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Two things fill the mind with ever new and increasing admiration and
awe, the more often and steadily we reflect upon them: the starry heav-
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1
Introduction

Nothing great in the world was
accomplished without passion.

Georg Wilhelm Friedrich Hegel
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1.1 Introduction
P�nta ûeØ. This famous aphorism sums up the thought of the grecian philosopher Heraclitus
of Ephesus (535 − 475 BC) and it is rendered in english with «Everything flows». With this
sentence Heraclitus wants to convey the idea that everything is in a continuous change. In the
Heraclitus’ philosophy, Nature is too complex to repeat itself and the fluid motion is the most
representative example of how things continue to move without rest.

P�nta qwreØ kaÈ oÎdàn mènei, dÈs âs tän aÎtän potamän oÎk _an âmbaÐhs.

«Everything changes and nothing rests, you cannot step twice into the same stream.»

Today Science has done many advances from Heraclitus’ times, and nowadays we know
that the fluid motion admits a statistical description. However, we are still far from a deep
knowledge of fluid phenomena and the fluid dynamics represent a challenging task for future
experimental and numerical activities. The latter in particular is increasingly important in
all the scientific fields and nowadays the mathematical modelling is required to be extremely
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1 – Introduction

accurate in order to deep understand the complexity of the physics behind lots of practical
problems. Specifically in the field of compressible viscous flows, the mechanic of the fluids is a
challenging task. Such flows, due to their unique hyperbolic dynamics, exhibit a complex and
non-linear behaviour, thus ad-hoc numerical methods are required for their discrete treatment.
Moreover, especially applying such models to turbulent and fully separated flows, the com-
putational power becomes demanding, forcing to develop massive parallel and highly scalable
tools.

1.2 The importance of being «compressible»
From low-speed regimes up to high-speed conditions, compressible flows range a wide variety of
problems. According to many studies, the aerodynamics of both civil and military aircrafts [3,
2] or the modern engines performances [73, 62, 63, 57, 9] are strongly linked to flow compressible
phenomena and dynamics. Today, far from the most popular applications of internal and
external aerodynamics, compressible fluid dynamics represents an increasingly exciting issue
in the field of medical and environmental applications. Variability of pressure and density
influences different sciences. For example, the human voice [131, 112] consists in a challenging
topic whose physics has not been completely understood yet; as well as the noise control and
the aero-acoustics related problems [41, 14, 83, 29] requires even more accurate, practical and
predictive solutions.

Despite its complexity, the numerical description of compressible flows - and in particular
the numerical methods for Euler equations of Gas Dynamics - go back to the dawn of the
computer era and several works and textbooks have appeared over the years (e.g., Courant
et al. (1952), Godunov (1959), LeVeque (1998), Hirsch (2007), Toro (2009)). In the last
two decades the formulation of high-order high-resolution shock-capturing numerical schemes
in the path of Essentially non-Oscillatory (ENO) and Weighted-Essentially non-Oscillatory
(WENO) schemes [53, 59, 113, 1, 5, 16, 4, 126] as far as the development of ad-hoc total-
variation-diminishing (TVD) time-integration methods [43] have significally improved both
the comprehension of the convective terms of Navier-Stokes equations and the capabilities of
the numerical solvers to accurately and stably evolve strong compressible flow conditions. The
extension of the previous schemes to a hybrid-compact/hybrid-central formulations [90, 21, 91,
92] combined with shock-detection techniques [30, 55] improved the numerical resolution and
reduced the computation efforts in the discretisation process.

1.3 Moving objects
Due to the high-fidelity of the actual numerical models and the continuous increase of the
computational power, today even more difficult simulations and complex dynamical systems
can be treated with a computational approach. In this path, the fluid-structure interaction
(FSI) represents one of the most challenging tasks for future fluid dynamics modelling. Histor-
ically speaking, the problem has been initially formulated in the filed of incompressible flows
over civil structures (see, e.g., Green and Unruh (2006)) and it has been extended to a wide
variety of practical problems (see, e.g., [121, 76, 13]). Dealing with the high-speed flows, the
FSI lacks an accurate and stable numerical approach. The topic includes a wide variety of
applications and the numerical simulation of compressible viscous flows around moving objects
is still a crucial target in many engineering fields. The latter range from the control of aero-
elastic structures [50] up to the study of particulate compressible flows [122] and surely today
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1.4 – Turbulence modelling

the success of landing on dense atmosphere planets [10, 34] or the efficiency improvement of
high-bypass turbofan engines [36] are even more affected by the non-linear dynamics between
the structural components and the supersonic flow field.

1.4 Turbulence modelling
Shocks and discontinuities are not the only problems related to compressible flows and the
turbulent phenomena play a crucial role in the accurate prediction and simulation of such sys-
tems. Turbulence is a chaotic, time-dependent and multi-scale physical phenomenon inherent
in the fluid motion and governed by the Navier-Stokes equations. The main feature of turbu-
lent flows consists in a continuous cascade of mechanical energy from the bigger scales to the
smaller ones. Coherent structures with different sizes characterise all these scales. Thus, the
bigger vortices are comparable to a macro physical length of the problem while the smaller
could be even micrometrical. The bigger structures, in particular, represent a tiny portion
of the mechanics associated to a turbulent flow and going along the turbulent cascade and
travelling the turbulence granularity, the finest vortices are the ones that play the final and
fundamental role in the dissipation mechanism, destroying the energy of the system in a small
portion of space. In 1941 the essential work of A. N. Kolmogorov (1903−1987) firstly advanced
a theoretical description about the role of the dissipative scales, that thanks to his contribution
captured his name.

Today three main approaches are available in order to describe the complex dynamics asso-
ciated to a turbulent flow: the Direct Numerical Simulation (DNS), the Large Eddy Simulation
(LES) and the Reynolds-Averaged Navier-Stokes (RANS) approach [98].

The DNS method consists in directly discretising the Navier-Stokes system of equations
without introducing any model for turbulence. This approach is recognised as the most ac-
curate and consistent physic method, but computationally speaking it is very demanding. To
resolve all the smallest structures associated with the turbulent energy cascade, the numerical
discretisation should be the finest. The basic theory of homogeneous turbulent flows shows
the impossibility of a DNS method to be used in applicative situations. Since the dimension of
the smallest scales is inversely proportional to the Reynolds number and in applicative prob-
lems the latter has a magnitude order of ∼ 107, considered η the Kolmogorov’s length and L0
a characteristics size of a problem these two parameters are related through L0/η ∝ Re3/4,
resulting that a fully resolved three-dimensional DNS requires (Re3/4)3 ≃ 1015÷16 number of
points at each time-step. The goal is still impossible even for the most modern and powerful
supercomputers.

Since the beginning of computation, the turbulence community has made many efforts to
address high-Reynolds turbulent flows and thanks to them today many alternatives are at our
disposal. To avoid the expensive DNS approach and predict the mechanics of a turbulent flow
with a sufficient level of accuracy, the most employed and well-known method for industrial and
applicative fluid dynamics problems consists in the Reynolds-Averaged Navier-Stokes (RANS)
technique. The RANS approach represents an entirely different philosophy with respect to
DNS. In this case, the numerical algorithm solves the mean turbulent fields resulting in a
drastically reduction of the number of discretisation elements employed in the numerical sim-
ulation. However, the method induces a lot of adverse effects. The mean dynamics introduces
six more unknowns variables in the mathematical description of the fluid motion; thus, some
modelling techniques for these terms are required. As a consequence, the results are strongly
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1 – Introduction

affected by the selection of the turbulence model, often leading to wrong predictions. Moreover,
the unsteady dynamics associated to the vortical structures, crucial in many applications, is
entirely missed by the method.

The LES represents a good compromise between the DNS method and the RANS technique.
The latter directly solves the more significant turbulent structures (eddies), while the smaller
is modelled and filtered in such a way that the turbulent energy cascade is preserved. Today
the LES approach seems to be a very promising strategy (see, e.g., [125, 82, 114, 116, 136])
representing a valid and more accurate alternative to RANS modelling. Modern industrial CFD
has already moved from the more consolidated RANS approach to Scale Resolving Simulations
(SRS). The latter aims at resolving just a portion of the turbulent spectrum, filtering the rest
and saving a large amount of computational power and memory storage (see, e.g., Gritskevich
et al. (2012)). In this path the Detached Eddy Simulations (DES), the Delayed Detached Eddy
Simulations (DDES) and the Improved Delayed Detached Eddy Simulations (IDDES) consist
in a hybrid/zonal RANS and LES models, representing real and actual solutions for practical
and applicative problems. According to the actual computational power, even a pure LES
seems to be feasible in some applicative problems.

1.5 Motivations
Inside this scenario, the present work takes place. With this PhD project we developed, and we
fully validated a high-resolution numerical model suitable for fluid mechanics simulations in a
wide range of speeds and regimes. Nowadays, such topic - especially starting the development
process from scratch - could seem in contrast with the availability of a large variety of highly-
optimised and multi-platform fluid dynamics software. Among these, it is enough to mention
the most famous commercial solutions like Ansys Fluent, Star-CCM+ and Comsol Multiphysics
or the most employed open-source implementations like OpenFoam and NEK5000. Anyway,
facing frontier engineering applications or fundamental topics in physics of fluids still represents
a challenging task for all of these solutions. In particular, the aerodynamics problems in the
transonic regime or the dynamics associated to the interaction between compressible flow and
a moving structure require the researcher to be aware not only on the physics related to the
problem but also to the numerics and the numerical implementation behind the model he
is employing. This task is very far from the objectives of commercial software which aims
to be as general as possible and user-friendly. Being easy to be used makes this software
to be often opaque to the user and excessively conservative, implementing strongly diffusive
numerical methods and highly-relaxing the numerical solution. Especially in the field of frontier
applications, these methods often result in wrong predictions of the flow behaviour. Thus an
ad-hoc numerical tool is required. For this reason, we developed URANOS. URANOS is a
low-dissipative high-order and high-resolution numerical solver especially developed for fluid
simulation in strong-compressible viscous conditions and able to deal with moving objects
at high-Mach numbers. The solver name, standing for Unsteady Robust All-around Navier-
StOkes Solver, is also evocative, highlighting the general purposes of the tool, thus recalling
the term with the starry sky is translated into ancient greek: OÎranìs.

1.6 Solver structure
URANOS is a DNS solver which implements the full set of the Navier-Stokes system of equa-
tions in a time-dependent conservative formulation. This choice represents a natural solution
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for high-fidelity simulations. Being aware of the impossibility of treating high-Reynolds prob-
lems, the development process and the validation of the tool has been focussed on moderate-
Reynolds DNS applications. In addition, the solver implements the LES approach dealing with
three different turbulence models. This peculiarity allows simulating high-Reynolds problems
staying within an accurate and high-performance numerical method. Also, the LES extension
of the solver has been successfully tested and validated over well-documented benchmarks.
Speaking about the numerics behind the solver, the latter relies on a high-order non-uniform
Cartesian finite-difference approach and employs the Immersed Boundary Method (IBM) to
deal with embedded geometries in the fluid domain. The tool is able to address a large variety
of both fundamental and aerodynamics applications, in term of shock/turbulence interaction
and flows over complex (even moving) geometries in strong compressible conditions. Especially
in the field of bluff-bodies aerodynamics the solver has shown an excellent level of accuracy in
a wide range of Reynolds and Mach numbers.

1.7 Thesis outline
In the present dissertation, the numerical methodology will be described in high level details,
and in particular, the thesis is organised in the following 7 chapters:

• §2 «Mathematical model» provides a theoretical description of the model describing the
dynamics of a time-dependent compressible flow and derives some suitable formulations
for numerical applications;

• §3 «Numerical integration of differential equations» gives a brief overview of the numerical
methods for the time-integration of partial differential equations, focusing to the one
implemented and to its validation;

• §4 «Numerical treatment of convective fluxes» aims to explain the problems related to
shocks and discontinuities and it provides some ad-hoc numerical strategies to face them.
The chapter ends with the validation of our methodology, resulting in a considerable
number of tests and benchmarks;

• §5 «Numerical treatment of viscous fluxes» provides a detailed description of the diffusive
terms of the Navier-Stokes system of equation, presenting a suitable formulation for them
and with the related tests suite;

• §6 «Code parallelisation and 3D results» gives an overview of parallelisation strategies for
three-dimensional domains resulting in a demanding technique for real applicative prob-
lems. The chapter ends presenting central findings in the field of three-dimensional
turbulent and fully separated flows;

• §7 «The immersed boundary methods» aims to describe the Immersed Boundary method-
ology. The chapter discerns between the Direct-Forcing method and the Ghost-Point-
Forcing method; the latter is explained with a significant level of details representing our
choice;

• §8 «Results with the immersed boundary method» concludes the dissertation presenting
a large variety of benchmarks and test cases to validate the entire tool combining the
high-order solver with the IBM.
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Mathematical model

All models are wrong, but some models
are useful.

George Edward Pelham Box
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2 – Mathematical model

In the present chapter, we will derive the Navier-Stokes system of equations in conservative
formulation for a Newtonian ideal gas. A suitable formulation for numerical applications
will be pointed out, and an ad-hoc non-dimensional description of the model will be derived.
The model can describe a large variety of fluid systems, but remaining inside the Continuum
Mechanic Hypothesis. Fro this formalism is mandatory to have the Knudsen number Kn, i.e.,
the ratio between molecular mean free path λ and a characteristic length of system L0, to be
much smaller of a unit.

2.1 The conservation principles for a continuum system
Being Σ a closed system described by a time-dependent material volume Vt and being Vt

moving at the same speed of the local velocity field. If ∂Vt represents the Vt frontier, the three
fundamental laws that describe the system are: The mass conservation equation

d

dt

∫
Vt

ρ dV = 0 (2.1)

Newton’s second law

d

dt

∫
Vt

ρui dV = Fi i = 1, . . . ,3 (2.2)

and the first law of the thermodynamics

d

dt

∫
Vt

ρE dV = δQ

δt
− δW

δt
(2.3)

Here ρ is the density of Vt; ui is its speed in i-th direction; Fi is the resulting force along the
the i; E is the total energy per unit mass while δQ/∂t and δW/∂t are respectively the heat
flow and the mechanical work temporal variations exchanged through ∂Vt. Being ϕ a general
transported variable, the Reynolds Transport Theorem (RTT) applied to ϕ could be indicated
as follows

d

dt

∫
Vt

ϕ dV =
∫

V

∂ϕ

∂t
dV +

∫
∂V
ϕujnj dS

1 (2.4)

or equivalently, exploiting the divergence theorem

d

dt

∫
Vt

ϕ dV =
∫

V

∂ϕ

∂t
+ ∂ϕuj

∂xj

dV (2.5)

Hence, applying the expression (2.5) to equations (2.1), (2.2) and (2.3) we can write

∫
V

∂ρ

∂t
+ ∂ρuj

∂xj

dV = 0 (2.6a)∫
V

∂ρui

∂t
+ ∂ρuiuj

∂xj

dV = Fi (2.6b)∫
V

∂ρE

∂t
+ ∂ρEuj

∂xj

dV = δQ

δt
− δW

δt
(2.6c)

1In the present dissertation the Einstein’s convention for the summation on repeated indices will we employed
apart where different stated.
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2.1 – The conservation principles for a continuum system

The latter set of equations represents a simple mathematical manipulation describing the
conservation principles in terms of mass, momentum and total energy for a general thermo-
mechanical system under the hypothesis of the Continuum Mechanics.

2.1.1 Mass conservation
From equation (2.6a) the arbitrariness of the integration volume leads us to conclude that

∂ρ

∂t
+ ∂ρuj

∂xj

= 0 (2.7)

The equation represents a differential formulation for the mass conservation of the system Σ.

2.1.2 Momentum conservation
Working on the right-hand-side of equation (2.6b) we need to describe the external forces Fi

using a suitable model. Here two contribution can be pointed out so

Fi =
∫

V
ρfi dV +

∫
∂V
σijnj dS (2.8)

where fi is the resulting volume force (i.e., gravitational forces, electro-magnetical effects...)
in i-th direction per unit mass and σij is the stress tensor due to internal shear effects. So,
inserting equation (2.8) in (2.6b) we can write

∫
V

∂ρui

∂t
+ ∂ρuiuj

∂xj

dV =
∫

V
ρfi dV +

∫
∂V
σijnj dS (2.9)

Applying the divergence theorem to the right-hand-side

∫
V

[
∂ρui

∂t
+ ∂ρuiuj

∂xj

− ρfi −
∂σij

∂xj

]
dV = 0 (2.10)

so for the arbitrariness of the integration volume, we conclude as follows

∂ρui

∂t
+ ∂ρuiuj

∂xj

= ∂σij

∂xj

+ ρfi (2.11)

The latter equation represents a differential formulation for the momentum conservation of the
system Σ.

2.1.3 Energy conservation
Working on the right-hand-side of equation (2.6c) the temporal variation of the heat flow can
be expressed as

δQ

δt
= −

∫
∂V
qini dS (2.12)

where qi, the heat flux in i-th direction. qi can be modelled using Fourier’s law

qi = −λ ∂T
∂xi

(2.13)
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2 – Mathematical model

where λ = λ(T ) is the heat transport coefficient of the system and ∂T/∂xi is the temperature
gradient. The temporal variation of the mechanical work can be expressed by the scalar product
between the acting forces and the local speed

δW

δt
= −

∫
∂V
σijnjuidV −

∫
∂V
ρfiuidV (2.14)

Thus, introducing (2.12) and (2.14) in (2.6c), and taking into account (2.13) we can write∫
V

∂ρE

∂t
+ ∂ρEuj

∂xj

dV = −
∫

∂V
qjnj dS +

∫
∂V
σijnjuidV +

∫
∂V
ρfiuidV (2.15)

equation that, exploiting the divergence theorem and the arbitrariness of the integration vol-
ume, results

∂ρE

∂t
+ ∂ρEuj

∂xj

= ∂

∂xj

(
λ
∂T

∂xj

)
+ ∂σijui

∂xj

+ ρfiui (2.16)

The last relation represents a differential formulation for the total energy conservation of
the system Σ.

2.2 The Navier-Stokes system of equations

2.2.1 Newtonian fluids
The conservation principles in differential formulation expressed by equations (2.7) (2.11) (2.16)
represent the mathematical model for describing the conservation properties for a general
continuum medium. In the present paragraph, we want to characterise the model for a fluid
with Newtonian rheology. In particular, being σij the stress tensor of a Newtonian fluid, this can
be decomposed in two terms: a pressure contribution, existing both in static and in dynamic
conditions, and a dynamical contribution (dij), due to the relative motion between elementary
fluid volumes, thus

σij = −pδij + dij (2.17)
here p denotes the thermodynamical pressure while δij is the Kronecker’s delta. A fluid is said
to be Newtonian if the dynamical contribution of the stress tensor is a linear combination of
the velocity gradient

dij = Aijkl
∂uk

∂xl

(2.18)

here Aijkl is a fourth-order tensor collecting the combination coefficients. For the symmetrical
properties of stress tensor, it is possible to prove that dij can be expressed by

dij = µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ µv

∂us

∂xs

δij (2.19)

where µ and µv are respectively the dynamical and the volumetric viscosities. Following the
Stokes’ hypothesis

µv = −2
3µ (2.20)

so the dynamical contribution of the stress tensor for a Newtonian fluid can be expressed as
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2.2 – The Navier-Stokes system of equations

dij = µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

δij

)
(2.21)

2.2.2 Model description
In the previous paragraphs, we derived the conservation principles in differential equations
for a continuum medium and we introduced the model of a fluid with Newtonian rheology.
Combining the expression of the stress tensor (2.17) into (2.11) and (2.16) and taking into
account (2.21) we obtain that

∂ρ

∂t
= −∂ρuj

∂xj

(2.22a)

∂ρui

∂t
= − ∂

∂xj

(ρuiuj + pδij) + ∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

))
+ ρfi (2.22b)

∂ρE

∂t
= − ∂

∂xj

((ρE + p)uj) + ∂

∂xj

(
λ
∂T

∂xj

)
+ ∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

)
ui

)
+ ρfiui

(2.22c)

The previous set of partial differential equations (PDE) represent the Navier-Stokes (NS)
system of equations in conservative formulation for a fluid with Newtonian rheology. The
system can be cast in the vectorial form

∂U
∂t

= −∂Fj(U)
∂xj

+ ∂Fvj(U)
∂xj

+ S(U), j = 1, . . . , 3 (2.23)

where

U =

⎛⎜⎜⎜⎜⎜⎜⎝
ρ

ρui

ρE

⎞⎟⎟⎟⎟⎟⎟⎠ ,Fj =

⎛⎜⎜⎜⎜⎜⎜⎝
ρui

ρuiuj + pδij

(ρE + p)ui

⎞⎟⎟⎟⎟⎟⎟⎠ ,Fvj =

⎛⎜⎜⎜⎜⎜⎜⎝
0

dij

dijuj + λ ∂T
∂xi

⎞⎟⎟⎟⎟⎟⎟⎠ ,S(U) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

ρfi

ρfiui

⎞⎟⎟⎟⎟⎟⎟⎠ (2.24)

respectively, the vector of conservative variables, the vector of convective and viscous fluxes in
the jth direction and the vector of source terms. The latter formulation is the most suitable
in case of numerical applications. The model (2.23) describes the dynamic of compressible
flow with Newtonian rheology and it consists in five equations with seven unknown variables
(ρ, ρui, ρE, p, T ). The system must be completed using an equation of state for the fluid
ρ(p,T ) = 0 and a constitutive equation for the total energy. Our model considers the fluid to
obey the ideal gas equation

ρ = p

RT
(2.25)

where R is the specific gas constant2 while the total energy can expressed as

E = e+ 1
2(uiui) (2.27)

2We define the specific gas constant as

11



2 – Mathematical model

Here 1/2(uiui) is the specific kinetic energy while e is the internal energy per unit mass. The
latter for an ideal gas follows

e = cvT = pR

(γ − 1) (2.28)

Here cv is the heat coefficient at constant volume while cp is the heat coefficient at constant
pressure of the gas and γ = cp/cv is their ratio. Finally, the viscosity µ is assumed to obey to
the Sutherland’s law

µ(T ) = T 3/2
(
T0 + S

T + S

)
(2.29)

where T0 = 273.15K and S = 110.4K are empirical parameters and λ, the thermal conductiv-
ity, is related to µ via the Prandtl number definition

λ(T ) = µ(T )cp

Pr
(2.30)

where Pr is approximatively equal to 0.71.

2.3 Non-dimensional formulation
Dimensional Navier-Stokes equations, derived in the previous paragraphs, are not suitable for
numerical modelling for two main reasons:

1. Using non-dimensional equations it is possible to prescribe the minimum number of
independent parameters that control the system. Hence the results will correspond to a
class of different physical experiments characterised by the same non-dimensional groups,
e.g. Mach and Reynolds numbers;

2. computer processing units (CPUs) work inefficiently with numbers belonging the highly
different orders of magnitude; thus non-dimensional formulation of numerical models,
normalising the relevant quantities to be order one, tends to improve the computational
speed and the accuracy.

