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Abstract

Network Analysis is a set of statistical and mathematical techniques
for the study of relational data arising from a system of connected entities.
Most of the results for network data have been obtained in the field of Social
Network Analysis (SNA), which mainly focuses on the relationships among a
set of individual actors and organizations. The thesis considers some topics
in statistical models for network data, with focus in particular on models
used in SNA. The core of the thesis is represented by Chapters 3, 4 and 5.
In Chapter 3, an alternative approach to estimate the Exponential Random
Graph Models (ERGMs) is discussed. In Chapter 4, a comparison between
ERGMs and Latent Space models in terms of goodness of fit is considered.
In Chapter 5, alternative methods to estimate the p2 class of models are
proposed.





Sommario

La Network Analysis è un insieme di tecniche statistiche e matematiche per
lo studio di dati relazionali per un sistema di entità interconnesse. Molti
dei risultati per i dati di rete provengono dalla Social Network Analysis
(SNA), incentrata principalmente sullo studio delle relazioni tra un insieme
di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la
modellazione statistica per dati di rete, con particolare attenzione ai modelli
utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4
e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei
modelli esponenziali per grafi casuali (Exponential Random Graph Models
- ERGMs). Nel capitolo 4, l’approccio di modellazione ERGM e quello a
Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel
capitolo 5, vengono proposti metodi alternativi per la stima della classe di
modelli p2.
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Chapter 1

Introduction

1.1 Overview

Network Analysis is a set of statistical and mathematical techniques for the
study of relational data arising from a system of connected entities.

The relationships may be any kind of irreducible property between two
or more entities: economic, political, interactional or affective, to name just
a few.

The main parts of the results for networks data have been obtained in
the field of Social Network Analysis (SNA), that focus on implementation
of theoretical and applicative methodologies to summarize, describe, visu-
alize and analyze the social structures deriving mainly from human groups,
communities or organizations.

In developing methods for the analysis of relational data, some good rea-
sons motivate the statistical modeling of an observed social network. Social
behavior is complex and it seems reasonable to suppose that social processes
giving rise to network ties are stochastic, so statistical models are appropri-
ate to understand if, and how, certain network characteristics are more or
less observed in the network than expected by chance. In general, models,
and especially statistical models that are estimable from data and explicitly
recognize uncertainty, may help to understand the range of possible out-
comes for processes on networks. Moreover, network models are especially
useful to deal with data dependence induced by social relations. The leading
assumption in modeling is that the observed network is generated by some
(unknown) stochastic processes.

This thesis considers some topics in statistical models for network data,
with focus in particular on models developed in SNA (Wasserman and Faust,
1994; Kolaczyk, 2009). The plan of the thesis is as follows.

The second chapter of the thesis presents a review of the basic concepts
and the classes of statistical models for social network analysis. The ap-
proaches presented belong essentially to the classes of Exponential Random
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Graph Models (ERGMs) (Wasserman and Robins, 2005), and of random ef-
fects models for graphs, distinguishing between Latent Space Models (LSMs)
(Hoff et al., 2002), and p2 models (Van Duijn et al., 2004). A review of the
state of the art of these approaches is provided, including their theoret-
ical bases and main features, estimation issues and possible variations of
their basic formulation as proposed in Snijders et al. (2006); Handcock et al.
(2007); Hunter (2007); Zijlstra et al. (2009); Krivitsky et al. (2009); Snijders
(2011).

In the third chapter an alternative estimation approach for ERGMs is
proposed. The fourth chapter focuses on the comparison between ERGMs
and LSMs based on their performances in terms of goodness of fit. In the
last chapter of the thesis we consider the existing methods to estimate the
p2 class of models, and we propose some alternative procedures.

1.2 Main Contributions of the Thesis

The core of the thesis is represented by Chapters 3, 4 and 5.

In Chapter 3, alternative approaches to estimate ERGMs are discussed.
The existing procedures, based on simulated maximum likelihood methods,
are computationally challenging, due to numerical difficulties to approximate
the likelihood function. So they at times fail to converge as the likelihood
approximation may degrade, especially for certain choices of the sufficient
statistics of interest. A Monte Carlo Quasi-Newton algorithm for computing
the maximum likelihood estimate for ERGM is introduced, borrowing some
ideas from the method of maximization by parts. Two crucial aspects of the
proposed method are the steplength determination based on a simulated
likelihood function, and a suitable backtracking mechanism to deal with
model near degeneracy. Comparisons with the existing methods (Hummel
et al., 2011) are provided, both on real data from the literature and on
simulations studies. The results show an improvement in terms of robustness
of our algorithm with respect to the existing procedures included in the R

package ergm. Our method, in fact, permits to obtain maximum likelihood
estimate (MLE) also for Markov random graph models (Frank and Strauss,
1986), or when the models present near-degeneracy and instability problems.
Furthermore, the proposed method is capable of estimating networks with
missing data in an efficient and accurate way, with a clear improvement over
the existing methods. Our procedure is included in a new R package ergmQN.

In Chapter 4, a comparison between ERGMs and Latent Space models
in terms of goodness of fit is considered. In particular, the performance
of the two model approaches to reproduce the dependence structure of the
observed network (Hunter et al., 2008a), and their predictive power are seen
as complementary features for describing their goodness of fit. In order
to better evaluate the predictive power, different missing data cases are

2



considered. For both the approaches, the predictive procedures are built by
combining routines implemented specifically for this goal, included in ergmQN

package, with routines already implemented in the R library statnet. The
comparisons are made both on real data from the literature and simulated
networks.

In Chapter 5, alternative methods to estimate the p2 class of models
are proposed. The main feature of this model class is the correlated crossed
structure of random effects to represent actor heterogeneity and within-dyad
dependence. In the literature there are proposals to estimate the parameters
of p2 models either by joint maximization methods (Van Duijn et al., 2004)
or employing MCMC methods in a Bayesian approach (Zijlstra et al., 2009).
The methods proposed are based on the Laplace approximation approach
for random arrays. First-order Laplace approximations and simulated max-
imum likelihood based on Laplace importance sampling are studied. These
solutions represent good approximations to maximum likelihood estimation.
Numerical comparisons with alternative approaches are provided based on
simulations and real data analyses.

In the appendix to the thesis, some attempts to apply the composite
likelihood approach for ERGM estimation are briefly presented.

3
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Chapter 2

Introduction to Network
Analysis and Modeling

This chapter reviews some basic concepts of Network Analysis, mainly de-
rived from the Social Network Analysis (SNA) field.

In the first part, we present the mathematical concepts and definitions
for network representation with emphasis on different type of network de-
pendencies.

Then, we summarize the state of art of the main model approaches for
relational data that will be considered in the next chapters.

2.1 Graphs and Matrices for Network Represen-
tation

One of the definitions that the Oxford English Dictionary provides for Net-
work is ”collection of connected things”. In Social network Analysis (SNA) a
network is a structure resulting from ties among entities (actors), according
to any irreducible property (relationship) connecting them. The study of
these ties (relational data) is the core of the SNA. In particular as stated in
De Nooy et al. (2011) (p. 5) ”... the main goal of social network analysis
is detecting and interpreting patterns of social ties among actors ...”.

Two class of mathematical tools are used to represent relational data:
graphs and matrix.

Graphs, known in SNA literature as sociogram (Moreno, 1946), are useful
tools to visualize and summarize the network information, providing insights
on network characteristics.

From a theoretical point of view (Wasserman and Faust, 1994; Kolaczyk,
2009) a graph G = (N , E) is composed of a set of nodes or vertex (actors),
and a set of edges (ties, relations). The cardinalities N = |N | and E = |E|,
representing respectively the numbers of nodes and edges in the network,
are called the order and the size of the graph G. The size varies between

5



0 and
(
N
2

)
. A graph is called empty or null if the edge set is empty. If the

size is equal to the maximum number of possible ties, the graph is called
complete.

Relations can have or not a versus, in the sense that by definition the
choice of one node to establish a relation with another may imply or not
the vice versa. For example, if in a classroom we ask a child, ”Mike”, to
nominate the names of his best friends, then the people nominated by him
should not necessarily consider ”Mike” as their best friend. Whereas, if we
are studying, for example, the co-authorship between two academics on a
set of published papers then their relation has not a versus because both
the academics share the status of co-author.

If the relation has not a versus, the graph is said undirected. Otherwise,
the graph is called directed graph or digraph and the edges in E are ordered
by their vertex, that is {i, j} is different from {j, i} for i, j ∈ N . Directed
ties are represented by arrows.

Two nodes i, j ∈ N are adjacent if joined by an edge in E . A node is
isolated if it is not adjacent to any node in the graph. Similarly two edges
e1, e2 ∈ E are adjacent if joined by a common end point in N . A vertex
i ∈ N is incident on a edge e ∈ E if i is an end point of e.

For a digraph, the relation between two node i and j is mutual if both
the edges {i, j} and {j, i} are present. Otherwise, if the relation has only one
versus it is called asymmetric. In undirected graphs any relation is mutual.

Two graphs, G and G∗, are isomorphic if there is a one-to-one mapping
from the nodes of G to the nodes of G∗ that preserve the adjacency of the
nodes. So the two graphs differ only from a switching of the node labels.

Considering a subset NH ⊆ N , of order d, the subgraph H = (NH , EH)
generated from NH is the graph that has NH as nodes set and EH = (NH ×
NH)∩E as edges set. A complete subgraphs is called clique. Dyad and triad
are respectively 2-subgraphs and 3-subgraphs of the graph G. Every dyads
and triads of the network could be counted with respect to the number of
Mutual, Asymmetric and Null edges (MAN census).

A walk is a sequence of nodes and edges, in which each node is incident
with the edges that follow and precede it in the sequence. The length of a
walk between two nodes is given by the number of steps. A walk in which
any node figures only one time is called path. Considering two nodes, many
paths can connect them, the shortest one is called geodesic and its length
geodesic distance or simply distance. Obviously, for a digraph we should
consider the versus of the relation.

A graph is connected if there is a path for each pair of nodes in the
graph. A maximal connected subgraph, i.e a subgraph with maximal order
that preserves the property of ”to be connected”, is called component of the
graph.

According to the above definition of adjacency, a square matrix y, called
adjacency matrix or sociomatrix, can be associated to the graph. The ele-
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ments of the sociomatrix y are defined as

yij =

{
1, if {i, j} ∈ E ,
0, otherwise,

with i, j = 1, . . . , N . Each yij is a binary variable that assumes values 1 if
there is a tie from i and j. A measure of association can be linked to each
variable yij .

This measure can be simply a positive or negative measure of association
(as liking or disliking), in this case the network is called signed. Or it can
be a quantitative measure indicating the strength of ties (valued network).
The traditional methods developed in the literature focus mainly on binary
networks.

No self-ties are considered, so the elements on the diagonal of the matrix
are set to structural zeros.

Starting from the sociomatrix, a set of summary statistics can be defined.
The first statistic we introduce is the density:

∆ =

∑N
i,j=1 yij

N(N − 1)
, (2.1)

that is the ratio between the size of the network (cardinality of the edges
set) and the maximum number of edges, equal to N(N −1) for a network of
order N . In the undirected case, the sociomatrix is symmetric so the total
number of edges reduces to N(N − 1)/2.

The numbers of incidental edges on each node, obtained by summing
with respect to one index of the matrix, are known as out-degree:

yi+ =
∑

i

yij , (2.2)

and in-degree:

y+j =
∑

j

yij , (2.3)

statistics.
In the undirected case they are called simply degree statistics because

the in-degree and the out-degree statistics of a node coincide. The sum of
the degree statistics of the nodes returns the size of the network.

2.1.1 Network Dependencies

The structure of a network is the result of complex dependencies among
nodes. Following Snijders (2011) the main forms are:

� Reciprocation: for directed ties is how yij influences yji and vice versa.
Reciprocation is not limited to the study of pairs but also of depen-
dences in larger cycles such as yij ,yjh,yhi.
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� Homophily: how the similarity between actors affects the tendency to
relate to each other. This leads to a higher probability of ties being
formed between actors with similar values on relevant covariates.

� Transitivity: it can be expressed by the statement ”friends of my
friends are my friends”, that is sharing a partner increases the propen-
sity of two actors to be in relation.

� Degree differentials: differences in degree statistics can explain unequal
productivity - the tendency to create ties - and popularity - the tendency
to attract ties - of the actors in the network.

Specific network statistics can provide insight on the presence of the
different types of dependencies in the observed network structure.

The distribution of degree statistics and the geodesic distances provide
information about the levels of socio activity and connectivity of the actors
in the network. Low proportion of large degree statistics combined with
small values of distances can indicate the presence of few central and very
active actors. Otherwise, large degree statistics combined with small values
of distances may indicate that all actors are equally active in the network.

A set of statistics can be useful to evaluate transitivity in the network.
The first statistic is the clustering coefficient:

CC =

∑
i,j,h yijyjhyhi∑
i,j,h yijyjh

, (2.4)

defined as the ratio of the number of transitive triangles (divide by 6 in the
undirected case) and the number of triads.

The edges-wise shared partners (ESP) is given by

ESPij = yij

N∑

k=1; k 6=i,j
yjkyki, (2.5)

and the dyad-wise shared partners (DSP) is defined as

DSPij =
N∑

k=1; k 6=i,j
yjkyki. (2.6)

Both the statistics (2.5) and (2.6) count the total number of nodes (part-
ners) with whom two fixed nodes share relations. The ESP statistic (2.5)
is an explicit measure of transitivity because it counts the total number of
transitive triangles that have the ties yij as basis (Figure 2.1).

The DSP statistic (2.6) is an implicit transitivity measure because it
counts the number of potential closed triads that we should observe if the
tie yij were present (Figure 2.2).

It is possible to evaluate the level and the effects of the transitivity in
the network by comparing ESP and DSP distributions.
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Figure 2.1: Examples of k-triangles alias edge-wise shared partners configu-
rations (Robins et al., 2007b).

Figure 2.2: Examples k-two-paths alias dyad-wise shared partners configu-
rations (Robins et al., 2007b).
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2.2 Main Modeling Approaches in Network Anal-
ysis

Social behavior is complex and it seems reasonable to suppose that social
processes giving rise to network ties are stochastic, so statistical models are
appropriate to understand if, and how, certain network characteristics are
more or less observed in the network than expected by chance. In general,
models, and especially statistical models that are estimable from data and
explicitly recognize uncertainty may help to understand the range of pos-
sible outcomes for processes on networks (Robins et al., 2007a). Moreover,
network models are especially useful to deal with data dependence induced
by social relations.

The leading assumption in modeling is that the observed network is
generated by some (unknown) stochastic process (Wasserman and Faust,
1994; Wasserman et al., 2007; Kolaczyk, 2009; Snijders, 2011).

The statistical variables are represented by the ties between the actors.
This means that a network of order N contain informations on N(N − 1)
relations.

The model approaches that we will introduce are mainly taken from
the SNA literature. All these approaches include terms to account for the
dependence in the network and make different assumptions concerning the
stochastic part.

In the following, the directed case is assumed, unless otherwise stated.

2.2.1 Homogeneous Bernoulli Graph Models

The easiest way to model a set of relational data is to consider independent
ties. The approach known as homogeneous Bernoulli graph, or also Erdös-
Renyi model (Erdös and Rényi, 1959), simply assumes that:

P (Yij = 1) = p,

for every i, j = 1, . . . , N ; i 6= j. Equivalently:

logit{P (Yij = 1)} = η = log
p

1− p
.

This implies that the probability for the observed network is

P (Y = y) = py++(1− p)M−y++ (2.7)

=
eθy++

k(η)

where y++ =
∑

i,j yi,j is the size of the network, M = N(N −1) the number
of possible edges and k(η) = eη/(1 + eη) is a normalizing constant. It is
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trivial to see that under the edges independence assumption, the Erdös-
Renyi model is exactly a logistic model for binary data.

This approach represents a poor model, just slightly less poor compared
to assuming that each tie is the result of a coin flip.

A first simple improvement is to assume independence of ties but condi-
tioned to the valued assumed by a set of network covariates. The network
covariates are often derived from specific actor attributes that are combined
to obtain values for their ties.

Some of these covariates refer directly to the main effect of the actor
attributes to the ties. For example, the network covariate u(xi, xj), on the
tie (i, j), relative to the actor attribute x is

u(xi, xj) =





xi if relative to the productivity of the sender,
xj if relative to the popularity of the receiver,

xi + xj if relative to the sociality of both.

