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Abstract

Nowadays, the energy challenge is one of the largest driving forces behind many research ef-
forts. Future energy strategies include smart ways to store and convert energy on demand. On
this exciting perspective, fuel cells and flow batteries play a key role, the former in converting
energy into propulsion, the latter in storing renewable energy surplus. Nevertheless, some
main technological issues still must be overcome, such as limited peak performances often
caused by poor fluid-mechanic efficiency. The fluid-dynamic optimisation of fuel cells and
flow batteries systems is the main aim of the present thesis work. To this end, the focus is set
on studying liquid-vapour two-phase flows and dispersion dynamics in fibrous porous media,
by means of Lattice-Boltzmann numerical models, in order to catch the effects of microscale
phenomena on macroscale features of both technologies. Present findings offer new insights
into understanding fundamental physical behaviours in fuel cells and flow batteries, and give

a guideline for good and innovative design practice.
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Chapter 1

Introduction

1.1 Green Decarbonated Energy

Nowadays, the rapid rise of green decarbonated energy demand provides new opportunities
for scientific community to participate in renewable energy technology development. The
energy challenge is one of the main topic in the European framework programme Horizon
2020. From chemists to biologists and from engineers to physicists, the need of new general
understanding about renewal energies involves many scientific fields.

Among all the European calls of Horizon 2020, the fuel cell topic is of great importance
in the short term perspective of the European community. For instance, the second call
Fuel Cells and Hydrogen Joint Undertaking (FCH2 JU) “aims to accelerate the commercial
development of hydrogen-based energy and transport solutions across Europe through a total
investment of €1.33 billion”. ! The main target for the scientific and industrial community is
to improve fuel cells performances and reduce the cost of products in order to prove their
competitiveness in the mobility market. In fact, while the fuel cells technology is well known
since the second half of the twentieth century, several technological and industrial issue still
remain in order to make them ready for the global market. [1]

In future fuel cells are expected to dominate the electric automotive sector along with
batteries and hybrid vehicles. Instead, their application to the stationary storage is considered
secondary, even though, at present, they are already well exploited to this aim, e.g. in
Combined Heat and Power (CHP) systems. Projects of 1 MW and larger fuel cell batteries
have been undertaken, while smaller fuel cells in the range of 50-75 kW have been developed
for automotive applications. Anyway, their low emission feature strongly promote them to be

applied for transportation, simply because they appear to be the most efficient and clean way

Uhttp://www.fch.europa.eu/
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to convert energy into propulsion, being characterised by larger range and faster refuelling in
comparison with batteries. [2, 3] On this perspective, fuel generation and storage, as well as
the delivery infrastructure and the limited peak performances are still significant issues. [3]

Redox Flow Batteries (RFBs, also called “flow batteries™) are instead believed to po-
tentially solve the problem of stationary energy storage. RFBs are similar to fuel cells but
they are closed systems, that means the fuel must not be supplied from outside. Rather,
the reduction and oxidation (from which the term “redox”) reactions occur inside the cell
which, in turn, hosts fully reversible chemical reactions. [4] The reversibility and scalability
of this technology are the characteristics which make RFBs appealing as part of the European
strategy for future energy storage. [1]

The present thesis deals with transport phenomena, from gas distribution to liquid move-
ment and condensation, in fuel cells and flow batteries, by means of advanced computational
fluid dynamics. In the current Chapter 1 a brief introduction to fuel cells and redox flow
batteries will be given along with the state-of-art and still-open issues of both technologies.
In the next Chapter 2 the numerical methodology used for simulating flows will be presented.
Chapter 3 regards a study of liquid water cumulation in fuel cells, focusing on implication
on cell design. Chapter 4 instead will present results of simulations of liquid imbibition and
drainage in unsaturated fibrous porous media. Chapter 5 will largely describe the combined
effect of flow and dispersion in redox flow batteries and finally Chapter 6 will summarise the

main results and attainments.

1.2 PEM Fuel Cells

The present study focuses on Polymer Electrolyte Membrane Fuel Cells (PEMFC or PEM
Fuel Cells). PEM fuel cells are electro-chemical energy converters. They are composed of
two graphite plates, named “bipolar plates”, with engraved Gas Channels (GCs) that provide
fuel distribution over the active area as well as current collectors, two fibrous porous media
which serve as gas distributors, and a proton exchange membrane that prevent electrons
passage, see Fig. 1.1. The fuel is hydrogen and it is continuously supplied to the anode side
while at the cathode oxygen is provided as oxidising agent. During the chemical reaction in
the cell, fuel donates electrons from the anode side of the membrane while oxidising receives
them on the other side after they have migrated in the external circuit. The membrane acts as
an electrical insulator while allowing proton transport. In turn, the electrons transport occurs

in the external electrical circuit where they produce electrical work. [3]
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Fig. 1.1 Sketch of a fuel cell.

The global oxidation and reduction reactions occurring at the anode and cathode are:

Anode hydrogen oxydation: Hy — 2H " +2e~

(1.1)
Cathode oxygen reduction: O, +4H" +4e~ — 2H,0 .

It should be stressed that many alternatives exist to describe the latter reactions, depending
on the kind of fuel cell and fuel (methane and methanol are also used in other fuel cells).
Moreover, the full chain of subsequent chemical reactions in real systems is much less trivial
than the one expressed in Eq. 1.2; anyway this is beyond the purpose of the present work and
the reader is suggested to consult more specific publications for a thorough description of the
full chain of reactions, see e.g. [5].

Porous media act as electrodes by hosting chemical reactions in a thin region of them-
selves, i.e. the catalyst layer (CL), as well as by conveying electrons to the current collectors.
Given their porous microstructure, they also facilitate the distribution of species all over
the catalyst layers, so that they are usually called Gas Diffusion Layers (GDLs). GDLs are
usually characterised by high porosity, i.e. € =0.7+0.9, and composed by carbon fibers
randomly distributed throughout the media. From a fluid-dynamic point of view, the GDL is
the most interesting part of the cell since the pertinence of classic macroscopic equation for
modelling mass and momentum transport in porous media is still on debate. [6—8]

The very complex transport phenomena inside GDL greatly affects fuel cell performances.
In fact, the current density of the cell is generally limited by two main factors: activation
over-potential and mass transport losses. The former and the latter dominate the low-current
and the high-current operative conditions, respectively, while the ohmic losses are present
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Fig. 1.2 Polarisation curve of a cell. The activation and mass transport losses are highlighted.

particularly in the membrane, due to proton motion, but have a smaller impact on current
density, see Fig. 1.2. From Fig. 1.2 it is also clear that the mass transport losses are generally
considered responsible of the dramatic decrease of the voltage at high current densities. They
are also associate with the flooding phenomenon, that is, the significant presence of water in
liquid form inside the GDL which potentially limits the gas diffusion.

The bottlenecks of fuel cell technology are the limited performances at high current
densities and the cost of the catalyst layer. Other issues are cold start and safe hydrogen
storage. Recently, the Japanese company Toyota launched their commercial vehicle Toyota
Mirai. The Mirai is the first vehicle able to reach global market standards, in terms of cruising
range and peak performances, even if it is still quite expensive. Toyota engineers claimed
that this improvement have been possible thanks to some new features in the cell stack,
in particular the new design of the distribution channels and gas diffusion layers. [9] The
innovative design is described as “three-dimensional”, in order to stress the change of gas
and liquid transport inside the cell, which is generally approximated as two-dimensional
in fuel cell computational models. Moreover, authors highlight the prominent role which

hydrophobicity is playing in order to manage the liquid water transport.
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1.3 Redox Flow Batteries

Redox flow batteries are electro-chemical energy conversion devices, in which a fully
reversible redox processes of species in fluid solution take place. The solutions are stored in
external tanks. Appealing features of RFBs are: scalability and flexibility, independent sizing
of power and energy, high round-trip efficiency, long durability, fast responsiveness, and
reduced environmental impact. [4] These benefits make RFBs capable of assisting electricity
from renewable sources, by storing the excess of generated energy. In fact, in RFBs, power
and energy are separated and easily tunable, by adjusting the number of cells and the size of
tanks, respectively. Thus, they can be easily adapted for different kind and size of energy
storage, at a minimum cost. [4, 10]

The technology of RFBs is known since the late 1980s, but just recently it has gained
popularity, along with the rapid rise of chemical and engineering technology for energy
applications. [11] RFBs can be supplied with different kind of electrolyte solutions, from iron-
chromium to zinc-bromine, and from vanadium-bromine to vanadium-vanadium. Among all,
today the vanadium-vanadium electrolytes are promising to overcome some drawbacks of
this technology, such as cross-over contamination. The vanadium solutions are able to hold
four stable oxidation states of the vanadium element; these oxidation states exchange between
themselves electrons and protons inside the cell to produce electric work. [4] The presence
of four stable state of the same chemical element significantly reduces the performance drop
caused by cross-contamination inside the cell, from cathode to anode and viceversa, allowing
for a high cell capacity for long time. This is the main benefit of using all-Vanadium Redox
Flow Batteries (VRFBs).

Vanadium is dissolved in an aqueous sulphuric acid with some differences in the metal
ion charge oxidation at the electrodes: vanadium IV-V (tetra- valent—pentavalent) is used on
the positive side and vanadium II-III (bivalent—trivalent) on the negative. The half-reactions

reads as follows:

) discharge 3
Negative electrode vanadium oxydation: V=t = VT fe”
charge
. (1.2)
discharge 5
Positive electrode vanadium reduction : VOEL +2H +e- = VO*"+HO.
charge

From the above equation, it is clear the similarity with fuel cells, with a major difference: the
reversibility of the reactions fully inside the cell. As in fuel cells, the migration of hydrogen
ions H is promoted by a proton exchange membrane, while electrons are transported in an

external circuit. The typical current density of all-vanadium cells is in the order of 5 =8 10?
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A/m?, to which correspond a lower power density compared to PEMFCs. This limitation
on power density, along with the intrinsic scalability of the technology, suggests the use for
stationary applications.

