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1. Abstract 

 

The discovery of microRNA-based post-transcriptional regulation of gene expression 

added a novel level of genetic regulation to a wide range of biological processes. 

Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic 

and multifactorial disorders and of most human cancers. To bypass limitations of 

computational predictions of miRNA–target relationships, we developed a method for 

integrated analysis of miRNA and gene expression profiles in combination with target 

prediction, allowing the identification and study of post-transcriptional regulatory 

networks in specific biological contexts. This methodology was also implemented in a 

web tool, MAGIA, that allows integrating target predictions and miRNA and gene 

expression profiles for the miRNA–mRNA bipartite networks reconstruction, gene 

functional enrichment and pathway annotations for results browsing. Network analysis 

has been applied to highlight the importance of some regulatory elements in the 

regulatory network reconstructed calculating the drop of network efficiency caused by 

node deactivation. Biologically relevant results, obtained by bioinfomatic analyses in the 

frame of different projects, were the starting point for further experimental studies, which 

identified key miRNA-target relations in cancerogenesis. miRNAs biogenesis is not still 

completely understood. Thus with the integration of genomic information with sequence 

and expression data we studied the strand selection bias and the expression behavior of 

intragenic miRNAs and host genes. In contrast with classical biogenesis model, these 

analyses highlighted that 5’ and 3’ miRNA strands, the “major” and the “minor” forms, 

deriving from the same hairpin precursor may co-coordinately contribute to silencing of 

different sets of target genes. Indeed, the behaved tendency to co-expression of intragenic 

miRNAs and their “host” mRNA genes was confuted by expression profiles examination, 

suggesting that the expression profile of a given host gene can hardly be a good estimator 

of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. In the 

last year, short RNAs massive sequencing was exploited for a miRNOme analysis of 

myeloproliferative neoplasms (MPN). This analysis allowed the characterization of short 

RNAs (known and novel miRNAs, isomiRs and moRNAs) expressed by SET2 cells, a 

JAK2-mutated cell line model for MPN. moRNAs (microRNA-offset RNA) derived from 

extended hairpin stem sequences, probably by alternative nuclear and/or cytoplasmic 

processing. They seem to be conserved across species and the conservation extent 

correlates with expression level. This evidence suggests that moRNAs might be miRNA 

co-products, representing a distinct functional class of miRNA-related agents. In 

conclusion, our analyses were addressed to shed light on the complexity of microRNA-

mediated gene regulation, pointing out the regulatory importance of post-transcriptional 

phases of miRNAs biogenesis, reinforcing the role of such layer of miRNA biogenesis in 

miRNA-based regulation of cell activities in physiology and in different diseases



 

 

. 
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2. Sommario 

 

La scoperta della regolazione post-trascrizionale dei miRNA ha aggiunto un nuovo livello 

alla regolazione genetica in numerosi processi biologici. Alterazioni nell’espressione dei 

miRNA possono giocare un importante ruolo nell’insorgenza di svariate patologie ed in 

particolare in molte neoplasie. Per ovviare alle limitazioni presenti nelle relazioni 

miRNA-mRNA degli algoritmi di predizione computazionali, è stata sviluppata una 

metodologia per l’integrazione dei profili d’espressione di miRNA e mRNA con le 

predizioni dei bersagli biologici dei miRNA, che ha permesso l’identificazione di reti 

regolative post-trascrizionali in diversi contesti biologici. Questa metodologia è stata 

inoltre implementata in un “web-tool”, soprannominato MAGIA. Per evidenziare 

l’importanza di alcuni elementi regolativi presenti nei circuiti biologici è stata applicata la 

teoria delle reti per l’identificazione di geni critici attraverso la loro de-attivazione nella 

rete. I frutti di queste analisi bioinformatiche, svolte nell’ambito di numerosi progetti, 

hanno rappresentato il punto di partenza per successivi studi sperimentali che hanno 

portato alla scoperta di rilevanti relazioni miRNA-target in specifici tumori. La biogenesi 

dei miRNA non è stata ancora completamente chiarita, perciò, integrando informazioni 

derivanti dalle sequenze genomiche e da dati d’espressione, sono stati approfonditi alcuni 

loro aspetti, quali la teoria di generazione dei miRNA maturi per selezione del filamento 

e la co-espressione dei miRNA intragenici e dei loro geni ospiti. Le suddette analisi 

hanno evidenziato che i miRNA generati dal 5’ ed il 3’, derivanti dallo stesso miRNA 

precursore, supportano solo parzialmente il modello classico della biogenesi dei miRNA, 

secondo il quale uno dei due miRNA maturi è scelto in modo deterministico e degradato. 

Entrambe le forme “major” e “minor”, infatti, possono contribuire insieme al 

silenziamento di gruppi diversi di geni bersaglio. La tendenza alla co-espressione tra i 

miRNA intragenici e i loro geni ospiti, inoltre, è stata confutata dall’analisi dei loro 

profili d’espressione, dimostrando che i profili d’espressione dei geni ospite non possono 

essere usati come stimatori dell’espressione dei miRNA per l’inferenza di reti regolative 

post-trascrizionali. Nell’ultimo anno, il sequenziamento massivo di brevi RNA è stato 

sfruttato per l’analisi approfondita di miRNA nelle neoplasie mieloproliferative. 

Attraverso questo approccio è stato possibile scoprire e caratterizzare numerosi brevi 

RNA, quali miRNA noti e nuovi, isomiRNA e i moRNA, che sono espressi nelle cellule 

SET2, linee cellulari con mutazione del gene JAK2. I moRNA (microRNA-offset RNA) 

derivano dalle sequenze dei precursori dei miRNA, probabilmente da un processo 

alternativo del nucleo e/o citoplasmatico, e sembrano essere conservati in varie specie. Il 

loro grado di conservazione è correlato con i livelli d’espressione e si potrebbe dedurre 

che siano prodotti insieme ai miRNA, ma rappresentando una classe funzionale distinta 

da essi. In conclusione, le nostre analisi sono state indirizzate a far luce sulla complessità 

della regolazione dei geni da parte dei miRNA, in particolare sull’importanza delle fasi 

post-trascrizionali della biogenesi dei miRNA ed il loro ruolo nella regolazione delle 

attività cellulari fisiologiche ed in diverse patologie.  
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3. Background 
 

 

 