(2.8)

Other covariates refer to the homophily effect of some qualitative actor
attributes, such as

u(xi, xj) =

{
1 if xi = xj ,
0 Otherwise.

(2.9)

They could be defined on specific values s0 assumed by the variables

u(xi, xj) =

{
1 if xi = xj = s0,
0 Otherwise.

(2.10)

Alternatively, they could defined by the different conditions

u(xi, xj) =





1 if xi = 1 and xj = 2,
...

...
s(s− 1) if xi = s− 1 and xj = s,

(2.11)

where s is the number of categories of the qualitative actor attribute.
After including q of these terms, the model (2.7) becomes:

P (Y = y) =
exp(

∑
ij ηijyij)

k(θ)
,

where

ηij = logit{P (Yij = 1)} =

q∑

k=1

θkuk(x),

and

k(θ) = log

(
1 + exp

{
p∑

k=1

θkuk

)}
,

The resulting model is still a logistic model as in (2.7).
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2.2.2 p1 Models

The p1 model is due to Holland and Leinhardt (1981). It assumes dyad
independence, after including terms for popularity, productivity of actors
and the mutuality of the relation.

In particular:

logit{P (Yij = yij , Yji = yji)} = θ(yij + yji) + ρyijyji + αiyij + βjyji.

The probability mass function of the full network is:

P (Y = y) =
exp[

∑
i≤j{θ(yij + yji) + ρyijyji + αiyij + βjyij}]

k(µ, ρ, α, β)
(2.12)

=
exp(µy++ + ρ

∑
i≤j yijyji +

∑
i αiyi+ +

∑
j βjy+j)

k(µ, ρ, α, β)
,

where the normalizing constant is:

k(µ, ρ, α, β) =
∏
i≤j {1 + exp(µ+ αi + βj) + exp(µ+ αj + βi)

+ exp(µ+ αi + βj + αj + βi + ρ)}.

The sufficient statistics for model estimation are the total number of
edges (equivalently we can use the density by rescaling the parameter µ),
the numbers of mutual ties governed by the parameter ρ and the degree
statistics (2.2) and (2.3) governed by the parameters αi and βj that measure
the productivity and the attractiveness of the actors.

The dyad independence assumption makes the p1 model a multinomial
logit regression model.

2.2.3 Exponential Random Graph Models

The general class of Exponential Random Graph Models (ERGM), also
known as p∗ (Wasserman and Pattison, 1996), takes his name from the fact
that it can be written as an element of the exponential family (Barndorff-
Nielsen, 1978):

Pθ(Y = y) = exp{θ u(y, x)− ψ(θ)} , (2.13)

where

ψ(θ) = logZ(θ;Y, x) = log
∑

y∈Y
exp{θ u(y, x)}

is the normalizing constant.

ERGMs include homogeneous Bernoulli graph and p1 models as special
cases, but it allows also for transitivity. Transitivity requires to study larger
configurations of nodes, at least the triads. In order to study this kind of
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configurations, Frank and Strauss (1986) adopted a first order Markovian
assumption for which two edges are dependent only if they share a common
node. This assumption is related to the concept of Markov Graph. To
explain this concept we need to define what it is the Dependence Graph of
an observed graph (Frank and Strauss, 1986).

Definition 1. Given a graph G of order N , let Y = (Y1, Y2, . . . , Ym) be the
set of the m = N(N − 1) possible edges of the graph. And M = {1, . . . ,m}
is the index set.

The Dependence Graph D of G is a non-random graph that specifies the
dependence structure between the random variables Yi, i ∈ M . The vertex
of D are the edges of G. The edges of D are the pairs of edges of G that are
conditionally dependent.

In Figure 2.3 and 2.4 we can see an example for a graph with five nodes.

Figure 2.3: Example of a network of order five.

Figure 2.4: Dependence graph of the example in Figure 2.3.

Definition 2. A graph G is a Markov graph if D contains no edges between
disjoint sets in M. This means that nonincident edges in G are conditionally
independent given the rest of the graph.

A model for a Markov graph is obtained working on the cliques of the
dependence graph. According to the Hammersley-Clifford theorem (see Be-
sag, 1974), it can be proved that the probability function of the network can
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be factorized as a function of only the cliques of the dependence graph. It
can also be proved that any clique on the dependence graph D is identified
on the original graph G as a triangle or a k-star. In an undirected graph, a
k-star (Figure 2.5) represents a configuration in which k edges are expressed
by one node.

Figure 2.5: Examples of k-stars.

In Figure 2.6 we can see how the blue and the red cliques in the depen-
dence graph identify a triangle and a 3-star on the network in Figure 2.3.

Figure 2.6: Relations between cliques in the dependence graph (a) and con-
figurations in the original graph (b) for the network in Figure 2.3.

An ERGM model with Markovian property (Wasserman and Pattison,
1996) is

P (Y = y) =
exp

{
θtT (y) + θs1S1(y) + . . .+ θsn−1Sn−1(y)

}

Z(θ;Y)
, (2.14)
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where T (y) is the number of triangle in the network, Sk(y) for k = 1, . . . , n−1
are the numbers of k-stars in the network, S1(y) is the number of 1-stars
(that is the number of edges):

number of edges: S1(y) =
∑

1≤i≤j≤g yij , (2.15)

number of k-stars: SK(y) =
∑

1≤i≤g
(yi+
k

)
, k ≥ 2 (2.16)

number of triangles: T (y) =
∑

1≤i≤j≤h≤g yijyihyjh. (2.17)

The statistics in formulas (2.15), (2.16) and (2.17) represent the sufficient
statistics of a ERGM, but in real applications is common to use models that
include only the terms for triangle and up to 3-stars (Robins et al., 2007b).

ERGMs and especially the Markovian models suffer problems such as:

� degeneracy: Model degeneracy occurs when the model places dis-
proportionate probability mass on only a few of the possible graph
configurations in Y (empty or complete graphs).

� instability: A random graph model is instable if small changes in the
parameter values result in large changes in the probabilistic structure
of the model.

The instability and degeneracy problems of ERGMs are related to the close-
ness of the observed sufficient statistics at the boundary of the convex hull
of their possible values (Handcock et al., 2003; Rinaldo et al., 2009; Schwein-
berger, 2011).

In order to solve these problems and to improve the ability of the model
to catch the dependence structure in the network, new specifications have
been proposed (Snijders et al., 2006) including the partial dependence con-
cept proposed by Pattison and Robins (2002) in addition to Markov de-
pendence. These new specifications include in the model the Alternating
k-statistics (Figure 2.7), as higher order measures of transitivity.

� Alternating k-stars

u =
n−1∑

k=2

(−1)k
Sk

λk−2s

; (2.18)

� Alternating k-triangles

v =
n−1∑

k=2

(−1)k
Tk

λk−2t

; (2.19)

� Alternating independent k-two-paths

w =
n−1∑

k=2

(−1)k
Pk

λk−2p

. (2.20)
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Figure 2.7: Examples of k-stars, k-triangles and k-two-paths (Robins et al.,
2007b).
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The parameters λs, λt and λt are respectively weights associated to the
statistics.

It could be shown (Hunter, 2007) that these alternating k-statistics are
strictly related to the distribution of the network statistics discussed in
§2.1.1. Every k-star statistics can be written as a combination of the degree
distribution

S1(y) =
1

2

n−1∑

i=1

iDi(y), Sk =

n−1∑

i=k

(
i

k

)
Di(y). (2.21)

Every k-triangle statistics can be written as a combination of the edge-wise
shared partners statistic (2.5) distributions

T1(y) =
1

3

n−1∑

i=1

iEPi(y), Tk =

n−2∑

i=k

(
i

k

)
EPi(y). (2.22)

Finally every k-two-path statistics can be written as a combination of the
dyad-wise shared partners statistic (2.6) distributions

P2(y) =
1

2

n−2∑

i=2

(
i

2

)
DPi(y), Pk =

n−k∑

i=k

(
i

k

)
DPi(y). (2.23)

All these relations lead to a geometrically equivalent specification (Hunter,
2007):

� Geometrically weighted degree (GWD) is exactly equivalent to
the Alternating k-stars;

u(y,θs) = eθs
n−1∑

i=1

{
1−

(
1− e−θs

)i}
Di(y). (2.24)

� Geometrically weighted edge-wise shared partners (GWESP)
is exactly equivalent to the Alternating k-triangles;

v(y,θt) = eθt
n−2∑

i=1

{
1−

(
1− e−θt

)i}
EPi(y). (2.25)

� Geometrically weighted dyad-wise shared partners (GWDSP)
is exactly equivalent to theAlternating independent two-paths.

w(y,θp) = eθp
n−2∑

i=1

{
1−

(
1− e−θp

)i}
DPi(y). (2.26)
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Also in this case, the parameters θs, θt and θt are weights associated to the
statistics.

These equivalent parameterizations have mathematical elegance and en-
hance interpretation, because more strictly related to degree, edge-wise and
dyad-wise shared partners statistic distributions, and they will be used in
the applications reported in the next chapters.

Estimation of ERGMs

Maximum likelihood estimation for ERGMs is very challenging. Considering
the ERGM (2.13)

P (Y = y) = exp {θ u(y, x)− ψ(θ)} ,

the main difficulty for computing the likelihood function concerns the nor-
malizing constant

ψ(θ) = log


∑

y∈Y
exp{θ u(y, x)}


 ,

that is the result of the sum on all possible networks. For a directed network
with g nodes we have 2g(g−1) combinations, that can be computed in explicit
form only for small size networks or in trivial cases.

The log-likelihood function in this case is

`(θ) = logP (Y = y) = θu(y, x)− ψ(θ).

The score function is

`∗(θ) = ∇`(θ) =
∂

∂θ
`(θ) = u(y, x)−∇ψ(θ)

The results for exponential families (Barndorff-Nielsen, 1978) state that:

θ̂MLE : ∇ψ(θ) = u(y, x),

and the Fisher information matrix is:

i(θ) = Eθ{−∇2`(θ)} = Eθ{∇ψ(θ)} = V{u(Y, x)}.

These results can not be used directly due to the impossibility to compute
ψ(θ) in explicitly form, and alternative methods to estimate θ have been
proposed.

Given an edge yij , let Y C
ij denote the adjacency matrix obtained exclud-

ing the edge (i, j).
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Denoting by Y +
ij and Y −ij respectively the adjacency matrix in which we

set yij = 1 and yij = 0, it is easy to prove that (Strauss and Ikeda, 1990)

P (Yij = 1|Y C
ij ;θ) =

P (Y +
ij ;θ)

P (Y +
ij ;θ) + P (Y −ij ;θ)

(2.27)

=
exp{θ u(y+ij , xij)}

exp{θ u(y+ij , xij)}+ exp{θ u(y−ij , xij)}
.

It follows that

logitP (Yij = 1|Y C
ij ;θ) = θ (u(y+ij , xij)− u(y−ij , xij)) (2.28)

= θ∆u(yij , xij).

This implies the conditional independence of the edges given their comple-
mentary graph. It can be noted that the expression (2.28) does not depend
on ψ(θ), but only on the difference of the sufficient statistic, sometimes
called vector of change statistics (Wasserman and Pattison, 1996). From
these results model coefficients can be estimated in a simple way.

In particular the function

Lp(θ; y) =
∏

ij

P (Yij = yij |Y C
ij ;θ), (2.29)

is called pseudo-likelihood function and the value θ̃ that maximizes (2.29)
is called maximum pseudo-likelihood estimate (MPLE) (Strauss and Ikeda,
1990). The MPLE is obtained under the working assumption of conditional
link independence in the network and so it coincides with the logistic regres-
sion coefficients for the observed edges and the vector of change statistics
∆u(yij , xij).

Unfortunately often the MPLE is not a good estimator (Geyer and
Thompson, 1992; Van Duijn et al., 2009) because it does not consider the
dependence between ties, that it is the most interesting aspect in network
modeling.

An alternative estimation method for ERGMs is via simulate maximum
likelihood estimation methods (Snijders, 2002; Hunter and Handcock, 2006).

These methods use Markov Chain Monte Carlo (MCMC) and exploit the
possibility to simulate a sample of M networks y∗1, . . . , y

∗
M from a ERGM

for a fixed value θk. The network simulations are obtained by some classi-
cal algorithms like Gibbs-sampling or Metropolis-Hastings. The goal is to
achieve the value θ̃ that maximize the approximation

`(θ)− `(θk) ' (θ − θk)T − log

[
1

M

M∑

i=1

exp{(θ − θk)Tu(y∗i )}

]
. (2.30)
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The updating procedure for θk is obtained via the Newton-Raphson method,
or its modifications (Hunter and Handcock, 2006; Snijders, 2002). Some of
these methods are often inefficient and computer intensive, especially for
Markovian models (2.14) where, as said before it is easy to fall in degeneracy
and instability problems (Handcock et al., 2003). In Chapter 3, we will
propose an alternative approach for obtaining maximum likelihood estimates
of ERGM parameters.

2.2.4 Latent Space Models

Latent space models are derived from a different strategy to catch and ex-
plain the dependencies of the data (Lazarsfeld and Henry, 1968). They
assume the existence of latent variables and the distribution of the data is
simply computable given these latent variables. The models that belong the
latent space family are centered on the concepts of ”position”, that takes
different meanings in the social network literature (see Snijders, 2011).

Here we refer mainly to the approach proposed by Hoff et al. (2002).
This approach assumes links independence given the positions of the nodes
(actors) in a small dimensional latent space Rd, often not larger than d =
2, 3. The conditional probability model for the adjacency matrix y is

P (Y = y|Z,X,θ) =
∏

i 6=j
P (Yij = yij |Zi, Zj , Xij ;θ), (2.31)

=
∏

i 6=j

yije
ηij

1 + eηij
,

where
ηij ≡ logitP (Yij = 1) = α+ βXij − d(Zi, Zj)

is the logit linear predictors with θ = (α, β), d(Zi, Zj) = ‖Zi − Zj‖ is a
distance in Rd between the positions Z of the nodes, and X is a set of dyad
covariates defined on a set of actor attributes, see §2.2.1.

At this stage the model implies symmetry on the probabilities of the
links between nodes. The symmetry assumption does not include different
productivity and attractiveness effects for the nodes. Hoff (2005) solved the
problem including in the model Gaussian random effects for productivity
(δ) and attractiveness (γ).

In latest years, early versions have been quickly improved to handle
many network observed characteristics. Often, the main interest focuses
in identifying groups of similar nodes (White et al., 1976; Wang and Wong,
1987; Anderson et al., 2002). For this goal, clustering methods must be used
to analyze explicitly the set of latent positions inferred by the latent space
model. To allow joint inference on latent positions and clusters, Handcock
et al. (2007) introduced an explicit clustering model in the latent space in
the form of a mixture of a spherical Gaussian distributions:
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P (Y |Z,X,θ) =
∏
i 6=j

yije
ηij

1+eηij

ηij = α+ βXij − ‖Zi − Zj‖
Z ∼

∑
kNd(µk, σ

2
kI).

(2.32)

All these extensions were summarized in what it is called Latent Cluster
Random effects model (LCRM) (Krivitsky et al., 2009):





P (Y |Z,X,θ, δ, γ) =
∏
i 6=j

yije
ηij

1+eηij

ηij = α+ βXij − ‖Zi − Zj‖+ δi + γj
Z ∼

∑
kNd(µk, σ

2
kI),

δ ∼ N(0, σ2δ ),
γ ∼ N(0, σ2γ).

(2.33)

In this formulation the main kind of dependencies of the data are in-
cluded in the model. Transitivity, clustering and homophily are caught by
closeness in the latent space. Differences in socio activity are explained by
the random effects. Terms for dyad covariates defined on a set of actor at-
tributes can also be considered to help the understanding of the underlying
social structure.

The main task in the estimation of a LCRM (2.33) is to determine the
latent positions of the actors in the latent space. The estimation is ob-
tained under a Bayesian framework, via MCMC procedures (Krivitsky and
Handcock, 2008; Krivitsky et al., 2009).

2.2.5 p2 Models

This model approach has been proposed as an extension of the p1 model
and so it was called p2 (Van Duijn et al., 2004). In particular, the p2 model
reduces the number of parameters of the p1 model and uses random effects to
simplify the way to model the difference in productivity and attractiveness
of actors.

