
Computers & Operations Research 142 (2022) 105735

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Mining for diamonds—Matrix generation algorithms for binary quadratically
constrained quadratic problems
Enrico Bettiol a, Immanuel Bomze b,∗, Lucas Létocart c, Francesco Rinaldi d, Emiliano Traversi c

a Fakultät für Mathematik, TU Dortmund, Germany
b ISOR, VCOR & ds:UniVie, Universität Wien, Austria
c LIPN, UMR CNRS 7030, Université Sorbonne Paris Nord, France
d Dipartimento di Matematica, Università degli Studi di Padova, Italy

A R T I C L E I N F O

MSC:
90C09
90C20
90C26
49M27

Keywords:
Binary quadratic problem
Dantzig–Wolfe Reformulation
Boolean Quadric Polytope
Sparse problem

A B S T R A C T

In this paper, we consider binary quadratically constrained quadratic problems and propose a new approach
to generate stronger bounds than the ones obtained using the Semidefinite Programming relaxation. The new
relaxation is based on the Boolean Quadric Polytope and is solved via a Dantzig–Wolfe Reformulation in matrix
space. For block-decomposable problems, we extend the relaxation and analyze the theoretical properties of
this novel approach. If overlapping size of blocks is at most two (i.e., when the sparsity graph of any pair
of intersecting blocks contains either a cut node or an induced diamond graph), we establish equivalence to
the one based on the Boolean Quadric Polytope. We prove that this equivalence does not hold if the sparsity
graph is not chordal and we conjecture that equivalence holds for any block structure with a chordal sparsity
graph. The tailored decomposition algorithm in the matrix space is used for efficiently bounding sparsely
structured problems. Preliminary numerical results show that the proposed approach yields very good bounds
in reasonable time.
1. Introduction and literature review

A generic Binary Quadratically Constrained Quadratic problem
(BQCQP) can be written in the following form:

min 𝑥⊤𝑄𝑥 (1a)

s. t. 𝑥⊤𝐴𝑖𝑥 ≤ 𝑏𝑖 ∀𝑖 ∈ (1b)

𝑥 ∈ {0, 1}𝑛 , (1c)

where is the index set of the constraints, while 𝑄 and 𝐴𝑖 both are
symmetric 𝑛×𝑛-matrices and 𝑏𝑖 ∈ R for all 𝑖 ∈ . No further assumptions
on the matrices are required, in particular, the continuous relaxation of
the problem can be non-convex. Linear terms 𝑐⊤𝑥 can be integrated into
objective and constraints by exploiting 𝑥2𝑖 = 𝑥𝑖 from (1c).

BQCQPs play an important role in the optimization domain. They
have applications in many different fields, such as Telecommunications,
Finance, Biology, Energy, Robotics, just to cite a few of them (see Furini
et al., 2019, Gould and Toint, 2000 for more details). The solution of
BQCQPs is NP-hard and the optimization procedures for BQCQPs draw
heavily on both discrete and continuous theory and methodologies. For
a detailed description of solution techniques for nonlinear, especially
quadratic, problems we refer the reader to Burer and Letchford (2012)
and Furini et al. (2019).

∗ Corresponding author.
E-mail address: immanuel.bomze@univie.ac.at (I. Bomze).

The methods proposed in this paper are closely related to conic
optimization (more precisely semidefinite, copositive and completely
positive optimization) on one side, and Dantzig–Wolfe Reformulation
(DWR) and Column Generation (CG) on the other side.

DWR, firstly introduced in Dantzig and Wolfe (1960), is a well-
known technique used to obtain tight bounds for discrete problems. Its
principle is to replace the feasible region corresponding to a subset of
constraints of the model by the convex hull of its extreme points. This is
obtained through an inner representation that exploits the Minkowski–
Weyl Theorem, a classic result in polyhedral theory saying that every
polyhedron is the convex combination of its extreme points plus the
conic combination of its extreme rays. CG techniques are frequently
used for solving problems with a large (usually exponential) number
of columns. Typically, CG is used for handling linear optimization
problems, but it can be applied to any nonlinear optimization problem,
under some convexity assumptions. The fact that the application of
DWR leads to reformulated problems with an exponential number of
variables makes it natural to use CG to solve these reformulations effi-
ciently. Among various articles and surveys on CG and DWR available
in the literature, we point out (Barnhart et al., 1998; Desaulniers et al.,
2005; Nemhauser, 2012) and (Vanderbeck, 2000).
vailable online 12 February 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2022.105735
Received 26 April 2021; Received in revised form 3 December 2021; Accepted 26
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

January 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:immanuel.bomze@univie.ac.at
https://doi.org/10.1016/j.cor.2022.105735
https://doi.org/10.1016/j.cor.2022.105735
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105735&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

s

a
a
S
a
s
t

t
r
e
r
t
S
c
e
s
p
o
S

p
I
2
t
o
a
(
p
e
s
f
(
S
o

r
l
a
(
o
w
w
p
w
(
r
2

i
Q
t
a
p

i
a
l
r

a
c
a
p
c
a
c
i

T
D
(

O
o
p
p
d
b
t
o
g
r
t
g
r
c
n
c
i
c
t

2

t
f
o
t
c
r
p

s

w
e
i

t

In order to rewrite the BQCQP (1) in matrix form, we make use
of the Hilbert product ⟨𝐴,𝐵⟩ = trace(𝐴𝐵) and introduce the matrix
variable 𝑋 to represent all products of the original variables: 𝑋𝑖𝑗 = 𝑥𝑖𝑥𝑗 ,
for all {𝑖, 𝑗} ⊆ [1∶𝑛]. Here and in the sequel, for two integers 𝑎, 𝑏, we
denote by [𝑎∶𝑏] the set of all integers 𝑘 with 𝑎 ≤ 𝑘 ≤ 𝑏.

Now we can equivalently rewrite the original problem as follows:

min ⟨𝑄,𝑋⟩ (2a)

. t. ⟨𝐴𝑖, 𝑋⟩ ≤ 𝑏𝑖 ∀𝑖 ∈ (2b)

𝑋 = 𝑥𝑥⊤ (2c)

𝑥 ∈ {0, 1}𝑛 . (2d)

Several conic reformulations for quadratic optimization problems
re formulated on the extended (matrix) space, obtained after adding
dditional variables representing the products of the original variables.
ince the constraint imposing an exact relation between the original
nd the new set of variables is non-convex and difficult to deal with, a
tandard technique is relaxing this constraint, and obtain lower bounds
o be used in a branch-and-bound framework.
SemiDefinite Programming (SDP)-based relaxations, which require

he matrix variable to lie in the cone of positive-semidefinite matrices,
epresent a powerful tool in this context. SDP is particularly inter-
sting because it enjoys polynomial complexity and usually leads to
elatively tight dual bounds (see, e.g., Rendl, 2010). We refer the reader
o Helmberg (2002) and Laurent and Rendl (2005) for a survey on
DP. Specific software has been developed for SDP, for example the
ommercial solver MOSEK, or SeDuMi (Sturm, 1999), SDPT3 (Tütüncü
t al., 2003), or CSDP (Borchers, 1999), among others. The open-
ource software BiqCrunch is a SDP-based solver for binary quadratic
roblems (Roupin, 2004). In this work we will present a new relaxation
f problem (1) yielding bounds even tighter than those provided by
DP.

SDP-based techniques are also used in polynomial optimization
roblems, where objective function and constraints can be polynomials.
n this context, hierarchies of semidefinite relaxations (see Lasserre,
006) are used to provide bounds for the original problem. However,
hese approaches are computationally heavy, and often some sparsity
f the problem should be exploited. Interesting results in this sense
re given by Bienstock and Muñoz (2018) and Wainwright and Jordan
2004) where the authors obtain more efficient reformulations of the
roblem by exploiting the concept of treewidth of the graphs. How-
ver, these results can be exploited under strong assumptions on the
parsity of the problem, and in this work we provide a reformulation
or BQCQPs under more general sparsity conditions. In Ahmadi et al.
2017), the authors make use of CG to solve approximations of the
DP relaxations of polynomial optimization problems and of a discrete
ptimization problem, although without sparsity exploitation.

Among other types of conic relaxations, two important classes are
epresented by the copositive and completely positive relaxations, that
ead to optimization over the mutually dual cones of Copositive matrices
nd Completely positive matrices, respectively; see Hall and Newman
1963) for an early account. Over the last few decades, optimization
ver these cones has received increasing interest and a large number of
orks has been produced. For a description of copositive optimization,
e start referring to Burer (2012) and to the survey (Dür, 2010). Other
apers which present reviews of recent advances in this field, along
ith applications, are Bomze (2012) and Bomze et al. (2012). The book

Berman and Shaked-Monderer, 2003) is also a useful source. A very
ecent account with an emphasis on binary QPs is (Dür and Rendl,
021).

The first important result about copositive optimization is given
n Bomze et al. (2000): the authors consider the so-called Standard
uadratic Problem, which amounts to minimization of a quadratic func-

ion over a simplex, and they prove that its completely positive relax-
tion and its copositive dual is an exact reformulation of the original
2

roblem. h
This first reformulation result of a quadratic optimization problem
n copositive form was then significantly extended, under some mild
dditional assumptions, to every linearly constrained quadratic prob-
em with binary variables in Burer (2009), and soon followed by other
esults.

Solving a copositive problem remains quite hard. Typically, hier-
rchies of polyhedral cones are used to approximate the copositive
one. These are used, for instance, in Bomze and De Klerk (2002)
nd in Bundfuss and Dür (2009), while in Burer (2010) the author
roposes a doubly non-negative relaxation of the completely positive
one. A different approach is given in Bomze et al. (2011), where the
uthors propose a feasible direction heuristic to solve a problem in the
ompletely positive cone. However, the initial point with a factorization
s needed, which is trivial in some cases, but difficult in general.

Geometrical aspects of these cones have been extensively studied.
he interior of the completely positive cone has been described in
ür and Still (2008) and their result has been improved in Dickinson

2010). Other important results are obtained in Dickinson (2011).

utline. We now briefly outline the structure and the contributions
f this work. We first introduce a formulation for binary QCQPs that
rovides a bound provably stricter than the SDP bound; then we
ropose a column generation method to compute this bound, and we
emonstrate significant improvement w.r.t. the SDP bound on some
enchmark instances; this is done in Section 2. Furthermore, in Sec-
ion 3, we provide an ad-hoc relaxation for sparse problems that turns
ut to be computationally very efficient when embedded in our column
eneration method. Moreover, in Section 4, we show the theoretical
elationship between these relaxations: we prove that the two formula-
ions are equivalent for what we call ‘‘diamond-block-clique’’ sparsity
raphs, thus extending the results from the literature. The existing
esults were indeed limited – to the best of our knowledge – to block-
lique sparsity graphs. In addition, we prove that this equivalence does
ot hold for non-chordal graphs, and we conjecture that it holds for all
hordal graphs; we support our conjecture with theoretical and numer-
cal results. The final Section 5 presents preliminary but encouraging
omputational results which show that the proposed method is effective
o efficiently solve sparsely structured problems.

