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SUMMARY 
 

STUDY IN PADOVA 
Analysis of insulin sensitivity in adipose tissue of patients with primary 
aldosteronism 

Objective: To assess a possible role of visceral adipose tissue in the pathogenesis of insulin 

resistance in primary aldosteronism.  

Methods: Visceral adipose tissue was obtained from patients with aldosterone-producing 

adenoma (APA; n=14) and, as controls, non-functioning adenoma (NFA; n=14) undergoing 

laparoscopic adrenalectomy. Homeostasis model assessment index was higher and potassium 

was lower in APA than in NFA patients (P<0.05). Immunohistochemistry, Western blotting 

and real-time PCR were used to detect and quantify mineralocorticoid receptor (MR) 

expression. Transcript levels of peroxisome proliferative-activated receptor-g, insulin 

receptor, glucose transporter 4, insulin receptor substrate (IRS)-1, IRS-2, leptin, adiponectin, 

interleukin-6, monocyte chemoattractant protein-1, glucocorticoid receptor (GR)a, 11b-

hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 were quantified. The effects of 

increasing aldosterone concentrations on 2-deoxy-[3H]d-glucose uptake and expression of 

insulin signaling intermediates were tested in human subcutaneous abdominal adipocytes. 

Results: Expression of MR was demonstrated in VAT, with no difference between APA and 

NFA as to mRNA levels of MR, GRa, HSD11B1, as well as glucose metabolism and 

inflammation factors. In cultured adipocytes, basal and insulin-stimulated glucose uptake 

were unaffected by 1-100 nM (normal/hyperaldosteronism) and impaired only by much 

higher, up to 10 mM, aldosterone concentrations. The impairment was prevented by RU486 

but not by eplerenone in insulin-stimulated glucose uptake. 

Conclusions: No alteration of gene expression of insulin signaling or inflammatory 

molecules was present in VAT of APA patients. Only at pharmacological concentrations and 

through GR activation did aldosterone reduce glucose uptake in adipocytes. Systemic insulin 

resistance in primary aldosteronism might occur in compartments other than fat and/or depend 

on concurrent environmental factors. 
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STUDY IN PARIS. 
Phenotypic and metabolic characterization of a new double transgenic 
mouse model, conditionally overexpressing the human mineralocorticoid 
receptor in adipocytes 

Objective: to explore the specific effects of mineralocorticoid over activation in the adipose 

tissue, through the phenotypic and metabolic characterization of a new double transgenic 

mouse model doxycycline-inducible, conditionally overexpressing the human 

mineralocorticoid (hMR) receptor in adipose tissues. 

Methods: Subcutaneous inguinal adipose tissue (SAT), brown adipose tissue (BAT), visceral 

epididymal adipose tissue (EVAT) and visceral retroperitoneal adipose tissue (PVAT), were 

obtained from double transgenic mice (DT; n=8) and their wild type control littermates (wt; 

n=9) after hMR transgene induction with doxycycline. Adipocytes primary cultures were set 

up from EVAT and SAT of DT and wt mice. Transcript levels of hMR, endogenous mouse 

MR (mMR), neutrophil gelatinase-associated lipocalin (NGAL), Plasminogen activator 

inhibitor-1 (Pai1), MCP1, tumor necrosis factor α (TNFα) and PPARγ, were quantified by 

qRT-PCR. Analysis of mouse transcriptome in PVAT was performed by microarray. 

Results: HMR was found specifically expressed in all adipose tissues, but it was significantly 

overexpressed, as compared to mMR, only in PVAT, SAT and BAT. A preliminary qRT-PCR 

analysis revealed an hMR-overexpression-associated increase of NGAL mRNA. 

Transcriptome analysis reported that MR overexpression in PVAT allowed 101 genes to be 

up-regulated and 246 to be down-regulated in DT mice. The geneontology analysis showed 

that an extra dose of MR in lean mice promotes adipogenesis and hinders inflammation by up 

regulating genes involved in fatty acid and PPAR pathways and down regulating those 

involved in immune system activation. Cultured DT adipocytes showed an efficient tet-On 

adipo-MR system and preliminary data confirm a significantly higher expression of NGAL in 

DT adipocytes. 

Conclusions: Preliminary results are open to further investigations on DT-MR model. The 

next steps will be: 1) to evaluate the changes in the metabolic phenotype of DT mice overfed 

with a high fat diet, e.g. glycaemia, insulinaemia, serum free fatty acids and blood pressure; 2) 

to continue with in vitro experiments in DT adipocytes, in describing regulation of adipokines 

expression upon stimulation with mineralocorticoid/glucocorticoids agonists and antagonists. 
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SUMMARY, ITALIAN VERSION  
 

STUDIO A PADOVA 
Valutazione della sensibilità insulinica nel tessuto adiposo dei pazienti 
affetti da iperaldosteronismo primitivo 

Obbiettivo: valutare un possibile ruolo del tessuto adiposo viscerale nella patogenesi 

dell'insulinoresistenza nell'iperaldosteronismo primitivo.  

Metodi: Il tessuto adiposo viscerale è stato ottenuto da pazienti con adenoma-producente 

aldosterone  (APA, n = 14) e da pazienti con adenoma non funzionante (NFA, n = 14) 

sottoposti a surrenectomia laparoscopica. L'indice HOMA era più alto e la concentrazione di 

potassio era più bassa negli APA rispetto ai pazienti NFA (p <0,05). L'analisi 

immunoistochimica, il western blotting e la real-time PCR sono stati utilizzati per rilevare e 

quantificare l'espressione di MR. Tramite qPCR sono stati quantificati anche i livelli 

trascrizionali di PPAR-γ, IR, GLUT4,  IRS-1, IRS-2, leptina, adiponectina, IL6, MCP-1, 

GRα, HSD11B1 e 2. Su colture di adipociti umani sottocutanei, sono stati testati gli effetti di 

dosi crescenti di aldosterone sulla captazione del 2-deossi-[3H]-D-glucosio e sull'espressione 

dei trasduttori intermedi del segnale insulinico. 

Risultati: L'espressione di MR è stata dimostrata nel VAT. Nessuna differenza è stata rilevata 

tra i pazienti APA e NFA, nei livelli di MR, GRα, HSD11B1, dei geni del metabolismo del 

glucosio e dei geni codificanti per i fattori di infiammazione. Negli adipociti in coltura, la 

captazione del glucosio, basale o insulino-stimolata, è risultata inalterata dalla stimolazione 

con aldosterone alle concentrazione più basse, 1-100 nM (normale/iperaldosteronismo), 

mentre è risultata ridotta alla concentrazione più alta di 10 µM. Negli esperimenti, questa 

riduzione è risultata prevenuta da pretrattamento con RU486, ma non con eplerenone. 

Conclusioni: Nel VAT dei pazienti APA non è stata trovata alcuna alterazione 

dell'espressione delle molecole regolatrici del segnale insulinico o dell'infiammazione. 

L'aldosterone riduce l'assorbimento del glucosio negli adipociti solo a concentrazioni 

farmacologiche e probabilmente attraverso l'attivazione di GR. L'insulino-resistenza sistemica 

osservata nell'iperaldosteronismo primitivo potrebbe verificarsi a causa del coinvolgimento di 

altri organi (oltre che al grasso) e/o dipendere da altri fattori ambientali concomitanti. 
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STUDIO A PARIGI 
Conseguenze funzionali e molecolari dell’attivazione del recettore umano 
dei mineralcorticoidi: sovra-espressione nel tessuto adiposo di topo 

Obiettivo: esplorare gli effetti specifici di una super attivazione del sistema mineralcorticoide  

nel tessuto adiposo attraverso la caratterizzazione fenotipica e metabolica di un nuovo 

modello condizionale di topo transgenico (inducibile con doxiciclina), sovraesprimente hMR 

negli adipociti. 

Metodi: i tessuti SAT, BAT, EVAT e PVAT, sono stati ottenuti da topi doppio-transgenici 

(DT; n = 8) e da topi di controllo (wt; n = 9) dopo l'induzione di hMR con doxiciclina. 

Culture primarie di adipociti sono state allestite dai tessuti EVAT e SAT di topi DT e wt. 

Tramite qPCR sono stati quantificati i livelli di trascrizione di hMR, mMR, NGAL, Pai1, 

MCP1, TNFα e PPARγ in tutti i tessuti adiposi. Nel PVAT del topo DT è stata eseguita 

l'analisi del trascrittoma tramite microarray. 

Risultati: hMR è risultato specificamente espresso in tutti i tessuti adiposi, ma  

significativamente sovraespresso, rispetto a MR endogeno, solo nel PVAT, nel SAT e nel 

BAT. Un primo studio tramite qPCR ha rivelato come a un aumento di espressione di hMR 

sia sempre associato un aumento di espressione di NGAL nei tessuti adiposi. L'analisi del 

trascrittoma ha evidenziato inoltre come l'iperespressione di MR nel PVAT del topo DT 

comporti contemporaneamente l'aumento e la riduzione di espressione di rispettivamente 101 

geni e 246 geni. L'analisi genontologica di questa lista ha rivelato come una dose 

supplementare di MR nei topi DT promuova l'adipogenesi e ostacoli l'infiammazione, in 

particolare, aumentando l'espressione di geni coinvolti nella regolazione degli acidi grassi e 

della via del PPARγ e diminuendo l'espressione dei geni coinvolti nell'attivazione del sistema 

immunitario. Gli adipociti DT in coltura primaria hanno confermato l'efficienza del nostro 

sistema doppio transgenico anche in vitro e l'analisi preliminare in qPCR conferma anche 

negli adipociti DT l'aumento di espressione di NGAL. 

Conclusioni: I risultati preliminari incoraggiano ulteriori indagini sul modello DT. I prossimi 

passi saranno: 1) valutare le variazioni del fenotipo metabolico dei topi DT sovralimentati con 

una dieta ricca di grassi, 2) continuare gli esperimenti in vitro negli adipociti DT, valutando le 

conseguenze della stimolazione con agonisti/antagonisti di MR e GR sull'espressione genica.





 

8 
 



 

9 
 

ABBREVIATION LIST 
 

 

 

17OHP 17 hydroxy progeterone 
ACE angiotensin converting enzyme 
ACTH adrenocorticotropic hormone 
Aldo/aldo aldosterone 
aP2 adipocyte protein 2 / fatty acid bindin protein 4 
APA aldosterone producing adenoma 
BAT browun adipose tissue 
BMI body mass index 
CT computer tomography 
ctrl control 
db diabetic 
DT/dt double transgenic 
EH essential hypertensive 
Enac ephitlial sodium channel 
EVAT epididymal adipose tissue 
GLUT4 glucose transporter 4 
GR glucorticoid receptor 
hMR human mineralocorticoid receptor 
HOMA homeostasis model sssessment index 
HSD11B1-2 11 beta hydroxysteroid dehydrogenas type 1 and 2 
IgG immunoglobulin g 
IL-6 interleukin-6 
IR insulin receptor 
IRS insulin receptor substrate 
Kg/mg kilograms/milligrams 
L litre 
m2 square metre 
MCP1 monocyte chemoattractant protein-1 
mmol/nmol/pmol milli moles / nano moles / pico moles 
mMR enogenous mouse mr 
MNR mgnetic resonace 
MR/MCR mineralocorticoid receptor 
mRNA messenger rna 
n number 
NA not available 
NFA non-functioning adrrenal adenoma 
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NGAL/Lcn2 neutrophil gelatinase-associated lipocalin or lipocalin 2 
NT normotensive 
ob obese 
OGTT oral glucose tolerance test 
PA primary aldosteronism 
PAI1/Pai1 plasminogen activator inhibitor-1  
PCR polymerase chain reaction 
PET positron emission tomography-computed tomography 
PPARγ peroxisome proliferative-activated receptor gamma 
PRA plasma renin activity 
PVAT retroperitoneal adipose tissue 
qRT-PCR/qPCR quantative real time pcr 
RAAS renon angiotensin aldosterone system 
SAT subcutaneous adipose tissue 
TNFα tumor necrosis factor α ,  
UCP1 uncoupled protein 1 
VAT visceral adipose tissue 
WAT white adipose tissue 
wt wild type control mouse 
µM/nM/mM micro/nano/milli molar 
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INTRODUCTION 
 

 

 

Aldosterone and mineralocorticoid receptor overview 

Aldosterone (Aldo/aldo) is a steroid hormone produced by the cortex of the adrenal gland 

(Figure 1), and is mainly known for being one of the most important regulators of blood 

pressure and salt/water balance in humans. The alteration in its primary production (i.e., the 

presences of adrenal aldosterone-producing adenoma) and the altered regulation of its 

secretion (i.e.,  dysfunction in the renin-angiotensin system) are recognized to account for at 

least 20% of diagnosed cases of secondary hypertension. 

