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Riassunto 

 Lo studio delle proprietà di nanoparticelle metalliche con dimensioni 

inferiori a pochi nanometri, ricoperte e protette da monostrati organici 

(Monolayer-Protected-Cluster:  MPC) è una delle aree di ricerca più attive nel 

campo delle nanoscienze e delle nanotecnologie. Gli MPC d'oro sono composti 

da un nucleo metallico circondato da un monostrato organico protettivo, costituito 

in generale da complessi tiolo-oro. Questa Tesi affronta gli aspetti riguardanti le 

proprietà dei più importanti MPC tra quelli che manifestano un comportamento 

molecolare: i cluster Au25(SR)18 (SR: alcantiolato). L'attenzione è stata dedicata 

principalmente alla struttura e al comportamento del monostrato protettivo, in 

particolare nell'ottica delle possibili applicazioni di questi materiali ibridi, dove 

l'interazione tra il nucleo d'oro  del cluster e il mezzo circostante è determinata 

dalle proprietà del monostrato stesso. 

La Tesi è strutturata come segue. 

 Capitolo uno. In questa sezione si fornisce una panoramica generale 

della letteratura scientifica relativa agli MPC d'oro, su come variano le loro 

dimensioni e su come queste influiscano sul comportamento dei cluster e sulle 

loro principali proprietà chimico-fisiche. Viene inoltre definito l'obiettivo della Tesi. 

In questo capitolo sono inclusi anche un numero di riferimenti bibliografici, per 

ragioni pratiche ognuno dei successivi capitoli contiene le proprie citazioni 

bibliografiche. 

 Capitolo due. Viene descritta la procedura generale di sintesi e 

caratterizzazione dei cluster Au25(SR)18, sia nel loro stato nativo in forma di 

anione, che nella loro configurazione neutra (o ossidata) in cui si comportano 

come specie paramagnetiche. Sono descritte in dettaglio quattro particolari 

sintesi. Viene delineato il controllo dello stato di carica degli MPC e il suo effetto 

sulle proprietà ottiche e magnetiche. Infine è presente una sezione sperimentale 

generale. Maggiori dettagli comunque sono aggiunti alla fine di ogni capitolo 

successivo a seconda dell'argomento trattato. 

 Capitolo tre. Descrive i risultati pubblicati in: Dainese, T.; Antonello, S.; 

Gascón, J. A.; Pan, F.; Perera, N. V.; Ruzzi, M.; Venzo, A.; Zoleo, A.; Rissanen, 

K.; Maran, F. Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 Cluster: 

Structural Analysis by Single Crystal X-ray Crystallography and Electron Nuclear 

Double Resonance. ACS Nano 2014, 8, 3904-3912. Sono stati sintetizzati e 

caratterizzati nanocluster d'oro protetti con etantiolo, il legante più corto tra quelli 

riportati in letteratura. Le forma anioniche e neutre di questo particolare cluster, 
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Au25(SEt)18, sono state completamente caratterizzate tramite spettroscopia 1H e 
13C NMR, che confermano le proprietà del monostrato e il paramagnetismo della 

forma neutra Au25(SEt)18
0. Le misure di diffrazione a raggi X effettuate su 

quest'ultima hanno permesso la pubblicazione della prima struttura 

cristallografica di un cluster d'oro protetto da un semplice alcantiolo lineare. Il 

nanocluster è stato studiato per mezzo di avanzate tecniche di risonanza 

paramagnetica elettronica e i risultati sono stati analizzati tramite calcoli 

quantomeccanici basati sulla teoria del funzionale di densità (DFT), non intaccati 

da approssimazioni nella struttura od omissioni.  

 Capitolo quattro. Vengono discussi i risultati pubblicati in  Antonello, S.; 

Arrigoni, G.; Dainese, T.; De Nardi, M.; Parisio, G.; Perotti, L.; René, A.; Venzo, 

A.; Maran, F. Electron Transfer through 3D Monolayers on Au25 Clusters. ACS 

Nano 2014, 8, 2788–2795. E' stata sintetizzata una vasta gamma di cluster 

Au25(SCnH2n+1)18 (n = 2, 4, 6, 8, 10, 12, 14, 16, 18) monodispersi, ed è stato 

studiato il modo in cui gli elettroni attraversano il monostrato organico protettivo. I 

risultati derivati dalle misure di trasferimento elettronico, adeguatamente 

supportati tramite spettroscopia 1H NMR, spettroscopia di assorbimento IR e 

calcoli di dinamica molecolare, mostrano l'esistenza di una lunghezza critica della 

catena alchilica, che definisce la transizione tra leganti corti, formanti un 

monostrato con una struttura del tutto fluida, e catene alchiliche più lunghe, che 

si auto-organizzano in fasci. Il monostrato organico avvolgente le nanoparticelle 

d'oro con dimensioni inferiori a pochi nanometri, è generalmente rappresentato 

come l'equivalente 3D dei monostrati auto-assemblati 2D (Self-Assembled 

Monolayer: SAM) su superfici estese d'oro. I nostri risultati comunque dimostrano 

che, a differenza del caso dei SAM bi-dimensionali, è possibile un efficiente 

comunicazione elettronica tra il nucleo del cluster e l'ambiente circostante anche 

in presenza di leganti aventi lunghe catene alchiliche. Queste conclusioni 

forniscono un chiaro schema di come un cluster d'oro di dimensioni 

estremamente ridotte, interagisce con il mezzo circostante attraverso il suo 

monostrato organico, che protegge ma non isola completamente il nucleo. 

 Capitolo cinque. Vengono introdotte come naturale continuazione dei 

capitoli precedenti le proprietà di trasferimento elettronico in stato solido dei 

nanocluster sintetizzati. Sono stati presi in considerazione i cluster con formula 

generale Au25(SCnH2n+1)18, con n = 3, 4, 5, 6, 8, and 10.  Tramite drop casting da 

soluzione e successiva essicazione degli MPC depositati, sono stati preparati dei 

film depositati direttamente su elettrodi interdigitati (IDAs). La dipendenza lineare 
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della conduttività rispetto n, indica un meccanismo di trasferimento elettronico 

che prevede il salto (hopping) fra stati energetici localizzati, nel quale i nuclei dei 

nanocluster si comportano come accettori o donatori di elettroni, e i leganti 

alchilici agiscono come spaziatori che determinano l'efficienza del tunneling 

elettronico  attraverso il monostrato organico. I risultati sperimentali sono stati 

comparati con quelli ottenuti per  gli stessi cluster in soluzione (capitolo 4). Gli 

esiti delle misure di trasferimento elettronico indicano un sostanziale 

ripiegamento delle catene alchiliche lineari di questi MPC nello stato solido, ma in 

misura ridotta rispetto a quanto osservato in soluzione, dove è possibile una 

maggiore fluidità del monostrato organico.  

 Capitolo sei. Vengono incorporati i risultati più importanti e le 

metodologie introdotte nei capitoli precedenti. L'inserimento di un metile in 

sostituzione di un idrogeno (in posizione β rispetto l'atomo di zolfo) in un metilene 

del butantiolo, origina un alcantiolo ramificato con un centro stereogenico. 

Nonostante siano stati impiegati tioli commerciali racemi, è stato riscontrato che 

in realtà possiedono un eccesso enantiomerico (e.e.) dell'isomero (S), come 

verificato attraverso la sintesi dello stesso enantiomero puro. Sono stati preparati 

diversi cluster Au25(SMeBu)18
0  (HSMeBu = 2-metil-1-butantiolo) caratterizzati 

tramite diverse tecniche, tra le quali spettroscopia 1H-NMR e spettroscopia di 

dicroismo circolare (CD). Entrambe le metodologie forniscono la stessa 

informazione: come l'e.e. del tiolo impiegato nella sintesi raggiunge un valore di 

circa il 75 %, il cluster corrispondente risulta contenere solo l'isomero (S) del 

legante. E' stato quindi osservato per la prima volta, il fenomeno della risoluzione 

spontanea in un MPC. Queste conclusioni fondate sui risultati spettroscopici, 

sono state perfettamente confermate risolvendo la struttura cristallografica di un 

cluster che, in principio, avrebbe dovuto possedere un monostrato organico 

avente il 77 % di e.e. dell'isomero (S). Invece la struttura cristallografica 

sperimentale, esibisce solo l'isomero (S) sulla superficie del nucleo del cluster 

Au25(SMeBu)18
0. 
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Abstract 

 The study of the properties and applications of small gold monolayer-

protected clusters (MPCs) is one of the most active research areas in 

nanosciences and nanotechnologies. MPCs are composed of a gold core 

surrounded by a capping monolayer usually consisting in thiolates and further Au 

atoms. This Thesis addresses aspects concerning the properties of the most 

important MPC displaying molecular behavior: Au25(SR)18. The main focus is on 

the structure and behavior of the capping thiolate monolayer, particularly in view 

of possible applications of these hybrid materials where the interaction between 

the gold core and the surrounding medium is dictated by the monolayer's 

properties themselves. The Thesis is structured as follows.  

 Chapter one provides a general introduction to MPCs, their size 

difference and how this factor affects their behavior, the main physicochemical 

properties of molecular MPCs, and finally the aims of this Thesis. This Chapter 

also includes a number of references. For practical reasons, however, each of 

the following Chapters contains its own references. 

 Chapter two describes the general synthesis and characterization of 

these clusters, whether in their native anionic state or as neutral, paramagnetic 

species obtained by controlled oxidation of the former. Four selected syntheses 

are described in detail. The control of the charge state and its effect on the optical 

and NMR properties are described. Finally, a general experimental section is 

provided. More details, however, will be added at the end of each Chapter, 

depending on the specific topic addressed. 

 Chapter three describes findings that have been published: Dainese, T.; 

Antonello, S.; Gascón, J. A.; Pan, F.; Perera, N. V.; Ruzzi, M.; Venzo, A.; Zoleo, 

A.; Rissanen, K.; Maran, F. Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 

Cluster: Structural Analysis by Single Crystal X-ray Crystallography and Electron 

Nuclear Double Resonance. ACS Nano 2014, 8, 3904-3912. We prepared and 

characterized a 25-gold atom nanocluster protected by the smallest ligand ever 

used, ethanethiol. The anionic and the neutral form of Au25(SEt)18 were fully 

characterized by 1H and 13C NMR spectroscopy, which confirmed the 

monolayer's properties and the paramagnetism of neutral Au25(SEt)18
0. X-ray 

crystallography analysis of the latter provided the first structure of a gold cluster 

protected by a simple, linear alkanethiolate. The cluster was studied by advanced 

electron paramagnetic techniques and the results analyzed also by DFT 

calculations, which were not affected by structure's approximations or omissions. 
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 Chapter four also describes findings that have been published: Antonello, 

S.; Arrigoni, G.; Dainese, T.; De Nardi, M.; Parisio, G.; Perotti, L.; René, A.; 

Venzo, A.; Maran, F. Electron Transfer through 3D Monolayers on Au25 Clusters. 

ACS Nano 2014, 8, 2788–2795. We prepared a large series of monodisperse 

Au25(SCnH2n+1)18 clusters (n = 2, 4, 6, 8, 10, 12, 14, 16, 18) and studied how 

electrons tunnel through these monolayers. Electron transfer results, nicely 

supported by 1H NMR spectroscopy, IR absorption spectroscopy, and molecular 

dynamics results, show that there is a critical ligand length marking the transition 

between short ligands, which form a quite fluid monolayer structure, and longer 

alkyl chains, which self-organize into bundles. The monolayer protecting small 

gold nanoparticles is generally represented as the 3D equivalent of 2D SAMs on 

extended gold surfaces. We found, however, that at variance with the truly 

protecting 2D SAMs, efficient electronic communication of the Au25 core with the 

outer environment is thus possible even for long alkyl chains. These conclusions 

provide a different picture of how an ultrasmall gold core talks with the 

environment through/with its protecting but not-so-shielding monolayer.  

 Chapter five introduces a natural follow up of the previous Chapters. We 

used a series of linear-chain thiolate protected clusters having the general 

formula Au25(SCnH2n+1)18, with n = 3, 4, 5, 6, 8, and 10, and carried out 

conductivity measurements on their dry films, which were formed by drop casting 

these MPCs onto interdigitated electrodes (IDAs). The linear dependence of the 

conductivity on n points to a hopping mechanism where the cores of the 

nanoclusters behave as a localized electron-donor or acceptor site, and the 

ligands as spacers dictating the efficiency of electron tunneling. The experimental 

results were compared with those obtained for the same clusters in solution 

(Chapter 4). The electron-transfer results point to a substantial folding of the 

linear chains of these MPCs in the solid state, but to a lesser extent compared to 

what observed in solution, where more fluidity is possible.  

 Chapter six basically incorporates the most important results and 

methodologies described in the previous Chapters. We introduced branching 

(one methyl group in place of one hydrogen at position β with respect to the 

sulfur atom) along a butanethiolate chain, which thus introduces a stereogenic 

center. Although we used commercially available racemic thiols, we discovered 

that these thiols possess, in fact, an enantiomeric excess (e.e.) of the (S)-

enantiomer, as verified through synthesis of the pure (S)-enantiomer. We 

prepared several Au25(SMeBu)18
0 clusters (HSMeBu = 2-methyl-1-butanethiol) 
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and characterized them by various techniques. Among them, we used 1H NMR 

spectroscopy and circular dichroism (CD) spectroscopy. Both techniques 

provided the same information: as the e.e. of the thiol employed reaches a value 

of ca. 75%, the resulting Au25 clusters only contain the S-thiolate. We thus 

observed, for the first time, the phenomenon of spontaneous resolution for an 

MPC. These conclusions based on spectral data were perfectly confirmed by 

solving the single crystal structure of a cluster that, in principle, should have 

contained thiols possessing 77% e.e. of the (S)-enantiomer. Instead, X-ray 

crystallography showed that only the (S)-enantiomer is capping the Au25 core.  
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Chapter 1: Introduction 

 

 

1.1 Monolayer Protected Gold Clusters 

 In 1981, Schmid and his co-workers showed that particularly small Au 

clusters, Au55, could be prepared using phosphines as stabilizing agents.1,2 This 

paved the way to using these materials in nanotechnologies but also to posing a 

number of fundamental questions about the properties of these new objects. A 

crucial step forward was provided by the groundbreaking paper by Brust et al 

who described a sound method to prepare thiolate-capped Au nanoparticles.3 

This successful idea was based on the knowledge meanwhile accumulated as a 

consequence of the Nuzzo and Allara’s observations concerning the formation of 

self-assembled monolayers (SAMs) of thiols on extended gold surfaces.4,5 The 

relationship between the latter 2D SAMs and the corresponding 3D monolayers 

capping an Au cores is, in fact, still a very important topic of current research, as 

recently reviewed.6,7 The capping thiols (as thiolates) have the main function of 

stabilizing cores composed by a limited amount of gold atoms, as well as to 

prevent aggregation between particles to form larger entities. These monolayers 

thus function as protecting shields and this is the reason why these unique 

nanosystems have been named monolayer protected clusters (MPCs).8 As 

described by Murray and his co-workers, alkanethiolate MPCs differ from 

conventional colloids and nanoparticles prepared by other routes in that they can 

be repeatedly isolated from and redissolved in common organic solvents without 

irreversible aggregation or decomposition.9 It soon became clear that MPCs 

constitute a entirely class of systems endowed by very special characteristics and 

properties.  

 The study of the properties and applications of small gold MPCs is indeed 

one of the most active research areas in nanosciences and nanotechnologies. 

Over 20 years have already elapsed since publication of the groundbreaking 

paper by Brust et al.3 This discovery triggered active research worldwide, and 

after just a decade the amount of available information was already significant.10 

These and following contributions11 established solid grounds for future research 

and thus the number of fundamental questions regarding MPCs, particularly 

ultrasmall MPCs, kept increasing. Besides fundamental aspects, some of which 

will be dealt with in detail in the following Sections and Chapters, it is worth 

stressing that a number of possible applications have been addressed by several 
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groups worldwide, particularly in the context of catalysis and biomedical 

applications.12-16  

 Bulk gold has long been considered too inert to be a catalyst until the 

discovery that supported Au(III) could be very catalytic for acetylene 

hydrochlorination17 and supported Au nanoparticles (AuNPs) for CO oxidation.18 

Supported Au and other metal nanoparticles have been successfully shown to 

catalyze various chemical reactions.14,19-22 It soon became clear that the catalytic 

properties of AuNPs strongly depend on the particles’ size and stability. In 

particular, AuNPs with diameters <5 nm are the most effective catalysts for many 

processes.23 Generally, performing redox reactions both selectively and efficiently 

is an inherently challenging task. Problems may arise because of poor selectivity 

or yield, which is often attributed to the low loading of AuNPs, along with their 

polydispersity, on solid support materials. Most important, the presence of a 

protective monolayer may limit accessibility of the reacting molecules to the gold 

core. The ligands are often removed by calcination at 200-400 oC, which may 

cause the AuNPs to sinter/aggregate;24,25 this procedure is not suitable, e.g., 

when polymers are used as supports. In this regard, the Maran's and Asefa's 

groups showed that the catalytic activity and selectivity of supported Au25 and 

Au144 clusters toward oxidation reaction can be significantly enhanced by 

controlled reductive deprotection under mild conditions.26 Some solution-phase 

reactions, however, proceed rather well even when relatively bulky ligands are 

still on the surface. This is the case of very small molecules such as for CO2 

reduction27 and CO oxidation,28 but also larger substrates, such as in the 

oxidation of sulfides to sulfoxides29 hydrogenation of ,-unsaturated ketones 

and aldehydes,30 or reduction of 4-nitrophenol.31,32 Besides chemical catalysis, it 

is worth mentioning the potentialities of electrochemically induced homogeneous 

redox catalysis, particularly with Au25(SR)18, as the Maran Group proved in 

detail33,34 and others also showed.27,35-37 For catalytic reactions in which the 

monolayer is not removed, it is thus of outmost relevance to understand how 

reactants may penetrate the monolayer itself in order to then react on the 

catalytic gold surface. Therefore, gaining information on the monolayer structure 

in solution is particularly important. This is the main goal of this Thesis.    

 As we said, AuNPs and MPCs are of significant interest also for their 

potential technological applications in biomedicine.13,16 Their interaction with 

proteins and cells constitute important aspects of this general area. The target of 

this Thesis is limited to ultrasmall MPCs and thus we will only mention some 
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relevant aspects. For biomedical applications, the ability to independently tailor 

the metal core and the nanocluster organic monolayer with required optical and 

biocompatible attributes has been recently demonstrated by studying protein-Au 

nanocluster bioconjugates.38-42 Very few reports have focused on ultrasmall Au 

clusters: the protein-directed synthesis of highly fluorescent gold nanoclusters, 

presumably Au25, has been described;39 Au102(p-MBA)44 nanoparticles (p-MBA = 

para-mercaptobenzoic acid) could be derivatized with proteins and DNA. 

Exchange could be limited to a single protein;40 a cryo-microscopy method for 

estimating the positional displacement of protein bound Au144 nanoparticles was 

presented and discussed;41 calculations of the interaction of β2-microglobulin to 

hydrophobic Au25(SR)18
– indicated that  binding yields persistent complexes.42 In 

most biomedicine applications, the nanoparticles are required to cross cell 

membranes and the search for both critical particle size and morphology are of 

special significance and could be instrumental to devise suitable systems.13 

Compared to larger AuNPs,43,44 information concerning ultrasmall Au MPCs (core 

diameters of <2 nm) is very scarce. Relevant papers concern cellular uptake of 

glutathione-protected Au144 clusters, which was assessed by transmission 

electron microscopy imaging,45 and theoretical contributions focusing on the 

effect of charged ligands on Au144 penetration into the hydrophobic part of 

membrane bilayer.46,47 The Maran group and co-workers have studied the 

interaction of substituted Au144 clusters and supported lipid monolayers and 

bilayers and found that it is possible to either incorporate the MPC inside the 

membrane or pierce the latter with peptide ligands while keeping the actual gold 

core outside it.43 Overall, very few bio-related studies have been carried out with 

molecular gold clusters. Although these topics will not be specifically addressed 

in this Thesis, we wish to stress that most of the methodologies that we tested 

and refined could be, in principle, applied to the preparation and study of Au25 

bioconjugates. Once again, the outcome of the aforementioned exemplifying 

studies show how important is obtaining insights into the properties of both the 

Au core and the surrounding monolayer, as well as to assess how the former 

interacts with the environment via the latter.  

 In these and further applications, the size factor is of paramount 

importance. Size dictates the separation between energy levels and thus the 

optical and electrochemical behavior, and thus the electron transfer (ET) 

properties. For particularly small MPCs, the discrete nature of both core atoms 

and protecting ligands is such to allow for precise use of further investigation 
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tools, such as nuclear magnetic resonance (NMR), electron paramagnetic 

resonance (EPR), mass spectrometry, X-ray crystallographic analysis. In the 

following Sections, we will briefly describe the most relevant differences between 

Au NPs and MPCs (Section 1.1.1) and some of their most salient 

physicochemical properties (Section 1.2), also functional to the scope of this 

Thesis. The specific Aims of the Thesis will be summarized in Section 1.3.            

 

1.1.1 Size Matters 

 The number of interacting atoms affects the properties of the resulting 

systems in a dramatic way. Bulk gold is characterized by a continuum of 

electronic states resulting in its well-known optical behavior. It can also be used 

as an efficient electrode material providing, once again, a continuum of states 

and thus electrochemical driving forces. At the other extreme, we have 

molecules, such as gold complexes. In this case, the number of electronic states 

is much more limited and the electrochemical behavior is characterized by very 

few discrete (voltammetric) peaks. The energy difference between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) is very large. Consequently, within the usual potential window allowed by 

conventional solvent/electrolyte systems, not many are the molecules showing 

discrete oxidation and reduction peaks for the formation of the corresponding 

radical cations or anions (if starting from a neutral molecule). In between these 

two well-defined cases, there is a progressive change of the properties that can 

be monitored in a particularly efficient way by optical and electrochemical 

techniques.  

 One has to start by realizing that although the preparation of gold 

nanoparticles and clusters has improved dramatically, particularly over the last 

few years, for most AuNPs the actual composition, as usually determined by a 

combination of transmission electron microscopy (TEM), which provide the size 

of the gold core, and thermogravimetric analysis (TGA), which provides the mass 

ratio between the organic monolayer and the metallic part, is liable to provide 

only an average composition. The size is, therefore, not truly monodisperse. Let 

us focus on differences that can easily be detected electrochemically through 

observation of the give AuNP's voltammetric behavior at an inert working 

electrode. For AuNPs in which the monolayer does not carry electroactive 

functions, Murray defines:11 "Three voltammetric regimes - defined by ranges of 

core size - can be imagined (all experimentally known). I label these bulk-
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continuum, quantized double layer charging, and molecule-like." Here we will 

adopt the same terminology. 

 The first regime corresponds to comparatively large MPCs, typically of 

size larger than 3-4 nm. These MPCs have a number of metal core atoms 

sufficiently large to that make the energy levels appear as basically a continuum 

of states, also because of the effect of thermal energy. In the electrochemical 

experiment, one observes just a featureless, gradually rising amperometric 

currents.48 On the other hand, use of the Brust-Schiffrin approach allows 

preparing particularly small MPCs.3 This method is based on transferring AuCl4
– 

from water to toluene by using tetraoctylammonium bromide as the phase-

transfer agent, addition of the given thiol in appropriate excess, which causes an 

initial reduction of Au(III) to Au(I), and finally reaction with sodium borohydride to 

form Au(0). The reaction can be controlled by balancing the rates of Au core 

growth and thiolate passivation in order to limit the reaction's outcome to 

formation of reasonably controlled average sizes. MPCs prepared by this or 

slightly modified methodologies allowed preparation of small, stable gold MPCs. 

If sufficiently small, these MPCs display a distinct, discrete voltammetric behavior 

characterized by a series of quite regularly spaced peaks. This is the regime 

defined as quantized double layer charging. The most notable example is that of 

Au144(SR)60. For organic thiolates, such as phenylethanethiolate, a typical 

differential pulse voltammetry trace, obtained in dichloromethane (DCM) 

containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAH) is as shown 

in Figure 1. Research by electrochemical groups49-51 showed that these MPCs 

display average peak-to-peak separations of 0.22-0.25 V and capacitances of 

0.60-0.70 aF, the actual values depending on the specific ligand and 

solvent/electrolyte system. The very observation of discrete peaks indicates that 

the spacing between energy levels is now such that temperature cannot cause 

observation of a continuum behavior.  

 Finally, for MPCs with gold cores of diameter <1.6 nm, electronic-band 

energetics leads to particularly evident quantum confinement effects that make 

these gold clusters display the same general features of "simple" molecules. 

Notably, this is particularly evident through observation of well-defined 

electrochemical energy gap. Molecular clusters will be the topic of this Thesis and 

thus we will have several occasions to recall their very nice electrochemical 

behavior. Within the framework of this Section, however, it is worth showing a  
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Figure 1. Typical differential pulse voltammetry behavior of 0.13 mM 

Au144(SC2H4Ph)60 in DCM/0.1 M TBAH. Glassy carbon electrode, 25 °C.  

 

revised version of a picture that Murray prepared for his 2008 review.11 We 

modified this figure by taking into account also later relevant results concerning 

new cluster stoichiometries. Figure 2 shows the HOMO-LUMO gaps (in red, eV)  

Figure 2. Electrochemical and optical gaps as function of the number of Au 

atoms. The blue curves have the only meaning of highlighting the trend. 



23 
 

 

and (Y axis) the corresponding electrochemical gaps (for molecular MPCs) or 

peak-to-peak separations (quantize double layer charging behavior) as a function 

of the number of Au atoms composing the cluster (X axis). The red dashed line 

marks the approximate size at which the transition occurs. The data show the 

following MPCs, which were characterized by electrochemical means particularly 

well in organic solvents such as DCM: Au225,
52 Au144,

49-51 Au133,
53 Au130,

54 Au102,
55 

Au75,
56 Au67,

57 Au38,
50,58 Au25,

33,59,60 Au13.
61 Au25 is evidenced because it will be the 

topic of this Thesis. 

 Figure 2 nicely evidences the onset of a distinct HOMO-LUMO gap for 

clusters smaller than ca. Au144. To date, the cluster that displays the most clear-

cut electrochemical features of both molecular and quantized double layer 

charging behaviors is Au130.
54 That the transition occurs at this cluster size is also 

supported by a recent investigation that concluded that whereas for Au cores of ≤ 

1.6 nm (Au144) the clusters have molecular-like electronic structures and non-fcc 

geometric structures, larger Au cores have structures resembling those of bulk 

gold.62 Other recent theoretical studies also points to clusters in the range of 

Au144 as marking the transition toward the birth of a localized surface plasmon 

resonance.63,64  

 

1.1.2 Molecular MPCs 

 As we have seen, MPCs with gold cores of diameter <1.6 nm display the 

same general features of molecules. Their borderline behavior between actual 

molecules and slightly larger MPCs makes the study of their fundamental 

properties particularly fascinating and often intriguing. This PhD Thesis explores 

frontiers of this area of science.  

