-66442 13 60094367 ENSBTAG00000013009 AURKA GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0097458 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0097458 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0097458 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_CC:0097458 F8_αs2-CN 

Hapmap50702-BTA-47830 2 63065836 ENSBTAG00000018753 TMEM163 GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_CC:0097458 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0097458 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_CC:0097458 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0097458 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0044456 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0044456 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0044456 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0044456 F8_αs2-CN 

Hapmap50702-BTA-47830 2 63065836 ENSBTAG00000018753 TMEM163 GO_CC:0044456 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0044456 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0044456 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0044456 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0098794 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0098794 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0098794 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0098794 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0098794 F8_αs2-CN 



 

256 

 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0098794 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0098794 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0098794 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0098794 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0098794 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-102138 3 103021431 ENSBTAG00000000253 PTPRF GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0043005 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_CC:0043005 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-66442 13 60094367 ENSBTAG00000013009 AURKA GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0043005 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0043005 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0043005 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_CC:0043005 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0043005 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_CC:0043005 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0045202 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0045202 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0045202 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0045202 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0045202 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0045202 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0045202 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0045202 F8_αs2-CN 

Hapmap50702-BTA-47830 2 63065836 ENSBTAG00000018753 TMEM163 GO_CC:0045202 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_CC:0045202 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0045202 F8_αs2-CN 
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ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0045202 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0045202 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0045202 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0097060 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0097060 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0097060 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0097060 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0097060 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0097060 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0097060 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0097060 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0030424 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0030424 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_CC:0030424 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0030424 F8_αs2-CN 

ARS-BFGL-NGS-66442 13 60094367 ENSBTAG00000013009 AURKA GO_CC:0030424 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0030424 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_CC:0030424 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0030424 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0030424 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0042995 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-102138 3 103021431 ENSBTAG00000000253 PTPRF GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_CC:0042995 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0042995 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_CC:0042995 F8_αs2-CN 

BTB-00184917 4 51792757 ENSBTAG00000004072 CAPZA2 GO_CC:0042995 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-BAC-38065 25 33314090 ENSBTAG00000009780 GTF2I GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0042995 F8_αs2-CN 
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ARS-BFGL-NGS-66442 13 60094367 ENSBTAG00000013009 AURKA GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0042995 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0042995 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0042995 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_CC:0042995 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_CC:0042995 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0042995 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_CC:0042995 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0098590 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0098590 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-106737 3 110043222 ENSBTAG00000007994 OSCP1 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0098590 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0098590 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0098590 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0098590 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0098590 F8_αs2-CN 

ARS-BFGL-NGS-102172 18 46826215 ENSBTAG00000000153 LRFN3 GO_CC:0098589 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0098589 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0098589 F8_αs2-CN 
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ARS-BFGL-NGS-106737 3 110043222 ENSBTAG00000007994 OSCP1 GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_CC:0098589 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-119788 5 30185840 ENSBTAG00000017504 FAIM2 GO_CC:0098589 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0098589 F8_αs2-CN 

Hapmap41549-BTA-46518 19 15038933 ENSBTAG00000020316 AP2B1 GO_CC:0098589 F8_αs2-CN 

BTB-00883964 24 29132144 ENSBTAG00000021190 CDH2 GO_CC:0098589 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0098589 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_CC:0098589 F8_αs2-CN 

BTB-01060234 11 32409123 ENSBTAG00000046199  GO_CC:0098589 F8_αs2-CN 

BTB-00646135 16 52141211 ENSBTAG00000000215 GNB1 GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-NGS-112313 19 51767413 ENSBTAG00000000354 PDE6G GO_CC:0044463 F8_αs2-CN 

Hapmap47844-BTA-115673 6 113538490 ENSBTAG00000003218 RAB28 GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-NGS-23871 7 12617924 ENSBTAG00000003675 ADGRL1 GO_CC:0044463 F8_αs2-CN 

BTB-00026110 1 67331639 ENSBTAG00000003865 CASR GO_CC:0044463 F8_αs2-CN 

UA-IFASA-5504 1 60889674 ENSBTAG00000006451 GAP43 GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-NGS-66442 13 60094367 ENSBTAG00000013009 AURKA GO_CC:0044463 F8_αs2-CN 

Hapmap54975-rs29019203 1 9636803 ENSBTAG00000017753 APP GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_CC:0044463 F8_αs2-CN 

BTB-00268267 6 93589032 ENSBTAG00000021372 SEPT_11 GO_CC:0044463 F8_αs2-CN 

ARS-BFGL-NGS-41201 10 10385233 ENSBTAG00000025853 HOMER1 GO_CC:0044463 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0022836 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0022836 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0022836 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0022836 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0022836 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0022836 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0022836 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0022836 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0022836 F8_αs2-CN 
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BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0046873 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_MF:0046873 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0046873 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_MF:0046873 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_MF:0046873 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_MF:0046873 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0046873 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0046873 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0046873 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0046873 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0015075 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0015075 F8_αs2-CN 

Hapmap52874-ss46526209 2 122817488 ENSBTAG00000011582 SERINC2 GO_MF:0015075 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_MF:0015075 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0015075 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0015075 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0015075 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0015075 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0015075 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0005215 F8_αs2-CN 

Hapmap27109-BTC-060711 6 87152621 ENSBTAG00000007695 CSN1S1 GO_MF:0005215 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0005215 F8_αs2-CN 
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Hapmap52874-ss46526209 2 122817488 ENSBTAG00000011582 SERINC2 GO_MF:0005215 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-97095 1 71431023 ENSBTAG00000012347 SLC51A GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_MF:0005215 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0005215 F8_αs2-CN 

BTA-22850-no-rs 6 37983812 ENSBTAG00000017704 ABCG2 GO_MF:0005215 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_MF:0005215 F8_αs2-CN 

Hapmap41549-BTA-46518 19 15038933 ENSBTAG00000020316 AP2B1 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0005215 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0005215 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0005215 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0005215 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0005216 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0005216 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0005216 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0005216 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0005216 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0005216 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0005216 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0005216 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0005216 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0005216 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0022857 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0022857 F8_αs2-CN 

Hapmap52874-ss46526209 2 122817488 ENSBTAG00000011582 SERINC2 GO_MF:0022857 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_MF:0022857 F8_αs2-CN 
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ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_MF:0022857 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0022857 F8_αs2-CN 

BTA-22850-no-rs 6 37983812 ENSBTAG00000017704 ABCG2 GO_MF:0022857 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0022857 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0022857 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0022857 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0022857 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0022838 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0022838 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0022838 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0022838 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0022838 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0022838 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0022838 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0022838 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0022838 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0022838 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0015267 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0015267 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0015267 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0015267 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0015267 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0015267 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0015267 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0015267 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0015267 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0015267 F8_αs2-CN 
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BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0022803 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0022803 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0022803 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0022803 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0022803 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0022803 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0022803 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0022803 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0022803 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0022803 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-54753 6 88210451 ENSBTAG00000002348 SLC4A4 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-24122 5 65228699 ENSBTAG00000004145 ANO4 GO_MF:0022891 F8_αs2-CN 

BTB-00661682 16 74429897 ENSBTAG00000008710 KCNH1 GO_MF:0022891 F8_αs2-CN 

Hapmap52874-ss46526209 2 122817488 ENSBTAG00000011582 SERINC2 GO_MF:0022891 F8_αs2-CN 

Hapmap41906-BTA-57339 1 140476945 ENSBTAG00000011626 ATP2C1 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-113181 7 65047126 ENSBTAG00000014395 GLRA1 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-13562 10 5561417 ENSBTAG00000014536 SFXN1 GO_MF:0022891 F8_αs2-CN 

BTA-110747-no-rs 6 67170035 ENSBTAG00000016645 GABRA4 GO_MF:0022891 F8_αs2-CN 

Hapmap42572-BTA-50505 20 37630456 ENSBTAG00000018245 SLC1A3 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-3781 19 58875702 ENSBTAG00000018837 SLC39A11 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-BAC-2036 14 9906433 ENSBTAG00000020667 KCNQ3 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-94704 10 12486527 ENSBTAG00000025826 SLC24A1 GO_MF:0022891 F8_αs2-CN 

BTB-00319838 7 75728672 ENSBTAG00000030286 GABRA1 GO_MF:0022891 F8_αs2-CN 

ARS-BFGL-NGS-75302 14 38418141 ENSBTAG00000040496 KCNB2 GO_MF:0022891 F8_αs2-CN 

Hapmap48459-BTA-75920 6 42023749 ENSBTAG00000047743 KCNIP4 GO_MF:0022891 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 KEGG:bta04912 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 KEGG:bta04912 F8_αs2-CN 

UA-IFASA-6018 22 47721961 ENSBTAG00000010026 CACNA1D KEGG:bta04912 F8_αs2-CN 

ARS-BFGL-NGS-85264 5 109382111 ENSBTAG00000010660 CACNA1C KEGG:bta04912 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B KEGG:bta04912 F8_αs2-CN 
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ARS-BFGL-NGS-8293 5 110435582 ENSBTAG00000014015 PLA2G6 KEGG:bta04912 F8_αs2-CN 

Hapmap31246-BTC-009295 14 10884437 ENSBTAG00000014600 ADCY8 KEGG:bta04912 F8_αs2-CN 

BTA-44254-no-rs 1 96553339 ENSBTAG00000017490 PLD1 KEGG:bta04912 F8_αs2-CN 

ARS-BFGL-NGS-53579 20 65584868 ENSBTAG00000019210 ADCY2 KEGG:bta04912 F8_αs2-CN 

ARS-BFGL-NGS-10138 10 13239142 ENSBTAG00000033983 MAP2K1 KEGG:bta04912 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 KEGG:bta04270 F8_αs2-CN 

BTB-02001746 17 44532671 ENSBTAG00000003840 GUCY1B3 KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-1951 15 42599781 ENSBTAG00000007129 MRVI1 KEGG:bta04270 F8_αs2-CN 

UA-IFASA-6018 22 47721961 ENSBTAG00000010026 CACNA1D KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-85264 5 109382111 ENSBTAG00000010660 CACNA1C KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-8293 5 110435582 ENSBTAG00000014015 PLA2G6 KEGG:bta04270 F8_αs2-CN 

Hapmap31246-BTC-009295 14 10884437 ENSBTAG00000014600 ADCY8 KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-53579 20 65584868 ENSBTAG00000019210 ADCY2 KEGG:bta04270 F8_αs2-CN 

ARS-BFGL-NGS-10138 10 13239142 ENSBTAG00000033983 MAP2K1 KEGG:bta04270 F8_αs2-CN 

Hapmap51915-BTA-74618 5 96479969 ENSBTAG00000000219 GRIN2B KEGG:bta04720 F8_αs2-CN 

BTA-27682-no-rs 5 83402906 ENSBTAG00000002313 ITPR2 KEGG:bta04720 F8_αs2-CN 

ARS-BFGL-NGS-55064 22 57139923 ENSBTAG00000004514 RAF1 KEGG:bta04720 F8_αs2-CN 

ARS-BFGL-NGS-85264 5 109382111 ENSBTAG00000010660 CACNA1C KEGG:bta04720 F8_αs2-CN 

ARS-BFGL-NGS-43041 4 77762822 ENSBTAG00000012653 CAMK2B KEGG:bta04720 F8_αs2-CN 

Hapmap31246-BTC-009295 14 10884437 ENSBTAG00000014600 ADCY8 KEGG:bta04720 F8_αs2-CN 

ARS-BFGL-NGS-10138 10 13239142 ENSBTAG00000033983 MAP2K1 KEGG:bta04720 F8_αs2-CN 

ARS-BFGL-NGS-14087 1 66721297 ENSBTAG00000001009 HCLS1 KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-37708 18 49928003 ENSBTAG00000001400 AKT2 KEGG:bta04530 F10_α-LA 

Hapmap23996-BTA-145153 7 59974127 ENSBTAG00000001862 PPP2R2B KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-4287 18 56894807 ENSBTAG00000002580 MYH14 KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-30004 23 17013312 ENSBTAG00000011189 TJAP1 KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-116613 13 19227633 ENSBTAG00000014991 PARD3 KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-99149 25 14216892 ENSBTAG00000015988 MYH11 KEGG:bta04530 F10_α-LA 

Hapmap58028-ss46526484 19 27602402 ENSBTAG00000019448 CLDN7 KEGG:bta04530 F10_α-LA 

BTB-01260337 11 28183453 ENSBTAG00000020614 PRKCE KEGG:bta04530 F10_α-LA 
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BTB-00745347 19 28768067 ENSBTAG00000021151 MYH10 KEGG:bta04530 F10_α-LA 

BTA-29968-no-rs 3 84123491 ENSBTAG00000021975 INADL KEGG:bta04530 F10_α-LA 

Hapmap33212-BTA-145669 8 31123907 ENSBTAG00000043961 MPDZ KEGG:bta04530 F10_α-LA 

ARS-BFGL-NGS-91878 28 23149412 ENSBTAG00000045699 CTNNA3 KEGG:bta04530 F10_α-LA 

Description: SNP= the name of the single nucleotide polymorphism ; BTA = Bos taurus autosome chromosome; Ensembl Bos 

taurusUMD3.1 (http://www.ensembl.org/index.html); KEGG: KEGG pathway; GO_BP: GO biological process; GO_CC: GO 

cellular component; GO_MF: GO molecular function; F1%CY = Factor underlying the percentage of individual cheese yield; F4Cheese 

N = Factor underlying the protein in the cheese; F8as2-CN = Factor underlying the αs2-casein; F10α-LA = Factor underlying the α-LA. 

