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Abstract

Nowadays, the energy challenge is one of the largest driving forces behind many research ef-

forts. Future energy strategies include smart ways to store and convert energy on demand. On

this exciting perspective, fuel cells and flow batteries play a key role, the former in converting

energy into propulsion, the latter in storing renewable energy surplus. Nevertheless, some

main technological issues still must be overcome, such as limited peak performances often

caused by poor fluid-mechanic efficiency. The fluid-dynamic optimisation of fuel cells and

flow batteries systems is the main aim of the present thesis work. To this end, the focus is set

on studying liquid-vapour two-phase flows and dispersion dynamics in fibrous porous media,

by means of Lattice-Boltzmann numerical models, in order to catch the effects of microscale

phenomena on macroscale features of both technologies. Present findings offer new insights

into understanding fundamental physical behaviours in fuel cells and flow batteries, and give

a guideline for good and innovative design practice.
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Chapter 1

Introduction

1.1 Green Decarbonated Energy

Nowadays, the rapid rise of green decarbonated energy demand provides new opportunities

for scientific community to participate in renewable energy technology development. The

energy challenge is one of the main topic in the European framework programme Horizon

2020. From chemists to biologists and from engineers to physicists, the need of new general

understanding about renewal energies involves many scientific fields.

Among all the European calls of Horizon 2020, the fuel cell topic is of great importance

in the short term perspective of the European community. For instance, the second call

Fuel Cells and Hydrogen Joint Undertaking (FCH2 JU) “aims to accelerate the commercial

development of hydrogen-based energy and transport solutions across Europe through a total

investment of C1.33 billion”. 1 The main target for the scientific and industrial community is

to improve fuel cells performances and reduce the cost of products in order to prove their

competitiveness in the mobility market. In fact, while the fuel cells technology is well known

since the second half of the twentieth century, several technological and industrial issue still

remain in order to make them ready for the global market. [1]

In future fuel cells are expected to dominate the electric automotive sector along with

batteries and hybrid vehicles. Instead, their application to the stationary storage is considered

secondary, even though, at present, they are already well exploited to this aim, e.g. in

Combined Heat and Power (CHP) systems. Projects of 1 MW and larger fuel cell batteries

have been undertaken, while smaller fuel cells in the range of 50-75 kW have been developed

for automotive applications. Anyway, their low emission feature strongly promote them to be

applied for transportation, simply because they appear to be the most efficient and clean way

1http://www.fch.europa.eu/
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to convert energy into propulsion, being characterised by larger range and faster refuelling in

comparison with batteries. [2, 3] On this perspective, fuel generation and storage, as well as

the delivery infrastructure and the limited peak performances are still significant issues. [3]

Redox Flow Batteries (RFBs, also called “flow batteries”) are instead believed to po-

tentially solve the problem of stationary energy storage. RFBs are similar to fuel cells but

they are closed systems, that means the fuel must not be supplied from outside. Rather,

the reduction and oxidation (from which the term “redox”) reactions occur inside the cell

which, in turn, hosts fully reversible chemical reactions. [4] The reversibility and scalability

of this technology are the characteristics which make RFBs appealing as part of the European

strategy for future energy storage. [1]

The present thesis deals with transport phenomena, from gas distribution to liquid move-

ment and condensation, in fuel cells and flow batteries, by means of advanced computational

fluid dynamics. In the current Chapter 1 a brief introduction to fuel cells and redox flow

batteries will be given along with the state-of-art and still-open issues of both technologies.

In the next Chapter 2 the numerical methodology used for simulating flows will be presented.

Chapter 3 regards a study of liquid water cumulation in fuel cells, focusing on implication

on cell design. Chapter 4 instead will present results of simulations of liquid imbibition and

drainage in unsaturated fibrous porous media. Chapter 5 will largely describe the combined

effect of flow and dispersion in redox flow batteries and finally Chapter 6 will summarise the

main results and attainments.

1.2 PEM Fuel Cells

The present study focuses on Polymer Electrolyte Membrane Fuel Cells (PEMFC or PEM

Fuel Cells). PEM fuel cells are electro-chemical energy converters. They are composed of

two graphite plates, named “bipolar plates”, with engraved Gas Channels (GCs) that provide

fuel distribution over the active area as well as current collectors, two fibrous porous media

which serve as gas distributors, and a proton exchange membrane that prevent electrons

passage, see Fig. 1.1. The fuel is hydrogen and it is continuously supplied to the anode side

while at the cathode oxygen is provided as oxidising agent. During the chemical reaction in

the cell, fuel donates electrons from the anode side of the membrane while oxidising receives

them on the other side after they have migrated in the external circuit. The membrane acts as

an electrical insulator while allowing proton transport. In turn, the electrons transport occurs

in the external electrical circuit where they produce electrical work. [3]
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Fig. 1.1 Sketch of a fuel cell.

The global oxidation and reduction reactions occurring at the anode and cathode are:

Anode hydrogen oxydation : H2 → 2H++2e−

Cathode oxygen reduction : O2 +4H++4e− → 2H2O .
(1.1)

It should be stressed that many alternatives exist to describe the latter reactions, depending

on the kind of fuel cell and fuel (methane and methanol are also used in other fuel cells).

Moreover, the full chain of subsequent chemical reactions in real systems is much less trivial

than the one expressed in Eq. 1.2; anyway this is beyond the purpose of the present work and

the reader is suggested to consult more specific publications for a thorough description of the

full chain of reactions, see e.g. [5].

Porous media act as electrodes by hosting chemical reactions in a thin region of them-

selves, i.e. the catalyst layer (CL), as well as by conveying electrons to the current collectors.

Given their porous microstructure, they also facilitate the distribution of species all over

the catalyst layers, so that they are usually called Gas Diffusion Layers (GDLs). GDLs are

usually characterised by high porosity, i.e. ε = 0.7÷0.9, and composed by carbon fibers

randomly distributed throughout the media. From a fluid-dynamic point of view, the GDL is

the most interesting part of the cell since the pertinence of classic macroscopic equation for

modelling mass and momentum transport in porous media is still on debate. [6–8]

The very complex transport phenomena inside GDL greatly affects fuel cell performances.

In fact, the current density of the cell is generally limited by two main factors: activation

over-potential and mass transport losses. The former and the latter dominate the low-current

and the high-current operative conditions, respectively, while the ohmic losses are present
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1.3 Redox Flow Batteries

Redox flow batteries are electro-chemical energy conversion devices, in which a fully

reversible redox processes of species in fluid solution take place. The solutions are stored in

external tanks. Appealing features of RFBs are: scalability and flexibility, independent sizing

of power and energy, high round-trip efficiency, long durability, fast responsiveness, and

reduced environmental impact. [4] These benefits make RFBs capable of assisting electricity

from renewable sources, by storing the excess of generated energy. In fact, in RFBs, power

and energy are separated and easily tunable, by adjusting the number of cells and the size of

tanks, respectively. Thus, they can be easily adapted for different kind and size of energy

storage, at a minimum cost. [4, 10]

The technology of RFBs is known since the late 1980s, but just recently it has gained

popularity, along with the rapid rise of chemical and engineering technology for energy

applications. [11] RFBs can be supplied with different kind of electrolyte solutions, from iron-

chromium to zinc-bromine, and from vanadium-bromine to vanadium-vanadium. Among all,

today the vanadium-vanadium electrolytes are promising to overcome some drawbacks of

this technology, such as cross-over contamination. The vanadium solutions are able to hold

four stable oxidation states of the vanadium element; these oxidation states exchange between

themselves electrons and protons inside the cell to produce electric work. [4] The presence

of four stable state of the same chemical element significantly reduces the performance drop

caused by cross-contamination inside the cell, from cathode to anode and viceversa, allowing

for a high cell capacity for long time. This is the main benefit of using all-Vanadium Redox

Flow Batteries (VRFBs).

Vanadium is dissolved in an aqueous sulphuric acid with some differences in the metal

ion charge oxidation at the electrodes: vanadium IV–V (tetra- valent–pentavalent) is used on

the positive side and vanadium II–III (bivalent–trivalent) on the negative. The half-reactions

reads as follows:

Negative electrode vanadium oxydation : V 2+
discharge
⇄

charge
V 3++ e−

Positive electrode vanadium reduction : VO+
2 +2H++ e−

discharge
⇄

charge
VO2++H2O .

(1.2)

From the above equation, it is clear the similarity with fuel cells, with a major difference: the

reversibility of the reactions fully inside the cell. As in fuel cells, the migration of hydrogen

ions H+ is promoted by a proton exchange membrane, while electrons are transported in an

external circuit. The typical current density of all-vanadium cells is in the order of 5÷8 102
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A/m2, to which correspond a lower power density compared to PEMFCs. This limitation

on power density, along with the intrinsic scalability of the technology, suggests the use for

stationary applications.

Regarding the state of art of VRFBs, during recent years, several power plants based on

such technology have been built. Among them, the plant installed by SEI for J-Power in

2005 is the largest, with a capacity of 4 MW / 6 MWh. The plant has 96 stacks rated about 1

MW which consist of 108 cells each one. [4] From the academic perspective much has been

done for achieving a better knowledge of the physical phenomena inside VRFBs. As for fuel

cells, the chemical behaviour is very complex. For this reason chemists are spending efforts

in understanding the full chain of electro-chemical reactions in order to enhance reactions

and limit secondary products, see e.g. Kim et al. [12] The fluid mechanics is complex as

well. The microstructure of the electrode which act both as fluid mixers, active surfaces

(conversely to fuel cells) and current collectors, is typically composed of randomly placed

carbon fibers. Such complex structure is able to spread and diffuse vanadium species all

along the cell, even if it is not known to what extent this diffusion process can be enhanced.

1.4 Outline of the thesis

The present thesis deals with the fluid-dynamic optimisation of fuel cells and flow batteries

systems, from the micro to the macro scale. The fluid-dynamic study has been carried out

by means of numerical simulations based on the Lattice-Boltzmann Method. Figure 1.3

schematises the thesis structure and the content of every chapter.

The main question that this study tries to address is: “Is it possible to improve fuel cells

and flow batteries performances by improving the fluid dynamics of the systems? And if yes,

how?”. In order to answer these questions, the present study is focused on water management

in fuel cells and dispersion of species in flow batteries. Indeed, these aspects are considered

crucial for increasing peak performances of such systems.

In fuel cells the optimal water management strategy would enhance gas transport to the

gas diffusion layers and catalyst layers while promoting liquid water removal. This strategy

can be achieved by identifying the optimal micro and macro structure design and tuning the

microscopic properties of cell components. In Chapter 3 the main mechanism of liquid water

cumulation and its dependence on GDL and GC macroscopic design will be investigated.

Several simulations with varying the cell design will be analysed. These simulations aim

to investigate the case when water erupts from the catalyst layer in vapour form. Water can

also be transported from catalyst layers to diffusion layers in liquid form; this issue will be

investigated in Chapter 4. The dynamics of liquid infiltration and drainage in fibrous porous







Chapter 2

Numerical Methodology

2.1 The Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM) is an alternative way to solve Navier-Stokes equations.

It has been developed from its ancestor method, the Lattice Gas Cellular Automata. The

LBM solves the Boltzmann Transport equation which determines the statistical distribution

of fluid molecules at the mesoscale.

Without going into the details of its formulation and derivation, the Boltzmann equation

is inherently different of its macroscopic counterpart, that is, Navier-Stokes equation: while

the latter satisfies the mass and momentum conservation laws at the macroscale, the former

satisfies them at the mesoscale in the theoretical framework of kinetics and statistical me-

chanics. [13] In comparison with conventional Navier-Stokes solvers, the main advantages

of the Lattice-Boltzmann Method are its capability of easily handling multiphysics problems

and the ease with which it can be parallelised. Sure enough, it is extensively used for directly

solving two-phase flows without tracking the interface or flows in complex geometries, in a

regular computational grid perfectly suited for parellelisation.

2.1.1 From the Boltzmann Equation to Navier-Stokes

The Boltzmann Transport equation describes the physical state of a thermodynamic system

through the distribution functions f (�x,�p, t). Let be m the mass and�v the velocity of a particle;

if �x is the particle position and �p = m�v its momentum, the distribution function f (�x,�p, t)

conveys the probable number of fluid particles with such velocity in such position, that is:

∆n = f ∆�x∆�p (2.1)
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Actually, Eq. (2.1) describes the probable number of fluid particles in the neighbourhood

(�x±∆�x,�p±∆�p). Taking into account one particles (one-body kinetic level) the Boltzmann

equation reads as:

{

∂

∂ t
+

�p

m
·

∂

∂�x
+�F ·

∂

∂�p

}

f (�x,�p, t) =
Z

( f̂12 − f12)gσ(g,ϑ)dϑd�p (2.2)

where �F is the external forcing, f̂ the post-collision distribution, σ the differential cross

section of the collision, g =�v1 −�v2 the relative velocity and ϑ the characteristic angle of

collision.

Equation (2.2) can be shortly written as:

S f = C12 (2.3)

The Boltzmann Transport equation describes the relationship between the streaming

operator S , that is the “free streaming” of particles along their trajectories, and the collision

operator C12 , which represents the collision between two particles 1,2 and, consequently,

involves the probable state of two particles (two-body kinetic level). These particles, in turn,

depend on trajectories and collisions of others and so on. 1

Boltzmann thus conceived the hypothesis of molecular chaos for which particles going

to collide are completely independent each other: [13, 14]

f1 f2 = f12 (2.4)

To what extent this assumption can be applied to liquids, which are characterised by high

density, has been subject to a great debate. Without entering into the merits of this debate, it

should be stressed that several studies has demonstrate its applicability to liquids dynamics.

In the Boltzmann equation the distribution function at the thermodynamic equilibrium

satisfies the condition of local equilibrium. Local equilibrium is defined as the state in which

particles entering the local fluid element are perfectly balanced by the outgoing one. In this

state the collision operator is null, not because there are no collisions, but rather because

collisions are balanced along different directions. Consequently at equilibrium C e = 0, from

which it follows:

f̂1 f̂2 = f1 f2 (2.5)

1 f12 is the probability to find the particle 1 in ∆�x1 with velocity ∆�v1 and the particle 2 in ∆�x2 with velocity
∆�v2 at the same instant t.
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In logarithmic form:

ln f̂1 + ln f̂2 = ln f1 + ln f2 (2.6)

Equation (2.6) states that the variable ln f is an additive invariant of collision. Thus, if

the fluid is in a state of thermodynamic equilibrium, ln f will be a function of the collision

invariants, i.e the conserved properties during collision: the particle number, the momentum

and the energy I = (1,m�v,mv2/2) These collision invariants are related to their macroscopic

counterparts as follows:

ρ = m

Z

f d�v

ρui = m

Z

f vid�v

ρe = m

Z

f
v2

2
d�v

(2.7)

where m is the mass, ρ is the density, ui the macroscopic velocity and ρe the energy

density. 2 The variable ln f can then be written in polynomial form: 3

ln f = A+Bivi +
1
2

Cv2 (2.8)

It should be noted that the “contact point” between microscopic and macroscopic world

is the equilibrium distribution function f e, which inherently satisfies the local equilibrium

condition. The latter can be expressed by means of the Maxwell-Boltzmann formulation:

f e
i = ρ(2πv2

T )
−D/2e−ω2

i v2
T /2 (2.9)

where ωi = vi −ui is the relative velocity, D the number of dimensions, vT =
p

kBT/m

the thermal velocity , T the temperature and kB the Boltzmann constant. 4

Fluids tend to local equilibrium and this tendency is called local equilibrium relaxation.

Thermodynamic equilibrium can be reached globally, that is when fluid velocities and

temperature are constant throughout the domain, and the fluid can be defined in global

equilibrium.

The fluid relaxation towards equilibrium can be characterised by three main timescales

corresponding to three different dynamic steps:

2the subscript i indicates a Cartesian coordinate components.
3A, B and C are generic polynomial coefficients.
4vT is the mean quadratic velocity of the Maxwell-Boltzmann distribution
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• fast relaxation towards one-body distribution, with the timescale tint ;

• relaxation towards local Maxwellian equilibrium distribution, with time and spatial-

dependent hydrodynamic variables. The timescale is tµ = lµ/v;

• slow relaxation towards global Maxwellian equilibrium, with hydrodynamic variables

constant in time and space. The timescale is tM = lM/v.

In the aforementioned formulation, lmu is the mean free path of particles, while lM is a

characteristic macroscale length. Summarising:

f1,2...N −→
tint

f1 −→
tµ

f e(v,u,T )−→
tM

f e(v0,u0,T0) (2.10)

Citing Sauro Succi:

the fluid dynamics can be seen as the (family) picture that emerges from the

study of the kinetic equations. [13]

From the above sentence, the meaning of the LBM appears more clear: a junction

between variables at different space and time-scales, i.e. the microscopic and the macroscopic

scale. In order to prove that Boltzmann equation leads to the Navier-Stokes equation at

the macroscopic scale, a multiscale expansion can be performed. In practice, it consists

in treating each variable with its own scale. Among all, the Chapman-Enskog multiscale

expansion is one the most famous tool:

f = f e + ε f ne

x = ε−1x1

t = ε−1t1 + ε−2t2

∂/∂x = ε ∂/∂x1

∂/∂ t = ε ∂/∂ t1 + ε2 ∂/∂ t2

(2.11)

In Eq. (2.11) x1 e t1 refer to the speed of sound scale while t2 is the timescale of

hydrodynamic diffusion. The streaming operator can be rewritten on the basis of Eq. (2.11)

along the Cartesian coordinate i (being j the other coordinate):

St = ε
∂

∂ t1
+ ε2 ∂

∂ t2
+ εvi

∂

∂x1i

+
1
2

ε2viv j
∂

∂x1i

∂

∂x1 j

(2.12)

Following the same logic, the collision operator becomes:
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C ( f ) = C ( f e)+ ε C ( f ne) (2.13)

At equilibrium the collision operator is null, see Eq. (2.5). If one multiplies Eqs. (2.12)

and (2.13) by any collision invariant I and integrates in the domain d�v Eq. (2.2), (he)

obtains:

Z [

ε
∂

∂ t1
+ ε2 ∂

∂ t2
+ εvi

∂

∂x1i

+
1
2

ε2viv j
∂

∂x1i

∂

∂x1 j

]

I f d�v =

=
Z

εI C ( f ne)d�v = 0

(2.14)

The integral of the collision operator in the domain d�v must be null in order to do

not violate the conservation law of number of molecules. In order to get the macroscopic

hydrodynamic variables, the collision invariant I = (1,m�v,mv2/2) and the the proper

scale, ε or ε2, must be chosen. For instance, the continuity equation can be attained from

Equation (2.14) by choosing I = 1 and ε:

Z

εI
∂ f

∂ t1
d�v+

Z

εI vi
∂ f

∂x1i

d�v = 0 . (2.15)

Equation (2.15) can be rewritten as:

∂

∂ t1

Z

I f d�v−
Z

f
∂I

∂ t1
d�v+

∂

∂x1i

Z

I vi f d�v−
Z

f vi
∂I

∂x1i

d�v = 0 . (2.16)

Since I is not time dependent, the second member of Eq. (2.16) is null. Finally, on the

basis of the definitions given in Eq. (2.7) and imposing I = 1, the continuity equation can

be derived:

∂ρ

∂ t1
+

∂ (ρui)

∂x1i

= 0 (2.17)

In a similar matter one can derive Navier-Stokes equations by imposing I = m�v with the

scale ε2. It should be lastly noted that the system tends to local equilibrium in a faster time t1

in comparison with the time t2 required to reach global equilibrium by diffusing momentum.