 The main reason that has proved to be expedient for observing, 

characterizing and understanding fine molecular properties of ultrasmall MPCs is 

practical: as opposed to only slightly larger MPCs, such as Au144(SR)60 (1.6 nm, 

SR = generic thiolate ligand) which we have seen to belong to the class of 

clusters displaying quantized double-layer charging behavior, only molecule-like 

MPCs could be so far prepared in a truly monodisperse form, with atomic 

precision. A breakthrough came in 2007 when the single crystal structure of 

Au102(SR)44 was solved by X-ray crystallography, revealing unexpected structural 

features (staple-like motifs).65 Structures of a few smaller gold clusters were then 

published.66-74 One of this contributions, concerning Au25(SEt)18,
69 will be 
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described in detail in Chapter 3. The structure of the largest MPC so far 

crystallized, Au133(SR)52, has been successfully described very recently by two 

research groups.53,75 Proper synthesis and purification coupled to knowledge of 

the relevant structures have thus provided the necessary grounds for obtaining a 

deeper understanding of these systems and developing tools suitable to study 

the fine structure and electronic distribution of nanoclusters.6,12,69,76,77 In this 

framework, Au25(SR)18 has been and still is a "gold mine" because it keeps 

furnishing an effective benchmark for gaining insights into properties and possible 

applications of molecular MPCs as well as developing and testing new concepts 

at the nanoscale.76 For space limitations, here we do not have room enough to 

cover everything that has been done in this direction, but good recent reviews are 

available.6,12,76,77 This Thesis is entirely focused on a series of aspects 

concerning Au25(SR)18 and, therefore, we will now describe some of those 

fundamental physicochemical properties that we and others have been 

particularly focused on, also in view of introducing our research objectives.  

 

1.2 Physicochemical Properties of the Molecular Au25(SR)18 Cluster 

  Au25(SR)18 is a particularly stable molecular MPC with a metal core 

diameter of only 1 nm. Figure 3 shows the structure of a particularly small Au25 

MPC that was prepared and studied during this Thesis work, Au25(SEt)18
0.69 More 

structural details will be described in Chapter 3, whereas here we will use it to 

stress the general features of all clusters possessing the general formula 

Au25(SR)18. The structure shows a 13-atom icosahedral inner Au core 

(highlighted in yellow) surrounded by six –(SR)-Au-(SR)-Au-(SR)- staple-like 

semicrowns (in blue).66-69 The 18 thiolated ligands forming the monolayer thus 

split into a group of 12 inner ligands (in red), in which sulfur makes bonds with 

one Au atom of the gold core and one staple Au atom, and a group of 6 outer 

ligands (in green) in which the bonds are with two staple Au atoms. 

 Several properties of Au25(SR)18 have been studied in detail. In the 

following Sections, we will provide the essential background to properly frame the 

following Chapters. Most of these concepts will be addressed in more depth also 

later, depending on the specific topic dealt with in each Chapter. 
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Figure 3. X-ray crystal structure of Au25(SEt)18
0. Au = yellow, S = red, C = gray, H 

= white. For the highlighted parts, see text. Close views of the staple (half-crown) 

and core (central Au atom in green) are shown on the right-hand side and the 

bottom, respectively.     

 

1.2.1 UV-vis Behavior 

 Molecular clusters such as Au25(SR)18 display UV-vis absorption spectra 

containing several fine features. In its native form, this cluster is an anion and is 

usually stabilized by a n-tetraoctylammonium countercation ([n-

Oct4N
+][Au25(SR)18

–]) used as the phase-transfer agent in Brust-type syntheses. 

Some properties of the corresponding neutral Au25(SR)18
0 clusters were initially 

obtained by chemical68,78 or electrochemical oxidation of Au25(SR)18
–.59 The 

Maran group introduced a very precise method for the controlled oxidation of 

Au25(SR)18
– to form Au25(SR)18

0 and then Au25(SR)18
+.79 This original strategy was 

then devised to obtain clean optical spectra and uncomplicated 1H and 13C NMR 

spectra (see Section 1.2.2). The oxidant was required to (i) be soluble in the 

same solvents as the cluster, (ii) bear no protons, (iii) generate a diamagnetic 

species, and (iv) the redox reaction was required to proceed quantitatively, 

irreversibly and with clearly identifiable products and counter-ions. The selected 

oxidant was bis(pentafluorobenzoyl) peroxide, a very reactive dibenzoyl peroxide 

that acts as an efficient electron acceptor according to a concerted dissociative 

electron-transfer (ET) process,80,81 a process typical of peroxides.82-84 The 
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reaction, which can be carried out also with other ring-substituted dibenzoyl 

peroxides,34 is a two-electron process only generating the stable carboxylate 

anion C6F5CO2
–: 

 

(1)  (C6F5CO2)2  + Au25(SR)18
0/1– C6F5CO2

– + C6F5CO2
● + Au25(SR)18

0/1+ 

(2)      C6F5CO2
● + Au25(SR)18

0/1– C6F5CO2
– + Au25(SR)18

0/1+ 

 

The irreversible ET reaction of (C6F5CO2)2 with Au25(SR)18 was monitored by UV-

vis absorption spectroscopy.34,79 Figure 4 (upper graph) shows the progressive 

transition from Au25(SR)18
– to Au25(SR)18

0, for R = C2H4Ph (0.023 mM, DCM, 10 

mm cuvette), also in terms of absorption derivative (lower graph). Figure 5 (upper  

 

 

Figure 4. Effect of the progressive addition of bis(pentafluorobenzoyl) peroxide on 

the UV-vis absorbance spectrum (upper graph) and corresponding derivative 

(lower graph) of 0.023 mM Au25(SR)18
– in DCM. Addition was calibrated to arrive 

to full conversion to Au25(SR)18
0. 



27 
 

 

Figure 5. Effect of the addition of bis(pentafluorobenzoyl) peroxide on the UV-vis 

absorbance spectrum (upper graph) and corresponding derivative (lower graph) 

of 0.023 mM Au25(SR)18
0 in DCM. For details, see text. This figure is reproduced 

from ref. 79. 

 

graph) shows the transition from Au25(SR)18
0 to Au25(SR)18

+, also as a derivative 

plot (lower graph). The number of equivalents in the legend refers to the 

theoretical amount of peroxide required for full conversion of Au25(SR)18
0 into 

Au25(SR)18
+ (two-electron process: sum of reactions 1 and 2). The numbers on 

the two optical plots (Figures 4 and 5) show the main wavelengths (in nm) 

corresponding to the main minima, maxima and isosbestic points. The inset to 

Figure 5, lower graph, shows the corresponding variation in the absorbance 

derivative (at 390 nm) as a function of the peroxide equiv (the zero was arbitrarily 

set at the point corresponding to pure Au25(SR)18
0). The absorbance derivative at 

496 nm or the absorbance at 369 or 401 nm gave virtually identical results. This 

shows very nicely how the course of the redox reaction can be assessed very 
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precisely. The molar extinction coefficient of Au25(SR)18
0 in DCM at 401 nm was 

determined to be  = 5.38  104 M-1 cm-1.79 Further details can be found in the 

original papers.34,79 

 From the absorbance onset, the HOMO-LUMO gap of Au25(SR)18
– was 

evaluated to be 1.33 eV,59 whereas the changes observed on the low energy side 

of the spectrum show that when Au25(SR)18
– is oxidized to radical Au25(SR)18

0 the 

gap increases, as already commented upon.85 The increase is ca. 0.16 eV. 

According to the spectra of Figure 5a, converted from wavelengths to eV, further 

oxidation to Au25(SR)18
+ increases the gap to ca. 1.53 eV, a value lower which 

suggests that absorption now involves an orbital lower in energy by 0.2 eV 

compared to Au25(SR)18
–. This is contrast with earlier density functional theory 

(DFT) calculations on simple models of these clusters, Au25(SH)18 and 

Au25(SMe)18, which pointed to three almost degenerate HOMOs (highest 

occupied molecular orbitals).86-89 A DFT study of Au25(SR)18
– with para-

substituted thiophenolate ligands pointed to one of the HOMOs as slightly higher 

in energy than the other two (0.12–0.13 eV).90 The problem of this difference in 

energy was addressed in detail later.91 As opposed to commonly accepted views, 

analysis of EPR90 and NMR results79 provided definite evidence for a difference 

in the HOMOs' energy (see, also, Sections 1.2.2 and 1.2.3), in agreement with 

the aforementioned optical behavior. DFT calculations confirmed that the state of 

charge affects the relative energy of these HOMOs very significantly. 

 To conclude, the UV-vis absorption spectra of molecular Au25(SR)18 

clusters not only display truly molecular features but they also are very sensitive 

to the actual charge state. The optical spectra thus provide a perfect way to 

assess the purity, monodispersity, and charge state of the cluster, as well as its 

concentration through the already mentioned molar extinction coefficient, which 

not only is virtually independent of the solvent,79 but also does not vary with the 

alkyl group (R in SR).92  

 

1.2.2 Nuclear Magnetic Resonance 

 As we saw, in its native form, Au25(SR)18 bears a negative charge and its 

electroneutrality is granted by a n-tetraoctylammonium cation used as the phase-

transfer agent in Brust-type syntheses. We also showed that these clusters can 

be oxidized in a very precise manner using a dissociative-type peroxide acceptor. 

This strategy allowed the Maran Group to characterize the NMR behavior of 

Au25(SR)18 (R = phenylethanethiolate) as a function of its charge state, -1, 0, 
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+1.79 This study could confirm (for the -1 and 0 states) some previous results 

from the Murray Group,93 correct some of the conclusions, and provide a clear 

picture of the magnetism of  Au25(SC2H4Ph)18 as a function of the charge state. In 

this Section, we will introduce the main results and concepts, made possible by 

the preparation of atomically monodisperse Au25(SC2H4Ph)18. Further aspects 

and more insights into the NMR of Au25(SR)18 clusters will be provided in the 

following Chapters. Concerning the preparation of the same neutral cluster, we 

should note that another chemical oxidation route, making use of an 

oxoammonium cation, was later described also by the Zhu's and Jin's groups.94  

 Au25(SC2H4Ph)18 was studied by 
1H and 13C NMR spectroscopy, using 

one- and two-dimensional techniques, in various solvents, and as a function of 

temperature.79  The charge state of the Au25 clusters could be precisely controlled 

by using the smooth oxidant bis(pentafluorobenzoyl) peroxide. Since the 

peroxide and its reduction product do not introduce hydrogen atoms, this 

dissociative ET proved to be a particularly convenient approach for NMR 

purposes. Analysis of the NMR spectra [n-Oct4N
+][Au25(SC2H4Ph)18

–] led to 

evidence, quantitatively, the presence of the two families of inner and outer 

ligands, in agreement with the x-ray crystallography structure. Similar outcome 

was verified for its oxidized form, Au25(SC2H4Ph)18
0. In this case, however, a 

series of remarkable chemical-shift differences, caused by the paramagnetism of 

this Au25 charge state, are observed. As expected because of the singly occupied 

molecular orbital (SOMO) is mostly localized onto the gold core, the inner ligands 

are particularly sensitive to the unpaired electron. This is particularly true for the 

(-CH2)in peak that undergoes a dramatic downfield shift toward ca. 25 ppm. This 

peak can be evidenced by increasing the temperature, as illustrated in Figure 6. 

A dramatic effect of paramagnetism is also evident in the 13C NMR spectrum for 

both (-C)in and (-C)in. The presence of two distinct ligand populations could be 

quantitatively verified. DFT calculations of chemical shifts, provided insights into 

the extent of spin delocalization and the nature of the ligands.  

 Further oxidation of the cluster to the corresponding cation 

Au25(SC2H4Ph)18
+ basically led to observe a very similar NMR behavior to that of 

Au25(SC2H4Ph)18
–, once again with distinct contributions from the two types of 

ligand. This led to conclude that the positively-charged cluster is a diamagnetic 

species. Figure 7 illustrates the outcome of this second oxidation. These results 

provided the first piece of information pointing to the three HOMOs as not being 

energetically equivalent. 
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Figure 6. 1H NMR spectrum of monodisperse 3 mM Au25(SC2H4Ph)18
0 in toluene-

d8 as a function of temperature. The spectra (ref. 79) only show the (-CH2)in 

zone.

 

 

Figure 7. 1H NMR spectrum of 3 mM Au25(SC2H4Ph)18
0 (upper graph, in toluene-

d8, 358 K) and Au25(SC2H4Ph)18
+ (lower graph, dichloromethane-d2, 298 K) 

obtained by quantitative oxidation of the former. 

 

1.2.3 Electron Paramagnetic Resonance 

 Under mild oxidizing conditions, such as in the presence of oxygen, or 

upon addition of a suitable oxidant, Au25(SR)18
– undergoes oxidation to form the 

very stable Au25(SR)18
0 species.68,79 The latter is a paramagnetic species and 
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thus not only displays a characteristic NMR behavior, as we just saw in Section 

1.2.2, but also an interesting EPR behavior. This starts to be evident as the 

temperature decreases below 100 K, as described in detail by Zhu et al for 

Au25(SC2H4Ph)18
0.95 Thus, continuous-wave EPR (cw-EPR) of frozen, glassy 

solutions of Au25(SR)18 shows a broad peak displaying the typical features of a 

paramagnetic state. Further studies,69,70,91 also carried out on other Au25(SR)18
0, 

such as Au25(SEt)18
0 (Chapter 3)69 and Au25(SBu)18

0,70 confirmed the same 

behavior and also that very similar EPR parameters can be used to describe 

different clusters, which points to the importance of the core rather than the 

monolayer itself. Electron nuclear double resonance (ENDOR), a very sensitive 

superhyperfine technique, provided further insights into structural features of 

Au25(SEt)18, the smallest Au25 so far prepared (for details, please refer to Chapter 

3 and ref. 69). 

 It is of particular interest to gain further insights into the issue of the three 

HOMOs. As we said, previous DFT calculations on simple models of these 

clusters, Au25(SH)18 and Au25(SMe)18, pointed to three almost degenerate 

HOMOs,86-89 although another study concerning Au25(SR)18
– (SR = para-

substituted thiophenolates) revealed that one of the HOMOs could be slightly 

higher in energy.90 Because of the paramagnetism of Au25(SR)18
0 and the 

apparent nearly degeneracy of three HOMOs, further oxidation of the cluster to 

its +1 charge state could generate another paramagnetic (diradical) species. The 

NMR evidence, however, clearly showed that the cation is as diamagnetic as the 

anion, at least at room temperature.79 A similar conclusion was later reached by 

using a different oxidant.94 In a more recent paper,96 on the other hand, some 

EPR spectral behavior attributed to paramagnetism of Au25(SR)18
+, obtained from 

Au25(SR)18
0 by following the oxidation approach developed by the Maran Group.79 

This inconsistency was addressed in detail but cw-EPR of frozen, glassy 

solutions of a freshly prepared Au25(SR)18
+ sample revealed that the latter is not 

EPR active in the temperature range 6 – 260 K,91 in full agreement with NMR 

results. The DFT-computed optical absorption spectra and density of states of the 

-1, 0, and +1 charge states could nicely reproduce the experimentally estimated 

dependence of the HOMO-LUMO energy gap on the actual charge carried by the 

cluster. DFT calculations could thus provide a clear picture of the evolution of the 

frontier orbitals, confirming that the +1 charge state must be considered 

diamagnetic due to a significant splitting of the HOMO energy levels.91 
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 Magnetism in gold nanoparticles is indeed becoming a new frontier of 

MPC research. It is, however, still poorly understood.96 In this context, the Maran 

Group and collaborators made very recently a breakthrough discovery:70 whereas 

Au25(SBu)18
0 is a paramagnetic MPC that in solution displays the same molecular 

behavior of other Au25 clusters, in the solid-state single crystal X-ray 

crystallographic analysis reveals formation of a linear polymer composed by 

Au25(SBu)18 units interconnected by single Au-Au bonds (Figure 8 the structures 

on top correspond to the area circled in green, and for simplicity are shown 

without the ligands) and stabilized by interlocking of ligands. The otherwise 

unpaired electrons of the Au25(SBu)18
0 clusters pair up, with generation of a 

nonmagnetic ground state, i.e., an antiferromagnetic state. DFT calculations 

pointed to a room-temperature behavior of a narrow-gap semiconductor. While in 

an organic solution, however, the polymer dissolves and the behavior is typical of 

that displayed by all other Au25(SR)18
0 clusters.   

 

Figure 8. Formation of the antiferromagnetic [Au25(SBu)18
0]n polymer. 

 

1.2.4 Electrochemistry 

 Electron-transfer characterization of the Au25(SR)18 native cluster shows 

that Au25 behaves in all regards as a simple molecular redox species.33,59,60,91 

Figure 9 shows  typical cyclic voltammetry (CV) pattern of Au25(SC2H4Ph)18
–  in 

DCM/0.1 M TBAH studied on a glassy carbon electrode.33 The CVs shows the 

first two oxidations (the actual cluster is in its anionic form) and first reduction. At 

low scan rate (v) values and for the two most positive peaks, the separation 

between the anodic and the cathodic peak potentials (Ep) is typical of a fully 
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reversible process. Ep increases only for sufficiently high v values. The peak for 

the reduction to the dianion is irreversible, in agreement with a fast ET followed 

by chemical reaction/s. Voltammetric analysis and digital simulation showed that 

initial ET triggers a cascade of chemical and electrochemical steps corresponding 

to a sequence of stepwise dissociative ETs. 

 

Figure 9. Background-subtracted CVs of 1 mM Au25(SC2H4Ph)18
–  in DCM/0.1 M 

TBAH. v = 0.2 V s-1, glassy carbon electrode, 25 °C. 

 

 The redox formal potential (E°) values of Au25 clusters can be varied by 

proper substitution of the capping ligands.51,97 In is worth noticing that whereas 

very basic electrochemical information (such as E° values and E° differences) 

has been reported for some molecule-like clusters and under different 

environment conditions (solvents, electrolytes, temperature), studies focusing on 

their actual ET properties, such as intrinsic barriers, activation parameters, and 

ET rate constants, are still very scarce. The Maran Group was the first to assess 

the ET properties of Au25(SR)18
–,33 albeit in this and most of former papers 

(before 2008) this cluster was believed to be Au38(SR)24
0 instead of Au25(SR)18

–.76 

Similarly, it was later showed that the cluster believed to be11 Au140(SR)53 had a 

slightly different stoichiometry, Au144(SR)60.
98 ET characterization showed that 

Au25 behaves in all regards as a molecular redox species whose redox potentials 

can be varied by proper substitution of the capping ligands. Heterogeneous ET 

kinetics revealed that the intrinsic barrier for the oxidation of Au25(SR)18
– is 

predominantly in the form of inner reorganization rather then solvent 

reorganization as usually is verified with common organic donors or acceptors.81 
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This unusually large heterogeneous ET inner reorganization result is in 

agreement with ET self-exchange measurements (0 and -1 forms) in the solid 

state99 and in solution.93  

 Au25 clusters have been used to catalyze several redox processes.14 From 

the viewpoint of pure ET reactions triggered by the homogeneous redox catalysis 

appraoch, they have been used as redox catalysis mediators toward peroxide 

acceptors,34 for the reduction of diphenyl disulfide and benzyl bromide,33 and the 

corresponding ET rate constants were compared with those obtained using 

conventional one-electron donors. Concerning the latter study, the acceptors 

were chosen so as to be reduced within the lifetime of the actual reductant, 

Au25(SR)18
2–, which has a lifetime of only 4 ms owing to the aforementioned 

chemical reactions associated to the electrode reduction.33 In a following 

contribution, the lifetime of other redox forms derived from Au25(SR)18
0 were also 

assessed.91  Thus, as opposed to the stable -1, 0, and +1 charge states, 

Au25(SR)18
2–, Au25(SR)18

2+, and Au25(SR)18
3+ were proved to be labile species with 

lifetimes of 4 ms, 0.33 s, and 20 ms, respectively. These results casted doubts on 

some interpretations reached in recent publications.91 Figure 10 summarizes in a 

  

 

 

Figure 10. DPV of 1 mM Au25(SC2H4Ph)18
0 in DCM/0.1 M TBAH. Glassy carbon 

electrode, 25 °C. The color codes stress the stability of the relevant charge 

states, with blue and red as the most stable and unstable forms, respectively. 

 

pictorial way the lifetimes and electrode electron uptakes or releases for the 

same cluster of Figure 9, although now starting from the zero charge state.91 The 

corresponding changes in the HOMOs energies are also depicted. The 

electrochemical behavior is here seen in terms of differential pulse voltammetry 
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(DPV). A comparison with the DPV behavior of Au144(SC2H4Ph)60 shown in Figure 

1 highlights the very different behavior displayed by the two type of MPCs.  

 Concerning the homogeneous redox catalysis for the reduction of a series 

of dibenzoyl peroxides,34 use of a different donor with a comparable E° allowed 

verifying that in these redox processes the monolayer thickness affects the rate 

rather significantly. Analysis of these results thus pointed to these MPCs as 

acting in ET reactions as roughly the 3D equivalent of SAMs formed on extended 

gold surfaces.  

 

1.3 Aims and Summary of the Thesis 

 This Thesis addresses aspects concerning the properties of the most 

popular MPC displaying molecular behavior: Au25(SR)18. The main objective was 

to devise experiments suitable to provide information for setting up a sound 

description of how the gold core and the surrounding medium communicate 

through the capping monolayer. The Thesis is structured according to six 

Chapters. For practical reasons each Chapter contains its own references. 

 As we have seen, Chapter 1 reviews some among the most salient, 

pertinent to this Thesis, aspects of the physical chemistry of molecular Au25-

(SR)18.   

 As described in Chapter 2, various methods and techniques were 

implemented for the preparation of atomically pure Au25(SR)18. A lot of effort was 

also devoted to master the control of the MPC's charge state and assess how the 

optical and NMR properties change accordingly.  

 We then focused on preparing and characterized a 25-gold atom 

nanocluster protected by the smallest ligand ever used, ethanethiol, as described 

in Chapter 3 (published: ACS Nano 2014, 8, 3904-3912). Not only we could 

prepare this cluster but also determine its structure by single crystal X-ray 

crystallography. This gave us the possibility of carrying out an unprecedented 

analysis of the gold-core and thiolate ligands properties. We found that the gold 

core is composed by sufficiently different types of gold atoms to be detected by 

advanced electron paramagnetic techniques (ENDOR). The results were 

addressed by DFT calculations that, thanks to the use of a very short thiol as the 

protecting ligand, allowed us to analyze the data without structure's 

approximations or omissions. 

 Au25(SEt)18 is a "nearly naked thiolate-protected Au25 cluster": the next 

question was to devise a method to gain information on the dynamic structure of 
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this and progressively thicker thiolate monolayers. In Chapter 4 (published: ACS 

Nano 2014, 8, 2788–2795) we describe the characterization of the largest series 

of monodisperse Au25(SCnH2n+1)18 clusters ever prepared (n = 2, 4, 6, 8, 10, 12, 

14, 16, 18). The goal was to use electron tunneling as a probe of the monolayer 

structure in solution. ET results, nicely supported by 1H NMR spectroscopy, IR 

absorption spectroscopy, and molecular dynamics results, showed that there is a 

critical ligand length marking the transition between short ligands, which form a 

quite fluid monolayer structure, and long alkyl chains, which self-organize into two 

oppositely directed bundles. At variance with the truly protecting 2D SAMs, 

efficient electronic communication of the Au25 core with the outer environment is 

possible even for long alkyl chains. This research has thus provided a different 

picture of how an ultrasmall gold core talks with the environment through/with its 

protecting but not-so-shielding monolayer.  

 Chapter 5 is a natural follow up of Chapter 4. The idea was to verify how 

ET proceeds in the solid state, also in view of possible uses of Au25 films in 

practical applications requiring conductive materials in the solid state. We used a 

series of linear-chain thiolate protected clusters having the general formula 

Au25(SCnH2n+1)18 (n = 3, 4, 5, 6, 8, 10) and carried out conductivity measurements 

on their dry films on interdigitated electrodes. We found a linear dependence of 

the conductivity on n, which points to a hopping mechanism where the Au cores 

behave as a localized electron-donor or acceptor site, whereas the ligands act as 

spacers dictating the efficiency of electron tunneling. The ET results clearly point 

to a substantial folding of the linear chains of these MPCs in the solid state, but to 

a lesser extent compared to what observed in solution, where more fluidity is 

possible.  

 Chapter 6 originates from Chapters 3-5. For the ET studies we needed to 

introduce branching along the alkyl chain and check how this factor would have 

affected the effective monolayer thickness. Thus, we introduced one methyl 

group in place of one hydrogen at position β (with respect to the sulfur atom) 

along a butanethiolate chain. This type of thiol thus contains a stereogenic 

center. We found that commercially available racemic thiols are, in fact, 

nonracemic, but possess an enantiomeric excess (e.e.) of the (S)-enantiomer, as 

verified through synthesis of the pure (S)-enantiomer. By varying the e.e. of the 

thiol, we could prepare several of Au25(SMeBu)18
0 clusters. Both 1H NMR 

spectroscopy and CD spectroscopy showed that as the e.e. of the thiol employed 

reaches a value of ca. 75%, the resulting Au25 clusters only contain the (S)-
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thiolate. We thus observed, for the first time, the phenomenon of spontaneous 

resolution for an MPC. These conclusions based on spectral data were perfectly 

confirmed by solving the single crystal structure of one of these clusters, which in 

principle should have contained an 77% e.e. of the (S)-enantiomer: instead, X-ray 

crystallography showed that only the (S)-enantiomer is capping the Au25 core.  
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Chapter 2: Synthesis and Characterization of Au25(SR)18 

 

 

2.1 Synthesis 

2.1.1 Au25(SC2H5)18 

 A typical synthesis of [n-Oct4N
+][Au25(SEt)18

–] was carried out as follows.1 

0.50 g (1.27 mmol) of HAuCl4·3H2O was dissolved in 40 ml THF and then 0.833 g 

of tetra-n-octylammonium bromide (1.52 mmol, 1.2 equiv) were added. The 

resulting red solution was stirred for 15 min at 20 °C. Stirring speed was set to 

100 rpm and 0.367 ml (5.08 mmol, 4 equiv) of ethanethiol (attempts were made 

with different amounts of ethanethiol, 7 and 20 equiv but in both cases a lower 

clusters yield was obtained), dissolved in 10 ml of ice-cooled THF (to limit 

evaporation of the low-boiling ethanethiol, boiling point = 35 °C), was added 

dropwise over a period of ca. 3 min. The solution quickly became yellow and 

then, after ca. 45 min became colorless. The stirring speed was raised to 600 

rpm and a freshly prepared icy-cold aqueous solution (10 ml) of NaBH4 (0.48 g, 

12.7 mmol, 10 equiv) was quickly added to the mixture, which was kept at 20°C. 

The solution immediately became black, the typical color observed during MPC 

formation, and plenty of gas evolved. After addition of NaBH4, the necks of the 

reaction flask were loosely capped to allow gases escape upon a slight positive 

pressure. The reaction progress was monitored by UV-vis absorption 

spectroscopy. After two days, the reaction mixture was filtered on paper to 

remove black/dark grey residues insoluble in THF. The filtered solution had a 

dark-brown color with orange hues. THF was removed with a rotary evaporator to 

leave a reddish-brown oily solid covered by a colorless liquid (residual H2O from 

aq. NaBH4). The water phase was removed, and the solid was dissolved in 

toluene and washed with water (4 x 40 ml) in a separatory funnel. Toluene was 

evaporated and the product was extracted with acetonitrile, leaving a black 

residue. Acetonitrile was evaporated and the resulting orange-reddish oily solid 

was dissolved in diethyl ether to yield a clear orange solution. This caused 

precipitation of a white crystalline-like powder, constituted by excess tetra-n-

octylammonium bromide (this white crystalline-like powder was collected, 

dissolved in THF and a drop of HAuCl4·3H2O in THF was added to it, obtaining 

the typical red-orange solution), which has very low solubility in this solvent. To 

eliminate the last excess of tetra-n-octylammonium bromide, the product 

dissolved in diethyl ether was treated by silica-gel chromatography, using diethyl 
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ether as the eluent and argon as the pushing gas. The so-purified [n-

Oct4N
+][Au25(SEt)18

–] clusters were obtained as a dark-brown orange powder, 

which was stored at 4 °C in the dark. The oxidized cluster Au25(SEt)18
0 was 

obtained by means of the methods described in Section 2.2. 