 

 

http://www.ensembl.org/index.html
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APPENDIX II: List of abbreviations and trait definitions  
 

Milk coagulation properties (MCP) 

RCT: rennet coagulation time (min)  

k20 : interval from RCT to the time at which a curd  firmness (CF) of 20 mm is attained (min) 

a30: measure of the extent of curd firmness 30 min after coagulant  addition (mm)  

 

Curd firming (CFt) and syneresis traits 

RCTeq: rennet coagulation time (min) 

CFP:  asymptotic potential curd firmness in absence of syneresis( mm)  

CFmax: the maximum curd firmness achieved within 45 min (mm)  

kCF:  curd firming instant rate constant (%) 

kSR:  syneresis instant rate constant (%) 

tmax:  the time at achievement of CFmax 

 

MCP CFt 

 
McMahon and Brown (1982). J. Dairy Sci. 65:1639-

1642 

 
 

Bittante et al. (2013). J. Dairy Sci. 96:7966-

7979 
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Cheese Yield (CY) and nutrient recoveries (REC) 

%CYCURD: weight of fresh curd as percentage of weight of milk processed 

%CYSOLIDS:  weight of curd solids as percentage of weight of milk processed 

%CY WATER:  weight of water curd as percentage of weight of milk processed 

RECPROTEIN: protein of the curd as percentage of the protein of the milk processed 

RECFAT: fat of the curd as percentage of the fat of the milk processed 

RECSOLIDS: solids of the curd as percentage of the solids of the milk processed 

RECENERGY: energy of the curd as percentage of energy of the milk processed  

 

FACTORS 

MFA = Multivariate factor analysis 

FA = Factor analysis (the same as MFA) 

F1%CY (F1: %CY) = Factor underlying the percentage of individual cheese yield 

F2CFt (F2: CFt) = Factor underlying the milk curd firmness 

F3Yield (F3: Yield) = Factor underlying milk yield 

F4Cheese N (F4: Cheese N) = Factor underlying the protein in the cheese 

F5 αs1-β-CN (F5: as1-β-CN) = Factor underlying the αs1 and β caseins 

F6Udder health (F6: Udder health) = Factor underlying the udder health condition of a cow 

F7β-κ-CN (F7: κ-β-CN) = Factor underlying the κ and β caseins 

F8αs2-CN (F8: as2-CN) = Factor underlying the αs2-casein 

F9αs1-CN-Ph (F9: as1-CN-Ph) = Factor underlying the phosphorylated αs1-casein 

F10α-LA (F10: α-LA) = Factor underlying the α-LA. 
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APPENDIX III: R scripts used in the research 

 

This I believe in genetics: discovery can be a nuisance, replication is science… (John. P.A. Ioanidis. 

Front Genet. 2013; 4: 33. doi:  10.3389/fgene.2013.00033). 

 

This part of the PhD thesis contains toy-examples of the statistical analysis carried out 

throughout the 3 years of research. The coding requires some basic knowledge R, at minimum. 

Differences exist between the scripts presented here and the actual analysis, hence the name toy-

examples. The scripts are far to be considered as elegant (which was not the goal). The reader is 

strongly recommended to read the official R packages! 

 

Outline  

 Example 1: Single marker GWAS  with GenABEL (GRAMMAR-GC). An extended R 

script with basic information that can be extracted from the GenABEL package 

 Example 2: Manhattan plots of the GWAS results. After uploading the results from the 1st 

Example (my.gwa.csv), Manhattan plots are constructed. 

 Example 3: Single marker GWAS  with GenABEL (GRAMMAR-GC). Summarizes basic 

GWAS results when a large number of phenotypes need to be analyzed. 

 Example 4: Gene-set enrichment and pathways analysis. This R coding was provided from 

Prof. Dr. Francisco Peñagaricano (Department of Animal Sciences,University of Florida), 

who is fully acknowledged for this, as well as his help in setting up the gene-set enrichment 

and pathway analysis presented in the 3rd Chapter of the thesis. This Example is further 

splitted into 4 sub-parts: 

a) Mapping SNP to the genes (Note! This has to be done twice, once for the 

background SNP once for the significant SNP) 

b) Querying the GO and KEGG databases 

c) Identification of genes in the significant GO terms 

d) Identification of genes in the significant KEGG categories 

 Example 5: Factor analysis 
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Example 1. Single marker GWAS  with GenABEL (GRAMMAR-GC) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

##################################################### 

# Script for fast GWAS with GenABEL                 # 

# R package: GenABEL                                # 

# Method: GRAMMAR-GC                            # 

# GenABEL data: ge03d2                          # 

# Analysis: GWAS for height and weight          # 

# Date: 22-03-2015                                  # 

#####################################################   

 

 

rm(list=ls(all=TRUE)) 

library("GenABEL") 

library("LDheatmap") 

 

## Upload GenABEL data 

require(GenABEL.data) 

data(ge03d2) 

# keep subset of the data to make the example faster 

my.data <- ge03d2[seq(from=1,to=nids(ge03d2),by=2), 

                  seq(from=1,to=nsnps(ge03d2),by=2)] 

########################################################################## 

# In this example data are already uploaded. 

# However, below a 3-lines code on how to import your own data 

# dir <- "C:\\Users\\dadousis\\Documents\\"    # directory of the files 

 

#convert.snp.tped(tped=file.path(dir,"mygenotypes.tped"), 

#                 tfam=file.path(dir,"mygenotypes.tfam"),strand = "+",  

#                 bcast = 10000,out="gwa.raw") 

 

## Import genotypes in PLINK style (modificato e trasposto!) 

# convert.snp.tped: function to convert genotypic data in transposed-

#ped format (.tped and .tfam) to internal genotypic data formatted file 

# tped: Name of transposed-ped format (.tped) file to read 

# tfam: Name of individual data (.tfam) file to read 

# out: Name for output data file 

# strand: Specification of strand, one of "u" (unknown),  

# "+", "-" or "file". In the latter case, extra column specifying the 

#strand (again, one of "u", "+", or "-") should be included in the tpedfile 

#     bcast: Reports progress every time this number of SNPs have been read 

#     Note: The function does not check if "outfile" already exists, thus 

#it is always over-written 

########################################################################## 

 

## summary statistics on phenotypes and genotypes of the raw data 

head(my.data@phdata)  # view the first six rows of the phenos 

dim(my.data@phdata)  # check dimensions of the phenos 

summary(my.data[, 1:10])  # check first 10 SNP summary 

summary(my.data@phdata)  # summary startistics of the phenos 

descriptives.trait(my.data,digits = 3) # basic descriptive statistics of 

#the phenos 

descriptives.marker(my.data) # basic descriptive statistics of the 

#genotypes 

View(my.data@phdata$id) # check the id  

my.data@gtdata@nsnps # number of SNP  
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71 
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94 

95 

96 

97 
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105 
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my.data@gtdata@nids  # number of individuals with genotypes 

length(my.data@phdata$id) # number of individuals with phenotypes 

View(my.data@gtdata@snpnames)  # SNP names 

View(my.data@gtdata@chromosome)  # Chromosomes 

View(my.data@gtdata@map)   # position of SNP on the 

#chromosome 

as.genotype(my.data@gtdata[1:5,1:3]) # A function to convert an object 

of snp.data-class to "genotype" data frame 

as.hsgeno(my.data@gtdata[1:5,1:3])  # Attempts to convert gwaa.data 

#to "hsgeno" 

as.double(my.data@gtdata[1:5,1:3])  # Attempts to convert snp.data to 

#double 

 

 

# number of SNP per chromosome 

sort(table(my.data@gtdata@chromosome))# Chromosomes 

sort(table(my.data@gtdata@chromosome)/sum(table(my.data@gtdata@chromosome))

)# Chromosomes 

 

## HWE on the raw data 

# extract the exact HWE test P-values into separate vector "Pexact"  

# perform chi square test on the Pexact values and calculate ? (inflation 

#factor).  

# If ?=1.0 no inflation or diflation of test statistic (i.e. no 

#stratification effect)  

 

Pexactr <- summary(my.data@gtdata)[,"Pexact"]  

estlambda(Pexactr, plot=TRUE) 

 

## quality check 

########################################################################### 

# callrate: cut-off SNP call rate   

# perid.call: cut-off individual call rate (maximum percent of missing 

#genotypes in a person)   

# extr.call: SNPs with this low call rate are dropped prior to main 

#analysis                                   

# extr.perid.call: people with this low call rate are dropped prior to 

#main analysis                           

# maf: cut-off Minor Allele Frequency. If not specified, the default 

#value is 5 chromosomes 5/(2*nids(data))   

# ibs.mrk: How many random markers should be used to estimate IBS. 

# When ibs.mrk < 1, IBS checks are turned off. When "all" all markers are 

#used.                                           # 

# p.level: cut-off p-value in check for Hardy-Weinberg Equilibrium. If 

#negative, FDR is applied 

########################################################################### 

 

 

mydata.qc <- check.marker(my.data,call=0.95, 

                        perid.call=0.95, 

                        extr.call = 0.1,  

                        extr.perid.call = 0.1, 

                        maf=0.005, 

                        p.lev=0, 

                        ibs.mrk =0 ) 

 

summary(mydata.qc) 
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134 
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136 
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140 

141 

142 

143 

144 

145 
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names(mydata.qc) 

View(mydata.qc$idok) 

length(mydata.qc$idok) 

length(mydata.qc$snpok) 

 

 

## subset clean data 

mydata.clean <- my.data[mydata.qc$idok,mydata.qc$snpok] 

 

 

## summary statistics on phenotypes and genotypes of the filtered data 

head(mydata.clean@phdata)  # view the first six rows of the phenos 

dim(mydata.clean@phdata)  # check dimensions of the phenos 

summary(mydata.clean[,1:10])  # check first 10 SNP summary 

summary(mydata.clean@phdata)  # summary startistics of the phenos 

descriptives.trait(mydata.clean,digits = 3)  # basic descriptive statistics 

#of the phenos 

descriptives.marker(mydata.clean)   # basic descriptive statistics of the 

#genotypes 

mydata.clean@gtdata@nsnps # number of SNP  

mydata.clean@gtdata@nids  # number of individuals 

View(mydata.clean@gtdata@snpnames)  # SNP names 

View(mydata.clean@gtdata@chromosome)  # Chromosomes 

View(mydata.clean@gtdata@map)   # position of SNP on the 

chromosome 

as.genotype(mydata.clean@gtdata[1:5,1:3]) # A function to convert an object 

#of snp.data-class to "genotype" data frame 

as.hsgeno(mydata.clean@gtdata[1:5,1:3])  # Attempts to convert 

#gwaa.data to "hsgeno" 

as.double(mydata.clean@gtdata[1:5,1:3])  # Attempts to convert 

#snp.data to double 

 

 

# number of SNP per chromosome 

sort(table(mydata.clean@gtdata@chromosome))# Chromosomes 

sort(table(mydata.clean@gtdata@chromosome)/sum(table(mydata.clean@gtdata@ch

romosome)))# Chromosomes 

 

 

## HWE on the filtered-cleaned data 

# extract the exact HWE test P-values into separate vector "Pexact"  

# perform chi square test on the Pexact values and calculate ? (inflation 

#factor).  