As shown in §2.2.2, p1 model (2.12) assumes that the probability for a
dyad (yij , yji) is given by
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ABSTRACT. The class of p2 models can be used for the study of binary relational data with covariates,
typical of social network analysis. Such models have been somewhat underused in empirical applica-
tions, though they represent a useful tool, capable of being extended in various directions. A p2 model
is a regression model for multinomial responses, with correlated crossed random effects to represent
actor heterogeneity and within-dyad dependence. In the literature there are proposals to estimate the
parameters of p2 models either by joint maximization methods (such as MQL o PQL estimation) or
following a Bayesian approach and employing MCMC methods. Here we propose a further possibility,
based on the Laplace approximation approach coupled with tilted importance sampling. This solution
represents a good approximation to maximum likelihood estimation. Its implementation requires some
care, but it can be performed efficiently. A numerical example is provided.

1 INTRODUCTION

The class of p2 models can be employed for the study of binary relational data with covariates,
typical of social network analysis. Such models are less used in empirical studies of network
data compared to other models (see Kolacyzk (2009) for a recent survey), but they represent
a useful and flexible tool, that can be extended in various directions.

The basic p2 model was introduced by Zijlstra et al. (2004), and it is an extension of
the classic p1 model of Holland and Leinhardt (1981) for directed graphs. A directed graph
represents the ties between a fixed set of nodes (actors), and a pair of actors and their observed
ties is called a dyad. Here we focus on binary ties, and let Yi j be the binary tie variable, with
1 denoting the presence of a tie from actor i to actor j, i, j = 1, . . . ,g. The p2 model assumes
that for a given dyad

P(Yi j = y1,Yji = y2)

=
exp
�

y1 (µi j +αi +β j)+ y2 (µi j +α j +βi)+ρi j y1y2
�

1+ exp(µi j +αi +β j)+ exp(µi j +α j +βi)+ exp(2µi j +αi +β j +α j +βi +ρi j)
,

where αi is the sender parameter of actor i, βi is receiver parameter of actor i, whereas µi j and
ρi j are the density and the reciprocity parameters respectively of dyad (i, j). These parameters
usually depend on some covariates and random effects, namely

αi = X1i γ1 +ai , βi = X2i γ2 +bi , µi j = µ+Z1i j δ1 , ρi j = ρ+Z2i j δ2 .

where αi is the sender parameter of actor i, βi is receiver parameter of
actor i, whereas µij and ρij are the density and the reciprocity parameters
respectively of the dyad (i, j).

In the p2 model, these parameters are defined as function of some co-
variates and random effects, namely:

αi = X1i γ1+ai , βi = X2i γ2+bi , µij = µ+Z1ij δ1 , ρij = ρ+Z2ij δ2 .
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Here X1 and X2 are actor-specific design matrices, Z1 and Z2 contain dyad-
specific covariates and Ui = (ai, bi)

T are independent normally distributed
random effects:

Ui ∼ N2(0,Σ) , Σ =

(
σ2A σAB
σAB σ2B

)
. (2.34)

Notice that random effects model the ties sent or received by a given actor,
that are thus assumed to be dependent. All the parameters of this model
can be collected together in the vector θ:

θ = (γ1, γ2, µ, δ1, ρ, δ2, σ
2
A, σAB, σ

2
B)T .

2.3 Real Data Examples

In the following we introduce the data sets that will be used in the next
chapters. They are taken from the literature and, in some cases, they are
available in the suite of software packages statnet for R.

2.3.1 Molecule Network

This synthetic 20-node graph, shown in Figure 2.8, resembles the chemical
structure of a molecule.

Figure 2.8: molecule data.

This data set is used in a recent paper on the Bayesian estimation for
ERGM (Caimo and Friel, 2011).
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2.3.2 Ecoli Network

This network data set (Salgado et al., 2001; Shen-Orr et al., 2002) is a
biological network in which the nodes are operons in Escherichia Coli.

The analyses reported in the next chapters are based on the network
object ecoli2, which is an undirected network with 418 nodes.

Figure 2.9: ecoli2 data.

Applications on this data set are present in Hummel et al. (2011).

2.3.3 Kapferer’s Tailor Shop Network

This data set (Kapferer, 1972) is about undirect interactions between 39
workers (kapferer) in a tailor shop in Zambia over a period of ten months.
The focus was on the changing patterns of alliance among workers during
extended negotiations for higher wages. The data contains an actor attribute
(highstatusjob) refers to the prestige of the job, maybe who works in a
strategical position.

This data set was considered in Snijders and Nowicki (1997) and Hummel
et al. (2011).

2.3.4 Lazega’s Lawyers Network

The data set refers on informal relationships between 71 lawyers of a cor-
porate law firm in New England, collected by Lazega (2001). Networks for
advice, collaboration and friendships relations are available. Additional at-
tributes were recorded for each lawyer: seniority (i.e., the rank into the
law firm); gender; status (i.e., if the lawyer is a partner or an associate);
office location; years in the firm; age; type of specialty (i.e., litigation
or corporate law); law school (i.e., where Yale = 1). For additional details
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Figure 2.10: kapferer data.

see Lazega and Pattison (1999). In our analyses, we restricted the attention
to the network of collaboration among partners on mutual relations, Figure
2.11, and on the network of the friendship among associates, Figure 2.12.

Figure 2.11: Lazega’s Lawyers Data, collaboration among partner lawyers.

Applications on this data set can be found in Van Duijn et al. (2004),
Hunter and Handcock (2006) and Kolaczyk (2009).

2.3.5 Sampson’s Monks Network

In its work (Sampson, 1968), Sampson recorded the social interactions among
a group of 18 monks. The study identifies three groups in the monastery
(loyal, Turks and outcasts), added as an actor attribute (group).
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Figure 2.12: Lazega’s Lawyers Data, friendship among associate lawyers.

What used in the following is the time-aggregated graph, data(samplike)
in R. It is the cumulative tie for liking over three time periods. For this net-
work, a tie from monk A to monk B exists if A nominated B as one of
his three best friends at any of the three time points. The relation is thus
directed.

Figure 2.13: samplike Data.

An application for this data set, Figure 2.13, is given in Krivitsky et al.
(2009).
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2.3.6 Krackhardt’s High-tech Managers Network

It is a one-mode network, with three relations measured on a set of people.
The data were gathered by Krackhardt (1987) in a small manufacturing
organization on the west coast of the U.S. The firm, producing high-tech
machinery, employed approximately one hundred people, and had twenty-
one manager. These twenty-one managers are the set of actors for this data
set. The data set includes four actor attributes: age; length of time em-
ployed by the organization tenure; level in the corporate hierarchy; and
the department. The first two are measured in years. There are four depart-
ment in the firm. All but the president have a department attribute codes
as an integer from 1 to 4. Thel level attribute is measured on an integer
scale from 1 to 3: 1 = CEO, 2 = vice president, and 3 = manager. In
our analysis we focused only on the ”friendship” relations. More about this
data set can be found in Wasserman and Faust (1994).

Figure 2.14: HighTech Managers Data.

2.3.7 Dutch Social Behavior Study

The data from the Dutch Social Behavior Study (Baerveldt and Snijders,
1994), already analysed in Zijlstra et al. (2005), are about the emotional sup-
port on two networks of high school pupils, of order 62 and 39 respectively.
The available actor attributes are the with different ethnic background

and gender. The networks are plotted in Figure.
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Figure 2.15: Dutch Social Behavior Study, school 1 data.

Figure 2.16: Dutch Social Behavior Study, school 2 data.
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Chapter 3

Monte Carlo Quasi-Newton
Estimation for ERGMs

This chapter presents a Monte Carlo Quasi-Newton algorithm for computing
the maximum likelihood estimate of an exponential random graph model
(ERGM).

The existing procedures to estimate the parameters of an ERGM, based
on simulated maximum likelihood methods, are computationally challeng-
ing, due to numerical difficulties to approximate the likelihood function. So
they at times fail to converge as the likelihood approximation may degrade,
especially for certain choices of the sufficient statistics of interest.

The method is proposed to improve the quality of the estimated ERGM
and reducing degeneracy and instability problems.

3.1 Introduction

We focus now on exponential random graph model (ERGM) for an observed
network y of order g. The model, described in §2.2.3, has the general form

Pθ(y = y) = exp{θTu(y)− ψ(θ)} . (3.1)

The main problem to work with this model concerns the intractability
of the normalizing quantity ψ(θ), that does not permit to compute explic-
itly the likelihood and to use the classic results for exponential families
(Barndorff-Nielsen, 1978).

The existing procedures to estimate θ are generally based on simulated
maximum likelihood (Snijders, 2002; Hunter, 2007). These methods take
advantage of Markov Chain Monte Carlo methods to simulate a sample of
M networks y∗1, . . . , y

∗
M from an ERGM (3.1) for a given parameter value

θ0.
Denoting by

`(θ) = θTu(y, x)− logψ(θ) (3.2)
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the log-likelihood function at θ, an approximation to `(θ)− `(θ0) is (Hunter
and Handcock, 2006)

`(θ)− `(θk) ' (θ − θk)T − log

[
1

M

M∑

i=1

exp{(θ − θk)Tu(y∗i )}

]
. (3.3)

A well-known problem for simulated maximum likelihood is that if θ0
is not close to MLE θ̂, the approximation (3.3) can be very poor (Caimo
and Friel, 2011; Hummel et al., 2011). At times, the maximizer θ̃ of (3.3)
may not even be closer to θ̂ than θ0, so that repeating the computation of
`(θ) − `(θ0) after setting θ0 = θ̃ and iterating may not give a convergent
algorithm. For the special case of ERGMs, the determination of θ̂ is made
even more difficult by possible model degeneracy that may occur for certain
choices of u(y), and actually the MLE may not even exist; see the discussion
in Rinaldo et al. (2009) and the references therein. Especially for Markov
random graphs, for certain parameter values there may be symptoms of
near degeneracy (Handcock et al., 2003), although the MLE does exist. The
recent work by Schweinberger (2011) illustrates some mathematical aspects
of this issue, providing some partial explanations of it.

The Steplength algorithm (Hummel et al., 2011) represents a notable
improvement over standard simulated maximum likelihood. It proceeds
through a series of steps based on alternating between the canonical pa-
rameterization, θ, of the exponential family (3.1) and the mean-value pa-
rameterization (Handcock et al., 2003), where the parameter is given by
µ(θ) = Eθ{u(Y )}.

Exploiting the mean-parametrization and some loose distributional as-
sumptions, reasonable in many cases, a log-likelihood approximation alter-
native to (3.3) could be obtained noting that (Hummel et al., 2011)

ψ(θ)− ψ(θ0) = log

[ ∑
y∈Y exp{θu(y)}∑
y∈Y exp{θ0u(y)}

]

= log


∑

y∈Y

exp{θ0u(y)}∑
y∈Y exp{θ0u(y)}

exp{(θ − θ0)u(y)}




= log
[
Eθ0

{
e(θ−θ0)u(Y )

}]

' (θ − θ0)TEθ0 {u(Y )}+
1

2
(θ − θ0)TVθ0 {u(Y )} (θ − θ0). (3.4)

Then the alternative approximation is given by

`(θ)− `(θ0) = (θ − θ0)u(y)− {ψ(θ)− ψ(θ0)}

' (θ − θ0)T {u(y)− µ̂0} −
1

2
(θ − θ0)T Σ̂0(θ − θ0), (3.5)
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where

µ̂0 =
1

M

M∑

k=1

u(y∗k),

and

Σ̂0 =
1

M − 1

M∑

k=1

{u(y∗k)− µ̂0}{u(y∗k)− µ̂0}T ,

are respectively the usual estimator of mean and variance for the simulated
sample of networks.

This approximation assumes that if µ0 and Σ0 are the true mean vector
and covariance matrix of u(Y ) when θ0 is the true parameter for the network
distribution, and Z = (θ − θk)Tu(y) is approximately normally distributed
with mean µ = (θ − θ0)Tµ0 and variance σ2 = (θ − θ0)TΣ0(θ − θ0), then
exp(Z) is log-normally distributed and logEθ(exp(Z)) = µ+ σ2/2.

3.2 Monte Carlo BFGS Algorithm

Here we provide a further algorithm which is similar in spirit to the steplength
algorithm, but designed to achieve a more robust convergence behavior.

The method is implemented using R and it is based on the procedures
made available in the R suite package statnet (Handcock et al., 2008; Hunter
et al., 2008b).

The algorithm that we propose is essentially a sort of BFGS algorithm
(see e.g Fletcher, 1980; Dennis and Schnabel, 1996) based on Monte Carlo
simulation. The essential theory is as follows. A Newton-Raphson step to
maximize a function f(x), with x multidimensional variable, is

xn+1 = xn − [∇2f(xn)]−1∇f(xn),

where ∇f(xn) and ∇2f(xn) represent the gradient vector and Hessian ma-
trix, i.e the set of first and second order of partial derivatives of f(x) eval-
uated on the point xn.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a quasi-
Newton method for solving nonlinear optimization problems useful in the
case in which the Hessian matrix of f(x) is difficult to be evaluated directly.

The BFGS algorithm updates, at the step k, the new value xk+1 as

xk+1 = xk +αk∆k,

along a direction ∆k such that

Jk∆k = −∇f(xk). (3.6)

The matrix Jk is an approximation to the Hessian matrix iteratively updated
at each stage. A line search is requested to determine an acceptable value
for the step size αk in the direction ∆k.
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Setting wk = ∇f(xk) − ∇f(xk+1) and sk = αk∆k, the approximate
Hessian Jk is updated by

Jk+1 = Jk +
wkw

T
k

wTk sk
−
Jksks

T
k J

T
k

sTk Jksk
. (3.7)

Back to the maximization of the log-likelihood of an ERGM given by
(3.2), we have that

∇`(θ) = u(y)−∇ψ(θ) (3.8)

and
∇2`(θ) = −∇2ψ(θ), (3.9)

both involving ψ(θ) that can not be computed in explicit form.
From likelihood theory for exponential families (Barndorff-Nielsen, 1978)

we know that the gradient of ψ(θ) is

∇ψ(θ) = Eθ{u(Y, x)},

and the expected Fisher information is

i(θ) = E{−∇2`(θ)} = Vθ{u(Y, x)}.

So the solution of (3.8) is the MLE that solves

θ̂ : Eθ{u(Y )} = u(y).

Therefore, a BFGS algorithm for maximizing `(θ) has the following
structure:

1. Choose a starting point θ0, and simulate a sample y∗1, . . . , y
∗
M of networks

from model (3.1) with this parameter value. A natural choice for θ0
is given by MPLE θ̂P (2.29). A safer alternative, in case of near
degeneracy at θ̂P (Handcock et al., 2003), is to start from the null
point θ0 = 0 that corresponds to a binomial random graph.

2. Set J0 = −∇2Lp(θ0; y) equal to minus the Hessian matrix from the
pseudo-likelihood (2.29) based on the univariate conditional distribu-
tion of each yij evaluated at θ0. This is inspired from the principle of
maximization by parts (Song et al., 2005), that is a method that tries
to compute the MLE using a pseudo-likelihood estimator.

3. Compute the sample mean vector µ̂0 and covariance matrix Σ̂0 of the suf-
ficient network statistics u(y∗1), . . . , u(y∗M ) for the simulated networks,
together with the related convergence t-ratios t0 (Snijders, 2002)

t0j =
uj(y)− µ̂0j

σ̂0j
, (3.10)

with σ̂20j = (Σ̂0)jj , j = 1, . . . , d.
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4. Obtain the direction of the update, using equations (3.6) and (3.8)

∆0 = J−10 {u(y)− µ̂0},

where ∇ψ(θ) ≈ µ̂0. At the first step of the algorithm, this is actually
a Monte Carlo approximation to the linearized direction of the update
of the maximization by parts algorithm.

5. Compute the steplength α0 as

argmax
α0

`(θ0 +α0∆0)

Exploiting the approximation (3.5) evaluated at θ = θ0 + α0∆0, the
problem reduces to maximize

α0 ∆T
0 {u(y)− µ̂0} −

1

2
α2

0∆
T
0 Σ̂0 ∆0,

with respect to α0. The maximum is at

α0 =
∆T

0 {u(y)− µ̂0}
∆T

0 Σ̂0 ∆0

, (3.11)

which is then restricted to lie in [0, 1].

6. The proposal for the first update is then

θ1 = θ0 +α0 ∆0.

