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Abstract 

 

Single track vehicles dynamic is a very complex topic that involves many different branches of the scientific 

knowledge, such as vibration mechanics, stability and control, materials science and biomechanics. 

Although the first studies on the stability of a single track vehicle were carried out at the end of the XIX 

century, the technological progress that has improved the properties of the employed materials and the 

craving for better performances oblige the scientific world to an everlasting research activity, carried out 

both on whole vehicles and on single components. 

This Ph. D. thesis summarizes the research activities carried out at the Motorcycle Dynamics Research 

Group of the University of Padova and describes the tested mechanical components, the testing 

equipments, the experimental data, the elaboration criteria and the final results obtained after a three 

years work. 

The experimental methodologies employed in order to carry out the research activities are presented in the 

first chapter. Both the hardware and the software of each experimental bench will be described. In 

addition, the theoretical principles on which the testing rigs are based and the principles with which it 

processes the output of the measuring sensors will be illustrated. 

Subsequent chapters shift the focus on the results obtained on the various analyzed components. The 

second chapter presents the results of the tests carried out on motorcycles frames , with or without engine; 

the third chapter describes the results of the measurements made on motorcycles swingarms; the fourth 

chapter describes the results of tests performed on motorcycle front forks; the fifth chapter presents the 

results of tests conducted on front and rear motorcycle and scooter tires; shifting the attention to another 

type of two-wheeled vehicle, the sixth chapter presents the results of the tests carried out on bicycles and 

bicycle components. Finally, the seventh chapter describes the results of measurements conducted on tires 

typically used for wheelchairs. 
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Sommario 

 

La dinamica dei veicoli a due ruote è un campo di studio molto complesso poiché interessa numerosi ambiti 

del sapere scientifico, dalla meccanica delle vibrazioni al controllo dei sistemi, dalla biomeccanica 

all’ingegneria dei materiali. Nonostante i primi studi siano stati condotti già sul finire del XIX secolo, il 

progresso tecnologico che negli anni ha stravolto la natura dei materiali utilizzati e il desiderio di prestazioni 

sempre più “al limite” impongono una incessante attività di ricerca, condotta sia su veicoli interi che su loro 

singoli componenti. 

Questa tesi di dottorato raccoglie le attività di ricerca condotte nel Motorcycle Dynamics Research Group 

dell’Università degli Studi di Padova, descrivendo i componenti meccanici analizzati, i banchi di misura, i 

dati sperimentali, i criteri di elaborazione e i risultati a cui si è arrivati in tre anni di lavoro. 

Nel primo capitolo sono descritte tutte le metodologie sperimentali che sono state adottate nel condurre le 

attività di ricerca in laboratorio. Per ogni banco di misura, verrà fornita una descrizione dei componenti 

fisici e dei programmi informatici. Inoltre, verranno descritti i principi teorici alla base del funzionamento 

del banco e i principi con cui si elaborano i dati in uscita dai sensori di misura. 

I successivi capitoli spostano l’attenzione sui risultati ottenuti sui vari componenti analizzati. Il secondo 

capitolo raccoglie i risultati dei test condotti su telai da motociclette, con e senza motore; il terzo capitolo 

descrive i risultati delle misurazioni effettuate su forcelloni di motociclette; il quarto capitolo descrive i 

risultati dei test condotti su forcelle anteriori da motocicletta; nel quinto capitolo sono presentati i risultati 

dei test condotti su pneumatici anteriori e posteriori di motocicletta e da scooter; spostando l’attenzione su 

un altro tipo di veicolo a due ruote, il sesto capitolo raccoglie i risultati dei test condotti su biciclette e su 

loro componenti. Per ultimo, il settimo capitoli descrive i risultati delle misure condotte su tipici pneumatici 

usati per sedie a rotelle. 
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“As I rode, curve after curve, the engine pushed on almost as if it was a hammer strong enough to forge any 

type of steel with violent blows of metal on metal” [1]. As one would imagine from this quote by Professor 

Vittore Cossalter, the world of motorcyclism is rich of art and passion, and enthralls customers from every 

corner of the planet. For this reason, designers and manufacturers are never satisfied by the improvements 

achieved in order to fulfill the customers’ wishes: some of them prefer to count on a fiery power 

guaranteed by engines with thousands of horse powers, some prefer to rely on other qualities, such as 

maneuverability, style and nimbleness, that highlight the beauty of the vehicle and exalt the rider technical 

abilities. From a scientific point of view, the craving for better performances in the motorsports world and 

the demand of some properties (such as safety, stability, comfort, cost, etc.) from ordinary customers 

oblige the industries and the universities to carry out an everlasting activity of research both on whole 

vehicles and on single components. This Ph. D. thesis summarizes the research activities carried out at the 

Motorcycle Dynamics Research Group (MDRG) of the University of Padova. It will describe the tested 

mechanical components, the testing equipments, the experimental data, the elaboration criteria and the 

final results obtained after a three years work. 

The study of vehicle stability is one of the most important research topic in the field of single track vehicles 

and it is deeply investigated in the MDRG of the University of Padova. If, on one hand, the natural 

instabilities of two-wheeled vehicles can suggest an advantage in terms of maneuverability and quickness, 

on the other hand they can lead to dangerous circumstances. And, even if the study of stability has 

experienced much advancement over the last years, it still presents some phenomena that require further 

research and remains one of the most important aspects in the design of safe and powerful vehicles. 
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Early researchers and motorcycle designers discovered that the flexibility of a mechanical component plays 

an important role in motorcycle dynamics and may alter the stability properties of the vehicle. However, 

the optimal flexibility of a motorcycle remains nowadays an open research topic. An established method 

for flexibility measurement has still to be defined and manufacturers generally use different measurement 

approaches. Moreover, there are different measurement methods depending on the components that are 

tested. 

As an example, it is well known that the flexibility of a motorcycle front fork can have a significant effect on 

motorcycle stability. Front forks properties are involved in ordinary operations of riding, such as braking 

and steering. In addition, some of the most common and dangerous modes of vibration that determine a 

motorcycle instability (wobble, weave) involve a vibration of the front fork. Also the chassis of a single-track 

vehicle is a very interesting structural element, because it determines the relative position between the 

two wheels and for this reason it has a deep influence on the dynamic stability of the vehicle: in the case of 

a motorcycle, the stability of the front wheel, which can be considered a castor with short trail, is 

influenced by the lateral compliance of the front fork and of the steering head of the frame; the stability of 

the rear wheel, which can be considered a castor with long trail, is influenced both by bending flexibility of 

the rear frame and by torsion deformability of the rear frame with respect to the steering head. Some 

studies [1] [2] highlighted that the compliances of these elements influence significantly the stability and in 

particular the weave and wobble modes [1]. These are the most important modes that affect the vehicle 

stability. Wobble consists mainly in oscillations of the front frame and has frequencies in the range 6-7 Hz. 

Weave is a fishtail-like motion of the whole vehicle with frequencies rising with speed, in this case up to 

4Hz, and as usual is unstable at very low speeds (below 6-7 m/s) and weakly damped at high speed. 

Another merit of the early studies on motorcycle stability has been the introduction of a lumped element 

approach in order to represent the critical compliances of the structural elements of a motorcycle [3]. This 

approach is still in use with advanced multibody codes [4]. Nevertheless, up to now very few scientific 

studies have been carried out to identify the parameters of the lumped elements that account for the 

stiffness and damping properties of two wheeled vehicles components. 

The first specific research on this topic was carried out in 1983 [5], when the front and rear frames of a 

motorcycle were anchored to a stiff structure, static and dynamic forces were applied to the wheels in 

order to identify stiffness properties. The deformation of frames was represented by means of the twist 

axis, which was defined as the intersection between the symmetry plane of the motorcycle and the plane 

of the wheel in loaded condition. In 1986, another group of scientists investigated the effect of static 

properties and in particular torsion stiffness of motorcycle frames [6]. With reference to a framework of 

tubes (like some motorcycle chassis), they defined the twist axis as an axis along which no lateral 

displacement takes place when a torque is applied about it. 

Recent experimental tests on motorcycle components compliance are reported in [7] (only chassis) e [8]. 

The latter paper employed the method of modal analysis for studying the vibrations of the whole 

motorcycle. Results have shown the existence of various out-of-plane modes of vibration in the range of 

frequency below 50 Hz. It is worth remembering that the static compliance is a combination of the modal 

compliances of various modes of vibration [9],[10]. 

One of the aims of this research has been the characterization of an experimental procedure that allows 

the measurement and the identification of some mechanical parameters of different motorcycle 

components and makes it possible to introduce those parameters in multibody models. In other words, the 
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original path explored by early researchers has been followed using the same scientific parameters (e.g. the 

twist axis), but the endeavor has been focused on the possibility of introducing the identified parameters in 

mathematical models that could offer some information about the vehicle stability. 

An original definition of the twist axis is included in this thesis: in general, the twist axis of a single track 

vehicle component is a property that gives information about the deformability of the component and 

depends on its stiffness characteristics. Nevertheless, it has been measured and analyzed for two different 

vehicles (motorcycles and bicycles) and two different types of tests (static and dynamic), so that each type 

of analysis is described individually. Moreover, an interesting correlation between the twist axis and the 

Mozzi axis has been studied and properly described in a paragraph of Chapter 1. Chapters 2, 3 and 4 collect 

the results of the experimental tests carried out on three types of motorcycle components: frames, swing-

arms and front forks respectively. 

After the study of the properties of some motorcycle structural components, the attention has been 

focused on the dynamic properties of the tires. It is well known that static and dynamic properties of tires 

have a large influence on single-track vehicles stability. The first model for the study of the dynamics of a 

single-track vehicle was developed by Whipple and Carvallo in 1899 [11] and it included the rear and the 

front wheel (in addition to a rear frame and a front frame). The four rigid bodies were connected by means 

of kinematic joints and the disk wheels were in rolling contact with the road without any slip. This model 

had three degrees of freedom and it was able to predict only the capsize and weave modes. Further 

research carried out with the aid of computer simulation showed that a more detailed tire model was 

needed to study high speed dynamics and in particular the wobble mode [12]. Several researchers [1],[12] 

proved that, in order to study wobble stability, both slip phenomena in the contact patch and lateral 

compliance of the tire’s carcass have to be taken into account.  

It is well known that the tire is a dynamic system which does not respond instantaneously to variation in 

the side-slip angle but shows a transient. Döhring was the first to introduce in 1956 a phase lag between 

the instantaneous inclination of the wheel (roll and yaw angles) and the generated tire forces. The merit of 

the first analysis of motorcycle stability is owned to Sharp [12]. His paper is a milestone in the history of 

motorcycle dynamics. The equations of motion are derived with a Lagrange method and a first order 

differential equation takes into account the abovementioned phase lag of the tire forces. The analysis of 

the eigenvalues and eigenvectors of the system allows to identify three typical vibration modes of the out-

of-plane of the vehicle: capsize (not oscillating and stable up to about 10 m/s), wobble (oscillating with a 

frequency of about 6-10 Hz, not depending on speed) and weave (oscillating and stable over 7 m/s, with 

frequencies increasing from 0 Hz to 3-4 depending on speed). 

For modest frequencies (below 510 Hz in motorcycle tires), during the transient the tire can be modelled 

as a first order system characterized by a time lag [13]. When the vehicle travels with constant forward 

speed V, the time lag corresponds to a travelled distance which is named relaxation length . Tire forces 

and torques due to camber are characterized by a significant non-lagging part [14]. The dynamic properties 

of tires are generally expressed in terms of relaxation length. Relaxation length is often studied by means of 

rigid ring models [14], [15], in which the belt of the tire is modeled as a rigid ring elastically connected to 

the rim and the contact patch is connected to the belt by means of residual springs. Actually these models 

are able to take into account the lateral and the diametrical modes of vibration of the rigid belt with 

respect to the rim and to represent in a simplified way the modes with belt deformation by means of the 

residual stiffness. In the literature, there are few data about the stiffness and damping properties of the 
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carcass of the tire, some rules of thumb are given in [14]. This lack of information is even worse when tires 

for single-track vehicles are studied. 

The research activities carried out on motorcycle tires, collected in Chapter 6, are divided in two sections: 

the first section shows the relaxation lengths measured by means of experimental tests performed on the 

rotating disk machine of MDRG; the second section focuses on the characterization of a method that allows 

to predict the relaxation length according to a first order model of the tire. The experimental equipment 

and the identification methods are presented in Chapter 1. 

Some research has been focused also on bicycles and bicycle components. The study of bicycles and bicycle 

frames has been focused on the analysis of their dynamic properties, with a specific interest in their modes 

of vibration: in fact, the vibrations occurring in a bicycle can affect not only comfort, but also stability. For 

this reason, research in the field of bicycles dynamics, which started in the last years of 19th century, has 

principally addressed to the problems of auto-stabilization and cyclist control. In recent years the interest in 

this field is increased owing to the development of advanced materials, electrical bicycles, ecological issues 

and owing to the possibilities of analysis and simulation offered by numerical methods. 

Stability of bicycles is often studied starting from the benchmark model developed in 1899 by Whipple and 

Carvallo, mentioned before for motorcycles. In recent years significant improvements have been made to 

the basic Carvallo and Whipple bicycle model to overcome its limits and to allow the possibility of 

simulation of modern bicycles. Actually, in bicycles the mass of the cyclist is much larger than the mass of 

the vehicle and the rider’s body is not a rigid extension of the rear frame, but it vibrates if vehicle 

oscillations occur, even without any control of the cyclist. Schwab et alii [16] have added two different 

cyclist models without introducing further degrees of freedom; their results show that the motion of the 

cyclist’s body can alter the stability characteristics especially in the case of cyclist with upright body and 

flexed arms. 

Other improvements are due to the introduction of tire mechanics [17][18] and the modeling of frame and 

fork flexibility [19]. Actually, mechanical structural properties of bicycle and bicycles components have 

been studied mostly in relation with comfort properties [20] [21] and vibration analysis has been focused 

on in-plane modes. Only in recent years specific results dealing with out-of-plane modes have been 

presented [22]. When a bicycle is running on the road, there is an interaction between the typical bicycle 

modes (capsize, weave and wobble) and the structural modes of frame and fork, hence a deep knowledge 

of the modal properties of the bicycle’s structural elements is the first step for a realistic description of 

flexibility properties in simulation models. 

The analysis of bicycle forks has been focused on the identification of their static and dynamic properties 

and on the study of the effect of front fork compliance on the stability of bicycles. Mechanical flexibility is 

usually taken into account  by introducing lumped stiffness and damping elements that represent in a 

simplified way the properties of (frames and) front forks. However, the manner in which the positions and 

values of the lumped stiffness elements is identified is not addressed in literature. 

In the framework of this research, the benchmark bicycle model has been improved to take into account 

either bending compliance or torsion compliance of front fork. Only the front fork model has been modified 

introducing additional generalized coordinates and lumped elements that represent the relevant stiffness 

and damping properties. This approach, which holds true in the framework of linear analysis, makes it 

possible to separate the influence of front fork compliance from other effects, like side-slip and relaxation 
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length of tires. A series of experimental tests has been carried out with the modal analysis approach. 

Successively, a specific method has been developed for evaluating the stiffness and damping properties 

from the bending and torsion modes of the forks. Finally, the identified stiffness and damping parameters 

have been implemented in the simulation codes and some numerical simulations have been carried out. 

The last chapter of the thesis is focused on the research activities carried out on wheelchairs and 

wheelchair tires. Two wheelchair tires have been tested on the same testing machine usually employed for 

motorcycle and bicycle tires, the measurements aiming to obtain a characterization of the steady-state 

properties of the tires. The interest in the research is due to the fact that very few studies have been 

carried out on wheelchair tires. The two tires have been tested for their nominal inflation pressure (2 bar) 

and for a reference load of 400 N. The effects of variations in inflation pressure, vertical load and traveling 

speed have been studied as well. 

Finally, a model of a wheelchair based on the dynamic of a four-wheeled vehicle has been developed. The 

equations of the model have been implemented in a MATLAB code and some numerical simulations of two 

typical wheelchair maneuvers (steady-turning and slalom) have been carried out. The values of stiffness an 

rolling resistance measured by means of laboratory tests have been used as realistic parameters in the 

wheelchair model. An analysis of the effect of a variation of these parameters on the dynamics of the 

vehicle has been carried out in MATLAB as well. 
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Chapter 1 – Experimental equipment and 
methods 
 

 

 

 

 

 

 

 

 

 

 

According to the experimental method illustrated in the XVII century by the Italian physicist and 

astronomer Galileo Galilei, on which modern science is based, experimental activities play a fundamental 

role in the development of a scientific theory. Every scientific hypothesis must be deeply checked by means 

of experimental tests and also an engineering study should be accompanied by the collection of laboratory 

data. Considerable attention has to be paid in the design of the experimental rigs and in the accuracy of 

data processing in order to acquire consistent data and obtain realistic results. The measurement of the 

properties of similar objects (two frames, two front forks, etc.) by means of experimental tests can be 

useful for manufacturers and designers for making comparisons and comprehend which element plays the 

most important role from the point of view of the component’s quality and efficiency. 

Experimental data have been collected for every tested motorcycle and bicycle component, so that many 

experimental tests have been carried out. Chapter 1 aims to take into account those issues. First, it 

describes the experimental rigs and the techniques that have been used for carrying out the experimental 

tests. Moreover, it illustrates the elaboration criteria that have been employed for the identification of the 

static and dynamic properties of two-wheeled vehicle components. 

In the framework of this research many different types of tests (modal analysis, static tests, etc.) have been 

performed, the aim of the measurements has been the identification of a models that could describe the 

static and dynamic mechanical properties of the tested component. From modal analysis, a specific modal 

model is identified, the model being based on the dynamic characteristics of the system; from static tests, it 

is possible to acquire interesting information on the static properties of the system that can be used for 

developing a static model. It is worth remembering that from a theoretical point of view it is possible to 

switch from one model to another by means of mathematic equations, which makes it possible to make 

comparisons between the models and obtain the characteristics of a model from the characteristics of 

another one. 
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In general, the dynamic properties of a system with N degrees of freedom may be described by three 

different types of complete models: the spatial model, the modal model and the response model. In the 

first case, the system dynamic characteristics are expressed in terms of its mass, stiffness and damping 

properties, described by the NxN mass, stiffness and damping matrices, respectively. The spatial model  

given by [M], [K] and [D] (or [C]) leads to an eigenproblem which, having been solved, yield the modal 

model constituted by the modal properties (N natural frequencies, N modal damping values and N mode 

shapes vectors). The modal properties are contained in matrices [ωr
2] and [φ]. 