. Boolean Quadric Polytope (BQP) relaxation

As mentioned above, it is well known that the SDP relaxation of
he formulation given in (2) can be used to obtain strong dual bounds
or problem (1). In this work, we present a seemingly novel relaxation
f problem (2) that allows us to obtain dual bounds stronger than
he ones obtained using the SDP relaxation. We intend to replace the
onstraint (2c) by letting the matrix 𝑋 be a convex combination of
ank-1 matrices 𝑋𝑝 of the type 𝑋𝑝 = 𝑥𝑝𝑥⊤𝑝 , where 𝑥𝑝 ∈ {0, 1}𝑛. The
roblem then takes the following form:

min ⟨𝑄,𝑋⟩ (3a)

. t. ⟨𝐴𝑖, 𝑋⟩ ≤ 𝑏𝑖 ∀𝑖 ∈ (3b)

𝑋 =
∑

𝑝∈𝒫
𝜆𝑝𝑋𝑝 (3c)

∑

𝑝∈𝒫
𝜆𝑝 = 1 (3d)

𝜆𝑝 ≥ 0 ∀𝑝 ∈ 𝒫 , (3e)

here 𝒫 = {𝑝 ∈ N ∶ 𝑥𝑝 ∈ {0, 1}𝑛} is the index set of all possible binary
xtreme points 𝑥𝑝. Thus 𝒫 is a finite set of size exponential in 𝑛, that
s |𝒫 | = 2𝑛.

It is interesting to investigate the relation between problem (3) and
he well-known Boolean Quadric Polytope (Padberg, 1989), the convex

𝑛 𝑛×𝑛
ull 𝐵𝑄𝑃 of all binary rank-1 matrices 𝑋𝑝 ∈ R .

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

i

P
p

w

e
t
w

2

(
a
i
i

i
𝑝

s

t
o

R

T

w
s
e

s
p
w
c
i
O
p
t
a
e
c
t
t

a

W
l
p
a
w
s
𝜌

2

m
t
p
1
a
v

i
c
c
p
i
r
t
g
o
t

Proposition 2.1. The problem (3) is a relaxation of (1), and its domain
s the 𝑛-dimensional Boolean Quadric Polytope 𝐵𝑄𝑃 𝑛.

roof. It is a relaxation because all the solutions of the original
roblem (1) are achieved by our reformulation with 𝜆 ∈ {0, 1}|𝒫 |,

that is in the case when only one extreme point is considered (due to
the constraint (3d)). Then, by the constraints (3c) and the constraints
on the 𝜆 variables, we know that a solution 𝑋 of (3) is a convex
combination of rank-1 binary matrices 𝑋𝑝 given by 𝑋𝑝 = 𝑥𝑝𝑥⊤𝑝 , where
𝑥𝑝 is binary, hence it is in 𝐵𝑄𝑃 𝑛. □

We now introduce the notions of Copositive and Completely Positive
matrices: let 𝐴 ∈ 𝑛. We say that 𝐴 is COPositive (COP) if 𝑥⊤𝐴𝑥 ≥ 0 for
all 𝑥 ∈ R𝑛

+. On the other hand, we say that 𝐴 is ComPletely Positive
(CPP) if there exist 𝑘 and 𝐵 ∈ R𝑛×𝑘

+ such that 𝐴 = 𝐵𝐵⊤. We notice
that, since every point in 𝐵𝑄𝑃 𝑛 is a convex combination of doubly non-
negative matrices, it is clearly in the CPP cone, which we denote by ∗.
Indeed, if we define 𝑏𝑝 ∶=

√

𝜆𝑝 𝑥𝑝, 𝑝 ∈ 𝒫 , and 𝐵 = [𝑏1,… , 𝑏𝑘] ∈ R𝑛×𝑘
+

ith 𝑘 = |𝒫 |, then (3c) becomes 𝑋 =
∑

𝑝∈𝒫 𝑏𝑝𝑏⊤𝑝 = 𝐵𝐵⊤, showing
𝑋 ∈ ∗. Hence the bounded polyhedron 𝐵𝑄𝑃 𝑛 is strictly contained
in the non-polyhedral cone ∗ and thus the domain of (3) is typically
strictly contained in that of the CPP relaxation. By consequence, the
BQP relaxation is stronger than the CPP relaxation which in turn is
stronger than the SDP relaxation, since the SDP cone contains the CPP
cone.

Related works on an inner approximation of the CPP cone include
(Gouveia et al., 2020; Yıldırım, 2017). While Yıldırım (2017) offers
theoretical error bounds for a general setting of discretization of the
CPP cone (or a base of it), Gouveia et al. (2020) takes a different
approach which uses 2 × 2 blocks overlapping in at most one diagonal
ntry. This would correspond to a cut node in the specification graph. In
he sequel, we will consider a more general case of specification graphs
ith an induced diamond graph (see Section 4).

.1. Solving the BQP relaxation

In this section we present a way to solve (3) via Column Generation
CG) in the matrix space. CG starts with a subset of variables 𝒫 ⊂ 𝒫
nd iteratively verifies (via an auxiliary problem called pricing problem)
f the solution obtained with the variables used so far is optimal or if it
s potentially necessary to add additional variables taken from 𝒫 ⧵ 𝒫 .

Let RMP(𝒫) be the restricted master problem with variables 𝒫 , that
s problem (3) with 𝒫 replaced by 𝒫 . Given the extreme points {𝑥𝑝𝑥⊤𝑝 ∶
∈ 𝒫 }, problem RMP(𝒫) can be written in the following form:

min ⟨𝑄,𝑋⟩ (4a)

. t. ⟨𝐴𝑖, 𝑋⟩ ≤ 𝑏𝑖 ∀𝑖 ∈ (4b)

𝑋 =
∑

𝑝∈𝒫

𝜆𝑝
(

𝑥𝑝𝑥
⊤
𝑝

)

(4c)

∑

𝑝∈𝒫

𝜆𝑝 = 1 (4d)

𝜆𝑝 ≥ 0 ∀𝑝 ∈ 𝒫 . (4e)

We can replace the constraints (4c) in the objective function and in
he other constraints, thus obtaining a linear problem in the 𝜆 variables
nly. We also introduce the notation 𝑋𝑝 ∶= 𝑥𝑝𝑥⊤𝑝 . Hence we have:

MP(𝒫) min
∑

𝑝∈𝒫

⟨𝑄,𝑋𝑝⟩𝜆𝑝 (5a)

s. t.
∑

𝑝∈𝒫

⟨𝐴𝑖, 𝑋𝑝⟩𝜆𝑝 ≤ 𝑏𝑖 ∀𝑖 ∈ [𝜌] (5b)

∑

𝑝∈𝒫

𝜆𝑝 = 1 [𝜋0] (5c)

𝜆𝑝 ≥ 0 ∀𝑝 ∈ 𝒫 . (5d)
3

t

he dual of RMP(𝒫) reads as follows:

max 𝑏⊤𝜌 + 𝜋0 (6a)

s. t.
∑

𝑖∈
⟨𝐴𝑖, 𝑋𝑝⟩𝜌𝑖 + 𝜋0 ≤ ⟨𝑄,𝑋𝑝⟩ ∀𝑝 ∈ 𝒫 (6b)

𝜌 ≤ 0 , (6c)

here 𝜌 ∈ R|| are the dual variables corresponding to the con-
traints (5b) and 𝜋0 ∈ R is the dual variable corresponding to the
quality constraint.

CG can be viewed as a dual cutting plane method. Once RMP(𝒫) is
olved to optimality, the optimal dual variables 𝜌∗, 𝜋∗

0 are available. The
ricing problem reduces to check if all the constraints (6b) are satisfied
ith 𝜌 = 𝜌∗, 𝜋 = 𝜋∗

0 for every point 𝑋𝑝 across 𝑝 ∈ 𝒫 ⧵ 𝒫 . If these
onstraints are valid for every 𝑝 ∈ 𝒫 , then our primal feasible solution
s also feasible for the dual of the master problem, so it is optimal.
therwise, there are 𝑝 ∈ 𝒫 ⧵𝒫 where 𝑋𝑝 violate these constraints. The
ricing problem consists of finding an extreme point that corresponds
o a violated constraint (6b), in other words, an extreme point with
negative reduced cost. To do so, the reduced cost is minimized for

very point 𝑋𝑝 as 𝑝 ∈ 𝒫 . If the minimum is less than 0, we can add the
orresponding constraint in the dual and the corresponding variable in
he master, otherwise the algorithm terminates. The pricing problem
akes the following form:

min ⟨𝑄,𝑋⟩ −
∑

𝑖∈
⟨𝐴𝑖, 𝑋⟩𝜌∗𝑖 − 𝜋∗

0 (7a)

s. t. 𝑋 = 𝑥𝑥⊤ (7b)

𝑥 ∈ {0, 1}𝑛 , (7c)

nd can be rewritten in vector form:

min 𝑥⊤(𝑄 −
∑

𝑖∈
𝜌∗𝑖 𝐴𝑖)𝑥 − 𝜋∗

0 (8a)

s. t. 𝑥 ∈ {0, 1}𝑛 . (8b)

hile the reduced master problem RMP(𝒫) is linear, the pricing prob-
em is an unconstrained binary quadratic problem. If the original
roblem is convex, i.e., if the matrix 𝑄 is positive-semidefinite and so
re all the matrices 𝐴𝑖, then all the pricing problems are convex as
ell: indeed, the matrix in its objective function (8a) is sum of positive-

emidefinite matrices because of the non-positivity of the dual variables
∗, see (6c).

.2. Computational experiments with the BQP relaxation

When using this framework, we need to solve a sequence of linear
aster problems and unconstrained quadratic binary pricing problems

o obtain the optimal value of the BQP-relaxation related to the original
roblem. In our implementation, we used Cplex (IBM, 2017), version
2.8, as solver for both the master and the pricing problems. We run
ll our comparison tests in single thread on a Intel Xeon CPU E5-2650
3 2.30 GHz processor with 64 GB RAM.

From a technical point of view, to ensure feasibility in the first
terations of the algorithm, we initialize RMP(𝒫) with a set of dummy
olumns that makes the set of constraints feasible and with a suffi-
iently large cost. Since the most challenging task is solving the pricing
roblem, we use an early stopping strategy when dealing with it. We
mpose that the solver stops as soon as it finds a point with a negative
educed cost. If the algorithms finds it, then we can add this point to
he set of extreme points for the master and proceed in the column
eneration algorithm. If there are no such points, this means that no
ther extreme point can be added so the algorithm has already found
he optimum and it can stop.