The next thing to do should be to update J0 to J1 respect the formula
(3.7). However, near degeneracy may occur at θ1. Hence, we incor-
porate some sort of back-tracking mechanism on the algorithm, which
is maintained for a few iterations. The solution proposed consists in
generating y∗1, . . . , y

∗
M from (3.1) at θ1, and then obtaining the sample

statistics µ̂1 and Σ̂1. In case Σ̂1 is not of full rank, step-halving is
implemented i.e. θ1 is re-computed after halving the steplength α0.
The same operation is repeated until the convergence t-ratios t1 is an
improvement over t0, and in any case up to a fixed number of times.

7. After moving from θ0 to θ1, the upgraded Jacobian J1 is obtained from
J0 by the BFGS formula (3.7). In case the BFGS formula gives a
singular Jacobian, set J1 equal to minus the Hessian matrix from the
pseudo-likelihood evaluated at θ1 (as in Step 2). The algorithm is
ready for another iteration from Step 4.
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The algorithm is stopped using a convergence criterion e.g. when the ab-
solute values of convergence t-ratios are all smaller than a certain threshold
(say 0.05).

The crucial point is to incorporate some escaping mechanisms from pa-
rameter values associated to near degeneracy or instability, as done at Steps
6 and 7, that in the previously existing methods sometimes drove to poor
or no convergent results.

3.3 Missing Data

The basic structure of the algorithm could be subject to several variations.
The main variation we implemented is represented by a procedure to

estimate the model parameters in presence of missing data.
As in any other field of statistical analysis, the presence of missing data

on a network can be the result of error of the sampling procedure. But in
SNA missing data can be also the result of the sample design (Thompson
et al., 1996; Handcock and Gile, 2010).

To this goal, suppose that the adjacency matrix Y = y is partially ob-
served so it is possible to split the data on a subset Y obs = yobs of observed
links and on a subset Y miss = ymiss of missing links.

In this case, our procedure implements the so-called face-valued likelihood
(Handcock and Gile, 2010). In this procedure the inference is based only on
the observed subset of the data

L(θ|Y obs = yobs) ∝
∑

v:yobs+v∈Y

Pθ(Y = yobs + v), (3.12)

where v is one of the possible combinations of the missing part Y miss of
the network, and the expression yobs + v correspond to the event (Y obs =
yobs ∩ Y miss = v).

Note that the conditional distribution of Y miss given Y obs is (Handcock
and Gile, 2010)

Pθ(Y
miss = v|Y obs = yobs) = exp{θTu(yobs + v)−ψ(θ|yobs)} y ∈ Y(yobs)

with
Y(yobs) = {v : yobs + v ∈ Y},

and
ψ(θ|yobs) = log

∑

v∈Y(yobs)

exp{θTu(yobs + v)}.

This result can be used to sample from the conditional distribution, and
it is implemented in the ergm package.
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The face-valued log-likelihood function is given by

`(θ|yobs) ∝ ψ(θ|yobs)− ψ(θ). (3.13)

Its gradient and Hessian matrix are respectively

∇`(θ|yobs) = ∇ψ(θ|yobs)−∇ψ(θ)

= Eθ{u(Y )|Y obs} − Eθ{u(Y )}, (3.14)

and

∇2`(θ|yobs) = ∇2ψ(θ|yobs)−∇2ψ(θ))

= Vθ{u(Y )|Y obs} − Vθ{u(Y )}. (3.15)

It is fundamental to note that the results for face-valued likelihood hold
only in the cases in which the network data are missing at random (Rubin,
1976) or in general when there is amenability of the sample design (Handcock
and Gile, 2010), namely in the cases in which the mechanism to generate
missing data in the network is ignorable.

It also holds that

`(θ|yobs)− `(θ0|yobs) = ψ(θ|yobs)− ψ(θ)− ψ(θ0|yobs) + ψ(θ0)

=
{
ψ(θ|yobs)− ψ(θ0|yobs)

}
− {ψ(θ)− ψ(θ0)} .

For ψ(θ|yobs)− ψ(θ0|yobs) holds a result similar to (3.4)

ψ(θ|yobs)− ψ(θ0|yobs) ' (θ − θ0)TEθ0

{
u(Y )|yobs

}
+

+
1

2
(θ − θ0)TVθ0

{
u(Y )|yobs

}
(θ − θ0). (3.16)

Then

`(θ|yobs)− `(θ0|yobs) ' (θ − θ0)T (µ̂c − µ̂) +

−1

2
(θ − θ0)T

(
Σ̂− Σ̂

c
)

(θ − θ0), (3.17)

in which µ̂c and Σ̂
c

are respectively the mean vector and the variance matrix
of an additional stage in which the network statistics {u(yc1), . . . , u(ycM )} are
simulated conditional on the observed data.

In order to maximize the face-valued likelihood (3.13), the steps of the
algorithm are changed as follows:

� Whenever required, an additional stage in which the networks are
simulated conditionally on the observed data is added. And then their
means and covariance matrices for the network statistics are computed.
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� At Step 4, the value of ∆0 becomes

∆0 = J−10 {µ̂
c
0 − µ̂0}.

� At Step 5, Formula (3.17) is used, instead of (3.5), to compute the
steplength α0 such that

argmax
α0

`(θ0 +α0∆0|yobs).

In this case α0 is maximized by

α0 =
∆T

0 {µ̂
c
kj − µ̂kj}

∆T
0

{
Σ̂− Σ̂

c
}

∆0

, (3.18)

restricted to lie in [0, 1].

� The generic t-ratio convergence criterion (3.10) becomes

tkj =
µ̂ckj − µ̂kj
σ̂kj − σ̂ckj

,

with σ̂kj =
√

(Σ̂k)jj , σ̂
c
kj =

√
(Σ̂

c

k)jj , and j = 1, . . . , d.

While in the complete observed case the procedure converges if the means
of the statistics of the simulated networks are sufficient close to the observed
networks statistics, here the convergence is reached if the constrained mean
and unconstrained mean of the statistics of the two simulated sample net-
works are close enough.

3.4 Examples on Real Data

The algorithm presented in the previous section has been tested with several
publicly available data sets, for a wide choice of sufficient statistics. The
results for MPLE, Steplength algorithm (MC-MLE) and Monte Carlo BFGS
(MC-BFGS) algorithms are compared.

We took advantage of the highly efficient implementation of MCMC
methods to simulate from model (3.1) made available in the R package ergm

v2.4-3 (Hunter et al., 2008b).

3.4.1 Ecoli and Kapferer Data

The first two examples that we present are both considered in Hummel et al.
(2011).
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The model for ecoli2 data (§2.3.2) includes the degree terms until the
order five and the new specification term GWDegree to cover the remaining
degrees of order larger that five.

The model for kapferer data (§2.3.3) has only new specification terms,
in fact it includes the GWESP and GWDSP statistics.

As we can see in Table 3.1 and Table 3.2, in both cases the estimated
values for MC-MLE and MC-BFGS are very close. This also because the
models do not present neither near-degeneracy nor instability problems.

Notice that the standard errors for the MPLE are those obtained from
the maximization of the pseudo-likelihood (2.29) through logistic regression,
and they are not adjusted using estimating equations theory. This is relevant
with what commonly done by practitioners, and it will be close also in the
other examples of this chapter.

The good convergence properties of the MC-BFGS algorithm to actual
MLE can be checked by the scatter plots in Figure 3.1 and in Figure 3.3,
that show how the algorithm stops effectively when the sample means of the
simulated network statistics reached the sufficient statistics of the observed
networks. The plots in Figure 3.2 and in Figure 3.4 show the differences
between the mean parametrization values in the algorithm iterations and the
observed network statistics. In other words the lines represent the estimated
log-likelihood gradients, given by the means of the network statistics for the
simulated samples minus the observed network statistics. The plots confirm
the good convergence property of MC-BFGS algorithm but also that MC-
BFGS seems to converge slower than the Steplength algorithm. This is likely
due to the different convergence criteria of the algorithms.

Table 3.1: Parameter estimates (s.e.) for ecoli2 data.

Parameter MPLE MC-MLE MC-BFGS

θ1 : edges -5.35 (0.08) -5.07 (0.04) -5.07 (0.05)
θ2 : degree2 -2.58 (0.09) -1.47 (0.14) -1.46 (0.14)
θ3 : degree3 -3.06 (0.12) -2.36 (0.19) -2.35 (0.20)
θ4 : degree4 -2.39 (0.13) -2.30 (0.23) -2.30 (0.23)
θ5 : degree5 -1.85 (0.11) -2.92 (0.42) -2.91 (0.42)
θ6 : GWDegree 8.13 (0.33) 1.86 (0.27) 1.83 (0.32)
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Figure 3.1: Some iteration steps of the MC-BFGS algorithm for ecoli2

data. The values of the statistics for the networks simulated at each step
are plotted, together with their sample mean (• and • in the final step) and
the observed values (×)

38



5 10 15 20 25

−
30

0
−

10
0

10
0

30
0

edges

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

5 10 15 20 25

−
40

−
20

0
20

40
degree2

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

5 10 15 20 25

−
30

−
10

0
10

20
30

degree3

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

5 10 15 20 25

−
20

0
10

20

degree4

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

5 10 15 20 25

−
10

−
5

0
5

10

degree5

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

5 10 15 20 25

−
40

−
20

0
20

40

gwdegree

Iteration

E
(u

(y
*)

)−
 u

(y
)

● ●

Figure 3.2: ecoli2 data, differences between the coefficients expressed in
mean parameterization in the iterations of MC-MLE (blue) and MC-BFGS
(violet) algorithms and the observed sufficient statistics.
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Table 3.2: Parameter estimates (s.e.) for kapferer data.

Parameter MPLE MC-MLE MC-BFGS

θ1 : edges -2.26 (0.24) -3.05 (0.47) -3.08 (0.58)
θ2 : GWESP 0.93 (0.14) 1.45 (0.33) 1.45 (0.32)
θ3 : GWDSP -0.10 (0.04) -0.12 (0.01) -0.12 (0.06)
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Figure 3.3: Some iteration steps of the MC-BFGS algorithm for kapferer

data. The values of the statistics for the networks simulated at each step
are plotted, together with their sample mean (• and • in the final step) and
the observed values (×)
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Figure 3.4: kapferer data, differences between the coefficients expressed in
mean parameterization in the iterations of MC-MLE (blue) and MC-BFGS
(violet) algorithms and the observed sufficient statistics.

3.4.2 Molecule

For the molecule data, used in Caimo and Friel (2011), we considered three
different models.

A Markov random graph model (p∗) was fitted, and the results are re-
ported in Table 3.3 (Model 1). Here the MPLE corresponds to near degener-
acy, and none of MC-MLE algorithms implemented in ergm converged. The
MC-BFGS instead converged to an estimate similar to the Bayesian results
reported in Caimo and Friel (2011).

At any rate, there are surely problems with Model 1, as minor changes
to the reported estimate may lead to near degeneracy. Figure 3.5 reports the
differences between the observed sufficient statistics and the mean parametriza-
tion of the coefficients in the algorithm steps. The values of MC-MLE (blue
line) were truncated after 200 algorithm iterations, this because it is clear
that it was trapped in a, maybe infinite, loop. MC-BFGS (violet line)
reached the convergence after 20 iterations. This result is mostly due to
the effects of the back-tracking mechanisms included in the procedure. In
the plots in Figure 3.6, we can see how the MC-BFGS algorithm is already
close to convergence after the iteration 8, and the next iterations refine the
convergence due to a small level of the threshold for the convergence t-ratios
(3.10).

Table 3.3: Parameter estimates (s.e.) for Molecule data.
Model 1 Model 2 Model 3

Parameter MPLE MC-BFGS MC-MLE MPLE MC-BFGS MC-MLE MPLE MC-BFGS MC-MLE

θ1 edges 5.08 (NA) 2.98 (3.58) NA -1.05 (1.27) -0.91 (2.02) -0.96 (1.96) -6.06 (1.07) -6.07 (1.49) -6.01 (1.42)
θ2 2-stars -2.02 (NA) -1.31 (1.23) NA -0.53 (0.24) -0.57 (0.41) -0.56 (0.39) – – –
θ3 3-stars 0.52 (NA) 0.19 (0.59) NA – – – – – –
θ4 triangles 1.60 (NA) 1.71 (0.50) NA 0.15 (0.48) 0.20 (0.68) 0.20 (0.69) – – –
θ5 : GWDegree (0.8) – – – – – – 4.50 (1.58) 4.29 (2.43) 4.19 (2.37)
θ6 : GWESP (0.8) – – – – – – 0.25 (0.19) 0.21 (0.29) 0.18 (0.10)
θ7 : Main eff. Atomic type – – – 3.12 (0.75) 3.16 (0.78) 3.16 (0.79) 2.70 (0.75) 2.94 (0.74) 2.96 (0.19)

Things are surely better by inserting a main effect term for atomic type
node attribute in place of the 3-stars term (Model 2), and using the new
ERGM specifications (Hunter, 2007) (Model 3). The results of these two
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Figure 3.5: Model 1 of Molecule data, differences between the coefficients
expressed in mean parameterization in the iterations of MC-MLE (blue) and
MC-BFGS (violet) algorithms and the observed sufficient statistics.
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further models are also reported in Table 3.3; the similarities between the
two MLE estimates are apparent also observing Figures 3.7 and 3.8.
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Figure 3.7: Model 2 of Molecule data, differences between the coefficients
expressed in mean parameterization in the iterations of MC-MLE (blue) and
MC-BFGS (violet) algorithms and the observed sufficient statistics.
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Figure 3.8: Model 3 of Molecule data, differences between the coefficients
expressed in mean parameterization in the iterations of MC-MLE (blue) and
MC-BFGS (violet) algorithms and the observed sufficient statistics.
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3.5 Simulation Studies Based on Lazega’s Lawyers
Data

In this section, first we analyze the Lawyers data (Lazega and Pattison,
1999) for two models. Second, we replicate and extend the simulation study
contained in Van Duijn et al. (2009).

Data Analysis

For the data analysis we considered a Markov random graph (p∗) model
(Model 1) and a model including the new specification term GWESP. Both
the models include also the same actor attribute terms, in according with the
literature (Hunter and Handcock, 2006; Van Duijn et al., 2009; Kolaczyk,
2009).

In the first column of Table 3.4 we can see that the MC-MLE algorithm
fails for Model 1. From Figure 3.9 we see that the trajectory of the terms
diverged from the observed statistics, it entered in an infinite loop and the
procedure was stopped after 100 iterations. Instead, MC-BFGS converged
to the MLE, although slowly and maybe as a result of the back-tracking
mechanisms.

For Model 2, there are no apparent differences between the estimates
obtained by MC-MLE and MC-BFGS algorithms (Model 2 in Table 3.4). In
Figure 3.10, we can see how both the algorithms converged quickly, probably
because the MPLE is a good starting point. We note that there are, instead,
some differences between the standard errors estimated by MC-MLE and
MC-BFGS.

Table 3.4: Parameter estimates (s.e.) for Lawyers data.

Model 1 Model 2
Parameter MPLE MC-MLE MC-BFGS MPLE MC-MLE MC-BFGS

θ1 : edges -8.10 (1.25) NA -6.97 (0.83) -6.43 (0.81) -6.47 (0.32) -6.53 (0.60)
θ2 : 2stars 0.27 (0.11) NA 0.20 (0.09) – – –
θ3 : 3-stars -0.02 (0.01) NA -0.03 (0.01) – – –
θ4 : triangles 0.30 (0.12) NA 0.34 (0.12) – – –
θ5 : GWESP (0.7781) – – – 0.90 (0.11) 0.89 (0.14) 0.89 (0.15)
θ6 : main eff. seniority 0.75 (0.37) NA 1.04 (0.26) 0.88 (0.36) 0.85 (0.03) 0.87 (0.24)
θ7 : main eff. specialty 0.26 (0.19) NA 0.44 (0.12) 0.38 (0.19) 0.42 (0.03) 0.41 (0.12)
θ8 : homoph. specialty 0.85 (0.26) NA 0.82 (0.22) 0.72 (0.25) 0.75 (0.05) 0.77 (0.19)
θ9 : homoph. gender 0.70 (0.39) NA 0.85 (0.27) 0.64 (0.39) 0.71 (0.03) 0.70 (0.25)
θ10 : homoph. office 1.58 (0.31) NA 1.28 (0.24) 1.15 (0.28) 1.15 (0.04) 1.15 (0.20)

Simulation Studies

The simulation studies are designed as following. In all the cases, Model 2
is taken as reference. In the first case 500 networks are simulated exactly
from Model 2, in the second case the network transitivity is increased as in
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Figure 3.9: Model 1 of Lawyers data, differences between the coefficients
expressed in mean parameterization in the iterations of MC-MLE (blue)
and MC-BFGS (violet) algorithms and the observed sufficient statistics.
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Figure 3.10: Model 2 of Lawyers data, differences between the coefficients
expressed in mean parameterization in the iterations of MC-MLE (blue) and
MC-BFGS (violet) algorithms and the observed sufficient statistics.
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Van Duijn et al. (2009) in the 500 simulated networks, whereas in the last
case the 500 networks are obtained by setting randomly a 10% of missing
data in the networks simulated in the first case.