The Navier-Stokes equation results:

∂ui

∂ t2
+u j

∂ui

∂x1 j

=− 1
ρ

∂ p

∂x1i

+ν
∂ 2u1i

∂x2
1 j

+
Fi

m
(2.18)
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Fig. 2.1 Two-dimensional lattice cell in LGCA and in LBM

2.1.2 The Lattice Gas Cellular Automata

The ancestor of the Lattice-Boltzmann Method is the Lattice Gas Cellular Automata (LGCA).

It is based on the cellular automaton, a mathematical model developed in the first 1950s:

the space is divided in discrete parts (the cells) to each of which a proper condition or

state subjected to some set of rules is assigned. In 1986 Frisch, Hasslacher e Pomeau [15]

introduced a new set of rules in order to satisfy the laws of the fluid dynamics which gave

rise to the Lattice Gas Cellular Automata method.

In the LGCA method the domain decomposition into cells can be several on the basis of

the cells shape, e.g. squared or hexagonal. Figure 2.1 shows a two-dimensional example of a

squared cell of a lattice. Each cell consists of some “links” which are addressed by the vector

�cr ≡ [cri,cr j], with r = 1, ...,9 and i, j = x,y (Cartesian coordinates), and which connect the

cell to the others. Moreover, each cell can host up to 8 fluid particles, provided that all the

following rules are satisfied:

• all particles have the same mass m = 1;

• each particle can move along just one direction�cr in a single time interval;

• by the end of this time interval, each particles will move from the position �x to the

position�x+�cr;

• two particles in the position cannot move along the same direction (exclusion principle).

Surprisingly, even though the aforementioned rules are apparently so far from the real

nature of fluids, they can describe a flow field with sufficient accuracy. 5 The latter rules

allows to univocally define the condition of each cell of the lattice at any instant of time; the

two possible states are defined by the occupation number nr:

5In a real gas particles can move in an infinite number of directions and velocities.



2.1 The Lattice-Boltzmann Method 15

Fig. 2.2 Example of collision in LGCA

nr(�x, t) = 0 no particles

nr(�x, t) = 1 particle is present
(2.19)

In the LGCA method the streaming operator describes the particle transfer from one

position to another one while the collision operator describes the possible change of direction

of particles that collide with others:

Srnr = nr(�x+�cr, t +1)−nr(�x, t) (2.20)

Cr(n1, ...,n9) = ñr(�x, t)−nr(�x, t) (2.21)

where ñ indicates the post-collision state. If S = 0, the particle is free to move and

there is not collision C = 0. Conversely, if there is collision, the particle will move to

another position following the rules of the lattice. In the example given in Fig. 2.2, the cell is

squared and its state is (n1, ...,n9) = [101000000]; the collision operator transforms the state

in [010100000] and the two particles can eventually move from n1 to n2 and n3 to n4.

In order to simulate fluids, the possible collisions in this system must satisfy the conser-

vation laws of mass and momentum, and one more condition: the rotational invariance of

Navier-Stokes equations. Therefore one must choose the shape of the cell among the possible

shapes which respect to this condition.

Summarising, the equation of the LGCA method is:

Srnr = Cr(n) , (2.22)

where n = (n1, ...,n9). The same equation can be written as follow:

nr(�x+�cr, t +1) = ñr(�x, t) . (2.23)

The funny story of the LGCA is that it was not really conceived at the beginning for

simulating fluid flows, but rather for applications in computer processors and cryptography.
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Only later, the logic of cellular automaton was surprisingly found to be able to describe the

behaviour of viscous flows at the macroscopic scale.

2.1.3 The Lattice-Boltzmann Equation

One of the major drawback of the LGCA method is the statistical noise. In fact, every

“particle method” (i.e. every method which describe the properties of each particle) is

inherently characterised by a great number of statistical fluctuations. In order to deal with this

excess of information and make the method computationally efficient, McNamara and Zanetti

in 1988 [16] substituted the Boolean value of the occupation number with the corresponding

spatial and temporal mean value. More to the point, instead of assigning one particle to a

specific position, they assigned the mean probability to find a particle to that specific position.

Even though this procedure filters a lot of information from the microscale, it reduces the

statistical noise at the hydrodynamic macroscale.

From the mathematical point of view, the occupation number can be split into two parts:

the mean fr = 〈nr〉 and its fluctuation rr:

nr = fr + rr . (2.24)

By substituting Eq. (2.24) in Eq. (2.22) it results:

Sr fr = Cr( f )+Rr (2.25)

where Rr indicates all the fluctuations around the mean value. If particles are uncorrelated,

each of them will have the same probability of being in a specific position with a given

velocity so that Rr = 0. Actually this corresponds to the molecular chaos hypothesis [14].

With this hypothesis, the non-linear formulation of the Lattice-Boltzmann equation can be

obtained as:

Sr fr = Cr( f ) (2.26)

The non-linearity is intrinsic in the collision operator. It should be noted that Boolean

variables in Eq. (2.26) have been substitute with continuous variables which require higher

computational efforts; nevertheless this drawback is widely compensated by the lower

computational efforts required to compute the statistical noise.

Another drawback is the non linearity of the collision operator. In order to overcome this

issue McNamara e Zanetti [16] and Higuera e Jimenez [17] contemporary suggested to use
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the Chapman-Enskog procedure. In particular they both proposed to expand the variable f

around its global equilibrium value f e0
r , so that Eq. (2.11) results:

fr = f e0
r + f e1

r + f e2
r + f ne

r +O(M 2) , (2.27)

where M is the Mach number. In a similar manner the collision operator along the

generic direction r (being r2,r3 other directions) can be rewritten as:

Cr( f ) = Cr

∣

∣

∣

f e0
r

+
∂Cr

∂ fr2

∣

∣

∣

∣

f e0
r

( f e1
r2 + f e2

r2 + f ne
r2 )

+
1
2

∂ 2Cr2

∂ fr2∂ fr3

∣

∣

∣

∣

f e0
r

( f e1
r2 + f e2

r2 + f ne
r2 )( f e1

r3 + f e2
r3 + f ne

r3 )+ ...

(2.28)

At global equilibrium condition Cr( f e0
r ) = 0. Therefore the first term in the right hand

side of Eq. (2.28) is null. If one consider the higher-order terms O(M 2) negligible, the

equation results simpler:

Cr( f ) =
∂Cr

∂ fr2

∣

∣

∣

∣

f e0
r

( f e1
r2 )+

∂Cr

∂ fr2

∣

∣

∣

∣

f e0
r

( f ne
r2 ) (2.29)

At this point it should be noted that Eq. (2.29) must satisfy the local equilibrium condition,

i.e. when f ne
r = 0 the collision operator must be null. Therefore the first term of Eq. (2.29) is

null as well. The quasi linear Lattice-Boltzmann equation can be thus derived:

Sr fr = Arr2( fr − f e
r2) (2.30)

where Arr2 =
∂Cr

∂ fr2

∣

∣

f e0
r

is called “scattering” matrix. Equation Eq. (2.30) is called quasi-

linear since it actually solves the non linearity of the Navier-Stokes equations.

The quasi-linear formulation of the Lattice-Boltzmann equation was a significant sim-

plification. Anyway some years later another simplification was introduced with the the

Lattice-Bhatnagar-Gross-Krook (LBGK) model, even called single time relaxation model.

The basic idea of the LBGK model was to replace the scattering matrix Arr2 with a single

parameter τ f , which is the only one required to define the physics of the fluid. The LBGK

equation reads as:

Sr fr =− 1
τ f

( fr − f e
r ) (2.31)
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In the quasi-linear formulation the scattering matrix is set in order to satisfy the conserva-

tion laws, while, in the LBGK formulation, distribution functions must satisfied them. In

particular, the discrete counterpart of Eq. (2.7) must be satisfied:

ρ = ∑
r

f e
r = ∑

r

fr

ρui = ∑
r

f e
r cri = ∑

r

frcri

(2.32)

From Eq. (2.32) it becomes clear that the Lattice-Boltzmann equation is the discrete

counterpart of Boltzmann Equation. Qian et al. [18] proposed several solution in order

to satisfy conservation laws and isotropy. As example, the two-dimensional model D2Q9

depicted in Fig. 3.3 is characterised by the speed of sound c2
s = 1/3 and the following

equilibrium conditions

f e
r = wrρ

[

1+3(�cr ·�u)+
9
2
(�cr ·�u)

2 − 3
2
(ui

2 +u j
2)

]

(2.33)

where w1,2,3,4 = 4/36, w5,6,7,8 = 1/36 and w9 = 16/36.

Finally it should be noted that the choice of the value of τ f is partially free since it is

related to the choice of fluid kinematic viscosity:

ν = c2
s (τ f −0.5) . (2.34)

One can tune this parameter and fixing the Reynolds number. For stability issues the

minimum value is 0.5 since for τ f → 0.5 ⇒ ν → 0.

From the numerical point of view one would like to have the maximum value of τ f since

with increasing it, the computational time diminishes. In fact, the higher the value of τ f , the

higher the average time between collisions and the lower the number of iteration necessary

to reach equilibrium. Anyway, the higher τ f , the higher the viscosity, so that one should

increase the forcing for reaching the desired Reynolds number, decresing numerical stability

and accuracy. In light of this one should accurately choose τ f on the basis of the complexity

of the problem and of the stability of the model in reaching the solution.
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2.2 Multi-Relaxation Method

The lattice Boltzmann equation in the most simple formulation (LBGK) reads as the follow

equation which is equivalent to the compact form expressed in Eq. (2.31):

fr(x+ cr, t +1)− fr(x, t) =− 1
τ f

(

fr(x, t)− f e
r (x, t)

)

, (2.35)

where fr(x, t), f e
r (x, t) are the distribution function and the equilibrium distribution function

in the position x at the time t along the r-th lattice direction, c is the discrete speed vector

and τ f is the relaxation time to equilibrium. The left hand side of Eq. (2.35) represents

the free streaming of the fluid whereas the right hand side represents collisions between

particles: the effect of the latter is to bring the distribution function fr closer to the equilibrium

distribution function f e
r . As already mentioned in the previous section, Eq. (2.35) is the

discrete formulation of the Boltzmann Equation. [13]

The Multiple-Relaxation-Time (MRT) scheme allows to overcome some drawbacks of

the Bhatnagar-Gross-Krook (BGK) formulation, such as the viscosity-dependent numerical

errors, especially in the case of very complex geometries. [19] In order to simulate a pressure

gradient ∆P/L in the flow, an equivalent body force is usually implemented. In presence of a

body force, the Lattice-Boltzmann MRT equation reads as follows:

fr(�x+ crδ t, t +δ t)− fr(�x, t) =

=−M
−1{

S
(

mr(�x, t)−meq
r (�x, t)

)

−
(

I − 1
2
S

)(

M Fr

)}

(2.36)

where fr(�x, t) is the distribution function along the r-th lattice direction at the position�x and

time t, cr is the so-called discrete velocity along the r-th direction, M is the transformation

matrix, S the collision matrix, I the identity matrix, and mr, m
eq
r are the moment and the

equilibrium moment along the r-th lattice direction, respectively. The set of moments mr

consists of the hydrodynamic moments, which are conserved during collision, e.g. mass and

momentum, and the non-conserved moments. For details of the MRT scheme the reader is

encouraged to see the paper of Ginzburg et al. [19].

In order to recover the correct Navier-Stokes equation and avoid discrete lattice effects, the

body force Fr in the MRT model used in the present work has been added during the collision

step as follows: [20]

Fr = wr

(

cr,i −ui

c2
s

+
cr,i ui

c4
s

cr,i

) (

∆P

L

)

i

, (2.37)

where wr is the weight of the LBM scheme along the r-th lattice direction and cr,i, ui and

(∆P/L)i are the eulerian component of the discrete speed, velocity, and pressure gradient,
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Fig. 2.3 The 92-neighbours fluid sites of the two-belt three dimensional lattice; the dark and
grey circles indicate sites belonging to the first and second belt respectively. [23, 24]

along the directions i = x,y,z. The macroscopic density ρ and velocity ui are accurately

recovered from the distribution functions fr:

ρ = ∑
r

fr

ρui = ∑cr,i fr +
1
2

(

∆P

L

)

i

.
(2.38)

The MRT model will be used in Chapters 3 and 5 while in Chapter 4 the simplest LBGK

scheme will be adopted.

2.3 Two-phase flows

In Lattice Boltzmann models it is possible to implement several cubic Equations Of State

(EOS) which represent two-phase gas-liquid flows. In comparison with other numerical

methods, the LBM presents the advantage of spontaneously simulate phase separation when

liquid-vapour coexistence conditions are reached. The values of the gas and liquid densities

at equilibrium satisfy the Maxwell equal-area construction. [21] There are different kind of

models to simulate the interaction between the liquid and the vapour phase. The simplest and

more used one is the Shan-and-Chen model. [22] In the latter, the liquid-vapour interaction is

simulate by a density-dependent pseudo-potential ψ : in other words ψ conveys information

about the intermolecular force, i.e. the Van der Waals force.
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This model presents a main drawback: the lack of lattice isotropy beyond fourth-order

which can generate spurious currents at the interface. Moreover, the classic Shan-and-Chen

formulation cannot reach high values of density ratio. In order to overcome this limitation,

Falcucci et al. [23] and Sbragaglia et al. [24] developed the so called “two-belt” or “mid-

range” Shan-and-Chen model. The Shan-and-Chen mid-range approach simulates multiphase

flows by means of an intermolecular force which acts not only on the first neighbour nodes

but even further. The increasing of molecular interactions in the lattice enhance the isotropy

and allows to reach higher density ratio. The intermolecular force F is:

Fr =−c2
s ψ(x) ∑

l

Glwlψ(x+ cl)clr , (2.39)

where cl is the discrete speed vector which runs over a given set of grid points l, wl and Gl

are the lattice weight and a free parameter, relative to the l-th position, and ψ is the density-

dependent pseudo-potential function. The pseudo-potential can have different formulations.

In the present work two different formulations have been used. The first one will be used in

Chapter 3 along with the MRT scheme, in order to allow a higher density ratio:

ψ =
√

ρ0

[

1− exp

(

− ρ0

ρ

)]

. (2.40)

On the other side, in Chapter 4, the pseudo-potential will be chosen in order to correctly

simulate phase change along with the LB heat equation (see next section for further details):

ψ = exp

(

− 1
ρ

)

. (2.41)

The Shan-and-Chen model yields to a two-phase EOS once the free parameters ρ0 and Gl

are properly chosen. Taking into account the 92-neighbours scheme used in Chapter 3 (2-belt

and three-dimensional lattice), the macroscopic pressure equation is determined as follows:

P = c2
s ρ +

1
2
(G1 +G2)c

2
s ψ2 , (2.42)

where P is the pressure, ρ is the density and G1, G2 are the free parameter Gl relative to

the first and second belt of lattice fluid sites respectively (details are given in the paper by

Falcucci et al. [23]). The 92-neighbours model is depicted in Fig. (2.3).
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2.4 Two-phase thermally-coupled flows 6

One of the main benefits of the lattice Boltzmann method is the possibility to implement

an Heat Equation along with the fluid flow simulation. In practice, this is done by solving

another lattice for the scalar quantity T , temperature. In the temperature lattice one solves

the Heat Equation in the same way as in the fluid flow lattice one solves the Navier-Stokes

Equation. In Chapter 4 this approach, which is often called “passive-scalar” approach, will

be exploited in order to simulate liquid-vapour phase-change inside a fuel cell Gas Diffusion

Layer. In particular, the resulting Heat Equation is:

δT

δ t
+u ·∇T = ∇ · (α∇T )+Ψ , (2.43)

where T is the temperature, u the velocity vector, α is the thermal diffusivity, and Ψ is the

source term. [25] By using this method and by choosing the correct form of the pseudo-

potential ψ , one can simulate phase change in a thermodynamically consistent way, with

a proper description of the latent heat. [26, 27] In Chapter 4 Eq. 2.41 will be adopted; the

resulting equation of state is:

P = c2
s T +

1
2
(G1)c

2
s ψ2 . (2.44)

Details of the two-phase and thermal model are given in the paper by Biferale et al. [26]

2.5 Interpolation bounce-back algorithm

The Lattice-Boltzmann Method works on a lattice, so that curved boundaries must be

approximated with stair-shaped boundaries. From one side, this facilitate the parellelisation

of the code and reduce the computational effort. From the other side, this stair-shaped

approximation reduce the accuracy of the solution at the boundaries. Bouzidi et al. [28]

introduced an interpolation algorithm for the velocities at the boundaries, which allows to get

rid of the stair-shaped approximation, without increasing the resolution. Once the distance

δw between the fluid node and the wall is known, the following correction for the value of

the distribution function can be applied:

6The Lattice-Boltzmann thermally-coupled code with interpolated bounce-back algorithm is an improvement
of the code developed by Prof. Federico Toschi of the Applied Physics Department of Eindhoven University of
Technology.
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δw

fluid

r̄ r

xb

sol id

r̄ r

xb + cr

fluid

r̄ r

xb − cr

Fig. 2.4 One-dimensional example of interpolation algorithm.

f̃r̄(xb + cr, t) = k1 · f̃r(xb, t)+ k0 · f̃r(xb − cr, t)+ k̄−1 · f̃r̄(xb, t)

k1 = 2δw ; k0 = 1−2δw ; k̄−1 = 0 ; (δw < 0.5)

k1 = 1/(2δw) ; k0 = 0 ; k̄−1 = 1−1/(2δw) ; (δw > 0.5)

(2.45)

where f̃q is the post-collision distribution function relative to the r-th direction, xb is the

fluid position next to the boundary, r̂ represents the opposite direction of r and k1, k0, k̂−1

are the parameter related to the wall distance δw. Figure 2.4 depicts the interpolation scheme.

The interpolation algorithm conserves momentum up to second order but it does not conserve

mass. This leakage or gain of mass can be easily predicted by Eq. (2.45), taking into

account that the mass exchange at the boundary between the fluid and the solid node is

ρlack = f̃r̄(xb + cr, t)− f̃r(xb, t). In fact, while with a normal bounce-back, i.e. for δw = 0.5,

the aforementioned difference is equal to zero, it is not when δw �= 0.5. Actually, the fluid

node is not more an unitary lattice cube when δw �= 0.5 and its mass lack or excess must be

taken into consideration. To do that, in the present work, a further correction at the boundary

is herein proposed and implemented: after the streaming step the mass difference ρlack is

added to the distribution functions of the fluid node xb in a symmetric way as follows:

fr(xb, t) = fr(xb, t)+wr ρlack . (2.46)

This correction ensures the conservation of mass without changing the velocity field at

the boundary which remains the one described by the interpolation algorithm. The velocity

at the boundary is given by Eq. (2.38), which in the one-dimensional case results:

ur(xb, t) =
[

fr(xb, t)+wr ρlack

]

cr −
[

fr̂(xb, t)+wr̂ ρlack

]

cr̂ . (2.47)

Since cr =−cr̂, the velocity ur(xb, t) is not affected by the mass correction.
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2.6 Model validation

The Lattice-Boltzmann model used in the present thesis has been validated in several ways.