Regarding the state of art of VRFBs, during recent years, several power plants based on
such technology have been built. Among them, the plant installed by SEI for J-Power in
2005 is the largest, with a capacity of 4 MW / 6 MWh. The plant has 96 stacks rated about 1
MW which consist of 108 cells each one. [4] From the academic perspective much has been
done for achieving a better knowledge of the physical phenomena inside VRFBs. As for fuel
cells, the chemical behaviour is very complex. For this reason chemists are spending efforts
in understanding the full chain of electro-chemical reactions in order to enhance reactions
and limit secondary products, see e.g. Kim et al. [12] The fluid mechanics is complex as
well. The microstructure of the electrode which act both as fluid mixers, active surfaces
(conversely to fuel cells) and current collectors, is typically composed of randomly placed
carbon fibers. Such complex structure is able to spread and diffuse vanadium species all
along the cell, even if it is not known to what extent this diffusion process can be enhanced.

1.4 Outline of the thesis

The present thesis deals with the fluid-dynamic optimisation of fuel cells and flow batteries
systems, from the micro to the macro scale. The fluid-dynamic study has been carried out
by means of numerical simulations based on the Lattice-Boltzmann Method. Figure 1.3
schematises the thesis structure and the content of every chapter.

The main question that this study tries to address is: “Is it possible to improve fuel cells
and flow batteries performances by improving the fluid dynamics of the systems? And if yes,
how?”. In order to answer these questions, the present study is focused on water management
in fuel cells and dispersion of species in flow batteries. Indeed, these aspects are considered
crucial for increasing peak performances of such systems.

In fuel cells the optimal water management strategy would enhance gas transport to the
gas diffusion layers and catalyst layers while promoting liquid water removal. This strategy
can be achieved by identifying the optimal micro and macro structure design and tuning the
microscopic properties of cell components. In Chapter 3 the main mechanism of liquid water
cumulation and its dependence on GDL and GC macroscopic design will be investigated.
Several simulations with varying the cell design will be analysed. These simulations aim
to investigate the case when water erupts from the catalyst layer in vapour form. Water can
also be transported from catalyst layers to diffusion layers in liquid form; this issue will be

investigated in Chapter 4. The dynamics of liquid infiltration and drainage in fibrous porous
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Fig. 1.3 Schematic outline of the present thesis.

media and the effects of material hydrophobicity will be discussed in order to establish the
optimal design of a fuel cell which promotes liquid water removal from the diffusion layers.

In Chapter 5 some main issues related to flow batteries technology will be briefly dis-
cussed, focusing on fluid-dynamics aspects, and a study of the effect of distribution-channels
macroscopic design on electrolyte distribution in RFBs will be presented. In Chapter 6 a
thorough study of dispersion mechanisms inside porous media will be presented and an
optimal configuration of the porous microstructure for RFBs applications will be identified.

In the next Chapter 2 the Lattice-Boltzmann numerical methodology and its applicability
to the cases discussed in the present thesis work will be discussed, as well as the model
validation.

The present thesis work has been supported by the strategic project MAESTRA funded
by the University of Padova with 809 k€.






Chapter 2

Numerical Methodology

2.1 The Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM) is an alternative way to solve Navier-Stokes equations.
It has been developed from its ancestor method, the Lattice Gas Cellular Automata. The
LBM solves the Boltzmann Transport equation which determines the statistical distribution
of fluid molecules at the mesoscale.

Without going into the details of its formulation and derivation, the Boltzmann equation
is inherently different of its macroscopic counterpart, that is, Navier-Stokes equation: while
the latter satisfies the mass and momentum conservation laws at the macroscale, the former
satisfies them at the mesoscale in the theoretical framework of kinetics and statistical me-
chanics. [13] In comparison with conventional Navier-Stokes solvers, the main advantages
of the Lattice-Boltzmann Method are its capability of easily handling multiphysics problems
and the ease with which it can be parallelised. Sure enough, it is extensively used for directly
solving two-phase flows without tracking the interface or flows in complex geometries, in a

regular computational grid perfectly suited for parellelisation.

2.1.1 From the Boltzmann Equation to Navier-Stokes

The Boltzmann Transport equation describes the physical state of a thermodynamic system
through the distribution functions f (X, p,¢). Let be m the mass and V the velocity of a particle;
if X is the particle position and p = mV its momentum, the distribution function f (%, p,t)

conveys the probable number of fluid particles with such velocity in such position, that is:

An = fAXAp 2.1)
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Actually, Eq. (2.1) describes the probable number of fluid particles in the neighbourhood
(X4 AX, p £ Ap). Taking into account one particles (one-body kinetic level) the Boltzmann

equation reads as:

O 5O 2 O\ [ 3
{8—t+n—1-£,+F-a—ﬁ}f(x,p,t)— [t~ fogoe)ivas @2

where F is the external forcing, f the post-collision distribution, & the differential cross
section of the collision, g = V| — V the relative velocity and ¥ the characteristic angle of
collision.

Equation (2.2) can be shortly written as:

S f =% (2.3)

The Boltzmann Transport equation describes the relationship between the streaming
operator ., that is the “free streaming” of particles along their trajectories, and the collision
operator %7, , which represents the collision between two particles 1,2 and, consequently,
involves the probable state of two particles (two-body kinetic level). These particles, in turn,

depend on trajectories and collisions of others and so on. !

Boltzmann thus conceived the hypothesis of molecular chaos for which particles going
to collide are completely independent each other: [13, 14]

fifa=fi2 (2.4)

To what extent this assumption can be applied to liquids, which are characterised by high
density, has been subject to a great debate. Without entering into the merits of this debate, it

should be stressed that several studies has demonstrate its applicability to liquids dynamics.

In the Boltzmann equation the distribution function at the thermodynamic equilibrium
satisfies the condition of local equilibrium. Local equilibrium is defined as the state in which
particles entering the local fluid element are perfectly balanced by the outgoing one. In this
state the collision operator is null, not because there are no collisions, but rather because
collisions are balanced along different directions. Consequently at equilibrium ¢ = 0, from
which it follows:

hh=fif 2.5)

! f15 is the probability to find the particle 1 in A¥; with velocity Av| and the particle 2 in A% with velocity
AV, at the same instant 7.
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In logarithmic form:

Infi+Infa=Infi+Inf (2.6)

Equation (2.6) states that the variable In f is an additive invariant of collision. Thus, if
the fluid is in a state of thermodynamic equilibrium, In f will be a function of the collision
invariants, i.e the conserved properties during collision: the particle number, the momentum
and the energy .# = (1,mv,mv?/2) These collision invariants are related to their macroscopic

counterparts as follows:

p :m/fd\_f
pu; :m/fvid\_f 2.7)
2
pe:m/f%dﬁ

where m is the mass, p is the density, u; the macroscopic velocity and pe the energy

density. 2 The variable In f can then be written in polynomial form: 3

1
mf:A+&w+§aﬁ (2.8)
It should be noted that the “contact point” between microscopic and macroscopic world
is the equilibrium distribution function f¢, which inherently satisfies the local equilibrium
condition. The latter can be expressed by means of the Maxwell-Boltzmann formulation:

f¢ = p2m3)PRement (2.9)

1

where ; = v; — u; is the relative velocity, D the number of dimensions, vy = \/W
the thermal velocity , T the temperature and kg the Boltzmann constant. 4

Fluids tend to local equilibrium and this tendency is called local equilibrium relaxation.
Thermodynamic equilibrium can be reached globally, that is when fluid velocities and
temperature are constant throughout the domain, and the fluid can be defined in global
equilibrium.

The fluid relaxation towards equilibrium can be characterised by three main timescales

corresponding to three different dynamic steps:

2the subscript ; indicates a Cartesian coordinate components.
3A, B and C are generic polynomial coefficients.
4vT is the mean quadratic velocity of the Maxwell-Boltzmann distribution
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* fast relaxation towards one-body distribution, with the timescale t;,;;

* relaxation towards local Maxwellian equilibrium distribution, with time and spatial-

dependent hydrodynamic variables. The timescale is #;, = I, /v;

* slow relaxation towards global Maxwellian equilibrium, with hydrodynamic variables

constant in time and space. The timescale is fyy = Ips/v.
In the aforementioned formulation, /,,,, is the mean free path of particles, while [y, is a
characteristic macroscale length. Summarising:

int

fiz.n— fi— fevu,T) " f¢(vo,uo,To) (2.10)
u
Citing Sauro Succi:

the fluid dynamics can be seen as the (family) picture that emerges from the
study of the kinetic equations. [13]

From the above sentence, the meaning of the LBM appears more clear: a junction
between variables at different space and time-scales, i.e. the microscopic and the macroscopic
scale. In order to prove that Boltzmann equation leads to the Navier-Stokes equation at
the macroscopic scale, a multiscale expansion can be performed. In practice, it consists
in treating each variable with its own scale. Among all, the Chapman-Enskog multiscale

expansion is one the most famous tool:

f=r+ef”
x= 8*1x1
t=¢e'n+e%n (2.11)

d/dx=¢€d/dx
d/dt =€ d/at +€2 d/dt,
In Eq. (2.11) x; e t; refer to the speed of sound scale while #, is the timescale of

hydrodynamic diffusion. The streaming operator can be rewritten on the basis of Eq. (2.11)
along the Cartesian coordinate i (being j the other coordinate):

D pd 0 N
L ot atz Vi 8x1,- jaxli axlj

Following the same logic, the collision operator becomes:

