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SOMMARIO 

In questo studio, l'obiettivo era di indagare le variazioni di espressione indotte dal diabete 

nel cuore e se la generazione delle specie reattive dell’ossigeno (ROS) dipendente dalle 

monoammine ossidasi (MAO) influisse sul trascrittoma cardiaco nel diabete di tipo 1 

(T1D). Inoltre, abbiamo studiato il significato biologico e funzionale di tali cambiamenti 

nell'espressione genica. Il profilo di espressione genica è stato valutato mediante 

microarray nel tessuto cardiaco ottenuto da un modello murino di T1D indotto con 

streptozotocina (STZ), mentre il coinvolgimento delle MAO è stato valutato con un 

approccio farmacologico, usando la pargilina. Sono stati esaminati i seguenti gruppi: (i) 

topi di controllo, (ii) topi trattati con STZ, (iii) topi di controllo trattati con pargilina, (iv) 

topi STZ trattati con pargilina. L'analisi dei geni differenzialmente espressi ha messo in 

luce gruppi in cui i campioni sono raggruppati in modo peculiare e gerarchico. L'analisi 

ha mostrato che il profilo dei cuori diabetici formava un gruppo distinto e si posizionava 

separatamente dagli altri gruppi. Il profilo dei cuori diabetici trattati con pargilina era 

simile a quello dei cuori di controllo. Successivamente, i geni sono stati raggruppati in 

base a specifici modelli di espressione e abbiamo focalizzato la nostra attenzione su quelli 

in cui la pargilina previene tali cambiamenti indotti dal diabete.  

I geni scelti sono stati classificati in base al vocabolario di Gene Ontology (GO) e sono 

state prese in considerazione solo definizioni arricchite. Le classi GO più rappresentate 

nei geni iporegolati nel diabete erano quelle per nucleo, citoscheletro e membrana 

plasmatica. Le categorie GO più rappresentate tra i geni sovraregolati erano quelle per 

nucleo, mitocondrio, citoscheletro e vacuolo. La Gene Set Enrichment Analysis e ulteriori 

analisi hanno mostrato che i geni sovraespressi con il valore più alto di arricchimento 

appartengono alle categorie dei mitocondri, della matrice extracellulare, e dei processi 

catabolici. La pargilina ha prevenuto tali variazioni.  

Considerando i precedenti lavori pubblicati in laboratorio e i risultati trascrittomici, 

abbiamo ipotizzato che le ROS mitocondriali indotte dal diabete e l'attività delle MAO 

possano influire sull'autofagia. L’incremento di LC3 (catena leggera proteica 3 associata 

ai microtubuli)-II osservato nei cuori diabetici è prevenuto dal trattamento con la 

pargilina che causa anche un aumento dei livelli di p62, suggerendo una riduzione del 

flusso autofagico. Ulteriori analisi sui cambiamenti nel flusso autofagico sono stati 

condotti in cardiomiociti di topo adulti trattati con alto glucosio in assenza o presenza di 

pargilina e / o inibitore della degradazione lisosomiale clorochina. 
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Le cellule mantenute in alto glucosio e pargilina hanno mostrato una riduzione 

drammatica del flusso autofagico che non si è verificata nel controllo. Inoltre, la 

fosforilazione della proteina chinasi attivata da AMP ha mostrato un andamento 

decrescente in cardiomiociti trattati con alto glucosio e pargilina. Inoltre, abbiamo 

osservato un aumento dei livelli del fattore di fissione mitocondriale nelle cellule esposte 

ad alto glucosio. Questo evento è stato drasticamente ridotto con l'inibizione delle MAO. 

È interessante notare che anche la fosforilazione di DRP1 su Ser616 ha mostrato un 

andamento decrescente.  

In aggiunta agli studi precedenti, i risultati attuali suggeriscono che il diabete comporta 

profondi cambiamenti trascrittomici nel cuore di topi T1D e l'inibizione delle MAO 

previene tali modificazioni, influenzando i mitocondri, la matrice extracellulare ed i 

processi catabolici. Inoltre. la formazione delle ROS MAO-dipendente, innescata dall'alto 

glucosio, agisce come un segnale che determina l'attivazione dell'autofagia. In 

conclusione, i nostri risultati forniscono la prima evidenza che la formazione delle ROS 

mitocondriali e, soprattutto, l'attività delle MAO modulino l'autofagia cardiaca nella 

cardiomiopatia diabetica. 
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SUMMARY 

Diabetic cardiomyopathy (DCM) represents the major and leading cause of morbidity 

and mortality in diabetic patients. This study aimed at investigating changes in the 

gene expression profile induced by diabetes in the cardiac tissue and whether 

monoamine oxidases (MAO)-dependent reactive oxygen species (ROS) generation 

affects the transcriptome in type 1 diabetes (T1D) hearts. Moreover, we investigated 

the biological and functional significance of such changes in gene expression focusing 

on autophagy. Gene expression profile was evaluated by microarray in the cardiac 

tissue from a mouse model of T1D induced by treatment with streptozotocin (STZ), 

while MAO involvement were evaluated through a classical pharmacological 

approach, using pargyline as an inhibitor for both MAO-A and MAO-B. The 

following groups were examined: (i) control mice, (ii) STZ-treated mice, (iii) control 

mice treated with pargyline, (iv) STZ mice treated with pargyline. The analysis of 

differentially expressed genes showed that profile of samples from STZ-mice formed 

a distinct group and positioned itself separately from all the other groups. Notably, the 

expression profile of diabetic hearts treated with pargyline was similar to the 

expression profile of control hearts. Importantly, pargyline treatment did not affect the 

gene expression profile of control mice. Subsequently, genes were clustered based on 

specific expression patterns and we focused on genes in which pargyline prevents 

changes in gene expression induced by diabetes.  

Chosen genes were classified according to the Gene Ontology (GO) vocabulary and 

only enriched definitions were considered. Most represented GO classes in 

downregulated genes in diabetic conditions were those for nucleus, cytoskeleton and 

plasma membrane. Notably, the most represented GO categories within upregulated 

genes were those for nucleus, mitochondrion, cytoskeleton and vacuole. Gene Set 

Enrichment Analysis and the leading-edge analysis showed that overexpressed genes 

with the highest enrichment score belong to mitochondria, extracellular matrix 

(ECM), and catabolic processes. Pargyline administration prevented these changes.  

Considering our previous studies and the transcriptomic results, we hypothesized that 

mitochondrial ROS formation induced by diabetes and MAO activity could affect 

autophagy. The increase in LC3 (microtubule-associated protein light chain 3)-II 

occurring in diabetic hearts was prevented by pargyline that also caused an increase in 

p62 levels suggesting a reduction in the autophagic flux. Further analysis of changes 
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in the autophagy flux was performed in adult mouse cardiomyocytes (AMVMs) 

cultured with high glucose (HG) in the absence or presence of pargyline and/or 

inhibitor of lysosomal degradation chloroquine. Cells cultured in presence of HG and 

pargyline displayed a dramatic reduction in the autophagy flux that was not affected 

in control. Moreover, phosphorylation of AMP-activated protein kinase showed a 

trend to decrease in AMVMs treated with HG and pargyline. Moreover, regarding 

mitochondrial dynamics, we observed increased levels of mitochondrial fission factor 

in cells exposed to HG. This event was dramatically reduced upon MAO inhibition. 

Interestingly, phosphorylation of dynamin-related protein 1 on Ser616 also showed a 

decreasing trend.  

In addition to previous studies from laboratory of Prof. Di Lisa, the present results 

suggest that diabetes leads to profound transcriptomic changes in STZ-treated mice 

heart and MAO inhibition prevents such changes affecting mitochondria, ECM, and 

catabolic processes. Furthermore, MAO-dependent ROS formation triggered by HG 

acts as a signal that leads to autophagy activation. Finally, mitochondrial fission is 

likely reduced upon MAO inhibition in AMVMs exposed to HG. Taken together, our 

results provide the first evidence that mitochondrial ROS formation and specifically 

MAO activity modulate cardiac autophagy in DCM. 
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I. INTRODUCTION 

1.1 Diabetes 

Diabetes is a chronic metabolic condition associated with cellular dysfunction in the 

transport and utilization of glucose. Diabetes causes a high human, social and economic 

cost.  

In healthy condition, pancreatic β-cells release the hormone insulin in the blood stream 

that increases the uptake of glucose in adipose tissue and muscle. The absence of insulin 

or the inability of the cells to respond to insulin leads to high levels of glucose in the 

blood, or hyperglycaemia, which is one of the hallmarks of diabetes. Hyperglycaemia, if 

left unchecked over a long period, can cause damage to various body organs, leading to 

the development of disabling and life-threatening health complications such as 

cardiovascular disease, neuropathy, nephropathy, and retinopathy1,2 (Figure 1).  

 

 
Figure 1: Diabetes complications. People with diabetes have an increased risk of developing a number of 
serious life-threatening health problems. Persistently high blood glucose levels cause generalized vascular 
damage affecting the heart, eyes, kidneys and nerves. Diabetes is one of the leading causes of 
cardiovascular disease, blindness, kidney failure and lower-limb amputation (International Diabetes 

Federation, 2017. http://www.diabetesatlas.org)2. 
 

There are two main types of diabetes, type 1 diabetes (T1D) and type 2 diabetes (T2D). 

T1D is characterized by insulin deficiency as a primary result of an autoimmune response 
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against pancreatic β-cells. In contrast, hallmarks of T2D are peripheral insulin resistance 

and pancreatic β-cell failure during the later course of the disease3. 

Diabetes is characterized by three central metabolic disturbances: (i) hyperlipidemia; (ii) 

hyperinsulinemia and pancreatic β-cell failure; and (iii) hyperglycemia. These 

abnormalities and other pathological mechanisms including reactive oxygen species 

(ROS) formation and abnormal cardiac fuel usage are believed to act synergistically and 

exacerbate the cardiac phenotype present in diabetes1. In addition, diabetes is 

characterized by increased fatty acids oxidation (FAO) and decreased glucose oxidation 

in the heart as described for T1D4,5 and T2D patients6,7, and several rodent models3. 

 

1.1.1 Insulin signaling  

Glucose transport is mediated by two families of glucose transporters, facilitative glucose 

transporter family (GLUT) and Na+/glucose cotransporter family (SGLT)8. GLUT4 is the 

insulin-sensitive transporter and its role has been extensively studied in diabetes. Glucose 

transport in cardiac tissue is mediated via GLUT4 as in skeletal muscle, liver, and fat 

tissue.8–12. 

Briefly, insulin activates the insulin receptor (IR, Figure 2) tyrosine kinase which 

phosphorylates and recruits insulin signaling/docking molecule insulin receptor substrate 

(IRS)-1/2. Phosphorylated IRS activates the downstream phosphoinositide 3-kinase 

(PI3K) that converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 

3,4,5-trisphosphate (PIP3). PIP3 recruits two protein kinases to the plasma membrane: 

protein kinase B (Akt or PKB) and phosphoinositide dependent protein kinase (PDK1), 

and this leads to the activation of Akt12 (Figure 2). Activated Akt1,2 migrates to the 

cytosol and intracellular membranes, where it phosphorylates AS160, which catalyzes the 

inactivation of Rab GTPases, responsible for the regulation of vesicle fission, destination, 

and fusion that are crucial for GLUT4 translocation to the sarcolemma13. GLUT4 can be 

mobilized also in relation to exercise. Indeed, muscle contraction induces glucose uptake 

leading to the phosphorylation of AS160 by adenosine monophosphate-activated protein 

kinase (AMPK). AS160 is a protein that may act as one site of convergence between 

insulin- and contraction- stimulated glucose uptake14. Muscle contraction raises 

intracellular concentrations of Ca2+ along with an increase in AMP/adenosine 

triphosphate (ATP) ratio leading to AMPK activation. Calcium activates 

Ca2+/calmodulin-dependent protein kinase II (CAMKII), which then contributes to 
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AMPK activation15. Muscle glycogen suppresses AMPK signaling, thus providing a 

negative feedback mechanism for AMPK-mediated glucose uptake15.  

Besides insulin and muscle contraction, several other stress signals are also known to 

enhance glucose uptake. For instance, hypoxia, inhibitors of glycolysis and electron 

transport chain, and uncoupling of oxidative phosphorylation increase glucose uptake at 

least partially through AMPK and modulation of the AMP/ATP ratio16.  

 

 
Figure 2: Glucose transport and insulin signaling. Schematic representation of insulin signaling pathway 
in the regulation of glucose transport. Insulin binds to the insulin receptor (IR) and promotes its 
autophosphorylation at tyrosine residues. Activated receptor recruits IR substrate (IRS) and enhances its 
activation by mediating its phosphorylation. Phosphorylated IRS activates PI3K and subsequently activates 
PDK1. As the upstream kinase of Akt, PDK1 promotes the phosphorylation of Akt. Activated Akt regulates 
glucose metabolism in two pathways. One is promoting GLUT translocation to the membrane, which 
mediates glucose uptake; another one is repressing the function of glycogen synthesis kinase 3 (GSK3) 
enhancing the activation of glycogen synthase and promoting glycogen synthesis (Yu & Chai, Int J Mol 
Med. 2015;35:305-10)17. 

 

An additional branch of the insulin signaling pathway is the mitogen-activated protein 

kinase (MAPK) pathway, which is activated independently of PI3K/Akt. MAPKs are 

important modulators insulin-mediated anabolic response. Downstream of the IR, a 

protein-protein interaction is stimulated leading to the activation of a cascade of protein 

kinases (i.e. MAPK) that eventually results in the phosphorylation of transcription factors 

responsible for protein synthesis. 

 

 

 



 

 
 

4 

1.2 Diseases associated with diabetes 

Diabetes can lead to complications in many organs and tissues, resulting in frequent 

hospitalisations and early death. People with diabetes are at increased risk of 

cardiovascular disease (CVD) compared with people without diabetes. More than two-

thirds of diabetic patients die from cardiovascular complications including diabetic 

cardiomyopathy (DCM) and heart failure12,18. 

A hallmark clinical feature of insulin-resistant individuals and T2D patients is reduced 

clearance of glucose from the blood, and this is mainly due to impaired insulin-stimulated 

glucose transport into muscle and adipocytes11. Persistently hyperglycaemia causes 

generalized vascular damage affecting all organs, especially those dependent on oxygen 

availability (i.e. the heart, eyes, kidneys, and nerves).  

