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ABSTRACT 
 

Background & Aims: Arrhythmogenic Cardiomyopathy (AC) is a rare inherited 

heart muscle disease associated with mutations in genes encoding mainly 

components of the cardiac desmosome. We performed a comprehensive study of 

genetic variants in a cohort of AC subjects and the assessment of Next Generation 

Sequencing (NGS) strategies for molecular diagnosis of AC. 

Methods: Ninety-nine unrelated index cases, of which 26 sudden cardiac death 

cases, underwent genetic screening for 5 desmosomal genes by denaturing high 

performance liquid chromatography and direct sequencing, whereas 46 probands 

were additionally screened for 3 extra desmosomal genes. A complementary 

analysis for copy number variants (CNVs) was performed by multiplex ligation-

dependent probe amplification and quantitative real-time PCR in the entire cohort. 

A 4-step variant filtering strategy based on mutation type, frequency, evolutionary 

conservation and in silico analysis, was used. Whole Exome and Targeted NGS 

strategies were performed on Illumina platforms in order to test methods efficacy. 

Results: Screening of 8 AC genes and subsequent 4-step variants filtering 

identified 37 different point desmosomal mutations in 42 AC probands (42%). 

The most frequently mutated genes resulted PKP2 and DSP, with “radical” 

mutation type accounting for the 80% of the PKP2 variants. No pathogenic 

mutations were identified in the extra desmosomal genes analyzed. CNVs analysis 

further revealed 3 different large genomic rearrangements in 5 probands (4%), 

increasing to 46 (46%) the number of positively genotyped patients. PKP2 and 

DSP single mutation accounted respectively for 20% and 11% of the cohort, with 

DSP carriers showing a higher risk of sudden cardiac death. Eight multiple 

mutations carriers were observed (8%). NGS approaches identified 4 variants in 

extra desmosomal genes allowing a differential diagnosis in 4 patients. 

Conclusions: A fine variant filtering avoids overrepresentation of putative 

pathogenic mutations and shows that radical and missense mutations should be 

equally interpreted with great caution in the setting of clinical diagnosis. NGS and 

CNVs analysis increased significantly the diagnostic yield in AC genetic testing. 

The genetics of AC is more complex than previously appreciated, with frequent 

requirement for more than one ‘hit’ for penetrant disease. 
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SOMMARIO 
 

Introduzione & Scopo: La Cardiomiopatia Aritmogena (AC) è una malattia rara 

del muscolo cardiaco associata a mutazioni a carico di geni che codificano 

principalmente per componenti del desmosoma cardiaco. Abbiamo realizzato 

l`analisi genetica in una coorte di soggetti affetti da AC e lo sviluppo di strategie 

in Next Generation Sequencing (NGS) per la diagnosi molecolare di AC. 

Metodi: Novantanove casi indice, di cui 26 soggetti di morte improvvisa, sono 

stati sottoposti a screening genetico per 5 geni desmosomiali mediante 

cromatografia denaturante in fase liquida ad alto rendimento e sequenziamento 

diretto, 46 probandi sono stati analizzati anche per 3 geni extra desmosomiali. 

Abbiamo inoltre ricercato nell`intera popolazione varianti del numero di copie 

(CNVs) mediante la tecnica MLPA (Multiplex Ligation-Dependent Probe 

Amplification) e PCR quantitativa. La strategia di filtraggio si è basata sul tipo di 

mutazione, frequenza, conservazione, e analisi in silico. Gli approcci NGS 

“Whole Exome” e “Targeted” sono stati eseguiti su piattaforme Illumina. 

Risultati: L`analisi di 8 geni associati alla AC e il successivo filtraggio delle 

varianti ha individuato 37 diverse mutazioni puntiformi in 42 soggetti (42%). I 

geni più frequentemente mutati sono la PKP2 e la DSP, le mutazioni “radicali” 

costituiscono l`80% delle varianti della PKP2. Non sono state riscontrate 

mutazioni patogene nei geni extra desmosomiali studiati. La ricerca di CNVs ha 

identificato 3 diversi riarrangiamenti cromosomici in 5 probandi (4%), portando a 

46 (46%) i soggetti genotipo positivi. Si sono osservate mutazioni singole nei geni 

PKP2 e DSP nel 20% e nell`11% dei soggetti, i portatori di mutazioni nella DSP 

presentano un rischio maggiore di morte improvvisa, 8 (8%) soggetti presentano 

mutazioni multiple. Le analisi mediante NGS hanno indentificato 4 varianti in 

geni extra desmosomiali permettendo la diagnosi differenziale in 4 pazienti. 

Conclusioni: La diagnosi molecolare in ambito clinico rende necessaria 

un`attenta interpretazione del potenziale patogeno tanto delle mutazioni missenso 

quanto di quelle radicali soprattutto dopo il cospicuo aumento di varianti 

identificate con NGS e la ricerca di CNVs. La base genetica di AC è molto più 

complessa di quanto finora apprezzato, con una frequente presenza di più di una 

mutazione per una penetranza completa della malattia.  
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INTRODUCTION 
1.1 Definition and Epidemiology 

Arrhythmogenic Cardiomyopathy (AC) is an inherited disorder of the 

myocardium characterized by progressive adipose and fibrous tissue replacement 

of cardiomyocytes (Nava et al., 1988; Thiene et al., 1988). This process is 

associated with structural and functional changes involving predominantly the 

right ventricle (RV), structural manifestations mainly include ventricular 

dilatation, hypokinesia, and aneurysms of the ventricular wall, that in early 

disease are mostly located in the right ventricular inflow, outflow, and apical 

regions, called the “triangle of dysplasia” (Frank et al. 1978; Marcus et al. 1982; 

Fontaine et al., 1998) (Figure 1.1). 

 

Figure 1.1: a) A case of AC in a 25-years old man who died suddenly. Four chamber cut of the 
heart specimen showing isolated fatty replacement of the right ventricular free wall and translucent 
infundibulum. B) Endomyocardial biopsy of the right ventricular free wall of a 39-years old 
patient who died suddenly, showing cadiomyocytes embedded in fibrous and fatty tissues (from 
Cardiovascular Pathology of Padua). 

 

Clinical manifestations of AC mostly occur between the second and fourth decade 

of life, the mean age at diagnosis is estimated to be approximately 30 years, and 

males are more often affected than females, with an estimated gender ratio of 3:1 

(Nava et al., 2000). 

In the Veneto region, AC is the most common cause of sudden cardiac death 

(SCD) in individuals under the age of 35 and in young athletes (Thiene et al. 

1988, Corrado et al., 1990). 

In this geographic area, the prevalence of AC is estimated to range between 

1:2000 and 1:5000 (Nava et al. 1988), however this value could be higher because 
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of the presence of many undiagnosed and misdiagnosed cases linked to the 

progressive nature of AC and its variable expressivity. 

 

1.2 Clinical Manifestations 

Progressive structural changes involving myocardium are preceded or 

accompanied by clinical manifestation including T-wave inversion in right 

precordial leads, epsilon waves, the presence of widening of the QRS complex 

observed in resting ECG, late potentials ventricular premature complexes which 

can be registered by signal averaged ECG and by Holter monitoring, respectively 

(McKenna et al., 1994). The most common clinical manifestations in AC are 

related to arrhythmias and conduction abnormalities, in particular ventricular 

tachycardia is a typical characteristic of AC patients that may lead to ventricular 

fibrillation and sudden death (SD) (Marcus et al., 1982; Thiene et al., 1988). 

However often SD can represent the first and only manifestation of AC or in some 

cases minor symptoms might occur making difficult its early identification.  

Natural history of AC can be divided into four phases, based on clinical and 

pathological observations (Thiene et al., 1990; Corrado et al., 2000; Thiene et al., 

2007; Basso et al., 2009). 

1. A “concealed” phase typical of early AC, frequently characterized by the 

absence of clinical symptoms, although subtle structural changes and minor 

ventricular arrhythmia may be recognized. During this phase subjects are 

mainly asymptomatic and they may be at risk of SD, especially during 

physical exercise (Corrado et al., 1990). 

2. The “overt electrical disorder” phase, characterized by the presence of 

functional and morphological abnormalities of the right ventricle (RV) and/or 

left ventricle (LV), usually detectable by cardiac imaging techniques. Patients 

manifest symptomatic ventricular arrhythmia, palpitation, syncope, and pre-

syncope.  

3. The third “right ventricular dysfunctional” phase is characterized by further 

extension of disease involving the RV myocardium that leads to impaired 

contractility and isolated right heart failure. 
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4. The most advanced phase is characterized by LV involvement leading to 

biventricular heart failure, which is difficult to distinguish from dilated 

cardiomyopathy (DCM). However, LV involvement may be detected also in 

earlier phases of the disease (Sen-Chowdhry et al., 2008). 

 

1.3 Diagnostic criteria 

Diagnosis of AC is based on classification of clinical findings into specific 

criteria, divided into major and minor according to specific association with the 

disease, as described in Table1.1. AC criteria were proposed by an International 

Task Force in 1994 (Mc Kenna et al., 1994) to facilitate AC diagnosis and were 

recently modified (Marcus et al., 2010), as the original criteria were highly 

specific but showed low sensitivity especially in evaluating asymptomatic 

subjects or family members affected by an early AC form (Marcus et al., 2010). 

The modified criteria focused on the detection of milder forms of the disease and 

aimed to facilitate the cascade screening of patients’ relatives based on different 

clinical features comprising structural, histological and arrhythmic abnormalities 

along with a detailed familial history of disease and SD. However the clinical 

diagnosis of AC is still complicated, as a single diagnostic test is not enough to 

ascertain the disease. The definitive diagnosis requires the fulfilment of 2 major, 1 

major plus 2 minor, or 4 minor criteria. A borderline diagnosis requires the 

fulfilment of 1 major plus 1 minor, or 3 minor criteria, and possible diagnosis 

fulfilment of 1 major or 2 minor criteria. 

1.3.1 Clinical tests enabling AC diagnosis: 

Baseline electrocardiography (12-lead ECG) findings associated with AC are 

abnormalities of depolarization, conduction and repolarization secondary to 

atrophy of ventricular walls that reflect the pathophysiology of the disease. ECG 

depolarization manifest as T-wave inversion in anterior precordial leads in the 

absence of RBBB (major criterion). Conduction abnormalities detected as 

prolongation of the QRS complex in right precordial leads in the absence of 

RBBB, (>110 ms in leads V1-V3) reflect slow conduction in the RV free wall 

(major criterion). The presence of epsilon wave, that represents a deflection 

between the end of the QRS complex and the beginning of the T wave (major 
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criterion) corresponds to a delayed electric potential that initiates in regions of 

healthy tissue surrounded by fibrofatty tissue indicative of intraventricular 

impulse conduction delay. 

Signal-averaged electrocardiogram (SAECG) allows the registration of low-

amplitude potentials within the end of the QRS complex (late potential) that are 

not wide enough to be evident on the 12-lead ECG. 

Holter monitoring is used to register the electric activity of the cardiovascular 

system for a period of time of normally 24 h, with particular attention to the 

diurnal rhythm fluctuations.  

Echocardiography represents the first-line imaging approach for evaluating 

patients with suspected AC or for screening of family members, allowing serial 

examination with the aim to assess the disease onset and progression.  

Magnetic resonance imaging (MRI) is another non-invasive tissue 

characterization technique that allows the detection of morphological and 

structural abnormalities of the ventricular wall like microaneurysms and allows 

the calculation of RV and LV volumes and ejection fraction (Tandri et al., 2005; 

Sen-Chowdhry et al., 2006; Perazzolo Marra et al., 2014). 

Endomyocardial biopsy is used to detect myocytes in diverse stages of cell death 

and of fibrofatty replacement (major criterion). However a negative biopsy is not 

enough to exclude AC because of the segmental nature of the disease, especially 

during early stages. 

A comprehensive workup also involves the study of a full family history, with 

particular focus on cardiac symptoms, and the design of a detailed pedigree 

describing the occurrence of SD and unexplained heart failure. The value of the 

analysis of the family history and of AC genetic testing has been widely 

recognized and the detection of a pathogenic variants now contributes as a major 

diagnostic criterion for the diagnosis of AC (Thiene et al., 2007; Basso et al., 

2009). 
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Table 1.1: Comparison of original and revised Task Force criteria for diagnosis of AC (from 
Marcus et al., 2010).  

 

1.4 Treatment of AC patients 

AC patients and athletes with probable or definite diagnosis of AC are strongly 

recommended to avoid physical activity and participation to competitive sports 

(Corrado et al., 2000). 

The pharmacological treatment of patients showing mild and tolerated 

arrhythmias is palliative and consists of beta blockers and class I and class III 

antiarrhythmic drugs, targeted against arrhythmias and cardiac insufficiency. In 

particular sotalol has been reported as most efficient pharmacological 

antiarrhythmic treatment in AC (Basso et al., 2004) and amiodarone is 

recommended as add-on therapy if betablockers show to be unsuccessful in 

suppressing ventricular tachycardia (VT) (Sen-Chowdhry et al., 2004). The only 
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effective strategy against malignant ventricular tachyarrhythmias is the 

implantable cardioverter-defibrillator (ICD). ICD implantation is recommended as 

a first-line therapy after cardiac arrest or documented sustained VT, or its use as a 

primary prophylaxis in asymptomatic subjects showing a family history of SD or 

evidence of wide right ventricular (RV) dysfunction. 

 

1.5 Molecular genetics of AC 

To date, AC is considered an autosomal dominant trait showing reduced 

penetrance and expression variability (Nava et al., 1988; McKenna et al., 1994; 

Sen-Chowdhry et al., 2004; van Tintelen et al., 2006). However, compound and 

digenic heterozygosity are often described in patients with severe form of disease 

(Xu et al., 2011; Bauce et al. 2010; Rigato et al., 2013) and, rare autosomal 

recessive forms of the myocardial abnormalities are also observed, associated or 

not to cardiocutaneous syndromes (Naxos and Carvajal syndromes).  

More than a decade elapsed between the recognition of familial AC (Nava et al., 

1988), and the identification of the first disease-causing gene mutation  (McKoy et 

al., 2000, Rampazzo et al., 2002). Linkage analysis and candidate gene 

approaches unmasked the genetic heterogeneity of AC with the identification of 

13 genetic loci (Table 1.2). 

 

The first molecular genetics studies involved the recessive syndromic form called 

Naxos disease. Naxos disease was first described in 1986 as a familial, autosomal 

recessive disease characterized by hair and skin abnormalities, woolly hair and 

palmoplantar keratoderma, and a form of cardiomyopathy showing AC-like 

features (Protonotarios et al., 1986). The typical woolly hair phenotype presented 

at birth, the erythema of the palms of the hands appeared within the first year of 

life, while the cardiac phenotype appeared only during adolescence or early 

adulthood. Nine affected individuals of four families from the Greek island of 

Naxos were originally described. Linkage analysis identified a locus at the long 

arm of the chromosome 17 (17q21.2) (Coonar et al., 1998). Subsequent 

sequencing of Plakoglobin (JUP) gene in affected subjects showed a 2 nucleotides 
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deletion leading to a frame shift effect which introduces a stop codon in the 

protein (McKoy et al., 2000). 

 

Locus Chromosome Gene Protein Inheritance Prevalence Reference 

AC1 14q24.3 TGFβ3 Transforming Growth 
factor β-3 AD < 1% Beffagna 

et al., 2005 

AC2 1q.42-43 RYR2 Ryanodine receptor 2 AD < 1% Tiso et al., 
2001 

AC3 14q12-q22 Unknown     

AC4 2q32.1-q32.2 Unknown     

AC5 3p25.1 TMEM43 Transmembrane 
protein 43 AD < 1% Merner et al., 

2008 

AC6 10p12-p14 
Unknown 

    

AC7 10q22.3 
Unknown 

    

AC8 6p24 DSP Desmoplakin AD/AR 10-15% Rampazzo et 
al., 2002 

AC9 12p11.2 PKP2 Plakophilin-2 AD/AR 30-40% Gerull et al., 
2004 

AC10 18q12.1 DSG2 Desmoglein-2 AD/AR 3-8% Pilichou et 
al., 2006 

AC11 18q12.1 DSC2 Desmocollin-2 AD/AR 1-5% Syrris et al., 
2006 

AC12 17q21.2 JUP Junction Plakoglobin AD/AR < 1% Asimaki et 
al., 2007 

AC13 10q21.3 CTNNA3 α-T-catenin AD NA van Hengel 
et al., 2012 

AC-like 2q35 DES Desmin 
AD NA Otten et al., 

2010 

AC-like 2q31.2 TTN Titin 
AD NA Taylor et al., 

2011 

AC-like 1q22 LMNA Lamin A/C 
AD NA Quarta et al., 

2012 

AC-like 6q22.1 PLN Phospholamban 
AD NA Van der 

Zwaag et al., 
2012 

Table 1.2: Genes associated with AC or overlap syndromes. AD: autosomal dominant, AR: 
autosomal recessive, NA: not available. 

 

Soon after the identification of the JUP deletion involved in Naxos syndrome, 

another deletion this time in the Desmoplakin (DSP) gene, localized on 

chromosome 6p24.3, was described for another syndromic form, so called 

Carvajal syndrome (Carvajal-Huerta et al., 1998). Carvajal syndrome is an 
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autosomal recessive disorder first described in 1998, in eighteen subjects 

belonging to three families from Ecuador who showed epidermolytic 

palmoplantar keratoderma, woolly hair, and heart involvement. The homozygous 

variant linked to this disorder creates a premature stop codon which truncates 

early DSP protein without the entire C-domain (Norgett et al., 2000; Kaplan et al., 

2004). 

Subsequently, a variety of mutations were associated with dominant forms of AC 

in genes encoding desmosomal components, including: plakophilin-2 (PKP2), 

DSP, desmoglein-2 (DSG2), desmocollin-2 (DSC2), and JUP (Gerull et al., 2004; 

Rampazzo et al., 2002; Pilichou et al., 2006; Syrris et al., 2006; Asimaki et al., 

2007). Thus, AC is now considered a disorder of the desmosome, as causative 

variants affecting different components of the cardiac desmosomes, have been 

reported in approximately 50% of AC subjects (Basso et al., 2012). 

 

1.5.1 Desmosomes 

Desmosome complexes are particularly abundant in tissues subjected to 

mechanical stress like the epithelium and the myocardium, where mediate 

mechanical anchorage of cardiomyocytes by connecting cytoskeleton to cell 

membranes of adjacent cells. In addition to cell adhesion, a function in cell-cell 

communication and tissue differentiation, and apoptosis, has been advanced 

(Chidgey et al., 2001; Merritt et al., 2002). These electron-dense symmetrical 

structures appear as dense membrane-associated plaques intercalated by 30 nm 

intercellular space which is divided by a central midline creating in this way the 

extracellular core domain, known as desmoglea, and the intracellular plaque. The 

intracellular plaque is commonly described as composed of two areas: the outer 

dense plaque, separated by a dense inner plaque (North et al., 1999). The 

desmosomal structure comprises transmembrane adhesive glycoproteins 

(components of the cadherin superfamily) and cytoplasmic proteins (components 

of the plakin and armadillo families). The outer dense plaque is where the 

cytoplasmic domains of the cadherins (DSG2, DSC2) attach to plakins (DSP) via 

armadillo proteins (PKP2 and JUP) (Figure 1.2). The inner dense plaque is where 

plakins attach to the intermediate filaments of the cell. 
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The connection between desmosomal components and intermediate filaments 

provides cellular adhesion and structural integrity.  

 

 

Figure 1.2: Schematic representation of desmosomal components (from Basso et al., 2009). 

 

1.5.2 Desmosomal genes and proteins 

Desmoplakin_DSP (6p24.3) belongs to the plakin protein family that includes a 

large number of proteins such as plectin, envoplakin and periplakin mediating the 

connection of different junctions with the cytoskeleton. 

DSP is composed by an N-terminal domain which has a major role in targeting the 

protein to the membrane, a central coiled-coil rod domain involved in the protein 

dimerization and a C-terminal domain, that interacts directly to the intermediate 

filaments. It is expressed in all tissues containing desmosomes (Leung et al. 2002) 

and an alternative splicing of the DSP precursor mRNA produces two isoforms, 

differing in the length of the central α-helical domains: DSP I composed by 2871 

amino acids and DSP II composed by 2271 amino acids. 

The first pathogenic nucleotide variants described in DSP in families with 

autosomal dominant striate palmoplantar keratoderma without heart disease, were 

heterozygous nonsense (p.Q331X) and splice site (c.939+1G>A) variants 

(Armstrong et al., 1999). Soon after DSP was linked also to the autosomal 

dominant AC form, with the identification of a missense mutation in exon 7 

(p.S299R) involving a high conserved amino acid and affecting a putative 

phosphorylation site (Rampazzo et al., 2002). 
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Since then, more than 100 DSP pathogenic variants have been detected in 5 to 

16% of AC cases, many of them showing LV involvement (Pilichou et al. 2006; 

Fressart et al. 2010; Xu et al. 2010; Cox et al. 2011). 

Plakophilin-2_PKP2 (12p11.21) the predominant protein isotype expressed in 

heart, belongs to the armadillo family of proteins and interacts directly to 

desmosomal cadherins and DSP (Chen et al. 2002). Two alternatively spliced 

mRNA transcripts gives origin to two protein isoforms: transcript 2b (881 amino 

acid long) and transcript 2a (837amino acid long) respectively (Gandjbakhch et 

al., 2011). PKP2 is comprise an amino-terminal head domain and nine armadillo 

repeat motifs and is necessary for heart morphogenesis and proper localization of 

DSP in mice (Grossmann et al., 2004). 

In 2004, Gerull and colleagues described 26 PKP2 different variants in 32 of 120 

AC index patients, and suggested that the lack or aberrant inclusion of PKP2 into 

the desmosomes might affect cell-cell contacts (Gerull et al., 2004).  

Up-to-date more than 120 pathogenic variants of PKP2 have been associated with 

AC accounting for approximately 15 to 50% of reported cases (Gerull et al., 2004; 

Pilichou et al., 2006; Fressart et al., 2010; Xu et al. 2010; Cox et al., 2011). Most 

variants show a dominant inheritance with reduced penetrance, but recessive and 

compound heterozygous variants have also been identified in several patients (Xu 

et al., 2010). Moreover large deletions involving PKP2 have also been described 

(Cox et al., 2011; Li mura et al., 2013; Alcalde et al., 2014; see section 1.7.2). 

Desmoglein-2_DSG2 (18q12.1) is a desmosomal cadherin belonging to the 

cadherin superfamily, which is involved in Calcium dependent cell-cell adhesion. 

In the desmosomes, there are four isoforms of desmogleins (DSG 1–4), showing 

tissue specific expression patterns (Green and Simpson, 2007). DSG2 is expressed 

in all tissues bearing desmosomes but is the only isoform expressed in cardiac 

tissue (Schäfer et al., 1994; Nuber et al., 1995). DSG2 has an intracellular anchor 

domain interacting with DSP, a transmembrane domain, four extracellular 

cadherin domains each one with a binding site to calcium that stabilizes structure 

and function of cadherins and a small signal and a preprotein domain.  

DSG2 was linked for the first time to AC in 2006 with the detection of 9 

pathogenic variants in a small Italian cohort (Pilichou et al., 2006). The majority 

of these variants co-segregating in 8 AC families were missense, located on highly 
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conserved amino acids spread in different domains of DSG2. In this gene was 

described for the first time associated with AC a patient with compound 

heterozygosity (Pilichou et al., 2006). Soon after another study confirmed DSG2 

association with AC by detecting 4 more variants in AC probands (Awad et al., 

2006). 

More than 50 DSG2 variants have been detected in 2 to 20% of AC patients 

(Pilichou et al., 2006; Fressart et al., 2010; Xu et al., 2010; Cox et al. 2011). 

Desmocollin-2_DSC-2 (18q12.1) is a glycoprotein, like DSG2, which belongs the 

cadherin superfamily mediating Calcium dependent cell-cell adhesion. Of the 

three desmocollin isoforms (DSC 1, 2,3), DSC2 is ubiquitously expressed in 

tissues bearing desmosomes and it is the only isoform present in cardiac tissue 

(Green and Simpson, 2007). DSC2 is composed of a signal domain, a preprotein 

domain followed by four highly conserved extracellular subdomains and an 

extracellular anchor domain at the N-terminus.  

In 2006 Syrris and colleagues described the presence of heterozygous frameshift 

variants in DSC2 in 4 affected AC probands not carrying variants in DSP, JUP, 

PKP2 or DSG2 (Syrris et al., 2006). In the same year, a second study involving 88 

probands, identified in 1 AC patient a single heterozygous variant affecting an 

acceptor-splicing site in intron 5 (c.613-2A>G) of the DSC2, that resulted in 

skipping of the first 25 bp of exon 6 leading to a truncated protein (Heuser et al., 

2006). Next 2 heterozygous missense variants in DSC2 were found also in two 

Italian AC patients, resulting in the substitution of amino acids with different 

physicochemical properties and aberrant localization of the protein (Beffagna et 

al., 2007).  

Less than 50 DSC2 nucleotide variants have been reported in about 1 to 3% of AC 

cases (Syrris et al., 2006; Heuser et al., 2006, Fressart et al., 2010, Xu et al., 2010, 

Cox et al., 2011). 

Plakoglobin_JUP (17q21.2), also called γ-catenin, is the major cytoplasmic 

protein of desmosomes which  belongs to the armadillo proteins. It is present both 

in adherens junction and desmosomes, where it binds to the cytoplasmic domain 

of cadherins acting as a linker molecule between the inner and outer parts of the 

desmosomal plaque. JUP is formed by an N-terminal, a central containing highly 

conserved armadillo repeats and a C-terminal domain. 
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JUP was linked only recently to the dominant AC form followed by the 

description of a in frame insertion of a serine residue (p.S39_K40insS) in the N-

terminus of the protein in a small German family (Asimaki et al., 2007).  

Less than 20 JUP variants has been detected in approximately 1% of AC cases 

(Asimaki et al., 2007; Fressart et al., 2010; Xu et al., 2010; Cox et al., 2011). 
 

1.5.3 Extra desmosomal genes and proteins 

Although half of AC probands harbor a mutation in desmosomal encoding genes, 

approximately 1% of these patients carry mutations in non desmosomal genes 

(Alcalde et al., 2014). 

Ryanodine Receptor_Ryr2 (1q43) is the only ryanodine receptor isoform present 

in the heart. Ryr2 is a homotetramer with a molecular weight of 565 kDa, that 

crosses the membrane of the sarcoplasmic reticulum and it is involved in the 

excitation-contraction coupling of the cardiomyocytes, as it induces the calcium 

release from the sarcoplasmic reticulum into the cytoplasm. 

The cardiac ryanodine receptor has been linked to AC2 after the identification of 

six missense variants affecting highly conserved residues in families showing a 

dominant form of AC with effort-induced polymorphic tachycardias (Rampazzo et 

al. 1995; Tiso et al. 2001). The variants identified were supposed to increase the 

phosphorylation of the protein, with the consequent increase of the cytoplasmatic 

calcium. 

Myocardial structural changes were once thought to result from altered 

intracellular calcium levels but the clinical phenotype is now recognized to be that 

of cathecholaminergic polymorphic ventricular tachycardia (CPVT) rather than 

AC, and is now considered a disease phenocopy (Laitinen et al., 2001; Priori et 

al., 2001). 

Transforming Growth Factor-β3_TGFβ3 (14q24.3). In 2005, 2 nucleotide 

variants (c.-36G>A and c.1723C>T) were identified in the AC1 locus 14q23-q24, 

specifically in the 5’ and 3’ untranslated regions of TGFβ3 gene (Beffagna et al. 

2005). 

TGFβ3 is a multifunctional cytokine that belongs to the transforming growth 

factor superfamily, involved in the regulation of fibrosis, proliferation and cell 

adhesion. In vitro expression assays showed two-fold increase of the expression 
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level of mutated gene when compared to wild-type. Thus, mutations in TGFβ3 

were thought to induce myocardial fibrosis, the hallmark AC feature, by 

stimulating the proliferation of mesenchymal cells and the production of 

extracellular-matrix components.  

Although TGFβ3 is known to induce fibrosis, there is no evidence of TGFβ3 

genetic variants causality in AC and no documented upregulation of TGFβ3 in 

vivo, therefore the effect of TGFβ3 variants in AC is still controversial. 

Transmembrane Protein 43 _TMEM43 (3p25.1) was identified within the 2.36 

Mb critical region of AC5 (3p25.1), through haplotype comparison of 15 

clinically affected individuals with autosomal dominant AC from the island of 

Newfoundland in Canada (Merner et al. 2008).  

TMEM43 encodes for a 400 amino acids protein containing a response element for 

PPARγ (an adipogenic transcription factor), which may explain the fibrofatty 

replacement of the myocardium, a characteristic pathological finding in AC. The 

gene product of TMEM43 has been demonstrated to be the protein previously 

known as LUMA, which is a binding partner of emerin and the lamins, associated 

with Emery-Dreifuss muscular dystrophy (Liang et al., 2011). 

Up-to-date the founder effect of one pathogenic variant in TMEM43 (p.S358L) 

was observed in a fully penetrant and lethal form of AC and more recently, 3 

additional variants were described in AC probands from UK without other 

causative variants in desmosomal encoding genes (Haywood et al., 2012).  

Desmin_DES (2q35) is the main intermediate filament in heart muscle cells. The 

protein structure of DES is similar for all intermediate filaments composed by a 

central a-helical rod domain which is flanked by a globular head and a tail 

domain.  

Mutations in DES have been described to underlie a heterogeneous spectrum of 

clinical-overlap syndromes (desminopathies) rather than typical AC (Basso et al., 

2009).  

The first DES mutation (p.R454W) demonstrated to affect the localization of DSP 

and PKP2 at the intercalated disk was identified in a family showing an early 

onset of conduction system disorder without mutations in other desmosomal 

genes. This evidence suggested a link between desmosomal and desmin-

associated cardiomyopathies (Otten et al., 2010). Up to date 10 pathogenic 
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missense mutation have been associated to myopathy disorders with AC 

phenotype.  

Titin_TTN (2q31.2), is a giant myofilament protein composed by 38.138 amino 

acids, essential to maintain structural integrity of the sarcomere. TTN was 

considered a good candidate gene because of the proximity to the locus 2q32.1-

q32.3 (AC4) and its connection with the transitional junctions at the intercalated 

disk.  

Eight unique missense TTN variants were identified in 7 families with AC-like 

phenotype and without desmosomal genes mutations, including a prominent 

p.T2896I variant which showed complete cosegregation in one large family 

(Taylor et al., 2011). 

Lamin A/C_ LMNA (1q22) are intermediate filament-type proteins, the main 

building blocks of the nuclear lamina, that creates a meshwork underlying the 

inner nuclear membrane, and the nuclear interior. 