If we take the modal model and refer to the orthogonal properties of the modal matrix (in case of 

hysteretic damping), we have: 
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Equations (1) and (2) show that, in principle, it is possible to obtain a spatial model from the knowledge of 

the modal model. This may be an important conclusion if one thinks that it is the modal model that is 

initially derived from the experimental FRF data. Furthermore, it is possible to show that the modal model 

yields the response model. Thus, starting from the spatial model, we have ended with a response model 

after going through an intermediate modal model. This sequence in commonly performed when the 

starting point is a theoretical analysis. However, if a system is too complex and cannot be modelled 

analytically, the starting point is the experimental measurement of the system frequency response 

functions, that is, the system is described by means of a response model. The modal model can be easily 

derived with specific algorithms for the modal identification. Finally, one may apply equations (1) and (2) 

and obtain the spatial model. Figure 1 shows the above discussed models interrelation, based on the 

undamped case. 

 

Figure 1 Dynamic models interrelation (case with no damping) 

Up to now, complete models of the system have been assumed, that is all the mass, stiffness and damping 

properties of the spatial model are known, all the elements in the eigenvectors are known, etc. However, 

this approach is valid only from a theoretical point of view. The knowledge that any real system has an 

infinite number of DOFs is sufficient for understanding the practical impossibility of the approach. 
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Moreover, even if a system with a finite number of DOFs is taken into account, there are further forms of 

incompleteness due to the experimental techniques. The frequency range of an experimental modal 

analysis, for example, is limited, and therefore at least the high frequency modes will be omitted. 

For example, the case of a beam discretised as a 6 DOFs model (3 rotations and 3 translations) is taken into 

account, and we want to identify the response model of the beam. The receptance matrix is of order 6x6 

and includes both translation and rotation coordinates. Yet, the measurement of rotational responses is a 

very difficult experimental task and torque excitation is almost impossible with ordinary experimental 

means. The model is therefore limited to include only the translation coordinates and the resulting reduced 

FRF matrix will be of order 3x3. Even if we ceased to be able to describe all the initial DOFs of the system, 

we did not alter the basic system which still has 6 DOFs. In a response model, reducing the coordinates of 

interest from N to p is a simple operation of elimination of the N-p rows and columns of the frequency 

response matrix. 

Similar approaches are used for the cases of modal model and spatial model. Usually, in order to take into 

account the limited number of modes that can be identified, in the response equation of a modal model a 

complex, residual extra term that accounts for the contribution of the out-of-range modes is introduced. In 

the case of a spatial model, reducing the number of coordinates entails reducing the mass, stiffness and 

damping matrices. Such a reduction cannot be performed by simply eliminating rows and columns, but one 

must use specific techniques for redistribution of the system mass, stiffness and damping properties 

amongst the retained coordinates. It is better to speak in terms of matrix condensation instead of matrix 

reduction. 

1.1 The Motostiffmeter 

The Motostiffmeter equipment was mostly designed and assembled in the laboratory of Mechanical 

Engineering of the University of Padova according to the research project of Eng. Mauro Tognazzo as one of 

his Ph. D. research activities [23]. The experimental bench was developed in order to identify the structural 

stiffness properties of typical motorcycle components in static and dynamic conditions and is shown in 

Figure 2. The rig consists of a very stiff column, a servo-hydraulic actuator and a system of sensors. The 

column is equipped with two stiff metal jaws that make it possible to lock the tested component and 

eliminate some degrees of freedom according to the aim of the measurement.  

 

 

Figure 2 The Motostiffmeter 
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The actuator is powered by a hydraulic unit and can apply a static load up to 5000 N. In addition, the 

actuator can be controlled also in frequency in order to apply a dynamic excitation up to 45 Hz, but the 

amplitude of vibration decreases logarithmically as the excitation frequency increases. The system of 

sensors includes a load cell and three laser sensors. The load cell is aligned with the actuator axis and is 

employed for the measurement of the force applied by the actuator. The cell is designed for tension and 

compression tests with maximum load of ±200 kg and is mounted with two ball-and-socket joints in order 

to apply the load in one direction only. The laser sensors are employed for measuring the deformation of 

the component under test. Actually, the sensors are mounted on the platform of the testing rig in order to 

measure the displacement of a small metal plate that is stiffly attached to the loaded end of the tested 

component. The laser sensors have a measurement range of 20 mm and a max resolution of 4 μm. 

 

1.2 Identification of the static twist axis 

The twist axis of a rigid body is a complex but very useful parameter for characterizing the static mechanical 

properties of the body and many researchers have proposed a specific definition of this axis [3],[6]. It 

encloses important information about the torsion and the bending stiffness of the body and can be used for 

developing a lumped element model of the body in a multi-body code. In general, when an almost two-

dimensional structure (e.g. a motorcycle frame) has a polygonal shape with an end locked to a very stiff 

constrain and an end loaded by a static force, the deformation of the loaded end (e.g. the swing arm pivot) 

can be studied taking into account the motion of a reference plate attached to the loaded end. According 

to the nomenclature adopted in this thesis, the twist axis is identified by the intersection between the plane 

defined by the reference plate in unloaded condition and the plane defined by the reference plate in loaded 

condition. 

 

Figure 3 The arrangement of the laser sensors on the reference plate 

  

In order to identify the twist axis, the component under testing is locked on one end to the stiff column of 

the Motostiffmeter (Figure 2). The opposite end is loaded by the actuator while some laser sensors monitor 

the displacement of the reference plate attached on the loaded end, as shown in Figure 3. If, for example, 

the case of a motorcycle front fork with a wheel is taken into account, the twist axis will be identified by the 

intersection of two planes, one parallel to the symmetry plane of the wheel in unloaded conditions, the 

other parallel to the symmetry plane of the wheel in loaded conditions. 
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In general, the planes are identified from the coordinates of the three points on the reference plate, which 

are named L1, L2 and L3. These coordinates are measured when the structure is unloaded (subscript u) and 

when the structure is loaded (subscript l), and are given by: 
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Points 3 is conventionally defined as the origin of the system of coordinates. Constant lengths xo and zo 

define the position of points 1 and 2 with respect to point 3 and Δy1, Δy2 and Δy3 are the displacements 

measured by the laser sensors in the direction perpendicular to the plate. 

In the elaboration process, it is assumed that the reference plane in unloaded condition coincides with the 

plane x-z, while the reference plane in loaded condition is defined by the following constants: 
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As state before, the twist axis is identified by the intersection of the two planes: 
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A fourth laser sensor has been added to the measurements in order to improve the accuracy of the twist 

axis identification. The four laser outputs are processed at the same time and the deformed plane is 

identified by the particular coefficients a, b, c and d that minimize the sum of the squares of the errors 

between the measurement points and the identified plane. 

 

1.3 Identification of the dynamic twist axis with actuator excitation 

Up to now the twist axis has been used for describing the static deformation of a 2D structure. However, 

the same concept can be adopted for defining the dynamic deformability properties of the structure due to 

the effect of an harmonic excitation at assigned frequency. It is well-known in the field of solid mechanics 

and aero-elasticity that the twist axis moves when the frequency of excitation changes. In general, also 

when the structure is stimulated by a dynamic force the dynamic twist axis is result of a generic 

deformation of the structure that includes both bending and torsion effects. However, it is worth 

highlighting that if the frequency of excitation coincides with the natural frequency of the system and there 

is a sufficient frequency interval between adjacent modes, the dynamic deformed shape of the structure 
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actually is dominated by the mode of vibration in resonance condition and the corresponding dynamic twist 

axis is named modal twist axis. 

In the framework of this research, two experimental methods have been developed in order to identify the 

position of the dynamic twist axis. The first method is very similar to the one presented in the previous 

paragraph, since it involves the use of the hydraulic actuator and the system of laser sensors. The tests 

differ from the static ones in the fact that the actuator is controlled in order to apply a harmonic load to the 

tested component. In this case, the displacements Δyi measured on the metal plate have the meaning of 

amplitudes of displacement at the assigned frequency. For each test, a sine-wave fitting has been carried 

out on the laser outputs, that are shown in Figure 4. Then, the identification of the reference plane in 

loaded condition is carried out with the same formulas of equation (3), but in this case displacements Δyi 

are calculated as the half amplitude of the sine waves (that is, as the difference between the mean value 

and the maximum value of the fitted sinusoid).  

The main drawbacks of this testing method are connected to the possibility of investigating a narrow range 

of frequencies (1-45 Hz) due to the mechanical limits of the actuator and of acquiring information only for 

the specific frequency of excitation. Moreover, the connection between the stem of the hydraulic actuator 

and the structure alters the behavior of the structure and the tests require a large amount of time. The first 

drawback is particularly restricting because it is not uncommon for the most interesting modes of vibration 

to occur at frequencies higher than 45 Hz.  

 

Figure 4 Laser outputs measured during a dynamic test carried out at 5 Hz 

 

1.4 Identification of the dynamic (modal) twist axis with hammer excitation 

The second method for identifying the modal twist axis employs a modal testing approach. In order to 

perform dynamic tests, the structure is excited by means of a hammer for modal analysis and the motion of 

the reference plate is measured by three accelerometers, which are attached to the metal plate as shown 

in Figure 5. In the framework of this research a PCB 086C03 impact hammer and three PCB M352C65 

piezoelectric accelerometers (sensitivity 10 mV/m/s2, range 2-6000 Hz) were used. 

Three inertance Frequency Response Functions are measured at the same time. Then, dividing by –ω2 

receptance FRFs are calculated, according to the following equation: 
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For an assigned frequency of the measured FRFs, it is possible to calculate the vibration function of the 

three points of the metal plate, according to the following equation: 

( ) ( ) cos( ( ))i i iy t FRF t              ( 8 ) 

In which ( )iFRF   is the modulus and ( )i   the phase of the three FRFs. Referring to the system of 

coordinates shown in Figure 5, at the instant t the three points of the plate have the following coordinates: 

1 0 1 1 0

2 2 2 0
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        ( 9 ) 

Constants xo and zo define the position of measurement points 1 and 2 with respect to point 3. Then two 

planes are defined: the former is defined by the three points of equation (9), the latter by equation (9) 

when no vibration is present (un-deformed plane). The intersection of two planes makes it possible to 

identify the modal twist axis for the assigned frequency.  

 

Figure 5 The arrangement of the mono-axial accelerometers on the reference plate 

Equation (9) clearly shows that for a given frequency ω the coordinates of the three points depend on time 

and therefore the twist axis depends on time. This property appears a limit of the proposed method, since 

a twist axis depending on time is not very useful for the interpretation of the deformation characteristics of 

a structure. Actually a closer inspection of equation (9) reveals that, if phases ( )i   are 0 or , time 

dependence in equation (9) disappears and the twist axis is unambiguously defined. This favorable 

condition takes place because the three measurement points arrive at the maximum positive or negative 

displacement at the same time. Twist axis is not well defined only when there is a generic phase shift 

between the FRFs at the assigned frequency. 

Phase shift between the FRFs can be easily checked from measured data, by selecting a specific frequency 

ω and plotting in the complex plane the three vectors having lengths equal to the moduli of the FRFs and 

angles equal to the phases of the FRFs. Results obtained for metallic structures (motorcycle forks and 

frames) have shown that in the bands of frequency around the first resonance peaks the phase shifts 

between the FRFs are close 0 or , hence the modal twist axis calculated considering the maximum positive 

and negative displacement is well defined. In the rare cases in which the FRFs show more general phase 

shifts (like the ones of Figure 6), a practical method has been adopted to define the twist axis. Time domain 
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data are elaborated considering vibrations of the three reference points of the plate in the three instants in 

which each point arrives at the maximum amplitude (positive or negative). Three twist axis are calculated 

and the axis with average inclination and intercept with y axis is calculated. 

 

Figure 6 Phase shift occurring at 67 Hz in a measurement on front fork A 

 

1.5 Twist axis and Mozzi axis 

This section will introduce the concept of “Mozzi” or instantaneous screw axis, which can be used for 

analyzing results of the twist axes obtained from both static and dynamic tests. As already expressed in 

paragraph 2, the deformation of the loaded end of an almost two dimensional structure can be studied 

taking into account the motion of a reference plate attached to the loaded end. The reference plate is 

unloaded and follows rigidly the motion of the loaded end of the structure, hence the basic concepts of 

rigid body mechanics can be adopted for describing its motion. 

Giulio Giuseppe Mozzi del Garbo, an Italian mathematician, in 1763 published the book Discorso 

matematico sopra il rotolamento dei corpi (“Mathematic Discourse on the Roll of Bodies”) in which he 

stated that a generic differential spatial rigid motion can be considered a helical motion around a line, 

which is called the Mozzi axis [24]. In other words, the rigid motion of a body is represented in every instant 

by rotation about, and translation along, the Mozzi axis, which is also known as the instantaneous screw 

axis. The direction of the Mozzi axis coincides with the instantaneous direction of the angular velocity 

vector. The ideas of Mozzi were then developed by Cauchy in 1827, Poinsot in 1834, Chasles in 1878 [25] 

and Ball in 1900 [26] [27]. The Mozzi axis concept is useful for defining the deformability of those structures 

in which the most important characteristic is the motion of the loaded end with respect to the fixed end, 

like motorcycles and bicycles frames and forks. 

Figure 7 shows the loaded end of a 2D structure with the reference plate. A fixed system of coordinates 

(origin O and axes xf, yf and zf) and a system of coordinates that moves with the plate (origin Q and axes xf, 

yf and zf) are defined. The basic equation for the study of the rigid motion of the reference plate is: 
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In which P is a point belonging to the rigid space moving with plate, fvxP  fvyP  fvzP and  fvxQ  fvyQ  fvzQ are the 

components of the velocities of points P and Q in the fixed reference frame, f , f , f the components 

of angular velocity and 
m m m

P P Px y z  the coordinates of point P with respect to point Q in the moving 

reference frame.  
f

m
R  is the rotation matrix from the mobile to the fixed reference frame. If only small 

displacements are considered, the two coordinate systems are almost parallel and the rotation matrix can 

be considered a unit matrix. If point P belongs to the Mozzi axis, its velocity is aligned with the angular 

velocity vector and the cross product of angular velocity and linear velocity is zero: 

0Pv              ( 11 ) 

In matrix form: 
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0 0 0
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z x Q z x P
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     ( 12 ) 

The matrix of this linear system has not full rank, hence equation (12) can be solved taking one of the 

coordinates ( Pz ) as an independent parameter. Thus the parametric equation of the Mozzi axis is obtained. 

 

Figure 7 Loaded end of a 2D structure with the reference plate. 

The case of a structure that does not bend in x-y plane is here taken into account considered, because out-

of-plane compliance is the most interesting from the point of view of single track vehicle stability. Since in 

this case 0x  , the solution of equation (12) gives: 
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             ( 13 ) 

If an interval of time dt is considered, equation (13) can be written in terms of differential displacements 

and rotations: 
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Since rotations y zd d  cannot be measured in easy way, they can derived from the lateral displacements 

(x direction) of the three points of the reference plate. 

The basic equation for the calculation of lateral displacements derives from: 

0

0 1,2,3
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i Q z y i

i Q z x i

i Q y x i

dx dx d d x

dy dy d d y i

dz dz d d z

 

 

 

      
      

         
            

     ( 15 ) 

In which i i idx dy dz are the displacements of reference point i and i i ix y z the coordinates of this point 

with respect to the reference system. Since only lateral displacements are relevant and can be measured, 

the three scalar equations are: 

1,2,3i Q z i y idx dx d y d z i             ( 16 ) 

y zd d   and Qdx can be calculated solving linear system (16) and then they are introduced into the 

equation that gives the Mozzi axis: 
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Figure 8 shows the reference plate in the unloaded and loaded configurations and the definition of the 

Mozzi (or instantaneous screw) axis. 

 

Figure 8 Definition of Mozzi (or instantaneous screw) axis. 

Up to now the Mozzi axis has been used for describing the static deformation of a 2D structure. The same 

concepts can be adopted for defining dynamic deformation in the presence of an harmonic excitation at 

assigned frequency. In this case displacements idx have the meaning of amplitudes of displacement at the 
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assigned frequency. If the frequency of excitation is equal to the natural frequency of the system and there 

is a sufficient frequency interval between adjacent modes, the dynamic deformed shape of the structure 

actually is dominated by the mode of vibration in resonance condition and the corresponding twist axis is 

named the modal twist axis. 

 

1.6 Modal analysis 

The dynamic behaviour of the motorcycle and bicycle components tested in the framework of this Ph. D. 

was investigated also by means of a modal analysis approach. This paragraph describes some of the most 

important concepts of modal analysis and addresses to the most common issues that should be taken into 

account during laboratory tests. For a more detailed investigation of modal analysis techniques, the reading 

of more renowned and illustrious books [9] [10] is strongly suggested. 

Modal analysis is an experimental technique that allows to measure the frequency response functions (FRF) 

of a mechanical system, starting from the measurements of the dynamic input and output of the system. 

The measured FRFs are generally processed in specific software codes, the processing aims to the 

identification of the dynamic properties of the mechanical system, expressed in terms of modes of 

vibration, natural frequencies and damping coefficients. 

Modal analysis had its first taste of success about fifty years ago, when it was applied to the field of 

aerospace engineering in order to study the dynamic behavior of wings and airplanes under vibrational 

excitation. The interest in modal analysis was due to the firm idea that the measured dynamic properties 

do not depend on the characteristics of the excitation, but depend only on the innate characteristics of the 

mechanical system (mass, stiffness, damping coefficients, etc), so that these properties are a sort of a 

“fingerprint” of the mechanical system. Therefore, modal analysis was generally employed for the 

monitoring and the diagnostics of mechanical damages in structural components. If no damage occurs in 

the structure, the frequency response function will show no variations with the respect to the ones 

measured on the intact structure; otherwise, a variation of the natural frequencies or the modes of 

vibration will appear in the measurements. 

 

 

Figure 9 Impulse and frequency response of a system in time and frequency domains. 

 

In general, the dynamic behavior of a mechanical system can be described by means of the impulsive 

response h(t) in the time domain, or by means of the frequency response function H(f) in the frequency 

domain (Figure 9). Depending on the selected domain, there are two sets of identification techniques: the 

time domain techniques are based on solving the following system of differential equations: 

          )()()()( tFtxKtxCtxM           ( 18 ) 
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The frequency domain techniques base the identification of the dynamic properties on the measurement of 
the frequency response functions, which implicitly include all the information about the dynamic properties 
of the mechanical system. According to these techniques, equation (18) is solved in the frequency domain 
using the Fourier transform. The advantage of these techniques is the shifting from a system of differential 
equations to a simpler system of algebraic equations: 

  )()(2  FXKCM           ( 19 ) 

The frequency response function (FRF) is defined as the ratio between the cross spectrum between a 

displacement component (output) and hammer force (input) and the autospectrum of the hammer force: 

)(

)(
)(






jF

jX
jH             ( 20 ) 

Although the response variable for the previous equations was displacement, it could also have been 

velocity or acceleration (acceleration is currently the most accepted method). 