# If ?=1.0 no inflation or diflation of test statistic (i.e. no 

#stratification effect)  

 

Pexactc <- summary(mydata.clean@gtdata)[,"Pexact"]  

estlambda(Pexactc, plot=TRUE) 

 

 

##### Linkage Disequilibrium (LD) 

# D' (dprime): A (Nsnps X Nsnps) matrix giving D' values between a pairs of 

#SNPs above the diagonal 

#  and number of SNP genotype measured for both SNPs below the diagonal 

# R^2 (r2): A (Nsnps X Nsnps) matrix giving r2 values between a pairs of 

#SNPs above the diagonal 

#  and number of SNP genotype measured for both SNPs below the diagonal 
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dprime.ld <- dprfast(mydata.clean,snps=c(1:10)) 

r2.ld <- r2fast(mydata.clean,snps=c(1:10)) 

print(dprime.ld) 

print(r2.ld) 

 

## LD heatmap 

# D' 

dprime.heatmap <- LDheatmap(dprime.ld, color = grey.colors(20)) 

dprime.heatmap.names <- LDheatmap(dprime.heatmap, 

SNP.name=rownames(dprime.ld)) # to include the SNP names in the graph 

 

# R^2 

r2.heatmap <- LDheatmap(r2.ld, color = grey.colors(20)) 

r2.heatmap.names <- LDheatmap(r2.heatmap, SNP.name=rownames(r2.ld)) # to 

#include the SNP names in the graph 

 

 

## genomic relationship 

# The numbers below the diagonal show the genomic estimate of kinship 

#('genome-wide IBD'),  

# The numbers on the diagonal correspond to 0.5 plus the genomic 

#homozigosity  

# The numbers above the diagonal tell how many SNPs were typed successfully 

#for both subjects 

 

mydata.gkin <- ibs(mydata.clean[,autosomal(mydata.clean)],weight="freq") 

dim(mydata.gkin) 

mydata.gkin[1:6, 1:6] 

 

 

## extract G matrix in full format (gkin is a lower triange) 

library(matrixcalc) 

G <- as.matrix(lower.triangle(as.matrix(mydata.gkin))) 

G <- G + t(G) - diag(diag(G)) 

G[1:6, 1:6] 

 

 

########################################################################## 

#                                PERFORM GWAS                            # 

# GRAMMAR-GC GWAS                                                        # 

# Note: GenABEL accepts only one random effect (apart from residuals) in # 

#regression, the polygenic term!!                                        # 

########################################################################## 

 

# GWAS for height                                                        # 

height.poly <- polygenic(height ~ sex + age, kin=mydata.gkin, 

data=mydata.clean) 

height.poly$est 

height.grammar <- grammar(height.poly,data=mydata.clean,method="gamma") 

 

# GWAS for weight 

weight.poly <- polygenic(weight ~ sex + age, kin=mydata.gkin, 

data=mydata.clean) 

weight.poly$est 

weight.grammar <- grammar(weight.poly,data=mydata.clean,method="gamma") 
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## all GWAS results 

gwa.height <- descriptives.scan(height.grammar, 

                               top= length(colnames(mydata.clean@gtdata)), 

                                sort="Pc1df") 

gwa.weight <- descriptives.scan(weight.grammar, 

                                top= length(colnames(mydata.clean@gtdata)),  

                                sort="Pc1df") 

 

 

## top10 hits (significant or not) 

height.top <- descriptives.scan(height.grammar,sort="Pc1df")  

height.top 

 

weight.top <- descriptives.scan(weight.grammar,sort="Pc1df")  

weight.top 

 

 

## keep only significant results 

# assume level of significance at p < 0.00005 

## only significant results 

height.sign <- gwa.height[which(gwa.height$Pc1df < 0.00005), ] 

height.sign 

dim(height.sign) 

 

weight.sign <- gwa.weight[which(gwa.weight$Pc1df < 0.00005), ] 

weight.sign 

dim(weight.sign) 

 

 

##  create a vector with SNP names and calculate LOG of p-values 

# create a vector with the names of the traits 

 

height.name <- as.matrix(rep('height', 

                             length(colnames(mydata.clean@gtdata)))) 

weight.name <- as.matrix(rep('weight', 

                             length(colnames(mydata.clean@gtdata)))) 

trait <- rbind(height.name, weight.name) 

 

# create a vector with the SNP names for each trait 

snp.height <- as.matrix(rownames(gwa.height)) 

snp.weight <- as.matrix(rownames(gwa.height)) 

SNP <- rbind(snp.height, snp.weight) 

 

my.gwa <- rbind(gwa.height, gwa.weight) 

my.gwa <- cbind(my.gwa, trait) 

my.gwa <- cbind(SNP, my.gwa) 

head(my.gwa) 

tail(my.gwa) 

 

 

## calculate -(log10(P-values)) 

for (i in 1: length(my.gwa)){ 

 LOG <- -(log10(my.gwa$Pc1df)) 

}  

 

my.gwa <- cbind(my.gwa, LOG) 

mailto:mydata.clean@gtdata)
mailto:mydata.clean@gtdata)
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head(my.gwa) 

 

 

## save the results as a .csv file for further analysis 

# manhattan plots can be done with the library(qqman) 

 

write.csv(my.gwa, "my.gwa.csv", row.names=F, col.names=T) 

########################################################################## 

 

 

## check variances and heritability 

# h2an: A list supplied by the nlm minimisation routine. Of particular 

#interest are elements 

# "estimate" containing parameter maximal likelihood estimates (MLEs) 

# (order: mean, betas for covariates, heritability, (polygenic + residual 

#variance)). 

# The value of twice negative maximum log-likelihood is returned as 

#h2an\$minimum. 

 

 

# height 

height.poly$h2an 

height.poly$h2an$estimate 

height.poly$h2an$estimate[4]  # heritability 

height.poly$esth2  # heritability 

height.poly$h2an$estimate[5]  # phenotypic variance: polygenic + residual 

 

 

# example 

h2.height <- height.poly$esth2  # heritability of height 

h2.height 

sigma2p.height <- height.poly$h2an$estimate[5]  # phenotypic variance of 

#height 

sigma2p.height 

sigma2a.height <- h2.height * sigma2p.height 

sigma2a.height 

sigma2e.height <- sigma2p.height - sigma2a.height  # residual variance 

sigma2e.height 

 

 

# check the heritability 

h2 <- sigma2a.height/(sigma2a.height+sigma2e.height) 

height.poly$esth2  # heritability 

 

# check the residual variance 

sigma2e.height 

var(height.poly$residualY, na.rm=TRUE) 

var(height.poly$pgresidualY, na.rm=TRUE) 

var(height.poly$grresidualY, na.rm=TRUE) 

 

 

### calculate minor allele frequency (maf) in the whole dataset 

snpSummary <- summary(mydata.clean@gtdata) 

maf <- as.data.frame(pmin(snpSummary$Q.2,1.-snpSummary$Q.2)) 

summary(maf) 

print(maf[1:10,]) 

rownames(maf) <- rownames(snpSummary) 
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colnames(maf) <- c("maf") 

View(maf) 

 

# save MAF in a txt file 

write.table(maf, "maf.txt", col.names=TRUE, row.names=TRUE) 
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Example 2. Manhattan plots of the GWAS results  
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############################################################# 

# Script for further analysis of GWAS results from GenABEL  # 

# Results come from the "gwas_genabel_toy" R script         # 

#  GWAS for height and weight was carried out               # 

# R package: qqman                                          # 

# Date: 22-03-2015                                          # 

############################################################# 

 

rm(list=ls(all=TRUE)) 

setwd("C:\\Users\\Documents")  # set your directory 

library(qqman) 

 

## upload the "my.gwa.csv" 

snp <- read.table("my.gwa.csv", sep=",", header=T) 

dim(snp) 

head(snp) 

unique(snp$trait) # View the names of the traits 

 

# keep only the significant SNP of each trait 

snp.sign <- snp[which(snp$ Pc1df < 0.00005), ] 

dim(snp.sign) 

 

colnames(snp)[1] <- "SNP" 

colnames(snp)[2] <- "CHR" 

colnames(snp)[3] <- "BP" 

colnames(snp)[16] <- "P" 

colnames(snp) 

 

 

# separate the traits into different datasets 

height <- snp[which(snp$trait=="height"), ] 

weight <- snp[which(snp$trait=="weight"), ] 

 

 

# keep only the significant SNP of each trait (assume here p < 0.00005) 

height.sign <- height[which(height$P < 0.00005), ] 

weight.sign <- weight[which(weight$P < 0.00005), ] 

dim(height.sign) 

dim(weight.sign) 

 

 

height.sign[, c(1,2,3,7, 8, 9, 10, 16, 17, 18)] 

weight.sign[, c(1,2,3,7, 8, 9, 10, 16, 17, 18)] 

 

## keep only the columns of interest 

sign.snp <- rbind(height.sign[, c(1,2,3,7, 8, 9, 10, 16, 17, 18)], 

   weight.sign[, c(1,2,3,7, 8, 9, 10, 16, 17, 18)]) 

dim(sign.snp) 

 

## save the significant results in a txt file 

write.table(sign.snp, "sign.snp.txt", col.names=T, row.names=F) 
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# check in which chromosomes the significant SNP are located for each 

#trait 

unique(height.sign$CHR) 

unique(weight.sign$CHR) 

 

as.data.frame(table(height.sign$CHR)) 

as.data.frame(table(weight.sign$CHR)) 

 

 

######################################### 

#                                       # 

#     Q-Q plots of the p-values         #  

#                                       # 

######################################### 

 

## do it manually 

# height 

obs.height <- sort(height$P) 

lobs.height <- -(log10(obs.height)) 

exp.height <- c(1:length(obs.height))  

lexp.height <- -(log10(exp.height / (length(exp.height)+1))) 

 

 

pdf("qqplot_height.pdf", width=6, height=6) 

plot(c(0,7), c(0,7), col="red", lwd=3, type="l", 

                     xlab="Expected (-logP)", ylab="Observed (-logP)", 

                     xlim=c(0,7), ylim=c(0,7),  

                     las=1, xaxs="i", yaxs="i", bty="l") 

points(lexp.height, lobs.height, pch=23, cex=.4, bg="black")  

dev.off() 

 

 

# weight 

obs.weight <- sort(weight$P) 

lobs.weight <- -(log10(obs.weight)) 

exp.weight <- c(1:length(obs.weight))  

lexp.weight <- -(log10(exp.weight / (length(exp.weight)+1))) 

 

 

pdf("qqplot_weight.pdf", width=6, weight=6) 

plot(c(0,7), c(0,7), col="red", lwd=3, type="l",  

                     xlab="Expected (-logP)", ylab="Observed (-logP)",  

                     xlim=c(0,7), ylim=c(0,7),  

                     las=1, xaxs="i", yaxs="i", bty="l") 

points(lexp.weight, lobs.weight, pch=23, cex=.4, bg="black")  

dev.off() 

 

 

## alternatively, using the "ggman" R package 

library(qqman) 

qq(height$P) 

qq(weight$P) 
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pdf("QQplots_GWAS_height_weight.pdf") 

par(mfrow=c(1, 2)) 

qq(height$P, main="height") 

qq(weight$P, main="weight") 

par(mfrow=c(1, 1)) 

dev.off() 

 

 

######################################### 

#                                       # 

#            Manhattan plots            #  

#                                       # 

######################################### 

 

-(log10(5e-05)) # my threshold 

max(height$LOG)  # maximum y scale 

# Note: chromosome X has been exluded from the plot 

# CHR column should be numeric for "qqman" to work.  

# Do you have 'X', 'Y', 'MT', etc? If so change to numbers 

 

chr.height <- as.matrix(height$CHR) 

chr.height[chr.height=="X"] <- 4 

height$CHR <- as.numeric(chr.height)  

height$CHR <- as.numeric(height$CHR) 

 

chr.weight <- as.matrix(weight$CHR) 

chr.weight[chr.weight=="X"] <- 4 

weight$CHR <- as.numeric(chr.weight)  

weight$CHR <- as.numeric(weight$CHR) 

 

## manhattan plots 

# manhattan plot for height 

manhattan(height, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103,  

          suggestiveline=FALSE,  

          highlight=height.sign$SNP,  

          main="a) GWAS for height") 

 

# manhattan plot for weight 

manhattan(weight, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103, suggestiveline=FALSE,  

          highlight=weight.sign$SNP, 

          main="b) GWAS for weight") 

 

 

# plot both manhattan plots in one graph 

par(mfrow=c(2, 1)) 

manhattan(height, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103,  

          suggestiveline=FALSE, highlight=height.sign$SNP,  

          main="a) GWAS for height") 

manhattan(weight, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103,  

          suggestiveline=FALSE,  

          highlight=weight.sign$SNP,  

          main="b) GWAS for weight") 

par(mfrow=c(1, 1)) 
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## save manhattan plots as pdf 

# change height and width appropriately to fit your demands 

pdf("manhattan.pdf", height = 10, width = 20)  

par(mfrow=c(2, 1)) 

manhattan(height, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103, suggestiveline=FALSE,   

          highlight=height.sign$SNP,  

          main="a) GWAS for height") 

manhattan(weight, col=c("black","#666666","#CC6600"),  

          genomewideline=4.30103, suggestiveline=FALSE,  

          highlight=weight.sign$SNP,  

          main="b) GWAS for weight") 

dev.off() 