1
+ Ee‘zviv (2.12)
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C(N)=2(f)+eC(f™) (2.13)

At equilibrium the collision operator is null, see Eq. (2.5). If one multiplies Egs. (2.12)
and (2.13) by any collision invariant .¢ and integrates in the domain dv Eq. (2.2), (he)
obtains:

d

o L0 1, 9 9
/8—+8 — + EVi— + <€ Vivj
dxy;

axli 8x1j

_ / eIE(f)di =0

(91‘1 8t2 2 :| dev -

(2.14)

The integral of the collision operator in the domain dV must be null in order to do
not violate the conservation law of number of molecules. In order to get the macroscopic
hydrodynamic variables, the collision invariant .# = (1,mV,mv?/2) and the the proper
scale, € or €2, must be chosen. For instance, the continuity equation can be attained from
Equation (2.14) by choosing .# =1 and &:

/sﬂﬁdv+/efviﬁdvzo . (2.15)
8t1 8x1,-
Equation (2.15) can be rewritten as:
d . 4 . d . 207
a—tl/,ﬂfdv—/fa—tldwrE/ﬂv,fdv—/fv,%dv_o . (2.16)

Since . is not time dependent, the second member of Eq. (2.16) is null. Finally, on the
basis of the definitions given in Eq. (2.7) and imposing .# = 1, the continuity equation can

be derived:

dp | d(pui)
9_l1+ dxi;

In a similar matter one can derive Navier-Stokes equations by imposing .# = mV with the

=0 (2.17)

scale £2. It should be lastly noted that the system tends to local equilibrium in a faster time #;
in comparison with the time #, required to reach global equilibrium by diffusing momentum.
The Navier-Stokes equation results:

u; du; 1 dp 0%u;; F

ETS “j%—_ﬁﬁ ax%j+E (2.18)




14 Numerical Methodology
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Fig. 2.1 Two-dimensional lattice cell in LGCA and in LBM

2.1.2 The Lattice Gas Cellular Automata

The ancestor of the Lattice-Boltzmann Method is the Lattice Gas Cellular Automata (LGCA).
It is based on the cellular automaton, a mathematical model developed in the first 1950s:
the space is divided in discrete parts (the cells) to each of which a proper condition or
state subjected to some set of rules is assigned. In 1986 Frisch, Hasslacher e Pomeau [15]
introduced a new set of rules in order to satisfy the laws of the fluid dynamics which gave
rise to the Lattice Gas Cellular Automata method.

In the LGCA method the domain decomposition into cells can be several on the basis of
the cells shape, e.g. squared or hexagonal. Figure 2.1 shows a two-dimensional example of a
squared cell of a lattice. Each cell consists of some “links” which are addressed by the vector
¢r = [criycrj], with r =1,...,9 and 7, j = x,y (Cartesian coordinates), and which connect the
cell to the others. Moreover, each cell can host up to 8 fluid particles, provided that all the

following rules are satisfied:

all particles have the same mass m = 1;
* each particle can move along just one direction ¢, in a single time interval;

* by the end of this time interval, each particles will move from the position X to the

position X+ ¢,;
* two particles in the position cannot move along the same direction (exclusion principle).

Surprisingly, even though the aforementioned rules are apparently so far from the real
nature of fluids, they can describe a flow field with sufficient accuracy. > The latter rules
allows to univocally define the condition of each cell of the lattice at any instant of time; the

two possible states are defined by the occupation number n,:

>In a real gas particles can move in an infinite number of directions and velocities.
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Fig. 2.2 Example of collision in LGCA

ny(X,t) = 0 no particles
r(%,7) p 2.19)
n,(X,t) = 1 particle is present

In the LGCA method the streaming operator describes the particle transfer from one
position to another one while the collision operator describes the possible change of direction
of particles that collide with others:

Sy =np(X+Cpt + 1) —np(X)1) (2.20)
Gr(n1,...,n9) =i, (X,t) —n,(X,t) (2.21)

where 7i indicates the post-collision state. If . = 0, the particle is free to move and
there is not collision 4 = 0. Conversely, if there is collision, the particle will move to
another position following the rules of the lattice. In the example given in Fig. 2.2, the cell is
squared and its state is (np,...,n9) = [101000000]; the collision operator transforms the state
in [010100000] and the two particles can eventually move from n; to ny and n3 to n4.

In order to simulate fluids, the possible collisions in this system must satisfy the conser-
vation laws of mass and momentum, and one more condition: the rotational invariance of
Navier-Stokes equations. Therefore one must choose the shape of the cell among the possible
shapes which respect to this condition.

Summarising, the equation of the LGCA method is:
Fin, = %,(n) | (2.22)
where n = (ny,...,n9). The same equation can be written as follow:
ny(X+¢ént+1) =1,(X1) . (2.23)

The funny story of the LGCA is that it was not really conceived at the beginning for
simulating fluid flows, but rather for applications in computer processors and cryptography.
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Only later, the logic of cellular automaton was surprisingly found to be able to describe the
behaviour of viscous flows at the macroscopic scale.

2.1.3 The Lattice-Boltzmann Equation

One of the major drawback of the LGCA method is the statistical noise. In fact, every
“particle method” (i.e. every method which describe the properties of each particle) is
inherently characterised by a great number of statistical fluctuations. In order to deal with this
excess of information and make the method computationally efficient, McNamara and Zanetti
in 1988 [16] substituted the Boolean value of the occupation number with the corresponding
spatial and temporal mean value. More to the point, instead of assigning one particle to a
specific position, they assigned the mean probability to find a particle to that specific position.
Even though this procedure filters a lot of information from the microscale, it reduces the
statistical noise at the hydrodynamic macroscale.

From the mathematical point of view, the occupation number can be split into two parts:

the mean f, = (n,) and its fluctuation r,:

ne=fr+r . (2.24)

By substituting Eq. (2.24) in Eq. (2.22) it results:

where R, indicates all the fluctuations around the mean value. If particles are uncorrelated,
each of them will have the same probability of being in a specific position with a given
velocity so that R, = 0. Actually this corresponds to the molecular chaos hypothesis [14].
With this hypothesis, the non-linear formulation of the Lattice-Boltzmann equation can be

obtained as:

I fr =G (f) (2.26)

The non-linearity is intrinsic in the collision operator. It should be noted that Boolean
variables in Eq. (2.26) have been substitute with continuous variables which require higher
computational efforts; nevertheless this drawback is widely compensated by the lower
computational efforts required to compute the statistical noise.

Another drawback is the non linearity of the collision operator. In order to overcome this
issue McNamara e Zanetti [16] and Higuera e Jimenez [17] contemporary suggested to use
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the Chapman-Enskog procedure. In particular they both proposed to expand the variable f
around its global equilibrium value £¢°, so that Eq. (2.11) results:

=+ iR e o’ (2.27)

where .# is the Mach number. In a similar manner the collision operator along the

generic direction r (being 2, r3 other directions) can be rewritten as:

cgr(f):c@ﬂr + (f f2+ r2)
freO afr2 freO
- (2.28)
+§m f;0<f G+ fE G+ %)+

At global equilibrium condition €, (f¢°) = 0. Therefore the first term in the right hand
side of Eq. (2.28) is null. If one consider the higher-order terms O(.#?) negligible, the

equation results simpler:

9%, | .. %,
¢ — ne 2.29
afrZ f;fO( r2)+afr2 freO( r2) ( )

At this point it should be noted that Eq. (2.29) must satisty the local equilibrium condition,

C(f) =

i.e. when £’ = 0 the collision operator must be null. Therefore the first term of Eq. (2.29) is

null as well. The qguasi linear Lattice-Boltzmann equation can be thus derived:

Frfr =Ama(fr = f12) (2.30)

where A, = % is called “scattering” matrix. Equation Eq. (2.30) is called guasi-

e0
linear since it actuaflzyj;rolves the non linearity of the Navier-Stokes equations.

The quasi-linear formulation of the Lattice-Boltzmann equation was a significant sim-
plification. Anyway some years later another simplification was introduced with the the
Lattice-Bhatnagar-Gross-Krook (LBGK) model, even called single time relaxation model.

The basic idea of the LBGK model was to replace the scattering matrix A, with a single
parameter Ty, which is the only one required to define the physics of the fluid. The LBGK

equation reads as:

Frfr=——(fr—f7) 2.31)

1
Tf
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In the quasi-linear formulation the scattering matrix is set in order to satisfy the conserva-
tion laws, while, in the LBGK formulation, distribution functions must satisfied them. In
particular, the discrete counterpart of Eq. (2.7) must be satisfied:

p:Zfre:Zfr

(2.32)

pu; = Zfrecri = Zfrcri

r r
From Eq. (2.32) it becomes clear that the Lattice-Boltzmann equation is the discrete
counterpart of Boltzmann Equation. Qian et al. [18] proposed several solution in order
to satisfy conservation laws and isotropy. As example, the two-dimensional model D2Q9
depicted in Fig. 3.3 is characterised by the speed of sound ¢ = 1/3 and the following
equilibrium conditions
3

fe=wp 1+3<z,-ﬁ)+—(a-ﬁ)2—E(u,-2+u,-2) (2.33)

where w1234 = 4/36, W56,78 = 1/36 and w9 = 16/36.

Finally it should be noted that the choice of the value of 7 is partially free since it is

related to the choice of fluid kinematic viscosity:

v=c(1,—-0.5). (2.34)

One can tune this parameter and fixing the Reynolds number. For stability issues the
minimum value is 0.5 since for 77 — 0.5 = v — 0.