 

Figure 1. Schematic representation of adrenal glands in human. 
The adrenal glands are endocrine glands which sit atop the kidneys. In humans, the right gland is triangular 
shaped, while the left one is semilunar shaped. Each adrenal gland has two distinct structures: the outer adrenal 
cortex and the inner medulla. Adrenal cortex comprises three different anatomical zones, that can be recognized 
at microscopic level by characteristic histological structures. Each zone express also specific enzymes devoted to 
production of distinct hormones, i.e., aldosterone, in zona glomerulosa, cortisol, in zona fasciculata, and 
androgens in zona reticularis. The medulla chiefly produces epinephrine and norepinephrine. 
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 Aldosterone is the final effector of a more complex hormonal network in charge of 

regulating blood pressure and fluid balance, i.e., the renin-angiotensin-Aldosterone system 

(RAAS) (Figure 2).  

When blood volume is low, 

juxtaglomerular cells in the kidneys 

secrete renin directly within the blood 

circle. Plasma renin then carries out the 

enzymatic conversion of 

angiotensinogen, a protein synthetized 

and released by the liver, to Angiotensin 

I which is subsequently converted to 

angiotensin II by the enzyme 

Angiotensin Converting Enzyme (ACE) 

expressed in the lungs. The Angiotensin 

II, in itself a potent vaso-active peptide 

able of causing blood vessels to 

constrict, is also the necessary stimulus for the secretion of Aldosterone from the adrenal 

cortex. This stimulation eventually leads the convoluted distal tubules and the collecting ducts 

of the nephron in kidneys to increase the reabsorption of sodium and water into the blood. 

The overall effect of these two mechanisms, the increase in fluid volume together with the 

constriction of blood vessels, ends with an increase of blood pressure. 

 Aldosterone synthesis occurs in the cortex of the adrenal gland, a region of the gland 

specialized in the synthesis of many steroid hormones i.e., mineralocorticoids, glucocorticoids 

and sex steroids (Figure 2). The cortex is subdivided in 3 major regions depending on their 

histological aspect, the “zona glomerulosa”, the “zona fasciculata” and the “zona reticularis”. 

Figure 2. The renin angiotensin aldosterone system 
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The cellular subtype of each zone is mainly dedicated to production of a particular type of 

hormone, mineralocorticoids, e.g. Aldosterone, in the zona glomerulosa, glucocorticoids, e.g. 

cortisol, in the zona fasciculata and sex steroid in zona reticularis. All of these hormones are 

synthetized starting from the point at which a molecule of cholesterol gets involved in a series 

of specific enzymatic transformations in each zone (Figure 3). 

 

Figure 3. Schematic representation of enzymatic steps occurring in each zone of the adrenal cortex. 
The cortex of the adrenal gland is responsible for the production of many steroid hormones. Specific enzymes 
(green and red bars) are expressed in each anatomical zone of the cortex and allow the production of 
characteristic hormones. In the scheme are reported the most important enzymatic reactions transforming a 
molecule of cholesterol into aldosterone, cortisol and dehydroepiandrosterone. 
 

 Aldosterone exerts its actions by binding to its own specific receptor, i.e., the 

mineralocorticoid receptor (MR). MR is a cytosolic receptor belonging to the nuclear receptor 

super family characterized by the ability of inducing gene transcription once activated, in that, 

the presence of Aldosterone allows the formation in the cytoplasm of the active Aldo-MR 
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complex which is targeted to the nucleus. Once in the nucleous, Aldo-MR complex 

homodimerizes and recognizes the HRE DNA sequences (hormone-responsive-elements) 

present in the promoter region of the induced genes. This results in the recruitment of 

transcriptional machinery on the activated genes causing their transcription into mRNA 

(Figure 4). 

 

Figure 4. Schematic representation of aldosterone and mineralocorticoid receptor mechanism of action. 
Aldosterone is lipophilic molecule able to freely diffuse across the cellular membrane. Once within the 
cytoplasm, aldosterone can bind to mineralocorticoid receptor and form the activated complex which is 
subsequently targeted to the nucleus. Inside the nucleus, the aldo-MR complex heterodimerizes and recognizes 
specific hormone response elements on DNA, ultimately triggering the recruitment of aldo-specific tissue 
transcription factor (TF) and starting gene transcription of aldo related genes. 

 MR possesses similar receptor affinity for Aldosterone and for the physiological 

glucocorticoid, cortisol (corticosterone in rodents). The binding capacity of MR for these 
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molecules is 10-fold higher than that of the specific glucocorticoid receptor itself (1); and, 

since glucocorticoids circulate at 100- to 1000-fold higher concentrations than those of 

Aldosterone (0.1–1nM), MR selectivity for Aldo is granted by the intracellular enzymatic 

action of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2), which transforms 

glucocorticoids into inactive compounds cortisone (11-dehydrocorticosterone in rodents) (2, 

3) (Figure 5). 

 

Figure 5. Schematic representation of HSD11B2 protection reaction allowing the binding of aldo to MR. 
Cortisol is 100 to 1000 folds more concentrated than aldosterone and, given the high affinity of MR for both of 
the ligands, in aldosterone responding tissue aldo specific MR activation is allowed by the co-expression of the 
enzyme HSD11B2 that catalyzes cortisol oxidation to MR-inactive cortisone compound by reducing a molecule 
of NAD+. 

 Since its first identification in the early 1970’s and the following 30 years, MR 

expression was considered to be restricted to polarized epithelia (4) such as those of renal 

distal convoluted tubules and cortical collecting ducts (5, 6), distal colon (7), salivary (8) and 

sweat glands (9). In these tissues the classical scheme of activation of MR results in 

transcription of sodium transport related genes (the epithelial sodium channel, ENaC, Na+/K+ 
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pump, serum and glucocorticoid induced kinase, SGK1) with the well known effect on body 

sodium reabsorption and, therefore, on water retention and blood pressure (10, 11). 

 More recently, MR expression and Aldosterone response have been proved in other 

tissues not previously taken into account, starting with classical, epithelial type, to non-

classical, non-epithelial/non-expressing HSD11B2 types (12). This effectively extends the 

physiological role and pathological potential of the Aldo-MR system in many different 

pathophysiological and clinical issues, from inflammatory response to skin physiology as well 

as vasculopathies, metabolic syndrome and cardiovascular diseases. 

 Active MR, together with expression of HSD11B2, has been demonstrated to operate 

in the epithelia of the lung and eyes (13-16) and in the smooth muscle cells of the vessels (17) 

where, supposedly, it regulates respectively, the lung’s ionic fluid concentration, the eyes’ 

retina hydration and the vasoconstrictor tone of the blood vessels. 

 Instead, MR without 11BHD2 expression, has been detected in the brain, particularly 

in the hippocampus and hypothalamus (18, 19); in the heart and vessels, specifically 

cardiomyocytes and endothelial cells (20), in macrophages/monocytes (21), in adipocytes (22-

24) and in keratinocytes (25, 26). In all these sites, the mechanism of action and effects of 

aldosterone mediated by MR is still poorly understood. In contrast to what occurs in epithelial 

tissues, where HSD11B2 provides the most potent MR/Aldo-protective system, in other 

tissues MR selectivity for aldosterone may be granted by other arrangements rather than 

enzymatic ones or perhaps glucocorticoids themselves may contribute to MR-specific effects 

in these tissues. Although plasma glucocorticoids are 100 to 1000 fold more concentrated than 

aldosterone, they are bound to plasma albumin and globulin which causes an important 

reduction in percentage of free glucocorticoids (10%) available to the mineralocorticoids 

receptor (27-29). Alternatively, even if aldosterone circulates mainly in a free form (not 

bound to plasma proteins), increasing evidence supports the hypothesis that change in the 
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redox state of the cell could allow and increase MR signaling mediated by glucocorticoids 

(30-32). From a general point of view, it is plausible, that cellular context and intervention of 

still unknown tissue-specific cofactors is probably necessary to ensure either Aldo- or 

glucocorticoids- specific effects via mineralocorticoid receptors. 

 

 

 

Role of aldosterone and mineralocorticoid receptor in pathophysiology 

Aldosterone was first identified in 1954 as “electrocortin” and at that time recognized as an 

unknown molecule able to regulate the Na+/K+ electrolytes concentration in plasma. The 

following year, twenty years before even the discovery of the Aldo specific receptor,  J.W. 

Conn described the first human Aldo-related diseases, i.e.,  the primary aldosteronism (PA) or 

hyperaldosteronism (33). Patients affected by PA are characterized by an autonomous 

overproduction of aldosterone that causes excessive sodium retention, excessive potassium 

excretion, suppressed renin activity, hypokalemia and, finally, hypertension (34). For fifty 

years clinicians and researchers have worked diligently in characterizing the disease, 

beginning with descriptions of the clinical signs to the setting up of diagnostic methods for 

screening PA patients.  

 However, during the last decade, as a result of a better knowledge on MR/Aldo 

system, a new and stronger interest has been raised within the scientific community regarding 

PA. In fact this disease in humans is a natural model for studying the physio/pathological role 

of aldosterone and MR in the condition, as that of aldosterone excess, allowing the system to 

be stressed. Indeed, many studies have found that excess of Aldo, and likely activation of 

MR, is associated with many pathological conditions in humans, (e.g. cardiovascular diseases, 
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insulin resistance, vasculopaties) independently of its well known effect on blood pressure 

(35). PA patients are found with impaired glucose homeostasis, insulin resistance and lower 

level of plasma adiponectin compared to patients with essential hypertension, Table 1. 

Aldosterone excess alone has been shown to increase arterial wall stiffness by causing fibrosis 

(36-38). Ultimately PA patients have higher rates of cardiovascular events (39) and renal 

damage (40) compared to patients with essential hypertension. 

 On the other hand, patients with diabetes and metabolic syndrome show enhanced 

clinical signs correlated to higher, but non-excessive, levels of plasma aldosterone, as is the 

case where high plasma Aldo has been associated to more severe insulin resistance (41-43).	   	  
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Table 1: Studies on insulin resistance in primary aldosteronism (PA) 

Reference [n°] Patients (No.) Insulin Resistance 
PA vs. NT Controls 

Insulin Resistance 
PA vs. EH Controls Method 

Shamiss et al. 1992 (44) 5 Yes No Clamp 

Shimamoto et al. 1994 (45) 7 Yes NA Clamp 

Ishimori et al. 1994 (46) 15 No NA OGTT 

Šindelka et al. 200 (47) 9 Yes NA Clamp 

Widimský et al. 2000 (48) 12 Yes NA Clamp 

Widimský et al. 2001 (49) 36 NA No OGTT 

Haluzik et al. 2002 (50) 11 Yes NA Clamp 

Strauch et al.2003 (51) 24 NA No OGTT 

Skrha et al. 2004 (52) 16 Yes NA Clamp 

Catena et al. 2006 (53) 47 (20) Yes No OGTT/HOMA 
(clamp) 

Giacchetti et al. 2007 (54) 61 Yes NA OGTT/HOMA 
βHOMA 

Mosso et al. 2007 (55) 30 NA No/Yes HOMA/βHOMA 

Fallo et al. 2007 (56) 40 Yes Yes HOMA 

 
PA, primary aldosteronism; 
NT, normotensive; 
EH, essential hypertensive; 
OGTT, oral glucose tolerance test; 
HOMA, Homeostasis model sssessment index [fasting glucose (mmol/L) x fasting insulin (mU/mL)/22.5]; 
NA, not available. 
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 Alternatively important clinical trials, RALES (1998) and EPHESUS (2003), have 

assessed taht a reduced Aldo activity by indirectly treating patients with MR antagonist added 

to conventional treatment, markedly reduced the overall and cardiovascular mortality in 

patients with heart failure or in acute myocardial infarct complicated by left ventricular 

dysfunction (57 , 58, 59). MR antagonism has been also shown to be beneficial in diabetic 

nephropathy, as well as in progression of chronic renal diseases (60, 61). Finally, use of MR 

antagonists improves glucose tolerance, decreases insulin resistance, triglycerides and pro-

inflammatory cytokines, in experimental models of obesity and diabetes (mice ob/ob, db/db, 

high fat diet fed) (62 , 63 , 64). The beneficial effects of MR antagonists are mainly explained 

by a decrease of cardiac fibrosis, improvement of peripheral vascular function and reduction 

of an  aldosterone induced inflammation process (65, 66). 