 

2.1.2 Au25(SC3H7)18 

 0.50 g (1.27 mmol) of HAuCl4·3H2O was dissolved in 40 ml THF and then 

0.833 g of tetra-n-octylammonium bromide (1.52 mmol, 1.2 equiv) were added to 

form a red solution. After stirring for 15 min at room temperature at moderate 

speed, magnetic stirring was increased to 100 rpm and then 0.460 ml (5.08 

mmol, 4 equiv) of 1-propanethiol in 10 ml of THF was added dropwise over a 

period of some minutes. The solution quickly became yellow and then, after ca. 

30 min, became colorless. Magnetic stirring was increased to 600 rpm and a 

freshly prepared icy-cold aqueous solution (10 ml) of NaBH4 (0.48 g, 12.7 mmol, 

10 equiv) was quickly added to the mixture at room temperature. This caused the 

solution to become black, indicative of the formation of gold nanoparticles, and 

gas generation was observed. After two days, the reaction mixture was filtered on 

paper to remove the white-grey residues insoluble in THF. THF was removed 

from the filtered solution, which had a dark-brown color with orange hues, to 

leave a reddish-brown oily solid covered by residual H2O from aq. NaBH4. The 

water phase was removed, and the solid was dissolved in toluene and washed 

with water (4 x 40 ml) in a separatory funnel. Toluene was evaporated, the solid 

was dissolved in 50 ml of DCM, and the resulting solution was left to rest 

overnight in the dark at 4°C. The white residue precipitated during this treatment 

was discarded and DCM was then evaporated. The resulting oily solid was 

further purified by dissolving it in a mixture of diethyl ether and pentane to 

precipitate most of the residual tetraoctylammonium salt. The last traces of salt 

were eliminated by washing the product a few times with icy-cold methanol. The 

final product, [n-Oct4N
+][Au25(SPr)18

–], is a dark-orange brown powder. To 

eliminate possible traces of the oxidized cluster (easily detectable by NMR) that 

could form by air oxidation during the methanol washes, the product was rinsed a 

few times with pentane. This cluster was could be deliberately oxidized as 

described in Section 2.2. The resulting neutral cluster Au25(SPr)18
0 had the 

expected molecular mass as observed with matrix-assisted laser desorption 

ionization time-of-flight (MALDI-TOF) mass spectrometry (Figure 1).  
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Figure 1. Positive-mode MALDI-TOF spectrum of Au25(SPr)18
0.  

 

 The neutral cluster was recrystallized by adding a drop of acetonitrile to a 

concentrated solution of the cluster in 1:2 toluene-pentane and leaving the 

solvents to evaporate for some days in the dark at room temperature. Its 

structure was resolved by X-ray diffraction and is illustrated in Figure 2. 

 

2.1.3 Au25(SC4H9)18 

 The synthesis of [n-Oct4N
+][Au25(SBu)18

–] was carried out as follows.2 6 

equiv of 1-butanethiol (816 l, 7.62 mmol) were added dropwise, under stirring 

and at room temperature, to a tetrahydrofuran (THF) solution (50 ml) of 

HAuCl4·3H2O (500 mg, 1.27 mmol) and tetra-n-octylammonium bromide (779 mg, 

1.425 mmol). After 1 h, a freshly-prepared ice-cold solution of NaBH4 (480 mg, 

12.7 mmol) in water (10 ml) was rapidly added under vigorous stirring. The 

resulting black mixture was stirred for ca. 3 days and then filtered on paper. THF 

was removed by rotary evaporation to leave a red-brownish oil covered by an 

aqueous phase. The latter was removed by dissolving the product in 50 ml of 

toluene followed by washing the solution with water (4 x 25 ml). The toluene 

solution was concentrated to ca. 10 ml and left to age overnight at 4 C. The 

solution was filtered to remove residual white polymer-like material, and the 

solvent evaporated. By this procedure, the cluster is obtained as [n-

Oct4N
+][Au25(SBu)18

–]. The product was then further purified or oxidized. In the 

first case, the solid was washed with pentane (2 x 10 ml), to remove possible thiol 
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and disulfide, and then dried. The solid was dissolved in diethyl ether, which 

leaves undissolved most of residual tetraoctylammonium salt. The solvent was 

evaporated and the solid washed thrice with icy cold methanol, to remove the 

remaining salt. The red-brownish solid was finally dried and then dissolved in 

benzene-d6 for the NMR experiments. 

 

 

 

Figure 2. (a) Ball-and-stick projection showing the X-ray crystal structure of 

Au25(SPr)18
0. Au = yellow, S = red, C = gray, H = white. (b) The same structure as 

seen by spacefill rendering. (c) Photography of the actual crystals (inside the 

glass tube used for crystallization) used for the X-ray crystallographic analysis. 

The size of the bricks is about one millimeter. 
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2.1.4 Au25(SC5H11)18 

 A typical synthesis of Au25(SC5H11)18
– was performed with minimum 

changes compared to the syntheses described above. 0.50 g (1.27 mmol) of 

HAuCl4·3H2O was dissolved in 40 ml THF, followed by addition of 0.833 g of 

tetra-n-octylammonium bromide (1.52 mmol, 1.2 equiv) to form a red solution that 

was stirred for 15 min at 20 °C. The stirring speed was set to 100 rpm and 0.840 

ml (7.62 mmol, 6 equiv) of 1-pentanethiol in 10 ml of THF was added dropwise 

over a period of ca. 3 min. The solution quickly became yellow and after ca. 30 

min colorless. The stirring speed was increased to 600 rpm and a freshly 

prepared icy-cold aqueous solution (10 ml) of NaBH4 (0.48 g, 12.7 mmol, 10 

equiv) was quickly added to the reaction flask, which was kept at room 

temperature. The solution immediately became black. The reaction progress was 

monitored by UV-vis absorption spectroscopy and after a little more than 24 h the 

reaction mixture could be filtered on paper to remove the white residues insoluble 

in common solvents. The filtered solution had a dark-brown color with orange 

hues. THF was removed with a rotary evaporator to leave a reddish-brown oily 

solid covered by a colorless liquid (residual H2O from aq. NaBH4). After removal 

of the water phase, the crude product was dissolved in toluene and washed with 

water (4 x 40 ml) in a separatory funnel. Toluene was evaporated, the solid was 

dissolved in DCM (50 ml), and the resulting solution left to rest for about 12 h in 

the dark at 4°C. By this procedure, the cluster is obtained as [n-Oct4N
+][ 

Au25(SC5H11)18
–]. The product was then further purified or oxidized. In the first 

case, the solid was  dissolved  in  diethyl  ether,  which  leaves  undissolved  

most of the residual tetraoctylammonium salt. The solvent was evaporated and 

the solid washed thrice with icy-cold methanol to remove the remaining salt. The 

red-brownish solid was finally dried. Concerning the oxidized cluster, prepared 

according to the methodology described in Section 2.2, it had the expected 

MALDI-TOF pattern (Figure 3).   

 

2.2 Control of Charge and Optical Characterization 

 As mentioned in the Introduction, controlling the charge state is of 

paramount importance. This can be done chemically according to the strategy 

developed in the Maran Group and relying on the use of a very powerful peroxide 

oxidant.3,4 For more routine applications, we developed an alternative method 

that was consistently applied to convert all clusters to their zero charge state. 
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This method will be described in this Section for two of the above Au25 clusters, 

together with a description of the ensuing changes in the optical behavior.  

 

Figure 3. Positive-mode MALDI-TOF spectrum of Au25(SC5H11)18
0.  

 

 Oxidation of the as prepared cluster [n-Oct4N
+][Au25(SEt)18

–] to obtain the 

paramagnetic species Au25(SEt)18
0 was performed by a passage through a silica-

gel chromatography column, using DCM as eluent and compressed air as the 

pushing gas. The orange solution of the anionic cluster in DCM was injected into 

the column and soon turned green while passing through the column (Figure 4, 

inset A). After evaporation of the so-treated DCM solution, the oxidized clusters 

appeared as a black-brownish powder. The clusters were further purified by 

washing them thrice with acetonitrile and thrice with hexane; in both solvents 

Au25(SEt)18
0 is insoluble. 

 The UV-vis spectra of the anionic and neutral forms of Au25(SEt)18 are 

compared in Figure 4, together with pictures of (A) the silica-gel column just 

before and during passage of the MPC solution, and (B) the two cuvettes used to 

take the optical spectra. The so-obtained neutral cluster had the same spectral 

features described in Section 1.2.1. 

 Oxidation of [n-Oct4N
+][Au25(SBu)18

–] to its neutral form was accomplished 

by dissolution in DCM (5 ml) followed by passage through a silica-gel column 

under aerobic conditions. The DCM solution was concentrated to ca. 3 ml and 

then left to age for 2-5 days at 4 C to remove possible residual cream-white 

material. The DCM solution was concentrated to ca. 1 ml and a droplet of 
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acetonitrile was added. Very slow evaporation of the solution (over some days) at 

room or low temperature caused precipitation of the final product, as a black 

powder. Au25(SBu)18
0 was dried and stored at 4 C in the dark. 

 

 

Figure 4. Comparison of the UV-vis absorption spectra of Au25(SEt)18
0 in DCM 

(red curve) and Au25(SEt)18
– in acetonitrile (black curve). Both spectra were 

obtained using a quartz cuvette with a 2 mm optical-path length, at room 

temperature, and at 0.10 mM concentration. The insets show: (A) the 

chromatography column containing a solution of Au25(SEt)18
– in DCM before (left) 

and during passage through the column (right); (B) cuvettes containing 0.2 mM 

solutions of Au25(SEt)18
– (left) and Au25(SEt)18

0 (right) in DCM.    

 

 Figure 5a shows the resulting optical behavior and Figure 5b the 

corresponding differential pulse voltammetry curve. Absorbance plot is shown as 

a function of the photon energy in order to evidence how the optical HOMO-

LUMO gap can be estimated from the optical absorption onset. Figure 3b shows 

how a very similar gap can be estimated from the electrochemical standard 

potentials corrected for the charging contribution.5 Figure 6 shows the optical 

behavior as function of wavelength for both the anionic and neutral clusters. 
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Figure 5. Comparison between the (a) optically and (b) electrochemically 

determined HOMO-LUMO gaps. The UV-vis absorption spectrum pertains to 0.10 

mM [n-Oct4N
+][Au25(SBu)18

–] in DCM (quartz cuvette with a 2 mm optical-path 

length; 22 C), and the gap is estimated from the onset of optical absorption. The 

differential pulse voltammetry curve is for 0.42 mM Au25(SBu)18
0 in DCM/0.1 M 

TBAH, as obtained at 25 C using a glassy carbon microelectrode. The peaks are 

labeled according to progressive electron uptake or release by the neutral cluster; 

the E values (in Volt) refer to the corresponding formal potentials, as determined 

by cyclic voltammetry analysis. 

 

 

Figure 6. Comparison of the UV-vis absorption spectra of Au25(SBu)18
0 (red 

curve) and [n-Oct4N
+][Au25(SBu)18

–]in DCM (black curve). Both spectra were 

obtained using a quartz cuvette with a 2 mm optical-path length, at room 

temperature, and at 0.10 mM concentration. 
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2.3 Control of Charge and Nuclear Magnetic Resonance 

 As described in detail in Section 1.2.2, the NMR behavior of the molecular 

Au25 clusters is extremely dependent on the cluster's charge state. We studied 

both the anionic and neutral forms for a number of clusters and here we will show 

some selected examples. The first case is a comparison between [n-

Oct4N
+][Au25(SPr)18

–] and Au25(SPr)18
0 (Figure 7). Symbols α and β refer to the 

positions of inner and outer methylene groups from sulfur, as indicated in the 

structure (for clarity, only one staple is displayed). Symbol γ relates to the methyl 

group of the inner and outer ligands. The arrows indicate the most significant 

shifts observed upon oxidation of Au25(SPr)18
─ to Au25(SPr)18

0. For the latter, the 

(α-CH2)in resonance is at 25 ppm. 

 

 

 

Figure 7. (a) 1H NMR spectrum of [n-Oct4N
+][Au25(SPr)18

─]. The peaks marked 

with an asterisk (*) pertain to [n-Oct4N]+. (b) 1H NMR spectrum of Au25(SPr)18
0. 

Both spectra were obtained in benzene-d6 at 25 °C, using samples at 3 mM 

concentration. 

 

 Figure 7 shows that the unpaired electron mostly concerns the methylene 

groups in positions ,  and the methyl  of the inner ligands and the  methylene 

of the outer ligands. This is a situation that we could verify also with other 

clusters. This NMR behavior is caused by the contact interaction of the nuclear 

magnetic moments with the unpaired electron, and can be taken as a probe of 

whether the singly occupied MO (SOMO), and thus the spin density, spreads 
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onto those specific nuclei. Distance from the gold core is thus a crucial 

parameter. In this connection it is particularly instructive to see Figure 8, which 

shows the spectra of [n-Oct4N
+][Au25(SBu)18

─] and Au25(SBu)18
0.2 Symbols α, β 

and γ refer to the positions of inner and outer methylene groups from sulfur, as 

indicated in the structure (for clarity, only one staple is displayed). The letter δ 

relates to the methyl group of the inner and outer ligands. 

 

 

 

Figure 8. (a) 1H NMR spectrum of [n-Oct4N
+][Au25(SBu)18

─]. The peaks marked 

with a star pertain to [n-Oct4N]+. (b) 1H NMR spectrum of Au25(SBu)18
0. Both 

samples were in benzene-d6 at 25 °C, at 2.3 mM concentration. The Figure is 

reproduced from ref. 2. 

 

 As for Figure 7, the arrows mark the most significant shifts observed upon 

oxidation of Au25(SBu)18
─  to Au25(SBu)18

0. For the latter, the (α-CH2)in resonance 

is at 25 ppm, as observed for the Au25(SPr)18
0 cluster. The inset shows the 

resonance difference against the average distance of the corresponding CH2 

groups (of all staples of the two MPC types, with standard-deviation error bars) 

from the icosahedron central Au atom. These distances were calculated from the 

single-crystal X-ray structures. The effect of the unpaired electron is felt at 

distances no longer than 8 Å from the central Au atom.  
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 Finally, Figure 9 shows the 1H NMR spectrum of Au25(SC5H11)18
0. The 

spectrum shows that despite the paramagnetism of Au25(SC5H11)18
0, all inner and 

outer resonances could be successfully assigned.  

 

 
 

Figure 9. 1H NMR spectrum of Au25(SC5H11)18
0 in benzene-d6 at 25 °C. Symbols 

α, β, γ and δ refer to the positions of inner and outer methylene groups from 

sulfur, as indicated in the structure (for clarity, only one staple is displayed). The 

symbol ε specifies the methyl group of the inner and outer ligands. The inner 

thiolate is highlighted in red, whereas the outer thiolate is in blue. The inset on 

the right-hand side showed the (α-CH2)in resonance, 21.98 ppm, as observed at 

75 °C. 

 

2.4 General Experimental Information 

2.4.1. Chemicals 

 Hydrogen tetrachloroaurate trihydrate (99.9%), tetra-n-octylammonium 

bromide (98%), sodium borohydride (99%), ethanethiol (97%), 1-propanethiol 

(99%), 1-buthanethiol (99%), 1-pentanethiol (98%), 1-hexanethiol (95%), 1-

octanethiol (98.5+%), 1-decanethiol (96%), 1-dodecanethiol (98+%), 1-

tetradecanethiol (≥98.0%), 1-octadecanethiol (98%), (S)-(-)-2-methyl-1-butanol 

(99%), methane sufonyl chloride (>99.7%), potassium thioacetate (98%), 

trimethylamine (≥99%), ammonia solution (7 M) in methanol, tetrahydrofuran 

(THF, 99.9%), toluene (99.7%), diethyl ether (99.8%), acetonitrile (≥99.9%), 

ethanol (≥99.8%), pentane (≥99%), cyclohexane (≥ 99.7%), methanol  (≥99.8%), 
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N,N-dimethylformamide (99.8%), acetonitrile-d3 (99.8%, d3), benzene-d6 (99.6%, 

d6), and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile 

(DCTB, 98%) were purchase by Sigma-Aldrich and used as received. 2-Methyl-

1-butanethiol were purchased both by Sigma-Aldrich (≥ 95%) and Alfa Aesar 

(99%), 1-hexadecanethiol by TCI Europe N.V (> 97%) and used as received. For 

electrochemistry, dichloromethane (DCM, VWR, 99.8%) was freshly distilled over 

CaH2 and stored under an argon atmosphere. Tetra-n-butylammonium 

hexafluorophosphate (Fluka, 99%) was recrystallized from ethanol. Low 

conductivity water was milliQ Water pro analysis (Merck). Column 

chromatography was carried out using silica gel from Macherey-Nagel (MN-

Kieselgel 60 M, 230-400 mesh).   

 

2.4.2. Methods and Instrumentations 

 The UV-vis spectra were obtained at 0.1 mM concentration in DCM, with 2 

mm cuvettes. We used a Thermo Scientific Evolution 60S spectrophotometer or, 

during syntheses, an Ocean Optics QE65000 spectrophotometer equipped with a 

DH-2000-BAL light source. The spectra resolution was 1 or 0.8 nm, respectively. 

 MALDI-TOF mass spectra were obtained with an Applied Biosystems 

4800 MALDI-TOF/TOF spectrometer equipped with a Nd:YAG laser operating at 

355 nm. The laser firing rate was 200 Hz and the accelerating voltage was 25 kV. 

The laser pulse intensity was kept at threshold values and then progressively 

increased. Au25(SEt)18
0 was dissolved in benzene containing the matrix, DCTB, to 

obtain 0.1 mM solutions with a 1:400 MPC/matrix ratio. 2 l of solution were 

dropcasted onto the sample plate and air-dried before loading into MALDI-TOF. 

The spectra were recorded using the reflectron positive- or negative-ion mode. 

As a standard, we used Au25(SC2H4Ph)18, which has a MW of 7394.  

 The electrochemical experiments were carried out in DCM containing 0.1 

M TBAH, under an Ar atmosphere in a glass cell thermostatted at 25 °C. The 

working electrode was a 0.55 mm radius glassy carbon disk, the counter 

electrode was a Pt wire, and an Ag wire served as the quasi-reference electrode. 

The latter was then referenced against the KCl saturated calomel electrode, SCE. 

For routine electrochemical measurements we used a CHI 660c electrochemical 

workstation. To minimize the ohmic drop between the working and the reference 

electrodes, we used the positive feedback correction. 
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 1H NMR spectra were obtained in C6D6 with a Bruker Avance DMX-600 

MHz spectrometer equipped with a 5 mm TX-1 x,y,z-gradient powered, triple-

resonance inverse probe operating at 599.90 MHz. The temperature was 

controlled at 25  0.1 °C, unless otherwise indicated, with a Bruker BVT-300 

automatic temperature controller. Chemical shifts are in ppm (� units with 

reference to tetramethylsilane used as an internal standard. The proton 

assignments were performed by standard chemical shift correlations as well as 

by 2D correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), 

and nuclear Overhauser enhancement spectroscopy (NOESY) experiments, as 

previously done for Au25(SC2H4Ph)18.
3  
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Chapter 3: Au25(SEt)18, a Nearly Naked Thiolate-Protected 

Au25 Cluster: Structural Analysis by Single Crystal X-ray 

Crystallography and Electron Nuclear Double Resonance  

 

 

3.1 Abstract 

 This Chapter describes findings that have been published: Dainese, T.; 

Antonello, S.; Gascón, J. A.; Pan, F.; Perera, N. V.; Ruzzi, M.; Venzo, A.; Zoleo, 

A.; Rissanen, K.; Maran, F. Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 

Cluster: Structural Analysis by Single Crystal X-ray Crystallography and Electron 

Nuclear Double Resonance. ACS Nano 2014, 8, 3904-3912.  

 X-ray crystallography has been fundamental in discovering fine structural 

features of ultrasmall gold clusters capped by thiolated ligands. For still unknown 

structures, however, new tools capable of providing relevant structural 

information are sought. We prepared a 25-gold atom nanocluster protected by 

the smallest ligand ever used, ethanethiol. This cluster displays the 

electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy 

features of similar Au25 clusters protected by 18 thiolated ligands. The anionic 

and the neutral form of Au25(SEt)18 were fully characterized by 1H and 13C NMR 

spectroscopy, which confirmed the monolayer's properties and the 

paramagnetism of neutral Au25(SEt)18
0. X-ray crystallography analysis of the latter 

provided the first known structure of a gold cluster protected by a simple, linear 

alkanethiolate. Here, we also report the direct observation by electron nuclear 

double resonance (ENDOR) of hyperfine interactions between a surface-

delocalized unpaired electron and the gold atoms of a nanocluster. The 

advantages of knowing the exact molecular structure and having used such a 

small ligand allowed us to compare the experimental values of hyperfine 

couplings with DFT calculations unaffected by structure's approximations or 

omissions. 

 

3.2 Introduction 

 Formation of different thiolate-protected gold clusters is a delicate balance 

of thiol selection, relative concentrations, experimental conditions, and modus 

operandi.1-4 As for the analogous SAMs of thiols on flat gold surfaces,5 interaction 

of the thiolated heads with the surface gold atoms yields interesting structural 
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features.6-8 For MPCs, single crystal X-ray crystallography has provided evidence 

and details of both the inner gold-core structures and the staple-like, half-crown 

motifs by which the outermost gold atoms interact with sulfur atoms. For 

homogeneous series of thiolate ligands (SR), the structures so far identified 

crystallographically are Au102(SR)44,
9 Au38(SR)24,

10 Au36(SR)24,
11 Au28(SR)20,

12 

Au25(SR)18,
13-15 and Au23(SR)16.

16 Noteworthy, in none of these structures the 

ligands were simple linear alkanethiols but rather were aryl and arene-type thiols 

(phenylethanethiol, 4-tert-butylbenzenethiol, 4-mercaptobenzoic acid) or a 

hindered alkanethiol (cyclohexanethiol). Indeed, due to the intrinsic complexity of 

MPCs, particularly because of the conformational mobility that ligands may 

experience, successful preparation of crystals suitable for X-ray diffraction 

analysis and atomic structure determination is a very challenging task. Devising 

alternative approaches suitable for obtaining relevant structural information is 

thus of outmost importance.  

 Independently of the approach employed, the necessary starting point is 

identification of the chemical formula. Mass spectrometry techniques proved to 

be very effective, particularly MALDI-TOF mass spectrometry17 and electrospray 

ionization (ESI) mass spectrometry.18,19 Mass spectra were indeed instrumental 

to establish the correct cluster formula in advance of the actual structural 

determination for Au25(SR)18,
18,19 formerly believed to be Au38(SR)24.

20 Very 

recently, structural characteristics of clusters whose single crystal X-ray 

diffraction structure is still unknown were inferred by different approaches. Rapid 

electron diffraction in scanning transmission electron microscopy (STEM) was 

employed to gain insights into the structure of Au130(SR)50,
21 a gold MPC very 

recently reported,22,23 and Au144(SR)60.
24 In both cases, structural analysis was 

supported by the good agreement with DFT calculations.21,24 Structural 

information about Au144(SR)60 was also obtained by a combination of infrared 

spectroscopy, 13C NMR spectroscopy, and X-ray diffraction of a single crystal.25 

 Au25(SR)18 is the most well-known and characterized MPC displaying a 

distinct molecule-like behavior.20 The latter is evident from its characteristic UV-

vis absorption spectrum that provides the energy gap between the HOMO and 

the LUMO.26 The spectrum depends on the charge state and so does the HOMO-

LUMO gap.27 Sensitive electrochemical methods such as cyclic voltammetry and 

differential pulse voltammetry show series of peaks marking the stepwise 

charging of the gold core, and allow estimating the electrochemical HOMO-

LUMO gap that upon correction for charging energy furnishes essentially the 
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same gap energy.26,28 These charge states display quite different stability.27 One-

electron oxidation of the as-prepared cluster, a diamagnetic anionic species, 

generates a paramagnetic species. The latter displays a distinct EPR 

behavior,27,29 best detected at liquid helium temperatures, and very particular 1H 

and 13C NMR spectroscopy patterns.30,31 The above discussion shows that a 

crucial feature to obtain reliable insights into the properties of molecule-like MPCs 

is to prepare them in a truly monodisperse form, with atomic precision. Overall, 

Au25(SR)18 is thus the ideal candidate for testing new concepts, techniques, and 

methodologies to investigate structural properties of molecule-like and possibly 

larger clusters. 

 Here, we describe a new strategy to address these issues. We prepared a 

monodisperse Au25 cluster protected by the smallest ligand ever used, 

ethanethiol. Au25(SEt)18 was fully characterized by MALDI-TOF, UV-vis, 

electrochemistry, and 1H and 13C NMR spectroscopy of both the anion and the 

neutral forms. Successful preparation of high-purity samples and single crystals 

allowed us to obtain the first X-ray structure of a gold cluster protected by a very 

short alkanethiolate. For this purpose, we used the neutral cluster, Au25(SEt)18
0, 

and found that the gold and sulfur atoms are structurally arranged as previously 

described for Au25(SC2H4Ph)18
0 and Au25(SC2H4Ph)18

–,13-15 but also with some 

differences around the Au13 icosahedral core. We focused on using a very short 

thiol ligand also because of the possibility of carrying out particularly accurate 

DFT calculations, that is, with fewer approximations than required for describing 

more complex ligand systems.  

 We then used frozen glassy solutions (at 5.5 K) of paramagnetic 

Au25(SEt)18
0 to obtain the first ENDOR results for an MPC. ENDOR is a 

superhyperfine technique able to determine hyperfine coupling constants that are 

unresolved in the cw-EPR spectra.32 Pulse ENDOR is a particularly sensitive 

method of performing ENDOR.33 ENDOR is especially suited to elucidate 

hyperfine interactions between an unpaired electron and surrounding nuclei. 

Each group of equivalent magnetic nuclei with nuclear spin I = 1/2 gives rise to a 

doublet of lines in the ENDOR spectrum, independently of the number of 

equivalent nuclei coupled to the electron spin. If the hyperfine coupling A is 

smaller than twice the nucleus Larmor frequency ν the doublet is centered at ν 

and the two lines are separated by A. If A > 2ν the doublet is centered at  A/2  

and the two lines are separated by 2ν. For a nuclear spin larger than 1/2, the 

quadrupolar interaction affects the ENDOR spectra by further splitting the 
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ENDOR lines. This is indeed the case of 197Au (I = 3/2), which exhibits both 

quadrupolar and hyperfine interaction.34 Au25(SEt)18
0 showed a very nice ENDOR 

pattern that enabled us to determine the hyperfine interaction between the 

unpaired electron and the gold atoms. Through knowledge of the exact 3D 

structure of Au25(SEt)18
0, we carried out a specific DFT study aimed to determine 

the relevant isotropic and anisotropic hyperfine coupling constants. A good match 

of the outcome of DFT calculations and ENDOR results was observed, which 

allowed assigning each ENDOR signal to specific types of Au atoms forming the 

cluster. Our results show that ENDOR is a valuable technique that can be 

successfully employed for obtaining relevant information about the fine structure 

and the electronic distribution of nanoclusters. 