Since the model involves different physical variables and conditions, e.g. liquid and gas

densities with no-slip boundary condition or temperature with fixed temperature at the wall,

different validations have been performed.

Single-phase validation

Firstly, the single-phase flow field through a channel in contact with a porous medium has

been compared with the theoretical solution of the Volume-Averaged Navier-Stokes (VANS)

equations, see Fig 2.5. The VANS equations are determined by spatially averaging over

a representative thin volume the Navier-Stokes equations. The volume where the spatial

averaging is applied must be long enough along the main directions of the flow in order

to catch the largest length scale of the flow. In turn it must be thin enough along the other

direction (typically the wall-normal direction) to ensure enough accuracy of the solution. [29]

Let be the Cartesian coordinates x,y,z and the velocities u,v,w. The generic spatially

averaged variable ϕ can be determined as:

ϕ = 〈ϕ〉+ϕ ′

〈ϕ〉(z) = 1
ε(z)V0

Z Z

V f

ϕ(x,y,z)dxdy
(2.48)

where V0 is the averaging volume, Vf = εV0 is the fluid averaging volume, ε the porosity,〈·〉
the spatial averaging operator, x,y the main directions of the flow and z the wall-normal

direction. In the case of laminar, steady, uniform and two-dimensional flow the VANS

equation obtained by applying the averaging procedure reads as:

0 = gx −
1
ε

∂ε〈u′w′〉
∂ z

+
1
ε

∂

∂ z
ε

〈

ν
∂u

∂ z

〉

+
1

ρVf

Z

S
pnxdS− 1

ρVf

Z

S
ν

[

∂u

∂x
nx +

∂u

∂ z
nz

]

dS

(2.49)

where gx is the generic body force acting along x, S is the boundary surface between fluid

and solid phase inside the averaging volume V0 and nx,nz the Cartesian components of the
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Fig. 2.5 Flow field (left panel) and shear stress partitioning (right panel). At the bottom the
total wall shear stress calculated from the LB flow field is correctly balancing the stresses
computed in the medium, as predicted by the VANS equation.

versor normal to S. By integrating along z Eq. (2.49) one obtains the shear stress partitioning:

τ(z)

ρ
=

Z z0

z
εgx dz =

= ε〈ũw̃〉
∣

∣

∣

∣

z0

z
| {z }

τ f i/ρ

−ε

〈

ν
∂u

∂ z

〉∣

∣

∣

∣

z0

z
| {z }

τv/ρ

−
Z z0

z

1
ρV0

Z

S
pnxdS

| {z }

τdp
/ρ

+
Z z0

z

1
ρV0

Z

S
ν

[

∂u

∂x
nx +

∂u

∂ z
nz

]

dS

| {z }

τdv
/ρ

(2.50)

where z0 is the position corresponding to du/dz = 0. It should be noted that for laminar flows

the total shear stress at the wall τ balances the sum of the viscous stress τv, the form-induced

stress τ f i, the pressure drag τdp
and the skin friction τdv

acting on the porous medium.

Figure 2.5 depicted the shear partitioning determined from the LB flow field. The stresses

have been calculated by using Eq. (2.50) and a finite difference scheme in order to obtain

τLB = τv+τ f i+τdp
+τdv

and compared it with the theoretical solution τVANS = ρ
R z0

z εgx dz.

The computed value of the total shear stress is perfectly overlapping the theoretical solution.
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The geometry is representative of the typical design of fuel cells and flow batteries where

a channel distributes the gas over a porous medium and the Reynolds number is low. It is

interesting to notice that the skin friction is much higher than pressure drag in the porous

medium so that the main force which opposes the flow is the tangential friction at fluid-solid

boundary. Moreover the abrupt change in the shear stress partitioning between the channel

and the porous medium give rise to laminar separation zones at the interface and highlight

the significant role the GC-GDL interface is playing.

It should be finally noted that the flow develops vorticity at the interface which are repeated

over a length ℓinter f ace which is approximately three times the distance between spheres. This

length is considered to be the dominant length scale at the interface.

Permeability validation

In order to further validate the single-phase LB model, the permeability values of flow

through a tube bundle have been compared with the theoretical solution given by Gebart

et al. [30] with varying the fiber diameter d f and porosity ε . Permeabilities have been

determined by means of the Darcy law:

K = εUµ

(

∆P

L

)−1

, (2.51)

while the Gebart solution is:

K = d2
f C

(

r

1− εc

1− ε
−1

)5/2

, (2.52)

with C = 4/(9
√

2π) and εc = 1− π/4. Figure 2.6 shows the comparison: the values of

the permeability with d f = 4 and the bounce back algorithm are satisfactorily close to the

theoretical solution. In turn, with a normal bounce-back rule at the boundary one should

increase the number of lattice nodes to represent the fibers. This result should be hailed as a

proof of the goodness of the interpolation algorithm.

Vapour quality test

When using the Shan-and-Chen model, once the interaction force G is chosen, the equilibrium

liquid-vapour densities ρliq and ρgas are defined. Anyway, in both phases densities fluctuate

around these values and separation phenomena happen spontaneously. The interface is not

“tracked” and there is no information apart from the density field. Consequently, one needs to

fix two density thresholds ρthre which define where the fluid is gas or liquid. A good way to
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determine the thresholds is to ensure that the ratio between the mean value of liquid density

〈ρliq〉 and gas density 〈ρgas〉 which are calculated on the basis of the threshold, equals the

ratio between the equilibrium densities, that is:

〈ρliq〉/〈ρgas〉= ρliq/ρgas . (2.53)

In order to calibrate such parameters, a vapour quality test in a tube bundle has been

carried out. Figure 2.7 depicts the gas-phase volume void fraction ε = ngas/(ngas + nliq)

plotted against the value of the vapour quality Q, with varying the thresholds ρthre; ngas and

nliq are the number of nodes belonging to the gas and liquid phase, respectively, determined

on the basis of ρthre. If Eq. (2.53) is satisfied, the following equation holds:

εgas =

[

1+
ρgas

ρliq

(

1
Q
−1

)]−1

(2.54)

with the vapour quality Q define as follows:

Q =
ngas〈ρgas〉

ngas〈ρgas〉+nliq〈ρliq〉
. (2.55)

From Figure 2.7 the effect of varying the threshold can be seen. This approach has been used

in the present work before simulations in order to tune the density values and increase the

confidence of data.
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Fig. 2.7 Gas volume void fraction εgas plotted with the vapour quality Q.

Film condensation and latent heat validation

Finally, the coupling between two-phase flow and temperature fields has been evaluated by

simulating film condensation on a subcooled surface inside a two-dimensional pipe. The

comparison have been done both with the famous Nusselt theory [31] and with the Asano

theoretical solution which take into account the shear stress between the liquid film and the

surrounding gaseous phase. [32] The subcooled wall temperature Tcool and the initial density

of the system have been set in order to match the thermodynamic condition of liquid-vapour

coexistence, in contrast with the higher initial temperature of the fluid T0 > Tcool . Following

the Asano approach, the film thickness growth δ f ilm(x) along the streamwise direction x can

be described by the following quartic function:

δ 4
f ilm

∆P

4Lνliq

+δ 3
f ilm

τs

3νliq

=
1
λh

κ(Ts −Tcool)(x− x0) (2.56)

where ∆P/L is the body force, νliq is the liquid kinematic viscosity, λh is the latent heat,

κ = 5/3 ρliqα is the liquid thermal conductivity, Ts(x) is the temperature at the liquid-gas

interface, x0 is the position where the film starts to grow and τs(x) is shear stress at the

interface. By assuming that the pipe width is much larger than the film thickness , i.e.

H ≫ δ f ilm, the shear stress τs can be determined on the basis of the local gas Reynolds

number: [32]

τs = 0.332
Re

3/2
x,gasνgasµgas

x2 . (2.57)
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Fig. 2.8 Left panel: condensed film thickness δ f ilm plotted with distance x. The numerical
solution is well overlapping the theoretical solution of Asano et al. [32] Right panel: the
slope of the curve represents the latent heat λh which is approximately constant along the
film thickness.

where the local gas Reynolds number Rex,gas is define with the free stream gas velocity

U∞,gas = (∆P/L) H2/(12µgas) as follows:

Rex,gas =
U∞,gas x

νgas
. (2.58)

Left panel of Fig. 2.8 shows the film thickness growth along x. The numerical solution is

well described by the Asano theory, while the discrepancy with the Nusselt theory highlights

the not negligible effect of the shear exerted by the gaseous phase on the film thickness. The

latent heat λh has been determined from by fitting Eq. 2.56 with the numerical values of

δ f ilm, Ts and τs: the slope of the curve in right panel of Fig. 2.8 represents the value of the

latent heat and it is almost always constant along x. This result confirms that the description

of latent heat is thermodynamically consistent in the present model.





Chapter 3

Fluid Dynamics in Fuel Cells 1

3.1 Characteristic length scales in fuel cells

In fuel cells several physical phenomena take place, from current transport to molecular

diffusion, from phase-change to thermal conductance, each of them dependent on the others.

Thus, the general picture from the outside is representative of dozen of other processes

happening inside the cell. Even if one focused only on the fluid-dynamic aspects, he would

observe a chain of phenomena which contribute to the macroscopic mass and momentum

transport. Each link in the chain has his own characteristic length scale.

For instance, taking into account hydrogen transport from fuel cell inlet to the place where

the last reaction occurs, one observes the following type of mass and momentum transport:

a convective transport inside the distribution gas channels (GC), with typical length scale

ℓGC = O(mm), a diffusive transport inside the gas diffusion layer (GDL), with mean pore

size ℓGDL = O(µm), a diffusive transport in the micro-porous-layer (MPL) all the way to the

catalyst layer (CL), where the mean pore size is ℓMPL = O(nm÷µm), and a proton transport

inside the proton exchange membrane (PEM), with a typical length scale ℓPEM = O(nm).

Figure 3.1 schematises the transport mechanisms.

In the present Chapter the two-phase mechanism of gas-liquid transport in the GC, in

the GDL and in the GC-GDL interface will be discussed. In particular, the influence of

cell design on liquid water cumulation will be investigated, in order to better explain the

importance of water management in fuel cells and the effects of length scale separation on

cell performances. Simulations presented in this chapter aim to investigate the case when

water erupts from the catalyst layer in vapour form.

1A version of this chapter has been published in Journal of Fuel Cell Science and Technology: D. Maggiolo,
A. Marion and M. Guarnieri, Lattice Boltzmann modeling of water cumulation at the gas channel-gas diffusion

layer interface in polymer electrolyte membrane fuel cells, Vol.11(6), 061008, DOI:10.1115/1.4028952.
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Fig. 3.1 Characteristic length scales in fuel cells.

3.2 Water management and liquid water cumulation

in fuel cells

3.2.1 Introduction

In Polymer Electrolyte Membrane Fuel Cells (PEMFCs) water management is a key factor

to ensure best performances. In fact, flooding in the Gas Diffusion Layer (GDL) clogs the

voids in the porous medium, so limiting reactant diffusion. Moreover, water in liquid phase

can reach and obstruct the Gas Channel (GC) increasing pressure drops along the channels.

Water in liquid phase is produced at the cathode due to the electro-chemical reactions

and can be present at the anode due to vapour condensation. [33, 34] Several attempts

have been made in order to measure water content in PEMFCs. The majority of them

concern the cathode side and only few studies have considered flooding at the anode. Ge

and Wang [35] observed droplets formation in the anode gas channel via optical photography

and compared results from different experiments. They measured high relative humidity

(RH) and supersaturation at the anode outlet at a cell temperature of T = 50◦C at any

conditions and they found that water tends to condense on the channel walls rather than

inside the GDL. Siegel et al. [36] measured the mass of liquid water at the anode through

neutron imaging. They observed a significant voltage decrease caused by channel water

clogging, confirming the importance of efficient anode water management. Hartnig et al. [37]

found that at high current densities liquid water accumulated at both anode and cathode,

near the channel ribs and near the microporous layer. Yamauchi et al. [34] investigated
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the flooding/plugging phenomena on the anode side of a PEMFC by means of a two-pole

(anode/cathode) simultaneous image measurement. The cumulation of water in liquid phase

at the anode in low humidity condition has been described as a consequence of the steam

back-diffusion mechanism from the cathode side.

There are three main factors that influence water vapour concentration at the anode: the

RH value of the inlet gas and the water back diffusion from the cathode to the anode, partially

balanced by electro-osmotic drag from the anode to the cathode. These factors can cause

condensation. However it is not yet clear whether the design of the GC and GDL could be

optimised to limit water cumulation and pores clogging. Li et al. [38] proposed a model to

determine the design of the GC suitable to facilitate the evaporation of liquid water. Thuran et

al. [39] evaluated the influence of the land-channel ratio. They found that the liquid stored in

the cell decreases, as the land-channel ratio decreases. Recently Sruoji et al. [40] proposed a

new flow field architecture, named Open Metallic Element (OME). Its concept is elimination

of lands, that is achieved substituting a porous medium to the conventional channel-land

design. Cell’s performance dramatically improved. The authors ascribe such result to the

absence of lands, that facilitates water removal.

The active areas in PEMFCs are typically two planar region separated by a thin electrolyte

and supported by highly permeable GDLs which spread the fuel over the whole catalyst areas

and facilitate the removal of reaction product. In turn the fluids are taken to the GDLs by

means of plates put in contact with them and provided of a dense serpentine of thin GCs.

Many factors affect the interaction between GCs and GDLs, that is, the fluid behaviour

at the GC-GDL interfaces. From a hydrodynamic point of view, the GC-GDL interface

corresponds to the so called Transition Layer (TL) which is the portion of the flow in the

porous medium (i.e. the GDL) influenced by the flow in the channel (i.e. the GC). The

hydrodynamic mechanism of mass transfer in the TL has been widely studied [41–44] but, to

the best of the authors’ knowledge, there are no studies about water cumulation phenomena

in the TL.

In the light of these evidences, the present study proposes a three-dimensional two-phase

model of the flow in the GC and GDL based on the Lattice Boltzmann method (LBM). It

is a further development of Maggiolo et al. [45] The aim is to investigate the effect of the

GC-GDL geometry on water cumulation at the anode and, in particular, at the GC-GDL

interface.
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Fig. 3.2 Sketch of the simulation domain h = 0.3, dp = 33 µm, ds = 67 µm, φ = 0.69 and
density fields at the equilibrium. The darker zones indicate liquid density.

3.2.2 Simulations of water cumulation

Simulation set-up

In order to simulate the gas-liquid phase separation and the water cumulation, a simplified

GC-GDL element is herein considered, as represented in Figs. 3.2 and 3.3. The total height

of the domain is H = 1 mm, and the length is L = 0.3 mm, which is statistically consistent

with the heterogeneity of the porous medium (the dominant length scale at the interface

approximately equals three times the distance between spheres, see Chapter 2 Section 2.6).

The GC and GDL widths are WGC = 0.8 and WGDL = 1.2 mm respectively , to take into

account the true land-gap structure of the GC. The GDL height HGDL is varied so that the
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Fig. 3.3 Scheme of GC and GDL cross section of a PEMFC. The dashed lines indicate the
simulation domain cross-sectional area.

relative GDL height h (i.e. the ratio of the GDL height to the total height H) is varied within

the range h = 0.3−0.9.

For the sake of simplicity, in the present chapter, the geometry of the GDL is represented

by a Body Centered Cubic (BCC) packing of spheres as depicted in Fig. 3.2; the diameter

of the spheres, the minimum pore size and the porosity will be addressed as ds, dp and φ

respectively.

The flow is assumed to be steady, uniform and driven by a pressure gradient ∆P/L which

is implemented as an equivalent body force. [13] Periodic boundary conditions are imposed

at the inlet and the outlet along the stream-wise direction x and at open boundaries along the

span-wise direction y; no-slip boundary conditions on fluid-solid boundaries are given via a

bouncing-back mechanism. A wall fictitious density is set at the solid boundaries so as to

simulate a gas-liquid-solid contact angle of about 90◦. [46]

The typical value of the Reynolds number in the gas channel (i.e. Re∗GC) can be calculated

with typical values of geometric and fluid properties in PEMFCs:

Re∗GC =
Qcell dh

N ab νH2

∼ 14 , (3.1)

where Qcell = 1.4 l/min/cell is the imposed inlet flow rate per cell, that is the maximum

advised inlet flow rate of UBzM PEMFC stacks (to which correspond an 80% gas utilisation).

N = 23 is the number of gas channels per cell in the anode, a = 0.8 mm and b = 0.7 mm are

the cross-sectional width and height of the gas channels, dh = 2ab/(a+b) is the gas channel

hydraulic diameter and νH2 = 1 ·10−4 m2/s is the kinematic viscosity of the hydrogen.

In general, the pressure gradient can be related to the Reynolds number in the gas channel

by means of the Hagen-Poiseuille law:

∆P

L
=

12

H3
GC

νµ ReGC , (3.2)
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Table 3.1 Parameters used in the four sets of simulations> in each set the relative height has
been varied within the range h = 0.3−0.9.

Set dp ds φ Fixed physical quantity
1st 33 µm 67 µm 0.69 ∆P/L = (∆P/L)∗

2nd 50 µm 50 µm 0.84 ∆P/L = (∆P/L)∗

3rd 33 µm 67 µm 0.69 ReGC = Re∗GC

4th 50 µm 50 µm 0.84 ReGC = Re∗GC

where µ e ν are the dynamic and kinematic viscosities of the fluid. Eq. (3.2) can be

applied to any kind of fluid, such as pure hydrogen or water-hydrogen (H2-H2O) mixture, so

that µ = µmix and ν = νmix are used herein in order to simulate the H2-H2O mixture flow.

For sake of clarity, the value of the pressure gradient for ReGC = Re∗GC and HGC = 0.7 mm

will be addressed as (∆P/L)∗.

Four sets of simulations have been run varying the relative GDL height h: in the first

and second one the pressure gradient is fixed at ∆P/L = (∆P/L)∗ whereas in the third

and fourth one the Reynolds number in the GC is fixed at ReGC = Re∗GC by adjusting the

corresponding pressure gradient evaluated by Eq. (3.2). All the main properties of the four

sets of simulations are listed in Tab. (6.1).

Equation of state

Three main hypotheses have been assumed: (i) the two-mixture components in the gas phase

(H2 and H2O) occupy the same volume, (ii) the intermolecular force between the two gas

mixture components is negligible compared to the force between components in different

phases and (iii) the phase-separation is isothermal.

Based on the aforesaid hypotheses, starting from a metastable condition, it’s possible to

simulate the spontaneous phase separation which leads to the phase equilibrium described

by a mixture EOS, by means of the present model. The phase separation occurs when the

attractive forces are strong enough and the temperature (i.e. G1 +G2) is low enough. The

model is isothermal, hence the temperature and the pressure are set to be homogeneous and

critical over the all domain. With these conditions, the phase separation can take place and

it is possible to investigate where, under critical conditions, the gas and the liquid phases

preferably exist. It should be noted that all simulations starts in a metastable condition and

no water is added to the domain during simulations. Hence the model does not simulate
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condensation phenomena but rather the behaviour of two-phase flow in equilibrium in

saturation condition.

The EOS is calibrated in order to reproduce the EOS of the H2-H2O-mixture proposed

by Rimbach and Chatterjee with the following imposed conditions: [47]

• temperature T = 70◦C ;

• mole water fraction XH2O = 0.2 ;

• relative humidity RH = 100%.

to which correspond the critical pressure P = Psat . The latter values are arbitrarily chosen in

order to simulate a possible saturation condition of the cell.