 

 

# zooming in into Chromosomes 

#### Chromosome 6 ### 

chr2.height <- subset(height, CHR==2) 

manhattan(chr2.height, genomewideline=4.30103,  

          suggestiveline=FALSE,  

          highlight=height.sign$SNP,  

          main="GWAS for height") 

 

# save as a pdf  

pdf("Chr2_height.pdf", height = 8, width = 12) 

manhattan(chr2.height, genomewideline=4.30103,  

          suggestiveline=FALSE,  

          highlight=height.sign$SNP,  

          main="GWAS for height") 

dev.off() 
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Example 3. Single marker GWAS  with GenABEL (GRAMMAR-GC). Summarizes basic GWAS 

results when a large number of phenotypes need to be analyzed. 
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##################################################### 

# Script for fast GWAS with GenABEL                 # 

# R package: GenABEL                                # 

# Method: GRAMMAR-GC                            # 

# GenABEL data: ge03d2                          # 

# Analysis: GWAS for height, weight and bmi     # 

#       using a loop                        # 

# Date: 02-04-2016                                  # 

#####################################################   

 

rm(list=ls(all=TRUE)) 

library("GenABEL") 

 

## Upload GenABEL data 

require(GenABEL.data) 

data(ge03d2) 

# keep subset of the data to make the example faster 

my.data <- ge03d2[seq(from=1,to=nids(ge03d2),by=2), 

                  seq(from=1,to=nsnps(ge03d2),by=2)] 

 

## quality check 

mydata.qc <- check.marker(my.data,call=0.95, 

                        perid.call=0.95, 

                        extr.call = 0.1,  

                        extr.perid.call = 0.1, 

                        maf=0.005, 

                        p.lev=0, 

                        ibs.mrk =0 ) 

 

## subset clean data 

mydata.clean <- my.data[mydata.qc$idok,mydata.qc$snpok] 

 

## genomic relationship 

mydata.gkin <- ibs(mydata.clean[,autosomal(mydata.clean)],weight="freq") 

 

 

 

 

###################### 

# GRAMMAR-GC GWAS 

 

my.list <- colnames(mydata.clean@phdata[, c(5,6,8)] ) 

nsign.snp <- NULL 

nsign.chrom<- NULL 

res <- NULL 

r <- 0 

my.h2 <- NULL 

highest.sign <- NULL 
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## start of the loop 

for (x in c(5,6, 8)){ # note that if replace x with i does not work!! 

  r <- r+1 

 results <- 0 

   res.sign <- 0 

 h2.prelim <- 0 

 min.pvalue <- 0 

 

 m1 <- polygenic(mydata.clean@phdata[, x] ~ sex + age, 

                            kin=mydata.gkin, data=mydata.clean) 

 m2 <- grammar(m1,data=mydata.clean, method="gamma") 

 results <- data.frame(SNP = as.character(rownames(m2)), 

                        CHR =  as.character(results(m2)$Chromosome), 

                        BP = results(m2)$Position, 

                        P = results(m2)$Pc1df, 

                        LOG=-log10(results(m2)$Pc1df), 

                        effB = results(m2)$effB, 

    Trait= my.list[r]) 

 results <- results[order(results$P), ] 

 res.sign <- results[which(results$P < 0.005),] 

 res <- rbind(res,res.sign) 

 nsnp <- data.frame(no.sign.SNP = nrow(res.sign), 

    Trait= my.list[r]) 

 nsign.snp <- rbind(nsign.snp, nsnp) 

 nchr <- data.frame(no.sign.CHR = length(unique(res.sign$CHR)), 

    Trait= my.list[r]) 

 nsign.chrom <- rbind(nsign.chrom, nchr) 

 min.pvalue <- data.frame (min.Pvalue = min(results$P), 

       max.log = max(results$LOG), 

       CHR = results$CHR[which(results$LOG == 

max(results$LOG))], 

       BP = results$BP[which(results$LOG == 

max(results$LOG))], 

       Trait= my.list[r]) 

 highest.sign <- rbind(highest.sign, min.pvalue) 

 h2.prelim <- data.frame(h2 = m1$esth2, 

    sigma2p = tail(m1$h2an$estimate, n=1), 

    sigma2a =  (m1$esth2) * (tail(m1$h2an$estimate, 

n=1)),   

    Trait= my.list[r]) 

 my.h2 <- rbind(my.h2,h2.prelim) 

} 

 

## end of the loop 

 

 

print(res) 

print(nsign.snp) 

print(nsign.chrom) 

print(highest.sign) 

print(my.h2) 
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### calculate SNP frequencies (p,q) - minor allele frequency (maf) and 

high allele freq (haf) 

snpSummary <- summary(mydata.clean@gtdata) 

my.freq <- data.frame( 

  SNP = rownames(snpSummary), 

  p = snpSummary$Q.2, 

  q = 1. - snpSummary$Q.2, 

  maf = pmin(snpSummary$Q.2,1.-snpSummary$Q.2), 

  haf = pmax(snpSummary$Q.2,1.-snpSummary$Q.2)) 

head(my.freq) 

tail(my.freq) 

summary(my.freq) 

 

 

## add maf frequencies 

my.gwas <- merge(res, my.freq, by="SNP") 

my.gwas <- my.gwas[order(my.gwas$Trait, my.gwas$P), ] 

 

# some checks 

head(my.gwas) 

head(res) 

my.freq[which(my.freq$SNP== "rs3436694" |  

              my.freq$SNP== "rs3175719" | 

              my.freq$SNP== "rs1801282" | 

         my.freq$SNP== "rs4277955" | 

              my.freq$SNP== "rs1227627"), ] 

 

 

 

## calculate snp variance 

 

## start of the loop 

for(l in 1:nrow(my.gwas)){ 

snp.var <- data.frame( 

  SNP = my.gwas$SNP, 

  snp.va = 2 * my.gwas$p * my.gwas$q * (my.gwas$effB)^2, 

  Trait = my.gwas$Trait 

 ) 

} 

## end of the loop 

 

 

## GWAS for height and weight manually - compare results 

 

height.poly <- polygenic(height ~ sex + age,  

                         kin=mydata.gkin,  

                         data=mydata.clean) 

height.grammar <- grammar(height.poly,data=mydata.clean,method="gamma") 

weight.poly <- polygenic(weight ~ sex + age,  

                         kin=mydata.gkin,  

                         data=mydata.clean) 

weight.grammar <- grammar(weight.poly,data=mydata.clean,method="gamma") 

bmi.poly <- polygenic(bmi ~ sex + age,  

                      kin=mydata.gkin,  

                      data=mydata.clean) 

bmi.grammar <- grammar(bmi.poly,data=mydata.clean,method="gamma") 
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# get gwas all results 

gwa.height <- descriptives.scan(height.grammar, 

                             top=length(colnames(mydata.clean@gtdata)), 

                             sort="Pc1df") 

gwa.weight <- descriptives.scan(weight.grammar, 

                             top= length(colnames(mydata.clean@gtdata)),  

                             sort="Pc1df") 

gwa.bmi <- descriptives.scan(bmi.grammar, 

                             top= length(colnames(mydata.clean@gtdata)),  

                             sort="Pc1df") 

 

 

## keep only significant results 

# assume level of significance at p < 0.005 

## only significant results 

height.sign <- gwa.height[which(gwa.height$Pc1df < 0.005), ] 

height.sign 

dim(height.sign) 

 

weight.sign <- gwa.weight[which(gwa.weight$Pc1df < 0.005), ] 

weight.sign 

dim(weight.sign) 

 

bmi.sign <- gwa.bmi[which(gwa.bmi$Pc1df < 0.005), ] 

bmi.sign 

dim(bmi.sign) 

 

## save the results 

write.csv(my.gwas, "my.gwas.csv", row.names=F, col.names=T) 

write.table(nsign.snp, "nsign_snp.txt", row.names=F, col.names=T) 

write.table(nsign.chrom, "nsign_chrom.txt", row.names=F, col.names=T) 

write.table(highest.sign, "highest_signals.txt",  

            row.names=F, col.names=T) 

write.table(my.h2, "heritability.txt", row.names=F, col.names=T) 

write.table(my.freq, "frequencies.txt", col.names=TRUE, row.names=TRUE) 

write.table(snp.var, "snp_variance.txt", col.names=TRUE, row.names=TRUE) 

 

 

mailto:mydata.clean@gtdata)
mailto:mydata.clean@gtdata)
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285 

 

Example 4. Gene-set enrichment and pathway analysis 

a) Mapping SNP to genes 
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29 
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rm(list=ls(all=TRUE)) 

setwd("C:\\Users\\Documents")  # set your directory 

 

library(biomaRt) 

database = useMart("ensembl") 

genome = useDataset("btaurus_gene_ensembl", mart = database) 

gene = getBM(c("ensembl_gene_id", "entrezgene",  

               "start_position", "end_position",  

               "chromosome_name", "hgnc_symbol"), mart = genome) 

 

 

ndata <- read.table(myfile, header = TRUE) 

sign_chr <- sort(unique(ndata$Chromosome)) 

length(sign_chr) 

sign_chr 

 

 

#3# from SNPs to Genes: create a database with those genes that have one 

#or more SNPs in a 15kb window 

plus = 1500 

 

Name = character() 

Chromosome = numeric() 

Location = numeric() 

Gene = numeric() 

EntrezID = numeric() 

SYMBOL = character() 

m = 1 

 

 for(k in 1:29) # check all 29 chromosomes 

{ 

 

    SNP = subset(ndata, ndata$Chromosome == k) 

    genes = subset(gene, gene$chromosome_name == k) 

     

    for(i in 1:length(SNP$Chromosome)) 

    { 

        for(j in 1:length(genes$chromosome_name)) 

        { 

             

            if(genes$start_position[j] <= (plus + SNP$Location[i]) & 

(SNP$Location[i] - plus) <= genes$end_position[j]) 

            { 

                Name[m] = as.character(SNP$SNP[i]) 

                Chromosome[m] = SNP$Chromosome[i] 

                Location[m] = SNP$Location[i] 

                Gene[m] = genes$ensembl_gene_id[j] 

                EntrezID[m] = genes$entrezgene[j] 

      SYMBOL[m] = as.character(genes$hgnc_symbol[j]) 

                m = m+1 

            } 

        } 

    } 

} 
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SNPtoGENES = data.frame(Name,Chromosome,Location,Gene,EntrezID, SYMBOL) 

dim(SNPtoGENES) 

 

write.table(SNPtoGENES,”mygenes.txt” , col.names=TRUE, row.names=FALSE) 
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Example 4. Gene-set enrichment and pathway analysis 

b) Querying the GO and KEGG databases 
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##################################################################### 

# Gene enrichmnet for the MCP, CF, CY, REC                          # 

# from the GWAS results                                             # 

# GO and KEGG databases                                             # 

# Rscript was based on the goseq:                                   # 

# snp_to_genes: all genes in my SNP chip                            # 

# snp_to_sign_genes: based on GWAS significant SNP                  # 

# snp_to_sign_genes_pval: based on pval<=0.05 from GWAS             # 

##################################################################### 

 

 

rm(list=ls(all=TRUE)) 

setwd("C:\\Users\\Documents")  # set your directory 

source("https://bioconductor.org/biocLite.R") 

# biocLite("org.Bt.eg.db") 

# biocLite("GOstats") 

# biocLite("MeSH.Bta.eg.db") 

# biocLite("meshr") 

# biocLite("MeSH.db") 

# biocLite("KEGG.db") 

# biocLite("annotate") 

 

 

library("org.Bt.eg.db") 

library("GOstats") 

library(meshr) 

library(MeSH.db) 

library(MeSH.Bta.eg.db) 

library(goseq) 

library(GO.db) 

library(KEGG.db) 

library(annotate) 

 

 

 

######################## 

#1# upload list of genes 

all_genes <- read.table("snp_to_genes.txt", header=TRUE) 

all_genes <- all_genes[, 4] 

length(all_genes) 

length(unique(all_genes)) 

head(all_genes) 

 

#1a# remove duplicated values 

total.genes <- all_genes[!duplicated(all_genes)] 

length(total.genes) 

head(total.genes) 

 

 

#2# upload significant genes 

sign_genes <- read.table("snp_to_sign_genes_pval.txt", header = TRUE) 

sign_genes <- sign_genes[, 4] 

length(sign_genes) 

length(unique(sign_genes)) 
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head(sign_genes) 

 

 

#2a# remove duplicated values ensembl Gene ID 

sig.genes <- sign_genes[!duplicated(sign_genes)] 

length(sig.genes) 

head(sig.genes) 

 