In 1993 in a genetic screen in nematode worms two small RNA sequences, originating by 

lin-4 transcript, were identified. These small RNAs of approximately 22 and 61 nt had 

sequences complementary to a sequence in the 3’ untranslated region (UTR) of lin-14 

mRNA. This discovery led to hypothesize that lin-4 regulates lin-14 translation via an 

antisense RNA-RNA interaction for a post-transcriptional temporal regulation during C. 

elegans development (Lee et al., 1993; Wightman et al., 1993). From that moment small 

RNAs were observed to be involved in many biological processes range from 

heterochromatin formation to mRNA destabilization and transcriptional control. The 

number of small RNAs continues to substantially increase also thanks to the recent 

development of deep-sequencing technologies and computational prediction methods, able 

to discover also less abundant small RNAs. ‘Small RNA’ is a rather arbitrary term, because 

it was previously used for other non-coding RNAs, such as small nuclear RNAs (shrines) 

and transfer RNAs (tunas). What distinguishes and defines eukaryotic small RNAs in the 

RNA silencing pathway is their limited size (~20-30 nucleotides (nt)) and their association 

with Argonaut (Ago)-family proteins(Kim et al., 2009). At least three classes of small 

RNAs are encoded in our genome, based on their biogenesis mechanism and the type of 

Ago protein that they are associated with: microns (miRNAs), endogenous small interfering 

RNAs (endo-siRNAs or esiRNA s) and Piwi-interacting RNAs (piRNAs) (Kim et al., 

2009). This thesis will focus on different aspects of microRNAs from biogenesis to the 

reconstruction of the post-transcriptional regulatory network. 

 

 

3.1. miRNA biology 

3.1.1. microRNAs biogenesis 

miRNAs are single-stranded RNAs of ~22 nt in length that are transcribed in the nucleus 

by RNA polymerase II, originating primary transcripts (pri-miRNAs). Pri-miRNAs are 

usually several kilobases long and contain local stem-loop structures. The first step of 

miRNA maturation is cleavage at the stem of the hairpin structure by Drosha-DiGeorge 

syndrome critical region gene 8 (DGCR8) complex that generate ~65 nt hairpin, a pre-

miRNA. Following nuclear processing, pre-miRNAs are exported to the cytoplasm by 

exportin 5 (EXP5) where they are cleaved again near the terminal loop by Dicer, releasing 

~22-nt miRNA duplexes. Human Dicer seems to cooperate with two closely related protein, 
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TRBP (TAR RNA-binding protein) and PACT contributing to the formation of RNA-

induced silencing complex (RISC). The resulting ~22-nt miRNA duplex is loaded an Ago 

protein so as to generate the effector complex, RISC. One strand of the duplex remains in 

Ago as a mature miRNA (the guide strand or miRNA), whereas the other strand (the 

passenger strand or miRNA*) is degraded (Kim et al., 2009) (Figure 1). This is the so-

called miRNA strand selection theory. Often, two different mature miRNAs sequences can 

be derived from the same precursor hairpin: a major, the stable and prevalent form, and a 

minor, the unstable one, degraded. The two forms are associated to different sets of target 

genes, thus contributing in different ways to the regulation of cell activities; experiments 

conducted on selected miRNAs pairs demonstrated that they could be both functionally 

effective(Ro et al., 2007). To date, such asymmetry of the strand selection process is 

considered determined by differential thermodynamic stability of alternative sister miRNAs 

(“strand bias” theory, as in (Kim, 2005b; Winter et al., 2009a)), although additional 

features possibly acting as miRNA strand selection determinants in humans and flies were 

also investigated (Hu et al., 2010). In contrast, fragmentary but interesting evidences of 

regulated and tissue-dependent paired expression of sister miRNAs have been reported (Ro 

Figure 1. Schematic representation of miRNA 

biogenesis and function. Transcription of 

miRNA genes is mediated by RNA polymerase 

II. The initial transcripts, termed “primiRNAs”, 

is cleaved by the RNase III endonuclease 

Drosha, along with its partner DGCR8 

(DiGeorge syndrome critical region 8 gene; also 

known as Pasha). The pre-miRNA, is exported 

from the nucleus by Exportin 5 where Dicer 

cleaves it into a double-stranded mature miRNA 

incorporated into the RISC to repress mRNA 

translation or destabilize mRNA transcripts 

through cleavage or deadenylation (Cordes et al. 

2010). Figure taken from Cordes et al., 2010. 
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et al., 2007). 

To support this, a recent paper has been published reporting sequencing and 

characterization of bovine miRNAs (Jin et al., 2009), which underlined that only 60% of 

them displayed thermodynamic stability-dependent strand selection bias. These studies 

introduced innovative concepts and unraveled that i) both sister mature miRNAs may be 

accumulated in some tissues and cell types, and ii) the strand selection might not be 

deterministic but tissue-specific, so that a given strand could be guide strand in a specific 

cell type and passenger in another one. The crucial pathogenetic role of the passenger 

strand has been pointed out by a study on thyroid cancer (Jazdzewski et al., 2009). 

Moreover with the increase of the attention of miRNA biogenesis processes, always new 

details about new biological mechanisms about mature miRNA generation come out. In 

particular, production of mature miRNA from an endogenous hairpin RNA with 5' 

overhangs has also been reported. Ando et al. show that human recombinant DICER 

protein (rDICER) processes a hairpin RNA with 5' overhangs in vitro and generates an 

intermediate duplex with a 29 nt-5' strand and a 23 nt-3' strand, which was eventually 

cleaved into a canonical miRNA duplex via a two-step cleavage(Ando et al., 2011). The 

two-step cleavage of a hairpin RNA with 5' overhangs shows that DICER releases double-

stranded RNAs after the first cleavage and binds them again in the inverse direction for a 

second cleavage. These findings may have consequences for how DICER may be able to 

interact with or process differing precursor structures (Ando et al., 2011). 

 

3.1.2 miRNA genes genomic arrangement 

Many studies improved notions about miRNA genes structure but their clear definition is 

still ongoing. The majority of miRNAs derive from stand-alone non-protein-coding loci 

distinct from known transcription units, identified as intergenic. These miRNAs can be 

monocistronic with their own promoters or polycistronic, where several miRNAs are 

transcribed as cluster of primary transcripts with a shared promoter (Axtell et al., 2011; 

Olena and Patton, 2010). A number of miRNA genes have also been discovered that reside 

within the TUs of other genes, both intronic and exonic. Approximately 50% of miRNAs 

are located on introns of annotated genes, both protein-coding and noncoding. Intronic 

miRNAs are thought to be transcribed from the same promoter as their host genes and 

processed from the introns of host genes but there is evidence of miRNA genes resided 

within the introns under control of their own promoters. 