 

3.3 Results and Discussion 

3.3.1 Synthesis and Characterization of Au25(SEt)18 

 The synthesis of Au25(SEt)18 was carried out as detailed in Section 2.1.1. 

Briefly, addition of ethanethiol to a red tetrahydrofuran solution of tetrachloroauric 

acid (molar ratio 4:1) and tetra-n-octylammonium bromide (1.2 equiv) eventually 

yielded a colorless solution of reactive Au(I)-thiolate species. Reduction to Au(0) 

was carried out by addition of aqueous sodium borohydride. After 2 days under 

stirring, the clusters were separated from the reaction mixture and purified. 

Au25(SEt)18, initially obtained as [n-Oct4N
+][Au25(SEt)18

–], was eventually oxidized 

to Au25(SEt)18
0 by silica-gel column chromatography under aerobic conditions. 

The anionic and neutral forms show the UV-vis spectra expected for Au25(SR)18 

clusters (Figure 1 in Section 2.2).15,26,30 The chemical composition, purity, and 

monodispersity of Au25(SEt)18
0 were assessed by MALDI-TOF mass 

spectrometry.31 In particular, the spectrum of the purified sample shows a peak 

centered at 6024 that corresponds to the unfragmented cluster. The main 

fragmentation pattern, which increases as the laser intensity increases, reveals 

stepwise loss of four AuSEt units (mass = 258.1) to form Au21(SEt)14 (mass = 

4992) (Figure 1).  

 

3.3.2 Electrochemistry 

 The electrochemical behavior of Au25(SEt)18 was studied in DCM/0.1 M 

TBAH. The electrochemical pattern is quite similar to that of Au25(SC2H4Ph)18, 

i.e., two main reversible peaks O1 and R1 associated with the +1/0 and 0/-1 

redox couples, and further oxidation or reduction peaks corresponding to  
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Figure 1. MALDI-TOF mass spectrum of Au25(SEt)18. To evidence the main 

fragmentation pattern, the laser pulse intensity was kept a bit above threshold 

values. Inset shows the theoretical (red) and experimental (blue) isotopic pattern. 

 

formation of higher positive or negative charge states.26 In CV, the latter are 

chemically irreversible. For example, Figure 2A, obtained starting from 

Au25(SEt)18
0, shows that the peak current of the irreversible peak R2 is much 

larger than that of R1; as a matter of fact, its peak current corresponds to ca. 5 

electron/molecule at 0.1 V s-1, a value larger than that of ca. 3.5 

electron/molecule observed for Au25(SC2H4Ph)18.
28 Peaks R2 and O2 can be 

made reversible by increasing the CV scan rate and/or lowering the temperature. 

Figure 2B, obtained starting from Au25(SEt)18
–, shows the situation observed for 

O2 (and O3) at -49 °C, in which O2 is partially reversible. By carrying out CV 

analysis of the peaks, according to previously described methodologies,27,28 the 

lifetimes of the corresponding electrogenerated species (at 25 °C) were 

estimated to be 0.11 s and 3 ms for O2 and R2, respectively. Comparison with 

the values of 0.33 s (O2) and 4 ms (R2) measured for Au25(SC2H4Ph)18 under 

similar experimental conditions shows that the ethanetiolate ligands make the 

higher charge states less chemically stable. The lability of the species generated 

at O2 and R2, conceivably a radical dication and a radical dianion,27 respectively, 

is thus incompatible with their use in NMR and, particularly, ENDOR experiments. 

In the following, we will thus focus on the only stable radical state, Au25(SEt)18
0.  
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Figure 2. CV pattern for (A) the reduction of 0.32 mM Au25(SEt)18
0 at 25 C and 

(B) the oxidation of 0.30 mM Au25(SEt)18
– at -49 C in DCM/0.1 M TBAH, on a 

glassy carbon electrode at 0.2 V s-1. The peaks are labeled according to electron 

uptake or release by the neutral cluster. 

 

3.3.3 NMR Spectroscopy 

 The 1H-NMR spectrum of an acetonitrile-d3 solution of [n-

Oct4N
+][Au25(SEt)18

–] shows two sharp CH3-CH2 typical patterns (triplet and 

quartet), together with signals associated with the tetra-n-octylammonium 

countercation (Figure 3A). When taking the area of the ammonium N-CH2 

resonance (3.05 ppm) as a standard for integration, the resonances at 1.30 and 

2.94 ppm pertain to CH3 and CH2 of the 6 ethyl groups of the outer ligands, 

whereas the corresponding resonances of the 12 ethyl groups of the inner 

ligands are found at 1.43 and 3.36 ppm. It is worth noting that a larger shielding 

is experienced by the groups belonging to the outer ligands, and that the 

integrals confirm the inner-to-outer ligand 2:1 ratio. The corresponding 13C 
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resonances are observed at 33.21 (CH2)in and 21.88 ppm (CH3)in, and 29.27 

(CH2)out and 19.88 ppm (CH3)out.  

 

 

Figure 3. 1H NMR spectra of (A) [n-(Oct)4N
+] [Au25(SEt)18

–] in acetonitrile-d3 at 25 

C, and Au25(SEt)18
0 in benzene-d6 (B) at 25 and (C) 65 C. The spectra show the 

relevant zones and resonances, including some peaks of n-(Oct)4N
+, as 

indicated. The asterisk (*) marks an impurity (DCM). 

 

 For solubility reasons, the spectra of Au25(SEt)18
0 were obtained in 

benzene-d6 (Figure 3B). This neutral cluster is expected to be a radical and, as a 

matter of fact, the resonances of both its outer and inner ligands are broadened 

due to proximity with the paramagnetic metal center. The COSY-correlated CH3-

CH2 resonances of the outer ligands are at 1.19 and 4.83 ppm, respectively, 

whereas those of the corresponding inner groups are 4.12 (CH3) and 23.4 ppm 

(CH2, measured at 65 °C). The highly deshielded (CH2)in resonance is very broad 

at 25 °C (ca. 3000 Hz) but becomes sharper as the temperature is increased to 
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65 °C, at which a COSY correlation with the CH3 signal at 4.12 ppm is detected. 

Under these conditions, the corresponding integrals are in very good agreement 

with the expected inner-to-outer ligand 2:1 ratio. The 13C resonances of the outer 

ligands are detected at 28.0 (CH3) and 35.5 ppm (CH2). On the other hand, the 

very long instrumental time (at least 48 h at 65 °C) required for observing the 

very broad 13C resonances of the inner ligands induces extensive sample 

decomposition. The general NMR behavior of Au25(SEt)18
0 is thus in keeping with 

that of other paramagnetic Au25(SR)18
0 clusters.30,31 

 

3.3.4 The X-ray Structure 

 The X-ray single-crystal diffraction experiment confirmed the 

compositional and structural deduction from the mass spectrometry, the 

electrochemical, and the spectral analyses. The crystals used for X-ray 

crystallographic study were obtained by diffusing diisopropyl ether vapor into the 

toluene solution containing Au25(SEt)18
0. The compound crystallizes in a 

centrosymmetric triclinic space group P-1, with the central Au atom at the 

inversion center, as observed for Au25(SC2H4Ph)18
0.15 The central Au atom is 

surrounded by 12 Au atoms. These 13 atoms form the inner (body-centered) 

icosahedral core (Figure 4A). The Au-Au bond distances between the central Au 

atom to the 12 inner layer Au atoms vary very little and are between 2.785 and 

2.801 Å. In addition to being bound to the central Au atom, each of the 12 inner 

shell Au atoms is coordinated to five icosahedron Au atoms and one S atom. 

Interestingly, whereas six of them are also bound to three stellated Au atoms, the 

remaining six atoms show interactions only with two stellated Au atoms. In other 

words, the staples are distorted so that whereas one of the two Au(stellated)-

Au(icosahedron) distances is, on average, 3.315 Å, the second one is 3.241 Å 

(the latter is evidenced as a bond in Figure 4). This kind of dissymmetry is not 

observed in the Au25(SC2H4Ph)18,  where the average distance is 3.23 and 3.22 Å 

for the neutral15 and anionic cluster,13 respectively. The outer shell of the Au25 

cluster consists of 12 stellated Au atoms included in six half-crowns, -(SEt)-Au-

(SEt)-Au-(SEt)-, where the Au atom of each -(SEt)-Au-(SEt)- structure is bound to 

three inner shell Au atoms and two S atoms, with the S-Au-S angle ranging from 

170 to 173.5 degrees. These Au-Au bonds, however, are longer than the 

icosahedral Au-Au bonds (Table 1) and could be considered to be aurophilic in 

nature. This feature is also present in the previously reported Au25 clusters,13-15 

but is missing in the Au13 cluster without further aurophilic bonds.35,36 Whereas 
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the gold cluster is not disordered (see below), the ethyl-chain carbon atoms 

exhibit larger thermal movement. In the solid state, weak intermolecular C-H S 

hydrogen bonds (S…C distance of 3.65 Å, with C-H…S angle of 137) joins the 

clusters to a loose one-dimensional (1-D) chain along crystallographic (110) 

vector (Figure 5). A packing coefficient of 65.8% illustrates the close packing of 

the Au25 clusters. 

  

Figure 4. (A) Projection showing the X-ray crystal structure of Au25(SEt)18
0. Au = 

yellow, S = red, C = gray, H = white. (B) View of the twisted staple (H and C 

atoms removed for clarity). Auico = blue, Austaple = yellow, inner-ligand S = red, 

outer-ligand S = purple. 
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Figure 5. (A) Projection showing the loose 1-D chain. (B) View of the 

corresponding weak intermolecular C-H...S hydrogen bonds. Au = yellow, S = 

red, C = gray, H = white.  

 

 The structure of Au25(SEt)18
0 is the first known example of single crystal X-

ray crystallography structure of an Au25 cluster entirely  protected by a short 

alkanethiol. It is, therefore, instructive to make a comparison with relevant 

parameters obtained from the structures of the corresponding 

phenylethanethiolate stabilized clusters. Table 1 shows some selected average 

bond distances. 

 Concerning the icosahedron, its size does not depend on ligands and 

charge state. Similarly, in all three structures, the bond distance between the 

pairs of gold atoms directly under the central sulfur atom of the six staples is also 

virtually constant and detectably smaller (by ca. 0.2 Å) than that of all other 

icosahedral Au-Au bonds. The distance between the stellated and the nearest 

icosahedron Au atoms is larger by ca. 0.4 Å than that between most icosahedral 

Au-Au bonds. No significant S-Au bond-length differences are evident among the 

three clusters, at least within experimental error: this observation could be 

relevant in gaining insights into the hypothesis of a possible Au-S bond length 

variation upon changing the charge state of the cluster, as detected by Raman 
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Table 1. Relevant Average Bond Distancesa in Au25(SR)18 Clusters as Obtained 

from Single Crystal X-ray Crystallography Structures.  

Bond 

 

R = Et  

charge = 0 

R = C2H4Ph 

charge = 0 

(ref. 15) 

R = C2H4Ph 

charge = -1 

(ref. 13) 

Aucentral – Auico 
b 2.79 2.79 2.78 

Auico – Auico 
c 2.98 2.97 2.95 

Auico – Auico 
d 2.79 2.78 2.80 

Austaple – Auico
e 3.18 3.15 3.16 

S – Auico 
f
 2.37 2.38 2.37 

S – Austaple 
g 2.30 2.30 2.31 

a All bond lengths are in angstroms; the Au25(SC2H4Ph)18 data were taken from 

the known structures,13,15 as obtained from Cambridge Structural Database (v. 

5.34 2013), The Cambridge Crystallographic Data Centre, Cambridge, U.K. 

(2013). b From the central Au atom to the 12 Au atoms of the icosahedron 

surface.  c Bonds between icosahedral Au atoms not under staples. d Bonds 

between the six Au-Au pairs below the six staples. e Distance between stellated 

Au atoms and the three icosahedron Au atoms directly below. f S-Au bonds 

involving icosahedral Au atoms. g Bond between stellated gold and sulfur atoms. 

 

spectroscopy.37 A comparison between the geometry of the staples also is quite 

interesting. It has been observed that albeit similar, the structures of the anionic 

and the neutral state of Au25(SC2H4Ph)18 display two main differences.15 Whereas 

the anionic cluster shows that all staples are distorted in the sense that the S-Au-

S-Au-S motif is twisted with respect to the plane formed by the �h mirror in the 

D2h subgroup of the icosahedron, none of the staples of the neutral cluster 

display any significant distortion. This was attributed to a possible effect of the 

charge state or a solid-state effect induced by the presence of the bulky 

counterion for the anionic state. Interestingly, however, in the neutral cluster 

Au25(SEt)18
0 we find two couples of linear staples (as shown in Figure 4A) and 

one couple (Figure 4B) displaying the same distortion mentioned above for 

Au25(SC2H4Ph)18
–: therefore, neither charge nor the presence of the counterion 

can be the primary cause of such a structural feature.  

 From the viewpoint of the orientation of the ligands in the monolayer, 

another interesting feature makes all three structures different. In each staple of 

Au25(SC2H4Ph)18
0, the three ligands are oriented in a, say, down-up-down 
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direction with respect to the plane containing the S(R)-Au-S(R)-Au-S(R) motif.15 

In Au25(SC2H4Ph)18
–, on the other hand, the orientation is always of the down-up-

up type.13 In Au25(SEt)18
0 we find an even different situation: whereas the ligands 

of two couples of staples display the same down-up-up orientation (Figure 6A) of 

anion Au25(SC2H4Ph)18
–, the third couple of staples shows the novel feature that 

all three ligands are oriented on the same side of the S(R)-Au-S(R)-Au-S(R) 

plane (Figure 6B). These comparisons clearly show that, at least in the solid 

state, not only charge somehow affects the structure but also the ligand type 

does. 

 

 

 

Figure 6. (A) View of the down-up-up ligand orientation in the front staple. (B) 

View of the up-up-up orientation. In both cases, the carbon atoms are shown in 

green. Hydrogen atoms removed for clarity.   

 

3.3.5 ENDOR Analysis and DFT Calculations 

 The Davies ENDOR33 spectrum was obtained in frozen matrix at 5.5 K for 

a 0.5 mM solution of Au25(SEt)18
0 in toluene. The spectrum was acquired at the 

field of 291.1 mT, corresponding to the maximum of the EPR signal. The 

spectrum shows five broad lines in the range from 0 to 90 MHz, with maxima 

located at 9.8, 24.7, 42.1, 60.9, and 77.9 MHz (Figure 7, red trace). The fact that 

the spectrum shows peaks at frequency larger than 40 MHz is only consistent 

with hyperfine and quadrupolar couplings with 197Au. Other possible ENDOR 

lines could come from the ligands' protons for which, however, the spin-density is 

low and lines around the proton-free Larmor frequency (12 MHz, at the magnetic 
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field used for the ENDOR experiment) are expected. Because the number of 

ENDOR lines is related to the groups of equivalent Au atoms, the intriguing issue 

now is to explain the spectral pattern while considering that, apparently, Au25 

clusters are composed by three such groups: central Au, 12 icosahedron Au 

atoms, and 12 staple Au atoms.  

 

Figure 7. Davies ENDOR spectrum of a frozen 0.5 mM solution of Au25(SEt)18
0 in 

toluene at 5.5 K (red line). The blue line shows the corresponding simulation 

(vertically shifted for clarity) based on the hyperfine and quadrupole components 

obtained by DFT (see text). The ENDOR spectrum was recorded at a field of 

291.1 mT. 

 

 To gain insights into this aspect, we carried out specific DFT calculations 

aimed to obtain the hyperfine and the quadrupolar tensors. We used the single 

crystal X-ray diffraction structure as the starting point, and the calculations were 

performed on two models, that is, the actual Au25(SEt)18
0 MPCs and the 

corresponding structure where SMe replaces SEt. The rationale was to test 

whether and to what extent a small ligand change could affect the quality of 

calculations, in comparison with an actual experimental system. This is an 

important aspect because, so far, accurate MPC calculations have been 

performed mostly on SH or SMe ligands, more or less implicitly assuming that an 

increase of the ligand length or change of its nature does not affect the outcome 

of electronic structure calculations.      

 The hyperfine and the quadrupole DFT-calculated tensors of Au25(SEt)18
0 

were used to simulate the experimental ENDOR spectrum. The former are 
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gathered in Table 2, while the latter and other relevant data are provided for both 

SEt and SMe in Section 3.5.6.  

 

Table 2. DFT-Computed Values of the Anisotropic Hyperfine Tensors for 

Au25(SEt)18
0.  

Atom 

labela 

Ax 

(MHz) 

Ay 

(MHz) 

Az 

(MHz) 

Aveb 

(MHz) 

Au1(central) 20.7 14.2 11.6 15.5 

Au4(ico) 40.3 44.5 36.7 40.5 

Au3(ico) 52.8 45.1 48.5 48.8 

Au7(ico) 9.1 22.7 12.6 14.8 

Au2(ico) 39.5 40.8 47.6 42.6 

Au5(ico) 50.8 61.6 52.7 55.0 

Au6(ico) 11.4 14.3 23.9 16.5 

Au8(staple) 1.9 1.9 3.1 2.3 

Au11(staple) 20.0 18.6 18.9 19.2 

Au9(staple) 4.0 2.9 2.8 3.2 

Au10(staple) 3.7 5.0 4.3 4.3 

Au12(staple) 21.0 18.3 19.4 19.6 

Au13(staple) 10.3 11.1 9.8 10.4 
a Except for the central atom, Au1, for symmetry reasons all other labels pertain 

to couples of equivalent Au atoms (labeling refers to the deposited structure). b 

Average of Ax, Ay, and Az.  

 

 Inspection of Table 2 shows a most evident fact that the 12 Au atoms on 

the icosahedron surface can be divided into two groups: whereas a first group of 

8 atoms (labeled as 2, 3, 4, and 5: for symmetry and with the obvious exception 

of the central atom, each label corresponds to two equivalent Au atoms) is 

characterized by strong and similar hyperfine couplings (x, y, and z averages of 

41-55 MHz), a second group of 4 Au atoms (labeled as 6 and 7) have much 

smaller hyperfine couplings (averages of 15-17 MHz). We should also note that 

whereas the DFT-calculated tensors pertain to a single configuration, on the 

ENDOR time scale we expect the hyperfine and quadrupolar tensors of these 

atoms to be dynamically averaged by vibrational motion. To simulate the ENDOR 

response, for each group of similar core nuclei we thus used the average of each 

Cartesian component of the hyperfine and quadrupolar tensors, and their Euler 
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angles. Staple nuclei have low hyperfine couplings and, if we assume a 

dynamical averaging also for this group of nuclei, their main contribution is in the 

range 0-5 MHz of the spectrum; due to the pulse sequence used, this region is 

not detectable in the experimental ENDOR and, therefore, we neglected the 

contribution of the staple Au atoms in the simulation. The simulation for SEt (blue 

line in Figure 7) shows that the main features of the experimental spectrum can 

be reproduced quite satisfactory. It is also worth noting that the use of average 

values indeed improved the quality of the simulation of the ENDOR spectrum 

quite significantly (Figure 7, blue line, to be compared with the results shown in 

Figure 8, where tensors were not averaged). 

 

 

 

Figure 8. Davies ENDOR spectrum of a frozen 0.5 mM solution of Au25(SEt)18
0 in 

toluene at 5.5 K (red line). The blue line shows the corresponding simulation 

based on using, for each group of atoms, the specific x, y, and z hyperfine and 

quadrupolar components. 

 

 Figure 9 provides insights into the simulations for the groups of Au atoms. 

The results can be summarized as follows: (i) the peaks at 24.7 and 42.1 MHz 

are mainly due to the first group of 8 Au core atoms, whereas (ii) the second 

group of 4 core atoms contributes to the strong peak at 9.8 MHz; (iii) the 77.9 

MHz peak matches the simulated high-frequency structured quadrupolar peak of 

the central Au atom; (iv) the 60.9 MHz peak receives contributions from both the 
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first group of core atoms and the high-frequency quadrupolar peak of the central 

Au atom; (v) the group of staple Au atoms only contributes to the peak at 9.8 

MHz, although use of the dynamically averaged values makes its effect to the 

simulated peak as marginal.   

 

 

 

Figure 9. Simulation of the Davies ENDOR spectrum: from top to bottom, 

simulations pertain to the first (gold curve) and second groups of icosahedral 

atoms (green curve), staple Au atoms (red curve), and central atom (purple 

curve). The first two traces correspond to the average values. The simulations 

show a larger frequency range than that experimentally accessible.  

 

 In the context of ENDOR simulations, the agreement between the 

experimental and the predicted spectra of Figure 7 is indeed very good. In fact, it 

is also worth noting that the simulations carried out by using the DFT parameters 

obtained for the SMe ligands did not lead to the same satisfactory match with the 

experimental ENDOR spectrum, as illustrated in Figure 10. This is actually a 

quite unexpected finding because there is a general consensus about 

considering the effect of ligands on the MPC electronic structure as very small, at 

least as long as the nature of the ligand does not change significantly.38  
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Figure 10. Davies ENDOR spectrum of a frozen 0.5 mM solution of Au25(SEt)18
0 

in toluene at 5.5 K (red line). The blue line shows the corresponding simulation 

for Au25(SMe)18
0, carried out as described for Figure 7. 

 

 The question now is as to why the 12 atoms of the icosahedral surface 

split into two groups. We note that the two couples of Au atoms forming the 

second group, and labeled as 6 and 7, correspond to those atoms for which the 

distance from the stellated Au atom of the same staple (see above) is the largest 

observed in the X-ray structure (3.31 – 3.35 Å). This suggests that a small 

disorder can cause interferences in the wave function leading to nonequivalent 

electron densities at the icosahedral nuclei. We also note that in the DFT-

optimized structure, which is representative of the structure in a low-dielectric 

solvent (as the one analyzed by ENDOR), also shows disorder. In particular, the 

unique atoms Au6 and Au7, form a rectangle (Figure 11) with dimensions 

different from those of the other two rectangles (those involving atoms Au3 with 

Au4 and Au2 with Au5).  
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Figure 11. DFT structure of Au25(SEt)18
0 showing non-equivalent distances in the 

rectangle containing atoms Au6 and Au7, compared to the same distances on 

the rectangles containing the other icosahedral atoms (average values in 

parenthesis). A similar effect, albeit less pronounced, is seen in the X-ray 

structure. H and C atoms and most bonds removed for clarity.  

 

3.4 Conclusions 

 Devising methods for obtaining relevant information about the structure of 

MPCs is of paramount importance for both fundamental and applied (e.g., in 

catalysis) viewpoints. We prepared a 25-gold atom nanocluster protected by the 

smallest ligand ever used, ethanethiol. Its composition, charge state, and 

magnetic properties were assessed by a combination of MALDI-TOF, UV-vis 

spectroscopy, electrochemistry, and NMR spectroscopy results. The structure of 

Au25(SEt)18
0 could be determined precisely by X-ray crystallography analysis of 

high-quality single crystals. Knowledge of the exact 3D structure of Au25(SEt)18
0 

allowed us to determine the relevant isotropic and anisotropic hyperfine coupling 

constants by DFT calculations void of those approximations associated with the 

use of simplified ligand models. The Davies ENDOR spectrum showed a distinct 

pattern that, in comparison with the DFT results, allowed us to understand that 

the Au atoms of the cluster can be divided into four groups: besides the central 

atom and the 12 staple Au atoms, the 12 icosahedron Au atoms split into a group 

of 8 and a group of 4 atoms. Such nonequivalence among icosahedron atoms 

comes from the small dissymmetries associated with dissimilar staple motifs. 

Such small distortions propagate into the core atoms giving rise to nonequivalent 
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electron densities at the icosahedral nuclei and, therefore, hyperfine couplings. 

Pulse ENDOR thus proves to be a powerful method to study the structure and the 

electronic distribution of nanoclusters. The technique requires the presence of an 

unpaired electron and this is, in principle, always possible as long as a stable 

paramagnetic charge state can be attained via calibrated oxidation (or reduction) 

of an otherwise diamagnetic MPC, as others and we showed previously.27,29-31,39 

 

3.5 Experimental Section 

3.5.1 UV-vis Absorption Spectroscopy  

 The UV-vis spectra were obtained at 0.1 mM concentration in DCM, with 2 

mm cuvettes. We used a Thermo Scientific Evolution 60S spectrophotometer or, 

during syntheses, an Ocean Optics QE65000 spectrophotometer equipped with a 

DH-2000-BAL light source. The spectra resolution was 1 or 0.8 nm, respectively. 

 

3.5.2 Mass Spectrometry  

 MALDI-TOF mass spectra were obtained with an Applied Biosystems 

4800 MALDI-TOF/TOF spectrometer equipped with a Nd:YAG laser operating at 

355 nm. The laser firing rate was 200 Hz and the accelerating voltage was 25 kV. 

The laser pulse intensity was kept at threshold values and then progressively 

increased. Au25(SEt)18
0 was dissolved in benzene containing the matrix, DCTB, to 

obtain 0.1 mM solutions with a 1:400 MPC/matrix ratio. Two l of solution were 

dropcasted onto the sample plate and air-dried before loading into MALDI-TOF. 

The spectra were recorded using the reflectron positive-ion mode. As a standard, 

we used Au25(SC2H4Ph)18, which has a MW of 7394. 

 

3.5.3 Electrochemistry 

 The experiments were carried out in DCM containing 0.1 M TBAH, under 

an Ar atmosphere in a glass cell thermostatted at 25 °C, unless otherwise 

specified. The working electrode was a glassy carbon disk (9.4  10-4 cm2), 

prepared and activated as already described.27 A Pt wire was the counter 

electrode and an Ag wire served as the quasi-reference electrode. At 25 C, the 

latter has a potential of -0.187 V against the KCl saturated calomel electrode 

(SCE). Calibration was performed by addition of ferrocene at the end of the 

experiments; in the above solvent/electrolyte, the ferricenium/ferrocene redox 

couple has Eº = 0.460 V vs SCE. We used a CHI 760d electrochemical 
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workstation, and the feedback correction was applied to minimize the ohmic drop 

between the working and the reference electrodes. 

 

3.5.4 NMR Spectroscopy  

 1H and 13C NMR spectra were obtained at 1 mM MPC concentration in 

acetonitrile-d3 or benzene-d6 for [n-Oct4N
+][Au25(SEt)18

–] or Au25(SEt)18
0, 

respectively, with a Bruker Avance DMX-600 MHz spectrometer equipped with a 

5 mm TX-1 x,y,z-gradient powered, triple resonance inverse probe operating at 

599.90 and 150.07 MHz, respectively. The temperature was controlled with a 

Bruker BVT-300 automatic temperature controller. Unless otherwise indicated, 

the probe temperature was maintained at 25.0  0.1 °C. Chemical shifts are in 

parts per million (δ) units with reference to Me4Si used as an internal standard for 

both 1H and 13C NMR. To ensure a complete relaxation for all the resonances, 

integral values for the proton spectra were obtained by a prescan delay of 10 s. 

As previously done for Au25(SC2H4Ph)18,
30 the proton assignments were 

performed by standard chemical shift correlations as well as by 2D correlation 

spectroscopy (COSY), total correlation spectroscopy (TOCSY), and nuclear 

Overhauser enhancement spectroscopy (NOESY) experiments; the 13C chemical 

shift values were obtained and assigned through 2D-heteronuclear correlation 

experiments (heteronuclear multiple quantum coherence, HMQC). 