It is worth noticing that the proposed methodology could be ex-

ended to solve instances with also continuous and general integer

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.
Table 1
Gap and time, QPLIB instances.
Instance Density BC-bound BC-cuts BQP

T (s) Gap (%) T (s) Gap (%) T (s) Gap (%)

QPLIB-0067 0.88 0 5 22 2 0 1
QPLIB-1976 0.07 27 433 193 371 7 368
QPLIB-2017 0.05 113 441 114 441 124 240
QPLIB-2029 0.05 180 562 180 562 1865 192
QPLIB-2036 0.05 220 740 220 740 185 313
QPLIB-2055 0.21 21 41 104 35 92 32
QPLIB-2060 0.20 36 42 655 33 153 32
QPLIB-2067 0.19 72 68 149 65 242 62
QPLIB-2073 0.18 57 18 1078 10 285 10
QPLIB-2085 0.16 85 33 2642 23 1066 23
QPLIB-2087 0.16 123 71 172 71 2935 56
QPLIB-2096 0.15 82 18 2679 11 1210 11
QPLIB-2357 0.08 16 13 46 0 3223 0
QPLIB-2359 0.04 74 11 54 2 2888 0
QPLIB-2512 0.77 2 428 117 120 6 100
QPLIB-2733 0.89 10 762 1006 178 19 258 154
QPLIB-2957 0.60 78 >1000 2392 357 11 261 100
QPLIB-3307 0.61 5 798 1044 198 472 100
QPLIB-3413 0.09 33 >1000 678 210 11 100
QPLIB-3587 0.13 5 791 109 104 2 100
QPLIB-3614 0.13 4 680 123 100 2 100
QPLIB-3714 0.32 2 101 20 0 1607 0
QPLIB-3751 0.32 2 100 20 0 7709 0
QPLIB-3757 0.01 482 18 344 37 8850 0
QPLIB-3762 0.28 1 17 2 0 1037 0
QPLIB-3775 0.33 5 100 25 0 32 932 0
QPLIB-3803 0.14 12 33 57 0 5620 0
QPLIB-3815 0.03 2 29 41 6 1807 2
QPLIB-6647 0.07 1009 >1000 11 271 150 232 100
QPLIB-7127 0.07 646 >1000 1662 >1000 2750 0

Shifted geometric mean 0.19 37.8 186 218.77 68 561.5 31
variables but in a first round of tests we focus on purely binary instances
from the QPLIB library (Furini et al., 2019).

We compare the performance of our method with BiqCrunch
(Krislock et al., 2017), an open source SDP solver for binary quadratic
optimization problems. When running BiqCrunch, we consider two
standard sets of parameters. The first set (BC-bound) is used to obtain
the value of the SDP bound (see, e.g., Rendl, 2010), without any
additional inequality. The second set (BC-cuts) provides the value of
the SDP bound with the addition of the so-called triangle inequalities
(Barahona and Mahjoub, 1986). The results are collected in Table 1.
The first column contains the names of the instances and the second
column contains the densities, calculated as the number of variables
with non-zero quadratic coefficient over the total number of variables
(which is 𝑛(𝑛 + 1)∕2 since the problems are symmetric). Then, for each
of the BiqCrunch set of parameters and for our algorithm (BQP), two
sub-columns represent the root node gap and the time, in seconds, spent
to obtain it. The root node gap is calculated as the difference between
the optimum and the value of the lower bound given by the relaxation,
divided by the optimal value, in percentage.

The average gap exceeds 1000% for the basic SDP bound, it is
equal to 132% for the SDP bound with triangle inequalities and to 73%
for our method. Since the values have high variance, we replaced the
average (arithmetic mean) by the shifted geometric mean to illustrate
the differences in a better way. We used a shift parameter of 0.1 for the
densities and 10 for both the time and the gap values. These values also
show that the gap obtained by the BQP relaxation is approximately half
of the gap of the SDP relaxation obtained with BiqCrunch, even though
with a larger computational time. The fact that the BQP relaxation
provides a dual bound that is also stronger than the SDP relaxation with
triangle inequalities is theoretically confirmed by the results in Padberg
(1989). In terms of computing time, BQP is still competitive with BC
with cuts. Taking into account that the pricing problem is solved with a
generic solver, the results obtained are definitely encouraging. We may
indeed obtain a significant speed-up in the procedure by using ad-hoc
algorithms for unconstrained quadratic problems (8).
4

As we want to measure the quality of our bound and solution
method, we compare our results to those obtained with linearizing the
quadratic terms. In order to do so, we use the solver Cplex and solve
the problem with linearization, stopping the procedure firstly at the
root node (Cplex-r.n.), and secondly as soon as a valid lower bound
not smaller than the BQP bound is found (Cplex-bd). These results
appear for the QPLIB instances in Table 2. We impose a time limit of
10 h in these tests, and the instances that are not solved in the time
limit are marked with an asterisk (*).

In this table we can see that the root node gap of the linearization-
based method used by the solver Cplex is worse than the BQP gap.
However, Cplex obtains, on most instances, a better bound in shorter
time; on a few instances it even closes the gap, but on some other
instances our method is faster, and in two instances in particular Cplex
does not reach the same bound as our method in a time limit of 10 h.
This means that for general non-structured problems our method is
not always efficient; however, as we will see in the next section, for
structured problems the situation can change drastically.

3. Exploiting sparsity by BQP block relaxation

Now we present a generalization of the relaxation proposed in the
previous sections that exploits the sparsity of a problem by decom-
posing it into several blocks. The new block decomposition presents
interesting links with the theory of matrix completion problems. We
report some useful definitions below.

Definition 3.1. We define the support of a matrix 𝑀 ∈ R𝑚×𝑛 as

Supp(𝑀) ∶= {(𝑝, 𝑞) ∈ [1∶𝑚] × [1∶𝑛] ∶ 𝑀𝑝𝑞 ≠ 0} .

Definition 3.2. Given 𝑛 ∈ N and 𝑘 ∈ [1∶𝑛], we define a 𝑘-block
sequence in R𝑛 the set {𝑏1,… , 𝑏𝑘}, where the blocks 𝑏𝑗 ⊆ [1∶𝑛] ∀𝑗 ∈
 ∶= [1∶𝑘] and ⋃

𝑏 = [1∶𝑛], with the property that no block is
𝑗∈ 𝑗

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

f
R

D

i
o
f

D
a

F
c
d
b
t
b

D

Table 2
Comparisons with Cplex, QPLIB instances.
Instance Density BQP Cplex-r.n. Cplex-bd

T (s) 𝐺𝑎𝑝(%) T (s) 𝐺𝑎𝑝(%) T (s)

QPLIB-0067 0.88 0.2 1 0.5 1 0.3
QPLIB-1976 0.07 6.8 368 0.3 447 32.5
QPLIB-2017 0.05 124.4 240 0.4 262 20.8
QPLIB-2029 0.05 1865.5 192 0.4 207 20.4
QPLIB-2036 0.05 185.1 313 0.8 351 135.3
QPLIB-2055 0.21 92.4 32 1.2 41 24
QPLIB-2060 0.20 153 32 1.7 42 41
QPLIB-2067 0.19 242.2 62 1.8 69 24.7
QPLIB-2073 0.18 285.4 10 3 20 *360̇00.0
QPLIB-2085 0.16 1065.5 23 4.3 33 3403
QPLIB-2087 0.16 2935.3 56 5.4 68 60.4
QPLIB-2096 0.15 1209.6 11 6.1 20 *36 000.0
QPLIB-2357 0.08 3222.8 0 0.2 68 528.9
QPLIB-2359 0.04 2888.2 0 0.2 43 258.3
QPLIB-2512 0.77 6.3 100 0.1 100 0
QPLIB-2733 0.89 19 258.1 154 1.1 100 0.1
QPLIB-2957 0.60 11 261 100 1.9 100 0.2
QPLIB-3307 0.61 472.4 100 2 100 0.1
QPLIB-3413 0.09 10.5 100 0.3 100 0
QPLIB-3587 0.13 2.4 100 0.1 100 0
QPLIB-3614 0.13 1.9 100 0.1 100 0
QPLIB-3714 0.32 1607 0 0 100 133
QPLIB-3751 0.32 7708.6 0 0.1 100 579.7
QPLIB-3757 0.01 8850 0 0.7 31 421.3
QPLIB-3762 0.28 1036.8 0 0.1 98 84.1
QPLIB-3775 0.33 32 931.6 0 0.1 100 4600.2
QPLIB-3803 0.14 5620.1 0 0.2 163 814.3
QPLIB-3815 0.03 1807.3 1 0 48 24.7
QPLIB-6647 0.07 232.2 100 0.4 100 0
QPLIB-7127 0.07 2750.3 0 1.6 0 0.1

Shifted geometric mean 0.19 561.5 31 1.07 73 49.9
a subset of another one. We indicate with 𝑑𝑗 = |𝑏𝑗 | the size of each
block, and assume that they are sorted according to the order of their
first element.

Definition 3.3. Let 𝑘 ∈ [1∶𝑛] and = [1∶𝑘]. Given a 𝑘-block
sequence {𝑏1,… , 𝑏𝑘}, matrix blocks are defined as 𝐵𝑗 ∶= 𝑏𝑗 ×𝑏𝑗 ⊆ [1∶𝑛]2

or all 𝑗 ∈ . We define the set ℬ ∶=
⋃

𝑗∈ 𝐵𝑗 as a block structure in
𝑛×𝑛.

efinition 3.4. The sparsity graph of a block structure ℬ in R𝑛×𝑛 is a

graph 𝐺(𝑉 ,𝐸) with 𝑉 = [1∶𝑛] and with edges on the block structure:
{𝑝, 𝑞} ∈ 𝐸 if and only if (𝑝, 𝑞) ∈ ℬ .

According to the definition, every subgraph of the sparsity graph
nduced by the vertices of a block is complete. Hence, the sparsity graph
f a block structure is given by the union of cliques. In Fig. 1 we show,
or a given matrix (a), its block structure (b) and its sparsity graph (c).

efinition 3.5. Given a matrix 𝑀 ∈ R𝑛×𝑛, an index set with | | ≤ 𝑛
nd a block structure ℬ in R𝑛, we say that 𝑀 is block-decomposable
under ℬ if Supp(𝑀) ⊆ ℬ .

In general, for a single matrix several block structures are valid.
or instance, every matrix is trivially decomposable in a structure
onsisting of just one 𝑛×𝑛 block. In this case | | = 1, but this means no
ecomposition. We are therefore interested in structures with | | > 1
locks, and potentially we seek a large value of | |. This means that
he nonzero entries of the matrix fit in (possibly overlapping) smaller
locks. A special case is when the blocks are disjoint:

efinition 3.6. If all the blocks in ℬ have pairwise empty intersec-

tion (that is {𝑏𝑗}𝑗∈ is a partition of [1∶𝑛]) then the matrix is called
block-separable.
5

Fig. 1. Example of a block-decomposable matrix. Nonzero entries are symbolized by
a star ∗.