Because it is a complex quantity, the FRF cannot be fully displayed on a single two-dimensional graph. It 

can, however, be presented in several forms, each of which has its own uses. One method for presenting 

the data is the Bode diagram, which is to plot the magnitude and phase versus frequency. At resonance, the 

magnitude reaches a peak and is limited only by the damping of the system; the phase ranges from 0 to 

180° and the response lags the input by 90° at resonance. The magnitude can be expressed in linear scale 

or logarithmic scale (decibels). A linear scale is more useful for distinguish the major peaks in the frequency 

domain, a logarithmic scale is more useful for evaluating frequency components with small amplitudes (e.g. 

noise). Another method of presenting the data is to plot the rectangular coordinates, the real part and the 

imaginary parts versus frequency. For a proportional damped system, the imaginary part is maximum at 

resonance and the real part is 0. A third method of presenting the data is to plot the real part versus the 

imaginary part, which is often called a Nyquist plot. 

Now, if a generic mechanical system with n-degrees of freedom is taken into account, the frequency 

response function matrix is introduced (Figure 10): 
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Under the hypothesis of linear system, the measurement of one row or one column of the FRF matrix is 

enough to carry out a thorough modal analysis of the mechanical system. One column of the FRF matrix is 

identified, if you have a roving response transducer and a fixed excitation point; otherwise, one row is 

identified with a roving excitation and a fixed response transducer. Usually, FRFs are measured exciting the 

mechanical systems by means of a shaker excitation or a hammer impact. From a theoretical point of view, 

it doesn’t matter whether the measured FRFs have been acquired by means of a shaker tests or an impact 

test. Nevertheless, for real laboratory tests each technique shows some advantages and disadvantages, as 

summarized in Table 1. Table 2 shows the advantages and disadvantages of different types of constraints, 

which is another thorny issue when performing modal analysis. Sometimes it is not possible to choose ad 

libitum the types of excitation and constraint: the analysis of an aircraft, for example, is generally carried 

out with shaker excitation (more often, with many shakers at the same time) with the aircraft resting on its 

landing gear wheels. In other cases, the scientist can select the combination that best fits his purposes: the 
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testing constraints must be as similar as possible to reality, the measuring system must be easily recreated, 

portable, not expensive, etc. 

 

 

Figure 10 Acquisition of the FRFs matrix 

In the framework of this Ph. D. the excitation has been exerted by means of a modally tuned hammer PCB 

086C03 and the response has been measured by means of a tri-axial accelerometer PCB 356A16. In order 

to indentify the modal properties of the tested components, FRFs have been analyzed with the ICATS 

software, which allows the identification of the modal parameters (natural frequencies, modal 

dampings and modes of vibration) and the animation of the modes of vibration. 

 

Excitation 
technique 

Advantages Disadvantages 

Shaker  Huge transfer of input energy 
(necessary for the analysis of bridges, 
houses, etc.) 

 The equipment is not portable. 

  Not easy to connect to the structure. 

 Effect of the connection on the structure. 

 Low cut-off frequency. 

 Time demanding analysis. 

Hammer  The equipment is portable. 

 High cut-off frequency. 

 All frequencies excited at the same 
time.  

 Hammers are more suitable for modal 
analysis of small or medium sized objects. 

Table 1 Advantages and disadvantages of different excitation techniques 

Constrain 
methods 

Advantages Disadvantages 

Free-free  Easy to be replicated.  It does not match with the realistic operating 
conditions of the object. 

Locked  The object is studied in a more 
realistic condition. 

 Hard to be replicated 

 The constrain can affect the consistency of 
the measurements. 

Table 2 Advantages and disadvantages of different constrain methods 
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1.7 Stiffness decomposition 

The aim of this section is to describe the method that allows to decompose the stiffness about the twist 

axis obtained from static tests in the bending and torsion stiffness of a motorcycle component making use 

of the results of dynamic tests (modal analysis and dynamic twist axes). According to this method, the 

measurement of the static twist axis and the dynamic twist axes (measured for the natural frequencies of 

the bending and torsional modes) is enough to identify the bending and torsion stiffness of a motorcycle 

component. 

Stiffness decomposition is carried out considering two basic properties of the component under testing: 

a) The lateral displacement of the point in which the force is applied during static tests, which is due 

to rotation about the twist axis, is equal to the sum of the displacements caused by the rotations 

about the bending and torsion axis respectively. 

b) The rotation of the reference plate about twist axis is equal to the sum of rotations of this rigid 

body about bending and torsion axis respectively. 

It is worth highlighting that the assumption of small rotations is made. This assumption makes it possible to 

consider the resultant rotation as the vector sum of components without considering the order in which 

they are performed. Property a) leads to the following equation: 

lat tw tw bend bend tors torsx a a a              ( 22 ) 

in which, tw , bend and tors   are twist, bending and torsion angles, twa , benda  and torsa  are twist, bending 

and torsion arms, which can be calculated from the measured positions of the twist axes. Since twist, 

bending and torsion angles are given by:   
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equation (22) becomes: 

2 2 2

tw bend tors

tw bend tors

a a a

k k k
             ( 24 ) 

Property b) leads to the following equations: 

cos( ) cos( ) cos( )tw bend bend tors tors               ( 25 ) 

sin( ) sin( ) sin( )tw bend bend tors tors               ( 26 ) 

In which   is the angle from z axis to static twist axis, bend  is the angle from z axis to bending modal twist 

axis and tors  is the angle from z axis to torsion modal twist axis. If equations (23) are introduced into 

equations (25) and (26) and the ratio between these equations is calculated, equation (27) is obtained, 

which correlates the angle of the static twist axis with the angles of the modal twist axes: 
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Bending and torsion stiffness can be calculated solving the system of equations (24) and (27). 

 

1.8 The Mototiremeter 

In the framework of this research the measurement of tires static and dynamic properties have been 

performed on the Mototiremeter, a rotating disk tester machine developed in the last fifteen years at the 

University of Padova. The machine is equipped with a disk (diameter 3 m) that rotates about a vertical axis 

at a maximum speed of 50 km/h. The outermost part of the disk is covered by high friction material 

(sandpaper) and is the rolling track of the wheel. The wheel under testing is held in position on the rolling 

track by means of a hinged arm, which makes it possible to set side-slip and camber angles at assigned 

values. A brushless servomotor drives the camber rotation of the whole arm, the range is ±54°. A second 

brushless servomotor drives the rotation of the fork that sustains the wheel about the axis parallel to the 

stems and intersecting the contact patch, this rotation is named yaw rotation and its range is ±10°. The 

machine allows the tester to add extra-weights on the tip of the arm for simulating the mass of the rider 

and the motorcycle. Generally, the camber and side-slip maximum angles are limited to ±45° and ±6° 

respectively depending on the tire and on the load, in order to avoid dangerous oscillations of the whole 

arm. The yaw motion of the fork changes the attitude of the tire with respect to the track and generates the 

side-slip angle of the contact patch.  These load cells are connected to the computer through some specific 

modules that read the signals. 

 

 

Figure 11 The Mototiremeter 

 

The tester machine is also equipped with three load cells. In particular, the first load cell locks the hinged 

arm in the lateral direction and measures the lateral force. The second load cell makes it possible the 

measurement of the moment around the diametrical axis that passes through the contact patch. The third 

load cell makes it possible the measurement of the moment about the wheel spin axis. 

The identification of tires static tires properties is performed acquiring the outputs of the three load cells 

for specific camber and slip angles. 



25 
 

 

The identification of tires transient properties need the generation of variable slip-angles and the 

measurement of the lateral force. It can be carried out controlling the slip servomotor with different inputs, 

typically step inputs and harmonic inputs are used. 

 

1.9 Tires relaxation length 

The measurement of tires dynamic properties (i.e. relaxation length) has been carried out on the specific 

Mototiremeter specific machine of the MDRG. In this research, the slip (yaw) servomotor of the tester 

machine generates harmonic inputs of constant amplitude (1.5°) and variable frequency (from 0.42 to 2.10 

Hz). With this excitation the transient properties of tires generate a phase lag between the input motion 

and the measured lateral force. The input motion is measured placing a rate gyro on the fork that holds the 

wheel under testing. The measured angular velocity (yaw rate) is fitted with a sine function and the phase 

of the enforced yaw oscillation is calculated simply s that in harmonic motion the velocity signal leads π/2 

the displacement signal. The lateral force is measured by the load cell of the tester machine and it is fitted 

with a sine function. The phase lag between the fitted signals is calculated, elaborations are carried out by 

means of a MATLAB code. Relaxation length is calculated from the measured phase lag () according to the 

following equation: 
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in which CbFα is the cornering stiffness of the tire, ω is the yaw excitation frequency, V is the forward speed 

and a is half of the length of the contact patch. Tests have been carried out for a forward speed of the 

wheel of V=5 km/h.
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Chapter 2 – Identification of the structural 

properties of motorcycle frames in static and 

dynamic conditions 
 

 

 

 

 

 

 

 

 

 

 

In the framework of this research, three motorcycle frames have been tested. The first two frames (A and 

B) that are presented in this chapter have been submitted to a huge number of tests and their analysis will 

be shown in the same paragraph. The test aim was the characterization of the stiffness properties of the 

motorcycle frames by means of the experimental technique developed in the framework of this research, 

which consists in the identification of the bending and torsional stiffness and combines the results of static 

and dynamic measurements. Moreover, for these two frames, the effect of different constraint solutions 

has been studied: a first series of tests has been carried out in a front constrained condition, that is locking 

the frame at the steering head and applying the excitation to the swingarm pivot; then, a second series of 

tests has been carried out in the rear constrained condition, that is locking the frame swingarm pivot and 

applying the excitation to the steering head. 

The third motorcycle frame (frame C) has been used for studying the effect of the engine on the stiffness 

properties of the frame. 

 

2.1 Frame A and Frame B 

The frames (Figure 12) are two steel frames designed for enduro and moto-cross applications and have a 

limited mass: frame A weights 11.1 kg, frame B weights 11.4 kg. Frame A is characterized by a more 

compact design, in which the front part is stiffened by a heavy steel block that joints the steering head and 

the four tubes for the housing of the engine. Frame B shows a very thick and stiff square tube on the upper 

part, and the lower part is characterized by a series of tubes whose cross circular section varies from 20 to 

35 mm. A long tail for the saddle and the exhaust support is welded to the frame. 
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Figure 12 Frame A and Frame B 

Static tests  of frames A and B for the identification of the static twist axis have been carried out applying a 

slowly varying force (range ± 300 N)  both locking the steer tube to the jaws of the testing rig (front-

constrained condition) and locking the swing arm pivot to the jaws (rear-constrained condition). The former 

test is useful for evaluating the displacement of the rear wheel with respect to the steering head that is due 

to bending and torsion compliance of the frame. The latter test is useful for evaluating the displacement of 

the front wheel that is caused by bending and torsion compliance of the steering head. 

Preliminarily to the identification of the static and dynamic Mozzi axes, however, a modal analysis of the 

frames has been carried out. In the case of front-constrained condition, the modally tuned hammer has 

been used for producing an impact to the swing arm pivot of the frames and the tri-axial accelerometer has 

been moved to 20 (frame A) and 26 (frame B) different points of the frames. The three axes of the 

accelerometer were oriented as follows: x-axis in the vertical direction, y axis in the traveling direction and 

z axis (lateral direction) as the vector product between x and y. In the case of rear-constrained condition, 

the frames have been excited applying an impact on the steering head and moving the accelerometer to 

the same points of the previous constrain condition. 

Figure 13 deals with the results obtained on frame A. In front-constrained conditions, three different 

modes have been identified from 0 to 100 Hz: the first mode at 26.5 Hz is a lateral mode (z axis), the second 

mode at 56.8 is a longitudinal mode (y axis, not displayed) and the third mode at 77.0 Hz is a torsional 

mode. The pictures of Figure 13 show the maximum displacements of the points of frame A for the lateral 

and torsional modes with respect to their equilibrium position. For the rear-constrained condition, the 

mode at 43.0 Hz is a lateral mode of the frame (z direction), in which the steering head exhibits the 

maximum displacement. The mode at 109.8 Hz is a torsional mode, in which the points of the upper part 

and the points of the lower part of the frame move in opposition. 

The same analysis has been carried out for frame B (Figure 14). In the front-constrained condition, the 

mode in the lateral direction at 35.0 Hz is similar to the one measured for frame A. The torsional mode of 

frame B, on the contrary, is very different: owing to the tail moment of inertia, the natural frequency is 

much lower (about 42 Hz); moreover, the thick and stiff upper tube of the frame is almost motionless, and 

vibrations occur in the lower part of the frame and in the tail (which move in opposition). In the rear- 

constrained configuration, the resonance peak at 36.2 Hz corresponds to the lateral bending mode, in 

which the frame deflects mainly in the z direction. The resonance peak at 116 Hz corresponds to the 

torsional mode, in which the lower part of the frame and the tail move in opposition. 
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Figure 13 Displacements of nodes in the lateral and the torsional 
modes of frame A, front (left) and rear (right) constrained conditions. 

 

Figure 14 Displacements of nodes in the lateral and the torsional 
modes of frame B, front (left) and rear (right) constrained conditions. 
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Having performed modal analysis, it is now possible to examine the results of the identification of the 

Mozzi axes. Figure 15 deals with the tests carried out on frame A locking its steering head and shows the 

static twist axis measured applying an out-of-plane force at the swing arm pivot of frame A. The black thick 

point is the point where the force has been applied, the small red points are the points of the reference 

plate in which the displacement have been measured by means of laser sensors, and the green empty circle 

is the center of gravity of the frame. It is interesting to observe that the static twist axis intersects the 

frame between the locked steering head and the center of gravity; its orientation is almost orthogonal to 

the upper tube of the frame. 

 

Figure 15 Frame A, front-constrained, static and dynamic twist axes 

Linear stiffness has been identified calculating the ratio between the applied force and the lateral 

displacement of the swing-arm pivot, according to the formula: 

/lat latk F x             ( 29 ) 

Then, the equivalent rotational stiffness has been identified multiplying the lateral stiffness for the squared 

twist arm, which is the distance between the twist axis and the swing-arm pivot: 

2

tw lat twk k a             ( 30 ) 

Linear and twist stiffness of frame A in the front-constrained condition are presented in Table 3. 

 

 
 

Constraint condition Linear stiffness Twist arm Rotational stiffness 

Frame A Front-constrained 167 kN/m 0.551 m 50.8 kNm/rad 

Frame B Front-constrained 272 kN/m 0.689 m 129 kNm/rad 

Frame A Rear-constrained 253 kN/m 0.475 m 57.0 kNm/rad 

Frame B Rear-constrained 238 kN/m 0.498 m 59.1 kNm/rad 
Table 3 Linear stiffness and rotational stiffness about the static twist axis. 

The same measurements carried out on frame B led to a quite different result, which is shown in Figure 16. 

The twist axis does not intersect the frame, but it is positioned above the frame and forms a small acute 

angle with the horizontal axis. This result can be explained taking into account the design of frame B: the 

upper tube of the frame is very thick and stiff, whereas the lower tubes have a smaller diameter and are 
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less stiff. When the frame is excited at the swing arm pivot, it undergoes a torsion deformation about its 

stiffer tube and the twist axis moves to the top of the frame. 

 

Figure 16 Frame B, front-constrained, static and dynamic twist axes. 

Lateral and rotational stiffnesses of frame B have been identified with the same formulas used for frame A, 

and results are summarized in Table 3. 

At a second stage, the identification of the modal twist axes has been carried out for frequencies close to 

the natural frequencies of the peaks measured by means of modal analysis. The tests for this analysis have 

been performed in front-constrained and rear-constrained conditions as well and the modal twist axes have 

been identified with the three-accelerometers technique described in the previous chapter. As plotted in 

Figure 15, at the natural frequency of the bending mode the modal twist axis is almost orthogonal to the 

upper tubes of the frame, because the vibration is dominated by bending deformation. At about the 

natural frequency of the torsional mode, on the contrary, the torsion mode occurs and the modal twist axis 

is almost parallel to the frame structure. It is interesting to highlight that the bending modal twist axis is 

very close to the static twist axis. This phenomenon is due to the fact that the natural frequency of the first 

mode of vibration (bending mode) is much lower than the one of the second mode (torsion mode). Hence, 

for low frequency or static excitation, bending deformation is predominant. 

Figure 16 displays the identified modal twist axes for frame B in the front-constrained condition. At the 

natural frequency of the bending mode, the modal twist axis intersects the frame between the locked 

steering head and the centre of gravity and is almost orthogonal to the square tube of the frame, actually 

this mode is dominated by bending deformation of the frame and in particular of the square tube. At the 

natural frequency of the torsional mode, the modal twist axis is almost parallel to the square tube, because 

the frame undergoes a torsion deformation in which the square tube is almost motionless and vibrations 

occur in the lower part of the frame and in the tail that move in opposition. It is worth highlighting that for 

frame B (front-constrained) the direction of the static twist axis is a combination of the directions of the 

modal twist axes, because the natural frequencies of the bending and torsion modes are very close and 

both modes give a large contribution to static deformation of the frame. 

Similar tests have been carried out in the rear-constrained condition. In frame A the static twist axis passes 

between the locked end (swing-arm pivot) and the center of gravity in the rear-constrained condition as 

well, as shown in Figure 17. Rotational stiffness about the twist axis is a bit larger than in the front-

constrained condition. This result agrees with the fact that in the rear-constrained condition the most 
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stressed region of the frame coincides with the part of the structure which has the largest moment of 

inertia. 

Frame B exhibits in the rear-constrained condition (Figure 18) a very different behavior from the one in the 

front-constrained condition. In this case frame B tends to behave like a cantilever structure with the twist 

axis passing between the locked end and the center of gravity. The direction of the twist axis is almost 

perpendicular to the large square tube of the frame. Lateral and rotational stiffnesses have been identified 

with the formulas presented for the front-constrained case. The value of rotational stiffness about the twist 

axis is comparable with the one of frame A in front-constrained condition (Table 3). In general, stiffness 

results presented in Table 3 are in reasonable agreement with the ones presented in [8], in which the 

whole rear frame of the motorcycle was considered, including the engine and swing-arm. 