Figure 3.4 shows the good correspondence between the lattice Boltzmann EOS given by

Eq. (2.42) and the H2-H2O-mixture EOS of Rimbach et al. [47] The resulting liquid-gas

dynamic viscosity and density ratios are of the order of 100. It has been mathematically

demonstrated that the two-phase capillary filling is driven by the dynamic viscosity ratio when

inertial forces are negligible. [48] Therefore, although the LBM density ratio results two order

of magnitude lower than the real one, the model can qualitatively simulate phase-separation

and two-phase flow phenomena given that the dynamic viscosity ratio is comparable with the
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Fig. 3.5 Number of liquid sites over total fluid sites versus the relative GDL height h =
HGDL/H: (a) for a fixed pressure gradient and (b) for a fixed Reynolds number in the GC.

real one and the Reynolds number is small.

Results

All simulations start with the fluid in a metastable state as depicted in Fig. 3.4. The equi-

librium state is considered to be reached when two convergence criteria are simultaneously

satisfied at the t-th iteration: (i) the relative error between the Reynolds number at the t-th

iteration and the previous iteration value (i.e. |Ret −Ret−1|/Ret) is less than 10−4, and (ii)

the relative error between the mean density value of sites that overcome the initial density

value at the t-th iteration and the previous iteration value (i.e. |ρ̄ t
>meta − ρ̄ t−1

>meta|/ρ̄ t
>meta) is

less than 10−4. Re is given by:

Re =
UH

ν
, (3.3)

where U is the average velocity of the two-phase flow along the stream-wise direction

x and ν is the kinematic viscosity. A lattice site is considered to belong to the liquid or

gas phase when the density value exceeds or falls short of the threshold value ρlim = 2.15,

respectively.

Figure 3.5 shows the ratio of the number of liquid-phase fluid sites nliq on the total

number of fluid sites n, at different values of relative GDL height h. First of all, for almost

all the data-set, as the relative GDL height h increases, the liquid-phase fluid sites decreases

with respect to the total number of fluid sites. Secondly, the values of nliq/n obtained in the
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the relative GDL height h = HGDL/H: (a) for a fixed pressure gradient and (b) for a fixed
Reynolds number in the GC.

first and second sets of simulations (i.e. with a fixed pressure gradient) remain more or less

the same in the third and fourth ones (i.e. with a fixed ReGC), indicating that the value of

nliq/n neither depends on the gas channel Reynolds number within the range ReGC ∼ 0−14

nor on the porosity of the GDL. It’s intuitive to think that the strong effect of the relative

GDL height on water cumulation phenomena is related to the mechanism of mass transfer in

the GC, in the GDL and, especially, in the GC-GDL interface. [45]

As remarked in the second section of this chapter, in order to study the mechanism of

mass transfer at the GC-GDL interface is crucial to identify the TL, that is the portion of

flow in the porous medium affected by the flow in the channel. In the present work the TL

is defined as the region under the GC-GDL boundary long as the domain length L, wide as

the GC width and high as two times the sum of dp and ds. Figure 3.6 shows the ratio of

the number of liquid-phase fluid sites nliq on the total number of fluid sites n in the TL at

different values of relative GDL height h, whereas Fig. 3.7 depicts the cross-sectional area of

the TL and the location of liquid-phase sites for three different values of h.

The number of liquid-phase sites at the GC-GDL interface decreases as the relative GDL

height increases, in a similar manner to the total number of liquid sites shown in Fig. 3.5,

confirming the influence of the fluid behaviour in the TL on the number of liquid-phase sites

in the whole domain. Moreover, Fig. 3.6 shows that water cumulation depends somehow on

the porosity φ and on the minimum pore size dp. However the relationship between nliq/n

and φ , dp is not straightforward.
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Figure 3.7 shows the location of liquid-phase fluid sites for only three cases but results

can be applied to all the other cases. They indicate that there are two main regions where

water preferably tends to cumulate: (i) the upper (i.e. z/H ∼ 1) and side walls of the GC and

(ii) the interface between the GC and the GDL (i.e. z/H ∼ h), being the latter the preferred

region where water tends to cumulate.

These results confirm the key role of the TL in water cumulation phenomena. As a matter

of fact, the TL is characterised by vertical pressure gradients: over it, in the GC, the flow is

pressure-driven along the stream-wise direction x, while under it, in the diffusion-dominated

GDL, the pressure field is altered because of the presence of solid boundaries (i.e. the GDL

fibers). This induces density fluctuations and can lead to water cumulation phenomena. At

a given value of the pressure gradient along x or of the Reynolds gas channel number, the

bigger the relative GDL height h, the smaller the fluid shear stress variation and the vertical

pressure gradient at the GC-GDL interface.

In order to prove the mechanism of density fluctuation in the TL, it can be useful to

evaluate the mean density value of sites in the TL that overcome the metastable density

value ρ̄>meta|T L, that is, the mean value of the density fluctuations towards the liquid phase.

The comparison between ρ̄>meta averaged over the all domain and ρ̄>meta|T L on varying the

relative GDL height value h reveals that the density fluctuation is more significant in the

TL, as depicted in Fig. 3.8, and confirms that the GC-GDL interface is the preferred region

where water tends to cumulate. Figure 3.8 also shows that the density fluctuations in the TL

are more significant in the case of lower porosity (i.e. dp = 33µm and ds = 67µm). Further

studies will be devoted to address this issue.
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Fig. 3.8 mean density values of sites that overcome the initial metastable density value in
the TL and in the whole domain with varying the relative GDL height h for: (a) φ = 0.69,
d p = 33µm, ds = 67µm AND (b) φ = 0.84, d p = 50µm, ds = 50µm.

However, Fig. 3.8 shows that the increase of h contributes to decrease the density

fluctuations and limits water cumulation at the GC-GDL layer interface for all the considered

cases. This is of vital importance in order to limit and possibly avoid the GC-GDL interface

pore clogging phenomena which can significantly prevent the diffusion of reactant from the

GC to the GDL.

3.2.3 Remarks

In this study the mechanism of water cumulation at the anode of PEMFCs has been inves-

tigated. In particular a three-dimensional lattice Boltzmann multiphase model has been

developed in order to study the influence of geometric parameters on the mechanism of

cumulation of liquid water in the GC, in the GDL and in the GC-GDL interface.

Several simulations have been carried out under different geometrical and physical condi-

tions, leading to two main findings. First, results qualitatively agree with the experimental

observation of water cumulation at the upper wall of the GC given by Hartnig et al [37] and

Ge and Wang [35], but also reveal a new mechanism of water cumulation at the GC-GDL

interface, more to the point, in the so called transition layer. The transition layer (i.e. the

portion of flow in the GDL influenced by the flow in the GC) has been identified as the

preferred region where water tends to cumulate at the anode of PEMFCs.
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Second, the bigger the relative GDL height, the smaller the number of sites in liquid

phase (i.e. the percent of liquid water) in the whole domain and particularly in the GC-GDL

interface. This relation indicates that water cumulation phenomena are less significant in

more spatially uniform flows, e.g. in a porous medium rather than in a channel-porous

medium design.

The present model is a first attempt to understand the microscopic mechanism of water

cumulation in PEMFCs, but it is still does not consider species and thermal diffusion. Even

though the latter phenomena can significantly condition the water content in fuel cells,

interesting information on water cumulation can be deduced from the present results. Further

studies with more realistic geometries of GDLs are necessary to attain a comprehensive

insight of the relation between the porosity and water cumulation phenomena and to confirm

the results of this study.



Chapter 4

Drainage Dynamics in Fuel Cells 1

4.1 Fuel cells drainage and wettabilities

In fuel cells chemical reactions occur continuously at the membrane producing a considerable

amount of water both in vapour and liquid form. In order to maintain high performances the

amount of liquid in water form must be efficiently removed from the gas diffusion layer. As

aforementioned in the previous chapter, if water diffuses in vapour phase from the membrane

all along the gas diffusion layers cross section, it tends to condense preferentially at the

GC-GDL interface. Increasing the ratio between the GDL and GC heights can help to avoid

such liquid cumulation, although it requires an higher pump power. Anyway, if the water

diffuses from the membrane in liquid form, the latter strategy may be not sufficient to drain

the porous medium. In fact, liquid water diffusion in porous media is a very slow process

compared to vapour diffusion; moreover, liquid can remain trapped in the vicinity of the

membrane for very long time. This is an even worse scenario than liquid cumulation at the

GC-GDL interface, since hydrogen would not reach the catalyst layer which will be covered

by liquid water and any chemical reaction will be impeded.

In order to overcome this issue a Micro-Porous Layer (MPL) has been recently adopted

as supplementary layer between the GDL and the membrane. [49] The main feature of the

MPL is the average pore size which is between that of the catalyst layer and the GDL. As a

consequence of this, there will be a capillary pressure gradient between the MPL and the GDL

which forces the liquid towards the GDL. [50] Anyway this capillary pressure gradient is not

sufficient to ensure an efficient drainage of the GDL since the liquid water can remain trapped

in the vicinity of the MPL if no other forces are present. Adopting hydro-phobic/philic

1 Results of this chapter have been presented at the EFMC11 congress: D. Maggiolo, F. Picano, F. Toschi
and M. Guarnieri, Lattice-Boltzmann simulations of two-phase flows in fuel cell gas diffusion layers, 11th

European Fluid Mechaincs Conference, Seville, Sept. 12-16, 2016.
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Gostick et al. [57] investigated the relation between capillary pressure and saturation in the

GDL. The authors were able to predict a pressure-saturation curve for modelling the liquid

transport more accurately. Nevertheless, to what extent the hydrophobicity of the medium

influences the imbibition and drainage phenomena is still to be understood.

In this chapter theoretical models for imbibition in porous media will be briefly described

and the main findings from different numerical simulations of imbibition and drainage in

hydrophobic and hydrophilic fibrous porous media will be presented.

4.2 Wettability effects on imbition and drainage

in porous media

4.2.1 Introduction

The most famous equation for describing the dynamics of imbibition in porous media is the

Washburn’s equation. [58]. It is even called the Bell-Cameron-Lucas-Washburn equation

since Bell, Cameron and Lucas derived similar relations earlier. It reads as follows:

h(t)2 =
γ cos(θ)

µ

Rc

2
t , (4.1)

where h(t) is the time-dependent liquid penetration along the main direction x (see

Fig. 4.2), γ is the capillary surface tension, θ is the liquid-vapour contact angle, µ the liquid

dynamic viscosity and Rc the capillary radius.

Equation (4.1) describe the so called “spontaneous” imbibition, that is, when the only

forcing is given by the wetting properties of the pores wall (and possibly gravity, not

considered here). It can be directly derived from the Stokes equation:

2γ cos(θ)
Rc

| {z }

wetting

=

(

∆P

L

)

ℓ∆P

| {z }

pressure gradient

+
dh

dt

8 µ h

R2
c

| {z }

viscous

+ρ
d
dt

(

h
dh

dt

)

| {z }

inertia

, (4.2)

where ∆P/L is the pressure gradient and ℓ∆P is the thickness of the liquid volume.

Eq. (4.2) can be integrated in order to obtain an analytic solution for imbibition dynamics.

By imposing the initial condition h(0) = 0 and in the hypothesis of negligible inertia effects,

such as in fuel cells, it follows:

h(t) =

[

−
(

∆P

L

)

ℓ∆P R2
c

4µ
+

γ cos(θ)Rc

2µ

]1/2

t1/2 . (4.3)
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Fig. 4.2 a) Capillary imbibition model. b) Real porous medium imbibition; the blue surface
represent the liquid-vapour interface

Wahburn equation can be obtained if the imbibition is spontaneous, that is the pressure

gradient is null. In order to predict the saturation of a real porous medium (i.e. the ratio

between the liquid volume Vl and the volume of the void-space Vv) during liquid front

imbibition, one can follow the analogy proposed in Fig. 4.2 and consider that a liquid front

should penetrate the pores of the medium following Eq. 4.3, on average:

Sat(t) =
Vl

Vv
≈ 〈h(t)〉

H
=

[

−
(

∆P

L

)

ℓ∆P R2
c

4µ H2 +
γ cos(θ)Rc

2µ H2

]1/2

t1/2 , (4.4)

where H is the thickness of the porous medium and 〈·〉 denotes the spatial averaging

operator so that 〈h(t)〉= 1/(εLzLy)
R R

hdzdy, with Lz and Ly the lengths of the medium along

z and y. Equation (4.4) conveys useful information about the two characteristic velocities of

the system. The first is given by the ratio between capillary and viscous forces, while the

second is given by the ratio between pressure gradient and viscous forces:

Uγ =
γ cos(θ)2Rc

µ H
, U∆P =−

(

∆P

L

)

ℓ∆P R2
c

µ H
. (4.5)
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Given the equations above, one can rewrite Eq. (4.4) in dimensionless form simply as:

Sat(t)≈ 1/2 t∗1/2 , (4.6)

being t∗ = t (U∆P +Uγ)/H the dimensionless time. Equation (4.6) has been derived

under the assumptions that (i) gravity and inertia effects are negligible, (ii) all variables are

neither dependent on time nor dependent on space, except h(t), and (iii) the tortuousity of the

medium τm ≈ 1. Obviously, these assumptions are not always satisfied in real system. For

instance, for the very first moments of the imbibition process inertia must be considered while

viscous effects can be neglected; under these hypothesis the liquid penetration is faster in

time, i.e h ∝ t. [59] Instead, if gravity effects are important, one expects the liquid penetration

growing a bit slower in time, with the imbibition at corners growing with h ∝ t1/3. [60]

Concerning the second hypothesis, significant deviation from Eq. (4.6) are expected when

the contact angle θ and/or the capillary radius Rc are time dependent. For example, it is

well known that the dynamic contact angle θdyn(t) can be significantly different than the

equilibrium one θ , leading to different behaviours of the imbibition process. [61, 62] From

another perspective, this hypothesis is equivalent to assuming that the diffusion coefficient

of a liquid front imbibing a porous medium is a constant and do not depend on time or on

saturation. [63]

4.2.2 Simulations of imbition and drainage dynamics

Mechanical imbibition

In the present subsection results of different simulations of initial liquid infiltration will be

presented. A liquid front has the possibility of imbibing a medium if the following inequation

is satisfied:

∆P

L
ℓ∆P

| {z }

pressure from forcing

+
2γ cos(θ)

Rc
| {z }

capillary pressure

> 0 . (4.7)

Actually, Eq. (4.7) expresses the same balance between forces in Stokes equation (4.2)

neglecting inertia and viscous forces at the initial time t = 0. In other words, if the medium is

hydrophobic, the pressure given by the external forcing must overcome the opposite capillary

pressure which tends to reject the water. Equation (4.7) can be reformulated as function of

the characteristic velocities of the systems:

Uγ

U∆P

>−1 . (4.8)
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Forcing θ Forcing θ

1 1 ·10−5 90◦ 3 5 ·10−5 135◦

2 5 ·10−5 90◦ 4 5 ·10−5 129◦

3 10 ·10−5 90◦ 5 5 ·10−5 120◦

1 1 ·10−5 45◦ 6 5 ·10−5 108◦

2 1 ·10−5 60◦ 7 5 ·10−5 100◦

3 10 ·10−5 60◦ 8 10 ·10−5 135◦

1 1 ·10−5 135◦ 9 10 ·10−5 129◦

2 1 ·10−5 120◦ 10 10 ·10−5 120◦

Fig. 4.3 Forcing pressure gradient ∆P/L and equilibrium contact angle θ values for all the
considered cases of initial imbibition in lattice units.

In the case of an hydrophilic medium Uγ > 0, so that even if the external forcing is

negligible, the ratio Uγ/U∆P will be a positive number or infinite and imbibition will occur:

this is the case of the so-called “spontaneous imbibition”. In the case of no wetting, i.e.

Uγ ≈ 0, there must be a positive forcing for imbibition. More interestingly, in the case of

hydrophobic medium, Eq. (4.8) will predict if the liquid front will penetrate on the basis of

the hydrophobicity and pressure gradient values. Anyway the prediction may be inaccurate if

the aforementioned characteristic velocities are not well computed. In fact, while values of

pressure gradient and superficial tension, as well as values of the equilibrium contact angle

are usually well know at priori, the estimation of the capillary radius can lead to significant

errors.

In order to verify the applicability of Eq. (4.8), different preliminary simulations of front

imbibition has been carried out by varying the medium hydrophobicity, and the external

forcing. A triperiodic box has been used, see Fig. 4.2, and a liquid front of the same thickness

of the porous medium has been juxtaposed it. A body force acts as a pressure gradient and

push the liquid front inside the medium along the streamwise direction x. The total domain

size is L3 = 1003 computational cells; the porous medium thickness is H = L/2 and his

width W = L along both y and z directions. The porous medium is composed of n f = 35

fibers possibly overlapping themselves, with fiber length and diameter ℓ f = L and d f = L/25,

respectively. Fibers are placed randomly following an uniform distribution.

The Shan and Chen multiphase model coupled with temperature (see Section 2.4) has

been used in order to take into account possible effects of evaporation and condensation. The

temperature at the walls and the initial temperature have been set as T0 = Twall = 0.63 Tc in

order to allow liquid-vapour coexistence and achieve numerical stability.
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Fig. 4.4 Characteristic velocity U∆P plotted against the other characteristic velocity of the
system Uγ . Cross, triangle and circle markers indicates no infiltration, slow infiltration and
fast infiltration, respectively. Yellow, red and violet markers refer to hydrophobic media
while blue and green markers refer to “neutral” and hydrophilic media, respectively.

The capillary radius Rc has been estimated as two times the hydraulic radius, i.e. Rc = 2Rh.

The latter has been determined on the basis of the fibers diameter d f , length ℓ f and number

n f as follows:

Rh =
Void volume

Wetted surface
=

W 2 H −n f πd2
f /4ℓ f

n f πd f ℓ f

. (4.9)

Values of characteristic velocities are plotted in Fig. 4.4 while values of equilibrium

contact angles and pressure gradients for each considered case are listed in Tab. 4.3. Results

show a good matching between numerical values and the prediction of initial infiltration

based on Eq. (4.8). When the inequality is not satisfied liquid cannot penetrate the porous

medium, as expected. Small deviation from the prediction can be observed for some few

cases. This can be due to the estimation of the hydraulic radius. Anyway, without loss of

generality, Fig. 4.4 verifies the goodness of Eqs. (4.8) and (4.9).

After the very first times, when the infiltration is governed by the equilibrium between

capillary and external forces ∆P/L, viscous forces start to play a significant role and the
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Fig. 4.5 Neutral and hydrophilic cases. Dimensionless permeability values K/d2
f for gas

phase plotted against the dimensionless permeability for the liquid phase. Values gather
around the dashed lines (the bisection y = x), indicating similar velocities of the phases and
uniform fronts for low values. For higher values of permeability the front is broken up.

mechanism of imbibition can change case-by-case. In order to characterise the two-phase

flows, permeability values K have been computed for both liquid and gas phases as follows:

Kliq,gas =
εuliq,gas µ

∆P/L
, (4.10)

being uliq,gas the mean intrinsic velocity of the liquid and gas phase, respectively. The

dynamics of the imbibing front can be strongly intermittent in time, so that K values are

time-averaged in a sufficiently long range of time after initial infiltration . Figures 4.5 and

4.6 shows K values for the neutral and hydrophilic, and hydrophobic case, respectively.