2.3.1 The Π theorem and dimensional analysis
From the Π theorem and the dimensional analysis, we know that if a physical system is governed
by Np dimensional parameters, Nd fundamental dimensions and Nr relations, the number of
independent fundamental groups that describe the system is

Ng = Np − (Nd +Nr) (2.31)

Let us perform the analysis for the Navier-Stokes system of equations. Here Np = 15 is the
number of the reference parameters describing the problem: t0, L0, ρ0, u0, p0, T0, E0, µ0,

R = R
M

(2.26)

where R = 8.314 J ·mol−1 ·K−1 is the universal gas constant and M [kg ·mol−1] is the molar mass of the
gas.
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2.3 – Non-dimensional formulation

λ0, R0, cp0, cv0, e0, Pr0, γ0. Those parameter can be expressed by a combination of Nd = 4
fundamental dimensions: time [s], length [m], mass [kg] and temperature [K] and they are
related by Nr = 7 equations:

p0 = ρ0R0T0, µ0 = T
3/2
0

(
T0 + S

T0 + S

)
(2.32a)

λ0 = µ0cp0

Pr0
, e0 = cv0T0 (2.32b)

E0 = e0 + 1
2u

2
0, cv0 = R0

γ0 − 1 , cp0 = γR0

γ0 − 1 (2.32c)

so the number of fundamental groups that describe the system is Ng = 4. The choice of
the reference variables is arbitrary and in this work we used L0 as the reference length, ρ0

as the reference density, p0 as the reference pressure and u0 =
√
p0/ρ0 as the reference speed

(consisting in the speed of sound apart √γ0), thus we can introduce the following change of
variables:

x = L0x
′, ui = u0u

′
i, t = L0

u0
t′, ρ = ρ′ρ0, T = T0T

′ (2.33a)

e = p0

ρ0
e′, Etot = p0

ρ0
E ′

tot, µ = µ0µ
′, λ = λ0λ

′ (2.33b)

where (·)′ stands for a non-dimensional quantity. Now we can recast the Navier-Stokes equa-
tions using the above definitions. Starting from the mass conservation equation, we can write

∂ρ′

∂t′
ρ0u0

L0
= −

∂ρ′u′
j

∂x′
j

ρ0u0

L0
(2.34)

obtaining that the non-dimensional equation for mass conservation fits with as the dimensional
one:

∂ρ′

∂t′
= −

∂ρ′u′
j

∂x′
j

(2.35)

For the momentum conservation equation we can write

∂ρui

∂t
= ∂ρ′u′

i

∂t′
ρ0u

2
0

L0
(2.36)

∂

∂xj

(ρuiuj) = ∂

∂x′
j

(
ρ′u′

iu
′
j

) ρ0u
2
0

L0
(2.37)

∂

∂xj

(piδij) = ∂

∂x′
j

(p′
iδij)

p0

L0
(2.38)

∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

))
= ∂

∂x′
j

(
µ′
(
∂u′

i

∂x′
j

+
∂u′

j

∂x′
i

− 2
3
∂u′

s

∂x′
s

))
µ0u0

L2
0

(2.39)

thus

ρ0u
2
0

L0
(·)′ = −ρ0u

2
0

L0
(·)′ − p0

L0
(·)′ + µ0u0

L2
0

(·)′ (2.40)
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2 – Mathematical model

Now, dividing by ρ0u
2
0/L0

(·)′ = −(·)′ − p0

ρ0u2
0
(·)′ + µ0

ρ0L0u0
(·)′ (2.41)

and keeping in mind u0 =
√
p0/ρ0 we obtain

(·)′ = −(·)′ − (·)′ + µ0

ρ0L0u0
(·)′. (2.42)

Defining the heat capacity ratio

γ = cp0

cv0
(2.43)

the free-stream Mach number

M∞ = u∞√
γp0/ρ0

(2.44)

and the Reynolds number

Re = ρ0u∞L0

µ∞
(2.45)

the symbolic equation (2.42) allows us to write the non-dimensional formulation of the mo-
mentum conservation equation as

∂ρ′u′
i

∂t′
= − ∂

∂x′
j

(ρ′u′
iu

′
j + p′

iδij) +
√
γM∞

Re

∂

∂x′
j

(
µ′
(
∂u′

i

∂x′
j

+
∂u′

j

∂x′
i

− 2
3
∂u′

s

∂x′
s

))
(2.46)

For the total energy conservation equation follows that

∂ρE

∂t
= ∂ρ′E ′

∂t′
ρ0u0

L0

p0

ρ0
(2.47)

∂

∂xj

((ρE + p)uj) = ∂

∂x′
j

((ρ′E ′ + p′)u′
j)
ρ0u0

L0

p0

ρ0
(2.48)

∂

∂xj

(
λ
∂T

∂xj

)
= ∂

∂x′
j

(
λ′∂T

′

∂x′
j

)
λ0T0

L2
0

(2.49)

∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

)
ui

)
= ∂

∂x′
j

(
µ′
(
∂u′

i

∂x′
j

+
∂u′

j

∂x′
i

− 2
3
∂u′

s

∂x′
s

)
u′

i

)
µ0u

2
0

L2
0

(2.50)

this, in a symbolic way, becomes

ρ0u0

L0

p0

ρ0
(·)′ = −ρ0u0

L0

p0

ρ0
(·)′ + λ0T0

L2
0

(·)′ + µ0u
2
0

L2
0

(·)′. (2.51)

Dividing by ρ0u0
L0

p0
ρ0

we obtain

(·)′ = −(·)′ + λ0T0

L2
0

L0ρ0

ρ0u0p0
(·)′ + µ0u

2
0

L2
0

L0ρ0

ρ0u0p0
(·)′ (2.52)

so recalling the definition of Prandtl number
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2.3 – Non-dimensional formulation

Pr = γR0

γ − 1
µ∞

λ∞
(2.53)

and the definition of M∞ and Re we can write

(·)′ = −(·)′ + γR0

γ − 1
1
Pr

√
γM∞

Re
(·)′ +

√
γM∞

Re
(·)′ (2.54)

a symbolic equation that allows as to write the non-dimensional formulation of the energy
conservation equation as

∂ρ′E ′

∂t′
= − ∂

∂x′
j

((ρ′E ′ + p′)u′
j)

+
√
γM∞

Re

(
γR0

γ − 1
1
Pr

∂

∂x′
j

(
k′∂T

′

∂x′
j

)
+ ∂

∂x′
j

(
µ′
(
∂u′

i

∂x′
j

+
∂u′

j

∂x′
i

− 2
3
∂u′

s

∂x′
s

)
u′

i

))
(2.55)

Equations (2.35), (2.46) and (2.55) represent a non-dimensional formulation of the Navier-
Stokes system of equations suitable for numerical applications. Until the non-dimensional
groups: γ, M∞, Re and Pr are imposed, the reference variables may assume any value. The
most convenient choice is to assume L0 = 1, ρ0 = 1, p0 = 1 and T0 = 1 (so R0 = p0/(ρ0T0) = 1)
and computing all the other parameters as a consequence, so γ is given

γ = cp0

cv0
(2.56)

and no other parameters appear in its definition. The Mach number can be used to compute
the free-stream speed u∞ so

u∞ = √γM∞ (2.57)
Once u∞ is known, the Reynolds number can be employed in the computation of the free-stream
dynamic viscosity

µ∞ =
√
γM∞

Re
(2.58)

and finally, the Prandtl number is used in the computation of the free-stream thermal conduc-
tivity

λ∞ = γ

γ − 1
1
Pr

√
γM∞

Re
(2.59)

Finally, we need to provide a non-dimensional form to the gas equation of state, the constitutive
energy equation, and Sutherland’s law. Thus being

p′p0 = ρ′ρ0R
′R0T

′T0 (2.60)
we obtain

p′ = ρ′T ′ (2.61)
Dealing with the total energy constitutive equation

E ′ p0

ρ0
= cv0T

′T0 + 1
2(u′

iu
′
i)2u2

0 (2.62)
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and remembering cv0 = 1
γ0−1 and the definition of u0 we can write

E ′ = 1
(γ − 1)

p′

ρ′ + 1
2(u′

iu
′
i)2 (2.63)

Finally, the non-dimensional Sutherland’s law can be derived as

µ′(T ′) = T ′3/2
(

1 + S/T0

T ′ + S/T0

)
(2.64)

2.3.2 The Non-dimensional Navier-Stokes equations for an ideal gas
Recasting the equations

∂ρ′

∂t′
= −

∂ρ′u′
j

∂x′
j

(2.65a)

∂ρ′u′
i

∂t′
= − ∂

∂x′
j

(ρ′u′
iu

′
j + p′

iδij) +
√
γM∞

Re

∂

∂x′
j

(
µ′d′

ij

)
(2.65b)

∂ρ′E ′

∂t′
= − ∂

∂x′
j

((ρ′E ′ + p′)u′
j) +

√
γM∞

Re

(
γ

γ − 1
1
Pr

∂

∂x′
j

(
k′∂T

′

∂x′
j

)
+ ∂

∂x′
j

(
µ′d′

iju
′
i

))
(2.65c)

in the vectorial formulation and dropping the (·)′ superscript we can write

∂U
∂t

= −∂Fj(U)
∂xj

+ ∂Fvj(U)
∂xj

, j = 1, . . . , 3 (2.66)

where

U =

⎛⎜⎜⎜⎜⎜⎜⎝
ρ

ρui

ρE

⎞⎟⎟⎟⎟⎟⎟⎠ ,Fj =

⎛⎜⎜⎜⎜⎜⎜⎝
ρui

ρuiuj + pδij

(ρE + p)ui

⎞⎟⎟⎟⎟⎟⎟⎠ ,Fvj =
√
γM∞

Re

⎛⎜⎜⎜⎜⎜⎜⎝
0

dij

dijuj + 1
P r

γ
γ−1λ

∂T
∂xi

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.67)

represent the non-dimensional vectors of the conservative variables, advection and viscous
fluxes, respectively. The non-dimensional equation of state ends the model

p = ρT (2.68)

the non-dimensional expression for the total energy

E = 1
(γ − 1)

p

ρ
+ 1

2u
2 (2.69)

and the non-dimensional Sutherland’s law

µ(T ) = T 3/2
(

1 + S/T0

T + S/T0

)
(2.70)

To conclude the paragraph, we want to underline some points:
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2.3 – Non-dimensional formulation

1. The system (2.66) can be seen as a summation of (at least) three contributions: a tem-
poral contribution due to the temporal variation of conservative variables; a convective
contribution, physically related to the transport phenomena associated to the velocity
and the pressure fields; and a diffusive contribution, due to the thermodynamical be-
haviour of the gas and the mutual forces exchanged by elementary fluid volumes

∂U
∂t

temporal contribution

= −∂Fj(U)
∂xj  

convective contribution

+ ∂Fvj(U)
∂xj  

diffusive contribution

(2.71)

The three terms of the Navier-Stokes equations need their numerical treatment. The
convective term, among them, due to the compressibility of the flow, is the one that
requires the higher coding effort.

2. The role of viscous effects is highlighted in our non-dimensional formulation. From
(2.66) we can see that dropping the viscous terms, the Navier-Stokes equations reduce
to the Euler equations of Gas Dynamics. In particular, our formulation keeps the same
mathematical structure for the non-dimensional and the dimensional Euler equations.
The fact is highly recommended to improve the maintainability of numerical applications
based on this model.

3. From equations (2.66) it seems that the Reynolds number and the free-stream Mach
number always appear inside the same ratio, making pointless the definition of one of
them. However, because the M∞ must be separately enforced at the boundary condition
on free stream velocity, the two groups maintain a separate role.
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2.4 Compressible Large-Eddy Simulation formulation
As we mentioned in the introduction, dealing with the full set of the Navier-Stokes system of
equations and employing a DNS approach is still too computational demanding in the case of
applicative high-Reynolds fluid dynamics problems; thus some model for turbulence must be
employed. In this work, the LES approach has been implemented and in the present section, a
brief theoretical description of the filtered compressible Navier-Stokes equations will be derived
and discussed. For the details of the approach, the interested reader is addressed to look at
Garnier et al. (2009).

2.4.1 Filtered Navier-Stokes equations
Being (·) a spatial filter and ϕ̄ a filtered flow variable, we define ϕ̃ the Favre filter of ϕ as

ϕ̃ = ρϕ

ρ̄
(2.72)

Applying (·) to the set of the compressible non-dimensional Navier-Stokes equations and taking
into account the definition (2.72) we obtain

∂ρ̄

∂t
= −∂ρ̄ũj

∂xj

(2.73a)

∂ρ̄ũi

∂t
= − ∂

∂xj

(ρ̄ũiũj + p̄iδij) +
√
γM∞

Re

∂

∂xj

(
µ̄d̄ij

)
− ∂

∂xj

(ρuiuj − ρ̄ũiũj) (2.73b)

∂ρ̄Ẽ

∂t
= − ∂

∂xj

((ρ̄Ẽ + p̃)ũj) (2.73c)

+
√
γM∞

Re

(
γ

γ − 1
1
Pr

∂

∂xj

(
k
∂T̃

∂xj

)
+ ∂

∂xj

(
µ̄d̄ijũi

))
− ∂

∂xj

(
(ρE + p)ui − (ρ̄Ẽ + p̄)ũi

)
Comparing the present system (2.73) to the original non-filtered formulation (2.66) we im-

mediately recognise some additional contributions. In particular, the momentum conservation
equation is modified taking into account the divergence of the subgrid-scale (SGS) stress tensor,
expressed by

T̄ SGS
ij = ρuiuj − ρ̄ũiũj (2.74)

while the energy conservation equation accounts for the divergence of subgrid-scale energy
term defined as

ĒSGS
j = (ρE + p)ui − (ρ̄Ẽ + p̄)ũi (2.75a)

= ρcpTuj − ρ̄c̄pT̃ ũj + 1
2 T̄

SGS
ij ũj −

1
2 T̄

SGS
kk ũj (2.75b)

The equations (2.74) and (2.75) represent the under resolved turbulent contributions due to
the filtering process and the LES approach aims to define a suitable model for them. Following
the Boussinesq’s hypothesis, the deviatoric part of the subgrid-scale stress tensor T̄ SGS

ij can be
evaluated as

T̄ SGS
ij − 1

3 T̄
SGS
kk δij = −2µSGS

(
S̃ij −

1
3 S̃kkδij

)
(2.76)
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2.4 – Compressible Large-Eddy Simulation formulation

where µSGS is the subgrid turbulent eddy viscosity, T SGS
kk is the isotropic contribution to the

subgrid stress tensor and S̃ij denotes the resolved strain-rate tensor

S̃ij = 1
2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(2.77)

Similarly, the energy subgrid-scale terms are modelled through

ĒSGS
j = ρcpTuj − ρ̄c̄pT̃ ũj + 1

2 T̄
SGS
ij ũj −

1
2 T̄

SGS
kk ũj (2.78a)

= −λSGS
∂T̃

∂xj

+ 1
2 T̄

SGS
ij ũj −

1
2 T̄

SGS
kk ũj (2.78b)

where λSGS is the subgrid-scale turbulent diffusivity expressed by

λSGS = µSGS
c̄p

PrT

(2.79)

Here PrT is the turbulent Prandtl number in our computation kept constant and fixed equal
to 0.9. Plugging the Boudssineq’s framework into the filtered Navier-Stokes equations (2.73)
and dropping the isotropic contribution of the subgrid-scale stress tensor (see, e.g. [118, 119])
results in the following non-dimensional set of conservative equations

∂ρ̄

∂t
= −∂ρ̄ũj

∂xj

(2.80a)

∂ρ̄ũi

∂t
= − ∂

∂xj

(ρ̄ũiũj + p̄iδij) +
√
γM∞

Re

∂

∂xj

(
µ̄totd̄ij

)
(2.80b)

∂ρ̄Ẽ

∂t
= − ∂

∂xj

((ρ̄Ẽ + p̃)ũj) +
√
γM∞

Re

(
λ̄tot

∂

∂xj

(
k
∂T̃

∂xj

)
+ ∂

∂xj

(
µ̄totd̄ijũi

))
(2.80c)

where

µ̄tot = µ(T̃ ) + Re
√
γM

µSGS (2.81)

end

λ̄tot = γ

γ − 1

(
µ(T̃ )
Pr

+ Re
√
γM

µSGS

PrT

)
(2.82)

denotes respectively the total dynamical viscosity (sum of the non-dimensional resolved molec-
ular viscosity µ(T̃ ) and the non-dimensional subgrid-scale viscosity) and the total diffusivity
of the flow. From the set of equations (2.73) we conclude that the filtering process, in combi-
nation with the Bossinesq’s hypothesis, introduces a further unknown. The latter consists in
the subgrid-scale eddy viscosity µSGS. Thus a suitable model for µSGS is required. Differently
from the RANS approach, because the LES framework aims to resolve the bigger turbulent
structures, a model accounting for µSGS should be universal and exploitable in a wide range
of flow situations. In this path, many efforts have been made by the turbulence community
trying to couple the eddy viscosity with the resolved flow quantities. In particular, the most
employed model for turbulent eddy viscosities are purely algebraic and reduce to the expression

µSGS = ρ̄(Cm∆)2Dm[Ū] (2.83)
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Here Cm is a tuning parameter of the model, ∆ = (∆x∆y∆z)1/3 is the subgrid characteristic
length expressing the size of the filter and Dm[·] is the non-linear differential operator of the
model applied to the resolved flow quantities Ū. In the present work, among the various
formulation for the expression (2.83) three models have been taken into account: the classical
Smagorinsky model, the Wall-Adaptive Large-Eddy (WALE) viscosity model and the Sigma
model.

2.4.2 The classical Smagorinsky model
The classical Smagorinsky model represents the simplest model for µSGS. The model defines
the differential operator Dm[·] as

DS[Ū] =
√

2S̃ijS̃ij (2.84)

while the tuning parameter Cm, using the local equilibrium hypothesis and assuming a Kol-
mogorov spectrum for the turbulent energy cascade, can be evaluated as

CS = 1
π

(3K0

2

)−3/4
≃ 0.18 (2.85)

Here K0 is the Kolmogorov constant equal to 1.4. However, fixing a uniform value for CS

results in a wrong description of the turbulent subgrid-scale contributions. No corrections are
taken into account for the laminar regions of the flow or the rotating portions. Moreover, the
expression (2.84) exhibits an asymptotic behaviour in the near-wall regions approximatively
equal to µSGS ∼ O(1). This trend is not physically consistent to the wall-turbulence theory
which predicts a cubic behaviour in the wall-inner layer µSGS ∼ O(y+)3 [60], where y+ is the
wall distance expressed in Kolmogorov units. To overcame the problem Germano et al. (1991)
proposed to dynamically compute the Smagorinsky constants CS from the resolved flow quanti-
ties, resulting in a space and time dependent formulation CS = CS(x, t). The method proposed
by Germano et al. (1991) is addressed as dynamical Smagorinsky. The latter, even if it is quite
computationally demanding, is very general and can be applied for all the turbulence models
whose mathematical structure is expressed by the equation (2.83).

2.4.3 The wall-adaptive Large-Eddy viscosity model
A solution to solve the near-wall region problem was provided by Nicoud and Ducros (1999) who
found a combination of the resolved velocity spatial derivatives that exhibit the asymptotic
behaviour µSGS ∼ O(y+)3 in the near-wall region. The method, known as Wall-Adaptive
Large-Eddy (WALE) viscosity model defines Dm[·] as

DW [U] =
(Sd

ijS
d
ij)3/2

(SijSij)5/2 + (Sd
ijS

d
ij)5/4 (2.86)

where Sd
ij is the traceless symmetric part of the square of the resolved velocity gradient tensor

defined as

Sd
ij = 1

2

(
∂ũi

∂xl

∂ũl

∂xj

+ ∂ũj

∂xl

∂ũl

∂xi

)
− 1

3
∂ũm

∂xl

∂ũl

∂xm

δij (2.87)

Statical correlations based on DNS benchmarks want the constant of the model to be ap-
proximatively equal to CW =

√
10.6CS, where CS is the Smagorinsky constant. The WALE
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model also possesses the interesting property that the subgrid viscosity vanishes if the flow is
two-dimensional, in agreement with the physical behaviour (see [82] for details).

2.4.4 The σ-model
Many properties are required to improved the differential operator Dm[·] of a LES turbulence
model. Similarly to the WALE model, Dm[·] should asymptotically vanish in near-wall regions
in order to mimic the turbulence behaviour due to the zero-velocity condition. In particular,
from the analytical description provided by Kuhn (1986), the third power law for µSGS consists
of a strong requirement for any model. Let us call this property 1. At the same time, the
turbulent viscosity should vanish in the case of a solid rotating flow and in the case of pure
shear, like the WALE model. More generally, an improved differential operator should vanish
for any 2D flow and this is resumed in the property 2. Indeed, such a situation for the resolved
scales is not compatible with subgrid-scale behaviour, which is presumably three-dimensional.
The same reasoning leads to the conclusion that the SGS viscosity should be zero in the case
where the resolved scales are either in pure axisymmetric or isotropic contraction/expansion,
consisting in a third fundamental property (property 3 ). The σ-model aims to target these
three properties defining the non-linear differential operator Dm[·] as

Dσ[·] = σ3(σ1 − σ2)(σ2 − σ3)
σ2

1
(2.88)

Here σ1 > σ2 > σ3 ≥ 0 denotes the singular values of the velocity gradient, thus the square
root of the eigenvalues of the Gij tensor. The latter is expressed by

Gij = ∂ũi

∂xj

∂ũj

∂xi

(2.89)

It can be proved that Gij is symmetric and semi-positive definite, so it has three real non-
negative eigenvalue λ1 > λ2 > λ3, concluding that σi =

√
λi, i = 1, . . . ,3 can be ever computed.

As shown by Toda et al. (2010), this arrangement theoretically preserves all the properties
mentioned above. The method has been recently applied for both canonical and applicative
flow simulations and the interested reader is addressed to look at Rieth et al. (2014) for a
comparison with the other models.

2.5 Boundary conditions for Navier Stokes equations
In the Navier-Stokes system of equations an initial condition for the conservative variables and
a set of conditions at the limits must be specified. Thus, we implemented a solver that supports
the most common boundary conditions for Navier-Stokes equations both standard (periodic
conditions, extrapolation, adiabatic/isothermal no-slip wall, adiabatic/isothermal slip-wall)
and characteristic (subsonic/supersonic inflow and outflow). For conventional boundaries, the
author suggests to analyse [35, 23, 56] while for Navier-Stokes characteristic boundary condition
(NSCBC) a brief overview will be pointed out in the following paragraphs. Some notions will
also be given in respect of a travelling shock wave initialisation, introducing the unsteady
Rankine-Hugoniot conditions.

2.5.1 Navier-Stokes characteristic boundary conditions
Navier-Stokes characteristic boundary conditions are still a challenging problem for compress-
ible flow simulations. The problem consists in the determination of a proper mathematical
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model able to describe accurately time-dependent boundaries for compressible flow dynamics.
Because of the compressibility, the acoustics effects are inherent to the system’s dynamics; thus,
the flow variables tend to reflect at the boundary locations, producing unphysical waves and
oscillations. The problem has been widely studied in the literature (see, e.g., Poinsot (2004)),
and in this paragraph, we want to briefly overview the method. Following the idea of Piroz-
zoli and Colonius (2013), here we will present just one-dimensional inviscid approximation
methodology. The latter was found to be applicable in all our computations. A more de-
tailed presentation, taking into account transverse therms and viscous effects can be found in
Lodato (2011).

Considering a one-dimensional inviscid approximation of the Navier-Stokes system equa-
tions (2.66) in the form of

∂U
∂t

= −∂F(U)
∂x

(2.90)

From the theory of hyperbolic PDE3 we can recast the system as following

∂U
∂t

= −RxΛxLx
∂U
∂x

(2.95)

Now defining

3 Being U = {uk}n
k=1 a set of variables for the system Σ and {F(j)(U)}3

j=1 their fluxes. From a purely
mathematical point of view a non-linear system of partial differential equations (PDE) in the form of

∂U
∂t

= −∂F(j)(U)
∂xj

(2.91)

is said to be hyperbolic if the Jacobian matrixes associated to the fluxes F(j)(U)

J
(j)
ik = ∂F

(j)
i (U)
∂uk

(2.92)

has real eigenvalues {λ(j)
k }n

k=1. Without being too detailed in respect of the theory of hyperbolic PDE, it can be
proved that the Euler equations of Gas Dynamics represent a hyperbolic system of equations (see for instance
[66, 117]) and their eigenvalues are

λ
(j)
k = {uj − c, uj , uj , uj , uj + c} j = 1, . . . ,3 (2.93)

For a hyperbolic model the eigenvalues of the Jacobian matrix Jik represent the speed with which the in-
formation travels in the system while the eigenvectors represent the directions along which the information
propagates. In particular, if a system is hyperbolic, the spectral theorem grants the Jacobian matrix Jik to be
diagonalised, thus

Jik = LimΛmnRnk (2.94)

here Lim and Rnk represent the left and right eigenvector associated to Jik and Λmn = δmnλn is a diagonal
matrix collecting in the m = n positions the eigenvalues λn. The numerical method for Euler equations, so that
the methods suitable for the discretisation of the convective terms of the Navier-Stokes system of equations,
often exploit the eigenvalues and the eigenvectors of the Jacobian matrices associated with the flux components.
In this field the directions described by the eigenvectors of Euler equation are addressed as characteristics.
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Lx(U) = ΛxLx
∂U
∂x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
(

∂p
∂x
− ρc∂u

∂x

)
λ2
(
c2 ∂ρ

∂x
− ∂p

∂x

)
λ3

∂v
∂x

λ4
∂w
∂x

λ5
(

∂p
∂x

+ ρc∂u
∂x

)
(2.96)

the five characteristics waves associated to the flux component F(U) we can write

∂U
∂t

= −RxLx(U) (2.97)

that expanded reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
= −d1

∂ρu1

∂t
= −u1d1 − ρd3

∂ρu2

∂t
= −u2d2 − ρd4

∂ρu3

∂t
= −u3d3 − ρd3

∂ρE

∂t
= −1

2uiuid1 −
d1

γ − 1 − ρu1d3 − ρu2d4 − ρu3d5

(2.98a)

(2.98b)

(2.98c)

(2.98d)

(2.98e)

where

d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
c2

(
L2 + 1

2(L5 + L1)
)

1
2 (L5 + L1)
1

2ρc
(L5 − L1)

L3

L4

(2.99)

The equation (2.97) represents a suitable (one-dimensional) model for Navier-Stokes boundary
conditions. In fact, to improve the boundary reflection behaviour, some assumptions can be
made in respect of the five characteristic waves L = {L1, . . . ,L5}T concerning the boundary
location. Here two cases will be presented: subsonic inflow and subsonic outflow modelling.

2.5.2 Subsonic inflow

In case of a subsonic inflow, the method proposed by Yoo et al. (2007) was employed. We
suppose the bound located at xb = 0 thus (u− c) < 0 and L1 is outgoing the domain. On the
other hand, L2, . . . ,L4 are incoming. In this case, four target variables are already known at
the boundary location, i.e. ut, vt, wt and Tt. Thus the equations (2.98b) (2.98b) (2.98d) and
(2.98e) seem to not play any role and just an equation for density is required. Following such
assumption, some situations may admit an acoustic reflection from the interior, resulting in a
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preferable strategy to relax the boundary condition thus defining

L2 = η2
ρc

Lx

(Tt − T ) (2.100a)

L3 = η3
c

Lx

(v − vt) (2.100b)

L4 = η4
c

Lx

(w − wt) (2.100c)

L5 = η5
ρc2(1−M2

max)
Lx

(u− ut) (2.100d)

Here Mmax is the maximum Mach number in the whole domain, Lx is the length in x-direction
and ηi are coefficients whose role is to modulate the boundary relaxation. Here a value in the
range of ηi = 0.4÷0.6 was found a good compromise in all our computations. Once L2, . . . ,L5
have been modelled, the equations (2.98) can be employed to ensure the boundary. The last
information required consists in computing a proper value for the outgoing wave L1. From a
numerical point of view, a one-side derivation process can be carried out.

2.5.3 Subsonic outflow
Moving through subsonic outflow boundary condition the approach proposed by Pirozzoli and
Colonius (2013) was employed. We suppose the boundary located at xb = Lx. For the elliptical
behaviour of the pressure field in the subsonic regime, differently from the subsonic inflow case,
the only information we can exploit is the far-field pressure value, p∞. On the other hand,
from the characteristic analysis, the four waves L2, . . . ,L5 are leaving the domain, while L1 is
incoming. From a numerical point of view, the outgoing waves can be discretised by a one-side
derivative, while L1 must be modelled. Two main approaches are possible:

1. The most simple approach consists of setting L1 = 0 supposing that no reflections can
arise from the outflow boundary. The method, even if very straightforward, admits a
progressive decrease of the mean pressure in the overall domain and sometimes it could
result in wrong predictions;

2. On the other hand, the most common approach is the one proposed by Poinsot (2004).
Here L1 is defined as

L1 = K(p∞ − p) (2.101)

where K is a relaxation constant, function of the Mach number

K = σ(1−M2
max) c

Lx

(2.102)

With this position, the L1 wave is modelled as dumping term base on the far-field pressure
value. Here, Mmax is the maximum Mach number in the whole domain, Lx is the domain
length in x-direction and σ ≃ 0.25÷0.27 is a relaxation parameter. The latter method is
strongly recommended, even if the presence of the σ parameter is a source of uncertainty.
Thus Pirozzoli and Colonius (2013) proposed to directly discretise L1 with a one-side
derivative approximation
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L1 = 1
∆xb

(u− c)[(p∞ − p)− ρc(u∞ − u)] (2.103)

In the present work, both of the expressions (2.101) and (2.103) were employed depending
on the problem. In particular, as found by Pirozzoli and Colonius (2013), we confirm
that the expression (2.103), dropping the velocity deficit (u∞ − u), performs better in
ejecting aerodynamics wakes from the domain. Finally, once the characteristic waves
L1, . . . ,L5 have been computed, the equations (2.98) can be employed to evolve the flow
variables at the boundary location.

2.6 Summary
In the present chapter, the mathematical model describing the dynamics of an ideal Newtonian
gas has been derived. Starting from the conservation principles for a closed physical system,
the set of PDEs representing the mass conservation, the momentum conservation, and the
total energy conservation have been derived. The model consisted in the well known Navier-
Stokes system of equations. A brief overview of the dimensional analysis and the Π theorem
by Buckingham have been shown and applied to the model; thus a non-dimensional vectorial
formulation based on this theory and suitable for numerical applications has been presented.
The chapters follows with a brief description of the filtered Navier-Stokes equation in the path
of LES modelling. In the second part, an overall presentation of the boundary conditions for
Navier-Stokes equations, mainly focused on characteristic boundaries has been shown.
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3
Numerical integration of differential

equations

God does not care about our
mathematical difficulties; He integrates
empirically.