 

################# END OF DATA PREPARATION ########################## 

 

 

assayed.genes = array(total.genes) ## total.genes is a vector with ALL 

#the genes evaluated 

 

de.genes = array(sig.genes) ## sig.genes is a vector with significant 

#genes 

 

 

gene.vector = as.integer(assayed.genes%in%de.genes) 

names(gene.vector) = assayed.genes 

 

pwf = nullp(gene.vector, "bosTau3", "ensGene", plot.fit = FALSE) 

 

 

#1# GO Biological Process - using Hypergeometric distribution 

## Fisher exact #test (hypergeometric) 

GO.hiper.bp <- goseq(pwf, "bosTau3", "ensGene",  

                     method = "Hypergeometric",  

                     test.cats="GO:BP",  

                     use_genes_without_cat = TRUE)   dim(GO.hiper.bp) 

 

## Consider only terms with genes > 5 and < 500 

nGO.hiper.bp = GO.hiper.bp[(GO.hiper.bp$numInCat <= 1000 & 

                            GO.hiper.bp$numInCat >= 10),]   

dim(nGO.hiper.bp) 

 

## Raw P-value < 0.01 

enriched.GO.bp = nGO.hiper.bp[nGO.hiper.bp$over_represented_pvalue <= 

0.01, ]   

 

## fdr correction 

enriched.GO.bp = 

nGO.hiper.bp[p.adjust(nGO.hiper.bp$over_represented_pvalue, 

                      method="fdr")<.05, ]     

dim(enriched.GO.bp) 

head(enriched.GO.bp) 

 

 

#2# GO Molecular function - using Hypergeometric distribution 

## Fisher exact test (hypergeometric) 

GO.hiper.mf <- goseq(pwf, "bosTau3", "ensGene", 

                     method = "Hypergeometric",  

                     test.cats="GO:MF",  

                     use_genes_without_cat = TRUE) 

dim(GO.hiper.mf) 
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## Consider only terms with genes > 5 and < 500 

nGO.hiper.mf = GO.hiper.mf[(GO.hiper.mf$numInCat <= 1000 &   

                            GO.hiper.mf$numInCat >= 10),] 

dim(nGO.hiper.mf) 

 

## Raw P-value < 0.01 

enriched.GO.mf = nGO.hiper.mf[nGO.hiper.mf$over_represented_pvalue <= 

0.01, ] 

 

## fdr correction 

enriched.GO.mf = 

nGO.hiper.mf[p.adjust(nGO.hiper.mf$over_represented_pvalue, 

             method="fdr")<.05, ] 

dim(enriched.GO.mf) 

head(enriched.GO.mf) 

 

 

#3# GO Cellular Component - using Hypergeometric distribution 

## Fisher exact test (hypergeometric) 

GO.hiper.cc <- goseq(pwf, "bosTau3", "ensGene",  

                     method = "Hypergeometric",  

                     test.cats="GO:CC",  

                     use_genes_without_cat = TRUE) 

dim(GO.hiper.cc) 

 

## Consider only terms with genes > 5 and < 500 

nGO.hiper.cc = GO.hiper.cc[(GO.hiper.cc$numInCat <= 1000 &   

                            GO.hiper.cc$numInCat >= 10),] 

dim(nGO.hiper.cc) 

 

## Raw P-value < 0.01 

enriched.GO.cc = nGO.hiper.cc[nGO.hiper.cc$over_represented_pvalue <= 

0.01, ] 

 

## fdr correction 

enriched.GO.cc = 

nGO.hiper.cc[p.adjust(nGO.hiper.cc$over_represented_pvalue, 

method="fdr")<.05, ] 

 

dim(enriched.GO.cc) 

head(enriched.GO.cc) 

 

 

#4# KEGG enrichment analysis - using Hypergeometric distribution 

## Fisher exact test (hypergeometric) 

GO.hiper.kegg <- goseq(pwf, "bosTau3", "ensGene",  

                       method = "Hypergeometric",  

                       test.cats="KEGG",  

                       use_genes_without_cat = TRUE) 

dim(GO.hiper.kegg) 

 

## Consider only terms with genes > 5 and < 500 

nGO.hiper.kegg = GO.hiper.kegg[(GO.hiper.kegg$numInCat <= 1000 & 

GO.hiper.kegg$numInCat >= 10),] 

dim(nGO.hiper.kegg) 

 

## Raw P-value < 0.01 
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enriched.GO.kegg = nGO.hiper.kegg[nGO.hiper.kegg$over_represented_pvalue 

<= 0.01, ]   

 

## fdr correction 

enriched.GO.kegg = 

nGO.hiper.kegg[p.adjust(nGO.hiper.kegg$over_represented_pvalue, 

method="fdr")<.05, ] 

dim(enriched.GO.kegg) 

head(enriched.GO.kegg) 

 

############# END OF GO-KEGG gene enrichment analysis ################## 
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Example 4. Gene-set enrichment and pathway analysis 

c) Identification of genes in the significant GO terms 
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######################################################################## 

# Script for identifying the genes involved in each GO term            # 

# Traits and GO categories have been previously identified             # 

# 1. We re-run the pathway analysis, but only for the traits we found  # 

# significance after False Discovery Rate (FDR) correction             # 

# 2. We identify the genes                                             # 

# Note: This script is for only 1 trait analysis!                      # 

######################################################################## 

 

rm(list=ls(all=TRUE)) 

setwd("C:\\Users\\Documents")  # set your directory 

source("https://bioconductor.org/biocLite.R") 

library("org.Bt.eg.db") 

library(goseq) 

library(GO.db) 

# biocLite("KEGG.db") 

library(KEGG.db) 

library(annotate) 

 

######################## 

#1# upload list of genes 

all_genes <- read.table("C:\\Users\\Documents\\background_genes.txt", 

header=TRUE) 

all_genes <- all_genes[, 4] 

 

#1a# remove duplicated values 

total.genes <- all_genes[!duplicated(all_genes)] 

 

#2# upload significant genes 

sign_genes_pre <- read.table(mygenes.txt, header = TRUE) 

sign_genes_pre1 <- sign_genes_pre[!duplicated(sign_genes_pre$Gene),] 

sign_genes <- sign_genes_pre[, 4] 

 

#2a# remove duplicated values ensembl Gene ID 

sig.genes <- sign_genes[!duplicated(sign_genes)] 

 

 

################# END OF DATA PREPARATION ########################## 

 

assayed.genes = array(total.genes)     ## total.genes is a vector with 

#ALL the genes evaluated 

de.genes = array(sig.genes)  ## sig.genes is a vector with significant 

#genes 

 

gene.vector = as.integer(assayed.genes%in%de.genes) 

names(gene.vector) = assayed.genes 

 

pwf = nullp(gene.vector, "bosTau3", "ensGene", plot.fit = FALSE) 
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#3# GO Biological Process, Cellular Component, Molecular Function - 

#using Hypergeometric distribution 

## Fisher exact test (hypergeometric) 

GO.hiper <- goseq(pwf, "bosTau3", "ensGene",  

             method = "Hypergeometric",   

             test.cats=c("GO:BP", "GO:CC", "GO:MF"),  

             use_genes_without_cat = TRUE)    

 

#3a# Consider only terms with genes > 10 and < 1000 

nGO.hiper = GO.hiper[(GO.hiper$numInCat <= 1000 & GO.hiper$numInCat >= 

10),]   

 

#3b# fdr correction 

enriched.GO.fdr = nGO.hiper[p.adjust(nGO.hiper$over_represented_pvalue, 

method="fdr")<.05, ]     

enriched.GO.fdr <- enriched.GO.fdr[order(enriched.GO.fdr$ontology),] 

 

########## 

#4# Identify the genes in the significant GO terms 

 

go = getgo(names(gene.vector), "bosTau3", "ensGene") 

my.list <- enriched.GO.fdr$category # NOTE: if we make it as a list, 

#then the "category" column in the results table is not working 

 

for (k in 1:length(enriched.GO.fdr$category)){ 

 r <- r+1 

 genes <- 0 

 GOterm = enriched.GO.fdr$category[k] ## your favorite GO term 

 genes = as.character(); m = 1 

 sgenes = as.character(); n = 1 

 

 for(i in 1:length(go)){ 

     if(length(go[[i]]) > 0){ 

         for(j in 1:length(go[[i]])){ 

             if(go[[i]][j] == GOterm){ 

             genes[m] = names(go[i]) 

                 m = m + 1 

                } 

           } 

      } 

 } 

go.fdr.cat <- 0 

go.fdr.cat <- as.data.frame(sort(genes[genes%in%sig.genes])) 

write.table(go.fdr.cat, “mytrait_sign_go_genes.txt”,  

                        col.names=TRUE, row.names=FALSE) 

 

########### END ########### 
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Example 4. Gene-set enrichment and pathway analysis 

d) Identification of genes in the significant KEGG categories 
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######################################################################## 

# Script for identifying the genes involved in each KEGG Category      # 

# Traits and KEGG categories have been previously identified           # 

# 1. We re-run the pathway analysis, but only for the traits we found  # 

# significance after False Discovery Rate (FDR) correction             # 

# 2. We identify the genes                                             # 

# Note: This script is for only 1 trait analysis!                      # 

######################################################################## 

 

rm(list=ls(all=TRUE)) 

setwd("C:\\Users\\Documents\\") 

source("https://bioconductor.org/biocLite.R") 

library("org.Bt.eg.db") 

library(goseq) 

library(GO.db) 

# biocLite("KEGG.db") 

library(KEGG.db) 

library(annotate) 

 

 

#1# upload list of genes 

all_genes <- read.table("C:\\Users\\Documents\\background_genes.txt", 

header=TRUE) 

all_genes <- all_genes[, 4] 

 

#1a# remove duplicated values 

total.genes <- all_genes[!duplicated(all_genes)] 

 

#2# upload significant genes 

sign_genes_pre <- read.table(mygenes.txt, header = TRUE) 

sign_genes_pre1 <- sign_genes_pre[!duplicated(sign_genes_pre$Gene),] 

sign_genes <- sign_genes_pre[, 4] 

 

#2a# remove duplicated values ensembl Gene ID 

sig.genes <- sign_genes[!duplicated(sign_genes)] 

 

################# END OF DATA PREPARATION ########################## 

 

 

assayed.genes = array(total.genes)     ## total.genes is a vector with 

#ALL the genes evaluated 

de.genes = array(sig.genes)  ## sig.genes is a vector with significant 

#genes 

 

gene.vector = as.integer(assayed.genes%in%de.genes) 

names(gene.vector) = assayed.genes 

 

pwf = nullp(gene.vector, "bosTau3", "ensGene", plot.fit = FALSE) 
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#3# KEGG enrichment analysis - using Hypergeometric distribution 

#3a# Fisher exact test (hypergeometric) 

KEGG.hiper.kegg <- goseq(pwf, "bosTau3", "ensGene",  

                    method = "Hypergeometric",  

                    test.cats="KEGG",  

                    use_genes_without_cat = TRUE)    

 

#3b# Consider only terms with genes > 10 and < 1000 

nKEGG.hiper.kegg = KEGG.hiper.kegg[(KEGG.hiper.kegg$numInCat <= 1000 & 

KEGG.hiper.kegg$numInCat >= 10),]   

 

#3c# fdr correction 

enriched.KEGG.fdr = 

nKEGG.hiper.kegg[p.adjust(nKEGG.hiper.kegg$over_represented_pvalue, 

method="fdr")<.05, ]     

 

################# 

#4# Identify the genes in the significant KEGG categories 

kegg = getgo(names(gene.vector),  

                  "bosTau3",  

                  "ensGene",  

                   fetch.cats = c("KEGG")) 

 

my.list <- enriched.KEGG.fdr$category # NOTE: if we make it as a list, 

#then the "category" column in the results table is not working 

 

for (k in 1:length(enriched.KEGG.fdr$category)){ 

 r <- r+1 

 genes <- 0 

 KEGGterm = enriched.KEGG.fdr$category[k] ## your favorite KEGG 

#pathway 

 genes = as.character(); m = 1 

 sgenes = as.character(); n = 1 

 

 for(i in 1:length(kegg)){ 

     if(length(kegg[[i]]) > 0){ 

         for(j in 1:length(kegg[[i]])){ 

             if(kegg[[i]][j] == KEGGterm){ 

                 genes[m] = names(kegg[i]) 

                 m = m + 1 

             } 

         } 

     } 

 } 

length(genes);genes 

table(genes%in%sig.genes) 

sort(genes[genes%in%sig.genes]) 

 

kegg.fdr.cat <- as.data.frame(sort(genes[genes%in%sig.genes])) 

write.table(kegg.fdr.cat, “mytrait_sign_kegg_genes.txt”,  

                           col.names=TRUE, row.names=FALSE) 