 

Figure 17 Frame A, rear-constrained, static and dynamic twist axes. 

 

Figure 18 Frame B, rear-constrained, static and dynamic twist axes. 

The other axes that are shown in Figures 17 and 18 are the identified modal twist axes for frames A and B.  

Figure 17 shows the modal twist axes of frame A in the rear-constrained condition. For the bending mode 

the modal twist axis is almost perpendicular to the upper tubes of the structure; for the torsional mode, the 

modal twist axis is directed from the rear pivot (where the frame was constrained) to the steering head. 
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The graph allows also a comparison between the static twist axis and the modal twist axes, the static twist 

axis is almost aligned with the modal twist axis of the bending mode. 

Finally, Figure 18 collects the modal twist axes for frame B in the rear-constrained condition. The two axes 

are almost perpendicular and also in this case the static twist axis is almost aligned with the modal twist 

axis of the bending mode. 

The last analysis performed on frames A and B consisted in the decomposition of the twist stiffness in 

bending and torsion stiffness components. The decomposition method has been described in chapter 1 and 

results are summarized in  

Table 4. Bending stiffnesses of frame A in the two constraint conditions are very similar, whereas torsion 

stiffness in the front-constrained condition is larger than the one in the rear-constrained condition. Coming 

to frame B, bending and torsion stiffnesses in rear-constrained condition are similar to the ones of frame A, 

whereas in front-constrained condition bending stiffness is very large. This result can be explained 

considering the particular characteristics of this frame in the front-constrained condition: bending 

deformation is concentrated in the rear lower part of the frame that moves with respect to the steering 

head and also with respect to the upper tube, which is very stiff. 

 
 

Constraint condition Bending arm Bending stiffness Torsion arm Torsion stiffness 

Frame A Front-constrained 0.556 m 52.1 kNm/rad 0.032 m 22.0 kNm/rad 

Frame B Front-constrained 0.553 m 138.3 kNm/rad 0.298 m 60.4 kNm/rad 

Frame A Rear-constrained 0.458 m 53.5 kNm/rad 0.026 m 19.6 kNm/rad 

Frame B Rear-constrained 0.510 m 64.3 kNm/rad 0.097 m 60.2 kNm/rad 
 

Table 4 Calculated values of bending and torsion stiffness. 

 

2.2 Frame C 

Frame C is designed for sporting applications, it is not heavier than frames A and B (its weight is 10.8 kg) 

due to its material (aluminum alloy) but has got a more compact design due to a design characterized by 

metal plates instead of tubes.  

First, modal analysis of frame B without the engine has been carried out. The impact has been applied to 

the swingarm pivot and the tri-axial accelerometer has been moved to 22 different points of the frame. The 

identified natural frequencies of frame B without the engine are 42.2 Hz for the lateral mode and 109.2 Hz 

for the torsional mode, as shown in Figure 19. Then, the engine has been mounted on the frame and modal 

analysis has been performed again, measuring vibrations also on 10 points of the engine. The elaboration 

of the FRFs resulted in the identification of the lateral mode at 17.6 Hz and the torsional mode at 68.7 Hz. 

The natural frequencies of the frame with the engine are much lower than the ones of the frame alone, due 

to the mass of the engine. Figure 19 shows the modal shapes of the lateral and torsional modes. 

Having performed modal analysis, tests for the identification of the static and dynamic Mozzi axis have 

been carried out. The tests of the frame for the identification of the static Mozzi axis have been carried out 

applying a slowly varying force (range ± 300 N) to the swingarm pivot in both cases of frame with and 

without the engine. 
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Figure 19 Displacements of nodes in the lateral and the torsional modes of frame , without and with the engine. 

 

Figure 20 shows the results of the tests carried out on frame B without the engine. The static Mozzi axis is 

almost orthogonal to frame C, but it doesn’t intersect the frame and lies beyond the column of the testing 

rig. This result can be explained taking into account the particular design of frame B which has two long 

lateral beams that are almost parallel and connect the rear part of the frame (with the swingarm pivot) to 

the steer head. Actually, owing to the deflection of the lateral beams, the rear part of the frame tends to 

move parallel to the steer head and for this reason the static Mozzi axis is located beyond the steer axis. 

Concerning the identification of the modal Mozzi axis, at the frequency of the bending mode the Mozzi axis 

moves even farther from the frame. The Mozzi axis identified for the natural frequency of the torsion mode 

is almost parallel to frame B and intersects it in its lower part. 

 

Figure 20 Frame C without the engine, static and modal Mozzi axes. 

Then, the engine has been mounted on frame C and the identification of the static and dynamic Mozzi axes 

has been carried out. Results are shown in Figure 21. Both the static Mozzi axis and the Mozzi axis 

corresponding to the natural frequency of the bending mode get closer to the steer head of the frame, also 

in this case the dynamic axis is farther from the frame than the static one. The orientation of the Mozzi axis 

of the torsional mode is less affected by the presence of the engine and is almost parallel to the frame. 
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Figure 21 Frame C with the engine, static and modal Mozzi axes. 

Finally, the stiffness properties of the frame have been identified, the results of the identification are 

summarized in Table 5. From a close examination of the figures, it is evident that the engine has a 

significant effect on the stiffness properties of the frame: the linear stiffness increases of about 50%; the 

twist and the bending stiffnesses of the frame increase of about 60%, whereas the torsion stiffness almost 

doubles when the engine is mounted on the frame. 
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Linear stiffness 

[N/mm] 
Twist stiffness 

[kNm/rad] 
Bending stiffness 

[kNm/rad] 
Torsion stiffness 

[kNm/rad] 

Without engine 361 260.2 358.6 58.4 

With engine 539 414.6 522.9 104 

Table 5 Stiffness parameters identified for frame C 
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Chapter 3 - Identification of the structural 
properties of motorcycle swing arms in static 
and dynamic conditions 
 
 

 

 

 

 

 

 

 

 

Two motorcycle swing-arms have been tested in the framework of this research. The first swing-arm 

(swing-arm A) is designed for enduro applications, is characterized by a simple geometry and its weight is 

limited to only 3.50 kg. The second swing-arm (swing-arm B) is designed for a sporting motorcycle, the 

design is more bulky and compact and its weight is 4.75 kg. 

Static tests on the two swing-arms have been carried out locking the swing-arm pivot to the stiff column of 

the testing rig and applying a static load by means of the actuator on the wheel hub in order to imitate the 

realistic excitation that is caused by the contact between the road and the rear wheel. Modal analysis and 

dynamic tests for the identification of the modal twist axis have been carried out locking the swing-arm 

pivot to the stiff column, but with the actuator disconnected from the component in order to not affect its 

natural dynamic properties. 

 

Figure 22 Swing arm A and swing arm B during tests on the Mototiremeter 
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3.1 Swing-arm A 

For modal analysis tests, the hammer impulse was applied each time on the rear wheel hub (point 100), 

while the tri-axial accelerometer was attached each time to a different point. The accelerometer was 

oriented as follows: x-axis aligned with a vertical axis, y-axis aligned with the axis of the swing-arm stems 

and z-axis as vector product between x and y. a Due to the simple geometry of the swing-arm, FRFs have 

been measured only on six points of the swing-arm. 

The vibration modes have been identified by means of ICATS software. The first two modes of swing-arm A 

A are displayed in Figure 23. The mode at 115 Hz is a lateral mode of the swing-arm (z direction), in which 

the rear wheel hub exhibits the maximum displacement. The mode at 184 Hz is a torsional mode, in which 

the right and left stems of the swing-arm move in opposition. A summary of the identified modal 

parameters is shown in Table 6. 

 

Figure 23 Displacements of nodes in the lateral and the torsional modes of swing-arm A. 

 

Dynamic properties 

 Frequency Hysteretic damping 

Bending mode 115 Hz 1.73 % 

Torsional mode 184 Hz 1.02 % 
Table 6 Modal parameters of swing-arm A. 

Figure 24 summarizes the output of the tests carried out on swing-arm A for the identification of the static 

and dynamic twist axes. Due to the very essential geometry of the swing-arm, it has been plotted as a 

simple thick grey line. The static twist axis intersects the swing-arm at about one third of its length and is 

almost orthogonal to its major axis. This result is in satisfactory agreement with the theory of solid 

mechanics about the twist axis of a cantilevered beam locked at one end and stressed with a static force at 

the free end. Linear stiffness has been identified calculating the ratio between the applied force and the 

lateral displacement of the rear wheel hub, according to the formula: 

/lat latK F y             ( 31 ) 

Then, the equivalent rotational stiffness has been identified multiplying the lateral stiffness for the squared 

twist arm, which is the distance between the twist axis and the rear wheel hub: 

2

tw lat twK K a                ( 32 ) 

The identified linear and rotational stifnesses are summarized in Table 7. 
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Figure 24 Swing-arm A static and dynamic twist axes. 

 

Shifting the attention to the modal twist axes, it is interesting to highlight that at about the natural 

frequency of the bending mode the modal twist axis crosses the swing-arm almost orthogonally, because it 

vibrates in the lateral direction. At about the natural frequency of the torsional mode, on the contrary, the 

modal twist axis is almost orthogonal to the one previously identified and perfectly parallel to the swing-

arm geometry. 

Finally, the decomposition for the identification of bending and torsional stiffness has been carried out and 

results are summurized in Table 7. 

 

Static properties 

Linear stiffness 623 kN/m 

Twist arm 0.375 m 

Twist stiffness 87.6 kNm/rad 

Bending arm 0.388 m 

Bending stiffness 94.2 kNm/rad 

Torsion arm 0.025 m 

Torsional stiffness 98.8 kNm/rad 
Table 7 Stiffness parameters identified for swing-arm A 

 

3.2 Swing-arm B 

Modal analysis has been performed with the same method described for swing-arm A, but in this case the 

FRFs have been measured on 18 points due to the three-dimensional shape of swing-arm B. The vibration 

modes have been identified by means of ICATS software and are displayed in Figure 25. The mode at 134 

Hz is a lateral mode of the swing-arm (z direction), in which the rear wheel hub exhibits the maximum 

displacement. The mode at 208 Hz is a torsional mode, in which the right and left stems of the swing-arm 

move in opposition. 
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Figure 25 Displacements of nodes in the lateral and the torsional modes of swing-arm B. 

 

Dynamic properties 

 Frequency Hysteretic damping 

Bending mode 134 Hz 0.74 % 

Torsional mode 208 Hz 0.97 % 
Table 8 Modal parameters of swing-arm B. 

 

Figure 26 summarizes the output of the tests carried out on swing-arm B for the identification of the static 

and dynamic twist axes. The geometry of this swing-arm is more complex and in the plane x-z it has been 

sketched as a two-dimensional silhouette vaguely resembling a triangle. Also in this case, the static twist 

axis is almost orthogonal to the swing-arm geometry, but the intersection is closer to the stiff column of the 

testing rig. Linear stiffness and twist stiffness have been identified similarly as for swing-arm A and the 

identified static properties are summarized in Table 9. 

 

Figure 26 Swing-arm B static and dynamic twist axes. 

Finally, the identification of the modal twist axis with the three accelerometers technique has been carried 

out (the dotted and dashed axes of Figure 26). At the natural frequency of the bending mode the modal 

twist axis crosses the swing arm almost orthogonally (bending mode); at about the natural frequency of the 

torsional mode, on the contrary, the modal twist axis is almost parallel to the swing arm (torsion mode). A 

summury of the identified modal parameters is shown in Table 8. 
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Static properties 

Linear stiffness 1083 N/m 

Twist arm 0.477 m 

Twist stiffness 246.4 kNm/rad 

Bending arm 0.451 m 

Bending stiffness 222.4 kNm/rad 

Torsion arm 0.026 m 

Torsional stiffness 77.4 kNm/rad 
Table 9 Stiffness parameters identified for swing-arm B. 
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Chapter 4 - Identification of the structural 
properties of motorcycle front forks in static 
and dynamic conditions 
 

 

 

 

 

 

 

 

 

 

 

Two motorcycle front forks have been tested in the framework of this research. The first fork (fork A) is 

designed for enduro applications, is characterized by two long and flexible stems and its weight is 12.1 kg. 

The second fork (fork B) is designed for a super-sport motorcycle, the design is more bulky and compact, 

the stems are shorter than the ones of fork A and its weight is 14.3 kg. 

Static tests on the two forks have been carried out locking the steering head to the stiff column of the 

testing rig and applying a static load by means of the actuator on the lowest point of the front wheel in 

order to imitate the realistic excitation that is generated at the contact point between the road and the 

front wheel. 

In contrast with the case of frames and swing-arms, in the case of front forks the stiffness decomposition 

can be carried out with a different method due to the simple two-dimensional geometry of those 

components and to the consequent assumption that the torsion axis is aligned with the major axis of the 

stems. Additional tests that will not be shown confirmed that the torsion axis is almost perfectly aligned 

with the fork. 

The rotational bending and torsion stiffnesses are calculated solving a system of equations in which tors ,

bend  and twist  are torsion, bending and twist angles, torsa , benda  and twista are torsion, bending and twist 

arms and torsk , bendk  and twistk  are torsional, bending and twist stiffnesses respectively. The first equation 

states that the displacement  of the point in which the force is applied caused by the rotation about the 

twist axis has to be equal to the sum of the displacements caused by the rotations about the bending and 

torsion axis respectively: 
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twist twist bend bend tors torsa a a                ( 33 ) 

Since twist, bending and torsion angles are given by: 

twist
twist

twist

a
F

k
    

bend
bend

bend

a
F

k
   

tors
tors

tors

a
F

k
        ( 34 ) 

the equation becomes: 

2 2 2

twist tors bend

twist tors bend

a a a

k k k
             ( 35 ) 

The second equation states that the ratio between torsion and bending angles must be equal to the 

tangent of the angle between the twist axis and the fork axis. 

  tors bend

tors bend

a k
tg

k a
             ( 36 ) 

The identified stiffness parameters are shown in the sections dealing in detail with fork A and fork B. 

Modal analysis and dynamic tests for the identification of the modal twist axis have been carried out 

locking the steering head to the stiff column, but with the actuator disconnected from the forks in order to 

not affect their natural dynamic properties. Actually, modal analysis has been carried out both with and 

without the wheel: the tests with the wheel explore the actual modes that will be excited by tire forces on 

the running motorcycle; the test without the wheel explore the intrinsic stiffness and damping properties 

of the fork. Accelerations have been measured by means of a tri-axial accelerometer having the three axes 

oriented as follows: x-axis is aligned with the stems, y-axis perpendicular to the fork plane and z-axis as 

vector product between x and y. The tri-axial accelerometer has been moved to 10 different points of the 

forks and on 8 points of the wheel. The wheel used for the enduro fork was a 80/100-21 tire, the tire used 

for the super sport fork was a slick 120/70-R17. The tires were not in contact with the ground. 

 

 

Figure 27 Front fork A on the Mototiremeter 
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4.1 Fork A 

The static tests have been carried out by applying a slowly varying force (range ± 300 N) to the lowest point 

of the wheel. Figure 28 shows experimental results dealing with the enduro fork: the static twist axis is 

plotted with a thick line, the bending axis (dashed line) is the component of the twist axis perpendicular to 

the fork and the torsion axis (dotted line) is the component of the twist axis aligned with the fork. The large 

circle is the silhouette of the front wheel and the large black dot is the point of the wheel in which the force 

has been applied. It is clear that the twist axis is not orthogonal to the fork axis, which means that the front 

fork is stressed by both bending and torsion loads and the wheel twist axis is the result of bending and 

torsion properties of the front fork. Stiffness decomposition has been carried out according to the method 

previously described and the identified results are summarized in Table 10.  

Dynamic measurements on front fork A have been carried out making use of the actuator and of the 

modally tuned hammer as well. The tests with the actuator aimed to study how the twist axis moves as a 

function of the frequency of excitation. The actuator has been controlled in order to produce a sinusoidal 

displacement with specific frequency (range 1-15 Hz) and amplitude values (range 1.5-2 mm). 

 

Figure 28 Twist axis for static test for the enduro fork 

 

Figure 29 Evolution of twist axis position from 1 Hz (quasi-
static condition) to 15 Hz, enduro fork. 

 

Static properties Simple method Modal method 

Lateral stiffness 56.1 kN/m 56.1 kN/m 

Twist arm 0.517 m 0.517 m 

Rotational twist stiffness 15 kNm/rad 15 kN/m 

Bending arm 0.67 m 0.861 m 

Rotational bending stiffness 28 kNm/rad 46.7 kN/m 

Torsion arm 0.066 m 0.120 m 

Rotational torsion stiffness 3 kNm/rad 7.4 kN/m 

Inclination of the twist axis 45.5 ° 45.5 ° 
Table 10 Stiffness parameters identified of the enduro fork: the simple method employs the bending and torsion axes assumed a 

priori (Figure 28); the modal method employs the bending and torsion axes identified with dynamic tests. 
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Figure 29 deals with the enduro fork and shows the evolution of the wheel twist axis position with respect 

to the excitation frequency. It is evident that the wheel twist axis at the lowest frequencies is very close to 

the one identified by static measurements. As the frequency increases the natural modes of vibration are 

excited and the twist axis position varies according to the arrow. 

However, as explained in Chapter 1, the investigation of the dynamic twist axis carried out with a shaker 

excitation is limited to low frequencies (theoretically, up to 40 Hz). For a better investigation, the 

measurements with the three mono-axial accelerometers technique have been carried out. The 

measurements have been carried out after modal analysis, but are reported now for the sake of simplicity. 

Figure 30 shows the modal twist axes identified for the natural frequencies of the enduro front fork. It is 

interesting to note that at 23 Hz the modal twist axis is almost orthogonal to the front fork, which can be 

approximated as a simple bending beam. At 67 Hz the torsional mode occurs and the modal twist axis is 

almost parallel to the front fork. Those axes are somewhat similar to the ones identified with the static 

tests and the twist stiffness decomposition previously described. 

A further elaboration of the experimental results of the test consist in the identification of its bending and 

torsion stiffness according to the general method employed for frames and swingarms. The twist stiffness 

has been decomposed into its bending and torsion components using the bending and torsion axes 

measured with dynamic tests (Figure 30). Results are shown in Table 10. It is worth highlighting that the 

bending and torsion stiffnesses identified with the modal method (which employs the modal Mozzi axes 

identified by means of experimental tests) are higher than the ones identified with the simplified 

decomposition method (which employs the assumed axes) and closer to the values presented in literature. 