If the medium has no wetting properties (i.e. θ = 90◦, “neutral” medium), or is hy-

drophilic (i.e. θ < 90◦) the liquid front can penetrate slowly or fast on the basis of the

balance between forcing and capillarity. The front is maintained uniform as long as inertia

effects are negligible. Conversely, in the case of strong forcing, the infiltration is much faster
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Fig. 4.6 Hydrophobic case. Dimensionless permeability values K/d2
f for gas phase plotted

against the dimensionless permeability for the liquid phase.

and the permeability values Kliq and Kgas can be much higher, as depicted in Fig. 4.5: in this

case the liquid front can be broken.

On the other hand, when the medium is hydrophobic, the infiltration mechanism and

permeability values can be very different, see Fig.4.6. If the forcing is not strong enough to

overcome capillary effects which are impeding the infiltration, there will be no infiltration, as

well depicted in Fig. 4.7b. In the opposite case, the front can can remain uniform or broke. In

particular, if the forcing is strong enough, the infiltration can be fast and the front can easily

break up, either forming preferential path for the liquid and trapping the gas, as in Fig. 4.7d,

or forming preferential path for both phases, as in Fig. 4.7c.

Imbibition and drainage dynamics

In order to investigate the dynamics of liquid front imbibition and drainage in fibrous porous

media, further simulations have been performed. Firstly, simulations of front imbibition

driven by pressure gradients have been performed with varying the nematic properties of the
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Fig. 4.8 Saturation against non-dimensional time t∗ for three different geometries of the
porous medium. In all the three cases the contact angle is θ = 90◦.

medium, such as fiber orientations. Figure 4.8 depicts the saturation process for three different

media: (i) a medium composed of streamwise aligned fibers uniformly distributed, (left

panel of Fig. 4.9), (ii) a medium composed of streamwise aligned fibers randomly distributed

(central panel), and (iii) a medium composed of transverse aligned fibers uniformly distributed

(right panel). In all three cases the characteristic velocity Uγ is null since the equilibrium

contact angle is θ = 90◦.

In order to correctly scale the three cases, the capillary radius Rc has been determined as

half of the maximum distance between fibers, for the uniformly distributed media. In fact

results had shown that adopting the hydraulic radius as characteristic length in uniformly

distributed media leads to a bad scaling. E.g. for the uniformly distributed fibers streamwise

aligned 2RH = 8.186 which is more than two times the half of the maximum distance

between fibers. Instead, a good scaling can be obtained by approximating the capillary radius

with the half distance between fibers,as shown in Fig. 4.8 where curves are approaching

the Lucas-Washburn solution. On the other hand, for the randomly distributed media the
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with its counterpart “spontaneous drainage” have been investigated. The former is driven

by the hydrophilic properties of the material while the latter by its hydrophobic properties.

A liquid front beside and inside the medium has been considered in the case of imbibition

and drainage, respectively. The size of the porous medium has been increased respect to the

previous simulations, in order to get more statistically significant outcomes: the domain size

is L3 = 2003 computational cells while the porous medium thickness is half of the length,

i.e. H = L/2. The equilibrium contact angles are θ = 50◦ for the hydrophilic material

and θ = 130◦ for the hydrophobic one. It should be stressed that during the imbibition the

only driving force is given by the wetting gradient formed between the void half-part of

the domain, where the contact angle is θvoid = 90◦, ideally, and the other half-part where

fibers are hydrophilic. Without loss of generality, in the presence of wetting gradient the

characteristic velocity associated with the system can be written as:

Uγ =
2γ
(

cos(θ2) Rc2 − cos(θ1) Rc1
)

µ H12
(4.11)

where θ1,2 are the different contact angles, Rc1,c2 the different capillary radius and

H12 the characteristic distance between layers with different wetting conditions. Since

cos(θ1) = cos(θvoid) = 0 and H12 = H in the present simulation, Eq. (4.11) reduces to

Eq. (4.5).

Figure 4.10 shows the time-dependent saturation of the medium. Time has been scaled

with the characteristic velocity of the system Uγ . After the initial stage where inertia is clearly

not negligible, the curve approaches the predicted behaviour given by Lucas-Washburn

Eq. (4.6). A discrepancy can be observed from Fig. 4.10: it can be interpreted by considering

that both the capillary radius and the dynamic contact angle are approximated as Rc ≈ 2RH

and θdyn ≈ θ , respectively. However the influence of the latter on this discrepancy should

be more relevant than the one of the former since in Fig. 4.8 it has been shown that the

hydraulic radius can well approximate the half of the capillary radius in media with randomly

placed fibers. On the basis of this evidence, the discrepancy can be ascribed to the inherently

dynamic nature of the contact angle. For further information about the dynamic contact angle

see [61]. On the other hand, in the inset of Fig. 4.10, spontaneous drainage is depicted. The

drainage process approaches a power law Sat ∝ t∗−3/2. Interestingly, drainage process is

much faster than imbibition. In order to interpret this different time-dependent behaviour,

it can be noticed that during drainage simulations liquid can escape from the medium from

both sides, while during imbibition the liquid front is entering from just one side, so that

liquid can escape from the medium more easily than infiltrate in it.



56 Drainage Dynamics in Fuel Cells

100 101

10−1

100

t∗

S
a

tu
ra

ti
o

n

etting

Spontaneous imbibition

Lucas-Washburn Eq.

Inertial regime

1.0

0.5

error bars are
smaller than marks

10−1 100
10−1

100

Drainage

−1.5

Fig. 4.10 Spontaneous imbibition dynamics. The first part of the curve approaches a law
linearly dependent on time, while the second part approaches the Lucas-Washburn theoretical
solution. Inset: spontaneous drainage with an hydrophobic medium.
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In real gas diffusion layers of fuel cells both pressure gradients and wetting conditions

of the medium are contributing to imbibition and drainage processes. A pressure difference

is usually applied between the inlet and the outlet of distribution channels, that, in turn, are

in contact with the gas diffusion layers. It can be difficult to predict the resulting pressure

gradient in the gas diffusion layers. However, the Reynolds number of the liquid phase is

expected to be of the order Re ≈ 0.1, that is, inertial effects are considered negligible. In

order to study the combined influence of pressure gradients and wetting conditions, further

simulations have been carried out. The porous medium wettability has been varied, with

the equilibrium contact angle θ equal to 72◦,90◦,108◦ for the hydrophilic, neutral and

hydrophobic case, respectively. Moreover, for each considered case, in order to increase

statistics, three different porous media have been subjected to imbibition and drainage process,

with varying random uniform distribution of Cartesian positions and azimuthal and polar

angles of fibers.

Figure 4.11 depicts the dependence of saturation on time with varying the medium

hydrophobicity. In all the considered cases time t has been scaled with the characteristic

velocity U∆P, so that results are considered valid for any value of the pressure gradient,

provided that the liquid Reynolds number Re < 1 and inertia effects are not negligible only

for very short characteristic times.

In the hydrophilic medium and in the neutral one (i.e. with θ = 90◦) liquid imbibition

dynamics follows again the power law Sat ∝ t∗1/2. Deviations from the theoretical solution

of Lucas-Washburn equation can be ascribed to the approximation of the contact angle

θdyn ≈ θ . However, the Lucas-Washburn equation appears to correctly catch the dynamics of

the front imbibition. More interestingly the hydrophobic medium shows a different behaviour

following a power law Sat ∝∼ t∗1/3. In order to explain this different behaviour, one should

again considered Stokes equation, Eq. (4.2); from a mathematical perspective a power law

∝ t∗β with β �= 1/2 can be only justified if there is one time or space-dependent variable

in Stokes equation, more than h(t). As aforementioned in the previous section, the contact

angle can dynamically and spatially change during infiltration process. Thus, a dynamic

contact angle which strongly depends on time and front position can lead to a different time

scaling exponent β . When the medium is strongly hydrophobic, some pores can repel liquid

water which will not infiltrate through them. As a consequence, liquid will infiltrate along

different paths, not only along the streamwise direction, possibly overcoming and rounding

small pores where the pressure gradient is not sufficient to overcome surface tension effects,

i.e where Uγ/U∆P ≤ −1. The front will be strongly discontinuous in space and the mean

contact angle in Eq. (4.4) will be influenced by the time-dependent front position, which
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Fig. 4.11 Imbibition dynamics with varying the hydrophobicity of the medium. Neutral
(cyan) and hydrophilic (magenta) media saturation dynamics can be described by the Lucas-
Washburn law, while the hydrophobic medium (orange) follows a different time scaling with
Sat ≈ 1/3t∗1/3. Inset: drainage dynamics of the same media.
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Fig. 4.13 Double-wetting layer with the first and second part hydrophobic (θ = 120◦) and
hydrophilic (θ = 60◦), respectively, compared with a neutral, fully hydrophilic and fully
hydrophobic medium. The time spent for a complete imbibition-drainage cycle is smaller for
the double-wetting case.

proven that the microporous layer help to fast remove water from the catalyst layer since its

microstructure is characterised by very small pores of the order of nanometers, which in turn

increase capillary pressure and push away water.

Anyway, when liquid water reaches the GDL, it is not more subjected to high capillary

pressure and it can stuck at the MPL-GDL interface. A proper designed medium would

promote the water imbibition and drainage at that interface, pushing liquid water in the upper

part of the GDL and facilitating the gas-phase transport at the same time. The benefit of using

a MPL is given by its capability of repelling water by inducing a pressure gradient along the

through-plane direction. In order to reach a similar situation in the GDL, the imbibition and

drainage mechanisms of a double-wetting layer are investigated in the present section.

The double-wetting medium is hydrophobic in the lower part and hydrophilic in the upper

one, with the two contact angles equal to 120◦ and 60◦. Figure 4.13 shows the complete

cycle of imbibition and drainage for four different cases of wetting conditions: (i) a neutral

medium with θ = 90◦, (ii) a hydrophilic medium with θ = 60◦, (iii) a hydrophobic medium
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Medium E

Neutral 0.09
Hydrophobic 0.08
Hydrophilic 0.55

Double-wetting 0.56
Table 4.1 Liquid water transport efficiency of different media.

θ = 120◦ and (iv) the double-wetting medium. The imbibition process through the latter, is

firstly similar to the hydrophobic one, with saturation following a power law ∝∼ t1/3. This

is not surprising since the first part of the medium is hydrophobic. However, for higher

characteristic times, the behaviour changes: saturation dynamics is much faster following

a power law ∝ tβ with β > 0.5. This unusual behaviour can be explained by taking into

account two effects: from one side, the first hydrophobic part, after first imbibition, tends to

push away water while from the other side, the hydrophilic part is pulling water to the final

part of the medium. The combination of these two effects is considered to be responsible of

this fast imbibition and drainage process.

In order to quantify the capability of the medium to gather and release water, i.e. to

perform a complete imbibition and drainage cycle, the following value is identified:

E =
Satmax −0.1

t∗0.1
(4.12)

where Satmax is the maximum saturation reached at the end of the imbibition and t∗0.1 is the

time spent to reach a saturation equal to 10% at the end of the drainage. Table 4.1 contains

calculated values of the latter quantity for each case. It is clear that the double-wetting

medium presents the higher value of efficiency in terms of transported water per time unit,

i.e. E .

Temperature effects

Concerning the temperature dependence of the imbibition and drainage process, no significant

effects of temperature and phase change have been observed. Figure 4.14 shows the time-

dependent temperature profiles during imbibition and drainage. The temperature change

is less than 4% for all the considered cases. Fig. 4.14 also shows that during imbibition

and drainage the mean temperature of the system increases and decreases, respectively.

Consequently, it appears that the equilibrium temperatures inside and outside the porous

medium are slightly different in comparison with the initial ones.
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Fig. 4.14 Non-dimensional system temperature T/T0 variation in time during imbibition (left
panel) and drainage (right panel).

Figure 4.15 depicts the change in liquid mass mliq in respect to the initial liquid mass

mliq,0 as function of the change of temperature T/T0. During imbibition temperature and

liquid mass slightly increase proportionally, suggesting small condensation with latent heat

released. Conversely, during drainage liquid mass increases and temperature decreases.

Therefore both during imbibition and drainage a small amount of vapour condenses but the

latent heat production is negligible. The amount of condensed vapour is very small (i.e.

2÷4%) so that the small variations in liquid mass and system temperature can be ascribed to

the change in equilibrium densities due to the forcing and phase-change phenomena can be

considered negligible in the present study.

4.3 Simulations of condensation and drainage in fuel cells

In real fuel cells, two-phase flows are much more complicated than the ones described by

simplified problems of imbibition and drainage which have been discussed in the previous

section. Firstly, the upper part of the GDL is in contact with graphite plates in which a

serpentine is engraved in order to ensure gas distribution all along the GDL. Thus, the GDL

is in contact with both Gas Channels (GC) and ribs. see Fig. 3.3. This can strongly influence

liquid mass transport since the temperature of the solid-phase at ribs can be very different

than the temperature in the gas-phase in distribution channels. Secondly, the pressure gradient

usually acts along the in-plane direction parallel to the channels axes, so that the force which

pushes water from the low part of the GDL to the GC is very weak.
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Fig. 4.15 Non-dimensional liquid mass mliq/mliq,0 variation as function of the non-
dimensional system temperature T/T0.

In order to take into account the aforementioned issues, different simulations of the GC-

GDL interface have been performed. The domain is composed by both GDL and GC while

the Micro-Porous Layer (MPL) has been simulated as a wall with strong hydrophobicity

(i.e. θMPL = 140◦) in order to take into account its feature of liquid repulsion. the domain

size is 160, 200 and 300 computational cells along the wall-normal, the span-wise and the

streamwise direction, respectively. A pressure gradient ∆P/L has been applied by means

of a body force in order to simulate the typical flow inside the cell. Following Eqs. (3.1)

and (3.2) the gas channel Reynolds has been fixed as Re∗GC ≈ 70, taking into account the

gas in the cathode side, which is oxygen. Anyway results of this simulation can be applied

even to the anode side where the gas channel Reynolds number is expected to be of the same

order of magnitude. The ratio between the GDL height and the total GC-GDL height is

h∗GDL = 0.375, the number of fibers composing the medium is n f = 250 and their length is

ℓ f = 200. The temperature has been fixed at 70◦ at all the solid phase. In order to investigate

the possible benefits of producing GDLs characterised by different wetting conditions, the

following simulations have been performed: (i) a neutral GDL, θ = 90◦, (ii) an hydrophobic

GDL, θ = 120◦, and (iii) a double-wetting GDL with θ = 120◦ and 60◦ in the lower and

upper part, respectively. Figure 4.16 schematically represents the three different simulations.

At the initial stage t∗ = 0 the lower part of the GDL is completely filled of liquid water

and its thickness is ℓwater = 10 computational cells. The latter initial condition has been
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Chapter 5

Fluid Dynamics in Flow Batteries 1

5.1 Design of flow batteries

In comparison with fuel cells, in flow batteries the fuel is provided by liquid electrolyte

solutions which are supplied from external tank. From a fluid-dynamic point of view, since

there are not two-phase flow phenomena, the most interesting physical phenomenon is species

dispersion inside diffusion layers. The latter are typically composed of carbon fibers as in fuel

cells. Reactants are carried by flows inside distributing channels which assist in spreading

them uniformly all along porous surfaces.

Obtaining an uniform electrolyte distribution inside the medium is crucial in order to

exploit all the battery capacity, but it is not a simple task. In fact, necessarily, the design

of distributing channels either entails an high number of stagnation zones or an high value

of pressure drops. [10] Consequently, the optimal macroscopic design would ensure a

good balance between homogeneity of the electrolyte distribution and pump power demand

necessary to guarantee it.

In the present chapter different simulations with varying the flow battery design of

distributing channels will be presented and the best configuration for all-Vanadium Redox

Flow Batteries will be identified.
1 A version of this chapter has been published in Journal of Physics: Conference Series: S. Bortolin, P.

Toninelli, D. Maggiolo, M. Guarnieri and D. Del Col CFD study on electrolyte distribution in redox flow

batteries, Vol 655, 012049, 2015, DOI:10.1088/1742-6596/655/1/012049
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5.2 Study on electrolyte distribution

in redox flow batteries

5.2.1 Introduction

The recent attention to environmental problems has led to an increasing use of renewable

sources. However, the intermittent nature of most renewable energy sources has posed a

serious challenge for widespread application and for an effective replacement of conventional

sources. Therefore, energy storage plays a crucial role in the delivery of electricity from

renewable sources, such as solar and wind, providing a solution for the balance problem

between the generation and the consumption of the electric power. Nowadays, several energy

storage technologies, characterised by different levels of development, have been proposed

(e.g. pumped hydro, electro-chemical, thermal, compressed air, flywheel...) as reviewed by

Alotto et al. [4] Among electro-chemical systems, redox flow batteries (RFBs) represent

one of the most recent technologies and a highly promising choice for stationary energy

storage. Unlike conventional batteries, in which energy is stored in the battery structure,

redox flow batteries store energy in two solutions containing different redox couples with

proper electro-chemical potentials. The electrolyte is stored in two separated tanks. The most

appealing features of this technology are: scalability and flexibility, independent sizing of

power and energy, long durability, fast responsiveness, and reduced environmental impact.

Such features allow for wide ranges of operational power and discharge time, making RFBs

an ideal solution for assisting electricity generation from renewable sources. The power size

depends on the flow rate of electrolyte and the configuration of the cell stack, whereas the

energy stored depends on the reactants chosen, their concentration and the size of the reactant

tanks.

The main element of RFB is the membrane-electrode assembly (MEA) where the reduc-

tion and oxidation reactions take place in two liquid electrolytes (aqueous and not-aqueous)

that contain a given concentration of metal ions (the active material). The MEA is composed

by two catalysed electrodes (porous media such as carbon felt or metallic foam) with an

interposed polymeric membrane. Finally, the RFB is closed by two plates containing the

frame flow that can have different configurations to guarantee the best electrolyte distribution

inside the porous media. During the charge/discharge operations, the electrons obtained from

the redox reactions are collected by one electrode and go to the other one through an external

circuit, whereas the ions migrate through the membrane. As compared to the conventional

electro-chemical batteries, the electrolytes are not permanently sealed, but they are stored in

tanks and pumped into the cell stack. Furthermore, if the material of the two electrolytes is
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the same, as in the case of the vanadium redox flow batteries, then the cross-contamination

problem during operation is limited. For these two aspects, the electrolytes have no degra-

dation and a long life of RFB is guaranteed and can be also improved by its configuration,

i.e. number of tanks, regulation of flow, type of electrolytes, electrodes, membrane and so

on, as analysed by Cunha et al. [64] The RFB can be categorised by the active species or

solvent (aqueous and non-aqueous, respectively), as reported in detail by Weber et al. [10]

and Ponce de León and coworkers [65].