Albert Einstein
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In the previous chapter, we analysed and discussed a huge number of time-dependent
differential models. Those models require a suitable numerical strategy to be evolved; thus,
in this chapter, we will discuss the methods employed in the numerical integration of a time-
dependent partial differential equation. These methods will be applied in the evolution of
the Navier-Stokes system of equations. In particular, we will start with a brief introduction
regarding the general theory behind the numerical integration, and secondly, we will move to
high-order integration schemes focusing on the Runge-Kutta methods.

27
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3.1 Introduction to numerical methods

3.1.1 Numerical methods for ODEs
Being y : R→ R a real function with y(t) ∈ C1(R). A first order ordinary initial value problem
for y reads ⎧⎨⎩y′(t) = f(t, y(t)), t > t0

y(t0) = y0
(3.1)

The latter expression is structurally similar to the Navier-Stokes system of equations, in fact,
defining N [·] the non-linear differential operator collecting a discrete formulation of the spatial
derivatives, the equations (2.66) can be recast like

dU(t)
dt

= N [t,U] (3.2)

resulting in the canonical formulation of ordinary differential problem. During the last century,
many methods have been developed to solve the problem (3.1) and in this brief overview, we
will limit to present them qualitatively. A detailed description, characterized by a very rigorous
mathematical point of view, can be found in [103, 102], while a dissertation, closer to fluid
dynamics problems, can be evinced in [84]. Starting our brief survey, we can claim that two are
the main categories defining the numerical methods for ordinary differential equations (ODEs):
the one-stage methods and the multi-stage methods.

The one-stage methods aim to determine the solution Un+1 at the time level tn+1 based
just on the solution at the previous time-step Un. The process can be carried out explicitly in
the form of

Un+1 = Un + ∆tN [tn,Un] (3.3)

or implicitly

Un+1 = Un + ∆tN
[
tn+1,Un+1

]
(3.4)

expressing the solution at the time level tn+1 as a function of both Un and U(n+1).

The multi-stage methods instead build the solution at time level tn+1 combining the
previous n + 1 − s solutions where s is the number of stages of the method, thus a general
formulation of a linear multi-stages methods reads

Un+1 = Un + ∆t
s∑

k=s0

αkN [tn+1−k,Un+1−k] (3.5)

where s0 denotes the starting stage and αk are the coefficients of the linear combination. From
(3.5), if s0 = 0 the method is implicit, otherwise if s0 > 0 the method is fully explicit.

Generally speaking, the one-step methods are rarely employed for time-accurate numerical
applications. Those methods, computing Un+1 employing the previous computation Un, lack
in term of accuracy, an unmissable quality in case of high-fidelity numerical modelling. On the
other hand, the multi-step methods, taking into account the previous n+ 1− s computations,
can sharply increase the results accuracy, becoming suitable for computational fluid dynamics.
Here some notes must be pointed out between explicit and implicit methods. Despite resulting
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in high-order discretisation strategies, explicit methods consist in very straightforward and
flexible numerical algorithms suitable to evolve complex dynamical systems. However, because
those methods are not unconditionally stable, the time-step between two consequents solutions
could become very small, increasing the overall time of the simulation. That is, for instance,
the case of wall-bounded flows. On the other hand, the implicit methods do not require a
particular limitation time-stepping and the full stability is recovered for every ∆t, but, to
determine the implicitly defined Un+1 solution, this strength is counterbalanced by solving a
non-linear set of equations at each time-step.

3.1.2 Runge-Kutta methods
As we mentioned in the previous paragraph, the only way to increase the accuracy of a numer-
ical scheme for ODEs is to expand the number of prior solutions retained in the computation,
thus employing a multi-stage method. These methods, even if popular in the past, nowadays
have been overcome by most performing schemes. The main problem of a linear multi-stages
methods consists in their initialisation. Because at time t = 0 just the initial condition is at
our disposal, the firsts s evolutionary steps need to employ a low-order method to advance the
solution. Another way approaching a completely different philosophy relies on Runge-Kutta
(RK) methods. To maintain a one-step structure, the RK methods sacrifice the linearity of
the scheme resulting in the following s stages formulation:

U(i) =
i−1∑
k=1

(
αikU(k) + βik∆tN

[
t(k) + γik∆t,U(k)

])
, i = 1, . . . ,m (3.6a)

U(1) = Un (3.6b)
U(m) = Un+1 (3.6c)

Here we can notice that the discrete operator N [·] is recursively computed over the solution
obtained during s fractional steps. αik, βik and γik are the coefficient defining the scheme.
During the last decades, lots of Runge-Kutta methods have been proposed and presented to
the scientific community and the reader will be guided to examine Quarteroni and Valli (2008)
for a complete description of these methods. In the present work, the third-order explicit
Runge-Kutta method (RK3) of Gottlieb and Shu (1998) was employed. The method represents
one of the most common choice for the integration of the Navier-Stokes system of equations in
compressible conditions and reads

U(1) =Un + ∆tN
[
t(n),U(n)

]
(3.7a)

U(2) =3
4Un + 1

4U(1) + 1
4∆tN

[
t(1) + 1

2∆t,U(1)
]

(3.7b)

Un+1 =1
3Un + 2

3U(2) + 2
3∆tN

[
t(2) + 1

2∆t,U(2)
]

(3.7c)

In particular, the latter RK scheme was proved to be the optimal third-order method with the
non-trivial peculiarity of being Total Variation Diminishing (TVD). This property, defined as
the total variation of a function f(x)

TV [f ] =
∫ ∞

−∞

⏐⏐⏐⏐⏐ dfdx
⏐⏐⏐⏐⏐ dx (3.8)
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3 – Numerical integration of differential equations

consists in granting

TV [f(x, t2)] ≤ TV [f(x, t1)] ∀t2 ≥ t1 (3.9)

The TVD methods represent handy tools in case of hyperbolic problems because they practi-
cally grant that the total amount of oscillations can not increase during the time. Moreover, the
method was proved to be able to keep stability in whatever norm (see Gottlieb and Shu (1998)
for details). Besides, as far as code optimisation issues, the method (3.7) can be cast in the
so-called low-storage formulation, using a number of memory allocations per variable equal to
the number of stages.

3.2 Stability criteria for flow simulations
As we pointed out introducing the numerical methods for ODEs, employing an explicit scheme,
the time-step is required to be evaluated in such a way that the stability of the scheme is kept
over the whole simulation. For fluid dynamics applications, the most tighten criteria con-
sist in the Courant-Friedrichs-Lewy (CFL) stability condition for convective fluxes and the
Fourier criterion (FO) for diffusion phenomena. The CFL-condition requires the time-step
to be sufficiently small to reproduce the time-variation of the characteristic wave propagation
associated with the Euler equation. Among the variety of formulations employed in the defi-
nition of a CFL-time-step, in the present work we used a modification of the one proposed by
Pirozzoli (2002)

∆tCF L = CFL
3

min
j=1

(
min(∆xj)

max(|uj|+ c)

)
. (3.10)

Here ∆xj and uj are respectively the grid-step and the velocity component in jth direction,
c is the local speed of sound and CFL denotes the Courant-Friedrichs-Lewy number. The
linear analysis applied to the method of Gottlieb and Shu (1998) proved that the stability is
recovered up to CFL = 1. A proper choice for practical applications consist in setting the
CFL number in the range of 0.5 ÷ 0.8. Sometimes, especially in the case of wall turbulence,
the diffusive phenomena act the major role in the stability of an explicit numerical method.
In this field, the Fourier criterion establishes that the time-step must be set equals to

∆tF o = Fomin
(

minj (∆xj)2

µ∞ max (µ) ,
γ/(γ − 1) min(ρ) minj(∆xj)2

λ∞ max (µ)

)
(3.11)

here µ is the viscosity, ρ the density, µ∞ denotes the reference viscosity equal to √γM/Re,
λ∞ is the reference diffusivity equal to µ∞γ/(Pr(γ − 1)) and Fo denotes the Fourier number,
in our computation set equal to 0.1. During a simulation, both the criteria expressed by the
equations (3.10) (3.11) must be computed at each time-step, and the minimum between them
must be selected as the one to advance the solution, thus

∆t = min (∆tCF L,∆tF O) (3.12)

Finally, the numerical methods for ordinary differential equations suggest a suitable algorithm
to solve a general time-dependent differential model. In the present work we employed a
standard code structure consisting in computing the spatial contribution of the Navier-Stokes
system of equations before updating the solution with the RK3 method. A detailed description
of how structure a CFD solver can be found in Salvadore et al. (2013).
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3.3 – Validations and results

3.3 Validations and results
An error analysis must be performed to evaluate the error scaling of the Runge-Kutta method.
Here, to have an analytical benchmark to compare with, we tested the method over a simple
linear ordinary differential equation, thus solving

y′ + y = 0 (3.13)
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Figure 3.1: Error scaling on y′ + y = 0 for the RK3 method.

The problem is defined by an initial condition y(0) = 1 and its analytical solution is repre-
sented by y(t) = e−t. Being y∗(t) the numerical result at t, we can compare it with the exact
solution looking at the error norm |e| = |y− y∗|. Because the RK3 scheme is third-order accu-
rate, the error should scale consequently. In Figure 3.1 the error scaling is reported as a function
of the time-step. The latter was fixed equal ∆t/∆t0 = {0.01, 0.005, 0.0025, 0.00125, 0.000625}T

and the computation was evolved up to t/t0 = 1. From the results, we can evince an excellent
performance in terms of error scaling with respect to the theoretical predictions, concluding
that the scheme is properly implemented. The same routine tested in the present paragraph
was employed to integrate the Navier-Stokes system of equations. In Table 3.1 the data corre-
sponding to Figure 3.1 are reported.

∆t/∆t0 |e| error order
RK3 1.000E − 02 1.54515E − 08 -

5.000E − 03 1.92373E − 09 3.006
2.500E − 03 2.40000E − 10 3.003
1.250E − 03 3.00000E − 11 3.000
6.125E − 02 3.75378E − 11 2.998

Table 3.1: Error scaling on y′ + y = 0 for the RK3 method.
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3 – Numerical integration of differential equations

3.4 Summary
In the present chapter, the numerical method employed in the time-discretisation of a system
of ordinary differential equations has been presented. In particular, after a brief introduction
regarding the numerical integration, we moved to the Runge-Kutta methods for compressible
flow dynamics. Here the explicit RK3 method by Gottlieb and Shu (1998) was presented, and
some useful relations to determine a stable time step have been pointed out. The chapter
ends with a quantitative result in the way of validating scheme and an overview of the whole
numerical method employed in the evolution of the Navier-Stokes system of equations.
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fluxes

We cannot solve our problems with the
same thinking we used to create them.

Albert Einstein

Contents
4.1 Spatial discretisation of convective fluxes . . . . . . . . . . . . . . . 34

4.1.1 Weighted essentially non-oscillatory schemes . . . . . . . . . . . . . 34

4.1.2 Fully split convective energy preserving methods . . . . . . . . . . . 36

4.1.3 Convective scheme hybridisation . . . . . . . . . . . . . . . . . . . . 37

4.1.4 Numerical treatment on non-uniform grids . . . . . . . . . . . . . . . 38

4.2 Validations and results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Error scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 One-dimensional Riemann problem for Euler equations . . . . . . . . 40

4.2.3 Two-dimensional Riemann problem for Euler equations . . . . . . . 42

4.2.4 Double-Mach reflection . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

In this chapter, we will discuss the numerical methods employed in the discretisation of
the convective fluxes of the Navier-Stokes system of equations. For a compressible solver, this
contribution is the one that needs the higher coding effort in terms of implementation difficulties
and validation. In particular, here the convective fluxes have been discretised using a fifth-
order weighted-essentially non-oscillatory scheme (WENO5) hybridised with the sixth-order
fully split-convective energy-preserving scheme by Kennedy, Grüber and Pirozzoli (KGP6).
The following sections will explained these techniques in details.
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4 – Numerical treatment of convective fluxes

4.1 Spatial discretisation of convective fluxes

4.1.1 Weighted essentially non-oscillatory schemes

In the field of compressible flows, strong gradients and shockwaves are core topics. Due to
the hyperbolic nature of Euler equations, those phenomena consist in sharp discontinuities
of the fluid variables (i.e., density, pressure, temperature, and velocity). From the basics
of spectral theory, the discrete reconstruction of a discontinuous function manifests the so-
called Gibbs phenomenon that consists in spurious oscillations around the discontinuities. In
this case, the dynamic of the Navier-Stokes equations propagates the oscillations progressively
destroying the numerical solution. For these reasons, in the case of compressible flows with
shockwaves, to stably propagate strong gradients and discontinuities, a suitable numerical
method must be employed. In the present work, a 5th order weighted-essentially non-oscillatory
scheme (WENO5) has been used. The method, originally designed by Jiang and Shu (1996)
improves the fundamental suggestion of the essentially non-oscillatory (ENO) schemes, which
were introduced by Harten et al. (1987). The key idea behind ENO is to employ the smoothest
stencil among several candidates to discretise the convective fluxes at a cell interface. The
process grants both a high-order of accuracy and avoids spurious oscillations near shocks.
After its first implementation, in order to improve the scheme resolution and its efficiency,
a large variety of WENO versions have been developed over the years (see e.g. Shu (1999),
Acker et al. (2016), Balsara and Shu (2000), Balsara et al. (2016),Wang et al. (2018a)). In the
present work, the so-called WENO-Z method by Castro et al. (2011) was employed.

i+ 1
2

i− 2 i− 1 i+ 1 i+ 2i

S
i+1/2
0

S
i+1/2
1

S
i+1/2
2

Figure 4.1: Computational stencils employed in WENO5 reconstruction.

The fundamental idea behind the WENO5 procedure is sketched in Figure 4.1. The fig-
ure sketches the three computational stencils employed in the WENO reconstruction. The
WENO procedure consists in building a high-order polynomial function, centred around the
cell interface i+ 1/2, and based on the three sub-stencils Si+1/2

1 , S
i+1/2
2 , S

i+1/2
3 . Once the three

polynomial functions have been computed, a non-linear combination of them, weighted by a
smoothness indicator of the function in the actual stencil, is performed. In that way, if a
strong gradient or a shockwave appears in the stencil Si+1/2 = {i− 2, . . . , i+ 2}, an automatic
upwinding or downwinding procedure is activated, resulting in a proper way to evolve a shock.
Here we will describe the implementation steps behind the WENO procedure we will point out
the method focussing on a single component of the convective fluxes Fj.
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4.1 – Spatial discretisation of convective fluxes

Considering a conservative approximation1 of a convective flux in the form of

∂Fj

∂xj

≃ 1
∆xj

(
f̂i+1/2 − f̂i−1/2

)
j

(4.1)

the WENO’s goal is the computation of a high-order approximation of the numerical flux f̂i+1/2
at the cell face i+ 1/2. The procedure is composed by the following sequence:

1. The first step computes the Roe’s [23] averaged state at the cell face i+1/2 and the deter-
mination of the left and right eigenmatrices (Li+1/2, Ri+1/2) associated to the Jacobian
of flux component [107].

2. The second step consists in the application of the local Lax-Friedrichs (LLF) flux splitting
[117] in order to determine the flux component associated with each s-characteristic
direction f+

s,i+1/2 and f−
s,i+1/2 according to

f±
i+1/2 = 1

2Li+1/2 (Fi ± |λmax|Ui) (4.2)

where λmax denotes the maximum eigenvalue of the Jacobian matrix associated with the
flux component Fj.

3. For every s-direction the WENO interpolation procedure is performed following the one
proposed by Jiang and Shu (1996). Here we will explain how f+

s,i+1/2 is computed and for
the sake of clarity, we drop the + sign in the superscript. The formulas for the negative
part of the split flux are symmetric in respect of the i+ 1/2. So, being

q(0)
i+1/2 = +1

3fi + 5
6fi+1 −

1
6fi+2 (4.3a)

q(1)
i+1/2 = −1

6fi−1 + 5
6fi + 1

3fi+1 (4.3b)

q(2)
i+1/2 = +1

3fi−2 −
7
6fi−1 + 11

6 fi (4.3c)

the three third-order interpolation polynomials on three different stencils, f+
i+1/2, can be

expressed using a non-linear combination of them, thus

fi+1/2 =
2∑

j=0
wjq(j)

i+1/2 (4.4)

1From the general theory of hyperbolic partial differential equations, a numerical discretisation of the flux
F(U) associated with the conservative variables U is said conservative if it can be written

∂Fj

∂xj
≃ 1

∆xj

(
f̂i+1/2 − f̂i−1/2

)
j

The importance of a conservative numerical method is crucial because of two fundamental theorems:
- A conservative numerical scheme, if convergent, converge to a weak solution of the problem (Lax and Wen-

droff, 1960);
- Non-conservative schemes do not converge to the correct solution if a shock wave is present in the flow (Hou

and LeFloch, 1994)
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4 – Numerical treatment of convective fluxes

where {wj}2
j=0 denotes the non-linear weights expressed by

wj = αj∑
j αj

, with αj = γj

(
1 + |β0 − β2|2

(βj + ε)2

)
(4.5)

Here ε is a small coefficient, in our computations set to 10−10, whose role is to avoid
the vanishment of the denominator, while {βj}2

j=0 are the smoothness indicators of the
functions f defined by

β1 = 13
12(fi − 2fi+1 + fi+2)2 + 1

4 (3fi − 4fi+1 + fi+2)2 (4.6a)

β2 = 13
12(fi−1 − 2fi + fi+1)2 + 1

4 (fi−1 − fi+1)2 (4.6b)

β3 = 13
12(fi−2 − 2fi−1 + fi)2 + 1

4 (fi−2 − 4fi−1 + 3fi)2 (4.6c)

finally the coefficient {γj}2
j=0 are the linear weights of the fifth-order WENO scheme

and their values are γj = 1
10 {3, 6, 1}

T . In respect of the original procedure proposed by
Jiang and Shu (1996), a little modification of the non-linear weights have been employed,
following the idea Castro et al. (2011). In particular, expressing the αj coefficients as a
function of the overall smooth indicator τ = |β0 − β2|2 slightly improved the resolution
properties of the scheme. The modification is known in the literature as WENO-Z.

4. Once the two flux f±
i+/2 components have been computed, the procedure ends with their

recombination in physical space following

f̂i+1/2 = Ri+1/2(f+
i+1/2 + f−

i+1/2) (4.7)
which represents a fifth-order approximation of the numerical flux at the left cell-bound.
The reconstruction grants the 5th order of accuracy on smooth flow regions.

4.1.2 Fully split convective energy preserving methods
The WENO’s procedure is well known to be robust and stable, but in the regions where
discontinuities do not characterise the flow, it does not represent the most suitable choice in
terms of accuracy and computational cost. In particular, in these regions, we want to avoid
the introduction of artificial viscosity, preserving, as much as possible, the turbulent energy
cascade; thus, a central scheme is required. Unfortunately, in the case of compressible flows,
a standard central scheme shows bad behaviour even in smooth regions. In these part of the
flow field, we employed the sixth-order central fully split approximation of convective flux
developed by Kennedy-Grüber-Pirozzoli. An extensive description of the method can be found
in Pirozzoli (2010) and Coppola et al. (2019). Here we will overview the essential steps of the
method. Being

∂ρujϕ

∂xj

⏐⏐⏐⏐⏐
i

≃ 1
∆xj

(
f̂i+1/2 − f̂i−1/2

)
(4.8)

a convective derivative associated to a generic transported scalar quantity (i.e. unity for the
continuity equation, {ui}3

i=1 for the momentum equation and H = γ/(γ− 1)p/ρ+u2/2 for the
total energy equation) a fully split approximation of equation (4.8) is expressed by
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4.1 – Spatial discretisation of convective fluxes

∂ρujϕ

∂xj

= k1
∂ρujϕ

∂xj

+k2

(
uj
∂ρϕ

∂xj

+ ρ
∂ujϕ

∂xj

+ ϕ
∂ρuj

∂xj

)
+(1−k1−k2)

(
ρuj

∂ϕ

∂xj

+ ρϕ
∂uj

∂xj

+ ujϕ
∂ρ

∂xj

)
(4.9)

where a conservative approximation is granted if k1 = k2 = 1/4. The expansion (4.9) of the
convective derivative into a generalised form is able to stabilise the central scheme granting
a semi-discrete preservation of kinetic energy in the limit of inviscid, incompressible flow. As
shown by Pirozzoli (2010) the numerical flux associated with the split formulation can be
written as

f̂i+1/2 = 2
L∑

l=1
al

l−1∑
m=0

˜(ρ, u, ϕ)i−m,l (4.10)

where

˜(ρ, u, ϕ)i,l = 1
8(ρi + ρi+l)(ui + ui+l)(ϕi + ϕi+l) (4.11)

is the two-point, three-variables discrete averaging operator associated to the transported vari-
able ϕ. The coefficient al maximise the formal order of accuracy of a central approximation of
a 2L-size stencil, thus a1 = 1/60, a2 = −3/20, a3 = 3/4.

4.1.3 Convective scheme hybridisation
Finally, to hybridise the WENO5 scheme and the KGP6 method, our implementation makes
use of shock detection techniques. The procedure consists in detecting a priori the regions
where the shock waves are located to selectively employing the WENO scheme limiting the
method in these portion of the flow. Since a unique expression able to carry out the job in
every flow conditions has not been yet formulated, the present solver carries out three different
implementations, each one optimised for specific a requirement.

The most conservative formulation makes use of the absolute value of the density gradient
computed at cell interfaces, thus the shock detector reads

θ = 3max
j=1

⏐⏐⏐⏐⏐ ∂ρ∂xj

⏐⏐⏐⏐⏐ (4.12)

A bit tighten is the density jump, defined as

θ = 3max
j=1

⏐⏐⏐δρj+1/2

⏐⏐⏐ (4.13)

where δρj+1/2 = ρj+1 − ρj is the density jump at the cell interface. Finally, in the case of
aerodynamics problems, an improved version of the Ducros sensor [30] has shown excellent
properties in the detection of both shocks and slip lines. This shocks detector relies on the
expression:

θ = max
⎛⎝− div(u)√

(div(u))2 + rot(u)2 + ε
, 0
⎞⎠ (4.14)

where div(u) is the velocity divergence, rot(u) is the vorticity and ε = (u∞/c)2. Once the
proper shock detector has been selected, a threshold θ̄ to distinguish shocked and smooth
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regions must be specified, thus if θ > θ̄ the flow is considered shocked, and the WENO re-
construction procedure is activated in the actual cell and all the three cells in the immediate
circumstances, otherwise the KGP scheme is employed. Again the threshold is strongly depen-
dent by the flow in itself and some preliminary settings need to be employed.

4.1.4 Numerical treatment on non-uniform grids
The discretised formulations of the convective fluxes, presented in the previous paragraphs,
are suitable for uniform Cartesian grids. The fact could be a substantial limitation in many
applicative situations where most the non-linear phenomena are concentrated in small fluid
regions, often known as a priori. For this reason, employing non-uniform grids is a mandatory
target to improve the accuracy of the simulation and reduce the elapsed time. For convective
derivative the extension is quite straightforward, thus being ∂ϕ/∂x a spatial derivative for ϕ
we can write

∂ϕ

∂x
= ∂ϕ

∂ξ

(
∂x

∂ξ

)−1

(4.15)

where ξ is a new coordinate variable describing the so-called computational space. The latter
consist of a uniform Cartesian grid described by

ξi = (i− 1/2)
N

i = 1, . . . , N (4.16)

and ∂x/∂ξ is the Jacobian of the transformation between the physical coordinates and the
computational space. Knowing a mapping function x(ξ) describing the nodal distribution as
a function of the computational grid coordinate, the expression (4.15) allows us to compute
the first derivative of the variable ϕ in a simple uniform computational space, employing the
metric of x(ξ) for the non-uniform extension. A considerable number of examples in therms of
mapping functions x(ξ) can be found in Orlandi (2012).

4.2 Validations and results

4.2.1 Error scaling
The first test that we have considered for the validation of the convective fluxes consists in the
advection of a single harmonic density signal with periodic boundary conditions. The problem
initialisation reads:

(ρ, u, p)t=0 = (1 + A sin (πx),M, 1) (4.17)

Here M was set equals to 0.05, while A = 0.2. For this problem, the Euler system of equations
admits an analytical solution expressed by

(ρ, u, p) = (1 + A sin (πx−Mt),M, 1) (4.18)

consisting in a linear advection of the initial signal. Being {ρ∗
i }N

i=1 a collection of numerical
results for the problem computed in the i = 1, . . . , N nodal positions, we can compare them
with the analytical solution by the definition of the p− norm and the ∞− norm of a vector,
that reads:
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Lp =
(

1
N

N∑
i=1
|ρi − ρ∗

i |
p

)1/p

(4.19)

L∞ = max
i
|ρi − ρ∗

i | (4.20)
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Figure 4.2: Error scaling on smooth solution for WENO5 (a) and KGP6 (b) methods.

N L1 L2 L∞ L1 order L2 order L∞ order
WENO5 10 0.000805525 0.000883539 0.00122389 - - -

20 2.48468E-05 2.77722E-05 4.22504E-05 5.019 4.992 4.856
40 7.84571E-07 8.75621E-07 1.35970E-06 4.985 4.987 4.958
80 2.46497E-08 2.74776E-08 4.28481E-08 4.992 4.994 4.988
160 7.71033E-10 8.59657E-10 1.34167E-09 4.999 4.998 4.997
320 2.41230E-11 2.68817E-11 4.18253E-11 4.998 4.999 5.004
640 8.06707E-13 9.00148E-13 1.42131E-12 4.902 4.9 4.879

KGP6 10 4.34000E-05 5.76996E-05 0.000117319 - - -
20 1.10911E-06 1.49683E-06 2.98040E-06 5.291 5.269 5.299
40 2.00245E-08 2.69216E-08 6.18570E-08 5.791 5.797 5.590
80 3.21839E-10 4.36456E-10 1.02255E-09 5.959 5.947 5.919
160 5.07592E-12 6.88361E-12 1.61948E-11 5.987 5.987 5.980

Table 4.1: Error scaling on smooth solution for WENO5 and KGP6.