Definition 3.7. A quadratic problem of the form (1) is called block-
decomposable (resp. block-separable) if there exists a common block
structure ℬ under which all the matrices of the problem (𝑄 and
𝐴𝑖 ∀𝑖 ∈) are block-decomposable (resp. block-separable).

When dealing with block-decomposable binary problems, we are
interested in a relaxation of the problem that takes into account only
the vertices of the BQP for each block. Hence, we consider a much
smaller number of extreme points than the one related to the problem
in the original space. In this respect, our approach deviates significantly
from Padberg’s study (Padberg, 1989) of the facet structure of sparse
problems in a more general context.

It remains to show how to write the relaxation taking into account
the intersections of the blocks, whether this is still a relaxation for the
original problem and if it is equivalent to the one we introduced in
Section 2. We will see that the problem of the equivalence is not trivial
and it is related to a matrix completion problem.

Observe that a common sparsity structure in the problem data (zero

objective and constraint coefficients at same entry positions) allow for

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

d
s

D

𝑄

h

w

E

m

𝑋

w
t
p
c
r
m

o
M
t
n
f

t
l
f
t
b
t

4

t
g
a
s
i
p
a
w
u
o
t
t
p
r
w

4

d
w
n
𝐵

i

t
r
r
𝑝

free entry values of the feasible solutions 𝑋 at this position, so the
sparsity graph of the problem corresponds to the specification graph
of 𝑋.

The theory of matrix completion problems is well developed for
several matrix classes, including the semidefinite (PSD) and completely
positive (CPP) matrices. However, the BQP-completion problem, to the
best of our knowledge, has not been treated in depth, but it can be
helpful and interesting, as we will see, because it is strictly related to
binary quadratic problems.

In the rest of this section we assume to have a problem of the
form (2) and a block structure ℬ under which the problem is block-
ecomposable. We also introduce the following notation in order to
plit the parameters of the problem into blocks:

efinition 3.8. For every 𝑗 ∈ we define:

𝑗 ∈ R𝑛×𝑛 ∶ (𝑄𝑗)𝑝𝑞 ∶=

{

𝑄𝑝𝑞 if (𝑝, 𝑞) ∈ 𝐵𝑗 ⧵ (𝐵1 ∪⋯ ∪ 𝐵𝑗−1)

0 otherwise,

𝐴𝑗
𝑖 ∈ R𝑛×𝑛 ∶ (𝐴𝑗

𝑖)𝑝𝑞 ∶=

{

(𝐴𝑖)𝑝𝑞 if (𝑝, 𝑞) ∈ 𝐵𝑗 ⧵ (𝐵1 ∪⋯ ∪ 𝐵𝑗−1)

0 otherwise,

for every 𝑖 ∈ . We also use the following notation for the restriction
to the blocks:

𝑋
|𝑗 ∶= 𝑋

|𝐵𝑗
= {𝑋𝑝𝑞 ∶ (𝑝, 𝑞) ∈ 𝐵𝑗} ∈ R𝑑𝑗×𝑑𝑗 ∀𝑋 ∈ R𝑛×𝑛,

𝑥
|𝑗 ∶= 𝑥

|𝑏𝑗 = {𝑥𝑝 ∶ 𝑝 ∈ 𝑏𝑗} ∈ R𝑑𝑗 ∀𝑥 ∈ R𝑛.

and similarly, for the restrictions to intersections of two blocks:

𝑋
|𝑗∧ℎ∶= 𝑋

|𝐵𝑗∩𝐵ℎ
= {𝑋𝑝𝑞 ∶ (𝑝, 𝑞) ∈ 𝐵𝑗 ∩ 𝐵ℎ} ∈ R|𝐵𝑗∩𝐵ℎ| ∀𝑋 ∈ R𝑛×𝑛,

𝑥
|𝑗∧ℎ∶= 𝑥

|𝑏𝑗∩𝑏ℎ = {𝑥𝑝 ∶ 𝑝 ∈ 𝑏𝑗 ∩ 𝑏ℎ} ∈ R|𝑏𝑗∩𝑏ℎ| ∀𝑥 ∈ R𝑛.

For every block 𝑗 ∈ , we introduce variables 𝑌 𝑗 ∈ R𝑛×𝑛 which can
ave non-zero entries in the indices of block 𝑗 and are 0 elsewhere.

These matrices 𝑌 𝑗 represent the elements of 𝑋
|𝑗 . With these variables,

e can provide a relaxation of the original problem based on the blocks.

xample 3.1. Suppose to have the following objective function:

in 𝑋1,1 + 2𝑋1,2 + 2𝑋2,2 + 4𝑋2,3 +𝑋3,3

and linear constraints (which do not affect the sparsity pattern). In this

case, 𝑄 =
⎛

⎜

⎜

⎝

1 1 0
1 2 2
0 2 1

⎞

⎟

⎟

⎠

, and it is decomposable in two blocks 𝐵1 = {1, 2}2

and 𝐵2 = {2, 3}2 which intersect in the element 2. The sparsity graph
has 3 nodes and the two edges {1, 2} and {2, 3}. According to the above
definitions, we have:

𝑄1 =
⎛

⎜

⎜

⎝

1 1 0
1 2 0
0 0 0

⎞

⎟

⎟

⎠

𝑄2 =
⎛

⎜

⎜

⎝

0 0 0
0 0 2
0 2 1

⎞

⎟

⎟

⎠

,

|1 =
(

𝑋1,1 𝑋1,2
𝑋2,1 𝑋2,2

)

𝑋
|2 =

(

𝑋2,2 𝑋2,3
𝑋3,2 𝑋3,3

)

.

In the following, with an abuse of notation we consider 𝑄𝑗 =
(𝑄𝑗)

|𝑗 ∈ R𝑑𝑗×𝑑𝑗 and 𝐴𝑗
𝑖 = (𝐴𝑗

𝑖)|𝑗 ∈ R𝑑𝑗×𝑑𝑗 . With this notation we have

⟨𝑄,𝑋⟩ =
∑

𝑗∈
⟨𝑄𝑗 , 𝑋

|𝑗⟩ and ⟨𝐴𝑖, 𝑋⟩ =
∑

𝑗∈
⟨𝐴𝑗

𝑖 , 𝑋|𝑗⟩ for all 𝑖 ∈ .

With the same abuse of notation we will also write ⟨𝑄𝑗 , 𝑌 𝑗
⟩ and

⟨𝐴𝑗
𝑖 , 𝑌

𝑗
⟩, considering the restrictions of these matrices to the indices

in block 𝑗. Considering the variables 𝑌 𝑗 , we can now write the fol-
lowing problem (where (𝑌 𝑗)

|𝑗∧ℎ indicates the restriction of 𝑌 𝑗 to the
components in 𝐵𝑗 ∩ 𝐵ℎ):

min
∑

⟨𝑄𝑗 , 𝑌 𝑗
⟩ (9a)
6

𝑗∈ e
s. t.
∑

𝑗∈
⟨𝐴𝑗

𝑖 , 𝑌
𝑗
⟩ ≤ 𝑏𝑖 ∀𝑖 ∈ (9b)

(𝑌 𝑗)
|𝑗∧ℎ = (𝑌 ℎ)

|𝑗∧ℎ ∀𝑗, ℎ ∈ , 𝑗 < ℎ (9c)

𝑌 𝑗 =
∑

𝑙∈𝒫 𝑗
𝜇𝑗
𝑙 (𝑦

𝑗
𝑙)(𝑦

𝑗
𝑙)
⊤ ∀𝑗 ∈ (9d)

∑

𝑙∈𝒫 𝑗
𝜇𝑗
𝑙 = 1 ∀𝑗 ∈ (9e)

𝜇𝑗
𝑙 ≥ 0 ∀𝑙 ∈ 𝒫 𝑗 ,∀𝑗 ∈ , (9f)

here 𝑦𝑗𝑙 ∈ {0, 1}𝑑𝑗 , 𝑙 ∈ 𝒫 𝑗 , are binary vectors of the dimension of
he corresponding block where 𝒫 𝑗 = [1∶2𝑑𝑗] are the index sets of all
ossible such 𝑦𝑗𝑙 , all 𝑗 ∈ . With this relaxation we allow a convex
ombination of extreme points for every block, with the additional
equirement, given by constraint (9c), that the intersections of blocks
ust be consistent.

Clearly, if we consider the trivial decomposition in one single block
f size 𝑛, formulation (9) is the same as the one we proposed in (3).
oreover, the index sets 𝒫 𝑗 , 𝑗 ∈ , are still exponentially large, but

heir sizes depend on the size of the blocks: |𝒫 𝑗
| = 2𝑑𝑗 . Hence, the total

umber of points is potentially reduced with respect to the one-block
ormulation, since ∑

𝑗∈ |𝒫 𝑗
| ≪ 2𝑛.

Also formulation (9) can be solved via CG with a procedure similar
o the one outlined in Section 2.1. The difference with respect to prob-
em (7) is that now the pricing problem decomposes into one problem
or each block and those problems are all independent. Furthermore,
he size of these problems is the same as the size of the corresponding
lock, hence they are potentially smaller and therefore easier to solve
han a single 𝑛-dimensional pricing problem.

. Comparison to the original BQP relaxation — theory

We now analyze the relations between the BQP relaxation (3) and
he BQP block relaxation (9). Our aim is to study conditions that
uarantee their equivalence. We will prove that the latter formulation
lways provides a lower bound for the former one. Moreover, we will
ee that proving the other implication is a matrix completion problem
n BQP, defined in analogy to the PSD and CPP matrix completion
roblem as treated, e.g., in Berman and Shaked-Monderer (2003), Drew
nd Johnson (1998), Fukuda et al. (2001) and Grone et al. (1984). We
ill describe the problem and we will prove this second implication
nder some conditions. To this aim, we start with the case of only two
verlapping blocks, then we will see how the results can be extended
o the case of several blocks and analyze the conditions needed on
he block structure to guarantee the result. It turns out that a crucial
roperty is chordality of the sparsity graph. The smallest chordal graph
elevant in this context is the diamond (𝐾4 with one edge removed),
hich gave rise to the title of our study.