 

 

Figure 30 Bending and torsion axes identified on fork A with the three-accelerometers technique. 
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Successively, modal analysis has been performed on front fork A with and without the wheel. Figure 31 

shows the overlays of the measured FRFs of the enduro fork in the three directions without the wheel. FRFs 

in the x direction (along the fork axis) show a small amplitude peak at about 20Hz, a large peak just below 

40 Hz and large amplitudes with a small peak above 60 Hz. FRFs in the y direction (longitudinal) are 

characterized by two peaks, one just below 40 Hz and one just above 40 Hz. FRFs in the z (lateral) direction 

(excitation direction) show a well defined peak at about 40 Hz, which refers to the first important mode of 

the fork. Large amplitudes with a smooth peak are present at about 60 Hz. A quick interpretation of these 

data suggests that for the peak below 40 Hz the vibrations occur mostly in z (lateral) direction and for the 

peak above 40 Hz the vibrations occur mostly in the y (longitudinal) direction.  

FRFs have been analyzed with the ICATS software. The modal shapes are displayed in Figure 32 while the 

modal parameters are summarized in. The first mode at 38.6 Hz is characterized by lateral deformation of 

the fork (z direction). The second mode at 41.2 Hz is dominated by longitudinal deformation of the fork (y 

direction). The last mode at 67.1 Hz occurs mostly in the y direction and it is a torsional mode of the fork, 

since the two stems move in phase opposition. 

 

Figure 31 Measured FRFs of the enduro fork without wheel in the x, y and z directions. 

 

# Freq[Hz] Viscous damping Mode Shape # Freq[Hz] Viscous damping Mode Shape 
1 38.6 Hz 2.2 % Lateral 1 22.3 Hz 2.4 % Lateral 
2 41.2 Hz 1.8 % Longitudinal 2 23.5 Hz 1.4 % Longitudinal 
3 67.1 Hz 3.6 % Torsional 3 67.2 Hz 5.9 % Wheel 

Table 11 Modal parameters of the enduro fork without (left) and with (right) the wheel. 
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Figure 32 First modes of vibration of the enduro motorcycle’s fork without (left) and with (right) the wheel. 
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Successively, the tire was mounted on the fork and new FRFs have been acquired. The FRFs (not shown for 

shortness sake) are very different from the ones measured without the wheel: the natural frequencies have 

drastically decreased because of the added mass and related inertia with respect to the deformation axes 

and the main peaks are now concentrated between 15 and 25 Hz. Another small peak occurs at about 60 

Hz. The main peaks of the FRFs of the enduro fork have been identified as the first lateral and the first 

longitudinal modes of the motorcycle component, as shown in Figure 32. The small peak that appears in 

the FRFs at about 67 Hz derives from the interaction between the fork and the wheel and substitutes for 

the torsion mode of the fork alone. ICATS elaboration has shown that the points of the fork where the 

sensors are located are almost fixed, while the wheel, excited with an impact on the rim’s lowest point, 

vibrates about its diametrical horizontal axis (Figure 32).  

 

4.2 Development of a modally tuned fork model 

In multibody codes it is typical to express a structural compliance through lumped models. The 

measurements carried out on front fork A have been used for developing a lumped model of the fork. The 

experimental results showed that, for frequencies up to 50 Hz, the most important mode of vibration is the 

bending mode, while the torsion mode has higher frequencies. Note that 30-50 Hz are the typical maximum 

frequencies of the structural modes taken into account when dealing with stability and handling 

simulations. Therefore, the modeling efforts are focused on the lateral (bending) modes: these vibrations 

are essential to a proper modeling of the motorcycle for stability analysis. Hence, a 1 DOF lumped model 

with bending deformability will be employed. 

It is worth noting that there are different options for using experimental data (stiffness, natural 

frequencies, inertias) in order to create a lumped model. Three types of lumped models will be presented. 

The first two models recall those reported in [5] while the third is original and proposed in this thesis as an 

effective manner of combining static and dynamic tests while keeping the 1 DOF lumped model. Each 

model employs a different combination of experimental data and computed parameters, as shown in Table 

12. The parameters with a small dot come from experimental data, the others are computed with 

mathematical formulas.  

Model 1: this model employs the stiffness computed through static laboratory test located in the point 

where the (experimental) static twist axis intercepts the fork axis, and the vibrating inertia consists of the 

front wheel and the unsprung mass (measured). More precisely the bending stiffness is k1=28 kNm/rad and 

is located at L1=0.670 m from the contact point, the vibrating inertia consists of the front wheel plus the 

front unsprung mass and is J1=2.085 kgm2 (the wheel mass is 8kg, it has a diametrical moment of inertia of 

0.278 kgm2 and has a distance 0.405 m from the bending axis, while the unsprung mass is 3kg). The 

resulting natural frequency is fn1=18.4 Hz, which is slightly lower than the 22.3 Hz measured through 

dynamic laboratory test. The damping coefficient is c1=11.6 Nms/rad. 

Model 2: the model employs a stiffness adjusted to present the experimental natural frequency with the 

measured wheel and unsprung inertia. In addition the stiffness is located in the point where the 

(experimental) dynamic twist axis intercepts the fork axis. The bending stiffness is now k2=78.4 kNm/rad 

and is located at L2=0.846 m from the contact point, the vibrating inertia consists again of the front wheel 

plus the front unsprung, M2= M1=11 kg, but the inertia is now increased to J2=3.995 kgm2 because the arm L 

is increased. 
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Model 3: this model employs the stiffness identified through static laboratory test placed where the 

(experimental) static twist axis intercepts the fork axis but the vibrating inertia is adjusted in order to give 

the same natural frequency measured in modal test. The bending stiffness is now k3= 28k Nm/rad and is 

located at L3=0.670 m from the contact point, the vibrating inertia consists again of the front wheel plus the 

front unsprung. The total mass is M3=11kg while the inertia is now reduced to J3=1.426 kgm2 (by means of a 

pure moment of -0.67 kgm2) to rise the natural frequency to the experimental value of fn3=22.3 Hz. Finally, 

the damping coefficient is computed again to present the same damping ratio measured experimentally, 

c=9.6 Nms/rad. 

The different front fork lumped models have been introduced in a multibody code to simulate the 

motorcycle stability. The other vehicle parameters as well as the DOFs of the model are described in more 

detail in [29]. The simulation focused on straight motion stability. The motorcycle trim is first computed by 

solving the nonlinear model equations given the forward speed and with null lateral and longitudinal 

accelerations (straight motion). Then, the nonlinear system is linearized about this trim and the state space 

matrices are extracted to give the well known standard formulation for linear systems: 

x Ax Bu              ( 37 ) 

Finally the eigenvalues of A (i.e. the system vibration modes) are computed. The elaboration is repeated at 

each speed to compute the vibration modes at different speed. Four cases are considered: rigid fork and 

forks according to model 1, model 2 and model 3. The simulated speed range is 5-40 m/s, the limited top 

speed being related to the power train characteristics of the bike.  

Figure 33 shows the real part of the eigenvalues of the different models (i.e. on the stability) for speeds in 

the range 25-40 m/s where the effect is more evident for this bike. When it comes to the wobble, the rigid 

model is the less stable and has a critical speed of 35 m/s. On the other hand, when including flexibility with 

model 1 and model 3, the bike is always stable in the simulated speed range. This stabilizing effect of the 

flexibility on wobble is well known ([4]). It is interesting to note that model 1 and model 3 are very close to 

each other, while model 2 is in between models 1-3 and the rigid case, and has a critical speed of 37 m/s. 

If stability of weave mode is dealt with, the rigid model is the most stable for speeds up to 37 m/s, while 

above this speed the models including flexibility seem more stable. 

 

  Model 1 Model 2 Model 3 

Bending stiffness ki (kNm/rad) o 28  78.4 o 28 

Bending arm Li (m) o 0.670 o 0.846 o 0.670 

Damping coefficient ci (Nms/rad)  11.6  26.9  9.6 

Vibrating inertia Ji (kgm
2
) o 2.085  3.995  1.426 

Natural frequency fn (Hz)  18.4 o 22.3 o 22.3 

Viscous damping i (viscous) o 2.4 % o 2.4 % o 2.4 % 

Table 12 Parameters for the lumped models of the enduro fork. 
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Figure 33 Free vibration modes of the enduro bike, for speed from 5 to 40m/s 

 

4.3 Front fork B 

Due to its more compact geometry and its origin from the more demanding world of super-sport 

motorcycles, static tests carried out on front fork B ranged from -500 to 500 N. The experimental results 

are shown in Figure 34. Also in this case the twist axis is not orthogonal to the fork axis, but it is worth 

highlighting that, even if the two forks are different and suited to different kinds of motorcycles, the 

positions and inclinations of the twist axes are similar. As expected, the super sport fork is much stiffer than 

the enduro one, as shown in Table 13. 

 

Figure 34 Twist axis for static test for the super-sport fork. 
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Static properties 

Lateral stiffness 109.3 kN/m 

Twist arm 0.452 m 

Rotational twist stiffness 22 kNm7rad 

Bending arm 0.528 m 

Rotational bending stiffness 35 kNm/rad 

Torsion arm 0.083 m 

Rotational torsion stiffness 6 kNm/rad 

Inclination of the twist axis 41.2 ° 
Table 13 Stiffness parameters identified from the static test of the super sport fork. 

 

Modal analysis has been the last test performed on front fork B. The identified modal parameters are 

summarized in Table 14. For the case of the fork without the wheel, the dynamic properties are similar to 

the ones of the enduro fork. The natural frequencies are vaguely higher than the ones measured on fork A 

due to the larger stiffness of fork B. A remarkable increase in the damping of the longitudinal mode 

appears. Also in the case of the fork with the wheel, the modal parameters of the super sport fork are very 

close to the ones of the enduro fork: natural frequencies are a bit increased due to the different fork 

stiffnesses; the damping coefficients are somewhat increased due to the extremely performing 

characteristics expected from a super sport fork. The modes of vibration of the super sport fork are not 

reported for the sake of shortness; however they are very similar to the ones of the enduro fork in both 

cases with and without the wheel. 

 

# Freq[Hz] Viscous damping (%) Mode Shape # Freq[Hz] Viscous damping (%) Mode Shape 
1 42.0 2.0 Lateral 1 23.7 3.0 Lateral 
2 49.4 7.5 Longitudinal 2 27.5 2.3 Longitudinal 
3 63.4 7.6 Torsional 3 74.4 4.7 Wheel 

Table 14 Modal parameters of the super sport fork without (left) and with (right) the wheel. 
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Chapter 5 – Identification of transient 
properties of motorcycle tires 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the framework of this research, three sets of tires have been measured. The tires of the first set have 

radial structure and are suited to high performance motorcycles, the sizes are 120-70-R17 (front) and 180-

55-R17 (rear). The tires of the second set have diagonal structure and are suited to high wheel scooters, the 

sizes are 110-70-16 (front) and 140-70-14 (rear). Finally, the tires of the third set are diagonal and suited to 

scooters, the sizes are 120-70-12 (front) and 130-70-12 (rear). With the nominal inflation pressure and no 

vertical load the cross section profiles of the various tires have been measured by means of a special tool 

and the radii of curvature have been calculated. Figure 35 shows the measured profiles of the tires and 

Table 15 summarizes the calculated radii of curvature. 

 

Front tires Rear tires 

Size Torus radius [mm] Size Torus radius [mm] 

120-70-R17 43 180-55-R17 97 

110-70-16 39 140-70-14 66 

120-70-12 41 130-70-12 55 
Table 15 : Calculated radii of curvature 
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In the first section of Chapter 5, the experimental relaxation lengths measured on the testing rig of the 

University of Padova will be presented. In the following paragraph, modal analysis results obtained on the 

six tires are shown. In the third paragraph, a method for the prediction of the tire relaxation lengths 

starting from data of modal analysis and based on a first order model of the tire is presented and discussed. 

Finally, the predicted values of relaxation lengths are compared with the experimental ones. 

 

Figure 35 The cross sections of the six tested tires: experimental data and fitted profiles. 

 

5.1 Experimental tests 

The experimental methods for the measurement of tires relaxation length have been described in Chapter 

2. The testing procedure included a running in period (with the tire rolling on the disk) followed by the yaw 

dynamic excitation carried out with constant amplitude (1.5°) and step increasing frequency, which in turn 

was set to 0.42, 0.84, 1.26, 1.68 and 2.10 Hz. At each frequency about 10 cycles were performed, the rolling 

velocity of the tire corresponded to a forward speed of 5 km/h. Tire load was set to 1500 N, inflation 

pressure was set to 0.5, 0.75, 1, 1.5, 2, 3 and 4 bar, these values included the nominal value (about 2 bar 

depending on the tire), very large values due a wrong inflation and very small values, which may occur 

when the tire is deflating. Figure 36 shows against pressure the relaxation lengths of four tires identified for 

different values of input excitation frequency. The graphs on the top refer to the set of motorcycle tires, 

the graphs at the bottom refer to one of the two sets of scooter tires. It is evident that relaxation length 

decreases as inflation pressure increases, no matter which the excitation frequency is. It is an expected 

result, and can be explained as follows. Increasing the tire pressure will also increase the tire stiffness; as a 

result, the tire will be able to respond more quickly to harmonic side-slip oscillation and the relaxation 

length will be smaller than the one measured for lower values of inflation pressure. 

Tires don’t exhibit a clear correlation between the relaxation length and the excitation frequency in the 

range of frequencies here considered: the curves measured at different excitation frequencies are inclined 

to mingle with each other. 
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Figure 36 Experimental relaxation lengths of a motorcycle set and a scooter set of tires 
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5.2 Modal analysis of tires 

In order to carry out modal analysis of tires, the wheels have been fixed to the stiff column of the 

Motostiffmeter so that the rims were motionless and only the tires’ belts could vibrate. The hammer 

impulse was applied each time on a different point, while the accelerometer was fixed on the lowest part of 

the wheel (point 100). FRFs have been measured on six points of the wheel equidistant from each other, as 

shown in Figure 37.  

 

 

Figure 37 Measurement points for modal analysis. 

For each measurement point the FRF was calculated as the ratio between the cross spectrum of input 

signal force and output signal (acceleration) and the auto spectrum of input signal. Figure 39, which refers 

to the FRFs measured on the scooter tire 110-70-16, shows the interesting effect of inflation pressure on 

the natural frequencies of tires. In general, natural frequencies increase with inflation pressure, which 

agrees with physical intuition since an increased inflation pressure stiffens the system. When inflation 

pressure increases the natural frequency of the first peak slightly increases and the peak value increases. 

The second peak (at about 100 Hz) and the third peak (at about 170 Hz) are more influenced by inflation 

pressure, with significant increases both in the peak value and in the resonance frequency. Also in the 

range of high modal density (above 300 Hz) the resonance frequencies tend to move towards higher values 

when inflation pressure increases. The effect on peak amplitude is less clear, because sometimes adjacent 

peaks tend to merge as inflation pressure increases. 

 

Figure 38 The identified modal shapes 

Then, the modes identification has been carried out on ICATS, the identified modal shapes are shown in 

Figure 37. The first typical mode is a rigid belt diametrical mode, since the tire’s belt vibrates about its 

horizontal axis. The second typical mode of the same tire is a lateral mode and it is characterized by a 

lateral vibration of the tire’s belt with respect to the wheel’s rim (rigid belt mode). The vibration of the 
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third typical mode exhibits a C shape, since the two points at the extremities and the four points in the 

middle of the wheel move in opposition. The fourth typical mode is an S-shaped mode, since even points 

and odd points move in opposition. The yaw mode about the vertical diameter was not identified from the 

collected FRFs because the accelerometer (point 100) for symmetry reasons is always located on the nodal 

axis of this mode. 

Some observations can be drawn from a comparison of the natural frequencies and the damping 

coefficients identified on the six tested tires. The first four typical modes (camber, lateral, C-Shaped and S-

shaped) 

 

Figure 39 Measured FRFs for several values of inflation pressure, 110-70-16 tire. 

essentially appear in the same order for the six tested tires, only in the small scooter tires at low inflation 

pressure the frequency of the camber mode is slightly higher than the one of the lateral mode. The natural 

frequency of the camber mode is the least influenced by inflation pressure, only the camber mode of the 

rear motorcycle tire, which has a large size, shows a certain sensitivity to inflation pressure. The mode with 

the smallest damping ratio is usually the rigid ring camber mode, only in the 110-70-16 tire the mode with 

smallest damping ratio is the lateral mode. 

 

5.3 Stiffness and damping identification 

The stiffness and damping properties of the tire’s carcass have been identified from the measured modal 

properties. The tire is modeled as a thin ring that can bend out-of-plane and is elastically suspended to the 

rim by means of the carcass, as shown in Figure 40. 

Modal shapes are normalized with respect to the amplitude of the lowest point (point 100), which is 

assumed equal to yok and can be described by the equation: 

   cosoky y k             ( 38 ) 

In which   is the angular coordinate that defines the position of the generic ring element. If k=0, the rigid 

ring lateral mode is obtained. If k=1 the rigid ring camber mode is obtained. Larger values of k give the 

modes with belt deformation of increasing complexity (k=2 C-shaped mode, k=3 S-shaped mode). 
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Figure 40 Modal mass and stiffness 

Modal stiffness is obtained with a Raleigh-Ritz approach [32]. Modal analysis showed that the dampings of 

the first modes of the tire are rather small. Hence, when a vibration mode is excited in resonance condition, 

it is possible to assume that the maximum potential energy associated to the deformation of the carcass 

and the ring ( maxkU ) is equal to the maximum kinetic energy of the ring (Tk max): 

2 2 2

max max

1 1

2 2
k k ok k k ok kU C y m y T            ( 39 ) 

In which ωk is the natural frequency, mk the modal mass and Ck the modal stiffness (Figure 40). Ck refers to 

the lateral displacement of the lowest point of the ring, because modal shapes are normalized with respect 

to the amplitude of this point. The maximum kinetic energy can be calculated considering the velocity of 

the ring elements and the ring mass per unit length (μ), which is assumed constant. When the k-mode is 

excited, displacement is given by equation: 

   sin cosk ok ky y t k            ( 40 ) 

It follows that velocity and maximum velocity are given by: 

   cos cosk ok k ky y t k             ( 41 ) 

 max cosk ok ky y k            ( 42 ) 

Therefore the maximum kinetic energy is given by: 

 
2

2 2 2

max
0

1
cos

2
k ok kT y k rd



              ( 43 ) 

In which r is the ring radius. It follows that: 

 
2

2 2 2

max
0

1
cos

2
k ok kT y r k d



              ( 44 ) 

And modal mass is given by the following equation. 
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            ( 45 ) 

This integral can be evaluated for the first modes of the ring. The mass of the ring (m) is assumed to be a 

share of the measured mass of the tire. Dealing with car tires Pacejka [13] suggested to assign 75% of the 

tire’s mass to the belt. To determine the ring’s mass this percentage was slightly improved (80 %) to take 

into account the different shape of the tires for two-wheeled vehicles. 