Because the WENO5 and the KGP6 schemes are respectively fifth-order and sixth− order
accurate on smooth solutions, we expect that the error scales consequently. In Figure 4.2
the error scaling of both schemes, in therm of L1, L2 and L∞ norms is reported as a func-
tion of the number of points employed in the discretisation. In particular a set of N =
{10,20,40,80,160,320,640} points has been employed to test the WENO5 scheme, while N =
{10,20,40,80,160} has been used for the KGP6 method. In order to fully decouple the spatial
and the time errors, the time-step was evaluated setting a CFL number equals to 0.1. The
data referring to Figure 4.2 are reported in Table 4.1.
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4.2.2 One-dimensional Riemann problem for Euler equations
In the previous paragraphs, the performance of WENO5 and the KGP6 methods have been
tested over a smooth solution and the error scaling was pointed out. To better show the
stability and the robustness of our method, the results obtained over various one-dimensional
Riemann problems for the Euler equation will be presented. The Riemann problem, often
known as shock tube, consists in initialising a discontinuity inside a fluid domain at t = 0 and
drawing the solution over time. Three cases will be considered: the Sod’s shock tube, the Lax’s
shock tube and the Shu-Osher problem whose initial conditions are expressed respectively

(ρ, u, p)t=0,Sod =

⎧⎨⎩(1.000, 0.0, 1.0) if x < 0
(0.125, 0.0, 0.1) if x > 0

(4.21a)

(ρ, u, p)t=0,Lax =

⎧⎨⎩(0.445, 0.698, 3.528) if x < 0
(0.500, 0.000, 0.571) if x > 0

(4.21b)

(ρ, u, p)t=0,Shu−Osher =

⎧⎨⎩(3.857143, 2.629369, 10.333333) if x < 0
(1.0 + 0.2 sin(5.0x), 0.0, 1.0) if x > 0

(4.21c)

The problem will be solved with the hybrid WENO5+KGP6 scheme employing the density
gradient shock detector over a uniform grid. The threshold for the density gradient shock sensor
was set equals to 0.3. In Figure 4.3, a comparison between the analytical and the numerical
solutions for Sod’s and Lax’s shock tubes are reported in terms of the density profile. The
analytical solution was determined using 3000 points up to t = 2 and t = 1.3 time units
respectively, while the numerical calculation consisted in evolving 500 computational nodes.
Extrapolation boundaries were ensured at both limits, while the time-step was evaluated from
the Courant-Friedrichs-Lewy stability condition with a CFL number equals to 0.5. Red lines
represent the shock regions of WENO5 scheme. As we notice, the latter consist in the ≃ 5÷10%
of the whole domain and for this reason, employing the WENO5 scheme everywhere it is both
pointless and computationally expensive. Figure 4.4 reports an enlargement of the contact
discontinuities characterising the two shock tube problems as a function of the grid resolution.
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Figure 4.3: Density profiles for the Sod’s shock tube (a) and Lax’s shock tube (b). Here a
comparison between the analytical and the numerical solution is presented. Shocks regions are
underlined between red lines.
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Figure 4.4: Enlargement of the Sod’s (a) and Lax’s (b) shock tube forward-facing and
backward-facing contact discontinuity. Here a comparison between the analytical and the
numerical solution is presented as a function of the grid resolution.

Moving through the Shu-Osher’s test, the problem consists of a moving density-wave inter-
acting with a shock. The problem is considered a very challenging goal for shock-capturing nu-
merical methods. The physical oscillations, in fact, due to the shock-density-wave-interaction,
can be easily confused as shocks by the upwinding WENO procedure and consequently diffused.
In Figure 4.5 the results in terms of density profiles at various grid resolutions are reported at a
reduce time t equals to 1.8. As fas as the simulation set up, the same settings as the Sod’s and
Lax’s shock tube were employed. From Figure 4.5b we can see that, even without increasing
too much the number of points employed in the simulation, good resolution properties can be
ascribed to our method, resulting in an excellent agreement with the analytical solution.
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(a) Shu-Osher problem density profile at t = 1.8
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Figure 4.5: Shu-Osher problem for Euler equations. Here the density profile is reported at
different grid resolutions. The exact solution was obtained over 3000 points discretisation. An
enlargement of the shock-density wave interaction is reported in panal (b).
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4.2.3 Two-dimensional Riemann problem for Euler equations

Moving through two-dimensional tests, in the present work, the 2D-Riemann problem for
Euler equations has been addressed. The problem, similarly to the one-dimensional version,
consists in initialising a discontinuous solution to the Euler system of equations and drawing the
evolution of the system in time. Introducing a second dimension, a vast number of combinations
and configuration of the problem are possible. In Guo and Shi (2018) a detailed description of
the most common is reported. Here we will refer to the so-called four quadrants problem, and
we will practically present the two following initialisations:

(ρ, u, v, p)t=0,A =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1.5000, 0.000, 0.000,1.500) if x > 0, y > 0
(0.5323, 1.206, 0.000, 0.300) if x < 0, y > 0
(0.1380, 1.206, 1.206, 0.029) if x < 0, y < 0
(0.5323, 0.000, 1.206, 0.300) if x > 0, y < 0

(4.22a)

(ρ, u, v, p)t=0,B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1.00, 1.00,+0.75,−0.50) if x > 0, y > 0
(2.00, 1.00,+0.75,+0.50) if x < 0, y > 0
(1.00, 1.00,−0.75,+0.50) if x < 0, y < 0
(3.00, 1.00,−0.75,−0.50) if x > 0, y < 0

(4.22b)

Despite previous validations, the results of the two-dimensional Riemann problem for Euler
equations are purely qualitative in term of contours of fluid variables. In Figure 4.6 and
Figure 4.7 the results of the computation, in terms of density and temperature fields are
reported. Both simulations have been performed on a uniform Cartesian grid sizes Lx × Ly =
1 × 1 length units and featuring in Nx × Ny = 1600 × 1600 = 2560000 computational nodes.
Extrapolation boundaries have been employed in all the four edges of the domain, and the
solution was advanced in time up t/t0 = 0.3 fixing a CFL equals to 0.5. Compared to other
qualitative results available in the literature, our solution to the four-quadrants problem is in
a complete agreement. Moreover, our computation denotes very high quality and cleanliness
and no particular spurious oscillations seam to appear in the flow fields.

(a) Non-dimensional density field (b) Non-dimensional density contours

Figure 4.6: Non-dimensional density field (a) and twenty level contours (b) for the four quad-
rant problem in configuration A.
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(a) Non-dimensional temperature field (b) Non-dimensional temperature contours

Figure 4.7: Non-dimensional temperature field (a) and twenty levels contours (b) for the four
quadrant problem in configuration B.

The four-quadrants problem gives us the possibility also to test the shock detection algo-
rithm. Here the density jump shock detector was employed setting a threshold θ̄ equals to
0.05. In figure Figure 4.8, the shock detector field is reported in all the computational domain
for both the two configurations. As we can notice, just the thin regions around the shocks are
flagged by the algorithm and only in this little portions of the domain, the WENO reconstruc-
tion procedure was activated. This allows the computation to be fast and efficient, minimising
the non-linear operation per time-step.

(a) Configuration A (b) Configuration B

Figure 4.8: WENO-activated cells for the four-quadrants problems. Here the density jump
detection technique has been employed fixing θ̄ = 0.05.
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4.2.4 Double-Mach reflection

The last test we considered in the validation of the convective fluxes consists of the double
Mach reflection problem. The problem always belongs to the 2D-Riemann problems’ category
for Euler equations, but for its peculiarities, it is often treated separately. Woodward and
Colella (1984) suggested the test and a detailed analytical description can be found in Li and
Ben-Dor (1995). The problem consists in studying the complexity of the interaction between
a moving shock wave and an infinite wedge. The most common configuration sees the shock
travelling at Ms = 10 and a wedge characterised by an angle θw = π/6. When the shock runs
up the wedge, a self-similar shock structure, characterised by two triple points, evolves. As
usual, to adapt the problem for a Cartesian domain, a rigid clockwise rotation is applied to the
physical problem. Thus the shock is inclined by an angle θs = π/2− θw in respect of x− axis,
while the wedge overlaps the bottom boundary of the domain. In Figure 4.9, a sketch of both
the physical and the computational domain is reported.

nn

(a) Physical domain
VV

(b) Adaptation for a Cartesian domain

Figure 4.9: Sketch of the physical (a) and the computational (b) domain employed in the
simulation of the double Mach reflection problem. On the left panel a shock wave is travelling
at Ms against a θw−wedge, on the right panel the same shock is rotated clockwisely by the θw

angle and is travelling against a slip horizontal wall.

Initial condition consists in a Ms = 10 travelling oblique shock wave was enforced to
reproduce the problem numerically (see appendix A for details) . At the upper bound the
analytical solution of the moving shock was enforced, while the bottom side of the domain
consisted in two different boundary conditions: for x < x0 a post-shocked field, exactly equals
to the one firstly initialised, was continuously enforced during time, while for x > x0 a slip-wall
condition was employed. Here x0 is the initial shock position, in our computation equals 1/6.
The simulation was performed on a uniform Cartesian grid sizes Lx×Ly = 3×1 and featuring
Nx ×Ny = 6000 × 2000 computational grid points. The CFL number was usually set equals
0.5. In Figure 4.10 the results at t/t0 = 0.2 in terms of density field are reported, while in
Figure 4.11 an enlargement of the complex interaction due to the double Mach reflection is
shown.

Similarly to previous conclusions, the results regarding the double Mach reflection are all
qualitative and comparable just in term of field contours. However, the present result confirm
the trend of our methodology in being particularly clean and robust, and Figure 4.11 denotes
that very good resolution properties were recovered the schemes we implemented.
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(a) t/t0 = 0.1

(b) t/t0 = 0.2

Primary slip linePrimary slip line
Secondary slip lineSecondary slip line

Primary triple pointPrimary triple point

Secondary triple pointSecondary triple point

(c) sketch to the computational geometry

Figure 4.10: Self similar structure of the non-dimensional density field for the double Mach
reflection problem at t/t0 = 0.1 (a) and t/t0 = 0.2 (b) and sketch to the computational
geometry (c).
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(a) Non-dimensional density field

(b) Schlieren density

Figure 4.11: Non-dimensional density field (a) and Schlieren density (b) enlargement for the
double Mach reflection problem.
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4.3 Summary
In the present chapter, the numerical methods employed in the discretisation of the Navier-
Stokes convective fluxes have been presented, in particular, both the WENO5 and KGP6
schemes. The first consisted in one the most suitable shock-capturing method available in
the literature; the second consists of a stabler extension of a central scheme, particularly
recommended for smooth and turbulent regions. Some details regarding of the hybridisation
strategy have been pointed out. Finally, to test the numerical method, a considerable number
of results and validations have been reported.
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Numerical treatment of viscous fluxes

I have had my results for a long time:
but I do not yet know how I am to
arrive at them.

Carl Friedrich Gauss
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In this chapter, we will discuss the numerical methods employed in the discretisation of
the Navier-Stokes system of equations. Those terms have been discretised with a standard
sixth-order central finite-difference. However, a suitable formulation has been employed to
improve the resolution property of the scheme and its stability. At the end of the chapter, a
conspicuous amount of numerical results and validations will be presented.
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5.1 Spatial discretisation of viscous fluxes

5.1.1 Fully expanded formulation of viscous fluxes
Numerical treatment of viscous fluxes could be computational demanding for a co-located
finite-difference solvers. Recalling the expression of the dynamical contribution of the stress
tensor

∂dij

∂xj

=
√
γM∞

Re

∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

δij

))
(5.1)

and the diffusive contribution to the energy equation

−∂q
∂xj

+ ∂uidij

∂xj

=
√
γM∞

Re

(
γ

γ − 1
1
Pr

∂

∂xj

(
λ
∂T

∂xj

)
+ ∂

∂xj

(
µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

)
ui

))
(5.2)

we immediately recognise the complexity behind the viscous terms discretisation. Before going
into the details of the numerical discretisation of the Navier-Stokes viscous terms, a suitable
formulation of viscous fluxes for a co-locate finite difference solver will be pointed out. Following
the suggestion of Pirozzoli (2011a) a viscous derivative, exploiting the product role, can be
expanded as follows

∂

∂xj

(
µ
∂ui

∂xj

)
= µ

∂2ui

∂xj∂xj

+ ∂µ

∂xj

∂ui

∂xj

(5.3)

The process can be carried out for all the viscous terms resulting in a fully expanded formulation,
improving both the resolution and the stability of the central scheme. In the final formulation
we will see that the number of mixed derivatives is much less reduced achieving a considerable
gain in term of computational efficiency. Focusing on dij we can expand its divergence as

∂dij

∂xj

= µ
∂τij

∂xj

+ τij
∂µ

∂xj

(5.4)

where τij represents the differential contribution. Expanding (5.4) we obtain

∂τij

∂xj

= ∂

∂xj

(
∂ui

∂xj

+ ∂uj

∂xi

− 2
3
∂us

∂xs

δij

)
(5.5a)

= ∂

∂xj

∂ui

∂xj

+ ∂

∂xj

∂uj

∂xi

− 2
3
∂

∂xj

∂us

∂xs

δij. (5.5b)

Recognising that

∂

∂xj

∂uj

∂xi

= ∂

∂xi

(
∂us

∂xs

)
δij (5.6)

we can write

∂τij

∂xj

= ∂2ui

∂xj∂xj

+ 1
3
∂

∂xi

(
∂us

∂xs

)
δij (5.7)

Thus (5.4) becomes
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∂dij

∂xj

= µ
∂2ui

∂xj∂xj

+ 1
3µ

∂

∂xi

(
∂us

∂xs

)
δij + τij

∂µ

∂xj

(5.8)

The latter expression highlights some salient points. Fist of all, in the limits of an incompress-
ible flow, equation (5.8) reduces to the well-known

∂dij

∂xj

= µ
∂2ui

∂xj∂xj

(5.9)

concluding that the viscous compressible effects can be seen as a high-order series expansion
of incompressible phenomena. Secondly - except for the gradient of the velocity divergence -
no mixed derivatives appear in this formulation. Finally, recalling tensorial calculus identities,
the computation of the momentum viscous terms can be re-used into the energy equation

∂uidij

∂xj

= ∂dij

∂xj

ui + µτij
∂ui

∂xj

(5.10)

5.1.2 Numerical method and algorithm
The discretisation of the viscous terms has been carried out into two sub-steps.

1. To speed up the memory accesses, the primitives variable (i.e., u, v, w, p, T ) and the
viscosity field µ have been extracted from the conservative fields. The process is carried
out once per iteration in all the computational domain;

2. when the primitive fields have been computed, a second computational kernel was em-
ployed to compute their gradients. All the spatial derivative in the fully expanded for-
mulation of the viscous fluxes have been calculated via a standard sixth-order central
scheme and in particular both the first and the second derivative approximation have
been employed. Thus, being ∂ϕ/∂x and ∂2ϕ/∂x2 respectively a first and a second deriva-
tive for the flow variable ϕ and S = {i − L/2, . . . , i + L/2} the computational stencil
(L = 3) around the ith computational node, the scheme reads

(
∂ϕ

∂x

)
i

= 1
∆x

L/2∑
s=1

α(1)
s (ϕi+s − ϕi−s) +O(∆xL) (5.11)

(
∂2ϕ

∂2x

)
i

= 1
∆x2

L/2∑
s=−L/2

α(2)
s ϕi+s +O(∆xL) (5.12)

here the coefficients α(1)
s and α(2)

s maximise the formal order of accuracy in the actual sten-
cil, thus a(1)

s = {1/60,−3/20, 3/4} and a(2)
s = {1/90,−3/20, 3/2,−49/18, 3/2,−3/20, 1/90}.

5.1.3 Numerical treatment on non-uniform grids
The method for the discretisation of viscous derivatives works in case of a uniform Cartesian
grid. As we already mentioned in § 4, this could be very limit its applications. Like in the case
of convective fluxes, also diffusive terms contain a discrete number of first derivatives. For their
numerical treatment the reader is remanded to the description proposed in § 4.15 and here we
will focus on second derivatives. Being ∂2ϕ/∂x2 the second derivative of a flow variable ϕ, if
the physical space in which ϕ lives is described by a generalised coordinate x(ξ), we can write
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∂2ϕ

∂x2 = ∂2ϕ

∂ξ2

(
∂ξ

∂x

)2

+ ∂ϕ

∂ξ

(
∂2ξ

∂x2

)
(5.13)

where ∂ξ/∂x and ∂2ξ/∂x2 are respectively the inverse of the Jacobian and the inverse of the
Hessian of the coordinate transformation from the physical to the computational space. Thanks
to differential calculus identities, we can express them in respect of x(ξ) derivative as follows

∂ξ

∂x
=
(
∂x

∂ξ

)−1

(5.14)

∂2ξ

∂x2 = −∂
2x

∂2ξ

(
∂x

∂ξ

)−3

(5.15)

As for the convective fluxes calculation, the formulation (5.13) computes the ϕ gradients on a
uniform grid (expressed by the ξ coordinate), while the extension to non-uniform grids can be
done using the metrics of the function x(ξ).

5.2 Validations and results
In this section, we will consider a set of valid benchmarks to test and validate the discretisation
of the viscous terms of the Navier-Stokes equations. In particular, some analytical solutions,
i.e., the Poiseuille flow, the first and second Stokes problems, will be pointed out and compared
with the numerical solutions. A detailed analytical description of this problem can be found
in [6] and in [61].

5.2.1 Poiseuille flow
The Poiseuille flow in an infinite planar channel is one of the most popular analytical solution of
the Navier-Stokes equations. Considering a laminar flow in an incompressible regime, confined
between two parallel isothermal walls at T/T0 = 1. Being h the span of the channel in
y−direction and x the stream-wise direction of the flow. For such a system, thanks to continuity
equation, we can conclude that all the flow variables are uniquely functions of the y−coordinate.
Moreover, if the flow reaches the stationary condition, the momentum Navier-Stokes equations
reduce to

dp

dx
= µ∞

d2u

dy2 (5.16)

where µ∞ denotes

µ∞ =
√
γM

Re
(5.17)

Now, ending the problem with the boundary conditions for the velocity at the wall position
(i.e. u(y = −h/2) = u(y = h/2) = 0) and knowing that the pressure gradient does not depend
on the y−coordinate, the equation (5.16) can be integrated obtaining

u(y) = − 1
2µ∞

dp

dx
(h2 − y2) (5.18)

The formula expresses that the motion of the flow is driven by the pressure gradient dp/dx,
which represents the free parameter of the problem. Because the pressure gradient can assume
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any value it is convenient to express it as a function of the non-dimensional groups and specif-
ically as a function of Mach number. In this way, setting a very low Mach number, we can
ensure the incompressibility of the flow resulting in the hypothesis of the Poiseuille flow. Thus
defining

dp

dx
= −2γM2

∞
Re

(5.19)

we obtain

u(y) = √γM∞(h2 − y2) (5.20)

The latter expression represents the analytical solution of the Poiseuille flow as a function of the
free-stream Mach number. The expression could be suitably compared with our computations.
As far as the energy equation, reducing the energy equation accordingly with the Poiseuille
flow hypothesis we obtain

λ∞

(
d2T

dy2

)
+ µ∞

d

dy

(
du

dy
u

)
= 0 (5.21)

where λ∞ denotes

λ∞ = γ

γ − 1
µ∞

Pr
(5.22)

In the limit of incompressible flows, the temperature field is fully decoupled by the velocity and
u = u(y) is a known function derived from the integration of momentum equation. Integrating
the equation (5.21) we can write

∂T

∂y
= −µ∞

λ∞

∫ d

dy

(
du

dy
u

)
dy + c1. (5.23)

For the fundamental theorem of calculus

dT

dy
= −µ∞

λ∞

(
du

dy
u

)
+ c1 (5.24)

and integrating again, we obtain

T (y) = −µ∞

λ∞

∫ (
du

dy
u

)
+ c1y + c2. (5.25)

Now, exploiting the integration by parts we can write
∫ (

du

dy
u

)
= u(y)2 −

∫ (
u
du

dy

)
(5.26)

obtaining
∫ (

du

dy
u

)
= u(y)2

2 (5.27)

equation that, plugged in (5.25), gives

T (y) = −µ∞

λ∞

u(y)2

2 + c1y + c2 (5.28)
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Finally, applying the boundary conditions T (h/2)/T0 = T (−h/2)/T0 = 1 and remembering
u(−h/2) = u(h/2) = 0 we obtain

T (y) = 1− γ − 1
γ

Pr
u(y)2

2 (5.29)

equation that represents the temperature profile for a Poiseuille flow in an infinite planar chan-
nel. In order to reproduce the problem numerically without introducing any compressibility ef-
fects we simulated the flow in a periodic channel at Re = u∞h/ν∞ = 10 and M = u∞/c∞ = 0.1.
u∞ denoted the pick velocity of the Poiseuille flow; h is the span of the channel and ν∞ the
kinematic viscosity of the fluid. Periodic boundary conditions were enforced along the stream-
wise direction; the pressure gradient dp/dx was employed as a source term to force the motion.
Isothermal no-slip wall boundaries were employed at the upper and lower bounds of the com-
putational domain. A uniform Cartesian mesh featuring Nx × Ny = 5 × 30 grid points for a
domain of Lx×Ly = (−2 : 2)×(−1 : 1) was used. The solution evolved reaching a steady-state
condition. The time-step was evaluated via the CFL condition setting a CFL number equal
to 0.5. The results, in term of velocity and temperature profiles are reported in Figure 5.1.
From a comparison between our computation and the analytical solutions (5.20) (5.29), the
likelihood of the outcome significantly fits.
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Figure 5.1: Velocity (a) and temperature (b) profiles for a Poiseuille flow at M = 0.1 and
Re = 10.

To validate the algorithm in the case of non-uniform meshes, the same simulation was
performed over a Cartesian grid stretched around the two walls locations and featuring Nx ×
Ny = 5× 40 grid points. The latter was distributed employing the mapping function proposed
by Orlandi (2012)

x(ξ) = 1
2

tanh
(
α
(
ξ − 1

2

))
tanh

(
1
2α
) (5.30)

where α denotes a stretching parameter, in our computation set to 2.5. The results, in term
of velocity and temperature profiles, are reported in Figure 5.2.
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Figure 5.2: Velocity (a) and temperature (b) profiles on a non-uniform Cartesian grid for a
Poiseuille flow at M = 0.1 and Re = 10.

5.2.2 First Stokes problem
Moving to a more complex validation, in the present paragraphs we want to face the so-called
first Stokes problem. The problem consists of a semi-infinite flow region bounded by a rigid
plate at y = 0 and initially at rest. Suddenly, the lower plate gains a steady velocity u∞.
Because of the viscosity of the fluid, the velocity perturbation starts to propagate in the flow
domain and, in the limit of an incompressible flows, the u speed depends only on the wall-
normal coordinate [6, 61]. The governing differential equations reduce to

∂u

∂t
= µ∞

∂2u

∂y2 (5.31)

with the boundary conditions ⎧⎨⎩u(y,0) = 0
u(0, t) = u∞, for t > 0

(5.32)

The analytical solution of the problem is represented by

u(y, t) = u∞

(
1− erf

(
y√
4µ∞

))
(5.33)

where erf(x) denotes the error function expressed by

erf(x) = 2√
π

∫ x

0
e−t2

dt (5.34)

To reproduce the problem numerically, we simulated the flow in a semi-infinite configuration
bounded by an isothermal no-slip wall condition at the lower side. Periodic boundary conditions
were enforced on the left and the right sides of the domain, while an extrapolation condition
was set at the upper bound. The Mach number M = u∞/c∞, to avoid any compressibility
effect, was set equal to 0.1 and here u∞ represents the wall speed. The problem was solved
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referred to a non-uniform Cartesian grid expressed by

x(ξ) = 1.0 + tanh(α(ξ − 1.0))
tanh(α) (5.35)

ensuring a grid stretching along the wall-normal direction. Here α is the stretching parameter
in our computation set to 3.0. The grid featured Nx ×Ny = 5× 30 computational nodes and
covered a domain of Lx × Ly = 1× 20 length units. The time-step was computed setting the
CFL number equal to 0.5, and the flow variables have been evolved up to t/t0 = 600 units
of time. In Figure 5.3, the comparison between our simulation and the analytical solution, at
different time levels, is reported. As we notice, the velocity perturbation, due to the wall speed,
starts to propagates from the lower to the upper bounds of the domain fitting the analytical
solution. In Figure 5.4, to distinguish the point clustering at the wall location an enlargement
of that region has been plotted.
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Figure 5.3: Velocity profiles in scale for the first Stokes problem at M = 0.1. The computation
was performed over a non-uniform Cartesian grid stretched along the wall normal direction.
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Figure 5.4: Enlargement of the wall region of the velocity profiles in for the first Stokes problem
at M = 0.1.
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5.2.3 Second Stokes problem
The last test we analyse in the validation of the viscous fluxes discretisation is the flow triggered
by an oscillating plane boundary. The problem, also known as second Stokes problem, represents
an extension of the problem discussed in the previous paragraph. We suppose the upper half
of the (x, y)−plane to be occupied by a fluid, while a rigid boundary at y = 0 is moving
with speed u∞ cos(ωt). The flow, initially at rest, starts to follow the wall speed, inducing the
motion of all the domain. In the limit of incompressible flows, the problem is governed by the
equation (5.31) and, following the description of Batchelor (2000), the analytical solution of
the problem is represented by

u(y, t) = u∞e
−ωcy cos(ωt− ωcy) (5.36)

here ω is the wall wave number and ωc is a reduce frequency expressed by

ωc =
√

ω

2µ∞
(5.37)

Reproducing the problem we set ω = 1/4π and we simulated a semi-infinite configuration
of a flow at M = u∞/c∞ = 0.01. u∞ denotes the pick wall’s velocity. Periodic boundaries
were enforced on the lateral edges, while at the top the conservative variables have been
extrapolated.
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Figure 5.5: Seven velocity profiles for the second Stokes problem at M = 0.01 and Re = 1.
The computation was performed over a non-uniform Cartesian grid stretched along the wall
normal direction.
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The computation was performed over a non-uniform Cartesian grid featuring Nx × Ny =
5× 40 computational nodes and covering a domain of Lx × Ly = (−1 : 1)× 2 units of length.
The nodes were analytically distributed by the expression (5.35) and the stretching parameter
α was set equal to 2.0. In Figure 5.5, the comparison between our numerical results and
the analytical solution are compared for seven different levels of time concluding a full fitting.
Similarly to the previous test, an enlargement of the wall region is reported in Figure 5.6 where
the velocity profiles have been plotted in logarithmic scale.
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Figure 5.6: Seven velocity profiles for the second Stokes problem at M = 0.01 and Re = 1.
Enlargement of the wall region of the velocity profiles.

5.3 Summary
In the present chapter, the numerical methods employed in the discretisation of the viscous
fluxes of the Navier-Stokes system of equations have been presented. In particular, a standard
sixth-order central scheme has been used in combination with a suitable fully split formulation
of the diffusive terms. This formulation is strongly recommended in the case of compressible
flows, increasing the spectral properties of the central scheme and its stability. Three tests,
of increasing difficulty, have been presented. The latter consisted of well-known analytical
solutions of the Navier-Stokes equations in the limit of incompressible flows. A full agree-
ment between the numerical and the analytical solution make us confident in the excellent
predictability of our method.
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6
Code parallelisation and 3D results

Turbulence is the most important
unsolved problem of classical physics.