There are three important aspects related to RFBs design:

• the dimension of whole plant: it is pretty large making their use difficult for a mobile

application, as reported by Cunha et al. [64];

• the electrolyte temperature in the RFB: it can be controlled through the flow rate avoid-

ing the solution precipitation that occurs outside the allowed operating temperature

ranges. For example, a numerical investigation on temperature field inside the MEA

has been performed by Wei et al. [66];

• the flow field design to achieve uniform distribution of the electrolyte with low pressure

drop, minimising the mass transfer polarisation and avoiding problems about solubility

limits, as analysed by Weber et al. [10], Xu et al. [67] and Wei et al. [66]

This study aims at analysing the flow field inside the MEA where the electro-chemical

reactions take place. As mentioned above, the RFB performance is strictly influenced by the

electrolyte distribution inside the carbon felt: it is important to investigate the best electrolyte

distribution avoiding high pressure drop and stagnation zones inside the porous region. In

the following sections, the geometry of different distribution layouts, the setting of CFD

simulations and, finally, the results are reported in detail to evaluate the best configuration.

5.2.2 Set-up and numerical methods

In the scientific literature, different configurations have been proposed for the distribution of

the electrolyte inside the porous felt where electro-chemical reactions take place. In particular,

two types of solutions can be found: with the first method (indirect feeding), the felt is fed

by channels machined in the containing plates of the cell (e.g. parallel channels, serpentine

channels), whereas the second solution consists of direct feeding the felt without the use

of channels. In the present work, the authors have focused their attention on four possible

geometrical configurations (table 1), with the aim to improve the electrolyte distribution and

to evaluate the pressure drop inside the RFB cell. For all the configurations, the geometry

of the carbon felt is the same (length 260 mm, width 160 mm, depth 4.3 mm), beside the
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Fig. 5.1 The carbon felt with distribution channels (configuration 1).

Configuration Feeding Hydraulic Number of Number of
diameter [mm] channels outlet channels

1 Indirect 1 5 6
2 Indirect 2 5 6
3 Indirect 2 4 4
4 Direct 1 5 6

Table 5.1 Selected configurations for the distribution of the electrolyte.

number and the hydraulic diameter (h.d.) of the square channels is varied. The first three

configurations reported in table 1 are referred, as mentioned above, to the indirect feeding:

the electrolyte enters the parallel square channels placed above the carbon felt (Fig. 5.1, case

with 5 inlet parallel channels), then it is sent through the porous zone and it finally exits from

the outlet channels (Fig. 5.1, case with 6 outlet channels). Instead, in the last configuration,

the felt is directly fed with the electrolyte.

The four selected configurations reported in Tab. 5.1 are used to analyse the influence of

the following

• geometrical parameters on the electrolyte distribution inside the carbon felt:

• hydraulic diameter of the square channels forming the frame flow inside the MEA;

• number of inlet/outlet channels and their position on the carbon felt; direct/indirect

feeding of electrolyte inside the porous zone.

Mesh

For all the configurations, a three-dimensional domain with a structured mesh has been

considered. For the purpose of computational time savings, the mesh is finer for regions
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nm J Am αQ SOCmin cV F

[A m2] [m2] [mol m−3] [C mol−1]
2 2000 0.0416 1 0.25 1600 96000

Table 5.2 Values of the parameters adopted in Eq. (5.1)

near the channels walls and in the contact zone between the felt and the channels, whereas it

is much coarser in the rest of the volume. In the case of the first three configurations, the

mesh is composed of about 7.0÷7.6 106 hexahedral cells while, for the last configuration,

the mesh is composed of about 5.7 106 elements. Furthermore, a mesh independence test

has been performed for the first case. A new structured mesh composed of about 3.7 106

elements has been designed. The maximum deviation between the velocity field obtained

with the two different meshes is about 1%.

Numerical Methods

Three-dimensional and steady-state numerical simulations have been performed with ANSYS

Fluent 15. The working fluid is a sulphuric acid water solution in which vanadium oxides

are dissolved. The fluid is considered incompressible and its density and dynamic viscosity

are, respectively, equal to 1354 kg m−3 and 0.006 Pa s, as reported by Blanc and Rufer [68]

and Tang et al. [69] In all the simulations, the velocity inlet condition has been calculated

from an estimation of the cell volumetric flow rate Q cell that was considered to be the same

for all the studied cases. The evaluation of volumetric flow rate has been performed at fixed

operational conditions of the RFB, as reported in Eq. (5.1):

Qcell = nmnchAchUin =
J Am αQ

SOCmin cV F
(5.1)

The cell volumetric flow rate Q cell is a function of electrical density current J, membrane

area Am, flow factor αQ that defines the operational range of cell volumetric flow rate (Tang

et al. [70]), minimum state of charge SOC, vanadium molar concentration cV and, finally,

Faraday constant F . In Eq. (5.1) the velocity inlet Uin in can be obtained from the number

of membranes that compose the RFB nm, the number of inlet channels nch and the cross

section area of the channels Ach. Besides nch and Ach already reported in Tab. 5.1, the other

parameters needed in Eq. (5.1) are shown in detail in Tab. 5.2. As reported by Tang et

al. [70], the flow factor αQ can be chosen in the range of 1÷8. All the simulations have been

performed with αQ equal to 1. A pressure outlet condition is imposed for the outlet channels.

Being the Reynolds number at inlet lower than 10, the fluid flow is assumed to be laminar.
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Governing equations

The porous media model can be used in many applications including flow through packed

beds, filter papers, tube banks, felts, etc. In the present CFD simulations, the presence of

the porous media is not physically represented, but it has been evaluated adding two source

terms to the standard momentum equations: a viscous loss term and an inertial loss term.

Only in these additional terms, the effect of the porous media have been considered. In

fact, the porosity has not been taken into account in the convection and diffusion terms of

transport equations. This numerical procedure is well-known and the fluid velocity obtained

from these modified momentum equations is named superficial velocity, i.e. the velocity

that the fluid would have if it flowed through the nominal cross section area of the porous

media. There is a more accurate option called physical velocity method, where the true fluid

velocity inside the porous media can be evaluated and the porosity can be considered inside

the convection and diffusion terms, but no significant difference has been noted between the

results of the two methods.

All the simulations have been performed with the superficial velocity method and fluid

cells have been divided in two domains: the first one without the porous zone, i.e. the flow

in the channels, and the second one with the porous zone, i.e. the flow in the carbon felt,

where the additional terms have been calculated for a homogeneous porous media. These

momentum sources have been introduced as pressure gradient proportional to the superficial

fluid velocity us
i :

∆P

∆xi
=−

(

µ

K
us

i +
1
2

C2ρ |us|us
i

)

(5.2)

As shown in Eq. (5.2), the coefficients of both terms are a function of transport properties

of the fluid, i.e. density ρ and dynamic viscosity µ , and geometrical characteristics of the

porous media, i.e. permeability K and inertial loss coefficient C2 , that have been evaluated

from the Ergun equation and Blake-Kozeny equations:

K =
d2

e

150
ε3

(1− ε)2 ; C2 =
3.5
de

(1− ε)

ε3 (5.3)

The geometrical characteristics reported above in equation 3 are functions of the media

porosity ε and the hydraulic diameter d e of cylindrical fibers that compose the carbon

felt. For all the simulations, the porosity and the diameter of fibers have been imposed,

respectively, equal to 0.84 and 10−6 m.

It should be noted that, in the present work, the assumption of a thermal equilibrium

between the porous media and the fluid flow has been considered and all the numerical

simulations have been run excluding the energy equation.
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As a first step, all the numerical simulations have been run considering the whole domain

without the porous media to obtain an initial field flow and, in a second time, the porous zone

has been enabled in the carbon felt domain. Finally, regarding the solution methods employed,

a SIMPLE scheme has been used for pressure-velocity coupling, whereas a standard and

second order upwind method have been imposed for the spatial discretisation of pressure and

momentum.

5.2.3 Simulations of electrolyte distribution

A comparison of velocity fields, velocity distributions and pressure drop has been performed

to highlight the different hydraulic performance of the four configurations. This method

aims at evaluating the best configuration in terms of velocity field and pressure drop. All the

results have been reported in terms of physical velocity u = usε (i.e. the intrinsic velocity)

on the x-y plane, as defined in Eq. (5.4). The physical velocity has been calculated from the

porosity ε and the superficial velocity us
i obtained directly from the numerical simulations:

u =

q

us
x

2 +us
y
2

ε
(5.4)

The velocity fields are reported in Fig. 5.2 showing the difference of the fluid flow

behaviour in each configuration at 50% of depth inside the carbon felt (the electrolyte enters

at the bottom and exits from the top of Fig. 5.2).

As depicted in Figs. 5.4 and 5.5, the planar velocity profiles along nine lines perpen-

dicularly to the main flow direction, see Fig. 5.6, have been calculated to investigate the

velocity distribution inside the carbon felt. It should be noted that only the x-y velocity

components have been considered at different depths inside the porous media (index i).

Beside the velocity trends, an investigation on velocity distributions has been performed

to highlight the uniformity of the velocity field inside the felt. In all the configurations, it

can be observed that the velocity profiles at lines xz1i and xz3i are affected by the channels

inlets/outlets, while in correspondence of lines xz2i the velocity trend is flatter, especially for

the first and last configurations. It is worth noting that the velocities are reported at different

depths inside the porous media (the index i, equal to 1, 2 or 3, is referred respectively to 25%,

50%, 75% of the depth inside the felt). A non-significant influence of depth on the velocity

can be observed: it means that the distribution problem is restricted to the x−y plane and the

investigation on planar velocity is thus justified.
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Fig. 5.2 The velocity field in [m s−1] of the 5x6 1 mm h.d. (a), 5x6 2 mm h.d. (b), 4x4 2 mm
h.d. (c) configurations with indirect feeding and the velocity field with direct feeding (d).

Fig. 5.3 Red lines along which the velocity profiles are calculated. The index i, equal to 1, 2
or 3, is referred to 25%, 50%, 75% of depth inside the felt (configuration 3).
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Effect of hydraulic diameter

Regarding the influence of the channel hydraulic diameter on the velocity field, a comparison

of velocity profiles between the first and the second configuration can be considered. As

mentioned above, the volumetric flow rate is the same for all numerical simulations, hence,

for case 1, the velocity and pressure drop inside the channel are higher than those for case 2,

due to a lower hydraulic diameter.

In case 1, the electrolyte solution is mostly driven into the carbon felt and the velocity

field is increased, as depicted in figure 2. Instead, for configuration 2, the fluid goes slower

into the carbon felt creating stagnation zones below the channels and at lateral sides. The

high velocity of case 1 causes a more uniform distribution of electrolyte along the lines xz2i.

This aspect is highlighted by the calculation of velocity distribution and it can be observed

that, in the second case, the velocity values are more dispersed than those observed in the

first case along the lines xz2i.

Effect of number of inlet/outlet channels

Concerning the influence of the number of channels on the velocity field, a comparison

of velocity trends between the second and the third configuration can be considered. Two

different behaviours can be observed:

• reducing the number of channels (case 3), the velocity profiles become flatter and the

fluid goes through the felt with a longer path, increasing the pressure drop as compared

to case 2. Furthermore, it can be observed that the velocity values in case 3 are closer

to the mean value as compared to case 2 and thus the velocity field is more uniform.

• when the number of inlet channels is equal to the number of outlet channels (case

3), an asymmetric flow takes place and a maldistribution effect occurs from left to

right, as depicted in Fig. 5.4. For the third case, this effect occurs because the fluid

flowing inside the first inlet channel on the left side is forced to go only through the

outlet channel on the right, whereas the fluid flowing in the other inlet channels can

go through its two neighbour outlet channels. For this reason, the electrolyte flow is

higher on the left side as compared at the right side. This phenomenon does not occur

in case 2, where the fluid in the first inlet channel can flow through the two neighbour

outlet channels, providing a more uniform velocity field.
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Fig. 5.4 Planar velocity profiles calculated along the lines of Fig. 5.3 (left side) and velocity
distribution (right side) for the 5x6 1 mm h.d. (a), 5x6 2 mm h.d. (b) 4x4 2 mm h.d. (c)
configuration with indirect feeding.
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Fig. 5.5 Planar velocity profiles calculated along the lines of Fig. 5.3 (left side) and velocity
distribution (right side) for the configuration with direct feeding.

Effect of feeding type

With the aim to study the influence of feeding type on the velocity field, a comparison of

velocity profiles between the first and the last configuration can be considered. It is important

to notice that, in the case of a direct feeding, the velocity field is higher and more uniform

as compared to the first configuration, as depicted in Figs. 5.4 and 5.5. However, using the

direct feeding, the pressure drop is higher as compared to the configuration with indirect

feeding. Moreover, from Fig. 5.4 (a) and Fig. 5.5 along lines xz2i, for both configurations,

the velocities are close to the mean values and the velocity trends are similar. For this reason,

it is very interesting to compare the four configurations taking into account the pressure drop.

Beside the velocity trends along the different lines, the volume-weighted average of planar

velocity inside the carbon felt has been calculated as reported in Eq. (5.5) to consider, at the

same time, the effect of high velocity and stagnation zones.

U =
1
V

Z

V
u dV (5.5)

Pressure Drop

In the present section, the pressure drop has been calculated in order to evaluate the perfor-

mance of the RFB cell in terms of pumping consumption. For the estimation of pressure

drop, the area-weighted average of static pressure has been calculated at the inlet and outlet

of channels for each configuration.

The relationship between the pressure drop and the velocity distribution can be observed

in Tab. 5.3. Indeed, the first and the fourth configurations present the highest value of pressure
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Configuration U Pin −Pout

[m s−1] [kPa]
1 3.22 10−4 10.61
2 1.98 10−4 1.40
3 2.71 10−4 2.30
4 3.69 10−3 210.50

Table 5.3

drop. The pressure drop in case 1 and 4 are higher, respectively, up to 7 and 150 times as

compared to the configuration 2 that presents the worst distribution. The second and the third

case display the lowest pressure drop but both configurations have many stagnation zones

and the third one is affected by maldistribution problems. In conclusion, a good compromise

would be the first solution since the velocity is high enough to avoid the presence of stagnation

zones and to guarantee a velocity field almost uniform. In addition, the total pressure drop of

the first case are limited as compared to the fourth case.

Streamlines

As mentioned above, to improve the performance of RFB it is fundamental to guarantee:

• a good-distribution of the electrolyte in terms of velocity, avoiding stagnation or dry

zones inside the porous felt;

• low pressure drop and low pumping consumption.

For this purpose, the importance of the fluid path inside the porous media must be underlined.

In fact, if the fluid has a long path inside the porous felt, the probability of electrochemical

reaction occurring is higher and the RFB performance can be improved.

From this point of view, the direct feeding of electrolyte inside the carbon felt is the

best configuration since the fluid is constrained to cross the whole felt as compared to the

indirect feeding. As depicted in Fig. 5.6, it can be observed that, for the second and third

configuration, the electrolyte solution flows from inlet to outlet channels through a very short

path as compared to the first case where its path inside the felt becomes longer.

5.2.4 Remarks

In this study, four different geometrical configurations have been considered to evaluate the

influence of the electrolyte solution distribution system (inlet/outlet number of channels,

channels hydraulic diameter, feeding mode) on velocity field and pressure drop inside a
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Fig. 5.6 Planar velocity streamlines in [m s−1] for the three configurations with indirect
feeding (5x6 1 mm h.d. (a), 5x6 2 mm h.d. (b), 4x4 2 mm h.d. (c)) and for the one with
direct feeding (d).
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RFB cell. Different parameters have been considered to assess the RFB fluid dynamic

performance: planar velocity profiles, pressure drop and velocity streamlines. The following

conclusions can be drawn:

• the first and the fourth configuration present an almost uniform velocity field as

compared to the second and third case where stagnation zones have been found below

the channels and at the lateral sides of the carbon felt;

• a long fluid path inside the carbon felt can improve the performance of the RFB in

terms of electro-chemical reactions. For this reason, the second and the third case are

the worst configurations due to very short fluid path inside the porous zone;

• the fourth case with direct feeding has the highest pressure drop, up to 150 times higher

than the second case. Considering both electrolyte solution distribution and pumping

power, the first case results as the best choice according to the present simulations.



Chapter 6

Dispersion Dynamics in Flow Batteries 1

6.1 Dispersion dynamics in porous media

In flow batteries, the main physical mechanism which determines the distribution of reactants

in electrodes, and, in turn, battery performances, is dispersion. While the liquid electrolyte

distribution is ensured by distributing channels at the macroscale, the distribution and mixing

of species is guaranteed by the porous microstructure. In practice, the molecular dispersion

of species in liquid is a very slow process, so that the porous microstructure is essential

in order to spread the reactants (i.e. the four oxidation states of vanadium in VRFBs) all

along the electrodes. The more homogeneous is reactants concentration in the electrodes,

the higher the performances of the battery, since the higher number of active species would

contribute to generate electric current.

Since the porous microstructure is actually responsible of mixing of species, it is intuitive

to think that distribution and orientation of fibers composing the electrode are affecting

species concentration and battery performances to a great extent. Nevertheless, fibers

distribution and orientation in electrodes typically used for flow batteries applications are

generally ignored as well as the positioning of the electrodes does not follow any specific

hint. This issue will be discussed in the present chapter in order to identify the optimal

configuration of porous microstructure for increasing flow batteries performances.

1 A version of this chapter has been published in Physics of Fluids Journal: D. Maggiolo, F. Picano and
M.Guarnieri, Flow and dispersion in anisotropic porous media: a lattice-Boltzmann study, Vol 28, 102001,
2016, DOI:10.1063/1.4963766
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6.2 Anysotropy effects on dispersion in fibrous

porous media

6.2.1 Introduction

During the last years, the interest in the utilisation of porous media composed of fibers has

been considerably increased, especially for energy conversion applications [11, 71]. For

instance, carbon papers and carbon felt are by now widely used as gas diffusion layers of fuel

cells. But the rapid rise of decarbonated green energy demand does not limit the application

of such materials to fuel cells. Flow batteries have recently been perceived as one of the most

promising technologies for electro-chemical energy storage. Even though flow batteries are

known since the late 1980s, it is only during recent years that the scientific community has

focused on improving their performance [4, 10]. A cell of a flow battery is composed by

two porous media fibrous electrodes. The inner surfaces of the porous media act as active

site where electro-chemical reduction and oxidation reactions of the electrolytes occur. Both

half-cells are supplied with the electrolyte solutions which are stored in external tanks and

circulated by pumps to keep on the reactions. One limitation to the peak performance of

flow batteries consists of the too slow electrolyte transport in the electrodes [4]. The fluid

dynamic optimisation of the porous medium which provides both the electro-chemical active

surfaces and the mixing volume of the chemical species is one of the main technological

issues to be dealt with [10, 72].

In fact, the slow dispersion process of species in water represents a bottleneck for the

peak performance of flow batteries. Specifically, the mass diffusion coefficients of the species

in water, D ≈ 10−10 m2/s, are about 10000 smaller then the water kinematic viscosity,

ν = µ/ρ = 10−6 m2/s, indicating that the mass diffusion is 10000 times slower than the

momentum transport. Enhancing this diffusivity can produce a dramatic increase in the cell

performance. A proper designed geometry of a non-isotropic porous medium can enhance

this effective mass transport while minimising the drag, thus improving and optimising the

batteries performances.[10]. The present study deals with such analyses, by means of a

Lattice Boltzmann model and a Lagrangian Particle Tracking algorithm.