In 2012 it was reported that mutations in LMNA gene mimic AC phenotype. 

Genetic screening of 186 UK patients with borderline or definite diagnosis of AC 

identified 4 nucleotide variants in 4 (4%) analyzed index cases in the absence of 

other desmosomal gene mutations. ECG findings of these patients showed severe 

structural and conduction abnormalities whereas 2 of them exhibited fibrofatty 

replacement at the endomyocardial biopsy (Quarta et al., 2012).  

Phospholamban_PLN (6q22.1) is a protein involved in calcium homeostasis in 

the sarcoplasmic reticulum of the cardiac muscle cell. Dephosphorylated PLN 

interacts with the SERCA pump inhibiting the Calcium pump activity.  

The founder p.R14del mutation in the PLN was identified in 15% of Dutch 

patients with DCM and in 12% with AC negative for other desmosomal gene 

mutations (van der Zwaag et al., 2012). AC mutation carriers showed typical 

clinical features with RV and LV involvement and consegregation of the mutation 

in a large AC family. 

α-T-catenin_CTNNA3 (10q21.3) is a cytoplasmic molecule necessary for 

dynamic maintenance of tissue morphogenesis, which is involved in cell-cell 

adhesion of contractile cardiomyocytes by binding PKPs and by contributing to 

the formation of the area composit,.  
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CTNNA3, located on 10q21.3, was only recently linked to AC13 by analyzing 76 

AC negative Italian probands for mutations desmosomal-related genes. Up to date 

only 2 variants has been identified, a missense mutation (p.V94D) and an in-frame 

3-bp deletion (p.L765del) , both located in important domains of CTNNA3 

affecting the interaction between the mutant protein and β-catenin (van Hengel et 

al., 2012). 

 

1.6 Mecchanisms in Arrhythmogenic Cardiomyopathy pathogenesis 

Several theories have been advocated in the pathogenesis of AC: dysontogenic, 

degenerative, inflammatory, transdifferentiation, as causative or  secondary 

factors for the trigger and progression of the disease. 

The dysontogenic theory considered AC as a milder form of Uhl’s anomaly, 

which is a congenital heart defect charactherized by hypoplasia of the RV 

myocardium at birth (Dokuparti et al., 2005); at the contrary, in AC has been 

demonstrated that myocyte loss occurs progressively starting from childhood 

(Daliento et al.,1995). 

The degenerative theory which was postulated in 1996, considered AC as a 

consequence of myocyte death, either by necrosis or apoptosis, due to inherited 

ultra-structural defects (Mallat et al., 1996; Valente et al., 1998). Experimental 

data have shown that the key initiating phenomenon in the cascade of events that 

lead to fibrofatty replacement of the normal myocardium is myocyte necrosis 

(Pilichou et al., 2009; Rizzo et al., 2012).  

In the inflammatory theory the disease is considered the result of preceding 

myocarditis, since myocardial inflammation is a common feature in hearts with 

AC (Bowles et al., 2002; Thiene et al., 1991). More recent studies considered that 

viral myocarditis overlay on an already affected heart accelerating the disease 

progression, rather than being involved as a primary factor in the etiology of the 

disease (Calabrese et al., 2006). 

The transdifferentiation theory suggests that cardiac myocytes undergo a 

metamorphosis and switch to the fate of adipocytes (D’Amati et al., 2000). Even 

though this theory seems questionable due to the limited dedifferentiation 

capabilities of adult cardiomyocytes, recent studies supported the idea that 

adipocytes in AC derive from progenitor cells of the second heart field, which 

http://www.omim.org/geneMap/10/193?start=-3&limit=10&highlight=193


27 
 

give rise to the bulbus cordis and the pulmonary infundibulum (Lombardi et al., 

2009). According to this hypothesis, the progenitor cells of the second heart field 

switch into adipocytes because of suppressed Wnt/β -catenin signaling as a result 

of the JUP translocation to the nucleus (Garcia-Gras et al., 2006). This pathway is 

known to regulate adipogenesis, fibrogenesis and apoptosis, however 

contradictory results are coming from experimental studies regarding the activated 

of this pathway (Li J et al., 2011; Li D et al., 2011; Lombardi et al., 2011). 

Most recently, desmosome disruption in AC was linked to activation of 

Hippo/Yes-associated protein (YAP) pathway. The activation or inhibition of this 

pathway regulates cardiomyocyte proliferation and thus heart size (Chen SN et al., 

2014), suggesting that molecular changes at the intercalated discs in AC patients 

modulate the cros talk between Wnt/β-catenin and Hippo/YAP pathway. 

 

However the role of desmosomal gene mutations in the pathophysiology of 

myocardial injury remains elusive (Basso et al., 2011). Pathogenic variants 

located in the major components of cardiac desmosomes (DSP, DSG2, DSC2, 

PKP2, JUP) may influence desmosome composition and function, organization of 

junction assemblies at the intercalated disc level, or alter in the Wnt/β-catenin 

signalling pathway: 

- The pathogenic effects of desmosomal genes variants may result in the 

incorporation of abnormal protein affecting the correct assembly and function of 

desmosomes (dominant negative effect), or in a insufficient incorporation of a 

normal protein in the desmosomal structure (haploinsufficiency), or in the loss of 

essential protein-protein interactions. Pathogenic variants in the desmosomal 

components may cause the disruption of these structures resulting in the reduction 

of the mechanical contacts between cells. The impairment of the desmosomal 

organization would lead to loss of myocyte adhesion, and a subsequent cell death, 

that could be enhanced by physical activity (Delmar and Mc Kenna, 2010). As the 

cardiac myocytes have a limited regenerative capacity cell death may activate a 

repair mechanism implying replacement by fibrous and adipose tissue. 

Another possible effect of abnormal desmosomal components may result in the 

structural re-organisation of the cardiac junctions known as area composita, which 

comprise both desmosome and gap junction components (Franke et al., 2006). 
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The remodeling of gap junction assembly (Patel et al., 2014; Asimaki et al., 2014; 

Kleber et al., 2014) may lead to impair localization of the gap junctional protein 

connexin 43, resulting in heterogeneous conduction of the electric impulse and an 

increased propensity for arrhythmias. 

- Desmosome components involved in cell-cell adhesion, such as JUP, are also 

mediators in intercellular signaling. Desmosome dysfunction leads to the 

translocalization of JUP from the desmosome to the nucleus, where it suppresses 

the canonical Wnt/β-catenin signaling pathway (Garcia-Gras et al., 2006). This 

would cause increased expression of transcriptional regulators of adipogenesis, 

that have been suggested to mediate the differentiation of second heart field 

cardiac stem cells into adipocytes (Garcia-Gras et al., 2006; Lombardi et al. 

2009). 

 

1.7 Genetic Screening in AC 

1.7.1 Conventional mutation analysis techniques 

Since the 70s direct sequencing developed by Sanger (Sanger et al., 1977) has 

been the method of choice for DNA sequencing. Sanger sequencing is based on 

the amplification of specific DNA regions. Despite the technique underwent 

several modifications and improvements including its partial automation, it 

remains relatively time-consuming and expensive to keep pace with the growing 

need of sequencing larger DNA portions. 

In genetically heterogeneous diseases, the cost and effort of DNA sequencing is 

often considerable and numerous DNA pre-analytic techniques have been 

developed for the detection of point mutations and small deletions. Pre-analytic 

techniques, such as denaturing gradient gel electrophoresis (DGGE), single-strand 

conformation polymorphism (SSCP), chemical cleavage method (CCM), 

denaturing high performance liquid chromatography (DHPLC), all followed by 

direct sequencing of aberrant conformers or elution profiles allowed to minimize 

sequencing to a subset of abnormal PCR products. 

DGGE is a technique developed by Fischer and Lerman (Fischer and Lerman, 

1983) that can identify homoduplex molecules that differ by single bp 

substitutions. In DGGE, double-stranded (ds) DNA is electrophoresed through a 
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gradient of increasing concentration of a denaturing agent (urea or formamide) or 

of increasing temperature. In this electrophoresis gradient, DNA domains 

dissociate according to their melting temperature, resulting in decreased 

electrophoretic mobility. Mutant DNAs denature at a different isoelectric point 

and thus are distinguished from normals. DGGE however appears not suitable for 

the detection of somatic mutations where few mutants allele compete with an 

excess of normal alleles (Nollau et al., 1997).  

SSCP analysis is based on the differential electrophoretic mobility of single-strand 

DNA molecules that differ by a single base (Sidransky et al., 1997). Thermally 

denatured DNA is electrophoresed, and those single stranded DNA fragments that 

take up an altered conformation show up as aberrantly migrating bands on the 

electrophoretic gel. It is relatively simple, quick and cheap. However, for optimal 

results, fragment size should be in the range of 150 to 200 bp (Sheffield et al., 

1993) and SSCP analysis becomes increasingly inefficient at detecting mutations 

with the increasing size of the PCR product. 

In CCM PCR heteroduplexes are incubated with two mismatch-specific reagents: 

Hydroxylamine modifies unpaired cytosine and potassium permanganate modifies 

unpaired thymine. The samples are then incubated with piperidine, which cleaves 

the DNA backbone at the site of the modified mismatched base. Cleavage 

products are separated by electrophoresis, revealing the identity and location of 

the mutation. Compared with other mutation-detection techniques (such as SSCP, 

DGGE) that detect mutations in short DNA fragments and require highly specific 

melting temperatures, CCM has a higher diagnostic sensitivity, and can analyze 

amplicons < or = 2 kb in length (Tabone et al., 2006), although it is technically 

challenging. 

DHPLC technique is based on the detection of heteroduplexes containing a 

mutation or polymorphism by reduced column retention of heteroduplexes 

compared to the respective homoduplexes under partially denaturing conditions 

(Oefner and Underhill, 1995). DHPLC, under optimized conditions, is cost-

effective, highly accurate, rapid, and efficient for mutation detection. A 

disadvantage of DHPLC is the requirement and maintenance of a specialized and 

expensive equipment and optimization of each reaction required achieving the 
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highest sensitivity for mutation detection, moreover it can also be difficult to 

identify homozygotes unless the sample is spiked with a known control. 

For many years the use of techniques such as SSCP or DHPLC analysis together 

with Sanger sequencing was an absolute necessity, due to the lack of affordable 

and high-throughput methods, until the field of genetic screening was changed in 

2008 by the launch of the Next Generation Sequencing (NGS) technology. 

 

1.7.2 Copy number variants 

Copy number variants (CNVs) including deletions, duplications, and other 

complex genomic rearrangements that lead to a change in the number of copies of 

a specific chromosomal region, represent a major source of genetic variability in 

human DNA (Beckmann et al., 2007). CNVs may be benign polymorphic variants 

(Copy Number Polymorphism) or pathogenic variants underlying a wide range of 

disorders (Mendelian or complex diseases) by various molecular mechanisms 

such as gene dosage, gene disruption, gene fusion, position effects (Zhang et al., 

2009). The extent to which copy number variants contribute to human disease is 

still unknown. 

The techniques commonly used for the detection of point mutations, such as direct 

sequencing and DHPLC, usually fail to find CNVs. Different molecular assays 

have been developed to detect CNVs such as, Southern blot, quantitative PCR 

assays (qPCR), Fluorescence in-situ hybridization (FISH), array comparative 

genomic hybridization (CGH-array), single nucleotide polymorphism genotyping 

platforms (microarray analysis), Ligation-dependent Probe Amplification 

(MLPA). 

Traditionally, Southern blots have been used to determine gene copy number 

(Southern et al., 1975). Southern blotting is a powerful method for typing 

structural rearrangements. The principle of the technique relies upon 

fragmentation of DNA with a restriction endonuclease enzyme, followed by gel 

electrophoresis and transfer to a nylon membrane (blotting) (Mellars et al., 2011). 

However, this techniques requires a significant quantity of gDNA, it is laborious 

and time consuming. 
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Quantitative PCR (qPCR) is a high throughput technique for determining gene 

copy number, it is based on the measurement of PCR amplicon accumulation in 

real time. Amplicon accumulation is measured by fluorescent based chemistry, 

which primarily consists of either DNA intercalating dyes such as SYBR green. In 

qPCR the target DNA is amplified in a quantitative reaction for around 90 min, 

without requiring digesting, blotting or overnight steps. 

FISH is a technique typically used to identify chromosomal abnormalities from 

metaphase or interphase spreads using fluorescent probes. The strength of FISH 

lies in the direct visualization of DNA copy number at the single cell level 

(Cantsilieris et al., 2013), however because of its low resolution (about 5-10 Mbp 

for FISH) short CNVs are still difficult to detect (Duan et al., 2013). 

CGH-array is a technique based on dual hybridization of test and reference DNA 

to either short or long oligonucleotides immobilized on a glass slide (Carter et al., 

2007). The signal ratio between test and reference sample is normalized and used 

to infer copy number. Although this technique allows the determination of 

breakpoints, the resolution of CGH-array, around 1-25 kb with 1 million probes 

for CGH-array (Yoon et al., 2009), still makes difficult the detection of short 

CNVs (Duan et al., 2013). 

SNP microarrays are also hybridization based and have the advantage of 

analyzing both single nucleotide differences and in some cases non-polymorphic 

copy number probes that are not restricted by sequence properties of SNPs 

(McCarroll et al., 2008). The main strength of microarray platforms is the ability 

to screen CNVs on a genome-wide level at relatively low cost in large data sets, 

however there are several limitations: the ability of microarray platforms to 

resolve breakpoints and detect small rearrangements is generally poor, and is 

dependent on probe location and spacing, moreover structural rearrangements that 

do not affect copy number (such as inversions and translocations) are not detected 

(Cantsilieris et al., 2013).  

MLPA is a versatile semi-quantitative method used to determine the relative copy 

number of several nucleic acid sequences in a single multiplex PCR-based 

reaction (Schouten et al., 2002), from relatively low amounts of gDNA. The 

technique relies upon hybridization and ligation of two adjacent oligonucleotides 

to a specific gDNA sequence. The strengths of MLPA lie in the number of loci 
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that can be analyzed in a single reaction, the specificity of the ligation step, the 

reliability and accuracy of CNVs measurement, and the relative low cost for 

conducting large scale association studies. Moreover MLPA, compared to FISH 

and Southern blot analysis, targets short (50-70 nt) fragments allowing also the 

identification of single gene/exon aberrations and it is a low cost and 

straightforward technique compared to CGH-array (Figure 1.3). However it does 

not allow the exact determination of the breakpoints. 

 

 

Figure 1.3: MLPA in comparison to other techniques. MLPA can detect a wide range of genomic 
alterations, from single point mutations to large chromosomal deletions/duplications (from MRC 
Holland). 

 

Recently CNVs have been associated to different cardiomyopathies (Koopmann et 

al., 2006; Bisgaard et al. 2006; Gupta et al., 2010) including AC (Cox et al., 2011, 

Roberts et al., 2013; Li Mura et al., 2013). In the first study, MLPA revealed 3 

PKP2 exon deletions in 3 of the 149 AC cases: rispectivly the deletion of exon 8, 

the deletion of a region including exon 1 and 4 and the deletion of the entire 

coding region of PKP2 gene (Cox et al., 2011). The frequency of CNVs in this 

study was about 2%, comparable to DSG2 or DSC2 mutations in the Dutch 

cohort. Later, Roberts and colleagues described large deletions involving PKP2 in 

2 AC cases identified both by microarray and MLPA analysis. The PKP2 deletion 

including exons 2-14 was identified in one index case and his son, while the other 

AC patient carried a large de novo 7.9 Mb deletion on chromosome 12p12-1p11, 

which comprise the entire PKP2 gene (Roberts et al., 2013). More recently, 

another 122.5 kb deletion in the chromosomal region 12p11.21 encompassing 
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PKP2 was identified in an Italian AC patient and his relatives by SNP-array and 

qPCR analysis (Li Mura et al., 2013). Hence, CNVs screening is now strongly 

recommended when conventional sequencing does not identify pathogenic 

variants in AC-related genes (Alcalde et al., 2014). 

 

1.7.3 Next-generation sequencing (NGS) 

Since the conclusion of the Human Genome Project in 2000, based on Sanger 

technology, which required about 13 years (Lander et al. 2001; Venter et al. 2001) 

and 70 million dollars (Metzker et al., 2010), deep sequencing technologies were 

developed to sequence in short range of time whole genomes and exomes. NGS, 

also known as ‘deep sequencing’ and ‘high-throughput sequencing’, employ new 

sequencing apparatuses able to produce millions of small DNA sequences (reads) 

in a single run. 

In the last years NGS ability to increase throughput and to decrease sequencing 

costs shifted the interest from the research of variants in specific DNA regions to 

the identification of variants from a genome-wide sequencing data. This has led to 

advances in diagnostics and scientific research with the detection of variants 

linked to Mendelian and complex diseases (Sobreira et al., 2010; Rabbnai et al., 

2012; Yang et al., 2013; Krawitz et al., 2014; Nijman et al., 2014). NGS has been 

successfully applied for instance to the identification of genetic defects of a 

variety of disorders such as cancer (Mwenifumbo et al., 2013, Kougioumtzi et 

al.,2014), neurological diseases (Della Mina et al., 2014; Zhao et al., 2013), 

intellectual disability (Iqbal et al., 2012; Tsurusaki et al., 2011), mitochondrial 

dysfunctions (Dames et al., 2013; Tang et al., 2013), cardiovascular diseases 

(Mook et al., 2013; Dorn et al., 2014). 

1.7.3.1 Applications of NGS 

NGS has the potential to focus on the analysis of entire genomes (Whole Genome 

Sequencing-WGS), on the sole coding part of the genome (Whole Exome 

Sequencing, WES) or on specific target genes (Targeted Resequencing). NGS 

technologies may also be employed for the detection of DNA methylation sites 

(Methylation Sequencing, Methyl-seq), for DNA-protein interactions studies 

(Chromatin Immunoprecipitation Sequencing, ChIp-seq), for transcription factor 
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profiling and gene expression quantification studies (RNA-seq), ribosomal 

Sequencing (Ribo-seq), small RNA profiling including microRNAs and promoter-

associated RNAs (sRNA-Seq), thus making possible epigenetic and transcriptome 

analysis. 

Whole Genome Sequencing (WGS) 

With the availability of NGS technologies, WGS experienced a remarkable 

growth in the last few years.  WGS was first applied to bacterial genomes using 

454 technology (Smith et al., 2007) and since then, a large number of different 

genomes have been sequenced. As of January 2014, for instance, the number of 

genome sequencing projects in the Genome Online Database reached 37.540 

(Pagani et al., 2012). In addition to the sequencing of the genomes of different 

organisms, such as animals (Yang et al., 2014; Zhou et al., 2014; Schroyen et al., 

2014), plants (Cao et al., 2011; Matsumoto et al., 2008; Baev et al., 2014; Pacurar 

et al., 2014), bacteria (Fournier et al., 2014; Pylro et al., 2014; Mathers et al., 

2015; Wang et al., 2015) and viruses (Ericsen et al., 2014; Lwande et al., 2014; 

Marcacci et al., 2014), projects to characterize the DNA sequence of individuals 

have gathered pace, and WGS of humans is becoming commonplace (Gonzaga-

Jauregui et al., 2012). Several groups are studying human genomic variation by 

sequencing or genotyping large number of individuals, including multi-institute 

consortia projects such as the 1000 Genomes Project (1000 Genomes Project 

Consortium, 2010), the 10K project (Genome 10K Community of Scientists, 

2009),  the Personal Genome Project (Ball et al,. 2012), the HapMap project 

(International HapMap Consortium, 2003).  

Whole Exome Sequencing (WES)  

Whole exome sequencing (WES) study design can provide a new strategy to 

explore the aetiological roles of rare variants in complex diseases. At first WES 

has been successfully applied to the research setting for the elucidation of 

candidate genes and causal variants in individuals and families with different 

genetic disorders. In 2009, Ng and coll. successfully identified by WES one 

missense mutation in the Myosin Heavy Chain 3 gene (MYH3) among 4 unrelated 

affected individuals with the rare autosomal dominant Freeman-Sheldon 

syndrome (Ng et al., 2009). Since this initial study, a growing number of reports 

have described the successful application of WES in identifying causative variants 

http://msb.embopress.org/content/9/1/640.long#ref-135
http://msb.embopress.org/content/9/1/640.long#ref-116
http://www.ncbi.nlm.nih.gov/pubmed/?term=Genome%2010K%20Community%20of%20Scientists%5BCorporate%20Author%5D
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in disorders with recessive and dominant inheritance patterns as well as in 

disorders caused by de novo variants (Choi et al., 2009; Ng et al., 2010; Vissers  et 

al., 2010; Vilariño-Güell  et al., 2010; Girard et al., 2011; Choquet et al., 2015; 

Schottmann et al., 2015; Menezes et al., 2015). These achievements have led to 

increasing interest in the application of WES in the clinical practice. Among the 

advantages of WES, the selective sequencing of the coding sequence of the human 

genome is less expensive in comparison to WGS since the exome represents only 

about 1% of the genome. In the clinical setting, WES can enable a new approach 

to diagnose patients with an unclear clinical diagnosis and allow the study of the 

entire exome than a relatively small subset of genes traditionally associated with 

the patient's condition. Moreover, genotyping or resequencing the entire exome in 

patients who are negative from classical screening of disease-related genes subset 

enables the research in genes and nucleotide variants not yet associated to the 

disease, together with the possibility of storing NGS data for potential future 

studies. 

However, while attractive, the introduction of WES for clinical laboratories 

remains challenging, especially because of the laborious and accurate process of 

bioinformatics analysis and data interpretation that are required to identify 

candidate genes and causal variants. 

Targeted Resequencing (TR) 

The success of NGS in research resulted in its adoption in clinical care. Although 

WGS and WES are the most comprehensive strategies for genetic analysis, in the 

clinical setting, are still unaffordable. In comparison, TR can reach higher 

coverage of exonic regions of interest while reducing the sequencing cost and 

time. These rapid, accurate, and relatively low cost method allows a high-

throughput, genotype-based approach to molecular diagnosis, infact TR may 

rapidly screen at once large panels of genes associated with a particular phenotype 

or may provide differential diagnosis in diseases that present with atypical 

manifestations, or for which not all genetic variants are known. 

The transfer of NGS from research to diagnostic laboratories already allowed the 

development, validation and implementation of TR Gene Panel assays for the 

NGS-based genetic testing and diagnosis of patients with different disorders 
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(Jones et al., 2013; Blue et al., 2014; Verma et al., 2014; Glod et al., 2014; 

Morgan et al., 2014; Ankala et al., 2014; Sikkema-Raddatz et al., 2013). 

Chromatin Immunoprecipitation Sequencing (ChIp-seq) 

NGS technologies offer the potential to substantially accelerate also epigenomic 

research, including analysis of post-translational modifications of histones, of the 

interaction between transcription factors and their direct targets, of nucleosome 

positioning on a genome-wide scale and of the characterization of DNA 

methylation patterns (Bormann et al., 2010; Fouse et al., 2010; Bhaijee et al., 

2011). Using ChIP-Seq technology, post-translational modifications of histones 

and the location of transcription factors can be studied at the whole-genome level 

(Neff and Armstrong, 2009). Originally ChIP-enriched sequences were analyzed 

using array technology. However limited array content required the selection of 

the sequences to analyze, generally genes promoter and CG-rich regions were 

selected. ChIP-seq technique gains two main advantages from the NGS approach, 

firstly, it is not limited by the microarray content, so that all sequences bound are 

identified, and secondly, it does not depend on the efficiency of probe 

hybridization. Many ChIP-seq studies have been performed, such as the ENCODE 

(Consortium, 2004) and FANTOM5 (Andersson et al., 2004) projects, that 

revealled genome wide profiles and binding sites for a range of DNA binding 

proteins. 

Transcription factor profiling 

The development of NGS technologies has provided a unique opportunity to study 

transcriptional regulatory networks. Transcription factors are essential elements 

that regulate the transcription and the spatio-temporal expression of genes, thereby 

ensuring the accurate development and functioning of an organism. Earlier, the 

quantification of the production of nascent RNAs was achieved by bromo-

uridinating nuclear run-on RNA molecules followed by sequencing (Core et al., 

2008) or by immunoprecipitation of RNA polymerase followed by sequencing of 

the bound RNA fragments (Churchman and Weissman, 2001).  

The use of NGS for transcription factor profiling have greatly advanced the 

understanding of gene regulation and revealed additional mechanisms in the 

regulation of gene expression (Sharma et al., 2013; Driessen et al., 2013), and 

large international consortia (Adams et al., 2012; ENCODE, 2012) and numerous 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564260/#b28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564260/#b28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564260/#b20
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laboratories are generating and releasing such genome-wide datasets into the 

public domain.  

Methylation Sequencing (Methyl-seq) 

NGS has also enabled the mapping of epigenetic marks such as DNA methylation 

and histone modification patterns in a genome-wide manner. Methylation of 

cytosine residues in DNA is the most studied epigenetic marker and is known to 

silence parts of the genome by inducing chromatin condensation (Newell-Price et 

al., 2000).  

Precise genome wide mapping of methylation patterns has been made possible by 

various NGS techniques, including methylated DNA immunoprecipitation (Taiwo 

et al., 2012), MethylC-seq (Lister et al., 2009) and reduced representation bisulfite 

sequencing (Meissner et al, 2005). With respect to the technologies used to isolate 

the methylated sequences, i.e. methylated DNA immunoprecipitationsequencing 

and methylated CpG island recovery assay, NGS-analysis clearly reveals all 

sequences enriched. Many NGS methylation studies have been presented among 

which those of the ENCODE consortium (Consortium, 2004). 

RNA-sequencing (RNA-seq) 

Beyond DNA sequencing and epigenetic analyses, NGS has also enabled the 

global mapping of the transcriptome by RNA-sequencing (RNA-seq). High-

throughput methods have facilitated the detection and quantification of transcripts 

and discovery of novel isoforms. Significant interest also lies in uncovering the 

role of various regulatory factors in controlling the expression of genes, such as 

transcription factors and non-coding RNAs. 

Microarray technologies provided the first practical technique for measuring 

genome-wide transcript levels. However, microarrays were only applicable to 

studying known genes and had significant problems with cross-hybridization and 

high noise levels (Wang et al., 2009). Much more accurate measurement of 

mRNA levels became possible with the introduction of RNA-seq, which was 

developed in both yeast (Nagalakshmi et al., 2008) and mammalian cells (Cloonan 

et al., 2008). This method uses the high-throughput sequencing of cDNA 

fragments generated from a RNA library. It allows precise quantification of 

transcripts and exons, moreover it is a great tool for identifying novel genes and 

RNAs. 
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The ability to detect and accurately quantify transcript levels using NGS 

technologies has significant impacts for research and clinic (McManus et al., 

2010; Li et al., 2014; Shin et al., 2014; Zhao et al., 2014; Liu et al., 2014). 

Ribosomal Sequencing (Ribo-seq) 

The impact of NGS technologies on Ribosomal RNA characterization has been 

noteworthy. Ribosomal Sequencing (Ribo-Seq) was first developed by Ingolia in 

2009 in order to measure the quantities of ribosome-bound fragments by freezing 

ribosomes and using the translation inhibitor cycloheximide 9 (Ingolia et al., 

2009), the mRNA is then digested and the resulting fragments are sequenced to 

reveal mRNA regions occupied by ribosomes. The quantification of ribosome-

bound regions reflects the translation efficiency. 

The successive use of NGS technologies for metatranscriptomic profiling has 

been so successful that at present scientists have access to the full set of coding 

and non-coding RNA in a community of organisms (Bomar et al., 2011; Shi et al., 

2009; Stewart et al., 2011). Sequencing of the small sub-unit rRNA genes have 

also been helpful in the determination of bacterial diversity and structure 

highlighting the microbial diversity of various ecosystems (Taib et al., 2013; 

Toma et al., 2014; Chen et al.,2014). 

Small RNA profiling (sRNA-Seq) 

NGS has also emerged as a direct profiling method for small RNA (sRNA-Seq), 

that in most eukaryotic organisms function as guides in association with specific 

proteins for regulation at the post-transcriptional or transcriptional level. 

Compared to platforms such as microarray or PCR-based assays, sRNA-Seq 

allows semi-open-ended analysis of both known and unknown sRNAs. Most 

initial sRNA-discovery studies used pyrosequencing (Margulies et al., 2005; 

Rajagopalan et al., 2006; Ruby et al., 2006). Subsequently, different NGS 

platforms with higher throughput and improved methods such as short-read 

sequencing-by-synthesis of amplified DNA colonies, that facilitate sequencing 

depth with respect to previous methods (Bentley et al., 2006), were applied for 

sRNA-Seq and resulted in the discovery of an ever-growing number of sRNA 

(Seila et al., 2008; Affymetrix ENCODE Transcriptome Project et al., 2009; Taft 

et al., 2009; Klimczak et al., 2014). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564260/#b75
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564260/#b75
http://bioinformatics.oxfordjournals.org/content/28/24/3211.long#ref-3
http://bioinformatics.oxfordjournals.org/content/28/24/3211.long#ref-22
http://bioinformatics.oxfordjournals.org/content/28/24/3211.long#ref-22
http://bioinformatics.oxfordjournals.org/content/28/24/3211.long#ref-25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673065/#B32
http://www.ncbi.nlm.nih.gov/pubmed/?term=Affymetrix%20ENCODE%20Transcriptome%20Project%5BCorporate%20Author%5D
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1.7.3.2 NGS Platforms 

The main NGS platforms available in the market at present are HiSeq and MiSeq 

sequencers product by Illumina/Solexa, San Diego, CA, USA, Ion Torrent Proton, 

Personal Genome Machine- PGM and Solid3 by Life Technologies, Carlsbad, 

CA, USA, 454 Genome Sequencer-GS FLX and GS Junior System by Roche 

Applied Science, Mannheim, Germany. Each platform employs different 

sequencing chemistries and amplification methods, and this causes different 

strength and weakness points. The choice of a platform depends upon the 

expectations of research question, accordingly one may be concerned about the 

performance such as read lengths, data output, accuracy and cost. 

Illumina platforms  

Illumina platforms are based on bridge amplification after library preparation and 

the use of reversible dye terminator for sequencing. 

The Genome Analyzer- GA was first introducded by Solexa in 2006 and further 

developed by Illumna, initially reads were very short (3+5-bases) in comparison 

with Sanger sequencing. Since then many technical improvements have been 

made and presently Illumina platforms can produce reads ranging from 100 to 250 

bases, but with high throughput. Read-lengths are however limited by multiple 

factors that cause signal decay and dephasing, such as incomplete cleavage of 

fluorescent labels. 

In early 2010 Illumina launched the HiSeq2000, that mantains the same 

sequencing strategy of the GA and can produce up to 200 Gb of 100-base paired-

end reads in the course of a 8 days run. 