Finally, modal stiffness Ck can be calculated from equation: 

2

k k kC m              ( 46 ) 

In which k is the natural frequency and mk the ring mass of the k-mode. The mass of the ring is assumed to 

be a share of the measured mass of the tire. Dealing with car tires Pacejka [13] suggested to assign 75% of 

the tire’s mass to the belt. To determine the ring’s mass this percentage was slightly improved (80 %) to 

take into account the different shape of the tires for two-wheeled vehicles. Table 16 summarizes the 

identified stiffness parameters at nominal inflation pressure. Only in the motorcycle radial tires the C-

shaped mode with ring deformation has a modal stiffness lower than the one lateral mode. The S-shaped 

mode always has a very large modal stiffness. 

Tire Camber Lateral C-shaped S-shaped 

120/70 R17 463 1906 1239 4690 

180/55 R17 515 1178 978 2258 

110/70 16 398 1181 1847 5357 

140/70 14 222 767 3043 10851 

120/70 12 343 742 2589 10494 

130/70 12 360 709 2842 10318 

Table 16 Modal stiffnesses for inflation pressure of 2 bar (kN/m) 

Finally, the small damping coefficients of the modes can be calculated from damping ratios ( ) according 

to equation: 

2k k k kK C             ( 47 ) 

 

5.4 Prediction of relaxation length 

A specific version of the ring model [15] is considered here. Since on the testing machine of Padova 

University it is possible to identify the relaxation length from low speed tests with enforced rotation of the 

wheel about its vertical diametrical axis (yaw rotation), the input of the model is the enforced yaw rotation 

(Ψa) and the inertial properties of the ring are neglected, Figure 41 shows the block diagram of the model, 

equations are collected in Appendix 1. 

The first block  V i a  takes into account that the input yaw angle generates a side-slip angle both 

because it modifies the attitude of the wheel and because it generates a lateral velocity. Block 1 ci V  

represents the effect of contact patch, c being the relaxation length of the contact patch. Then there are 

two feedback loops. The inner feedback loop takes into account that the lateral force Fy owing to the lateral 

compliance of the tire generates a lateral velocity that algebraically adds to the one due to the input yaw 

motion. Cyg represents the global lateral stiffness. Kyg represents the global lateral damping. 
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The outer feedback loop represents the effect of self-aligning torque 
yo oF t a  (in which to is tire trail). If the 

tire shows finite stiffness and damping characteristics about the vertical diametrical axis, the self-aligning 

torque generates a yaw rotation (Ψ) of the carcass that algebraically combines with the one caused by hub 

rotation (Ψa). Since the tire is axial-symmetric, the modes of vibration about the horizontal and the vertical 

diametrical axes are equal and stiffness Czz and damping Kzz can be assumed equal to the ones identified 

from the horizontal diametrical mode (camber mode). This is a reasonable approximation, since in the 

loaded tire some differences between the two diametrical modes may appear. 

 

 

Figure 41 Block diagram of the mathematical model 

It is worth highlighting that, if the effect of modal damping is taken into account, the tire does not behave 

as a first order system. 

If the damping of the tires and the effect of self aligning torque are neglected in the ring model, a simple 

first order model of the tire is derived. In [34] it is shown that a very small error is introduced due to the 

simplification from a second order to a first order model. For a first order model, case the equation for the 

calculation of relaxation length is: 

2(1/ / 1/ )bF y xx resam C C r C C             ( 48 ) 

The term am is the contribution of the contact patch in which a is the half-length of the contact patch and 

m is the ratio between the adhesion zone and the total length of the contact patch [13]. The second term is 

the contribution of the carcass stiffness: it takes into account lateral stiffness Cy, rotational stiffness Cxx (due 

to the camber mode) and a residual stiffness Cres. CbFa is the cornering stiffness of the tire and can be 

measured by means of specific steady-state tests. For a detailed description of the tests methods and 

results, refer to Appendix 2. 

In [13] the residual stiffness was introduced to ensure that the total static stiffness in the lateral direction is 

correct. Actually, lateral stiffness of the tire is a series of an infinite number of modal stiffnesses. The modal 

approach adopted in this research makes it possible to give a simple interpretation of residual stiffness: the 

residual stiffness takes into account the contribution of the modes of vibration different from the camber 

and lateral modes, e.g. the C- and S-shaped modes. 

The stiffness properties identified by means of modal analysis, cornering stiffness measurements and 

contact patch measurements make it possible to predict relaxation length. Cornering stiffness was 
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measured by means of specific tests performed on the tester machine of the University of Padova (Figure 

11). The motorcycle and high wheel scooter tires were tested with vertical load of 1500 N, whereas the 

scooter tires were tested with vertical load of 1000 N. 

In order to evaluate the contribution of the contact patch half length a, the contact patch was measured. 

The tire was mounted on the tire tester machine, the tread was covered with black ink and the contact 

patch size was printed putting a white paper sheet under the loaded tire. Contact patch half length was 

calculated as one half of the length of the center line of the imprint. Figure 42 shows the measured contact 

patches of the front  scooter tire. Table 17, which summarizes measured values, shows that a increases by 

about 50% if inflation pressure decreases from the nominal value (2 bar) to the lowest value (0.5 bar). If 

inflation pressure doubles, a decreases by about 15-20% depending on the tire. 

 

Figure 42 Variation in contact patch sizes with pressure, tire 120-70-12 

 

Pressure 

[bar] 

120/70 R17 

a [m] 

180/55 R17 

a [m] 

110/70 16 

a [m] 

140/70 14 

a [m] 

120/70 12 

a [m] 

130/70 12 

a [m] 

0.5 0.106 0.115 0.090 0.095 0.062 0.072 

0.75 0.098 0.101 0.081 0.081 0.074 0.069 

1 0.088 0.087 0.076 0.073 0.056 0.060 

1.5 0.078 0.075 0.065 0.068 0.050 0.056 

2 0.07 0.065 0.060 0.058 0.047 0.051 

3 0.065 0.055 0.054 0.055 0.042 0.046 

4 0.054 0.050 0.052 0.051 0.040 0.043 

Table 17 Measured half length of the contact patch 

 

According to Pacejka [14] the relaxation length of the contact patch can be assumed equal to a fraction m 

of the measured half length, constant m is given by this equation: 

 1 tan
3

bFC
m

FL

 


             ( 49 ) 

In which Fz is vertical load,  the friction coefficient and α the wheel side-slip angle assumed equal to 1.5°. 

The relaxation lengths of the tested tires are calculated by means of equation (48) setting the residual 

stiffness term (1/Cres) equal to the series of the modal stiffness of the C- and S-shaped modes: 

1 1 1res C SC C C             ( 50 ) 
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Figure 43 Predicted and measured relaxation lengths. 
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Results are summarized in the histograms of Figure 43. The first part of the bar (dark grey) represents the 

contribution of c, the second part (light grey ) the contribution of the camber mode, the third part (grey) 

the contribution of the lateral mode, the fourth part (white) the contribution of the C-shaped mode, the  

last part (black) the contribution of the S-shaped mode. In general, relaxation length tends to decrease if 

inflation pressure increases. The contribution due to the contact patch is always important and exhibits a 

small but steady increase as inflation pressure decreases. In the radial motorcycle tires the contribution of 

contact patch is more important than in the diagonal scooter tires, which have a larger compliance and a 

smaller size. The most important term related to modal stiffness is the one of the rigid ring camber mode. 

The term due to the rigid ring lateral mode is much smaller than the one due to the camber mode. In 

motorcycle tires the contribution of the C-shaped mode is comparable with the one of the lateral mode, 

whereas in scooter tires it is a fraction of the contribution of the lateral mode. The contribution of S-shaped 

mode is very small in all the tested tires. The contributions of the modes with ring deformation do not show 

large variations as inflation pressure changes. 

The relaxation lengths measured by means of experimental tests (dashed red line) are plotted in Figure 43 

in order to make a comparison with the predicted relaxation lengths. Since experimental results showed 

that the measured relaxation lengths are almost independent from the excitation frequency (Figure 36), 

the dashed red line is the average of the relaxation lengths identified in the tests at excitation frequencies 

0.84, 1.26 and 1.68 Hz. It is evident that relaxation length increases both in predicted and experimental 

values as inflation pressure decreases: a lower inflation pressure generates a decrease in the tire stiffness, 

hence it takes more time for the tire to follow the harmonic side-slip excitation, with an increasing in 

relaxation length. The graphs show that in the radial tires with inflation pressure set to the nominal value (2 

bar) or values close to the nominal one there is an acceptable difference (about 20%) between predicted 

and measured relaxation lengths. In the diagonal scooter tires the difference is larger (30%-50%) and 

increases if inflation pressure decreases. In most cases the measured value is larger than the predicted one. 

It is assumed that the cause of deviation of predicted values from measured values of relaxation length is 

the incompleteness of the modal model. Actually only the two modes with ring deformation having the 

lowest natural frequencies were identified and taken into account in the model, but higher order modes 

may influence the deformability of the tire. 
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Chapter 6  – Identification of the static and 
dynamic properties of bicycles and bicycles 
components 
 
 

 

 

 

 

 

 

 

 

 

 

In the framework of this Ph. D. some experimental activities have been carried out on bicycles and bicycles 

components. 

The study of bicycles and bicycle frames has been focused on the analysis of their dynamic properties, with 

a specific interest in their modes of vibration. Modal analysis of an ordinary bicycle with steel frame has 

been carried out, the results have been compared with the modal properties of three other bicycles 

available in our lab database. The three bicycles are one sport bicycle with ergal frame and two sport 

bicycles in carbon-fiber frame. 

Two bicycle front forks have been tested: the first one was an expensive carbon fork suited for a racing 

bicycle, the second one was a simple steel fork that can be mounted in an ordinary city bike. The forks are 

shown in Figure 48 and their weights are 0.393 kg and 1.336 kg, respectively. The forks have been tested by 

means of modal analysis, both with and without the wheel. It is worth remembering that the mass of the 

wheel can affect deeply the properties of the front fork. The measurements without the wheel have been 

carried out on a two dimensional mesh of test points in which the blades of the fork are described by four 

points equidistant from each other. A ninth point has been added close to the fixation point to check the 

stiffness of the locking system. During the tests without the wheel, a fake hub has been added to the wheel 

hub in order to avoid relative motions between the blades of the fork. During the tests with the wheel, 

eight points (equidistant from each other) have been added to the mesh in order to sketch the wheel and 

to study its dynamic behavior. A further elaboration of modal analysis data allowed the identification of the 

bending and torsional stiffnesses of the forks. Those properties have been used in order to carry out some 
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numerical simulations on a mathematical model developed in order to take into account also the 

compliance of the front fork. The equations of the model are presented in Appendix 3.  

 

6.1 Modal analysis of bicycles 

Modal analysis of bicycles has been carried out keeping the vehicles in equilibrium by means of soft elastic 

ropes, connected to the two-wheeled vehicle in three different points: steer, middle of the top tube and 

seatpost. Two small sheets of sandpaper have been placed under the wheels in order to simulate the 

conditions of friction normally found on the road surface, and thus to prevent any oscillatory motions 

affected by the sliding of the tires on the floor. It is very important for the dynamic analysis of the bicycle to 

carry out the tests with the correct tire pressure: in the sport bicycles the tires have been inflated until 

reaching a pressure of 7 bar, in the utility bicycle inflation pressure is set to 4 bar. FRFs have been 

measured on 9 points of the frame and 12 points of the fork blades. The larger density of measurement 

points in the forks is motivated by the importance and complexity of this sub-system. The bicycles have 

been excited with an out-of-plane hammer impact on the hub of the rear wheel (point 100). The tri-axial 

accelerometer has been  moved to the different points of the mesh and had the three axis oriented as 

follows: x axis pointing upwards, y axis aligned with the bicycle traveling direction and z axis as the vector 

product of x and y. 

 

Figure 44 The measurement points for modal analysis 

Figure 45 shows the overlays of the moduli of the FRFs measured on the steel bicycle. Frequency axis 

ranges from 0 to 75 Hz because higher frequencies are scarcely interesting from the point of view of bicycle 

stability, safety and comfort. FRFs measured on the other bicycles have some common features, which are 

due to typical vibration modes of bicycles, and some different aspects, which are specific for each bicycle. 

The common features are: 

A small peak at very low frequencies (1-2 Hz), which is due to the suspension system. 

A low frequency peak at 11-12 Hz, followed by a medium-sized peak. 

A very sharp peak at 37-38 Hz, with some smaller peaks on both its sides. 

Some small peaks in the frequency range from 40 to 75 Hz. 

Some of these peaks refer to characteristic modes of the frame or the fork, others are typical modes due to 

the coupling of the two components. The existence of a coupling is confirmed by the presence of a peak on 

the FRFs of both frame and fork points.  
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Figure 45 Overlays of FRFs measured on the steel bicycle: all points (left) and only fork ones (right.) 

 

Then, FRFs have been processed by means of the ICATS software in order to perform the modal parameters 

identification. Table 18 summarizes the modal parameters of the common modes of the four bicycles and 

includes a short description of the identified modes. f is the natural frequency and η is the structural 

damping coefficient. 

The first two typical modes, which are associated to the peaks at 11 – 12 Hz and 17- 18 Hz respectively, are 

characterized by large deflections of the tires and nearly rigid behavior of the fork and frame. The mode at 

11 - 12 Hz is characterized by a rigid yaw rotation of the rear frame and steer rotation of the front frame; 

the mode at 17 – 18 Hz is dominated by a rigid roll rotation of front and rear frame about a nodal line, 

which is close to the top tube of the bicycle. The modal shapes of the identified modes are shown in Figure 

46, which displays the displacement of the measurement points with respect to the 0-deflection shape of 

the bicycle. 

The third typical mode appears at 24 – 26 Hz and is connected to a medium-sized peak which is more 

evident in the FRFs of the fork. This mode is very important for bicycle stability, because it is essentially a 

torsion mode in which the tips of the fork move in phase with the crank set and in opposition with seat-

stays and chain-stays. This relative motion is due to lateral bending of the fork and torsion of the frame. 

The fourth typical mode corresponds to the high peak at about 35 Hz. It is essentially the first bending 

mode of the frame. The shape of this mode is similar to the one of the first bending mode of a free-free 

beam, with two nodal lines (the first between the seat tube and the head tube, the second between the 

seat tube and the rear hub) an three antinodes (the head tube, the seat tube and the rear hub). 

 

Mode Steel Ergal 
Carbon 

Monocoque 
Carbon 
Banded 

Description 

 f [Hz] η % f [Hz] η % f [Hz] η % f [Hz] η %  

1 11 8.5 12.8 7.7 11.5 6 11 8.5 Tire dominated - Yaw 

2 17 5.3 18.5 4.4 17.8 5.5 17 5.3 Tire dominated - Roll 

3 24.1 5.7 25.7 3.6 23.7 5.5 24.1 5.7 Torsion 

4 33.9 3.7 34.4 4.1 34.9 3.9 34.2 5.9 First bending 

5 41.6 1.7 43.2 1.5 43.5 3.8 45.8 1.3 Fork lateral 

6 64.1 4 62.3 1.5 65.3 3.6 72.8 3.9 Second bending 

7 66.5 2.7 71.0 1.6 72.8 2.8 - - Seat tube, rear frame 
Table 18 Modal parameters of the common modes of the tested bicycles. 
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Figure 46 The seven common modes of the tested bicycles in the range 0-75 Hz 
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The FRFs of the tested bicycles after the main peak show a minor peak at about 40-43 Hz. This peak 

corresponds to the fifth typical mode, which is characterized by fork deformation in the lateral direction 

and torsion deformation of the frame with the head and the saddle moving in opposition. 

The band of frequency between 50 and 75 Hz is the most influenced by bicycle material and construction 

technology. The mode at 62-65 Hz that appears in the steel, ergal and carbon bicycle with monocoque 

frame can be considered the sixth typical mode. It is essentially a bending mode of the frame characterized 

by negligible displacements of the front fork and head tube, large displacements of the crank set and of the 

rear hub, which moves in opposition with respect to the crank set. In the carbon bicycle with banded frame 

this mode does not appear because in this range of frequency there is still a strong interaction between the 

fork and frame and there are some specific modes with large displacements of the fork. 

The mode at 70 – 73 Hz in the carbon and ergal bicycles and at 66 Hz in the steel bicycle essentially shows 

large deformation of the seat tube, chain stays and seat stays. It can be considered the seventh typical 

mode of the bicycles and is shown in the last picture of Figure 46. 

 

The most important effects of material properties and construction technology can be summarized as 

follows. The utility bicycle, which is heavy and not designed for high speeds, shows below 50 Hz a 

significant interaction between bending deformation of the frame and lateral deformation of the front fork, 

which has a simple circular cross section and is not as stiff as in the other bicycles. This bicycle, instead of 

having the typical bending mode flanked by the typical torsion and fork modes, shows three modes with 

important fork deformation and a bending mode of the frame which is different from the typical bending 

mode of the other bicycles, since it shows some deformation of the fork with two nodal points at the hub 

of the front wheel. At 61.19 Hz the utility bicycle exhibits a mode with large deformation of the fork near 

the head tube (Figure 47), this mode in similar to the typical high frequency fork mode that in the other 

bicycles appears above 100 Hz. 

The comparison between the modal properties of the two sport bicycles with carbon frame highlights that 

in the medium range of frequencies (50 – 75 Hz) the bicycle with banded frame has a larger density of 

modes and a shows a larger interaction between the modes of the fork and frame. Nevertheless the 

frequencies of the main peaks show only small variations. The banded frame leads to an increase in the 

damping of the most important modes. In particular the increases in the damping of the typical torsion 

mode (from 5.5 to 6.4 %) and in the damping of the typical bending mode (from 3.9 to 5.9 %) are useful for 

dampening the dangerous high speed wobble oscillations. 

 

 

Figure 47 The mode at about 61 Hz on the steel bicycle. 
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6.2 Modal analysis of the carbon front fork 

The FRFs of the carbon fork measured without the wheel show two important peaks at about 65 and 95 Hz 

and a smaller peak at about 200 Hz. The first peak corresponds to the lateral mode, in which the fork blades 

move in the z direction; the second peak corresponds to the longitudinal mode, in which the fork blades 

vibrate in the y direction. The third smaller peak corresponds to the torsional mode, in which the fork 

blades move in opposition in the y direction. The mode shapes are shown in Figure 49, in which red color 

represents the largest vibration amplitude and blue color the smallest. 