From the numerical point of view one would like to have the maximum value of 77 since
with increasing it, the computational time diminishes. In fact, the higher the value of 7, the
higher the average time between collisions and the lower the number of iteration necessary
to reach equilibrium. Anyway, the higher 7y, the higher the viscosity, so that one should
increase the forcing for reaching the desired Reynolds number, decresing numerical stability
and accuracy. In light of this one should accurately choose 7 on the basis of the complexity

of the problem and of the stability of the model in reaching the solution.
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2.2 Multi-Relaxation Method

The lattice Boltzmann equation in the most simple formulation (LBGK) reads as the follow

equation which is equivalent to the compact form expressed in Eq. (2.31):
1
fr(X+Cr,t+ 1) —f,.(X7I) - _T_(fr<xvt) —ff(X,l)) 5 (235)
f

where f,(X,7), f¢(x,t) are the distribution function and the equilibrium distribution function
in the position x at the time ¢ along the r-th lattice direction, c is the discrete speed vector
and 7y is the relaxation time to equilibrium. The left hand side of Eq. (2.35) represents
the free streaming of the fluid whereas the right hand side represents collisions between
particles: the effect of the latter is to bring the distribution function f; closer to the equilibrium
distribution function f?. As already mentioned in the previous section, Eq. (2.35) is the
discrete formulation of the Boltzmann Equation. [13]

The Multiple-Relaxation-Time (MRT) scheme allows to overcome some drawbacks of
the Bhatnagar-Gross-Krook (BGK) formulation, such as the viscosity-dependent numerical
errors, especially in the case of very complex geometries. [19] In order to simulate a pressure
gradient AP/L in the flow, an equivalent body force is usually implemented. In presence of a

body force, the Lattice-Boltzmann MRT equation reads as follows:

fr(X+c¢, 01,8+ 8t) — fr(X,1) =

2.36

= NS (m(30) I E0) — (S 5.7 ) (ME)} (230
where f,(X,t) is the distribution function along the r-th lattice direction at the position X and
time 7, ¢, is the so-called discrete velocity along the r-th direction, .# is the transformation
matrix, .7 the collision matrix, .# the identity matrix, and m,, m;? are the moment and the
equilibrium moment along the r-th lattice direction, respectively. The set of moments m,
consists of the hydrodynamic moments, which are conserved during collision, e.g. mass and
momentum, and the non-conserved moments. For details of the MRT scheme the reader is
encouraged to see the paper of Ginzburg et al. [19].

In order to recover the correct Navier-Stokes equation and avoid discrete lattice effects, the
body force F; in the MRT model used in the present work has been added during the collision

Cri— Ui  Cril AP
F=w ( : + = c;) (—) ) (2.37)
r r C? C? I L ;

where w, 1s the weight of the LBM scheme along the r-th lattice direction and ¢, u; and

step as follows: [20]

(AP/L); are the eulerian component of the discrete speed, velocity, and pressure gradient,
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Fig. 2.3 The 92-neighbours fluid sites of the two-belt three dimensional lattice; the dark and
grey circles indicate sites belonging to the first and second belt respectively. [23, 24]

along the directions i = x,y,z. The macroscopic density p and velocity u; are accurately

recovered from the distribution functions f,:
p= Zf r
r

pu; = Zcr,ifr“f’%(ATP) .

i

(2.38)

The MRT model will be used in Chapters 3 and 5 while in Chapter 4 the simplest LBGK
scheme will be adopted.

2.3 'Two-phase flows

In Lattice Boltzmann models it is possible to implement several cubic Equations Of State
(EOS) which represent two-phase gas-liquid flows. In comparison with other numerical
methods, the LBM presents the advantage of spontaneously simulate phase separation when
liquid-vapour coexistence conditions are reached. The values of the gas and liquid densities
at equilibrium satisfy the Maxwell equal-area construction. [21] There are different kind of
models to simulate the interaction between the liquid and the vapour phase. The simplest and
more used one is the Shan-and-Chen model. [22] In the latter, the liquid-vapour interaction is
simulate by a density-dependent pseudo-potential y: in other words y conveys information

about the intermolecular force, i.e. the Van der Waals force.
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This model presents a main drawback: the lack of lattice isotropy beyond fourth-order
which can generate spurious currents at the interface. Moreover, the classic Shan-and-Chen
formulation cannot reach high values of density ratio. In order to overcome this limitation,
Falcucci et al. [23] and Sbragaglia et al. [24] developed the so called “two-belt” or “mid-
range” Shan-and-Chen model. The Shan-and-Chen mid-range approach simulates multiphase
flows by means of an intermolecular force which acts not only on the first neighbour nodes
but even further. The increasing of molecular interactions in the lattice enhance the isotropy

and allows to reach higher density ratio. The intermolecular force F is:
Fo=—cy(x) Y Gwyx+e)e,, (2.39)
l

where ¢; is the discrete speed vector which runs over a given set of grid points /, w; and G;
are the lattice weight and a free parameter, relative to the [-th position, and v is the density-
dependent pseudo-potential function. The pseudo-potential can have different formulations.
In the present work two different formulations have been used. The first one will be used in

Chapter 3 along with the MRT scheme, in order to allow a higher density ratio:

l//:\/p_o[l—exp(—%>] . (2.40)

On the other side, in Chapter 4, the pseudo-potential will be chosen in order to correctly

simulate phase change along with the LB heat equation (see next section for further details):

1
‘l’:eXP(——> . (2.41)
P

The Shan-and-Chen model yields to a two-phase EOS once the free parameters pg and G;
are properly chosen. Taking into account the 92-neighbours scheme used in Chapter 3 (2-belt
and three-dimensional lattice), the macroscopic pressure equation is determined as follows:

1
P=clp+ E(Gl +Gy)cty? (2.42)

where P is the pressure, p is the density and G, G, are the free parameter G; relative to
the first and second belt of lattice fluid sites respectively (details are given in the paper by
Falcucci et al. [23]). The 92-neighbours model is depicted in Fig. (2.3).
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2.4 Two-phase thermally-coupled flows °

One of the main benefits of the lattice Boltzmann method is the possibility to implement
an Heat Equation along with the fluid flow simulation. In practice, this is done by solving
another lattice for the scalar quantity 7, temperature. In the temperature lattice one solves
the Heat Equation in the same way as in the fluid flow lattice one solves the Navier-Stokes
Equation. In Chapter 4 this approach, which is often called “passive-scalar” approach, will
be exploited in order to simulate liquid-vapour phase-change inside a fuel cell Gas Diffusion
Layer. In particular, the resulting Heat Equation is:
oT

E+u-VT:V-(oNT)+\P, (2.43)

where T is the temperature, u the velocity vector, & is the thermal diffusivity, and ¥ is the
source term. [25] By using this method and by choosing the correct form of the pseudo-
potential v, one can simulate phase change in a thermodynamically consistent way, with
a proper description of the latent heat. [26, 27] In Chapter 4 Eq. 2.41 will be adopted; the

resulting equation of state is:

1
P=cT+ E(Gl )ty? (2.44)

Details of the two-phase and thermal model are given in the paper by Biferale et al. [26]

2.5 Interpolation bounce-back algorithm

The Lattice-Boltzmann Method works on a lattice, so that curved boundaries must be
approximated with stair-shaped boundaries. From one side, this facilitate the parellelisation
of the code and reduce the computational effort. From the other side, this stair-shaped
approximation reduce the accuracy of the solution at the boundaries. Bouzidi et al. [28]
introduced an interpolation algorithm for the velocities at the boundaries, which allows to get
rid of the stair-shaped approximation, without increasing the resolution. Once the distance
0,, between the fluid node and the wall is known, the following correction for the value of

the distribution function can be applied:

The Lattice-Boltzmann thermally-coupled code with interpolated bounce-back algorithm is an improvement
of the code developed by Prof. Federico Toschi of the Applied Physics Department of Eindhoven University of
Technology.
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Fig. 2.4 One-dimensional example of interpolation algorithm.

Jr(xp+ep,t) = ki - fr(xp,1) + ko~ fr(Xp = €r,0) + k1 - fr(xp,1)
ki =28,:kg=1-28,:k 1=0;(8,<0.5) (2.45)

ki =1/(28,): ko=0: k1 =1—1/(28,); (6 > 0.5)

where fq is the post-collision distribution function relative to the r-th direction, x;, is the
fluid position next to the boundary, 7 represents the opposite direction of r and ki, ko, k_
are the parameter related to the wall distance d,,. Figure 2.4 depicts the interpolation scheme.
The interpolation algorithm conserves momentum up to second order but it does not conserve
mass. This leakage or gain of mass can be easily predicted by Eq. (2.45), taking into
account that the mass exchange at the boundary between the fluid and the solid node is
Prack = fr(Xp +¢,,t) — fr(Xp,1). In fact, while with a normal bounce-back, i.e. for 8, = 0.5,
the aforementioned difference is equal to zero, it is not when §,, # 0.5. Actually, the fluid
node is not more an unitary lattice cube when 9,, # 0.5 and its mass lack or excess must be
taken into consideration. To do that, in the present work, a further correction at the boundary
is herein proposed and implemented: after the streaming step the mass difference p; 1 1S

added to the distribution functions of the fluid node x;, in a symmetric way as follows:

fr(Xp,t) = fr(Xp,1) + Wy Prack - (2.46)

This correction ensures the conservation of mass without changing the velocity field at
the boundary which remains the one described by the interpolation algorithm. The velocity

at the boundary is given by Eq. (2.38), which in the one-dimensional case results:

ur(Xp,t) = [fr(Xp,1) +Wr Prack] ¢r — [f3(Xp,1) + Wi Prack] ¢ - (2.47)

Since ¢, = —c;, the velocity u,(Xp,t) is not affected by the mass correction.
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2.6 Model validation

The Lattice-Boltzmann model used in the present thesis has been validated in several ways.
Since the model involves different physical variables and conditions, e.g. liquid and gas
densities with no-slip boundary condition or temperature with fixed temperature at the wall,

different validations have been performed.