A special intronic miRNAs are mirtrons, that are generated from the termini of short 

intronic hairpins giving rise to pre-miRNA hairpins with 3’ overhangs and subsequently to 

mature ~22 nt species, which function as typical miRNA-class regulatory RNAs(Westholm 

and Lai, 2011). Rarely, miRNAs are also found resided within the exons of annotated 

genes; in particular, they often overlap an exon and an intron of a noncoding genes. These 
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miRNAs are also thought to be transcribed by their host gene promoter and their maturation 

often excludes host genes function (Axtell et al., 2011; Olena and Patton, 2010) (Figure 2). 

About 40% of miRNAs are found in clusters frequently containing miRNAs belonging to 

different families. This unrelated mature miRNAs generated from a given cluster can target 

multiple different mRNAs. The best and well-studied example of miRNA cluster is miR-

17-19 cluster, a miRNA polycistron also known as oncomir-1, is among the most potent 

oncogenic miRNAs. Overexpression of mir-17-92 was both found in several human B-cell 

lymphomas, and its enforced expression exhibits strong tumorigenic activity in multiple 

mouse tumor models. mir-17-92 carries out pleiotropic functions during both normal 

development and malignant transformation, as it acts to promote proliferation, inhibit 

differentiation, increase angiogenesis, and sustain cell survival. Unlike most protein coding 

genes, mir-17-92 is a polycistronic miRNA cluster that contains multiple miRNA 

components, each of which has a potential to regulate hundreds of target mRNAs. This 

unique gene structure of mir-17-92 may underlie the molecular basis for its pleiotropic 

functions in a cell type- and context-dependent manner. These findings on mir-17-92 

indicate that miRNAs are 

integrated components of the 

molecular pathways that regulate 

tumor development and tumor 

maintenance and imply nuanced 

regulation by miRNAs than was 

perhaps expected (Olena and 

Patton, 2010; Olive et al., 2010). 

Moreover this cluster was found 

highly expressed (among the top 

25% of expressed miRNAs) in 

SET2 cells (Bortoluzzi et al., 

2012). Recent evidence support 

the contention that uncontrolled 

expression of both or either these 

two clusters results in the loss of 

physiologic control of cell cycle 

arrest and apoptosis by 

transforming growth factor-β 

contributing to oncogenesis. 

 

Figure 2. miRNA genes structure. Intergenic miRNAs derive 

from stand-alone non-protein-coding loci distinct from known 

transcription units. A number of miRNA genes have also been 

discovered that reside within the TUs of other genes, both 

intronic and exonic. About 40% of miRNAs are found in 

clusters frequently containing miRNAs belonging to different 

families. Figure taken from Olena and Patton, 2010. 
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3.2. microRNA detection and their interaction with mRNAs 

3.2.1. MicroRNAs discovery and analysis 

A still present challenge in biology is the efficient discovery of miRNAs. Initially, miRNAs 

was detected by large cloning and sequencing efforts, a methodology extremely time and 

labor demanding. Moreover, structural and physiological miRNA characteristics make 

difficult to detect their presence because also their low expression levels the main reason 

for their late discovery (Lhakhang and Chaudhry, 2011). Hybridization methods (Northern 

blotting and microarray technology) are very useful for miRNA detection. First these 

methods have a well established protocol set and are able to observed both pre-cursor and 

mature miRNA forms. This technique is quite laborious and time consuming, do not 

distinguish miRNAs with small sequence differences and cannot be used for stem cells and 

primary tumor analysis for the amount of RNA required for detecting miRNAs (5-10 

micrograms of total RNA per gel lane). On the other hand, microarrays technology offers a 

high-throughput analysis to quantify miRNA abundance and copy number variations. 

Reverse transcriptase PCR-based methods were developed and optimized for miRNA 

detection, including real-time methods based upon reverse transcription (RT) reaction with 

stem-loop primer followed by a TaqMan PCR analysis. Microarray profiling and 

quantitative real-time RT-PCR (qRT-PCR) are the two common methods for miRNA 

expression evaluation, but results from microarray data and qRT-PCR do not always agree. 

This depends on the higher sensitivity of qRT-PCR compared with microarray 

technologies, which can only detect a 3-4 log of dynamic range rather than 7 log using 

qRT-PCR. Next-generation sequencing technologies allow today a quickly sequencing and 

profiling miRNA populations. This methodology provides measuring miRNAs sequence 

variations, isomiRs, and in-depth analysis of post-transcriptional miRNA editing. Moreover 

it gives the possibility to detect and measure expression of known miRNAs and to discover 

new miRNAs (Lhakhang and Chaudhry, 2011). Due to several gigabytes of sequence data 

generated in each single deep-sequencing experiment, the need to adapted bioinformatics 

tools is immediately emerged. Following some tools will be reported. miRanalyzer is a web 

server tool for the analysis of deep-sequencing experiments for small RNAs. The web 

server tool requires a simple input file containing a list of unique reads and its copy 

numbers (expression levels). Using these data, miRanalyzer (i) detects all known 

microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other 

libraries of transcribed sequences and (iii) predicts new microRNAs with a machine 

learning approach (Hackenberg et al., 2009). Guan et al. developed mirExplorer, which is 

based on an integrated adaptive boosting method to de novo predict pre-miRNAs from 

genome, and to discover miRNAs from NGS data (Guan et al., 2011). Instead DARIO free 

web service allows to study short read data from small RNA-seq experiments providing a 

wide range of analysis features, including quality control, read normalization, ncRNA 
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quantification and prediction of putative ncRNA candidates(Fasold et al., 2011). 

 

3.2.2. MicroRNA-mRNA interaction 

Mature miRNAs can cause translation inhibition or mRNA cleavage, by base pairing 

with the 3’ untranslated region (3’-UTR) of their target mRNAs, depending on the 

complementarity degree between the miRNA and its target sequence (Alexiou et al., 2009; 

Kuhn et al., 2008; Sethupathy et al., 2006). An individual miRNA is able to affect the 

translation of more than one target mRNAs and each mRNA may be regulated by multiple 

miRNAs. Many mRNAs have potential multiple sites for the same miRNA. It was reported 

that multiple sites enhance the degree of down-regulation and two sites of the same or 

different miRNAs located closely to each other could act synergistically (Witkos et al., 

2011).The 5’ region of miRNA (“seed” sequence) usually contributes more to the 

specificity and activity in binding targets according to experimental evidence. The 

interactions between miRNA and mRNA are usually restricted to the “seed” sequence near 

the 5’ terminus in animals despite the fact that most plant miRNAs regulate their targets 

based on complete complementarity. The 6 to 8-nt “seed” sequence is highly conserved 

among species and is characterized by a strict Watson-Crick pairing between miRNA and 

its target site. Even a slight change in seed sequence may alter the spectrum of miRNA 

targets (Cai et al., 2009; Lim et al., 2003). In animal, miRNA-mRNA interactions presented 

regions of strict complementarity, bulges and mismatches. There is no single model that 

would depict all miRNA-mRNA interactions because of their relative heterogeneity. The 

classification of miRNA target sites is based on the complementarity within 5’ (the seed 

region) and 3’ part of miRNA and distinguishes three sites types (Figure 3): 1) canonical, 

2) 3’-supplementary and 3) 3’-compensatory sites (Witkos et al., 2011).  