Diabetes complications can be divided into acute and chronic complications. Acute 

complications include, diabetic ketoacidosis (DKA), hyperglycaemic hyperosmolar state 

(HHS), hyperglycaemic diabetic coma, seizures or loss of consciousness2. The long-term 

vascular complications associated with diabetes are divided into two groups, (i) 

microvascular disease and (ii) macrovascular disease. Microvascular complications, 

resulting from the damage of small blood vessels, are nephropathy, neuropathy and 

retinopathy, whereas chronic macrovascular complications, resulting from the damage of 

the arteries, are coronary artery disease (CAD), peripheral artery disease (PAD), diabetic 

encephalopathy and stroke. In addition, diabetes has also been associated with increased 

rates of cancer, physical and cognitive disability, tuberculosis,  and depression2. 

 

1.2.1 Diabetic cardiomyopathy 

A prominent role in disease associated with diabetes is played by DCM that is responsible 

for higher incidence of sudden cardiac death and represents the leading cause of 

morbidity and mortality among the diabetic patients19. Data from experimental, 

epidemiologic, and clinical investigations have collectively demonstrated that DCM 

results in alterations in myocardial function, structure, and dimension1. DCM is an early 

complication, initially presenting as diastolic dysfunction with preserved ejection fraction 

in the absence of coronary atherosclerosis, hypertension, and valvular heart disease. 

Subsequently, diastolic dysfunction can progress to compromised systolic function 

resulting in heart failure with reduced ejection fraction1,20.  
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Hyperglycaemia and systemic insulin resistance are associated with an increase in left 

ventricle mass (LV) and LV-mass to LV end-diastolic volume ratio1,12,21. 

DCM is a multi-factorial disease. Multiple factors may collectively contribute to the 

development and progression of DCM, but still the underlying exact cellular and 

molecular mechanisms are not entirely clear1,3,22,23 (Figure 3). Several mechanisms, 

including oxidative stress, inflammation, mitochondrial dysfunction, metabolic 

derangements, autophagy, apoptosis and fibrosis have been proposed to trigger diabetes-

induced cardiac damage20. Among various mechanisms proposed to contribute to the 

higher risk of heart failure in diabetic patients, oxidative stress that results from 

uncontrolled generation of ROS has received significant experimental and clinical 

evaluation1,19. Another candidate mechanism is autophagy that is induced by ROS upon 

nutrient deprivation24.  

 

Figure 3: Schematic depiction of the multiple potential mechanisms that have been implicated in the 
pathophysiology of diabetic cardiomyopathy. Although depicted as separate mechanisms, these pathways 
interact with each other in complex ways (Bugger & Abel, Diabetologia 2014, 57:660–671)20. 

1.3  Reactive oxygen species and their sources 

The complete reduction of O2 inevitably implies the formation of partially reduced 

intermediates. These partially reduced forms of oxygen (superoxide anion, hydroxyl 

radical) are commonly referred to as reactive oxygen species (ROS)25. The imbalance 

between excessive formation and insufficient removal of ROS is termed oxidative stress 

and plays a major role in all cardiac diseases25,26.  
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Current consensus is that excess generation of ROS, largely due to hyperglycemia, causes 

oxidative stress, which further exacerbates the development and progression of diabetes 

and its complications26. Indeed, increased ROS formation is well documented in multiple 

tissues in both animal and human diabetic subjects27. This notion is strongly supported by 

the ability of various antioxidants to reduce DCM in animal studies28,29. Nevertheless, 

large scale clinical trials using antioxidant therapies have not reproduced the desired 

results26.  

There are several sources of ROS in human cells, including, NADPH oxidase (Nox), 

xanthine oxidase (XO), uncoupled nitric oxide synthase (NOS), arachidonic acid and 

mitochondria, but their effects vary depending on the disease and the tissue30.  

 

NADPH oxidase is a flavocytochrome b composed of two plasma membrane protein 

subunits, p22‐phox and either p91‐phox and cytosolic components (rac, p47phox, 

p67phox, p40phox). NAD/NADPH oxidase is membrane bound and is the most powerful 

source of endogenous O·−
2 production31. 

Microorganisms can activate NO and promote translocation of its cytosolic components 

to the plasma membrane to form an active complex that allows transfer of electrons to 

molecular oxygen to generate superoxide32. So far, different isoforms have been 

described, including NOX1–5, NOX oxidase 1 and 2, NOX organizer 1, and NOX 

activator 132,33. 

NOX specifically generate ROS as their primary function and their role as the major 

cellular ROS sources has been identified in different pathologies including cardiac 

diseases. Up to now, studies indicate that NOX1 and/or 2-mediated signaling may be 

detrimental in hypertension, atherosclerosis, cardiac hypertrophy and remodelling34. 

NOX4 may play a protective role in the heart subjected to chronic pressure overload as 

well as in the vasculature in the setting of hypertension34.  

The contribution of NOX to hyperglycemia-induced ROS production has also been 

reported35. It is well documented that the activity of NOX is increased in cardiomyocytes 

exposed to high glucose and in the heart of diabetic mice35–37. However, no clinical trials 

have been conducted with the inhibitors of these enzymes because it has not been easy to 

obtain specific and selective inhibitors for each NADPH oxidase isoform35.  
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Xanthine oxidase (XO) is an enzyme that generates superoxide radicals and hydrogen 

peroxide when it catalyzes the oxidation of hypoxanthine to xanthine, and can further 

catalyze the oxidation of xanthine to uric acid32.  

Hypoxanthine and XO activity are also increased in diabetic subjects38. The role of XO in 

hyperglycemia-induced oxidative stress is documented by increased ROS formation in the 

muscle and development of fibrosis of hyperglycemic streptozotocin (STZ)-induced 

diabetic mice32,39. XO inhibition has been proven beneficial in animal studies23 and 

humans39. Some investigators reported evidence for beneficial vascular effects of XO 

inhibitors in hypercholesterolemic and diabetic patients23. Indeed, in T1D patients XO 

inhibition reduced the degree of oxidative stress, whereas in T2D patients results in 

significant improvements in peripheral endothelium-dependent vasorelaxant function40. 

Although XO may represent an important therapeutic target, it is not suitable to treat 

cardiovascular complications in patients, since human heart does not contain detectable 

amount of these enzymes41. 

1.3.1 Mitochondrial sources of ROS 

ROS are produced at various intracellular sites, yet it is generally accepted that in cardiac 

myocytes the largest amount of ROS are formed within mitochondria25,42. ROS produced 

by mitochondria have been implicated in the pathogenesis of diabetes and its 

complications20. In addition, mitochondrial dysfunction is a key feature of DCM observed 

both in cardiac tissue from diabetic patients and animal models of T1D and T2D3,43.  

ROS generation within mitochondria occurs at the level of respiratory chain complexes or 

is catalyzed by specific enzymes, such as monoamine oxidase (MAO) and p66Shc (Figure 

4). 
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Figure 4: Schematic representation of principal mitochondrial sources of ROS. c: Cytochrome C, I, II, 
IV: Complexes I/II/IV, MAO: Monoamine Oxidase, NOX4: NADPH Oxidase, PTP: Permeability 
Transition Pore, SOD: Superoxide Dismutase (Di Lisa, F. & Scorrano, L., 2012)44. 

1.3.1.1 The electron transport chain 

The electron transport chain (ETC, Figure 5) is the major site of ATP production in 

mitochondria. At the inner mitochondrial membrane (IMM), complexes of the ETC 

shuttle electrons to their final acceptor (oxygen) to form water by the transfer of electrons 

from NADH (Nicotinamide adenine dinucleotide) and FADH2 (Flavin adenine 

dinucleotide) to oxygen45. In parallel, the resulting electrochemical gradient drives the 

translocations of protons from the mitochondrial matrix uphill across the IMM by means 

of the F0F1-ATP synthase activity46. This proton translocation is coupled to the 

phosphorylation of ADP to generate ATP42. At the level of the first three complexes, 

oxygen is partially reduced into superoxide, especially under conditions that decrease the 

flow of electrons towards complex IV. Electrons flowing through the respiratory chain 

can be donated to oxygen at other sites, but in these cases the reduction is not complete, 

resulting in the release of partially reduced forms.25,42,47.  
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Figure 5: The ETC and its relationship with ROS production. Electrons are transferred between 
enzymatic complexes of the ETC, promoting proton transport from the matrix to the intermembrane space. 
Proton flow through FOF1-ATP synthase converts ADP to ATP. Normally, O2 is the terminal electron 
acceptor from complex IV. Electron leak from complexes I or III of damaged mitochondria can produce 
toxic reactive O2 and H2O2 (Gerald W. Dorn II EMBO Mol Med (2015) 7: 865–877)48. 

Superoxide that does not cross IMM is rapidly dismutated into the freely permeable H2O2 

by Mn-SOD49. It has been shown that Mn-SOD deficient mice develop ROS toxicity and 

dilated cardiomyopathy50. Moreover, increased catalase expression or inhibition of ETC 

complexes I and II with rotenone and thenoyltrifluoroacetone, respectively, attenuate 

ROS formation in cardiomyocytes from animals with T1D and T2D51,52.  

Hyperglycemia-induced ROS formation is not observed in rho zero (ρ0) endothelial cells 

in which mitochondrial DNA is depleted and ETC is not functional. In addition, it is not 

possible to inhibit the respiratory chain in humans without affecting a wide array of vital 

functions. Thus, inhibition of the ETC complexes cannot be considered as potential 

therapeutic strategy for the treatment of this multifactorial disease. 

 

1.3.1.2 p66Shc 

p66Shc is a cytosolic adaptor protein present in all vertebrates25,53–55. Unlike its splice 

variants (p52Shc and p46Shc), p66Shc is involved in the intracellular pathway(s) that 

regulates ROS metabolism and apoptosis55,56. Under stress conditions, this enzyme 

translocates to mitochondria and reacts with cytochrome c57  sequestering electrons from 

the ETC to generate H2O2
25,53. Therefore, the increase in mitochondrial ROS formation 

caused by p66Shc contributes to mitochondrial ROS formation as it has been highlighted 

in a wide array of physiological and pathological conditions53,56.  
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Several studies suggest a pivotal role of p66Shc in cardiovascular pathophysiology25. Cells 

and mice lacking p66Shc show reduction in markers of oxidative stress56. Mice lacking 

p66Shc show a significant reduction in both the occurrence of apoptosis and the degree of 

hypertrophy25,58. Moreover, the lack of p66Shc was shown to protect against diabetic 

cardiomyopathy by preventing the senescence of cardiac progenitor cells25. Cardiac 

protection was demonstrated in mouse hearts exposed to ischaemia and reperfusion53,56. 

Indeed, cardiac deletion of p66Shc resulted in increased viability and decreased oxidative 

stress56. Although it is widely accepted that mice lacking p66Shc display better functional 

recovery and decreased damage during reperfusion, studies highlight the potential 

protective effect of ROS induced by p66Shc. Despite the role of p66Shc in severe oxidative 

stress in the heart is widely accepted, at the moment there are no drugs available that can 

prevent or modulate ROS forming activity of p66Shc. 

1.3.1.3 Monoamine oxidases 

1.3.1.3.1 The structure of monoamine oxidases  

Monoamine oxidases are flavoenzymes located at the outer mitochondrial membrane that 

catalyze the oxidative deamination of catecholamines and biogenic amines releasing 

hydrogen peroxide (H2O2), aldehydes and ammonia59–61. They have been classified in 

two isoenzymes A (MAO-A) and B (MAO-B) and are distinguished by substrate 

specificity and sensitivity to inhibitors62. The two isoforms (Figure 6) share 70% 

homology in their primary sequence. Both of them contain the obligatory cofactor FAD, 

necessary for catalysis, which is covalently bound to cysteine residue, namely Cys406 in 

MAO-A and Cys397 in MAO-B61. Although human MAO-A is monomeric and MAO-B 

is dimeric, both isoforms display a dimerization in their membrane-bound forms61,63–70. 

Instead rat MAO-A has a dimeric structure that is similar to that of human MAO-B65,66,71.  

The active site of MAOs consists of a hydrophobic cavity (about 500 Å and 700 Å in 

MAO A and MAO B, respectively) that extends from the core of the globular body in 

front of the flavin to the protein surface65,66. 

Genes encoding for MAO-A and MAO-B are located side-by-side on the short arm of X-

chromosome and have 92% similarity in their sequence. In both genes, exon 12 encodes 

for the covalent FAD binding site and is the most conserved exon, showing 94% amino 

acid identity between MAO-A and B64. 
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Figure 6: Ribbon structures of hMAO. (A) Overall structure of MAO-A. The FAD-binding domain is in 
blue; the substrate-binding domain is in red; and the C-terminal membrane region is in green. FAD and 
clorgyline are depicted in yellow and cyan ball-and-stick representation, respectively. The active site cavity-
shaping loop is depicted as black coil (De Colibus et al. Pnas 2005)72. (B) Monomer A is on the right and 
monomer B is on the left. The letters ‘N’ and ‘C’ indicate the N-terminal and C-terminal amino acids, 
respectively. Residues 4–460 are in red, and the C-terminal tail is in green. The FAD is shown in ball-and-
stick representation and colored in yellow (Binda et al. Nature Structural Biology 2002)67.  

1.3.1.3.2 Tissue distribution 

During development, MAO-A is expressed before MAO-B, but levels of the latter 

increase conspicuously in the brain after birth66. MAO-A and MAO-B are expressed, at 

different levels, in many organs73, and they have been extensively studied in the central 

nervous system65. In the brain, MAO-A has been found prevalently in noradrenergic 

neurons, whereas MAO-B has been detected in serotoninergic and histaminergic neurons 

and in glial cells61. In particular, MAO activities were detected in the heart of humans and 

different animals74–80. Human heart contains predominantly MAO-A, but MAO-B is also 

present61. In mouse cardiomyocytes, MAO-B is the predominant isoform while, in 

contrast, rat cardiomyocytes express more MAO-A61.  

 

1.3.1.3.3 Physiological roles 

MAO catalyzes the oxidative deamination of monoamines according to the following 

reaction: 

RCH2NR´R´´ + O2 + H2O  RCHO + N R´R´´ + H2O2 

This reaction occurs in two steps. In the first step, the co-factor of MAO flavin adenine 

dinucleotide (FAD) is reduced to an aldehyde intermediate and ammonia, while in the 

second step FAD is re-oxidized and H2O2 is produced25: 
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RCH2NH2 + MAO → RCHO + NH3 + MAO-reduced 

MAO-reduced + O2 → MAO + H2O2 

Aldehyde dehydrogenase (ALDH) metabolizes the reactive aldehyde into the 

corresponding acid to avoid its accumulation and toxicity61,81.  

Serotonin and norepinephrine are preferentially metabolized by MAO-A, while MAO-B 

catalyzes phenylethylamine and benzylamine60,61. Both isoenzymes catalyze the 

deamination of the other amines (dopamine, tyramine, octopamine and tryptamine), 

playing an important role in their turnover.  