 

3.5.5 X-ray Single Crystal Diffraction 

 Black crystals of the title compound Au25(SEt)18 were obtained by vapor 

diffusion of diisopropyl ether into a toluene solution of Au25(SEt)18. Crystal data 

for compound Au25(SEt)18: black bricks, 0.04 × 0.04 × 0.07 mm, FW = 6024.32, 

C36H90Au25S18, triclinic, space group P-1, a = 13.7727(6) Å, b = 13.8864(6) Å, c = 

14.1519(5) Å, α = 104.383(3),  = 101.406(3)°, γ = 119.292(4), V = 2116.91(16) 

Å3, Z = 1, Dc = 4.726 g/cm3, F(000) = 2569, µ= 83.388 mm-1 , T = 123(2) K,  2θmax 

= 153.294°, 8455 reflections, 6681 with Io > 2σ(Io), Rint = 0.1503, 365 parameters, 

66 restraints, GoF = 1.038, R1 = 0.061 [Io > 2σ(Io)], wR2= 0.180 (all reflections), -

2.557 < ∆ρ < 2.671 e/Å3. Crystallographic data of Au25(SEt)18 were collected at 

123 K with Cu K radiation ( = 1.54184 Å) on an Agilent SuperNova dual 

wavelength diffractometer equipped with Atlas CCD area detector. CrysAlisPro40 

software was employed for the data measurements and processing. The 

structure was solved by direct methods integrated in the program of Olex2,41 and 

full-matrix least-squares refinements on F2 were performed using SHELXL.42 



81 
 

Analytical numeric absorption correction43 was applied to treat the reflections. 

Due to slight disorder, distances restraints were applied for all the ethyl groups. 

For H atoms, except for those attached to C2, C6, and C8, all the others were 

calculated to their idealized positions with constraint isotropic thermal factors [1.2 

or 1.5 times of Ueq(C)] and refined as riding atoms. The H atoms bonded to C2, 

C6, and C8 were fixed at calculated positions, as the riding mode refinement 

could not reach convergence. The crystal structure has been deposited to the 

Cambridge Crystallographic Data Centre with CCDC number of 984217. 

 

3.5.6 ENDOR Spectroscopy  

 The 197Au ENDOR spectrum was recorded with a Bruker Elexsys E580 

spectrometer equipped with a pulse ENDOR dielectric probe head and an Oxford 

CF935 cryostat. The 0.5 mM solutions of Au25(SEt)18
0 in toluene were introduced 

into 3 (o.d.) x 2 mm (i.d.) quartz tubes, degassed by several freeze-pump thaw 

cycles and sealed off under vacuum (5  10-5 Torr). The samples were then 

rapidly cooled down to 80 K, and the actual measurements were finally carried 

out at 5.5 K. We used the Davies ENDOR pulse sequence, with 32 ns of 

microwave inversion pulse and 16 – 32 ns pulse sequence for echo detection. 

The radiofrequency pulse was 4 s long and was amplified by a 500 W Bruker 

RF amplifier. The frequency range was limited to below 100 MHz to avoid 

frequency artifacts. With the use of the DFT values as input for the nucleus-

electron interaction Hamiltonian, ENDOR simulations were performed with the 

EasySpin software program44 working on the MatLab 7.12 calculation 

environment.  

 Figure 12 shows the cw-EPR spectrum of Au25(SEt)18
0. The spectrum 

resembles that already seen for Au25(SC2H4Ph)18
0.27,29 The Pulse ENDOR 

spectrum was recorded at the field corresponding to the maximum of the cw-EPR 

spectrum (291 mT). Simulation of the ENDOR spectrum was performed with the 

routine ‘salt’ of the EasySpin program, running on the MatLab 7 platform. A 65 

MHz excitation window was selected, which approximately corresponds to the 

inversion microwave pulse bandwidth. The average values of the tensors of the 

hyperfine (Table 2) and the quadrupole components (Table 3) were used, 

together with the corresponding Euler angles, for the icosahedral nuclei. The 

simulated spectra, which are the same as those of Figure 6 but also contain 

further information, are shown in Figure 13 up to 200 MHz in order to discuss the 

appearance of the different features. 
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Figure 12. cw-EPR spectrum of Au25(SEt)18
0 at 20 K. The star symbol marks a 

background signal due to the probe head. The arrow marks the magnetic field at 

which the ENDOR spectrum was acquired (291.1 mT). Parameters: modulation 

field, 0.3 mT;  microwave frequency, 9.765 GHz; 20 scans. 

 

 

Figure 13. Simulation of the Davies ENDOR spectrum: from top to bottom, 

simulations pertain to the first (gold curve) and second groups of icosahedral 

atoms (green curve), staple Au atoms (red curve), and central atom (purple 

curve). The first two traces correspond to the average values.  
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Table 3. DFT-Computed Quadrupole Values and Euler Angle Values for the 

Hyperfine and the Quadrupolar Components for Au25(SEt)18
0.  

 Hyperfine Euler Anglesb Quadrupolar Values Quadrupolar Euler Anglesb 

Atom 

labela 

 

(°) 

 

(°) 

 

(°) 

Qx 

(MHz) 

Qy 

(MHz) 

Qz 

(MHz) 

 

(°) 

 

(°) 

 

(°) 

Au1(central) -8.6 85.4 5.7 -17.3 -7.4 24.7 88.9 90.0 -88.9 

Au4(ico) -2.0 22.8 -24.2 43.9 32.7 -76.5 83.5 89.3 -3.0 

Au3(ico) -24.3 57.6 21.9 46.0 13.3 -59.3 -29.9 156.8 -24.6 

Au7(ico) -4.7 70.2 42.7 31.0 15.8 -46.9 70.1 103.1 -22.4 

Au2(ico) 4.8 40.3 -48.7 30.7 19.3 -50.1 -34.7 19.1 -82.6 

Au5(ico) -39.9 63.5 -36.6 48.8 12.3 -61.1 35.7 114.0 -22.2 

Au6(ico) 35.1 37.0 55.0 47.1 16.6 -63.7 -25.2 55.6 7.7 

Au8(staple) -1.6 16.1 89.3 100.1 12.1 -112.2 -78.0 54.0 22.5 

Au11(staple) -7.1 86.0 -5.8 42.6 24.5 -67.1 -35.9 149.9 -85.1 

Au9(staple) 22.5 43.9 49.7 46.9 15.0 -61.9 45.5 105.8 -25.8 

Au10(staple) 3.4 31.3 -0.4 78.6 4.5 -83.1 83.9 81.0 28.7 

Au12(staple) 27.7 58.2 15.9 100.9 1.9 -102.8 36.2 38.6 -47.4 

Au13(staple) -13.7 52.2 1.9 76.9 9.4 -86.3 42.0 93.8 -81.3 

a Except for the central atom, Au1, for symmetry reasons all other labels pertain 

to couples of equivalent Au atoms. b The values of , , and  correspond to 

components x, y, and z, respectively. 

 

 The first group of 8 core atoms with similar hyperfine values is 

characterized by strong quadrupolar and hyperfine interactions: by averaging the 

tensors (gold trace), this results in three main bands related to the quadrupolar 

interaction below 20 MHz (A), between 20 and 50 MHz (B), and between 50 and 

140 MHz (C). Band B is characterized by two main peaks corresponding to the 

experimental ones, while band C is characterized by a peak at ca. 60 MHz, 

corresponding to the experimental one, and a couple of peaks just beyond 100 

MHz, one of which is probably associated with the ENDOR signal increase 

observed just before 100 MHz. The second group of 4 core atoms is 

characterized by lower hyperfine interaction but still strong quadrupolar 

interaction: by averaging the tensors (green trace), band A is at very low 

frequency and is thus in a region not experimentally accessible with the strong 

microwave pulse sequence used for acquiring the ENDOR spectrum. Band B is 

below 20 MHz, while band C is beyond 100 MHz. 
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 Staples Au atom (red trace) are characterized by strong to very strong 

quadrupolar interaction and weak hyperfine interaction: band A is at very low 

frequency, band B is around 20 MHz, and bands C are near and beyond 200 

MHz. The central atom (purple trace) is characterized by weak quadrupolar and 

hyperfine interactions and, therefore, band A and band B are below 20 MHz; 

band C is around 80 MHz and approximately corresponds to the experimental 

band at 80 MHz.   

 As explained in Section 3.3.5, the best simulation is based on a group of 8 

dynamically equivalent core nuclei, with average hyperfine couplings of 40-55 

MHz, and a group of 4 dynamically equivalent core nuclei, with smaller average 

hyperfine couplings (15-17 MHz). If instead of average icosahedron nuclei 

parameters one uses all actual x, y, and z components of Tables 2 and 3, the 

simulation is as shown in Figure 8. Simulating the experimental spectrum with the 

average values obtained from the DFT calculations carried out for Au25(SMe)18
0 

(data in Table 4) also does not reproduce the experimental spectrum 

satisfactorily, as shown in Figure 10. Inspection of Table 4 shows that also for 

Au25(SMe)18
0 the icosahedron atoms split into two groups but now the group with  

 

Table 4. DFT-Computed Hyperfine, Quadrupolar, and Corresponding Euler Angle 

Values for Au25(SMe)18
0.  

 Hyperfine Valuesb Hyperfine Euler Anglesc Quadrupolar Valuesb Quadrupolar Euler Anglesc 

Atoma Ax Ay Az    Qx Qy Qz    

Au1(central) 11.6 8.9 18.6 -43.3 8.2 -65.7 -13.5 -11.0 24.5 58.2 80.3 -12.2 

Au4(ico) 41.3 44.0 50.4 -16.3 38.8 -40.8 40.5 31.5 -71.8 2.0 29.6 -79.2 

Au3(ico) 26.0 23.0 20.4 -39.1 27.5 -77.3 48.2 11.7 -59.9 39.2 84.8 86.7 

Au7(ico) 17.7 30.9 20.6 -33.7 67.2 -36.0 35.2 10.5 -45.7 62.7 88.7 33.9 

Au2(ico) 67.9 62.1 61.6 13.6 59.1 -33.9 34.3 16.8 -51.0 -6.4 139.5 -58.3 

Au5(ico) 17.0 19.8 27.4 33.8 30.3 49.5 52.7 11.0 -63.6 -26.5 51.5 25.4 

Au6(ico) 21.5 31.5 23.6 -8.2 72.9 43.3 39.6 25.2 -64.5 84.0 80.2 20.2 

Au8(staple) 3.7 5.0 4.3 39.3 32.2 -29.5 96.5 17.7 -114.2 35.9 90.1 27.0 

Au11(staple) 24.0 24.9 23.8 -17.0 54.0 -64.3 58.7 13.5 -72.2 38.4 77.7 81.6 

Au9(staple) 8.8 7.6 7.6 -5.7 85.1 -8.7 45.9 14.4 -60.3 -13.3 52.4 15.1 

Au10(staple) -0.7 0.0 -0.7 -40.1 75.2 -15.2 85.0 7.5 -92.5 -22.3 124.5 12.7 

Au12(staple) 9.8 10.1 12.2 26.7 12.6 33.1 98.1 5.8 -103.9 -55.6 134.8 -23.2 

Au13(staple) 13.7 13.1 14.9 -42.6 11.0 -76.7 69.4 13.7 -83.2 35.1 144.7 78.0 

a Labels as in Table 3; except for the central atom, Au1, for symmetry reasons all 

other labels pertain to couples of equivalent Au atoms. b Values in MHz. c The 

values of , , and  (degrees) correspond to components x, y, and z, 

respectively. 
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larger hyperfine tensor values is composed by 4 Au atoms and that with smaller 

values by 8 Au atoms. Interestingly enough, the relative population of the two 

groups is thus reversed. 

 Although the intensity of the ENDOR lines is not directly related to the 

number of 197Au nuclei, we note that a different choice of equivalent core nuclei 

would imply pretty different average hyperfine and quadrupolar tensors, which 

leads to a simulation that does not match sufficiently well the experimental 

spectrum. This includes the simulation in which all 12 icosahedron nuclei are 

considered equivalent (Figure 14). 

 

Figure 14. Davies ENDOR spectrum of a frozen 0.5 mM solution of Au25(SEt)18
0 

in toluene at 5.5 K (red line). The blue line shows the corresponding simulation 

based on using the average hyperfine and quadrupolar components of the 

icosahedral Au atoms.  

 

3.5.7 Computational Methods 

 Starting from the X-ray structure, the Au25(SEt)18 cluster was optimized 

using DFT as implemented in Turbomole V6.3.1.45 For the energy minimization 

step, we employed the s-vwn functional and def2-TZVP basis set for all atoms 

with a def2-ecp effective core potential for all Au atoms. At the optimized 

geometry, hyperfine constants and quadrupole tensors were calculated using 

Orca 2.9.1.46  
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These calculations were carried out using unrestricted DFT with the GGA 

functional (BP86), the TZVP basis set for Au, and the DZP basis set for all other 

atoms. Scalar relativistic effects were introduced using Zeroth-Order Regular 

Approximation (ZORA).47 All core electrons were included explicitly in the 

calculation of hyperfine and quadrupolar tensors, using the segmented all-

electron relativistically constructed (SARC) basis set.48 The Orca-euler utility 

program was used to calculate the Euler rotation of the hyperfine tensor and the 

electric field gradient tensor with respect to the g-tensor. 
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Chapter 4: Electron Transfer through 3D Monolayers on 

Au25 Clusters 

 

 

4.1 Abstract 

 This Chapter describes findings that have been published: Antonello, S.; 

Arrigoni, G.; Dainese, T.; De Nardi, M.; Parisio, G.; Perotti, L.; René, A.; Venzo, 

A.; Maran, F. Electron Transfer through 3D Monolayers on Au25 Clusters. ACS 

Nano 2014, 8, 2788–2795.  

 The monolayer protecting small gold nanoparticles is generally 

represented as the 3D equivalent of 2D SAMs on extended gold surfaces. 

However, despite the growing relevance of MPCs in important applied areas, 

such as catalysis and nanomedicine, our knowledge of the structure of 3D SAMs 

in solution is still extremely limited. We prepared a large series of monodisperse 

Au25(SCnH2n+1)18 clusters (n = 2, 4, 6, 8, 10, 12, 14, 16, 18) and studied how 

electrons tunnel through these monolayers. Electron transfer results, nicely 

supported by 1H NMR spectroscopy, IR absorption spectroscopy, and molecular 

dynamics results, show that there is a critical ligand length marking the transition 

between short ligands, which form a quite fluid monolayer structure, and longer 

alkyl chains, which self-organize into bundles. At variance with the truly protecting 

2D SAMs, efficient electronic communication of the Au25 core with the outer 

environment is thus possible even for long alkyl chains. These conclusions 

provide a different picture of how an ultrasmall gold core talks with the 

environment through/with its protecting but not-so-shielding monolayer. 

 

4.2 Introduction 

 By far, Au25(SR)18 is the most representative case of a stable MPC 

possessing a metal core sufficiently small (1 nm) to cause the system display a 

distinct molecule-like behavior.1 MPC monolayers are generally depicted as 

capping shields protecting the core from aggregation and a way to display 

functional groups for possible applications.2-5 These monolayers are, in fact, 

complex 3D nanosystems. The structure of Au25(SC2H4Ph)18 shows a 13-atom 

icosahedral inner Au core surrounded by 6 Au2(SC2H4Ph)3 staple-like semirings.6-

8 Staple-like bonding motifs are also present in larger clusters.9-12 Interestingly, 

similar thiolate-Au features are also found in SAMs on extended gold surfaces 
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(2D SAMs).13 That the same Au-S binding motifs can be found in both 2D and 3D 

SAMs points to very similar interactions and mutual stabilization of surface Au 

atoms and thiolated species.14,15 However, whereas in 2D SAMs molecular 

adsorbates primarily interact via interchain van der Waals forces allowing 

formation of regular domains of parallel molecules,16 it is not clear if similar 

interactions are equally important or even present at all in the monolayers of 

molecule-like MPCs. For example, whereas 2D SAMs are sufficiently compact to 

hamper penetration of molecular probes (so-called blocking effect: reduction or 

oxidation of molecular probes present in solution is hampered),17 

electrochemistry provided evidence that MPC monolayers allow some 

solvent/electrolyte penetration.18,19 The possible structure of 3D SAMs has been 

discussed on the basis of earlier seminal IR-absorption, solid-state NMR, and 

molecular dynamics (MD) studies of larger MPCs.20-24 Concerning molecule-like 

MPCs, however, and despite their interest as catalytic systems in redox 

processes, the monolayer structure in solution is still undefined. Because of its 

well-defined composition25,26 and unique electrochemical, optical and magnetic 

features,27-29 the atomically monodisperse Au25(SR)18 cluster provides an ideal 

benchmark for addressing this issue through the study of reactions occurring at, 

in, or through a 3D SAM or, to better say, the complex interfacial region between 

the gold core and the surrounding medium.  

 A reaction particularly appealing to assess the structure of MPCs' 

monolayers is electron transfer. ET is an extremely important reaction ubiquitous 

to a variety of biochemical and chemical areas,30,31 including redox catalysis with 

ultrasmall Au nanoparticles.3,5,19,32 Our understanding of the rate and 

mechanisms of long-range ETs through molecular bridges strongly relies on the 

outcome of studies carried out with 2D SAMs.17 These and related studies 

allowed establishing distance-dependence descriptors for a number of molecular 

bridges.30,33,34 According to the superexchange mechanism,31,34 the ET rate 

constant (kET) depends exponentially on the donor-acceptor distance (rDA) via eq 

1,  

(1)       kET = kET
0 exp(rDA) 

 

where the parameter  describes the falloff of the electron tunneling rate through 

the specific bridge and kET
0 is the ET rate constant at contact distance. For an 

alkyl chain in its all-trans conformation, which is the most efficient conformation 

for mediating ETs,34 the distance "ruler" is  = 0.8-1.0 Å–1.30,33,34 This important 
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insight comes from studies of well-organized 2D SAMs,17 metal-bridge-metal 

junctions,33 and rigid donor-bridge-acceptor systems.34 Can we now reverse the 

concept and use ET rulers as probes of the solution-phase structure of the 

otherwise elusive 3D monolayers of molecule-like MPCs such as Au25(SR)18? To 

which extent can the general picture valid for 2D SAMs be extended to the 

monolayer of 3D SAMs such as those formed on Au25 clusters? 

 Here we address these issues by studying the kinetics of electron 

tunneling through the monolayer of Au25(SR)18 clusters. By using a large series of 

alkanethiols, ranging from the shortest (C2) to the longest (C18) ligand ever used 

for such clusters, we prepared a large, homogeneous family of monodisperse 

Au25(SCnH2n+1)18 clusters, with n = 2, 4, 6, 8, 10, 12, 14, 16, 18. Our study 

provides the first analysis of the distance effect on the ET rate through 3D 

monolayers assembled on a gold cluster. Unexpected heterogeneous ET rates, 

together with converging results obtained by solution-phase 1H NMR 

spectroscopy, IR absorption spectroscopy and MD calculations, provide 

compelling evidence that while for the shorter ligands the monolayer can be 

described by a fluid structure of folded chains, longer alkyl chains self-organize 

into bundles. At variance with 2D SAMs, which provide efficient shields of the 

underlying gold surface, efficient electronic communication of the Au25 core with 

the outer environment is thus possible even for long alkyl chains. 

 

4.3 Results and Discussion 

4.3.1 Synthesis of Au25(SCnH2n+1)18 

 We prepared a series of Au25(SCnH2n+1)18 clusters in which n = 2, 4, 6, 8, 

10, 12, 14, 16, 18. The syntheses of the nice clusters were carried out in 

tetrahydrofuran according to similar protocols to that described for 

Au25(SC2H4Ph)18.
28 Briefly, a solution of tetrachloroauric acid in the presence of 

1.1 equiv of tetraoctylammonium bromide is allowed to react with the appropriate 

alkanethiol until the initially red solution becomes colorless, which is indicative of 

quantitative reduction of Au(III) to form reactive Au(I)-thiolate species. Addition of 

an aqueous solution of sodium borohydride causes rapid reduction to Au(0), with 

formation of a black solution. After typically 3 days under stirring, the clusters are 

separated from the reaction solution. As a final step, the Au25 clusters, which 

originally form in the anionic state,25,26 are quantitatively oxidized to their stable 

neutral form; we found that silica-gel column chromatography performs 

particularly well to obtain Au25(SCnH2n+1)18
0 in a very pure form. We will now 
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denote the clusters simply as Au25(SCn)18, where n is the number of carbon 

atoms.  

 A typical synthesis is here exemplified for the specific case of 

Au25(SC10)18. To a red THF solution (50 ml) of HAuCl4·3H2O (500 mg, 1.27 

mmol) and tetra-n-octylammonium bromide (779 mg, 1.425 mmol), 6 equiv of 1-

decanethiol (1.61 ml, 7.61 mmol) were added dropwise, under stirring, at room 

temperature. After 60 min stirring, the solution becomes colorless. Under fast 

stirring conditions, an ice-cold, freshly prepared solution of NaBH4 (480 g, 12.7 

mmol) in 10 ml of water was rapidly added, and the resulting black mixture, 

indicative of MPC formation, was left to age. The outcome of the reaction was 

periodically monitored by UV-vis absorption spectroscopy. After ca. 3 days the 

reaction mixture was filtered on paper and THF was removed, leaving a red-

brownish oil covered by an aqueous phase. The crude product was dissolved in 

toluene and the solution washed with water (4 x 25 ml). The toluene solution was 

concentrated, left to age for one night at low temperature, filtered to remove 

residual white polymer-like material, and the solvent evaporated. The resulting 

solid, n-Oct4N
+ Au25(SC10)18

–, was dissolved in DCM and purified by silica-gel 

column chromatography under aerobic conditions. The so-collected solid was 

tetra-n-octylammonium-free Au25(SC10)18
0, which was then stored at 4 C in the 

dark.  

 

4.3.2 UV-vis Absorption Spectroscopy  

 The UV-vis spectra of Au25(SCn)18
0 (Figure 1) show the expected features 

of monolayer protected Au25 clusters in their 0 charge state,8,28 such as the 

presence of a peak at 400 nm, a shoulder at ca. 445 nm, and a broad peak at 

690 nm. We note that the features corresponding to the -1 or the +1 charge state, 

the latter possibly obtained by further oxidation of Au25(SCn)18
0, are distinctly 

different.28  For n = 2 – 14, the average molar extinction coefficient at 400 nm is 

5.5  104 M-1 cm-1, that is, virtually the same as that of Au25(SC2H4Ph)18, 5.38  

104 M-1 cm-1, which nicely points to the optical behavior of Au25(SR)18 clusters 

(SR = generic thiolated ligand) as virtually only determined by the structure of the 

gold core. We found that for the longer ligands (n = 14 – 18), the peak at 400 nm 

increases while the band at 690 nm becomes less pronounced. This behavior is 

attributed to aggregation phenomena in solution and, as a matter of fact, when 

these solutions are sonicated (ultrasounds), the spectra become much more 

similar to those of the other clusters: the spectra of Figure 1 (n = 14 – 18) were 
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obtained after sonication. Benzene solubilizes the C14, C16 and C18 MPCs in an 

amount of time (~3, 10, and 15 min, respectively) shorter than any other solvent 

tested. 

 

Figure 1. Comparison of the UV-vis absorption spectra of Au25(SCn)18
0. The 

measurements were carried out in dichloromethane (C2 – C14) or benzene (C16, 

C18) at 25 C. For clarity, the spectra have been vertically shifted. Dashed lines 

mark the main spectral features. 

 

4.3.3 MALDI-TOF Mass Spectrometry 

 The composition and monodispersity of each Au25(SCn)18 cluster were 

assessed by matrix-assisted laser desorption ionization time-of-flight (MALDI-

TOF) mass spectrometry, a particularly effective technique for this class of 

clusters.35 Figure 2 shows that each spectrum displays the peak corresponding to 

the parent cluster, and some evidence of the main fragmentation pattern. 

Although fragmentation can be minimized to virtually nothing by decreasing the 

intensity of the laser power as much as possible, it is nonetheless useful because 

close inspection of the spectra obtained with a slightly larger laser energy reveals 

that the clusters undergo the same fragmentation pattern already noted for 

Au25(SC2H4Ph)18, that is, stepwise loss of AuSR fragments to form Au21(SR)14. 

The parent peaks have masses perfectly matching the calculated molecular 

weights. Noteworthy, this is also true for the C14, C16 and C18 MPCs, despite 
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their pronounced sonication-dependent UV-vis behavior. Overall, MALDI-TOF 

thus provides compelling evidence that all Au25(SCn)18 investigated share the 

same formula and features. 

 

 

Figure 2 MALDI-TOF mass spectra of Au25(SCn)18
0. For clarity, the spectra have 

been vertically shifted. The legend shows the MPCs' molecular weights. 

 

4.3.4 NMR Spectroscopy 

 The 1H NMR behavior of the ligands capping Au25 clusters is very 

sensitive to the specific ligand type.1,28 The 18 ligands split into a group of 6 outer 

and 12 inner ligands: we here define as outer the ligands in which S is bound to 

two stellated Au atoms and as inner those in which one of the two S-Au bonds 

involves the 13-atom icosahedral Au core (Figure 3A). The 1H NMR 

measurements were carried out in benzene-d6. The spectra revealed the same 

general features of Au25(SC2H4Ph)18, for which we could solve the details of each 

resonance of the two ligand groups as a function of the core charge state.28 

Au25(SCn)18
0 is paramagnetic: for the 12 inner ligands, the resonance of the 

methylene group closer to the sulfur atom, (-CH2)in, is particularly sensitive to 

the paramagnetic character of the cluster, and is found at very large chemical 

shift () values. This resonance is barely observable at 25 °C but develops into a 

nicely detectable peak at higher temperatures (for example, see Figure 4): for n = 

4 – 18,  = 22.5  0.2 at 65 °C. The other features of the 1H NMR spectra are 

also very similar. All resonances, which were assigned by analysis of homo- and 
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heteronuclear 2D correlation spectra, occur at  values that reflect the specific 

type of ligand (with integrals in a 2:1 ratio, in agreement with 12 inner vs 6 outer 

ligands) and the position of methylene with respect to sulfur (, , , and so on).  

 

 

Figure 3. (A) Main structural features of Au25(SR)18
0 (coordinates from ref. 8): 

core Au atoms (dark yellow), stellated Au atoms (light yellow), inner-ligand S 

atoms (blue), and outer-ligand S atoms (light blue). (B) 1H NMR spectra of 

monodisperse Au25(SCn)18
0 in benzene-d6 at 25 C: the spectral zones show the 

(-CH2)out (left) and (-CH2)in (right) resonances. Dashed lines mark the average 

chemical shifts calculated for C10 – C18. 
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Figure 4. 1H NMR spectra of monodisperse Au25(SC18)18 in benzene-d6 as a 

function of temperature. The spectra show the (-CH2)in zone. Bottom to top: 298, 

308, 318, 328, 338, and 343 K. 