 

 

 

Adipose tissue: effect of aldosterone and MR activation 

In the last twenty years the idea around adipose tissue has deeply evolved and the simplistic 

picture of adipose tissue as merely a fat depot is no longer the case. To date, body fat is 

almost considered as new endocrine organ well characterized by its own innervations, 

vascularization and distinct cellular sub types, i.e.,  white and brown adipocytes, 

preadipocytes, fibroblasts, endothelial cells, macrophages and stem cells. The function of the 

adipose organ is to regulate the energy homeostasis of the body and this is mainly 

accomplished in two ways;  first, by physical storage/release of energy in/from adipocytes in 

form of triglycerides and fatty acids (67) and, secondly, by endocrine signaling through the 

secretion of adipocyte hormones.  Adipocyte hormones include the adipokines, such as leptin, 
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adiponectin, IL-6, MCP1 and TNFα, that refer to the overall status of fat mass and influence 

the central need of energy supply, the general level of inflammation and oxidative stress, the 

vascular function and finally, glucose and lipid metabolism (68). The storage of fat in the 

adipose tissues occurs primarily through its ability to respond to insulin, which is the principal 

signal into adipocytes regulating both glucose uptake and lipogenesis. Typically, a healthy 

tissue is able to respond to insulin and therefore is able to uptake glucose and expand its 

volume by stocking lipids. On the contrary, an ill tissue is characterized by an impairment in 

insulin signaling, e.g. a dietary fuel overload, and that causes adipose organ to fail in its 

primary function, which leads initially to glucose toxicity, dyslipidemia and insulin resistance, 

and ultimately to obesity and type 2 diabetes (68). 

 Adipose organ should be considered as an extensive organ, like skin, with function 

and morphology of the fat depots that can vary extensively depending on spatial distribution 

and neighbored organs. However, according to the aspect of adipocyte fraction, it can be said 

that there are at least two different types of adipose tissues in mammals: the white adipose 

tissue (WAT) and brown adipose tissue (BAT). WAT is the most represented adipose tissue 

in human adults and - can be further divided into two main subtypes, the subcutaneous 

adipose tissue (SAT) in continuity with the dermal tissue forming a continuous layer under 

the skin and the visceral adipose tissue (VAT) that is located around the internal organs within 

the abdominal cavity and the thorax. 

 White adipocytes are morphologically characterized by the presence of single big lipid 

vacuole which almost fully occupies the cytosol and compress the nucleus and the other 

cellular organelles to the membrane. White adipose tissue is the part of adipose organ mainly 

dedicated to the  store/release of energy in body and it is one of the major targets, together 

with liver and muscle, of insulin signaling, accounting for, in particular in visceral fat, the 

whole-body insulin sensitivity (69, 70) (Figure 6, A and B). 
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Figure 6. Representation of adipose organ distribution and histological aspects. 
(A) Total white adipose tissue distribution (photo courtesy of Dr. David Heber). Subcutaneous and visceral 
adipose tissues are located respectively in continuity with derma and within the abdominal cavity. Histological 
cross-section of a white adipose pad (B): white cells are characteristically by the presence of a single large lipid 
droplet surrounded by a thin layer of cytoplasm. (C) PET-CT scan revealing brown adipose tissue deposit (black) 
in human thorax. (D) Histological cross-section of a brown adipose pad: compared to white adipocytes, brown 
cells are smaller and contain hundred of small lipid droplets. 

 At variance, BAT is especially abundant in new-born mammals (5% of the body 

mass), mainly located in the upper half of the spine and toward the shoulders (71) while its 

extension is increasingly reduced in adults (Figure 6, C and D). Brown adipocytes are 

characterized by the presence of hundreds of small lipid droplets and mitochondria rather than 

a unique fat lobule. The high numbers of mitochondria not only confer the characteristic 

brown coloration to the tissue, but also imply its function, i.e.,  thermogenesis (72, 73). 

Therefore it becomes clear the importance of BAT immediately after birth when a great 

amount of this tissue is necessary for avoiding the risk of lethal cold. However, despite its 

decrease during growth, recent studies have highlighted how BAT still conserves an 

important metabolic activity in human adults (74-77), where, above its small depots in upper 
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chest and neck, it also coexists at the level of the other white tissues in which its relative 

amount and functiondepend upon several factors, such as environmental temperature, 

nutritional status, age and gender (78, 79). 

 The first evidence describing an important role of MR in adipose organ was 

demonstrated in BAT by Zennaro, et al. in 1998 (80). The authors had developed a transgenic 

mouse model expressing a viral protein (SV40 large T antigen) under the control of the two 

promoters (P1 and P2) of human MR (hMR). In this model the intent was to use the viral 

protein (able to cause a tumor when expressed in a tissue) as a reporter of activation of hMR-

P1 promoter. In that model, the malignant hybernoma (brown fat tumor) developed by 

animals, clearly reveals the transcriptionally activation of MR in BAT. Later, other studies 

proved how in vitro aldosterone treatment in brown adipocytes induced a significant increase 

in triglyceride accumulation, together with increased expression of adipogenic genes, LPL, 

PPARγ and aP2 (81) and inhibited expression and function of UCP-1 (65, 82), a 

mitochondrial protein that plays critical role in the regulation of thermogenesis. Interestingly, 

MR signaling in BAT seems to act by enhancing lipid storage rather than heat production, 

perhaps promoting in brown adipocytes the specific function of white adipocytes. These 

evidences together with the observations in the early 1990’s of the adipogenic effect of 

aldosterone in 3T3-L1 mouse preadipocytes (24, 83) have pointed out the potential 

involvement of Aldo/MR system in adipose organ physiology and move researchers’ attention 

towards WAT. 

 MR has been found expressed during adipose differentiation of white 3T3-L1 mouse 

adipocytes (84) where it is responsible for inducing adipocyte differentiation key markers 

(leptin, adiponectin, PPARγ) via specific aldosterone stimulation (22). However, due to very 

low HSD11B2 expression in adipocytes and considering both the high concentration of 

glucocorticoids in plasma in vivo and the importance of glucocorticoid stimulus in cell 
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adipogenic media, the role of MR in adipogenesis activation may be dependent on 

glucocorticoid rather than aldosterone. Consistent with this hypothesis, experiments of 

transient knock-down of MR or GR, have proven that a significant reduction of MR 

expression, rather than of GR expression, can inhibit glucorticoid-induced 3T3-L1 adipose 

conversion (22). 

 All these data show a first central role of MR in adipose tissue physiology, i.e., the 

adipocytes differentiation and lipid accumulation/release, but they further imply a greater 

pathological potential in case of aldo-MR system dysregulation. As has been previously 

described, adipose tissues also have an endocrine function and therefore impairing its 

physiology means changing its endocrine signaling which results in affecting the whole-body 

energy homeostasis.  

 Recently Guo et al. (62), have shown how aldosterone stimulation of 3T3-L1 fully 

differentiated adipocytes, is sufficient to modulate the expression of the major adipokines, 

such as the down regulation of adiponectin, and up regulation of MCP1, IL-6 and TNFα, 

therefore suggesting an aldosterone pro inflammatory effect in adipose tissue. 

In obesity and diabetes, the failing of adipose tissue lies in energy storage, i.e., due to an 

overload of energetic substrates or inability to respond to insulin, it is always connected with 

chronic low-grade inflammation of the tissue that is set up by in situ recruitment and 

activation of macrophages (85, 86).  

 This process is accompanied by a change of adipose tissue morphology and expression 

pattern. In particular, if a healthy tissue is able to expand whether increasing adipocytes 

volume or number, in that characterized by a normal insulin sensitivity and regular expression 

of PPARγ and adipokines, a dysregulated adipose tissue is instead more hypertrophic than 

hyperplastic, and is characterized by a measurable increase in adipocytes size with down 
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regulation of adiponectin and PPARγ, as well as up regulation of inflammatory adipokines, 

such as MCP1, IL-6, TNFα and PAI-1 (87-90) (Figure 7). 

 

Figure 7. Schematic representation of mechanisms involving insulin and PPARγ  in developmental of 
adipose tissue. 
In physiological condition (A), the presences of a mild surplus of metabolic fuels stimulates adipose tissue 
expansion that is accomplished by coordinated action between insulin, that stimulates energy intake and lipid 
synthesis (hypertrophic process) and PPARγ, which induces adipocytes differentiation and recruitment of new 
adipocytes from preadipocytes pool (hyperplastic process). In pathological condition (B), i.e., obesity, the 
overload of energy leads to overload of adipocytes too, causing them to down regulate adiponectin and PPARγ 
and to up regulate the proinflammatory adipokines, such as TNFα, MCP1 and IL-6. Theses event start the 
process of recruitment and activation of macrophages in adipose tissue, which ultimately ends with a low-grade 
chronic inflammation and the inhibition of insulin response. 

 This expression pattern is very similar to that shown by Guo et al., in aldosterone 

stimulated 3T3-L1 adipocytes. Moreover, further support to the involvement of MR activation 

in adipose tissue inflammation comes from the studies on the effects of MR antagonism in the 

more common animal models for obesity and diabetes. Once again, Guo et al. observed that 

treatment with eplerenone (a specific MR antagonist) for 17 weeks in genetically obese db/db 

PPARγ Insulin 

Normocaloric intake 

MCP1 TNFα IL-6 Adiponectin aP2 LPL 

Preadipocytes Adipocytes 

PPARγ Insulin 

Hypercaloric intake 

Adipocytes 

Leptin 

A B



 

28 
 

mice, was able to restore the same expression profile of the adipose tissue of lean mice 

(Figure 8) (62). 

 

Figure 8. Expression profile in retroperitoneal adipose tissue of obese (db/db) mice, adapted from Guo et 
al. 2008 (62). 
Adiponectin (A), PPARγ (B), leptin (C), TNFα (D), MCP-1 (E), PAI-1 (F), and CD68 (G) mRNA levels of 25 
weeks old, lean (db/-) mice, obese (db/db) mice, and obese (db/db) mice treated with the MR antagonist 
eplerenone (100 mg/kg per day from age 8 to 25 weeks). mRNA levels are expressed relative to 18S rRNA. n=8 
per group. Data are mean ±SE. 
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 Similar data was also shown also by Hirata et al. (64), in that acute effects (3 weeks) 

of eplerenone administration in db/db and ob/ob mice showed an improvement of insulin 

sensitivity through the reduction of ROS and the suppression of infiltration of adipose tissue 

macrophages.  

All these data are ultimately depicting an important role of aldosterone and MR in both, 

adipose tissue physiology, i.e., the adipocytes differentiation and lipid storage activity, and 

pathology, i.e., adipose tissue inflammation and insulin resistance. 

However, signaling activation, i.e., relative contribution of glucocorticoid vs. aldosterone, as 

well as signaling pathway, e.g.,  the direct target genes transcribed via activated MR, or 

events shifting MR role from pro-adipogenic in healthy tissue to pro-inflammatory in 

pathological environment, still remain to be elucidated. 
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AIMS OF THE THESIS 
 

 

 

The work during the three years of my PhD essentially has focused on the evaluation and 

examination of functions of the aldo/MR system in adipose tissue from two distinct points of 

view: my studies included assessing the effects of aldosterone excess in the adipose tissue as 

well as estimating the phonotypical consequences of MR overexpression in adipocytes.  

For the first two years, I worked in Italy at the laboratory of Prof. RobertoVettor and Prof. 

Francesco Fallo in Padova, where I started a collaboration with a team of clinicians in order to 

assess the effect of aldosterone on insulin sensitivity patients with primary aldosteronism. My 

specific role was: 1) to study molecular characteristics of adipose tissue collected from 

patients with primary aldosteronism; 2) to set up experiments on the effect of aldosterone on 

primary cultures of human adipocytes. 

 In the last year, I have been working in the French laboratory directed by Dr. Frederic 

Jaisser in Paris, where I started the phenotypic characterization of a new transgenic mouse 

model conditionally overexpressing MR in adipocytes. 
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STUDY IN PADOVA: 

ANALYSIS OF INSULIN SENSITIVITY IN ADIPOSE TISSUE OF 
PATIENTS WITH PRIMARY ALDOSTERONISM 

 

 

 

INTRODUCTION 

Aldosterone is a major regulator of blood pressure and salt/water balance, activating the 

mineralocorticoid receptor in sodium-transporting epithelia of distal renal tubules, distal 

colon, sweat and salivary glands (10). Primary aldosteronism is characterized by autonomous 

production of aldosterone causing excessive sodium retention, excessive potassium excretion, 

suppressed renin activity, hypokalemia and hypertension (34). Recent observations indicate 

aldosterone as a direct cardiovascular risk factor, acting on the mineralocorticoid receptor 

(MR) in non-epithelial cardiovascular tissues, including vascular smooth muscle cells, 

cardiomyocytes, and fibroblasts (91, 92). Aldosterone excess may lead in fact to 

cardiovascular damage independently from its effect on blood pressure (91, 93, 94). Studies in 

humans have shown an association between increased plasma aldosterone levels and insulin 

resistance independent of other components of the metabolic syndrome (42, 43). We and 

others (table 1) showed that aldosterone excess in patients with primary aldosteronism is 

related to impaired glucose homeostasis and to insulin resistance, suggesting that the reported 

high rates of cardiovascular events in primary aldosteronism might be due to increased 

prevalence of the metabolic syndrome in the former condition (53, 56, 95, 96). Evidence 

suggests that aldosterone exerts these metabolic detrimental effects through a pro-
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inflammatory action (65, 66). Adipose tissue, in particular visceral fat, is one of the major 

insulin-target tissues accounting for whole-body insulin sensitivity (97, 98). This occurs also 

with the participation of several fat-derived hormones, i.e., adipokines, regulating 

inflammation, oxidative stress, energy balance, vascular function and, in turn, glucose 

metabolism (68). Therefore, adipose tissue may have a key role in the pathogenesis of the 

impaired glucose utilization seen in primary aldosteronism.  