In 2011 Illumina introduced the MiSeq, that implements the sequencing by 

synthesis technology and is similar to the HiSeq system. It is a benchtop 

sequencer, suitable for single-day experiments, that combines the processes of 

cluster generation, sequencing by synthesis, and data analysis into a single 

machine generating up to 5.1 Gb of 150-base paired-end reads per day 

(http://www.illumina.com/). 

The main error type of Illumina technology is substitution, due to the 

simultaneously addition of all the four nucleotides in the reaction mix. However, 

because of the lower cost per sequence than other platforms, interest in amplicon 

https://www.google.it/search?sa=X&es_sm=122&biw=1440&bih=785&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gZF5iWF6ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrO23OgreWcmd2708t_FB08_0nt2QsLADNG-V5hAAAA&ei=_im1VMjSI8j2OrzpgcAF&ved=0CIUBEJsTKAIwEA
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sequencing on Illumina platforms is growing (Guilhamon et al., 2014; Manson-

Bahr et al., 2014; Igartua et al., 2015; Schirmer et al., 2015).  

Roche platforms  

Roche platforms use pyrosequencing and detect chemiluminescent signals of 

pyrophosphate release on nucleotide incorporation. They can produce read lengths 

close to Sanger (400-1000 bp), however, the price per base on the Roche 454 

platform is much higher than other NGS platforms. 

The first commercially successful NGS sequencer was the pyrosequencing 

platform developed by 454 Life Sciences in 2005, with a read length of 100–150 

bp and output reads exceededing 200,000 reads and 20 MB in a single run. The 

454 GS FLX platform launched in 2008 can generate 40 Mb of 400-base paired-

end reads in a 10-hours run. 

The benchtop sequencer 454 GS Junior released by Roche in early 2010 produces 

35 Mb of sequence data from 400 to 600-base paired-end reads in a 10-hours run 

(http://454.com/products/gs-junior-system/). 

The main disadvantage of Roche sequencers is due to the difficulty of the 

pyrosequencing technique to solve long homopolymeric regions, so the principal 

errors are base insertion or deletion in these regions during sequencing, rather than 

substitutions as in the Illumina platforms. On the other hand, thanks to the 

addition of a single dNTP each time, substitution errors are rarely encountered in 

these reads. 

Life Technologies platforms 

Life Technologies uses a similar sequencing method that detects signals of H+ 

ions release due to binding of nucleotides by semiconductor detector (Biswas et 

al., 2014). 

Ion Torrent Proton is a high-capacity sequencer that employs a semiconductor-

based technology interfaced with sequencing-by-synthesis (Rothberg et al., 2011). 

It permits 200-bp reads in 2 hours and can generate up to 10 Gb per run 

(http://www.lifetechnologies.com/). 

Its lower-capacity counterpart, the Ion PGM, released by Ion Torrent at the end of 

2010, is a bench-top sequencer that implements semiconductor sequencing 

technology without requiring fluorescence and camera scanning, resulting in 

higher speed, lower cost, and smaller instrument size. Currently, it enables up to 
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400-bp reads in 2-4 hours and can generate up sequence data form 30Mb to 1 G 

per run (http://www.lifetechnologies.com/). 

The SOLiD system, available from 2007, uses a chemistry based on the polony 

sequencing technique published in the same year as the 454 method (Shendure et 

al., 2005), with the difference that in the SOLiD method base detection of the 

DNA fragments is achieved by sequencing by ligation instead of through 

polymerase reaction. SOLiD can achieve very high-throughput, up to 320 Gb of 

sequence data in 50-base paired-end reads per an 10-day run 

(http://www3.appliedbiosystems.com/). The 2-base enconding system allows to 

determine and to correct almost all sequencing errors. However short read length 

(50 bases) and resequencing only in applications is still its major shortcoming 

(Liu et al., 2012). 

1.7.3.3 Limitations of NGS 

Despite the numerous advantages of the NGS technologies, thare are still 

technical limitations, expected to decrease in the next few years. 

Limitation in the read lengths remains among the major technical drawbacks. 

Although recent sequencers achieve up to 1000 bases, the average length ranges 

between 100 and 400 bases, and short read-lengths are known to involve more 

complicated analyses. Reads are assembled using overlapped ends to build longer 

stretches of DNA, which are attached to each other until the assembly of an entire 

chromosome. Short reads include shorter overlapping ends, which makes the 

accurate determination of the previous and subsequent reads difficult. Therefore, 

the analysis and assembly efforts required increases by several folds for short 

read-lengths in comparison to longer lengths. 

Another challenge concerns reads coverage. Reads produced by NGS do not 

completely cover the entire target region, either exome or a gene set: some 

sequences such as GC-rich sequences can be difficult to capture and some 

sequences cannot be targeted at all because of insufficient or inadequate probes. 

Moreover uneven capture efficiency across exons influences the reads depths of 

specific exons. Although the off-target hybridization value is often important 

(20%) not all sequences can be aligned with the reference sequence to allow SNP 

calling.  
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Furthermore, NGS creates lots of background noise, consisting in mainly 

sequencing errors, which can be platform-specific since technically linked to the 

sequencing chemistrie implemented in a particular sequencing platform (Coonrod 

et al., 2012). The most common error type in NGS is substitution, which 

complicates the distinction of a true single nucleotide variant. The indel 

(insertion/deletion) error is another common error type especially in the Ion 

Torrent and SOLiD platforms. Errors can also arise from mistakes during the 

library preparation and sequencing or during the alignment. For instance read 

misalignments often arise in presence of repetitive regions and pseudogenes. 

Another limitation of NGS is the difficult detection of structural variants, such as 

copy-number variants, inversions and translocations. However recent studies 

show the sucelssufull identification of CNV from NGS data (Zhao et al., 2013; 

Wang et al., 2014; Duan et al., 2014; Horpaopan et al., 2015). 

Another issue concerns the reproducibility of data, regarding data replication and 

verification. The possibility of obtaining different mutation patterns from two 

NGS experiments carried out by different groups without any overlap between the 

two sets of mutations (Agrawal et al. 2011; Stransky et al. 2011) suggests data 

reproducibility as a major limit of NGS (Faita et al., 2012; Nekrutenko et al., 

2012). 

Furthermore, one of the more evident challenges of NGS is the huge amount of 

data that require proper analysis and storing. Storage of computational data is 

becoming an expensive problem, hampered by increasing data volumes and 

frequent updates of analysis methods and tools (Lampa et al., 2013). Long term 

archiving of large amounts of data is becoming an important task, as scientists are 

reluctant to discard raw data since improved algorithms may help extract further 

information from them in the near future.  

Management, filtering and prioritization of variants and clinical interpretation of 

genetic findings require expertise. NGS data management and interpretation 

require a large extent of bioinformaticians and biologists who have learnt basic 

bioinformatics. 
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1.7.3.4 NGS and Cardiomyopathies 

NGS represents a valuable approach for the molecular analysis of genetically 

heterogeneous disorders, such as inherited cardiomyopathies, and SD-associated 

disorders. These diseases are linked to multiple causative genes, often showing 

rare and private variants segregating within small families, and whose direct 

sequencing would be laborious, time consuming and expensive. 

In the last years linkage analysis performed in large families and genome-wide 

association studies performed in diverse populations have been successful in 

detecting causal loci, genes and variants of inherited cardiomyopathies. However, 

the wide locus and allelic heterogeneity typical of cardiomyopathies requires to 

fully sequencing the whole coding region of several genes, making NGS the most 

appropriate technique for this purpose. 

Although cardiomyopathies usually present different clinical features, they exhibit 

some level of genetic and, especially in their end-stage, phenotypic overlap. For 

instance the detection of causative variants in desmosomal genes sometimes also 

occur in DCM patients in addition to ACM patients (Posch et al., 2008; Elliott et 

al., 2010; Zhang et al. 2011; Garcia-Pavia et al., 2011; Garcia-Pavia et al., 2013), 

so that variants in the same gene or gene set correspond to a wider phenotypic 

spectrum. Thus, NGS allows a differential diagnosis approach for correctly 

identifying patients with unclear clinical characteristics.  

With different NGS approaches genomic regions of interest can be targeted to 

enable clinical approach for the diagnostic purposes. Cardiomyopathy associated 

genes are sequenced by performing customized targeted sequencing on NGS 

platforms and forming a panel and presented as diagnostic tool for the 

cardiomyopathy in a clinical setup (Biswas et al., 2014). 

Different NGS approaches, such as targeted resequencing or WES have been 

successful in finding causative mutations in different cardiomyopathies.  

A study involving 223 unrelated probands with Hypertrophic cardiomyopathy, 

using targeted resequencing of 41 cardiovascular genes, reported 152 distinct 

candidate variants in sarcomeric or associated genes (89 novel) in 143 patients 

(64%), and an additional 94 candidate variants (73 novel) in desmosomal, and 

ion-channel genes in 96 patients (43%) (Lopes et al., 2013). 
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Another study described the use of NGS in order to search for de novo genetic 

variants in 2 unrelated infants presenting with recurrent cardiac arrest and 

prolonged QTc interval. The 2 parent-child trios were investigated by WES and 

follow-up candidate gene screening was performed on an independent cohort of 

82 subjects with long-QT (LQT) syndrome without mutations in LQT genes. 3 

heterozygous de novo mutations were detected in calmodulin1 (CALM1) or 

calmodulin 2 (CALM2) in the 2 probands and in 2 additional subjects with 

recurrent cardiac arrest. Additional biochemical studies were performed to 

determine the functional consequences of these mutations (Crotti et al., 2013). 

A recent study identified a novel disease-causing variant in α-actinin 2 by targeted 

resequencing 48 disease genes for HCM, which was shown to segregate with the 

cardiomyopathic trait in an Italian family with HCM. (Girolami et al., 2014), 

emphasizing the potential of NGS approach in diagnostic screening. 

1.7.3.5 NGS and AC 

The potential of NGS in the identification of causal mutations also in AC or 

overlap syndromes has been so far highlighted by different reports. 

Hedberg and coll., using WES, identified a heterozygous mutation p.P419S in 

DES gene in a Swedish family affected by autosomal dominant myofibrillar 

myopathy with Arrhythmogenic Cardiomyopathy. The mutation was then 

detected by Sanger sequencing in 17 additional affected family members 

(Hedberg et al., 2012). 

Another study describing the NGS application to extend the genetic analysis in an 

AC proband who was negative for mutations in five desmosomal genes revealed a  

heterozygous missense mutation p.T351A in LDB3. This result was confirmed by 

subsequent Sanger DNA sequencing, which also detected the mutation in other six 

relatives with a definite or borderline diagnosis of AC. This study highlights the 

usefulness of NGS to point to new causative genes in AC (Lopez-Ayala et al., 

2014). 

Moreover, the efficiency of NGS in detecting mutations in AC is emphasized in a 

very recent study. Gréen and coll. designed and validated a NGS test panel for 

parallel sequencing 10 genes in AC patients. All the samples were successfully 

sequenced and mutations found by Sanger sequencing were also found using 
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NGS, which showed a sensitivity varying from 99.3% to 100%, and a specificity 

varying from 99.9% to 100%, depending on the bioinformatics pipeline (Gréen et 

al., 2015). 

1.7.3.6 NGS and Molecular Autopsy 

The identification of the molecular basis of SD during molecular autopsy has the 

potential to highlight the causes of death and especially permit cascade screening, 

genetic conselling and clinical management of at-risk family members. NGS 

application at post mortem will enable a comprehensive analysis of all known SD-

associated genes or even the entire exome or genome from a relative small 

quantity of DNA, and in a cost-effective way. 

NGS-based molecular autopsies have already been successful in detecting genetic 

causes of SD. 

Campunzano and coll. describe the genetic analysis of 104 SD-related genes using 

a NGS custom panel for a case of sudden infant death syndrome (SIDS) after 

negative autopsy. NGS identified seven variants in 6 different genes in the index 

case, two of them were previously described as pathogenic. Familial segregation 

showed that the index case’s mother carried 5 of the 6 genetic variants, this last 

inherited from his father; the sister carried 3 of the 6 variants identified in the 

index case. This study underlines the utility of NGS to identify potentially genetic 

variants and the crucial role of familial genotyping to clarify the pathogenic role 

of unknown variants and to identify other genetic carriers at risk of SCD 

(Campuzano et al., 2014).  

Another study performed by the same group described the application of NGS to 

identify the genetic cause of SD in a juvenile cohort with no-conclusive cause of 

death after comprehensive autopsy. Twenty-nine cases were analyzed, low quality 

DNA cases were analyzed for 7 main SD- associated genes using Sanger 

technology, while good quality cases were analyzed for 55 SD-associated genes 

using NGS technology. They identified 35 pathogenic and/or potentially 

pathogenic genetic variants in 12 cases (41.37%): 10 genetic variants in genes 

encoding cardiac ion channels were identified in 8 cases (27.58%), and 25 genetic 

variants in genes encoding structural cardiac proteins in 9 cases 

(31.03%).(Campuzano et al., 2014).  
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Loporcaro and coll. describe the use of WES as an efficient and cost-effective 

approach to incorporate molecular studies into the conventional postmortem 

examination. WES and gene-specific surveillance of 90 known major cardiac 

channelopathy/cardiomyopathy genes were performed on a sudden death victim 

after inconclusive autopsy.  WES analysis revealed the p.R249Q mutation in the 

myosin heavy chain 7 gene (MYH7) previously associated with familial 

hypertrophic cardiomyopathy (HCM) and SD. Six additional family members 

were found to be at risk for HCM and were recommended to clinical follow-up, 

however no clinical signs were described. (Loporcaro et al., 2014).  

Another study describes the application of NGS to estimate the frequency of 

pathogenic variants in the genes most frequently associated with SD. Fifteen SD 

cases and 29 patients with channelopathies were analyzed for 34 SD associated 

genes. Likely pathogenic variants were identified in three out of 15 (20 %) 

forensic SD cases and in 12 out of 29 (41 %) patients with channelopathies, 

highlighting the potential of NGS to increase the diagnostic rate significantly in 

the clinical setting (Hertz et al., 2014). 

A recent study by Bagnall and coll. describes the use of WES to identify a causal 

mutation in a family with cardiac disease showing phenotype heterogeneity. This 

approach detected the p.A119T mutation in the alpha-actinin-2 (ACTN2) gene that 

segregated with disease, highlighting the value of WES in the cardiac genetic 

testing in families with mixed clinical presentations (Bagnall et al., 2014). 

Another recent study reports post-mortem WES and gene-specific analysis of 117 

SD susceptibility genes for 14 SD victims. Overall, 8 ultra-rare variants (7 

missense, 1 in-frame insertion) in 6 genes absent in 3 publically available exome 

databases were identified in 7 of 14 cases (50%). Of the 7 missense alterations, 2 

(p.T171M in Voltage-Dependent L-Type Ca2+ Channel Alpha 1 Subunit-

CACNA1C, p.I22160T in TTN) were predicted damaging by 3 independent in 

silico tools. This study emphasize the utility of WES to detect rare genetic 

variants underlying SD, and the complexity of accurate interpretation of each 

variant (Narula et al., 2014). 
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1.7.3.7 Interpretation of the clinical significance of variants in NGS 

The detection of novel genetic variants is rapidly increasing with the introduction 

of high throughput technologies into the clinical diagnostics, making challenging 

the interpretation of variants’ clinical significance. 

Although the lack of a comprehensive and collectively-accepted interpretation 

protocol, variants classification is aided by available interpretation guidelines 

(Kazazian et al., 2009), recently improved and updated (Richards et al., 2008). 

American College of Medical Genetics (ACMG) recommends a correct 

annotation and a standardized terminology to report nucleotide variants (den 

Dunnen et al., 2000) and to assess their pathogenicity carefully evaluating a string 

of parameters such as evolutionary conservation, population studies, functional in 

vitro studies, clinical presentation, family history and co-segregation. 

The availability of reliable databases collecting genetic variants and information 

on genotype-phenotype associations help to discern between benign variants and 

disease-causing variants, by reporting for instance whether a specific variant had 

been already described in another patients. A number of established public 

databases focusing on inherited diseases report information on genotype-

phenotype associations are available, such as the Human Gene Mutation Database 

(HGMD) (Stenson et al., 2013), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) 

(Landrum et al 2014). Several web-based, gene-centered, locus-specific databases 

have also been developed, such as the Leiden Open Variation Database (LOVD) 

(Fokkema et al., 2005), that provides a flexible, freely available tool for gene-

centered collection and display of DNA variants. In particular, comprehensive 

information about all known AC-associated variants are collected and shared in 

the ARVD/C database since 2009 (van der Zwaag et al., 2009). Further, the 1000 

Genomes Project and Exome Variant Server (EVS) report million of single 

nucleotide variants (SNVs) obtained from deep sequencing of large population 

cohorts (1000 Genomes Project Consortium, 2010; Exome Variant Server, 2011), 

and also report information about the variant frequencies in the population. 

1.7.4 Assessing pathogenicity of desmosomal genetic variants 

The evaluation of the DNA variants has to be extremely accurate in AC cases 

because disease-associated genes have high background genetic variation rate. A 

https://www.acmg.net/
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recent study demonstrated that the overall yield of mutations among AC cases was 

58% versus 16% in controls (Kapplinger et al., 2011) by proving that previous 

AC-associated pathogenic genetic variants are present in the general population. 

Specifically, missense mutations were hosted by 16% of controls versus a similar 

21% of AC cases. This poses several challenges to interpreting the AC genetic 

test, as 1 in 6 healthy individuals would meet current criteria for a so-called 

positive AC genetic test result, even with proper qualification of these rare 

“mutations” with the clinically ambiguous designation as a “variant of uncertain 

significance.” Another study provided confirmatory data by reporting that 18% 

(38 genetic variants) of previously reported AC pathogenic genetic variants were 

identified in the Exome Sequencing Project (ESP) population (1 nonsense and 37 

missense) (Andreasen et al., 2013). It is noteworthy that convincing family co-

segregation was reported in only 1 of these 38 pathogenic genetic variants and 3 

variants had also functional characterization showing significant differences 

between mutant and wild-type transfected cells. Thus far, 190 pathogenic 

missense genetic variants have been associated with AC, all reported in Human 

Gene Mutation Database (HGMD) and distributed as follows: distributed as 

follows: 56 in DSP ,49 in DSG2 ,48 in PKP2, and 24 in DSC2. From all reported 

missense pathogenic genetic variants associated with AC, only 62 % predicted to 

be deleterious by in silico platforms, using PROVEAN (Protein Variation Effect 

Analyzer) (http://provean.jcvi.org/ index.php). Moreover, 57 % are predicted to be 

deleterious using Condel (CONsensus DELeteriousness score of non- 

synonymous single nucleotide variants) (http://bg.upf.edu/ condel/analysis), 

which integrates five different platforms (Polyphen-2, SIFT, MAPP, LogR Pfam 

E -value, and Mutation Assessor). 

On the other hand, “radical” mutations (insertions or deletions, splice junction 

mutations, and nonsense mutations) in the Kapplinger study, were significantly 

more prevalent in AC cases compared with controls (50 % vs 0.5 % respectively, 

p=9.8x10-44), indicating that the presence of this type of genetic variant has a high 

likelihood of being associated with AC pathogenicity (Kapplinger et al., 2011). 

Notably, “radical” mutations constituted the majority (75 of 102, 73.5%) of 

genetic alterations identified in mutation-positive AC cases.  
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Thus far, 155 “radical” mutations have been associated with AC, all reported in 

HGMD, and distributed as: 75 in PKP2, 52 in DSP, 16 in DSG2, and 12 in DSC2. 

Despite of being reported in the HGMD database, not all “radical” genetic 

variants denote a pathogenic role in clinical practice, especially if no family 

segregation has been reported. A recent study in Japanese population with 35 AC 

cases showed that carriers with PKP2 premature stop codon developed the disease 

at a significantly younger age than other mutations carriers (Ohno et al., 2013), 

while another more recent study performed in European population suggests later 

onset in carriers with PKP2 premature stop codon (Alcalde et al., 2014).  

Hence, the most particularly weakness to misclassification are mutations 

identified in large cohorts of individual unrelated probands (without data on 

familial segregation). For this purpose guidelines in genetics (Kazazian et al., 

2009; Richards et al., 2008), highly recommend to perform accurate in silico 

analysis, in vitro assays, and, as key point, co-segregation studies in families to 

assess the pathogenicity on AC.  

1.7.5 Assessing pathogenicity of extra desmosomal genetic variants  

In the last 4 years, extra desmosomal genes have been also associated with AC 

however all together have a lower incidence of <5% of AC patients (Alcalde et 

al., 2014). Extra desmosomal genes associated with AC are a heterogeneous group 

of genes with different functions and the underlying mechanism in AC needs still 

to be clarified. It is interesting that most of extra desmosomal genes encode 

cytoskeleton-associated proteins such as, DES, LMNA, CTNNA3, and TTN, 

previously described in other cardiomyopathies, i.e. DCM (Garcia-Pavia et al., 

2013). Therefore, recent studies support the concept of “Arrhythmogenic 

Cardiomyopathy” as an entity encompassing DCM an AC, given by the evidence 

that extra desmosomal genes are commonly associated with DCM and AC, 

whereas desmosomal genes had not yet been associated with any other 

cardiomyopathy (Saffitz et al., 2011). Contradictory studies have been published 

since then regarding the incidence of desmosomal mutations in other 

cardiomyopathies (Posch et al., 2008; Elliott et al., 2010; Zhang et al. 2011; 

Garcia-Pavia et al., 2011; Garcia-Pavia et al., 2013; Lopes et al., 2013). 

Consequently, assessing pathogenicity in extra desmosomal genes without 
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cascade family screening, clinical data and/or is in vitro assays is problematic, 

since overlapping symptoms are common among inherited cardiomyopathies.  

1.7.6 Clinical implications of genetics  

Genetic screening is gaining ground in the identification of patients and family 

members at increased risk of AC. Identification of a misclassified genetic variant 

in cardiomyopathy patients might lead to erroneous risk stratification, 

misdiagnosis of family members and this could have potentially devastating 

clinical consequences. It is therefore important that variants being reported as 

causative of cardiomyopathies are truly disease causing in order to avoid 

overrepresentation of AC-associated genetic variants. 

Genetic information in AC is helping to provide a potential cause of the 

pathology, but clinical findings still remains the main basis for diagnosis and 

treatment of patients. Thus, the identification of a potential pathogenic genetic 

variant cannot override clinical judgment regarding AC diagnosis. In addition, 

lack of pathogenic genetic variant in the setting of convincing clinical evidence 

neither should call the diagnosis into question nor rule out the disease (Kapplinger 

et al., 2011). All AC diagnosed patients or suspicious of suffering AC should be 

genetically analyzed, and for all genes associated with AC due to reported 

digenic/compound cases (Nakajima et al., 2012; Barahona-Dussault et al., 2010). 

Identification of the pathogenic genetic variant may help to clarify the cause of the 

disease, and posterior familial genetic analysis may identify genetic carriers that 

could remain asymptomatic but at risk of SD. The lack of ‘gold standard’ tool in 

clinical diagnosis makes genetic testing a complementary tool in diagnosis, even 

though lacks clear pathogenic interpretation. Determining the pathogenicity of a 

genetic variant is the main genetic challenge in current clinical practice. 

Establishing solid potential therapeutic and prognostic implications of gene 

variants associated with AC is not available due to lack of clinical-genetic 

correlations. Despite being accepted that “radical” variants should be considered 

more dangerous than missense variants due to truncation of proteins associated 

with AC (Kapplinger et al., 2011), genetic results should be interpreted with 

extreme caution and by multidisciplinary teams including at least cardiologists 

and geneticists.   
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AIM OF THE STUDY 
 

AC is a clinically and genetically heterogeneous disorder associated with 

arrhythmias and sudden death, in particular in young adults and athletes. 

Mutations in the desmosomal genes DSP, PKP2, DSG2, DSC2, JUP have been 

associated with the disease in approximately 50% of total cases. Since SCD may 

occur as the first symptom of the disease, an early genetic diagnosis is highly 

relevant for the identification of affected subjects and especially of genetically 

affected relatives before the manifestation of the clinical phenotype.  

The overall aim of the present investigation was the development of a fast, cost-

effective and comprehensive screening strategy for the molecular diagnosis of 

AC. 

Specific objectives of the present study include: 

1. Assessment of the spectrum and prevalence of desmosomal mutations in a 

large cohort of unrelated index cases,  

2. Assessment of the presence and prevalence of large genomic structural 

rearrangements (CNVs) in a large cohort of unrelated index cases, 

3. Analysis of potential disease causing mutations pathogenicity, 

4. Evaluation of mutation type role in the development of AC, 

5. Comprehensive genotype-phenotype study in order to stratify the risk of 

developing the disease in asymptomatic mutation carriers, 

6. Investigation of Next Generation Sequencing (NGS) potential and 

limitations, 

7. Application of NGS for molecular diagnosis in AC patients, extending the 

spectrum to genes not related with the disease. 
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2. METHODS 
 

2.1 Cohort and Clinical Examination 
The study involved a total of 99 subjects with a clinical or post mortem diagnosis 

of AC referred to the Referential Clinical Genetic Centre of Arrhythmic 

Cardiomyopathies in Padua.  

Twenty-six probands were sudden death victims enrolled from the Registry of 

Cardio-Cerebro-Vascular Pathology, Veneto Region, Venice, Italy. For the rest 73 

probands, Arrhythmogenic cardiomyopathy clinical diagnosis was based on 

established major and minor criteria revised by the European Society of 

Cardiology and the Federation of Cardiology Task Force (Marcus et al., 2010). 

Clinical evaluation included physical examination, 12-lead ECG, signal-averaged 

ECG, cardiac magnetic resonance imaging, 24-hour ambulatory ECG monitoring. 

Exercise tests and electrophysiological studies were performed when considered 

necessary. AC diagnosis was considered definite when 2 major, or 1 major and 2 

minor criteria, or 4 minor criteria from different categories, were fulfilled; 

borderline when 1 major and 1 minor or 3 minor criteria from different categories 

were fulfilled; possible: when 1 major or 2 minor criteria from different categories 

were fulfilled. When possible, the first-degree and second-degree relatives from 

families where a disease-causing variant was detected were called for prospective 

evaluation and genetic screening. Written informed consent was obtained from all 

study participants before blood sampling and genetic screening.  

Variants frequency, type, and localization were compared to a group of 500 

unrelated healthy ethnically matched volunteers (1000 alleles).  
 

2.2 DNA Extraction 

Genomic DNA (gDNA) isolation was obtained from different matrices including 

whole blood, frozen myocardial tissue, formalin-fixed and paraffin-embedded 

(FFPE) tissue through specific onboard protocols of MagNA Pure Compact 

System (Roche Applied Science, Mannheim, Germany), an automated benchtop 

device that uses the magnetic bead technology for nucleic acids isolation. The 

MagNA Pure Compact performs all nucleic acids isolation steps preventing cross-
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contamination between samples. It automatically pipets into the sample a pre-

aliquoted volume of lysis buffer containing chaotropic salts and proteinase K, 

nucleic acids are bound to the surface of the magnetic glass beads and after 

several washing steps the purified DNA is eluted in DNasi-free H20.  

2.2.1 DNA extraction from blood 

gDNA extraction was carried out  from 200 µl of whole blood by using Nucleic 

acid isolation kit I (Roche Diagnostics GmbH, Mannheim, Germany) on the 

MagNA Pure Compact System by setting the ``DNA_Blood_100_400`` protocol 

on the machine software. The typical DNA yield from 200 µl of human whole 

blood using the ``DNA_Blood_100_400`` protocol and an elution volume of 100 

µl is 6 µg. 

2.2.2 DNA extraction from frozen and FFPE tissue 

gDNA extraction was performed from approximately 5 mg of snap frozen tissue 

or from 2 FFPE section with 8µm thickness by using Nucleic acid isolation kit I 

(Roche Applied Science, Mannheim, Germany) with the ‘’DNA-culture Cells’’ 

protocol. Paraffin removal from FFPE tissue, commonly achieved by consecutive 

washes of xylene and ethanol, revealed to be unnecessary when using this 

protocol. An initial pre-treatment step was performed to enhance cell lysis. Briefly 

200 µl of MagNA Pure Compact DNA Lysis buffer (Roche Applied Science, 

Mannheim, Germany) was added in the tissue sample and  a 2 min disruption on a 

Tissue Lyzer System (Qiagen Venlo, Limburg, The Netherlands) was carried out 

at 25 Hz. The homogenized sample was then incubated with 20 µl of Proteinase K 

(20 mg/mL; Roche Diagnostics GmbH, Mannheim, Germany) for 10 min at 56 °C 

and transferred on the MagNA Pure Compact workstation. The typical DNA yield 

using the “DNA-culture Cells” protocol from 5 mg of snap frozen tissue and an 

elution volume of 50 µl is 14 µg, and the typical DNA yield from 2 FFPE section 

(8µm thickness) is 4 µg. 

2.2.3 DNA extraction from saliva 

The 500 µl saliva sample was mixed with 200 µl of MagNA Pure Compact DNA 

Lysis buffer and, after vigorous mixing by vortex, incubated at 56 °C for 10 min. 

The lysate was then transferred on the MagNA Pure Compact workstation and 
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extracted with the Nucleic acid isolation kit I (Roche Diagnostics GmbH, 

Mannheim, Germany) and the “DNA_blood_external_Lysis” protocol. The 

typical DNA yield from 500 µl of saliva is normally 6 µg, comparable with the 

yield from whole blood extraction. 
 

2.3 RNA Extraction 

RNA extraction was obtained from whole blood or frozen myocardial tissue, 

when available, by using the MagNA Pure Compact System. RNA was eluted in 

50 μL of RNasi free H20 and stored at -80 °C. 

2.3.1 RNA extraction from blood 

RNA was isolated from 200 µl of whole blood by using RNA isolation kit I 

(Roche Diagnostics GmbH, Mannheim, Germany) and 20 µl of DNasi (Roche 

Diagnostics GmbH, Mannheim, Germany) on the MagNA Pure Compact System 

according to the “RNA_Blood’’ protocol. The mean RNA yield from 200 µl of 

human whole blood is 1µg. 

2.3.2 RNA extraction from frozen tissue 

RNA was isolated from approximately 5 mg of snap frozen tissue on the MagNA 

Pure Compact System employing RNA isolation kit I and 20 µl of DNasi (Roche 

Diagnostics GmbH, Mannheim, Germany) following the “RNA_Cells” protocol. 

The pre-treatment step was performed as previously described after adding the 

samples with 200 µl of MagNA Pure Compact RNA Lysis buffer (Roche 

Diagnostics GmbH, Mannheim, Germany). The typical RNA yield using the 

“RNA_Cells” protocol from 5 mg of snap frozen tissue and an elution volume of 

50 µl is 15 µg. 
 