Table 3.5 reports the results relative to the first simulation case. The
values are the mean and the standard deviation of the estimated coefficients
for the simulated networks, expressed in natural and mean parametrization.
The mean parametrization values are the mean of the statistics on further
200 simulate networks for each estimate.

The results for the first case do not show any substantial difference be-
tween the methods in the natural parametrization. However, in the mean
parametrization, the estimates based on MC-BFGS look much closer to the
mean parameter corresponding to the true parameter values µ(θ0). This
is confirmed also in Figure 3.11, where the boxplots relative to the mean
parametrization of the estimates obtained by the MC-BFGS method are
centered at µ(θ0). Note that bias in the natural parametrization is finite
sample bias; accuracy in mean parametrization reflects instead the capabil-
ity of the method in computing correctly the MLE.

Table 3.5: Mean of parameter estimates (std. deviation), in natural and
mean parametrization, for networks simulated from Lawyers data, with true
parameter values θ0.

Natural Parametrization Mean Parametrization
Parameter θ0 MPLE MC-MLE MC-BFGS µ(θ0) MPLE MC-MLE MC-BFGS

θ1 : edges -6.51 -6.70 (0.66) -6.63 (0.61) -6.67 (0.61) 114.40 98.74 (34.29) 120.83 (30.56) 114.32 (16.60)
θ5 : GWEsp (0.7781) 0.90 0.93 (0.20) 0.86 (0.14) 0.85 (0.14) 189.09 160.61 (66.08) 203.96 (72.20) 188.91 (36.67)
θ6 : main eff. seniority 0.85 0.87 (0.27) 0.92 (0.26) 0.94 (0.26) 129.59 111.45 (39.40) 135.99 (31.84) 129.51 (19.52)
θ7 : main eff. specialty 0.41 0.42 (0.16) 0.47 (0.14) 0.47 (0.14) 128.33 109.44 (38.75) 133.69 (26.25) 128.23 (18.31)
θ8 : homoph. specialty 0.76 0.76 (0.22) 0.76 (0.21) 0.76 (0.22) 71.65 62.42 (21.30) 75.01 (15.44) 71.56 (11.00)
θ9 : homoph. gender 0.70 0.75 (0.35) 0.77 (0.30) 0.78 (0.30) 98.52 85.17 (29.88) 104.02 (26.26) 98.44 (15.11)
θ10 : homoph. office 1.15 1.18 (0.23) 1.20 (0.21) 1.21 (0.21) 84.33 73.04 (25.24) 87.61 (15.65) 84.28 (12.38)

We draw similar conclusions also observing the results relative to the
increased transitivity case in Table 3.6 and in Figure 3.12. In fact, while for
the natural parametrization both the algorithms are close to θ0, in the mean
parametrization MC-BFGS is much closer to the true values. A possible
explanation to this results could be that MC-BFGS are more stable, as for
the convergence of the MC-BFGS algorithm all the convergence statistics
must to be under a threshold. This is more restrictive that the convergence
criterion of the MC-MLE. This can explain also why the MC-BFGS are at
times slower to converge.

For the missing data case, as we said in §3.3, if a method correctly
maximizes the face-valued likelihood, the convergence is reached when the
conditional and unconditional sample mean of the network statistics are
close. As we can see in Table 3.7, only MC-BFGS satisfies this condition.
The absolute values of the differences for MPLE and the MC-MLE are really
huge, as it can be seen in Figure 3.13. These results are quite surprising for
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Figure 3.11: Boxplot of the estimates from the simulated networks for three
network statistics in the natural and mean parametrization. The means of
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Figure 3.12: Boxplot of the estimates from the simulated networks with
increased transitivity for three network statistics in the natural and mean
parametrization. The means of the estimates are represented by × and the
horizontal lines correspond to the true parameter values.
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Table 3.6: Mean of parameter estimates (std. deviation), in natural and
mean parametrization, for networks simulated from Lawyers data, with true
parameter values θ0, and increased transitivity.

Natural Parametrization Mean Parametrization
Parameter θ0 MPLE MC-MLE MC-BFGS µ(θ0) MPLE MC-MLE MC-BFGS

θ1 : edges -6.96 -7.24 (0.93) -6.93 (0.66) -6.98 (0.66) 212.64 164.81 (79.14) 216.48 (13.70) 212.61 (14.34)
θ5 : GWEsp (0.9075) 1.21 1.30 (0.35) 1.17 (0.22) 1.16 (0.22) 478.01 368.03 (181.06) 488.24 (37.62) 477.93 (38.63)
θ6 : main eff. seniority 0.78 0.79 (0.26) 0.85 (0.23) 0.86 (0.23) 236.83 183.24 (88.24) 240.47 (14.56) 236.78 (15.17)
θ7 : main eff. specialty 0.35 0.34 (0.15) 0.37 (0.12) 0.37 (0.12) 206.19 161.94 (76.53) 209.29 (14.18) 206.13 (14.71)
θ8 : homoph. specialty 0.76 0.75 (0.18) 0.76 (0.19) 0.77 (0.19) 127.25 99.25 (47.15) 129.25 (10.44) 127.28 (10.84)
θ9 : homoph. gender 0.66 0.66 (0.28) 0.68 (0.26) 0.70 (0.25) 183.41 141.99 (68.78) 186.26 (12.95) 183.36 (13.41)
θ10 : homoph. office 1.08 1.09 (0.19) 1.14 (0.16) 1.13 (0.16) 145.45 113.50 (53.93) 147.84 (9.54) 145.42 (9.48)

MC-MLE that should already use face-valued likelihood in its estimation
procedure. A likely explanation for the latter fact is the presence of some
bugs in the ergm estimation procedure for networks with missing values.

Table 3.7: Mean of parameter estimates (std. deviation), in natural and
mean parametrization, for networks simulated from Lawyers data, with true
parameter values θ0, and 10% of missing data. For mean parametrization,
the values are the absolute values of the difference between the unconditional
and conditional means.

Natural Parametrization Mean Parametrization
Parameter θ0 MPLE MC-MLE MC-BFGS MPLE MC-MLE MC-BFGS

θ1 : edges -6.51 -6.53 (0.75) -6.42 (0.67) -6.67 (0.65) 14.10 (10.46) 9.83 (3.64) 1.03 (0.84)
θ5 : GWEsp (0.7781) 0.90 0.70 (0.18) 0.66 (0.15) 0.84 (0.16) 27.05 (23.06) 29.44 (9.99) 2.36 (1.89)
θ6 : main eff. seniority 0.85 1.03 (0.33) 0.99 (0.29) 0.95 (0.28) 15.92 (12.07) 11.22 (4.20) 1.18 (1.00)
θ7 : main eff. specialty 0.41 0.50 (0.18) 0.50 (0.15) 0.48 (0.15) 11.19 (10.13) 11.04 (4.27) 1.15 (0.86)
θ8 : homoph. specialty 0.76 0.78 (0.24) 0.74 (0.23) 0.76 (0.23) 8.45 (6.51) 6.12 (2.44) 0.64 (0.51)
θ9 : homoph. gender 0.70 0.86 (0.39) 0.81 (0.35) 0.78 (0.32) 12.60 (9.39) 8.40 (3.29) 0.97 (0.75)
θ10 : homoph. office 1.15 1.28 (0.26) 1.23 (0.24) 1.21 (0.22) 10.12 (7.80) 7.27 (2.82) 0.80 (0.63)

An other kind of comparison between the three methods can be done
by comparing the standard deviation of the estimated parameters in the
natural parameterization with the mean standard errors estimated by the
methods. If a method estimates the standard error in the right way, this
two values should be very close. But the results in Tables 3.8, 3.9 and 3.10
show how MPLE and MC-MLE often tend to estimate badly the standard
errors. The MC-MLE, in particular, exhibits the tendency to underestimate
the estimation variability.
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Figure 3.13: Boxplot of the estimates from the simulated networks for three
network statistics with with 10% of missing data. In the mean parameteriza-
tion the values plotted are the differences between the means of the network
statistics for the unconstrained and constrained simulated sample networks.
The means of the estimates, and the means of differences, are represented
by × and the horizontal lines correspond to the true parameter values.
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Table 3.8: Standard deviation of the estimates (s.d) and mean of simulated
standard errors (s.e) for the parameter estimates of Table 3.5

Parameter MPLE MC-MLE MC-BFGS
s.d s.e s.d s.e s.d s.e

θ1 : edges 0.66 0.86 0.61 0.31 0.61 0.62
θ5 : GWEsp (0.7781) 0.20 0.12 0.15 0.14 0.15 0.15
θ6 : main eff. seniority 0.28 0.38 0.26 0.03 0.27 0.26
θ7 : main eff. specialty 0.16 0.20 0.14 0.03 0.14 0.13
θ8 : homoph. specialty 0.22 0.26 0.21 0.05 0.22 0.21
θ9 : homoph. gender 0.34 0.41 0.30 0.04 0.30 0.28
θ10 : homoph. office 0.23 0.29 0.21 0.04 0.21 0.21

Table 3.9: Standard deviation of the estimates (s.d) and mean of simulated
standard errors (s.e) for the parameter estimates of Table 3.6

Parameter MPLE MC-MLE MC-BFGS
s.d s.e s.d s.e s.d s.e

θ1 : edges 0.93 0.76 0.66 0.52 0.66 0.62
θ5 : GWEsp (0.7781) 0.35 0.18 0.22 0.19 0.22 0.21
θ6 : main eff. seniority 0.26 0.30 0.23 0.04 0.23 0.23
θ7 : main eff. specialty 0.15 0.15 0.12 0.04 0.12 0.11
θ8 : homoph. specialty 0.18 0.20 0.19 0.05 0.19 0.17
θ9 : homoph. gender 0.28 0.31 0.26 0.04 0.25 0.24
θ10 : homoph. office 0.19 0.22 0.16 0.05 0.16 0.17

3.6 The Package ergmQN

For the MC-BFGS method presented in the previous section, we developed
a new R package called ergmQN, implementing Quasi-Newton methods for
ERGMs estimation.

The backbone of the package is the function ergmQN that implements
the MC-BFGS algorithm also in presence of missing data in the network.

As we already said in the previous sections, ergmQN is based on the
procedures made available in the R suite package statnet (Handcock et al.,
2008), and especially in ergm (Hunter et al., 2008b). The ergmQN package
can be considered as an add-on extension of the ergm package.

In fact, some support functions have been included in the package in
order to make the procedures and the output of ergmQN compatible and
similar to the procedures for diagnostics, plotting and goodness-of-fit anal-
ysis already included in the ergm package.

ergmQN includes the possibility to choose between other two Quasi-
Newton methods. In fact, Symmetric Rank 1 (rank1) and Davidon-Fletcher-
Powell (dfp) methods are also implemented in the function. They are al-
ternative ways to update the approximated Hessian matrix (J) in formula
(3.7).
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Table 3.10: Standard deviation of the estimates (s.d) and mean of simulated
standard errors (s.e) for the parameter estimates of Table 3.7

Parameter MPLE MC-MLE MC-BFGS
s.d s.e s.d s.e s.d s.e

θ1 : edges 0.75 0.76 0.67 0.52 0.65 0.62
θ5 : GWEsp (0.7781) 0.18 0.18 0.15 0.19 0.16 0.21
θ6 : main eff. seniority 0.33 0.30 0.29 0.04 0.28 0.23
θ7 : main eff. specialty 0.18 0.15 0.15 0.04 0.15 0.11
θ8 : homoph. specialty 0.24 0.20 0.23 0.05 0.23 0.17
θ9 : homoph. gender 0.39 0.31 0.35 0.04 0.32 0.24
θ10 : homoph. office 0.26 0.22 0.24 0.05 0.22 0.17

The ergmQN package includes also a procedure (predict.ergmQN) to
predict the probabilities of the network ties based on an estimated ERGM.
This procedure will be useful for the results discussed in the next chapter.

3.7 Discussion

In this chapter we proposed an alternative simulate maximum likelihood
method for ERGM based on BFGS algorithm that has a robust convergence
behavior. The reported results confirm how the back-tracking mechanism
in the method permits to escape from near-degeneracy and instability cases
in which the other methods often do not converge. The convergence crite-
ria adopted for MC-BFGS provides a good control on the behavior of the
method. The estimated coefficients expressed in mean value parametriza-
tion are often closer to the statistics of the observed network then those
obtained with the Steplength algorithm (Hummel et al., 2011).

The BFGS method implemented in our proposal should not be con-
fused with the usage of the BFGS algorithm to maximize the log-likelihood
approximation (3.5) available in the ergm package. Indeed, in our case the
BFGS updating is applied directly to the target true log-likelihood function,
and simulations are used to approximate the score function.

The method performs also model estimation in presence of missing data,
and this is a useful feature that will be used in the next chapter.
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Chapter 4

Comparison between
ERGMs and Latent Space
Models

This chapter proposes a comparison between ERGMs and Latent Space
models in terms of goodness of fit. In particular the performance of the
two model approaches to reproduce the dependence structure of the ob-
served network (Hunter et al., 2008a), and their predictive power are seen
as complementary features for describing their goodness of fit.

The two approaches are compared on real social network data from the
literature, already presented in §2.3.

Furthermore, experiments with simulated data are carried out in order
to compare the behavior of the two models when the networks are, by con-
struction, strongly in favor of one of the two approaches.

The results of this chapter are somehow preliminary, as computational
constraints prevented a thorough assessment via experiments with simulated
data. Some suggestions do emerge, although further work would be needed
to reach more complete conclusions.

4.1 Goodness-of-Fit Procedure and Prediction Power

The Goodness-of-Fit (GOF) procedure (Hunter et al., 2008a) assesses the
model ability to catch and rebuild the dependence structure of the observed
network.

According to an estimated model, the GOF procedure is able to derive,
for a large number of simulated networks, a set of network statistic dis-
tributions (as degree, minimum geodesic distance, edge-wise and dyad-wise
shared partners). It is possible to evaluate if the estimated model reproduces
the dependence structure of the observed network by comparing graphically
the empirical distribution of the observed statistics with the corresponding

53



statistics for the simulated networks. For each element of the distribution
of a network statistic, the GOF procedure computes a set of p-values.

Due to the different scale in the plots and the large number of elements
of the network statistic distributions, the comparison between the GOF for
two different models is not an easy task. Therefore, we propose to obtain a
synthetic index by summarizing all the p-values of a distribution with their
weighted mean

Pvi =

∑ni
k=1(bk + 1) pvk∑ni
k=1(bk + 1)

, (4.1)

where ni is the number of elements of the i-th network distribution, bk
and pvk are respectively the observed frequency and the p-value of the k-th
element of the distribution. Note that in order to consider the p-values for
the elements of the distribution that have observed frequency equal to 0,
we used (bk + 1) instead of bk. This synthetic index does not correspond to
any statistical test, but it is useful to figure out an immediate idea of the
behavior of the model.

The GOF procedure measures somehow the ability of the estimated
model to globally reproduce the dependence structure of the observed net-
work, but it does not provide any information on the existence of the single
ties. This different aspect of goodness of fit can be evaluated by considering
the prediction ability (Kolaczyk, 2009, Ch. 7) of the model.

By the nature of relational data, it is easy to think of an estimated model
as a binary classifier, no matter which is the estimation method used for it
(i.e. maximum likelihood estimation or Bayesian methods). The idea is to
evaluate the model in term of true-positive and false-positive rates on the
predicted ties.

The link prediction has an useful meaning only if the predictions are
made on ties that have not contributed to the model estimation. A solution
to this point can be to consider it as a missing data problem (Kolaczyk,
2009), where the missing data do not contribute to model estimation but
they can be useful to assess the prediction power of the model. Each method
has been evaluated considering two different cases of missing data.