 

########### END ########### 
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Example 5. Factor analysis 
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######################################################################## 

# Factor Analysis Models toy example                                   # 

# Statistical Analysis:                                                # 

# 1. Exploratory Factor Analysis (EFA)- orthogonal factor rotation # 

#                                                                      # 

# R package used: "psych" for EFA                                      # 

# Author: Christos Dadousis                                            # 

# Date: 11-01-2016                                                     # 

######################################################################## 

 

rm(list=ls()) 

require(graphics) 

library(pastecs) 

require(psych) 

require(GPArotation) 

require(lavaan) 

library(semPlot) 

library(calibrate) 

library(MVN) 

setwd("C:/Users/Documents/") 

 

 

########################### Create the dataset ######################### 

# number of individuals: 200                                           # 

# number of exploratory variables: 11                                  # 

# two variables (x1-x3) with low correlation: ~0.2                     # 

# two variables (x2-x4)with high correlation: ~0.8                     # 

# seven random variables                                               # 

# All variables drawn from normal distribution                         # 

######################################################################## 

 

# create two variables with low correlation (~0.2) and  

#        two with high correlation (~0.8) 

 

correlatedValue = function(x, r){ 

  r2 = r**2 

  ve = 1-r2 

  SD = sqrt(ve) 

  e  = rnorm(length(x), mean=0, sd=SD) 

  y  = r*x + e 

  return(y) 

} 

 

set.seed(4444) 

x1 = rnorm(2000) 

x2 = rnorm(2000) 

x3 = correlatedValue(x=x1, r=.2) 

x4 = correlatedValue(x=x2, r=.8) 

 

# check correlations 

cor(x1,x3) 

cor(x2,x4) 

 

# create seven random variables 
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my.x <- as.matrix(replicate(7, rnorm(200))) 

 

# merge the data in one matrix 

 

X <- cbind(x1, x2, x3, x4, my.x) 

colnames(X) <- paste("x", 1:ncol(X), sep="") 

rownames(X) <- paste("Sample_", 1:nrow(X), sep="") 

dim(X) 

head(X) 

cor(X) 

 

################## END of Data Preparation ####################### 

 

 

#1# Descriptive statistics and general checks 

 

#1a# descr. stat 

round(stat.desc(X),3) 

describe(X) 

 

#1b# correlation checks 

pairs.panels(X) 

cor.plot(cor(X)) 

corr.test(X) 

 

#1c# error bar plots 

error.bars(X) 

 

#1d# potential outliers detection 

outlier(X) 

 

#1e# check of normality with Shapiro-Wilk normality test 

shapiro.test(X[, 1]) 

 

#1f# Distributions 

pdf("Distributions_rawdata.pdf", height = 12, width = 8) 

par(mfrow=c(4,3)) 

hist(X[, 1], freq=F, ylab="Probability", xlab="x1", main="") 

curve(dnorm(x, mean(X[, 1], na.rm = T), sd(X[, 1], na.rm = T)), add=T, 

col="blue") 

hist(X[, 2], freq=F, ylab="Probability", xlab="x2", main="") 

curve(dnorm(x, mean(X[, 2], na.rm = T), sd(X[, 2], na.rm = T)), add=T, 

col="blue") 

hist(X[, 3], freq=F, ylab="Probability", xlab="x3", main="") 

curve(dnorm(x, mean(X[, 3], na.rm = T), sd(X[, 3], na.rm = T)), add=T, 

col="blue") 

hist(X[, 4], freq=F, ylab="Probability", xlab="x4", main="") 

curve(dnorm(x, mean(X[, 4], na.rm = T), sd(X[, 4], na.rm = T)), add=T, 

col="blue") 

hist(X[, 5], freq=F, ylab="Probability", xlab="x5", main="") 

curve(dnorm(x, mean(X[, 5], na.rm = T), sd(X[, 5], na.rm = T)), add=T, 

col="blue") 

hist(X[, 6], freq=F, ylab="Probability", xlab="x6", main="") 

curve(dnorm(x, mean(X[, 6], na.rm = T), sd(X[, 6], na.rm = T)), add=T, 

col="blue") 

hist(X[, 7], freq=F, ylab="Probability", xlab="x7", main="") 
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curve(dnorm(x, mean(X[, 7], na.rm = T), sd(X[, 7], na.rm = T)), add=T, 

col="blue") 

hist(X[, 8], freq=F, ylab="Probability", xlab="x8", main="") 

curve(dnorm(x, mean(X[, 8], na.rm = T), sd(X[, 8], na.rm = T)), add=T, 

col="blue") 

hist(X[, 9], freq=F, ylab="Probability", xlab="x9", main="") 

curve(dnorm(x, mean(X[, 9], na.rm = T), sd(X[, 9], na.rm = T)), add=T, 

col="blue") 

hist(X[, 10], freq=F, ylab="Probability", xlab="x10", main="") 

curve(dnorm(x, mean(X[, 10], na.rm = T), sd(X[, 10], na.rm = T)), add=T, 

col="blue") 

hist(X[, 11], freq=F, ylab="Probability", xlab="x11", main="") 

curve(dnorm(x, mean(X[, 11], na.rm = T), sd(X[, 11], na.rm = T)), add=T, 

col="blue") 

dev.off() 

 

 

#1f# check multivariate normality 

 

mvn <- mardiaTest(X, qqplot = TRUE) 

print(mvn) 

 

 

################## check for multicollinearity ###################### 

#2# check for multicollinearity 

#2a# determinant of the correlation matrix  

#(cut of value: 0.00001; problem with lower values) 

det(cor(X))  

 

 

#2b# VIF>=10 problematic. Corresponds to R^2>=0.90 

my.vif <- NULL 

for (i in 1:ncol(X)){ 

y <- X[, i] 

x <- as.data.frame(X[, -c(i)]) 

my.model <- lm(y ~ . , data= x) 

my.res <- 0 

my.res <- data.frame(r2 = summary(my.model)$r.squared, 

      r2.adjusted = summary(my.model)$adj.r.squared, 

      vif = 1/(1-summary(my.model)$r.squared) 

) 

my.vif <- rbind(my.vif, my.res) 

} 

rownames(my.vif) <- colnames(X) 

my.vif 

my.vif$vif>10 

 

 

# plot of vif values 

png("multicollinearity.png") 

par(mfrow=c(1, 1), mar=c(5.1, 5.1, 4.1, 2.1)+0.1) 

plot(my.vif[, 1], 

 col = ifelse(my.vif[, 1] == 1, "red",  

            ifelse(my.vif[, 1] >0.9, "orange", "black")), 

 pch = ifelse(my.vif[, 1] == 1, 16,  

            ifelse(my.vif[, 1] >0.9, 16, 1)), 

 main = "Multicolinearity check", 
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 xlab = "Trait", 

 ylab = expression("R"^2), 

 cex = 2, 

 cex.main = 2, 

 cex.axis= 1.5, 

 cex.lab = 2, 

 las=1 

) 

abline(h=0.9, col="red") 

textxy(X = seq(1:nrow(my.vif)), Y=my.vif[, 1], labs=rownames(my.vif), 

cex=1.3) 

dev.off() 

 

 

#2c# 

######################################################################## 

# based on eigenvalues                                                 # 

# exat linear dependense: then one or more eigenvalues will be zero    # 

# near linear dependence: some eigenvalues will be very small. Large   # 

# variances                                                            # 

# condition number k                                                   # 

#  - k<100: no serious problem with multicollinearity               # 

# -100<=k<1000: moderate to strong problem                         # 

#  k>1000: severe problem                                           # 

######################################################################## 

 

 

pca <- eigen(cor(X)) 

pca$values 

write.table(pca$values, "eigenvalues.txt", col.names=FALSE, 

row.names=FALSE) # save the eigenvalues 

k <- max(pca$values)/min(pca$values) 

k 

 

################ END of multicollinearity check ######################## 

 

 

#3# calculation of Kaiser Measure of Sampling Adequacy (Kaiser MSA) 

KMO(X) 

 

 

######################################################################## 

###  Exploratory Factor Analysis with ML Estimation and varimax rotation  

# Factors are forced to be un-correlated 

# We want: 

# Highest Prop. Var (debatable) 

# Lowest RMSR 

# Lowest MLE chi square 

# MLE chi square > 0.05 

# TLI > 0.95 

# RMSEA < 0.08. (if RMSEA > 0.1 is not good) 

# Lowest BIC 

# For more details see here:  

#http://www.inside-r.org/packages/cran/psych/docs/fa and  

#https://cran.r-project.org/web/packages/psych/vignettes/overview.pdf  

 

 

http://www.inside-r.org/packages/cran/psych/docs/fa
https://cran.r-project.org/web/packages/psych/vignettes/overview.pdf
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## create a loop for fast model check 

## Start of the loop 

 

 

nf=5 # number of factors to be tested 

varimax.table <- NULL 

r <- 0 

 

for (i in seq(1,nf)){ 

  r<-r+1 

  if (i%%10<1){ 

    cat(paste('Round: ',r,'\n'))  

  } 

 

MLvari <- fa(X,nfactors=i,rotate="varimax",fm="minres") 

results <- 0 

results <- data.frame( Model=i, 

    No.Factors = MLvari$factors, 

                        RMSR = round(MLvari$rms, 2), 

                        cRMSR = round(MLvari$crms, 2), 

                        TLI = round(MLvari$TLI, 3), 

                        RMSEA= round(MLvari$RMSEA[1], 3), 

                        BIC =  MLvari$BIC, 

    eBIC = MLvari$EBIC, 

    chisq = MLvari$STATISTIC, 

    Pval = MLvari$PVAL, 

    echisq = MLvari$chi 

) 

 

varimax.table <- rbind(varimax.table, results) 

} 

## END of the fast model check 

 

 

## Test for the number of factors in your data using  

# parallel analysis (fa.parallel)  or  

# Very Simple Structure (vss) 

varimax.table 

fa.parallel(X) 

vss.vari <- vss(X, n=nf, rotate="varimax",fm="minres") 

vss.vari 

 

 

## identify the models with best fitting manually 

min(varimax.table$RMSR) 

min(varimax.table$cRMSR) 

min(varimax.table$RMSEA) 

min(varimax.table$BIC) 

min(varimax.table$eBIC) 

max(varimax.table$TLI) 

varimax.table[order(varimax.table$RMSR), ] 

varimax.table[order(varimax.table$cRMSR), ] 

varimax.table[order(varimax.table$RMSEA), ] 

varimax.table[order(varimax.table$BIC), ] 

varimax.table[order(varimax.table$eBIC), ] 

varimax.table[order(-varimax.table$TLI), ] 
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## identify the models with best fitting with graphs 

# a png file will be saved in your directory 

# after running all the lines below till  

# the END of plots 

png("ModelCheck_varimax.png", 1000, 1200) 

par(mfrow=c(4, 3), mar=c(5.1, 5.1, 4.1, 2.1)+0.1) 

plot(fa.parallel(X), 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

plot(vss.vari, 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

plot(varimax.table$RMSR,  

 col = ifelse(varimax.table$RMSR == min(varimax.table$RMSR), 

"blue", "black"), 

 pch = ifelse(varimax.table$RMSR == min(varimax.table$RMSR), 8, 1), 

 cex = ifelse(varimax.table$RMSR == min(varimax.table$RMSR), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "RMSR", 

 main= "RMSR", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

textxy(X=varimax.table$Model, Y=varimax.table$RMSR, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$cRMSR,  

 col = ifelse(varimax.table$cRMSR == min(varimax.table$cRMSR), 

"blue", "black"), 

 pch = ifelse(varimax.table$cRMSR == min(varimax.table$cRMSR), 8, 

1), 

 cex = ifelse(varimax.table$cRMSR == min(varimax.table$cRMSR), 3, 

2), 

 xlab = "Number of Factors", 

 ylab = "cRMSR", 

 main= "cRMSR", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

textxy(X=varimax.table$Model, Y=varimax.table$cRMSR, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$RMSEA,  

 col = ifelse(varimax.table$RMSEA == min(varimax.table$RMSEA), 

"blue", ifelse(varimax.table$RMSEA >.1, "red", "black")), 

 pch = ifelse(varimax.table$RMSEA == min(varimax.table$RMSEA), 8, 

ifelse(varimax.table$RMSEA >.1, 16, 1)), 

 cex = ifelse(varimax.table$RMSEA == min(varimax.table$RMSEA), 3, 

2), 

 xlab = "Number of Factors", 

 ylab = "RMSEA", 

 main= "RMSEA", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 
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textxy(X=varimax.table$Model, Y=varimax.table$RMSEA, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$TLI,  