.1. Two overlapping blocks

Here we suppose that all the matrices 𝑄, 𝐴𝑖 of the problem are
ecomposable into two overlapping blocks. Without loss of generality
e can assume that each of those two blocks has consecutive compo-
ents. We introduce some specific notation for the two-block case. Let
𝑗 = 𝑏𝑗×𝑏𝑗 be the two blocks, 𝑗 = 1, 2. Then let 𝐵𝑐 = 𝑏𝑐×𝑏𝑐 = 𝐵1∩𝐵2 the

ntersection block. We indicate with 𝑟 the size of 𝑏𝑐 ; further, let 𝑏𝑎 ∶=

𝑏1⧵𝑏𝑐 , let 𝑠 be its size, and let 𝐵𝑎 ∶= 𝑏𝑎×𝑏𝑎; similarly let 𝑏𝑑 ∶= 𝑏2⧵𝑏𝑐 , let

𝑡 be its size and let 𝐵𝑑 ∶= 𝑏𝑑 × 𝑏𝑑 . To each 𝑝 ∈ [1∶2𝑛] we can assign an

index triple (𝑘, 𝑙, 𝑚) ∈ [1∶2𝑠] × [1∶2𝑟] × [1∶2𝑡], each of them indicating
he sub-vector of 𝑥𝑝 in the corresponding sub-block. Hence we can
eplace 𝜆𝑝 and 𝑥𝑝 in the one-block formulation with 𝜆𝑘,𝑙,𝑚, and 𝑥𝑘,𝑙,𝑚,
espectively. Similarly, considering the two-block formulation, to each
∈ [1∶2𝑑1] we can assign an index pair (𝑘, 𝑙) ∈ [1∶2𝑠] × [1∶2𝑟], and to

𝑑2 𝑟 𝑡
ach 𝑝 ∈ [1∶2] we can assign an index pair (𝑘, 𝑙) ∈ [1∶2]×[1∶2]. And

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

{
c

b

L
f

𝑘

h
(

P
s

𝑚

I

𝑘

a

𝑋

𝑋

ℬ

e
t

P
s
f

so, for 𝑝 ∈ [1∶2𝑑1] we replace 𝜇1
𝑝 and 𝑦1𝑝 with 𝜇𝑘,𝑙 and 𝑦1𝑘,𝑙 respectively,

and for 𝑝 ∈ [1∶2𝑑2] we replace 𝜇2
𝑝 and 𝑦2𝑝 with 𝜈𝑙,𝑚 and 𝑦2𝑙,𝑚, respectively.

We note that, given any triple (𝑘, 𝑙, 𝑚) ∈ [1∶2𝑠] × [1∶2𝑟] × [1∶2𝑡],
the vectors 𝑥𝑘,𝑙,𝑚, 𝑦1𝑘,𝑙, and 𝑦2𝑙,𝑚 are linked by the following relations:
(𝑥𝑘,𝑙,𝑚)|1 = 𝑦1𝑘,𝑙, (𝑥𝑘,𝑙,𝑚)|2 = 𝑦2𝑙,𝑚, and (𝑦1𝑘,𝑙)|𝑐 = (𝑦2𝑙,𝑚)|𝑐 =∶ 𝑦𝑐𝑙 .

Example 4.1. With the objective function in Example 3.1, assuming
only linear constraints for simplicity, we have that 𝑛 = 3, 𝐵𝑐 = 𝐵1∩𝐵2 =
{2}, 𝑏𝑎 = {1}, 𝑏𝑑 = {3}, hence 𝑟 = 𝑠 = 𝑡 = 1, and each of the 8
binary vectors 𝑥𝑝 ∈ {0, 1}3, 𝑝 ∈ [1∶8], can be written as 𝑥𝑘,𝑙,𝑚, with
𝑘, 𝑙, 𝑚} ⊆ {1, 2}. Similarly, the vectors 𝑦1𝑝, 𝑦

2
𝑝 ∈ {0, 1}2, with 𝑝 ∈ [1∶4],

an be represented by 𝑦1𝑘,𝑙 and 𝑦2𝑙,𝑚 respectively, with {𝑘, 𝑙, 𝑚} ⊆ {1, 2}.

Proving the equivalence is not a trivial task, even in the case of two
locks only. We start with the following.

emma 4.1. Let (𝑌 1, 𝜇, 𝑌 2, 𝜈) be a feasible solution to the block-
ormulation (9). If
2𝑠
∑

=1
𝜇𝑘,𝑙 =

2𝑡
∑

𝑚=1
𝜈𝑙,𝑚 (10)

olds for all 𝑙 ∈ [1∶2𝑟], then there exists an equivalent feasible solution
𝑋, 𝜆) to the one-block formulation (3), i.e. 𝑋

|1 = 𝑌 1 and 𝑋
|2 = 𝑌 2.

roof. Under the given assumptions, we look for coefficients 𝜆𝑘,𝑙,𝑚 that
atisfy:
2𝑡
∑

=1
𝜆𝑘,𝑙,𝑚 = 𝜇𝑘,𝑙 ∀𝑘, ∀𝑙 (11a)

2𝑠
∑

𝑘=1
𝜆𝑘,𝑙,𝑚 = 𝜈𝑙,𝑚 ∀𝑚, ∀𝑙 (11b)

𝜆𝑘,𝑙,𝑚 ≥ 0 ∀𝑘, ∀𝑙, ∀𝑚. (11c)

ndeed, if this holds, then clearly:
2𝑠
∑

=1

2𝑟
∑

𝑙=1

2𝑡
∑

𝑚=1
𝜆𝑘,𝑙,𝑚 =

2𝑠
∑

𝑘=1

2𝑟
∑

𝑙=1
𝜇𝑘,𝑙 =

2𝑟
∑

𝑙=1

2𝑡
∑

𝑚=1
𝜈𝑙,𝑚 = 1

nd

|1 =
2𝑠
∑

𝑘=1

2𝑟
∑

𝑙=1

2𝑡
∑

𝑚=1
𝜆𝑘,𝑙,𝑚(𝑥𝑘,𝑙,𝑚)|1(𝑥𝑘,𝑙,𝑚)⊤

|1 =
2𝑠
∑

𝑘=1

2𝑟
∑

𝑙=1
𝜇𝑘,𝑙(𝑦1𝑘,𝑙)(𝑦

1
𝑘,𝑙)

⊤ = 𝑌 1

|2 =
2𝑟
∑

𝑙=1

2𝑡
∑

𝑚=1

2𝑠
∑

𝑘=1
𝜆𝑘,𝑙,𝑚(𝑥𝑘,𝑙,𝑚)|2(𝑥𝑘,𝑙,𝑚)⊤

|2 =
2𝑟
∑

𝑙=1

2𝑡
∑

𝑚=1
𝜈𝑙,𝑚(𝑦2𝑙,𝑚)(𝑦

2
𝑙,𝑚)

⊤ = 𝑌 2.

So, we just have to show that there exists a feasible solution for (11).
But these are the constraints of a transportation problem for each fixed
𝑙 ∈ [1∶2𝑟]. A classical result is that a transportation problem is feasible
if and only if the sum of the right-hand-side of the first set of constraints
equals the same sum in the second set of constraints, because both of
them equal the global sum ∑

𝑘,𝑚 𝜆𝑘,𝑙,𝑚. But in our case, this equality is
exactly (10), so it holds by hypothesis and this concludes the proof. □

Remark 4.1. We notice that this lemma is also true when 𝑟 = 0.
Indeed, in this case both formulations (10) and (11) can be defined
without the index 𝑙, and moreover, the hypotheses of the lemma are
clearly always verified, since ∑2𝑠

𝑘=1 𝜇𝑘 =
∑2𝑡

𝑚=1 𝜈𝑚 = 1.

The hypotheses of Lemma 4.1 do not hold in general. The following
proposition gives a result with some hypothesis on the size of the
intersection.

Proposition 4.1. Let (𝑌 1, 𝜇, 𝑌 2, 𝜈) be a solution feasible to the multiple
block formulation (9). If the size of the intersection block is 𝑟 ≤ 2, then there
exists an equivalent feasible solution (𝑋, 𝜆) to the one-block formulation (3),

1 2
7

i.e. 𝑋
|1 = 𝑌 and 𝑋

|2 = 𝑌 .
Fig. 2. A not BQP completable matrix.

Proof. In this case, constraints (9c) become: ∑

𝑘,𝑙 𝜇𝑘,𝑙𝑦
𝑐
𝑙 𝑦

𝑐
𝑙
⊤ =

∑

𝑙,𝑚 𝜈𝑙,𝑚𝑦𝑐𝑙 𝑦
𝑐
𝑙
⊤. If all the matrices 𝑦𝑐𝑙 𝑦

𝑐
𝑙
⊤ are linearly independent, equal-

ity (10) must hold, for each 𝑙. Among the matrices 𝑦𝑐𝑙 𝑦
𝑐
𝑙
⊤ there is always

the null matrix, which is dependent on the others. However, if the
nonzero matrices are linearly independent, that is, all of the matrices
are affinely independent, condition (10) holds for all 𝑙 such that 𝑦𝑐𝑙 𝑦

𝑐
𝑙
⊤

is nonzero. And since the sum of all coefficients is always 1, then by
difference it holds also for the null matrix. If 𝑟 ∈ {1, 2}, it is easy to
see that the matrices are affinely independent, so (10) holds, hence
the result is true. Thanks to Remark 4.1, this result is proved also for
𝑟 = 0. □

This result holds with 𝑟 ≤ 2, but if 𝑟 > 2, the number of 𝑦𝑐𝑙 𝑦
𝑐
𝑙
⊤

matrices is 2𝑟, thus exceeding the dimension of the space 𝑟(𝑟 + 1)∕2
plus 1. Hence, they are affinely dependent and condition (10) cannot be
directly obtained. In order to better understand the equivalence state-
ment, and the conditions that guarantee it, we consider the multiple
block case in the following section.

4.2. Multiple-block case and BQP-completion

In the previous subsection we proved that, whenever we have a
specific 2-block-decomposable problem with intersection size 𝑟 ≤ 2, for
any solution of the block relaxation (9) there is an equivalent solution
of the BQP relaxation (3). In this section we assume that our problem is
decomposable with respect to a more general block structure ℬ . The
following proposition states that the reverse inclusion is always true:
given any feasible solution of (3), an equivalent solution of (9) can be
obtained. This means that multiple-block relaxation always provides a
valid lower bound for the one-block relaxation.