The aims of this study were twofold: 1) to examine the expression of MR and of the genes 

involved in adipogenesis, glucose transport, insulin signaling and inflammation, into the ex-

vivo visceral (omental) fat biopsies of a series of patients with primary aldosteronism due to 

an aldosterone-producing adenoma (APA); 2) to assess in vitro the effect of aldosterone on 

glucose uptake and insulin signaling cascade on fully differentiated human adipocytes 

obtained from starting with human subcutaneous abdominal adipose tissue. 

  



 

35 
 

MATERIALS AND METHODS 

Patients 

Fourteen patients with an aldosterone-producing adenoma (APA) and fourteen patients with 

incidentally discovered non-functioning adrenal adenoma (NFA) were studied. The two 

patient subgroups were selected from a much larger patient population consecutively referred 

to our Institutions over the last 5 years, and were purposely matched for sex-, age and body 

mass index (BMI). Patients with clinical and/or laboratory evidence of associated clinical 

conditions such as cerebrovascular, coronary or peripheral artery disease, cardiac 

insufficiency, renal and/or hepatic disease, and patients with history of cardiovascular and 

cerebrovascular events, were excluded. Renal disease was defined as the presence of serum 

creatinine greater than 133 µmol/L in men and greater than 120 µmol/L in women and/or 

albuminuria greater than 300 mg/d. Patients with type 2 diabetes, i.e., those with fasting 

glucose levels above 7.0 mmol/L on two separate occasions (Expert Committee),(99) or with 

obesity (i.e., BMI > 30 kg/m2) were also excluded. During evaluation and at time of surgery, 

all subjects were consuming a diet containing daily amount of 120–150 mmol of sodium and 

60 mmol of potassium and followed a normocaloric diet. All medications were withdrawn for 

3 weeks (at least 6 weeks for spironolactone). In hypertensive patients in whom treatment 

could not be withdrawn for ethical reasons, a calcium-channel blocker and/or an alpha-

receptor blocker were allowed at the minimal doses required to achieve blood pressure 

control. These agents are known to have a neutral effect on renin and aldosterone levels (100) 

and not to impair glucose and lipid parameters (101). In patients taking lipid-lowering drugs, 

treatment was withdrawn at least 3 weeks before biochemical evaluation. All blood pressure 

measurements were performed according to the European Society of Hypertension-European 
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Society of Cardiology guidelines (99).  The surgical procedure was unilateral laparoscopic 

adrenalectomy for all patients. 

 Differential diagnosis criteria for the different forms of primary aldosteronism and for 

essential hypertension were previously described (96). Briefly, a cut off upright plasma 

aldosterone (ng/dL)/PRA (ng/mL/h) ratio greater than 40 in the presence of aldosterone 

greater than 15 ng/dl and suppressed PRA was used as screening test for primary 

aldosteronism. In the case of an aldosterone/PRA ratio greater than 40, patients underwent 

saline infusion (0.9% NaCl 500 ml/h for 4 h) as a confirmatory test, and only those with 

plasma aldosterone levels that failed to fall below 5 ng/dl after the saline infusion were 

diagnosed as having primary aldosteronism. In all patients a computed tomography scan with 

fine cuts of the adrenal and an adrenal venous sampling were performed to differentiate 

between aldosterone-producing adenoma (APA) and bilateral hyperplasia, i.e., idiopathic 

hyperaldosteronism (IHA). Other secondary causes of hypertension were excluded. 

Hypokalemia (serum K <3.5 M) was present in 10 out of 14 patients. The diagnosis of 

adrenocortical adenoma was histologically confirmed after surgical resection, and the adrenal 

cells from APA were classified microscopically into the four types described by Neville and 

(102). Adrenal tumors at histology ranged from 1.5 to 3.0 cm. 

 Adrenal NFA were incidentally discovered in patients by non-invasive abdominal 

imaging techniques (CT scan and/or MNR) performed for reasons other than suspected 

adrenal disease. Inclusion criteria were: 1) absence of specific signs and/or symptoms of 

hormone excess; 2) normal tests of hypothalamic-pituitary-adrenal axis; 3) morphological 

aspect of adrenal mass suggesting the presence of a cortical adenoma (round shape with 

smooth edges, homogeneous with relatively low density; Ref.(103)). All subjects received an 

extensive endocrine evaluation to exclude a functioning adrenal tumor. Baseline data included 

determination of urinary free cortisol, plasma ACTH, serum dehydroepiandrosterone sulfate, 
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serum 17-OH progesterone (17OHP), serum testosterone, upright plasma aldosterone/PRA, 

urinary catecholamines excretion, plasma cortisol rhythm. Dynamic tests included overnight 1 

mg dexamethasone test in 9 cases, with suppression of  serum cortisol below 1.8 mmol/L). All 

had normal ACTH levels. The decision to perform surgery was made by the size of adrenal 

adenoma (≥3.0 cm in diameter, 7 cases), increase in size over time (2 cases), or patients' 

preference (5 cases). The adrenal tumor size at histology ranged from 2.5 to 6 cm. Twelve 

resected tumors were diagnosed histologically as adrenocortical adenoma and another two 

tumors were diagnosed as of non-adrenocortical origin, i.e. a myelolipoma. 

 During laparoscopic surgery, visceral adipose tissue (omental) was obtained by biopsy 

for each patient. Biopsies were snap-frozen in liquid nitrogen and then stored at -80°C until 

bio-molecular analysis. Institutional review board and local ethical committee approvals were 

obtained. All participants gave written consent.  

 

 

 

Hormone and biochemical assays 

PRA and aldosterone were determined by radioimmunoassay as previously described (56). 

Normal range for upright PRA was 1.5-5.2 ng/mL/h. Normal range for upright plasma 

aldosterone was 5-35 ng/dL. Twenty-four-hour urinary cortisol was measured by 

radioimmunoassay using a kit from Diagnostic Products Co. (CA, USA), The intra-assay 

coefficient of variation (CV) was 6%, and the inter-assay coefficient of variation was 8.2%. 

The normal range was 55 to 330 nmol/day. Plasma ACTH was measured by 

chemiluminescence (Immulite 2000, Diagnostic Products Co., CA, USA);  intra-assay CV 

6.2% and inter-assay CV 4.8%;  normal range at 08:00 h, 2-11 pmol/L. Serum cortisol was 

measured by chemiluminescence (Immulite 2000, Diagnostic Products Co., CA, USA); intra-
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assay CV 7.4% and inter-assay CV 5.2%; normal range at 08:00 h, 138-690 nmol/L. Insulin 

sensitivity was calculated according to the formula of the homeostasis model assessment 

(HOMA) index method of insulin resistance = fasting plasma insulin (mUI/mL) x fasting 

plasma glucose (mmol/L)/22.5. (104). Plasma insulin concentration was measured by a 

chemiluminescence immunoassay using a commercially available kit (Immulite 1 analyzer, 

DPC, Los Angeles, CA, USA): normal range, 6-24 mUI/mL. All other biochemical variables 

were assayed in plasma or serum using standard methods. For hormone measurements, intra- 

and inter-assay coefficients of variation were less than 10%. 

 

 

 

Isolation of human preadipocytes and adipose differentiation in vitro 

Subcutaneous visceral fat was obtained from 5 subjects (3 females and 2 males, 24-47 years) 

who requested abdominoplasty after weight loss. At time of surgery (i.e., circumferential 

abdominoplasty), patients had normal lipid profile, normal glucose tolerance, as measured by 

homeostasis model assessment index (1.8 ± 0.5), and BMI <30 kg/m2. All patients were on an 

unrestricted dietary regimen, and body weight was stable during the three months preceding 

surgery. No patient had previous bariatric surgery. One set of cell culture experiments was 

performed from each subject. The stromal vascular fraction was isolated from adipose tissue 

by collagenase type II digestion (1 mg/ml, Sigma-Aldrich, St. Louis, MO, USA) in DMEM at 

37°C for 1 h. Cell suspension was centrifuged (350g, 8 min) and pellet containing stromal 

cells was resuspended in erythrocyte-lysing buffer, washed and seeded in DMEM/F12 

supplemented with 10% FBS (0.7×106 cells/well in 24-well plates). After 16 to 20 hours for 

cell attachment, cultures were re-fed with a serum-free adipogenic medium containing serum 

free DMEM/F12, 33 µM biotin, 17 µM pantothenate, 10 µg/mL human transferrin (Sigma-
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Aldrich, St. Louis, MO, USA), 66 nM insulin (Lilly Research, Indiana, IN, USA), 100 nmol/L 

dexamethasone, 1 nM triiodothyronine, 0.25 mM 3-isobutyl-1-methylxanthine (Sigma-

Aldrich, St. Louis, MO, USA) and  with 10 µM rosiglitazone. 3-isobutyl-1-metylxanthine and 

rosiglitazone were removed after 3 days; medium was changed three times per week. All 

experiments were performed in fully differentiated adipocytes (i.e., after 6 days of 

differentiation). - 

 

 

 

RNA extraction and quantitative RT-PCR 

Total RNA was extracted from biopsies of visceral adipose tissue or from adipocytes with 

RNeasy mini kit (Qiagen GmBh, Hilden, Germany). One µg RNA was treated with DNase 

Treatment and Removal Reagents (Ambion, Inc. Austin, TX, USA) and reverse-transcribed 

for 1 h at 37°C in a 50µl reaction volume containing 1X RT buffer, 150 ng random hexamers, 

0.5 mM deoxynucleotide triphosphates, 20 U RNAsin ribonuclease inhibitor and 200 U M-

MLV RT (Promega Corporation, Madison, WI, USA). Quantitative PCR was carried out 

using a DNA Engine (Opticon 2 Continuous Fluorescence Detection System; Biorad 

Laboratories Inc., Hercules, CA, USA).  

 Reactions were performed in duplicate for each sample in a total volume of 12µl: 5µl 

of cDNA (1ng/µl) 1µl of forward/reverse primer mix (3.6µmol/L) and 6µl of SYBR Green 

(Platinum® SYBR® Green qPCR SuperMix-UDG; Invitrogen Corporation, Carlsbad, CA, 

USA). The thermal cycling parameters were: initial denaturation at 95°C for 10 min, followed 

by 40 cycles at 95°C for 15 sec, at annealing temperature (Table. 1) for 15sec and at 60°C for 

1 min. Relative expression of the mRNA for each sample was quantified the software and 
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results were normalized by dividing the amount of the candidate mRNA by the amount of the 

reference rRNA 18S (18S). 

 The genes were analyzed and their specific primers sequences and annealing 

temperature are listed in table 1. For MR, the amplified MR cDNA fragments were also 

separated in 2% agarose (Sigma-Aldrich, St. Louis, MO, USA) in Tris-borate buffer and 

visualized with ethidium bromide staining in order of taking pictures. 
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Immunohistochemistry 

Serial 5-micron-thick paraffin sections of adipose surgical biopsy were processed by 

immunohistochemistry. Sections were incubated with a mouse monoclonal anti-MR clone 

1D5, provided by Dr. Gomez-Sanchez. This primary antibody was diluted 1:50 and  incubated 

overnight in a buffer 50 mM Tris pH 7.4. Sections were then exposed to a secondary 

biotinylated IgG (ScyTek Lab., Logan, UT, USA) and visualized by incubation for 3 minutes  

with a peroxidase substrate solution containing the chromogen DAB. Slides were then 

washed, counterstained with hematoxylin, shed in water and ethanol and mounted in synthetic 

resin. Positive control was a normal kidney, while specificity was validated in parallel 

negative control sections by omitting the primary antibody.  

 

 

 

Immunofluorescence 

For immunofluorescence, fully differentiated adipocytes were fixed with 4% 

paraformaldehyde in for 20 min, washed with PBS and incubated with 0.50% Triton X100 in 

PBS for 10 min at room temperature.  A goat polyclonal primary anti-human MR antibody 

[MCR (C-19):sc-6861, Santa Cruz Biotechnology Inc, Santa Cruz, CA, USA] diluted 1:50 in 

PBS was used. After incubation, binding of primary antibodies was detected with ALEXA-

488 conjugated secondary antibodies, diluted 1:200 in PBS. The cells were then examined for 

localization of fluorescence with a Leica confocal laser scanning microscope (Leica 

Microsystems GmbH, Wetzlar, Germany). 
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Glucose uptake in primary human fat cells 

After differentiation, adipocytes were left with serum free DMEM F12 for 24 hours. 