 

 The peaks of the methylene groups closer to the Au core occur at: (-

CH2)out, 5.06 – 5.20 ppm; (-CH2)in, 3.48 – 3.61 ppm; (-CH2)in, 2.56 – 2.67 ppm; 

(-CH2)in, 1.96 – 2.10 ppm; (-CH2)out, 1.74 – 1.92 ppm; (-CH2)out, 1.57 – 1.71 

ppm. Figure 3B shows the spectral regions pertaining to (-CH2)out and (-CH2)in 

(for the full spectra, see Figure 5). Comparison of the spectra shows the 

interesting pattern that the (-CH2)out and (-CH2)in resonances do not 

appreciably change as one goes from n = 18 to n = 10, but when the chain 

becomes shorter,  distinctly decreases (upfield shift). The other methylene 

resonances display a very similar trend, once again with C10 as the turning point 

at which  starts shifting to lower values. These results indicate that for C10 and 

longer chains there is no significant difference in terms of the chemical 

environment experienced by the above methylene groups. A plausible hypothesis 

is thus that the longer ligands interact with each other in a way that is virtually 

unaffected by further elongation of the chain. Shorter chains, on the other hand, 

have more conformational freedom and are thus more extensively surrounded by 
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benzene molecules, a solvent known to cause resonances to undergo an upfield 

shift.36 

 

Figure 5. 1H NMR spectra of monodisperse Au25(SCn)18 in benzene-d6 at 298 K. 

Bottom to top, n = 4, 6, 8, 10, 12, 14, 16, and 18. Dashed lines mark the average 

chemical shifts calculated for the pertinent resonances from the spectra of C10 – 

C18. The star symbol marks a peak due to a solvent impurity (DCM). 

 

4.3.5 IR Absorption Spectroscopy  

 IR absorption spectroscopy has proved to be a valuable tool for studying 

the structure of alkanethiolate SAMs on flat gold.16 Studies with alkanethiolate-

protected Au nanoparticles larger than Au25 MPCs20-22 showed that compared to 

conventional 2D SAMs the average surface curvature of MPCs is such to make 

the monolayer periphery relatively mobile. In this framework, the Au25(SCn)18 

family provides a new situation for both the smaller (and totally controlled) core 

dimension and the presence of different binding sites (not facets, as for larger 

clusters) for the thiolates. For both symmetric (d+) and antisymmetric (d-) CH2 

stretching modes, which are particularly diagnostic for obtaining information 

about the conformation of alkyl chains, we found that as n increases up to 10 the 

frequencies undergo a progressive red shift (Figures 6-8) similar to that observed 
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for the free alkanethiols. For longer ligands, however, the frequency initially 

increases and then drops to values similar to those measured for 2D SAMs37 and 

larger MPCs,38 which are typical of extended all trans conformation. Overall, the 

IR results thus concur with the NMR evidence in indicating a structural transition 

as one goes from shorter to longer ligands. 

 
Figure 6. IR absorption spectroscopy spectra of Au25(SCn)18 in benzene. The 

spectra have been normalized relative to the methyl CH stretching modes.  

 

Figure 7. Dependence of the IR antisymmetric methylene stretching (d-) on n for 

Au25(SCn)18 in benzene (). The trends of HSCnH2n+1 (; benzene, this work), 2D 

SAMs (),39 and 2.4-2.8 nm MPCs (; KBr)40 are also shown.  
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Figure 8. Dependence of the IR symmetric methylene stretching (d+) on n for 

Au25(SCn)18 in benzene (). The trends of HSCnH2n+1 (; benzene, this work), 2D 

SAMs (),39 and 2.4-2.8 nm MPCs (; KBr)40 are also shown.  

4.3.6 Heterogeneous Electron Transfer 

 The electrochemical behavior of Au25(SCn)18
0 was studied by CV and 

DPV in DCM/0.1 M TBAH, at 25 °C. Figure 9 illustrates the CV pattern observed 

with one of the clusters. The general electrochemical pattern is common to all 

Au25 clusters and shows two main reversible peaks associated with the either the 

oxidation (peak O1) or reduction (peak R1) of Au25(SCn)18
0. Because the latter is 

a radical, the two processes correspond to formation of a cation and an anion, 

respectively. All three species are stable: Au25(SCn)18
0 is indefinitely stable, 

Au25(SCn)18
– is stable under anaerobic conditions, and Au25(SCn)18

+ is stable at 

least for some hours.  

 Further oxidation and reduction processes corresponding to formation of 

higher positive or negative charge states are also observed, as illustrated for the 

most important peaks by the series of DPVs shown in Figure 10. Peak O2, which 

is related to formation of the dication, is partially reversible at slow scan rate (v) 

values. The third peak (O3) is irreversible. In the negative-going scan, the 

irreversible peak R2 corresponds to initial formation of the dianion, followed by a 

sequence of dissociative ET steps, as already discussed for Au25(SC2H4Ph)18.
19,29 

R2 is quite negative and, for the longest alkyl chains (n > 12), not easily 

detectable because of merging with further redox processes  (Figure 10). 
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Figure 9. CV of 0.51 mM Au25(C4)18 in DCM/ 0.1 M TBAH at v = 0.1 V s-1. Glassy 

carbon electrode, 25 °C. 

 

Figure 10. DPV (negative-going scan) of Au25(Cn)18 in DCM/ 0.1 M TBAH. n (top 

to bottom) = 2, 4, 6, 8, 10, 12, 14, 16, 18. For n ≤ 12, the concentration was ca. 

0.5 mM; for n > 12 it was ca. 0.2 mM. Glassy carbon electrode, 25 °C.  
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 Over the last 25 years, the rate of electron tunneling through a variety of 

molecular bridges has been established.17,30,33,34 Here the concept will be 

reversed in the sense that ET will be used as an indicator of apparent deviations 

from the distance dependence expected for alkyl chains. Because ET is sensitive 

to the distance separating the exchanging centers and the nature of the 

molecular bridge, to gain further insights into the structure of Au25(SCn)18 

monolayers we studied the effect of the ligand length on electrode kinetics. Au25 

clusters can be conveniently charged by stepwise electrochemical reduction or 

oxidation.18 However, whereas the 0/-1 and 0/+1 redox couples display a 

chemically reversible voltammetric behavior at all potential scan rates (v), further 

reduction or oxidation generates species with limited lifetimes.19,29 We thus 

focused on the 0/-1 and 0/+1 redox couples. The kinetics of the first reduction 

(R1) and oxidation steps (O1) of Au25(SCn)18
0 was studied by CV in DCM 

containing 0.1 M TBAH. Based on the above evidence, the experiments 

concerning the C14, C16 and C18 MPCs were carried out after sonication of the 

corresponding solutions for the appropriate time (as assessed by UV-vis control 

experiments). 

 At low v values, both R1 and O1 peaks display the typical peak-to-peak 

separation (Ep) of ~59 mV expected for a reversible one-electron process at 25 

°C.41 On the other hand, when the time scale of the voltammetric experiment is 

made small, Ep increases, which indicates that the heterogeneous ET becomes 

quasi-reversible. This is illustrated in the typical plots of Figure 11 for both peaks 

R1 and O1. The Ep dependence on v can be quantitatively analyzed41 to obtain 

the standard heterogeneous ET rate constant k°, which is the ET rate constant 

measured at the formal potential (E). Because we started from the neutral 

cluster, the R1 and O1 processes could be studied independently by running the 

CV scan toward negative or positive potentials, respectively, starting from the 

equilibrium potential of Au25(SCn)18
0. The k° results were confirmed by digital 

simulation of the CV curves.  

 Figure 12 illustrates the outcome of these measurements and 

calculations. The k° values are plotted as a function of the distance d between 

the surface gold atoms and the solution-side end of the ligands, assuming a fully 

extended conformation. For both R1 and O1, the plots reveal three important 

aspects: (i) for ligands with short to moderately long chains (n = 2 to 12), the 

falloff of the ET rate with distance is linear; (ii) the corresponding  values (eq. 1) 

are 0.23 and 0.21 Å–1, in sharp contrast even to the minimum value of , 0.8 Å–1,  
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Figure 11. Scan rate dependence of Ep for R1 () and O1 (): 0.51 mM 

Au25(SC4)18
0 in DCM/0.1 M TBAH on the glassy carbon electrode at 25 C. The 

lines are the best fit of the Nicholson curve41 to the data. The inset shows a 

typical CV (positive initial scan direction) with vertical lines evidencing Ep.  

 

Figure 12. Distance effect of the heterogeneous ET rate constants for R1 () and 

O1 (). The distance d corresponds to fully extended conformations. Uncertainty 

in lnk values is 0.05-0.1. Linear regressions correspond to  = 0.23 (R1) and 

0.21 Å–1 (O1). The two dash-dot lines and the horizontal line correspond to  = 

0.8 and 0 Å–1, respectively. 
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determined for saturated sp3 carbon chains in solution or 2D SAMs; (iii) for longer 

ligands (C12 - C18), a sizable change in slope is observed and in fact, the ET 

rate becomes virtually independent of the ligand length. 

 Former ET evidence showed that through-bond coupling is maximized 

(smaller  value) when alkyl chains adopt an all-trans conformation, whereas 

introduction of cis kinks decrease the ET rate.34 Concerning C2 – C12, the 

observed very low  values cannot thus indicate that a somehow more efficient 

conformation is attained. Instead, these apparent  factors point to electron 

tunneling as occurring at an average distance equivalent to approximately one 

fourth of the fully extended lengths of the ligands. This implies that the monolayer 

chains are substantially bent with respect to the electrode – gold core separation. 

The ET rates and mild distance dependencies thus provide smoking-gun 

evidence that 3D monolayers of molecule-like Au clusters cannot be depicted as 

a more or less regular arrangement of ligands pointing outward, as often 

assumed and illustrated. In this context, it is worth mentioning that 

heterogeneous ET rates measured for larger MPCs (displaying quantized 

charging behavior)2 yielded a  value of 0.41 Å-1:42 with all due cautions 

associated with the polydisperse MPCs employed, comparison with our results 

would point, not quite unexpectedly, to a core-size dependent ET  factor. 

 What happens for the longer chains is also very interesting. For the same 

reasons already described, the virtual independence of the ET rate on the ligand 

length is only apparent. In fact, the ET can be taken as a sensitive probe of the 

new situation occurring to the monolayers composed by long ligands. Generally 

speaking, ET rate constants are the time average of electron tunneling events 

occurring in a range of rate-significant donor-acceptor distances and, for 

intramolecular ETs, orientations. Because of this, even subtle differences 

between intermolecular and intramolecular ET rates can be detected.43 In 

principle, heterogeneous ETs to/from symmetrically protected MPCs should 

provide the very special case of bimolecular ETs occurring through a molecular 

spacer, like in intramolecular ETs, but with rates independent of orientation. In 

fact, our results point to an orientation dependent process and, specifically, that 

the average monolayer thickness is not constant around the MPC. For chains 

with a length equal or longer than C12 there are MPC's orientations for which ET 

occurs at a distance that virtually does not change with ligand length. These 

orientations correspond to the MPC with its thinner sides closer to the electrode 

surface, and are those providing the dominant contributions to the observed ET 
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rate constant. The anomalous dependence of the heterogeneous ET rate on 

distance illustrated in Figure 5 thus detects and amplifies those chain-length 

dependent monolayer features inferred from the NMR and IR results. We can 

thus conclude that while on the small surface of Au25 clusters the shorter thiolated 

ligands are quite mobile and the interaction among chains is not significant, 

longer ligands self-arrange in bundles because of cooperative van der Waals 

interactions. Since the Au core is small, once the chains start interacting they can 

only do it along preferred orientations. This implies that the ligands leave the Au 

core much less shielded than expected on the basis of a fully extended 

conformation.  

 

4.3.7 Molecular Dynamics Calculations 

 To shed further light onto this intriguing and fascinating issue, we 

performed MD calculations of the clusters' monolayers in benzene. The 

components of the inertia tensor I are a measure of the size of Au25(SCn)18 along 

its three main axes. Whereas spherical particles are characterized by isotropic 

tensors, for anisotropic particles asymmetry and relative magnitude of the 

principal components determine the particle's shape. The components of the 

tensor I monotonically increase with the length of chains but with different 

dependencies (Figure 13).  

 

Figure 13. Principal components of the inertia tensor I, parallel () or 

perpendicular () to the MPC's longest axis. Benzene, 300 K. 
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 Figure 14A illustrates that MPCs capped by not-too-long alkanethiolates 

are indeed nearly spherical, which corresponds to similar components of I.  

 

Figure 14. (A) Representative snapshots from the MD trajectories of 

approximately spherical C10 (left) and elongated C18 MPCs (right), in benzene at 

300 K. Dashed lines indicate the long (red) and one of the perpendicular (black) 

axes. (B) Dependence of the semiaxis lengths a (), b and c () on the number of 

carbon atoms in the chain. 

 In particular, the MD trajectories show that these chains independently 

fluctuate in the solvent, without displaying any orientation preference. For longer 

chains, on the other hand, one of the components of I is significantly smaller 

(corresponding to the longest axis), which imparts the MPCs an elongated shape: 

this is because the chains tend to attain an extended conformation and assemble 
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by forming two bundles on opposite sides of the gold core. These snapshots 

suggest that the MPCs' shape can be satisfactorily described with ellipsoids. In 

Figure 14B, the lengths a, b, and c of the three semiaxis, obtained from the 

components of the diagonalized inertia tensor, are plotted as a function of n. 

While b and c increase and then level off for n ~ 12, semiaxis a monotonically 

increases and displays an even slightly steeper dependence on n beyond the 

C12 critical length. Addition of further methylene units to the C12 chain thus 

induces elongation only in the direction a, with chains progressively assuming a 

more extended conformation. 

4.4 Conclusions 

 By using a large series of alkanethiols, we prepared a homogeneous 

family of monodisperse Au25 clusters. Unexpected ET rates, nicely supported by 
1H NMR, IR and MD results, show that there is a critical length marking the 

transition between short ligands, which form a fluid monolayer structure of folded 

chains, and longer alkyl chains, which self-organize into bundles. These results 

thus provide a different scenario for how an ultrasmall gold core talks with the 

surroundings through/with its monolayer. They also highlight the importance of 

ET rulers to shed light onto the solution structure of such elusive SAMs. We 

expect the outcome of this study to be useful for understanding, for example, the 

ET behavior of MPC layers in devices, the performances of MPCs in redox 

catalysis, and the interaction of these monolayers with complex environments 

such as cell membranes. 

 

4.5 Experimental Section 

4.5.1 MALDI-TOF Mass Spectrometry 

 MALDI-TOF experiments were carried out with an Applied Biosystems 

4800 MALDI-TOF/TOF spectrometer equipped with a Nd:YAG laser operating at 

355 nm. The laser-firing rate was 200 Hz and the accelerating voltage was 25 kV. 

Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) 

was used as the matrix. The MPCs were dissolved in benzene containing DCTB 

to obtain 0.1 mM solutions with a 1:400 MPC/matrix ratio. Two microliters of 

solution was dropcasted onto the sample plate and air-dried. The spectra were 

recorded in the reflectron negative mode. As the standard, we used 

Au25(SC2H4Ph)18, which has a MW of 7394.  
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4.5.2 UV-Vis Absorption Spectroscopy.  

 The UV-vis spectra of the MPCs were obtained at 0.1 mM concentration 

in DCM, with 2 mm cuvettes. The spectra resolution was 1 nm.  

 

4.5.3 Infrared Absorption Spectroscopy  

 FT-IR absorption spectra were recorded in benzene solution using 1 mm 

optical path cells, CaF2 windows, 1-2 mg ml-1 MPC concentrations and an argon 

flushed ThermoFisher Scientific Nicolet 6700 FT-IR spectrometer. The nominal 

resolution was 1 cm-1 and 16 scans were averaged. 

 

4.5.4 NMR Spectroscopy 

 1H NMR spectra were obtained at ~1 mM MPC concentration in C6D6 with 

a Bruker Avance DMX-600 MHz spectrometer equipped with a 5 mm TX-1 x,y,z-

gradient powered, triple-resonance inverse probe operating at 599.90 MHz. The 

temperature was controlled (25  0.1 °C, unless otherwise indicated) with a 

Bruker BVT-300 automatic temperature controller. Chemical shifts are in part per 

millions () units with reference to tetramethylsilane used as an internal standard. 

To ensure a complete relaxation for all the resonances, integral values for the 

proton spectra were obtained by a prescan delay of 10 s. The proton 

assignments were performed by standard chemical shift correlations as well as 

by 2D correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), 

and nuclear Overhauser enhancement spectroscopy (NOESY) experiments, as 

previously done for Au25(SC2H4Ph)18.
28  

 

4.5.5 Electrochemistry 

 The working electrode was a 0.55 mm radius glassy carbon disk 

prepared, stored, and activated in situ according to a procedure ensuring 

formation of a reproducible surface suitable for ET studies.44 A Pt wire was the 

counter electrode and a Ag wire served as the quasi-reference electrode. At the 

end of each experiment, the potential of the latter was calibrated against the 

ferricenium/ferrocene redox couple (in DCM/0.1 M TBAH, E° = 0.460 V against 

the KCl saturated calomel electrode, SCE). The experiments were conducted in 

DCM/0.1 M TBAH under an Ar atmosphere in a glass cell thermostatted at 25 °C. 

For the electrode kinetics experiments we used an EG&G-PARC 173/179 

potentiostat-digital coulometer, an EG&G-PARC 175 universal programmer, and 

a Nicolet 3091 12-bit resolution digital oscilloscope. To optimize the kinetic 
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analysis, we used all experimental precautions and checks described in detail 

elsewhere.19,29 To minimize the ohmic drop between the working and the 

reference electrodes, careful feedback correction was applied. The electrode-

kinetics experiments were also checked with a CHI 660c electrochemical 

workstation, which employs a different approach to perform feedback correction. 

The CV analysis was carried out on digital CV curves. For digital simulation, we 

used the DigiSim 3.03 package, using stepsize = 1 mV and exponential 

expansion factor = 0.5. 

 

4.5.6 Molecular Dynamics Calculations 

 MD simulations were performed using the LAMMPS software.45 Energy 

minimization was performed by using the steepest descent and then the 

conjugated gradient algorithm. This was followed by 1 ns in the micro-canonical 

ensemble (NVE: fixed numbers of atoms N, volume V, and energy E), during 

which the temperature was taken to 300 K, and 1 ns in the isobaric-isothermal 

ensemble (NPT), with T = 300 K and P = 1 atm. Two nanoseconds was then run 

in the canonical ensemble (NVT) and the analysis was performed. 3D periodic 

boundary conditions were adopted. The Nosé-Hoover approach was used for the 

temperature and pressure control, with a dumping parameter of 100 and 1000 fs, 

respectively. The equations of motion were integrated using the velocity Verlet 

algorithm with a time step of 1 fs for the NVE and NPT simulations, and of 2 fs for 

the NVT runs. Snapshots were taken every 1000 time steps. The cutoff for 

Lennard-Jones (LJ) interactions and the real-space part of the electrostatic 

potential was set to 12 Å. Electrostatic interactions were calculated using the 

particle-particle particle-mesh solver technique, with a root mean square 

accuracy of 10−4. The bond lengths involving H atoms were constrained using the 

SHAKE algorithm. The all-atom CHARMM27 force field46 was used for thiol 

chains and benzene. The gold atoms were allowed to interact with the chains and 

solvent via LJ potentials parametrized for the metal according to the universal 

force field (UFF).47 LJ cross-term interaction parameters were calculated 

according to the Lorentz-Berthelot combination rule. Au-Au, Au-S and S-S 

interactions were set to zero. For Au and S atoms, we used the atomic 

coordinates of the X-ray structure of Au25(SC2H4Ph)18,
8
  which were kept constant. 

For the inertia tensor I, we used the following expression: 
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where only the atomic coordinates x, y and z of the n-th carbon atoms, of mass 

mC, along the thiol chains of Au25(SCn)18 were considered. Angular brackets 

indicate average over the simulation time. The dependence of the three 

components on n is illustrated in Figure 13. The semi-axes a, b, and c were 

obtained from the diagonalized tensor Ĩ, in which M is the total mass: 
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Chapter 5: Electron Transfer in Au25 Films 

 

  

5.1 Abstract 

 We carried out conductivity measurements on dry films formed by drop 

casting monodisperse Au25(SR)18 nanoclusters. The effects of changing the 

length and branching of the alkyl thiolate ligands protecting the Au core were 

analyzed by studying a series of linear-chain thiolate protected clusters having 

the general formula Au25(SCnH2n+1)18, with n = 3, 4, 5, 6, 8, and 10, in comparison 

with the behavior of a cluster characterized by a branched alkyl (2-methyl-1-

butane) thiolate monolayer. The linear dependence of the conductivity on n 

points to a hopping mechanism where the cores of the nanoclusters behave as a 

localized electron-donor or acceptor site, and the ligands as spacers dictating the 

efficiency of the electron tunneling. The experimental results were analyzed to 

obtain the value of the exponential electron-tunneling coefficient β (Å-1). This β 

value was then compared with that obtained for the same clusters under direct 

electrochemistry conditions in solution phase. The β value points to a substantial 

folding of the linear chains in the monolayer in the solid state, but to a lesser 

extent compared to what found in the solution ET studies.  

 

5.2 Introduction 

Solid-state studies of structure-properties relationship in MPC are still 

limited, although nanoparticles assemblies already showed to provide a good 

platform to study charge transport phenomena.1,2 The drop casting and drying of 

an MPC solution forms a disordered assembly of nanoparticles but yet this 

approach represents a simply applicable method to create a film with tailored 

conductive properties that could be transferred to device fabrication. Therefore, 

understanding how ultrasmall nanoclusters behaves when in films and, in 

particular, the analysis of how their electronic conduction properties depend on 

the nanoclusters' features could bring new tools for fine tuning charge transport in 

electronic devices.  

Conductivity in nanoparticles' dry films has been shown to depend on core 

dimension, charge state or the relative amount of the different oxidation states, 

and, particularly, on the distance between the metallic cores, which is in turn 

dictated by the length of the protecting ligands as well as their chemical 

structure.3-8 The choice of the protecting layer is then fundamental in controlling 
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the resistivity properties of the film. In studies on mixed-valent Au144(SC6)60 

nanoclusters, the Murray Group showed that the conductivity in films formed by 

drop casting onto interdigitated array (IDA) gold electrodes, followed by drying of 

the MPC solution, depends on the charge state of the MPC and reaches a 

maximum for a 1:1 ratio between the 0 and the +1 charge states4 The same trend 

was observed for Au25(SC2H4Ph)18 assemblies.6 A bimolecular rate law was 

proposed to describe the conductivities of such mixed-valent films,4,6 

 

(1)   MPCz   +   MPCz+1    MPCz+1   +   MPCz 

 

The ET rate constant kET for the exchange reaction (M-1s-1) was expressed as:  

 

(2)     kET  6(103)RTs
F2d2[MPC z1][MPC z ]

 

 
where R is the gas constant, T is the temperature, F is the Faraday constant, σ is 

the conductivity (Ω-1 cm-1), δ is the core center-to-center distance (cm). The kET 

values calculated for Au144 and Au25 MPC were ca. 3 × 109 and 2 × 106 M-1s-1, 

respectively, and the corresponding activation energies were ca. 70 and 210 

meV. The ET rate showed a strong dependence on the core dimension, with a 

difference as large as 3 orders of magnitude, that was attributed mostly to a 

difference in the activation energies. In a more recent paper,7 however, improved 

monodispersity in the synthesis of the clusters and more accurate IDA cleaning 

methods led to refined data for the kET value calculated for Au144(SC6)60, which 

was determined to be 1 × 108 M-1s-1. Carducci and Murray also reported that the 

ET rate through a film composed by a mixture of +1 and 0 charged 

Au25(SC2H4Ph)18 clusters is slower by about one order of magnitude with respect 

to a 0/-1 mixture. 7 This result was tentatively ascribed to a larger degree of 

reorganization involved in the formation of the positively charged nanocluster. It 

also is in agreement with our results about heterogeneous ET in solution 

(Chapter 4) showing that the standard heterogeneous rate constant for the 0/-1 

redox couple (R1 process) is larger than that observed for the corresponding 

+1/0 redox couple (O1 process).  

Systematic studies on the effect of the variation in monolayer thickness 

and structure were carried out for a series of alkanethiolate-protected 

nanoparticles with average stoichiometry Au309(SCn)92, with n ranging from 4 to 

16.4 The results pointed to an exponential decrease of the ET rate with an 
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increase in the ligand length. A decay exponential factor β of 0.8 Å-1 was 

calculated by assuming an extensive intercalation of the chains of neighboring 

MPCs. Indeed, density measurements carried out on such kind of films point to a 

separation between MPC cores quite close to the length of a single ligand chain. 

In a subsequent work, the effect of a more “conductive” monolayer was also 

analyzed by studying MPC capped by an arenethiolate.5 The larger ET rate found 

for this system than for the MPCs capped by saturated-chain ligands further 

pointed to an active role of the monolayer in dictating the film conductivity. 

 Our ET studies carried out in solution on Au25(SCn)18 clusters,9 described 

in Chapter 4, revealed that the protecting monolayer is not as "thick" as 

previously assumed. It is, therefore, interesting to investigate the main features of 

the electronic conduction within molecular nanoclusters films, analyze how 

conductivity depends on the monolayer thickness and rigidity, and finally 

compare the results with those obtained for the same clusters in solution. 

 

5.3 Results and Discussion  

5.3.1 Synthesis of Au25(SCnH2n+1)18, n = 3 and 5 

The series of nanoclusters for which the solution heterogeneous ET was 

initially studied, as described in Chapter 4, was increased in order to obtain a 

more detailed picture of what happens in the range of n varying from 2 to 10, i.e., 

where the ET rate was found to decrease linearly with n. We thus synthetized two 

new Au25 clusters protected by propanethiolate (SC3) and pentanethiolate (SC5), 

respectively. These two clusters allowed us to tune more finely the monolayer 

thickness, as well as to analyze possible odd-even effect sometimes observed for 

alkane chains.4 These clusters were synthetized and characterized as detailed in 

Sections 2.1.2 and 2.1.4. The composition and the monodispersity of the new 

clusters were assessed by MALDI-TOF mass spectrometry, NMR spectroscopy, 

and electrochemistry. 

 

5.3.2 Heterogeneous Electron Transfer 

 The heterogeneous ET to/from Au25(SC3)18 and Au25(SC5)18, both in their 

neutral state, was studied on a glassy-carbon disk electrode in DCM/0.1 M 

TBAH, along the same lines described for the other Au25(SCnH2n+1)18 clusters in 

Section 4.3.6. The standard ET rate constant k° was thus obtained by studying 

the v dependence of Ep, according to the Nicholson method.10 For both O1 and 

R1 processes, the plot of Ep vs logv1/2 shows an excellent fit to the Nicholson 
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theoretical curve in the whole scan rate range investigated, 0.1-50 V s-1. Figure 1 

shows the lnk° values determined (R1 process) for Au25(SC3)18 and Au25(SC5)18 

together with the previous results obtained for the C2-C12 series. The plot shows 

that these two new data are in line with the overall trend exhibiting a linear 

decrease with an increase in the ligand length. The slope is 0.23 Å–1, when the 

fully-extended length (dfec) of the alkyl chain is arbitrarily assumed as the actual 

tunneling distance.   

 

 

Figure 1. Distance effect on the heterogeneous ET rate constants for R1 (left to 

right, n = 2, 3, 4, 5, 6, 8, 10, 12). The distance dfec corresponds to fully extended 

conformations. Uncertainty in lnk values is 0.05-0.1. Linear regressions 

correspond to  = 0.23 Å–1.  