It has been shown that MAO-A and MAO-B knockout (KO) mice display differences in 

neurotransmitter metabolism and behavior62. Shih and coworkers observed that MAO-A 

KO mice had elevated levels of some amines in the brain and manifest aggressive 

behaviour. On the other hand, no aggression was observed in MAO-B KO mice. Both 

MAO-A and MAO-B KO mice show increased reactivity to stress. Studies in MAO-A 

KO mice also confirmed that maintenance of serotonin levels is important for the normal 

development of thalamocortical axonal activity62. 

 

 

1.3.1.3.4 MAO in cardiovascular diseases 

MAO can generate 10-fold higher levels of ROS in human atrial myocardium in 

comparison to the ETC61,81,82. In addition, studies carried out with intact mitochondria 

suggest H2O2 generated during deamination of tyramine by MAO is 48-fold higher than 

that generated during oxidation of succinate via complex II, again demonstrating the 

potential contribution of MAOs to cellular ROS levels and signaling47,83.  

MAO has been mostly studied in the brain but several studies have proved a role of these 

flavoenzymes (more specifically MAO-A) in cardiovascular diseases65 and in the 

regulation of cardiac redox balance25,61.  

Pharmacological and genetic inhibition of these flavoenzymes is protective in 

cardiovascular complications, including I/R injury56,84,85, pressure overload-induced heart 

failure86,87 and streptozotocin (STZ)-induced cardiac dysfunction43,88. 

Parini’s group was the first to demonstrate that MAO-A is an important source of ROS in 

the myocardium89. They showed that MAO-A induced ROS trigger signaling pathways 

that are receptor-independent and lead to cell proliferation and hypertrophy or apoptosis. 

Moreover, the same group demonstrated that incubation of cardiomyocytes with serotonin 
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led to an increase in ROS production and hypertrophy that involved the activation of 

extracellular signal regulated kinase (ERK) 1/2 in a MAO-A dependent manner89,90.  

Kaludercic et al. demonstrated the contribution of MAO-A in maladaptive hypertrophy 

and myocardial dysfunction in hearts subjected to pressure overload81. They showed that 

triggering MAO-A activity leads to increased ROS formation, oxidative stress, 

mitochondrial dysfunction, caspase activation and apoptosis in cardiomyocytes. 

Pharmacological MAO inhibition mediated by clorgyline, a selective inhibitor of MAO-A 

does not have any side-effects on basal cardiac structure or function in control mice. 

Moreover, the effect of genetic deletion of MAO-A in cardiovascular setting was further 

characterized in MAO-A mutant mice (MAOneo) where the expression of a truncated non-

functional variant of MAO-A transcript occurred. MAOneo mice showed a complete 

protection against transverse aortic constriction (TAC)-induced cardiac remodeling 

compared to wild type mice81,84,86. Another study showed that MAO-A KO mice 

performed worse after aortic banding91. Those mice showed cardiomyocyte hypertrophy 

and LV dilation at baseline, although LV dysfunction was absent and no hemodynamic 

alterations were observed. This discrepancy should take into account the following 

elements: primarily, the difference between the two genetic models used in those studies; 

secondly, the severity of the aortic banding used to induce hypertrophy and heart failure. 

MAO-A has been identified as an important source of ROS in STZ-treated rats, 

suggesting that its inhibition may improve cardiac contractility88. These Authors focused 

on the later stages of DCM, characterized by reduced heart rate and contractility, and 

likely associated with reduced ejection fraction and dilation.  

A mechanistic insight into the deleterious role of MAO-A in DCM was further proposed 

by Deshwal et al.  who provided an unprecedented evidence that diastolic stiffness 

observed in STZ mice is prevented by the MAO inhibitor pargyline. 

They showed that exposure of cardiomyocytes to high glucose and IL-1β cytokine, led to 

a significant rise in MAO-A- mediated ROS production accompanied by mitochondrial 

dysfunction and endoplasmic reticulum (ER) stress. In vivo, mice treated with the 

irreversible and non-selective MAO inhibitor pargyline were protected from early 

diastolic dysfunction, ER stress and fibrosis after STZ administration43.  

The role of MAO-B has also been documented in pressure overload induced heart 

failure61. MAO-B−/− mice displayed reduced cardiac oxidative stress, LV remodeling and 
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apoptosis. In addition to this, the absence of MAO-B activity completely prevented LV 

dilation/pump failure61.  

Studies employing genetically modified mice show that MAO-A-/- and MAO-B-/- display 

a slight reduction in contractility/relaxation, although fractional shortening and ejection 

fraction remain unchanged when compared to WT mice61,86. 

Several studies have also investigated the role of MAO in ischemia/reperfusion (I/R) 

injury84,92. MAO inhibition with both clorgyline and pargyline remarkably reduced infarct 

size in an in vivo rat model of I/R injury84. Another independent study also showed that 

pargyline completely prevented I/R induced injury in isolated Langendorff perfused 

mouse hearts56. The significant contribution of MAO activity to oxidative stress and 

cardiac dysfunction was supported by in vitro and in vivo models of MAO 

overexpression93. Cardiac overexpression of MAO in mice resulted in the loss of ~50% of 

cardiomyocytes, fibrosis and heart failure93. Moreover, these hearts displayed p53 

accumulation and reduced levels of PGC-1α (peroxisome proliferator-activated receptor-γ 

coactivator-1α), a master regulator of mitochondrial biogenesis. These changes were 

accompanied by excessive H2O2 formation, reduced ATP levels and mitochondrial 

dysfunction93. 

The involvement and the pivotal role of MAO in cardiovascular injury highlighted by 

these studies prompt the question whether MAOs could play a role in the oxidative stress 

and cardiac dysfunction triggered by hyperglycemia. These enzymes can be targeted 

pharmacologically and this represents an attractive and important therapeutic target for 

the treatment of diabetic cardiomyopathy. This concept is supported by the recent work 

showing the protective efficacy of MAO inhibition on diabetes-induced cardiac 

dysfunction88. 

1.3.1.3.5 Monoamine oxidase inhibitors 

Monoamine oxidase inhibitors were first introduced in the 1950s94–96. They are a separate 

class from other antidepressants, treating different forms of depression as well as other 

nervous system disorders. The antidepressant properties result from selective MAO-A 

inhibition in the central nervous system, which leads to increased brain levels of 

dopamine, noradrenalin and serotonin. Even though MAO inhibitors were the first 

antidepressants introduced, they are not the first choice in treating mental health disorders 

in the current clinical practice due to important side effects, such as orthostatic 

hypotension and hypertensive crises60,94–96. While the mechanism underlying hypotensive 
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effects of MAO inhibitors remains unclear, hypertensive crisis, also known as the ‘cheese 

reaction’, occurs in patients treated with irreversible MAO-A inhibitors following 

consumption of food rich in tyramine, such as cheese, red wine, fava beans, soy sauce or 

chocolate60. This side-effect occurs when tyramine and other sympathomimetic amines 

ingested with food are not degraded in the intestines. They are therefore able to enter the 

circulation and potentiate sympathetic cardiovascular activity by triggering the release of 

noradrenaline60. 

Although tyramine-induced MAO inhibitors’ reactions are normally not associated with 

myocardial injury, myocardial infarction events have been reported in patients treated 

with phenelzine after cheese ingestion60. These side effects are due to the irreversible 

MAO-A inhibition and are resolved by using reversible MAO-A inhibitors and/or MAO-

B inhibitors60. Indeed, reversible MAO inhibitors are currently used in clinical practice 

and are devoid of the aforementioned side-effects60. MAO inhibitors have been classified 

in three groups: 

• Irreversible and non-selective inhibitors, such as phenelzine, pargyline and 

tranylcypromine; 

• Irreversible and selective inhibitors, such as selegiline for MAO-B and 

clorgyline for MAO-A; 

• Reversible and selective MAO inhibitors, such as moclobemide for MAO-A 

and safinamide for MAO-B. 

Some of the non-selective irreversible inhibitors, such as phenelzine and tranylcypromine, 

are still in clinical use along with the reversible MAO inhibitors moclobemide, 

befloxatone, toloxatone and safinamide66. As levels of MAO-B are increased in patients 

with Parkinson’s disease, MAO-B inhibitor selegiline has been used as a dopamine 

sparing agent81. In addition to these, safinamide, a reversible MAO-B inhibitor, was 

licensed by EMA (Emergency medical assistant licensing board) for the treatment of 

Parkinson’s disease in combination with L-DOPA or with other anti-Parkinson drugs in 

mid-to advanced-stage fluctuating patients81.  

MAO inhbitors such as iproniazid, isocarboxazid, beta-phenylisopropylhydrazine, 

nialamide and phenelzine, had become not only available in the clinics for the treatment 

of depression, but they were also evaluated for their potentially beneficial effects in 

patients with CVD60. Because of their hypotensive effects, these MAO inhibitors were 

successfully used as antihypertensive agents and were considered promising tools for the 
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treatment of CVD. MAO inhibition can also be the result of an off-target effect. For 

example, the PPARγ agonist, pioglitazone, used for the treatment of T2D, specifically 

inhibits MAO-B in a reversible manner, a property that is not shared by other members of 

the glitazone family97. Importantly, this off-target effect may contribute to the beneficial 

effects of pioglitazone in DCM. 

To date, MAO inhibitors have been used in patients to preserve or increase monoamine 

levels. It remains to be investigated clinically products derived by MAO deamination of 

biogenic amines97. 

 

1.4  Autophagy process 

Autophagy has acquired a pivotal role in the pathological alterations of diabetes. 

Depending on the extent of autophagy and its duration, autophagy can have both 

beneficial and detrimental effects3. 

Autophagy refers to an evolutionarily conserved mechanism of degradation and an 

adaptive process driven by autophagy-related (ATG) proteins devoted to the intracellular 

recycling of cytoplasmic element, such as damaged or dysfunctional components, 

senescent organelles, and unfolded proteins. Autophagy is also known as a self-

degradative process contributing to the maintenance of cellular functions and survival in 

all organisms under basal conditions. Furthermore, this recycling mechanism occurs in 

response to different forms of stress, including nutrient deprivation, growth factor 

depletion, infection and hypoxia. It also ensures quality control and regulates the 

synthesis of new cellular components by providing amino acids, fatty acids and sugars 

obtained from the turnover of redundant cellular elements98–104.  

Autophagy refers to regulated catabolic processes, all of which deliver cytoplasmic 

components to the lysosome for degradation, and that are classified at least into three 

types: macroautophagy, microautophagy and chaperone-mediated autophagy (CMA) 

(Figure 7). They differ in terms of cargo delivery to the lysosomes. 

Macroautophagy, the major catabolic mechanism used by eukaryotic cells, involves the 

formation of double-membrane vesicles called autophagosomes that engulf damaged, 

dysfunctional and redundant cytoplasmic components. Then, autophagosomes are 

trafficked to lysosomes for the degradation of sequestered cargos. On the other hand, 

microautophagy refers to the direct invagination of the lysosomal or endosomal 

membrane, resulting in the engulfment of cytoplasmic cargo that is subsequently 
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degraded by lysosomal proteases. The third pathway is CMA, which consists of proteins 

containing the KFEQR motif that is recognized by the cytosolic chaperone heat shock 

cognate 70 (HSC70). The targeted protein is delivered to the lysosomes for degradation 

with the assistance of the CMA receptor, lysosome-associated membrane protein type 2A 

(LAMP-2A)104. 

 

Figure 7: Schematic model of the major pathways in the regulation of the autophagic machinery. 
These pathways include macroautophagy, microautophagy, and chaperone-mediated autophagy. In 
macroautophagy, double-membrane vesicles (autophagosomes) sequester cellular components and deliver 
them to lysosomes for degradation, whereas in microautophagy, lysosomes directly engulf cellular 
components. In chaperone-mediated autophagy, the chaperone Hsc70 transports target proteins to 
lysosomes for degradation (Sciarretta et al. Annu. Rev. Physiol. 2018. 80:7.1–7.26)105. 

As previously mentioned, induction of autophagy results in recruitment of ATGs to a 

specific subcellular location termed the phagophore assembly site (PAS) and nucleation 

of an isolation membrane that forms a structure called the phagophore. Gradual 

elongation of the curved isolation membrane results in expansion of the phagophore into 

a sphere around a portion of the cytosol. The isolation membrane closes into a double-

membrane vesicle, thereby capturing the engulfed cytosolic material. Then, the outer 

membrane of the autophagosome fuses with the lysosomal membrane to form an 

autolysosome 98,100. The canonical, or conventional, autophagic pathway involves Atg4, 

Atg5, Beclin1 (Atg6), Atg7, Atg12, and Atg16, that govern these steps. 

Increasing lines of evidence suggest that an Atg5/Atg7-independent pathway exist. 

Nishida et al. revealed that Atg5−/−Atg7−/− double-knockout mouse embryonic 

fibroblasts (MEF) are still able to form autophagosomes and perform autophagy-mediated 

protein degradation of substrates inside autolysosomes in response to certain stressors106. 



 

 
 

18

During this process of Atg5/Atg7-independent autophagy, termed alternative autophagy, 

lipidation of LC3 does not occur. Instead, Rab9, a small GTPase involved in membrane 

trafficking and fusion between the trans-Golgi network and late endosomes, plays a 

critical role in generating autophagosomes by promoting fusion of the phagophore with 

vesicles derived from the trans-Golgi network and late endosomes. 

Although autophagy was originally identified as a non-specific mechanism of 

degradation, cargo-specific forms of autophagy have also been discovered. For example, 

mitophagy for mitochondria, lipophagy for lipid droplets, or ERphagy for endoplasmic 

reticulum104. 

Mitophagy is the best characterized form of selective macroautophagy, and is responsible 

for the removal of redundant or damaged organelles through their engulfment into 

autophagosomes105,107. Mitophagy guarantees normal cellular metabolism, reduces 

mitochondrial generation of ROS, and prevent mitochondrial release of pro-apoptotic 

factors. Thus, maintenance of proper mitochondrial function by mitophagy is crucial for 

cellular and organismal health101,102,105,107,108. Classical hallmarks of mitochondrial 

dysfunctions, such as membrane potential (ΔΨm) collapse, ROS production, and low 

ATP levels, activate mitophagy.  

Mitochondrial fitness is required for normal cell metabolism and to prevent cell damage. 