2.4 Nucleic acids Quantification 

Nucleid acid isolation is followed by a quantity and quality (purity, integrity) 

check prior before downstream preparation steps. DNA quantification allows 

standardization of the PCR input material and  is crucial in NGS DNA library 

preparation since  influence run quality and efficiency. 
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2.4.1 Spectrophotometric method 

Nucleic acids quantification is performed by spectrophotometers by measuring 

absorption of ultraviolet light at the wavelength of 260 nanometers and applying 

the Lambert-Beer law that correlates absorbance, molar extinction co-efficient and 

nucleic acids concentration. Absorbance measurements were carried on a 

Nanovue spectofotometer (GE Healthcare Life Sciences, UK) by directly 

pipetting onto the pedestals 2 µl of the DNA or RNA sample dissolved in DNasi 

or RNasi-free H20, after an initial blank measurement. Nanovue automatically 

calculates the nucleic acids concentration by applying specific extinction 

coefficients (50 for dsDNA, 40 for RNA).  

The ratio A260/280 and A260/230 are used as indicators of the sample purity. The 

A260/280 ratio of the nucleic acid sample is generally used as indicator of protein 

contamination. Infact the 280 nm is the absorbance wavelength of aromatic amino 

acid side chains and phenol groups. Pure DNA should present a ratio 260/280 

between 1.8 and 2, pure RNA should present a ratio 260/280 between 2 and 2.2. 

The A260/230 ratio is generally used as indication of organic contaminants. The 230 

nm is the absorbance wavelength of many organic compounds (i.e. phenol, 

TRIzol, and chaotropic salts present in the most common lysis buffers. In pure 

samples the ratio A260/230 should be between 2 and 2.2. 

2.4.2 Qubit Fluorometer 

The quantity and quality of DNA was further assessed by using Qubit 2.0 

Fluorometer (Invitrogen, Life technologies, Carlsbad, CA, USA) in combination 

with dsDNA BR Assay kit (Invitrogen, Life technologies, Carlsbad, CA, USA) 

for DNA measurements and RNA Assay kit (Invitrogen, Life technologies, 

Carlsbad, CA, USA) for RNA measurements according to the manufacturer’s 

instructions. Briefly, 1 µl of the sample is mixed with 200 µl of working solution 

containing specific fluorescent dyes, composed by 199 µl of dsDNA BR buffer or 

RNA buffer and 1 µl of dsDNA BR reagent or RNA reagent respectively. After an 

incubation of 2 min the measurement is performed on the Qubit 2.0 by setting the 

DNA or RNA protocol. The Qubit 2.0 is a benchtop fluorometer that uses 

fluorescent dyes that specifically bind to either DNA or RNA therefore it is able 

to selective quantify either DNA or RNA. Moreover, as the DNA dye exclusively 
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binds to double strand DNA (dsDNA), it further allows the selective 

quantification of dsDNA that will be exclusively used for downstream 

applications, minimizing the effect of contaminant RNA and ssDNA. 

2.4.3 Agilent Bioanalyzer 

The Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) is a 

microfluidics-based platform that can perform quantification and quality control 

of nucleic acids by an electrophoretic separation of samples on micro channels 

containing fluorescent dyes. One μl of DNA or RNA samples is sufficient for 

analysis on 2100 Bioanalyzer with the DNA 1000 chip (Agilent, Santa Clara, 

Carlsbad, USA) and the RNA Nano Chip (Agilent, Santa Clara, Carlsbad, USA). 

All the assays were performed according to the manufacturer’s guide. Briefly, 

DNA  and RNA chips were prepared by adding 9 μl of gel matrix to the assigned 

well under pressure, and 9 μl of gel-dye mix to the next 2 wells. After adding 5 μl 

of marker to each well, 1 μl of DNA or RNA ladder and 1 μl of each sample were 

added to the separate wells. Chips were then vortexed for 1 min at 2400 rpm on a 

IKA vortex mixer and were run on the Agilent 2100 Bioanalyzer. The run data 

were analyzed by Agilent 2100 expert software version B.02.08.SI648(SR2). 

The DNA 1000 Kit allows the separation with high resolution, sizing and 

quantification of dsDNA fragments ranging from 25 to 1000 bp. The Agilent 

RNA Nano kit evaluates the ratio between the 18S and the 28S ribosomal 

subunits, and the presence of degraded small RNA fragments, in order to calculate 

a RNA integrity value (RIN) that expresses an estimation of the integrity of the 

RNA sample. RIN values range from 10 (intact) to 1 (totally degraded) (Figure 

2.1) 

 
Figure 2.1: Samples range from intact (RIN10) to degraded (RIN2) (from www.chem.agilent.com) 
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2.4.4 Agarose gel 1% 

The integrity of isolated gDNA is checked by on a 1% agarose gel. The presence 

of a strong single band indicate high quality and integer dsDNA, on the contrary a 

smear indicates the presence of degraded DNA. 
 

2.5 Genetic Screening 

The entire cohort of 99 AC probands was screened for pathogenic variants in five 

desmosomal encoding genes (DSG2, DSC2, DSP, PKP2, JUP),  whereas only 46 

AC subjects were subsequently screened for causative variants in 3 extra-

desmosomal genes (CTNNA3, DES, PLN).  

Each exon and exon-intron boundaries of the 8 genes was amplified by 

polymerase chain reaction (PCR) and analyzed by denaturing high-performance 

liquid chromatography (DHPLC) and Sanger sequencing. 

2.5.1 Polymerase chain reaction (PCR) 

PCR is a method developed by Mullis in the 80s (Mullis et al., 1990) that allows 

the exponential amplification of specific target DNA regions (Figure 2.2). A PCR 

reaction requires: template DNA, deoxynucleotide triphosphates (dNTPs), 

oligonucleotide primers flanking the target DNA sequence, DNA polymerase 

enzyme, reaction buffer and magnesium. PCR is composed by different 

consecutive reactions: 

1 Template denaturation by heating DNA at 95 °C, 

2 Annealing temperature (Ta) usually ranges from 55 to 65 °C; oligonucleotide 

primers may align on the target region of the single strand DNA. 

3 Elongation at 72 °C, the DNA polymerase synthesizes new strands of DNA 

starting from the 3’ of annealed primers. The newly synthesized DNA of the first 

cycle will be the template of the next and so on, reaching a million-fold increase 

of the DNA quantity at  the end of the reaction. 
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Figure 2.2:  Schematic representation of the PCR reaction 

2.5.1.1 Standard PCR 

Amplification reactions were carried out in a final volume of 12.5 μl containing 

50 ng of template (final concentration 4ng/μl), 1X of PCR buffer, 1.5 mM MgCl2, 

0.2 mM of dNTPs, 0.8 μM of forward and reverse primer, and 0.32 U of Taq 

DNA polymerase (Life Technologies, Carlsbad, CA, USA). For some amplicons, 

amplification was enhanced by the use of 1μl of Dimethyl sulfoxide (DMSO) in 

the reaction mix. DMSO destabilizes the double helix structure by hydrogen 

binding to the major and minor grooves of DNA and reduces secondary structure 

formation in the DNA template, thus facilitating primers annealing. 

Amplification reactions were performed on Mastercycler Pro (Eppendorf, 

Hamburg, Germany) at specific Ta for every PCR product, optimized  based on 

the GC content of the sequence and melting temperatures (Tm) of primers. 

Briefly, each sample was denatured at 95 °C for 10 min to allow the activation of 

the hot start DNA polymerase, and exposed to 40 amplification cycles of 

denaturation for 30 sec at 95 °C, annealing for 30 sec at a range of Ta comprised 

between 55 °C and 65 °C and extension at 72 °C for 30 sec; followed by a final 

extension step of 7 min at 72 °C to enhance the amplicon elongation. 

The specificity and the amplification yield of some PCR products was enhanced 

by the use of touch-down PCR (TD-PCR). 
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TD-PCR protocols set annealing temperatures above the anticipated melting 

temperature of a primer/template pair and then decrease the annealing temperature 

of subsequent cycles stepwise. The initial annealing temperatures of the first few 

cycles is higher than the expected Tm of primers, and then for the subsequent 

cycles the temperature progressively decreases to lower Ta to allow the correct 

hybridization of primer to the template. Thermal cycling conditions used for TD-

PCR are as follows: an initial incubation at 95 °C for 10 min; followed by 10 

cycles at 95 °C for 30 sec, annealing temperature stepdowns every cycle of 1 °C 

(from 70 °C to 60 °C); extension at 72 °C for 30 sec. The successive 30 cycles are 

performed at a Ta of 60 °C with denaturation and extension steps as above; 

followed by the final extension at 72 °C for 7 min. 

PCR products (ranging from 150-700 bp) were analyzed on 2% agarose gel. 

2.5.1.2 GC rich PCR  

GC rich amplicons were amplified by using AmpliTaq Gold 360 Master Mix kit 

(Life Technologies, Carlsbad, CA, USA) containing all premixed PCR 

components according to the manual. Amplification reactions were performed in a 

final volume of 12.5 μl by adding 7 μl of mix, 2.5 μl of GC solution provided, 2 μl 

of forward and reverse primer to 50 ng of template DNA. 

2.5.1.3 Primers design 

The oligonucletide primers used for both amplification for subsequent Sanger 

sequencing were designed by PRIMER 3 software (http://primer3.ut.ee/) (Rozen 

and Skaletsky, 2000), on the following reference sequences retrieved from the 

University of California Santa Cruz (UCSC) Genome Browser 

(http://genome.ucsc.edu/): 

DSG2 gene has 15 exons and spans on ~51 kb of chromosome 18q12.1, 

NM_001943 is the unique DSG2 transcript variant. 

DSC2 gene contains 17 exons and spans on ~36 kb of  chromosome 18q12.1, 

NM_024422 represents the transcript variant DSC2a. 

DSP gene contains 24 exons and spanson ~45 kb of chromosome 6p24.3, 

NM_004415 represents the longest transcript variant type 1, DSP. 

PKP2 genecontains 14 exons and spans on ~106 kb of chromosome 12p11.21, 

NM_004572 represents the predominant and longest isoform in the heart. 
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JUP gene contains 14 exons and spans on ~32 kb of chromosome 17q21.2, 

NM_002230 represents transcript variant 1. 

CTNNA3 gene contains 18 exons and spans on ~ 10kb of chromosome 10q21.3, 

NM_013266 represents the transcript variant 1. 

PLN gene has 2 exons and spans on ~ 12kb of chromosome 6q22.31, NM_002667 

is the unique PLN transcript variant. 

DES gene contains 9 exons and spans on ~ 8kb of chromosome 2q35, 

NM_001927 is the unique DES transcript variant. 

Primers pairs (length 18-22 bases) were designed to maintain a Tm comprised 

between 58 and 62 °C, a maximum Tm difference of 1 °C, self complementarity, 

that is the tendency of a primer to bind to itself, and pair complementarity, that is 

the tendency of the left primer to bind to the right primer comprised between 3 

and 0 and when possible a GC content below 60%. 

The designed primers were analyzed using different bioinformatics tools in order 

to check their reaction specificity and accuracy. They were aligned by BLAST 

(http://blast.be-md.ncbi.nlm.nih.gov) and BLAT (http://genome-

euro.ucsc.edu/cgi-bin/hgBlat) on the genome reference sequence (GRCh37/hg19) 

in order to verify their specific annealing and avoid the presence of SNPs in 

predicted PCR primer binding sites. To confirm the amplicon length and Tm, they 

were also checked by in silico PCR tool on UCSC website (http://genome-

euro.ucsc.edu/index.html), and then produced by Invitrogen (Life Technologies, 

Carlsbad, CA, USA).  

2.5.2 Agarose gel 

For standard 2% agarose gel electrophoresis, 2 g of agarose were added to 100 ml 

of 1X Tris-Acetate-EDTA (TAE) buffer. The solution was heated in a microwave 

to dissolve agarose, gel was added with 5 µl of Nancy-520 DNA Gel Stain 

(Sigma-Aldrich, Saint Louis, MO, USA), cast in a sealed tray and a proper comb 

was inserted. Aliquots of 5 μl of PCR product and 3 μl bromophenol blue loading 

dye were mixed and loaded into each gel well. In addition, 2 µl of DNA Marker 

VIII (Roche Applied Science, Manheim, Germany) were loaded in order to 

determine the fragment sizes. Electrophoretic run was performed at 100 V in 1X 

https://www.google.it/search?rlz=1C2GGGE_itIT409IT471&biw=1242&bih=606&q=saint+louis+missouri&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-gYWlRXKlEgeIaVZeUa6llZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKnbxtmzasbnozMnYlf9-z2m56mB7Yy8AK6xCgGAAAAA&sa=X&ei=W9aFVMHCGYL-aIe8gdAD&sqi=2&ved=0CIwBEJsTKAIwEQ
https://www.google.it/search?rlz=1C2GGGE_itIT409IT471&biw=1242&bih=606&q=missouri+usa&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-gYWlRXKlEgeIaVKZnKGllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKm78scFg8pIldo-2qpo6NPx85rO7cQ8AM1dRY2AAAAA&sa=X&ei=W9aFVMHCGYL-aIe8gdAD&sqi=2&ved=0CI0BEJsTKAMwEQ
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TAE buffer. Visualization was achieved on a LAS mini 4000 (Fujifilm, Tokyo, 

Japan). 

 

2.5.3 Denaturing High Performance Liquid Chromatography (DHPLC)  

DHPLC is a pre analytical technology that can detect the presence of single 

nucleotide variants and small insertions and deletions (Oefner and Underhill et al., 

1995). It separates heteroduplex molecules from homoduplex molecules by ion-

pair reverse-phase liquid chromatography on a column containing nonporous 

alkylated polystyrene-divinylbenzene particles. Heteroduplexes are made by 

double stranded amplification products composed by two almost complementary 

strands, containing a mismatch at the variant level, derived from two heterozygous 

alleles. The four configurations possible for heterozygous DNA are shown in 

figure 2.3. The analysis is performed under partial denaturation temperature, the 

slow DNA renaturation allows the formation of homoduplexes and 

heteroduplexes. The samples are run into the buffer flow that contains 

triethylammonium acetate (TEAA) and acetonitrile. The positively charged 

portion of TEAA interacts with the negatively charged phosphate group of DNA, 

that binds to the hydrophobic chromatographic column. With an increasing linear 

acetonitrile gradient injected into the column, the DNA binding capacity to the 

TEAA ions decreases and the DNA fragments are released. Heteroduplexes, 

because of the mismatch, have a lower column binding affinity and thus a reduced 

retention time with respect to the homoduplexes. Eluted samples pass through the 

UV detector, that registers absorbance at 260 nm over time. In absence of DNA 

variants all the homoduplex molecules will show the same retention time and will 

elute as a single peak, on the contrary if a DNA variant is present, the 

chromatogram will show two or four peaks. 

DHPLC was used to investigate the presence of variants in the 8 target genes, the 

analysis was performed using a Transgenomic WAVE System (Transegenomic, 

USA) with a DNASep HT Cartridge column.  

After PCR reactions, amplified fragments were denatured at 96 °C for 5 min, and 

then slowly cooled at room temperature to allow the formation of the 

heteroduplexes. Exons longer than 500 bp were splitted in more amplicons to 
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allow DHPLC analysis. The optimal temperature for fragments analysis was 

calculated using Navigator Software (Transgenomic, USA). Runs were carried out 

at flow rate of 0.9 ml/min with the mutation detection application. 

Samples with abnormal DHPLC profiles were purified and sequenced. 

 

 

Figure 2.3: Differences between homoduplex and heteroduplex (modified from  
http://www.transgenomic.com) 

 

2.5.4 Purification of PCR products  

Before sequencing, PCR products were purified by a treatment with Exonuclease 

1 (EXO) and Shrimp Alkaline Phosphatase (SAP) enzymes, to eliminate residues 

of primers and dNTPs from the previous PCR reaction, as they could interfere 

with the subsequent sequence reaction. 

The purification reaction was carried out with "Illustra ExoProStar 1-Step" kit 

(GE Healthcare Life Sciences, UK) by mixing 5 µl of PCR product and 2 µl of 

reaction mix, containing SAP enzyme that dephosphorylates dNTPs and EXO that 

hydrolyzes residual primers and aspecific oligonucleotides that could have been 

amplified during the PCR. The reaction conditions were: an incubation at 37 °C 

for 30 min followed by 80 °C for 15 min to inactivate the enzymes. 
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2.5.5 Direct sequencing  

The DNA sequencing method developed by Sanger in the 1970s (Sanger et al., 

1977) is based on the DNA chain-termination by chemically altered bases called 

di-deoxynucleotidetriphosphates (ddNTPs) carrying four different fluorophores. 

The method requires the presence of normal deoxynucleoside triphosphates 

(dNTPs), and dideoxynucleotide triphosphates (ddNTPs) lacking a 3’-hydroxy 

group that, when incorporated into a newly synthesized DNA fragment, terminate 

the DNA strand elongation at specific bases (A, C, T, or G). This process 

produces DNA fragments with different sizes that can be separated by capillary 

electrophoresis and detected with laser-induced fluorescence (Figure 2.4). 

 

 

Figure 2.4: Schematic representation of the Sanger sequencing technology 

 

Sequencing reactions were performed with BigDye terminator v3.1 Cycle 

Sequencing Kit (Life Technologies, Carlsbad, CA, USA) following the 

manufacturer’instructions. 1 µl of each purified PCR products was mixed with 2 

µl of sequencing buffer at a final concentration 1X, 1 µl of BigDye Terminators 

solution (containing dNTPs, fluorophore-conjugated ddNTPs, and polymerase), 

10 pm of forward or reverse primer in a total volume of 10 µl. Sequencing 

reaction was performed as follows: 96 °C for 1 min, 30 cycles of 96 °C for 10 sec, 

55 °C for 5 sec, 60 °C for 2 min 30 sec. Fluorescent-labeled sequences were then 

cleaned-up to eliminate unincorporated big dye terminators, dNTPs, and salts 
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using by ethanol/EDTA precipitation. Briefly, 50 µl of EtOH 96% and 2 µl of 

EDTA 125 mM were added to each sample, they were incubated at room 

temperature for 20 min and centrifuged at maximum speed for 15 min at 20 °C. 

samples were washed with 150 µl of EtOH 96% and resuspended in 10 µl of H20. 

5 μl of sequence reaction were mixed with 15 µl of Hi-Di Formamide (Life 

Technologies, Carlsbad, CA, USA), denatured for 5 min at 95 °C and submitted to 

sequencing analysis on an ABIPRISM 310 Genetic Analyser (Life Technologies, 

Carlsbad, CA, USA). 

2.5.5.1 Sequences Analysis 

CHROMAS software (Technelysium) was used to view Sanger sequencing 

electropherograms, while comparison with genomic sequences (GRCh37, hg19) 

obtained from UCSC Genome Browser (http://genome.ucsc.edu/) was done by 

SeqMan II (DNASTAR, Madison, WI, USA). AlaMut software (Interactive 

Biosoftware, Rouen, France) was used to evaluate nucleotide variants by 

integrating information from different sources (in silico prediction algoritms, 

conservation, literature infos etc). 

Human Genome Variation Society (http://www.hgvs.org/) recommendations (den 

Dunnen and Antonarakis, 2000) was used for nucleotide variant nomenclature. 

Whenever a putative pathogenic variant was detected, the presence of the variant 

was confirmed by performing a new DNA extraction, PCR and sequence reaction. 

For every novel nucleotide variant detected, 500 ethnically matched unrelated 

control subjects were screened for the presence of the variant in the healthy 

population. Screening of control subjects was performed by DHPLC with Rapid 

protocol and Sanger sequencing whenever an abnormal DHPLC pattern was 

observed. 

Sequence nucleotide variants found in dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP/) were considered  known polymorphisms and 

their frequency in the general population was determined by the data  available 

from the Exome Variant Server (NHLBI GO Exome Sequencing Project, 

http://evs.gs.washington.edu/EVS/) and in the 2188 control chromosomes 

available from the 1000 Genomes Project. Intronic variants located less than 50 bp 

from the exon boundaries were in silico analyzed at least by three different 
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algorithms (SpliceSiteFinder, MaxEntScan, NNSPLICE, GeneSplicer), to predict 

a possible effect on the splicing sites of the transcript.  

2.5.6 Filtering and prioritization of variants identified by Sanger sequencing 

In order to identify potential causal variants, nucleotide variants were prioritized 

by 3 different  filters, based on 

a. the frequency of variants in the population,  

b.  the conservation of the amino acid residue among species,  

c. and the pathogenetic predition of the variants obtained from in silico 

analysis. 

2.5.6.1 Variant Filtering based on Frequency  

The first filter applied to exclude common variants in the general population is 

based on the frequency of the nucleotide change in our group of healthy controls,  

the current default global population according to the data available in the 

freeware variant databases developed as results of the 1000 Genomes Project and 

the NHLBI Exome Sequencing Project (ESP),  and  literature information.   

The 1000 Genomes dataset (phase 1, released in the May 2011, 

http://www.1000genomes.org/) provide genotype data from 1094 worldwide 

individuals. The Exome Variant Server (http://evs.gs.washington.edu/EVS/) 

contains exome sequence data on a total of 6503 individuals: 2203 African-

Americans individuals and 4300 European-Americans.  

These databases provide the minor allele frequency (MAF) of each variant in the 

respective populations. Referring to those frequency data we classified variants as: 

pathogenic when they are detected with a MAF < 0.02%; rare variants when  

MAF is comprised between 0.02%  and 0.1%; and polymorphisms when they are 

present with a frequency > 0.1%. 

We arbitrary set up frequency cut-off frequency to 0.02% to classify a variant as 

‘mutation’ given that the prevalence of  AC in the Veneto Region is estimated as 

1:5000 (0.0002, 0.02%). Based on the frequency of AC in the general population, 

the estimated number of individuals in the ESP data (European-Americans 

section) that can be expected to be affected by AC is 1. 

Coding and splicing variants that did not fulfill this criterion, were excluded to be 

potential pathogenic and were considered to be rare variants if present in 

http://www.1000genomes.org/node/506
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population and in control alleles with MAF comprised between 0.02% and 0.1% , 

or as polymorphisms when MAF was > 0.1%. 

2.5.6.2 Variant Filtering based on the conservation of nucleotides and amino 

acids among species 

The second filter is based on the phylogenetic conservation of the substituted 

amino acid. The relationship between the level of evolutionary conservation of an 

amino acid and its functional importance is well know, so variants occurred at the 

level of conserved nucleotide and/or amino acids are predicted to be less tolerated. 

The analysis was performed using AlaMut that integrates both nucleotide and 

amino acid evolutionary conservation information, with PhastCons and phyloP 

scores and ClustalW alignments. The PhastCons and PhyloP scores are 

conservation scores derived from the multiple alignment of different vertebrate 

species, ClustalW is a tool that performs multiple sequence alignment of DNA or 

proteins. Amino acids conserved among  mammals and almost all lower animals 

were classified as ‘Highly conserved`, amino acids conserved among mammals 

and a few lower animal were classified ‘moderately conserved’, amino acids 

conserved among almost all mammals and no lower animals were classified as 

‘weakly conserved’, and amino acids not conserved among mammals or other 

lowere species were classified as ‘not conserved’. 

Nonsense variants, frameshift variants and variants located on the splice site (±1, 

±2) which respectively introduce in premature stop codon, distrupt the transcript's 

reading frame, interfere with the correct splicing processes were considered 

potentially pathogenic.  

2.5.6.3 In silico analysis  

The third filter is a combination of statistical algorithms which aim to evaluate a 

string of variant-specific features, as proposed by van Spaendonck-Zwarts and 

coll. (van Spaendonck-Zwarts et al., 2013). 

In silico analysis of  missense variants is  taking into account the outcome of 

different prediction tools: 

 Polyphen-2 (http://genetics.bwh.harvard.edu/pph/). Polyphen is a tool that 

predicts the possible impact of an amino acid substitution on the structure and 

function of a protein (Adzhubei et al., 2013). Three outcomes are possible: 
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probably damaging (the variant is expected with high confidence to affect 

protein structure), possibly damaging (the variant supposed to affect protein 

structure), benign (the variant is not expected to have any effect on protein 

structure). 

 Sorting Intolerant From Tolerant (SIFT) 

(http://sift.jcvi.org/www/SIFT_enst_submit.html). SIFT is a tool that predicts 

the possible impact of an amino acid substitution on the protein function. (Ng 

and Henikoff 2001). It classifies amino acids substitutions as tolerated or 

deleterious. 

 Grantham Score. The Grantham score expresses the difference in the 

physicochemical properties of the amino acids (side chain atomic 

composition, polarity, molecular volume) (Grantham et al., 1974). Grantham 

score is comprised between 0 and 215. A high score indicates a great 

difference in chemical properties between the two amino acids and thus a 

greater impact on protein structure.  

 Align-Grantham Variation with Grantham Deviation (A-GVGD) 

(http://agvgd.iarc.fr/). It combines the biophysical characteristics of amino 

acids and protein multiple sequence alignments to predict where missense 

substitutions fall in a spectrum from enriched deleterious to enriched neutral. 

There are 7 possible outcomes: C0, C15, C25, C35, C45, C55, C65. A higher 

score indicates likely deleterious substitutions. 

 BLOSUM (BLOcks SUbstitution Matrix) 62. It is an identity scoring matrix 

based on local alignments of protein sequences. (Henikoff and Henikoff, 

1992). Scores for each position are derived from observations of the 

frequencies of substitutions in blocks of local alignments in related 

proteins.  In the BLOSUM62 matrix, the alignment from which scores were 

derived was created using sequences sharing no more than 62% identity. The 

Blosum62 substitution matrix contains scores for all possible exchanges of 

one amino acid with another, where the lowest possible score (-4) indicates a 

low probability of substitution, and the highest score (11) indicates a high 

probability of substitution in the alignments. A high score indicates 

substitutions affecting conserved amino acids and thus likely deleterious. 
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 Conservation among species was evaluated using ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). It was used to align amino acid 

sequences among different species in order to evaluate the conservation of the 

changed amino acids. 

 Conservation between isoforms was evaluated using ClustalW. It was used to 

align amino acid sequences of different isoforms in order to evaluate the 

conservation of the changed amino acids. 

 Frequency in control population is based on the minor allele frequency of the 

variant given by the Exome variant server and in a number of controls. 

 In silico evaluation of splicing is based on at least three different Splice Site 

prediction softwares (SpliceSiteFinder, MaxEntScan and GeneSplicer) using 

AlaMut. 

 Family information was considered when available  

 Evidences from functional analysis were considered when available from the 

literature reporting in vitro studies or animal models. 

When a feature was not available, it was not calculated and considered for the 

final classification. 

In silico analysis of nonsense and frame-shift variants do not consider the first 6 

steps and are based on general features of the variant, predictions about functional 

effects, splice predictions, and frequency in a control population. Family 

information about co-segregation, functional analysis and phenotypic features 

were considered when available. 

Variants are classified as follows based on a specific score: 

 (putative) pathogenic: with proven co-segregation in the family . 

 % score ≥ 70%: Variant of unknown clinical significance (VUS) likely to be 

pathogenic (VUS3)  

 45% ≤ % score < 70%: VUS of uncertain significance (VUS2) 

 25% ≤ % score < 45%: VUS unlikely to be pathogenic (VUS1) 

 % score < 25%: Not pathogenic (VUS0) 
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2.5.6.4 Final assessment of the variants’ pathogenicity  

The final pathogenicity of variants was assessed further integrating information 

from a detailed literature review about each variant and family cosegregation 

analysis.  

A variant was considered disease-causing mutation when it fulfilled at least one of 

the following criteria: 

-  Previously associated with AC 

-  Not detected in a large healthy ethnically matched control population 

-  Cosegregated in the family with the disease phenotype. 
 

2.6 Multiplex Ligation-dependent Probe Amplification (MLPA) 

Multiplex ligation-dependent probe amplification (MLPA) is a method based on 

the multiplex amplification of specific probes developed for the relative 

quantification of nucleic acid sequences (Schouten et al., 2002) that allows the 

detection of copy number variants of specific target regions.  

MLPA analysis were performed in the Cardiovascular Genetics Laboratory 

(University of Padua), after a preliminary study on 8 samples carried out in the 

Cardiogenetics Laboratory (UMCG, University of Groningen). 

To investigate for large deletions/duplications within desmosomal genes, MLPA 

was performed by using “SALSA MLPA P168 ARVC-PKP2 probemix kit” 

(MRC-Holland, Amsterdam, The Netherlands) according to the manufacturer’s 

instructions. The probemix contains oligonucleotide probes for every exon of 

PKP2 (NM_004572.3) and its promoter, 6 probes for exons 1, 5, 7, 9, 21, 24 of 

DSP (NM_004415.2), 3 probes for exons 2, 9, 12 of JUP (NM_002230.2), 3 

probes for exons 1, 7, 17 of DSC2 (NM_004949.3), 3 probes for exons 1, 6, 15 of 

DSG2 (.NM_001943.3). It also contains 3 probes for exons 1, 6, 7 of TGFβ3 

(NM_003239.2) and 2 probes for exons 3 and 97 of RYR2 (NM_001035.2). It also 

contains nine control fragments and eight reference probes located on different 

chromosomes. 

The technique is based on the simultaneous amplification of probes after 

hybridization on targets and can be divided in five distinct steps (Figure 2.5): 
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1) DNA denaturation 

2) DNA hybridization with the oligonucleotide probes. MLPA probe pairs 

are composed by two oligonucleotides, that are contiguous to the region of 

interest and hybridize to immediately adjacent target sequences. 

3) Ligation reaction. Only when both probes are hybridized can be ligated 

and trigger PCR reaction 

4) PCR reaction. Probes contain at their 5’ and 3’ ends specific sequences 

complementary to universal PCR primers, so a universal pair of primers is 

used for the subsequent amplification step. 

5) Analysis of PCR products by capillary electrophoresis. 

One extremity of the 2 probes of every oligonucleotide pairs is conjugated with a 

fluorescent marker, and the other one contains a "stuffer" sequence different in 

length between the different probes, thus allowing the simultaneous analysis of 

several targets, as sequences differing for even one nucleotide can be recognized.  

The amount of ligation products is directly proportional to the input DNA due to 

the specific amplification of probes correctly hybridized and ligated. 

 

 

Figure 2.5: Outline of the MLPA recation (modified from Schoutern et al., 2002). After 
hybridisation to the target sequence in the DNA sample, the oligonucleotide probes are 
enzymatically ligated. Ligation products are amplified using PCR primers for sequences X and Y. 
Amplification products from each probe have a unique length and are separated by electrophoresis. 
Relative amounts of probe amplification products, in comparison to a reference DNA sample, 
correspond to the relative copy number of the target sequences. 