Adipocytes were then treated with aldosterone 1nM-10µM (Sigma-Aldrich, St. Louis, MO, 

USA), eplerenone 10µM (Tocris Bioscience, Ellisville, MO, USA), hydrocortisone 1µM 

(Sigma-Aldrich, St. Louis, MO, USA), Mifepristone (RU486) 10µM (Tocris Bioscience, 

Ellisville, MO, USA), alone or in combination, for 24 hours. Adipocytes were washed in 0,49 

mM Ca2+ , 0,90mM Mg2+ PBS (PBS-Ca2+-Mg2+) medium and incubated with or without 

insulin 2µM for 30 min at 37°C in a 5% CO2 incubator. The cells were again washed twice 

with PBS-Ca2+-Mg2+. Glucose uptake was initiated by the addition of 2-deoxy-[3H]d-

glucose (1,5µCi/ml, final assay concentration, GE Healthcare, Little Chalfont, 

Buckinghamshire, UK) for 15 min at 37°C. Glucose uptake was terminated by two washes 

with ice-cold PBS-Ca2+-Mg2+ and cells were lysed with 0,5M NaOH. Radioactivity was 

determined by scintillation counting radioactivity (Wallac, PerkinElmer, Boston, MA). 

 

 

 

Protein extraction. 

Samples of stored VAT from each APA and NFA patient were rapidly thawed and lysed in 

RIPA buffer [(20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% 

NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 

1 mM Na3VO4, 1 µg/ml leupeptin)] completed with phosphatase and protease inhibitor 

(PhosSTOP and Complete Mini, Roche Diagnostics GmbH, Mannheim, Germany), and 

extracts were stored at -80°C until western blot analysis. 

 Differentiated adipocytes (2 x106 cells for each plate well) were left with serum free 

DMEM F12 for 24 hours and then were treated with vehicle, with 1 nM aldosterone or with 
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10 µM aldosterone for other 24 hours. After treatment, adipocytes were washed twice with 

PBS-Ca2+-Mg2+ and stimulated with or without 2 µM insulin for 5 min at 37°C in a 5% CO2 

incubator. After insulin stimulation, cells were snap lysed at 4°C with the protein the same 

buffer used for issues and then conserved at -80°C until analysis. 

Western blotting and immunodetection 

 Protein samples (30-80 µg) from patients’ biopsies or from adipocytes were subjected 

to SDS-PAGE. Resolved proteins were dry transferred to PVDF membrane and subsequently 

hybridized with the primary antibody against the protein of interest. For detection of MR the 

mouse monoclonal antibody 1D5 was used, kindly provided from the team lead by Professor 

Celso E. Gomez-Sanchez (Division of Endocrinology, G.V. (Sonny) Montgomery VA 

Medical Center, 1500 East Woodrow Wilson Drive, Jackson, MS 39110) (105). Total Akt and 

phospho-Akt Ser473 were detected by antibody #9272 and antibody #4060 (Cell Signaling 

Technology, Beverly, USA), respectively. For detection of total ERK 1/2 and phospho-ERK 

1/2, anti-p44/42 #13-6200 antibody (Invitrogen Co.) and anti-phospho-p44/42 antibody 

(thr202/tyr204) #9101 (Cell Signaling Technology) were used, respectively. Beta-actin was 

detected by #A5441 antibody (Sigma-Aldrich). For detection of primary antibodies, 

horseradish peroxidase (HRP)-conjugated secondary antibodies (Jackson Laboratory, Bar 

Harbor, USA) were used. For all the antibodies the best conditions of hybridization are listed 

in table 3.  

 Probed blots were incubated with Immobilon® Western HRP substrate (Millipore 

Corporate, Billerica, MA, USA) and exposed to Hyperfilm ECL film (GE Healthcare, Little 

Chalfont, Buckinghamshire, UK). The films were developed with GBX Kodak developmental 

solutions (Sigma-Aldrich). Densitometric analysis of the immunoreactive protein bands were 

performed using Molecular Analyst software (Bio-Rad Laboratories, Inc., Marnes La 

Coquette, France). 
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Table 3: list and working dilution of  western blot antibodies 

 

 

 

 

Statistical analysis 

Results are expressed as mean ± SE. Variables data were tested for normal distribution using 

the Kolmogorov-Smirnov test, and different groups were compared by ANOVA with 

Bonferroni correction. Statistical analysis was carried out using the MDAS 2.0 (Medical Data 

Analysis System) software package (EsKay Software, Pittsburgh, PA). P values < 0.05 were 

considered significant. 

Antibody Type Dilution

Mouse monoclonal antibody 1D5 Primary 1:100 in PBS-T*

Rabbit monoclonal antibody anti Akt #4060 (Cell Signaling 
Technology, Beverly MA) Primary 1:1000 in PBS-T

Rabbit polyclonal antibody anti phospho-Akt Ser473 #9272 (Cell 
Signaling Technology, Beverly MA) Primary 1:1000 in PBS-T

Monoclonal antibody anti-p44/42 MAPK ERK1/2 #13-6200 
(Invitrogen Co.) Primary 1:1000 in PBS-T

Rabbit polyclonal antibody anti-phospho-p44/42 MAPK ERK1/2 
(thr202/tyr204) #9101 (Cell Signaling Technology) Primary 1:1000 in PBS-T

Mouse monoclonal anti-β-actin antibody #A5441 (Sigma-
Aldrich) Primary 1:1000 in PBS-T

Anti-rabbit horseradish peroxidase-conjugated (HRP) linked-
antibodies (Jackson Laboratory, Bar Harbor, ME) Secondary 1:20000 in PBS-T

Anti-mouse HRP-linked-antibodies (Jackson Laboratory, Bar 
Harbor, ME) Secondary 1:20000 in PBS-T

* PBS-T: 1% non-fat milk powder in 0.1% Tween PBS.
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RESULTS 

Patients: clinical characteristic 

Characteristics of the subjects are summarized in Table 4. The two groups were pre-selected 

as being matched for sex-, age and body mass index (BMI). In spite of similar BMI,  insulin 

levels and HOMA index were higher in PA than in controls NFA. Also, blood pressure, 

plasma aldosterone/PRA ratio were higher and serum potassium was lower in PA than in 

controls NFA (P<0.05). 

Table 4: Clinical characteristics of patients with aldosterone producing adenoma (APA) and with adrenal 
non-functioning adenoma (NFA) 

 

  

Age (yr) 60 ± 4 59 ± 3 NS
Sex (F/M) 7 / 7 7 / 7 NS
Body mass index (kg/m2) 25.9 ± 0.7 25.5 ± 0.8 NS
Waist circumference F/M (cm)  85.7 ± 0.9  /    94.7 ± 1.2 87.3 ± 1.3 / 96.6 ± 1.4 NS
Systolic BP (mm Hg) 173 ± 4 129 ± 2 <0.0001
Diastolic BP  (mm Hg) 98 ± 3 83 ± 2 <0.0001
Total cholesterol (mg/dl) 208.9 ± 9.1 234.1 ± 11.2 NS
Triglycerides (mg/dl) 147.5 ± 9.9 132.1 ± 14.6 NS
Fasting glucose (mg/dl) 96.8 ± 3.8 91.8 ± 2.1 NS
Insulin (µU/ml) 19.1 ± 1.6 15.5 ± 0.6 0.03
HOMA index 4.6 ± 0.4 3.4 ± 0.1 0.01
Serum potassium (mEq/liter) 3.1 ± 0.2 4.2 ± 0.1 <0.0001
Aldosterone (ng/dl) 38.9 ± 4.3 22.5 ± 1.6 <0.001
PRA (ng/ml.h) 0.1 ± 0.02 3.2 ± 0.3 <0.0001
Aldosterone/PRA ratio 295 ± 60 7 ± 1 <0.0001
Urinary cortisol (µg/24 h) 66 ± 6 63 ± 5 NS

P value

All data are expressed as means ± SE. F, Females; M, males; BP, blood pressure; HOMA, homeostasis
model assessment; PRA, plasma renin activity

NFA (n = 14)APA (n = 14)
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Patients: MR expression in human adipose tissue and adipocytes 

The presence of MR in human adipose tissues and in vitro cultured subcutaneous fat-derived 

adipocytes was first demonstrated by qRT-PCR analysis and, in order to better show this 

result, the amplified cDNA fragments were visualized in agarose gel with ethidium bromide 

staining (Figure 9, A). 

 

Figure 9. Mineralocorticoid receptor (MR) expression in adipose tissue. (A) Agarose gel electrophoresis of 
amplification products of MR obtained by quantitative real-time PCR from visceral adipose tissue (VAT), 
abdominal subcutaneous adipose tissue (SAT) of one non-functioning adenoma patient and differentiated 
subcutaneous adipocytes of a subject undergoing abdominoplasty; (B) Western blot analysis for MR protein 
obtained from the same samples, i.e., SAT, VAT and adipocytes: the specific MR band is localized at ~107 kDa. 
In both experiments kidney was used as positive control. 

 MR mRNA was found expressed in visceral and subcutaneous adipose tissue, as well 

as in cultured adipocytes (kidney tubular tissue was used as positive control). Western 

blotting confirmed the presence of MR related protein in the two adipose tissues and in 

adipocytes (Figure 9, B). 

  

Lad
de

r 

Neg
at

iv
e c

on
tro

l 
K

id
ne

y 
SA

T 

VA
T 

Adi
po

cy
te

s 

200 

100 

Base pairs 

A

130 

95 

kDa 

K
id

ne
y 

VA
T 

SA
T 

Adi
po

cy
te

s 

B



 

48 
 

 Further support to these data was also come from histological analysis of tissues and 

from immunofluorescence tagging of cells (Figure 10, A and B). 

 

Figure 10. Mineralocorticoid receptor (MR) immune-staining in adipose tissue. 
(A) Immune-histochemical staining (40x) of MR in VAT, a section from normal human kidney is also shown as 
positive control. (B) Immunofluorescence tagging (63x) of MR, in preadipocytes and differentiated adipocytes. 
The green signal of MR is mostly localized around the nuclei highlighted with the red staining obtained with 
propidium iodide. 

  

Kidney, Ab (+)  Kidney, Ab (-)  VAT, Ab (+)  VAT, Ab (-)  

A 

Preadipocytes, Ab (+) Adipocytes, Ab (+) 

B 

Adipocytes, Ab (-) 
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Patients: VAT expression profile and insulin signaling analysis  

The expression profile in VAT of patients with APA and with NFA was analyzed by qRT-

PCR and it reveals how transcript levels of MR, GRα, HSD11B1 and HSD11B2, this one 

barely detectable, were similar in the two groups. mRNA expression levels of PPARγ and of 

some of the major adipokines, like leptin, adiponectin, IL-6 and MCP-1, as well as of some of 

the main insulin signaling related gens, as GLUT4, IR, IRS-1, IRS-2, were also found similar 

in both groups (Figure 11). 

 

Figure 11. VAT expression profile of patients with APA and with NFA Quantification of mRNA expression by 
qRT-PCR of (A) MR, GRα and HSD11B1, (B) leptin, adiponectin, PPARγ, IL-6 and MCP-1, (C) IR, GLUT4, 
IRS-1, IRS-2 in visceral adipose tissue biopsies from patients with adrenal non-functioning adenomas (NFA) 
(white bar) and aldosterone-producing adenomas (APA) (black bar). Each bar represents the means ± SE of 14 
samples for each group.  
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 We next analysed whether aldosterone was able to affect the activation of major 

insulin signaling intermediates, such as Akt and MAPK (106) by measuring their 

phosphorylation status, and no differences were found between the two groups (Figure 12). 