Single-phase validation

Firstly, the single-phase flow field through a channel in contact with a porous medium has
been compared with the theoretical solution of the Volume-Averaged Navier-Stokes (VANS)
equations, see Fig 2.5. The VANS equations are determined by spatially averaging over
a representative thin volume the Navier-Stokes equations. The volume where the spatial
averaging is applied must be long enough along the main directions of the flow in order
to catch the largest length scale of the flow. In turn it must be thin enough along the other
direction (typically the wall-normal direction) to ensure enough accuracy of the solution. [29]

Let be the Cartesian coordinates x,y,z and the velocities u,v,w. The generic spatially
averaged variable ¢ can be determined as:

=(p)+0¢'

/ / 2)dxd (2.48)
.X ’
o v, W2 y

where Vj is the averaging volume, V; = €V} is the fluid averaging volume, € the porosity,(-)

the spatial averaging operator, x,y the main directions of the flow and z the wall-normal
direction. In the case of laminar, steady, uniform and two-dimensional flow the VANS

equation obtained by applying the averaging procedure reads as:
1de(u'w) 19 du 1 1 du du
MR LT Ky Ty P i
& e oz +88z < 8z>+pr Prx pVy [8an+ dz }
(2.49)

where g, is the generic body force acting along x, S is the boundary surface between fluid

and solid phase inside the averaging volume Vj and n,,n, the Cartesian components of the
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Fig. 2.5 Flow field (left panel) and shear stress partitioning (right panel). At the bottom the
total wall shear stress calculated from the LB flow field is correctly balancing the stresses
computed in the medium, as predicted by the VANS equation.

versor normal to S. By integrating along z Eq. (2.49) one obtains the shear stress partitioning:

7(z) /ZO
= E )Cd =
p ) BT

N u (2.50)
_e<uw>z— < > / pVo/pxS+/ pvo/v{xnﬁ— }dS
N AN
/P rv/p T, /P T, /P

where z is the position corresponding to du/dz = 0. It should be noted that for laminar flows
the total shear stress at the wall 7 balances the sum of the viscous stress 7,, the form-induced
stress Ty;, the pressure drag T4, and the skin friction 7, acting on the porous medium.
Figure 2.5 depicted the shear partitioning determined from the LB flow field. The stresses
have been calculated by using Eq. (2.50) and a finite difference scheme in order to obtain
B = T+ Tfi + Ta, + T4, and compared it with the theoretical solution Tysys = p fzzo £g, dz.
The computed value of the total shear stress is perfectly overlapping the theoretical solution.



26 Numerical Methodology

The geometry is representative of the typical design of fuel cells and flow batteries where
a channel distributes the gas over a porous medium and the Reynolds number is low. It is
interesting to notice that the skin friction is much higher than pressure drag in the porous
medium so that the main force which opposes the flow is the tangential friction at fluid-solid
boundary. Moreover the abrupt change in the shear stress partitioning between the channel
and the porous medium give rise to laminar separation zones at the interface and highlight
the significant role the GC-GDL interface is playing.

It should be finally noted that the flow develops vorticity at the interface which are repeated
over a length £;yse, face Which is approximately three times the distance between spheres. This

length is considered to be the dominant length scale at the interface.

Permeability validation

In order to further validate the single-phase LB model, the permeability values of flow
through a tube bundle have been compared with the theoretical solution given by Gebart
et al. [30] with varying the fiber diameter dy and porosity €. Permeabilities have been

determined by means of the Darcy law:

AP\ !
K=¢€eUu (—L > ) (2.5D)
while the Gebart solution is:
1—e 5/2
K:d}c( 1_;—1) : (2.52)

with C = 4/(9v/27%) and &, = 1 — /4. Figure 2.6 shows the comparison: the values of
the permeability with dy = 4 and the bounce back algorithm are satisfactorily close to the
theoretical solution. In turn, with a normal bounce-back rule at the boundary one should
increase the number of lattice nodes to represent the fibers. This result should be hailed as a
proof of the goodness of the interpolation algorithm.

Vapour quality test

When using the Shan-and-Chen model, once the interaction force G is chosen, the equilibrium
liquid-vapour densities pj;, and pgqs are defined. Anyway, in both phases densities fluctuate
around these values and separation phenomena happen spontaneously. The interface is not
“tracked” and there is no information apart from the density field. Consequently, one needs to

fix two density thresholds p,,. which define where the fluid is gas or liquid. A good way to



2.6 Model validation 27

10"

T T
Gebart et al.
interpolation ds = 4
interpolation df = 2
no interpolation df = 4

no interpolation df = 2 ‘
100 P ! x"g

'
x > 0o 1

%
R o
_"' [+] A
[ -*0
o)
3 101 F .9 o A * El
< _5°"n 1
Q.-"" O A x
.... o A
____ A x
_-' x
______ A
10-2p"" A E
x
x
10-3 I I I I I I
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Fig. 2.6 Non-dimensional permeability K / d]% against porosity € compared with the theoretical
solution of Gebart et al. [30]

determine the thresholds is to ensure that the ratio between the mean value of liquid density
(piig) and gas density (pgqs) Which are calculated on the basis of the threshold, equals the

ratio between the equilibrium densities, that is:

<pliq>/<pgas> = pliq/pgas . (2.53)

In order to calibrate such parameters, a vapour quality test in a tube bundle has been
carried out. Figure 2.7 depicts the gas-phase volume void fraction &€ = ngu/(ngas + nyiq)
plotted against the value of the vapour quality O, with varying the thresholds p;.; ngqs and
nyi, are the number of nodes belonging to the gas and liquid phase, respectively, determined

on the basis of p;;.. If Eq. (2.53) is satisfied, the following equation holds:

_ |y Peas (1 )] -
as= |1+ 582 [~ 1 2.54
% |: - pliq (Q ( )

with the vapour quality Q define as follows:

0= Ngas <pgas> .
Ngas <pgas> + Niig <pliq>

(2.55)

From Figure 2.7 the effect of varying the threshold can be seen. This approach has been used
in the present work before simulations in order to tune the density values and increase the
confidence of data.
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Fig. 2.7 Gas volume void fraction &g, plotted with the vapour quality Q.

Film condensation and latent heat validation

Finally, the coupling between two-phase flow and temperature fields has been evaluated by
simulating film condensation on a subcooled surface inside a two-dimensional pipe. The
comparison have been done both with the famous Nusselt theory [31] and with the Asano
theoretical solution which take into account the shear stress between the liquid film and the
surrounding gaseous phase. [32] The subcooled wall temperature 7,,; and the initial density
of the system have been set in order to match the thermodynamic condition of liquid-vapour
coexistence, in contrast with the higher initial temperature of the fluid 7y > T,,;. Following
the Asano approach, the film thickness growth 0y, (x) along the streamwise direction x can
be described by the following quartic function:

AP T, 1
Sfin gy T Sfim gy, = 2, (T~ Teoo) (¥ —x0) (2.56)

where AP/L is the body force, v;;, is the liquid kinematic viscosity, 4y, is the latent heat,
K =5/3 pjigot is the liquid thermal conductivity, T;(x) is the temperature at the liquid-gas
interface, x( is the position where the film starts to grow and 7,4(x) is shear stress at the
interface. By assuming that the pipe width is much larger than the film thickness , i.e.
H >> &4i1, the shear stress 7, can be determined on the basis of the local gas Reynolds
number: [32]

3/2
Re¥/2,v

7, = 0.332 —onsassashlgas 2.57)
X
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Fig. 2.8 Left panel: condensed film thickness 0y, plotted with distance x. The numerical
solution is well overlapping the theoretical solution of Asano et al. [32] Right panel: the
slope of the curve represents the latent heat A;, which is approximately constant along the
film thickness.

where the local gas Reynolds number Re, 4. is define with the free stream gas velocity
Uso gas = (AP/L) H? /(12 [1445) as follows:

Uso,gas X

Rex7gas - (2.58)

Veas
Left panel of Fig. 2.8 shows the film thickness growth along x. The numerical solution is
well described by the Asano theory, while the discrepancy with the Nusselt theory highlights
the not negligible effect of the shear exerted by the gaseous phase on the film thickness. The
latent heat A;, has been determined from by fitting Eq. 2.56 with the numerical values of
Ofitm» Ts and 7: the slope of the curve in right panel of Fig. 2.8 represents the value of the
latent heat and it is almost always constant along x. This result confirms that the description

of latent heat is thermodynamically consistent in the present model.






Chapter 3

Fluid Dynamics in Fuel Cells !

3.1 Characteristic length scales in fuel cells

In fuel cells several physical phenomena take place, from current transport to molecular
diffusion, from phase-change to thermal conductance, each of them dependent on the others.
Thus, the general picture from the outside is representative of dozen of other processes
happening inside the cell. Even if one focused only on the fluid-dynamic aspects, he would
observe a chain of phenomena which contribute to the macroscopic mass and momentum
transport. Each link in the chain has his own characteristic length scale.

For instance, taking into account hydrogen transport from fuel cell inlet to the place where
the last reaction occurs, one observes the following type of mass and momentum transport:
a convective transport inside the distribution gas channels (GC), with typical length scale
lc = O(mm), a diffusive transport inside the gas diffusion layer (GDL), with mean pore
size {gpr = O(um), a diffusive transport in the micro-porous-layer (MPL) all the way to the
catalyst layer (CL), where the mean pore size is {y;p;, = O(nm - pm), and a proton transport
inside the proton exchange membrane (PEM), with a typical length scale ¢pgy = O(nm).
Figure 3.1 schematises the transport mechanisms.