Canonical sites have a complete pairing within the seed region. There are three major 

types of canonical sites: the 7mer1A that has an adenine in position 1 at the 5’ end of 

miRNA, the 8mer having matched adenine in position 1 and an additional match in position 

8 and the 7mer-m8 that has a match in position 8. A minor class of canonical sites are 

represented by 6-nt seed which modestly downregulate targeted mRNA. miRNA-mRNA 

bound by a canonical site at the 5’ of miRNA can have an additional pairing also at the 3’ 

with its corresponding mRNA, the so-called 3’-supplementary site. This site type usually 

has a less profound effect on target recognition and its efficiency. 3’ compensatory sites 

required 3-4 nt consecutively paired in positions 13-16 of miRNA for enhancing the 

effectiveness of miRNA-mRNA interaction which facilitate target prediction and may 

compensate possible discontinuity of seed pairing (Witkos et al., 2011).  
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Figure 3. Types of miRNA-mRNA interactions. Different classes of miRNA target sites are presented in 

a schematic way. Vertical dashes represent single Watson-Crick pairing. Nucleotides involved in binding 

have been arbitrarily defined to depict positions of required complementarity between miRNA and mRNA. 

Seed regions of miRNAs are marked by red color and the adenine at binding position 1 by green. 

Interactions between mRNA and the 3’ end of miRNA have not been shown because they are sequence-

dependent and do not significantly contribute to the miRNA downregulation effect. In the case of 3’-

suppelmentary and 3’-compensatory sites two regions of pairing (base pairs colored in blue) force middle 

mismatches to form a loop structure. Additionally, features of particular site types have been listed(Witkos 

et al., 2011). Figure taken from Witkos et al.,2011. 

 

At the beginning, it was believed the extent of base pairing between the miRNA and 

mRNA might be an important determinant for the ultimate fate of the target mRNA. 

Usually perfect, or near perfect, base pair complementation results in mRNA decay. 

Translational silencing or blocking of the target mRNA, however, usually takes place by 

the imperfect base pairing between one or more miRNAs (same or different miRNAs) and 

the 3′UTR region of the target mRNA. The resulting translationally silenced target mRNAs 

are then thought to be sequestered by the miRNAs to cytoplasmic processing bodies (P-

bodies, also known as GW bodies), where untranslated mRNAs are stored and, ultimately, 

sometimes degraded (Erson and Petty, 2008). Indeed, citing literally, “even if rules 



12 

 

involving Watson–Crick hybridization of microRNAs with mRNAs have generated great 

interest and researchers ardently seek simplifying principles, nature seems very 

uncooperative” (Jeffries et al., 2010). Furthermore, nowadays the relation between base-

complementary and mode of action is controversial, and this vision is surpassed. Analysis 

of the miRNA target sites indicated that genes with longer 3’ UTRs usually have higher 

density of miRNA-binding sites and are mainly involved in developmental modulations, 

whereas genes with shorter 3’ UTRs usually have lower density of miRNA-binding sites 

and tend to be involved in basic cellular processes. This might be also related to shortening 

of 3’UTR in the oncogene in tumor to escape their repression (Mayr and Bartel, 2009). 

Some evidence show a small subset of miRNAs exert repression regulation by specifically 

targeting the 5’ UTR of some mRNAs suggesting many miRNAs may contain significant 

interaction sites with mRNA 5’-UTR and 3’-UTR motifs through their 3’- and 5’-end 

sequences, respectively (Cai et al., 2009). 

To date few miRNAs have been shown to be prone to RNA editing providing another 

layer of regulatory controls within the complex network of RNA-mediated gene functions. 

RNA editing can display a micro-regulatory role in controlling the miRNA-processing 

machinery since it contributes to the generation of different mature miRNAs from identical 

miRNA transcripts that may silence a set of genes different from those target by the 

unedited miRNA, potentially targeting a different set of genes due to RNA editing in 

different tissues (tissue-specific RNA editing) (Cai et al., 2009; Erson and Petty, 2008). 

Single nucleotide polymorphisms (SNP), created by changes in DNA sequences of 

miRNA-coding genes or in an miRNA-binding site in mRNAs, are recently emerged to 

affect the biogenesis and function of miRNA. Many miRNA polymorphisms are shown to 

be associated with disease because of a gain- or a loss-of function of miRNAs on mRNAs 

(Cai et al., 2009). 

All these findings increase the complexity of mechanisms by which miRNA regulate 

gene expressions and highlight how much investigation are needed to illustrate the 

functional circuits that are critical to cellular processes.  

 

3.2.3. MicroRNA targets prediction 

Target mRNAs of miRNAs can be predicted by computational methods, developed 

according to our understanding of miRNA regulatory functions. Current target prediction 

programs depend on the information from sequence, structure associated free energy and 

evolutionary conservation to predict candidate mRNAs. Different computational miRNA 

finding strategies have been planned based on the conserved sequences present amongst the 

different species that can both fold into extended hairpins and are also present in intergenic 

locations. Availability of full genome databases of several organisms has further enabled in 

the development of better informatics based approaches. In recent years, a number of 
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programs and bioinformatics tools have been developed and used successfully for the 

identification and analysis of miRNAs and their targets (Shruti et al., 2011). These 

algorithms can be divided into two main classes established on the basis of the use or not of 

the target site conservation, influencing the output by narrowing the results. The algorithms 

based on conservation criteria are for example miRanda, Targetscan, Pictar, Diana-microT 

while PITA and rna22 belong to the algorithms using thermodynamic stability of 

miRNA:mRNA hybrid, seed complementarity, multiple target site, and free energy of 

binding sites(Witkos et al., 2011). 