 

Figure 12.  Western blot analysis of insulin signaling in VAT of patients with APA and with NFA 
(A) Representative immune-blots showing total Akt, phosphorylated (p) Akt at Ser473, total MAPK ERK 1/2 
and pMAPK ERK 1/2 at Thr202/Tyr204 in visceral adipose tissues (VAT) of patients with aldosterone-
producing adenoma (APA) and non-functioning adrenal adenoma (NFA). (B) bars represent the means ± SE 
arbitrary units expressing the phosphorylated to total Akt and to total MAPK ERK 1/2 ratios in VAT of APA 
(n=7) and NFA (n=7).   
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In vitro adipocytes Glucose uptake and insulin signaling analysis 

Both basal (i.e., non-insulin stimulated) and insulin-stimulated glucose uptake were assessed 

on fully differentiated human subcutaneous fat cells after 24 hours pre-treatment with 

different stimuli. Basal glucose uptake was similar to control when adipocytes were pre-

treated with aldosterone at physiological/supraphysiological doses, i.e., 1-100 nM, whereas it 

was significantly lower (P<0.05) after pre-treatment with 10 µM aldosterone or with 1 µM 

hydrocortisone; neither the addition 10 µM eplerenone or of 10 µM RU486 influenced the 

effect of 10 µM aldosterone as well as the effect of hydrocortisone pre-treatment (Figure 13, 

A). Similarly, insulin-stimulated glucose uptake in the adipocytes did not differ when cells 

were pre-treated with vehicle or with 1-100 nM aldosterone. Aldosterone at pharmacological 

dose only (10 mM) and 1 µM hydrocortisone were able to decrease insulin-stimulated glucose 

uptake in comparison with vehicle; this effect was prevented by RU486, but not by 

eplerenone. (Figure 13, B). 
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Figure 13. Uptake of 2-deoxy-[3H]d-glucose in fully differentiated human adipocytes. 
Control was defined as glucose uptake by cells in the absence of insulin. Cells were studied in basal conditions 
(A) or were incubated for 30 min. to 2 µM insulin (B), after 24 hours pre-treatment with vehicle, aldosterone, 
eplerenone, aldosterone+eplerenone, aldosterone+RU486, hydrocortisone, or hydrocortisone+ RU486. Each bar 
represents the means ± SE of five separate experiments. *P<0.05 vs. control; ¤P<0.05 vs. vehicle + insulin alone; 
◊P<0.05 10 µM aldosterone + RU486 vs. 10 µM aldosterone alone; #P<0.05 1 µM hydrocortisone + RU486 vs. 
1 µM hydrocortisone alone. 
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 We next analyzed whether aldosterone was able to affect activation of major insulin 

signaling intermediates, such as Akt and MAPK. The aldosterone dose previously shown to 

decrease glucose uptake in adipocytes was also assessed. Pre-treatment with physiological (1 

nM) or pharmacological doses of aldosterone (10 mM) did not affect basal or insulin-induced 

phosphorylation of Akt at Ser473 nor that of MAPK ERK 1/2 (Figure 14). 

 

Figure 14. Western blot analysis of insulin signaling in fully differentiated human adipocytes 
(A) Representative immunoblots showing total Akt, phosphorylated (p) Akt at Ser473, total MMAPK ERK 1/2 
and pMAPK ERK 1/2 at Thr202/Tyr204 in human subcutaneous (sc) adipocytes incubated for 30 min with 2 µM 
insulin, after 24 hours pre-treatment with vehicle, aldosterone 1 nM or 10 µM aldosterone. (B) Bars represent the 
means ± SE arbitrary units (n = 4 experiments) expressing the phosphorylated to total Akt and to total MAPK 
ERK 1/2 ratios in sc adipocytes in the same study conditions. 
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effect of aldosterone on glucose uptake and insulin signaling in cultured subcutaneous human 

adipocytes. 

 Both MR mRNA and protein, as well as GRα and HSD11B1 gene expression, were 

clearly present in a series of human visceral adipose tissues, with no difference between APA 

and NFA patients. Moreover, immunofluorescence revealed that MR was localized mostly in 

the perinuclear region of fully differentiated adipocytes obtained from the stromal vascular 

fraction of adipose tissue of subjects undergoing abdominoplasty. Subcellular localization of 

MR, in the absence of ligand, is consistent with that of other studies localizing fluorescent-

tagged MR in living non-epithelial human cells (107). However little is known about the 

potential involvement of MR in white adipose tissue biology. Following early studies (24, 

84), suggesting an involvement of MR on differentiation of 3T3-L1 cells to mature 

adipocytes, Caprio et al. showed that, whether stimulated by glucocorticoids or by 

aldosterone, MR represents an important pro-adipogenic transcription factor mediating 

adipocytes differentiation(22).  Although we did not specifically address this question in our 

fat cell culture, the similar expression of PPARγ, a master regulator of adipogenesis, in the 

omental tissue of our APA and NFA patients, seems not to support a role of aldosterone as 

pro-adipogenic hormone at least at level of mature tissue composing the patients’ biopsies. 

Moreover, even if previous works by Carranza et al. (108) showed a reduction in number and 

affinity of insulin receptors in SAT of one patient with primary aldosteronism, our more 

extended analysis (13 patients with APA and 13 with NFA) of expression pattern in VAT, 

does not highlight any differences in genes involved in insulin signaling, i.e., GLUT4, IR, 

IRS-1 and IRS-2, or inflammatory process, i.e.,  MCP1 and IL-6, between the two groups. So 

our first assessment of the effect of aldosterone excess in omental adipose tissue of patients 

with APA compared to those with NFA, turned out to show no differences in mRNA 
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expression level for all tested genes, suggesting that aldosterone excess in vivo may not lead 

to altered fat insulin sensitivity or inflammation.  

 However, insulin signal is a complex network of interacting proteins (106) and its 

regulation is more a matter of protein structure modification, i.e., by phosphorylation, rather 

than protein quantity accounted by related mRNA expression level. Indeed aldosterone could 

interference with insulin signal by affecting the phosphorylation status of signal transducers, 

like IRS1/2, Akt or ERK1/2, involved in the “classic” insulin pathway, in that, linking 

activation of insulin receptor to the final step of translocation to plasma membrane of 

GLUT4, a specific insulin-related glucose transporter which enables glucose uptake (106). 

Therefore, aldosterone could impair this mechanism by decreasing insulin sensitivity within 

adipocytes causing them to reduce their glucose uptake. 

Previous studies, in mice, have already shown how aldosterone was able to alter insulin signal 

in adipose tissue. In addition, the work of Kraus et al. showed that aldosterone dose-

dependently impaired the insulin-induced glucose uptake in cultured murine brown 

adipocytes (65) and the paper Wada et al. (109) showed that non-physiological doses of 

aldosterone deteriorated metabolic action of insulin in 3T3-L1 adipocytes by production of 

reactive oxygen species (ROS), facilitating the degradation of IRS-1 and IRS-2 via GR. In our 

experiments, neither basal nor insulin-mediated glucose uptake by adipocytes was affected by 

1-100 nM aldosterone, i.e.,  a dose range encompassing aldosterone plasma levels in patients 

with APA, but glucose uptake was significantly lower after pre-treatment with 10 µM 

aldosterone (pharmacological concentration). In basal conditions, probably due to great inter-

experimental variability, i.e., large SE of the mean, the inhibitory effect of aldosterone 10 µM 

on glucose uptake was not significantly prevented by either RU486 or eplerenone. On the 

contrary, the impairment of insulin-stimulated glucose uptake caused by a pharmacological 

dose of aldosterone, as that induced by hydrocortisone, was prevented by the GR antagonist 
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RU486 but not by the MR antagonist eplerenone. This lends support to the concept that very 

high aldosterone levels attenuate insulin signaling via GR. Our findings are in accordance 

with of Hellal-Levy et al. (110), who showed in COS-7 cells transfected with human MR and 

GR that only 10 µM aldosterone concentration (pharmacological) was able to induce 

transcription via GR or MR, whereas lower concentrations induced a selective MR activation. 

The absence of significant HSD11B2 expression in visceral adipose tissue of both our patient 

groups, reflecting the inability of this enzyme to inactivate cortisol, seems to further indicate 

glucocorticoids as the predominant endogenous ligands of MR, as in other non-epithelial 

tissues (111). Mechanisms of impaired glucose handling in human adipocytes caused by very 

high aldosterone concentrations are possibly similar to those activated by glucocorticoids 

(112). In this regard, it should be noted that in our experimental model of human adipocytes, 

insulin-stimulated Akt and MAPK ERK1/2 phosphorylation were unaffected by 

pharmacological doses of aldosterone, indicating that insulin signaling proximal to Akt was 

unaltered. Inhibition of GLUT1 function and/or of GLUT4 translocation to the adipocyte 

plasma membrane by high dose aldosterone, as suggested for glucocorticoids (113, 114), 

might rather be considered as an alternative mechanism. Our results suggest indeed that 

aldosterone is able to inhibit the insulin-mediated effect on glucose uptake in adipocytes only 

at pharmacological concentrations, and likely through GR activation. 

 Some potential limitations of these findings need to be discussed. First, our in vitro 

experimental conditions may not have reproduced some changes of the in vivo 

microenvironment found in APA patients, i.e., hypokalemia, possibly contributing to alter 

insulin sensitivity of adipose cells (115). 

Second, mineralocorticoids can also exert acute actions in non-epithelial tissues independently 

of gene transcription (116). These rapid (<15 min)/non-genomic actions seem to be 

particularly relevant in cardiovascular disease, as they may result  in cardiac hypertrophy and 
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endothelial dysfunction (117, 118). Although the lack of aldosterone effect on insulin-related 

metabolic function and genes in our long-term experiments suggests the absence of an 

aldosterone-related genomic action, this issue was not specifically addressed in our study 

model. 

 Third, due to technical difficulty in obtaining a sufficient amount of tissue, we did not 

use human visceral adipose cells, either from NFA or APA subjects, to test aldosterone effect 

on glucose uptake and insulin signaling. Although we cannot exclude different results using 

visceral adipocytes, our cells which were obtained from the most inner depot of subcutaneous 

abdominal fat, have been already shown to have a strong correlation to insulin resistance 

(119) and an adipokines pattern expression (120) similar to that of visceral fat. 

 Fourth, aldosterone has been reported to affect energy expenditure, by regulating 

expression and function of uncoupling proteins in murine brown adipocytes (112, 121). This 

observation could be relevant considering the potential role of brown adipose tissue in adult 

human metabolism (122). Although limited, there are observations concerning a potential 

direct effect of aldosterone on other conventionally insulin-sensitive tissues accounting for 

whole-body glucose disposal, i.e.,  vasculature, liver and skeletal muscle. In vascular smooth 

muscle cells, insulin resistance related to aldosterone has been shown to result in c-Src and 

ROS-mediated increase in proteasomal degradation of IRS-1 (123). An aldosterone-

modulated insulin effects has been shown in primary cultured mouse hepatocytes and human 

hepatoma HepG2 cell line, a cell model proposed for testing insulin sensitivity on the liver 

(124, 125). Lastra et al. (126) showed that at a non-blood pressure lowering dose, MR 

blockade improved insulin sensitivity in the skeletal muscle of a rodent model of renin-

angiotensin-aldosterone activation and insulin resistance. Recently, it has been observed that 

inducers of heme-oxygenase system, decreasing oxidative stress, led to an improvement of 

insulin sensitivity in the gastrocnemius muscle of rats with deoxycorticosterone-acetate 
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hypertension, an animal model of primary aldosteronism (127). Thus, it is tempting to 

speculate that aldosterone could impair whole-body insulin sensitivity by acting on tissues 

different from fat. Restoration of normal insulin sensitivity reported in vivo in primary 

aldosteronism after MR antagonists or surgery (53, 54) may simply reflect the recovery of 

insulin action on these peripheral tissues. Recent studies also suggest that intrahepatic fat is 

better correlated with the metabolic consequences of obesity than visceral fat and might be a 

more important contributor to insulin sensitivity (128). Also, we recently found a high 

prevalence of nonalcoholic fatty liver disease in primary aldosteronism (129). In conclusion, 

no alteration of gene expression of insulin signaling or inflammatory molecules was present 

in VAT of patients with primary aldosteronism due to APA. Only at pharmacological 

concentrations, and likely through GR activation, aldosterone reduced glucose uptake in 

human adipocytes. 
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 Systemic insulin resistance in primary aldosteronism might occur in compartments 

other than fat, i.e.,  liver and/or skeletal muscle, and/or depend on concurrent environmental 

factors (Figure 15). 

 

Figure 15. Schematic representation of mechanisms involving aldosterone excess and/or concurrent 
hypokalemia, which may lead to impairment of insulin action as part of the metabolic syndrome.  
Aldosterone may induce insulin resistance acting on insulin-target tissues through alteration of insulin receptors 
and insulin signaling, adipokine production, increased fibrosis, fat accumulation or glucose uptake/release and 
gluconeogenesis dysregulation. A reduced insulin secretion by pancreatic β-cells might also occur. 
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STUDY IN PARIS 

PHENOTYPIC AND METABOLIC CHARACTERIZATION OF A NEW 
DOUBLE TRANSGENIC MOUSE MODEL, WITH CONDITIONAL 
OVEREXPRESSION OF HUMAN MINERALOCORTICOID 
RECEPTOR IN ADIPOCYTES 
 

 

 

INTRODUCTION 

The laboratory of Dr. F. Jaisser, INSERM U872, Cordeliers Research Center in Paris, has 

been involved for more than fifteen years in the analysis of the pathophysiological roles of 

MR activation in cardiovascular and renal diseases (17, 130-145). The lab is interested in 

delineating the role of the MR activation in metabolic disorders and the related consequences 

in cardiovascular diseases, paying particular attention to the identification of possible early 

biomarkers of MR dysregulation. As has been previously shown in this dissertation, there is a 

great amount of published data describing the consequences of aldo-MR system 

activation/dysregulation, however, still no biomarkers are available for accounting to the 

whole-body MR activation status. Such biomarkers could be of great therapeutic interest in 

helping the identification of patients prone to MR antagonism. In fact until today, the only 

available biomarker still remains the aldosterone circulating level, which is not of great use, 

since MR could be activated either by glucocorticoids or ligand-independent mechanisms (57 

, 58). 