� Missing edges: We randomly set some edges as missing. The predic-
tions are made on this subset of edges.

� New nodes: We randomly chose a subset of nodes, setting as missing
all the elements on their rows and columns. These could be thought
as a set of new nodes that enter the network, or nodes that were not
sampled (Handcock and Gile, 2010). The prediction power is evaluated
on the predicted links on the set of the excluded nodes.

Both model approaches (ERGMs and LCRMs) can be estimated in pres-
ence of missing data.
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For an ERGM, an estimate of the link probabilities for the missing data
can be made as follows:

1. Estimate the parameters of the ERGM via face-valued likelihood as
presented in §3.3.

2. From the estimated model, we simulated a large number (1,000 for
example) of networks conditional on the observed part of the data.

3. The estimated link probabilities are given by the proportion of time
that the ties are present.

For LCRMs, the models are estimated assuming the dyad conditional
independence (§2.2.4). This implies that the missing data are removed from
model estimation. For the missing edges case, the models are still estimable
even thought the presence of partial data can lead to some bias both on fixed
and random parts of the model. In the new node case, instead, removing
the missing part of the data is more problematic, because no information is
then available for the missing node, and we have to rely on the distributional
assumptions made for the latent part of the model.

For the missing edges case, the link probabilities are obtained using the
predictive distribution (see for example Tanner, 1996) approximated as the
mean on the estimated MCMC sample, with a large size (at least 4,000) and
after a large number of burn-in steps (at least 5,000).

P̂ (yij = 1|Y ) =

∫
p(yij = 1|xij , Zi, Zj , β, δ, γ)π(Z, β, δ, γ|Y )dZdβdδdγ

≈ 1

S

S∑

s=1

p(yijs|xij , Zis, Zjs, βs, δs, γs)

=
1

S

S∑

s=1

logit−1(βsxij − ||Zis − Zjs||+ δs + γs), (4.2)

where ||Zis − Zjs|| is the euclidean distance between the actors i and j, βs
are the model coefficients, and δs and γs the sender/receiver random effects
for the s-th MCMC sample.

In the new node case, the random parts (positions in the latent space
and sender/receiver random effects) of the new nodes are simulated for the
s-th MCMC sample as follows

Zms ∼
G∑

k=1

λsg MVNd(µ
s
k,Σ

s
k),

(
δms
γms

)
∼ N2

(
0,

(
σsδ 0
0 σsγ

))
,
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where again µsk, Σs
k, σ

s
δ and σsγ are simulated parameters for the s-th MCMC

sample. The predictive probabilities are obtained as in formula (4.2) after
considering together the estimated terms and the new simulated parts.

4.1.1 Evaluation of the prediction power

A common procedure to compare two classifiers is by looking at Receiver
Operating Characteristic (ROC) curves (see for example Hanley and Mc-
Neil, 1982). These curves represent the true-positive rate (y-axis) and the
false-positive rate (x-axis) in the model predictions, switching the cut-off
value. The Area Under the ROC Curve (AUC) gives a simple index for the
link prediction power of the models, it is maximized at 1 in the case of a
perfect classifier, and it is expected to be 0.5 in the case of random guessing.
See Hanley and McNeil (1982), Hanley and McNeil (1983) and Cortes and
Mohri (2005) for further details.

In order to reduce the trade-off between model estimation burden and
evaluation of prediction accuracy we adopted a K-fold cross-validation pro-
cedure (Kolaczyk, 2009, Ch. 7). For both missing edges and new node cases
we randomly partitioned the original sets (edges or nodes) in subsets. A
single subset was retained as validation data for testing the model, and the
remaining subsets were used as training data. The cross-validation process
is then repeated K times (the folds), with each of the K subsamples used
exactly once as validation data. The results of the cross-validation processes
were averaged to produce a single estimate.

4.2 Data Examples

In the following, we report the main results of the comparisons between
ERGMs and LCRMs based on four known network datasets taken from
the literature (Wasserman and Faust, 1994; Hunter and Handcock, 2006;
Snijders and Nowicki, 1997). They were already presented in §2.3 and their
main characteristics are summarized in Table 4.1.

ERGMs are estimated by the Quasi-Newton procedure introduced in the
previous chapter and included in the ergmQN packages. LCRMs and all the
GOF procedure are obtained using the tools in the packages that compose
the statnet suite in R.

In every case, we compared the best models in terms of BIC (for ERGM)
and Overall BIC (for LCRM) information. To choose the models we checked
also, by MCMC diagnostics, that in the estimated models there were no
degeneracy, good mixing of the chains, and that the estimated clusters in
the latent space were not nested.

For the prediction power assessment, the number ofK-fold considered for
the cross-validation in the missing edges and the new nodes cases sometimes
differed to maintain balanced the proportions of missing data in the two
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cases. At any rate, K was always in the range 5-10, that seemed a sensible
choice.

Table 4.1: Main characteristics of the datasets.
Data set Relation type Size Actor Attributes

Kapferer tailor shop Undirected 39 No
Lazega Lawyers Undirected 36 Yes
Sampson Monks Directed 18 Yes

Krackhardt High-Tech Managers Directed 21 Yes

4.2.1 Kapferer’s tailor shop

For the kapferer data (§2.3.3), we compared the following models.

Model 1: ERGM with the terms for edges, number of Nonedgewise shared
partners of order 2 and nodal attribute mixing effects for the vertex
attribute highstatusjob.

Model 2: LCRM considering euclidean distances in a two dimensional la-
tent space with three clusters.

Table 4.2: Estimated parameters (s.e.) for kapferer data.
ERGM LCRM

edges −1.696 (0.108) 1.520 (0.492)
nsp(2) −0.227 (0.061)

mix.highstatusjob.0.0 0.581 (0.190)
mix.highstatusjob.1.1 1.331 (0.225)

Table 4.2 reports coefficients and standard errors (posterior standard
deviation for the LCRM) for the estimated models.

The coefficients of the ERGM suggest low density in the network and
the tendency to local transitivity. This can confirm the presence of clusters
in the network.

The LCRM finds three clusters in the data as reported in Figure 4.1.
For the GOF comparison, the plots in Figure 4.2 show that the networks

simulated from the ERGM are closer to the observed one. The synthetic
indexes of Table 4.3 confirm that the ERGM gives a better fit except for the
distribution of the edge-wise shared partners.

For the link prediction comparison, plots in Figure 4.3, LCRM provides a
better prediction in the missing edges case. While the two methods provide
a comparable accuracy in new node case.
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Figure 4.1: Estimated latent positions for kapferer data

Figure 4.2: Goodness-of-Fit plots for kapferer data
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Table 4.3: Mean p-values for GOF terms for kapferer data
Model degree distance espartners dspartners

ERGM 0.711 0.755 0.305 0.665
LCRM 0.605 0.263 0.232 0.163
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Figure 4.3: ROC curves in Missing Edges and New Node cases for kapferer
data. The black curve is for the ERGM and the green curve is for the LCRM.
AUC values are also reported.

4.2.2 Lazega Law Firm

Four models were considered for the collaborative network among the 36
partner lawyers (§2.3.4). The results are summarized in Table 4.4.

Model 1: ERGM with the terms for edges, geometrical weight edge-wise
shared partners and geometrical weighted dyad-wise shared partners,
both with weights equal to 0.45.

Model 2: ERGM with the terms for edges and the weight for the geometri-
cal edge-wise shared partners fixed to 0.778. Main effects for seniority,
specialty, age and office were added, plus homophily terms for spe-
cialty, gender and office.

Model 3: LCRM setting two clusters in a two dimensional latent space.

Model 4: LCRM considering no clusters and the main effects for specialty,
age, office, and the same homophily terms included in Model 2.

For the estimated ERGMs, we can say that almost all the attribute terms
have positive effects on the formation of the ties. In both cases, there is a
negative effect for the edges and a positive effect for the shared partner
terms, pointing to networks with low density and transitive between actors.

For the estimated LCRMs, the model without attribute terms (Model 3)
founds two clusters in the network (first plot in Figure 4.4). These clusters
could not be explained by a single actor effect, but by a mix of them, as
it can be seen in the second plot in Figure 4.4 where the introduction of
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Table 4.4: Estimated parameters (s.e.) of the parameters of the models for
Lawyers data

ERGM ERGM Cov LCRM LCRM Cov

edges -3.936 (0.638) -1.762 (2.756) 1.080 (0.587) -0.08 (1.516)
gwdsp.fixed.0.45 1.603 (0.266)
gwesp.fixed.0.45 -0.063 (0.065)
gwesp.fixed.0.778 0.865 (0.157)
Main Effects:
Seniority -0.016 (0.017)
Specialty 0.330 (0.117) 0.829 (0.280)
Age -0.046 (0.021) -0.060 (0.014)
Office 0.264 (0.099) 0.611 (0.204)
Homophily Effects:
Specialty 0.744 (0.199) 0.981 (0.300)
Gender 0.404 (0.282) 0.887 (0.545)
Office 1.377 (0.215) 2.469 (0.350)

Table 4.5: Mean p-values for GOF terms for Lawyers data
Model degree distance espartners dspartners

ERGM 0.304 0.045 0.144 0.036
ERGM Cov 0.736 0.809 0.654 0.783
LCRM 0.612 0.083 0.408 0.119
LCRM Cov 0.595 0.077 0.478 0.128

actor effects renders the clusters not necessary any longer. All the attribute
terms, but age, have positive effects on the ties formation.

The GOF comparison, based on the plots in Figure 4.5 and the values
in Table 4.5, points to the ERGM with covariates as the model that seems
to catch better the network statistic distributions.

The plots in Figure 4.6 show that for the missing edges case, all the
models have a comparable behavior in terms of AUC. For the new node
case, the best performance is observed for the LCRM with covariates, but
also the ERGM with covariates has a good performance. In both cases, the
introduction of covariates increases the AUC values.
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Figure 4.5: Goodness-of-Fit plots for Lawyers data
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Figure 4.6: ROC curves in missing edges and new node cases for Lawyers
data. The black curve is for the ERGM, green curve is for the LCRM,
the red and blue curves are for the ERGM and the LCRM, both with the
covariates. AUC values are also reported.

4.2.3 Sampson’s Monastery Study

For the Monks data (§2.3.5), we considered two models, Table 4.6

Model 1: ERGM with the terms for edges, geometrical weight in and
out degree, geometrical weight edge-wise shared partners, geometri-
cal weight dyad-wise shared partners, with weights equal to 0.45.

Model 2: LCRM in a two dimensional latent space with three clusters.

Table 4.6: Estimated parameters (s.e.) of the parameters of the models for
Monks data

ERGM LCRM

edges -2.006 (0.605) 2.202 (0.507)
gwidegree.fixed.0.45 8.528 (3.679)
gwodegree.fixed.0.45 85.231 (28.897)
gwdsp.fixed.0.45 0.644 (0.200)
gwesp.fixed.0.45 -0.479 (0.088)

From the plots in Figure 4.8 and the values in Table 4.7, we can see that
the ERGM performs better in terms of GOF.

From the ROC curve in Figure 4.9, LCRM provides a better prediction
in the missing edges case. In the new node case, both the estimated models
practically perform a sort of random guessing.
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Figure 4.7: Latent position for Monks data

Table 4.7: Mean p-values for GOF terms for Monks data

Model idegree odegree distance espartners dspartners

ERGM 0.839 0.785 0.784 0.546 0.931
LCRM 0.772 0.555 0.592 0.660 0.782
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Figure 4.8: Goodness-of-Fit plots for Monks data
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Figure 4.9: ROC curves in missing edges and new node cases for Monks
data. The black curve is for the ERGM and green curve is for the LCRM.
AUC values are also reported.

4.2.4 Krackhardt’s High-tech Managers

For Hightech data (§2.3.6), Table 4.8 reports the estimated models that were
compared.

Model 1: ERGM with the terms for edges, geometrical weighted edge-wise
shared partners and geometrical weighted dyad-wise shared partners,
with weights equal to 0.25.

Model 2: ERGM where the weight for the geometrical edge-wise shared
partners is fixed to 0.35. It has also terms of input and output main
effects for Age, Tenure, Department, Level, plus homophily terms for
Department and Level.

Model 3: LCRM in a two dimensional latent space, with two clusters.

Model 4: LCRM in a two dimensional latent space without clusters and
considering some of the terms for actor attributes of Model 2.

For ERGMs, in both the two models the term for the number of edges is
negative and the terms for the shared partners are positive except the one
for the edge-wise shared partners in Model 1. These facts are due to the
low density of the network and maybe they point to the presence of clusters.
The two homophily terms in Model 2 have positive effects on tie creation.

For LCRMs, we can see that Model 3, first plot in Figure 4.10, finds
two clusters in the network. In the Model 4, second plot in Figure 4.10, the
cluster information is explained in the model by the attribute terms but it
is not possible to identify which homophily term represents the clusters.
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data.
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Table 4.8: Estimated parameters (s.e.) of the parameters of the models for
HighTech Managers data

ERGM ERGM Cov LCRM LCRM Cov

edges -1.967 (0.376) -5.462 (1.757) 0.794 (0.660) -0.652 (1.477)
gwdsp.fixed.0.25 1.027 (0.210)
gwesp.fixed.0.25 -0.221 (0.057)
gwesp.fixed.0.35 0.628 (0.249)
Main in-effects:
Age -0.002 (0.016) -0.092 (0.023)
Tenure -0.001 (0.020) 0.143 (0.031)
Department 0.204 (0.115) -0.165 (0.161)
Level -0.147 (0.275) 1.209 (0.360)
Main Out-effects:
Age -0.064 (0.023) -0.031 (0.020)
Tenure 0.081 (0.026) 0.065 (0.026)
Department -0.049 (0.110)
Level 1.688 (0.426)
Homophily Effects:
Department 1.202 (0.542) 1.647 (0.414)
Level 2.246 (0.686) 1.114 (0.427)

The plots in Figure 4.11 and the values in Table 4.9 suggest that the
ERGM with covariates provides best fit between the considered models.
Including the attribute effects in the ERGM specification increases consid-
erably the capability of reproducing the observed network statistic distribu-
tions. The LCRMs have a similar behavior and the effect of actor attributes
on the GOF of the model is not clear.

Table 4.9: Mean p-values for GOF terms for HighTech Managers data

Model idegree odegree distance espartners dspartners

ERGM 0.581 0.600 0.324 0.482 0.166
ERGM Cov 0.721 0.760 0.779 0.559 0.547
LCRM 0.714 0.773 0.842 0.557 0.623
LCRM Cov 0.670 0.573 0.637 0.552 0.448

The curves in Figure 4.12 support Model 2 (ERGM with Covariates) and
Model 3 (LCRM) as the best models respectively in the missing edges and
new node cases. In both the cases, the LCRM without covariates performs
better the ties prediction respect to the LCRM with covariates. Instead, for
the two ERGMs the inclusion of the covariates increases the link prediction
performance.
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Figure 4.11: Goodness-of-Fit plots for HighTech Managers data
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Figure 4.12: ROC curves in missing edges and new node cases for HighTech
Managers data. The black curve is for the ERGM without covariates, the
green curve is for the LCRM without covariates, the red and blue curves
are for the ERGM and LCRM both with covariates. AUC values are also
reported.

4.3 Experiments with Simulated Data

The results about the real data examples did not point clearly to one of the
two model approaches. In order to deepen the study on the behavior of the
two methods, we performed some experiments with simulated data. In fact,
with simulated data we have the important advantage of knowing which is
the true model.

Here we limit the analysis to simulated networks from a simple ERGM.
The ERGM specification includes only the edges and the edge-wise shared
partners terms. The setups of the two studies differ only in the coefficient
values specified in order to obtain networks of order 50 with medium (around
0.25) and low (around 0.1) densities.

As this kind of analysis is computationally intensive, the number of
simulated networks was limited just to 10, a small number that required
nonetheless many days of computing time. In fact, each simulated network
requires to estimate 16 models: the model on the full network, used for the
GOF evaluation; five models (with missing data) for the link comparison
in the missing edges case and ten models (with missing data) for the new
nodes case. Although limited, such a small sample provides some informa-
tion about the model comparison. At any rate, this study should be taken
as merely of explorative nature.

Figure 4.13 shows the boxplots of the density for the ten networks sim-
ulated in each simulation study setup.
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Figure 4.13: Empirical distribution of density statistics for the two setups
of simulated networks.