 

5.3.3 Conductivity of Au25 Films  

 We performed electronic conductivity measurements on films obtained by 

drop casting a concentrated solution of the MPC onto IDA gold electrodes, as 

schematized in the cartoon of Figure 2. This is an approach extensively 

employed to test the conductivity of similar MPC films.3-8 Our analysis included a 

series of Au25(SCnH2n+1)18 with n = 3, 4, 5, 6, 8, and 10. The samples were dried 

very carefully in vacuum for 30 min. Conductivity measurements were carried out 

by scanning the bias potential (E) from +1 to -1 V across the IDA fingers. For all 
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samples and at the potential scan rates used, the current i is linear in E (Figure 

3), i.e., the films display ohmic behavior. No hysteresis effects, usually due to ion 

mobility within the film,4 were observed. Furthermore, the current response did 

not show any dependence on the scan rate, which was varied from 0.1 to 10 Vs-1.  

 

 

 

Figure 2. IDA electrode system and cartoon of its side view (not in scale: finger 

width 10 m, finger height 96 nm, interfinger distance 5 m, film thickness ca. 5 

m) after drop casting and drying an MPC solution. A photograph of the resulting 

film is shown at the right-bottom corner of the figure. 

 

 As already described, in their study on Au25(SC2H4Ph)18 Murray and co-

workers found that a mixture of Au25
0 and Au25

–  produces a more conductive film 

with respect to a monovalent assembly.6,7 In our work, we decided to rely our 

(comparative) analysis on a single oxidation state in order to guarantee a better 

reproducibility of the experimental conditions for the different Au25(SCn)18 

samples as well as to prevent contamination associated with chemical or 

electrochemical oxidation. We employed the Au25(SCn)18
0 radical because it is 

the most stable and does not introduce further species (counterions). We also 

found it to be more conductive than Au25(SCn)18
–. For example we found a σ 

value of 2.3 × 10-7 and 3.9 × 10-8 Ω-1cm-1 for Au25(SC2H4Ph)18 in its neutral and 

anionic form, respectively; similarly, we obtained 1.9 × 10-7 and 6.8 × 10-5 for 

Au25(SC4)18.  

 Figure 3 shows that n affects the observed current very significantly, with  
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Figure 3. Plots of the current i obtained for the Au25(SCn)18
0 samples (n = 3, 4, 5, 

6, 8, 10) as a function of the potential bias between the two comb gold electrodes 

(left). The corresponding logarithmic plot (selected curves) is shown on the right-

hand side. 

 

a substantial decrease of the film electronic conductivity σ as n increases. σ was 

calculated with eq. 3: 

(3)         s  l
A

tot

i
E
Ccell

i
E

 

 

where l is the IDA finger gap and Atot is the total area of the electrode/film 

interface. The cell constant Ccell = l/Atotal was calculated as described by Choi and 

Murray,4 as detailed in Section 5.5. The σ values are gathered in Table 1. 

 

Table 1. Electronic conductivity data, MPC concentration in the films and ET rate 

constants for Au25(SR)18 MPCs (see text).  

 

 

σ 

(Ω-1 cm-1) 

Cfilm 

(M) 

kET 

(s-1) 

C3 2.5 × 10-4 0.61 2.8 × 107 

C4 6.8 × 10-5 0.37 8.9 × 106 

C5 1.9 × 10-5 0.28 2.8 × 106 

C6 5.8 × 10-6 0.20 9.7 × 105 

C8 5.8 × 10-7 0.16 1.0 × 105 

C10 5.9 × 10-8 0.11 1.1 × 104 

MeBu 2.3 × 10-5 0.26 2.2 × 106 
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5.3.4 Comparison between Solution and Solid-State ETs  

 Figure 4 shows lnσ as a function of an edge-to-edge intercore distance, 

arbitrarily assumed to correspond to the thickness of two monolayers (2dfec) 

formed by fully extended alkyl chains. The graph shows that the plot is very linear 

(r2 = 0.999), in excellent agreement with an ET hopping mechanism where lnσ 

depends on 2dfec according to eq. 4:4  

 

(4)    lnσ = lnσ0 - Ea/RT – β(2d)   

 

where β is the exponential factor, EA is the activation energy, and σ0 is the 

hypothetical conductivity for clusters at contact distance.  

 

Figure 4. Logarithmic dependence of film conductivity  (left to right, n = 3, 4, 5, 

6, 8, 10) as a function of twice the length d of the capping thiolates obtained by 

assuming a fully extended conformation for the alkyl groups. Linear regressions 

correspond to  = 0.47 Å–1.  

  

 From the slope of the plot in Figure 4, we calculate an exponential factor 

of β = 0.47 Å-1. This value is much smaller than the values of  = 0.8-1.0 Å–1 

determined for alkyl chains in the all-trans conformation.11,12 We should also 

recall that for the same n values the  value for freely diffusing Au25(SCnH2n+1)18 
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clusters is even smaller, being only 0.23 Å–1. The ET data and other experimental 

evidence (Chapter 4)9 indicate that these are, in fact, apparent  values in the 

sense that they point to monolayers composed by rather fluid structures of folded 

chains, thereby making the effective monolayer thickness significantly smaller (by 

a factor of ca. 4) than expected for fully extended chains. The results obtained 

with the films can be interpreted in a similar way. A slightly larger , on the other 

hand, suggests that the ligands of neighboring monolayers might also be partially 

interdigitated, as already suggested:3-5 this would make alkyl chains less prone to 

folding and thus the intercore distance be slightly larger than seen for the MPC-

electrode effective distance in solution. This view is supported by the fact that the 

 values obtained for the larger Au144 MPCs (core radius of 1.6 nm, as opposed 

to 1.0 nm in Au25 MPCs) in solution13 and in the solid state8 show a similar 

increase, from 0.41 to 0.5 Å-1.  

 Estimation of the MPCs' radii, and consequently the value of the 

corresponding monolayer thickness, can be carried out experimentally from the 

diffusion coefficient (D) values, as calculated from the CV peak currents at low 

scan rates with the Stokes-Einsten equation (D = kBT/6r, where kB is the 

Boltzmann constant,  is the solvent viscosity, and r is the MPC radius). The 

results, are shown in Table 2.  

 

Table 2. Diffusion coefficients, radius calculated from Stoke-Einstein equation 

and monolayer thickness for Au25(SR)18 MPCs. 

 

 

D × 10-6 

(cm2 s-1) 

r 

(Å) 

d 

(Å) 

C3 6.9 7.7 2.7 

C4 5.8 9.1 4.1 

C5 5.3 10.0 5.0 

C6 4.7 11.2 6.2 

C8 4.4 12.1 7.1 

C10 3.9 13.5 8.5 

MeBu 5.2 10.2 5.2 

 

The so-determined r values are in good agreement with the theoretical 

predictions obtained via MD simulations of the MPCs dimensions, as described in 

Section 4.3.7. MD and all other experimental evidence pointed to a progressive 

change in the shape of the MPC from a sphere, for lower n, to an ellipsoid for 
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longer chains. This peculiar behavior is due to the degrees of freedom that the 

ligands holds when bound to these very small nanoclusters. This allows the 

shorter chains to bend and fold and indeed the r values experimentally calculated 

are smaller than those expected for a fully extended all-trans conformation of the 

alkyl backbone. Although the radius calculated as the average of the three 

ellipsoid axes is a poor descriptor of the shape of elongated MPCs, its value is in 

remarkably good agreement with the electrochemically determined hydrodynamic 

r (Figure 5).  

 

Figure 5. Comparison between calculated and experimentally determined radii as 

a function of the number of the chain carbon atoms. a, b and c represents the 

calculated semiaxes as described in Section 4.3.7. 

 

 The monolayer thickness value, d, is then estimated by subtracting the 

core radius (5.0 nm) from the experimentally determined MPC radius. The d 

values are also collected in Table 2. Noteworthy, when the lnσ values are plotted 

against the so-calculated 2d values, a linear plot with a slope of 0.74 Å-1 is 

observed (Figure 6). 

 For proper comparison of the solid-state attenuation factor  due to the 

distance increase between the clusters Au cores and the corresponding factor  

pertaining to the solution results, one should normalize the electronic conductivity 

results for the nanocluster concentration (C) in the film. To carry out this 

calculation, we used eq. 5 that assumes a hexagonally close packed film (0.7 

represents the fill factor for this packing organization), as already done before:5  
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(5)     C  0.7(103)
4
3
p (r d)3N

A

 

 

where NA is the Avogadro’s number. For the monolayer thickness d, which 

defines the Au cores' edge-to-edge distance, we used the values obtained from 

the D values. The concentration values calculated in this way are gathered in 

Table 1. It is worth stressing that although these figures were obtained by 

assuming that while in the solid-state the nanoclusters' ligands have the same 

average length as in solution, the values are in actually good agreement with the 

available density data obtained from single-crystal X-ray crystallography. For 

example, for C3 the concentration calculated for the crystal state is 0.69 M, 

whereas the value calculated from eq. 5 is 0.61 M.    

 

Figure 6. Logarithmic dependence of film conductivity  (left to right, n = 3, 4, 5, 

6, 8, 10) as a function of twice the effective d values of Table 2. Linear 

regressions correspond to  = 0.74 Å–1. 

   

 The electronic conductivity σ can now be converted into the 
corresponding first-order electron-hopping rate constants kET (s-1), as done 

previously for redox polymers and alkanethiolate-protected nanoparticles4,14,15 

with eq. 6:  
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(6)                 k
ET

 6RTs
103F 2d2C

 

 

In eq. 6, it is assumed that the carrier concentration equals the MPC core 

concentration and this allows normalizing the film conductivity for the 

nanoparticle's concentration and associated core edge-to-edge distances. 

 By plotting the so-calculated lnkET values against the distance, assumed 

to be the sum of two monolayers thicknesses calculated from the D values, we 

obtain a β value of 0.69 Å-1 (Figure 7), i.e., a value that is now not too far from the 

expected value of 0.79 Å-1. If we use the same abscissa to plot the solution lnk°  

 

 

Figure 7. Logarithmic dependence of ET rate constant between MPCs inside the 

film (left to right, n = 3, 4, 5, 6, 8, 10) as a function of twice the length d of the 

capping thiolates obtained from the Stokes-Einstein equation. Linear regressions 

correspond to  = 0.69 Å–1.  

 

values, the  for the R1 process becomes 0.37 Å–1, that is, a value about ½ of 

that calculated for the films. This result leads us to conclude that even for the 

solution state the Stokes radius is not a good descriptor of the effective distance 

at which the ET takes place. In other words, it is evident that the alkyl chains are 

rather fluid and this allows for the electrons to tunnel from the electrode to the Au 

core at a distance substantially shorter than that measured through the average d 
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values calculated from the Stokes radii. The results obtained in the solid state, on 

the other hand, prove very nicely that while in this physical state the MPCs are in 

close contact inside the film and that the monolayer thickness now resembles 

that observed in solution. Nonetheless, the monolayer thickness is still much 

smaller than that calculated for the fully extended conformation. 

 

5.3.5 Further Insights: The case of Au25(SMeBu)18 

 To further support our conclusion about the dynamic nature of the 

alkanethiolate chains also in the solid state, we decided to study the behavior, 

both in solution and in solid state, of a new Au25 cluster bringing a more rigid 

monolayer. We choose to use 2-methyl-1-butanethiol as the ligand, a thiol 

characterized by the presence of a four-carbon-long chain with a methyl group in 

the  position to the sulfur. Such branching was expected to induce steric 

hindrance and thus hamper possible folding effects inside the monolayer. The 

synthesis and characterization of this nanocluster is fully described in Chapter 6. 

For this new cluster, Au25(SMeBu)18, we measured both the solid state σ (and 
thus kET) and the solution ET k°. Please note that for this specific thiolate we use 

the term SMeBu just to stress that the fully-extended length is as that of SBu. The 

results are shown in Tables 1 and 2.  

 Figures 8 and 9 show the two plots pertaining to the solid-state and 

solution phase ET results, respectively. In both cases, d is as taken from Table 2. 

From Figures 8 and 9, it is possible to infer some very interesting conclusions:  

(i) When in the monolayer, the 2-methyl-1-butanethiolate ligand is more 

elongated than the butanethiolate, as revealed by a larger d value;    

(ii) The ET behavior of Au25(SMeBu)18 in the solid state is on the correlation line; 

however, a slower ET rate and a larger 2d value make it display an approximately 

analogous behavior to that of Au25(SC5)18, as marked by the red dashed lines;  

(iii) In solution, Au25(SMeBu)18 behaves quite differently from the other clusters 

characterized by linear-chain ligands, as its rate constant now falls quite below 

the correlation line; this is due to a less freely folding monolayer, an effect not 

seen in the solid state;  

(iv) The Au25(SMeBu)18 monolayer thickness in solution is comparable to that of a 

hypothetical Au25(SC7)18 cluster, as marked by the red dashed lines. 
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Figure 8. Logarithmic dependence of ET rate constant between the Au25 MPCs 

inside the film (as in Figure 7) with the new data point for Au25(SMeBu)18 (red 

square). The n values are also displayed: see text.  

 

Figure 9. Logarithmic dependence of ET rate constant between the Au25 MPCs in 

solution (as in Figure 1 but for the different d value, here taken from Table 2) with 

the new data point related for Au25(SMeBu)18 (red square). The n values are also 

displayed: see text. 
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5.4 Conclusions 

 This is the first systematic study on the effect of the monolayer length on 

the ET between molecular Au25 MPC in the solid state. We show that the 

conductivity of MPC films can be finely tuned by the proper choice of the length 

and structure of the ligand protecting the Au core. Changing the alkyl chain from 

C3 to C10 induces a decrease in the film conductivity, , of almost 4 orders of 

magnitude. Our results also reveal that when in film the alkyl chains of the MPCs' 

monolayer still hold a detectable degree of fluidity, similarly to what observed in 

solution. The experimental β values allow stating that the average Au core-to-

core distance in the film is comparable or even smaller than the average MPC 

hydrodynamic radius evaluated in solution, which already points to a quite folded 

monolayer. Compared to the solution ET results, however, the solid sate ET rates 

point to much less fluid alkyl chains. These conclusions are perfectly confirmed 

by the results obtained for Au25(SMeBu)18, a cluster characterized by the 

presence of some steric hindrance in the ligands forming the monolayer.  

 

5.5 Experimental Section 

 For the conductivity measurements, we used Au interdigitated array (IDA) 

electrodes manufactured by ALS and consisting of 65 interdigitated Au fingers 

(length = 2 mm, width = 10 μm, interfinger width = 5 μm, thickness = 0.96 nm). 5 

μl of a concentrated DCM solution of the MPC (10 mg/0.1 mL) was drop cast and 

left to evaporate onto the IDA. The use of a highly concentrated solutions 

guarantees formation of a film much thicker than the height of the Au fingers and 

this allows to work under reproducible conditions, as already discussed in detail. 

The cell constant Ccell = l/Atotal was calculated as described by Choi and Murray,4 

that is, by using for l the IDA gap and for Atotal the product of the maximum useful 

conductive MPC film thickness (1 μm) and the finger length (2 mm) times N – 1, 

where N is the total number of fingers (130). Thus, Ccell = 0.194 cm–1. The IDA 

MPC films were dried in vacuum for 30 min: increasing the drying time up to 

several hours did not affect the measured conductivity values. The bias potential 

across the IDA fingers was controlled with a CHI 660c electrochemical 

workstation. The measurements were carried out at 22 °C by scanning the 

potential between +1 and -1 V, with an initial and final potential of 0 V. The 

current output was recorded for different potential scan rates in the range from 

0.1 to 10 V s-1.  No differences were observed by running the experiments in 

ambient or controlled conditions (vacuum or under an argon atmosphere).  
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Chapter 6: Chiral Au25(SR)18 Clusters 
 

 

6.1 Abstract 

 We prepared a series of monodisperse Au25[SCH2CH(CH3)(C2H5)]18 

clusters (hereafter referred to as Au25(SMeBu)18) in which the optical purity 

(enantiomeric excess, e.e.) of the selected ligand (2-methyl-1-butanethiol, 

HSMeBu) was progressively changed. By using this thiol, we introduced 

branching, one methyl group in place of one hydrogen at position β with respect 

to the sulfur atom, along a butanethiolate chain, which thus generates a 

stereogenic center. Although we used commercially available racemic thiols, we 

found out that these thiols possess, in fact, an e.e. of the (S)-enantiomer, as 

verified through the synthesis of the pure (S)-enantiomer. We prepared several 

Au25(SMeBu)18
0 clusters and characterized them extensively. For 

characterization, we particularly used 1H NMR spectroscopy and circular 

dichroism (CD) spectroscopy. Both techniques provided the same information: 

when the e.e. of the thiol employed increases to a value of ca. 75%, the resulting 

Au25 clusters appears to contain only the (S)-2-methyl-1-butanethiolate. The 

results are thus in keeping with the first observation of the phenomenon of 

spontaneous resolution for an MPC. This conclusion, based on purely spectral 

data, was perfectly confirmed by solving the single crystal structure of a cluster 

that, in principle, should have contained thiols possessing 77% e.e. of the (S)-

enantiomer. Instead, X-ray crystallography showed that only the (S)-enantiomer 

is capping the Au25 core. 

 

6.2 Introduction   

 Chirality is one of the most studied and fascinating phenomena in nature. 

Its presence in biological systems, such as DNA, RNA, and proteins, fully justifies 

the demand for the development of drugs, sensors, and catalysts possessing 

chiral features. Besides chirality in single molecules, the issue of chirality is of 

paramount interest also for the more complex nanosystems. Chiral nanoparticles 

can be considered as emerging materials with interesting potentialities, such as 

photonics1 and catalysis.2,3 An excellent review has been published very recently 

of the chirality in thiolate-protected gold clusters.4 Chiral metal nanoparticles are 

particularly interesting because bulk Au and Ag are of face-centered cubic (fcc) 

structure and, hence, are achiral. An interesting question concerns the origin of 
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chirality in chiral metal nanoparticles. As a matter of fact, chirality has been found 

in a variety of nanoparticles.5-20 Chirality in gold clusters is studied mostly by CD 

spectroscopy17,21-25 and single-crystal X-ray diffraction.14,15 On the other hand, 

growing high-quality single crystals suitable for X-ray diffraction is inherently very 

challenging and thus CD turns out to be the most popular method of 

investigation. 

 Concerning gold MPCs, an initial report focused on the study of MPCs in 

which L-glutathione (L-SG) was the protecting ligand.21 These clusters displayed 

the CD behavior of the ligand itself (215 nm) but also signal in the metal-based 

electronic transitions in the visible region. This implied some electronic coupling 

effect.6 Preparation of (L-SG)-protected clusters of different size showed that the 

CD optical behavior depends on size in terms of both the shape and intensity the 

chiroptical effect.21 Generally, the use of chiral protective ligands provides the 

easiest way to impart chirality to MPCs,2,5,17,18,19,26,27 and the resulting systems 

display an optical activity that shows the effect of the ligands themselves.7 

Chirality, however, may be intrinsic also of the MPC structure. As a matter of fact, 

the first structure of a thiolate-protected gold cluster, Au102(p-MBA)44 (p-MBA = 

para-mercaptobenzoic acid),14 revealed that chirality may arise independently of 

the ligands. In Au102(p-MBA)44, as well as in other thiolate-protected gold 

nanoclusters,15 the sulfur and the surface gold atoms form shapes (staple motif) 

in which the protecting ligands are arranged in a chiral fashion. On the other 

hand, p-MBA is achiral and thus racemic mixtures are obtained: the crystal unit 

cell is racemic and there is no CD optical behavior in solution. Separation of the 

enantiomers of Au38(SC2H4Ph)24 by HPLC enabled the successful measurement 

of their individual CD spectra.26 Thermally induced inversion demonstrated that 

the gold−thiolate interface is quite flexible. Au38(SC2H4Ph)24 is intrinsically chiral 

due to the specific binding motif between gold and sulfur: two sulfur atoms 

stabilize a gold atom, forming -SR-(Au-SR)- or –SR-(Au-SR)2- patterns.27,28,29 The 

sulfur atoms become stereogenic centers because they have four different 

substituents, i.e., two nonequivalent gold atoms, the organic chain, and a lone 

electron pair.  

 Au25(SR)18 is, instead, achiral. The only way to introduce chirality and 

study the CD behavior is thus through use of chiral ligands. This has been 

previously done using the (R)- and the (S)-isomers of HS-CH2-CH(CH3)Ph.23 The 

two clusters showed specular CD behavior. Main conclusion was that "the mixing 

of electronic states of ligands with those of surface gold atoms constitutes the 
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fundamental origin of chirality in such nanoparticles". Knoppe and Bürgi noted4 

that the CD spectra of L-glutathionate,5 camphorthiolate,30 and captopril31 (Au25 

clusters otherwise displaying the same absorption spectrum of all other 

Au25(SR)18 clusters, including that protected by chiral 1-methyl-2-

phenylethylthiolate23) are very similar but show differences with respect to the 1-

methyl-2-phenylethylthiolate-protectd Au25 clusters.23 This could be related to 

steric hindrance differences, the latter being less bulky than the aforementioned 

ligands.31  

 

6.3 Results and Discussion 

6.3.1 Synthesis of the Chiral Thiol 

 The synthesis of the enantiopure (S)-(-)-2-methyl-1-butanethiol was 

performed starting from the enantiopure (S)-(-)-2-methyl-1-butanol according to a 

known procedure.32 The synthesis is a summarized in Figure 1. 

 

Figure 1. Reaction scheme of the conversion of the (S)-(-)-2-methyl-1-butanol 

into the enantiopure (S)-(-)-2-methyl-1-butanethiol.  

 

 A solution of the (S)-(-)-2-methyl-1-butanol (5.0 g, 6.1 ml, 56.7 mmol), 

triethylamine (16 ml, 113.4 mmol, 2 equiv), and tetrahydrofuran (100 ml) was 

stirred together at 0 °C, and then methylsufonyl chloride (5.5 ml, 70.9 mmol, 1.25 

equiv) was added dropwise. After stirring for 2 h, the solution was extracted with 

DCM (3 x 50 ml) and washed by water. The organic phase was dried by Na2SO4 

then evaporated to give (S)-2-methylbutyl methanesulfonate. A solution of (S)-2-

methylbutyl methanesulfonate (9.42 g, 56.7 mmol) and potassium thioacetate  

(7.77 g, 68 mmol) dissolved in 200 ml of N,N-dimethylformamide was stirred at 

room temperature over 3 days. Then, 300 ml cold water was added and the 

mixture was extracted with DCM several times (3 x 100 ml). The organic phases 

were combined, dried with Na2SO4, and the solvent evaporated to give (S)-2-

methylbutyl thioacetate. The product was purified by flash chromatography, using 

as eluent cyclohexane and then mixtures cyclohexane-DCM (10:1, 9:3 and 9:4), 

and finally distilled at normal pressure. 1H NMR (200 MHz, CDCl3): δ 0.8-0.9 (6H, 

m), 1.1-1.3 (1H, m), 1.3-1.6 (2H, m), 2.3 (3H, s), 2.7-3.0 (2H, m). 

OH
Ms-Cl

OMs SH
1) CH3COSK

2) NH3/EtOH
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 (S)-2-Methylbutyl thioacetate (1.5 g) was dissolved in methanol (1.5 ml) 

and then 0.5 ml of anhydrous ammonia solution (7 M) in methanol was added. 

The solution was stirred at room temperature until TLC showed no presence of 

the starting material. The solution was evaporated almost to dryness and 

extracted a few times with pentane. (S)-(-)-2-methyl-1-butanethiol was obtained 

by silica-gel chromatographic purification with cyclohexane. 

 

6.3.2 Polarimetry and CD Spectroscopy of the Thiols 

 (S)-(-)-2-Methyl-1-butanethiol and the corresponding formally racemic 2-

methyl-1-butanethiol samples purchased from Sigma-Aldrich and Alfa Aesar 

(hereafter referred to as SA-HSMeBu and AA-HSMeBu, respectively) were 

characterized by polarimetry and CD spectroscopy. As a reference, we employed 

the same enantiomeric pure (S)-(-)-2-methyl-1-butanol used in the synthesis of 

the enantiopure (S)-(-)-2-methyl-1-butanethiol. The measured specific rotation of 

the (S)-(-)-2-methylbutanol sample (neat) was found to be [α]D24 = ─ (5.5 ± 0.1) 

deg dm−1 cm−3 g−1; the producer, Sigma Aldrich, provides a value of [α]D23 = ─ 5.8 

deg dm−1 cm−3 g−1 (neat).33  

 The optical rotations of the three thiols were measured both in acetonitrile 

and dimethyl sulfoxide, at various concentrations. Acetonitrile was chosen due to 

its high transparency at short wavelengths, at which the CD measurements were 

performed. Dimethyl sulfoxide, on the other hand, was the solvent employed in 

the only report concerning the specific rotation of (S)-(-)-2-methylbutanethiol.34 

Whereas such literature value is +3.1 deg dm−1 cm−3 g−1, under the same 

experimental conditions we obtained the larger value of +6.1 ± 0.8 deg dm−1 cm−3 

g−1. Overall, these measurements thus ensure that (S)-(-)-2-methylbutanethiol 

had the same enantiopurity of the enantiopure (S)-(-)-2-methylbutanol used in its 

synthesis. Table 1 gathers these polarimetric results. 

 On these grounds, the specific rotations of the two commercial thiols were 

estimated using the weighted average of the measurements performed in 

acetonitrile, using 3 different concentrations. The results obtained in acetonitrile 

were, in fact, considered more reliable than those obtained in dimethyl sulfoxides. 

The e.e. of the commercial thiols was determined from the ratio between the 

experimental specific rotations and that of the enantiopure (S)-(−)-2-methyl-1-

butanethiol that we synthesized. This led us to the discovery that the Alfa-Aesar 

and Sigma-Aldrich thiols were not racemic as declared, but rather had an (S)-e.e. 

of 77 ± 2 and 35 ± 2 %, respectively. 
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Table 1. Specific rotation values and experimental conditions employed for the 

studied compounds.  

Sample 

 

Solvent Concentration 

(M) 

Specific Rotation [α]D24
 

(deg dm−1 cm−3 g−1) 

(S)-(-)-2-HOMeBua - Neat -5.8 

(S)-(-)-2-HOMeBu - Neat - 5.5 ± 0.1 

(S)-(-)-2-HSMeBu MeCN 0.2 + 5.1 ± 0.4 

(S)-(-)-2-HSMeBu MeCN 0.1 + 4.6 ± 0.6 

(S)-(-)-2-HSMeBu MeCN 0.05 + 4.2 ± 0.7 

(S)-(-)-2-HSMeBu DMSO 0.2 + 6.6 ± 0.5 

(S)-(-)-2-HSMeBu DMSO 0.1 + 6.1 ± 0.8 

(S)-(-)-2-HSMeBub DMSO 0.096 + 3.1 

AA-HSMeBu MeCN 0.2 + 4.0 ± 0.3 

AA-HSMeBu MeCN 0.1 + 3.6 ± 0.5 

AA-HSMeBu MeCN 0.05 + 3.0 ± 0.5 

AA-HSMeBu DMSO 0.2 + 4.5 ± 0.7 

AA-HSMeBu DMSO 0.1 + 3.6 ± 0.8 

SA-HSMeBu MeCN 0.2 + 1.8 ± 0.1 

SA-HSMeBu MeCN 0.1 + 1.7 ± 0.1 

SA-HSMeBu MeCN 0.05 + 1.4 ± 0.1 
a Reference 33. b Reference 34.  