Even if the influence of medium porosity on the flow drag has been largely studied [73,

74], the impact of its microscopic design on the combined mixing/transport mechanisms

and drag is still not well assessed [8, 75]. In fact, even though the anomalous (i.e. non-

Fickian) behaviour of dispersion in porous media has been widely investigated [76–78],

it is not clear to what extent the micro-structure of the medium can impact macroscopic

dispersion phenomena. Local heterogeneities at various scales have been considered capable
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of generating such anomalous behaviour [79–81]. Berkowitz and Sher [80] claimed that a

wide distribution of delay times limiting the transport in porous media results in non-Fickian

dispersion which cannot be represented by an equation including a time-dependent dispersion

coefficient. Instead, the authors highlighted that all the time evolution of motion must be

taken into account, and that the macroscopic advection-dispersion equation (ADE) must be

non-local in time.

Whitaker [77] identified different fluid-dynamic variables responsible for the dispersion

by means of the Volume Averaging technique. This analysis revealed the presence of different

terms in the averaged ADE which act as sources of dispersion and convection. Nevertheless,

the volume averaging technique is not sufficient to predict the dispersion behaviour in

a general way, since the evaluation of the effective dispersion tensor is limited by some

constraints. In fact, in practical applications the value of the effective dispersion tensor may

be significantly different than expected, since it depends on the unconditioned statistics of

hydraulic permeabilities of the porous medium [82].

Several authors agree that dispersion should tend to the standard Fickian dispersion at

a certain temporal or length scale for which all the hypothesis of the central limit theorem

are satisfied, i.e. when the particle motion is no more correlated [83, 84]. Such transient

anomalous behaviour has been recently recognised in a variety of physical-chemical and

socio-economical systems, which can also present non-Gaussian yet Fickian dispersion

behaviours [84]. However, the aforementioned time or length scales strongly depend on the

medium structure and, thus, they are not easy to determine a priori.

More recently, other causes have been identified as responsible of the anomalous dis-

persion, such as the presence of three-dimensional vortices [85], particle jumps [86] and

different mechanisms of dispersion acting on subgroups of particles [87]. Castiglione et

al. [87] suggested that two mechanisms of dispersion (i.e. a weak anomalous dispersion

and a strong anomalous dispersion associated to ballistic motion) can give rise to transient

anomalous dispersion in several systems. The authors underlined that even though it is

not particularly difficult to build up probabilistic models exhibiting anomalous dispersion,

understanding anomalous dispersion in nontrivial systems, such as porous media, is much

more difficult [87].

A review of the literature about anomalous dispersion revealed that this behaviour is

really difficult to predict. Furthermore, to the best of these authors’ knowledge, a good

understanding of how porous medium micro-structure can enhance macroscopic transport

is still lacking, especially for fibrous porous media. Many works on such media have been

focused on the geometrical properties which can possibly affect standard Fickian dispersion

and reaction, rather than on the intrinsic behaviour of dispersion phenomena [88, 89].
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Fig. 6.1 Left Panel: dimensionless permeability values for different cases of porosity ε and
orientation. Results gather around the predicted value of the Blake-Kozeny equation, as
expected. It should be pointed out that the permeability values diminish as the porosity
increases, a trend already observed in Whitaker [73]. Right Panel: drag coefficients Drag∗ =
2r2

s/(9K)1/(1 − ε) from numerical simulations of flows through single packed-bed of
spheres of radius rs compared with results of Zick and Homsby [90].

In order to clarify this issue, this study presents results of several simulations at different

preferential orientation of fibers, porosity and Reynolds number. A Lattice-Boltzmann-based

model coupled with a Lagrangian particle tracking algorithm has been used. The aim of the

present study is to clarify how the nematic properties of the porous medium affects the mass

and momentum transport mechanisms in order to design optimal porous media with low

drag and high effective mass diffusion. The minimisation of drag reduces the pump power

demand, while the maximisation of the mixing improves the homogeneity of reacting species

all along the porous medium, both effects enhancing the performance of flow batteries. It

will be shown, that porous media constituted by fibers preferentially oriented along the flow

direction exhibit smaller drag and higher effective diffusion.

6.2.2 Methodology

The present model is a further development of the Lattice-Boltzmann model already validated

and used in Maggiolo et al. [91]. The model has been further validated by evaluating the

permeability values obtained with different values of porosity, fiber orientation and Reynolds

number and the drag exerted by the flow on single packed-beds of spheres. The permeability

values K have been obtained by means of the Darcy equation which relates the velocity with

the pressure gradient:
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K =Uε µ

(

∆P

L

)−1

, (6.1)

where the pressure gradient ∆P/L corresponds to the applied body force, U = [1/(εV )]
R

V uxdV

is the bulk intrinsic velocity of the generic cubic domain V along the streamwise direction x,

µ is the dynamic viscosity, and ε is the porosity. Figure 6.1 shows values of dimensionless

permeability against porosity on the left panel, and the values of drag coefficients of the

packed bed of spheres compared with the values of Zick and Homsy [90] on the right panel.

Results of these simulations are considered proof of the validity of the model. Dimensionless

permeability values K∗ = K/d2
f cluster around the permeability value of the Blake-Kozeny

equation [73]:

K∗ (1− ε)2

ε3 =
1
80

. (6.2)

Eq. (6.2) has been derived for a medium composed of cylindrical fibers, for which the

equivalent diameter (i.e. six times the ratio between the volume of the fiber and its surface)

equals three halves of the fiber diameter d f [82]. Fig. 6.1 also shows that the higher the

porosity, the lower the dimensionless permeability and the resulting pressure drop. The fiber

Reynolds number has been determined as Re f =Ud f /ν , where ν is the kinematic viscosity.

Preliminary results of dispersion in these media show that the main dispersion features do

not depend on the fiber Reynolds number, in the range Re f = 0.1÷1.0, and on the porosity,

in the range ε = 0.7÷ 0.9, see the end of Section 6.2.3. Conversely, results instead show

that dispersion depends on the orientation of the fibers. In light of this, further simulations

have been carried out in order to characterise the effective dispersion induced by the porous

medium micro-structure with high porosity values; the fiber Reynolds number has been fixed

in the order of Re f = 10−1 and the porosity at ε = 0.9, in order to minimise drag.

A triperiodic box has been considered, see Fig. 6.2. The porous medium is composed of 50

fibers with length ℓ f ≈ 160
√

3 computational cells, uniformly random distributed throughout

the domain. The side of the periodic box is discretised by L = 160 Lattice-Boltzmann cells,

while the fiber diameter d f corresponds to 6 cells. Three reference cases of fiber orientation

have been investigated: an isotropic medium, an anisotropic medium preferentially oriented

along the streamwise direction x and an anisotropic medium preferentially oriented along

the transverse directions y and z. Seven isotropic, nine preferentially streamwise-oriented

and eight preferentially transverse-oriented media have been considered in order to get a

statistically significant samples, making a total of 24 simulations. The flow is driven along

the x direction by a mean pressure gradient (∆P/L) which implies a fiber Reynolds number

in the order Re f = 10−1.
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Table 6.1 Fiber Reynolds numbers and dimensionless root mean square velocities along the
streamwise, 〈u′x2〉/U2, and transverse, 〈u′t2〉/U2, directions, for different fiber orientations.

orientation Re f 〈u′x2〉/U2 〈u′t2〉/U2

isotropic 0.12739 0.50348 0.10369

pref.X 0.17146 0.41988 0.06058

pref.T 0.10911 0.49803 0.13800

differing for the typical fiber orientation that are parametrised by the mean value of cos(θ),

with θ the angles between the fibers and the x axis. The medium constituted by preferentially

oriented fibers along the streamwise direction presents the highest value of permeability,

while that with fibers preferentially transverse to the flow shows the lowest permeability. This

behaviour is not surprising considering that the former case presents the lowest projected area

of the fibers on the cross-stream plane, while the latter the highest. In particular, it should be

noted that media with fibers preferentially aligned along the flow reduce the overall drag by

around 35% with respect to isotropic fibrous media.

For later convenience, the same behaviour is quantified in terms of an effective diffusion

coefficient of the momentum transport. An effective (kinematic) viscosity νe f f has been

defined considering the ratio between driving force (∆P/L)(1/ρ) and an effective viscous

force given by U/d2
f . In dimensionless form, the effective viscosity νe f f

∗ = νe f f /(Ud f )

reads:

νe f f
∗ =

(

∆P

L

1
ρ

)

d f

U2 . (6.3)

Being the effective viscosity strictly related to the permeability, it conveys similar in-

formation, however it will be useful to determine the dispersion efficiency, dimensionally

homogeneous to the effective diffusion coefficient. Although the general behaviours of νe f f
∗

and 1/K∗ are equivalent, they are not proportional because the fiber Reynolds number Re f

slightly differs from the cases with constant driving force (Tab. 6.1).

Along with the minimisation of the drag, in the case of flow batteries it is crucial to

enhance the mixing of the electrolytes in the porous medium constituting the electro-chemical

active regions. To this purpose, it is important to characterise the dispersion properties of

tracer particles distributed in the flow. The analysis has been restricted to non-Brownian

particles whose trajectories coincide with those of fluid particles. As previously noted, the

typical diffusion coefficient of electrolytes is quite small (D ∼ 10−10m2/s−1) and usually

negligible on the scale of the porous electrode. The main dispersion properties have been

evaluated using the (dimensionless) Mean Square Displacements in the streamwise (MSD∗
x)



88 Dispersion Dynamics in Flow Batteries

0 0.2 0.4 0.6 0.8 1
5

6

7

8

9

10

11

12

13

14

15

cos(θ)

K
·
(1

−
ǫ
)2

d
2 f
·
ǫ

3
·
1
0

3

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

cos(θ)

ν
e

ff ∗

isotropic

pref.X

pref.T
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and transverse (MSD∗
t ) directions evaluated from the statistics of particle displacements

dx,dy,dz as follows:

streamwise : MSD∗
x(t

∗) = 〈dx′2〉/d2
f

transverse : MSD∗
t (t

∗) =
(

〈dy′2〉+ 〈dz′2〉
)

/(2d2
f ) ,

(6.4)

where t∗ = t U/d f is the characteristic time, dx(t∗) is the displacement along a generic

direction x, dx′(t∗) = dx−〈dx〉 is the displacement fluctuation, and 〈·〉 indicates the ensemble

averaging operator. Figure 6.5 shows the values of the mean square displacement MSD∗

along the streamwise and transverse directions as a function of the characteristic time

t∗. The MSD∗ is initially proportional to t∗2, corresponding to a straight line with slope

2 in the log-log plot. This is expected for small characteristic times when the particle

motions are strongly correlated with ballistic trajectories. After a characteristic time t∗ ≈ 10,

the behaviour of the MSD∗ changes as MSD∗ ∝ t∗α , with α ≈ 1.50 and α ≈ 1.25 along

the streamwise and transverse directions, respectively. These exponents correspond to

a superdiffusive dispersion behaviour. The superdiffusive dispersion process denotes a

fast anomalous dispersion which has been found in biological and other specific physical

systems [84]. For longer characteristic times t∗ � 100 the dispersion behaviour changes

again. The MSD∗
x becomes proportional to ≈ t∗1.3 along the streamwise direction, i.e. the
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Fig. 6.4 Hydraulic diameter Dh and length ℓ f of a “tilted” pore and their projections along
the streamwise direction Dhx and ℓ f x.

dispersion is still superdiffusive but with a different exponent, while it approaches a standard

Fickian dispersion with the MSD∗
t proportional to the time t∗ along the transverse direction.

These different behaviours identifies three main regimes: (i) a typical ballistic dispersion for

short times, (ii) a superdiffusive dispersion for intermediate times, and (iii) a third regime

for long times which is Fickian in the transverse direction, while still superdiffusive for the

streamwise direction. The hydraulic diameter Dh = 4εV/S ≈ 9d f has been related to the

mean intercept length in porous media [92]. More to the point, it indicates the mean width

of the pores formed by the porous micro-structure. In order to take into account the effect

of the fibers orientation, one should consider the main pores width and length along the

streamwise x direction, that is, Dhx = Dh/
p

1− cos(θ)2 and l f x
= l f cos(θ), see Fig 6.4.

Following this approach the mean half-width of the pores (i.e. the main radius of the pores)

and their mean length result Rhx = 4.8d f , 5.2d f , 8.8d f and l f x
= 15d f , 23d f , 40d f for the

transverse oriented, isotropic and streamwise oriented medium, respectively. In the light

of this, the three different behaviours can be interpreted with typical time scales, estimated

considering the bulk velocity and the porous radius ≈ Rhx and the porous length ≈ l f x

induced by the aspect ratio of the fibers. When t∗ < Rhx/d f particles are travelling inside

a pore width, possibly rounding one fiber, while, when t∗ ≫ l f x
/d f particles have crossed

the whole pore length and their dispersion becomes Fickian, on the average. Conversely,

when Rhx/d f < t∗ � l f x
/d f , particles are travelling along the anisotropic pores and their

trajectories tend to follow the pores axes, resulting in an enhancement of the dispersion in

the medium.

It should be noted that different exponents of the time behaviour in MSD∗ have been

reported in the literature, considering different porous media, see e.g. [93]. The present

data, showing long-time superdiffusive streamwise dispersion, are consistent with the recent
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findings of Kang et al. [8] who analysed a numerical simulation of a real porous geometry

reconstructed by a micro-tomography. Concerning the difference among the three cases

considered which differ for the fiber orientation, a very similar trend for the dispersion in

the streamwise direction for all cases has been noted. However for the long time behaviour,

the transition from the superdiffusive dispersion with α ≈ 1.5 to that with α ≈ 1.3 occurs at

shorter times for the isotropic and the preferentially transverse cases so the particles of the

preferentially streamwise aligned medium show eventually a slightly larger MSD∗
x for high

t∗.

Concerning the differences found in the transverse dispersion, in the ballistic short-time

behaviour, the transverse medium shows higher rate of dispersion, followed by the isotropic

case and then the streamwise oriented one. In this limit, MSD∗
t ∝ 〈u′t2〉/U2 t∗2, so that t∗2

ballistic dispersion is imposed by the fluid cross-stream velocity fluctuation levels which are

maximal in the transverse case (Tab. 6.1). After the ballistic motion, all the cases show a

similar time scale with transition to the super-diffusive behaviour. However, the streamwise

oriented medium shows a slightly longer transition time. A similar trend is shown for the

second transition from the super-diffusive to the regular Fickian behaviour, where again the

streamwise oriented medium shows the longest transition time. The longer permanence time

of this case in the ballistic and super-diffusive behaviours allows a recovery of the slower

dispersion shown for small t∗. For this reason, all cases show a similar level of MSD∗
t for

long time, when they exhibit a Fickian diffusion in the transverse direction. The porous

structures created by the streamwise oriented direction, which is possibly able to correlate

the motion of a fraction of particles for a much longer time, provides a possible explanation.

To this purpose, it is important to analyse the correlations of the particle motion in order

to understand the different behaviours. The dimensionless autocorrelation functions c′v
∗

along the streamwise and transverse directions have been determined as follows:

streamwise : c′v
∗
x(t

∗) =
〈v′x(t∗)v′x(0)〉

〈v′x(0)2〉

transverse : c′v
∗
t (t

∗) =
1
2

(〈v′y(t∗)v′y(0)〉
〈v′y(0)2〉

+
〈v′z(t∗)v′z(0)〉
〈v′z(0)2〉

) (6.5)

where vi and v′i = vi −〈vi〉 are the particle absolute and fluctuation velocities along the

direction i = x,y,z.

Results of dimensionless autocorrelation functions c′v
∗ for different fiber orientations are

plotted against the characteristic time t∗ in Fig. 6.6. The velocity autocorrelation c′v
∗
x along

the streamwise direction is significantly higher than the transverse one for all the considered



6.2 Anysotropy effects on dispersion in fibrous porous media 91

10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

104

105

t∗

M
S

D
∗

isotropic streamwise

pref.X streamwise

pref.T streamwise

isotropic transverse

pref.X transverse

pref.T transverse

t∗

M
S

D
∗/

t
∗

1
.2

5

2

1.25

1

1.5

1.3

Fig. 6.5 Dimensionless Mean Square Displacement against dimensionless time t∗ along the
streamwise (MSD∗

x , dashed lines) and transverse (MSD∗
t , solid lines) directions. Three main

regimes can be distinguished: 1) a ballistic dispersion for short times; 2) a superdiffusive
dispersion for intermediate times; 3) a still superdiffusive dispersion along the streamwise
direction and a Fickian standard dispersion along the transverse direction, i.e. MSD∗

t ∝ t, for
long times. The difference in the three main regimes is highlighted in the inset which shows
the ratio MSD∗/t∗1.25 approaching a constant value in the second and third regime along the
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cases. Moreover, for long times, the streamwise velocity autocorrelation slowly decays,

while that for the transverse direction decorrelates for t∗ ≈ 100 ≫ l f x
/d f . This behaviour

reflects the anisotropy induced by the mean flow driven by the mean pressure gradient. The

correlation of the streamwise motion for longer times is attributed to two typical particle

trajectories, the former to the particle that travels near a stagnation point, the latter to particles

which flow in the bulk of some almost streamwise aligned long pores. In both cases the

particles tend to reside for long time in the same state characterised by a similar velocity.

Before discussing the effect of the preferential fiber alignment, it is interesting to note how

different is the autocorrelation of the transverse velocity. It shows a faster decorrelation and

shows a negative minimum around t∗ ∼ 5÷9, which approximately corresponds to the mean

half-width of pores in the medium Rhx. This minimum indicates that after that time, the

particle motion tend to reverse in the transverse direction and this can be interpreted as an

effect induced by the particles which are rounding the fibers. Actually after the minimum,

the autocorrelation shows a relative maximum before decorrelating, which can be interpreted

as the effect of a successive fiber encountered during the motion. Concerning the effect of

the preferential fiber orientation, the autocorrelation of the preferentially streamwise oriented

fibers is in general higher for longer times for both the streamwise and transverse motions.

In some sense, it appears that the pores created by the almost streamwise fiber are able to

be followed by a part of particles for longer times. This induces a higher correlation for

both velocities, since the pores are not completely streamwise oriented along the weakly

tilted fibers. This results in longer characteristic times which divides the typical dispersion

behaviours observed in the MSD∗. As it is well known, the mean square displacement is

actually determined by the autocorrelation function as,

MSD∗ = 2〈v′(0)2〉 t∗
Z t∗

0

(

1− s

t∗

)

c′v
∗
(s) ds . (6.6)

From eq.(6.6), the ballistic behaviour MSD∗∝ t∗2 can be obtained for c′v
∗ = 1, while for

high t∗ and c′v
∗ = 0 the dispersion becomes regular and Brownian, namely MSD∗∝ t∗. If

instead for long times it is c′v
∗

∝ t∗β , the mean square displacement shows an anomalous

diffusion, MSD∗∝ t∗α with α = 2+β . Hence, the different dynamics noted in the MSD∗

analysis reflects in different behaviours of the autocorrelation. It has been previously noticed

how the preferentially streamwise oriented medium shows longer characteristic times for

the transition among the different dynamics and that this reflects in higher dispersion at

longer times. Moreover, the long time behaviour observed for the mean square displacement

is consistent with the results of the autocorrelation where a decorrelation is found for the
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Fig. 6.6 Dimensionless velocity autocorrelation c′v
∗ against dimensionless time t∗ along the

streamwise (c′v
∗
x , dashed lines) and transverse (c′v

∗
t , solid lines) directions. The autocorrelation

approaches zero along the transverse direction for long characteristic times, i.e. in the third
regime observed. The figure highlights that the streamwise-oriented medium presents higher
velocity autocorrelations not only along the streamwise direction (as expected since fibers
are aligned with the main flow), but also in the transverse direction. The inset represents
velocity autocorrelations along the streamwise direction in log-log plot: it can be observed
that c′v

∗
x decreases proportionally to t∗−0.7 towards the end, which in turn corresponds to an

increasing of the MSD∗
x ∝ t∗1.3.

transverse velocity and a slow decay with β ≃=−0.7 is observed for the streamwise direction,

as shown in Fig. 6.6.