The models compared in the studies are a LCRM versus the same ERGM
used in the simulations. For the link prediction comparison, the Wilcoxon
signed-rank test is used for comparing the distribution of the AUC values
for the two models.

Note that we do not include instead the results of the dual experiments
with networks generated from some specified LCRMs. In fact, whereas it is
simple to fit a LCRM with a fixed number of clusters for a network generated
from an ERGM, the automatic determination of an ERGM specification in
the dual case is not as simple. Therefore, the results obtained from data
simulated from LCRMs would be strongly in favor of the LCRMs, unless a
fine tuning were performed about a sensible ERGM specification.

4.3.1 Medium density case

The networks simulated in this study have a density around 0.25, and
they are obtained from an ERGM with the coefficients for the edge and
GWESP(0.5) terms equal to -2.25 and 0.5, respectively.

The boxplots in Figure 4.14 display the synthetic index of formula (4.1)
computed on the GOF procedures for the simulated networks. The ERGM
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approach is the best in terms of GOF comparison.
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Figure 4.14: Empirical distributions of the synthetic index of formula 4.1
for the GOF procedures for medium density simulated networks.

Figure 4.15 shows the boxplots for the area under the ROC curves com-
puted in the missing edges and new node cases on the simulated networks. It
seems that the prediction performance of the ERGM is slightly better than
the performance of the LCRM in the missing edges case. This is confirmed
also by the p-values of the Wilcoxon signed-rank test reported in the plots.

4.3.2 Low density case

The networks simulated here have a density around 0.1, and they are ob-
tained from an ERGM with the coefficients for the edge and GWESP(0.5)
terms equal to -2.85 and 0.5.

The GOF comparison based on the boxplots in Figure 4.16 points again
to the ERGM approach as the best one. The behavior of the LCRM in this
case seems better than the medium density case.

The plots in Figure 4.17 show that the prediction performance of the
ERGM are better than the performance of the LCRM both in the missing
edges and new node case, but only slightly so. This is also confirmed by
Wilcoxon signed-rank test.
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Figure 4.15: Empirical distributions of the AUC values for medium density
simulated networks in the missing edges and the new node cases. The blue
dashed line represents the AUC for a random guessing. The plots reports
also the p-values for the Wilcoxon signed-rank test.
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Figure 4.16: Empirical distributions of the synthetic index of formula 4.1
for the GOF procedures for medium density simulated networks.

4.4 Discussion

The results on the real data sets and on the experiments with simulated
data show that there is not an overall best approach.
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Figure 4.17: Empirical distributions of the AUC values for low density sim-
ulated networks in the missing edges and the new node cases. The blue
dashed line represents the AUC for a random guessing. The plots reports
also the p-values for the Wilcoxon signed-rank test.

There is some moderate evidence that ERGMs may provide better GOF
than LCRMs, though this is not a general result. However, this fact does
not apply to link prediction in the same manner. Indeed, for real data, the
best-performing LCRMs are never worse than the best-performing ERGMs
for link prediction, and sometimes they are better. On the other hand, for
simulated networks ERGMs were preferable, but they corresponded to the
model used as the data generating process.

For the link prediction comparison, we note that part of the difference
found may be due to the prediction procedure we used. In fact, the predicted
values for ERGMs were obtained by an estimative distribution (Young and
Smith, 2005, Ch. 10), whereas for LCRMs a Bayesian predictive distribu-
tion was adopted. It could be interesting to compare the prediction power
for ERGMs based on a Bayesian predictive distribution. In that case the
predicted tie probabilities would be more comparable, and perhaps with
more similar performances. Some results in this direction can be found in
Koskinen et al. (2010).

Finally, the results of this chapter show also that the inclusion of co-
variates in the model always improves both the GOF and the prediction
performance of ERGMs. For LCRMs, the introduction of the covariates
may lead to estimated latent space with only one cluster, with an overall
worse performance of the resulting model. This fact supports the key role of
the latent space to model homophily and transitivity effects in the network
(Krivitsky et al., 2009).
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Chapter 5

A Laplace Approximation
Approach for p2 Network
Regression Models with
Crossed Random Effects

The class of p2 models can be used for the study of binary relational data
with covariates, typical of social network analysis. Such models have been
somewhat underused in empirical applications, maybe due to the computa-
tional difficulties linked with the crossed structure of their random effects.
At any rate, they represent a useful tool, capable of being extended in vari-
ous directions, therefore their study appears fully justified.

In the literature there are proposals to estimate the parameters of p2
models either by joint maximization methods (such as MQL estimation) or
following a Bayesian approach and employing MCMC methods.

In this chapter we propose a further possibility, based on the Laplace
approximation approach coupled with tilted importance sampling. This
solution provides a good approximation to maximum likelihood estimation.
Its implementation requires some care, but it can be performed efficiently.
Numerical examples for real data and simulation studies are reported.

5.1 Introduction

The p2 model (§2.2.5), assumes that the probability for a dyad (yij , yji) is
given by
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P (Yij = y1, Yji = y2)

=
exp {y1 (µij + αi + βj) + y2 (µij + αj + βi) + ρij y1y2}

1 + exp {(µij + αi + βj)}+ exp {(µij + αj + βi)}+ exp {(2µij + αi + βj + αj + βi + ρij)}
,

where αi is the sender parameter of actor i, the βi is receiver parameter
of actor i, whereas µij and ρij are the density and the reciprocity parame-
ters respectively of dyad (i, j). These parameters usually depend on some
covariates and random effects, namely

αi = X1i γ1+ai , βi = X2i γ2+bi , µij = µ+Z1ij δ1 , ρij = ρ+Z2ij δ2 .

Here X1 and X2 are actor-specific design matrices, Z1 and Z2 contain dyad-
specific covariates and ui = (ai, bi)

T are normally distributed random effects.
Namely, we assume the random effects Ui are normally distributed indepen-
dent random variables,

Ui ∼ N2(0,Σ) , Σ =

(
σ2A σAB
σAB σ2B

)
. (5.1)

Notice that random effects model the ties sent or received by a given actor,
that are thus assumed to be dependent. All the parameters of this model
can be collected together in the vector θ

θ = (γ1, γ2, µ, δ1, ρ, δ2, σ
2
A, σAB, σ

2
B)T .

The p2 model is conveniently formulated as a multinomial regression
model with random effects, as done in Van Duijn et al. (2004) and Zijlstra
et al. (2009). In fact, for each dyad there are four possible outcomes: (0,0),
(1,0), (0,1), and (1,1). Hence, taking (0,0) as the reference category, the
response data Y can be represented by g (g−1)/2 stacked three-dimensional
vectors dij

dij =



d1ij
d2ij
d3ij


 =



yij (1− yji)
yji (1− yij)
yij yji


 .

Using this representation, the distribution of the response given the random
effects has the exponential family form

P (D = d|u) = exp
{
ξTd− b(ξ)

}
, (5.2)

where the vector of linear predictors is

ξij =



ξ1ij
ξ2ij
ξ3ij


 =



X1i γ1 + ai +X2j γ2 + bj + µ+ Z1ij δ1
X1j γ1 + aj +X2i γ2 + bi + µ+ Z1ij δ1

ξ1ij + ξ2ij + ρ+ Z2ij δ2


 ,
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and b(ξ) =
∑g

i<j log{1 + exp(ξ1ij) + exp(ξ2ij) + exp(ξ3ij)}.
In the paper that first introduced the p2 model, Van Duijn et al. (2004)

proposed to estimate θ by a MQL approach (Breslow and Clayton, 1993),
further extended in Zijlstra et al. (2009). There is broad consensus in the
random effects literature about the fact that both MQL and PQL approaches
perform generally poorly for nonlinear models and discrete data (Molen-
berghs and Verbeke, 2005, Ch. 14), and actually this is also apparent in the
simulation studies reported in Zijlstra et al. (2009). For this reason, Zijlstra
et al. (2009) proposed a Bayesian approach, sampling from the posterior dis-
tribution by MCMC. In particular, they adopted a slightly informative prior
for model parameters, and explored the performance of several sampling al-
gorithms. The reported results were somewhat good, even when evaluated
under a frequentist perspective. A maximum likelihood approach may be
appealing nonetheless, avoiding the need to specify a prior distribution for
the parameter and to perform diagnostic checking on the convergence of
the MCMC algorithm. Furthermore, a maximum likelihood approach may
have better scalability, with some computational efficiency gain for larger
networks.

5.2 Approximate Maximum Likelihood Estimation

The likelihood function for the model defined by (5.1) and (5.2) is given by
the following integral over the random effects

L(θ) =

∫

IR2 g
exp

{
ξTd− b(ξ)

}
{

g∏

i=1

φ2(ui; 0,Σ)

}
du , (5.3)

where φ2(·) is the bivariate normal density (5.1).
The high-dimensional integral (5.3) has to be evaluated numerically, as

the correlated random effects ui have a crossed structure, allowing no re-
duction in the size of the integral.

A possible resolution is via the Laplace’s method of integration, as done
in Skaug (2002). If

h(u; θ, y) = ξTd− b(ξ) +

g∑

i=1

log φ2(ui; 0,Σ) ,

the standard Laplace approximation to L(θ) is given by

L∗(θ) = exp{h(ûθ; θ, y)} |H(θ)|−1/2 , (5.4)

with ûθ = argmax
u

h(u; θ, y) and

H(θ) = −∂
2h(u; θ, y)

∂u ∂uT

∣∣∣∣
u=ûθ

.
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The results in Shun and McCullagh (1995) imply that the error in the
standard Laplace approximation (5.4) is of order O(1) when g →∞, there-
fore for large g the maximization of L∗(θ) provides an estimator θ̂∗ of θ
asymptotically equivalent to the maximum likelihood estimator.

Yet it might be advisable to improve on the approximation to (5.3) by
importance sampling. In particular, here we adopted tilted importance sam-
pling, as already used by Skaug (2002) and endorsed by Brinch (2012). The
method approximates L(θ) by using as the importance sampling distribution
a normal distribution with mean vector ûθ and covariance matrix H(θ)−1.
If u(1), , . . . , u(M) is random sample of size M from such a distribution, the
resulting approximation is given by

L†(θ) =
1

M

M∑

j=1

exp{h(u(j); θ, y)}
φ2 g{u(j); ûθ, H(θ)−1}

. (5.5)

Skaug (2002) gave some evidence that both L∗(θ) and L†(θ) provided sat-
isfactory estimators in a broad array of mixed models with crossed random
effects structures. This was further substantiated by Brinch (2012), who
provided guidelines for practical implementation and further possible im-
provements.

For what concerns our implementation of the method, we obtained ûθ
by a highly-reliable trust region algorithm, as implemented in the R rou-
tine nlminb when both the gradient and Hessian of the objective function
are provided. We then coded the first derivative of logL∗(θ), obtaining θ̂∗

by a quasi-Newton algorithm, whereas L†(θ) was maximized by means of a
derivative-free optimizer. We note in passing that more sophisticated meth-
ods making use of automatic differentiation could be employed (Skaug, 2002;
Skaug and Fournier, 2006). The random draws u(j) were generated as

u(j) = ûθ + C(θ) v(j) ,

where C(θ) denotes the Cholesky factor ofH(θ)−1 and v(j) is a vector of inde-
pendent standard normal variates. Following Skaug (2002), in order to facil-
itate the maximization of L†(θ) the same set of random draws v(1), . . . , v(M)

was used to generate u(1), . . . , u(M), for all values of θ. It is then advisable
to repeat the maximization of logL†(θ) for various choices of M , to verify
that the resulting estimates become stable for a sufficiently large M .

5.3 Data Examples

5.3.1 Dutch Social Behavior Study

We consider the data from the Dutch Social Behavior Study (Baerveldt and
Snijders, 1994), already analysed in Zijlstra et al. (2005), and introduced in
§2.3.7.
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Zijlstra et al. (2005) used Bayesian approach, taking the first network
of 62 pupils as calibration sample to be used to obtain prior distributions
for the analysis sample, the second network of 39 pupils. Namely, they
fitted a Bayesian model by MCMC with diffuse priors for the calibration
sample (school 1) and then used the results to define moderately informative
priors for the analysis sample (school 2). In particular, they performed
model selection for the analysis sample using Bayes factors, ending up with
a preferred model (’Model 4’) among a set of five possible models. Here we
replicate their analysis using Laplace approaches but focusing only on the
analysis sample. The results showed that importance sampling performed

Table 5.1: Maximized log-likelihood values (AIC values) for five models of
interest.

Method Full model Model 2 Model 3 Model 4 Empty model

`∗(θ) -252.8 -253.9 -263.8 -256.3 -271.8
(539.6) (531.8) (543.6) (530.6) (553.5)

`†(θ), M = 5, 000 -253.6 -254.6 -264.5 -257.0 -272.6
(541.1) (533.3) (545.0) (532.1) (555.3)

`†(θ), M = 20, 000 -253.5 -254.6 -264.5 -257.0 -272.6
(541.1) (533.3) (545.0) (532.1) (555.2)

a modest adjustment to the standard Laplace approximation, especially for
what concerns estimation of variance components. Approximated maximum
likelihood estimates obtained from L†(θ) stabilized very quickly with the
value of M , and actually we found little variation in both the estimates
and the maximized likelihoods obtained with M in the range 5,000-50,000.
Table 5.1 reports the maximized log-likelihood values and AIC values for
the five models defined in Zijlstra et al. (2005). It is somewhat reassuring
that likelihood-based model selection pinpoints the same model selected by
the Bayesian procedure used by Zijlstra et al. (2005), as Model 4 is the one
with the lowest AIC value with either `∗(θ) or `†(θ).

Table 5.2 reports the estimation results for Model 4 for the various meth-
ods, along with the results reported in Zijlstra et al. (2005). The only actor-
specific covariate is the gender dummy variable, where boys have code one
and girls code zero, while the dyadic covariates are dummy variables which
are equal to 1 in case when two pupils have the same gender or ethnic
background.

We notice that whereas the likelihood-based results are very similar,
there are some differences with respect to the Bayesian results of Zijlstra
et al. (2005). To some extent, this has to be expected as the latter used
also some information from the calibration sample. Broadly speaking, the
resulting inference is quite the same with either approach, and we conclude
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Table 5.2: Estimation results for Model 4.

`∗(θ) `†(θ), M = 20, 000 Posterior

Effect Covariate Estimate (s.e.) Estimate (s.e.) Mean (s.d.)

Sender Gender 1.10 (0.45) 1.11 (0.45) 1.00 (0.42)
Receiver Gender -0.89 (0.42) -0.90 (0.42) -0.90 (0.39)
Density -5.18 (0.39) -5.16 (0.39) -4.23 (0.32)

Gender 0.76 (0.23) 0.77 (0.23) 0.83 (0.23)
Ethnic background 0.74 (0.19) 0.74 (0.19) 1.08 (0.21)

Reciprocity 5.20 (0.65) 5.16 (0.67) 4.70 (0.59)
Sender Variance σ2A 0.87 (0.42) 0.84 (0.42) 0.82 (0.42)
Receiver Variance σ2B 0.64 (0.34) 0.60 (0.34) 0.58 (0.35)
Covariance σAB -0.75 (0.34) -0.71 (0.35) -0.45 (0.34)

that boys more often than girls report having received emotional support,
while emotional support is less often reported to come from boys. More
received emotional support is reported from pupils with the same gender
and ethnic background.

5.3.2 Lazega Lawyers

For the Lazega’s associates friendship network (§2.3.4), we considered the
three models analyzed in Van Duijn et al. (2004). In particular Model 0
is an ”empty” model composed by µ, ρ and the variance terms, Model 1
and Model 2 contain also some terms for density and reciprocity effects.
Moreover, the networks on advice and collaboration are set as covariates for
the density parameter in Model 2. More details on the model specification
can be found in Van Duijn et al. (2004).

Table 5.3 reports the MQL estimates of the original paper (Table 1,
Van Duijn et al., 2004), and the estimates obtained with the Laplace meth-
ods. The importance sampling result is obtained with M = 10, 000. Note
that for Model 1 one density covariate has been dropped due to collinearity
problems, therefore the comparisons with the results of Van Duijn et al.
(2004) has to be taken with some care.

We note that MQL estimates are generally attenuated with respect to
the other two methods. The results for the Laplace and Laplace Importance
Sampling methods are instead quite similar.