 col = ifelse(varimax.table$TLI >=0.95, "green", 

ifelse(varimax.table$TLI == max(varimax.table$TLI), "blue", "black")), 

 pch = ifelse(varimax.table$TLI == max(varimax.table$TLI), 8, 1), 

 cex = ifelse(varimax.table$TLI == max(varimax.table$TLI), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "TLI", 

 main= "TLI", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

textxy(X=varimax.table$Model, Y=varimax.table$TLI, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$BIC,  

 col = ifelse(varimax.table$BIC == min(varimax.table$BIC), "blue", 

"black"), 

 pch = ifelse(varimax.table$BIC == min(varimax.table$BIC), 8, 1), 

 cex = ifelse(varimax.table$BIC == min(varimax.table$BIC), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "BIC", 

 main= "BIC", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

textxy(X=varimax.table$Model, Y=varimax.table$BIC, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$chisq,  

 col = ifelse(varimax.table$chisq == min(varimax.table$chisq), 

"blue", "black"), 

 pch = ifelse(varimax.table$chisq == min(varimax.table$chisq), 8, 

1), 

 cex = ifelse(varimax.table$chisq == min(varimax.table$chisq), 3, 

2), 

 xlab = "Number of Factors", 

 ylab = "chisq", 

 main= "chisq", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 

textxy(X=varimax.table$Model, Y=varimax.table$chisq, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(varimax.table$echisq,  

 col = ifelse(varimax.table$echisq == min(varimax.table$echisq), 

"blue", "black"), 

 pch = ifelse(varimax.table$echisq == min(varimax.table$echisq), 8, 

1), 

 cex = ifelse(varimax.table$echisq == min(varimax.table$echisq), 3, 

2), 

 xlab = "Number of Factors", 

 ylab = "echisq", 

 main= "echisq", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2) 
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textxy(X=varimax.table$Model, Y=varimax.table$echisq, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(vss.vari$cfit.1, 

 col = ifelse(vss.vari$cfit.1 == max(vss.vari$cfit.1), "blue", 

"black"), 

 pch = ifelse(vss.vari$cfit.1 == max(vss.vari$cfit.1), 8, 1), 

 cex = ifelse(vss.vari$cfit.1 == max(vss.vari$cfit.1), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "vss1", 

 main= "VSS complexity 1", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2 

) 

textxy(X=varimax.table$Model, Y=vss.vari$cfit.1, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(vss.vari$cfit.2, 

 col = ifelse(vss.vari$cfit.2 == max(vss.vari$cfit.2), "blue", 

"black"), 

 pch = ifelse(vss.vari$cfit.2 == max(vss.vari$cfit.2), 8, 1), 

 cex = ifelse(vss.vari$cfit.2 == max(vss.vari$cfit.2), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "vss2", 

 main= "VSS complexity 2", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2 

) 

textxy(X=varimax.table$Model, Y=vss.vari$cfit.2, 

labs=varimax.table$No.Factors, cex=1.5) 

plot(vss.vari$map, 

 col = ifelse(vss.vari$map == min(vss.vari$map), "blue", "black"), 

 pch = ifelse(vss.vari$map == min(vss.vari$map), 8, 1), 

 cex = ifelse(vss.vari$map == min(vss.vari$map), 3, 2), 

 xlab = "Number of Factors", 

 ylab = "map", 

 main= "Velicer MAP", 

 cex.main=2, 

 cex.axis=2, 

 cex.lab=2 

) 

textxy(X=varimax.table$Model, Y=vss.vari$map, 

labs=varimax.table$No.Factors, cex=1.5) 

dev.off() 

## END of plots 

 

 

 

## check manually each model 

MLvari1 <- fa(X,nfactors=1,rotate="varimax",fm="ml") 

MLvari1 

fa.diagram(MLvari1,cut=0,digits=2) 

fa.diagram(MLvari1,cut=0.2,digits=2, simple=FALSE) # Only Loadings with 

abs(loading) > 0.2 cut will be shown 

fa.diagram(MLvari1,digits=2) 
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MLvari2 <- fa(X,nfactors=2,rotate="varimax",fm="ml") 

MLvari2 

fa.diagram(MLvari2,cut=0,digits=2) 

fa.diagram(MLvari2,cut=0.2,digits=2, simple=FALSE) # Only Loadings with 

abs(loading) > 0.2 cut will be shown 

fa.diagram(MLvari2,digits=2) 

 

MLvari3 <- fa(X,nfactors=3,rotate="varimax",fm="ml") 

MLvari3 

fa.diagram(MLvari3,cut=0,digits=2) 

fa.diagram(MLvari3,cut=0.2,digits=2, simple=FALSE) # Only Loadings with 

abs(loading) > 0.2 cut will be shown 

fa.diagram(MLvari3,digits=2) 

 

 

## An example on how to check the variances manually  

# (for a better understanding) 

# take the 3 factors model 

v <- print(MLvari3) 

v 

 

#SS loadings 

ss1 <- round(sum((MLvari3$loadings[, 1])^2), 3) 

ss2 <- round(sum((MLvari3$loadings[, 2])^2), 3) 

ss3 <- round(sum((MLvari3$loadings[, 3])^2), 3) 

ss1 

ss2 

ss3 

 

# Proportion Var 

prop.ss1 <- ss1/ncol(X) 

prop.ss2 <- ss2/ncol(X) 

prop.ss3 <- ss3/ncol(X)  

prop.ss1 

prop.ss2 

prop.ss3 

 

# Cumulative Var 

# cumulative variance captured by all 3 factors 

cum.var <- prop.ss1+ prop.ss2+prop.ss3  

cum.var 

 

########### END ########### 
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Thanks all the readers for their patience and I hope to find something interesting in this 

work! 
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THE THESIS FOR THE GENERAL PUBLIC: THE BEAUTY OF 

GENOMICS AND INTERDISCIPLINARITY OF SCIENCE 

This chapter was written for the general public that might be interested in this research but 

lacking of basic background in animal breeding and genetics/genomics, and terminology that is 

required to understand this work. 

Based on own experience, there is much of confusion in the public on what is breeding. 

Hence, the objective was to i) shed some light in the field of animal breeding, ii) introduce to the 

reader the beauty of genomics and the interdisciplinarity of science, iii) present the backbone of 

this research. 

This section is presented in the form of a dialogue. The two persons participating are: Chris 

(me; C) and in the role of the interviewer Anastasia (A). All of the questions are real and have 

been selected the past few years during discussions with various people, researchers and non-

researchers.  

 

Research topic and introduction to dairy cattle breeding 

A: So Chris, what is the topic of your PhD? 

C: The general subject deals with cheese breeding in dairy cattle. A large amount of bovine 

milk is used for cheese production; hence we are interested in selecting cows that produce more 

cheese, and not just more milk. The work was split in 2 parts: i) the genomics and ii) the phenomics. 

Particularly, I was interested in identifying regions on the DNA that may be related with a higher 

cheese yield in the cows. If such regions exist, it might then be possible to select the best cows 

solely by observing these DNA regions. However, since cheese is a quite complicated process and 

many factors are involved, e.g. the percentage of the protein and the fat in the milk, the type of 
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these proteins, the coagulation properties, e.g. how fast the milk is transformed from liquid to solid, 

we would like to suppress all this information into a minimum set of variables. Note, that already 

in some breeding programs more than 40 traits are included in their breeding goal, without taking 

into account the cheese-related traits. The case is getting more complicated due to different 

correlations among traits, both on sign and strength. For instance, the more the milk a cow is 

producing the less the percentage of the fat in the milk we will have. But we wish to have both, 

simultaneously. 

A: So, working with animals means you are a vet? 

C: No. I am not a veterinarian. 

A: What is your research area? 

C: My field is called animal breeding and genetics. 

A: Genetics? So, you change the DNA of the cows? Like taking genes from the fish and 

import it to plants to be resistant in cold? Are you working with genetically modified organisms 

(GMO)? 

C: NO! Animal breeding is not focused on GMO, although this technology can be used as 

a tool for breeding. Briefly, with GMO technology, we can take a small part of the DNA of one 

organism and plug it in to another organism. Doing this, the new organism who obtained this piece 

of the DNA will have phenotypic characteristics that are regulated from this specific DNA piece. 

Taking advantage of this question, I can say the following: A similar to GMO methodology has 

recently made its first steps in livestock species and in breeding. The differences are that i) the 

parts of the DNA are not transferred from one organism to another, but we change the DNA within 

the individual and ii) we call this technology gene editing or genome editing. More details on this 

topic can be found on the internet: http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-

http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-editing-to-modify-animal-genomes-for-research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391
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editing-to-modify-animal-genomes-for-

research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-

Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-

5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391. Moreover, especially in the 

case of beef cattle and sheep it might be interesting to read the recent paper of Proudfoot and 

colleagues (Proudfoot et al., 2015). The potential benefits of this technology in animal breeding 

have been summarized in another recent work (Jenko et al., 2015). 

A: And what is your opinion about this method? 

C: I will reply by re-quoting Richard Feynman: “For a successful technology, reality must 

take precedence over public relations for nature cannot be fooled”. Moreover, especially in the 

case of genetics/genomics the history has taught us, so far, that the more we learn, the less we 

understand in genetics (Prof. Steve Jones). However, I would also like to add the following, for 

those that are afraid of everything new coming: With the same knife that you cut your bread every 

day you can also harm someone. Hence, technology itself is neither good nor bad. The way we use 

the technology makes the difference, keeping always in mind that Ignorance more frequently 

breeds confidence than does knowledge (Charles Darwin). 

Let us explain now what animal breeding is about, and more specific the dairy cattle 

breeding: Imagine that you have the whole population of dairy cows in Italy. We are interested in 

increasing in every generation the milk production in the whole population, as an average.  

A: Ok. 

C: How we do this: We just need to identify and select the best males and the best females 

and mate them. For e.g. let us define as “best” the cows that produce more milk and the bulls that 

have female relatives that produce high amounts of milk. We firstly identify and then select these 

http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-editing-to-modify-animal-genomes-for-research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391
http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-editing-to-modify-animal-genomes-for-research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391
http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-editing-to-modify-animal-genomes-for-research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391
http://nas-sites.org/ilar-roundtable/roundtable-activities/gene-editing-to-modify-animal-genomes-for-research/?utm_source=NAP+Newsletter&utm_campaign=5e4a4f4867-Event_2015_12_1_Gene_Editing_Workshop&utm_medium=email&utm_term=0_96101de015-5e4a4f4867-101857429&mc_cid=5e4a4f4867&mc_eid=6e10e4a391
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“best” males and females and we control the mating (this is called “assortative mating”) to produce 

the next generation. 

A: Ok. So you are a geneticist or biologist?  

C: Not exactly. The cornerstone of animal breeding is the quantitative genetics theory. 

However, knowledge from more scientific disciplines is required, such as population genetics, 

statistics and molecular biology. Moreover, with the recent technological advances, knowledge in 

programming, bioinformatics and advanced statistics is also essential. It is an integration of a 

variety of scientific disciplines. 

 

Genomics 

C: This work is heavily based on genomics, so it would be wise to have a small overview 

on the basis of genomics, i.e. the DNA. We could say that the DNA contains all the alphabet that 

each organism needs to express itself, in a similar way that humans are using alphabet to express 

themselves and communicate to each other. In a similar way that a vast amount of words, 

expressions, sentences and grammars can be produced in languages, an enormous amount of 

combinations can be done among different parts of the DNA in each organism, to produce a 

variability of products necessary for life.  

To the best of my knowledge, the history of DNA traces back to Erwin Schrodinger and 

his book What is life? The Physical Aspects of the Living Cell (Schrodinger, 1946). The book was 

based in his public lectures at Dublin Institute for Advanced Studies (Trinity College). Schrodinger 

talked about the hereditary code script and made the hypothesis that we believe a gene – or perhaps 

the whole chromosome fibre – to be an aperiodic solid. This book has been considered one of the 

most influential scientific writings. Indeed, it is has been reported that many scientists, including 
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famous biologists such as J.B.S. Haldane and Francis Crick, were influenced by What is life?. This 

is one of the reasons that I strongly recommend this book to any student in my field. Moreover, I 

strongly believe that if we really want to understand nature, physics and life sciences should 

interact. This view has been summarized in two reports of the National Research Council of US in 

2010 (National Research Council (US) Committee on Research at the Intersection of the Physical 

and Life Sciences, 2010) and 2014 (National Research Council (US). Division on Earth and Life 

Studies. Committee on Key Challenge Areas for Convergence and Health, Board on Life Sciences, 

2014). An interesting field has already been born, integrating physics (quantum mechanics) and 

biology, called Quantum Biology. For more details in quantum biology see: the book Quantum 

aspects of life (Abbott et al., 2008) and the lectures of the Workshop "Quantum Biology: Current 

Status and Opportunities" (http://www.ias.surrey.ac.uk/workshops/quantumbiology/). 