  

 To confirm this unexpected e.e. determination outcome, we carried out 

CD spectroscopy measurements. The solvent employed in the CD 

measurements was acetonitrile (cutoff wavelength at 200 nm). Figure 2 shows 

the CD spectra of the 3 thiols. The CD spectra show that the AA-HSMeBu 

sample gives a slightly less intense signal than (S)-(-)-2-methyl-1-butanethiol. 

The SA-HSMeBu sample gives a much less intense signal but still significantly 

higher than zero. The CD results thus confirm the relative e.e. order of the three 

thiols. The e.e. values (areas and intensities provide very similar values) 

measured with reference to the enantiopure (S)-(-)-2-methyl-1-butanethiol, 

however, are slightly larger than those estimated from the polarimetry 

measurements, the (S)-e.e. values being 88 and 46% for AA-HSMeBu and SA-

HSMeBu, respectively. Particularly because of the experimental noise, these 

results are considered comparatively less reliable than those obtained from the 
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polarimetric measurements. In the following, we will thus refer to the e.e. values 

obtained with the latter approach. 

  

 

Figure 2. CD spectra of (S)-(-)-2-methyl-1-butanethiol, AA-HSMeBu, and SA-

HSMeBu.  

 

6.3.3 Synthesis of Au25(SMeBu)18  

 The clusters [n-Oct4N
+][Au25(SMeBu)18

–] were synthesized using each of 

the above three thiols but also selected mixtures of the AA and SA samples. By 

this strategy, we aimed to modulate the e.e. of the ligands employed for the 

synthesis. Thus, we prepared the following set of clusters (the optical purity is 

defined on the basis of the polarimetric results): 

 Sample A :  SA 100%    35% (S)-e.e. 

 Sample B :  SA-AA 40-60%  60% (S)-e.e. 

 Sample C :  SA-AA 20-80%  69% (S)-e.e. 

 Sample D :  SA-AA 13-87%  72% (S)-e.e. 

 Sample E :  SA-AA 7-93%  74% (S)-e.e. 

 Sample F :  AA 100%    77% (S)-e.e. 

 Sample G :  (S)-HSMeBu    100% (S)-e.e. 

  

 No appreciable differences were observed during the preparation of the 

different clusters. A typical synthesis of [n-Oct4N
+][Au25(SMeBu)18

–] was carried 

out as follows. 0.50 g (1.27 mmol) of HAuCl4·3H2O was dissolved in 40 ml THF, 

and then 0.833 g of tetra-n-octylammonium bromide (1.52 mmol, 1.2 equiv) was 

added. The resulting red solution was stirred for 15 min at 20 °C. The stirring 
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speed was set to 100 rpm and 0.940 ml (7.62 mmol, 6 equiv) of 2-methyl-1-

butanethiol, dissolved in 10 ml of THF, was added dropwise over a period of ca. 3 

min. The solution became yellow and then, after ca. 30 min, colorless. The 

stirring speed was increased to 600 rpm and a freshly prepared icy-cold solution 

(10 ml) of NaBH4 (0.48 g, 12.7 mmol, 10 equiv) in water was quickly added to the 

mixture, which was kept at room temperature. The solution immediately became 

black, as expected. The reaction progress was monitored by UV-vis absorption 

spectroscopy, which allowed us to understand that in less than 24 h the reaction 

mixture could be halted by filtering on paper to remove insoluble white residues. 

The filtered solution had a dark-brown color with orange hues. THF was removed 

with a rotary evaporator to leave a reddish-brown oily solid covered by residual 

H2O from aq. NaBH4. The water phase was removed, and the solid was dissolved 

in toluene and washed with water (4 x 40 ml) in a separatory funnel. Toluene was 

evaporated and the product was dissolved in 50 ml of DCM and left to rest for 

about 12 h in the dark, at 4°C. By this procedure, the cluster is obtained as [n-

Oct4N
+][Au25(SMeBu)18

–]. The product was further purified or oxidized. In the first 

case, the solid was dissolved in diethyl ether, which leaves undissolved most of 

residual tetraoctylammonium salt. The solvent was evaporated and the solid 

quickly washed thrice with icy-cold methanol to remove the remaining salt. The 

red-brownish solid was finally dried. [n-Oct4N
+][Au25(SMeBu)18

–] is slightly soluble 

in alkanes (unlike other Au25(SR)18
– nanoparticles protected with alkanethiols of 

comparable length) and, more generally, in all those solvents that can dissolve 

the neutral form of the cluster. This prevents a complete separation of the anionic 

nanoparticle from its oxidized counterpart. Oxidation of [n-

Oct4N
+][Au25(SMeBu)18

–] to its neutral form was accomplished by dissolution in 

DCM followed by passage  through  a  silica  gel  column  under  aerobic  

conditions, as described in Section 2.2. DCM was rotary evaporated to leave a 

greenish-black oily solid. This latter was washed a few times with acetonitrile to 

obtain a black powder corresponding to pure Au25(SMeBu)18
0.  

 

6.3.4 Optical and Electrochemical Behaviors 

 Figure 3 compares the UV-vis spectrum of Au25(SMeBu)18
0 (sample G, 

enantiopure thiol) and of Au25(SBu)18
0, both dissolved in pentane. The spectra of 

the two clusters show minor differences in optical behavior. This is the case of 

the relative minimum at 375 nm (for Au25(SMeBu)18
0, the dip is less pronounced) 

and in the derivative spectrum at 660 nm. We note that these minor differences 
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are not due to impurities (ruled out by the NMR analysis) and they are also 

present in all other Au25(SMeBu)18
0 prepared starting from the various thiol 

mixtures. Hence, these features can be attributed to the presence of a secondary 

carbon in the β position and to the effect of steric hindrance on the monolayer 

properties. 

   

 

 

Figure 3. Comparison of the UV-vis absorption spectra (upper graph: for the sake 

of better comparison, the curves have been shifted vertically) and their 

derivatives (bottom graph) for Au25(SMeBu)18
0 (sample G, enantiopure thiol, red 

curve) and of Au25(SBu)18 (black curve). Both spectra were obtained using a 

quartz cuvette with a 2 mm optical-path length, at room temperature. 
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 That the synthesis truly yields the "usual" Au25 cluster is also supported by 

the DPV analysis. Figure 4 shows a comparison between the two patterns 

obtained for Au25(SMeBu)18
0 (sample F, AA-HSMeBu) and the corresponding 

Au25(SBu)18
0. Because of the same fully-extended length, the latter is considered 

to be the perfect reference cluster for evaluating the DPV behavior of the 

Au25(SMeBu)18
0 clusters. The DPVs are quite similar and this clearly shows that 

Au25(SMeBu)18
0 has the same stoichiometry and properties as Au25(SBu)18

0, as 

also inferred from the optical behavior. Still, however, some differences are 

evident. The two reversible peaks near 0 V are less positive than those observed 

for the reference cluster, a fact that can be attributed to the inductive effect of the 

methyl group at the β position and thus to stabilization of a positive charge 

(easier oxidation) and destabilization of a negative charge (more difficult 

reduction). For the new cluster, the peak for the formation of the dianion (just 

below -2 V) is less irreversible, probably because of a stiffer monolayer, as also 

inferred from the solid-state and solution phase ET measurements (Section 

5.3.5). The relative potential values for the two most positive peaks are also 

appreciably different. We have not investigated these differences further because 

for the sake of this specific research the important aspect was to prepare clusters 

having the usual structure (see, also, Section 6.3.5). 

 

Figure 4. DPV of 1 mM Au25(SMeBu)18
0 and Au25(SBu)18

0 in DCM/0.1 M TBAH. 

Glassy-carbon electrode, 25 °C.  
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6.3.5 The X-ray Structure 

 Careful recrystallization of Au25(SMeBu)18
0 (sample F, AA-HSMeBu) 

toluene-acetonitrile led to nice crystals that were analyzed by X-ray 

crystallographic analysis. We note that the AA-HSMeBu sample possesses a 

77% e.e. of the (S)-enantiomer. Instead, the structure of the corresponding 

Au25(SMeBu)18
0 clusters reveals the astonishing surprise that only the (S)-(-)-2-

methyl-1-butanethiolate ligands protect the Au cluster. This is shown in Figure 5. 

Although we are currently trying to collect the X-ray crystallographic data also for 

other samples, we do not expect this to be possible for clusters stabilized by less 

(S)-rich thiols and thus clusters capped by different stereochemical scenarios. 

This result is thus in keeping with the first observation of the phenomenon of 

spontaneous resolution for an MPC.  

 

 

Figure 5. Ball-and-stick projection showing the X-ray crystal structure of 

Au25(SMeBu)18
0. Au = yellow, S = red, C = gray, H = white. The structure of the 

thiol is also shown. 
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6.3.6 CD Spectroscopy of Au25(SMeBu)18  

 The CD measurements were performed in hexane solutions, accurately 

checking the concentrations of the various samples. Hexane was chosen as the 

solvent because of its transparency up to 200 nm and its chemical inertness. 

Figure 6 shows a qualitative comparison between the CD spectrum of the 

Au25(SMeBu)18 (sample G, enantiopure (S)-2-methyl-1-butanethiol) and that of 

Au25[(R)-SCH2CH(CH3)Ph)]18,
23 which is the Au25(SR)18 cluster protected by the 

chiral ligand closer to those employed in our current study. The CD spectra show 

similar general features. Not shown is the band corresponding to the chiral thiols 

themselves. This comparison shows that the main features are thus to be related 

to some mixing of electronic states of ligands with those of surface gold atoms, 

as already inferred.4,23 

 

Figure 6. Qualitative comparison of the CD spectra of Au25(SMeBu)18
0 (sample G, 

enantiopure thiol, red curve) and of Au25[(R)-SCH2CH(CH3)Ph)]18 (black curve).23 

 

 The clusters synthesized starting from thiols characterized by different 

e.e. values were analyzed by CD spectroscopy. Unfortunately, owing to problems 

happened during the CD measurements, we cannot provide the analogous 

spectrum (i.e., under the same experimental conditions) for sample G (100% (S)-

(−)-2-methyl-1-butanethiol). The results, obtained under exactly the same 

experimental conditions, are compared in Figure 7. Experimental issues do not 

allow recording the CD spectra of the clusters in the spectral range 

corresponding to particularly small wavelengths, as it was possible for the three 

thiols (cf. Figure 2). We could still detect, however, the maximum for the first 
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band at 215 nm. Figure 7 suggests that the band peaking at ca. 240 nm is 

particularly suitable to attempt a quantitative evaluation of the intensity and area 

as a function of the e.e. in the (S)-enantiomer. Figures 8a and 8b show the 

resulting plots. The other bands do not allow performing a similar comparison. 

Figures 8a and 8b illustrate that no matter how the CD spectra are processed, 

the signal generally increases as the e.e. also increases. However, some 

saturation effect starts emerging at 70-75%, as if the amount of the (S)-

enantiomer in the monolayer is reaching its maximum value. Qualitatively, within 

the limits of the aforementioned reasons, the cluster prepared from (S)-2-methyl-

1-butanethiol is in agreement with this pattern. More important, this pattern is in 

line with the outcome of the X-ray crystallographic analysis of the cluster sample 

prepared from the 77% e.e.-(S) thiol (Section 6.3.5).     

 

 

 

Figure 7. Comparison of the CD spectra of the clusters Au25(SMeBu)18
0 as a 

function of the e.e. of the thiol employed for the synthesis. As shown in the 

legend, the e.e. varies from 35 to 77 % in the (S)-isomer. The measurements 

were performed in a quartz cuvette with an optical path of 10 mm. All clusters 

were dissolved in hexane at an accurately checked concentration of 3.72 x 10─6 

M, corresponding to an absorbance of 0.2 at 401 nm. 4 s response time. 
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Figure 8. Dependencies of (a) intensity and (b) area on the original thiol e.e.-(S). 

The results pertain to the band that peaks at ca. 240 nm, which magnifies the e.e. 

effect. 

 

6.3.7 NMR of Au25(SMeBu)18  

 As already described in detail, in Au25(SR)18 clusters the 18 thiolated 

ligands split into a group of 12 inner ligands and 6 outer ligands. The two groups 

of ligands display distinct NMR spectroscopy patterns, a difference that is 

magnified when the cluster becomes paramagnetic.35-37 Figure 9 compares the 
1H NMR spectra of the native cluster [n-Oct4N

+][Au25(SMeBu)18
─] and its oxidized 

form, Au25(SMeBu)18
0. Both spectra were obtained in dichloromethane-d2 at 25 

°C, 3 mM, and pertain to the clusters prepared from the AA-HSMeBu thiol. The 

proton assignments were performed by standard chemical shift correlations as 

well as by 2D correlation spectroscopy (COSY), total correlation spectroscopy 

(TOCSY), and nuclear Overhauser enhancement spectroscopy (NOESY) 

experiments, as already described for the other Au25 clusters.  
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Figure 9. 1H NMR spectrum of [n-Oct4N
+][Au25(SMeBu)18

─] (a, red line). The 

peaks marked with an asterisk (*) pertain to n-Oct4N
+. (b) 1H NMR spectrum of 

Au25(SMeBu)18
0. Both samples were in dichloromethane-d2 at 25 °C. Symbols α 

and γ refer to the positions of inner and outer methylene groups from sulfur, as 

indicated in the structure (for clarity, only one staple is displayed). Symbol β 

pertains to the secondary carbon of the ligand, γ' and δ correspond with the 

methyl groups. Arrows indicate the most significant shifts observed upon 

oxidation of Au25(SMeBu)18
─ to Au25(SMeBu)18

0 . In the oxidized cluster the (α-

CH2 )in  resonance is at about 13 ppm.  

 

 We note that so far it was not possible to completely purify the anionic 

cluster [n-Oct4N
+][Au25(SMeBu)18

─], as could be possible for all linear 

alkanethiolate-protected cluster. In fact, the signals pertaining to the free thiol are 

still visible in 1H NMR spectrum of the anion, especially in the region around at 

2.5 ppm. The strong broadening of the resonances, particularly that of the α-

methylene of the inner ligands, is due to presence of traces of the paramagnetic 

oxidized cluster. Instead, the Au25(SMeBu)18
0 cluster, which is the subject of this 

Chapter, is void of contaminations. 

 Figure 9 illustrates that the effect of the unpaired electron mostly concerns 

all the groups in positions α, β, γ and δ of the inner ligands and the α methylene 

of the outer ligands (at room temperature, the β resonances are hidden under 

more intense signals: see below). This NMR behavior is caused by the contact 
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interaction of the nuclear magnetic moments with the unpaired electron and can 

be taken as a probe of whether the SOMO, and thus the spin density, spreads 

onto those specific nuclei. Differently from Au25(SCnH2n+1)18, however, some 

resonances split owing to the presence of the stereogenic carbon in the β 

positions of the ligands, as expected for a chiral molecule.38   

 To study the effect of changing the e.e. of the thiols used to prepare the 

MPC, we used benzene-d6 as the deuterated solvent. This choice was dictated 

by possible comparisons with the other Au25 MPCs, but also to perform 

measurements at higher temperatures. Figure 10 compares the 1H NMR spectra 

of Au25(SMeBu)18
0, obtained from AA-HSMeBu (77% e.e. in the (S)-isomer) at 25 

(black line) and 75 °C (red line). The usefulness of the high-temperature 

measurements is evident in that the resonances become more resolved, and 

some signals that at room temperature are concealed by accidental superposition 

to other stronger peaks become clearly separated.  

 
Figure 10. 1H NMR spectrum of Au25(SMeBu)18

0 at 25 (black line) and 75 °C (red 

line) in benzene-d6.  

 

 Figure 11 illustrates the behavior of the α-(CH2)in resonance, as the 

temperature changes from 25 to 75 °C. As for the clusters Au25(SR)18
0 protected 

with linear alkanethiols, these methylene protons have a resonance strongly 

broadened and shifted to low field, in this case to ca. 13 ppm at room 

temperature. In fact, this δ value is decisively smaller than that observed for a 

number of Au25(SR)18
0 clusters protected by linear-chain thiolates: under the 

same conditions (temperature, solvent, concentration), it is routinely located at 25 
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ppm. In the case of Au25(SMeBu)18
0, increasing the temperature initially shifts the 

broad peak toward lower fields (in contrast with the behavior of linear-chain 

thiolate-protected Au25(SR)18
0, for which the shift is always in the opposite 

direction), while the peak width sensibly decreases. At about 50-60 °C, however, 

the shift trend is inverted, and the signal slightly move to high field. The fact that 

the peak doubles and the general behavior can be ascribed to the presence of 

the secondary, chiral carbon at the β position.  

 

 
 

Figure 11. Variation of the position of the α-(CH2)in resonance of 3 mM 

Au25(SMeBu)18
0 (sample F) as the temperature changes from 25 to 75 °C.  

 

 Figures 12-15 show how other main resonances of Au25(SMeBu)18
0 

change with temperature (In all cases, the sample is F): they feature α-(CH2)out, 

the couple of γ-(CH2)in signals,  β-(CH)in and the couple of γ'-(CH3)in signals, and 

the series of peaks pertaining to γ-(CH2)out, β-(CH)out, δ-(CH3)in, and γ-(CH2)out. 

The outer-ligands' γ′ and δ methyl resonances do not change appreciably in 

chemical shift and shape. The spectra at the different temperatures were 

normalized by matching the intensities of the δ methyl of the outer ligand. 
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Figure 12. Variation of the position of the α-(CH2)out resonance of 3 mM 

Au25(SMeBu)18
0 (sample F) as the temperature changes from 25 to 75 °C. 

 

 

 
 

Figure 13. Variation of the position of the γ-(CH2)in resonances of 3 mM 

Au25(SMeBu)18
0 (sample F) as the temperature changes from 25 to 75 °C.  
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Figure 14. Variation of the position of the β-(CH)in and the couple of γ'-(CH3)in 

resonances of 3 mM Au25(SMeBu)18
0 (sample F) as the temperature changes 

from 25 to 75 °C. 

 

 
 

Figure 15. Variation of the position of the β-(CH)out, the couple of δ-(CH3)in, and 

the couple of γ-(CH2)out resonances of 3 mM Au25(SMeBu)18
0 (sample F) as the 

temperature changes from 25 to 75 °C. 
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 On these grounds, we carried out an extensive analysis of the influence of 

the e.e. of the ligands on the NMR behavior. Figure 16 show the typical effect of 

changing this parameter on the NMR pattern at high field values. 

 

 

Figure 16. 1H NMR spectra of 3 mM Au25(SMeBu)18
0 samples, corresponding to 

(top to bottom) 100, 77, 60, and 35% e.e. in the (S)-thiol used in the synthesis. 

Benzene-d6, 25 °C.  

 

 Figure 16 illustrates a detectable effect of e.e. of the clusters on the width 

of most 1H NMR peaks. Some resonances are particularly sensitive to this 

parameter and show that the trend is that when the e.e. increases, the width 

decreases (sharper peaks) accordingly. We speculated that this effect is caused 

by an increase of the different chemical environments experienced by different 

proportions of the (R)- and (S)-isomers inside the monolayer. Indeed, we should 

note that different individual clusters may be capped by thiolates of slightly 

different e.e., in analogy with what happens for monolayers containing two 

different thiolates as obtained by ligand place exchange.39 Even by considering 

an exactly identical e.e. in the monolayer, one cannot exclude differences in 

terms of location of the various (R)- and (S)-isomers; the fact that the clusters are 

protected by 18 ligands show that the possible combinations are numerous. 

These chemical-environment differences are thus expected to produce a range of 

slightly different chemical shifts for each resonance. Simple stereochemical 
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considerations also suggest that some resonances should experience this effect 

more than others. 

 The X-ray crystallographic results obtained with sample F (made form AA-

HSMeBu) show that only the (S)-enantiomer is present in the monolayer. On 

these grounds, we can take the temperature effect on the spectra of Figures 11-

15 as truly showing the behavior of a cluster protected by a single chiral ligand. 

According to the CD results, the cluster containing the smallest e.e. is that of 

sample A (made form SA-HSMeBu). We thus expected this cluster as that 

affected by the largest "chemical-environment difference" effect. Figures 17-21 

show for sample A the outcome of the equivalent NMR experiments carried out 

for sample F and shown in Figures 11-15. In keeping with our expectation, all 

spectral regions are indeed broader and less resolved than those of sample F.  

 

 

 

 

Figure 17. Variation of the position of the α-(CH2)in resonance of 3 mM 

Au25(SMeBu)18
0 (sample A) as the temperature changes from 25 to 75 °C.  
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Figure 18. Variation of the position of the α-(CH2)out resonance of 3 mM 

Au25(SMeBu)18
0 (sample A) as the temperature changes from 25 to 75 °C. 

 

 

 

 

Figure 19. Variation of the position of the γ-(CH2)in resonances of 3 mM 

Au25(SMeBu)18
0 (sample A) as the temperature changes from 25 to 75 °C.    
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Figure 20. Variation of the position of the β-(CH)in and γ'-(CH3)in resonances of 3 

mM Au25(SMeBu)18
0 (sample A) as the temperature changes from 25 to 75 °C.  

 

 

Figure 21. Variation of the position of the β-(CH)out, the δ-(CH3)in, and the couple 

of γ-(CH2)out resonances of 3 mM Au25(SMeBu)18
0 (sample A) as the temperature 

changes from 25 to 75 °C. 

 

 On these grounds, the question now is: can we use the peak width to 

estimate the average e.e. of the thiolates forming the monolayer of a given 
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cluster sample? It is quite obvious that some resonances are not particularly 

suitable for the purpose because of either the lack of significant effects or the 

complex multiplicity of the signal. On the other hand, the α-(CH2)out resonance 

appears as particularly suitable. The peak widths were calculated as full-width-at-

half-maximum (FWHM). Figure 22 shows the evolution of the α-(CH2)out 

resonance as a function of the specific sample (from A to G) and thus of the 

corresponding e.e., at 25 °C. 

 

 

 

Figure 22. Variation of the width of the α-(CH2)out resonance for 3 mM 

Au25(SMeBu)18
0 samples from A to G, at 25 °C. 

 

 Figure 23 shows these FWHM values as a function of the e.e. of the thiol 

employed in the synthesis of the cluster. A red dashed line connecting the values 

obtained for the samples with the poorest (A) and maximum e.e. (G) has been 

added just for the sake of evidencing the nonlinear trend better. Qualitatively, a 

similar NMR outcome is observed also through analysis of the δ-(CH3)in, the γ'-

(CH3)in, and the couple of γ-(CH2)in resonances. Concerning α-(CH2)out, a similar 

evolution of the (average) peak width as a function of the specific sample is 

observed also at 75 °C. Due to the aforementioned experimental issues, sample 

G could not be studied at this temperature. Figures 24 and 25 show the results 

obtained α-(CH2)out at 75 °C, and are thus the equivalent of Figures 22 and 23 

obtained at 25 °C.  
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Figure 23. Plot of FWHM obtained at 25 °C as a function of the e.e. of the thiols 

employed in the syntheses of the corresponding clusters.  

  

 

 

Figure 24. Variation of the width of the α-(CH2)out resonance for 3 mM 

Au25(SMeBu)18
0 samples from A to F, at 75 °C. 
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Figure 25. Plot of FWHM obtained at 75 °C as a function of the e.e. of the thiols 

employed in the syntheses of the corresponding clusters. 

 

 These results illustrate in a qualitative but yet convincing manner that at 

ca. 75% e.e. a saturation limit is reached, at least in terms of the peak width. On 

the other hand, this outcome is perfectly in line with the CD results and, notably, 

the X-ray structure of the cluster that should have contained a theoretical 77% 

e.e. of the (S)-enantiomer. 

 

6.4 Conclusions 

 In this Chapter we aimed at understanding the properties of Au25 clusters  

capped by ligands of different e.e. values. We introduced one methyl group in 

place of one hydrogen at position β (with respect to the sulfur atom) along a 

butanethiolate chain, and this introduces a stereogenic center. We found that 

commercially available racemic 2-methyl-1-butanethiol samples, as obtained from 

two companies, are nonracemic but possess an e.e. of the (S)-enantiomer, as 

verified through synthesis of the (S)-enantiomer. We prepared several 

Au25(SMeBu)18
0 clusters and characterized them. 1H NMR spectroscopy and CD 

spectroscopy indicated that as the e.e. of the thiol employed reaches a value of 

ca. 75%, the resulting Au25 clusters only contain the (S)-thiolate. These 

conclusions were perfectly confirmed by solving with X-ray crystallography the 

single crystal structure of a cluster that, in principle, should have contained thiols 

possessing 77% e.e. of the (S)-enantiomer: the structure shows that only the (S)-

enantiomer is capping the Au25 core. We thus observed, for the first time, the 
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phenomenon of spontaneous resolution for an MPC. Overall, these results thus 

nicely merge to point to the occurrence of the phenomenon of spontaneous 

resolution. We are still working on this project, for example about the mechanism 

of spontaneous resolution. Nonetheless, we can already conclude that this is an 

unprecedented result for MPCs. It also is a very important result on a more 

general viewpoint, particularly if one considers that the opportunity of studying 

what happens in an atomically precise system composed by as many as 18 

chiral, identical molecules assembled onto a "surface" is indeed only possible for 

molecular MPCs. 

 

6.5 Experimental Section 

 The UV-vis spectra were obtained at 0.1 mM concentration in DCM, with 2 

mm cuvettes. We used a Thermo Scientific Evolution 60S spectrophotometer or, 

during syntheses, an Ocean Optics QE65000 spectrophotometer equipped with a 

DH-2000-BAL light source. The spectra resolution was 1 or 0.8 nm, respectively. 

 The electrochemical experiments were carried out in DCM/0.1 M TBAH, 

under an Ar atmosphere in a glass cell thermostatted at 25 °C, using a 0.55 mm 

radius glassy-carbon disk electrode. The counter electrode was a Pt wire and an 

Ag wire served as the quasi-reference electrode. The latter was then calibrated 

against the KCl saturated calomel electrode, SCE. We used a CHI 660c 

electrochemical workstation and the positive feedback correction was applied. 

 The polarimetric measurements were performed with a polarimeter 

JASCO P1010, at 589 nm (the sodium D line), with standard (10 cm) optical path. 

As a reference, we employed the enantiomeric pure (S)-(−)-2-methyl-1-butanol. 

 The solvent employed in the CD measurements was acetonitrile (cutoff 

wavelength at 200 nm). The thiols were analyzed at 3 mM concentration, using 

cuvettes with an optical path of 10 mm. The instrument employed was a 

spectropolarimeter JASCO 810. The measurements were carried out at a scan 

rate of 50 nm min-1 and 2 or 4 s as the response time. The spectra correspond to 

16 accumulations. 

 1H NMR spectra were obtained at ~1 mM MPC concentration in C6D6 with 

a Bruker Avance DMX-600 MHz spectrometer equipped with a 5 mm TX-1 x,y,z-

gradient powered, triple-resonance inverse probe operating at 599.90 MHz. The 

temperature was controlled (25  0.1 °C, unless otherwise indicated) with a 

Bruker BVT-300 automatic temperature controller. Chemical shifts are in part per 

millions () units with reference to tetramethylsilane used as an internal standard. 
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To ensure a complete relaxation for all the resonances, integral values for the 

proton spectra were obtained by a prescan delay of 10 s. The proton 

assignments were performed by standard chemical shift correlations as well as 

by 2D correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), 

and nuclear Overhauser enhancement spectroscopy (NOESY) experiments, as 

previously done for Au25(SC2H4Ph)18.
40 FWHM were calculated using the macro 

lhcal in TopSpin-Bruker 3.2. 
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