The FRFs measured with the wheel show some peaks in a frequency range lower than the one of the peaks 

of the FRFs measured without the wheel. Two small peaks are close and localized at about 20 Hz, a very 

high peak appears at about 30 Hz. A fourth peak appears at about 80 Hz. The first peak corresponds to the 

torsional mode of the fork blades, as shown in Figure 50. The wheel follows rigidly the deformation of the 

blades and therefore displays a large deformation in the outer points. The second peak is due to the lateral 

mode, while the third peak corresponds to the longitudinal mode. The fourth mode is the diametrical mode 

of the wheel and is shown in Figure 50: the vibration is localized on the points of the wheel, which rotates 

about its horizontal axis. 

 

 

Figure 48 The tested front forks: carbon fork with the wheel (right) and steel fork (left). 

 

Figure 49 The modal shapes of the carbon fork without the wheel. 
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Figure 50 The modal shapes of the carbon fork with the wheel. 

 

 Carbon fork Steel fork 

# Mode f [Hz] η [%] f [Hz] η [%] 

1 Lateral 64 2.5 84.7 3.13 
2 Longitudinal 94.1 2.57 83.4 2.69 
3 First torsional 191.2 7.57 214.1 2.23 
4 Second torsional / / 230.1 1.85 

Table 19 Modal parameters of the forks without the wheel 

 Carbon fork Steel fork 

# Mode f [Hz] η [%] f [Hz] η [%] 

1 Torsional 19.3 10.04 29.7 2.22 
2 Lateral 21.3 4.24 30.5 2.79 
3 Longitudinal 31.7 2.93 35.1 2.42 
4 Wheel diametrical 80.4 1.49 80.2 1.67 

Table 20 Modal parameters of the forks with the wheel 

 

6.3 Modal analysis of the steel front fork 

The modal analysis of the steel fork has been carried out with the same methods of the carbon fork. For the 

tests carried out without the wheel, the lateral and longitudinal modes occur in inverse order with respect 

to the carbon fork. However, it is worth noticing that the natural frequencies of the first two modes are 

extremely close, which makes the measurements and the identification of the modal properties particularly 

tricky. This phenomenon can be explained as follows: the blades of the steel fork display a circular section, 

also with the coupling of the wheel hub the stiffnesses in the lateral and in the longitudinal directions are 

similar. The blades of the carbon fork, on the contrary, present an elliptical section, with the major axis 

oriented in the traveling direction. The moment of inertia of the elliptical section about its major axis is 
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smaller than the moment of inertia about its minor axis. The stiffness in the traveling direction is larger 

than the stiffness in the lateral direction. 

Also for the steel fork, the torsional mode occurs at high frequency (about 200 Hz). However, two close 

peaks can be observed in the range of frequency 200-230 Hz, which correspond to the first two torsional 

modes. In the mode at 214.1 deformation is localized mainly the lower tips of the fork, on the contrary in 

the mode at 230.1 Hz deformation involves the whole fork blade. 

For the tests with the wheel, it is worth noticing that the four identified modes occur in the same order of 

the ones identified on the carbon fork. The results of modal analysis carried out on the forks are 

summarized in Table 19 and Table 20.  

 

6.4 Torsional stiffness and damping identification 

This paragraph shows the methods used for identifying the torsional stiffnesses of the carbon and steel 

forks using the data obtained from modal analysis. First, torsional stiffness k  is identified using the data 

obtained from the tests on the fork with the wheel. Since in resonance conditions the system behaves as a 

1 DOF system, stiffness can be calculated according to the simple equation: 

2(2 )tors torsk f I             ( 51 ) 

In which torsf  is the natural frequency of the torsional mode. The inertial term torsI  takes into account 

both the inertia of the wheel and the inertia of the fork about the torsion axis. The torsion axis is assumed 

to be roughly equal to the steering axis owing to symmetry considerations. The inertia of the wheel has 

been calculated considering the wheel as a ring of radius Fr  and mass Fm . The inertia of the fork has been 

calculated concentrating the fork mass in two point masses equivalent each one to one sixth of the global 

fork mass and vibrating on the tips of the blades. This approach is commonly used to take into account in a 

simple way the distributed mass of elastic elements [33]. The global inertia is: 

2 21
2

6
tors fork wheel fork F FI I I m d m r

 
    

 
        ( 52 ) 

where d is the distance between the blades extremity and the torsion axis (steering axis) and 
forkm  is the 

global mass of the fork. 

Then, the torsional stiffness of the fork is identified also using the results of the modal analysis carried out 

on the fork alone. In this configuration, the inertia of the wheel has been replaced with the inertia of the 

fake hub, calculated according to the formula of a cylinder: 

 2 21
3

12
hub hub hub hubI m r l            ( 53 ) 

In which hubm , hubr and hubl  are the mass, the radius and the length of the hub respectively. 

For the carbon fork the torsional stiffnesses identified considering fork with the wheel and alone are 1208 

Nm/rad  and 1253 Nm/rad respectively. The good agreement between the two values confirms the validity 

of the method. 
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The methods used for identifying the torsional stiffness of the carbon fork have been applied to the steel 

fork as well. The elaboration of data obtained from the modal analysis of the steel fork with the wheel by 

means of equation (51) gives a torsional stiffness of 2901 Nm/rad. 

 

Parameter Value 

Carbon fork mass 0.393 kg 

Steel fork mass 1.336 kg 

Hub mass 0.094 kg 

Wheel mass 1.334 kg 

Hub length 0.225 m 

Hub radius 0.004 m 

Wheel radius 0.350 m 

Table 21 Inertial parameters for the identification of the forks’ stiffness. 

 

The analysis of data obtained from the fork alone is more difficult, because two torsional modes have been 

identified at close frequencies (Table 19). For each mode, a torsional stiffness (named 
1k  and

2k ) has 

been identified with the same method already showed for the carbon fork with the hub. Then, according to 

the modal summation approach [10], the global torsional stiffness has been calculated as the equivalent 

stiffness of the two torsional stiffness 
1k  and 

2k  in series: 

1 2

1

1 1
k

k k


 




           ( 54 ) 

The torsional stiffness identified for the steel fork alone is 1938 Nm/rad, this value is not very far from the 

one identified for the carbon fork alone. Inertial parameters used in the previous formulas are shown in 

Table 21. 

Once the torsional stiffness has been identified, starting from modal analysis data with the wheel, the 

damping coefficient of the torsional mode has been calculated by means of the equation: 

cc c             ( 55 ) 

In which   is the viscous damping ratio (half of the hysteretic damping identified with ICATS) and cc is the 

critical damping, it is given by: 

2c torsc k I             ( 56 ) 

The damping coefficient identified for the carbon fork is 1.0 Nm/(rad/s), the damping coefficient identified 

for the steel fork is 0.3 Nm/(rad/s). 

 

6.5 Bending stiffness and damping identification 

In this paragraph a technique for evaluating the bending stiffness of the tested bicycle forks starting from 

the results of modal analysis is presented. Also in this case, the bending stiffness is calculated according to 

equation of a resonating 1 DOF system: 
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2(2 )bend bendk f I             ( 57 ) 

In which is bendf  the natural frequency of the lateral (bending) mode and bendI  is an inertial term which 

depends on the measurement configurations. In the case of the fork with the wheel, bendI  is given by: 

2 2 21 1
2

6 2
bend fork W F W F FI m h m h m r

 
   

 
        ( 58 ) 

In which the first term is the inertia of the fork about the bending axis, the second term is the inertia of the 

wheel about the bending axis and the third term is the pure moment of inertia of the wheel (considered as 

a thin ring). In the case of the fork alone, bendI is equal to: 

 2 2 2 21 1
2 3

6 2
bend fork W hub W hub hub hubI m h m h m r l

 
    

 
      ( 59 ) 

In which the first term is the inertia of the fork about the bending axis, the second term is the inertia of the 

hub about the bending axis and the third term is the moment of inertia of the hub. 

The problem here is to measure the value of Wh , which is the distance between the tips of the fork and the 

bending axis and is necessary for computing the inertial terms. A standard modal analysis doesn’t allow to 

identify the exact position of the bending axis and the impulsive analysis with the reference metal plate and 

the three mono-axial accelerometers described for motorcycle components cannot be employed in the 

case of a bicycle fork, because the mass of the pale is not negligible with respect to the mass of the fork and 

can alter its dynamic properties. Moreover, the bending axis cannot be identified on symmetry 

considerations as it was possible for the torsion axis. A simple method for identifying the bending axis 

position from the two sets of measurements has been adopted: two stiffness curves using Wh  as a variable 

parameter have been computed. The former curve is for the fork with the wheel, the latter is for the fork 

alone. Since the forks must have the same stiffness both with and without the wheel, the correct value of 

Wh  is identified by the intersection of the two curves. Wh values range from 0 (tips of the blades) to 0.460 

m (lower jaw fixing point). The other parameters used in the formulas have been summarized in Table 21.  

Taking into account the stiffness curves calculated for the carbon fork, the intersection point between the 

two curves is found at a distance of 0.383 m from the tips of the fork. The corresponding stiffness value 

identified for the carbon fork is equal to 5326 Nm/rad. Similar calculations carried out for the steel fork led 

to a bending stiffness of 5635 Nm/rad. These values are in good agreement with the ones presented in 

[31]. 

Once the bending stiffness has been identified, from data obtained by modal analysis with the wheel, the 

damping coefficients of the lateral mode have been calculated by means of the equation (55). In this case, 

  is the viscous damping ratio (half of the hysteretic damping identified with ICATS) and cc is the critical 

damping of the bending mode: 

2c bendc k I            ( 60 ) 

The damping coefficient identified for the carbon fork is 1.6 Nm/(rad/s), the damping coefficient identified 

for the steel fork is 0.8 Nm/(rad/s). The identified values of damping and stiffness have been introduced in 
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a bicycle model developed in order to take into account the front fork flexibility, a detailed description of 

the model is given in Appendix 3. 

6.6 Numerical simulation 

The bicycle model equations with fork compliance have been implemented in MATLAB codes. To perform 

stability analysis the complex eigenvalue problem has been solved. The geometric and mass parameters of 

the bicycle have been set equal to the ones of the reference bicycle presented in [30], but the stiffness and 

damping properties of the steel fork that have been identified in the present research have been added. 

 

Figure 51 Eigenvalues of the model with bending stiffness and damping (left, hw=0.21), and eigenvalues of CWBM (right) blue dots 
real parts, purple crosses imaginary parts 

Figure 51 deals with the effect of fork bending and shows against forward speed the real parts (dots) and 

the imaginary parts (crosses) of the calculated eigenvalues. For comparison, the real and imaginary parts of 

the Carvallo and Whipple bicycle model are reported. The most evident effect of the introduction of 

bending compliance is the modification of weave mode at high speed. In the CWBM weave at high speed 

remains a complex mode with increasing real and imaginary parts. When bending compliance is introduced, 

weave mode disappears above a certain speed (17 m/s in the case here considered) and is replaced by a 

couple of modes with real negative eigenvalues. The former has an increasing (in modulus) negative 

eigenvalue. The latter  decreasing (in modulus) negative eigenvalue, which eventually becomes positive 

(instability) at very high speed, which is not compatible with a bicycle. It is worth highlighting that 

disappearance of weave at high speed was also shown by the simulations carried out in [31] considering 

both tire mechanics and fork bending. Since the simulations here presented consider only the effect of fork 

bending, the disappearance of weave at high speed can be considered a typical effect of fork bending. The 

second effect of the introduction of fork bending is the appearance of a new complex mode, which is 

dominated by steer rotation and front fork bending. The imaginary part of the eigenvalue of the new mode 

(which is the damped natural angular frequency) is always larger than 27 rad/s. The real part of the 

eigenvalue of the new mode (which is related to damping) is small at zero speed, then it increases, reaches 

a maximum and decreases again. The self-stability range extends from 4.4 to 6 m/s and is very similar to 

the one predicted by the CWBM. 

The effect of fork torsion on bicycle stability is analyzed in Figure 52. The simulation shows that fork torsion 

is almost decoupled from the other modes and generates a complex mode with high frequency. With the 

0 5 10 15 20
-30

-20

-10

0

10

20

30

Speed [m/s]

R
e

a
l 
a

n
d

 i
m

a
g

in
a

ry
 p

a
rt

s
 [
1

/s
]

 

 

Bending

Capsize

Castering

Bending

Weave

Weave

Bending

0 5 10 15 20
-30

-20

-10

0

10

20

30

Speed [m/s]

R
e

a
l 
a

n
d

 i
m

a
g

in
a

ry
 p

a
rt

s
 [
1

/s
]

Weave

Weave

Castering

Capsize



72 
 

torsion stiffness and damping values  identified form the modal test with the fork alone, the eigenvalue of 

the torsion mode at 5 m/s is -56±455 i, only the real part appears in Figure 52. The other modes (capsize, 

weave and castering) are similar to the ones of the CWBM. 

 

Figure 52 Eigenvalues of the model with torsion stiffness and damping, blue dots real parts, purple crosses imaginary parts. 
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Chapter 7 – Identification of steady-state 
properties of wheelchair tires 
 
 

 

 

 

 

 

 

 

 

 

 

In the framework of this research, two typical wheelchair tires produced by two different manufacturers 

have been tested, in the following they will be named tire A and tire B. Their size is 24 x 1.3/8 inches (37-

500 ETRTO) and maximum inflation pressure is 5 bar. 

 

7.1 Experimental tests 

First, both tires were tested in a reference condition with vertical load 400 N, inflation pressure 4 bar and 

disc speed 4 km/h. Side slip angle () ranged from 0° to 5°, this range includes both normal road operations 

( < 1°) and rough maneuvers with large side slip angles. Camber angle () ranged from 0° to 10° to include 

a wide set of possible fittings of the wheels on the chair. Then, tires have been tested in conditions 

different form the reference ones: the inflation pressure has been reduce to 2 bar, the load has been 

increased to 600 N and the speed of the disk has been reduced to 2 km/h. All the combinations that can be 

obtained by varying these three parameters have been taken into account. 

Results of these tests are represented in Figure 53 in terms of normalized forces and torques: a normalized 

force is a measured force divided by the vertical load, whereas a normalized torque is a measured torque 

divided by the vertical load. The curves of the wheelchair tires are compared with the ones of a high 

performance bicycle tire (size 37-622 ETRTO) tested at the same value of inflation pressure, vertical load 

and speed. 

The curves of normalized side slip force show that this component of the lateral force increases in 

monotonic way with side slip angle. In the side slip range here considered no saturation phenomenon takes 

place; it is worth highlighting that also in car tires saturation takes place for higher values of side slip angle 

[13]. Tire A exhibits for every angle of side slip larger values of force than tire B and a larger cornering 
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stiffness (the slope of the curve near the origin). The curve of tire A is very close to the one of the high 

performance bicycle tire. 

The curves of normalized self aligning torque of the two tires are rather close and both show a tendency to 

saturation above 3°. The maximum values (in modulus) of self aligning torques of tire A and B are similar to 

the maximum value (in modulus) of the self aligning torque of the bicycle tire, but the bicycle tire shows a 

larger slope near the origin and reaches saturation for a lower value of side slip angle. 

The curves of normalized camber force are regular and monotonic for both tires and both curves show 

smaller values than the ones of the high performance bicycle tire, but tire A exhibits larger values than tire 

B for camber angles greater than 6°.  

Finally, the curves of twisting torque against camber angle are almost linear, in this case the three tires 

tend to mingle with each other. 

 

 

 

Figure 53 Forces and torques of wheelchair and bicycle tires in reference conditions 
(vertical load 400 N, inflation pressure 4 bar and disc speed 4 km/h) 

 

The effect of different conditions has been analyzed carrying out specific tests in which only one parameter 

was varied at a time. The disc speed, which corresponds to the wheelchair forward speed, has a negligible 

effect on the measured tire properties. To give an example, Figure 54 shows the effect of a decrease in 

speed on the side slip force generated by tire A, the difference between the two curves is negligible. 

Figure 55 deals with the effect of inflation pressure on tire performance, a strong decrease in tire pressure 

(from 4 to 2 bar) is considered. Tire properties related to side slip angle are strongly affected by inflation 

pressure. In both tires a decrease in inflation pressure causes a large decrease in the side slip force 

generated at the same side slip angle. This trend agrees with the ones measured in bicycle tires [18] and 

the ones measured in motorcycle and scooter tires [29], which moreover sometimes show a saturation at 

high pressure. Self aligning torque increases (in modulus) when inflation pressure decreases, probably 

because the contact patch becomes larger. This result is in agreement with the measurements carried out 

on bicycle and motorcycle tires [18] [29]. Coming to camber force, Figure 55 shows that camber force 
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generated by tire A is not influenced by inflation pressure, like it happens in bicycle tires; whereas camber 

force generated by tire B tends to increase if inflation pressure decreases, like it happens in many 

motorcycle tires. Like in bicycle tires, inflation pressure has a negligible effect on twisting torque. 

 

Figure 54 Effect of forward speed on side slip force 

 

 

Figure 55 Effect of inflation pressure on tire forces and torques 

 

The last parameter here considered is vertical load, its effect is shown in Figure 56. In wheelchair tires, like 

in bicycle and motorcycle tires, when vertical load increases lateral forces do not increase proportionally, 

because normalized lateral forces decrease when vertical load increases. This effect is particularly 

important for side slip force. The effect of vertical load in tire torques is less prominent: in tire A self 

aligning and twisting torques are almost unaffected by tire load, whereas in tire B both torque components 

decrease slightly (in modulus) when load increases. 
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Figure 56 Effect of vertical load on tire forces and torques 

 

7.2 Mathematical model 

In the framework of this research, a specific mathematical model of a wheelchair moving on a horizontal 

road has been developed with the aim of studying the effect of the measured tire properties on typical 

maneuvers. The model includes five rigid bodies: the wheelchair with the user, the rear wheels and the 

front castering wheels. 

 The main assumptions that were made to develop the model are here summarized: 

• The user is a rigid body firmly attached to the chair and exerts two propulsive torques on the rear wheels. 

• The wheels roll without slipping in the longitudinal direction, which is the intersection between the wheel 

plane and the road plane. 

• The wheels can slip in the lateral direction, which is the direction in the load plane perpendicular to the 

wheel plane. 

• The side slip angles are small, therefore their trigonometric functions can be linearized, tire forces and 

torques can be approximated as linear functions of side slip angle. This assumption is currently made for 

studying standard maneuvers of cars. 

• The load transfer between front and rear wheels is neglected, because neither sudden accelerations nor 

sudden deceleration are compatible with standard operations of wheelchairs. 