TargetScan, the most famous algorithm for the miRNA target prediction, predicts 

regulatory targets of vertebrate microRNAs by identifying mRNAs with conserved 

complementary to the seed (2-7 nt) of miRNA among orthologous 3’ UTR of 

vertebrates(Lewis et al., 2005). It consists of a series of steps starting with the search of 

UTR for segment with perfect Watson-Crick complementary to bases 2-8 of the miRNA, 

then extends each seed match with additional base pairs to the miRNA, allowing G:U pairs, 

calculates a folding free energy G, and assign a Z score to each UTR considering only one 

with a good Z score(Lewis et al., 2003). Several feature of site boosting their efficiency 

contribute to final outcome score: AU-rich nucleotide composition near the site, proximity 

to sites for co-expressed miRNAs (which leads to cooperative action), proximity to residues 

pairing to miRNA nucleotides 13-16, positioning within the 3'UTR at least 15 nt from the 

stop codon, positioning away from the center of long UTRs, and conserved 3′-

compensatory sites(Friedman et al., 2009; Grimson et al., 2007a). TargetScanS algorithm, a 

simplified version of TargetScan, predicts targets that have a conserved 6-nt seed match 

flanked by either a 7-nt match or 6-nt with A on the 3’ terminus no considering free energy 

values(Lewis et al., 2005; Witkos et al., 2011). 

MiRanda optimizes sequence complementarity using position-specific rules and relies on 

strict requirements of interspecies conservation. This is three-phase algorithm consist of: 

sequence-matching to assess first whether two sequences are complementary and possibly 

bind; free energy calculation (thermodynamics) to estimate the energetic of this physical 

interaction; and evolutionary conservation as an informational filter. The miRanda 

algorithm scans all available miRNA sequences for a given genome against 3′ UTR with a 

dynamic programming approach to search for maximal local complementarity alignments, 

corresponding to a double-stranded antiparallel duplex(Enright et al., 2003b; John et al., 

2004). miRanda-mirSVR is a refinement of miRanda algorithm based on a new machine 

learning method for ranking microRNA target sites by a down-regulation score. The 

algorithm trains a regression model on sequence and contextual features extracted from 

miRanda-predicted target sites. miRanda-mirSVR is able also to identify a significant 

number of experimentally determined non-canonical and non-conserved sites(Betel et al., 

2010). 

PITA focuses on site accessibility considered critical in microRNA-mRNA interaction. It 
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is a parameter-free model for microRNA-target interaction that computes the difference 

between the free energy gained from the formation of the microRNA-target duplex and the 

energetic cost of unpairing the target to make it accessible to the microRNA(Kertesz et al., 

2007). 

Comparative evaluations of different target prediction methods provided some kind of 

ranking of the sensitivity of different algorithm (Bagga et al., 2005; Lim et al., 2005; Wu 

and Belasco, 2008), but all available software produces a large fraction of false positive 

predictions. This might be due not only to the limited comprehension of the molecular basis 

and effect of miRNA-target pairing, but also to context dependency of post-transcriptional 

regulation. Thus, the integration of target predictions with miRNA and target mRNA 

expression profiles has been proposed to select functional miRNA-mRNA relationships, 

according to increasing experimental evidences which supported the miRNA mechanism of 

target degradation rather than translational repression. 

 

 

3.3. miRNAs and diseases 

miRNAs play important roles in many biological processes including cell differentiation, 

organogenesis, development and death. Dysregulation of miRNAs expression plays a 

critical role in the pathogenesis of genetic and multifactorial disorders 

(http://www.mir2disease.org/) and of most, if not all, human cancers. Cancer is a complex 

disease involving a variety of changes in gene expression that result in abnormal cell 

growth, migration and apoptosis. miRNAs are found aberrantly expressed in many cancer 

types involving chronic lymphoblastic leukemia, multiple myeloma, breast, colon, lung and 

prostate tumors. They can act either as tumor suppressor genes (TS-miRs), facilitating 

cancer cell death and/or to inhibit cancer cell growth, or as oncogenes (oncomiRs), 

promoting cancer cell proliferation. miR-15 and miR-16 are the first defined miRNAs with 

tumor suppressor functions. B-cell chronic lymphocytic leukemia (B-CLL) is associated 

with loss of chromosomal region 13q14 and mi-R15 and miR-16 are located within a 30-kb 

region at chromosome 13q14, a region deleted in more than half of B-CLL (68%). miR-15– 

and miR-16–induced tumor suppression appears to be mediated through downregulating 

the anti-apoptotic protein Bcl2. Bcl2 is frequently over-expressed in CLL and the 3′ UTR 

of the Bcl2 mRNA contains potential binding sites for miR-15 and miR-16. Expression of 

these miRNAs causes downregulation of Bcl2 and induces apoptosis in a leukemia cell 

line. Other examples include miR-29, which suppresses DNA methyltransferase (DNM vs 

T)-3A and -3B in lung cancer; let-7, which regulates the expression of RAS and other genes 

involved in cell cycle and cell division functions in lung cancer; and miR-34, which 

suppresses cell growth in ovarian cancer and colon cancer. miRNAs can also serve as 

oncogenes to promote cancer growth. miR-10b is shown to have the tumor-promoting 
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activity in cancer metastasis; it is over-expressed in metastatic breast cancer cells and 

promotes cell migration and invasion. The transcription of miR-10b is regulated by the 

transcription factor Twist, and the downstream targets of miR-10b include homeobox D10. 

The inhibition of homeobox D10 by miR-10b increases the expression of RHOC, a well-

characterized pro-metastatic gene, leading to tumor cell invasion and metastasis. Other 

miRNAs as oncogenes include miR-17 clusters in B-cell lymphoma, miR-21 in 

glioblastoma, and miR-373 and miR-520c as metastasis-promoting miRNAs. miRNA 

clusters also are emerged implicated in many cancer type. A well-studied miRNA cluster, 

miR-17-92, consists of 7 individual miRNAs encoded from a frequently amplified locus at 

13q31.3 in B-cell lymphomas. It was shown miRNAs of this cluster only altogether can 

enhance tumorigenesis by inhibition of apoptosis in tumors(Li et al., 2009). 

Recently, miR-16 has been found to be involved in polycytemia vera development and 

functional experiments showed that miR-16 silencing is able to prevent erythroid colony 

formation in vitro and erythrocytosis in vivo(Guglielmelli et al., 2011). 

miRNAs also participate in the regulation of differentiation and growth of cardiac cells, 

and it is hypothesize that miRNAs involved in cardiac hypertrophy and heart failure. Other 

evidence correlates miRNA dysfunction with metabolic, immune, and inflammatory 

disorders.  