Proposition 4.2. Given a block structureℬ , suppose that problem (3) is

 -decomposable. Given any feasible point for problem (3), i.e. a feasible
matrix 𝑋 and the corresponding coefficients 𝜆𝑝 with 𝑝 ∈ [1∶2𝑛], then there
xists a solution of (9), given by 𝑌 𝑗 and 𝜇𝑗

𝑙 with (𝑙, 𝑗) ∈ [1∶2𝑑𝑗] × , such
hat 𝑋

|𝑗 = 𝑌 𝑗 for all 𝑗 ∈ .

roof. We are given a matrix 𝑋 and coefficients 𝜆𝑝 ≥ 0 ∀𝑝, ∑2𝑛
𝑝=1 𝜆𝑝 = 1,

uch that 𝑋 =
∑2𝑛

𝑝=1 𝜆𝑝(𝑥𝑝𝑥
⊤
𝑝) with 𝑥𝑝 ∈ {0, 1}𝑛. We introduce the

ollowing notation. For every 𝑗 ∈ , let �̄�𝑗 = [1∶𝑛]⧵ 𝑏𝑗 the complement
of the block 𝑏𝑗 in [1∶𝑛]. To each 𝑝 ∈ [1∶2𝑛] we can assign an index
pair (𝑙, 𝑚) ∈ [1∶2𝑑𝑗] × [1∶2𝑛−𝑑𝑗]. Let 𝑦𝑙 ∶= (𝑥𝑝)|𝑗 and 𝑧𝑚 ∶= (𝑥𝑝)|𝑗 be the
restrictions of 𝑥𝑝 to, respectively, 𝑏𝑗 and �̄�𝑗 . We can hence rename 𝑥𝑝 as

𝑥𝑙,𝑚, 𝜆𝑝 as 𝜆𝑙,𝑚 and write: 𝑋 =
∑2𝑛

𝑝=1 𝜆𝑝(𝑥𝑝𝑥
⊤
𝑝) =

∑2𝑑𝑗
𝑙=1

∑2𝑛−𝑑𝑗
𝑚=1 𝜆𝑙,𝑚(𝑥𝑙,𝑚 𝑥⊤𝑙,𝑚)

for all 𝑗 ∈ .
Hence, for all 𝑗 ∈ we can define:

𝜇𝑗
𝑙 ∶=

2𝑛−𝑑𝑗
∑

𝜆𝑙,𝑚 for all 𝑙 ∈ [1∶2𝑑𝑗] . (12)

𝑚=1

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

f

𝑋

r

h
i
w

p
a

C
s
e

t
c

C
t
c

m
w

C

y
e
S
s

s
w
c
m
c
𝐺
p
d
p
m
b
n
i

5

b
r
p
i
c
p

Clearly, 𝜇𝑗
𝑙 ≥ 0 and ∑2𝑑𝑗

𝑙=1 𝜇
𝑗
𝑙 =

∑2𝑑𝑗
𝑙=1

∑2𝑛−𝑑𝑗
𝑚=1 𝜆𝑙,𝑚 =

∑2𝑛
𝑝=1 𝜆𝑝 = 1. Moreover,

or all 𝑗 ∈ , it holds:

|𝑗 =
2𝑑𝑗
∑

𝑙=1

2𝑛−𝑑𝑗
∑

𝑚=1
𝜆𝑙,𝑚(𝑥𝑙,𝑚 𝑥⊤𝑙,𝑚)|𝑗 =

2𝑑𝑗
∑

𝑙=1
(
2𝑛−𝑑𝑗
∑

𝑚=1
𝜆𝑙,𝑚)(𝑦𝑙𝑦⊤𝑙) =

2𝑑𝑗
∑

𝑙=1
𝜇𝑗
𝑙 (𝑦𝑙𝑦

⊤
𝑙) .

So there is a feasible point for (9), equivalent to the solution of (3),
where 𝜇𝑗

𝑙 are given by (12) and 𝑌 𝑗 are defined as: 𝑌 𝑗 ∶=
∑2𝑑𝑗

𝑙=1 𝜇
𝑗
𝑙 (𝑦𝑙𝑦

⊤
𝑙)

as 𝑗 ∈ . □

Hence, in the 2-blocks case with intersection size 𝑟 ≤ 2, we get the
equivalence of the two formulations by combining Propositions 4.1 and
4.2.

We now try to extend the result of Proposition 4.1 to the case
of general blocks. However, we show that it does not hold for any
block structure and we notice that it can be stated in terms of a BQP-
completion problem. For a detailed description of completion problems
(specifically PSD- and CPP-completion) we refer to Berman and Shaked-
Monderer (2003). The first result we report resembles similar ones for
PSD and CPP-completion problems; it shows that not all the specifica-
tion graphs are BQP-completable (the proof is based on the example
given in Fig. 2).

Proposition 4.3. If a graph is not chordal, then it is not BQP-completable.

Proof. If the graph is not chordal, it contains a cycle of length 𝑙 ≥ 4
with no chords. Without loss of generality we suppose that the vertices
of this cycle are the first ones. Any matrix with this specification graph,
restricted to the first 𝑙 entries, would be specified in the following
entries: (𝑖, 𝑖), (𝑖, 𝑖 + 1), and (𝑖 + 1, 𝑖) for all 𝑖 ∈ [1∶ 𝑙 − 1], and as well
(𝑙, 𝑙), (𝑙, 1) and (1, 𝑙). This means that the block structure, restricted to
these entries, is made up of 𝑙 consecutive 2 × 2 blocks on the diagonal,
and one 2 × 2 block connecting the first and the last entry of the
cycle. Hence, we can always have the matrix shown in Fig. 2 (Berman
and Shaked-Monderer, 2003, Example 1.35), where the question marks
correspond to unspecified elements. Indeed, every 2 × 2 matrix on

the diagonal is given by 1
2

(

0 0
0 0

)

+ 1
2

(

1 1
1 1

)

and the 2 × 2 matrix

estricted to elements {1, 𝑙} is given by 1
2

(

1 0
0 0

)

+ 1
2

(

0 0
0 1

)

so they

are convex combinations of 2 × 2 binary matrices of rank one. But it
is known that the only PSD matrix with ones on the entries (𝑖, 𝑗) s.t.
|𝑖 − 𝑗| ≤ 1 is the all-1 matrix (Grone et al., 1984, Lemma 6), hence the
matrix in Fig. 2 is not PSD-completable. Since 𝐵𝑄𝑃 is a subset of the
semidefinite cone, this matrix is neither BQP-completable. □

We now introduce a definition that will be useful for the remainder
of this section.

Definition 4.1. A graph 𝐺 is called diamond-block-clique if it is chordal
and the size of the intersection of any two maximal cliques of 𝐺 is at
most 2.

Remark 4.2. We note that this definition is an extension of the
definition of block-clique graphs (given, e.g., in Berman and Shaked-
Monderer, 2003) because block-clique graphs are connected chordal
graphs in which the size of intersection of two maximal cliques is at
most one. On the other hand, any graph whose maximal cliques have
intersection of size 2 has an induced diamond graph, hence the name.
We also note that a diamond-block-clique graph may be disconnected.

Due to Proposition 4.1 and the properties of chordal graphs, we can
now have the following result:

Proposition 4.4. Every diamond-block-clique graph is BQP-completable.

Proof. We prove the statement by induction on the number 𝑛 of
maximal cliques. If there are only two maximal cliques, the result is
8

given by Proposition 4.1. Now we suppose to have 𝑛 > 2 maximal
cliques and we assume by inductive hypothesis that the result holds
true for 𝑛 − 1 cliques. Since the graph 𝐺 is chordal, there is a perfect
elimination ordering (PEO) of its vertices (Grone et al., 1984). Without
loss of generality, we suppose that the vertices of 𝐺 are sorted according
to this ordering. We also sort the maximal cliques according to the
order of their first vertex. We recall that, by definition of PEO, each
vertex, together with its neighbors which follow it in the order, form
a clique. In particular, all the neighbors of the first vertex belong to
the first maximal clique 𝐶1. We now consider the subgraph 𝐺′ of 𝐺
induced by the last 𝑛 − 1 maximal cliques 𝐶2 ∪ ⋯ ∪ 𝐶𝑛. By inductive
ypothesis 𝐺′ is BQP-completable. Hence 𝐺 is BQP-completable if 𝐺′′

s BQP-completable, where 𝐺′′ is obtained by adding to 𝐺 all the edges
hich complete 𝐺′. In this way we now have two cliques: 𝐶1 and

𝐶2∪⋯∪ 𝐶𝑛. We notice that 𝐶1∩(𝐶2∪⋯∪ 𝐶𝑛) = 𝐶1∩𝐶2, again for the PEO
roperty. Hence, if |𝐶1 ∩ 𝐶2| ≤ 2, we can apply again Proposition 4.1
nd conclude the proof. □

Hence by Proposition 4.2 we have the following corollary:

orollary 4.1. If a problem is decomposable under a block structure whose
parsity graph is diamond-block-clique, then formulations (3) and (9) are
quivalent.

We already observed that 𝐵𝑄𝑃 𝑛 ⊂ ∗ ⊂ +. However, since
he CPP-completable graphs are block-clique graphs, and the PSD-
ompletable graphs are chordal graphs, we have the following:

orollary 4.2. The class of BQP-completable graphs is strictly larger
han the class of CPP-completable graphs and contained in that of PSD-
ompletable graphs.

As a consequence, it is natural to investigate what can happen for
ore general chordal graphs. We propose the following, in conjunction
ith Proposition 4.3:

onjecture 4.1. A graph is BQP-completable if and only if it is chordal.

To the best of our knowledge, this conjecture has not been studied
et. However, this result could be very useful, since it could allow to
fficiently tackle specific sparse problems and get stronger bounds than
DP ones. Our preliminary experiments seem to support the conjecture;
ee below.

If we want to prove this conjecture, from Proposition 4.3 we
hould only prove that chordal graphs are BQP-completable. Moreover,
e could take advantage of similarities with the proof of the PSD-

ompletion problem. In particular, in Grone et al. (1984) the authors
ake use of the following property of chordal graphs: if 𝐺 is a

hordal graph on 𝑛 vertices, there exists a sequence of graphs 𝐺0 =
, 𝐺1,… , 𝐺ℎ = 𝐾𝑛 where each 𝐺𝑖 is chordal and is obtained by the
redecessor by adding only one edge. By exploiting this result, we can
erive, as the authors of Grone et al. (1984) do for the PSD case, that
roving our statement reduces to proving it for graphs with just one
issing edge: that is, where the partial matrix has only two blocks,

oth blocks have size 𝑛 − 1, and only the elements (1, 𝑛) and (𝑛, 1) are
ot covered by the blocks. Unfortunately, proving this two-block result
s currently an open question for BQP-completion.

. Computational experiments with the BQP block relaxation

From the computational point of view, formulation (9) may be
etter than formulation (3). The most important advantages are the
educed number of extreme points, and the smaller size of the pricing
roblems (solving those problems was the most time consuming part
n the one-block formulation). However, due to the high number of
onstraints related to the intersections between blocks, the master
roblem gets more difficult (although still linear).