 In the last few years, the team of Dr. Jaisser, has identified some new molecular 

targets of MR in the heart (146) and vessels (unpublished data) and one of them, the lipocalin-
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2 protein LCN2, also known as NGAL (for neutrophil gelatinase-associated lipocalin), 

appeared to be particularly interesting. NGAL is a small soluble protein of 25-kDa encoded in 

humans by LCN2 gene located in chromosome nine and it belongs to a family of small 

proteins, lipocalins, engaged in the transmembrane transportation of lipophilic substances. 

Originally isolated from specific granules of neutrophils (147), NGAL was later found 

expressed in bone marrow cells, in lung bronchial and colon epithelial cells (148, 149) as well 

as in adipocytes (150). Little current data is available describing the mechanisms of action of 

NGAL. Of  the available data, some evidences report its ability to tightly bind the bacterial 

ferric siderophores resulting in a potent bacteriostatic action (151), and other studies reveal its 

property to stabilize the active form of the matrix metallo-peptidase 9 (MMP9) (152) a protein 

member of the family of the matrix metallo-proteinases (MMP), thus postulating a role of 

NGAL in MMP9 related activities, i.e., activation of innate defense through proteolytic 

shedding of the lipopolysaccharide (LPS) CD14 receptor in macrophages, and breakdown of 

extracellular matrix in tissues remodeling during bone healing after fracture or in 

neoangiogenesis following tumor metastasis processes (153). 

 Although its biological meaning still remains obscure, many studies report a 

significant correlation between an early increase of NGAL plasma level and the establishment 

of many different pathological situations, from bacterial inflammations to cancer (154, 155), 

from cardiac and renal failure to atherosclerosis and metabolic syndrome (156 , 157 , 158). 

 Most interestingly, NGAL has been recently proposed as a novel adipokine produced 

by adipocytes (159 , 160) and secreted within the blood circle where it is found increased in 

animal models for obesity as well as in obese patients (159 , 161). Indirect evidences, coming 

from a NGAL knock out mouse model, show that the inactivation of NGAL improves insulin 

resistance and glucose tolerance in mouse fed with a high fat diet (162). Concerning the 

relationship between aldo-MR system and NGAL, Jaisser et al. have shown that NGAL 
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expression is significant increased in heart and vessels of MR overexpressing mice as well as 

in the most common model of mouse and rat hyperaldosteronism, i.e.,  aldo-salt treated 

animals. Most interestingly, they also showed in all these models, as well as in obese db/db 

mouse, that plasma levels of NGAL result significant decrease upon in vivo MR antagonism 

(unpublished data, Figure 16 and 17). 

 

Figure 16. NGAL gene (Lcn2) expression is up-regulated within heart of DT mouse with a conditional 
overexpression of MR in cardiomyocytes (x200), as well as in heart of aldo-salt treated mice (x3.5) and in aorta 
of DT mice overexpressing MR in the endothelium (x2). Plasmatic level of NGAL is also increased in the latter 
model. 

 

Figure 17. Pharmacological antagonism of MR is able to reverse the rise of plasmatic level of NGAL in (A) 
DOCA-salt mouse model, (B) in rat with cardiac infarction (CI) and (C) in the db/db obese mice. 

 All these data imply a strong relationship between MR activation and NGAL increase, 

postulating a direct role of aldo/MR system on regulation of NGAL expression and secretion.  

When I arrived in Paris in January 2011, the lab had just started a new project working with a 

new double transgenic mouse model (DT), conditionally overexpressing MR in adipocytes 
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(adipo-hMR mouse). The intent was three fold: 1) to describe the metabolic phenotype of the 

mouse overexpressing MR in the adipose tissue; 2) to evaluate the possible consequences on 

the cardiovascular function of the hyperactivation of MR in adipose tissue; 3) to assess the 

modulation of NGAL expression and secretion by adipocytes overexpressing MR. 

My personal objective during the last part of my or internship in France was essentially 

focused on the first step, which was to characterize phenotypically the new adipo-hMR DT 

mouse model. 

 Primarily we have evaluated three aspects:  1) The reliability of the parental lines 

necessary for obtaining the DT mouse model, i.e.,  the adipo-mouse and hMR-mouse lines; 2) 

The expression profile in the omental fat of the adipo-hMR mouse compared to the wild type 

(wt) mouse; 3) The reliability of the transgenic system adipo-hMR in vitro through an 

analysis of the expression profile in the primary culture of adipocytes derived from the 

adipose tissues of adipo-hMR mouse. 

MATERIALS AND METHODS 

Adipose tissue lacZ or MR conditional mouse models 

The previously characterized tetO-hMR (hMR-mouse) and tetO-lacZ (lacZ-mouse) mouse 

strains (163, 164) were crossed with the aP2-rtTA (adipo-mouse) transactivator mouse strain 

in order to obtain the aP2-rtTA/tetO-hMR (adipo-hMR mouse) or aP2-rtTA/tetO-LacZ 

(adipo-lacZ) double transgenic (DT) mouse strains with conditional adipocytes-specific hMR 

or lacZ overexpression (Figure 18). In order to induce the transgene expression in DT mice, 

the animals were treated for at least for three weeks with doxycycline (Dox) (Sigma-Aldrich, 

St. Louis, MO, USA) dissolved in drinking water at the concentration of 2g/L. 
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Figure 18. Schematic representation of conditional adipose tissue-specific mouse models: adipo-lacZ (A) e 
adipo-hMR (B). 
The two models derived from a  crossbreed of two murine transgenic strains, one that is defined as "acceptor 
strain" and it is specific for each DT model and another one named "transactivation strain", that is common to 
both. Acceptor strain carries in its DNA a genetic construct made of two genetic sequences fused together, 
"tetO", that is a bacterial operator (like a human promoter) sequence, and lacZ (A) or hMR (B), which are the 
sequences coding respectively for β-galactosidase enzyme and the human mineralocorticoid receptor protein. On 
the other hand, the transactivation strain was genetically engineered for carrying the promoter sequence of "aP2" 
gene, a gene specifically expressed in adipose tissue, fuses together with rtTA gene, coding for a bacterial 
transcription factor able to activate tetO. In other words, aP2 promoter is, for definition, only active in adipose 
tissue and therefore allows the adipocytes specific expression of  its linked transgene rtTA. In turn, in the  
presence of Dox, rtTA binds to and activates the operator  tetO, causing the tetO-linked transgene (lacZ or hMR 
) to be expressed constitutively. Therefore treating, or not treating, the mice with Dox allows  when to choose to 
activate, or inactivate, the transgene expression.  

 At the end of Dox treatment, mice were sacrificed in order to recover organs and 

tissues used for the subsequent manipulations of cell culture, histology or bio-molecular 

analysis. In particular, attention was focused on four different type of adipose tissue: inguinal 

subcutaneous adipose tissue (SAT), epididymal visceral adipose tissue (EVAT), 

retroperitoneal visceral adipose tissue (PVAT) and brown adipose tissue (BAT). The use of 

animals was in accordance with the guidelines of the European Community and approved by 

our Institutional Animal Care and Use Committee. 

 

 

 

Histological analysis of the DT adipo-lacZ mouse model 

After three weeks of Dox (2g/L) transgene induction, 5 DT adipo-lacZ and 5 wt littermate 

control mice were used for histological analysis. Following the sacrifice, adipose tissue (SAT, 
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BAT, EVAT and PVAT) biopsies were incubated for ten hours in an X-Gal (Sigma-Aldrich, 

St. Louis, MO, USA) staining solution. Adipo-lacZ animals are characterized by the 

expression in adipocytes of the β-galactosidase enzyme, an enzyme able to convert the 

substrate X-Gal into an intensely blue product which is insoluble and stains the tissue. This 

allows for the easy identification of the tissue where the β-gal is active. Stained tissues were 

then fixed in 4% paraformaldehyde overnight and finally paraffin-embedded. For taking 

pictures, a series of 6µm sections were cut from the paraffinized blocks of every adipose 

biopsy. 

 

 

 

Mouse adipocytes culture and in vitro induction of  hMR transgene 

For each experiment, SAT or EVAT biopsies were obtained from 2 to 3 Dox-untreated DT-

hMR mice in order to pool them together and allow a sufficient amount of starting material 

for culture. The isolation of murine preadipocytes from adipose pads was then accomplished 

as previously described in this dissertation for human adipocytes. 

 At the end of differentiation, adipocytes were left for 72 hours in DMEM/F12 at 5% 

FBS w/o steroids (Charcoal Stripped FBS Life Technologies Corporation , Carlsbad, CA, 

USA) stimulated with vehicle, as negative control, or with Dox (1µg/mL) for inducing the 

expression of hMR transgene. Adipocytes were then also treated with aldosterone 10nM 

(Sigma-Aldrich, St. Louis, MO, USA), for 24 hours before lysis and RNA extraction. 

 

 

 

RNA extraction and quantitative RT- PCR  
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According to respective manufacturer protocol, total RNA from mouse cultured adipocytes, 5 

wells per condition (vehicle or Dox 1µg/mL), were extracted using TRIZOL® reagent (Life 

Technologies Corporation , Carlsbad, CA, USA), while total RNA from frozen adipose tissues 

(SAT, BAT, EVAT and PVAT), 5 DT adipo-hMR mice and 5 wt control littermate mice, was 

obtained with the RNeasy Mini Kit (Qiagen GmBh, Hilden, Germany). The extraction was 

optimized by a farther step of RNA DNase treatment (Qiagen GmBh, Hilden, Germany). 

Reverse transcription of RNA to cDNA was performed with Superscript II reverse 

transcriptase KIT (Life Technologies Corporation , Carlsbad, CA, USA) using 500 ng, for 

cells, or 2 µg, for tissues, of the total RNA. Transcripts levels of considered genes were 

analyzed by real time (SYBR Green detecting) PCR in an iCycler iQ apparatus (Biorad 

Laboratories Inc., Hercules, CA, USA). Reactions were performed in duplicate for each 

sample in a total volume of 12μl: 5μl of cDNA (1ng/μl) 1μl of forward/reverse primer mix 

(3.6μmol/L) and 6μl of SYBR GREEN  SuperMix (Biorad Laboratories Inc., Hercules, CA, 

USA). The thermal cycling parameters were: initial denaturation at 95°C for 10 min, followed 

by 40 cycles at 95°C for 15 sec and 60°C for 1 min. 

 Relative expression of the mRNA was quantified using the equation described by 

M.W. Pfaffl (165): ratio=(Etarget)^Cttarget(mean control-sample)/(Eref)^Ctref(mean control-

sample). For each sample, mRNA levels were normalized by dividing the amount of the 

candidate gene by the geometric mean of the amount of a series of housekeeping genes, 18S, 

β-2-microglobulina (β2μ), ubiquitin C (UBC) and hypoxanthine guanine phosphoribosyl 

transferase (HPRT). The genes were analyzed and their specific primer sequences are listed in 

Table 5.  
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Microarray analysis 

After three weeks of Dox (2g/L) transgene induction, 5 DT adipo-hMR and 5 wt control 

littermate mice were used for microarray experiments. Total RNA was prepared from PVAT 

samples as previously described and its quality was assessed with Bioanalyzer 2100 (Agilent 

Technologies, Inc., Wilmington, DE, USA). Microarray experiments were carried out using 

mouse GE 4x44K V2 microarray kit (Agilent Technologies Inc., Wilmington, DE, USA). 

Labeling of the RNAs, hybridization (1 animal/array) and scanning of the microarrays were 

performed according to manufacturer’s instructions. Data were analyzed using Genespring 

software (Agilent Technologies Inc, Wilmington, DE, USA). The false discovery rate and 

fold change threshold retained were 5% and >1.5 respectively. 

 Gene ontology analysis was performed by using the funnet free on-line tool developed 

by France INSERM in collaboration with the Cordeliers Research Centre in Paris 

(http://www.funnet.info/). Specifically, we based our analysis on KEGG collection (Kyoto 

Encyclopedia of Genes and Genomes, http://www.kegg.jp/) in order to identify the possibly 

interesting enzymatic pathways perturbed by MR overexpression. 