Mitochondria grow and divide to control their number and size both in physiological and 

pathological conditions109. Mitochondrial dynamism is linked to mitochondrial quality 

control through the processes of fission and fusion. Changes in mitochondrial dynamics 

represent the first step in response to mitochondrial damage, and it is thought that 

mitochondrial fragmentation is a prerequisite for mitophagy to occur. Mitochondrial 

dynamics are mediated by several proteins. Firstly, dynamin-related protein 1 (DRP1) and 

its adaptor proteins human fission protein (hFIS), mitochondrial dynamics proteins 

(MID49 and MID51), and mitochondrial fission factor (MFF) regulate mitochondrial 

fission, while mitofusins 1 and 2 (MFN1, MFN2), and optic atrophy protein-1 (OPA1) 

control mitochondrial fusion104,105,108. Thus, proteins that regulate mitochondrial 

dynamics also play essential roles in autophagy, and both in vitro and in vivo models have 

confirmed that mitochondrial dynamics and mitophagy are indeed highly integrated 

processes104. 

Defective or senescent mitochondria can be degraded either through PTEN-induced 

putative kinase1 (PINK1)-Parkin dependent or independent pathways. When 

mitochondria are damaged, PINK1 accumulates in the outer mitochondrial membrane 
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(OMM), where it promotes recruitment of Parkin, an E3-ubiquitin ligase that 

ubiquitinates proteins on the OMM of damaged mitochondria105,108. Although PINK1 is 

regarded as a master regulator of mitophagy, basal mitophagy in vivo occurs 

independently of PINK1 in a variety of tissues110. Indeed, several PINK1/Parkin-

independent mechanisms exist. PINK1/Parkin-independent mitophagy is also mediated 

by mitochondrial BCL2 Interacting Protein 3 Like L (NIX/BNIP3L) that can directly bind 

to microtubule-associated protein 1A/1B light chain 3 (MAP1LC3; best known as LC3) 

to form the mitophagosome99,102,104. 

 

1.4.1 Autophagy in cardiac pathophysiology 

Autophagy has emerged as a major regulator of cardiac homeostasis and function105,111. 

Removal of protein aggregates is particularly important in terminally differentiated cells 

such as adult cardiomyocytes that have nearly completely lost replicative abilities. 

Physiological levels of autophagy in baseline conditions or following an acute pathologic 

insult is generally considered cardioprotective. However, excessive or uncontrolled levels 

of autophagy activation can trigger cardiac cell death in some circumstances, thus 

contributing to myocardial injury105.  

Mice with inducible cardiomyocyte-specific Atg5 gene deletion, which serve as a loss-of-

function model for general autophagy, show cardiac dysfunction (hypertrophy, left 

ventricular dilatation, and contractile dysfunction). In particular, at the cellular level, 

Atg5-deleted cardiomyocytes display protein aggregation and mitochondrial 

dysfunction111. Indeed, partial activation of autophagy is beneficial111.   

Autophagy has been shown to preserve cardiac function during ischemia and starvation 

by supplying substrates for ATP regeneration and reduces myocardial injury112–114. 

Moreover,  studies conducted in animal models of cardiac diseases have shown that 

activation of autophagy in myocardium limits cardiac senescence, ischemic injury, 

chronic cardiac remodeling, genetic cardiomyopathy, and heart failure104,115. This mostly 

occurs when mitophagy is stimulated. 

Cardiac autophagy is suppressed below physiological levels in failing hearts, contributing 

to the progression of heart failure (HF), and during aging108. On the other hand, 

autophagy is activated excessively under some conditions, including ischemia/reperfusion 

(I/R), where autophagy may facilitate myocardial injury113. Indeed, cardiac cell death is 

attenuated by autophagy inhibition in I/R113 and pressure overload116. 
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Autophagy has different roles and consequences during I/R because of clear and distinct 

pathophysiological mechanisms. Generally, reperfusion is characterized by a rise of ROS 

that contribute to the progression of myocardial injury25,104. While it is now accepted that 

autophagy plays a relevant role in cardiac pathologies, its contribution to cell death is still 

controversial.  

In this respect, mitophagy could take part into the beneficial effects of autophagy in 

preventing chronic cardiac stress. Basal mitophagy is greater in the heart than in other 

organs117, maybe because of high levels of oxidative phosphorylation, ROS, and 

mitochondrial damage in cardiomyocytes107.  

Several studies confirmed that impaired mitophagy is one of the concurrent cause of  

mitochondrial dysfunction, cardiac hypertrophy and heart failure in response to pressure 

overload118. Saito et al. showed that mitophagy during myocardial ischemia was mediated 

predominantly through alternative autophagy characterized by Rab9-associated 

autophagosomes, rather than the well-characterized form of autophagy that is dependent 

on Atg5/Atg7 conjugation system and LC3. This form of mitophagy played an essential 

role in protecting the heart against ischemia and was mediated by a protein complex 

consisting of Ulk1, Rab9, Rip1, and Drp1. Mitophagy mediated through the  

aforementioned complex pathway protected the heart against ischemia by maintaining 

healthy mitochondria119.  

The functional consequences of impaired cardiac autophagy in T1D and T2D are 

different. In many models of T2D, cardiac autophagy is inhibited at different 

levels105,120,121, but other studies reported an increase122,123. Several studies have shown 

that autophagy is both inhibited in T1D mouse models122 and increased120 in the heart. Xu 

et. al demonstrated that T1D-induced cardiac damage was reduced upon autophagy 

inhibition in either beclin 1- or Atg16-deficient mice124. An interesting additional finding 

is that the reduction in the canonical autophagy was associated with the activation of the 

alternative autophagy, thereby maintaining normal levels of mitophagy and limiting 

diabetic cardiac injury124. On the other hand, autophagy inhibition in T2D contributes to 

cardiac damage125. Tong et al. found that deletion of Atg7 diminished 

autophagy/mitophagy and exacerbated DCM in HFD, highlighting the importance of 

these processes during DCM125. However, the authors did not provide evidence for the 

activated autophagic pathways in HFD (e.g. the non-canonical alternative autophagy). 
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1.4.1.1 Signaling pathways involved in autophagy 

Due to the great importance that autophagy plays inside the cell both in physiological and 

pathological contexts, it is not surprising that different signaling pathways participate in 

the regulation and activation of the process. Among them, mTOR, 5′-AMP-activated 

kinase (AMPK), ROS, metabolites, and miRNA can be mentioned as important players 

(Figure 8). 

mTOR is a serine/threonine kinase that acts through two multiprotein complexes108,126. 

mTORC1 is a master regulator of several processes, among which there is also 

autophagy. It is activated by nutrients and growth factors and is inhibited during 

starvation. mTORC2 regulates cell survival, insulin sensitivity, and cell polarity105,108. 

mTORC1 negatively regulates autophagy through post-translational and transcriptional 

mechanisms. Forced mTORC1 activation in the heart during myocardial ischemia blunts 

autophagy activation and dramatically increases ischemic injury105,127. Insulin signaling 

prevents excessive activation of autophagy during postnatal heart development through 

activation of the mTOR pathway, and mice with disrupted insulin signaling develop 

cardiomyopathy through unrestrained activation of autophagy105. mTORC2 also regulates 

autophagy indirectly through Akt and mammalian sterile 20–like kinase 1 (Mst1)126.  

Autophagy is also regulated by AMPK and glycogen synthase kinase-3 beta (GSK-3β), 

serine/threonine kinases whose activity is finely controlled by the energy status. AMPK is 

mostly activated by an increase in AMP following ATP depletion, but also by ROS, 

stimulating autophagy. AMPK activates TSC1/2, which inhibit Rheb, an mTORC1 

activator and stimulates autophagy. AMPK also directly activates autophagy by 

phosphorylating Ulk1, thus dissociating Ulk1 frommTORC1105,128. AMPK is required for 

autophagy activation during ischemia in cardiomyocytes113. GSK-3β is also stimulated 

during energy stress leading to mTORC1 inhibition and stimulation of autophagy. GSK-

3β is activated and promotes autophagy through inhibition of mTOR during myocardial 

ischemia, whereas GSK-3β is inhibited during reperfusion, allowing mTORC1 activation 

and restraining autophagy105.  

A growing amount of evidence indicates ROS as a signal transducer sustaining 

autophagy. A central role in autophagy activation has been attributed to Atg4105,129. Atg4 

oxidation inhibits its protease activity, thereby increasing the amount of lipidated LC3 
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and autophagosome formation. Physiological levels of ROS are required for autophagy 

activation during nutrient deprivation and ischemia in cardiomyocytes130. Therefore, 

oxidative stress is linked to autophagy through many pathways24. In the context of 

relationships between ROS and autophagy, a role has been attributed also to MAO. 

Recent work has linked these flavoenzymes with lysosomal dysfunction both in vitro and 

in vivo131. MAO-A dependent ROS formation is likely responsible for the impaired 

mitochondrial quality control and lysosomal dysfunction, since cardiomyocyte-specific 

MAO-A overexpression blocked autophagic flux causing accumulation of LC3II, p62 and 

ubiquitylated proteins, leading to mitochondrial fission and cardiomyocyte necrosis. 

These effects have been attributed to MAO-A induced inhibition of nuclear translocation 

of TFEB (transcription factor-EB), a master regulator of autophagy and lysosome 

biogenesis131. 

Finally, miRNAs have emerged as important regulators of autophagy. miRNA-212/132 

promotes cardiomyocyte hypertrophy though down-regulation of FoxO3a and inhibition 

of autophagy. miRNA-22 is progressively upregulated in the heart during aging, 

contributing to the aging-induced decline in autophagy through peroxisome proliferator-

activated receptor alpha inhibition. miRNA-22 inhibition improves cardiac adaption to 

chronic myocardial infarction in old mice by stimulating autophagy132. miR-19a-3p/19b-

3p inhibits autophagy in cardiomyocytes by targeting the TGF-β R II133. MiR-30b 

disrupts autophagy in vascular smooth muscle cells by decreasing autophagy-related 

genes, such as Atg5 and LC3II133. MiR-199a represses autophagy by indirectly activating 

mTORC1, which leads to cardiac hypertrophy133. 

Considering that, usually, one miRNA targets several genes or several miRNAs target one 

gene in autophagy regulation, the crosslink between the different pathways needs to be 

further explored.  
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Figure 8: Schematic model of the intracellular signaling mechanisms regulating autophagy. The 
autophagic machinery is modulated by various signaling pathways and posttranslational modifications. 
mTORC1 negatively regulates autophagy through both posttranslational and transcriptional mechanisms. 
AMPK activates both TSC1/2 and ULK1, thereby facilitating initiation of the autophagic machinery. 
Similarly, GSK-3β phosphorylates and activates TSC1/2, thereby suppressing mTORC1 activity, which in 
turn activates autophagy. Pro-apoptotic Mst1 attenuates autophagic activity through Beclin 1 
phosphorylation. TFEB promotes both lysosome biogenesis and autophagy activation. Activation of FoxO1 
stimulates autophagy and enhances autophagic flux through upregulation of Rab7. miR-212/132 
downregulates FoxO3a, thereby inhibiting autophagy (Sciarretta et al. Annu. Rev. Physiol. 2018. 80:7.1–

7.26)105.  

1.5  Transcriptomic analysis of diabetes  

Despite remarkable advances in the molecular biology and enormous efforts to elucidate 

the relationship between obesity, insulin resistance, diabetes, and other metabolic 

pathologies, the precise link between them largely remains unknown. This is very likely 

because the etiology of the aforementioned diseases is difficult to explain with a single 

physiological or genetic endpoint. Rather, multiple susceptibility genes as well as 

complex relationship between them are involved in the development of these pathological 

conditions. Considering the polygenic nature of these metabolic disorders, the necessity 

of using multifaceted genetic approaches has increased. With the advances in high-
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throughput technology, it is now possible to identify more susceptible genes and to 

analyze their complex genetic networks. For instance, recent progress on the 

identification of insulin resistance susceptibility gene in various model systems using 

microarray analysis show that (i) in liver, genes involved in lipid synthesis and 

gluconeogenesis were increased in insulin-resistant animal model; (ii) in adipose tissues, 

genes involved in fatty acid synthesis and adipogenesis were down-regulated both in 

insulin-resistant humans and animal models; and (iii) in muscle, overall gene expression 

was either decreased or unresponsive compared to that of insulin-sensitive control human 

subject or animals134.  

A recent study in adipose tissue highlighted that glycan biosynthesis, metabolism 

pathway genes, immune and inflammation pathway genes are strongly upregulated in the 

T2D subjects. Downregulated genes included those encoding for oxidative 

phosphorylation components, branched-chain amino acids, and carbohydrate and lipid 

metabolism among people with T2D135,136. Reported transcriptome studies have been 

performed in T1D patients and non-obese diabetic mouse models analyzing peripheral 

blood, lymphoid organs and pancreas/islets. In the periphery, the distinctive profiles are 

inflammatory pathways inducible by IL-1β and IFNs that can help in the identification of 

new biomarkers. In the target organ, a remarkable finding is the overexpression of 

inflammatory and immune response genes137,138. 

Despite the efforts made, genomic studies on how mitochondrial ROS generation and, in 

particular, MAOs activities impact on diabetes have not been performed and requires 

further investigations. 
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II. AIM OF THE WORK 

 

The aim of this study was to investigate whether MAO-dependent ROS generation 

induced by diabetes affects the gene expression profile in T1D cardiac tissue and to 

characterize the biological significance of such changes.  

Previous results from the laboratory of Professor Di Lisa showed that MAO-dependent 

ROS formation plays a major role and contributes to the development of DCM. Indeed, 

MAOs activity is involved in the cross-talk between mitochondria, inflammation and ER 

stress occurring in cardiomyocytes exposed to diabetic milieu. 

 

In this study, we used STZ-induced T1D mice treated or not with pargyline as an inhibitor 

for both MAO-A and MAO-B. In the in vitro study, diabetic conditions were mimicked 

with HG in primary cardiomyocytes.  

The working hypothesis was that mitochondrial ROS and, in particular, MAO-dependent 

ROS formation induced by diabetes leads to transcriptomic changes in gene expression 

profile in the context of cardiac pathophysiology. Previous works from laboratory of 

Professor Di Lisa demonstrated: (i) the involvement of mitochondrial ROS produced by 

MAO triggered by hyperglycemia and inflammation in cardiac damage; (ii) the 

involvement of MAO activity in cardiac fibrosis through mechanisms involving other 

cardiac cell types. Based upon above mentioned results, we investigated the changes in 

gene expression profile induced by diabetes and prevented by MAO inhibition in the 

cardiac tissue from a mouse model of T1D induced by treatment with STZ through 

microarray technology. Transcriptomic analysis highlighted that degradative processes 

could be one of the mechanisms involved in the disease and we hypothesized that MAO 

activity might affect autophagy leading to mitochondrial and cellular derangements in 

diabetic conditions. 