Now, let us imagine this molecule: you can envisage the DNA as a skein that if we unwind 

it will be ~ 2m long. Note, however, that this is within a cell! How many cells do we have? 

According to a recent study (Bianconi et al., 2013), an adult human body contains 37.2 × 1012 

cells. We know that the distance between earth and the moon is ~384 × 103 km. If we do the math, 

we get that the total length of the DNA that an adult human body contains is approximately 10,000 

times to the moon and back!  

Another analogy, to think of the amount of the information enclosed in the DNA, is the 

following: Imagine the DNA as a very small string where upon it are attached small beads (like a 

kompoloi: for those that are familiar with) and each of those beads, has as a name a capital letter 

of the alphabet, but in this case we need only 4 of the letters (A, T, G, C). Now, within a cell, DNA 

comprises ~3billion letters. The famous book of Leo Tolstoy, War and Peace, contains 3 million 

http://www.ias.surrey.ac.uk/workshops/quantumbiology/
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letters. To reach the 3 billion we need 1,000 copies of the War and Peace, and if we place the 

books one above the other, we will have the height of an 18-storey building (Oshlack, 2013)! 

A: Wow! But each of the cells contains exactly the same DNA? 

C: No, differences appear among cells. For many years, DNA was extracted based on 

thousands or millions of cells. However, recent technological advances allow for DNA extraction 

from a single cell (Owens, 2012). The question is on how to use the new information. Now, a good 

question could also be: why the DNA contains ~3 billion letters, why not more or less. Well, in 

this case I do not have any answer. 

A: Does the DNA remains the same over the lifetime of an individual? 

C: That is another extremely interesting question, thank you! I am aware of 1 study from 

John Hopkins Medical Institutions published in 2008. Researchers tried to address this question. 

What they found is that, indeed, our genome changes over lifetime. However, what changes is not 

the DNA letters, but what is known as the epigenetic mechanism. And this might contain part of 

the answer for many diseases. 

A: We are discussing about genetics, and now you said epigenetics? What is epigenetics? 

C: I think it is easy to answer, but difficult to understand. If we say that genetics is the 

sequence of the DNA letters, epigenetics is all the rest around the DNA! And while genetics 

represent something that is heritable, i.e. is transferred from generation to generation, the 

epigenetic part is strongly interacting with the environment (although recent studies have proposed 

a heritable mechanism of epigenetics, too! This means that the inheritance of phenotypic 

characteristics might not solely depend on the DNA). 

A: And how you deal with all this complexity in your work? 
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C: It is easy: we make assumptions, simplify and approximate the solutions and, 

consequently, the new knowledge obtained. If the simplest version is working then we are ok. If 

not, then we need to increase the complexity.  

A: Talking about genomics, what is a gene Chris? 

C: The central dogma of molecular biology deals with the detailed residue-by-residue 

transfer of sequential information. It states that such information cannot be transferred from 

protein to either protein or nucleic acid (Crick, 1970). Giving a definition for a gene, nowadays, 

is not so easy. Here is a more recent one: A gene is a union of genomic sequences encoding a 

coherent set of potentially overlapping functional products (Gerstein et al., 2007). As it has been 

stated by Prof. J. A. Stamatoyannopoulos - based on the results from The ENCODE Project 

Consortium (ENCODE) - results are re-shaping many long-held beliefs… including the very 

definition of the gene (Stamatoyannopoulos, 2012). More definitions for the gene can be found in 

the human genome project webtv  

(https://www.youtube.com/watch?v=1MTZwa_TE_o&list=PL1ay9ko4A8slDIOZvtYjTys_BTD

c0klkS). 

However, borrowing the idea from Prof Steve Jones, together with searching for a 

definition of the gene, I would challenge the reader of this Dissertation to have a google search on 

the internet, typing the phrase: scientists find gene for. Results are surprising, both in terms of 

quantity and quality. 

There are, though, even more interesting stuff in the genome. 

A: Like? 

C: We know, for e.g. that the human genome contains roughly 20,000 genes. Also, the 

difference in the genome between any 2 persons is less than ~2%! However, before making 

https://www.youtube.com/watch?v=1MTZwa_TE_o&list=PL1ay9ko4A8slDIOZvtYjTys_BTDc0klkS
https://www.youtube.com/watch?v=1MTZwa_TE_o&list=PL1ay9ko4A8slDIOZvtYjTys_BTDc0klkS
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conclusions, we need to say that the human genome and the genome of the murine differ only in 

300 genes (Ivanitskii, 2010)! 

A: Ups 

C: Exactly! That’s the reason we believe that thinking the genomic information as a 

blueprint is actually a fallacy. It is much more likely that the information included in the DNA is 

rather an algorithm, which we need to understand on how it works. This is where the epigenetics 

and quantum biology come into the game! 

 

Data: phenotypes and genotypes 

C: We collected 1.5L of milk from 1,264 Brown Swiss cows. The animals belonged to 85 

herds. Each animal was sampled only once. Based on this milk, individual cow cheese was 

produced in the lab (Cipolat-Gotet et al., 2013). Moreover, the whole coagulation and curd 

firmness process was monitored. Hence, we had 1,264 cheeses, one from each cow. Blood was 

taken from 1,152 cows in order to extract the DNA and genotype the animals with the Illumina 

SNP (single nucleotide polymorphism) chip, containing ~50,000 SNP. Note that today the cost of 

genotyping one animal with this SNP chip is ~60 euros. 

A: What is cheese? 

C: According to World Health Organization (WHO) and Food and Agriculture 

Organization of the United Nations (FAO) standards cheese is “the ripened or unripened soft, 

semi-hard, hard, or extra-hard product, which may be coated, and in which the whey 

protein/casein ratio does not exceed that of milk…”(World Health Organization and Food and 

Agriculture Organization of the United Nations). Note, ricotta is not a cheese! 

A: Why ricotta is not considered as a cheese? 
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C: Because ricotta is made from the whey, i.e. the liquid that remains after obtaining the 

cheese curd. 

A: And what is coagulation and curd firmness? 

C: Milk coagulation after rennet (or similar coagulation agents) is the first step to cheese 

production. Coagulation (also known as clotting) is the transformation of the milk from its liquid 

state to a gel. 

A: You said before that the animals were genotyped with SNP. What is a SNP? 

C: The SNP is a type of genetic marker in the DNA. It is a polymorphism, i.e. a change in 

the genome that appears in the population with a frequency greater than a – arbitrarily chosen – 

threshold (e.g. 1%). It is called single nucleotide because the change/substitution is made on only 

one letter (nucleotide) of the DNA, e.g. the letter A is changed into the letter C.  

A: Why you are using SNP for the genotypes? 

C: Imagine SNPs as flags in the genome. We are interested in the genes, however, it is 

practically difficult to work with all genes. Thus, instead of genes, we use the DNA markers. By 

identifying markers across the whole genome, we simply increase the probability each of these 

markers to be closely linked with at least one gene. This, in our terminology, is known as linkage 

disequilibrium (LD). So, the markers represent the genes in our analysis. Take the following 

analogy: Imagine that I am interested in a girl (her name is Ylenia). However, it is difficult to find 

Ylenia in Padova and she doesn’t like social networks, e.g. facebook (fb). Nevertheless, her best 

friend, Camilla, is a fun of fb and always update her position, wherever she goes. So, since they 

are best friends, by tracking Camilla, through her fb, it is very likely to spot Ylenia as well, which 

is our target. How much likely? This depends on how close friends they are (the strength of “their 
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LD”). So, in this analogy, Ylenia is the gene, Camilla represents the marker linked to the gene and 

the LD is the relationship between them. 

A: Are the SNPs the only genetic polymorphisms or there are more types? 

C: There are also other types of genetic markers, such as copy number variation, 

microsatellites, minisattelites, etc. However, working with SNP is much easier and much cheaper. 

The rest of the genetic markers have much longer sequence in the genome compared to SNP, i.e. 

they are not just one letter changes, but can be hundreds or thousands. 

A: And what is the reason to do this analysis on individual cow cheese with genomics? 

C: That is a great question! Firstly, we have already seen that the cheese traits are heritable 

(Bittante et al., 2013). This means that cow cheese characteristics can pass from generation to 

generation, which implies that the information can be used in breeding programs. However, for 

breeding purposes, recording at a population level is required. At present, it is very difficult to 

produce cheese from tens, hundreds thousands or millions of cows, due to high costs, labor demand 

and lack of an appropriate technology. Instead, we can investigate in a small sample of our 

population if there are some specific genomic regions that are related to the cheese production. 

Then, perhaps it would be possible to select the best individuals based on their genomic 

background. 

 

Methods: the five parts of the Thesis 

C: The project was split in 5 parts. The first 3 parts were focused in genomic studies. The 

CHAPTERS 1 and 2 dealt with genome-wide association analysis (GWAS) and CHAPTER 3 with 

gene-set enrichment and pathway-based analysis. The first method is called genome-wide because 

the markers that are used, the SNP, are distributed along the whole genome, i.e. located on all the 
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chromosomes. The term association means that we link/associate the phenotypes with the markers, 

and thereby with specific regions on the genome. Further, to alleviate some of the problems related 

to GWAS analysis and to complement the GWAS analysis, we collected the results from the first 

2 GWAS analyses and performed a gene-set enrichment and pathway-based analysis (CHAPTER 

3). The aim was to identify biological pathways that might be related to the cheese-making traits. 

In this case, firstly we collected the most important SNPs. Then, we identified the genes that were 

located very close to each of these SNPs. Finally, we tried to identify the biological pathways that 

these genes are known to be involved in. 

The 4th CHAPTER was focused on the cheese-related phenotypes. We tried to diminish a 

set of 26 traits involved in the cheese-making process into a small set of variables. The 26 measured 

phenotypes were i) milk quantity and quality traits, i.e. milk yield, milk fat and protein percentages, 

ii) coagulation and curd firmness properties, i.e. trait that are measured during the gelation process 

(from milk to cheese) and iii) the actual cheese traits, e.g. the percentage of cheese obtained from 

the 1.5L of milk, the percentage of fat and protein of milk that retained in the cheese. A brief 

description on the coagulation, curd firmness and the cheese traits is given in the Appendix I. 

Finally, the 5th CHAPTER was an integration of all the previous analysis, i.e. we used the small 

set of the Fs identified in the 4th CHAPTER as phenotypes and performed GWAS and gene-set 

enrichment and pathway-based analysis.  

 

Results 

C: The genomic analysis revealed two main chromosomic regions. The first one was on 

chromosome 6, in the region where the casein genes are located, and more precisely, close to kappa 

casein. The importance of kappa casein in cheese making is known. The second important 
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chromosomic region was at the tail of chromosome 11, where again an effect on the casein variants 

and the beta lactoglobulin (a protein that is present in the whey, not in the cheese) is known. 

However, we detected signals in many more chromosomes, albeit at a weaker strength. It is still in 

question the importance of these chromosomic regions in the cow’s ability to produce cheese. 

Concerning the gene-set enrichment analysis, the pathways that have been detected were mostly 

linked to the mammary gland functionality, bovine reproduction and general metabolism.  

Concerning the last 2 contributions: Firstly, we managed to transform a set of 26 cheese-

making traits into 10 variables (factors; Fs). These Fs captured the basic concept of the cheese-

making process. For e.g. we found 1 factor that was mainly related with the cheese yield traits, a 

second factor was describing the coagulation properties of the milk, a third one was linked to the 

mammary gland health status of the cow, and so on. Interestingly, previous analyses with similar, 

albeit smaller, datasets observed the same pattern. Moreover, our results using the factors were 

consistent with the given name of the factors. Hence, although more research is needed in this type 

of analysis, before final application in breeding programs, our results appear quite promising. 

 

Conclusion 

C: In this work we were primarily focused on the genomic background of a cow’s ability 

to produce cheese. Results are available for breeding purposes and for further exploration. Since 

this is a pioneering work from the phenotypic point of view, replication of our results from 

independent studies remains crucial (Ioannidis, 2013). 

Before we close, I would like to propose to the reader the small video of R. Feynman 

https://www.youtube.com/watch?v=EYPapE-3FRw on the scientific method, complemented by 

inspector Clouseau https://www.youtube.com/watch?v=9KsVu11CSrQ. 

https://www.youtube.com/watch?v=EYPapE-3FRw
https://www.youtube.com/watch?v=9KsVu11CSrQ
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Do not stop imagine and practicing! 

A: Thank you very much Chris! 

C: Thank you all for taking the time to read those lines! I enjoyed myself! 
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