RESULTS 

Histological and qRT-PCR validation of adipose-specific transgene expression 

X-Gal exposure of adipose tissues, SAT, BAT, EVAT and PVAT, from mice adipo-lacZ 

Dox-treated, adipo-lacZ non-Dox treated and wt-control, results evident in blue adipose 

tissues staining only in DT Dox-treated Mice (Figure 19). 
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Figure 19. Representative images obtained with X-Gal staining of adipose tissues, i.e., SAT, BAT, EVAT and 
PVAT, obtained from double transgenic mice adipo-lacZ treated or not with doxycycline (Dox +/-), for 3 weeks 
at the concentration of 2g/L (n=3) and from wild type control litter mate mice (n=3). A blue staining of the 
nucleolus (black arrow) is observable in every adipose tissue of only Dox-treated DT mouse. 

 QRT-PCR analysis for hMR gene expression in adipo-hMR and wt-control littermate 

mice, confirms the expression of hMR transgene only in adipose tissues of DT Dox-treated 

mice. Additionally, given the fact that expression of the endogen mouse MR results are 

similar between the two group (Figure 20), the significant (p<0.05) increase in total MR level 

observed in SAT, PVAT and BAT of DT mice is necessarily due to hMR transgene 

overexpression. 

SAT 

BAT 

PVAT 

EVAT 

DT - adipo+/lacZ+ 
Dox+ (2g/L) 

DT - adipo+/lacZ+ 
Dox- 

wt - control 
Dox+ (2g/L) 
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Figure 20. Quantification of mRNA expression by qRT-PCR of mMR and total MR in subcutaneous, brown, 
epididymal and retroperitoneal adipose tissue biopsies from wt-control mice (white bar) and DT adipo-hMR 
mice (black bar). Each bar represents the means ± SE of 3 to 7 samples for each group, *, means a significant  
difference between the two groups (p<0.05). 

Transcriptome analysis in PVAT adipo-hMR DT mice 

The expression profile in PVAT of DT and wt-control littermate mice was analyzed by a 

preliminary qRT-PCR assay, followed by an extensive total mRNA transcripts microarray 

analysis. 

 QRT-PCR reveals how transcript levels of mMR, GRα, PPARγ, adiponectin, Pai1, 

MCP1, TNFα e CD68 are similarly expressed in the two groups, whereas total MR and 
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NGAL are significantly (p<0.05) higher, 2.5 and 8 folds respectively, in DT than in control 

mice. (Figure 21). 

 

Figure 21. Quantification of mRNA expression by qRT-PCR of mMR, total MR, GRα, PPARγ, adiponectin, 
Pai1, MCP-1, TNFα e CD68 in retroperitoneal visceral adipose tissue biopsies from wt mice (white bar) and DT 
adipo-hMR mice (black bar). Each bar represents the means ± SE of 9 samples for each group, *, means a 
significant (p<0.05) different between the two groups. 
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 Microarray analysis comparing total mRNA transcripts levels in DT and control mice 

shows farther differences between the two groups, particularly that there are 101 up-regulated 

and 246 down-regulated genes (fold change >1.5, p<0.05) in PVAT of DT-MR mice compared 

to their control littermates (Figure 22). 

 

Figure 22. Representative image of a probed GE-4x44K-V2 chip from the microarray analysis performed on 
total mRNA transcript from DT adipo-hMR and relative wt-control littermate mice (n=5 for each group). In the 
red and green spheres are shown the number of the genes resulted significantly up- and down-regulated in PVAT 
of DT mice after Dox induction of hMR. 

101#

##Up&regulated#genes#

246#

Down&regulated#genes#
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 The genonthology analysis performed with the funnet algorithm, reveals that these 

genes correspond mainly to proteins involved in metabolic pathways of fatty acid synthesis 

(up-regulation) and immune response, e.g. cytokines receptor (down-regulation) (Figure 23). 

 

Figure 23. Schematic representation of funnet analysis based on KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway collection. Bars represent the percentage of total up-( red)/down- green) regulated genes, 
involved in every category found significant by the funnet algorithm. 

 In order to validate the RNA chip, we selected some of MR-specific up-/down-

regulated genes to be measured by real time PCR in other series of DT/control mice. 

Specifically we took into account the genes resulted in more modulated by MR 

overexpression, i.e.,  vanin 1 (VNN1), vanin 3 (VNN3), prostaglandin D2 synthase (PTGDS) 

and cytochrome P450, family 4, subfamily a, polypeptide 10 (CYP4A10), between the up-

regulated genes, and interleukin 1 beta (IL1β) and C. elegans unc-5 homolog A C. elegans 
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(UNC5) between the down-regulated ones. The analysis by real time PCR confirms the same 

trend observed in the microarray analysis (Figure 24). 

 

Figure 24. Validation by qRT-PCR of some of the differentially-expressed genes, vanin 1 (Vnn1), vanin 3 
(Vnn3), prostaglandin d2 synthase (ptgds), cytochrome P450, family 4, subfamily a, polypeptide 10 (CYP4a10), 
interleukin 1 beta (Il1b) and unc-5 homolog A, C. elegans (UNC5), identified in microarray analysis in the 
PVAT biopsies from wt mice (white bar) and DT adipo-hMR mice (black bar). Each bar represents the means ± 
SE of 9 samples for each group, *, means a significant (p<0.05) different between the two groups. 
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also present a significant increased level of total MR and NGAL mRNA (p<0.05) when 

compared to wt control adipocytes (Figure 25). 

 

Figure 25. Cultured murine SAT (A) and EVAT (B) DT adipo-hMR adipocytes. 
Quantification of mRNA expression by qRT-PCR, after 96h of Dox transgene induction and 24h Aldo treatment, 
of hMR, mMR, total MR and NGAL, in SAT and EVAT adipocytes derived from wt (white bar) and DT adipo-
hMR (black bar) mice. Each bar represents the means ± SE of 4 sample for  each group. 

DISCUSSION 

During my third year of PhD study in Paris, I demonstrated that the double transgenic 

offspring obtained by crossbreeding the murine line adipo-mouse with the line lacZ-mouse or 

hMR-mouse, was found to specifically express the transgene, respectively lacZ or hMR, in 

adipose tissue when subjected to Dox treatment (2g/L). In particlular, all adipose deposits 

analyzed,e.g. subcutaneous adipose tissue, brown adipose tissue, retroperitoneal adipose 

tissue and epididymal adipose tissue, were found positive for hMR and lacZ expression 

induced by Dox. For the MR-DT line, in vitro experiments on fully differentiated adipocytes 

obtained by isolating and differentiating the vascular cellular fraction from subcutaneous or 

epididymal adipose tissue of DT animals indicated that the system was still conditional ex 

vivo, allowing Dox-dependent induction of hMR expression. These preliminary studies were 

conducted in order to verify the reliability of our tet-On system. 
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 After this necessarily validation of the MR-DT model, we could start its phonotypical 

and metabolic characterization in order to explore the direct effects of an enhanced genetic 

dose of MR in fat physiology and the related functional consequences on other organs such as 

the cardiovascular system. 

We began our study by evaluating the potential effects of MR overexpression in the visceral 

adipose tissue and the related consequences on its activity of regulating whole-body glucose 

homeostasis and insulin sensitivity (69). Using a preliminary analysis by real time PCR, we 

evaluated the expression level of some of the major adipose genes and adipokines. DT mice 

showed a significant increase in NGAL expression but, interestingly, no differences in GRα, 

PPARγ, adiponectin, Pai1, MCP1, TNFα and CD68. On the contrary,  these were previously 

found to be well-modulated by MR activation in adipose tissue by other authors using in vivo 

pharmacological antagonism and ex vivo adipocyte stimulation with aldosterone (62, 64, 65). 

Subsequently, we performed an entire transcriptome microarray analysis in order to further 

identify other modulated genes and discovered that MR overexpression in PVAT allowed 101 

genes to be up-regulated and 246 to be down-regulated in DT mice as compared to their 

control littermates. The gene ontology analysis of this gene list reveals a quite surprising 

outcome. In fact, the presence of an extra dose of MR, in vivo, seems to promote adipogenesis 

and hinder inflammation by respectively up regulating a series of genes involved in fatty acid 

and PPAR pathways and down regulating others involved in immune cells activation and 

cytokines interaction. This implies a potential protective role for mineralocorticoid receptors 

in adipose tissue acting out of the usual scheme. Of note this microarray analysis was done in 

basal condition. It would be necessary to react this experiment in a stressed conditionsuch as  

that of high a fat diet. 

 Although Caprio et al. (22) already proposed MR to have an essential role in 3T3-L1 

adipocytes physiological differentiation, as a pro-adipogenic factor, MR activation in vivo 
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strongly contributes negatively to pathological conditions rather than beneficial effects. 

RALES and EPHESUS clinical trials, as well as many works in human and animal models, 

highlighted how MR antagonism could ameliorate the pathological outcome in cardiovascular 

and metabolic disorders. Taking as example the studies on obese mice conducted by Guo et 

al. (62) and Hirata et al. (64), it appears clear that MR activation in adipose tissue , promotes 

inflammation and contributes to worsening the pathological status of the tissue by decreasing 

insulin response and enhancing hypertrophic process in adipocytes. This was demonstrated by 

aldosterone direct stimulation on adipocyte cultures as well as indirectly by treating obese 

mice with specific MR antagonism. The apparent discrepancy between these data and ours, 

can be overcome by taking into account the fact that our mice are not obese nor fed with a 

high fat diet, and so their adipose tissues have to be considered as normal/healthy tissues.  

 Therefore, I believe it is important to start thinking about the role of MR in adipose 

tissue, as profoundly linked to a specific fat physio-/pathological status, rather than to believe 

in a single rigid pathway of MR in this tissue. From this point of view, the overactivation of 

MR in the adipose tissue should not be taken as necessarily negative, but more probably 

should be considered as a parallel system that contributes to define a given status of the tissue. 

Additional support to this idea, comes also from my previous studies published with the team 

in Padova, where we reported on visceral adipose tissue of patients with primary 

aldosteronism the absence of a negative influence on insulin signaling and adipokines 

expression. It should be mentioned, however, that the patients were selected with normal, 

non-obese/non-over weight, BMI and waist circumferences (23, 166). 

 Coming back to the transcriptome analysis, it is important to point out the fact that the 

simple overexpression of MR seems to be sufficient to induce the related up regulation of the 

NGAL gene. NGAL already has been proposed as a novel adipokine (159 , 160) and its 

concentration is increased in blood of two mouse models for obesity (db/db and ob/ob) as 
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well as in obese patients (159 , 161). Furthermore Guo et al (162) showed that NGAL-KO 

prevented insulin resistance and glucose intolerance when NGALK KO mice were fed with 

high fat diet. These data together with those of the team of F. Jaisser referring to NGAL as 

new molecular target of MR in the heart and vessels (unpublished data) appears particularly 

interesting for connecting Aldo/MR adipose dysfunction with metabolic syndrome and 

cardiovascular disease. 

 Even if the role of NGAL in the metabolic-cardiovascular relationship as well as 

factors modulating its expression still remain to be better identified, NGAL seem to be a good 

candidate as a reporter molecule for Aldo/hMR system activation. Further evidence 

supporting this concept arose from our first experiments on DT adipocyte culture, where we 

confirmed a drastic increase of NGAL expression after few days of Dox treatment for 

inducing hMR in differentiated adipocytes. 

 

Expected results 

This first group of data on the adipo-hMR mouse has disclosed a new powerful tool for 

deeply investigating the role of MR activation in adipose tissue and its possible implications 

in cardiovascular diseases. Preliminary data coming from metabolic analysis of DT mice, 

which will not be addressed in this dissertation, apparently do not reveal any significant 

phenotypic differences in fat body composition, blood pressure or insulin/glucose tolerance 

between DT mice and their control littermates when they are fed with a normocaloric diet, 

thus confirming what we demonstrated on activated MR in healthy adipose tissue. 

It must be also pointed out that adult and healthy mice do not have a great amount of adipose 

tissue in any deposits and this could probably contribute to minimize the potential phenotype 

related to adipose MR excess. 
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 In order to stress the environmental and miming pathological process, like those that 

establish in obesity or type II diabetes, we have already started to feed DT animals with a high 

fat diet providing the animals with 4397 kcal/kg composed by 22.5% of lipids, 42.3 % of 

carbohydrates and 17% of proteins. On these animals, we planned to perform extensive 

phenotypic and metabolic analyses, such as blood pressure measurement, insulin and glucose 

tolerance tests, dosage of blood concentration of fatty acid, glucose and NGAL protein, 

analysis of body fat composition by magnetic resonance imaging and analysis of cardiac 

function by echocardiography. Parallel to these experiments in living animals, we will also 

continue with in vitro experiments in primary DT adipocytes, our objective being to describe 

in differentiated cells the regulation of expression of NGAL and of the other adipokines upon 

stimulation with mineralocorticoid/glucocorticoids agonists and antagonists 
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Page Text line Correction 
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9 31 enogenous endogenous 

9 31 mr, MR 

9 32 resonace, resonance 

9 34 rna, RNA 

9 37 adrrenal, adrenal 

10 12 pcr, PCR 

10 13 renon, renin 
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21 19 sssessment, assessment 
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