In conclusion, miRNAs are emerged as possible therapeutic targets for a large number of 

diseases and can use as a novel clinical method to monitor the progression, prognosis, 

diagnosis, and evaluation of treatment responses(Li et al., 2009; Wang, 2010; Zhang, 

2008).  

 

 

3.4. MicroRNA–offset RNAs (moRNAs): by-product spectators or 

functional players? 

Recent studies have exponentially increased the number of known noncoding RNA 

categories and short RNA sequencing led to the discovery of a novel type of miRNA-

related small RNA, miRNA–offset RNA (moRNA), whose function is currently unknown. 

MoRNAs were first reported in a simple chordate, the ascidian Ciona intestinalis, as ∼20-

nt-long RNAs derived from the ends of pre-miRNAs, possibly by RNAse III-like 

processing. moRNAs can originate from either end of the pre-miRNA, but they are 

prevalently derived from the 5′ arm, regardless of the major miRNA position. This suggests 

that moRNA and miRNA biogenesis might be linked but not interdependent. The 

expression levels of moRNAs seem to be regulated in different developmental stages of 

Ciona, and their abundance can exceed that of the corresponding mature 

miRNA(Bortoluzzi et al., 2011).  
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3.4.1. moRNA discovery by massive sequencing of short RNAs 

For both intragenic and intergenic (single or clustered) miRNAs, primary miRNAs are 

transcribed, edited and cleaved in the nucleus to generate hairpin precursors that are 

exported to the cytoplasm, where maturation takes place (Winter et al., 2009b). Dicer 

cleaves the pre-miRNA hairpin to produce an miRNA duplex (~22 nt), which is 

incorporated into the RNA-induced silencing complex (RISC). The RISC recognizes the 

duplex, unwinds it, selects the guide miRNA strand (while degrading the passenger 

strand) and mediates recognition of target RNAs. In some cases, both miRNAs are 

expressed and can differentially contribute to the regulation of cellular activities. 

The application of deep sequencing technologies (RNAseq) to short RNAs facilitated the 

identification and expression quantification of known miRNAs, as well as the discovery 

of new miRNAs; the number of miRNAs identified increased by at least 50% in the last 

year (Kozomara and Griffiths-Jones, 2011). In addition, short RNA sequencing led to the 

discovery of moRNAs, which were first reported in a simple chordate, the ascidian Ciona 

intestinalis(Shi et al., 2009), as ~20-nt-long RNAs derived from the ends of pre-miRNAs, 

possibly by RNAse III-like processing (Figure 4). moRNAs can originate from either end 

of the pre-miRNA, but they are prevalently derived from the 5′ arm, regardless of the 

major miRNA position. This suggests that moRNA and miRNA biogenesis might be 

linked but not interdependent. The expression levels of moRNAs seem to be regulated in 

different developmental stages of Ciona, and their abundance can exceed that of the 

corresponding mature miRNA. 

 

 
Figure 4. moRNAs. Two miRNAs and two moRNAs can be produced by transcription and processing of a 

single miRNA locus. 

 

3.4.2. moRNAs biogenesis: by-product or co-product? 

Initially, moRNAs were considered as by-products of potentially atypical miRNA 

processing(Shi et al., 2009). Later, moRNAs were also found in human cells by deep 

sequencing data analysis. Langerberger et al. reported that moRNAs from 78 genomic 

loci are weakly expressed in the prefrontal cortex(Langenberger et al., 2009). They also 

observed that some moRNAs are as conserved as miRNAs, and that miRNA precursors 

that also contain moRNAs are typically old from an evolutionary 

perspective(Langenberger et al., 2009). Furthermore, some weakly expressed moRNAs 
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have been found in solid tumors, together with other small RNAs(Meiri et al., 2010). 

Subsequently, moRNAs that lie immediately 5′ or 3′ of a viral miRNA were discovered 

by small RNA sequencing in the B cell line BC-3 infected with Kaposi's sarcoma-

associated herpes virus(Umbach and Cullen, 2010) and in rhadinovirus-infected tumor 

samples from rhesus macaques. A study investigating different types of tiny RNAs 

localized in nuclear or cytoplasmic RNA fractions of THP-1 cells (a human acute 

monocytic leukemia cell line) showed that moRNAs are 18-fold enriched in the nucleus 

and are predominantly derived from the 5′ arm of the precursor(Taft et al., 2010). 

Recently, Drosophila melanogaster miRNAs were deeply annotated using more than 1 

billion reads from 187 short RNA libraries(Berezikov et al., 2011b). In this way, five-

phased miRNA loci were identified (e.g. the locus dme-mir-277 produces the following: 

5′ moR, miR-277, expressed loop, miR-277 and 3′ moR). 

moRNAs are generally included in the miRNA hairpin precursor, and in some cases the 

moRNA overlaps the miRNA position by a few nucleotides(Langenberger et al., 2009). 

Other moRNAs that overhang the miRNA hairpin can be produced by non-canonical 

Drosha processing(Berezikov et al., 2011b). Thus, it is not clear how the two ends of 

moRNAs arise and if or how Drosha and Dicer are involved. moRNAs seem to be 

conserved across species, the conservation extent correlates with expression level (Shi et 

al., 2009) and expression levels of certain moRNAs are greater than for their 

corresponding miRNA(Umbach et al., 2010). In addition, moRNAs are prevalently 

produced by the 5′ arm of the precursor, independent of which arm produces the most 

expressed mature miRNA (Langenberger et al., 2009) and (Umbach et al., 2010). This 

evidence suggests that moRNAs might be miRNA co-products, representing a distinct 

functional class of miRNA-related agents (Berezikov et al., 2011a). 