Richard Feynman
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In the previous chapters, we described the numerical tools implemented in the discretisa-
tion of the Navier-Stokes system of equations. Those routines took into account the single
contributions of the equations in terms of temporal, convective, and viscous terms. In the
present chapter, we would like to show an overall description of our solver, mainly focused on
its parallel structure. After this presentation, some validations and comparative results in the
field of turbulent and fully separated flows will be pointed out.
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6.1 Parallelisation strategy
In the last decades, because of their accurate behaviour, the finite-difference methods have been
widely applied to simulate a large variety of fluid dynamics problems. To increase the accuracy
of the numerical results, a considerable number of discretisation schemes have been proposed.
Thanks to the research activity in this field, nowadays, the direct numerical simulations of fluid
flow phenomena have reached a fidelity level comparable to the most accurate and expensive
experiments, becoming a real alternative to them. On the other hand, numerical analysis
stands that, to increase the accuracy of a discretisation method, the number of information
required must increase. This fact makes high-order numerical schemes very computational
demanding in terms of the number of operations per time-step and memory requirements.
Thus, some strategy to reduce the simulation’s time must be employed.

Today, parallel programming and the implementation of parallel algorithms over distributed
memory architectures, seem to be the most reliable strategies able to face the problem. In the
present work, all the algorithms presented in the previous chapters have been implemented in a
distributed memory parallel approach. In particular, our numerical application makes use of a
hybrid implementation consisting of employing both the MPI and the OpenMP specifications.
MPI - an acronym standing for message passing interface - consists in a widely used library for
solving difficult computational problems in all the significant fields of science and engineering.
The interface makes available several routines to convert a serial application into a parallel one.
The library - now at its fourth version - completely supports both Fortran90 and C/C++.
The fundamental idea of MPI consists in splitting the computation over thousands of cores,
performing a small number of operations per computational unit. Every single core must be
aware of what the other cores are running (or at least it must know what its neighbours are
computing). The MPI specification manages the information interchange between them. An
overall description of the MPI library can be found in [46, 47] while a dissertation, closed to
fluid dynamics problems, can be found in [27].

Figure 6.1: Sketch of the 3D MPI domain decomposition employed in the parallelisation split-
ting

On the other hand, OpenMP consists in an alternative parallelisation paradigm suitable
for shared memory architectures. In this case, the processed data must be available on the
same memory slot, making this specification quite restrictive for massive computations. In
this way the hybridisation of the two paradigms takes advantage of both of them. In a stan-
dard distributed memory architecture, the MPI paradigm can be employed for extra-nodes
computations, splitting the calculus over a considerable number of nodes. The intra-nodes (as
known as threads) computations, instead, relying on the same memory slot, can be speed-up
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with the OpenMP paradigm. The latter consists in compiler directives able to distribute the
computational load over the threads.

Following the suggestions of Chao et al. (2009) and Salvadore et al. (2013) a fully three-
dimensional MPI domain decomposition hybridised with OpenMP compiler directives has been
implemented. In particular, as far as the MPI implementation the domain decomposition shares
the halo-nodes thought non-blocking communications. The latter process has been efficiently
addressed thought point-to-point directives (i.e. MPI_ISEND/MPI_IRECV) and has been partially
desynchronised concerning the computational kernels. MPI derived data type have been used to
collect the shared data and the conservative variables were stored in four-dimensional arrays
ϕ(i, j, k, n), where ϕ(i, j, k,1 : 5) = {ρ, ρu, ρv, ρw, ρEtot}T

i,j,k. The implementation has been
tested in terms of scalability performances. In particular, both strong- and weak-scaling tests
have been performed. These two attributes indicate how efficient is an application increasing
the number of processing units.

6.1.1 Strong scaling
The strong scaling consists in keeping fixed the size of the problem but increasing the number
of cores employed in its computation. This scalability property is used as justification for those
models that take a long time to run and a possible way to measure it consists in computing
the scaling factor (SF)

SF =
(
tref

tN

)
S

(6.1)

SF represents the ratio between the elapsed time to complete a job with a reference group of
processing elements (tref ) and the elapsed time to complete the same task over N reference
groups (tN) keeping the problem’s size (S) fixed. In principle, tN should be equal toN ·tref , thus
SF is theoretically a linear function of the number of processing units. Unfortunately, in real
applications, increasing the number of cores, the time to share the information progressively
increases, saturating the SF . The scaling factor was computed exploiting the MARCONI
supercomputer infrastructure from CINECA, Italy. The test consisted in evolving 10 Navier-
Stokes’s iterations of an ambient field in a cubic domain. The latter was discretised with a
uniform Cartesian grid featuring 512 × 512 × 512 grid points and the test was performed up
to 1024 physical cores. To avoid any speed-up due to multi-threading, the number of threads
was kept constant during the entire campaign and fixed equal to one. The reference group of
precessing elements was selected equal to 64 cores which corresponds to the number of cores
in a single MARCONI’s node. In Figure 6.2a the SF is reported as a function of the cores’
number.

6.1.2 Weak scaling
The weak scaling, similarly to the strong scaling, gives information about the parallel perfor-
mances of a numerical application while the number of cores employed in the computation
increases. Differently, from the strong scaling, the weak scaling fixed the problem inside a sin-
gle computational group. This type of attribute is taken as a justification for those programs
that consume a lot of memory (or other system resources) during their running and a way to
quantify it consists in computing the scaling efficiency (SH) defined as

SH =
(
tref

tN

)
S×G

(6.2)
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SH represents the ratio between the elapsed time to complete a job over a reference group of
processing elements and the elapsed time to complete the same task over N reference groups
keeping constant the problem’s size per each processing group. Fixing the problem’s size per
each processing unit, the number of floating-point operations per single cores remains the same,
thus the scaling efficiency SH should be independent on the number of processing units and
equal to one. In real applications, increasing the size of the problem per single core the memory
latency, the miscaches and other system occurrences reduce the performances of the application,
affecting the scaling efficiency. In the present work, the scaling efficiency was computed always
exploiting the MARCONI’s infrastructure. In particular, 100 Navier-Stokes’ iterations of an
ambient field have been performed over a cubic domain. The latter was discretised by three
uniform Cartesian grids featuring {323, 643, 1283}T computational points and the computations
were respectively run over 64{1, 8, 64}T cores. This setting kept the number of grid nodes per
processor constant and equal to 512. In Figure 6.2b the SH is reported as a function of the
cores’ number. The latter results allows to conclude that our application is well optimised in
term of memory accesses and cache exploitation.
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Figure 6.2: (a) Strong scaling of the numerical method up to 1024 cores in a domain of 5123

grid points. (b) Weak performance for the numerical application keeping 512 grid point per
core. The test evolved the ambient initial conditions for the Navier-Stokes system of equation
consisting in (ui/u∞)t=0 = 0 and (p/p0)t=0 = 1 and (T/T0)t=0 = 1.

# procs elapsed time [s] scaling factor
Strong scaling 25 78.236 1.00
(5123 nodes) 26 38.624 2.03

27 19.660 3.98
28 10.142 7.71
29 5.628 13.9

# procs elapsed time [s] scaling efficiency
Weak scaling 641 2.187 1.000

(512 nodes/procs) 642 2.130 1.027
643 2.128 1.028

Table 6.1: Strong and weak scaling performances for the numerical method.
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Thanks to the good parallel performance of our numerical method, three-dimensional sim-
ulations become a possibility. In the following section, we are going to show a fully three-
dimensional test in the field of turbulent and fully separated flows. The section concludes the
validation campaign of our solver.

6.2 Three-dimensional results

6.2.1 Wall turbulence
Since the dawn of the fluid dynamics research, the wall turbulence has been represented as one
of the most studied phenomena in the field of turbulent and fully separated flows. Back to
the fundamental works of Prandtl (1904), Blasius (1908) and Von Karman (1937) nowadays
many approaches have been proposed, both numerical [8, 78, 79] and experimental [115], facing
the problem in various applicative configurations. The most common arrangements are the
turbulent pipe and the turbulent channel. These two dispositions show similar results in
terms of flow statistics and physical deployment of turbulence and recently Luchini (2017)
proved the universality of the turbulent statistics in both the two geometries. The current
paragraph shows the behaviour of our computational model in respect of three-dimensional
fully-separated flows and in particular, because of the large variety of results available, here a
planar turbulent channel will be taken into account. The problem will we be faced in the limit
of incompressible flow. At first sight, this choice could be seem far from being a good test for
a compressible solver, indeed it consists in a real challenging application. The employment of
a co-located finite-difference grid makes the decoupling between the pressure and the velocity
fields a frequent eventuality, especially in incompressible turbulent conditions and not rarely
the blow-up of the simulation follows; thus, the turbulent channel flow in incompressible regime
can be considered a test also for the robustness of the code. As usual, before moving thought
the results, we will start with a theoretical introduction for whose details the reader is remanded
to [61].

6.2.2 Pressure-driven turbulent channel
In the field of turbulent flows, a well-known result is represented by the Reynolds aver-
aged Navier-Stokes equations (RANS). The model describes the dynamics of a turbulent flow
in terms of its mean behaviour over a considerable amount of observations. Applied to incom-
pressible flows the equations read

∂⟨uj⟩
∂xj

= 0 (6.3a)

∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −1
ρ

∂⟨p⟩δij

∂xj

+ µ

ρ

∂2⟨ui⟩
∂xj∂xj

−
∂⟨u′

iu
′
j⟩

∂xj

(6.3b)

where ⟨ϕ⟩ represents the Reynolds average of a flow variable ϕ(t) expressed by

⟨ϕ⟩ = lim
t→∞

1
∆t

∫ t0+∆t

t0
ϕ(t∗)dt∗ (6.4)

and ϕ′ represents the turbulent fluctuation of ϕ expressed by

ϕ′ = ϕ− ⟨ϕ⟩ (6.5)
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Our goal is to simplify the equations (6.3) in the hypothesis of channel flow. Considering
a flow, bounded by two planar walls, in a Cartesian reference frame and being x, y and z
respectively the stream-wise, the wall-normal and the span-wise coordinates of the channel.
In this reference the two walls are located at y = ±δ. Here we supposed the stream-wise and
the span-wise dimensions of the system much higher in respect of span of the channel; thus
(Lx/2δ), (Lz/2δ) → ∞ and we assume the mean flow to be stationary. In this hypothesis,
the temporal variations and the stream/span-wise spatial derivatives of the mean flow can be
neglected

∂⟨ϕ⟩
∂t

= 0 (6.6)

∂⟨ϕ⟩
∂x

= ∂⟨ϕ⟩
∂z

= 0. (6.7)

Because of the planarity of the system also ⟨w⟩ = 0. With these assumptions, the mass
conservation for the mean flow reduces to

∂⟨v⟩
∂y

= 0. (6.8)

The above formula, in combination with the boundary conditions at the wall location, makes
us able to conclude that ⟨v⟩ = 0; the momentum conservation equations consequently reduces
to

−1
ρ

∂⟨p⟩
∂x

+ µ

ρ

∂2⟨u⟩
∂y2 −

∂⟨u′v′⟩
∂y

= 0 (6.9a)

−1
ρ

∂⟨p⟩
∂y
− ∂⟨v′2⟩

∂y
= 0 (6.9b)

Let us analyse the equation (6.9b). The latter allows us to conclude that the group

⟨p⟩+ ρ⟨v′⟩ = f(x) (6.10)

depends just on x; moreover, computing its derivative in respect on the independent variable
and evaluating it at the wall location we obtain

df(x)
dx

= d

dx

(
⟨p⟩+ ρ⟨v′2⟩

)
y=±δ

= d⟨p⟩
dx

(6.11)

The latter equation makes us able to conclude that the mean pressure gradient depends just
on x. Thus, inserting this result in the equation (6.9a) we can write

d⟨p⟩
dx

= ∂

∂y

(
µ
∂⟨u⟩
∂y
− ρ⟨u′v′⟩

)
(6.12)

Here we notice that the term inside the brackets is dimensionally a shear stress so

d⟨p⟩
dx

= dτ(y)
dy

(6.13)

The equation (6.13) represents a simple ordinary differential model linking the pressure gradient
and the wall-normal shear stress. Integrating it in respect of y we obtain
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τ(y) = d⟨p⟩
dx

y + c1 (6.14)

The constants c1 can be easily determined knowing that, for the symmetry of the problem,
τ(y = 0), so c1 = 0

τ(y) = −d⟨p⟩
dx

|y|
δ

(6.15)

This fundamental relation establishes a strong relation between the pressure gradient and the
wall shear stress, in fact, computing it at the wall location

τw

δ
= −d⟨p⟩

dx
(6.16)

we conclude that the mean pressure gradient represents the forcing term that acts in the flow
motion, balancing, in term of the mean flow dynamics, the wall shear stress. To reproduce
numerically a channel flow, the mean pressure gradient, or equivalently the mean wall shear
stress, must be imposed. In the present work, the first choice was employed. Here it is not
inessential to be said that the pressure gradient can assume any value and the right choice
consists in expressing it in term of non-dimensional reference quantities. So, introducing the
bulk velocity as the volume integral of the u−momentum divided by the volume integral of
the density1

ub =
∫

V ρu dV∫
V ρ dV

(6.17)

we can express the mean pressure gradient as a function of the deficit between a reference
speed u∞ and the bulk speed

d⟨p⟩
dx

= u∞ − ub = F (6.18)

expression that defines suitable forcing terms for the Navier-Stokes system of equations. Hence,
defining

ST = {0, ρF , 0, 0, ρuF}T (6.19)

and adding it to right-hand-side of the Navier-Stokes equations (2.66) we obtain that the bulk
speed of the channel fits dynamically the reference speed u∞. With this strategy, periodic
boundary conditions can be applied along both the stream and the span-wise directions avoid-
ing any synthetic turbulence injection at the inflow position. Finally, the reference speed u∞
can be expressed as a function of the Mach number, defining as usual, u∞ = √γM∞ while a
suitable choice for the Reynolds number consists in the Reynolds bulk defined as

Reb = 2ubδ

ν∞
(6.20)

ub denotes the bulk speed of the flow, 2δ is the wall-normal dimension of the channel and ν∞
is the kinematic viscosity of the fluid. It is well known that the Reynolds bulk number must
be sufficiently large for the channel to be turbulent.

1Here the procedure will be explained in respect of a compressible solver, the following relations simplify
consequently if the density is constant.
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6.2.3 The law of the wall
From the last analysis, we conclude that the pressure gradient drives a turbulent channel,
and the Reynolds bulk represents a suitable parameter in the definition of its flow regime.
However, because of the relation between the mean pressure gradient and the wall shear stress,
the problem exhibits a second (equivalent) non-dimensional formulation. The latter is based
on shear quantities at wall location. From the dimensional parameters ρ, ν, δ, τw and y another
common choice in term reference quantities is the one that employs the definition of the shear
velocity

uτ =
√
τw

ρw

(6.21)

and the viscous length

δν = νw

uτ

(6.22)

The ratio δ/δν

Reτ = uτδ

νw

(6.23)

defines the shear Reynolds number that again must be sufficiently large (in respect of the unity)
for a turbulent flow. In addition to the previous results, the definition of these new references
makes us able to perform some further analysis. Theoretical considerations (see for instance
[75, 98]) suggest that, in the limit of Reτ →∞ and for y/δν → 0, the near-wall velocity (inner
layer) does not depend on Reτ but it is described by a single variable function

⟨u(y)⟩ ∼ uτf
(
y

δν

)
,

y

δν

→ 0 (6.24)

On the other hand, for y/δν → ∞, the velocity profile becomes independent from the fluid’s
viscosity, continuing to be independent also on Reτ . In this region (outer layer) the velocity
can be expressed as a function of the non-dimensional coordinate y/δ

⟨u(y)⟩ ∼ uτg
(
y

δ

)
,

y

δν

→∞ (6.25)

Now, deriving the expressions (6.24) and (6.25) we obtain

d⟨u(y)⟩
dy

∼ uτ

y
f ′
(
y

δν

)
(6.26)

d⟨u(y)⟩
dy

∼ uτ

y
g′
(
y

δ

)
(6.27)

Surely, some asymptotic compatibility relations must be recovered for the last two derivatives,
and in the limit for y/δ → 0 and y/δν →∞ their value must be equal to a same constant κ−1.
Thus we can write

d⟨u(y)⟩
dy

∼ κ−1uτ

y
for y

δν

→∞ (6.28)

Integrating the last relation and introducing the wall speed u+ = ⟨u⟩/uτ and the wall unit
y+ = y/δν we obtain
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u+(y+) ∼ κ−1 ln(y+) + B for y+ →∞ (or y

δ
→ 0) (6.29)

The latter result represents an asymptotic relation for the outer layer velocity profile. On
the other hand, by the definition of the mean wall shear stress (µd⟨u⟩/dy)y=±δ = τw we easily
conclude that (

du+

dy+

)
y=±δ

= τw

µ

δν

uτ

= ρu2
τ

µ

δν

uτ

= 1 (6.30)

so, inserting in (6.24) we obtain

u+(y+) ∼ y+, for y+ → 0 (6.31)

Finally, from an applicative point of view, the equations (6.31) and (6.29) approximatively
define the mean near-wall streamwise velocity in term of wall unit as follows

u+(y+) =

⎧⎨⎩y+ for y+ ≲ 5
κ−1 ln(y+) + B for y+ ≳ 30

(6.32)

κ is the Von-Karman constant, and B is an experimental parameter tuning the logarithmic
part of the equation. Experimental results and numerical simulations suggest k ≃ 0.41 while
B ≃ 5. The present theory was recently improved by Luchini (2017), who proposed a theoretical
extension for the outer layer expression to increase the universality of the law of the wall. In
particular, including the pressure gradient as a small contribution in the outer layer region the
equation (6.28) becomes

d⟨u(y)⟩
dy

∼ κ−1uτ

y
− A1

τw

dp

dx
for y

δν

→∞ (6.33)

and integrating

u+ = κ−1 ln(y+) + A1gRe
−1
τ y+ + B (6.34)

A1 is a fitting parameter in the range of A1 ≃ 1 and g = −(dp/dx)δ/τw, so, in the case of
a pressure driven planar channel, it is equal to 1. As we can notice, the equation (6.34) is
consistent with the classical theory in the case of Reτ →∞. Finally, the experimental results
performed in the last century suggest a link between Reb and Reτ . The empirical relation (see
Pope (2001)) expresses a well-fitting between these two parameters

Reτ ≃ 0.09Re0.88
b (6.35)

6.2.4 Three-dimensional DNS results
Following the available literature [8, 78], we simulated a turbulent channel at Reb = 2ubδ/ν∞ =
{5790, 10074}T , Reynolds bulk regime that correspond to shear Reynolds number of Reτ =
{180, 300}T . The Mach number, to avoid any compressible effects, was set to 0.1 thus the
resulting driven pressure gradient was set equal to d⟨p⟩/dx = √γM∞− ub. Periodic boundary
conditions were enforced along the stream-wise and the span-wise directions, while no-slip
isothermal wall conditions were employed at the top and the bottom side of the domain.
The wall temperature was set equal to T/T0 = 1. The domain was discretised by a uniform
Cartesian grid featuring Nx × Ny × Nz = 384 × 128 × 192 grid points. The stream-wise, the
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wall-normal and the span-wise dimensions of the channel sized respectively 2πδ× 2δ× πδ. As
far as the numerical method, no hybridisation strategies were employed in the discretisation
of the convective fluxes, but the purely KGP6 scheme was used. To promote the turbulence
transition, the initial conditions for the primitive variables has been imposed following the
procedure proposed by Dan and John (1991). Thus at t/t0 = 0, to the analytical solution of
the Poiseuille flow, a vortex pair expressed by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ = (1− y2)2ze−16x2−4z2

u = 0
v = ψz

w = −ψy

(6.36)

has been superimposed. The solution was advanced in time until a statistical convergence
of the flow variables has been reached. The time step was evaluated employing the Courant-
Friedrichs-Lewy condition and setting a CFL number equal to 0.5. In Figure 6.3, the instanta-
neous iso-contours of the second invariant of velocity gradient are reported. The latter defined
as

Q = 1
2
(
||Ωij||2 − ||Sij||2

)
> 0 (6.37)

consists of a quantitative definition of the three-dimensional regions characterised by coherent
vortical structures. Here Ωij and Sij are respectively the vorticity tensor and the strain-rate
tensor, defined as

Ωij = 1
2

(
∂ui

∂xj

− ∂uj

∂xi

)
, i, j = 1, . . . , 3 (6.38)

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, i, j = 1, . . . , 3 (6.39)

A detailed description of vortices visualisation can be found in Haller (2005). From a qualitative
point of view, the instantaneous results in Figure 6.3 greatly respect the turbulence theory.
Here, we can hightlight the role of the Reynolds number in respect of the turbulence granularity
and on the scale of the smallest vortices. Moving through quantitative results, in Figure 6.4
the mean stream-wise velocity profile is reported as a function of the wall distance. Both the
two figure use the inner-scaling; thus, the velocity is scaled by the friction speed uτ and the
wall distance with the viscous length δν . Our results are compared both with the one obtained
by Bernardini et al. (2014) and Modesti and Pirozzoli (2016) and with the analytical behaviour
predicted by Von Karman (1937) and Luchini (2017), concluding an excellent agreement. In
Table 6.2 the flow parameters are reported comparing the target values vs the computed ones.
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Parameter Computed value Target value
Reτ = 180 Mb 0.9996E − 01 0.1000E + 00

Reb 0.5788E + 04 0.5790E + 04
Reτ 0.1839E + 03 0.1842E + 03

Reτ = 300 Mb 0.9996E − 01 0.1000E + 00
Reb 0.1007E + 05 0.1007E + 05
Reτ 0.3035E + 03 0.3000E + 03

Table 6.2: Table of the flow parameters involved in the simulation of the turbulent channel
problem. Here Mb = ub/cb denoted the bulk Mach number, Reb = ubδ/ν∞ is the bulk Reynolds
number and Reτ = uτδ/νw is the shear Reynolds number. The table shows a comparison
between the target and the computed values.
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(a) Reb = 5790, Reτ = 180

(b) Reb = 10074, Reτ = 300

Figure 6.3: Visualisation of the simulations of the turbulent channel at Reb = 5790 and 10074.
Here the Q−criterion shows the 1.5 iso-contours of the second invariant of the velocity-gradient.
The color map refers to the non-dimensional z-vorticity component.
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Figure 6.4: Stream wise velocity statistics for a channel flow at Reτ = 180 (a) and Reτ = 300.
The results are compared with Bernardini et al. (2014) and Modesti and Pirozzoli (2016). The
solid lines denotes the law of the wall expressed by u+ = 0.41−1 ln(y+) +Re−1

τ y+ + 5.2

6.2.5 Three-dimensional LES results
The channel flow at Reτ = 180 has been addressed as a benchmark also for the LES turbulence
models. In particular, here the same setting of the previous section has been employed; thus, a
slightly-compressible turbulent channel at M∞ = 0.1 was simulated. Similarly to the previous
arrangement, the Mach number has been used to control the bulk speed, so indirectly imposing
the pressure gradient d⟨p⟩/dx = √γM∞ − ub. The shear Reynolds number Reτ instead was
indirectly imposed setting a bulk Reynolds number equal to Reb = 5790. Periodic boundary
conditions were enforced along both the stream-wise and the span-wise directions, while no-slip
isothermal wall conditions were employed at the top and at the bottom sides of the domain.
The domain was discretised by a non-uniform Cartesian grid clustering the computational
points around the wall location. For the job an error mapping function in the form of

x(ξ) = 1
2

erf
(
α(ξ − 1

2

)
erf
(

1
2α
) (6.40)

has been employed. Here α, to guarantee a unitary y+ at the wall location, was set equal to
3.5 while the grid was exactly halved in all the three Cartesian directions fitting 192× 64× 96
number of points. As far as the numerical method, no hybridisation strategies were employed
for the convective fluxes and just the KGP6 method was used. The simulation was initialised
interpolating the DNS obtained in the previous simulation.

In Figure 6.5, the normalised stream-wise velocity component is plot as a function of the
normalised wall coordinate and compared among the various models. From these results, we
can immediately recognise that the Smagorinsky model fails in fitting both the inner and
the outer portion of the flow. On the other hand, the WALE and σ models are quantitatively
equivalent recovery a right prediction compared to the DNS benchmark. The same conclusions
can be stated looking at the Figure 6.6 and Figure 6.7 were the root-mean-square of the three
normalised velocity components have been plotted as a function of the Kolmogorov wall unit. In
particular, Figure 6.7b shows the behaviour of the turbulent sub-grid-scale viscosity normalised
by the molecular viscosity. As we notice, both the WALE and the σ models vanish the µSGS
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at the wall location, respecting the analytical prediction provided Kuhn (1986) who proved
µSGS ∼ O(y+)3 in the inner layer.
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Figure 6.5: Normalised stream-wise velocity component for a channel flow at Reτ = 180
with various LES turbulence models. The results are compared with the DNS data provided
by Vreman and Kuerten (2014). The solid lines denotes the law of the wall expressed by
u+ = 0.41−1 ln(y+) +Re−1
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6.3 Summary
The present chapter was divided into two main parts. In the first part, a brief introduction
about parallel programming and parallel computing was pointed out. Here, the parallelisation
strategy employed in the development of our in-house fluid dynamics solver was presented
and tested. From the scaling results, the solver showed good parallel performances up to a
competitive amount of cores. This fact made us able to perform three-dimensional simulations
in the field of turbulent and fully separated flows. Among the variety of tests and experimental
data, we selected the turbulent channel problem as a benchmark for our numerical model.
The second part of the chapter was devoted to the wall turbulence; thus, before comparing
our numerical results with the most accurate solutions available in the literature, a detailed
theoretical description of the problem was presented.
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7
The immersed boundary methods

Science may be described as the art of
systematic oversimplification.

Karl R. Popper
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In the previous chapters, we described the numerical methods employed in the discretisation
of the Navier-Stokes system of equations, presenting a considerable number of benchmarks and
test cases to validate the core of our numerical tool. In the present chapter, we will move
to aerodynamics applications discussing the numerical strategies employed in the treatment
of embedded boundaries inside the computational domain. Among the variety of numerical
techniques suitable to face this target we employed the Immersed Boundary Method (IBM).
The chapter aims to present a detailed description of the class of the immersed boundary
methods focusing on the most common approaches available in the literature and in particular
the Direct Forcing Method (DFM) and the Ghost-Point Forcing Method (GPFM) will be
presented and discussed. The latter method is the one implemented in our solver.
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7.1 Introduction and literature review

Numerical simulations of compressible viscous flows around complex objects is a crucial tar-
get in many engineering applications, and the problem becomes even more complex dealing
with moving solids inside the computational domain. These problems range from the control
of aeroelastic structures up to the study of particulate flows and surely today the success of
landing on dense atmosphere planets [10, 34] or the efficiency improvement of high-bypass
turbofan engines [36] are even more affected by the non-linear dynamics between the struc-
tural components and the supersonic flow field. Up to now, two main approaches seams to
be the most promising: The Body Fitted Grid Method (BFGM) and the Immersed Boundary
Method (IBM). Regarding the first, the method was extensively exploited in many commercial
and in-house applications, and it was found very accurate in the prediction of the aerodynamic
behaviour of complex geometries. Unfortunately, the BFGM does not allow manageable im-
plementations of high-order discretisation schemes and - especially in case of moving objects
- it represents a very computational demanding approach requiring the computational grid to
be generated and recomputed at each time step.