In the present Chapter the two-phase mechanism of gas-liquid transport in the GC, in
the GDL and in the GC-GDL interface will be discussed. In particular, the influence of
cell design on liquid water cumulation will be investigated, in order to better explain the
importance of water management in fuel cells and the effects of length scale separation on
cell performances. Simulations presented in this chapter aim to investigate the case when
water erupts from the catalyst layer in vapour form.

I'A version of this chapter has been published in Journal of Fuel Cell Science and Technology: D. Maggiolo,
A. Marion and M. Guarnieri, Lattice Boltzmann modeling of water cumulation at the gas channel-gas diffusion
layer interface in polymer electrolyte membrane fuel cells, Vol.11(6), 061008, DOI:10.1115/1.4028952.
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tac = O(mm)

Fig. 3.1 Characteristic length scales in fuel cells.

3.2 Water management and liquid water cumulation

in fuel cells

3.2.1 Introduction

In Polymer Electrolyte Membrane Fuel Cells (PEMFCs) water management is a key factor
to ensure best performances. In fact, flooding in the Gas Diffusion Layer (GDL) clogs the
voids in the porous medium, so limiting reactant diffusion. Moreover, water in liquid phase
can reach and obstruct the Gas Channel (GC) increasing pressure drops along the channels.

Water in liquid phase is produced at the cathode due to the electro-chemical reactions
and can be present at the anode due to vapour condensation. [33, 34] Several attempts
have been made in order to measure water content in PEMFCs. The majority of them
concern the cathode side and only few studies have considered flooding at the anode. Ge
and Wang [35] observed droplets formation in the anode gas channel via optical photography
and compared results from different experiments. They measured high relative humidity
(RH) and supersaturation at the anode outlet at a cell temperature of 7 = 50°C at any
conditions and they found that water tends to condense on the channel walls rather than
inside the GDL. Siegel et al. [36] measured the mass of liquid water at the anode through
neutron imaging. They observed a significant voltage decrease caused by channel water
clogging, confirming the importance of efficient anode water management. Hartnig et al. [37]
found that at high current densities liquid water accumulated at both anode and cathode,
near the channel ribs and near the microporous layer. Yamauchi et al. [34] investigated
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the flooding/plugging phenomena on the anode side of a PEMFC by means of a two-pole
(anode/cathode) simultaneous image measurement. The cumulation of water in liquid phase
at the anode in low humidity condition has been described as a consequence of the steam
back-diffusion mechanism from the cathode side.

There are three main factors that influence water vapour concentration at the anode: the
RH value of the inlet gas and the water back diffusion from the cathode to the anode, partially
balanced by electro-osmotic drag from the anode to the cathode. These factors can cause
condensation. However it is not yet clear whether the design of the GC and GDL could be
optimised to limit water cumulation and pores clogging. Li et al. [38] proposed a model to
determine the design of the GC suitable to facilitate the evaporation of liquid water. Thuran et
al. [39] evaluated the influence of the land-channel ratio. They found that the liquid stored in
the cell decreases, as the land-channel ratio decreases. Recently Sruoji et al. [40] proposed a
new flow field architecture, named Open Metallic Element (OME). Its concept is elimination
of lands, that is achieved substituting a porous medium to the conventional channel-land
design. Cell’s performance dramatically improved. The authors ascribe such result to the
absence of lands, that facilitates water removal.

The active areas in PEMFCs are typically two planar region separated by a thin electrolyte
and supported by highly permeable GDLs which spread the fuel over the whole catalyst areas
and facilitate the removal of reaction product. In turn the fluids are taken to the GDLs by
means of plates put in contact with them and provided of a dense serpentine of thin GCs.
Many factors affect the interaction between GCs and GDLs, that is, the fluid behaviour
at the GC-GDL interfaces. From a hydrodynamic point of view, the GC-GDL interface
corresponds to the so called Transition Layer (TL) which is the portion of the flow in the
porous medium (i.e. the GDL) influenced by the flow in the channel (i.e. the GC). The
hydrodynamic mechanism of mass transfer in the TL has been widely studied [41-44] but, to
the best of the authors’ knowledge, there are no studies about water cumulation phenomena
in the TL.

In the light of these evidences, the present study proposes a three-dimensional two-phase
model of the flow in the GC and GDL based on the Lattice Boltzmann method (LBM). It
is a further development of Maggiolo et al. [45] The aim is to investigate the effect of the
GC-GDL geometry on water cumulation at the anode and, in particular, at the GC-GDL

interface.
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Hgc

Hapt

Fig. 3.2 Sketch of the simulation domain 2 = 0.3, d, = 33 um, dy = 67 um, ¢ = 0.69 and
density fields at the equilibrium. The darker zones indicate liquid density.

3.2.2 Simulations of water cumulation
Simulation set-up

In order to simulate the gas-liquid phase separation and the water cumulation, a simplified
GC-GDL element is herein considered, as represented in Figs. 3.2 and 3.3. The total height
of the domain is H = 1 mm, and the length is L = 0.3 mm, which is statistically consistent
with the heterogeneity of the porous medium (the dominant length scale at the interface
approximately equals three times the distance between spheres, see Chapter 2 Section 2.6).
The GC and GDL widths are Wgc = 0.8 and Wgpy = 1.2 mm respectively , to take into
account the true land-gap structure of the GC. The GDL height Hgpy, is varied so that the
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Fig. 3.3 Scheme of GC and GDL cross section of a PEMFC. The dashed lines indicate the
simulation domain cross-sectional area.

relative GDL height 4 (i.e. the ratio of the GDL height to the total height H) is varied within
the range h = 0.3 —0.9.

For the sake of simplicity, in the present chapter, the geometry of the GDL is represented
by a Body Centered Cubic (BCC) packing of spheres as depicted in Fig. 3.2; the diameter
of the spheres, the minimum pore size and the porosity will be addressed as d;, dj, and ¢
respectively.

The flow is assumed to be steady, uniform and driven by a pressure gradient AP/L which
is implemented as an equivalent body force. [13] Periodic boundary conditions are imposed
at the inlet and the outlet along the stream-wise direction x and at open boundaries along the
span-wise direction y; no-slip boundary conditions on fluid-solid boundaries are given via a
bouncing-back mechanism. A wall fictitious density is set at the solid boundaries so as to
simulate a gas-liquid-solid contact angle of about 90°. [46]

The typical value of the Reynolds number in the gas channel (i.e. Reg;-) can be calculated

with typical values of geometric and fluid properties in PEMFCs:

Refye = NQ—ZZ’ jb’; ~14, 3.1)

where Q..;; = 1.4 I/min/cell is the imposed inlet flow rate per cell, that is the maximum
advised inlet flow rate of UBzM PEMEFC stacks (to which correspond an 80% gas utilisation).
N = 23 is the number of gas channels per cell in the anode, a = 0.8 mm and » = 0.7 mm are
the cross-sectional width and height of the gas channels, dj, = 2ab/(a+ b) is the gas channel
hydraulic diameter and vy, = 1- 10~* m?/s is the kinematic viscosity of the hydrogen.

In general, the pressure gradient can be related to the Reynolds number in the gas channel
by means of the Hagen-Poiseuille law:

AP 12

= — R 3.2
7 HéCVH eGc , (3.2)
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Table 3.1 Parameters used in the four sets of simulations> in each set the relative height has
been varied within the range 7 = 0.3 —0.9.

Set d, dy () Fixed physical quantity
Ist 33um 67 um 0.69 AP/L=(AP/L)*

2nd 50 um 50 um 0.84 AP/L = (AP/L)*

3rd 33um 67 um 0.69 Regc = Reg

4th S0 um 50 um 0.84 Regc = Reg,

where 1 e v are the dynamic and kinematic viscosities of the fluid. Eq. (3.2) can be
applied to any kind of fluid, such as pure hydrogen or water-hydrogen (H,-H,O) mixture, so
that 4 = W,y and v = v,,;, are used herein in order to simulate the H>-H>O mixture flow.
For sake of clarity, the value of the pressure gradient for Regc = Re;» and Hgc = 0.7 mm
will be addressed as (AP/L)*.

Four sets of simulations have been run varying the relative GDL height A4: in the first
and second one the pressure gradient is fixed at AP/L = (AP/L)* whereas in the third
and fourth one the Reynolds number in the GC is fixed at Regc = Rej;~ by adjusting the
corresponding pressure gradient evaluated by Eq. (3.2). All the main properties of the four

sets of simulations are listed in Tab. (6.1).

Equation of state

Three main hypotheses have been assumed: (i) the two-mixture components in the gas phase
(H; and H,O) occupy the same volume, (ii) the intermolecular force between the two gas
mixture components is negligible compared to the force between components in different
phases and (iii) the phase-separation is isothermal.

Based on the aforesaid hypotheses, starting from a metastable condition, it’s possible to
simulate the spontaneous phase separation which leads to the phase equilibrium described
by a mixture EOS, by means of the present model. The phase separation occurs when the
attractive forces are strong enough and the temperature (i.e. G| + G>) is low enough. The
model is isothermal, hence the temperature and the pressure are set to be homogeneous and
critical over the all domain. With these conditions, the phase separation can take place and
it is possible to investigate where, under critical conditions, the gas and the liquid phases
preferably exist. It should be noted that all simulations starts in a metastable condition and

no water is added to the domain during simulations. Hence the model does not simulate
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Fig. 3.4 Comparison between the Lattice-Boltzmann EOS and the Rimbach and Chatterjee
EOS. [47] The square-shaped markers indicate the gas (i.e. pgqs ~ 0.028) and liquid (i.e.
Piig ~ 2.5) equilibrium phases at Py;.

condensation phenomena but rather the behaviour of two-phase flow in equilibrium in
saturation condition.