Taking into account that MAO inhibitors are readily available and used in the clinic for 

the treatment of depression and Parkinson’s disease, characterizing in depth the effects of 

MAO inhibition in the heart is a pressing task in order to consider it as a possible 

therapeutic strategy for DCM.  
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III. MATERIALS AND METHODS 

3.1 Animal model of T1D 

All the animal studies were performed using male C57BL6/J mice (6-7 weeks of age and 

at least 20 g in weight; Charles River Laboratories, UK). T1D was induced with 

Streptozotocin (STZ) (50 mg/kg/day in citrate buffer pH 4.5) administered 

intraperitoneally for five consecutive days. STZ is a glucosamine-nitrosourea compound 

toxic to pancreatic β-cells. Mice were then randomized to receive either vehicle or MAO 

inhibitor pargyline (50 mg/kg/day) for 12 weeks. Blood glucose levels were measured 

twice a month using glucose meter (OneTouch Ultra 2) and mice with blood glucose 

levels ≥17 mM were considered diabetic.  

3.2 Microarray data analysis 

Gene expression profiling is by far the most common use of microarray technology. The 

process of analysing gene expression data generally involves the steps represented in 

Figure 9. 

 



 

 
 

27

Figure 9: Overview of the microarray data analysis pipeline 

(https://www.ebi.ac.uk/training/online/course/functional-genomics-ii-common-technologies-and-data-
analysis-methods/analysis-microarray-data). 

Briefly, RNA is extracted from hearts and then reverse transcribed into cDNA by using a 

reverse transcriptase and a nucleotide labelled with fluorescent dyes. Once the samples 

have been labelled, they are purified and allowed to hybridize onto the microarray glass 

slide. Hybridization step allows the hybridization of each labeled cDNA to specific 

complementary oligonucleotides (spot probes) placed on specific positions of the 

microarray. Each oligonucleotide identifies a specific gene and the amount of cDNA 

bound to a spot will be directly proportional to the initial number of RNA molecules 

present in the sample. Following the hybridization step the microarray slide was washed 

and then scanned to recover the fluorescence of each probe from the slide. The amount of 

fluorescence emitted upon excitation corresponds to the amount of bound nucleic acids. 

Thus, what is seen at the end of the experimental stage is an image of the microarray, in 

which each spot, that corresponds to a gene, has an associated fluorescence value 

representing the expression level of that gene139. A schematic representation of what 

microarrays are and how do they work is shown in Figure 10. 
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Figure 10: What are microarrays and how do they work. A microarray may contain thousands of probes 
(spots). Each spot contains many copies of the same DNA sequence (oligonucleotides) that uniquely 
represents a gene from an organism. On the right an example of an experimental protocol to study 
differential expression of genes. The organism is grown in two different conditions (a reference condition 
and a test condition). RNA is extracted from the two cells and is labelled with the same dye (Cy3 in our 
case) during the synthesis of cDNA by reverse transcriptase. Following this step, cDNA is hybridized onto 
different microarrays, where each cDNA molecule representing a gene will bind to the spot containing its 
complementary DNA sequence. The microarray slide is then scanned to detect the fluorescence associated 
to each spot. The final image is stored as a file for further analysis139. On the right the schematic 
representation of one colour microarrays. In this kind of microarrays, each sample is labelled and 
hybridized to a separate microarray and an absolute value of fluorescence for each probe is obtained. 

 

A major design consideration in a microarray experiment is whether to measure the 

expression levels from each sample on separate microarrays (one-colour array, what we 

have done) or to compare relative expression levels between a pair of samples on a single 

microarray (two-colour array or microarray based on a competitive hybridization). The 

overall performance of one-colour and two-colour arrays is similar, but the majour 

problem of the competitive hybridization is the impossibility of performig a different 

experimental design of the one already performed because data are referred to the control 

sample co-hybridized with the test sample. 

In the experiments performed to evaluate the effects of pargyline on gene expression, 

labelled RNA was used to hybridize onto microarrays. RNA labeling was performed 

using the Low Input Quick Amp Labeling Kit (Agilent) according to manufacturer 

instructions.  

To remove the residual primers and nucleotides, cRNA was purified with the RNeasy 

Mini Ki (Qiagen) according to the manufacture’s manual. Resulting cRNA was quantified 

with Nanodrop ND-1000 spectrophotometer (Celbio).  

About 800 ng of labelled sample were mixed with 5 µl of 10X Blocking Agent (Agilent 

Technologies) and water to a final volume of 25 µl. Samples were denatured at 95°C for 2 

min and added to 25 µl of 2X GEx Hybridization Buffer HI-RPM (Agilent 

Technologies). 40 µl of prepared mix was dispensed onto the array. Slides were loaded 

into the Agilent SureHyb chambers and hybridization was performed in a hybridization 

oven at 65°C for 17 hours with 10 rpm rotation. Finally, slides were washed using Wash 

Buffer Kit (Agilent Technologies) and dried at room temperature. 

Microarray slides were scanned using G2505C scanner (Agilent Technologies) at 3 μm 

resolution. Probes features were extracted using the Feature Extraction Software v. 

10.7.3.1 with GE_1_Sep09 protocol (Agilent Technologies). Intra-array normalizations 

were directly performed by the Feature Extraction Software. Inter-array normalization of 



 

 
 

29

expression levels was performed with quantile method140 and the values for within-arrays 

replicate spots were then averaged. Quantile normalization makes the assumption that the 

different biological samples have roughly the same distribution of RNA abundance, and 

transform the intensities so that the bulk of the intensity distribution is the same for all 

assays in an experiment, typically with some differences in the distribution tails (which 

might reflect actual biological differences)141.  

Feature Extraction Software, which provided spot quality measures, was used to evaluate 

the quality and reliability of the hybridization. In particular, the flag “glsFound” (set to 1 

if the spot had an intensity value significantly different from the local background and to 

0 when otherwise) was used to filter out unreliable probes: the flag equal to 0 was noted 

as “not available (NA).” Probes with a high proportion of NA values were removed from 

the dataset in order to carry out a more solid and unbiased statistical analyses. 45% of NA 

was used as the threshold in the filtering process.  

To identify differentially expressed probes in at least one condition analysis was 

performed using a threshold p-value ≤ 0.05 Bonferroni corrected142.  

3.3  Hierarchical clustering and Self-Organizing Trees Analysis 

Hierarchical clustering is the most widely used method for the analysis of patterns of gene 

expression. It produces a representation of the data with the shape of a binary tree, in 

which the most similar patterns are clustered in a hierarchy of nested subsets.  
The Self-Organising Tree Algorithm (SOTA) is a neural network that grows adopting the 

topology of a binary tree143,144. The result of the algorithm is a hierarchical cluster 

obtained with accuracy and robustness. Genes whose expression was statistically different 

were used to search specific expression clusters according to SOTA144 as implemented in 

MultiExperiment Viewer version 4.8.1 (tMev) of the TM4 Microarray Software Suite145.  

A common method of visualising gene expression data is to display it as a heatmap 

(Figure 11). The heatmap may also be combined with clustering methods which group 

genes and/or samples together based on the similarity of their gene expression pattern.  

In heat maps the data is displayed in a grid where each row represents a gene and each 

column represents a sample. The colour and intensity of the boxes is used to represent 

changes (not absolute values) of gene expression.  
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Figure 11: An example of a heatmap in which genes have been grouped based on their pattern of gene 

expression. In the example below, red represents up-regulated genes and green represents down-regulated 
genes. Black represents unchanged expression (https://www.ebi.ac.uk/training/online/course/functional-
genomics-ii-common-technologies-and-data-analysis-methods/biological-0). 

3.4  Gene onthologies 

Genes were categorized according to gene ontology (GO) classes using GoMiner, a 

downloadable free program package that organizes lists of ‘interesting’ genes from a 

microarray experiment for biological interpretation. One of the main uses of the GO is to 

perform enrichment analysis on gene sets. For example, given a set of genes that are 

upregulated under certain conditions, an enrichment analysis will find which GO terms 

are over-represented (or under-represented) using annotations for that gene set. GoMiner 

has been used to provide quantitative and statistical output files146.  

Firstly, genes were analyzed using GO vocabulary (molecular function, biological 

process, cellular component) and the selected GO aspect has been chosen for our analysis. 

The results page displays a table that lists significant enriched GO terms used to describe 

the set of genes under analysis, and p-value that is an indication of the probability that the 

particular result can be due to chance.   
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3.5  Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) evaluates microarray data at the level of gene 

sets. The gene sets are based on a prior biological knowledge, e.g. published information 

about biochemical pathways or co-expression in previous experiments. The goal of GSEA 

is to determine whether members of a gene set S tend to occur toward the top (or bottom) 

of the list L, in which case the gene set is correlated with the phenotypic class distinction. 

GSEA acts through three steps:  

1. Calculation of an enrichment score 

2. Estimation of significance level of enrichment score 

3. Adjustment for multiple hypothesis testing 

A schematic representation of the main steps of the mentioned computational method is 

shown in Figure 12. 

 

 

Figure 12: Schematic representation of GSEA (http://software.broadinstitute.org/gsea/index.jsp). 

The primary result of the gene set enrichment analysis is the enrichment score (ES), 

which reflects the degree to which a gene set is overrepresented at the top or bottom of a 

ranked list of genes (Figure 13). The ES reflects the degree to which a set S is 

overrepresented at the extremes (top or bottom) of the entire ranked list L. The score is 

calculated by scrolling down the list L, increasing a running-sum statistic when we 

encounter a gene in S and decreasing it when we encounter genes not in S. The magnitude 

of the increment depends on the correlation of the gene with the phenotype147. 
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The ES is the maximum deviation from zero encountered in scrolling the list. A positive 

ES indicates gene set enrichment at the top of the ranked list; a negative ES indicates 

gene set enrichment at the bottom of the ranked list. 

The top portion of the plot shows the running ES for the gene set as the analysis scrolls 

down the ranked list. The score at the peak of the plot (the score furthest from 0.0) is the 

ES for the gene set.  

The estimated significance has then been adjusted to account for multiple hypothesis 

testing. Subsequently, the ES has been normalized for each gene set to account for the 

size of the set, yielding a normalized enrichment score (NES). The detection of false 

positives has been carried out by calculating the false discovery rate (FDR). The FDR is 

the estimated probability that a set with a given NES represents a false positive finding.  

 

 

Figure 13: GSEA overview. (A) An expression data set sorted by correlation with phenotype, the 

corresponding heat map, and the ‘‘gene tags,’’ i.e., location of genes from a set S within the sorted list. (B) 

Plot of the running sum for S in the data set, including the location of the maximum enrichment score (ES) 

and the leading-edge subset147.  

3.6  Leading Edge Analysis 

The leading-edge subset in a gene set are those genes that appear in the ranked list at or 

before the point at which the running sum reaches its maximum deviation from zero. The 

leading-edge subset can be interpreted as the core that accounts for the gene set’s 

enrichment signal147.  

After running the gene set enrichment analysis, the leading-edge analysis was used to 

examine the genes that are in the leading-edge subsets of the enriched gene sets. A gene 
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that is in many of the leading-edge subsets is more likely to be of interest than a gene that 

is in only a few of the leading-edge subsets. 

3.7  cDNA synthesis and real time-PCR 

To validate the expression patterns of selected genes based on the microarray analysis, 

relative quantification of mRNA was performed by Real-Time PCR (qRT-PCR) using 

Power SYBR Green PCR Master Mix and a StepOnePlus™ Real-Time PCR System 

(Thermo Fisher Scientific). 

Total RNA was extracted from the heart tissue using TRIzol reagent (Thermo Fisher 

Scientific), a monophasic solution of phenol and guanidine isothiocyanate, according to 

the manufacturer instructions. Tissue was homogenized using a TissueLyser II 

(QIAGEN) for 3’ at 30Hz/s of frequency. 

The total RNA concentration of each sample was determined using a NanoDrop 

Fluorospectrometer (Thermo Fisher Scientific) prior to sample storage at – 80°C. The 

ratio of absorbance values at 260 and 280 nm (Abs 260/280) was used to assess purity of 

total RNA samples. All samples used in these studies had Abs 260/280 ratios > 1.9. In 

addition, the RNA integrity and quality of each sample was determined using an Agilent 

2100 Bioanalyzer following the protocol provided by the manufacturer. All samples used 

in the present study had RNA integrity number (RIN)>6.5.  

To avoid amplification of genomic DNA sequences, all RNA samples were treated with 

DNase I and reverse transcription reactions were performed using 1 μg of RNA. 

After addition of dNTPs (10 mM) and random hexamers (50 µM) to prime the first strand 

for cDNA synthesis, RNA was denatured at 65°C for 5 min and then placed on ice. Next, 

4 µl of 5X RT buffer, 1 µl of DTT (0.1 M), and RNaseOUT were added to the mix. 

Superscript IV Reverse Transcriptase (Thermo Fisher Scientific) was added to the 

mixture which was further incubated at 25°C for 5 min and then heated to 50°C for 15 

min. At the end of the retrotranscription the enzyme was inactivated at 70°C for 15 min. 

The cDNA was diluted in nuclease-free water (Thermo Fisher Scientific) and used as a 

template in the qPCR assays.  

Primer pairs were bioinformatically designed using the tool Primer3 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) or searched in PrimerBank 

(https://pga.mgh.harvard.edu/primerbank/). Each primer couple was tested with the on-
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line oligo analysis tool (http://www.operon.com/tools/oligo-analysis-tool.aspx; 

http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3) for their ability to form 

hairpins, homo- and hetero-dimers. Finally, selected primers were in silico tested to verify 

their amplification specificity using the tool in-Silico-PCR implemented in the UCSC 

Genome Browser (https://genome.ucsc.edu/cgi-bin/hgPCR).  

Each PCR reaction was performed in a 20 μl volume combining 20 ng of cDNA, 0.5 or 

0.25 μM of forward and reverse primers and 10 μl of SYBR green 2X PCR master mix 

(Thermo Fisher Scientific).  

The qRT-PCR was performed using the following settings: 15 min at 95°C for 

denaturation of cDNA/RNA hybrid, followed by 40 cycles of 30 s at 95°C and 60°C for 1 

min, followed by one step and hold cycle starting to determine the melting curve data. 

Each primer pair yielded a single peak in the melting curve.  

Nuclease-free water (Life Technologies), instead of cDNA template, was added to the no-

template control qPCR. The mix used for qRT-PCR was prepared as follows (mix 

described is for one well): 

 
Component Volume µl Volume µl 

H2O DNase/RNase free 5 4 
primer Forward (10 µM) 0.5 1 
primer Reverse (10 µM) 0.5 1 
Power SYBR Green PCR Master Mix 10 10 

cDNA (20 ng/µl) 4 4 
Total volume 20 20 

Table 1: Mix used for real-time PCR 

 

The cycle threshold (Ct) was used to calculate relative amounts of target RNA.  