On the other hand, the IBM does not require a particular coding effort for grid generation,
and high-order discretisation schemes can be employed in a simple finite-difference framework.
Because of this, the IBM seems to be the most promising numerical strategy able to deal
with moving objects in numerical flow simulations. The method provides a coupling interface
between the solid and the fluid domain allowing the body surface to cut the computational
cells; thus a Cartesian mesh can be employed independently of the geometry complexity or the
motion of the boundary. In particular, in the latter case, the grid can be computed once, at
the beginning of the simulation, and no other grid generations must be performed during the
computation, highly increasing the computational efficiency.

From a historical point of view, the IBM sees Peskin (1972) as its first designer and de-
veloper. In his pioneering work, the author applied the method to model complex biological
incompressible flows. In this field the system’s dynamic is strongly affected by the motion
and the deformability of the boundaries, inducing strong non-linear phenomena in the flow
field. Thus to accurately simulate the deformation of the biological tissue caused by the fluid
interaction, Peskin developed a fully coupled algorithm initiating the immersed boundary stud-
ies. Despite its original application, to date the IBM has been widely applied in every kind
of fluid dynamics problems. Uhlmann (2005), Breugem (2012), Picano et al. (2015) and Ni-
azi Ardekani et al. (2018) applied the method to deal with fully resolved particulate flow.
Fadlun et al. (2000) investigated it for turbulent incompressible flows while Ren et al. (2013)
and Wang et al. (2016) applied it in the case of thermal flow problems. More recently De
Palma et al. (2006), de Tullio et al. (2007), Merlin et al. (2013), Luo et al. (2015), Piquet
et al. (2016), Bernardini et al. (2016) and Boukharfane et al. (2018) applied the method to
compressible flows. A clever description of the method can be found in the works of Iaccarino
and Verzicco (2003) and Mittal and Iaccarino (2005b).

Even if in literature the IBM is categorised as a single numerical technique, various numeri-
cal strategies under the immersed boundary name have been proposed and developed following
Peskin’s original work and, for sure, the two most common and successful approaches are the
Direct-Forcing Method (DFM) and the Ghost-Point-Forcing Method (GPFM). In the following
paragraphs, we will explain these two methods with a sufficient level of details focussing in
particular on the GPFM, which represents the method implemented in our solver.
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7.2 The direct forcing method
The DFM consists of directly forcing the Navier-Stokes system of equations by adding a source
term that simulates the presence of a solid body. The forcing process can be carried out with
various numerical techniques, both explicitly and implicitly and employing various interpola-
tion techniques. Even though the method is easily implemented and accurate, it can deal only
with Dirichlet boundary conditions. This fact limits its capabilities and its implementations,
especially in case of thermal and compressible flows applications. Let us give a conceptual
overview of the method. Considering the Navier-Stokes system of equations forced by a source
term S(U)

∂U
∂t

+ ∂Fj(U)
∂xj

− ∂Fvj(U)
∂xj

= S(U) (7.1)

the goal of the DFM consists of designing the source therm in such a way that the presence
of the immersed body is taken into account. Thus, being {xl

b}n
l=1 a collection of Lagrangian

points, the source term S(U) can be defined as following

S(U) = {0, ρFi, ρFiui}T , i = 1, . . . ,3 (7.2)
where Fi is an Eulerian force field defined as

Fi(x) =

⎧⎨⎩ui − ūl
i if ∥x− xl

b∥ → 0
0 if ∥x− xl

b∥ → ∞
(7.3)

Here ui and ūl
i are respectively the velocity component in i−th direction and a target speed

at the boundary location xl
b. With these positions, the source term assumes the role of a

dumping contribution, forcing the solution of the forced Navier-Stokes system of equations
(7.1) to respect the target velocity at the boundary location and enforcing the boundary
condition for the momentum conservation equations. From an applicative point of view in case
of forced equations, it is quite common to face the integration process with a predictor-corrector
strategy. A fist integration step (predictor step) reads the equations without the source terms;
thus it computes a guess solution U∗ solving the system

∂U∗

∂t
+ ∂Fj(U∗)

∂xj

− ∂Fvj(U∗)
∂xj

= 0 (7.4)

Once U∗ is known, a corrector step is employed to impose the source, thus solving the equation

∂U
∂t

= S(U∗) (7.5)

Avoiding the explanation of how to get the solution of the predictor step - a problem we
extensively described in the previous chapters - here, we will focus to the numerics behind
the corrector step. As we already mentioned, the problem can be faced both explicitly and
implicitly, and in the present dissertation, we will present both the alternatives.

7.2.1 The explicit direct forcing method
Designed initially by Uhlmann (2005) today the explicit Direct Forcing Method (eDFM) was
extensively improved and successfully employed in many numerical tools, especially in the
incompressible flows regime. Among the various eDFMs, surely the method proposed by
Breugem (2012) - consisting of an iterative process able to ensure the desired velocity condition
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at the boundary location - represents one of the most efficient and accurate procedure. Thus, let
us suppose to know the three predictor fields associated to the velocity components {u∗

i }3
i=1.

Fixing a tolerance toll and a maximum number of iterations itmax, the initialisation of the
method wants the u∗

i field to be passed to a temporary variable ũi, thus u∗
i → ũi. Once the

process is completed, the following loop, over an integer counter k = 1, . . . , itmax and over the
set of Lagrangian points l = 1, . . . , n is performed:

1. The first step consists in interpolating the velocity field at the boundary location {xl
b}n

l=1
using the definition of the Dirac delta distribution

(
u

l(k)
i

)
b

=
∫ ∞

−∞
u

∗(k−1)
i δ(x− xl

b)dx l = 1, . . . , n (7.6)

2. Once
(
u

l(k)
i

)
b

is computed, an acting Lagrangian force per unit mass, structurally similar
to the Eulerian force field Fi, can be calculated. The latter is defined as

f
l(k)
i = f

l(k−1)
i + 1

∆t
(
ūl

i −
(
u

l(k)
i

)
b

)
l = 1, . . . , n (7.7)

3. Using the Dirac delta definition the Lagrangian force can be spread to the grid obtaining
the Eulerian force field Fi as

Fi =
∫ ∞

−∞
f

l(k)
i δ(x− xl

b)dxl l = 1, . . . , n (7.8)

ending in this way the loop on Lagrangian points.

4. Once Fi is computed a forward Euler integration step is performed to update the pre-
dictor velocity field u∗

i , thus

u
∗(k)
i = ũi + ∆tFi (7.9)

The loop on k re-start from the point 1. until k < itmax and e > toll where e denotes
the maximum error related to the boundary target speed defined as

e = nmax
l=1

⏐⏐⏐⏐ (ul(k)
i

)
b
− ūl

i

⏐⏐⏐⏐ (7.10)

Once the convergence has been reached or the number of iterations exceeds itmax the
velocity field is updated using the last predictor velocity field, thus ui ← u

∗(k)
i .

The Breugem’s method is quite easily implemented and straightforward in ensuring the
desired velocity at the boundary location, but it is strongly affected by the numerical approx-
imation of the Dirac delta distribution. The latter, in a three-dimensional discrete path, is
defined as

δ(x− x0) =
3∏

i=1

1
∆xi

ϕ
(
xi − xi,0

∆xi

)
(7.11)

Here ϕ denotes a smooth function whose argument is a non-dimensional radius expressed by
ri = (xi−xi,0)/∆xi. In particular being rmax the maximum radius of ϕ and Ir = [−rmax : rmax]
its support, the ϕ function must respect the following smooth conditions
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ϕ(r) ∈ C0[Ir] (7.12)

ϕ(r) = 0 if |r| ≥ rmax (7.13)

∫ ∞

−∞
ϕ(r) = 1 (7.14)

∫ ∞

−∞
rϕ(r) = 0 (7.15)

In particular, the first condition expresses the continuity of ϕ, and the second grants the func-
tion to have a compact support. The third bound instead ensures a conservation property for
the interpolation, and finally, the fourth line grants the first momentum of ϕ to be zero. Many
authors, respecting the smoothness conditions, proposed their own approximated formulation
of the Dirac delta function and a comprehensive description of the available implementations
can be found in Yang et al. (2009). Here the equations (7.16) reports some formulations with
an increasing level of regularity, while in Figure 7.1 a comparison between them is shown. In
particular from Figure 7.1 we can notice that spreading the Dirac delta over bigger support
makes the function smoother and smoother. In this respect, it is not pointless to be said that
increasing the size of the Dirac delta support (i.e., selecting a formulation with a higher rmax)
requires more iterations to reach the convergence of the eDFM. The fact can be easily explained
recognising that while the interpolation supports increase, the overlapping interpolation areas
also increase, coupling stronger and stronger a boundary point with its neighbours.

ϕ1(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
3

(
1 +

√
−3|r|2 + 1

)
if |r| ≤ 0.5

1
6

(
5− 3|r| −

√
−3(1− |r|2) + 1

)
if 0.5 ≤ |r| ≤ 1.5

0 if |r| ≥ 1.5
(7.16)

ϕ2(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17
48 +

√
3π

108 + |r|
4 −

r2

4 + 1−2|r|
16

√
−12r2 + 12|r|+ 1

−
√

3
12 arcsin

(√
3

2 (2|r| − 1)
)

if |r| ≤ 1
55
48 −

√
3π

108 −
13|r|
12 + r2

4 + 2|r|−3
48

√
−12r2 + 36|r| − 23

+
√

3
36 arcsin

(√
3

2 (2|r| − 3)
)

if 1 ≤ |r| ≤ 2
0 if |r| ≥ 2

(7.17)

ϕ3(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
8

(
3− 2|r|+

√
1 + 4|r| − 4|r|2

)
if |r| ≤ 1

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4|r|2

)
if 1 ≤ |r| ≤ 2

0 if |r| ≥ 2
(7.18)

ϕ4(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
8 + π

32 −
r2

4 if 0 ≤ |r| ≤ 0.5
1
4 + 1−|r|

8

√
−2 + 8|r| − 4|r|2 − 1

8 arcsin(
√

2(|r| − 1)) if 0.5 < |r| ≤ 1.5
17
16 −

π
64 + |r|−2

16

√
−14 + 16|r| − 4r2 + 1

16 arcsin(
√

2(|r| − 2)) + r2

8 −
3|r|
4 if 1.5 < |r| ≤ 2.5

0 if |r| ≥ 2.5
(7.19)
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Figure 7.1: Comparison between various Dirac delta numerical approximations.

Figure 7.2: Sketch of the overlapping area between the interpolation supports around two con-
sequent boundary points. The black solid line represents the boundary curve, the orange points
denote the Lagrangian points while the blue circle represents the support of the numerical Dirac
delta.

7.2.2 The implicit direct forcing method
The iteration process related to the eDFM could be very computational demanding, espe-
cially in strongly compressible flow conditions. In this field, the discontinuities related to the
shocks slow the efficiency of the algorithm requiring even hundreds of iterations to reach the
convergence. To overcome the problem, the algorithm can be formulated fully implicitly. In
this way, the desired velocity is ensured in just one step in the whole boundary points. The
process is carried out solving a linear system whose coefficients take into account all the over-
lapping interpolation areas between a boundary point and its neighbours. In this paragraph,
we will discuss the implicit Direct Forcing Method (iDFM) from a theoretical point of view.
A literature reference can be found in Qiu et al. (2016).
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Being {xl
b}n

l=1 a set of Lagrangian points describing the boundary surface of a three-
dimensional object. By the definition of the Dirac delta distribution, we can express the
interpolated value of the velocity field {ui}3

i=1 at the boundary location as(
ul

i

)
b

=
∫ ∞

−∞
uiδ(x− xl

b)dx l = 1, . . . , n (7.20)

Now writing the velocity field ui as

ui = u∗
i + ℘ui (7.21)

the summation between a predictor velocity field (u∗
i ) and an unknown velocity perturbation

(℘ui) we can plug the equation (7.21) in (7.20) obtaining(
ul

i

)
b

=
∫ ∞

−∞
u∗

i δ(x− xl
b)dx +

∫ ∞

−∞
℘uiδ(x− xl

b)dx l = 1, . . . , n (7.22)

Now, the perturbations ℘ui is a scalar field defined in the Eulerian space. As usual in the
DFM approach, it is convenient to express it as a function of an unknown perturbation living
at the boundary location. This process can be carried out interpolating ℘ui via the Dirac delta
definition

℘ui =
∫ ∞

−∞
℘ul

iδ(x− xl
b)dxl l = 1, . . . , n (7.23)

thus, inserting in (7.22) we can write

(
ul

i

)
b

=
∫ ∞

−∞
u∗

i δ(x− xl
b)dx +

∫ ∞

−∞

∫ ∞

−∞
℘ul

iδ(x− xl
b)δ(x− xm

b )dxdxl l,m = 1, . . . , n (7.24)

The equation (7.24) expresses a relation between the velocity perturbation ℘ul
i, the desired

velocity value
(
ul

i

)
b

and the interpolated predictor velocity field u∗
i at the boundary location.

In particular, we can easily recognise that the term(
ul

i

)
b
−
∫ ∞

−∞
u∗

i δ(x− xl
b)dx l = 1, . . . , n (7.25)

defines a Lagrangian force per unit mass f l
i obtaining that the unknown velocity perturbation

can be expressed as∫ ∞

−∞

∫ ∞

−∞
℘ul

iδ(x− xl
b)δ(x− xm

b )dxdxl = f l
i l,m = 1, . . . , n (7.26)

Discretising the equation (7.24) we can write

∑
ijk

n∑
l=1

℘ul
iD(xijk − xl

b)∆xijkD(xijk − xm
b )∆xm = ul

i −
∑
ijk

(u∗
i )ijkD(xijk − xl

b)∆xijk (7.27)

Here D(xijk − xl
b) represents a discrete formulation of Dirac delta while

Aml =
∑
ijk

n∑
l=1

D(xijk − xl
b)∆xijkD(xijk − xm

b )∆xm (7.28)

bl =
(
ul

i

)
b
−
∑
ijk

(u∗
i )ijkD(xijk − xl

b)∆xijk (7.29)

83



7 – The immersed boundary methods

xl = ℘ul
i (7.30)

denotes respectively the matrix collecting the geometrical information related to the interpo-
lation coefficients, the vector of the Lagrangian force at the boundary location and the vector
of the unknown Lagrangian perturbations, obtaining that the equation (7.24) is represented
by the linear system

Amlxl = bl (7.31)

Solving the equation (7.31), we obtain the values of the unknown velocity perturbations at the
boundary location. Once the vector {℘ul

i}n
l=1 have been obtained, we need to distribute the

Lagrangian perturbations in the Eulerian grid. The process can be straightforwardly performed
employing the equation

℘ui =
∫ ∞

−∞
℘ul

iδ(x− xl
b)dxl (7.32)

resulting in the field of the velocity perturbations that can be directly sum up to the predictor
velocity field u∗

i .

To conclude, the DFM, in its explicit and implicit versions, represents an easily implemented
and accurate numerical strategy able to ensure Dirichlet boundary condition in case of complex
steady and moving objects. The selection of the explicit or the implicit version of the method
depends on many parameters related both to code design and simulation accuracy. Where the
iDFM can ensure more accurately the boundary condition and provides a stabler algorithm,
the eDFM is much easier to be implemented, especially in a MPI parallel frame, resulting in a
more cost-effective numerical strategy.

7.3 The ghost point forcing method
In the previous section, we showed how the DFM modifies the solution of the Navier-Stokes
equations to ensure a desired condition at the boundary location. As we explained, the method
represents an accurate and straightforward technology to ensure Dirichlet boundary conditions.
This property, in the last decades, has been represented the success of the embedded geom-
etry treatment in many incompressible flow solvers. In the case of incompressible flows, the
boundary requirement consists in the setting of the velocity components, making the DFM an
extremely powerful tool to deal with complex geometries in the flow domain.

On the other hand, the GPFM, relying on a completely different concept, represents a
more general numerical technique able to deal with both Dirichlet and Neumann boundary
conditions. The method is more suitable for the applications where the natural boundary
conditions are specified as a gradient of some fluid variables as in thermal and compressible
flows problems. Despite its greater flexibility, to deal with general geometries, while for DFM
is sufficient to known a set of Lagrangian points, for the GPFM is necessary a more complex
data management. The method needs to discern if a computational node is a fluid, a ghost,
or a solid one and to pursue this target, some automatic solid-detection techniques must be
employed [58]. Thus, the boundary can not be represented by a collection of Lagrangian points,
but the surface must mesh through elements of some shape, i.e., segments in 2D and triangles
in 3D.
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Here a note is demanding. Unstructured mesh generation over solid surfaces is well known to
be a very challenging task, and a complete description of the problem is far from the objectives
of the present work. The reader who wants to become aware of this topic is recommended
to look at the manuals of Golias and Dutton (1997) and El-Hamalawi (2003). Today, the
flexibility of the most common commercial and open-source computer-aided engineering (CAE)
tools, makes the unstructured mesh generation a straightforward process even for very complex
geometries. In the present work, among the large variety of tools available in this field, we
selected GMSH as the application with the best compromise in term of simplicity and flexibility.
Thus, the program was chosen to create proper surface meshes for the GPFM approach and
the related solid-detection algorithms.

GMSH is a multi-platform, fully open-source mesh-generator application specially designed
for rapidly prototype unstructured mesh over complex two- and three-dimensional geometries.
The program is often already installed in the most common UNIX-type operative system
distributions, and a complete description of the program can be found at http://gmsh.info.
Once a geometry is defined - typically importing it from and external CAD - GMSH provides
a series of fast and efficient algorithms to compute and generate an unstructured mesh over
the object. Then the mesh can be exported with a large variety of data formats and in the
present work, to represent both 2D and 3D surfaces, the .msh and the .stl data formats were
respectively employed and coupled with the flow solver.

The .msh data format represents a suitable discretisation model for two-dimensional bound-
ary curves. The latter are represented by a series of closed points {xl}n

l=1 and edges {el}n−1
l=1

resulting in a simple file easily readable by a FORTRAN code. However, after inputting the
file, the data set must be reorganised more suitably. The geometry coupling with the Carte-
sian grid, in fact, wants the spacing between the points (i.e., the length of the edges) to be the
same order of magnitude of the local grid spacing. This information can be used to generate
the mesh and set the most proper value of n. Thus in the present work, we decided to link
the number of points n employed in the solid discretisation to the minimum grid step. In
particular - after inputting the .msh file - a criterion based on mutual distances is performed.
The procedure grants to minimise the memory storage associated with the solid discretisation,
saving just the points whose mutual distance is comparable to the minimum grid step. On
the other hand the .stl data format describes a three-dimensional solid surface via a series of
points and triangles. Also in this case, the spacing between the points must respect the grid
proportions; thus, the same optimisation process explained for 2D cases can be employed.

Above the flexibility in term of geometry representation of the previous data formats,
the segment discretisation offered by the .msh and the triangle discretisation offered by .stl
represent suitable geometrical models for the most common solid-detection algorithms (see
e.g., O’Rourke (1998)). In the following sections, we will describe how an object of any shape
can be detected on a Cartesian grid, demanding process for good coupling with the GPFM.

7.3.1 Solid detection on a Cartesian grid
As we already mentioned in the previous paragraphs, the GPFM requires to discern if a com-
putational node is a fluid, a ghost or a solid one and to face the problem some automatic
solid-detection techniques must be employed. Among the variety of methods in these fields, in
the present work, the ray-tracing algorithm was applied [85]. The method represents a robust
and efficient numerical strategy able to detect where a solid is located inside a grid of any
type. Based on the fundamental idea of Jordan’s theorem [54], the method translates the
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7 – The immersed boundary methods

problem of the determination if a grid point is inside or outside a solid in counting the number
of intersections between the solid bound and a semi-infinite ray. According to this strategy, to
exploit the most cost-effective algorithms provided by the Computational Geometry, the solid
must be modelled as a 2D-polygon or a 3D-polyhedron, resulting in a perfect coupling with
the data formats explained above. The algorithm employs the following procedure:

1. Being Σ a discrete representation of a two-dimensional (three-dimensional) solid surface,
thus being Σ represented by a collection of segments {Si}n

i=1 (triangles {Ti}n
i=1). Consider

x0 a grid point we want to discern if it is inside or outside Σ and fix x̄ a point lying
outside the computational domain. If x̄ is sufficiently far from the domain, a semi-infinite
ray starting from x0 can be approximated through the expression

R(t) = x0 + (x̄− x0)t t ∈ [0 : 1] (7.33)

2. (a) If the problem is two-dimensional a loop on all the segments {Si}n
i=1 is performed

checking if the ray R(t) has an intersection with the i-th segment. The problem
can be easily faced employing a standard segments-segment intersections algorithm
[85].

(b) On the other hand if the problem is three-dimensional a loop on all the triangles
{Ti}n

i=1 is performed and here a test is performed to check if the ray R(t) has an
intersection with it. The problem can be faced employing a standard line-triangle
intersections algorithm [80].

While the geometry is being tested, the number of intersections is saving inside an integer
counter.

3. According to Jordan’s theorem if the number of intersections is even the point x0 lies
outside the solid surface, otherwise if the number of crossings is odd the point x0 belongs
to the solid.

AA

BB

CC DD

EEFF

GG

(a)

AA

BB CC

(b)

Figure 7.3: Sketch of the ray-tracing algorithm applied to a 2D-polygon (7.3a) and to a line-
triangle-intersection problem (7.3b). Here the red points represent the points we want to test
while R(t) is the ray. As we notice from figure 7.3a if the number of ray-geometry intersections
is even the point lies outside the geometry, on the other hand if the number of intersection is
odd the point belongs to the solid.
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7.3.2 Data management
The solid detection on a Cartesian grid represents an initialisation step for the GPFM. In
particular if the simulated geometry is stationary the ray-tracing algorithm can be invoked
one time, at the beginning of the simulation; on the other hand, for dynamic simulations the
entire procedure must be performed at each time step. Independently of the problem we are
facing the solid detection process can discern if a point is inside, outside or is a ghost point in
respect of a solid bound. Being D the whole computational domain the latter is divided it into
three portions: Ωsolid, Ωfluid and Ωghost and the information is stored inside a marker variable
ζ defined as

ζ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ Ωsolid

1 if x ∈ Ωghost

2 if x ∈ Ωfluid

(7.34)

where the set of Cartesian points belonging to the solid and fluid regions are respectively
defined by

Ωsolid = {x ∈ D | ζ(x) = 0} (7.35)

Ωfluid = {x ∈ D | ζ(x) = 2} (7.36)

It is essential to highlight that Ωsolid ∪ Ωfluid = D so the ghost region it is not determined
explicitly by the solid-detection process, but it can be computed a posteriori as a function of
the solid and fluid portions. In particular, Ωghost must respect the following bounds

Ωghost = {(xi, yj, zk) ∈ Ωsolid if∃(xl, ym, zn) ∈ Ωfluid

for l = i− 3 . . . , i+ 3,m = j − 3, . . . , j + 3, n = k − 3, . . . , k + 3} (7.37)

resulting in a shell of three layers of points which represents the minimal number of computa-
tional nodes needed for the high-order numerical schemes’ stencils.

Even if for steady object the data management is the one explain above, dealing with
moving solids a fourth value of the marker function ζ must be taken into account considering
the so called fluid emerging points. In fact being xg(t) a ghost point at time level t = tn (so
that xg(tn) ∈ Ωghost) the point is flag as fluid emerging point if xe(tn+1) ∈ Ωfluid. To avoid
spurious oscillations while the solid is moving, those points need a particular treatment in term
of boundary interpolation (see §7.3.5).

7.3.3 Geometrical determination of the bound and the image points
After the solid detection and the computation of the marker variable ζ = ζ(x) the ghost region
Ωghost provides a set of data suitable for the implementation of the GPFM. For every ghost
point xg a correspondent boundary point xg and a related image point xip, lying in the flow
region, can be associated and computed. After the same interpolation procedures, will be used
to ensure the desired boundary condition at the boundary location xb. In this paragraph, we
will explain how the image point can be determined just knowing the ghost node location and
a discrete formulation of the boundary curve. Here, for the sake of clarity, the algorithm we
will start explaining the algorithm for two-dimensional case, the extension to 3D cases will
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be straightforward and will be presented later. A sketch of the implementation strategy is
reported in Figure 7.4.

Figure 7.4: Sketch of the determination of the boundary point in respect of a ghost point.
Here blue circle represent the ghost node, light blue points denotes the fluid region. Orange
crosses represent the Lagrangian points

1. Being xg a ghost node, the first step in the determination of the image point location
consists in looking at the two Lagrangian points nearest to xg, thus scrolling the Euclidean
distances expressed by

dg,l =
√

(xg − xl) · (xg − xl) ∀l = 1, . . . , n (7.38)

2. Once xN1 and xN2 have been determined, the line passing through them can be computed
as

L : n · (x, y) + c = 0 (7.39)

here n = (a, b) represents the orthogonal direction in respect of L and c denotes the line
coefficient. The latter are expressed by

a = yN1 − yN2 (7.40a)
b = xN2 − xN1 (7.40b)
c = xN1yN2 − xN2yN1 (7.40c)

3. Being r(t) the orthogonal line in respect of L, a parametric formulation results in

r(t) = xg + nt t ∈ R (7.41)

so, plugging r(t) into (7.39) we obtain

n · (xg + nt) + c = 0 (7.42)
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7.3 – The ghost point forcing method

Solving in t we find

tb = −c+ n · xg

n · n
(7.43)

parameter that denotes the location where the line r(t) cross L. Thus, inserting tb into
equation (7.41) we obtain the nearest point of xg lying on the edge {N1 : N2} resulting
in a good approximation for the boundary point xb. Carrying out the math we obtain

xb =
(
b(bxg − ayg)− ac

a2 + b2 ,
a(ayg − bxg)− bc

a2 + b2

)T

(7.44)

4. A good practice wants the unit vector associated with the normal outer direction at the
boundary location to be computed as

nb = xb − xg

∥xb − xg∥
(7.45)

so finally the location of the image point xip can be determined through the expression

xip = xg + 2nb∥xb − xg∥ (7.46)

Similarly, the process can be performed in three-dimensions. In this case, fixing a ghost
node, three nearest points of xg must be determined, and the plane passing through them
needs to be computed. The latter can be efficiently obtained through the following procedure:

1. Firstly we can get two vectors in the plane by subtracting pairs of points in the plane,
thus

v1 = xN1 − xN2 (7.47a)
v2 = xN1 − xN3 (7.47b)

2. The cross product of these two vectors will be in the unique direction orthogonal to both
v1 and v2, and hence in the direction of the normal vector to the plane

n = (a, b, c) = v1 × v2 (7.48)

3. The equation of the plane is then obtained through

P : n · (x, y, z) + d = 0 (7.49)

where d can be determined plugging one of the points {xNi
}3

i=1 into the equation (7.3.3).