 

Briefly, the entire MLPA procedure comprise the following reaction steps: 

1. DNA denaturation. 

5 μl DNA sample were denatured for 5 minutes at 98 °C 

2. Hybridization of probes to the DNA sample. 
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3ul of Hybridization  mix (1.5 μl SALSA probemix and 1.5 μl MLPA ) was 

added to the samples, followed by an incubation at 95 °C for 1 minute and 

hybridisation at 60 °C for 16 hours 

3. Ligation. 

32 μl of ligase master mix (3 μl Ligase Buffer A + 3 μl Ligase Buffer B + 25 

μl water + 1 μl Ligase-65 were added to the sample, followed by incubation at 

54 °C for 15 minutes and 5 minutes at 98 °C to inactivate the ligase enzyme 

4.  PCR amplification of ligated probes. 

10 μl of polymerase master mix (7.5 μl water + 2 μl PCR Primer mix + 0.5 μl 

SALSA Polymerase) was added to the samples, followed by PCR reaction: 35 

cycles of 30 s at 95 °C, 30 s at 60 °C, and 60 s at 72 °C, final 20 min at 72 °C) 

5. Capillary electrophoresis of PCR products. 

1 μl of MLPA reaction was mixed with formamide and loaded on an ABI310 

Sequencer (Applied Biosystems, Foster City, CA), using ABI POP-4 polymer, 

and GS400HD size standard. 

In each run, 1 healthy control sample was included every 7 samples, and negative 

controls (water) to exclude contamination were included.  

2.6.1 Run Quality control and data analysis 

The MLPA reaction products were run on ABI310, and GeneMapper software 

(Applied Biosystems) was used in order to check that the run was successful, data 

were analyzed by the Coffalyser Software (MRC Holland, Amsterdam, The 

Netherlands). 

This software first performs an evaluation of raw data by checking the DNA 

amount, denaturation, ligation efficiency and includes a baseline correction and 

peak identification. 

The probemix, in addition to the target and reference probes, contains nine control 

probes, that probes prooduce, after the reaction, the DNA Denaturation Fragments 

(D-fragments, 88 nt and 96 nt), the Quantity Fragments (Q-fragments, at 64-70-

76-82 nt), the 92 nt benchmark probe, and the X and Y fragments (100 and 105 

nt) (Table 2.1).  
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The D-fragments and Q-fragments were visualized and analysed for every sample. 

The D-fragments (88nt and 96 nt) peak area was less than 40% lower than the 

92nt fragment, indicating the execution of a correct denaturation step. The Q-

fragments peak areas was verified to be lower (< 33%) than the 92 nt control 

fragment, indicating that the DNA amount in the reaction was enough and the 

ligation reaction was successful. Whenever a technical problem occurred, the 

entire MLPA reaction procedure was repeated. 

The D-fragments hybridize to GC rich genomic sequences that are difficult to 

denature, they therefore work as positive controls for the denaturation step. If the 

88nt and 96 nt fragments are lower (< than 40 %) than the 92 nt control fragment, 

a denaturation problem occurred. The Q-fragments are fragments that do not need 

hybridization to DNA or ligation to be amplified during the PCR step. If the Q-

fragment signals are higher (> 33%) than the 92 nt control fragment, the DNA 

amount in the reaction was not sufficient or the ligation step failed.  

 
Table 2.1 : Internal references probes (modified from MRC-Holland). 

 

The presence of large deletions in the target genes can be observed from raw data, 

and are verified by the subsequent data analysis performed by Coffalyzer software 

(Figure 2.6), which performs 2 normalization steps: 

- an intra-sample normalization, where the probe peaks are compared to the ones 

of the reference probes, within each sample, 

- an inter-sample normalization, where the probe peaks in the target sample are 

compared to the ones of the control samples. 

This process allows the calculation of final probe ratios, called Dosage quotient 

(DQ). A DQ is close to 1 indicates a wild type sample, when it is close to 0.5 it 

indicates an heterozygous deletion (1 allele) and when it is close to 0 it indicates 

an homozygous deletion, as indicated by the MRC-Holland (Table 2.2).  
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Table 2.2: Relation Dosage Quotients and Copy Number (based on normal status of 2 copies) 
Dosage Quotient Distribution Copy Number Status (modified from MRC-Holland). 
 
 
 
 
 

 
 
Figure 2.6: a) Comparison between electropherograms of a test sample (bottom) and a reference 
sample (top) showing the decrease of three probes in the test sample (arrows). b) Probe ratios of 
the same test sample calculated by Coffalyser.Net software after analysis of the two samples: 
arranging probes by chromosomal location shows a reduced copy number for the three adjacent 
probes in the test sample. (modified from MRC-Holland) 
 

2.7 Quantitative real-Time PCR (qPCR) 

Deletions detected by MLPA were validated by relative quantitative PCR (qPCR) 

performed on gDNA on an Light Cycler 480 II (Roche Applied Science, 

Mannheim, Germany) by SYBR Green-based quantification according to the 

manufacturer’s protocol (Figure 2.7). The reactions were prepared in a final 

volume of 20 μl with 1x Master SYBR Green I (Roche Applied Science, 

Maanheim, Germany), 20 pmol of forward and reverse primers and 100 ng of 

gDNA (5 ng/μl). The amplification was carried out under the following 

conditions: an initial preincubation of 95 °C for 10 min followed by 45 cycles of 

denaturation at 95 °C for 30 sec, annealing at 60 °C for 20 sec and extension at 72 

°C for 10 sec, and a final extension of 72 °C for 10 min. qPCR experiments runs 

were carried out in triplicate and included a negative control. The housekeeping 

gene GAPDH was used as reference. Primers for exons 2, 9, 15 of DSG2; 2, 6, 15 

of DSC2; 2, 7, 13 of PKP2 were developed by the Primer3, primers were designed 

to have a Tm around 60 °C and produce amplicons approximately 200 bp long. 
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After the amplification, melting curve analysis and a run on agarose gel were 

performed to verify the absence of aspecific products. The copy number 

differences between the samples were calculated by the Crossing threshold (Ct) 

method. Ct values were automatically calculated by the LightCycler software, 

using the second derivative maximum. The efficiency of each PCR reaction was 

automatically determined by the formula: E = 10−1/slope . For relative 

quantification, the ratio of the target gene or exon with respect to the 

housekeeping gene of the patient’s sample is then divided by the ratio of a control 

sample. 

 
Figure 2.7: PCR in the presence of SYBR Green I. a) SYBR Green I dye only fluoresces when it is 
bound to dsDNA and excited by blue light. SYBR Green I does not bind to single-stranded DNA, 
so fluorescence is minimal during denaturation. b) As dsDNA forms and is synthesized, SYBR 
Green I binds the dsDNA and the fl uorescent signal from the bound SYBR Green I (green light) 
increases. c) At the end of elongation, all DNA is double-stranded, the maximum amount of SYBR 
Green I is bound and the fluorescent signal is at its maximum for that PCR cycle. Therefore, the 
fluorescent signals from SYBR Green I are measured at the end of eachelongation phase (modified 
from  http://lifescience.roche.com/). 
 

2.8 Transcript Analysis 

2.8.1 Reverse transcription 

Total RNA was isolated from from peripheral lymphocytes of the patient and 

reverse transcribed.  

200 ng of total RNA was mixed with 1 µl of 50 µM  random hexamers (Life 

Technologies, Carlsbad, CA, USA), 1 µl of 10 mM dNTP mix hexamers (Life 

Technologies, Carlsbad, CA, USA) and H2O to a total volume of 10 µl and 

incubated on a thermal cycler at 65 °C for 5 min. 2 µl of 5X first strand buffer 

(Life Technologies, Carlsbad, CA, USA), 1 µl of 40U/µL RNaseOUT (Life 

Technologies, Carlsbad, CA, USA) and 2 µl of H2O were added to the mix, mixed 

by pipetting and heated at 42 °C for 2 minutes. 1 µl of SuperScript III Reverse 

Transcriptase (200 U/µL) (Life Technologies, Carlsbad, CA, USA) was added and 

mixed by pipetting to start the retrotranscription. The reaction mix was incubated 

at 42 °C for 50 min, followed by inactivation at 72 °C for 15 min.  



76 
 

2.8.2 PCR 

Targeted regions of the cDNA were amplified with the standard PCR protocol, 

with specific primers flanking the deleted region, located on exon 3 and exon 5 of 

PKP2, developed using Primer3 software (F 5’-

3’AGCCCGTCACTCAGAACAG, R 5`-3`ATGCCACGAAGCTGGTTA). PCR 

products were run on 2% agarose gel and bands were excised from the gel.  

2.8.3 DNA extraction from agarose gel 

Extraction of DNA fragments from agarose gel allows to select the correct band 

and to remove the excess of primers and dNTPs coming from the previous PCR. 

Extraction was performed by using QIAquick Gel Extraction Kit (Qiagen Venlo, 

Limburg, The Netherlands) based on the absorption of nucleic acids to silica-gel 

particles in presence of salts, according to the manufacturer`s protocol.  

Briefly, the DNA band was excised from the agarose gel, dissolved in 3 volumes 

of QC buffer and incubated at 50C C for 10 min, before adding 1 volume of 

isopropanol. Dissolved gel extracts were transferred on a QIAquick spin column 

that was centrifuged at 17,000 x g for 1 min, discarding the flowthrough. The 

column was washed with 600 µl of PE buffer and centrifuged for 1 min at 

17,000g. it was placed on new collection tube and re-centrifuged for 3minutes at 

17,000g to remove residual ethanol. Purified DNA was eluted in 20 μl of H2O. 

5 μl of purified DNA were used to set up a sequencing reaction as previously 

described. Sequence run was carried out on an ABI310 Sequencer (Life 

Technologies, Carlsbad, CA, USA)  and analyzed using Chromas (Technelysium), 

Seqman II (DNASTAR, Madison, WI, USA), and AlaMut (Interactive 

Biosoftware, Rouen, France) softwares . 
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2.9 Next Generation Sequencing (NGS) 

2.9.1 The NGS Workflow  

Different NGS platforms are commercially available with different sequencing 

approaches, however the workflow can be summarized as follows. 

1) DNA fragmentation and library preparation: gDNA is randomly fragmented 

and universal adaptors are ligated to the produced fragments in order to enrich 

targeted regions of the genome by hybridization. 

2) Sequencing: parallel polymerase chain reaction and sequencing of the target 

DNA fragments produce clonally clustered amplicons. Sequencing methods vary 

and consist of several NGS technologies, including reversible terminator 

reactions, pyrosequencing, sequencing by ligation and real-time sequencing. 

These sequencing methods, applied on the enriched target samples, originate 

millions of reads. These reads are expected to cover the portions of the reference 

genome that was targeted, and the number of reads covering every target 

nucleotide is called coverage. Multiple algorithms have been developed in order 

to align the obtained sequences with the reference sequence. 

3) Alignment: reads are aligned to a reference genome (resequencing) or 

assembled (de novo sequencing) (Flicek et al., 2009). The standard formats for 

storing aligned reads from NGS experiments are the SAM/BAM file formats. The 

sequence alignment/map (SAM) file format is used to store sequence data and 

alignment information for short read sequence, a binary encoding of a SAM 

format file in the BAM file. IGV can be used to view SAM and BAM files, which 

are used to store read alignments in a smaller file size (Li et al., 2009), or Variant 

Call Format (VCF) files. IGV allows to view through large sets of reads and to 

observe the overall coverage throughout the target region, to zoom into the 

sequence till the nucleotide level. The Burrows-Wheeler Aligner (BWA) for 

instance is the most used next-generation sequence alignment program that uses 

the Burrows-Wheeler transform to align paired-end short reads to the genome. 

The resulting aligned sequence is then analyzed in search of nucleotides that vary 

from the human reference genome and are identified as SNPs, on a process called 

SNP Calling. Commercial software packages, such as CLC bio (CLC Genomics 

Workbench), offer a complete solution from importing a FASTQ file to creating 
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alignments and calling variants. SNP discovery tools include programs such as the 

Genome Analysis Toolkit Unified Genotyper. 

 4) SNP calling: highlights nucleotides different from the reference sequence. 

A NGS projects typically identifies 20000 to 30000 variants per exome, reflecting 

the great amount of genetic variation of the human genome. This makes the 

identification of disease causing variants among the thousands of variants very 

challenging. This process is further complicated by the necessity of distinguish 

true variants from sequencing errors or false-positive variants. Many filtering 

methods have been developed to prioritize variant and facilitate the research of the 

causal ones. All prioritization methods consider the possible effect of the 

nucleotide variant on the protein, and that the variant is expected to be particularly 

rare in the population. There are several freely available variant databases 

providing information on variants such as their frequency in different populations. 

In particular, raw sequence data from the 1000 Genomes Project and the Exome 

Sequencing Project, available from several sources, provide useful information for 

identifying common polymorphisms from NGS projects. 

2.9.2 The Illumina workflow 

Illumina sequencers are based on sequencing-by-synthesis using a fluorescently 

labeled method. The general workflow includes library preparation, single 

molecule amplification by bridge PCR and reversible terminator sequencing-by-

synthesis. 

The process starts with DNA library preparation, where DNA is randomly 

fragmented, and Illumina-specific adaptors are ligated at both ends of the 

fragments.  The fragments are attached on a oligo-derivatized surface of a flow 

cell, that contained oligos that bound with the adaptors. Amplification of the 

clusters is called bridge amplification: DNA polymerase is used to produce 

clusters of approximately one million copies of the original fragment. During 

sequencing the four labeled nucleotides are simultaneously added to the flow cell 

channels with the DNA polymerase, to be incorporated into the cluster fragments. 

The four nucleotides are labeled with base-specific fluorescents, the label contains 

a 3’-OH group, that inhibits the fluorescent, the polymerase ligates the fluorescent 



79 
 

labeled nucleotides in the clusters and the 3’-OH group detaches and the 

fluorescence is detected. Illumina sequencer produces reads around 100 bases. 

2.9.3  Next Generation Sequencing - Whole Exome Sequencing (WES) 

Whole Exome Sequencing (WES) of 12 out of the 99 genotyped subject was 

performed in collaboration with BMR Genomics (Padua, Italy) in 2 consecutive 

sequencing runs, each including 6 samples. 

WES is composed by three main steps: library preparation, sequencing, 

bioinformatic data analysis of results including SNP Calling. 

2.9.3.1 Library preparation 

Libraries were constructed according to the Illumina recommendations, and 

enriched for the coding regions of 20846 genes using the TruSeq DNA Sample 

Preparation kit (Illumina, San Diego, CA, USA) according to the “low sample 

protocol”, used to process a maximum of 48 samples at one time. 

 The protocol for the library preparation is composed by different steps (Figure 

2.8). 

 

Figure 2.8: Overview of the WES sample preparation workflow (modified from 
www.illumina.com/). 
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- DNA Fragmentation 

According to TruSeq Exome Enrichment recommendation the final library should 

contain DNA fragments of 200-300 bp average insert size: 1 μg (52.5 μl at 20 

ng/μl) of gDNA was sheared on a Covaris S220 (Covaris, Woburn, MA, USA) 

using the following settings: Duty cycle 10%, Intensity 5.0, Bursts per second 

200, Duration 120 sec, Mode Frequency sweeping, Power 23W, Temperature 6 

°C, according to the manual. After a brief centrifugation at 600g for 5 sec, 50 μl of 

fragmented gDNA were transferred to every well of a PCR plate.  

- End Repair 

Covaris shearing produces dsDNA fragments with 3’or 5’ overhangs, therefore 

this process is necessary to change the overhangs resulting from fragmentation 

into blunt ends.  

40 μl of End Repair Mix (Illumina) was added to each well of the plate containing 

the fragmented DNA, mixing thoroughly. The 3' -5' exonuclease activity of the 

End Repair Mix removes the 3'overhangs and the polymerase activity fills in the 

5' overhangs. The plate was incubated on the thermal cycler for 30 min at 30 °C.  

The sample clean up was performed according to the following procedure: 160 μl 

of AMPure XP Beads were added to each well of the plate containing the End 

Repair Mix and the plate was incubated at room temperature for 15 min. The plate 

was placed on the magnetic stand at room temperature for 15 min, and the 

supernatant was discarded from each well. After two washing steps with 80% 

EtOH, the plate was dried at room temperature for 15 minutes, and the dried pellet 

was resuspended in 17.5 μl of Resuspension Buffer. 15 μl of the clear supernatant  

was transfer from each well of the plate to the corresponding well of the new PCR 

plate. 

- 3' Ends Adenylation 

This process adds a single adenine nucleotide to the 3’ ends of the blunt 

fragments, in order to avoid their ligation to one another during the adapter 

ligation reaction. 

Briefly 2.5 μl of A-Tailing Control and 12.5 μl of A-Tailing Mix were added to 

the bottom of each well of the plate, the plate was incubated on the thermal cycler 

for 30 min at 37 °C. 
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- Adapters Ligation 

During this step multiple indexing adapters are getting ligated to the ends of the 

DNA fragments, preparing them for hybridization on a flow cell. On the 3’ end of 

the adapter a  single timine nucleotide is located, to provide a complementary 

overhang for ligating the adapter to the fragment. 2.5 μl of Ligase Control, 2.5 μl 

of DNA Ligase Mix and 2.5 μl of each thawed DNA Adapter Indexes were added 

to each well of the plate, the volume was adjusted to 37.5 μl and the plate was 

incubated on the thermal cycler for 10 min at 30 °C. Then 5 μl of Stop Ligase Mix 

were added to each well to inactivate the ligation, and the volume was adjusted to 

42.5 μl. 

The clean up was performed as previously described, the dried pellet was 

resuspended with 22.5 μl Resuspension Buffer, and 20 μl of the clear supernatant 

were transferred to a new PCR plate. 

- Ligation Products Purification and size selection 

This step is performed to purify the products of the ligation reaction and to 

remove unligated adapters, adapters that may have ligated to one another, and in 

order to select a size‐range of sequencing library for the subsequent cluster 

generation. For exome enrichment, a 200–300 bp insert size target was chosen. 

This process was carried out by an elettrophoretic run on a 2% agarose with SyBr 

Gold gel in 1X TAE Buffer. 7 μl of 4X Loading Buffer were added to each well 

of the plate, 17 μl of Resuspension Buffer and 7 μl of 4X Loading Buffer were 

added to 3 μl of DNA ladder. The ladder solution was loaded in one lane of the 

gel, and the samples on the other lanes of the gel. The gel was run at 120 V 

constant voltage for 120 min. After the gel visualization, the bands from the gel 

spanning from 300–400 bp were excised. DNA extraction was carried out 

following the instructions of the MinElute Gel Extraction Kit. Briefly, the gel 

slices were incubated in the QG solution at room temperature until they have 

completely dissolved and purification was performed on one MinElute spin 

column, eluting in 25 μl of QIAGEN EB. 20 μl of each sample from the MinElute 

collection tube were transferred to a new PCR plate. 
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- DNA Fragments Enrichment 

In this step a PCR is performed with specific primers that anneals to the ends of 

the adapters, therefore DNA fragments that have adapters on both ends are 

selectively enriched and the DNA library is amplified. 

5 μl of thawed PCR Primers and 25 μl of thawed PCR Master Mix were added to 

each well of the plate. Amplification was carried out in the thermal cycler as 

follows: 98 °C for 30 sec, 10 cycles of 98 °C for 10 sec, 60 °C for 30 sec, 72 °C 

for 30 sec and 72 °C for 5 min. The Clean Up of the PCR products was performed 

as previously described. The pellet was resuspended in 32.5 μl of Resuspension 

Buffer and 30 μl of the supernatant were transferred on a new PCR plate. 

- Library Validation  

Quality control analysis of the sample library includes quantification of the DNA 

library templates and quality control. 

Quantification 

An accurate quantification of DNA library is essential to create optimal cluster 

densities across every lane of the flow cell and obtain high quality sequencing 

data.  

Successful enrichment (at least 10 μg) was verified by qPCR according to the 

Illumina Sequencing Library qPCR Quantification Guide. Briefly, a 100-fold 

dilution of the 2mM qPCR control template was prepared. 100 μl of 0.1% Tween 

20 were added to 100 μl of the diluted template and a titration curve of six 2x 

serial dilutions was prepared (20 pM, 16 pM, 8 pM, 6 pM, 4 pM, 2 pM, 1 pM). 

Then 998 μl of 0.1% Tween 20 were added to 2 μl of the library template to make 

a 500-fold dilution (~4 pM), three independent dilutions of the library template 

were prepared to make triplicate measurements. 18 μl of the SYBR reaction mix ( 

10 μl of 2XKAPA SYBR FAST Master Mix Universal, 0.2 μl of 10 μM qPCR 

Primer 1.1 and 2.1, 7.6 μl of Nuclease-free Water) were added to each well of the 

plate, 2 μl of the control template dilutions, the unknown library dilutions, or 

water were added to each well. The plate was placed on the qPCR machine  with 

the following conditions: 95 °C for 10 min (Hot start), and 40 cycles at 95 °C for 

10 sec, 60 °C for 30 sec. finally,  qPCR results are analyzed and the initial 
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concentration of the unknown library templates is automatically calculated based 

on the standard curve.  

Quality Control 

The size of the enriched fragments was checked by running 1 μl of 1:100 diluted 

library aliquot of the enriched library on a 2100 Bioanalyzer (Agilent, Santa 

Clara, CA, USA) using a DNA 1000 chip as previously described. 

- Libraries Pooling 

Multiplexed DNA libraries are normalized to 10 nM and then pooled in equal 

volumes for the cluster generation. The concentration of sample library were 

normalized to 10 nM, then 10 μl of each normalized sample library were 

transferred to be pooled on a new PCR plate. 

2.9.3.2 Sequencing 

Cluster generation was achieved according to the Illumina Cluster Generation 

User Guide. 

In this procedure the template is attached to the surface of an oligonucleotide-

coated flow cell and amplified to produce a cluster bound to the surface of the 

flow cell. Cluster generation workflow includes cluster amplification, 

linearization, blocking, primer hybridization. during cluster amplification the 

sample is hybridized on the flow cell and amplified, then the amplified sample is 

prepared for sequencing: one of the two adapters are cleaved off from the surface 

of the flow cell, the 3’ OH ends of the linearized dsDNA clusters is blocked, 

dsDNA is denatured and sequencing primers can hybridize. 

Briefly the template DNA is denatured with 0.1 N NaOH to a DNA concentration 

of 20 pM, and added with Hybridization Buffer. The DNA library was sequenced 

on a flow cell with paired end 2x100 bp run a on an HiSeq2000 (Illumina, San 

Diego, CA, USA). 

 Data Analysis 

Image acquisition, and image and signal processing were performed during the 

run. A first data analysis was performed using the Illumina software package for 

Illumina Systems. Consecutive analysis was performed by using three different 

pipelines. 
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- A first pipeline mapped the read sets obtained against the human reference 

genome NCBI37/hg19 using Burrows-Wheeler Aligner tool (BWA), a freeware 

software package that efficiently aligns short sequencing reads against a large 

reference sequence, and  required a previous indexing of the reference. PCR 

duplicates were removed and all alignment BAM files (Binary Alignment/Map) 

have been indexed and filtered. BAM files can be uploaded on Integrative 

Genomics Viewer  (IGV) software, visualization tool for interactive exploration of 

large, integrated genomic datasets (Robinson  et al., 2011). 

Genome Analysis ToolKit (GATK) was used for base quality score recalibration 

and realignment. Variant calling was performed with GATK Unified Genotyper 

by using default parameters, according to the GATK recommendations, and 

produced Variant Caller Format files (VCF; Danecek et al., 2011) from BAM 

files. Annotation was carried out by uploading VCF files on the web version of 

the variant annotation program ANNOVAR (Wang et al., 2010). ANNOVAR 

provides for every variant allele frequencies available from dbSNP, 1000 

genomes, and the Exome Sequencing Project. It also provides predictions of their 

effects on the amino-acid sequence, and pathogenicity prediction scores from 

SIFT, Polyphen, MutationTaster, MutationAssessor,  and  attaches annotations of 

conserved regions. 

The number of reads on target, that is the number of reads mapping on the exome, 

was calculated from the total sequenced reads and the reads resulting after 

filtering and mapping. The average coverage was calculated as: the total bases 

aligned on the exome/ total bases of the exome. 

- A second pipeline was the Illumina suite. HiSeq reads were mapped with 

ELANDv2 to the hg19 reference sequence, a mapping tool included in the 

Illumina software package that performs multiseed and gapped alignment of 

paired reads, using default parameters. Variant calling was performed with 

Consensus Assessment of Sequence And VAriation (CASAVA) with default 

parameters. CASAVA is a Linux application principally developed to call alleles, 

SNPs,indels.  It also automatically generates a range of statistics (mean depth and 

percentage target coverage). CASAVA outputs were  imported into “Genome 

Studio” for visualization. 
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-The third analysis was carried out by using CLC Genomics Workbench,  an 

analysis package for analyzing, comparing, and visualizing next generation 

sequencing data. CLC carried out aligment, filtering, and variant calling by 

applying default parameters. 

The sensitivity of WES with respect to Sanger sequencing was calculated 

considering the number of variants correctly identified by WES with respect to the 

total number of variants of the samples. The specificity was calculated 

considering the false positives calls of WES among the 719885 true negative 

bases. 

2.9.4  Next Generation Sequencing - Targeted Resequencing (TR) 

Targeted resequencing (TR) for 55 genes associated with different 

cardiomyopathies was carried out on 2 genotyped subjects at the University of 

Groningen. 

2.9.4.1 Library preparation 

Library preparation and enrichment were carried out by using the SureSelectXT 

Target Enrichment System for Illumina Paired-End Sequencing Library, 

according to the manufacturer’s instructions (Figure 2.9). 

- DNA Fragmentation  

3 μg of high-quality gDNA were diluted with Tris-EDTA Buffer to a total volume 

of 130 μl and sheared on a Covaris S220 (Covaris, Woburn, MA, USA), using the 

following settings: Duty cycle 10%, Intensity 5.0, Bursts per second 200, 

Duration 80 sec, Mode Frequency sweeping, Treatment Time 360 sec, 

Temperature 4 °C, according to the manual. The target peak for base pair size is 

between150 and 200 bp. 

The sample was purified by using the QIAquick protocol (Qiagen, Hilden, 

Germany), according to the following procedure. Briefly 5 volumes of Buffer PB 

were added to 1 volume of sample, the sample was transferred on a QIAquick spin 

column to bind DNA on the silica membrane, and centrifuged for 30 sec, 

discarding the flow-through. DNA was washed by adding 750 μl of Buffer PE to 

the column and centrifuged for 30sec. DNA was eluted  in 20 μl of nuclease-free 

H2O. 
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Figure 2.9: Overview of the TR sample preparation workflow (modified from 
http://www.genomics.agilent.com/). 

 

- Quality control 

The quality of the library was assesse with the 2100 Bioanalyzer using a DNA 

1000 chip and reagent kit, according to the Agilent DNA 1000 Kit Guide. The 

electropherogram should show a distribution with a peak height comprised 

between 150 and 200 bases. 

- End Repair 

End repair was performed by combining 48 μl of each DNA sample with 100 μl 

of End Repair Mix (35.2 μl of Nuclease-free water, 10 μl of 10X End Repair 

Buffer, 1.6 μl of dNTP Mix, 1 μl of T4 DNA Polymerase, 2 μl of Klenow DNA 

Polymerase, 2.2 μl of T4 Polynucleotide Kinase). Every tube was incubated in a 
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thermal cycler for 30 min at 20 °C. Repaired DNA was purified using the 

QIAquick protocol , according to the previously described protocol.  

- 3' Ends Adenylation 

Fragment dA tailing was performed by adding 20 μl of reaction mix (11 μl of 

Nuclease-free water, 5 μl of 10× Klenow Polymerase Buffer, 1 μL of dATP, 3 μl 

of Exo(-) Klenow) to 30 μl of each end repaired blunt DNA sample. Reactions 

were incubated on a thermal cycler for 30 min at 37 °C, DNA was purified using 

the QIAquick protocol. 

- Adapters Ligation 

Ligation of the adaptors was performed by adding 37 μl of the reaction mix (15.5 

μl of Nuclease-free Water, 10 μL of 5X T4 DNA Ligase Buffer, 10 μl of 

SureSelect Adaptor Oligo Mix, 1.5 μl of T4 DNA Ligase) to 13 μl of each DNA 

sample. A 10:1 molar ratio of adaptor to genomic DNA insert is used, based on 

the initial DNA quantity of 3 μg. Samples were incubated for 15 min at 20 °C on a 

thermal cycler and purified by using Agencourt AMPure XP beads. 

- Size Selection 

The size selection was performed on a LabChip XT DNA Assay (750 chip, 

Caliper Life Sciences, Hopkinton, MA, USA) according to the manual. The 

LabChip XT XT DNA assays are based on traditional gel electrophoresis using a 

microfluidic network on a chip. Briefly, DNA samples are mixed with a sample 

buffer and loaded into each wells of the chip. DNA fragments are 

electrophoretically separated  and stained with an intercalating dye. Sizing and 

concentration for the sample is determined using a ladder and an internal marker. 

After every step, the fragments were purified following to the QIAquick protocol. 

- Library Amplification  

Briefly, 50 μl of the reaction mix (15 μl of Indexing Adaptor-ligated library, 21 μl 

of Nuclease-free water, 1.25 μl of SureSelect Primer, 1.25 μL of SureSelect ILM 

Indexing Pre Capture PCR Reverse Primer, 10 μl of 5X Herculase II Rxn Buffer, 

0.5 μl of  100 mM dNTP Mix, 1 μl of Herculase II Fusion DNA Polymerase) were 

added to 15 μl of each DNA sample. A third of the adaptor-ligated fragments are 

used for amplification. Samples were incubated in a thermal cycler with the 
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following program: 98 °C for 2 min, 10 cycles of 98 °C for 30 sec, 65 °C for 30 

sec, 72 °C for 1 min, and 72 °C for 10 min. DNA was purified by using the 

QIAquick protocol. 

- Quality control 

Quantity, quality and size distribution of the PCR products were assessed with 

2100 Bioanalyzer with the Agilent DNA 1000 Kit. The electropherogram should 

show a distribution with a peak size approximately 250 to 275 bp. Figure 3 

Analysis of amplified prepped library DNA using a DNA 1000 assay. The elec-

tropherogram shows a single peak in the size range of 250 to 275 bp. 

SureSelect hybridisation buffer was prepared according to the manufacturer 

instructions and heated to 65 °C for 5 minutes to prevent precipitate formation. 5 

μl of SureSelect capture library and 2 μl of 25% RNase block were mixed and 

placed on ice. 500 ng of DNA prepped library in a volume of 3.4 μl were added to 

the second row in the PCR plate, combined with 5.6 μl SureSelect block mix, 

heated on a thermal cycler at 95 °C for 5 min and held at 65 °C. Maintaining the 

tubes at 65 °C, 40 μl of hybridisation buffer were added to the first row in a PCR 

plate and temperature was maintained at 65 °C for additional 5 minutes. 7 μl of 

the capture library mix were added to the third row in the PCR plate, holding the 

tubes at 65 °C for additional 2 min. 13 μl of hybridisation mix were transferred 

from the first raw of the plate to the SureSelect capture library mix contained in 

the third raw, and the entire contents of each prepped library mix in the second 

raw was transferred to the hybridization solution in the third raw of the plate. The 

hybridization mixture was incubated for 24 hours at 65 °C. 