 

3.4.3. The functions of moRNAs are unknown at present 

The hypothesis that moRNAs are a new class of functional regulators whose qualitative 

alteration and/or expression dysregulation might impact on human diseases is intriguing, 

but evidence regarding possible moRNA functions is still fragmentary. Umbach and 

colleagues used a luciferase-based indicator assay to demonstrate that a viral moRNA 

(moR-rR1-3-5p) has moderate inhibitory activity against an artificial mRNA bearing a 

perfect target site (Langenberger et al., 2009). In this case, an moRNA might guide RISC 

to complementary target mRNAs, acting as an miRNA. Nevertheless, moRNA 

enrichment observed in the nucleus (Taft et al., 2010) might indicate that some moRNAs 

play a different role specifically related to nuclear processes. It is known that specific 

miRNAs, such as miR-29b, are re-imported into the nucleus where they might be 

transcriptional regulators(Winter et al., 2009a). Similarly, other nuclear tiny RNAs are 

associated with transcript initiation and splice sites(Taft et al., 2010). 
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It is believed that the great majority of the transcriptional output of eukaryotic genomes is 

long and short ncRNAs (Brosnan and Voinnet, 2009) and some authors have pointed to a 

compelling need for disruption experiments of transcribed loci to determine the impact of 

ncRNAs on phenotype(Ponting and Belgard, 2010). In accordance with this view, both 

functional characterization of moRNAs and elucidation of their biogenesis are highly 

relevant for future research. The importance of assigning functions to these short RNA 

sequences provides us with another example of the power of deep sequencing data 

analysis in enhancing biological knowledge and hypothesis generation. 

 

 

3.5. Regulatory network inference 

Systems biology elevates the study from the single entity level (e.g., genes, proteins) to 

higher hierarchies, such as entire genomic regions, groups of co-expressed genes, 

functional modules, and networks of interactions. The functioning and development of a 

living organism is controlled by the networks of relations among its genes (as well as 

proteins and small molecules) and the signals regulating each gene (or set of genes), 

therefore understanding how elementary biological objects act together and interact in the 

general context of a genome is fundamental to the advancement of science. 

Microarray experiments have been extensively used to detect patterns in gene expression 

that stem from regulatory interactions. 

Network analysis has emerged as a powerful approach to understand complex phenomena 

and organization in social, technological and biological systems (Dorogovt͡ sev and 

Mendes, 2003; Strogatz, 2001; Wasserman S., 1994). In particular, it is increasingly 

recognized the role played by the topology of cellular networks, the intricate web of 

interactions among genes, proteins and other molecules regulating cell activity, in 

unveiling the function and the evolution of living organisms(Jeong et al., 2000; Jeong et 

al., 2001; Maslov and Sneppen, 2002; Milo et al., 2002; Wagner and Fell, 2001). Gene 

networks, in this respect, present a unique opportunity to employ this new type of 

approach(Sharan and Ideker, 2006; Vazquez et al., 2004). A gene regulatory network 

(GRN) aims to capture the dependencies between these molecular entities and is often 

modeled as a network composed of nodes (representing genes, proteins and/or 

metabolites) and edges (representing molecular interactions such as protein–DNA and 

protein–protein interactions or rather indirect relationships between genes). 

Algorithms to infer the structure of gene-gene relationships take as primary input the data 

from a set of microarrays measuring the mRNA expression levels in different 

physiological states and use either classical statistics (e.g., Pearson correlation), concepts 

from the information theory (i.e., the mutual information as in ARACNe (Algorithm for 

the Reconstruction of Accurate Cellular Networks(Basso et al., 2005a)) and CLR 
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algorithms(Faith et al., 2007)) or probabilistic models (as in the Bayesian networks) to 

reconstruct the network of transcriptional interactions.  

Many GRN inference approaches solely consider transcript levels and aim to identify 

regulatory influences between RNA transcripts. Such approaches employ an ‘influential’ 

GRN, i.e. a GRN where the nodes consist of genes and edges represent direct as well as 

indirect relationships between genes (Figure 5). This approximation leads to ‘influence’ 

network models that are intended to implicitly capture regulatory events at the proteomic 

and metabolomic level, which sometimes makes them difficult to interpret in physical 

terms.  

 
Figure 5. Schematic view of a simple gene regulatory network. Gene A regulates its own expression and 

those of gene B. Thereby, gene A might exert its regulatory influence directly (if it encodes a TF) or 

indirectly (if it controls the activity of another TF possibly via a signaling cascade). When reconstructing 

the GRN, one often aims to infer an ‘influence’ network model as shown at the bottom (Hecker et al., 

2009). Figure taken from Hecker et al., 2009. 

 

The modeling (reconstruction) of a GRN based on experimental data is also called reverse 

engineering or network inference. Reverse engineering GRNs is a challenging task as the 

problem itself is of a combinatorial nature (find the right combination of regulators) and 

available data are often few and inaccurate. Therefore, it is beneficial to integrate system-

wide genomic, transcriptomic, proteomic and metabolomic measurements as well as prior 

biological knowledge (e.g. from the scientific literature) into a single modeling 

process(Hecker et al., 2009). 

Using computational support to adequately manage, structure and employ heterogeneous 

types of information in order to obtain a more detailed insight into biological network 

mechanisms represents a major challenge in GRN inference today. The number of 

computational methods that are being developed to reconstruct TRNs from genome-wide 

expression data is rapidly increasing(De Smet and Marchal, 2010). Recently a number of 

different model architectures for reverse engineering GRNs from gene expression data 

have been proposed using mathematical, Boolean, and statistics approaches.  
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Main models comprise (Hecker et al., 2009): 

• Information Theory Models: correlation coefficients, Euclidean distances and 

information theoretic scores, such as the mutual information, were applied to detect 

gene regulatory dependencies. Two genes are predicted to interact if the correlation 

coefficient of their expression levels is above some set threshold. The higher the 

threshold is set, the sparser is the inferred GRN. Principle network inference 

algorithms are RELNET (RELevance NETworks (Butte and Kohane, 2000)), 

ARACNE (Algorithm for the Reverse engineering of Accurate Cellular Networks 

(Basso et al., 2005a)) and CLR (Context Likelihood of Relatedness (Faith et al., 

2007)). Simplicity and low computational costs are the major advantages of 

information theory models. In comparison to other formalisms, a drawback of such 

models is that they do not take into account that multiple genes can participate in the 

regulation. A further disadvantage is that they are static. 

• Boolean Networks: boolean networks are discrete dynamical networks. They use 

binary variables xi  {0, 1} that define the state of a gene i represented by a network 

node as ‘off’ or ‘on’ (inactive or active). Hence, before inferring a Boolean network, 

continuous gene expression signals have to be transformed to binary data. Boolean 

networks can be represented as a directed graph, where the edges are represented by 

Boolean functions made up of simple Boolean operations, e.g. AND, OR, NOT. 

Various algorithms exist for the inference of Boolean networks, e.g. REVEAL 

(REVerse Engineering Algorithm (Liang et al., 1998)). Boolean networks can be used 

to simulate gene regulatory events because they are dynamics. 

• Differential and Difference Equations: differential equations describe gene expression 

changes as a function of the expression of other genes and environmental factors. 