• The lateral load transfer (between right and left wheels) is neglected, because large centrifugal forces are 

not compatible with standard operations of wheelchairs. 

• The mass and moment of inertia of the small castering wheels is neglected. 

• Transient tire properties (e.g. relaxations length) are negligible because they have a very small effect on 

cornering properties at low speed (typically they affect high speed stability of motorcycles). 

The system has five degrees of freedom: longitudinal and lateral displacements of the center of mass of the 

chair-user, rotation ψ of the chair-user in the plane of motion, caster angles of front wheels (δfr and δfl). 
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Equations of motion are written in coordinate system xm ym, which moves with the vehicle. Absolute 

velocity of the center of mass (V) has components u and v along axes xm ym respectively. 

7.3 Effect of cornering stiffness 

The effect of cornering stiffness has been studied performing three numerical simulations on two typical 

wheelchair maneuvers: the steady-turning and the slalom. Each time, a different value has been assigned 

to the cornering stiffness: in one case the measured value, in another case the half of the measured value 

and in the last case the double of the measured value, so that a wide range of different possibilities has 

been analyzed. 

Figure 57 shows the effect of cornering stiffness on trajectory and slip angles in the steady-turning 

maneuver. From a closer look of the first graph, it is worth noticing that the radius of the trajectory slightly 

decreases if the cornering stiffness increases. This result agrees with the effect of the cornering stiffness on 

the values of slip angle for the right (up) and left (down) rear wheels. If the stiffness increases, the slip 

angles reached at the steady-state decrease. Moreover, it is possible to notice that the slip angles exhibit 

an inversely proportional behavior with respect to the value of cornering stiffness: for example, for a value 

of cornering stiffness equal to the half of the measured value a double slip angle is obtained. The values of 

the slip angles are lesser than 1° in most cases, which confirms the correctness of the linearization of the 

trigonometric functions of the model with linear functions. 

 

Figure 57 Effect of cornering stiffness on trajectory and slip angles in the steady-turning maneuver 

Figure 58 shows the effect of cornering stiffness on trajectory and slip angles in the slalom maneuver. Also 

for this maneuver, the effect of the cornering stiffness on the trajectory is rather limited, an increase in the 

stiffness causes a small increase in the amplitude of the trajectory. The curves of the side slip angles of the 

right (up) and left (down) rear wheels show that if the self-aligning torque stiffness increases, the 

amplitudes decrease. The curves are also asymmetrical with respect to the y-axis: the right wheel shows a 

positive mean value, the left wheel shows a negative mean value. It is interesting to highlight the small 

phase shift that occurs between the curves of the slalom simulations. If, for example, the graph of the 

trajectory is taken into account, it is possible to notice that the trajectory with a larger amplitude shows a 

phase lag with respect to the trajectory with smaller amplitude. Form a physical point of view, since the 

forward speed of the vehicle u is constant, if the trajectory becomes larger more time is spent in order to 

carry out the lateral displacement and the vehicle moves less in the longitudinal direction. 
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Figure 58 Effect of cornering stiffness on trajectory and slip angles in the slalom maneuver 

 

7.4 Effect of self-aligning torque stiffness 

Similarly to the case of the cornering stiffness, three simulations have been performed on the steady-

turning and the slalom maneuvers, the self-aligning torque stiffness ranging from half to the double of the 

measured value. Figure 59 shows the effect of self-aligning torque stiffness on trajectory and slip angles in 

the steady-turning maneuver. It is possible to notice that the self-aligning torque stiffness has a weaker 

influence on the output parameters of the model. If the value of Cmr increases, the slip angles slightly 

decrease. On the contrary, if the self-aligning torque stiffness increases, also the radius of the trajectory 

increases. It is an expected result, because with smaller slip angles the wheelchair can balance a smaller 

centrifugal force (the forward speed u is constant, and the radius increases). 

 

Figure 59 Effect of self-aligning torque stiffness on trajectory and slip angles in the steady-turning maneuver 

The outputs of the three simulations of the slalom maneuver are shown in Figure 60. If self-aligning torque 

stiffness increases, the trajectory tends to become slightly tighter, also in this case it is possible to observe 

a small phase lag between the three trajectories. No significant effect is observed on the slip angles of the 

right (up) and left (down) rear wheels. 
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Figure 60 Effect of self-aligning torque stiffness on trajectory and slip angles in the slalom maneuver 
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Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

 

The aim of the present research was focused on the identification and the improvement of the dynamic 

properties of the components of two-wheeled vehicles: fork, chassis, swingarm and tires. Even if these 

components are different and show specific properties an unified approach has been adopted, which has 

its theoretical basis in modal analysis. 

Significant attention has been paid to the identification of static and dynamic properties of two-wheeled 

vehicle components, specifically motorcycles and bicycles components. One of the most important targets 

of this work was the development of a characterization technique that allowed not only the identification 

of the stiffness properties of the tested components, but made it possible also to introduce the identified 

stiffness properties with a lumped element approach in mathematical models and multi-body codes. The 

twist axis (or Mozzi axis) approach has proven to give encouraging results in terms of stiffness properties 

identification, both in static and dynamic conditions. In most cases the twist axis approach makes it 

possible both the identification of the critical stiffness property and the location of the lumped element. 

The focus of research was on the dynamic properties of motorcycle components that influence the vehicle 

stability (weave and wobble modes) and performance. Further studies are needed to optimize other 

properties that affect load capability, reliability and comfort. 

It is accepted that one of the best methods for carrying out this analysis is making use of numerical 

simulations. In the framework of this research, numerical simulations have been carried out on a 

motorcycle model which employed the identified stiffness properties of the enduro front fork, and on an 

improved bicycle model which employed the identified stiffness properties of the steel fork. A potential, 

future development of this work could consist in a deeper analysis of how the stiffness properties of two-
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wheeled vehicle components affect the vehicle stability. This analysis could be performed on a multi-body 

code (there are already a lot of them, one in our research group as well), introducing in the model the 

structural properties identified with the experimental approach described in this thesis. 
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Appendix 1 – Tires rigid ring model of a tire 

 

The following equations are used for describing the ring model discussed in the fourth section of this paper 

and shown in the block diagram of Figure 41. The first equation relates the side-slip angle and the side-slip 

rate of the contact patch ( 1 1,  ) with the input yaw angle and yaw rate ( ,b b  ) and the lateral velocity of 

the belt ( by ). 

c b b bV a V y                  

The side-slip angle is associated to the side-slip force ( yF ) by means of the cornering stiffness ( bFC  ): 

y bFF C              

The third equation is associated with the lateral equilibrium of the rigid belt: the side-slip force is balanced 

by the stiffness yg bC y  and damping yg bK y  forces of the carcass: 

y yg b yg bF C y K y             

The effects of the self-aligning torque and the diametrical mode of the tire about vertical axis are related by 

means of the following equation for the yaw equilibrium: 

    0zz b a zz b a zC K M                 

The last equation relates the self-aligning torque with the lateral force by means of the trail ( 0t ): 

0z yM t F   

The Frequency Response Function of the model is shown in the following equation: 

  0

( ) bF

bFbF
c

yg yg zz zz

V ai C
FRF

V ai C tiC
V i

C K i C K i








 

 

 


 
  

 

 

If the term due to the tire trail is neglected, a very small error is introduced and the FRF equation becomes: 

( ) bF

bF
c

yg yg

V ai C
FRF

iC
V i

C K i








 



 


 


 

If also the effect of tire dampings is not considered, the simplified model becomes a first order model and 

the FRF equation becomes: 

( ) bF

bF
c

yg

V ai C
FRF a

iC
V i

C
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Appendix 2 – Steady-state tests of motorcycle tires 

 

The steady-state properties considered in the framework of this research are defined as lateral forces (side-

slip and camber forces) and yaw torques (self-aligning and twisting torque). 

In order to perform steady-state tests, the spinning of the rotating disk of the machine is controlled at an 

assigned speed, then either the roll motor or the side-slip motor are actuated to set the camber or side-slip 

angle to the assigned value. The arm configuration is held constant for about 10 s and, when the steady-

state condition is reached, lateral force and torques are measured. In order to speed up the testing 

procedure the machine is programmed to perform the above-mentioned steps for increasing values of 

camber or side-slip angle from zero to the maximum values admitted by the machine (camber angle ± 55°, 

side-slip angle ± 10°). If camber angle is set at zero and side-slip angle is varied the curves of side-slip force 

and self-aligning torque are measured. The self-aligning torque is caused by the non-symmetric distribution 

of stresses along the contact patch and it tends to align the wheel to the direction of speed, if a 

perturbation takes place [1]. When the side-slip is set at zero and camber is varied the curves of camber 

force and twisting torque are measured. The twisting torque represents the tendency of the cambered 

wheel to move along a trajectory with a curvature radius smaller than the one demanded by the steady 

turning maneuver, it does not tend to align the wheel [1]. 

Figures 57-60 refer to the results of the tests carried out on the six tires. All the tires have been tested in 

steady state conditions with a vertical load of 1500 N. The inflation pressure of the tires ranges from 0.5 to 

4 bar, the wide variations are extremely interesting because the research on the mechanics of the tires for 

single-track vehicles up to now has scarcely addressed the problem of the tire’s behavior in the presence of 

large variations in inflation pressure. In every graph each force or torque component is plotted against the 

corresponding tire angle (side-slip or camber angle) for increasing values of inflation pressure. In order to 

give a quick idea of the effect of pressure, typical values of side-slip and camber angles are chosen (4° and 

24° respectively), and the plots of tire forces and torques against pressure at assigned angles are 

represented as well. 

In the front tires side-slip force increases when pressure increases and sometimes shows a flat top at 

pressure larger than the nominal one (e.g. in the motorcycle front tire). In rear tires, whose cross sections 

have larger radius of curvature, side-slip force shows a maximum at the nominal inflation pressure or just 

above this value. 

In all the tested tires camber force reaches the maximum value when the tire is almost deflated. In this 

condition the deformation of the tire’s carcass is large and the contact patch is wide. Hence, in the 

cambered wheel a large part of the tire’s tread has to go away from the theoretical elliptical path when 

entering the contact patch, generating a very large camber force, a detailed description of camber force 

generation is included in [1]. If inflation pressure slightly increases, camber force maintains very large 

values. Only above 1-1.5 bar (depending on the tire) camber force starts decreasing monotonically, if 

pressure increases. 

The curves of self-aligning torque against side-slip angle show again that the maximum values (in modulus) 

is measured when the tire is almost deflated. This result agrees with physical intuition, because, when 

inflation pressure is very low, contact patch is very large and stresses are able to generate very large 

moments. In the tires with large radius of curvature of the cross sections (e.g. 180-55-R17) small 

increments in inflation pressure from the minimum value do not change very much the deformation of the  
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Figure 61 Normalized side-slip forces measured on the three tires sets. 
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Figure 62 Normalized camber forces measured on the three tires sets. 
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Figure 63 Normalized self-aligning torques measured on the three tires sets. 
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Figure 64 Normalized twisting torques measured on the three tires sets. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

p=0.5
p=0.75
p=1
p=2
p=1.5
p=3
p=4

Camber [°]

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

Camber =24°

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
0 1 2 3 4 5

pressure [bar]

120-70-R17

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

p=0.5
p=0.75
p=1
p=1.5
p=2
p=3
p=4

Camber [°]
N

o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

Camber =24°

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
0 1 2 3 4 5

pressure [bar]
180-55-17

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

p=0.5
p=0.75
p=1
p=1.5
p=2
p=3
p=4

Camber [°]

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

Camber =24°

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
0 1 2 3 4 5

pressure [bar]

110-70-16

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

p=0.5
p=0.75
p=1
p=1.5
p=2
p=3
p=4

Camber [°]

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Camber =24°

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
0 1 2 3 4 5

pressure [bar]
140-70-14

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

p=0.5
p=0.75
p=1
p=1.5
p=3
p=2
p=4

Camber [°]

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Camber =24°

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
0 1 2 3 4 5

pressure [bar]

120-70-12

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

0.5
0.75
1
1.5
2
3
4

Camber [°]

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Increasing pressure

N
o
rm

a
liz

e
d

 t
w

is
ti
n

g
 t

o
rq

u
e

 [
m

]

Camber =24°

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
0 1 2 3 4 5

pressure [bar]
130-70-12



88 
 

tire and self-aligning torque maintains large values. In all the measured tires, if inflation pressure raises 

above 1 bar, self-aligning torque decreases monotonically when pressure further increases. In the small 

scooter tires (120-70-12) variations in inflation pressure above 3 bar do not modify the self-aligning torque. 

The plots of twisting torque against camber angle show that this component of the yaw torque decreases 

when inflation pressure increases. The phenomenon is very evident in the motorcycle rear tire. In the 

cambered wheel different longitudinal slips are present in the inner side (towards the centre of curvature) 

and in the outer side of the contact patch, these slips generate longitudinal stresses that in turn generate 

the twisting torque [1]. Since the contact patch becomes larger when inflation pressure lowers the 

moments of the longitudinal stresses with respect to the centre of the contact patch increase, generating 

the measured increment in the twisting torque. 

Note that all tire data are reported at a normal load of 1500 N in order to have a proper comparison. 

However, tires have been tested also for a higher (2000 N) and a lower (1000 N) load, measuring similar 

trends for camber force, self-aligning torque and twisting torque. The normalized side-slip force shows a 

more complex behavior and in some tests at 1000 N it decreases as inflation pressure increases. This 

increasing/decreasing load dependent behavior was observed also for car tires in [35] and for different 

motorcycle tires [36]. 

Summarizing, when the tire is deflating the normalized side-slip force either decreases or increases 

depending on the specific tire and nominal load, whereas normalized camber force increases and both the 

normalized components of yaw torque increase in modulus. Large effect on stability and handling may 

result as a result of such variations. 
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Appendix 3 – Improved bicycle model 

 

 

 

 

Figure 65 a) Carvallo and Whipple bicycle model; b) bicycle model with bending compliance; c) bicycle model with torsion 
compliance. 
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Figure 65 a) shows the benchmark bicycle model developed by Whipple and Carvallo at the end of the XIX 

century. Figure 65 b) and c) shows the bicycle models that take into account either bending or torsion 

compliance of the front fork. The model with bending compliance includes a revolute joint perpendicular to 

the steer axis that defines the bending axis and divides into two parts the front fork. A rotational spring 

with stiffness k and a rotational damper with constant c (not shown in Figure 65) oppose to rotation  and 

angular velocity   respectively. Constants k, c and the position of the bending axis (hW) have been found 

from experimental tests. The model with torsion compliance includes a revolute joint (rotation ) parallel to 

the steer axis. A rotational spring with stiffness k and a rotational damper with constant c (not shown) 

oppose to torsion rotation   and angular velocity   respectively. Forward speed v is assumed constant. 

The linearized equations of the Carvallo and Whipple bicycle model derive from angular momentum 

balances. The first equation (roll equation) derives from the roll angular momentum balance for the whole 

bicycle (including the rider) about a fixed axis in the road plane that is instantaneously aligned with the line 

where the rear frame of the bicycle intersects the road plane (axis ϕ). The second equation (yaw equation) 

derives from the yaw angular momentum balance for the whole bicycle about a fixed vertical axis that 

instantaneously passes through the contact point of the rear wheel (axis ψ). The third equation (steer 

equation) derives from steer angular momentum balance of the front frame about the steer axis (axis δ). 

The rotation of the front wheel about the bending (or torsion) axis due to the bending (or torsion) 

compliance generates new angular momentum components that have to be taken into account. In the 

following of this section the procedure for developing the bicycle model with bending compliance will be 

presented, similar calculations are carried out for developing the model with torsion compliance. 

 

First the Euler’s equation of the front wheel in the front wheel frame of reference (xF, yF, zF) is developed: 

 
 

( 61 ) 

 
 
The first term is due to the variation of the angular moment, the second term is the vector product 

between the velocity of the center mass of the wheel and the momentum of the wheel; and the third term 

(second member) represents the components of the moments of the external forces about the center mass 

of the front wheel. =Fxx FzzI I is the moment of inertia of front wheel about the diametrical axis, 
FyyI  the 

polar moment of inertia, -v/rF is the spin velocity of front wheel, rF the front wheel radius. , ,x y z    are the 

components of angular velocity of the front wheel due to roll ( ), yaw ( ), steer ( ) and bending velocity (

 ), if second order terms are neglected, they are: 
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, ,x y z    are the components of angular acceleration of front wheel: 
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The first of the Euler’s equation  (about xF axis parallel to the bending axis) is added to the other angular 

momentum equations of the benchmark Carvallo and Whipple model and it is the fourth equation of the 

model.  

However, in the roll, steer and yaw equations new terms that derive from the bending motion of the front 

wheel have to be added. The new terms are given by the projection of the left hand side of Euler’s 

equations on the roll, steer and yaw axes. Bending rotation modifies the position of the centre of mass of 

front wheel, the new linear momentum term is: 

 

ˆ-W F WP m h j            ( 64 ) 

In which mF is the front wheel mass, hW the distance between the bending axis and the center of mass of 

the wheel and ĵ  the unit vector perpendicular to the bicycle plane. The corresponding angular momentum 

components about roll, steer and yaw axes have been calculated. Bending rotation affects also the 

moments caused by gravity force of the front wheel and by the front vertical ground reaction, also these 

effects have been taken into account in the model. 

 

The four equations of the model contain five unknowns. They are , , ,    and lateral ground force at front 

contact (FFy). FFy appears in the yaw, steer and front wheel equation, and this unknown is eliminated by 

means of the yaw equation. Finally, yaw velocity and acceleration are eliminated by means of the rolling 

contact lateral constraint. 

The final set of equations includes three linear second order coupled equations in the variables , ,   . 

They represent free oscillations of the system and are useful for studying uncontrolled stability (hands off 

the handlebar). The set of these equations is similar to the one of the Carvallo and Whipple bicycle model: 
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  ( 65 ) 

 

In which BM 
 

is a symmetric mass matrix, 1
BC 

 
a damping matrix that accounts for gyroscopic effects 

and the fourth matrix is a stiffness matrix that is the sum of two terms. Term 0
Bg K 

 
 is proportional to 

gravity acceleration ( g ) and takes into account gravity terms, whereas term 2
2

Bv K 
 

is proportional to 

forward speed squared ( 2v ) and takes into account centrifugal and gyroscopic effects. These matrices  have 

the same meaning of the corresponding matrices of the CWBM, but they have dimension 3x3 and account 

for the additional terms due fork bending , when they are present. 

Matrices ,B BC K   
   

 are “true” damping and stiffness matrices and account for the stiffness and damping 

properties of the fork. 
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