Table 2 summarizes the sequences and sources of primers used in this study. Samples that 

do not reach the threshold line are considered not above background. 

We used at least three biological and three technical replicates.  

The Cts of target genes were normalized to the levels of four housekeeping genes ACTB, 

TBP, GAPDH and RPL4 resulting in the same pattern. Here, we show data normalized to 

TATA box binding protein (TBP) as endogenous controls in each group. Reference genes 

were chosen according to their homogeneous expression in analyzed samples. The 

average Ct for each gene is calculated by subtracting the Ct of the sample RNA from that 
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of the control RNA for the same time measurement. This value is known as the ΔCt and 

reflects the relative expression of the treated sample compared with the control and 

becomes the exponent in the calculation for amplification 2ΔCtcont-ΔCtsample, 

equivalent to fold change in expression.  

 

Target gene Primer sequence 

Actb 
F-5’ GGCTGTATTCCCCTCCATCG 3’ 

R-5’ CCAGTTGGTAACAATGCCATGT 3’ 

Angptl4 

F-5’ ACAGTGACTTTGGTTGTGGC 3’ 

R-5’  CTCGAGCCCATGTTTTCTGG 3’ 

Anp 
F-5’ GTGCGGTGTCCAACACAGAT 3’ 

R-5’ TCCAATCCTGTCAATCCTACCC 3’ 

Gapdh  
F-5’CATGGCCTTCCGTGTTCCTA 3’ 

R-5’GCTTCACCACCTTCTTGAT 3’ 

Glut4 
F-5’GTGACTGGAACACTGGTCCTA 3’ 

R-5’CCAGCCACGTTGCATTGTAG 3’ 

Pdk4 
F-5’ AGGGAGGTCGAGCTGTTCTC 3’ 

R-5’GGAGTGTTCACTAAGCGGTCA 3’ 

Prdx4 

F-5’ CTCAAACTGACTGACTATCGTGG 3’ 

R-5’ CGATCCCCAAAAGCGATGATTTC 3’ 

Rgs2 
F-5’ ACCTGCCCACTGAGAAATCA 3’ 

R-5’ GCTGTTTGGCCCTGTAACTT 3’ 

Rpl4 F-5’ GCCCAGAAATCCAAAGAGCC 3’ 
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R-5’ GCCTGGCGAAGAATGGTATT 3’ 

Tbp 
F-5’ AAGGGAGAATCATGGACCAG 3’ 

R-5’ CCGTAAGGCATCATTGGACT 3’ 

Txnip 

F-5’CCTGTGAAGGGTTGTGGTTG 3’ 

R-5’CCATCAGCTCGCAGACATTC 3’ 

Hif1α 

F-5’GATGCAGCAAGATCTCGGC 3’ 

R-5’GGTGAGCCTCATAACAGAAGC 3’ 

Table 2. Sequences of primers used for real-time PCR 

 

Before performing qRT-PCR experiments primers were experimentally tested to verify 

their amplification efficiency. Serial dilutions from 20 to 1,25 ng/µl of cDNA (final 

concentration in 20 µl reaction volume) were used to calculate primers efficiency. In the 

table below are indicated results for each primer pair amplifying tested genes. cDNA was 

synthesized as previously described using a pool of RNAs derived from whole heart 

tissues. We indicated primer concentration, R2 for the linear regression in the graph 

representing log2[cDNA] vs Ct, the y-intercept, melting temperature (Tm), and the 

efficiency of the amplification calculated as 10-1/m where m is the angular coefficient of 

the straight line interpolating points of the graph. 

 

Gene 
Primer concentration 

(nM) 
R2 y-intercept Tm (°C) Efficiency 

Actb 
500 0.99 24 82.4 84% 

Angptl4 
500 0.98 31.8 81.8 97% 

Anp 
500 0.98 28 62 95% 

Gapdh 
500 0.99 20 80.7 86% 

Pdk4 
500 0.98 32 84.6 82% 

Prdx4 
500 0.99 28.8 75.7 101% 
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Rgs2 
250 0.99 31.8 76 86% 

Rpl4 
500 0.99 24.3 79.5 90% 

Tbp 
250 0.99 28.3 80.6 84% 

Txnip 
500 1 26 83.6 101% 

Hif1α 
500 0.99 25.2 78.5 90% 

Table 3. Parameters of primers amplification efficiency 

3.8  Isolation and culture of adult mouse ventricular 

cardiomyocytes 

Adult mouse ventricular myocytes (AMVMs) were isolated from the hearts of 12-weeks 

old C57Bl6/J mice as previously described87. In brief, mice were injected 

intraperitoneally (i.p.) with 1,000U heparin 30 min before the isolation procedure to 

prevent coagulation of blood in the arteries. Hearts were quickly cut out and the aorta 

cannulated. Hearts were then perfused with perfusion buffer (PB, in mM: NaCl 120, KCl 

14.75, KH2PO4 0.6, Na2HPO4 0.3, MgSO4 1.2, HEPES 10, NaHCO3 4.6, taurine 30, 

BDM 10, glucose 5.5, pH 7.4) for 2 min to remove the blood. Next, hearts were perfused 

with PB containing 1.2 mg/ml collagenase type II (Worthington) and 0.05 mg/ml protease 

type XIV (Sigma) for 3 min at 2 ml/min and then for 8 min at 1.5 ml/min. After 

perfusion, hearts were placed into 5 ml of PB added with 10% FBS and 12.5 µM CaCl2, 

cut into smaller pieces and cardiomyocytes dissociated by gentle pipetting. The 

suspension was filtered through 100 µm mesh, centrifuged at 180 g for 1 min and 

resuspended in PB containing increasing Ca2+ concentration. Ca2+ concentration was 

gradually increased from 0.25 mM to 1 mM to avoid Ca2+ overload and hypercontracture. 

After each step cardiomyocytes were allowed to sediment by gravity for 10 min. Cells 

were plated at non-confluent density (at least 25,000 rod-shaped cells/ml) on 6-well plates 

pre-coated with laminin (20 µg/ml) in DMEM supplemented with 5.5 mM glucose, 5% 

FBS, 1% penicillin/streptomycin, 25 µM blebbistatin and kept at 37°C in presence of 5% 

CO2. After 1h medium was changed to DMEM supplemented with 5.5 mM glucose, 25 

µM blebbistatin, 1% penicillin/streptomycin. 
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3.9  Treatment of primary cardiomyocytes 

AMVMs were treated in culture media with following additions: normal glucose (NG, 5 

mM), high glucose (HG, 25 mM) or high mannitol (HM 25 mM, osmotic control) for 6h. 

To inhibit MAO activity cells were pre-treated with 100 µM pargyline (Sigma) for 30 

min. Autophagic flux was assessed after 4 h of incubation with 50µM cloroquine (CQ). 

After indicated incubation, samples were collected to assess levels of markers of 

autophagy or related catabolic processes by western blotting. 

3.10 Western blot  

AMVMs were plated in 6 well-plates at density from 25.000 to 50.000 cells/well. Cells 

were homogenized in 50 µl RIPA lysis buffer (Merck Millipore) containing protease 

(cOmplete mini protease inhibitor cocktail, Roche) and phosphatase (PhosSTOP, Roche) 

inhibitors. Cells were then detached using a cell scraper. Homogenized samples were 

sonicated (Labsonic P Braun Biotech International), centrifuged at 12000 x g for 20 min 

at 4°C and then the pellet was discarded. Protein concentration was determined using 

PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific) following the 

manufacturer’s protocol. Samples were mixed with NuPAGETM LDS sample buffer 4X 

(Thermo Fisher Scientific) and β-mercaptoethanol (3%) in order to denaturate and 

solubilize the proteins. Samples were heated at 90°C for 5 minutes and then loaded on the 

gel or aliquoted and stored at -20°C. 

Proteins were separated on NuPAGETM 4-12% gradient Bis-Tris (Thermo Fisher 

Scientific) SDS-PAGE  using the MES running buffer (50 mM MES, 50 mM Tris Base, 

0.1% SDS, 1 mM EDTA, pH 7.3) at 130 V and transferred to the nitrocellulose 

membrane 0,45 µm (Amersham Protran) or PVDF membrane using transfer buffer (25 

mM Bicine, 25 mM Bis-Tris, 1mM EDTA, 20% methanol, pH 7.2) at 400 mA for 70 min. 

At the end of the transfer, the membrane was incubated with Red Ponceau dye (Sigma-

Aldrich) to stain all the proteins on the membrane, destained with diluited NaOH 0,1M, 

washed and saturated using 3% BSA dissolved in TBS-T (Tris buffered saline solution, 

0.1% Tween 20), composed of 50 mM Tris-HCl, 85 mM NaCl, pH 7.6). After 1 h of 

blocking at room temperature, membranes were incubated at 4°C overnight with primary 

antibody diluted in 3% BSA. Antibodies used in this study to detect proteins of interest 

are listed in Table 4. 



 

 
 

39

 

 

Primary antibody Manufacturer Dilution 

Anti-β-Actin (SPM161) SC-56459 1:1000 

Anti-LC3B CST2775 1:1000 

Anti-MFF Abcam (ab81127) 1:500 

Anti-p62/SQSTM1 Sigma P0067 1:1000 

Anti-pAMPKα (Thr172) (D79.5E) CST4188 1:1000 

Anti-AMPKα CST2532 1:1000 

Anti-pDRP1 S616 (D9A1) CST4494 1:1000 

Anti-DLP1 (DRP1) BD Biosciences 1:1000 

Table 4: List of primary antibodies used in the study 

Following incubation with primary antibodies, membranes were washed three times for 

10 min with the washing buffer TBS-T and incubated with secondary antibodies for 1 h at 

room temperature. Secondary antibodies used were: 

Anti-mouse (Santa Cruz Biotechnology, SC-516102), dilution 1:3000 

Anti-rabbit (Santa Cruz Biotechnology, SC-2357), dilution 1:3000 

Secondary antibody is conjugated to reporter enzyme horseradish peroxidase (HRP). 

After incubation with secondary antibody, membrane was washed three times (10 min 

each). Immunoreactive bands were visualized and digitalized with the Alliance Mini HD9 

UVITEC imaging system (Eppendorf), using LiteAblot luminol solutions (EuroClone). 

Bands were detected using Alliance (Uvitec) and analyzed using ImageJ software. This 

program allows the quantification of the optical density of bands or dots that is directly 

proportional to the protein content. 
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3.11 Statistical analysis 

All values are expressed as mean ± SEM.  

To correlate and compare microarray data and relative mRNA expression of selected 

genes, the Pearson correlation coefficient was calculated to measure the linear correlation 

between two variables. Pearson's r can range from -1 to 1. An r of -1 indicates a perfect 

negative linear relationship between variables, an r of 0 indicates no linear relationship 

between variables, and an r of 1 indicates a perfect positive linear relationship between 

variables. Comparisons between two groups were performed using non paired two-tailed 

Student’s t-test. A value of p<0.05 was considered significant. 
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IV. RESULTS 

4.1 The expression profile of diabetic hearts differs from all the other 

groups 

Transcriptional regulation is a complex process that plays a pivotal role in reprogramming 

cellular states in response to internal or external changes that occur in physiological 

growth and pathological conditions. Hence, measuring and analyzing transcriptional 

changes provide crucial information on mediators and pathways involved in cellular 

responses to physiological and pathological stimuli141. Functional genomics involves the 

simultaneous analysis of large datasets of information derived from various biological 

experiments. Microarray technology is now a consolidated methodology for transcription 

profiling and large-scale genomics studies139,148.  

Microarray is a small chip that contains thousands of probes fixed to its surface, which 

can hybridize with fluorescently labeled RNA samples (the targets). Hybridization 

intensities, represented by the amount of fluorescent emission, give an estimate of the 

amounts of the different transcripts that are present in the RNA sample. A single 

microarray experimental assay, like most high-throughput technologies, records the 

transcript levels of all the genes in a given condition, for a particular cell type or mixture, 

at a specific time. One of the goals of microarray data analysis is to cluster genes or 

samples with similar expression profiles together, to make meaningful biological 

inference about the set of genes or samples.  

To have a better insight of the deregulated gene and the mRNA expression, we conducted 

the microarray analysis in the cardiac tissue from a mouse model of T1D induced by 

treatment with STZ, while MAO involvement and contribution were evaluated through a 

classical pharmacological approach, using pargyline as an inhibitor for both MAO-A and 

MAO-B. The following groups were examined: (i) control mice (n=3), (ii) STZ-treated 

mice (n=3), (iii) control mice treated with MAO inhibitor pargyline (n=3), (iv) STZ mice 

treated with pargyline (n=3).  

Clustering is one of the unsupervised approaches to classify data into groups of genes or 

samples with similar patterns that are characteristic of the group139. The analysis of 

differentially expressed genes grouped samples in a peculiar manner. Biological 

replicates within each experimental group were similar to each other and samples from 
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STZ-mice formed a distinct group separated from all the other groups. Interestingly, 

diabetic hearts treated with pargyline were more similar to control hearts than untreated 

ones (Figure 14). 

 

 

Figure 14: Hierarchical organization of samples based on gene expression profile. Hierarchical 
clustering of samples from cardiac tissue of mice belonging control (ctrl, n=3), diabetic hearts (diab, n=3), 
treated or not with pargyline (each of them n=3). Data were analyzed through Pearson clusterization with 
average linkage algorithm. Biological replicates within each group are similar to each other and gene 
expression profile of samples from diabetic mice formed a distinct group. The expression profile of diabetic 
hearts treated with pargyline is more similar to those of control. 

 

4.2  SOTA analysis groups genes in peculiar clusters 

Subsequently to the identification of differentially expressed genes, we carried out the 

SOTA analysis to group genes according to common expression profiles to identify 

interesting expression patterns that may explain the activity of pargyline. The algorithm 

identified 11 clusters that are represented in Figure 15.  

 

 

Figure 15: Gene expression clusters of differentially expressed genes according to SOTA analysis. 

Eleven clusters were identified. Numbers on the right are for cluster number and genes belonging to the 
respective cluster. Red indicates the over-expression while green the under-expression.  
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We were interested in the identification of transcriptomic changes induced by diabetes, 

MAO activity and its inhibition by pargyline. In fact, we excluded clusters in which 

pargyline alone affected the gene expression profile of controls and/or does not prevent 

the transcriptomic changes induced by diabetes. Among the clusters, genes belonging to 

clusters 5 and 6 showed similar effect of pargyline on gene expression profile. 