- Streptavidin bead capture 

Magnetic beads prepared by adding 200 of μl SureSelect binding buffer and 

vortexing tubes for 5 sec. Tubes were placed on a magnetic rack and beads 

allowed to settle before removing the supernatant, beads were washed 3 times and 

resuspended in 200 μl of SureSelect binding buffer. After the 24 hour incubation 

at 65 °C, the hybridisation mixture was added directly into the streptavidin bead 

solution. Tubes were incubated for 30 min at room temperature. Beads were 

separated by placing tubes on a magnetic rack and the supernatant was removed. 

Beads were then washed with 500 μl of SureSelect wash buffer 1, incubating at 
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room temperature for 15 min. After spin centrifuging, tubes were placed on a 

magnetic rack and the supernatant was removed. The second washing stage was 

performed by resuspending the beads in 500 μl of SureSelect wash buffer 2 and 

incubating tubes at 65 °C for 15 min. Beads were separated on a magnetic rack 

and the supernatant was removed. This step was repeated twice. 50 μl of 

SureSelect elution buffer was then added to the beads, that were vortex mixed and 

incubated at room temperature for 5 min. 

- Addition of Index Tags by Post-Hybridization Amplification 

The amplification reaction mix (22.5 μl of Nuclease-free H2O, 10 μl of 5X 

Herculase II Rxn Buffer, 0.5 μl of 100 mM dNTP Mix, 1 μl of Herculase II 

Fusion DNA Polymerase, 1 μl of SureSelect ILM Indexing Post Capture Forward 

PCR Primer, 10 μl of PCR Primer Index 1 through Index 16) was prepared 

according to the manufacturer’s instructions and kept on ice. 35 μl of the reaction 

mix and 1 μl of the appropriate index PCR Primer (Index 1 through Index 16) 

were added to each tube, containing 14 μl of each DNA. The tubes were incubated 

in a thermal cycler  with the following parameters: 98 °C for 2 min, 10 cycles of 

98 °C for 30 sec, 57 °C for 30 sec, 72 °C 1 min, and 72 °C for 10 min. Reactions 

were purified using using the QIAquick protocol, with a final elution volume of 

15 μl. 

- Libraries Pooling 

Multiplexed DNA libraries were normalized to 10 nM and combined such that 

each index-tagged sample is present in equimolar amounts in the pool.  

2.9.4.2 Sequencing 

3μl of the 10 nM multiplexed sample pool was diluted with 16 μl of Buffer EB 

(10mM Tris-Cl, ph 8.5), added with 1 μl of 2 N NaOH solution and incubated for 

5 minutes at room temperature. A 2 mM PhiX sample was also denatured with 1 

μl of 2 N NaOH. To 8 μl of denatured library, 992 μl of Hybridization Buffer 

were added to give a library concentration of 12 pM. The library and the PhiX 

were further diluted with Hybridization Buffer to give a concentration of 4 pM 

and and 1% of PhiX was added into the sample. The MiSeq reagent cartridge was 

prepared and 600 μl of the library were loaded into the cartridge. The flow cell, 
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the hybridization manifold, and the tube strip holder were installed onto the 

Cluster Station. A 150 bp paired-end reads was performed on a MiSeq sequencer, 

according to the manufacturer’s instructions. 

Data Analysis 

MiSeq Reporter generates intermediate analysis files in a FASTQ format, files 

have been demultiplexed (separated by sample), so that every file contains 

sequences of one sample. FASTQ files have been exported and were analysed 

using the NextGENe software (Softgenetics, PA, USA) with default parameters, 

which derived a consensus sequence for each sample. NextGENe software 

performed quality control of sequencing data, the removal of PCR duplicates and 

reads filtering for wrong orientation, wrong insert size, one mate or both mates 

unmapped, and for multiple hits on the reference genome, and output reads were 

aligned to the human reference genome NCBI37/hg19. The NextGENe software 

output VCF files that were uploaded on Cartagenia Bench Lab (Cartagenia, 

Leuven, Belgium), a commercial software set up in house that uses an automated 

filtering procedure in order to prioritize variants. Cartagenia BenchLab applies 

various filters developed by the Cardiogenetics laboratory to the large numbers of 

variants from NGS platforms in order to select only candidates that meet specific 

filtration criteria and to identify clinically relevant variants. The filters take into 

consideration the presence and the frequency of the variants in several public 

databases (1000 genomes, EVS, dbSNP), and an in house variant database. The 

output of the filtering pipeline is normally composed of a dozen of variants. 

The sensitivity and specificity of TR with respect to Sanger sequencing were 

already assessed (Sikkema-Raddatz et al., 2013). 

2.10 Statistical Analysis 

Kruskal Wallis test was used to assess the significance of differences between 

subgroups. A 2-tailed probability value <0.05 was regarded as statistically 

significant. 
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3. RESULTS 
3.1 Cohort 

Ninty-nine unrelated index cases with a clinical diagnosis of AC, 77 males, 22 

females; ratio 4:1; average age at diagnosis 41±17 years (range 12-78), referred 

for molecular genetic screening to the Cardiovascular Genetics Laboratory 

(University of Padua) between years 2012 and 2014. 

 

Index cases N=99 

Autopsy diagnosis N=26 

Gender: 
male, n (%) 

  26 (100%) 

Age    28±11 (12-60) 

 LD  N=13 22±6 (17-40) 

 RD  N=0  

 BIV N=13 29±12 (15-60) 

Clinical diagnosis N=73 
Gender: 
male, n (%) 

51 (70%) 

Age 41±17 (12-78) 
Cardiac 
transplantation 

 14 (14%) 

2010 AC criteria Definite  63 (87%) 
 Borderline  3 (4%) 
 Possible  7 (9%) 
  I Global and/or Regional 

Dysfunction and Structural 
Alterations 

60 (36M, 24m) 

  II Fibrofatty replacement 
on endomyocardial biopsy, 
n (%) 

6 

  III Repolarization 
abnormalities, n (%) 

44 (36M,8m) 

  IV 
Depolarization/Conduction 
Abnormalities 

32 (7M,25m) 

  V Arrhythmias 55 (22M, 32m) 

  VI Family History 14 (9M, 5m) 

Table 3.1: Demographic (sex, age) and clinical characteristics of 99 patients. LD- left dominant 
pattern of AC, RD- right dominant pattern of AC, BIV- AC with biventricular involvement.  
 

Seventy-three of the 99 subjects were enrolled at the Referential Clinical Genetic 

Centre of Arrhythmic Cardiomyopathies (Cardiology Unit), of which 14 
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underwent cardiac transplantation and the rest 26 of the 99 index cases were 

enrolled at the Veneto Registry of Cardio-Cerebro-Vascular Pathology 

(Cardiovascular Pathology Unit).  

Clinical diagnosis of AC was defined according the 2010 Task Force major and 

minor criteria (Marcus et al., 2010), as previously described. Diagnostic criteria 

classified the 73 clinically affected index cases as follows: 63 definite, 3 

borderline, 7 possible (Table 3.1). Twenty-six SCD probands, all males, with an 

abnormal disease pattern were grouped based on morphological features as AC 

with left dominant form (n=13) and AC with biventricular involvement (n=13). 

 

3.2 Genetic screening of 5 desmosomal and 3 extra desmosomal genes 

All 99 subjects underwent genetic screening for 5 desmosomal encoding genes, 

whereas 3 extra desmosomal genes were investigated in 46 of the 99 subjects. 

DNA was extracted from blood in 76 samples, from frozen myocardium in 9 

samples, and from FFPE myocardium in 14 samples. Screening was performed by 

DHPLC, followed by Sanger sequencing of DNA samples showing abnormal 

elution pattern and GC rich amplicons. 

DHPLC analysis detected overall 193 anomalous elution profiles and subsequent 

direct sequencing confirmed the presence of nucleotide variants within the 8 genes 

as follows: 69 (36%) were located in DSP, 37 in DSG2 (19%), 35 in PKP2 (18%), 

19 in DSC2 (10%), 13 in JUP (7%), 12 in DES (6%), 7 in CTNNA3 (4%) and 1 

only in PLN.  

Seventy-two of the 193 (37%) variants were intronic, 6 (3%) resided in splicing 

sites and 3 (2%) were located in the untranslated regions (UTR) of the gene. The 

rest 112 (58%) variants were located within the coding regions, of which 60 

(54%) were missense, 37 (33%) synonymous, 9 (8%) frame shift, 6 (5%) 

nonsense.  A summary of nucleotide variants detected in the 8 genes is reported in 

table 3.2 (in appendix), and in figure 3.1. 

Variants in DSP 

Genetic screening of all 24 DSP gene exons identified 69 (36%) variants in 99 

index subjects of which 23 were intronic, 2 were splicing site variants, 2 were 
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located in the UTR, 18 were missense, 19 synonymous, 3 frameshift and 2 

nonsense. 

Variants in PKP2 

The 14 exons of PKP2 gene were examined for variants in all 99 index subjects. 

A total of 35 (18%) variants were identified, 10 of them were intronic, 2 were 

located on splicing sites, 14 of them were missense, 4 frameshift, 1 synonymous 

and 3 nonsense. 

Variants in DSG2 

The 15 exons of DSG2 gene were examined for variants in all 99 index subjects. 

A total of 37 (19%) variants were identified in DSG2, 18 of them were intronic, 2 

were located on splicing sites, while 16 were located within the coding region. 

Twelve of them were missense, 4 synonymous, 1 nonsense variant that was found 

in homozygosity. 

Variants in DSC2 

The 14 exons of DSC2 gene were examined for variants in all 99 index subjects. 

A total of 19 (10%) variants were identified, 6 of them were intronic, and the 

remaining 13 were located in the coding region. 8 variants were missense, 1 

frameshift, 4 synonymous, 0 nonsense. Eighteen of the 19 nucleotide variants 

were found in heterozygosis. 

Variants in JUP 

The 14 exons of JUP gene were examined for variants in all 99 index subjects. A 

total of 13 (7%) variants were identified, 5 of them were intronic, 1 was located in 

the UTR, and the remaining 7 were exonic: 6 variants were missense and 1 was 

synonymous. 

Variants in DES 

The 7 exons of DES were examined for variants in all 46 index subjects. 12 (7%) 

variants were identified, 4 intronic variant and 8 missense exonic variants . 
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Variants in CTNNA3 

The 14 exons of CTNNA3 gene were examined for variants in 46 index subjects. 7 

(3%) variants were identified, 5 of them were intronic, and the 2 exonic variants 

were missense. 

Variants in PLN 

Ninty-nine index AC cases underwent genetic screening for the unique coding 

exon of PLN, but only an intronic variant was identified. 

 

 

Figure 3.1: The 193 variants detected in 8 genes, sorted per gene and type (intronic, missense, 
synonymous, frameshift, nonsense, splicing, UTR). 
 

3.2.1 Variants filtering  

A first filtering step based on the position and function of nucleotide variants, 

excluded 72 of the 193 unique variants due intronic localization without predicted 

functional effects on the normal splicing of the transcript, 3 variants were 

excluded due to UTRs localization and 37 synonymous variants were excluded as 

not changing the functional properties of the protein. The rest 81 variants are 

listed below (Tabe 3.3, Figure 3.2). 

 

Gene cDNA change 
Predicted 
protein 
change 

Ex dbSNP ID Type Index case/ 
tot Reference 

DSP c.88 
G>A 

p.V30M 1 rs121912998 M 2/99 Yang et 
 al., 2006 

DSP c.423-1 
G>A 

r.spl 4  Sp 1/99 Bauce et  
al., 2005 

DSP c.448 
C>T 

p.R150X 4  N 1/99 Pilichou et  
al., 2014 

DSP c.897  
C>G 

p.S299R 7 rs121912992 M 1/99 Rampazzo 
 et al., 2002 

DSP c.913 
A>T 

p.I305F 7 rs17604693 M 7/99 Rampazzo et 
 al., 2002 

DSP c.939+1 
G>A 

 7  Sp 1/99 Sen-Chowdhry  
et al., 2008 

DSP c.2203 
G>A 

p.G735S 16  M 1/99 Novel 
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DSP c.2956 
C>T 

p.Q986X 21  N 1/99 Campuzano et  
al., 2013 

DSP c.3297_3298 
insTTGT p.C1100LfsX11 23  Fs 1/99 Novel 

DSP c.3774 
C>A 

p.D1258E 23  M 1/99 Rampazzo 
 et al., 2008 

DSP c.3862 
A>C 

p.K1288Q 23 rs138907450 M 1/99 Bao et  
al., 2013 

DSP c.4372 
C>G 

p.R1458G 23 rs28763965 M 1/99 Cox et  
al., 2011 

DSP c.4535 
A>G 

p.Y1512C 23 rs2076299 M 2/99 Yu et al., 
 2008 

DSP c.4961 
 T>C 

p.L1654P 23  M 1/99 Rampazzo et al., 
2008 

DSP c.4973 
 C>T 

p.S1658F 23 rs202084959 M 1/99 Rigato et  
al., 2013 

DSP c.5134 
A>C 

p.N1712H 23  M 1/99 Novel 

DSP c.5178 
C>A 

p.N1726K 23 rs147415451 M 1/99 Klauke et 
al., 2010 

DSP c.5213 
G>A 

p.R1738Q 23 rs6929069 M 13/99 Den Haan  
et al., 2009 

DSP c.5218 
G>A 

p.E1740K 23 rs142885240 M 2/99 Cox et  
al., 2011 

DSP c.5498 
A>T 

p.E1833V 24 rs78652302 M 2/99 Gehmlich  
et al.,2010 

DSP c.5511 
dup 

p.R1838SfsX19 24  Fs 1/99 Novel 

DSP c.6701 
A>G 

p.N2234S 24  M 63/99 Novel 

DSP c.7039 
A>G 

p.I2347V 24  M 1/99 Rigato et  
al., 2013 

DSP c.7461_7464 
del 

p.D2489MfsX17 24  F 1/99 Novel 

DSP c.7622 
 G>A 

p.R2541K 24 rs142078450 M 1/99 Rampazzo 
 et al., 2008 

PKP2 c.76 
G>A 

p.D26N 1 rs143004808 M 5/99 van Tintelen  
et al., 2006 

PKP2 c.83 
del 

p.S29AfsX10 1  Fs 1/99 Novel 

PKP2 c.109 
A>T 

p.K37X 1  N 1/99 Novel 

PKP2 c.147_150 
del 

p.T50SfsX61 1  Fs 3/99 Novel 

PKP2 c.175 
C>T 

p.Q59X 1  N 2/99 Rigato et 
 al., 2013 

PKP2 c.184 
 C>A 

p.Q62K 1 rs199601548 M 1/99 Van Tintelen 
 et al., 2006 

PKP2 c.209 
G>T 

p.S70I 1 rs75909145 M 4/99 Koopman 
 et al., 2007 

PKP2 c.535 
C>A 

p.H179N 3  M 1/99 Novel 

PKP2 c.1012 
A>G 

p.T338A 3 rs139851304 M 1/99 
 

Bhuiyan et  
al., 2013 

PKP2 c.1097 
T>C 

p.L366P 4 rs1046116 M 21/99 Koopman  
et al., 2007 

PKP2 c.1576 
A>G 

p.T526A 7  M 1/99 Ostrowska Dahlgren 
et al., 2012 

PKP2 c.1583 
C>T 

p.T528M 7  M 1/99 Novel 

PKP2 c.1592 
T>G 

p.I531S 7 rs148240502 M 2/99 Lahtinen et 
 al., 2008 

PKP2 c.1643 
del 

p.G548VfsX15 7  Fs 2/99 Gerull et 
 al., 2004 

PKP2 c.1820 
G>A 

p.C607Y 9  M 1/99 Novel 

PKP2 c.1841 
T>C 

p.L614P 9  M 1/99 Ma et al.,  
2013 

PKP2 c.2009 
del 

p.N670TfsX14 10  Fs 1/99 Basso et  
al., 2006 

PKP2 c.2111 
G>A 

p.G704E 10  M 1/99 Novel 

PKP2 c.2119 
C>T 

p.Q707X 10 rs397517017 N 1/99 Basso et 
 al., 2006 

PKP2 c.2145+3_+6 
dup 

 10  I 1/99 Novel 

PKP2 c.2299+1 
G>T 

 11  Sp 1/99 Novel 

PKP2 c.2365 
A>G 

p.I789V 12  M 1/99 Novel 

PKP2 c.2489+1 
G>A 

 12 rs111517471 Sp 1/99 Gerull et 
 al., 2004 

PKP2 c.2552 
C>T 

p.T851M 13 rs146118033 M 1/99  
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DSG2 c.44 
T>A 

p.L15Q 1  M 1/99 Bhuiyan  
et al., 2009 

DSG2 c.166 
G>A 

p.V56M 3 rs121913013 M 2/99 Syrris et 
 al. 2007 

DSG2 c.245 
G>T 

p.G82V 4  M 1/99 Novel 

DSG2 c.378+2 
T>G 

 4  Sp 1/99 Cox et 
 al., 2011 

DSG2 c.722 
C>T 

p.A241V 7  M 1/99 Novel 

DSG2 c.797 
 A>G 

p.N266S 7 rs121913011 M 1/99 Pilichou 
 et al., 2006 

DSG2 c.875 
G>A 

p.R292H 8 rs185821167 M 1/99 Jiménez-Jáimez 
et al., 2014 

DSG2 c.877 
A>G 

p.I293V 8 rs2230234 M 21/99 Posch et  
al., 2008 

DSG2 c.1543 
G>A 

p.V515I 11 rs2230235 M 1/99  

DSG2 c.1652-1 
G>T 

 12  Sp 1/99 Novel 

DSG2 c.1672 
C>T 

p.Q558X 12  N 1/99 Pilichou et  
al.,  2006 

DSG2 c.2137 
G>A 

p.E713K 14 rs79241126 M 8/99 Basso et  
al., 2006 

DSG2 c.2318 
G>A 

p.R773K 14 rs2278792 M 18/99 Yu et al., 
 2008 

DSG2 c.2368 
C>T 

p.H790Y 15 rs114544564 M 1/99 Den Haan  
et al., 2009 

DSG2 c.2759 
T>G 

p.V920G 15 rs142841727 M 1/99 Syrris et al., 2007 

DSC2 c.32 
A>G 

p.N11S 1 rs868333 M 1/99 Den Haan 
 et al., 2009 

DSC2 c.536 
A>G 

p.D179G 5  M 2/99 De Bortoli  
et al., 2010 

DSC2 c.1787 
C>T 

p.A596V 12 rs148185335 M 2/99 den Haan 
 et al., 2009 

DSC2 c.2194 
T>G 

p.L732V 14 rs151024019 M 1/99 Bhuiyan 
 et al., 2009 

DSC2 c.2326 
A>G 

p.I776V 15 rs1893963 M 9/99 Yu et al., 
 2008 

DSC2 c.2393 
G>A 

p.R798Q 15 rs61731921 M 5/99 Posch et  
al., 2008 

DSC2 c.2596 
G>C 

p.A866P 16  M 1/99 Novel 

DSC2 c.2603 
C>T 

p.S868F 16 rs141873745 M 1/99 Fressart et 
 al., 2010 

DSC2 c.2686_2687 
dup 

p.A897KfsX4 16 rs200056085 Fs 
 

1/99 Syrris et 
 al., 2006 

JUP c.425 
G>A 

p.R142H 2 rs41283425 M 4/99 Koopmann  
et al., 2007 

JUP c.1372 
G>A 

p.A458T  rs139559495 M 1/99  

JUP c.1960 
G>A 

p.E654K 12 
 

 M 1/99 Novel 

JUP c.2069 
A>G 

p.N690S 13 rs147628503 M 1/99  

JUP c.2089 
A>T 

p. M697L 14 rs1126821 M 50/99 Koopmann 
 et al., 2007 

JUP c.2124 
T>A 

p.D708E 14  M 1/99 Novel 

CTNNA3 c.478 
T>A 

p.S160T 5 rs61749223 M 1/99  

CTNNA3 c.1787 
G>A 

p.S596N 13 rs4548513 M 24/99  

Table 3.3: The 81 unique variants resulting from the I-filtering step, will be subjected to 3 more 
filtering steps, Ex: exon, I: Intronic, S: synonymous, M: missense, UTR: untranslated region, N: 
nonsense, Fs: frameshift, Sp: splicing. 
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Figure 3.2: Distribution among genes of the 81 variants putative as pathogenic after the I filtering 
step. 

 

3.2.2 Allelic frequency variant filtering 

A second step filtering based on allelic frequency over the disease specific cut-off 

(0.02%), excluded 29 (36%) of the 81 variants. The excluded variants, listed on 

table 3.4 and figure 3.3, were searched in the 1000 genomes and EVS databases or 

in the internal control dataset, and were classified as not pathogenic due to high 

frequency in the general population.  

 

Of these worth mentioning that the duplication c.2686_2687dup in DSC2 gene 

leading to a frame-shift (p.A897KfsX4) was also excluded due to high MAF 

(0.006/12). Indeed this variant which was recently identified in 1.5% of the Italian 

healthy control subjects, was demonstrated to affect only DSC2 isoform a, while 

isoform b, more expressed in the heart, was not altered (De Bortoli et al., 2010). 

One variant however (p.V30M in DSP), excluded due to high MAF (0.00220), 

was re-admitted as pathogenic given the current literature information (Yang et 

al., 2006). This p.V30M variant, located in the N-terminal of DSP, was 

demonstrated in vitro to disrupt the binding ability of DSP; this last, showed a 

prevalent cytoplasmic localization instead of the normal cell membrane 

distribution, suggesting p.V30M is affecting the interaction and localization of 

DSP. According to these evidences and its labeling as ‘Pathogenic’ in the ClinVar 

database (last update Aug 9, 2013), the p.V30M variant was considered 

potentially pathogenic in this study.  
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Gene cDNA change Predicted 
protein 
change 

Ex dbSNP ID MAF Type Index case/ 
tot 

Reference 

DSP c.88 
G>A 

p.V30M 1 rs121912998 0.0022 
/11 

M 2/99 Yang et 
 al., 2006 

DSP c.913 
A>T 

p.I305F 7 rs17604693 0.0184 
/92 

M 7/99 Rampazzo et 
 al., 2002 

DSP c.3862 
A>C 

p.K1288Q 23 rs138907450 0.0004 
/2 

M 1/99 Bao et  
al., 2013 

DSP c.4372 
C>G 

p.R1458G 23 rs28763965 0.0018 
/9 

M 1/99 Cox et  
al., 2011 

DSP c.4535 
A>G 

p.Y1512C 23 rs2076299 0.2033 
/1018 

M 2/99 Yu et al., 
 2008 

DSP c.5213 
G>A 

p.R1738Q 23 rs6929069 0.222 
/483 

M 13/99 Den Haan  
et al., 2009 

DSP c.5498 
A>T 

p.E1833V 24 rs78652302 0.008 
/18 

M 2/99 Gehmlich  
et al.,2010 

PKP2 c.76 
G>A 

p.D26N 1 rs143004808 0.003 
/6 

M 5/99 van Tintelen  
et al., 2006 

PKP2 c.209 
G>T 

p.S70I 1 rs75909145 0.009 
/20 

M 4/99 Koopman 
 et al., 2007 

PKP2 c.1012 
A>G 

p.T338A 3 rs139851304 0.001 
/2 

M 1/99 
 

Bhuiyan et  
al., 2013 

PKP2 c.1097 
T>C 

p.L366P 4 rs1046116 0.143 
/312 

M 21/99 Koopman  
et al., 2007 

PKP2 c.1592 
T>G 

p.I531S 7 rs148240502 0.003 
/6 

M 2/99 Lahtinen et 
 al., 2008 

DSG2 c.875 
G>A 

p.R292H 8 rs185821167 0.001 
/1 

M 1/99 Jiménez-Jáimez 
et al., 2014 

DSG2 c.877 
A>G 

p.I293V 8 rs2230234 0.039 
/84 

M 21/99 Posch et  
al., 2008 

DSG2 c.1543 
G>A 

p.V515I 11 rs2230235 0.0098 
/49 

M 1/99  

DSG2 c.2137 
G>A 

p.E713K 14 rs79241126 0.038 
/82 

M 8/99 Basso et  
al., 2006 

DSG2 c.2318 
G>A 

p.R773K 14 rs2278792 0.272 
/594 

M 18/99 Yu et al., 
 2008 

DSG2 c.2368 
C>T 

p.H790Y 15 rs114544564 0.002 
/4 

M 1/99 Den Haan  
et al., 2009 

DSG2 c.2759 
T>G 

p.V920G 15 rs142841727 0.0032 
/16 

M 1/99 Syrris et al., 
2007 

DSC2 c.32 
A>G 

p.N11S 1 rs868333 0.077 
/169 

M 1/99 Den Haan 
 et al., 2009 

DSC2 c.1787 
C>T 

p.A596V 12 rs148185335 0.001 
/3 

M 2/99 den Haan 
 et al., 2009 

DSC2 c.2194 
T>G 

p.L732V 14 rs151024019 0.001 
/1 

M 1/99 Bhuiyan 
 et al., 2009 

DSC2 c.2326 
A>G 

p.I776V 15 rs1893963 0.19 
/415 

M 9/99 Yu et al., 
 2008 

DSC2 c.2393 
G>A 

p.R798Q 15 rs61731921 0.029 
/64 

M 5/99 Posch et  
al., 2008 

DSC2 c.2686_2687 
dup 

p.A897KfsX4 16 rs200056085 0.006 
/12 

Fs 
 

1/99 Syrris et 
 al., 2006 

JUP c.425 
G>A 

p.R142H 2 rs41283425 0.028 
/61 

M 4/99 Koopmann  
et al., 2007 

JUP c.2089 
A>T 

p. M697L 14 rs1126821 0.429 
/936 

M 50/99 Koopmann 
 et al., 2007 

CTNNA3 c.478 
T>A 

p.S160T 5 rs61749223 0.011 
/25 

M 1/99  

CTNNA3 c.1787 
G>A 

p.S596N 13 rs4548513 0.473 
/1032 

M 24/99  

Table 3.4: 29 variants excluded due to high MAF (>0.02%) after the II- filtering step, Ex: exon, 
M: missense, Fs: frameshift. 

 

The remaining 53 unique variants after the II filtering step, are distributed 

exclusively in the 5 major desmosomal genes. The spectrum of heterozygous 

variants distribution is now changed showing a higher prevalence of PKP2 (19, 

36%), followed by DSP (19, 36%), DSG2 (8, 15%), DSC2 (3, 6%), JUP (4, 7%) 

(Figure 3.3). 

After MAF-filtering, DSP variants were reduced to 19 instead of 25 previously 

observed (see 3.2.1); of these, 12 were missense, 2 nonsense, 3 frameshift, 2 
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splicing site variants. Regarding PKP2 variants, 19 of 24 passed this filtering step: 

9 missense, 3 nonsense, 4 deletions leading to a frameshift and 3 variants 

predicted to affect splicing sites. DSG2 gene filtered variants were 8 instead of 15, 

of which 5 missense, 1 nonsense, and 2 splicing site variants. Finally only 3 DSC2 

and 4 JUP missense variants passed to the next filtering step and none in the extra 

desmosomal genes CTNNA3, DES and PLN. 

 

The 53 nucleotide variants obtained from MAF-filtering were observed in 54 AC 

index cases (54%). Of note, assuming a less stringent MAF as 0.02%-0.1% 20 

more variants were observed in 20 additional AC patients (73%). 

 

 

Figure 3.3: Distribution among genes of the 53 remaining variants found in our AC cohort after the 
II-filtering step. 

 

3.2.3 Evolutionary conservation based filtering  

Amino acid conservation analysis excluded 9 more missense variants, as shown in 

table 3.5 and figure 3.4, and subsequently reduced the amount of putative 

pathogenic variants into 44. 

Among the 44 different putative pathogenic variants obtained, 18 occurred in 

DSP, 16 in PKP2, 6 in DSG2, 3 in DSC2, 1 in JUP. Twenty-four (54%) of them 

changed a single nucleotide resulting in a codon that codes for a different amino 

acid (missense mutations), 7 (16%) of them were small insertions or deletions that 

cause a shift of the reading frame (frameshift), 6 (14%) were nonsense mutations 

creating a premature stop codon (nonsense), 7 (16%) occurred in putative donor or 

acceptor splicing site located within the exon-intron boundaries (±10bp).  
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 Thus one or more of the 44 variants resulting from the evolutionary conservation-

filtering step were present in 49 index AC cases (49%) whereas 9 variants were 

excluded in 8 AC probands. 

 

Gene cDNA change Predicted 
protein 
change 

Ex Amino acid 
conservation 

Type Index case/ 
tot 

Reference 

DSP c.7622 
 G>A 

p.R2541K 24 Weakly 
conserved 

M 1/99 Rampazzo 
 et al., 2008 

PKP2 c.535 
C>A 

p.H179N 3 Not 
Conserved 

M 1/99 Novel 

PKP2 c.2365 
A>G 

p.I789V 12 Weakly 
conserved 

M 1/99 Novel 

PKP2 c.2552 
C>T 

p.T851M 13 Weakly 
conserved 

M 1/99  

DSG2 c.44 
T>A 

p.L15Q 1 Not 
Conserved 

M 1/99 Bhuiyan  
et al., 2009 

DSG2 c.245 
G>T 

p.G82V 4 Weakly 
conserved 

M 1/99 Novel 

JUP c.1960 
G>A 

p.E654K 12 
 

Weakly 
conserved 

M 1/99 Novel 

JUP c.2069 
A>G 

p.N690S 13 Weakly 
conserved 

M 1/99  

JUP c.2124 
T>A 

p.D708E 14 Weakly 
conserved 

M 1/99 Novel 

Table 3.5: Variants excluded after the III- filtering step. the 9 variants with MAF >0.02% affecting 
not conserved or weakly conserved amino acids among species, , Ex: exon, M: missense. 

 

 

Figure 3.4: Distribution among genes of the 44 resting variants found in our AC cohort after the 
III- filtering step.  