The EOS is calibrated in order to reproduce the EOS of the Hy-H,O-mixture proposed
by Rimbach and Chatterjee with the following imposed conditions: [47]

* temperature 7 = 70°C ;
* mole water fraction Xp,p = 0.2 ;

* relative humidity RH = 100%.

to which correspond the critical pressure P = Py,;. The latter values are arbitrarily chosen in
order to simulate a possible saturation condition of the cell.

Figure 3.4 shows the good correspondence between the lattice Boltzmann EOS given by
Eq. (2.42) and the Hy-H;O-mixture EOS of Rimbach et al. [47] The resulting liquid-gas
dynamic viscosity and density ratios are of the order of 100. It has been mathematically
demonstrated that the two-phase capillary filling is driven by the dynamic viscosity ratio when
inertial forces are negligible. [48] Therefore, although the LBM density ratio results two order
of magnitude lower than the real one, the model can qualitatively simulate phase-separation
and two-phase flow phenomena given that the dynamic viscosity ratio is comparable with the
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Fig. 3.5 Number of liquid sites over total fluid sites versus the relative GDL height 7 =
Hgpr/H: (a) for a fixed pressure gradient and (b) for a fixed Reynolds number in the GC.

real one and the Reynolds number is small.

Results

All simulations start with the fluid in a metastable state as depicted in Fig. 3.4. The equi-
librium state is considered to be reached when two convergence criteria are simultaneously
satisfied at the 7-th iteration: (i) the relative error between the Reynolds number at the ¢-th
iteration and the previous iteration value (i.e. |[Re’ — Re’~!|/Re') is less than 107#, and (ii)
the relative error between the mean density value of sites that overcome the initial density
value at the 7-th iteration and the previous iteration value (i.e. |PL .10 — Pomeral /Pomera) i
less than 10™*. Re is given by:
Re = ¥ , (3.3)
where U is the average velocity of the two-phase flow along the stream-wise direction
x and Vv is the kinematic viscosity. A lattice site is considered to belong to the liquid or
gas phase when the density value exceeds or falls short of the threshold value py;,, = 2.15,
respectively.
Figure 3.5 shows the ratio of the number of liquid-phase fluid sites n;;, on the total
number of fluid sites n, at different values of relative GDL height A. First of all, for almost
all the data-set, as the relative GDL height / increases, the liquid-phase fluid sites decreases

with respect to the total number of fluid sites. Secondly, the values of n;;,/n obtained in the
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Fig. 3.6 Number of liquid sites over total fluid sites in the Transition Layer (TL) versus
the relative GDL height h = Hgpy /H: (a) for a fixed pressure gradient and (b) for a fixed
Reynolds number in the GC.

first and second sets of simulations (i.e. with a fixed pressure gradient) remain more or less
the same in the third and fourth ones (i.e. with a fixed Regc), indicating that the value of
njiq/n neither depends on the gas channel Reynolds number within the range Regc ~ 0 — 14
nor on the porosity of the GDL. It’s intuitive to think that the strong effect of the relative
GDL height on water cumulation phenomena is related to the mechanism of mass transfer in
the GC, in the GDL and, especially, in the GC-GDL interface. [45]

As remarked in the second section of this chapter, in order to study the mechanism of
mass transfer at the GC-GDL interface is crucial to identify the TL, that is the portion of
flow in the porous medium affected by the flow in the channel. In the present work the TL
is defined as the region under the GC-GDL boundary long as the domain length L, wide as
the GC width and high as two times the sum of d, and d;. Figure 3.6 shows the ratio of
the number of liquid-phase fluid sites n;;, on the total number of fluid sites n in the TL at
different values of relative GDL height /4, whereas Fig. 3.7 depicts the cross-sectional area of
the TL and the location of liquid-phase sites for three different values of 4.

The number of liquid-phase sites at the GC-GDL interface decreases as the relative GDL
height increases, in a similar manner to the total number of liquid sites shown in Fig. 3.5,
confirming the influence of the fluid behaviour in the TL on the number of liquid-phase sites
in the whole domain. Moreover, Fig. 3.6 shows that water cumulation depends somehow on
the porosity ¢ and on the minimum pore size d,,. However the relationship between n;,/n

and ¢, d,, is not straightforward.
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Fig. 3.7 Liquid-phase fluid sites location in the cross-sectional area and transition layer
location for three different values of the relative GDL height 4: (a) h = 0.3, (b) 4 = 0.6 and
(c) h=0.9.

Figure 3.7 shows the location of liquid-phase fluid sites for only three cases but results
can be applied to all the other cases. They indicate that there are two main regions where
water preferably tends to cumulate: (i) the upper (i.e. z/H ~ 1) and side walls of the GC and
(ii) the interface between the GC and the GDL (i.e. z/H ~ h), being the latter the preferred
region where water tends to cumulate.

These results confirm the key role of the TL in water cumulation phenomena. As a matter
of fact, the TL is characterised by vertical pressure gradients: over it, in the GC, the flow is
pressure-driven along the stream-wise direction x, while under it, in the diffusion-dominated
GDL, the pressure field is altered because of the presence of solid boundaries (i.e. the GDL
fibers). This induces density fluctuations and can lead to water cumulation phenomena. At
a given value of the pressure gradient along x or of the Reynolds gas channel number, the
bigger the relative GDL height 4, the smaller the fluid shear stress variation and the vertical
pressure gradient at the GC-GDL interface.

In order to prove the mechanism of density fluctuation in the TL, it can be useful to
evaluate the mean density value of sites in the TL that overcome the metastable density
value P era|TL, that is, the mean value of the density fluctuations towards the liquid phase.
The comparison between p-. e, averaged over the all domain and P erq| 72 ON Varying the
relative GDL height value 4 reveals that the density fluctuation is more significant in the
TL, as depicted in Fig. 3.8, and confirms that the GC-GDL interface is the preferred region
where water tends to cumulate. Figure 3.8 also shows that the density fluctuations in the TL
are more significant in the case of lower porosity (i.e. d, = 33um and dy = 67um). Further
studies will be devoted to address this issue.
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Fig. 3.8 mean density values of sites that overcome the initial metastable density value in
the TL and in the whole domain with varying the relative GDL height 4 for: (a) ¢ = 0.69,
dp =33um, ds =67um AND (b) ¢ =0.84, dp =50um, ds = 50um.

However, Fig. 3.8 shows that the increase of & contributes to decrease the density
fluctuations and limits water cumulation at the GC-GDL layer interface for all the considered
cases. This is of vital importance in order to limit and possibly avoid the GC-GDL interface
pore clogging phenomena which can significantly prevent the diffusion of reactant from the
GC to the GDL.

3.2.3 Remarks

In this study the mechanism of water cumulation at the anode of PEMFCs has been inves-
tigated. In particular a three-dimensional lattice Boltzmann multiphase model has been
developed in order to study the influence of geometric parameters on the mechanism of
cumulation of liquid water in the GC, in the GDL and in the GC-GDL interface.

Several simulations have been carried out under different geometrical and physical condi-
tions, leading to two main findings. First, results qualitatively agree with the experimental
observation of water cumulation at the upper wall of the GC given by Hartnig et al [37] and
Ge and Wang [35], but also reveal a new mechanism of water cumulation at the GC-GDL
interface, more to the point, in the so called transition layer. The transition layer (i.e. the
portion of flow in the GDL influenced by the flow in the GC) has been identified as the
preferred region where water tends to cumulate at the anode of PEMFCs.
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Second, the bigger the relative GDL height, the smaller the number of sites in liquid
phase (i.e. the percent of liquid water) in the whole domain and particularly in the GC-GDL
interface. This relation indicates that water cumulation phenomena are less significant in
more spatially uniform flows, e.g. in a porous medium rather than in a channel-porous
medium design.

The present model is a first attempt to understand the microscopic mechanism of water
cumulation in PEMFCs, but it is still does not consider species and thermal diffusion. Even
though the latter phenomena can significantly condition the water content in fuel cells,
interesting information on water cumulation can be deduced from the present results. Further
studies with more realistic geometries of GDLs are necessary to attain a comprehensive
insight of the relation between the porosity and water cumulation phenomena and to confirm
the results of this study.



Chapter 4

Drainage Dynamics in Fuel Cells !

4.1 Fuel cells drainage and wettabilities

In fuel cells chemical reactions occur continuously at the membrane producing a considerable
amount of water both in vapour and liquid form. In order to maintain high performances the
amount of liquid in water form must be efficiently removed from the gas diffusion layer. As
aforementioned in the previous chapter, if water diffuses in vapour phase from the membrane
all along the gas diffusion layers cross section, it tends to condense preferentially at the
GC-GDL interface. Increasing the ratio between the GDL and GC heights can help to avoid
such liquid cumulation, although it requires an higher pump power. Anyway, if the water
diffuses from the membrane in liquid form, the latter strategy may be not sufficient to drain
the porous medium. In fact, liquid water diffusion in porous media is a very slow process
compared to vapour diffusion; moreover, liquid can remain trapped in the vicinity of the
membrane for very long time. This is an even worse scenario than liquid cumulation at the
GC-GDL interface, since hydrogen would not reach the catalyst layer which will be covered
by liquid water and any chemical reaction will be impeded.