Furthermore, results concerning clusters 8 and 10 are similar. For further analyses, we 

considered genes included within clusters 4 and 7 and those in clusters 2 and 11 

(containing up- or down-regulated genes in diabetic hearts, Table 5), since pargyline 

normalized the gene expression profile in those clusters and their analysis could provide 

clues on the biological function of genes affected by pargyline in diabetic hearts.  

We found 4035 differentially expressed mRNAs upregulated and 2031 downregulated in 

diabetes with respect to control condition in which treatment with pargyline prevented 

gene expression changes. 

A detailed description of gene clusters identified with SOTA analysis is shown in Table 5 

 

Cluster  

1 Activated genes in diabetic condition in which pargyline does not prevent the 

pattern 

2-11 Downregulated genes in diabetic condition in which pargyline prevents the 

pattern 

3 Upregulated genes in diabetic condition compared to control in which 

pargyline has no effect. 

4-7 Activated genes in diabetic condition in which pargyline reverts the expression 

profile to baseline levels. Pargyline treatment does not affect the gene 

expression profile of control mice. 

5-6 Downregulated genes in diabetic condition. Pargyline treatment affects the 

gene expression profile in control condition resulting in downregulation 

8-10 Genes that are not affected by pargyline treatment. These genes are 

downregulated in diabetic condition compared to control condition even after 

pargyline treatment 

9 Pargyline treatment affects gene expression profile of control condition 

Table 5: Description of gene clusters identified with SOTA analysis 
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4.3 GO categories 

In gene-expression microarray studies, lists of hundreds or thousands of genes that differ 

in expression between samples are generally obtained. To interpret this huge amount of 

data, bioinformatic algorithms have been developed with the task to reorganize biological 

information into networks that are easy to be visualized and understood149. Genes were 

categorized in GO classes. GO organizes genes into hierarchical categories based on 

biological process, molecular function and subcellular localization146,149. GoMiner is a 

bioinformatic tool that organizes lists of 'interesting' genes for biological interpretation.  

To understand the function of chosen genes, they were classified according to the GO 

vocabulary using the GoMiner algorithm. However, only enriched definitions were 

considered because GO terms described with GoMiner having the FDR<0.05 (false 

discovery rate) were considered redundant terms using Categorizer algorithm.  

Interestingly, the most represented GO categories (Figure 16) among 388 GO terms for 

cellular component within upregulated genes in diabetic condition were those for nucleus 

(GO:005634, 8,46%), mitochondrion (GO:0005739, 3,10%), cytoskeleton (GO:0005856, 

2,96%) and vacuole (GO:0005773, 2,26%). 

 

 

Figure 16: GO description of the transcriptome of overexpressed genes in diabetic condition. 

Histogram illustrating the percentage of fractions in the cluster of overexpressed genes in diabetic hearts in 
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which pargyline is able to prevent the effect on gene expression profile and GO terms for Cellular 
Component categories. The most represented GO categories were those for nucleus, mitochondrion, 
cytoskeleton, and vacuole. FDR<0.05 

Among 222 GO terms, the most represented for cellular component of downregulated 

genes in diabetes were those for nucleus (GO:005634, 10,93%), cytoskeleton 

(GO:0005856, 4,10%) and plasma membrane (GO:0005886, 3,55%) as shown in Figure 

17.  

 

Figure 17: Gene ontology description of the transcriptome of downregulated genes in diabetic 

condition. Histogram illustrating the percentage of fractions in the cluster of downregulated genes in 
diabetic hearts in which pargyline is able to prevent the effect on gene expression profile and GO terms for 
Cellular Component categories were those for nucleus, cytoskeleton and plasma membrane.  FDR<0.05 

4.4  ECM and mitochondria are the mostly enriched classes in the 

upregulated genes cluster 

A common method of visualizing gene expression data is to display it as a heatmap. In 

heat maps the data is displayed in a grid where each row represents a gene and each 

column represents a sample. The color and intensity of the boxes is used to represent 

changes (not absolute values) of gene expression.  

Our results showed that most genes involved in the ECM synthesis are upregulated in 

diabetes and this is prevented by pargyline treatment (Figure 18). Examples for genes 

described in the heatmap are: Ctgf (Connective Tissue Growth Factor), Tgfb 
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(Transforming Growth Factor Beta), Fgf12 (Fibroblast Growth Factor 12), Col15A1 

(Collagen Type XV Alpha 1 Chain), Fgf16 (Fibroblast Growth Factor 16), Col5A2 

(Collagen Type V Alpha 2 Chain), Lum (Lumican), Col11A1 (Collagen Type XI Alpha 1 

Chain), Col13A1 (Collagen Type XIII Alpha 1 Chain).  

Cardiac fibrosis is one of the underlying causes of diastolic dysfunction and a major 

feature of DCM43. In a previous work published in the laboratory of Prof. Di Lisa it has 

been observed that STZ-treated hearts displayed 4-fold increase in collagen deposition as 

compared to normal hearts43. Interestingly, pargyline treatment prevented the 

modification, demonstrating the efficacy of MAO inhibitors to prevent fibrosis 

progression in T1D animals and in pressure overload43,86,87. Our result supports and 

extends what has been previously showed. 

 

 
Figure 18: Heatmap and hierarchical clustering of genes based on the DE genes belonging to 

upregulated genes in diabetic condition. Heatmap of ECM-related genes was generated from a subset of 
differentially expressed genes. Most up-regulated genes in diabetes were involved in ECM synthesis. 
Columns represent samples, while rows represent genes. The relative value for each gene is depicted by 
color intensity, with red indicating upregulated and green indicating downregulated genes. mRNA 
expression profile between the groups with expression 0 < fold change < 1,5.  
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In association with GO analysis, we performed the GSEA to evaluate the association 

between functional pathways and differential expression. GSEA is a powerful analytical 

and computational method, that considers a group of genes related to their involvement in 

a specific pathway, or genes that share a chromosomal location or a specific 

function.147,148. Gene sets are defined based on prior biological knowledge, e.g., published 

information on biochemical pathways or co-expression in previous experiments. GSEA 

was initially used to discover metabolic pathways altered in diabetes147,150 and was 

subsequently applied to discover processes involved in several pathological 

conditions147,151. 

GSEA analysis showed that overexpressed genes with highest enrichment score belong to 

ECM (Figure 19) and mitochondria (Figure 21) categories. T1D induced a variation in the 

expression profile of genes involved in these functions and this change was prevented by 

pargyline. 

 

 

Figure 19: Normogram of the down-and up-regulated gene sets enriched for ECM molecules in the 

array dataset. Heat map of the gene set ‘dia vs ctrl’ containing all genes found significantly up-regulated 
among differentially expressed ones when comparing STZ-treated mice versus the control ones. Colors 
range from dark red to dark blue representing respectively the highest and lowest expression of a gene. 

In the same cluster, components of organelles, nucleus, and Golgi apparatus were 

enriched. Among the organelles, mitochondrial components are mostly affected (Figure 

20). The genes affected to the greatest extent were as follows (Figure 21): Mfn2 
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(Mitofusin 2), Atp5g3 (ATP Synthase Membrane Subunit C Locus 3), Atp5β (ATP 

Synthase F1 Subunit β), Atp7b (ATPase Copper Transporting Beta), Ndufv1 

(NADH:Ubiquinone Oxidoreductase Core Subunit V1). 

 

                  

Figure 20: Heatmap and hierarchical clustering of all samples based on the differentially expressed 

genes belonging to upregulated genes in diabetic condition. Heatmap of ECM-related genes was 
generated from a subset of differentially expressed genes. Most up-regulated genes in diabetes were 
involved in mitochondrial function. Columns represent samples, while rows represent genes. The relative 
value for each gene is indicated by color intensity, with red indicating upregulated and green indicating 
downregulated genes. On the right, a magnification of the selected section as representative. mRNA 
expression profile between the groups with expression 0 < fold change < 1,5. 
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Figure 21: Normogram of the down-and up-regulated gene sets enriched for mitochondrial 

components in the array dataset. Heat map of the gene set ‘dia vs ctrl’ containing all genes found 
significantly up-regulated among differentially expressed ones when comparing STZ-treated mice versus 
the control ones. Colors range from dark red to dark blue representing respectively the highest and lowest 
expression of a gene. 

4.5 Genes belonging to catabolic processes and mitochondria 

categories are upregulated in diabetes in a MAO-dependent 

manner 

A leading-edge analysis was carried out on the cluster of overexpressed genes in diabetic 

hearts in which pargyline administration prevented changes in the expression values.  

To determine which genes have the highest impact on the biological process under study, 

a portion of the GSEA was dedicated to performing leading edge analysis of the 

differentially expressed genes. The leading edge analysis allows the GSEA to determine 

which subsets (referred to as the leading edge subset) of genes contributed the most to the 

enrichment signal of a given leading edge subset or core enrichment147. The leading-edge 

analysis is determined from the enrichment score, defined as the maximum deviation 

from zero147. Remarkably, the analysis based on cellular function performed on the 

cluster of genes overexpressed in T1D showed that the highest enrichment score belongs 

to catabolic processes (GO: 0030163; ES=8,36, p=8,28E-11) and mitochondria 

(GO:0005739; ES=7,64, p=7,37E-12) categories. Pargyline prevented changes in gene 

expression profile of these categories. 
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The GSEA analyses allowed to uncover transcriptomic changes induced in diabetes in a 

MAO-dependent manner and identified mitochondria, degradative processes and ECM as 

categories that were mostly affected. Taken together, these results demonstrate that 

changes in the gene expression profile occurring in T1D can be completely prevented by 

pargyline. The present findings confirm and extend the characterization of mitochondrial 

dysfunction and MAO involvement in DCM described previously. 

4.6 Validation of gene expression profiles by means of qRT-PCR 

Due to the limited sample size of the majority of experiments involving microarray 

analysis, statistical tools simply work like a filter that highlights the significant 

differentially expressed genes, but do not represent the ultimate validation of the 

differential expression. Transcripts detected by statistical analysis need to be validated by 

other approaches to confirm their differential expression148.  

Since differences in the gene expression profile can be generated by false positives, 

alternative techniques such as qRT-PCR are required to validate microarray results. 

Among the four housekeeping genes (ACTB, TBP, GAPDH and RPL4) we used, here we 

show data normalized to TBP as endogenous controls in each group since it appeared as 

the most stable gene among all samples (Figure 22).  

 

 

Figure 22: mRNA of four housekeeping genes. Trend of expression of four housekeeping genes. 
Reference gene were chosen according to their homogeneous expression in analyzed samples. mRNA level 
is expressed as mean ± SEM. GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase, TBP: TATA binding 
protein, ACTB: actin beta, RPL4: Ribosomal Protein L4. 
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The validation of the microarray was carried out on a series of randomly selected genes 

(Figure 23). The microarray validation involved the following genes: atrial natriuretic 

peptide (ANP), pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4), glucose 

transporter type 4 (GLUT4), hypoxia-inducible factor 1α (HIF1α), thioredoxin-

interacting protein (TXNIP), peroxiredoxin 4 (PRDX4), angiopoietin-like 4 (ANGPTL4), 

regulator of G-protein signaling 2 (RGS2). The RT-PCR data had comparable expression 

pattern as the microarray results for most of the randomly selected genes as confirmed by 

Pearson correlation coefficient (r). A strong correlation (r ≥ 0,7) was observed for TXNIP 

(r=0,77), ANGPTL4 (r=0,82), ANP (r=0,99), PDK4 (r=0,99), PRDX4 (r=0,70) and RGS2 

(r=0,71); HIF1α (r=0,57) and GLUT4 (r=0,63) showed a trend and a moderate correlation 

(0,5 < r < 0,7). 

 

Real-time PCR Microarray 
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Figure 23: Validation of microarray by means of Real-time PCR. On the left panel, mRNA level was 
assessed by qRT-PCR; on the right panel, the expression profile was assessed through microarray. mRNA 
level is expressed as mean ± SEM. ANP: atrial natriuretic peptide, PDK4: pyruvate dehydrogenase 
lipoamide kinase isozyme 4, GLUT4: glucose transporter type 4, HIF1α: hypoxia-inducible factor 1α, 
TXNIP: thioredoxin-interacting protein, PRDX4: peroxiredoxin 4, ANGPTL4: angiopoietin-like 4, RGS2: 
regulator of G-protein signaling 2, TBP: TATA box binding protein. 
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4.7 Autophagy is increased in diabetic hearts 

Following the successful validation of the microarray data and, considering that 

mitochondria and degradation processes were mostly affected in diabetic hearts in a 

MAO-dependent manner, we hypothesized that MAO activity might affect autophagy 

leading to mitochondrial and cellular derangements. To assess whether autophagy may be 

affected in our experimental groups, we measured protein levels of the mammalian LC3 

in cardiac tissue (Figure 24). LC3-II protein is typically used as an autophagic marker, as 

its presence correlates with the number of autophagosomes. There was a significant 

increase in LC3-II in diabetic compared to the control hearts (p<0,05), suggesting that 

autophagy is increased in STZ hearts. Importantly, LC3-II protein levels were normalized 

in diabetic mice treated with pargyline. 

An additional marker used to monitor autophagy is p62/SQSTM1152 and an 

anticorrelation between LC3-II and p62 levels may reflect changes in the autophagy flux. 

In our conditions, in parallel with the reduction of LC3-II levels in the presence of the 

specific MAO inhibitor, there was a significant increase in p62 levels (p<0,01) suggesting 

a reduction in the autophagic flux (Figure 24).  
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Figure 24: LC3B and p62 protein levels in cardiac tissue. Representative blots are shown for LC3B 
protein in control (n=5) and STZ-treated mice in absence (n=4) and presence of pargyline (n=5). The 
quantification of band intensity is shown normalized to total protein determined by Red Ponceau staining. 
Data were expressed as the mean ± SEM and analyzed by a non-paired two-tailed Student’s t test (STZ vs 
CT **p<0,01; STZ+PG vs STZ ##p<0,01). LC3B: microtubule associated protein 1 light chain 3, CT: 
control mice, STZ: diabetic mice, STZ+PG: diabetic mice treated with pargyline. 

 

4.8 AMVMs exposed to HG and pargyline show reduced autophagy 

An accurate assessment of the autophagic flux requires that all the experimental groups 

are paralleled by groups treated with inhibitors of lysosomal degradation. To evaluate 

changes in the autophagy flux due to T1D and/or MAO inhibition, an additional subset of 

experiments was performed in vitro employing AMVMs.  