 

3.2.4 In silico-based filtering of variants 

The resting 44 variants resulting from the previous steps were further classified 

according to specific features using an in silico algoritm proposed by van 

Spaendonck-Zwarts (see 2.5.6, van Spaendonck-Zwarts et al., 2013), into 4 

different classes VUS0 VUS1 VUS2 VUS3. Variants pathogenic classification in 

table 3.6 and figure 3.5, is based on additional evaluation of the protein 

conformational and functional alteration. 
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Gene VUS0 VUS1 VUS2 VUS3 Pathogenic 

DSP  c.5218G>A, 
p.E1740K 

 

c.5134A>C, 
p.N1712H 

 

c.7039A>G, 
p.I2347V 

c.2203G>A, 
p.G735S 

 

c.3774C>A, 
p.D1258E 

c.4961T>C, 
p.L1654P 

 

c.4973C>T, 
p.S1658F 

 

c.5178C>A, 
p.N1726K 

 

c.423-1G>A, 
r.spl 

 

c.448C>T, 
p.R150X 

 

c.939+1G>A, 
r.spl 

 

c.2956C>T, 
p.Q986X 

 

c.3297_3298insTTGT, 
p.C1100LfsX11 

 

c.5511dup, 
p.R1838SfsX19 

 

c.6701A>G, 
p.N2234S 

 

c.7461_7464del, 
p.D2489MfsX17 

c.88G>A, 
p.V30M 

 

c.897C>G, 
p.S299R 

PKP2 c.1576A>G, 
p.T526A 

 
 

c.184C>A, 
p.Q62K 

c.2145+3_2145+6dup, 
r.spl? 

 c.83del, 
p.S29AfsX10 

 

c.109A>T, 
p.K37X 

 

c.147_150del, 
p.T50SfsX61 

 

c.175C>T, 
p.Q59X 

 

c.1583C>T, 
p.T528M 

 

c.1643del, 
p.G548VfsX15 

 

c.1820G>A, 
p.C607Y 

 

c.1841T>C, 
p.L614P 

 

c.2009del, 
p.N670TfsX14 

 

c.2111G>A, 
p.G740E 

 

c.2119C>T, 
p.Q707X 

 

c.2299+1G>T, 
r.spl 

 

c.2489+1G>A, 
r.spl 

 

DSG2  c.166G>A, 
p.V56M 

c.722C>T, p.A241V 
 

c.378+2T>G, 
r.spl 

 

c.1652-1G>T, 
r.spl 

 

c.1672C>T, 
p.Q558X 

c.797A>G, 
p.N266S 

DSC2   c.2603C>T,  
p.S868F 

 

c.536A>G, 
p.D179G 

 

c.2596G>C, 
p.A866P 

 

JUP   c.1372G>A, 
p.A458T 

  

Table 3.6: Final classification of the resulting variants as pathogenic based on  in silico analysis.  

 

Note that only variants classified as VUS3 and VUS2 were considered pathogenic 

or potentially pathogenic for further genoype-phenotype correlation studies, 



102 
 

whereas 5 classified as VUS1 and 2 classified as VUS0 were excluded from this 

study. Therefore only 37 of the 193 variants initially identified in disease-causing 

genes were considered pathogenic or potentially pathogenic variants. Forty-two 

index AC cases (42%) carried one or more of these 37 variants and were finally 

considered as positively genotyped. 

 

 

Figure 3.5: Distribution among genes of the 37 resulting variants found in our AC cohort after the 
IV- filtering step.  
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3.3 CNVs Analysis 

The entire cohort of 99 patients with AC was screened for large intragenic 

rearrangements in desmosomal genes by MLPA. 

Five of the 99 probands (6%) displayed an aberrant MLPA profile, indicating a 

copy number alteration of the gene due to the lack of one exon or eventually the 

entire gene. These 5 index AC cases carrying deletions of one or more 

exons/genes were considered as positively genotyped, increasing from 42 to 46 

(46%) the number of positively genotyped patients (see 3.2.4).  

Specifically, a 120kb- heterozygous deletion on chr12 containing the entire PKP2 

gene was detected in 2 patients (#36, #42). Bioinformatics means estimated this 

deletion as a gene dosage reduction ranging from 0.3 to 0.6. The deletion of PKP2 

gene in these 2 patients was further confirmed by relative qPCR for 3 PKP2 exons 

(Figure 3.6 and Figure 3.7) and resulted absent in 500 healthy subjects.  

 

Figure 3.6: MLPA analysis of sample #36 a) Schematic representation of the deleted chromosomal 
region b) Raw data of MLPA runs c) Histograms plotting the DQ of the fragments corresponding 
to every exon analyzed and layout of Coffalyzer results d) qPCR validation of MLPA results, in 
red the ratio between the test sample and the reference sample. 
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Figure 3.7: MLPA analysis of sample #42 a) Schematic representation of the deleted chromosomal 
region b) Raw data of MLPA runs c) Histograms plotting the DQ of the fragments corresponding 
to every exon analyzed and layout of Coffalyzer results d) qPCR validation of MLPA results, in 
red the ratio between the test sample and the reference sample. 

 
Another patient (#39) carried a large heterozygous deletion of at least 482kb on 

chr18 which comprise both DSC2 and DSG2 genes. Bioinformatics evaluation 

estimated the gene dosage reduction ratios of 0.35 and 0.51 respectively. qPCR 

performed for 3 DSC2 and 3 DSG2 exons confirmed the deletion of both genes, 

and its absence in 500 healthy subjects. 

 



105 
 

 

Figure 3.8. MLPA analysis of sample #39 a) Schematic representation of the deleted chromosomal 
region b) Raw data of MLPA runs c) Histograms plotting the DQ of the fragments corresponding 
to every exon analyzed and layout of Coffalyzer results d) qPCR validation of MLPA results, in 
red the ratio between the test sample and the reference sample. 

 

Finally, a single-exon heterozygous deletion was detected in 2 patients (#8 and 

#38); the deletion of only exon 4 of PKP2 gene (c.1286_1491del) is predicted to 

shift the reading frame of the protein translation and create a premature stop 

codon, ending up with a 350 amino acid-long peptide instead of a 837 amino acid 

protein (Figure 3.9 and 3.10). A ratio of 0.3 and 0.6 was estimated in these two 

patients by bioinformatics analysis. qPCR analysis for the specific exon showed a 

clear-cut reduction compared to 500 healthy control individuals, whereas the other 

two exon of the same patients did not show quantitative shifts.  
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Figure 3.9: MLPA analysis of sample #8 a) Schematic representation of the deleted chromosomal 
region b) Raw data of MLPA runs c) Histograms plotting the DQ of the fragments corresponding 
to every exon analyzed and layout of Coffalyzer results d) qPCR validation of MLPA results, in 
red the ratio between the test sample and the reference sample. 

 
 

 

Figure 3.10: MLPA analysis of sample #38 a) Schematic representation of the deleted 
chromosomal region b) Raw data of MLPA runs c) Histograms plotting the DQ of the fragments 
corresponding to every exon analyzed and layout of Coffalyzer results d) qPCR validation of 
MLPA results, in red the ratio between the test sample and the reference sample. 

 

In order to characterize the effect of this exon-specific deletion at the transcript 

level, cDNA of the patients carrying the deletion was amplified with specific 

primers. Agarose gel electrophoresis clearly showed two different fragments at 
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approximately 387 bp and 222 bp, representing the normal transcript containing 

exon 4 (longest fragment) and the transcript lacking exon 4 of PKP2 (shortest 

fragment). Direct sequencing of these two cDNA fragments demonstrated the 

absence of exon 4 in one allele of both AC patients. (Figure 3.11). 

 

Figure 3.11: Agarose gel run showing the different PCR products and cDNA sequence of the 
222bp PCR product showing the lack of ex4 in the transcript. PC: positive control sample, PT: 
patient sample. 
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3.4 Variant analysis in the study population 

Major AC-related genes were screened in 99 index cases for point mutations by 

DHPLC and direct sequencing, and for large deletions or duplications by MLPA 

and qPCR. Subsequent stringent variants filtering led to the identification of 36 

point mutations and 3 CNVs (Table 3.7) classified as pathogenic mutations.  

 

Index 
case DSP PKP2 DSG2 DSC2 JUP N 

variants 

62 SD  c.175 C>T, 
p.Q59X    1 

68 SD c.939+1G>A, 
r.spl     1 

70 SD  c.2009 del, 
p.N670TfsX14    1 

2    c.536 A>G, 
p.D179G H  1 

1  c.1643 del, 
p.G548VfsX15    1 

16  c.2111 G>A, 
p.G704E    1 

4    c.536 A>G, 
p.D179G H  1 

20  c.83 del, 
p.S29AfsX10    1 

5  c.175 C>T, 
p.Q59X    1 

57 c.7461_7464 del, 
p.D2489MfsX17    c.1372 G>A, 

p.A458T 2 

7 c.6701 A>G, 
p.N2234S 

c.109 A>T, 
p.K37X    2 

8  Deletion 
 ex4    1 

89 CT  c.1643 del, 
p.G548VfsX15    1 

59 SD    c.2603 C>T, 
p.S868F  1 

13 c.3774 C>A, 
p.D1258E     1 

14  c.1820 G>A, 
p.C607Y    1 

15 c.5178 C>A, 
p.N1726K     1 

74 SD   c.722 C>T, 
p.A241V   1 

75 SD  c.2299+1 G>T, 
r.spl    1 

23  c.147_150del, 
p.T50SfsX61    1 

24 c.88 G>A, 
p.V30M  c.378+2 T>G, 

r.spl   2 

25 c.2203 G>A, 
p.G735S     1 

76 SD c.448 C>T, 
p.R150X     1 

40  c.2489+1 G>A, 
r.spl    1 

80 CT   c.1672 C>T, 
p.Q558X H   1 

28  c.1583 C>T, 
p.T528M    1 

29 
c.3297_3298 

insTTGT,  
p.C1100LfsX11 

    1 

30  c.147_150 del,  
p.T50SfsX61    1 

82 CT c.5511 dup, 
p.R1838SfsX19   c.2596 G>C, 

p.A866P  2 

61 SD   c.1652-1 G>T, 
r.spl   1 

83 CT c.2956 C>T, 
p.Q986X     1 
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32  c.1841 T>C, 
p.L614P    1 

36 c.88G>A, 
p.V30M 

Deletion  
ex1-14    2 

38  Deletion  
ex4    1 

42  Deletion  
ex1-14    1 

39   Deletion 
 ex1-15 

Deletion 
 ex1-16  2 

49  c.147_150del,  
p.T50SfsX61    1 

90 SD c.897 C>G, 
p.S299R     1 

98 SD c.897 C>G, 
p. S299R     1 

91 SD c.423-1 G>A, 
r.spl     1 

92 SD  c.2009 del, 
p.N670TfsX14    1 

93 SD 

c.4973 C>T , 
S1658F; 

c.7039 A>G, 
I2347V 

    2 

95 CT c.88G>A, 
p.V30M     1 

96 CT   c.797 A>G, 
p.N266S   1 

97 CT c.4961 T>C, 
L1654P 

c.2119 C>T, 
Q707X    1 

44  c.1643 del, 
p.G548VfsX15     

Single 
Mutation 
Carriers 

11 20 4 3 0  

Multiple 
Mutation 
Carriers 

     8 

Table 3.7: Positive genotyped subjects. SD sudden death, CT cardiac transplantation H homozygous 

 

All 39 pathogenic variants were detected in 46 subjects of our cohort (46%). 

Forty-two of the 46 mutation carriers harbor one or more point mutations, 3 

probands carried larger deletions of one or more genes and 1 patient showed both 

a point mutation in DSP and a complete deletion of the PKP2-containing allele.  

Of these 46 positively genotyped patients, 20 (20%) were single mutation carriers 

for PKP2, 11 (11%) were single mutation carriers DSP and 4 probands (2%) 

carried a single nucleotide variant in DSG2 gene, one of whom was homozygote. 

Finally, 2 out of 3 (3%) single mutation DSC2 carriers were also homozygotes 

and no single mutation carriers were detected for JUP.  

Eight of the 46 index patients (8%) carried multiple mutations, 7 were digenic 

heterozygotes, showing one missense variant in one gene coupled with a “radical 

mutation” (frameshift, nonsense, splice, deletions) in a second gene, and 1 only 

was a compound heterozygote for 2 DSP missense variants. 
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Of the 46 positively genotyped index cases, 13 were cases coming of the SCD 

Veneto Registry and 7 were AC patients who underwent cardiac transplantation. 

 

Figure 3.12 summarizes relative proportion of “radical” mutations, comprising 

variants with a more drastic predicted effect i.e. frameshift, nonsense, splice site 

and insertions/deletions, versus missense mutations detected in all five 

desmosomal genes. Note that, no mutations were detected in the extra-

desmosomal genes analyzed and that in PKP2 missense mutations can be rarely 

considered as pathogenic. Indeed, 11 of the 15 (73%) PKP2 mutations were 

radical, identified in 16 AC probands whereas 4 of the 15 (27%) were missense 

PKP2 mutations carried by 4 index cases. 

 

 

Figure 3.12: Relative proportion of “radical” and missense pathogenic putative variants identified 
in 5 desmosomal encoding genes. 
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3.5 Genotype Phenotype correlation between desmosomal genes mutation 

carriers and non-mutation carriers 

Table 3.8 summarizes clinical and genetic data of index AC patients based on the 

current diagnostic criteria. 
 

INDEX CASES N=99 MUT+ MUT- 

N (%) 46 (46%) 53 (53%) 

Age (y) 38±17 (12-78) 38±16 (13-77) 

Autopsy diagnosis N=26 MUT+ MUT- 

N (%) 13 (50%) 13(50%) 
LD 

N=13 
3 (23%) 

 
10 (77%) 

 Age (y) 16±3 (range 12-20)* 24±7 (range 17-40) 
BIV 

N=13 10 (77%) 3 (23%) 

 Age (y) 32±12 (range 15-40) 21±4 (range 17-26) 

Clinical diagnosis N=73 MUT+ MUT- 

N (%) 33(45%) 40(55%) 
Male gender, n (%) 22 (30%) 29 (40%) 

Age (y) 37±17 (12-78) 43±16 (15-77) 

2010 AC criteria Definite 
N=63 30 (41%) 33 (45%) 

 Borderline 
N=3 1 2 

 Possible 
N=7 2 5 

Table 3.8: Comparison between desmosomal genes mutation carriers and non mutation carriers. 
Mut+ : positively genotyped, Mut - : negative genotyped, LD- left dominant pattern of AC, BIV- 
AC with biventricular involvement.  Note * P<0.05 is considered statistically significant.  

 

In 99 index AC cases, including both SCD and clinically diagnosed AC cases, 46 

resulted positively genotyped patients however no difference in age was evident 

between groups. 

Focusing the attention on SCD subjects, all 26 SCD subjects were males (100%), 

half of them had predominant or even isolated left ventricular involvement (50%) 

and 13 of 26 SCD cases were positively genotyped (50%). However, only 3 of the 

13 AC patients with a left dominant pattern were positively genotyped (23%). 

Comparing positively genotyped patients was evident that only 3 had a left 

dominant AC pattern (23%) and all 3 of them died at youger age (16y±3) 

compared with patients who exhibited a BIV involevement (p 0.03). 
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The gender incidence was assessed only on clinically affected patients since SCD 

cases were all males, showing that female to male ratio of genotyped positive AC 

patients was maintained 1:3.  

Comparing mutation carriers and non mutation carriers fulfilling the established 

AC diagnostic criteria, 33 were found positively genotyped (45%): 30 classified 

as definite, 1 classified as borderline and 2 classified as possible. Interestingly, 33 

of the 40 non-mutation carriers were classified also as definite. 

No significant difference was observed in terms of clinical characteristics 

according to the task force criteria.  

 

When we divided clinically affected living subjects from SCD cases we observed 

a higher risk of SCD (5 of 11, 45%) and a significant difference in the mean age 

of the disease presentation among DSP mutation carriers (p 0.04). DSG2 mutation 

carriers died also suddenly at a younger age however the sample number is too 

low to extrapolate statistically significant information.  Although the incidence of 

PKP2 mutations is higher among AC probands (20, 44%), the risk of SCD is 

lower (4 of the 20, 20%).  

Regarding the distribution of gene mutations in 33 clinically diagnosed AC 

subjects we observed that all DSP (6 of 6, 100%) and 86% (6 of 7) of multiple 

mutation carriers exhibited definite 2010 AC criteria. Interestingly, we also 

observed that the vast majority of PKP2 mutations found in single- PKP2 carriers 

were “radical” (11 of 16, 69%), however not all of these PKP2 “radical” mutation 

carriers exhibited defined clinical diagnostic AC criteria. Specifically, 4 PKP2 

mutation carriers were clinically classified as possible based on 2010 AC criteria; 

two of these subjects (about 40y old, male) presented a PKP2 frameshift 

[p.G458VfsX15, p.T50SfsX61 respectively] showing a LD pattern of the disease, 

1 (44y-old female) displayed a complete deletion of the PKP2 allele in 

heterozygosis with absence of any clinical signs of the disease and 1 (15-y-old, 

male) carried a simple missense mutation [p.T528M] in heterozygosis. 
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Genotyped 
positive 
[MUT+] 

N=46 

  DSP PKP2 DSG2 DSC2 Multiple 

N (%)   11 (24%) 20 (44%) 4 (9%) 3 (6%) 8 (17%) 
Male, n (%)   8 (17%) 14 (30%) 2 (4%) 2 (4%) 5 (11%) 

Age (y)   35±15 
  (12-60) 

41±18 
(12-78) 

33±21 (13-
63) 

36±22 
(13-56) 

36±18 
(15-66) 

Autopsy 
diagnosis 

N=13 
 

5 4 2 1 1 

3BIV: 
2LD 

4BIV 1BIV: 1LD 1BIV 1BIV 

Age (y)   26±12 
(12 -37)* 

35±18 
(18-60) 

19±8 
(13-25) 40 15 

Clinical 
diagnosis 

N=33 
  6 16 2 2 7 

Age   43±14          
(18-60) 

41±18 
(12-78) 

47±23      
(31-63) 

35±30 
(13-56) 

39±17 
(15-66) 

 Definite  6 12 2 2 6 

 Borderline      1 

 Possible   4    

  

I Global and/or 
Regional 

Dysfunction 
and Structural 

Alterations 

5M,1m 7M,3m 2M 2M 3M,3m 

  

II Fibrofatty 
replacement on 
endomyocardial 

biopsy, n (%) 

1M     

  
III 

Repolarization 
abnormalities 

2M,1m 7M,1m 1M 2M 3M,1m 

  

IV 
Depolarization/

Conduction 
Abnormalities 

2M,2m 1M,7m 1M 1M,1m 3m 

  V Arrhythmias 1M,1m 3M,8m 2m 1m 2M, 4m 

  VI Family 
History 1M 2M,2m 1m  1M 

Table 3.9 Comparison between the different groups of desmosomal genes mutation carriers. Mut+: 
positively genotyped. Note * P<0.05 is considered statistically significant.  
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3.6 Next Generation Sequencing 

3.6.1 Whole Exome Sequencing 

3.6.1.1 WES raw data analysis 

Paired-end Whole Exome Sequencing of 12 genotyped subjects on the Illumina 

HiSeq2000 produced a total of 819.240.262 reads of 100 bp in length, on average 

68.270.020 per sample, consisting of a total output of 81.924.026.200 bp.    

Mapping by CLC software reduced the total number of reads to 800.428.775 after 

alignment. Further reduction of the number of reads to 581.800.573 was obtained 

by considering the number of unique aligned reads and allowing a maximum of 2 

mismatches or gaps. Table 3.10 displays mapped and unmapped reads per sample. 

The number of reads aligned varies among the different samples within each run, 

ranging from 12 k to 66.8 k, while the number of reads on target varies from a 

minimum of 48% to a maximum of 57%, depending on the sample. 
 

Sample ID Mapped Reads Unmapped Reads 

1 27.408.565 4.184.911 

2 12.865.444 1.892.534 

3 66.790.928 10.216.939 

4 57.333.247 9.864.033 

5 38.984.184 5.953.774 

6 42.198.051 6.919.797 

7 46.321.008 24.505.096 

8 19.095.462 10.016.630 

9 66.340.765 35.528.169 

10 71.037.969 37.290.933 

11 71.650.527 39.139.587 

12 61.774.423 33.115.799 

Table 3.10: Results of the alignment per sample 

 

After alignment of sequencing data against the human genome reference, the 

sequencing reads and coverage of the target regions were observed by uploading 

BAM files on IGV software. (Robinson et al., 2011). The samples showed a 

pattern of well covered regions against uncovered or low covered regions, all 
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through the genomic regions of interest. Overall mean coverage, describing the 

mean depth of sequenced targets, varied slightly among the samples, from 9.2X to 

54.3X. A coverage above 20X, which is considered the cut-off for reliable variant 

call  showing that samples are sequenced sufficiently in terms of number reads, 

was achieved only for 6 samples. The 20-fold coverage of targets was also 

different among samples, and varied from 10,20 % to 85.85 % (Table 3.11). 
 

Sample ID Mean Coverage % of Target with Coverage ≥ 20 X 

1 20,4 X 38,65 % 

2 9,2 X 11,07 % 

3 51,6 X 81,03 % 

4 41,5 X 75,08 % 

5 25,1 X 48,38 % 

6 27,4 X 53,52 % 

7 32,3 X 65,45 % 

8 10,4 X 10,20 % 

9 49,6 X 85,85 % 

10 54,3 X 85,42 % 

11 54,2 X 84,89 % 

12 46,5 X 81,06 % 

Table 3.11: The mean coverage obtained per sample, together with the fraction of the target region 
showing a coverage >20X 

 

3.6.1.2 SNP Calling analysis- sensitivity and specificity validation 

We investigated the differences between the three callers in sensitivity and 

specificity of SNP calling based on the analysis of  6 samples. GATK identified  a 

total of 1.975.223 variants, CLC identified  a total of 1.435.455 variants, and 

CASAVA identified  a total of 260.433 variants (Table 3.12). The last software 

calls a lower number of variants because SNP calling is automatically limited 

merely to the enriched target regions (most exonic), and discards the insufficiently 

covered target regions. On the contrary CLC and CASAVA perform calls also on 

low covered exonic regions and intronic regions. 
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N calls GATK CLC CASAVA 

Total calls 1.975.223 1.435.455 260.433 

Sample 12 238.186 195.672 42.691 

Sample 2 132.475 99.600 29.337 

Sample 4 382.445 289.124 48.956 

Sample 5 430.718 320.178 48.492 

Sample 6 381.801 254.541 44.268 

Sample 7 409.598 276.340 46.689 

Table 3.12: Comparison of the SNP calls across six samples performed by GATK, CLC and 
CASAVA. 

 

In order to test whether WES could be used as a reliable tool in a clinical setting, 

we evaluated the analytical sensitivity and specificity of WES for the detection of 

a series of previously characterized nucleotide changes,  by comparing WES data 

with data obtained by Sanger sequencing of 5 genes. 

Initial analysis with the CLC software was able to automatically detect 68 out of 

the 90 expected nucleotide changes (76%). 

22 changes were missed during the initial analysis. The 22 variants were manually 

searched among the aligned reads, this alternative strategy allowed the detection 

of 13 among the ‘missed’ variants. Nine variants previously identified by 

conventional sequencing remained undetected after both automatic and manual 

SNP calling. (Table 3.13). 

 

Gene cDNA Predicted 

Protein 

change 

Ex/Int Coverage Distance 

from 

probes  

DSC2 c.70 -154 G>A - Int 1 1 154 bp 

DSP c.-1_1insA  Int 1 0  

DSP c.913A>T p.I305F Ex 7 0 356 bp 

DSC2 c.2326 A>G p.I776V Ex 15 2  

PKP2 c.76G>A p.D26N Ex 1 1  

PKP2 c.2489+13_2489+14ins C  Int 12 11 203 bp 

DSG2 c.828+16C>A  Int 7 4 62 bp 

DSP c.1141-44C>T  Int 10 1 44 bp 

DSP c.1420-93C>T  Int 12 1 93 bp 

Table 3.13: 9 Variant missed by SNP calling, Ex: exon, Int: Intron 
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Six of the 9 variants were located too distant from the nearest probes to be 

detected (from 44 to 356 bp). The remaining 3 variants were not called because 

they were located in uncovered (coverage 0) or low covered (coverage 1 and 2) 

targeted regions. CLC software automatically discards every variant showing a 

coverage below 5X assigning it as a false call. The overall sensitivity of WES was 

evaluated around 90%. The specificity was calculated as >99.9%.  

3.6.1.3 SNP Calling analysis- 150 genes associated with arrhythmic inherited 

cardiomyopathies 

All successfully mapped sequence reads of the 12 samples were further analyzed 

to detect sequence variants, including single nucleotide changes and small 

insertions and deletions, within a set of 150 genes involved in different inherited 

cardiomyopathies. Variants were manually called, with the generation of a list of 

1003 known or novel nucleotide changes detected in the 12 patients. First step 

filtering consisted of nonsynonymous and novel variants against the 1000 

Genomes project and EVS database resulting in the identification of 100 

potentially pathogenic variants. The validation process by Sanger sequencing of 

these variants successfully confirmed only 3 of them (3%) in 3 patients. Variants 

were located respectively in the troponin2 gene (TNNT2), in the myosin binding 

protein C3 gene (MYBPC3), and in LMNA (Table 3.14). 
 

Gene cDNA 

Predicted 

Protein 

change 

Ex 
dbSNP 

ID 
MAF Type Reference 

TNNT2 c.113C>T p.A38V 6 rs56816490 NA M Millat et 
al., 2011 

MYBPC3 c.2198G>A p.R733H 23   M Novel 

LMNA c.949G>A p.E317K 6 rs56816490 NA M 
Arbustini 

et al., 2002 

Table 3.14: Variants detected by WES and Sanger sequencing, EX: exon, M: missense 

 

The 97 variants that have proven false positives were located in exome regions 

with low coverage (<5X), or far from the probes.  
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3.6.2 NGS- Targeted Resequencing 

Targeted resequencing has been validated (Sikkema-Raddatz et al., 2013) showing 

both a sensitivity and specificity around 100% and is routinely used as a stand-

alone diagnostic test at the Cardiogenetics Laboratory of the University of 

Groningen.  

Four AC patients from the Cardiogenetics Laboratory of the University of 

Groningen and one subject from the Cardiovascular Laboratory of the University 

of Padua, which did not show potentially pathogenic variants in other desmosomal 

genes, were subjected to targeted-NGS for 55 genes associated with different 

hereditary cardiomyopathies. 

3.6.2.1 Raw data analysis 

150 bp paired-end sequencing of the libraries on the Illumina MiSeq produced on 

average 110.185.963 reads per sample, in table 3.15 are depicted the total number 

of reads obtained per sample and mapped bases.  
 

Sample Total Numer of Reads Alligned Bases 

1 103.336.675 8964.222 

2 118.658.699 9171.513 

3 119.677.954 9720.766 

4 99.070.524 7425.109 

Table 3.15: Total number of reads obtained per sample and mapped bases. 

 

The total number of reads produced and the number of mapped reads are 

comparable among the samples. The mean depth of coverage over all samples was 

around 300X, in accordance with the theoretical coverage of 245X. The 

homogeneity of the distribution of reads between samples and the mean target 

coverage demonstrated the high performance of the sequence capture approach.  

3.6.2.2 SNP Calling analysis 

SNP calling performed on the sample from the Cardiovascular Genetics 

laboratory of Padua identified a total of 947 variants, and 197 mapped on the 

target panel regions. A first variant filtering performed by Cartagenia Bench Lab 

removed 2 variants with low quality that passed over the previous quality filters. 
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The resulting 195 variants were subjected to a series of filtering processes 

developed by the Cardiogenetics laboratory of Groningen, that take into 

consideration the presence and the frequency of the variants in several public 

databases (1000 Genomes Projects, EVS), and an in house variant database, 

radically reducing the amount of potentially pathogenic variants to 3 (table 3.16). 

 

Gene  cDNA 

Predicted 

Protein 

change 

Ex 
dbSNP  

ID 
MAF Type Reference 

TTN  c.102737 
G>A 

p.R34246H 358 rs372716177 T=0.0004/2 M Millat et 
al., 2011 

TTN  c.17279 
C>T 

p.T5760M 60   M Novel 

LAMA4  c.1552-4 
G>A 

 int13 rs368746644 NA Sp 
Arbustini 

et al., 
2002 

Table 3.16: Output of the Cartagenia filtering pipeline, Ex:exon, M: missense, Sp: splicing 

 
The three variants detected in the patient are located in extra desmosomal gene 

that have never been associated with AC (Table 3.16). 2 variants were located in 

TTN and one in the laminin-α-4 gene (LAMA4). The three novel variants were 

subsequently confirmed by Sanger sequencing. 

  



120 
 

3.7 Genotype Phenotype correlation 

Family members of 9 AC index probands were available both for clinical and 

genetic testing. 

 

3.7.1 Family #1 

Patient #1 (male, aged 12) met a definite diagnosis of AC according to the revised 

2010 Task Force criteria. Desmosomal genes analysis revealed a single nucleotide 

deletion c.1643del in exon 7 of PKP2 predicted to shift the reading frame and to 

introduce a premature stop codon (p.G548VfsX15) (Figure 3.13). This variant has 

been described as pathogenic in different studies (Gerull et al., 2004; Dalal et al., 

2006; Fressart et al., 2010; Bauce et al., 2011; Rigato et al., 2013; Alcalde et al., 

2014), and it resulted absent in the 1000 Genomes Project and EVS databases. 

Analysis extended to available family members showed that this mutation was 

inherited by the probands’ father (aged 55) and was also carried by his 14-year old 

sister both previously asymptomatic. 

 

 
Figure 3.13: Pedigree of the proband (arrow) and her family for PKP2 mutation p.G548VfsX15. 
Mutation status is indicated as follows: white = unaffected; black = affected; +/+ = homozygous 
for the aforementioned  mutation; +/- = heterozygous for the aforementioned mutation. 

 

3.7.2 Family #2 

Patient #2 is a male of age 13 years affected by a classic form of AC who did not 

show family history of the disease. Screening of desmosomal genes identified the 

missense mutation c.536A>G, p.D179G in exon 5 of DSC2 in homozygosis. The 

mutation involves a highly conserved amino acid located in the first cadherin 

domain, was predicted to be deleterious by SIFT and PolyPhen-2. It was absent in 

the 1000 Genomes Project and EVS databases, however it had been detected in 
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the healthy control population with an allele frequency of 2.7% (De Bortoli et al., 

2010). The patient also carries a PKP2 variant (c.1012A>G, p.T338A, 

rs139851304, MAF C= C=0.001/0), affecting a weakly conserved amino acid and 

predicted as tolerated by Polyphen-2 and SIFT.  

The DSC2 variants was carried in heterozygosis by his unaffected parents, while 

the PKP2 polymorphism was carried by his father (Figure 3.14). 

 

 

Figure 3.14: Pedigree of the proband (arrow) and his parents for DSC2 mutation p.D179G.  
Mutation status is indicated as follows: white = unaffected; black = affected; +/+ = homozygous 
for the aforementioned mutation; +/- = heterozygous for the aforementioned mutation. 

 

3.7.3 Family #4 

Patient #4 (female, aged 56) was affected by a classic form of AC. She was found 

to carry the homozygous mutation p.D179G in exon 5 of DSC2. Cascade 

screening was performed on all available family members, who were clinically 

unaffected and resulted to carry the DSC2 variants in heterozygosis (Figure 3.15). 