In order to overcome this issue a Micro-Porous Layer (MPL) has been recently adopted
as supplementary layer between the GDL and the membrane. [49] The main feature of the
MPL is the average pore size which is between that of the catalyst layer and the GDL. As a
consequence of this, there will be a capillary pressure gradient between the MPL and the GDL
which forces the liquid towards the GDL. [50] Anyway this capillary pressure gradient is not
sufficient to ensure an efficient drainage of the GDL since the liquid water can remain trapped
in the vicinity of the MPL if no other forces are present. Adopting hydro-phobic/philic

! Results of this chapter have been presented at the EFMC11 congress: D. Maggiolo, F. Picano, F. Toschi
and M. Guarnieri, Lattice-Boltzmann simulations of two-phase flows in fuel cell gas diffusion layers, 11"
European Fluid Mechaincs Conference, Seville, Sept. 12-16, 2016.
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Fig. 4.1 a) Polarisation curve and possible mass losses due to pores blocked by FEP; b)
sketch of FEP blocking pores as in the experimental observation of L.im and Wang [51].

materials can be a possible solution; e.g. the presence of different hydrophobicity values in
the material can create a supplementary forcing and sustain the drainage mechanism of the
GDL.

In fuel cells the mechanism of liquid transport in GDLs is even more complicated by
the presence of phase-change phenomena (i.e. evaporation and condensation) since the
thermodynamic state of the system is often close to saturation conditions. The humidification
of the hydrogen, the temperature of the cell and the hydrophobic and geometric features
of diffusion layers are all main factors affecting the liquid transport. Lim and Wang [51]
investigated the effects of hydrophobic polymer content (fluorinated ethylene propylene,
FEP) in GDLs. Their analysis evidences that an excessive FEP content in the GDL modifies
its geometric characteristics by blocking surface pores and limiting cell performances, see
Fig. 4.1. On the other hand, a small amount of FEP should enhance cell performances by
sustaining the drainage process. Park et al. [52] stressed that the driving forces for GDL
liquid removal should be other forces rather than capillarity, such as evaporation and shear
forces. However, among the wide literature about liquid transport in fuel cells, experimental
observations often lend themselves to different interpretations since they strongly depend,
for instance, on materials, environment conditions and cell system size. [53]

Other studies focused on the fundamental understanding of the water transport in porous
medium [54, 55], even recently. [56] The complex mechanism of imbibition and drainage in
porous media with different wetting conditions (i.e. values of hydrophobicity) is still under

investigation, especially for real porous media which presents a very complex structure. [53]
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Gostick et al. [57] investigated the relation between capillary pressure and saturation in the
GDL. The authors were able to predict a pressure-saturation curve for modelling the liquid
transport more accurately. Nevertheless, to what extent the hydrophobicity of the medium
influences the imbibition and drainage phenomena is still to be understood.

In this chapter theoretical models for imbibition in porous media will be briefly described
and the main findings from different numerical simulations of imbibition and drainage in

hydrophobic and hydrophilic fibrous porous media will be presented.

4.2 Wettability effects on imbition and drainage

in porous media

4.2.1 Introduction

The most famous equation for describing the dynamics of imbibition in porous media is the
Washburn’s equation. [58]. It is even called the Bell-Cameron-Lucas-Washburn equation
since Bell, Cameron and Lucas derived similar relations earlier. It reads as follows:
h(r)* = yeos(6) Re, , (4.1)
u 2
where h(t) is the time-dependent liquid penetration along the main direction x (see
Fig. 4.2), v is the capillary surface tension, 0 is the liquid-vapour contact angle, u the liquid
dynamic viscosity and R, the capillary radius.
Equation (4.1) describe the so called “spontaneous” imbibition, that is, when the only
forcing is given by the wetting properties of the pores wall (and possibly gravity, not

considered here). It can be directly derived from the Stokes equation:

27 cos(6) AP dh8uh  d [ dh
cveosto) _ (20N, 44 Rl i ke 42
R, (L)Ap+dtR§ Pa\"ar ) 42
~~ ~~ e
wetting pressure gradient viscous inertia

where AP/L is the pressure gradient and /5p is the thickness of the liquid volume.
Eq. (4.2) can be integrated in order to obtain an analytic solution for imbibition dynamics.
By imposing the initial condition #(0) = 0 and in the hypothesis of negligible inertia effects,
such as in fuel cells, it follows:

2 1/2
h(r) = [_ (ATP> E{fj" + 70052(5)&' (12 4.3)
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Fig. 4.2 a) Capillary imbibition model. b) Real porous medium imbibition; the blue surface
represent the liquid-vapour interface

Wahburn equation can be obtained if the imbibition is spontaneous, that is the pressure
gradient is null. In order to predict the saturation of a real porous medium (i.e. the ratio
between the liquid volume V; and the volume of the void-space V,) during liquid front
imbibition, one can follow the analogy proposed in Fig. 4.2 and consider that a liquid front
should penetrate the pores of the medium following Eq. 4.3, on average:

Sat(r) = - ~ L {_ (g) farRe | yeos(0) R, v 1'/2 (4.4)
14 H L )4uH? 2uH?

where H is the thickness of the porous medium and (-) denotes the spatial averaging

operator so that (h(t)) = 1/(eL;Ly) [ [ hdzdy, with L, and L, the lengths of the medium along

z and y. Equation (4.4) conveys useful information about the two characteristic velocities of

the system. The first is given by the ratio between capillary and viscous forces, while the

second is given by the ratio between pressure gradient and viscous forces:

_ Ycos(0)2R, _ (AP (apR2
U= Uw=—\T ) (4.5)
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Given the equations above, one can rewrite Eq. (4.4) in dimensionless form simply as:

Sat(t) ~ 1/2 112 (4.6)

being t* =t (Upp + Uy)/H the dimensionless time. Equation (4.6) has been derived
under the assumptions that (i) gravity and inertia effects are negligible, (ii) all variables are
neither dependent on time nor dependent on space, except h(t), and (iii) the tortuousity of the
medium 7, ~ 1. Obviously, these assumptions are not always satisfied in real system. For
instance, for the very first moments of the imbibition process inertia must be considered while
viscous effects can be neglected; under these hypothesis the liquid penetration is faster in
time, i.e 1 o< t. [59] Instead, if gravity effects are important, one expects the liquid penetration
growing a bit slower in time, with the imbibition at corners growing with £ o< 113, [60]

Concerning the second hypothesis, significant deviation from Eq. (4.6) are expected when
the contact angle 6 and/or the capillary radius R, are time dependent. For example, it is
well known that the dynamic contact angle 6,,,(¢) can be significantly different than the
equilibrium one 0, leading to different behaviours of the imbibition process. [61, 62] From
another perspective, this hypothesis is equivalent to assuming that the diffusion coefficient
of a liquid front imbibing a porous medium is a constant and do not depend on time or on
saturation. [63]

4.2.2 Simulations of imbition and drainage dynamics
Mechanical imbibition

In the present subsection results of different simulations of initial liquid infiltration will be
presented. A liquid front has the possibility of imbibing a medium if the following inequation
is satisfied:

AP 2 0
Tl V%S() ~0. 4.7

pressure from forcing  capillary pressure

Actually, Eq. (4.7) expresses the same balance between forces in Stokes equation (4.2)
neglecting inertia and viscous forces at the initial time # = 0. In other words, if the medium is
hydrophobic, the pressure given by the external forcing must overcome the opposite capillary
pressure which tends to reject the water. Equation (4.7) can be reformulated as function of

the characteristic velocities of the systems:

—>—1. (4.8)
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Fig. 4.3 Forcing pressure gradient AP/L and equilibrium contact angle 6 values for all the
considered cases of initial imbibition in lattice units.

In the case of an hydrophilic medium Uy > 0, so that even if the external forcing is
negligible, the ratio U,/Uap will be a positive number or infinite and imbibition will occur:
this is the case of the so-called “spontaneous imbibition”. In the case of no wetting, i.e.
Uy ~ 0, there must be a positive forcing for imbibition. More interestingly, in the case of
hydrophobic medium, Eq. (4.8) will predict if the liquid front will penetrate on the basis of
the hydrophobicity and pressure gradient values. Anyway the prediction may be inaccurate if
the aforementioned characteristic velocities are not well computed. In fact, while values of
pressure gradient and superficial tension, as well as values of the equilibrium contact angle
are usually well know at priori, the estimation of the capillary radius can lead to significant
errors.

In order to verify the applicability of Eq. (4.8), different preliminary simulations of front
imbibition has been carried out by varying the medium hydrophobicity, and the external
forcing. A triperiodic box has been used, see Fig. 4.2, and a liquid front of the same thickness
of the porous medium has been juxtaposed it. A body force acts as a pressure gradient and
push the liquid front inside the medium along the streamwise direction x. The total domain
size is L* = 100° computational cells; the porous medium thickness is H = L/2 and his
width W = L along both y and z directions. The porous medium is composed of ny = 35
fibers possibly overlapping themselves, with fiber length and diameter £ = L and dy = L/25,
respectively. Fibers are placed randomly following an uniform distribution.

The Shan and Chen multiphase model coupled with temperature (see Section 2.4) has
been used in order to take into account possible effects of evaporation and condensation. The
temperature at the walls and the initial temperature have been set as Ty = T,,,;; = 0.63 T in

order to allow liquid-vapour coexistence and achieve numerical stability.
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Fig. 4.4 Characteristic velocity Upp plotted against the other characteristic velocity of the
system U,,. Cross, triangle and circle markers indicates no infiltration, slow infiltration and
fast infiltration, respectively. Yellow, red and violet markers refer to hydrophobic media
while blue and green markers refer to “neutral” and hydrophilic media, respectively.

The capillary radius R, has been estimated as two times the hydraulic radius, i.e. R, =2Ry,.
The latter has been determined on the basis of the fibers diameter d, length £ and number

ny as follows:

Void volume W2H —ny ”d%/‘wf

= = 4.9
Wetted surface nymdely 4.9)

h

Values of characteristic velocities are plotted in Fig. 4.4 while values of equilibrium
contact angles and pressure gradients for each considered case are listed in Tab. 4.3. Results
show a good matching between numerical values and the prediction of initial infiltration
based on Eq. (4.8). When the inequality is not sa