Once the plane coefficients a, b, c, d have been determined, with the same logic of the 2D
case, we need to establish the closest point to xb lying on the plane P . This represents a good
approximation of the boundary point associated with xg. Expressing parametrically the line
passing through xb and orthogonal to P

r(t) = xg + nt t ∈ R (7.50)
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so plugging it into

n · (xg + nt) + d = 0 (7.51)

we obtain

tb = −d+ n · xg

n · n
(7.52)

The tb parameter, inside (7.50), results in the nearest point of xg lying on the plane P
point which represents a good approximation of the boundary point xb. Doubling the distance
between xb and xg along the unit normal direction nb we can finally determine the position of
the image point associated to xg.

7.3.4 Boundary interpolation
Once the image point xip has been found, the flow-field variables are bilinearly interpolated
from its surrenders. As usual, we will start explaining the 2D procedure. Assuming that a
generic flow variable ϕ obeys to

ϕ(x, y) = c1xy + c2x+ c3y + c4 (7.53)

the goal is computing the coefficients {ci}4
i=1. Therefore, being {ϕi}4

i=1 the values of the field ϕ
at the surrounding coordinate {(xi, yi)}4

i=1, the coefficients of the interpolation are determined
by solving the following linear system:

(a) Interpolation standard proce-
dure

(b) Interpolation procedure for cut
cells

IPIP11

BB11 IPIP22

BB22

(c) Interpolation procedure for cut
cells

Figure 7.5: Sketch of the boundary interpolation procedure in two-dimensions. Here the
blue points represent the ghost points, the light blue points represent the fluid nodes while
x1, x2, x3, x4 represent the points retained for the interpolation.

⎡⎢⎢⎢⎣
x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
x4y4 x4 y4 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1
c2
c3
c4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ϕ1
ϕ2
ϕ3
ϕ4

⎤⎥⎥⎥⎦ (7.54)

Some further considerations must be exploited, and in particular, some exceptions must be
pointed out concerning the main procedure. For the case where one (or two) points retained for
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the interpolation are flagged as ghosts - so that when the boundary curve cuts the interpolation
cell - the number of fluid points useful for the variable reconstruction reduces to three or two.
In this case, the numerical error drastically drops, and the interpolation procedure becomes
a source of numerical instabilities and spurious oscillations. Following the sketch reported in
Figure 7.5b, 7.5c we directly superimpose the wall value at the correspondent matrix line using
the coordinate of the boundary interception point. Here a distinction between Dirichlet and
Neumann boundary condition is needed. For instance, if (x2, y2) ∈ Ωghosts and we are dealing
with Dirichlet boundary, the correspondent system becomes:⎡⎢⎢⎢⎣

x1y1 x1 y1 1
xbyb xb yb 1
x3y3 x3 y3 1
x4y4 x4 y4 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1
c2
c3
c4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ϕ1
ϕb

ϕ3
ϕ4

⎤⎥⎥⎥⎦ (7.55)

otherwise, if we are dealing with Neumann boundary condition the system becomes:
⎡⎢⎢⎢⎣

x1y1 x1 y1 1
ybnx + xbny nx ny 0

x3y3 x3 y3 1
x4y4 x4 y4 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1
c2
c3
c4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ϕ1(
∂ϕ
∂n

)
b

ϕ3
ϕ4

⎤⎥⎥⎥⎥⎦ (7.56)

where the line corresponding to (x2, y2) is replaced by ∇ϕb · nb.

Again, three-dimensional boundary approximation can be treated as an extension of two-
dimensional problems. In this case, assuming that a generic flow variable ϕ obeys to a three-
linear expression

ϕ(x, y, z) = c1xyz + c2xy + c3xz + c4yz + c5x+ c6y + c7z + c8 (7.57)

the goal is computing the coefficients {ci}8
i=1. Therefore, being {ϕi}8

i=1 the values of the field ϕ
at the surrounding coordinate {(xi, yi)}8

i=1, the coefficients of the interpolation are determined
by solving the following linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1y1z1 x1y1 x1z1 y1z1 x1 y1 z1 1
x2y2z2 x2y2 x2z2 y2z2 x2 y2 z2 1
x3y3z3 x3y3 x3z3 y3z3 x3 y3 z3 1
x4y4z4 x4y4 x4z4 y4z4 x4 y4 z4 1
x5y5z5 x5y5 x5z5 y5z5 x5 y5 z5 1
x6y6z6 x6y6 x6z6 y6z6 x6 y6 z6 1
x7y7z7 x7y7 x7z7 y7z7 x7 y7 z7 1
x8y8z8 x8y8 x8z8 y8z8 x8 y8 z8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1
ϕ2
ϕ3
ϕ4
ϕ5
ϕ6
ϕ7
ϕ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.58)

and similar corrections like the one described above are reserved for cut cells.

7.3.5 Boundary conditions
Once the flow variable ϕip is interpolated at the image point position, the wall condition can
be finally enforced. The process was carried out reflecting the ϕip value in the correspondent
ghost point. In particular for Dirichlet boundary condition, being ϕb is the desired value of ϕ
at the bound location, the value of ϕg in the ghost position is expressed by

ϕg = 2ϕb − ϕip. (7.59)
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For inhomogeneous Neumann boundary conditions instead, the value of ϕg is given by

ϕg = ϕip −∆l
(
∂ϕ

∂n

)
b

, (7.60)

Here ∆l = ∥xip − xg∥ while (∂ϕ/∂n)b is the desired value of the ϕ gradient at the solid-fluid
interface. In our computations, we enforced the boundary conditions on primitive variables
{ui}3

i=1, T and p following the method proposed by Piquet et al. [89] so that the equations
(7.59) and (7.60) become

ui,g = 2ui,b − ui,ip, i = 1, . . . , 3 (7.61)

Tg = Tip −∆l
(
∂T

∂n

)
b

(7.62)

pg = pip −∆l
(
∂p

∂n

)
b

(7.63)

RR

Figure 7.6: Sketch of the interpolation procedure around a solid emerging point. Here the
dashed black line represents the position of the boundary at time t(n) while the black solid line
is the fluid-solid interface at time t(n+1). The orange points are the solid emerging points and
the blue circle represents the support employed for the interpolation.

In particular, for adiabatic wall (∂T/∂n)b = 0 for both steady and moving solids, while the
pressure gradient (∂p/∂n)b is expressed by

(
∂p

∂n

)
b

=

⎧⎨⎩0 if ub = 0
−
(
ρDub

Dt
· nb

)
otherwise

(7.64)

To conclude a note is demanding while the boundary is moving and in particular, recalling
the concept of fluid emerging points. Those Cartesian positions when the boundary has been
moved, do not have a previous Runge-Kutta history, resulting in a source of spurious oscillations
and instabilities. To get them a more suitable value in respect of their neighbours, in our
computation the smoothest Dirac delta (7.19) developed by Yang et al. [134] was employed
and in Figure 7.6 a sketch of the interpolation strategy is reported.
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7.4 Summary
The present chapter described the numerical methods employed in the treatment of embedded
boundaries inside the computational domain. Among the variety of methods available in the
literature, the current work discussed the Direct-Forcing-Method (DFM) and the Ghost-Point-
Forcing-Method (GPFM). The chapter highlighted the substantial differences between the two
methods expressing their pros and cons. While DFM represents a straightforward technology
for embedded boundaries, its limitations in the treatment of gradient-type conditions confines
the method just to momentum equation enforcement [12]. This circumscribes its feasibility
to incompressible flow simulations. On the other hand, the GPFM represents a more flexible
numerical strategy, suitable for both Dirichlet and Neumann conditions. For these reasons, the
GPFM - in combination with a particular treatment of cut cells and fluid-emerging points -
was employed in our computations. In the second part of the chapter, a complete description of
the method in term of solid-detection strategies, data management, geometrical reconstruction,
and boundary enforcement has been discussed.
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Results with the immersed boundary

method

E come li stornei ne portan l’ali
nel freddo tempo, a schiera larga e piena,
così quel fiato li spiriti mali

di qua, di là, di giù, di sù li mena;
nulla speranza li conforta mai,
non che di posa, ma di minor pena.

The wind of Inferno,
La Divina Commedia - Inferno: C. V, vv. 40-44

Dante Alighieri (1265–1321)
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8 – Results with the immersed boundary method

In the previous chapter, a detailed theoretical description of two discrete immersed bound-
ary formulations was presented and discussed. In particular, the numerical properties and the
behaviours of the DFM and the GPFM were highlighted, concluding the latter to be more suit-
able for compressible aerodynamics over complex geometries. In the present chapter, a large
variety of numerical results and validations concerning the coupling between the GPFM and
the core of the numerical solver will be analysed. The chapter is organised into two parts. In
the first part, the validation campaign concerns steady objects aerodynamics. Hence, starting
from the incompressible flow regime, we will move to transitional flows, concluding to shock-
obstacle interactions over complex geometries. In the second part, in a similar path, the results
obtained concerning moving objects aerodynamics will be detailed. In particular, knowing that
sharp-interface IBM for moving solids in compressible viscous flows often exhibit spurious noise
propagating from the moving boundary, in the present work, we show that using the KGP6
scheme in combination with the GPFM is able to keep controlled the pressure-velocity spurious
noise, stably resolved the simulation without employing artificial dissipation techniques.

8.1 Steady objects aerodynamics

In the present section, the main results obtained concerning the aerodynamics of steady objects
will be presented and discussed. In particular, we will detail the cylinder aerodynamics in
various configurations, from the incompressible regime, up to strong compressible cases, and
we conclude the section dealing with shock interaction against complex steady solids. In
Figure 8.1 a sketched of the domain employed in respect to the cylinder test cases is reported,
while Table 8.1 reports the domain proportions for all the simulations.

Figure 8.1: Overview of the two-dimensional domain employed for the simulations of the flow
past a cylinder.
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8.1 – Steady objects aerodynamics

Simulation par. a/D b/D Lx/D Ly/D

Subsonic flow past a confined cylinder §8.1.1 2 1 8 2
Subsonic flow past a free cylinder §8.1.2 13 10 50 20
Supersonic flow past a confined cylinder §8.1.3 2 3 24 6
Supersonic flow past a free cylinder §8.1.4 10 10 40 20
Shock wave diffraction against a cylinder §8.1.5 4 4 10 8

Table 8.1: Geometry of the computational domains employed in the cylinder aerodynamics
tests suite. The parameters refer to Figure 8.1.

8.1.1 Subsonic flow past a confined cylinder at various Re and D/Ly

ratios
The simulation of a flow over a confined cylinder in a low-Mach regime represents a challenging
test for a compressible flow solver. Strongly affected by the flow compressibility, to accurately
represent a fully subsonic condition, the problem requires the reference Mach number to be very
small concerning the unity. As we already mentioned, reducing the Mach number, spurious
oscillations due to pressure-velocity decoupling, especially at the boundary location, becomes
a frequent eventuality. The usage of the KGP6 method prevents the problem. Here the results
obtained over a wide range of Reynolds numbers and for a confined cylinder with various aspect
ratios will be presented.

Figure 8.2: Overview of the domain employed for the simulations of the flow past a confined
cylinder in low-Mach conditions.

Standard NSCBC [97, 70, 96] were imposed at the inlet and outlet boundary while no-slip
wall conditions were enforced at the top and the bottom boundary respectively. The compu-
tation have been performed at various Reynolds numbers Re = u∞D/ν = {1,10,20,40,100}T

and at D/Ly = {0.5, 0.7}T . A parabolic inflow velocity profile was imposed at the left bound-
ary and here u∞ denotes the pick value of inlet speed, D is the cylinder diameter and ν the
kinematic viscosity of the fluid. In Figure 8.2 a sketch of the domain is reported. The initial
values for the non-dimensional pressure and temperature were set to p/p0 = T/T0 = 1 respec-
tively, while initial velocity components are set to zero. To avoid any compressibility effect,
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8 – Results with the immersed boundary method

the u∞ value was set in such a way that the free stream Mach number M∞ equals to 0.01 at
the inlet position. The computational grid consisted of a structured uniform grid featuring
Nx ×Ny = 1600× 400 = 640000 computational nodes. The time-step was evaluated from the
Courant-Friedrichs-Lewy stability condition with a CFL number equals to 0.5. Interpolating
the computed pressure and velocity fields bilinearly around the boundary positions the drag
coefficient was calculated. In particular, the following formulation was implemented:

cD =
∮
pbnb · îdSb +

√
γM∞
Re

∮
µσbnb · îdSb

1
2γp∞M2

∞
(8.1)

here pb, nb, σb represents respectively the pressure, the normal outer direction and the viscous
stress tensor at the boundary position while î is the unit vector associated to the u∞ flow
direction. In Figure 8.3, the computed values of the drag coefficients are compared with the
results obtained by Sahin and Owens [108] showing an excellent agreement for all the Reynolds
numbers investigated. In Figure ?? and Figure 8.4 the Mach fields in a stationary conditions
are reported as a function of the Reynolds number and the D/Ly ratio.
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Figure 8.3: Comparison of the computed drag coefficient for a subsonic flow past a confined
at M = 0.01 with various Reynolds number and D/Ly ratios. In figure Figure 8.3 the drag
coefficient obtained with the present method (black points) is reported as a function of the
Reynolds number for the cases at D/Ly = {0.5, 0.7}T . The results are compared with the
simulations of Sahin and Owens (2004)(solid lines). The simulation was performed on a uniform
Cartesian grid consisted in Nx × Ny = 1600 × 400 grid points for a domain of [8D; 2D] and
two diameters were reserved upstream the cylinder centre location.
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8.1 – Steady objects aerodynamics

(a) Re = 1.00, D/Ly = 0.5 (b) Re = 1.00, D/Ly = 0.7

(c) Re = 10.0, D/Ly = 0.5 (d) Re = 10.0, D/Ly = 0.7

(e) Re = 20.0, D/Ly = 0.5 (f) Re = 20.00, D/Ly = 0.7

(g) Re = 40.0, D/Ly = 0.5 (h) Re = 40.0, D/Ly = 0.7

(i) Re = 100, D/Ly = 0.5 (j) Re = 100, D/Ly = 0.7

Figure 8.4: Stationary laminar Mach field at Re = {10,20,40,100} and D/Ly = {0.5,0.7} for a
steady confined cylinder at M∞ = 0.01.

8.1.2 Subsonic flow past a free cylinder at various Re numbers

A similar domain configuration, as described in the previous paragraph, was employed to
simulate the subsonic flow past a cylinder in an open domain. Again NSCBC were imposed at
the inlet and outlet portion of the domain. Symmetry conditions were enforced at the top and
the bottom boundary. It should be noticed that, considering that the transverse dimension of
the domain Ly/D = 20 the choice of the lateral boundary does not produce any significant
confinement phenomenon. The stream-wise dimension was set equal to Lx/D = 50. Here we
simulated the flow at Re = u∞D/ν = {10, 20, 40, 70, 100, 300}T . A uniform velocity profile is
imposed at the inlet boundary and here u∞ denotes the value of the inflow speed, D is the
circle diameter and ν the kinematic viscosity of the fluid. Following the previous tests, ambient
conditions were initialised at t/t0 = 0 while the u∞ value was set in order to ensure M = 0.05
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8 – Results with the immersed boundary method

at the inlet flow position. The computational grid consisted of a structured non-uniform grid,
stretched around the position of the cylinder and featuring Nx × Ny = 800 × 320 = 256000
grid points. Grid stretching was applied along both x and y directions but, near the cylinder,
a uniform grid spacing, approximately with D/∆x = 50, was employed. In particular, the grid
results in the formulation proposed by Orlandi (2012), so it was expressed by

x(η) =

⎧⎨⎩η
xc

ηc
for |η| < ηc

η
|η|xF + tanh(αc(η−0.5 η

|η| ))
tanh(αc(0.5−ηc)) (xF − xc) otherwise

(8.2)

Here η = ξ − 0.5 is the computational coordinate, xF is external boundary location, xc the
size of the inner uniform region and αc is the stretching parameter. In Figure 8.5 a global view
of the computational grid is shown. The CFL number was set equal to 0.5, and the simulation
was performed up to the statical-steady state of the flow variables.

A large number of results, both numerical and experimental, have been produced regarding
the free cylinder aerodynamics in subsonic flow regime (see e.g., [28, 120, 25, 68, 110, 12]) and
here we present our results compared with the most accurate data available in the literature.
In particular, because of the inherent unsteadiness of the cases at Re = 100 and Re = 300, we
will treat them separately, dividing the test campaign into two groups.

Focusing on the configurations at Re = {10,20,40,70}T , in table Table 8.2 the values of the
drag coefficient are compared with the one in literature; in Figure 8.6 the Mach field and the
wake recirculation, as far as the z-vorticity contours, are reported. Figure 8.7 instead shows
the circular distribution of the pressure coefficient cp. The latter computed as

cp(θ) = p(θ)− p∞
1
2(γp∞M2) (8.3)

was compared to the one obtained by Dennis and Chang (1970).
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8.1 – Steady objects aerodynamics

Figure 8.5: Global view of the computational grid employed for the simulation of cylinder in
open domain configuration. The latter consisted in a non-uniform Cartesian mesh featuring
Nx × Ny = 800 × 320 computational points for a domain of [50D; 20D]; 13D were reserved
upstream the cylinder centre location and a hyperbolic tangent distribution was employed to
cluster the node around the body surface.

cD(Re = 10) cD(Re = 20) cD(Re = 40) cD(Re = 70)
Dennis and Chang (1970) 2.85 2.05 1.52 1.21
Tritton (2006) 3.07 2.09 1.59 1.30
De Palma et al. (2006) - 2.05 1.55 -
Linnick and Fasel (2012) - 2.06 1.54 -
Schneiders et al. (2013a) 2.83 2.15 1.55 -
Boukharfane et al. (2018) 2.99 2.07 1.52 -
Present 2.93 2.09 1.55 1.25

Table 8.2: Drag coefficient literature comparison for a laminar flow past a free cylinder at
various Reynolds numbers.
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8 – Results with the immersed boundary method

(a) Re = 10 (b) Re = 10

(c) Re = 20 (d) Re = 20

(e) Re = 40 (f) Re = 40

(g) Re = 70 (h) Re = 70

Figure 8.6: Cylinder subsonic laminar aerodynamics in open domain configuration. The figure
shows the Mach field, the wake recirculation and the vorticity contours (ωz) for a cylinder at
at Re = {10,20,40,70}T and M = 0.05.
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(d) Re = 70

Figure 8.7: Comparison of the pressure coefficient circular distribution around a steady cylinder
at M = 0.05 and various Reynolds numbers. The figures show the circular distribution of the
pressure coefficient for a cylinder in open domain at Re = {10, 20, 40, 70}T and M = 0.05.
Present results (black points) are compared with the one of Dennis and Chang (1970) (blue
dashed lines).

As far as the tests at Re = {100, 300}T are concerned, the inherent unsteadiness of the flow
needs to be treated statistically. In particular, we focused our attention on three parameters:
the time-averaged drag coefficient, the root mean square of the lift coefficient and the Strouhal
number (St) of the wake defined as St = fD/u∞. Here f denotes the wake frequency, D
the cylinder diameter and u∞ the free stream velocity. In Figure 8.8 the vorticity field is
reported while in Figure 8.9 the time history of the lift and drag coefficient is shown. As can
be appreciated from the snapshots, the vorticity fields do not show oscillations or noise. The
time histories of cl and cd are also very clean. Values obtained by present computation always
lie in the range reported by other studies. In Table 8.3, the results of the current calculation
are compared with the one available in the literature.
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8 – Results with the immersed boundary method

(a) Re = 100 (b) Re = 300

Figure 8.8: Von Karman wake behind a steady cylinder in open domain configuration at
Re = {100,300}T and M = 0.05. Results in term of instantaneous vorticity contours (ωz).
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(b) Re = 300

Figure 8.9: Von Karman wake behind a steady cylinder in open domain configuration at
Re = {100,300}T and M = 0.05. Lift and drag history in a statistically-steady range of time.

cLrms c̄D St

Re 100 300 100 300 100 300
Ghias et al. (2013) 0.32 0.67 1.36 1.40 0.16 0.21
De Palma et al. (2006) 0.23 - 1.32 - 0.16 -
Rajani et al. (2009) 0.17 0.60 1.33 1.28 0.15 0.21
Boukharfane et al. (2018) 0.25 0.62 1.36 1.26 0.16 0.21
Present 0.22 0.61 1.32 1.34 0.16 0.21

Table 8.3: Literature comparison of force coefficient statistics for a steady cylinder at Re = 100
and Re = 300 and M = 0.05.
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8.1 – Steady objects aerodynamics

8.1.3 Supersonic flow past a confined cylinder

Going on in the validation of the GPFM, here we move the test suite to strong compressible
flow conditions. In particular, in this paragraph, the aerodynamics of a confined cylinder in
the hypersonic regime will be presented and discussed. The simulation relies on a similar
configuration as in Chaudhuri et al. (2011). A supersonic inflow boundary condition was
enforced at the inlet portion of the domain, while a NSCBC-outflow condition was set at
the outlet location; a slip-wall boundary modeled top and bottom sides of the domain. To
reproduce as much as possible the inviscid calculation provided by Chaudhuri et al. (2011),
the Reynolds number was set equal to Re = u∞D/νa = 106 and a uniform inflow velocity
profile was imposed at the left boundary. Because no particular treatments are employed in
the near-wall region, such high Reynolds simulation can be considered equivalent to a fully
inviscid problem. Here u∞ denotes the value of the inflow speed, D is the cylinder diameter
and νa is the ambient kinematic viscosity of the fluid. Ambient conditions were initialised at
t/t0 = 0 while the u∞ value was set in order to ensure a hypersonic Mach number M = 3.5 at
the inflow position. A grid sensitivity campaign, consisting of three uniform Cartesian meshes,
was performed. The meshes feature respectively Nx×Ny = [600×150]; [1200×300]; [2400×600]
grid points for a domain of [24D; 6D] and they are denoted as M1,M2,M3; two diameters were
reserved upstream the cylinder centre location. The CFL number was set equal to 0.5, and
the simulation was carried out up to a statistical-steady-state.

(a) Temperature field

(b) Schlieren density

Figure 8.10: Cylinder supersonic aerodynamics in a confined configuration. The figure shows
the temperature contour 8.10a and the Schlieren density field 8.10b for a confined cylinder
at Re = 106 and M = 3.5. The results were obtained on a uniform Cartesian grid featuring
Nx ×Ny = 2400× 600 grid points and for a domains of [24D; 6D].

In Figure 8.10 the temperature instantaneous contour and the Schlieren density field are
reported. As we can notice, the flow domain can be divided into two main regions. A portion
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8 – Results with the immersed boundary method

practically time-independent, immediately after the bow-shock, in between the cylinder loca-
tion and the curved shock and a region, behind the cylinder, wake-dominated, characterised by
a lot of reflected shock-waves interacting with the vortex structures shedded by the cylinder.
A quantitative analysis of the computational results can be performed focussing in the first
region. In particular, experimental studies suggest the non-dimensional distance between the
bow shock location and the cylinder leading edge (∆∗ = ∆/D) is expressed by

∆∗ = λ1e
λ2
M2 (8.4)

where D is the cylinder diameter, while λ1 = 0.193 and λ2 = 4.67 are fitting parameters. Ta-
ble 8.4 reports the result obtained with our computation in comparison to the one of Chaudhuri
et al. (2011) and Boukharfane et al. (2018) resulting in a good agreement with the literature
data.

∆∗(M1) ∆∗(M2) ∆∗(M3) equation (8.4)
Chaudhuri et al. (2011) 0.34 0.33 0.31 0.29
Boukharfane et al. (2018) 0.32 0.31 0.30 0.29
Present 0.35 0.33 0.31 0.29

Table 8.4: Bow-shock location ∆∗ obtained with different grid resolutions.
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Figure 8.11: Comparison between the shock (β) and the deflection angles (θ) as a function of
the grid resolution M1,M2,M3. Solid black line denotes the shock-expansion theory prediction
while square points represent the numerical solution obtained by Chaudhuri et al. (2011).
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Looking closer to the curved frontal shock, the latter can be studied in light of the supersonic
flow theory in stationary conditions. In particular using the equations for oblique shocks, being
θ the deflection angle provided by a shock wave and β its physical angles, the shock-expansion
theory asserts that θ is a function of β the upstream Mach number through the expression

tan(θ) = 2cotan(β)
[

M2 sin2(β)− 1
M2(γ + cos(2β)) + 2

]
(8.5)

The latter equation is reported in Figure 8.11 and here, as far as the results in term of
β − θ as a function of the grid resolution are compared with the data obtained by Chaudhuri
et al. (2011). As we notice, reducing the grid step, the values of the physical and the deflec-
tion angles progressively converge to the theoretical solution, proving the phenomenon to be
practically stationary and inviscid.
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8 – Results with the immersed boundary method

8.1.4 Supersonic flow past a free cylinder

To validate the GPFM in strong compressible and viscous conditions here, similarly to §8.1.2
we simulate the supersonic laminar flow past a cylinder in open domain. NSCBC were imposed
at the outlet portion of the domain while extrapolation boundaries were enforced at the top
and the bottom boundary. The simulation was performed at Re = u∞D/ν = 300. A uniform
velocity profile is imposed at the inlet boundary, and here u∞ denotes the value of the inflow
speed, D is the circle diameter and ν the ambient kinematic viscosity of the fluid. Ambient
conditions were initialised at t/t0 = 0 while the u∞ value was set in order to ensure M = 2.0
at the inlet location. The computational grid consisted of a structured non-uniform Cartesian
grid, stretched around the position of the cylinder and featuring Nx × Ny = 1000 × 500 grid
points for a domain of [40D; 20D]. Ten diameters were reserved upstream the cylinder. Grid
stretching, following equation (8.2), was applied along both x and y directions and near the
cylinder, a uniform grid spacing, approximately with D/∆x = 120, was employed. The CFL
number was set equal to 0.5, and the simulation was carried out up to the steady-state.

Figure 8.12: Cylinder supersonic aerodynamics in a open domain configuration. The figure
shows twenty contours of the Mach field for a cylinder in open domain at Re = 300 and M =
2.0. The results were obtained on a non-uniform Cartesian grid featuring Nx×Ny = 1000×500
grid points and for a domains of [40D; 20D].

Figure 8.12 shows twenty contours of the Mach field around the cylinder resulting in a very
clean and resolved simulation. To quantitive validate the simulation the pressure coefficient was
extracted from the flow field and compared with the results of Qu et al. (2018). In particular
Figure 8.13 magnifies the pressure coefficient as a function of the y coordinate in the range of
[−0.5 : 0] concluding in a very good agreement with literature data.
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Figure 8.13: Pressure coefficient distribution for a supersonic cylinder in open domain config-
uration. Present results (black squares) are compared with the simulation of Qu et al. (2018)
(blue dashed line).
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8.1.5 Shock wave diffraction against a cylinder
In the path of solid objects in strong compressible flow conditions, the present paragraph
presents the diffraction of a planar shock wave on a circular cylinder in viscous conditions.
The problem has been widely studied in the literature both experimentally and numerically
by Bryson and Gross (1961), Chaudhuri et al. (2011), Piquet et al. (2016) and Boukharfane
et al. (2018).