 

Figure 3.15: Pedigree of the proband (arrow) and her family for DSC2 mutation p.D179G. 
Mutation status is indicated as follows: white = unaffected; black = affected; +/+ = homozygous 
for the aforementioned  mutation; +/- = heterozygous for the aforementioned mutation. 
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Data on families #2 and #4 support the presence of an autosomal recessive form 

of AC with a homozygous variant on DSC2 as a cause of AC, without any sign of 

cardiocutaneous syndrome. 

 

3.7.4 Family #8 

Patient #8 (male, aged 15) was affected by a severe form of AC. Screening for 

desmosomal genes mutations by DHPLC and Sanger sequencing did not identifiy 

any pathogenic variants. Successive MLPA analysis detected the presence of a 

novel deletion on chr 18 including both DSG2 and DSC2 genes (Figure 3.16). 

This deletion was never observed in the 1000 control chromosomes and it was not 

detected in the 1000 Genomes Projects and EVS databases. 

 

 

Figure 3.16: MLPA analysis of  the probands’ mother, indicating the presence of the deletion a) 
Schematic representation of the deleted chromosomal region b) Raw data of MLPA runs c) 
Histograms plotting the DQ of the fragments corresponding to every exon analyzed and layout of 
Coffalyzer results d) qPCR validation of MLPA results, in red the ratio between the test sample 
and the reference sample. 
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The genetic study was extended the probands’ parents, showing that the deletion 

was carried by his mother, who also met a definite diagnosis of AC according to 

the revised 2010 Task Force criteria (Figure 3.17). 

 

 
Figure 3.17: Pedigree of the proband (arrow) and his family for DSC2 and DSG2 deletion.  

 

 

3.7.5 Family #9 

The proband #9 (male, age 15) met a definite diagnosis of AC according to the 

revised 2010 Task Force criteria, and did not show family history of the disease. 

Genetic testing revealed the presence of 2 missense variants in two different 

genes. One variant involving a highly conserved amino acid in the N-terminal 

region of DSG2 (c.875G>A, p.R292H), and one in DSC2 (c.2194 T>G, p. L732V) 

(Figure 3.18). The DSG2 variant were considered intolerant by Polyphen2 and 

SIFT, while the DSC2 variant, also affecting a highly conserved amino acid, was 

predicted to be benign. Although both variants were excluded in the variants 

filtering process due to high allelic frequency (MAF> 0.02%), cascade screening 

on the proband’s unaffected relatives showed that the mother was a carrier of the 

DSC2 variant and the father carried the DSG2 variant. These data suggest an 

autosomal recessive mode of transmission. This case is similar to another study 

recently describing the p.R292H mutation as pathogenic when present in the 

homozygous state (Jiménez-Jáimez et al., 2014). 
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Figure 3.18: Pedigree of the proband #9 (arrow) and his parents for DSG2 mutation p.R292H and 
for DSC2 mutation p. L732V.  Mutation status is indicated as follows: white = unaffected; black = 
affected; +/+ = homozygous for the aforementioned mutation; +/- = heterozygous for the 
aforementioned mutation. 

 

3.7.6 Family #58 

The proband #58 (male, aged 77) was affected by a biventricular form of AC and 

showed family history of the disease. DHPLC analysis followed by Sanger 

sequencing of abnormal elution profiles did not identify any mutation in 

desmosomal genes. Successive WES detected the heterozygous point mutation 

c.949G>A, p.E317K in the exon 6 of the LMNA gene (NM_170707.2) (Figure 

3.19).  

 

 

Figure 3.19: Pedigree of the proband (arrow) and his family for the LMNA mutation p.E317K. 
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The variant, located in the coil 2 rod domain, results in an amino acid substitution 

altering completely the physico-chemical properties of the amino acid. The 

mutation affects a highly conserved amino acid, and is predicted to be deleterious 

by Polyphen and SIFT. 

This variant has been described in a case of familial autosomal dominant DCM 

with atrio ventricular block, in the proband the LMNA expression of the myocyte 

nuclei was reduced or absent (Arbustini et al., 2002). This variant is present in 

ClinVar database and classified as “likely pathogenic”, it is also in dbSNP 

database (rs56816490) but not detected in the 1000 genomes or EVS dataset. The 

genetic study was extended to available family members. Three subjects, the 

probands daughter (aged 50) and one of their sons (aged 21), also clinically 

affected, resulted to carry the mutation. While the clinically unaffected son (aged 

24) did not carry the mutation. 
 
 

3.7.7 Family #59 

The proband #59 was a 40 years-old competitive athlete who died suddenly, and 

received an autoptic diagnosis of AC. Sanger sequencing identified 2 

heterozygous variants: one in DSG2, c.2137 G> A, p.E713K (rs79241126, MAF 

A=0.0260/130), and one in DSC2, c.2603 C>T, p.S868F (rs141873745, MAF 

A=0.0002/1). 

Only the DSC2 mutation is predicted as deleterious by Polyphen-2 and SIFT. 

Cascade screening showed that the brother and the sister were carriers for only 

one of the two variants. 

WES confirmed the 2 variants and identified an additional variant c.68C>T, 

p.A23V located in the cardiac troponin T gene (TNNT2), whose alterations are 

known to significantly contribute to dilated cardiomyopathy rather than AC 

(Figure 3.20).  
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Figure 3.20:  Pedigree of the proband #59  and his family for the DSG2, DSC2, TNNT2 mutations. 

 

3.7.8 Family #74 

The proband #74 was a 13 years-old competitive athlete who died suddenly, and 

had an autoptic diagnosis of AC. DHPLC analysis followed by Sanger sequencing 

identified 2 heterozygous variants: one in DSG2 and one in PKP2. The DSG2 

variant c.722 C>T, p.A241V was novel and was absent both in the 1000 alleles of 

the control population and in the 1000 Genomes and EVS dataset. Moreover it is 

located in the cadherin2 domain, it is predicted as deleterious by Polyphen and 

SIFT. The proband also carried the c.1576A>G, p.T526A PKP2 variant, predicted 

as tolerated by in silico analysis tools and affecting a weakly conserved amino 

acid. Probands’ 11-year old sister is a carrier of the only DSG2 variant (Figure 

3.21). No deeper co-segregation studies in the family were possible since the two 

children had foster parents.  
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Figure 3.21: Pedigree of the proband #74 and his family for the DSG2 and PKP2 mutations. 

 

 

3.7.9 Family #76 

The proband #76 was a 20 years old male who died suddenly and the autopsy 

showed evidences of left-dominant AC. 

Genetic analysis identified a novel heterozygous mutation (c.448C>T, p.R150X) 

in exon 4 leading to the premature truncation of DSP. 

The same mutation was shared by the father (aged 54) and the sister (aged 19) 

(Figure 3.22). Interestingly, the father appeared to be the first mutation carrier in 

the family, suggesting a dominant de novo mutation (Pilichou et al., 2014). 

 

 

Figure 3.22: Pedigree of the proband (arrow) and his family for the DSP mutation p.R150X (from 

Pilichou et al., 2014). 
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3.7.10 Family #87 

A fourteen year-old boy was transplanted at the Cardiology of Tehran and referred 

to the Laboratory of Cardiovascular Genetics for genetic screening of  

biventricular AC. Family history of sudden cardiac death was present in two 

brothers of the proband. ECG recording showed atrial fibrillation and conduction 

abnormalities (RBBB type), whereas Echo analysis showed biventricular 

enlargement. Targeted resequencing of 55 genes carried out in collaboration with 

the University of Groningen, identified 2 different missense variants in TTN 

(c.102737G>A, p.R34246H, and c.17279C>T, p.T5760M) and one variant in 

LAMA4 (c.1552-4G>A), confirmed by Sanger sequencing (Figure 3.23). The 

variant c.1552-4G>A in LAMA4 is predicted to affect the splicing process 

(MaxEnt: -5.3%; NNSPLICE: 0.7%; HSF: 0.1%). The TTN variant p.T5760M 

affects a weakly conserved amino acid, while the p.R34246H variant affects an 

highly conserved amino acid and is classified as a variant of uncertain 

significance in ClinVar (update Apr 19, 2012). 

 

 

 

Figure 3.23:  Pedigree of the proband (arrow) and his family for the LAMA4 and TTN mutations. 
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4. DISCUSSION 
 

Arrhythmogenic Cardiomyopathy is an inherited heart muscle disease that may 

result in arrhythmias and sudden death, especially in the young and athletes 

(Thiene et al., 1988; Corrado et al., 1990). The main pathological feature of AC is 

the progressive loss of myocardial cells, which are replaced by fibrous and 

adipose tissue (Nava et al., 1988; Thiene et al., 1988). Major and minor criteria 

were established and revised by an international Task Force, to be specific for AC 

diagnosis (Marcus et al., 2010). AC criteria consider cardiac morphology and 

function, tissue characterization, electric rhythm conduction and the presence of 

arrhythmic events as well as family history, including the identification of 

pathogenic mutations as a major diagnostic criterion.  

Although the first genetic sightings were accomplished on the recessive form 

known as Naxos disease, AC is nowadays most commonly considered as an 

autosomal dominant trait with variable expressivity and age-dependent penetrance 

(Nava et al., 1988; McKenna et al., 1994; Sen-Chowdhry et al., 2004; van 

Tintelen et al., 2006). Desmosomal point mutations are detected in nearly half of 

the AC probands (Basso et al., 2012; Kapplinger et al., 2011; den Haan et al., 

2009). However, recent studies highlighted the presence of desmosomal gene 

variants in the general population, intensifying the debate regarding the 

pathogenic effects of missense and “radical” mutations. At present “radical” 

mutations are considered highly pathogenic due to abnormal protein length 

advocating a haploinsufficiency mechanism, whereas missense mutations are 

cautiously interpreted using complex bioinformatics algorithms. Moreover, the 

identification of compound and digenic heterozygous carriers, associated with a 

more severe form of the disease, increased the genetic complexity of the disease 

suggesting a recessive inheritance pattern (Xu et al., 2011; Bauce et al. 2010; 

Rigato et al., 2013). Further rare CNVs other that point mutations have been also 

associated with AC, by three independent studies describing different large 

deletions encompassing PKP2 gene in Dutch and Italian AC patients (Cox et al., 

2011; Roberts et al., 2013; Li Mura et al., 2013). 
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The aim of the present study was to prospectively assess the prevalence, 

age/gender relation and underlying genetic mutations in a large series of clinically 

affected and SCD AC cases. 

4.1 Comprehensive genetic analysis in 99 index cases 

Ninety-nine index cases referred for molecular genetic screening to the 

Cardiovascular Genetics Laboratory of Padua; 73/99 probands had a clinical 

diagnosis of AC based on the 2010 Task Force criteria (Marcus et al., 2010), of 

which 14 underwent cardiac transplantation, and 26 index cases were sudden 

death victims recorded in the Veneto Registry of Cardio-Cerebro-Vascular 

Pathology. Genetic screening carried out in the entire cohort for 5 desmosomal 

genes (DSP, PKP2, DSG2, DSC2, JUP), and in 46 of the 99 probands for 3 

additional non desmosomal genes (CTNNA3, DES, PLN), identified 193 different 

nucleotide variants underlying the complex genetic status of the disease. Of note, 

the majority of the nucleotide variants resided in DSP.  

The first genetic analysis excluded all intronic, UTR and synonymous variants 

reducing the total number of variants to 81. The 81 detected variants were 

prioritized based on the frequency of variants in the general population, the 

conservation of the nucleotide and the amino acid conservation among species, as 

well as other in silico prediction analytical methods. Finally a nucleotide variant 

was classified as pathogenic once it was predicted to alter the structure or the 

function of the encoded protein, its presence was assessed in a large healthy 

ethnically matched control population and when literature or family information 

implied correlation with the disease. 

The second variant filtering was based on frequency data provided by available 

public databases such as 1000 Genomes Project and Exome Variant Server and an 

internal control group composed of 500 unrelated healthy athletes who were 

screened as controls to assess frequency of novel variants in the Italian population. 

Minor allele frequency cut-off was established at <0.02% given the prevalence of 

this rare disease as 1:5000 (0.0002, 0.02%). Twenty-nine variants above this 

threshold were excluded due to high frequency in the general population whereas 

52 unique variants advanced to the next variant filtering step. However one DSP 

variant excluded because of frequency beyond the established threshold, was 
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reclassified as a mutation due to in vitro function evidences proving its association 

with the disease (Yang et al., 2006). Of note, all 53 variants were located in 

desmosomal encoding genes: PKP2 (19, 36%), followed by DSP (19, 36%), 

DSG2 (8, 15%), DSC2 (3, 6%), JUP (4, 7%), in agreement with previous reported 

data considering AC as a desmosomal disease (Basso et al., 2012). No nucleotide 

variants were found in our cohort in extra desmosomal genes. Indeed extra 

desmosomal genes mutations in AC are rare and usually reported as founder 

mutations (p.S358L in TMEM43, p.S13F in DES, p.R14del in PLN ((Merner et al. 

2008; Bergman et al., 2007; van der Zwaag et al., 2012). Fifty-four positive-

mutation carriers were identified from this filtering step, of which 11% were 

single mutation carriers for DSP, 18% for PKP2, 4% for DSG2 and 3 % for DSC2 

and JUP respectively. Fifteen of these 54 genotype-positive AC cases were 

multiple mutation carriers (15%).  

The following variant filter was based on evolutionary conservation of amino 

acids and led to the exclusion of 8 more missense variants, weakly or not 

conserved among species, reducing the amount of putative pathogenic variants to 

44.  

The resulting variants from the evolutionary conservation- filtering step were 

underwent a final in silico evaluation regarding predicted variant pathogenicity, 

which excluded from the study 4 more variants classified as VUS1 (unlikely to be 

pathogenic) and 1 classified as VUS0 (not pathogenic) and reduced the putative 

pathogenic variants to 37. A further reduction in 42 index AC cases (42%) who 

carried one or more of these 37 variants were finally considered as positively 

genotyped. 

A parallel CNVs analysis, carried out both by MLPA and qPCR in all 99 

probands identified 3 additional large genomic rearrangements involving 

desmosomal genes, that could not have been detected by DHPLC and Sanger 

sequencing: a heterozygous deletion of 120 kb located on chr 12 comprising the 

entire PKP2 gene in 2 patients, a heterozygous deletion of at least 482 kb on chr 

18 encompassing both DSC2 and DSG2 genes in 1 patient, and a heterozygous 

deletion involving only exon 4 of PKP2 in other 2 patients. CNVs investigation 

allowed the identification of an additional 4% of desmosomal mutation carriers, 

increasing the diagnostic yield of AC genetic testing from 42% to 46% in our 
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population. We considered as mutation carriers all 46 probands (46%) who carried 

one or more of the 37 identified point variants or of the 3 large deletions.  

4.2 Genotype complexity in AC  

Forty-six (46%) index AC cases harbored at least one desmosome point mutation 

or a large deletion in desmosomal encoding genes; 20 of the 46 genotype positive 

AC probands were single PKP2 mutation carriers (43%), 11 single DSP mutation 

carriers, 4 single DSG2 mutation carriers and 3 were single DSC2 mutation 

carriers. Note that 3 homozygous carriers have been identified for 1 nonsense 

DSG2 mutation and 2 DSC2 missense mutations. Moreover, 8 of 46 genotype 

positive AC probands carried multiple mutations and most of them were digenic 

heterozygotes (7 of 8, 88%).  

4.3 Recessive inheritance pattern in AC 

Cascade genetic family screening has the power to unveil clinical features and 

improve characterization of the detected variants. However the low number of 

relatives available for clinical evaluation or the small size of the families often 

made difficult a final assessment of the role and/or the contribution of the 

different mutations identified. Herein, we report our findings in 3 AC families 

supporting the idea that AC might be present as a recessive form without 

associated palmoplantar keratoderma and wooly hair, in concordance to previous 

reported studies (Alcalde et al., 2014; Awad et al., 2006; Sato et al., 2011; 

Rasmussen et al., 2013).  

In two families we detected the presence of the same homozygous founder DSC2 

mutation (p.D179G) (Lorenzon et al., submitted), while in another family the only 

affected proband was found to carry a DSC2 mutation (p.L732V) associated with 

a DSG2 mutation (p.R292H). These data together with a high incidence of digenic 

heterozygotes (8 in 99, 8%) in our cohort, suggest an autosomal recessive mode of 

transmission, confirming the complexity of AC genetics and highlighting the need 

of cascade clinical and genetic screening in larger populations in order to better 

understand the genetic basis of the disease. We cannot exclude the possibility that 

AC cases hosting 1 AC-associated mutation do not carry a compound mutation in 

yet unknown AC susceptibility gene. 
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4.4 Prediction of missense mutations pathogenicity 

While the pathogenicity prediction value of features such as the frequency of the 

altered allele in the population and the phylogenetic conservation of the amino 

acids is well established, the utility of in silico analysis remains questionable, 

even though it represents the first tool enabling the prioritization of the increasing 

amount of VUSs emerging from the new sequencing technologies. In silico 

analysis are based on different statistical algorithms combining the outcomes of 

series of predictors that often consider MAF, conservation data, predictions about 

the possible impact of an amino acid substitution on the structure and function of 

a protein, the difference in the physicochemical properties of the amino acids, 

while they do not consider for instance any possible interaction of the protein 

inside the cell. Herein we identified 53 desmosomal gene variants after MAF-

Filtering in 54 positive-mutation carriers, of which 11% DSP single mutation 

carriers, 18% PKP2 single mutation carriers, 4% DSG2 single mutation carriers, 3 

% DSC2 single mutation carriers, 3% JUP single mutation carriers and 15% 

multiple mutation carriers. Stringent analysis, limited only to carriers of variants 

resulted from the four filtering steps reduced the number of variants to consider 

pathogenic to 37, the number of mutation carriers to 42 index cases of which 11% 

DSP single mutation carriers, 20% PKP2 single mutation carriers, 4% DSG2 

single mutation carriers, 3 % for DSC2 single mutation carriers and 8% multiple 

mutation carriers. These results showed a significant reduction in multiple 

mutation carriers and that JUP variants alone cannot cause the development of the 

disease. However, the exclusion of variants during the 4-filtering procedure due to 

statistical evaluation is still complicated since different algorithms can sometimes 

provide discordant outputs, suggesting the need of more than one in silico tool 

comparison and validation of predictions by co-segregation analysis and/or 

functional studies to finally verify the real pathogenicity of mutations. This raise 

the question whether exclusion of genetic variants during the 4-filtering fails to 

detect a large portion of mutation carriers.  
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4.5 Prediction of “radical” mutations pathogenicity 

PKP2 mutations are the most common AC-related genetic variants, representing 

13/37=35% of the total AC variants identified in this study and responsible for 

20/46=43% of our genotype positive AC cohort. 

Eleven of the 15 PKP2 mutations identified in 16 AC index cases were “radical” 

mutation (frameshift, nonsense, splice sites). The pathogenicity of missense and 

“radical” mutations in cardiac diseases and specifically in AC is a matter of 

intense debate. Recent studies have shown that stop-codon mutations in PKP2 are 

more pathogenic because they alter protein length and that truncating PKP2 

proteins may lead to haploinsufficiency due to protein instability (Kapplinger et 

al., 2011; Andreasen et al., 2013; Joshi-Mukherjee et al., 2008; Herman et al., 

2012; Rasmussen et al., 2014). Even though this study showed a clear-cut 

prevalence of “radical” PKP2 mutations compared to missense mutation, we 

found no difference in the age onset (41±19 vs 40±19) or in a higher risk of SCD 

events in PKP2 mutation carriers.  

Actually our data supports the idea that a heterozygous gene deletion might be 

insufficient to determine alone the disease. Specifically, 3 PKP2 “radical” 

mutation carriers were identified and clinically classified as possible based on 

2010 AC criteria; two of these subjects (about 40y old, males) presented a PKP2 

frameshift [p.G458VfsX15, p.T50SfsX61 respectively] showing a LD pattern of 

the disease and 1 (44y-old female) displayed a complete deletion of the PKP2 

containing allele in heterozygosis with absence of any clinical signs of the disease. 

In contrast we observed that another AC carrier of the entire PKP2 allele deletion 

and of an additional DSP missense mutation (p.V30M) fulfilled definite 

diagnostic criteria, as observed also in all the compound/digenic mutation carriers 

in this study. Further a young boy with the deletion of the allele containing both 

DSG2 and DSC2 genes was also classified as definite. Thus, in agreement with 

previous studies the pathogenicity of “radical” mutations as well as missense 

mutations should be accomplished only by co-segregation studies and clinical 

analysis in the families. 
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4.6 Genotype-phenotype correlation  

Previous studies on AC index cases consistently demonstrated a male 

predominance, suggesting that men develop a more severe disease phenotype, 

making them more likely to come to medical attention (Cox et al., 2011; Dalal et 

al., 2006; Nava et al., 2000; Rigato et al., 2013). These authors hypothesized a 

direct sex-hormone influence on the disease pathobiology and development of 

arrhythmogenic myocardial substrate, advocating the protective effect of 

estrogens to explain why females with desmosomal gene mutations tend to 

develop a less severe phenotype and fewer arrhythmic complications compared 

with males.  

Our cohort included 77 (78%) males and only 22 (22%) females presenting a 4:1 

ratio, of which 26 SCD cases were all males. Excluding this bias from our cohort 

of SCD males, the sex ratio males:females in the clinically diagnosed group was 

3:1, as previously reported elsewhere. 

Although our findings confirmed a male predominance with a ratio 3:1 among AC 

index cases, a 2:1 male to female ratio was observed among desmosomal mutation 

gene carriers with definite criteria suggesting that genotype positive females have 

the same probability of developing specific AC features and the fact that these are 

not translated to SCD events needs further investigation. 

Comparing mutation carriers and non mutation carriers fulfilling the established 

AC diagnostic criteria, 46 were found positively genotyped (46%): 30 classified 

as definite, 1 classified as borderline and 2 classified as possible. Interestingly, 33 

of the 40 non-mutation carriers were also classified as definite. 

Sorting genotyped positive patients for the different desmosomal gene mutations 

we observed no significant differences in the average age of the initial 

presentation (around 38y) of the disease. Although multiple mutation carriers and 

DSP single mutation carriers showed definite diagnostic criteria for AC, no 

significant correlations were also observed in terms of clinical characteristics and 

in the average age at diagnosis between the different single mutation carriers and 

the multiple mutation carriers. These data do not reflect previous studies reporting 

that multiple mutation carriers correlation with an earlier onset of symptoms and a 

more severe disease (Xu et al., 2010). However our results might be biased due to 

high strigency in variants filtering which relocated multiple mutation carriers in 
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the group of single mutation carriers (7 multple mutation carriers after 4-step 

filtering became single mutation carriers), and to the small number of multiple 

mutation carriers. 

Separating clinically affected living subjects from SCD cases made evident a 

higher risk of SCD (5 of 11, 45%) among DSP mutation carriers at a significantly 

younger age (p 0.04). In contrast given the higher incidence of PKP2 mutations 

among AC probands (20, 44%), the risk of SCD in PKP2 mutation carriers is 

lower (4 of the 20, 20%).  

4.7 Next generation sequencing in AC 

4.7.1 Whole exome sequencing and troubleshooting 

Twelve of the 99 genotyped patients underwent paired-end WES in 2 successive 

runs, obtaining 68.270.020 reads per sample on average. To elaborate these data 

we used 3 different pipelines: we used CLC software as the main mapping tool 

due to its ability to recognize faster the highest number of unique hits and it did 

not require indexing of the reference. However a huge variability was observed in 

the number of reads aligned against the human genome reference and the number 

of reads on target for each sample within every sequencing run. Mean coverage 

variability was also observed among different samples (inter-variability) and 

within the same sample (intra-variability) in terms of well covered regions versus 

uncovered or low covered regions of interest.  

Accordingly, we obtained in nearly 80% of the exome a mean coverage above 

20X only for 6 of the 12 samples sequenced by WES; mean coverage of 20X is 

considered the minimal coverage value for reliable variant call, showing that 

sequencing did not produce enough reads (Sims et al., 2014).  

Inter- and intra- variability observed among samples, even though the sample 

procedure was applied, depended mainly on the quality of the original sample. 

Many of our samples were obtained from post mortem sampling resulting in tissue 

and DNA degradation which was translated in this process as poor enrichment of 

target regions. We tried to overcome this difficulty by quality control of the 

starting DNA sample and libraries, however when the samples are pooled together 

calculation and pipetting cannot be perfectly accurate and this result in unbalanced 

number of reads produced for each sample during multiplex sequencing. These 
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technical problems create an enormous effect on the yield and quality of sequence 

reads obtained by NGS.   

Next, we used 3 pipelines also for SNP calling comparing them in terms of 

sensitivity and specificity of the calls. In 6 samples, GATK and CLC called 

respectively a total of 1.975.223 and 1.435.455 variants, while CASAVA called 

only about 1/6 of them. In fact CASAVA automatically calls variants located 

exclusively in the exonic target regions that reached an appropriate coverage 

>20X, thus not focusing on the low covered exonic regions or the intronic regions. 

CLC software instead was demonstrated to be user-friendly and flexibile, able to 

call a great amount of variants even in non coding regions.  

4.7.2 Whole exome sequencing: sensitivity and sensibility 

In the clinical setting a higher specificity and sensitivity of diagnostic tools is 

required (Gargis et al., 2012; Rehm et al., 2013). To this regard we compared 

WES data to the ones deriving from conventional sequencing.  

SNP calling by CLC software, automatically detected 68 out of the 90 variants 

(76%), missing 22 nucleotide changes, that were manually called looking through 

the alignment data. Thirteen of these 22 missing variants were manually detected, 

exhibiting 90% sensitivity and >99.9% specificity of WES. The rest 9 variants 

missed by automatic and manual SNP calling, 6 were intronic variants located 

from 44 to 356 bp to the nearest probe and thus of difficult detection, while 3 

exonic missense variants were located in target uncovered regions or with a 

coverage below 5X. Note that, CLC software automatically discards all calls with 

low quality parameters. 

4.7.3 Whole exome sequencing: clinical application and efficacy 

WES data of the 12 sample were further interrogated for variants located in 150 

additional genes associated with different from AC inherited cardiomyopathies. 

The pipeline used for variants filtering was the same as previously described in 

conventional sequencing, resulting in the identification of more than 100 putative 

pathogenic variants. However, conventional sequencing methods confirmed only 

3 of the 100 extra desmosomal variants detected in 3 different patients, of which 1 

in TNNT2, 1 in MYBPC3, and 1 in LMNA genes respectively. In this way 3 more 

patients were positively genotyped allowing a differential diagnosis with respect 
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to AC. For instance, LMNA mutation carrier was an AC-labeled proband who died 

shortly after cardiac transplantation. Cascade family screening enabled the study 

of his family identified 2 more mutation carriers who exhibited a DCM-like 

pattern. Indeed this variant has been previously described in a case of familial 

autosomal dominant DCM with atrio ventricular block (Arbustini et al., 2002). 

The rest 97 false positive WES calls were related not only to a low sequence 

coverage (<10x in 2 samples) but also to systematic errors due to repetitive 

elements, homopolymer stretches and small insertions or deletions resulting in an 

aberrant alignment process. The presence of false positives implies that this pilot 

WES experiments requires improvements both at the enrichment level and the set-

up of the bioinformatic pipeline, and highlights the value of confirmatory Sanger 

sequencing especially at this stage of the progress of NGS technology.  

Although, our NGS procedure still presents some limitations to overcome, the 

data obtained from these two pilot WES experiments demonstrated the utility of 

sequencing simultaneously the entire exome of every patient since a higher 

throughput of data can be analyzed at a lower cost with respect to conventional 

sequencing methods and WES data can be stored and re-analyzed after time. 

4.7.4 Targeted resequencing vs WES strategy 

Last, we evaluated another NGS strategy (Targeted Resequencing-TR) in order to 

extend out analysis from 5 desmosomal genes to a specific set of 55 inherited 

cardiomyopathy-related genes. Targeted resequencing panel was previously 

validated by the Cardiogenetics Laboratory of the University of Groningen and at 

present is used as a routine diagnostic test.  

Four AC patients from the Cardiogenetics Laboratory of Groningen and 1 

negative-genotyped AC patient from the Cardiovascular Laboratory of Padua, 

were sequenced with a paired-end strategy producing on average 110.185.963 

reads per sample to be mapped on 55 genes, corresponding to approximately 1.6 

fold the reads produced by WES which were expected to map all over the exome. 

No intra- or inter- variability was observed in terms of total number of reads 

produced and mapped, while the mean coverage was around 300X, confirming the 

good quality of the enrichment. Variant calling and filtering was performed by an 

in-house pipeline and led to the detection of 3 variants in 2 extra desmosomal 
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genes (p.R34246H and p.T5760M in TTN; c.1552-4G>A in LAMA4) in the patient 

coming from Padua. 

This work highlighted the need for improvement of the WES protocol and 

allowed a differential diagnosis of Dilated Cardiomyopathy based on genetics 

evidences.  

  



140 
 

  



141 
 

5. CONCLUSIONS 
 

Comprehensive mutation screening and filtering in a large cohort of unrelated 

consecutive index AC cases identified 37 putative pathogenic mutations 

exclusively in desmosomal-related genes in 46% of cases. 

In order to provide a more stringent analysis, we limited our study to the only 

variant carriers resulting from the 4-filtering steps. The characterization of 

identified variants as pathogenic mutations or benign variants is essential for the 

understanding of their role in the disease, and this process is even more critical 

with the use of genetics as a diagnostic criterion. According to the results of the 

present study, compound/digenic heterozygosity (8%) and homozygosity (1%) in 

AC-desmosomal gene mutations suggest a different more complex mode of 

inheritance. This highlights the importance of screening the entire panel of 

desmosomal genes, even after a single mutation has been identified, and have 

significant implications for genetic counseling. 

Further CNVs investigation allowed the identification of an additional 4% of 

CNVs carriers, increasing the diagnostic yield of AC genetic testing to 46% in our 

population. These data emphasize the diagnostic impact of performing additional 

CNVs analysis in AC genetic testing and the importance of comprehensively 

analyze the entire AC cohort.  

Radical mutations in our cohort showed a lower risk of SCD event, suggesting 

that pathogenicity should be assessed carefully by studying the family co-

segregation with the disease as well. 

Clinical and familiar correlation is essential to elucidate the role of both genetic 

point/radical variants and CNVs, for genetic counselling and management.  

Finally, our pilot NGS experiments highlighted the potential of WES and 

Targeted resequencing in the clinical setting in terms of time, cost and 

effectiveness, by enabling a differential diagnosis in 4 probands with extra 

desmosomal mutations. However the application of NGS to the molecular 

diagnosis of AC raises new challenges in distinguishing pathogenic from non 

pathogenic vairiants and overall in the patients’ management and treatment. 
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