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

r
m
t
p

F
C
t
m
o
e
t
t
h
T
a
F
t
o
g
t
t
p
S
t
i
b
e
o
a
s
i
f
s
d
o
w
f
t
a
t
o
s

Table 3
Performance comparison on the SONET instances.
Instance 𝐵𝐶 − 𝑐𝑢𝑡𝑠 BQP

Single block Multiple block

Name # Density T (s) Gap (%) # Fails T (s) # Fails T (s) Gap (%)

ins.16 5 0.07 89 186 0 304 0 0.26 85
ins.17 5 0.07 171 201 1 13 0 0.28 64
ins.18 5 0.06 74 232 0 1402 0 0.46 89
ins.19 5 0.06 53 280 2 1358 0 0.44 88
ins.20 5 0.06 67 175 4 500 0 0.42 84
ins.21 5 0.06 86 348 4 128 0 0.7 70
ins.22 5 0.05 109 396 2 409 0 0.92 61
ins.23 3 0.05 139 330 2 25 710 0 0.43 82
ins.24 5 0.05 171 >1000 3 1389 0 1.34 75
ins.25 5 0.05 204 417 2 237 0 1.52 55

Average 5 0.06 115 394 2 3171 0 0.68 75
In our implementation of the CG for solving the BQP multiple-block
elaxation, we again used dummy columns for the initialization of the
aster problem and an early stopping technique when solving it. Fur-

hermore, in order to deal with the master problem, we implemented a
urging technique for the columns: more precisely, every ten iterations,

we remove 50% of the columns which had a positive reduced cost for
more than ten consecutive iterations.

In general, the block structure may not be unique. Therefore, one
important issue is how to build a block structure that fits the problem.
We shall note that the (aggregate) sparsity graph of the problem is
not chordal in general. To obtain such a property we need to add
edges, resulting in what is called chordal extension of the graph (see
ukuda et al., 2001 for an application of chordal extension to SDP).
omputing the minimal (in terms of additional edges) chordal ex-
ension is a NP-hard problem, and heuristics are proposed to find a
inimal extension quickly (Fukuda et al., 2001; Rose et al., 1976). In

ur preliminary experiments we used the heuristic proposed in Rose
t al. (1976) to obtain (almost) minimal chordal extensions to solve
he QPLIB instances presented in Section 2.2. The computing times for
he BQP block relaxation based on such chordal extension were always
igher than the ones obtained from the single block BQP relaxation.
he results seem to indicate that the minimal chordal extension is not
lways the one leading to the easiest possible block decomposition.
inding the best decomposition for a generic formulation is an ex-
remely challenging task (see Bergner et al., 2015 for an application
f automatic detection of decompositions for standard DWR) and it
oes beyond the scope of this paper. This is the reason why we decided
o focus our computational experiments on a class of instances where
he block decomposition is straightforward. We hence compared the
erformance obtained using formulation (9) and formulation (3) on the
ONET instances. We consider a formulation of the SONET instances
hat has been introduced in Bonami et al. (2012); some of these
nstances are also included in the QPLIB library. Those instances have a
lock-diagonal quadratic objective function. Such a structure allows to
asily exploit the block decomposition. In Table 3, we report the results
f BiqCrunch with triangle inequalities (BC-cuts) and of the CG
pproach based on the single and multiple-block BQP relaxation (BQP,
ingle or multiple block). We show the computational time to solve the
nstances and the final gap obtained. We also compared the number of
ailures between the single and multiple block formulations. For each
ize of instance, each line presents the number of instances, the average
ensity, and the average results. The table shows clear evidence that
ur approach is extremely good: thanks to the block decomposition
e are able to obtain (in a very short time) a gap that is more than

our times smaller than the one obtained using the SDP relaxation with
riangle inequalities. Furthermore, with the multiple block formulation
ll the instances are solved, while the single block formulation reaches
he time limit (10 h) or the maximum number of iterations (105) in 20
ut of 48 instances. We notice that the overall number of iterations to
olve the relaxation is dramatically reduced with the multiple block
9

Table 4
Comparisons with Cplex, SONET instances.

Instance BQP Cplex-r.n. Cplex-bd

Density T (s) Gap (%) T (s) Gap (%) 𝑇 (𝑠)

ins.16 5 0.07 0.26 85 0.26 98 5.5
ins.17 5 0.07 0.28 64 0.22 96 21.1
ins.18 5 0.06 0.46 89 0.2 108 5
ins.19 5 0.06 0.44 88 0.23 99 4.8
ins.20 5 0.06 0.42 84 0.53 98 58.2
ins.21 5 0.06 0.7 70 0.74 87 22.5
ins.22 5 0.05 0.92 61 0.74 87 32.3
ins.23 3 0.05 0.43 82 0.48 88 7.8
ins.24 5 0.05 1.34 75 0.54 102 12.7
ins.25 5 0.05 1.52 55 1.09 82 56.2

Average 5 0.06 0.68 75 0.5 95 23.2

Fig. 3. Sparsity pattern of block-separable instance and block-arrowhead modification.

formulation: indeed, on average just 10 iterations are needed with
formulation (9), while the single block relaxation generates more than
40 000 iterations on average.

As for the QPLIB instances, we measure the quality of our algo-
rithm by comparison with the performance of Cplex with lineariza-
tion, at the root node (Cplex-r.n.), or after the BQP bound is found
(Cplex-bd) documented in Table 4.

We notice that the improvement given by the block decomposition
allows our method to obtain the bound in 0.7 s on average, while the
linearization of Cplex obtains the same bound in more than 20 s.

In order to test our methods on problems with a more general
chordal block structure, we produced some new instances with the
so-called block-arrowhead sparsity structure: for a fixed parameter 𝑟,
we added to the SONET instances random coefficients to fill the first
𝑟 rows and columns of the quadratic objective function matrix, thus
obtaining that the first 𝑟 variables are in common between all blocks.
Fig. 3 depicts the obtained structure. We considered ten different values
for 𝑟 ∈ [1∶10], for each of the original SONET instances, thus having
480 block-arrowhead type instances.

We compared our method, with single-block (SB) or multiple-block
(MB) formulation, with the one based on the linearization obtained by
Cplex, at the root node (Cplex-r.n.), or after the BQP bound is found

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

(
t
s
b

c
w
i
n
b
T
f
g
g
i

i
i

w
b
I

Table 5
Results and comparisons with Cplex, block-arrowhead instances.
𝑟 Density BQP Cplex-r.n. 𝙲𝚙𝚕𝚎𝚡 − 𝑏𝑑

SB. T (s) 𝑀𝐵𝑇 (𝑠) Gap (%) T (s) Gap (%) T (s)

1 0.07 (16) 7021 1.1 7 0.5 137 153.5
2 0.08 (15) 5719 1.7 8 0.6 122 173.3
3 0.08 (11) 8730 4.7 12 0.7 127 73.8
4 0.09 (13) 7138 10.0 20 0.8 147 104.8
5 0.10 (16) 4375 19.2 23 0.9 156 124.9
6 0.11 (9) 5456 41.8 28 0.8 170 230.8
7 0.12 (13) 4993 84.9 40 0.9 198 210.5
8 0.13 (10) 6499 156.0 51 0.9 225 240.2
9 0.14 (11) 5372 351.3 57 1.0 242 725.3
10 0.15 (13) 5340 694.9 66 1.0 263 731.2

Average 0.11 6081 136.5 31 0.8 179 276.8
a
a
d
c
s
d
t
F
1
t
i
a
u

f
p
i
i
n
t
o
a
i
s
i

i
p
s
f
o
p
w

b
a
i

6

s
t
l
i
w
m
e
W
c
w

Fig. 4. Sparsity pattern of a block-separable instance and its chain modification.

Fig. 5. Performance of block BQP on problems with different intersection size.

Cplex-bd). Table 5 contains the results, where in each row we present
he average of the results for 48 instances, for each value of intersection
ize 𝑟. The number of failures in the time limit of 10 h is written in
rackets and the averages are computed only on the solved instances.

We notice that the multiple-block formulation is much more effi-
ient on these instances, too: it indeed allows to solve all instances
ithin a few minutes, while with the single-block formulation some

nstances are not solved at all within the time limit of 10 h. We further
otice that the single-block formulation is faster than the multiple-
lock formulation in only 38 instances out of 480, all with 𝑟 ≥ 8.
his is mainly due to the constraints (9c) that slow the multiple-block
ormulation down as the intersection size 𝑟 gets large. Moreover, the
ap obtained by the multiple-block formulation is much better than the
ap of the root node of Cplex, and the same gap is obtained by Cplex
n a much larger time, especially if 𝑟 is small.

Finally, in order to better understand the difficulty caused by the
ntersections between blocks, we compared the two BQP formulations
n another set of instances with increasing intersection between blocks.

More specifically, for each of the block-separable SONET instances,
e increase the size of the blocks by a fixed number 𝑟 so that each
lock has 𝑟 elements in common with one or more consecutive blocks.
10

f the subsequent blocks have less than 𝑟 components in total, we merge
ll of them in a single block and eliminate the others. Thus we have
chain of intersecting blocks, yielding a chordal sparsity graph. We

epict this block structure in Fig. 4. We thus added randomly generated
oefficients in the objective function to fill the increased blocks, and
olved each instance with the two BQP algorithms. We considered ten
ifferent values for 𝑟 ∈ [1∶10], for each of the original SONET instance,
hus having 480 instances in total. We show the results with the plot in
ig. 5: for every instance, with size 𝑟 from 0 (the original instances) to
0, we show the ratio (in logarithmic scale) between the computational
ime of the multiple block and of the single block formulation to solve
t. We notice that only one instance has not been solved by either
lgorithm, and does not appear in the plot; for every other case, we
sed the time limit (10 h) as value for every failure.

If the intersection between blocks is small, then the multiple block
ormulation is more efficient than the single block one: for separable
roblems and for the instances with block-arrowhead sparsity type
t was already clear from Tables 3 and 5, but Fig. 5 shows that it
s true even with these instances, for some values of 𝑟 > 0. We
ote that the block structure of these instances is harder to handle
han the one in the block-arrowhead instances: although both types
f instances have intersection between pairs of blocks of same size,
nd similar number of added coefficients w.r.t. the original SONET
nstances, in the block-arrowhead case, all intersections involve the
ame first 𝑟 variables, while for these last instances all intersections
nvolve different variables.

We note that the block formulation becomes heavier with increasing
ntersection size, because the master problem has more constraints, the
ricing problems are larger, and more extreme points can be generated,
o the number of iterations also grows. Hence, if 𝑟 ≥ 6, the single block
ormulation is preferable in a significant number of cases, at least in
ur examples. A comparison with Cplex, as for the previous cases,
rovides similar results. In particular, our algorithm is most suitable
hen the intersection of the blocks are small.

We further notice that, for every instance solved by both the single-
lock and the multiple-block algorithms, the optimal objective values
re equal, even with 𝑟 > 2: this observation, given by almost 1000
nstances with some random elements, may corroborate our conjecture.