To better highlight the origin of the different anomalous dispersion behaviours, the

Probability Distribution Functions (PDF) of the particle displacements along the streamwise

and transverse directions are shown in Figures 6.7 and 6.8. The displacements are relative

to the mean position and normalised with the square root of the variance (MSD∗) in order

to highlight the difference with the corresponding Gaussian distribution. At t∗ = 0 and

for small t∗ the PDF of the displacements correspond to that of the flow field ux, since the

particle motion is highly correlated with their initial conditions. Focusing on the streamwise

behaviour first, see Fig. 6.7 panel a), the displacements and the underlying velocity field is
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strongly non-Gaussian. The mean flow direction induces a highly asymmetric PDF with a

steep positive tail. In particular the streamwise velocity field is characterised by low-velocity

regions (near stagnation points) and by high-velocity preferential paths which correspond

to long pores mainly oriented along the streamwise direction. This behaviour induces a

great asymmetry of the displacement at small times with a PDF which is left-truncated and

reveals a significant part of particles travelling at speed far higher than the average (right

tail of the PDF). Since at t∗ ≈ 10 the streamwise motion is still correlated (Fig. 6.6), the

PDF is very similar to the initial one. After a characteristic time t∗ ≈ 100 , which identifies

the end of the ballistic motion with a power-law decaying correlation, the shape of the PDF

starts to approach the Gaussian shape, see panels c and d of Fig. 6.7, with still a positive tail

slightly steeper than a Gaussian. No significant differences emerge from PDFs of different

media. The origin of the streamwise anomalous diffusion appears related to the skewed

non-Gaussian intermittent flow velocity field induced by the fibrous microstructure. However,

the different fiber preferential alignment appears to alter the typical correlation time scales of

the flow and not the single-point statistical behaviour.

The PDF of transverse particle displacements is represented in Fig. 6.8. The transverse

flow velocity field PDF corresponds to the PDF at t∗ = 0, panel a), and appears non-Gaussian,

but symmetric because of the isotropy of motions in the cross-stream plane. The fibrous

microstructure induces very steep tails in the PDF at t∗ = 0 denoting that the pores are

able to transport particles at longer transverse distance with respect to a corresponding

Gaussian process. At t∗ ≃ 10, being the motion in the transverse direction uncorrelated, the

displacements PDF differs from the initial one and in particular results more Gaussian. At

t∗ ≃ 100 and t∗ ≃ 500 is even more Gaussian.

Hence concluding, the dispersion dynamics in fibrous media with different preferential

alignment of the fibers show a long-lasting superdiffusive behaviour of the streamwise dis-

persion which appears induced by the highly non-Gaussian velocity field. On the contrary, in

the transverse directions, a long-time regular diffusion has been observed. On the shorter

time-scales, the dispersions induced by fibrous media are superdiffusive for both directions.

In these regime we found the most important difference among the cases differing for the

fiber preferential alignment. The typical time-scale at which these highly dispersive be-

haviours end is longer when the fibers are preferentially streamwise oriented. This results

in a overall mean square displacement for longer times (MSD∗) which is higher or similar

to when the medium is constituted by isotropic oriented fibers. In other words, aligning the

fibers preferentially along the streamwise direction slightly increases the long-time disper-

sion. To give an overall measure of the long time dispersion, the dimensionless dispersion

coefficients D∗ have been computed by fitting the dimensionless mean square displacements
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Fig. 6.9 Dimensionless equivalent effective dispersion coefficients De f f
∗ plotted against the

mean value of cos(θ), for different cases of fibers orientation, along the streamwise (left
panel) and transverse (right panel) direction. In left panel void marks indicate a characteristic
displacement length ℓ∗ = ℓ/d f = 100, whereas filled ones indicate ℓ∗ = 1000.

MSD∗ = 2D∗t∗α . When dealing with macroscopic transport of species inside porous media

in applications, it is useful to model the mass transport via convection-diffusion-reaction

Eulerian equations for the homogenised volume. When a regular diffusion process (α = 1)

takes place, the only parameter needed is the mass diffusion coefficient D∗. Nonetheless,

when α �= 1 the corresponding Eulerian transport equation consists of nontrivial fractional

derivatives [94]. In order to overcome this issue at the practical aim, it is convenient to

transform the superdiffusive dispersion process in an equivalent regular dispersion process so

as to solve a usual convection-diffusion-reaction equation for the Eulerian homogenised mass

transport. However, in order to define an equivalent Gaussian system it is necessary to fix a

typical displacement length ℓ
∗ := ℓ/d f that characterises the typical size of the system where

the anomalous dispersion process occurs. The equivalent system is then obtained matching

the actual Mean Square Displacements calculated at the system size, i.e. MSD∗ = ℓ
∗2, with

the equivalent normal diffusion process characterised by De f f
∗. The effective mass diffusivity

has thus been derived by imposing the following equality:

ℓ
∗2 = 2D∗t∗α = 2De f f

∗t∗ , (6.7)

from which it follows:

De f f
∗(ℓ∗) = 2

1−α
α D∗ 1

α ℓ
∗2 α−1

α (6.8)
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Figure 6.9 well depicts the effect of fibers orientation on the streamwise and transverse

dispersion. Values of De f f
∗ are plotted against the mean value of cos(θ). While no significant

differences on the dispersion coefficient are observed along the transverse direction, an

increment of dispersion can be achieved along the streamwise direction by choosing to align

fibers preferentially along the streamwise direction. Being the process superdiffusive, the

larger the typical system scale, the higher the effective diffusion coefficient. E.g. considering

the typical streamwise extension of the system in the order of 1000 fiber diameters, the

effective diffusion coefficient becomes 100 times larger than that in the transverse direction.

It should be remarked that the medium with fibers aligned along the flow exhibits the

lowest resistance to the flow, i.e. the highest permeability. At practical purposes, it is crucial

to define an efficiency in terms of ratio between energy spent to drive the flow and mixing

achieved in the porous medium. This efficiency as a function of the preferential orientation

of the fibers in the medium can be expressed as an effective Schmidt number Sc which

corresponds to the ratio between the effective viscosity and diffusion coefficients:

Sc =
νe f f

∗

De f f
∗ . (6.9)

The values of effective Schmidt numbers has been reported in Fig. 6.10 which highlights

the dispersion efficiency of the differently oriented media. The lower the Schmidt number,

the lower the ratio between the effective viscosity and the effective dispersion. In other

words, low Schmidt numbers indicate low drag and high dispersion, which in turn increases

the electrodes performances. The values of Sc have been evaluated for the same pressure

gradient ∆P/L rather than for the same Re f , since the same pressure gradient imposes slightly

different Reynolds numbers (Tab. 6.1). This is useful for practical applications since the

main tunable parameter in real flow batteries systems is ∆P/L. In other words, the effective

Schmidt number indicates how much efficient is the dispersion in the fibrous medium, at a

fixed ∆P/L.

It should be noted that the Sc number depends on the fiber Reynolds number since the

dimensionless effective viscosity νe f f
∗ is inversely proportional to it, while the dimensionless

diffusion coefficient De f f
∗ is independent of it. From a theoretical point of view, it is

interesting to note that the effective Peclet number Pe defined as,

Pe = ScRe f =
ε

K∗
1

De f f
∗ . (6.10)

gets rid of the dependence on the fiber Reynolds number since for viscous flow in porous

media the dimensionless permeability is independent of the Reynolds number. Figure 6.11
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Fig. 6.10 Schmidt number Sc plotted against the mean value of cos(θ). Both along the
streamwise and transverse directions the medium preferentially oriented along the streamwise
direction x presents the lower value of Schmidt number Sc and, consequently, the highest
dispersion efficiency.

depicts values of the effective Peclet number. This indicator shows an increase of dispersion

efficiency less pronounced but still remarkable.

The behaviour of the Schmidt and Peclet numbers unequivocally show that fibrous media

preferentially oriented along the streamwise direction are characterised by higher effective

mixing with the lowest pressure loss and appear the optimal configuration for porous elec-

trodes for RFBs.

Effect of the finite Reynolds number on the dispersion

In order to investigate the possible effects of inertia on dispersion dynamics at finite Reynolds

number, simulations of flows through isotropic fibrous media have been performed at higher

Re number. Interestingly, no significant differences have been found by increasing the

Reynolds number up to ≈ 1.0 which can be considered an upper bound for Redox Flow Bat-

tery applications. Figure 6.12 shows a comparison between the Mean Square Displacements

at Re ≈ 0.1 and at Re ≈ 1.0, with the two curves overlapping almost perfectly. Since the

Reynolds number range for the present application is Re = 0.1÷1.0, it can be concluded

that the dispersion dynamics on flow batteries does not depend on the Reynolds number and

consequently inertial effects are negligible.
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Fig. 6.11 Peclet number Pe plotted against the mean value of cos(θ). Both along the
streamwise and transverse directions the medium preferentially oriented along the streamwise
direction x presents the lowest value of Peclet number.

6.2.4 Remarks

In the present study, the effects of altering the micro-structure of a porous medium composed

of fibers have been quantified in terms of permeability and effective dispersion features. In

particular, the effect of the fiber orientation has been found to play a major pivotal role not only

in the momentum transport behaviour across the medium, but even in the dispersion dynamics.

These results are crucial to optimise the fibrous electrodes of Redox-Flow-Batteries.

Microscale modelling of viscous flows through differently oriented fibrous media have

been performed by means of a numerical algorithm based on the Lattice-Boltzmann method.

Three main categories of fibrous media have been considered: isotropic and preferentially

aligned and transverse with the bulk flow. The evolution of passive tracer particles dispersed

in the flow has been obtained using a Lagrangian Particle Tracking algorithm.

Results show that, as expected, the permeability value of the medium K∗ is increased by

preferentially aligning the fibers along the streamwise direction so the overall drag exerted

on the flow is diminished. The opposite behaviour is observed for the media with fibers

transverse to the flow.

The Mean Square Displacement MSD∗ of tracers show different anomalous and regular

dispersion behaviours both along the streamwise and transverse directions. Three different

regimes have been identified: (i) a ballistic dispersion for very short characteristic times, (ii)

a superdiffusive dispersion for intermediate characteristic times and (iii) a still superdiffusive
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dispersion and a standard Fickian dispersion along the streamwise and transverse directions,

respectively, for long characteristic times.

The effect of fiber orientation on the dispersion dynamics has found to be less pronounced

in comparison to that on momentum transport. Nevertheless, the medium with fibers prefer-

entially oriented along the streamwise direction shows slightly higher dispersion along both

directions. This behaviour has been ascribed to the capability of the latter medium to create

pores which could be followed by tracers for longer time in comparison with the isotropic

case, since the observed characteristic times of the autocorrelation functions are longer.

Actually, for energy storage applications, such as flow-batteries, the optimal medium

should presents both low drag and high dispersion features. Therefore, the values of the

effective Schmidt and Peclet numbers which characterise the dispersion efficiency have

been determined. The Schmidt numbers give the ratio between the effective diffusion and

the overall drag, but depends on the fiber Reynolds number. The Peclet number is instead

independent of it. Results clearly show the higher efficiency that can be achieved by aligning

the fibers preferentially along the streamwise direction. In particular, by adopting this

strategy, one can increase approximately the dispersion efficiency of 60% and 45% along

the streamwise and transverse directions, respectively, in terms of Schmidt number, and of

40% and 25% along the streamwise and transverse directions, respectively, in terms of Peclet

number, in comparison with an isotropic medium. These numbers can be seen as the fluid

mechanics efficiency.

For the sake of completeness, it can be shown that the dimensional effective disper-

sion coefficients De f f [m/s], evaluated from the calculated dimensionless values De f f
∗,
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overwhelm the molecular diffusion coefficients when real electrodes are considered. With

regards to All-Vanadium Redox Flow Batteries, the kinematic viscosity and the typical

fiber diameter are νv = 4.4 · 10−6 [m2/s] and d f v
= 10 ÷ 50 [µm], respectively, whereas

the value of typical displacement length ℓ is of the order of centimetres along the stream-

wise directions, so that ℓ∗ ≈ 1000 [95]. The dispersion coefficients can be thus eval-

uated as De f f = De f f
∗(ℓ∗)Re f νv. Along the flow direction the dispersion coefficients

are De f f = 1.5 · 10−5 [m2/s] and De f f = 2.7 · 10−5 [m2/s], for the isotropic and the prefer-

entially streamwise-oriented medium, whereas along the transverse direction they result

De f f = 0.96 · 10−7 [m2/s] and De f f = 1.36 · 10−7 [m2/s], respectively. It should be noted

that the typical molecular diffusion coefficient of Vanadium ions in water is of the order of

D = 10−9 ÷10−10 [m2/s] so several order of magnitude smaller than the effective diffusion

coefficient promoted by the micro-structure of porous media. The results also show that the

widely used Bruggeman correction [] to account for the effect of the porosity on the molec-

ular diffusion, Db = ε3/2D, is negligible for the dispersion of electrolytes in water being

Db ≪ De f f
2. These considerations highlight the major role of the fibrous medium in the

enhancement of mixing in liquids. Finally, the present findings on the effective diffusion can

be directly applied to numerically solve advection-dispersion-reaction macroscopic equations

for the species flowing in real fibrous media, in order to design optimal electrodes.

2Different is the case when gases in porous media are considered. The typical molecular diffusion of
gaseous species is of the order of 10−5[m2/s], so the Db provides a useful estimate of the effective diffusion
being larger than the pore scale induced effective diffusion.



Chapter 7

Conclusions

In the present thesis, a fluid-dynamic numerical analysis of mass and momentum transport

mechanisms in fuel cells and flow batteries systems has been presented. The study has

been conducted by means of the Lattice-Boltzmann Method, an innovative and promising

computational tool for simulating complex multiphysics problems. Several simulations have

been performed in order to investigate fundamental physical behaviours of these systems

from micro to macroscale. To this end, different Lattice-Boltzmann models have been

implemented, tested and validated, depending on the specific case studied: e.g. a two-phase

flows model coupled with temperature for studying liquid-vapour transport and phase change

phenomena in fuel cells, or a fluid flow model coupled with a Lagrangian Particle Tracking

algorithm for studying dispersion of species in flow batteries. It should be stressed that the

numerical models used in the present work have been fully implemented in some cases,

or improved and expanded in others, by the author, and no commercial software has been

utilised, except for the one used in Chapter 5.

Regarding fuel cells, the study has been focused on water management strategies in order

to improve fuel cells performances. In Chapter 3, liquid water has been found to preferentially

cumulate at the gas channel-diffusion layer interface if it erupts from the catalyst layer in

vapour form. Actually this tendency is considered to be promoted by the abrupt change in

momentum transport behaviour at the interface which gives rise to laminar separation zones.

These regions are therefore considered well suited to host condensation phenomena which

should be avoided for obtaining better cell performances. Simulations reveal that increasing

the ratio between diffusion layer and gas channel heights diminishes the probability of liquid

cumulation at the interface by homogenising the flow field. Consequently, it is believed that

gas transport from gas channels to diffusion layers can be enhanced and cell performances

increased.
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However, in fuel cells, water formed by chemical reactions at the catalyst layer can

erupt towards diffusion layers also in liquid form. The dynamics of liquid front imbibition

and drainage in porous media is difficult to predict, especially in media composed of fibers

with different orientations and wetting conditions. In Chapter 4 this issue has been clarified

in order to identify alternative engineering solutions in producing diffusion layers capable

of promoting fast liquid removal. Simulations of liquid front imbibition and drainage in

fibrous porous media have been performed by varying fibers distribution and orientation as

well as wetting properties of microstructure. The imbibition and drainage dynamics have

been found to be faster for hydrophilic and hydrophobic media, respectively, as expected.

Moreover, the imbibition process has been observed to generally follow the theoretical

Lucas-Washburn solution, so that the time-dependent saturation is described by the law

Sat ∝ t∗1/2. However, the difficult determination of the capillary radius can lead to wrong

prediction when applying the Lucas-Washburn solution. Results confirm that two times

the hydraulic radius is a good approximation of the capillary radius in media composed of

randomly oriented fibers. Imbibition in highly hydrophobic media has been found to follow

a different time-scaling, with Sat ∝ t∗1/3, which reflects a very slow infiltration process

caused by a great discontinuity of the liquid front. In order to further enhance the liquid

front dynamics, an half hydrophobic/half hydrophilic porous medium has been subjected

to imbibition and drainage process. In comparison with fully hydrophilic or hydrophobic

media, the latter “two-wetting” medium promotes faster liquid water transport. In the same

Chapter 4 simulations of fuel cells with two-wetting diffusion layers have been compared

with typical cells equipped with hydrophobic or neutral diffusion layers. In particular their

capability of draining the lower part of the cell has been investigated. Results show that

by adopting half hydrophobic/half hydrophilic media liquid water removal is tremendously

enhanced, suggesting easier through-plane gas transport to the catalyst layer, especially in

the lower part of diffusion layers, and higher cell performances.

On the other hand, concerning flow batteries, the focus has been set on macroscopic

design of distributing channels and on microstructure effects on dispersion dynamics. Chap-

ter 5 presents results of simulations of electrolyte distribution with varying the design of

distributing channels. Among the cases investigated, interdigitated channels have been found

to guarantee a good balance between uniformity of the electrolyte distribution and pressure

drops. Specifically, the optimal configuration for all-Vanadium Redox Flow Batteries is

achieved when the ratios between channels hydraulic radius and cell width and between ribs

width and cell width equal approximately 6 ·10−3 and 8.5 ·10−2, respectively.

Another key factor for ensuring high performances in flow batteries is mixing of reactants.

The higher the mixing and the dispersion inside porous electrodes, the higher the rate of
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chemical reactions and, consequently, the current density. In liquid electrolytes molecular

dispersion is almost negligible so that dispersion of active species is guaranteed by the

porous microstructure. Chapter 6 deals with the effects of fibers orientation on dispersion

dynamics. The complex flow field inside differently oriented media has been solved by

a Lattice-Boltzmann model. Then, the influence of nematic properties of electrodes on

dispersion dynamics has been evaluated by analysing the statistics of five thousand tracers

that experience flow. In order to evaluate the fluid-mechanic efficiency of differently oriented

media, effective viscosity and dispersion coefficients have been determined for each case.

Results show that drag can be significantly reduced and dispersion enhanced by orienting

fibers preferentially along the streamwise direction. This finding suggests that anisotropic

media oriented preferentially along the main direction of the flow are able to correlate the

motion of tracers for longer time in comparison with isotropic media and, in addition, their

permeabilities are significantly higher. The fluid-mechanics efficiency of flow batteries in

terms of amount of power spent for mixing has been found to be significantly increased along

both streamwise and transverse directions.

Results of the present thesis work had clarified some fundamental physical phenomena

happening inside fuel cells and flow batteries systems. They give some guideline for improv-

ing both technologies and provide innovative engineering solutions that can be experimentally

tested in real industrial systems.
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