(a) Schlieren density (b) WENO activated cells

Figure 8.14: Shock-wave-diffraction over a steady cylinder at Ms = 2.81 and Res = 2000.
In figure 8.14a the shock positions has been highlighted thought their density variation, thus
the Schlieren density field is reported. Panel 8.14b shows the WENO-activated-cells. The
simulation was performed over a uniform Cartesian grid featuring Nx × Ny = 2000 × 1600
nodes for a domain of [10D; 8D]. Four diameters were reserved upstream the cylinder centre
location.

The flow field was initialised in such a way that the Rankine-Hugoniot conditions ensure a
traveling shock wave moving from left to right with a Mach number equals to 2.81 (see appendix
A for details). In particular, the shock, initially located two diameters upstream the cylinder,
divided the flow field into two regions and the left part consisted in a gas initially at rest with
p/p0 = T/T0 = 1. The Reynolds number of the flow Re = usD/νa was set equal to 2000. Here
us denotes the shock speed, D the cylinder diameter and νa the ambient kinematic viscosity
of the fluid. Extrapolation boundary conditions were ensured in all the four domains edges.
The domain size was set equal to Lx × Ly = [10D; 8D] and the cylinder was located at zero
coordinates so that four diameters were reserved upstream the cylinder. The computational
grid consisted in a structured uniform mesh featuring Nx × Ny = 2000 × 1600 = 3.2 · 106

nodes. A number of points equal to D/∆x = 200 was employed around the cylinder. The CFL
number was set equal to 0.5.

The complexity of the wave interactions is depicted in Figure 8.14a. Here the numerical
Schlieren of the density field is reported at a reduced time equals to t/t0 = 2. The flow field
shows a strong symmetry concerning the centre line of the domain, and it evidences some
characteristics features such as Mach stems, triple points, shocks, slip lines, and vortices. In
particular, the trajectory of the two main triple points was extensively reported by previous
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8.1 – Steady objects aerodynamics

studies and here, in Figure 8.15 the results of our computation are compared with the one
reported in [15], [19], [89] and [12]. As we notice, in the limit of the uncertainty related to
the Bryson and Gross (1961) experiments and looking at the numerical results provided by
Chaudhuri et al. (2011), Piquet et al. (2016) and Boukharfane et al. (2018) our simulations show
an excellent agreement compared to all the available data, concluding the perfect prediction
of our methodology.
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Figure 8.15: Shock-wave-diffraction over a steady cylinder at Ms = 2.81 and Res = 2000.
Literature comparison of the triple points trajectory for the problem is reported. Present
results are compared with the experimental data of Bryson and Gross (1961) and the numerical
simulations of Chaudhuri et al. (2011), Piquet et al. (2016) and Boukharfane et al. (2018).

8.1.6 Immersed boundary error scaling
To quantify the scaling of the numerical error of the overall immersed boundary methodology
the diffraction of a planar shock wave against a steady cylinder was found a significative and
challenging benchmark. The problem resumes all the ingredients of the present method (i.e.
scheme hybridisation, shock-wave automatic detection, viscous effects and time-dependency).
The simulation of the previous paragraph has been repeated over a set of five uniform Cartesian
meshes {Mi}4

i=0, featuring Nx × Ny ≃ [180 × 180] ∗ {1.5i}4
i=0 grid points for a domain of

Lx×Ly = [8D×8D]. The shock Mach and Reynolds numbers were imposed equal to Ms = 2.81
and Res = 1000 while the CFL number - to avoid any uncertainty due to the error contribution
of the time-integration - was set equal to 0.1. To assess the error scaling the surface pressure
coefficient Cp(θ) has been monitored as a function of the grid resolution and the one computed
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with the i-th grid-level was compared with M4 results.
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Figure 8.16: Surface pressure coefficient and its error scaling as a function of the grid resolution.
Figure 8.16a shows the pressure coefficient for a M = 2.81, Re = 1000 planar shock wave
against a steady cylinder. Panel 8.16b reports the error scaling of the pressure coefficient. The
data were collected at t/t0 = 1.5 for four uniform Cartesian meshes whose resolution was set
ensuring a grid ratio r = 1.5. The case with Nx ×Ny = 180× 180 ∗ {1.54} was considered as
the reference solution. From the obtained results the overall accuracy of the entire algorithm
is in between of the second and the third-order, consistently with the nominal second order of
accuracy of the bilinear interpolation.
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The complexity of the flow - which features shocks and acoustics wave behind the cylinder
- makes the error evaluation quite difficult. In particular, is well known that the WENO5
scheme reduces to zero-order of accuracy in the region where the flow is not smooth. For this
reason, the ±80◦ shock-free frontal circular sector was selected as the control zone in which
to monitor the error behaviour. The comparative process has been carried out over n = 64
control points (i.e. every 2.5◦) inside the control region and the analysis has been performed
looking at the results at t/t0 = 1.5. The planar shock wave has been initialised two diameters
upstream of the cylinder centre. The Lp and the L∞ norms defined as

LMi
p =

⎛⎝ 1
n

n∑
j=1

⏐⏐⏐CMi
p (θj)− CM4

p (θj)
⏐⏐⏐p
⎞⎠1/p

(8.6)

LMi
∞ = nmax

j=1

⏐⏐⏐CMi
p (θj)− CM4

p (θj)
⏐⏐⏐ (8.7)

have been retained as metrics of the error and in particular, the p = 1 and p = 2 cases have
been used in present analysis. The order of accuracy was evaluated with

q =
log

(
LMi

(·) /L
Mi−1
(·)

)
log(1/r) (8.8)

with r = 1.5 representing the grid ratio of the present case. In Figure 8.16a the pressure
coefficient in the control zone is reported as a function of the grid resolution while Figure 8.16b
shows the evolution of the metrics associated with the numerical error. Finally, table 8.16 report
the computed errors and the related order od accuracy. For the obtained results we conclude
that the present immersed boundary method - in combination with the fluid dynamics solver -
keeps the accuracy in between the second and the third-order resulting in an excellent result.
In particular, the latter result is fully consistent with the nominal second-order of accuracy of
the boundary interpolation method.

N L1 L2 L∞ L1 order L2 order L∞ order
180 0.827335E-01 0.102169E+00 0.190200E+00 - - -
270 0.471348E-01 0.617132E-01 0.138030E+00 1.388 1.243 0.791
405 0.144535E-01 0.188992E-01 0.441100E-01 2.915 2.919 2.814
607 0.683969E-02 0.809366E-02 0.146200E-01 1.845 2.092 2.724

Table 8.5: Error scaling of the present methodology for the surface pressure coefficient.
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8.1.7 Shock wave diffraction against a wedge
To conclude the validation of the GPFM for steady objects here we present interaction between
a planar shock wave and an equilateral wedge. The problem, known also as Schardin’s problem,
was extensively studied by previous authors both experimentally [17] and numerically [19, 12].

(a) CFD (b) CFD

(c) Experiments (d) Experiments

Figure 8.17: Shock-wave-diffraction over a wedge at Ms = 1.3 and Res = 106. In figure the
numerical Schlieren density field is reported at two different time level and compared with
the experimental results of Chang and Chang (2000). The simulation was performed over
a uniform Cartesian grid featuring Nx × Ny = 2000 × 2000 nodes for a domain of [7L0; 7L0]
where L0 is the triangle edge height. Three reference lengths were reserved upstream the wedge
vertical edge.

To represent the dynamics of the problem a similar configuration to the one explained
in §8.1.5 was employed, thus the flow field was initialised in such a way that the Rankine-
Hugoniot conditions ensure a traveling shock wave moving from left to right with a Mach
number equals to 1.3 (see appendix A), following the experiments of Chang and Chang (2000).
The left part of the domain consisted in a gas initially at rest with p/p0 = T/T0 = 1 while the
Reynolds number of the flow Re = usL0/νa was set equal to 106. Here us denotes the shock
speed, L0 wedge edge height and νa the ambient kinematic viscosity of the fluid. Extrapolation
boundary conditions were ensured in all the four domains edges. The domain size was set equal
to Lx×Ly = [7L0; 7L0] and the vertical edge of the wedge was located in such a way that three
reference length would be reserved upstream. The mesh consisted in a structured uniform
mesh featuring Nx ×Ny = 2000× 2000 nodes and the CFL number was set equal to 0.5. The
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8.1 – Steady objects aerodynamics

computation was performed up to t/t0 = 5.

In Figure 8.17 the Schlieren density at two different time levels is reported. Here, as far as
in the cylinder diffraction case, lots of discontinuities appear behind the wedge, detailing the
complexity of the flow. In particular, three main features can be highlighted, consisting of two
main triple points and a vortex-pair (a detailed description of the flow field can be found in
[17]). Figure 8.18 reports the trajectories of those features compared to the one available in
literature resulting in an excellent agreement also for this validation benchmark.
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Figure 8.18: Shock-wave-diffraction over a wedge at Ms = 1.3 and Res = 106. Literature
comparison of the triple points trajectory and vortex centre location for the problem is reported.
L0 is the wedge height while b = L0 tan(π/3) is the edge length. Present results are compared
with the experimental data of Chang and Chang (2000) and the numerical simulations of
Chaudhuri et al. (2011) and Boukharfane et al. (2018).
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8.2 Objects aerodynamics with moving boundaries

The IBM we developed consists of a general numerical strategy able to accurately simulate both
steady and moving boundaries. The present section aims at validating the GPFM for moving
objects in compressible viscous flow conditions. A detail description of the test suite applied
to nearly incompressible up to strong compressible flows will be presented and discussed.

8.2.1 Subsonic flow past a moving cylinder with prescribed motion

The first test we considered in the validation of the GPFM applied to moving objects consist of
a transversely oscillating cylinder in a free-stream configuration and low-Mach conditions. Such
case is quite well documented both numerically and experimentally (see e.g.[49, 134, 111, 31]).
Here the same domain configuration described in §8.1.2 was employed.

NSCBC were used at the inlet and outlet portion of the domain while non-slip wall condi-
tions were employed at the top and the bottom boundaries. To avoid any confinement effect
due to the motion of the cylinder, the transverse dimension of the domain was doubled com-
pared to the steady case so that Ly/D = 40; the stream-wise dimension remains the same.
We simulated the flow at Re = u∞D/ν = 185 where u∞, D and ν follow the same convec-
tions explained in §8.1.2. The value of u∞ was selected in such a way that a Mach number
M∞ = 0.25 is ensured in the free stream conditions following the computation performed
by Ehsan Khalili et al. (2018). A grid sensitivity campaign, consisting in three non-uniform
Cartesian meshes stretched around the cylinder, was performed. The three meshes feature
Nx×Ny = [400×320]; [800×640]; [1600×1280] grid points are denoted as coarse, medium and
fine, respectively. Grid stretching was applied in both stream-wise and span-wise directions
but, near the cylinder, a uniform grid spacing was employed. In particular, the three meshes
were characterised by a minimum grid step equals to ∆x = ∆y = [D/25]; [D/50]; [D/100],
respectively. The initial values for the non-dimensional pressure and temperature were set to
p/p0 = T/T0 = 1 respectively, while the velocity components were set equal to the free stream
speed in all the domain. The CFL number was set equal to 0.5.

The body motion was prescribed using a single harmonic oscillation in the form of

yc(t) = A sin(2πfet) (8.9)

and here t is the dimensionless simulation time, yc(t) is the location of cylinder centre, A
is the amplitude associated to the harmonic oscillation and fe is its frequency. Following the
available literature the amplitude was set equals to A/D = 0.2 while the frequency fe was
expressed as a function of the cylinder natural shedding frequency f0 = St0D/u∞. Here St0
denotes the Strouhal number of a steady cylinder under the same Mach and Reynolds regime
and experimental and numerical results suggest that St0 is in the range of [1.85 ÷ 1.95]. In
our computation we set St0 = 0.195. Following the experiments of Gu et al. (1994) and the
simulations of Guilmineau and Queutey (2002) and Schneiders et al. (2013b) a spectrum of
six frequencies was considered, i.e. fe/f0 = {0.80, 0.90, 1.00, 1.10, 1.12, 1.20}T . In Table 8.6 the
force coefficient statistics for a moving cylinder with a reduced frequency of fe/f0 = 0.8 are
reported in comparison with the available literature and as function of the grid spacing, while
in Figure 8.19 the results over the complete frequency spectrum are shown, proving a very
good agreement with other studies validating our method for moving objects.
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M c̄D cLrms cDrms

Guilmineau and Queutey (2002) 0 1.195 0.080 0.036
Yang et al. (2009) 0 1.281 0.076 0.042
Schneiders et al. (2013b) 0.10 1.279 0.082 0.042
Ehsan Khalili et al. (2018) 0.25 1.287 0.079 0.045
Present (coarse) 0.25 1.248 0.063 0.044
Present (medium) 0.25 1.263 0.058 0.043
Present (fine) 0.25 1.272 0.065 0.043

Table 8.6: Literature comparison of force coefficients statistics for a moving cylinder in low
Mach regime, Re = 185 and with a reduced frequency fe/f0 = 0.8.
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Figure 8.19: Variation of the force coefficients statistics for a transversely oscillating cylinder
at Re = 185 and M = 0.25 respect of fe/f0. In the figure our computation (black cir-
cles) is compared with Guilmineau and Queutey (2002) (blue dashed triangles) and Yang and
Balaras (2006) (red dashed squares).

To highlight the low level of noise introduced by the present method, in Figure 8.20 the
drag coefficient for the case at fe/f0 = 0.8 has been plotted as a function of the location of
the cylinder. Magnifying the drag history over a single period, we can see that even without
introducing any additional dissipation the signal is very clean. In Figure 8.21 the time history
of the lift and drag coefficient is reported for all the reduced frequency spectrum, while in
Figure 8.22 the z-vorticity contours are shown.
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Figure 8.20: Resolution comparison at different grid spacing. Here the drag coefficient for the
case at fe/f0 = 0.8 is plot as a function of the cylinder centre location over a single period.
Three results, with an increasing level of resolution h = {D/25, D/50, D/100} are reported
respectively in panel 8.20a, 8.20b and 8.20c.
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Figure 8.21: Time history of the lift and drag coefficient past a moving cylinder in a cross
flow configuration with Re = 185, M = 0.25 and a 0.8 ≤ fe/f0 ≤ 1.2. Here the results are
associated to the mesh with ∆x = ∆y = D/50.

According to the results of our simulations and in particular looking at Figure 8.19 some
comments are demanding to discuss the complex dynamics related to a moving cylinder in a
transitional Reynolds regime. Looking at the case at fe/f0 < 1 we can easily conclude that
force coefficients statistics depend linearly to this ratio. On the other hand, increasing the
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wavenumber, the trend is not confirmed, and something happens in the flow domains. Looking
closer to the Figure 8.22 we can observe that, up to fe/f0 > 1 the interaction between the body
motion and the vortex shedding becomes strongly non-linear, resulting in a vortex an opposite
circulation detached from the lower side of the cylinder. This fact causes the force exchange
to suddenly invert its behaviour, showing a typical knot effect in the system dynamics. The
phenomenon is clearly highlighted also in Figure 8.21. Here the force coefficient time history,
up to fe/f0 = 1, exhibits a secondary frequency, higher than the fundamental one, resulting
in a secondary vortex shedding. Above the good agreements with the results available in the
literature, from this analysis, we can conclude that our methodology is properly predictive in
a wide range of body motions and also the strong non-linear effects related to fluid-structure
interactions are properly caught and resolved.

(a) fe/f0 = 0.80 (b) fe/f0 = 0.90

(c) fe/f0 = 1.0 (d) fe/f0 = 1.1

(e) fe/f0 = 1.12 (f) fe/f0 = 1.2

Figure 8.22: Non-dimensional vorticity contours (ωz) of a cross flow oscillating cylinder at
M = 0.25 and Re = 185. Here the results are presented in function of the oscillation frequency
0.8 ≤ fe/f0 ≤ 1.2.
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8.2.2 Moving cylinder against a steady shock wave

Here we show the performance of the present method concerning moving objects in compressible
conditions. The same case described in the previous §8.1.5 is repeated in a difference reference
frame. Here we will focus on the frame jointed to the shock in which the cylinder is moving
from left to right. Due to the Galilean invariance, the physics in the two frame is identical once
the translational speed is accounted for. However, it should be remarked that the intrinsic non-
linearity of WENO scheme does not guarantee a perfect Galilean invariance transformation.

A similar set up as previous paragraph was employed. A Cartesian grid featuring Nx×Ny =
700×400 grid points was employed while the domain sized Lx×Ly = [14D; 8D]. The Reynolds
and the Mach numbers were set equal to 2000 and 2.81 and followed the same convections in
§8.1.5.

In Figure 8.23, the drag coefficient history is plotted in the two references. As we can notice,
a perfect agreement is found with the small differences barely noticeable. In Figure 8.24 two
instantaneous fields in terms of density contours are shown comparing the steady with the
moving cylinder concluding that our method is properly predictive also in case of moving
objects in strong compressible conditions with shock waves.
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Figure 8.23: Comparison between the time history of the drag coefficient in two different
reference frames. The dashed line reports the results for a moving cylinder against a steady
shock while the solid line shows the results for a moving shock against a steady cylinder. The
cylinder (the shock) is travelling at Mach = 2.81, while the Reynolds number is set equals to
2000.
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(a) moving cylinder at t/t0 = 1 (b) steady cylinder at t/t0 = 1

(c) moving cylinder at t/t0 = 2 (d) steady cylinder at t/t0 = 2

Figure 8.24: Non-dimensional density field in two homologous instants of a moving cylinder
against a steady shock (left panel) and of a moving shock against a steady cylinder (right
panel).

8.2.3 Supersonic flow past a confined moving square

Finally, to conclude with a robustness benchmark for the entire methodology we select the
supersonic flow past a moving confined square as a good and delicate benchmark of a compress-
ible non-smooth moving object. The presented results provide reasonable qualitative behaviour
since we did not find previous experimental data or numerical simulations to compare with.
The simulation consisted in a M∞ = 3 and Re = 3000 flow over a single harmonic oscillating
square along the crossflow direction. Slip-wall conditions were enforced at the top and at the
bottom side of the domain while a supersonic inflow condition was enforced at the left side of
the domain. The outlet bound was treated characteristically. The movement was analytical
superimposed as y(t) = A sin(2πfet) and here A = 0.2D is the amplitude associated to the
harmonic oscillation, while fe is its effective oscillation frequency. The latter was set equal to
0.5f0 where f0 = St0u∞ = 0.147u∞ represents a physical consistent value whose order of mag-
nitude is the same of the natural shading frequency of a square in similar reference viscosity
conditions (i.e. µ∞ ∼ M∞/Re∞). The simulation was carried out over a uniform Cartesian
mesh featuring Nx ×Ny = [800× 200] grid points for a domain of Lx × Ly = [32D; 8D]. Four
reference lengths were reserved upstream the squared centre and the problem was run till a
statistically steady convergence of the flow. The CFL number was set equal to 0.5. For this
setting, a mean drag coefficient equal to c̄D = 1.62 has been recovered. The instantaneous
temperature fields in five different time levels are reported in Figure 8.25. As we notice, the
frontal shock is dynamically stretched following the square centre square.
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Figure 8.25: Instantaneous temperature fields for a confined moving square at M∞ = 3.0 and
Re = 3000.
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8.3 Summary
The present chapter described the numerical benchmarks in the validation of the GPFM applied
to objects aerodynamics in a wide range of both Reynolds and Mach numbers. In particular, we
proved that using the fully-split-convective formulation of Kennedy-Grüber and Pirozzoli [91]
in combination with IBM and a WENO procedure for shock-capturing, represents a suitable
numerical strategy able to evolve moving objects in compressible flows stably. The methodology
avoids any artificial viscosity injection even in the case of moving boundaries; thus, it appears
a promising strategy for accurate direct and large-eddy simulations of compressible turbulent
flows with moving boundaries. The capability of the method to reproduce a broad set of
flow conditions, from subsonic laminar flows (e.g. flow over a confined and free cylinder at
low Mach numbers), to transitional flows (e.g., vortex shedding downstream a cylinder) up to
high-speed shock-wave interactions has been quantitatively proved both in steady and moving
cases reproducing well-documented datasets and showing very good agreements for the entire
validation campaign. In particular, the low-Mach computations and the strong compressible
simulations of a moving cylinder a have highlighted the vanishing level of noise introduced by
the present approach.
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Conclusions & Future perspectives

Sapere aude! Have courage to use your
own understanding!

Immanuel Kant
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9.1 Conclusions
Turbulent compressible flows represent an exciting and challenging topic for many practical and
scientific applications, and today few models can accurately describe the mechanics inherent of
such systems. Undoubtedly, the Direct Numerical Simulation (DNS) and the Large-Eddy Sim-
ulation (LES) of the Navier-Stokes system of equations represent the most suitable approaches
to deeply understand the physics of the fluid motion and today the availability of a large vari-
ety of accurate and efficient methods, moreover, the dramatical increase of the computational
power, make numerical scientists able to address the problem.

The objective of the present three-year work was to develop and validate a high-resolution
numerical model suitable for the simulation of high-speed flows in the accurate frame of
DNS/LES. The work consisted of the PhD activity of the author, who started to develop
the solver from scratch. Thanks to the support of his two thesis advisors and to the whole In-
dustrial Engineering Department of the University of Padova the development process arrived
at the point described in the present dissertation, consisting in a satisfactory ending point.

To describe in detail the workflow, the present dissertation was organised as a numerical
toolkit. In particular, the most difficult issues, the alternatives, and the actuated coding
choices were highlighted to build a reference manual for future developments. Thus, starting
from the mathematical model describing the flow mechanics inherent an unsteady compressible
flow, we moved to the numerical methods suitable for the discretisation of the Navier-Stokes
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system of equations. Many emphases were reserved for the treatment of convective and viscous
terms. The latter represents the core of the numerical discretisation and lot of coding effort
was reserved to this portion of the work, both in term of development time and optimisation
processes. Every chapter of the work was organised in such a way that a theoretical description
of the problem advances the practical implementation and the numerical validation, resulting
(we hope!) in clear and usable documentation.

A sufficient detailed description was also reserved for the parallelisation strategy. The
latter, even more today, represents a demanding target for three-dimensional turbulent flows
simulations. Thus, the whole solver was tested over a fully turbulent test case, at a moderate
Reynolds number, and consisting in a channel flow in slightly-compressible conditions. The
entire validation campaign has shown excellent agreements in respect of all the most accurate
and well-documented tests and benchmarks available in the literature, both analytical, numer-
ical and experimental, results that make us able to conclude that our numerical tool is properly
predictive in a wide range of problems and applications.

A huge part of the work consisted in coupling the solver with a sharp-interface Immersed
Boundary Method whose peculiarity was represented by the possibility of treating moving
objects in both subsonic and supersonic cases. This part of the work was divided into two
chapters. The first dealt with the theory of the method and pointed out a detailed description
of the numerical algorithms implemented in the present work. The second concerned the results
obtained in term of the aerodynamics of steady and moving objects in a wide range of both
Reynolds and Mach numbers.

9.2 Future perspectives
As far as future perspectives, we hope that this work can not be considered arrived at its end
and a lot of further improvements and further analysis are feasible. Here a list of possible
developments, with an increasing level of coding effort, will be presented.

1. At first sight, the solver can be immediately employed in the analysis of fundamental fluid
mechanics topics concerning the turbulent behaviour of compressible flows. For instance,
the dynamics of homogeneous turbulent systems consists in challenging research area for
contemporary physics (see, e.g., [127, 128, 129]) and represents a feasible target with
actual resources.

2. Going to more applicative problems, the dynamics associated to the interaction between
strong-compressible and viscous phenomena and the shock-wave boundary layer interac-
tion problem represent challenging and essential tasks for the modern propulsion system
and flight devices (see, e.g. [95, 94, 86]). The problem can be straightforwardly faced
with the actual solver hoping to provide a significant role in this research field.

3. Improving the LES accuracy dealing with more sophisticated models seams to be a
challenging task for future computations and a straightforward goal for the actual state
of the solver. In particular, the wall-modelled Large-Eddy Simulations (WMLES) [64]
represents a promising strategy able to increase the LES accuracy in the case of wall-
bounded flows. The task is strongly motivated also by the turbulence community who
fixed a thematic challenge on this topic in 2021 (https://wmles.umd.edu).

4. The inclusion of hybrid models for turbulence, like DES/DDES/IDDES, represent quite
an easy job and requires to add (at least) one more differential equation in the set the
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evolutionary variables. The latter techniques represent a suitable description for thin-
bodies aerodynamics with superior accuracy in respect of a standard RANS model (see,
e.g., Bernardini et al. (2016)) and consists in a feasible improvement in a decent range
of time;

5. Finally, even if Cartesian meshes represent a very efficient and straightforward solution for
high-resolution numerical schemes, this choice represents also a stiff technology dealing
with very complex geometries. To face this target, two possible improvements can be
seen:

(a) the first consists in dealing with generalised-curvilinear grids similarly to what we
already have done in case of non-uniform Cartesian meshes, thus employed a fully
curvilinear discretisation of the Navier-Stokes system of equations (see, e.g., Piroz-
zoli (2011b));

(b) the second consists of dealing with Adaptive Mesh Refinement (AMR) solutions,
which represent a very efficient and flexible technology for high-order Cartesian
numerical methods. Various AMR strategies have been proposed in the last two
decades, and the most efficient solutions are fully open-source and available online
(see, e.g., SAMRAI, AMREX). However, AMR represents a tough coding problem,
especially because of the incomplete and unclear related documentation.
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A
Unsteady Rankine-Hugoniot conditions

It is well known that the Rankine-Hugoniot (RH) conditions consist of a compatible relation
for two-fluid regions divided by shock wave. These relations exploit the conservation principles
and the equation of state for an ideal gas and, for and steady shock, they read
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Here (·)1 are the inflowing flow variables while (·)2 are the post-shocked condition, thus M1
and M2 are respectively the inflowing and the post-shocked Mach numbers. In Figure 1.1a
a sketch of the two flow region divided by a steady shock is reported. Knowing the inflow
conditions, the RH system of equations provides a compatible relation for the flow quantities
in the post-shocked region. Here we want to extend the RH conditions for a moving shock. The
problem appears quite often in compressible fluid dynamics, especially as initial (analytical)
flow condition.

(a) Steady shock at M = M1 (b) Moving shock at M = M1

Figure 1.1: Sketch of the transformation process employed in order to enforced an unsteady-
shock initial condition.
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Dealing with the system in Figure 1.1a a simple reference frame transformation solves the
problem. In fact, adding a translational speed uτ = −u1 to both the two flow regions the
post-shock condition starts moving with a speed equal to u′

2 = u2 − u1 while the inflow region
rests. Consequently the shock wave moves with us = M1c1 , where M1 represents the original
inflow Mach number. Figure 1.1b sketches the problem.
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