. Conclusions

In this work we presented two relaxations for BQCQP that are
tronger than the widely used SDP relaxation. We carefully analyzed
he relation between the proposed relaxations and discussed the equiva-
ence of the two formulations. We showed that the BQP block relaxation
s always a relaxation of the BQP relaxation (while it is still unclear
hether equivalence holds in general). By using the connection to
atrix completion theory, we identified problem classes in which this

quivalence is ensured, and other classes where this is not guaranteed.
e proved that the BQP-completion is possible for problems with

hordal graphs (if the maximal size of block intersection is 2), and
e also proved that if the graph is not chordal, BQP-completion does

Computers and Operations Research 142 (2022) 105735E. Bettiol et al.

t
r

t
o

A

F
w
s

R

A

B

B

B

B
B

B

B

B

B

B

B

B

B

not hold. While for larger block intersections, a proof of the BQP-
completion result is still due, our empirical findings suggest validity
of the conjecture that all chordal graphs are BQP-completable, but
also that this result is particularly relevant for small intersection sizes
in terms of efficiency. From a computational point of view, since
both problems are exponential in size, we proposed a column gener-
ation algorithm to get a solution in reasonable time. The reported re-
sults show that the proposed formulations provide significantly tighter
bounds than the ones obtained using the SDP relaxation in a reasonable
amount of time. Moreover, if the problems have a block structure, the
decomposition can be solved very quickly.

CRediT authorship contribution statement

Enrico Bettiol: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Investigation, Writing – original draft, Writing –
eview & editing, Visualization. Immanuel Bomze: Methodology, For-

mal analysis, Investigation, Writing – original draft, Writing – review &
editing, Visualization, Supervision. Lucas Létocart: Conceptualization,
Methodology, Formal analysis, Writing – original draft, Writing – re-
view & editing, Supervision. Francesco Rinaldi: Methodology, Formal
analysis, Investigation, Writing – original draft, Writing – review &
editing, Visualization, Supervision. Emiliano Traversi: Conceptualiza-
ion, Methodology, Software, Formal analysis, Investigation, Writing –
riginal draft, Visualization, Supervision.

cknowledgments

The authors are indebted to the Editorial Team (Editor-in-Chief
rancisco Saldanha da Gama and Associate Editor Alice E. Smith) as
ell as to two Referees whose thoughtful comments and constructive

uggestions helped us to significantly improve the paper.

eferences

hmadi, A.A., Dash, S., Hall, G., 2017. Optimization over structured subsets of positive
semidefinite matrices via column generation. Discrete Optim. 24, 129–151.

arahona, F., Mahjoub, A.R., 1986. On the cut polytope. Math. Program. 36 (2),
157–173.

arnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W., Vance, P.H., 1998.
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46 (3), 316–329.

ergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M.E., Malaguti, E.,
Traversi, E., 2015. Automatic Dantzig–Wolfe reformulation of mixed integer
programs. Math. Program. 149 (1–2), 391–424.

erman, A., Shaked-Monderer, N., 2003. Completely Positive Matrices. World Scientific.
ienstock, D., Muñoz, G., 2018. LP formulations for polynomial optimization problems.

SIAM J. Optim. 28 (2), 1121–1150.
omze, I.M., 2012. Copositive optimization — recent developments and applications.

European J. Oper. Res. 216 (3), 509–520.
omze, I.M., De Klerk, E., 2002. Solving standard quadratic optimization problems via

linear, semidefinite and copositive programming. J. Global Optim. 24 (2), 163–185.
omze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T., 2000. On copositive

programming and standard quadratic optimization problems. J. Global Optim. 18
(4), 301–320.

omze, I.M., Jarre, F., Rendl, F., 2011. Quadratic factorization heuristics for copositive
programming. Math. Program. Comput. 3 (1), 37–57.

omze, I.M., Schachinger, W., Uchida, G., 2012. Think co(mpletely)positive! matrix
properties, examples and a clustered bibliography on copositive optimization. J.
Global Optim. 52 (3), 423–445.

onami, P., Nguyen, V.H., Klein, M., Minoux, M., 2012. On the solution of a graph
partitioning problem under capacity constraints. In: International Symposium on
Combinatorial Optimization. Springer, pp. 285–296.

orchers, B., 1999. CSDP, a C library for semidefinite programming. Optim. Methods
Softw. 11 (1–4), 613–623.

undfuss, S., Dür, M., 2009. An adaptive linear approximation algorithm for copositive
programs. SIAM J. Optim. 20 (1), 30–53.
11
Burer, S., 2009. On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Program. 120 (2), 479–495.

Burer, S., 2010. Optimizing a polyhedral-semidefinite relaxation of completely positive
programs. Math. Program. Comput. 2 (1), 1–19.

Burer, S., 2012. Copositive programming. In: Handbook on Semidefinite, Conic and
Polynomial Optimization. Springer, pp. 201–218.

Burer, S., Letchford, A.N., 2012. Non-convex mixed-integer nonlinear programming: a
survey. Surv. Oper. Res. Manag. Sci. 17 (2), 97–106.

Dantzig, G.B., Wolfe, P., 1960. Decomposition principle for linear programs. Oper. Res.
8 (1), 101–111.

Desaulniers, G., Desrosiers, J., Solomon, M.M. (Eds.), 2005. Column Generation.
Springer, US.

Dickinson, P.J., 2010. An improved characterisation of the interior of the completely
positive cone. Electron. J. Linear Algebra 20, 723–729.

Dickinson, P.J., 2011. Geometry of the copositive and completely positive cones. J.
Math. Anal. Appl. 380 (1), 377–395.

Drew, J.H., Johnson, C.R., 1998. The completely positive and doubly nonnegative
completion problems. Linear Multilinear Algebra 44 (1), 85–92.

Dür, M., 2010. Copositive programming — a survey. In: Recent Advances in
Optimization and Its Applications in Engineering. Springer, pp. 3–20.

Dür, M., Rendl, F., 2021. Conic optimization: a survey with special focus on copositive
optimization and binary quadratic problems. EURO J. Comput. Optim. 9, 100021.

Dür, M., Still, G., 2008. Interior points of the completely positive cone. Electron. J.
Linear Algebra 17, 48–53.

Fukuda, M., Kojima, M., Murota, K., Nakata, K., 2001. Exploiting sparsity in semidefi-
nite programming via matrix completion I: General framework. SIAM J. Optim. 11
(3), 647–674.

Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L.,
Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N., Vigerske, S., Wiegele, A., 2019.
QPLIB: a library of quadratic programming instances. Math. Program. Comput. 11
(2), 237–265.

Gould, N.I., Toint, P.L., 2000. A quadratic programming bibliography. Numer. Anal.
Group Intern. Rep. 1, 32.

Gouveia, J., Pong, T.K., Saee, M., 2020. Inner approximating the completely positive
cone via the cone of scaled diagonally dominant matrices. J. Global Optim. 76 (2),
383–405.

Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H., 1984. Positive definite completions
of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124.

Hall, M., Newman, M., 1963. Copositive and completely positive quadratic forms. Math.
Proc. Camb. Phil. Soc. 59 (2), 329–339.

Helmberg, C., 2002. Semidefinite programming. European J. Oper. Res. 137 (3),
461–482.

IBM, 2017. Cplex (version 12.8).
Krislock, N., Malick, J., Roupin, F., 2017. Biqcrunch: a semidefinite branch-and-bound

method for solving binary quadratic problems. ACM Trans. Math. Softw. 43 (4),
32.

Lasserre, J.B., 2006. Convergent SDP-relaxations in polynomial optimization with
sparsity. SIAM J. Optim. 17 (3), 822–843.

Laurent, M., Rendl, F., 2005. Semidefinite programming and integer programming.
Handbooks Oper. Res. Management Sci. 12, 393–514.

Nemhauser, G.L., 2012. Column generation for linear and integer programming. Optim.
Stories 20, 64.

Padberg, M., 1989. The boolean quadric polytope: some characteristics, facets and
relatives. Math. Program. 45 (1–3), 139–172.

Rendl, F., 2010. Semidefinite relaxations for integer programming. In: 50 Years of
Integer Programming 1958-2008. Springer, pp. 687–726.

Rose, D.J., Tarjan, R.E., Lueker, G.S., 1976. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5 (2), 266–283.

Roupin, F., 2004. From linear to semidefinite programming: an algorithm to obtain
semidefinite relaxations for bivalent quadratic problems. J. Combin. Optim. 8 (4),
469–493.

Sturm, J.F., 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optim. Methods Softw. 11 (1–4), 625–653.

Tütüncü, R.H., Toh, K.-C., Todd, M.J., 2003. Solving semidefinite-quadratic-linear
programs using SDPT3. Math. Program. 95 (2), 189–217.

Vanderbeck, F., 2000. On dantzig-wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm. Oper. Res. 48 (1),
111–128.

Wainwright, M.J., Jordan, M.I., 2004. Treewidth-Based Conditions for Exactness of
the Sherali-Adams and Lasserre Relaxations. Technical Report 671, University of
California, Berkeley.

Yıldırım, E.A., 2017. Inner approximations of completely positive reformulations of
mixed binary quadratic programs: a unified analysis. Optim. Methods Softw. 32
(6), 1163–1186.

http://refhub.elsevier.com/S0305-0548(22)00037-5/sb1
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb1
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb1
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb2
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb2
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb2
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb3
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb3
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb3
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb3
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb3
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb4
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb4
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb4
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb4
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb4
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb5
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb6
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb6
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb6
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb7
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb7
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb7
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb8
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb8
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb8
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb9
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb9
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb9
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb9
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb9
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb10
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb10
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb10
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb11
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb11
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb11
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb11
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb11
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb12
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb12
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb12
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb12
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb12
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb13
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb13
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb13
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb14
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb14
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb14
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb15
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb15
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb15
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb16
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb16
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb16
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb17
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb17
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb17
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb18
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb18
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb18
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb19
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb19
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb19
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb20
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb20
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb20
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb21
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb21
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb21
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb22
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb22
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb22
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb23
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb23
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb23
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb24
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb24
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb24
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb25
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb25
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb25
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb26
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb26
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb26
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb27
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb27
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb27
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb27
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb27
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb28
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb29
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb29
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb29
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb30
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb30
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb30
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb30
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb30
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb31
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb31
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb31
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb32
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb32
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb32
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb33
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb33
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb33
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb34
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb35
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb35
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb35
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb35
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb35
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb36
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb36
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb36
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb37
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb37
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb37
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb38
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb38
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb38
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb39
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb39
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb39
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb40
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb40
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb40
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb41
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb41
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb41
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb42
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb42
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb42
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb42
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb42
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb43
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb43
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb43
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb44
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb44
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb44
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb45
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb45
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb45
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb45
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb45
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb46
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb46
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb46
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb46
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb46
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb47
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb47
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb47
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb47
http://refhub.elsevier.com/S0305-0548(22)00037-5/sb47

	Mining for diamonds—Matrix generation algorithms for binary quadratically constrained quadratic problems
	Introduction and literature review
	Boolean Quadric Polytope (BQP) relaxation
	Solving the BQP relaxation
	Computational experiments with the BQP relaxation

	Exploiting sparsity by BQP block relaxation
	Comparison to the original BQP relaxation — theory
	Two overlapping blocks
	Multiple-block case and BQP-completion

	Computational experiments with the BQP block relaxation
	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	References