AMVMs were cultured with high glucose in the absence or presence of MAO inhibitor 

pargyline and/or inhibitor of lysosomal degradation chloroquine for the last 4h of 

treatment. Autophagy flux is calculated as the difference in LC3-II protein level in the 

absence or presence of lysosomal inhibitors. Cells cultured in presence of HG and 

pargyline displayed a dramatic reduction in the autophagy flux (p<0.05), evidenced by the 

lack of LC3-II accumulation following inhibition of lysosomal degradation with 

chloroquine for the last 4h (Figure 25). Autophagy flux was not significantly affected by 

pargyline in control conditions.  
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Figure 25: LC3B protein levels and autophagy flux in AMVMs. Representative blots are shown for 
LC3B-II protein in AMVMs cultured in HG in the absence or presence of pargyline. The quantification of 
band intensity is shown normalized to total protein determined by Red Ponceau staining (n=5 for each 
group). LC3B-II levels were expressed as the mean ± SEM. Autophagic flux was calculated as the 
difference in LC3-II protein levels in the absence and presence of CQ. AMVMs were treated with CQ for 
4h. Autophagic flux data were expressed as the mean ± SEM and analyzed a non-paired two-tailed 
Student’s t test (n=5, *p<0,05). LC3B: LC3B: microtubule associated protein 1 light chain 3, CQ: 
chloroquine, PG: pargyline. 

4.9 MAO-dependent ROS formation and AMPK activation 

To explore the underlying signaling pathway that regulate autophagy, we tested AMPK 

pathway that is involved in autophagy and influenced by insulin. There was a trend to 

decrease of phosphorylated AMPKα (Thr-172), a well-known positive regulator of 

autophagy, in AMVMs treated with pargyline and exposed to HG (Figure 26). This result 

suggest that MAO-dependent ROS formation triggered by HG may impinge on this 

pathway to promote autophagy.  

 

Figure 26: Phosphorylated AMPK levels in AMVMs. Representative blot is shown for phosphorylated 
AMPK proteins in AMVMs cultured in HG in the absence or presence of pargyline. The quantification of 
band intensity is shown normalized to total protein determined by Red Ponceau staining (n=4 for each 
group). Data were expressed as the mean ± SEM. AMPK: AMP-activated protein kinase, PG: pargyline. 
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4.10 MAO inhibition might affect the cross-talk between mitochondrial 

dynamics and autophagy 

Leading-edge analysis performed on the cluster of upregulated genes in diabetic condition 

in which pargyline prevented this effect, evidenced that several genes were enriched. 

Among these, MFF, a mitochondrial protein that functions as DRP1 receptor, was one of 

the genes enriched to the greatest extent in the mitochondrial compartment.  

In the in vitro model, we observed an increase in MFF protein level in AMVMs exposed 

to HG. This event was dramatically reduced upon MAO inhibition with pargyline 

(p<0.05) confirming the trend observed for MFF expression profile obtained by 

microarray (Figure 27).  

 

 

Figure 27: MFF protein levels. Representative blots are shown for MFF protein in AMVMs cultured in 
HG in the absence or presence of pargyline. The quantification of band intensity is shown normalized to 
total protein determined by Red Ponceau staining (n=4 for each group). Data were expressed as the mean ± 
SEM and analyzed a non-paired two-tailed Student’s t test (*p<0,05). MFF: mitochondrial fission factor, 
PG: pargyline.  

 

Since MFF acts as a DRP1 receptor, we assessed the phosphorylation levels of DRP1 on 

Ser616, modification required for the translocation of the protein to mitochondria and 

organelle fission. A decreasing trend was observed upon treatment with pargyline in cells 

exposed to HG (Figure 28). These results suggest that mitochondrial fission might be 

reduced upon MAO inhibition in AMVMs exposed to HG. Further studies are necessary 

to confirm the role of MAO in mitochondrial fission. Interestingly, recent studies 

indicated that enhanced mitochondrial fission mediated by DRP1 in STZ-treated hearts is 

detrimental to cells and responsible for cardiac damage in diabetic hearts153.  
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Figure 28: Phosphorylated DRP1 protein levels. Representative blots are shown for phosphorylated 
DRP1 protein in AMVMs cultured in HG in the absence or presence of pargyline. The quantification of 
band intensity is shown normalized to total protein determined by Red Ponceau staining (n=4 for each 
group). Data were expressed as the mean ± SEM. DRP1: dynamin-related protein 1, PG: pargyline. 
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V. DISCUSSION AND CONCLUSIONS 

This study shows that MAO-dependent ROS generation in diabetic hearts leads to 

profound transcriptomic changes, affecting the mitochondrial compartment, ECM, and 

catabolic processes in T1D mice in vivo. We also show that ROS produced by these 

flavoenzymes may act as a signal leading to autophagy activation and mitochondrial 

fragmentation in diabetic conditions. This provides an important link between MAO 

activity, transcriptomic changes, and autophagy in DCM. Interestingly, the occurrence of 

autophagy is reduced by the MAO inhibitor pargyline in a process that might underlie the 

cardioprotective role of MAO inhibition.  

 

Many alterations of cellular and mitochondrial metabolism observed during the 

development and progression of DCM are associated with increased ROS levels and 

inflammation and not caused by hyperglycemia per se. Specifically, strong evidence 

provided by studies published in the laboratory of Prof. Di Lisa highlights that 

mitochondrial ROS formation and in particular MAO activity contribute to cardiac 

damage43,86,87. Indeed, diastolic and/or systolic dysfunction occurring in T1D mice and 

pressure overload is completely prevented upon MAO inhibition43,86. To further 

investigate the mechanisms underlying this cardioprotective effects, using microarray 

technology we evaluated changes in the gene expression profile induced by diabetes in 

relation to MAO activity in T1D hearts.  

 

Microarray studies enable to evaluate the relative level of expression of practically all 

genes in a genome in order to determine the functional pathways influenced by a specific 

set of conditions. Thus, the microarray approach is useful for investigation of pathways 

and mechanisms involved in complex syndromes, such as diabetes. Indeed, several 

studies showed transcriptomic changes in blood samples154, in the liver155–157, kidney158, 

placenta159, skeletal muscle160, adipose tissue157,160, and hearts161–163 of diabetic patients 

and in mouse models164,165. This suggests that genomics is important in the prediction, 

prevention, and diagnosis of the DCM. However, whether such changes in gene 

expression depend on oxidative stress in general, mitochondrial ROS formation or MAO 

activity has not been investigated yet. Thus, we studied this aspect based upon the 

efficient cardio-protection elicited by MAO inhibition in the setting of DCM43,86,87.  

Indeed, microarray analysis showed that the MAO inhibitor pargyline prevented the 
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changes in gene expression observed in diabetic hearts. This suggests that the 

cardioprotective effects afforded by MAO inhibition are likely contributed by changes in 

gene expression.  

Microarray analyses have also been employed to examine the transcriptional profile in 

normal and pathological conditions in the heart166,167. Generally, studies performed binary 

or three-way comparisons of gene expression. Here, we focused our attention on 

differentially expressed genes between control and diabetic hearts, whose expression 

level was normalized by MAO inhibition. In this study, we have examined and proven the 

importance of genes upregulated in T1D hearts in relation to MAO activity. Nevertheless, 

it is equally important to study also downregulated genes and further investigation will be 

performed to have a clearer picture of transcriptional changes induced by diabetes and 

prevented by MAO inhibition.  

To gain mechanistic insight into the potential function of the targets of deregulated 

mRNA, GO, GSEA and leading-edge analyses were performed. Our results showed 

mainly the upregulation of genes involved in mitochondrial compartment, ECM protein 

synthesis, and catabolic processes in diabetic hearts, events prevented by MAO inhibition. 

Our data are in accordance with other studies168 that found upregulation of genes involved 

in ECM synthesis and mitochondrial components in Akita mouse hearts by means of 

microarray and NGS. Furthermore, here we unveil that these modifications are linked to 

mitochondrial ROS formation and, more specifically, MAO activity. 

Transcriptomic data concerning ECM and mitochondria support and extend what has 

been previously observed43,86,87. Indeed, our laboratory has previously demonstrated that 

MAO activity is responsible for cardiac fibrosis in T1D mice and pressure overload. 

Collagen deposition and ECM remodeling result in the stiffening of the cardiac tissue and 

diastolic dysfunction43,86. MAO activity triggers mast cell degranulation in STZ-mice, 

thus providing a mechanistic link between these mitochondrial flavoenzymes, 

inflammation and fibrosis in DCM43. Our present results extend these previous 

observations and show that, in addition to the direct effects exerted by ROS on mast cells 

to promote fibrosis, MAO-dependent ROS generation can induce ECM remodeling by 

modulating the expression of genes involved in this process. 

 

Our genomic data showed that processes related to protein degradation was highly 

affected by MAO-generated ROS in DCM. Thus, we hypothesized that MAO activity 

may be involved in the modulation of autophagy in diabetic hearts. Although, a growing 
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body of research identifies ROS as the principal intracellular signal transducers 

contributing to induction of autophagy, it is still unclear which species exactly drive the 

process and what are the exact ROS sources involved. So far, only Scherz-Shouval et al129 

demonstrated a redox-based mechanism essential for autophagy. They identified Atg4 as 

a direct target for oxidation by H2O2, thus providing a molecular mechanism for the redox 

regulation of the autophagic process. 

In the present study, we observed an increase in LC3-II in STZ-treated mice. 

Interestingly, diabetic mice treated with the MAO inhibitor pargyline showed reduced 

protein level of LC3-II along with a parallel rise in p62/SQSTM1 levels. Therefore, we 

hypothesized that autophagy may be increased in diabetic hearts in a process prevented 

by MAO inhibition. In order to measure accurately the autophagic flux, all the 

experimental groups should be paralleled by groups of animals treated with inhibitors of 

lysosomal degradation. Thus, we employed AMVMs cultured in HG in the absence or 

presence of the MAO inhibitor pargyline and/or chloroquine. Chloroquine inhibits the last 

stage of autophagy impairing the basal autophagic flux by blocking autophagosome-

lysosome fusion, and not by inhibiting lysosomal degradation capacity as previously 

assumed169. We observed a significant reduction in the LC3-II accumulation following 

chloroquine treatment in cells treated with HG and pargyline, suggesting that autophagy 

and autophagy flux are reduced by MAO inhibition. We also observed that 

phosphorylation of AMPK, an important factor involved in the regulation of autophagy, 

had a trend to decrease upon MAO inhibition in myocytes exposed to HG. These results 

suggest that MAO-dependent ROS formation triggered by HG impinges on AMPK 

pathway and promotes autophagy.  

Pharmacological inhibition of MAO could regulate transcriptional changes of certain 

genes and autophagy also through ROS-independent mechanisms. Besides H2O2 

formation, MAOs are also a source of reactive aldehydes and ammonia43. It cannot be 

excluded that products of MAO activity may also participate to the aforementioned 

processes. In addition to this, pharmacological inhibitors may present some off-target 

effects. In that regard, recent studies revealed that MAO inhibitors, including pargyline, 

are capable of inhibiting histone lysine-specific demethylase 1 (LSD1)170,171. LSD1 is a 

nuclear homolog of amine oxidases that generally functions as a histone demethylase and 

transcriptional corepressor172. This leads to transcriptional and epigenetic regulation of 

several genes, among which there are also some genes involved in the autophagic 

process173. However, our study excluded transcriptomic changes induced by pargyline 
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alone and focused only on changes induced by diabetes and prevented by the MAO 

inhibitor. It is thus unlikely that changes in the gene expression profile observed in this 

study are due to the non-specific effects of pargyline. 

Previous studies showed that autophagy is downregulated in hearts of STZ-treated mice 

and OVE26 T1D mice, and restored after treatment with metformin resulting in improved 

cardiac function174. Conversely, other reports highlighted an increase in autophagy in 

hearts from STZ-T1D mice120. Interestingly, Xu et al. demonstrated that T1D-induced 

cardiac damage was rescued upon autophagy inhibition in either beclin 1- or Atg16-

deficient mice124. This reduction in the canonical autophagy pathway was associated with 

the activation of the non-canonical alternative autophagy, thereby maintaining normal 

levels of mitophagy and limiting diabetic cardiac injury124. Although impaired 

autophagosome removal may be detrimental, we cannot exclude the involvement of LC3-

independent autophagy mechanisms upon MAO inhibition in T1D that would allow for 

effective clearance and recycling of cytoplasmic components and organelles. Together 

with previously reported cardioprotective effects of MAO inhibition in preventing 

DCM43,87, the present results support the hypothesis that reducing the levels of autophagy 

is beneficial for cardiac function in T1D. Nevertheless, further studies are necessary to 

elucidate whether activation of non-canonical, Rab9-dependent autophagy takes place in 

T1D hearts upon MAO inhibition to sustain cardiac function. In addition, the mechanisms 

underlying MAO-dependent effect on autophagy in relation to cardiac function warrant 

further, in depth investigation. The limitation of this study is that data on autophagy 

modulation by MAO in DCM in vivo are correlative at the moment and require a more 

robust validation. Future studies will definitively examine the impact of autophagy 

modulation on cardiac function in T1D in relation to MAO inhibition. 

Among genes whose upregulation in diabetic condition was prevented by pargyline, 

transcriptomic analysis highlighted an enrichment of MFF that acts as a mitochondrial 

DRP1 receptor175. We observed an increase in MFF levels also in cells exposed to HG, 

and again MAO inhibition prevented this rise. In addition, phosphorylation of DRP1 on 

serine 616, an event that promotes mitochondrial fission, also showed a decreasing trend 

upon treatment with pargyline. These results suggest that mitochondrial fission may be 

reduced as a result of MAO inhibition in AMVMs exposed to HG, although further 

studies are necessary to fully characterize the role of MAO in diabetes-induced changes 

of mitochondrial dynamics. 
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As regards the tight link between autophagy and mitochondrial dynamics and the role 

Drp1 in cardiac autophagy175–177, elucidating whether MAO-dependent ROS formation 

impacts on these events may prove of interest. Of note, mitochondrial dynamics is altered 

in HG-treated cardiomyocytes and in the diabetic hearts. For example, HG induces 

mitochondrial fragmentation in neonatal rat cardiomyocytes122 and H9c2 cardiac 

myoblast cells122,178–180, and this is dependent on the phosphorylation of Drp1 at serine 

616180. Inhibition of mitochondrial fission attenuates HG-induced ROS production and 

cell death179, suggesting that mitochondrial fragmentation contributes to HG toxicity. 

Moreover, increased mitochondrial fragmentation mediated by DRP1 in STZ-treated 

hearts is detrimental to cells and responsible for cardiac damage in diabetic hearts153.  

 

In conclusion, the present study demonstrates that profound transcriptomic changes 

observed in diabetic hearts occur in a MAO-dependent manner. In addition, MAO-

dependent ROS formation triggered by HG acts as a signal that leads to autophagy 

activation. Taken together, our results provide novel evidence that mitochondrial ROS 

formation and specifically MAO activity modulates cardiac autophagy in DCM. 
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