5.4 Simulation Study

We investigate the properties of the proposed methodology by a simula-
tion study. In particular, we replicate closely the simulation study given
in Zijlstra et al. (2009). These authors considered three model setups for
two network orders (20 and 40 nodes). Following their description, Model
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Table 5.3: Estimation results for Lazega’s associates friendship network.

MQL Laplace Laplace IS

Effect Covariate Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Model 0
Density µ -2.70 (0.23) -3.43 (0.30) -3.43 (0.31)
Reciprocity ρ 3.29 (0.31) 4.04 (0.46) 4.02 (0.45)
Sender Variance σ2A 1.08 (0.25) 1.11 (0.41) 1.15 (0.43)
Receiver Variance σ2B 0.75 (0.19) 0.69 (0.30) 0.71 (0.31)
Covariance σAB -0.33 (0.16) -0.15 (0.27) -0.13 (0.28)

Model 1
Density µ -0.64 (0.35) -1.09 (0.40) -1.08 (0.41)

Office -2.33 (0.43) -2.76 (0.50) -2.76 (0.50)
Seniority -0.58 (0.09) -0.62 (0.09) -0.62 (0.09)
Gender -0.55 (0.17) -0.70 (0.19) -0.70 (0.19)
Specialty -0.51 (0.17) -0.59 (0.19) -0.59 (0.19)

Reciprocity ρ 2.21 (0.36) 3.00 (0.44) 2.97 (0.48)
Office 1.72 (0.94) 1.67 (1.01) 1.68 (1.01)

Sender Variance σ2A 1.19 (0.27) 1.47 (0.54) 1.49 (0.55)
Receiver Variance σ2B 0.63 (0.17) 0.68 (0.32) 0.68 (0.32)
Covariance σAB -0.01 (0.16) 0.003 (0.20) 0.03 (0.31)

Model 2
Density µ -1.62 (0.37) -1.98 (0.42) -1.97 (0.42)

Location -1.45 (0.31) -2.08 (0.36) -2.10 (0.36)
Seniority -0.49 (0.09) -0.53 (0.10) -0.53 (0.10)
Gender -0.58 (0.18) -0.83 (0.21) -0.83 (0.21)
Advise 1.50 (0.21) 1.44 (0.28) 1.44 (0.28)
Cowork 0.53 (0.24) 1.05 (0.26) 1.06 (0.26)

Reciprocity ρ 2.22 (0.35) 2.90 (0.49) 2.87 (0.49)
Sender Variance σ2A 1.36 (0.30) 1.70 (0.62) 1.73 (0.64)
Receiver Variance σ2B 0.65 (0.18) 0.86 (0.40) 0.86 (0.41)
Covariance σAB 0.16 (0.17) 0.05 (0.36) 0.08 (0.37)

1 is an empty model with density and reciprocity parameters respectively
µ = −2 and ρ = 2 and independent standardized random effects. Model 2
has also a dyadic covariate for the density Z1 and one sender covariate X1.
The density covariate Z1, with regression parameter 0.5, is a network (net1)
generated from Model 1. The sender covariate X1 has a regression value
0.05 and it is the actor’s rank number (1, . . . , g). Model 3 has a receiver
covariates X2, two density covariates Z1, and one reciprocity covariate Z2.
The receiver covariate X2 has coefficient -0.1 and it is a binary variable (0,1)
drawn from a coin flip. The first component of Z1 is net1, as in Model 2, and
it has coefficient 0.5. The second density covariate (fc) contains the abso-
lute differences of an actor covariate obtained as a multinomial distribution
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with 5 equal probabilities; this variable is also used as reciprocity covariate.
The coefficient values for the fc covariate are equal to 0.2 and 0.05, in the
density and reciprocity case respectively. The random effects in Model 3 are
negatively correlated (σAB = −0.5), with the sender variance σ2A = 1.5, and
receiver variance σ2B = 0.75.

The results for the simulation studies refer to the Laplace-based methods,
and an MQL (”RIGLS-3”) and a Bayesian (”Random Walk”) algorithm
taken from Zijlstra et al. (2009).

Table 5.4 reports the sample mean of parameter estimates and the mean
standard errors (standard deviation for the Bayesian method) over 1,000
replications. Estimated bias and root mean squared errors of the various
estimators are reported in Table 5.5. Furthermore, Table 5.6 summarizes the
sample mean of standard errors and the standard deviation for the estimates
obtained with the two methods proposed here.

The standard errors for the two approximate maximum likelihood esti-
mates were computed using the observed information matrix.

From these results we can say that the MQL approach produces esti-
mates with very large bias, that renders such method totally unappealing
for practical use. This is not surprising, and relevant with a vast body of
literature on random effects modeling. Both the Bayesian approach and
our proposals seem instead to perform well, with no appreciable differences
between the Laplace and the Laplace Importance Sampling methods. At
times the two approximated maximum likelihood estimation methods ap-
pear to be slightly more efficient than the Bayesian method, but in general
we can say that they are largely comparable. Finally, the standard errors
estimated using the observed information matrix for the two Laplace-based
methods appear quite accurate, although for quite a few simulated networks
such matrix was not positive definite and the standard errors could not be
computed.
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Table 5.6: Sample mean of standard errors and standard deviation for the
two Laplace-based methods.

Method Laplace Laplace IS Laplace Laplace IS
Mean s.e s.d Mean s.e s.d Mean s.e s.d Mean s.e s.d

20 Nodes 40 Nodes

Model 1
σ2A = 1 0.515 0.575 0.534 0.594 0.289 0.296 0.294 0.300
σ2B = 1 0.510 0.550 0.529 0.570 0.287 0.284 0.292 0.287
σAB = 0 0.395 0.419 0.402 0.419 0.210 0.215 0.213 0.215
µ = −2 0.402 0.426 0.408 0.425 0.250 0.247 0.252 0.248
ρ = 2 0.548 0.564 0.544 0.555 0.255 0.260 0.255 0.259

Model 2
σ2A = 1 0.477 0.510 0.467 0.523 0.276 0.289 0.276 0.291
σ2B = 1 0.534 0.482 0.492 0.493 0.276 0.283 0.284 0.285
σAB = 0 0.374 0.375 0.373 0.375 0.205 0.219 0.207 0.219
µ = −2 0.609 0.663 0.617 0.663 0.398 0.413 0.400 0.413
ρ = 2 0.492 0.480 0.489 0.474 0.234 0.238 0.234 0.237
γ1 = 0.05 0.043 0.046 0.043 0.046 0.015 0.015 0.015 0.015
δ1 = 0.5 0.265 0.275 0.266 0.275 0.139 0.138 0.139 0.138

Model 3
σ2A = 1.5 0.676 0.720 0.691 0.733 0.399 0.407 0.403 0.409
σ2B = 0.75 0.402 0.415 0.410 0.419 0.220 0.223 0.222 0.224
σAB = −0.5 0.433 0.455 0.437 0.456 0.240 0.253 0.241 0.254
µ = −2 0.541 0.577 0.549 0.578 0.291 0.302 0.293 0.302
ρ = 2 0.713 0.730 0.716 0.729 0.345 0.350 0.345 0.349
γ2 = −0.1 0.445 0.484 0.452 0.484 0.267 0.281 0.269 0.281
δ1(fc) = 0.2 0.156 0.165 0.157 0.165 0.074 0.076 0.075 0.076
δ1(net1) = 0.5 0.260 0.268 0.262 0.268 0.133 0.138 0.133 0.138
δ2(fc) = 0.05 0.289 0.307 0.291 0.307 0.135 0.138 0.135 0.138

5.4.1 Discussion

The results obtained with the approximate maximum likelihood estimation
methods based on the Laplace approximation for the class of p2 models
are rather encouraging. Indeed, even the simple simulation-free approach
given by the Laplace approximation seems to perform well, correcting the
drawbacks of MQL-type estimation. The real advantage of our proposal with
respect to the Bayesian approach is mainly the simplicity of usage, with no
need of MCMC tuning. On the other hand, with the Bayesian approach is
simpler to incorporate some sort of prior information when this is available,
and the use of slightly-informative priors may help in those cases when the
estimated matrix of random effects is close to singularity.

For practical implementation, Bayesian methods can be implemented
using some publicly-available software, such as the BUGS engine (see Lunn
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et al., 2000). Notice, however, that also the methods proposed here can be
simply implemented using the freely-available ADMB software (see Fournier
et al., 2011). Both the Bayesian approach and the Laplace-based ones can
be extended to more complex data structures, such as the multilevel data
set studied in Vermeij et al. (2009). We remark, however, that the required
computational burden appears less severe for the frequentist approach pro-
posed here.
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Appendix A

Composite Likelihood
Estimation for ERGMs

In this appendix, we briefly report some simple attempts to obtain simulation-
free procedures for ERGM estimation. All these attempts are based on a
composite likelihood approach and they extend the pseudolikelihood estima-
tor. Here we focus only on the undirected case, with an illustrative example.

Consider an n-dimensional random variable Y = (Y1, . . . , Yn) with a joint
density function f(y;θ) for some parameter θ ∈ Θ ⊆ Rp that is supposed
unknown. The composite likelihood approach provides consistent estima-
tion of θ in the case when for some reason f(y;θ) is not so easy to manage,
but computing the likelihood function for a subset of y it is possible (Besag,
1974; Lindsay, 1988). The following definition is taken from Varin (2008).

Definition: Consider a parametric statistical model {f(y;θ), y ∈ Y ⊆
Rn,θ ∈ Θ ⊆ Rp} and a set of measurable events {Ai; i = 1, . . . ,m}. Then,
a composite likelihood (CL) is the weighted product of the likelihoods corre-
sponding to each single event,

LC(θ; y) =
m∏

i=1

f(y ∈ Ai;θ)wi , (A.1)

where wi, i = 1, . . . ,m are positive weights. The associated composite log-
likelihood is `c(θ; y) = log LC(θ; y) and its maximum, if unique, is the max-
imum composite likelihood estimator (MCL).

It is then possible to construct a pseudolikelihood by combining such like-
lihood objects and use it as a surrogate for the ordinary likelihood. These
simplifications can be done using marginal or conditional distributions of
the subsets of data (Varin, 2008).
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For an ERGM

P (Y = y;θ) = exp {θ u(y)− ψ(θ)} ,

composite likelihood approaches can be obtained relaxing the Markovian
dependence constrain that involve the dyads.

The maximum pseudolikelihood estimator (MPLE) (Strauss and Ikeda,
1990), presented in §2.2.3, is already an example of composite likelihood
estimator, where each dyad value defines one of the events Ai.

It is possible to obtain others composite likelihood approaches increasing
the number of the elements in Ai. These approaches are called Maximum
block-pseudolikelihood estimation (MBPLE) (Rydén and Titterington, 1998;
Friel et al., 2009). They request to split the dyad set in B disjoint subsets
of size b. The resulting expression for the composite likelihood function is

LBP (θ; y) =
B∏

b=1

P (Yb = yb|y−b;θ), (A.2)

where y−b is the complementary network, i.e. the part of the observed
network excluding the element contained in yb. The yb should be chose such
that

⋃B
b=1 yb = y and

⋂B
b=1 yb = ∅.

Our idea

The MBPLE approach attempts to capture larger interactions within the
graph, but it requires, first, that the number of the dyads should be a
multiple of the block size b. Second, the blocks must be chosen such that
they belong to disjoint sets of elements. Third, there may exist several
configurations that respect the block-disjoint condition and not all of them
could be equally informative for inference on θ.

Our proposal is to relax the block-disjoint condition and to consider
only blocks of dyads (pairs, triplets, quartets) in which the dyads share at
least one node. So we focus only on blocks that should be inferentially
informative. The expression for the composite likelihood function is the
same as formula (A.2), the only difference is the number B that can be
much larger.

The main feature for the implementation of this kind of composite like-
lihood method is how to compute a single term

P (Yb = yb|y−b;θ).

Starting from the case where b = 2, the informative pair of dyads in the
graph correspond to the set of the two stars.

The single element

P (Yb = yb|y−b;θ) =
P (y;θ)

P (y++
b ;θ) + P (y+−b ;θ) + P (y−+b ;θ) + P (y−−b ;θ)

(A.3)
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corresponds to a multinomial distribution, where y is the observed network,
yb = (yij , yik) for 1 ≤ i < j < k ≤ n is the considered block, and y++

b , y+−b ,
y−+b , y−−b are the networks where the elements of the block yb are set to 1
if + or to 0 if − (e.g: y+−ijk correspond to the block with the dyads yij = 1
and yik = 0).

To obtain an explicit form for (A.3) consider the following expression

P (y;θ)

P (y−−b ;θ)
= exp{∆(y)},

where

∆(y) =





0 if y = y−−b
u(y+−b )− u(y−−b ) if y = y+−b
u(y−+b )− u(y−−b ) if y = y−+b
u(y++

b )− u(y−−b ) if y = y++
b

(A.4)

is equivalent to the network change statistic in formula (2.28).
The final result is that

P (Yb = yb|y−b;θ) =
P (y;θ)

P (y−−b ;θ)

P (y−−b ;θ)

P (y++
b ;θ) + P (y+−b ;θ) + P (y−+b ;θ) + P (y−−b ;θ)

=
exp{∆(y)}∑

y∗∈Yb exp{∆(y∗)}
, (A.5)

where Yb is the set of all the networks that differ only for the value of the
block yb.

Formula (A.5) gives a general rule to compute the composite likelihood
function elements for larger block size (b = 3, 4, . . .); see also Asuncion et al.
(2010).

Once obtained a general method to compute the composite likelihood
function terms, we need to determine which blocks are informative for in-
ference on θ. We considered a block as informative if the dyads that it
contains share at least one node. In Figure A.1 the informative blocks that
we considered are presented.

For b = 2, we chose the set of all the possible 2-stars (or equivalently the
2-paths).

For b = 3 and 1 ≤ i < j < k < h ≤ g, we considered as informative
blocks the set of the triads (yij , yik, yjk),

For b = 4 and 1 ≤ i < j < k < h ≤ g, we considered as informative the
blocks (yij , yjk, ykh, yhi) that form a 4-cycle.

Example

Here we report the results for a simple model, already presented in §3.5
(Model 1), for Lazega’s Lawyers data on the network of collaborative part-
ners. Table A.1 shows estimates and standard errors obtained by the com-
posite likelihood method. The table reports also the MLE values of the
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Figure A.1: Structures considered as informative blocks for b = 2, 3, 4

model, given by the estimated values obtained by the MC-BFGS method of
§3, and already reported in Table 3.4.

In the example, we considered the estimates for informative blocks size
b=2, 3, and 4 (CL-2, 3, and 4). The standard errors reported are corrected
using sandwich estimator computed by Monte Carlo simulation.

The results of the various composite likelihood estimation are very sim-
ilar, and not close enough to the MLE. There is a slightly improvement in
terms of efficiency only for the CL-4 estimates, but the standard errors of
the MLE are considerably smaller.

There is the possibility that larger blocks would provide a more precise
estimation method. At any rate, increasing the block size would require
a substantial amount of additional work, also considering that it would be
difficult to select an informative block configuration for block size larger than
4. For these reasons this approach does not appear as a practical solution
for the estimation of ERGMs parameters.

Table A.1: Parameters estimation and standard errors for composite meth-
ods on collaboration partner network of Lazega’s Lawyers.

Method MLE MPLE CL-2 CL-3 CL-4

Estimation s.e Estimation s.e Estimation s.e Estimation s.e Estimation s.e

edges -6.97 0.83 -8.10 2.20 -8.10 2.25 -8.10 2.24 -8.39 2.11
kstar2 0.20 0.09 0.27 0.19 0.27 0.16 0.27 0.16 0.26 0.14
kstar3 -0.03 0.01 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.01
triangle 0.34 0.12 0.30 0.10 0.30 0.08 0.30 0.10 0.28 0.09
nodecov.sen36 1.04 0.26 0.75 0.66 0.75 0.67 0.75 0.66 0.84 0.56
nodecov.specialty 0.44 0.12 0.26 0.33 0.26 0.33 0.26 0.33 0.31 0.29
nodematch.specialty 0.82 0.22 0.85 0.53 0.85 0.51 0.85 0.47 0.89 0.42
nodematch.gender 0.85 0.27 0.70 0.67 0.70 0.68 0.70 0.63 0.82 0.60
nodematch.office 1.28 0.24 1.58 0.81 1.58 0.67 1.58 0.77 1.62 0.70
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