Thus, they are adequate to model the dynamic behavior of GRNs in a more 

quantitative manner. Their flexibility allows describing even complex relations among 

components. A modeling of the gene expression dynamics may apply ordinary 

differential equations (ODEs): 

 
where x(t) = (x1(t), …, xn(t)) is the gene expression vector of the genes 1, …, n at time 

t, f is the function that describes the rate of change of the state variables xi in 

dependence on the model parameter set p, and the externally given perturbation 

signals u. In this case, network inference means the identification of function f and 

parameters p from measured signals x, u and t. Commonly, there are multiple 

solutions. Thus, the identification of model structure and model parameters requires 

specifications of the function f and constraints representing prior knowledge, 

simplifications or approximations. Regulatory processes are characterized by complex 
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non-linear dynamics, but mainly GRN inference approaches based on differential 

equations consider linear models or are limited to very specific types of non-linear 

functions. 

• Linear Differential Equations: a linear model 

 
can be applied to describe the gene expression kinetics xi(t) of N genes by N × (N + 1) 

parameters for (i) the N
2
 components wi,j of the interaction matrix W and (ii) N 

parameters bi quantifying, for example, the impact of the perturbation u on gene 

expression. In general, the simplification obtained by linearization is still not 

sufficient to identify large-scale GRNs from gene expression data unequivocally. 

Differential equations can be approximated by difference equations (discrete-time 

models). Thereby, the linear differential Eq. (2) becomes the linear difference Eq. (3): 

 
In this way one obtains a linear algebraic equation system that can be solved by well-

established methods of linear algebra. Main inference algorithms based on this 

approach are LASSO (Least Absolute Shrinkage and Selection Operator, provides a 

robust estimation of a network with limited connectivity and low model prediction 

error), NIR (Network Identification by multiple Regression), M vs NI (Microarray 

Network Identification) and TSNI (Time-Series Network Identification). 

• Non-linear Differential Equations: Complex dynamic behaviors such as the 

emergence of multiple steady states (e.g. healthy or disease states) or stable 

oscillatory states (e.g. calcium oscillations and circadian rhythms) cannot be 

explained by simple linear systems. The identification of non-linear models is not 

only limited by mathematical difficulties and computational efforts for numerical 

ODE solution and parameter identification, but also mainly by the fact that the sample 

size M is usually too small for the reliable identification of non-linear interactions. 

Thus, the search space for non-linear model structure identification has to be 

stringently restricted. Inference of non-linear systems employ predefined functions 

that reflect available knowledge. The data insufficiency still limits the practical 

relevance of non-linear models. 

• Bayesian Networks: Bayesian networks (BNs) reflect the stochastic nature of gene 

regulation and make use of the Bayes’ rule. Here, the assumption is that gene 

expression values can be described by random variables, which follow probability 

distributions. As they represent regulatory relations by probability, BNs are thought to 

model randomness and noise as inherent features of gene regulatory processes. Most 

importantly, BNs provide a very flexible framework for combining different types of 
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data and prior knowledge in the process of GRN inference to derive a suitable 

network structure. Besides, BNs have a number of features that make them attractive 

candidates for GRN modeling, such as their ability to avoid over-fitting a model to 

training data and to handle incomplete noisy data as well as hidden variables (e.g. TF 

activities). BNs can be learned based on discrete (often Boolean) and continuous 

expression levels. 

The discovery of small RNAs adding a novel level of post-transcriptional gene regulation 

of different biological processes and systematic integration of various high-throughput 

datasets was proposed to analyze the transcriptional activity of microRNAs. 

Cheng et al. (Cheng et al., 2011) planned the reconstruction of an integrated regulatory 

network, using three major types of regulation: TF→gene, TF→miRNA and 

miRNA→gene. They identified the target genes and target miRNAs for a set of TFs 

based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 

3'UTR sequences and conservation information. Shmeier et al. combined several sources 

of interaction and association data to analyse and place miRNAs within regulatory 

pathways that influence human ovarian cancer (OC) suggesting a major role of miRNAs 

in OC (Schmeier et al., 2011). Another example is GenMiR++, a Bayesian data analysis 

algorithm that uses paired expression profiles of miRNAs and mRNAs expression data to 

identify functional miRNA-target relationships and directed research in this area is of 

utmost importance to enhance our understanding of the molecular mechanisms underlying 

biological systems. 
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4.  Material and Methods 
 

 

 

4.1. microRNAs and genes: sequences and genomic positions 

The complete set of hairpin precursors of human microRNA sequences was downloaded 

from miRBase version 14, thus obtaining a set of 721 pre-miRNA hairpin sequences and 

904 mature miRNAs, 185 of which are tagged as “minor”, according to miRBase 

annotation (i.e. hsa-miR-30e*). We obtained 49, 506 human genes and 132, 056 transcripts 

sequences from ENSEMBL (version 56) each associated to a unique chromosomal 

position. Hairpin miRNA sequences were aligned with the version 37.1 of the human 

genome to establish their genomic positions as start and end coordinates of the aligned 

region in a specific chromosome and strand. Alignments associated to at least 95% 

sequence identities, calculated over the hairpin sequence length, have been considered for 

miRNA genome position definition. As genomic localization is referred to hairpin 

sequences whereas miRNA microarray platforms measure expression profiles of mature 

miRNAs, mature miRNAs to hairpin correspondence info was used for data integration. 

miRNA hairpins localizations were compared with those of protein-coding genes to 

identify intragenic miRNAs, putatively transcribed from the coding gene promoter. To 

define the miRNA-host gene relationships considered in further analyses, only miRNAs 

fully included in genes spanned regions were considered as intragenic. Specifically, 367 

miRNAs were categorized as intergenic and thus excluded, whereas 309 intragenic 

miRNAs, were associated with 279 protein-coding human host genes. Among these, 23 

(8.5%) include at least two miRNAs. 

 

4.2. Biological Datasets 

4.2.1. Multiple Myeloma dataset 

Multiple Myeloma dataset (MM) dataset consists of matched miRNAs and genes 

expression profiles from purified plasma cells of thirty-nine human samples, including 33 

patients with multiple myeloma (MM), 2 with plasma cell leukemia (PCLs) and 4 normal 

control samples (NCs) from healthy donors. The miRNA expression was profiled on the 

Agilent Human miRNA Microarray V2(Lionetti et al., 2009). The human miRNAs data were 

reannotated on Sanger Release 12.0 and normalized using the Aroma Light package for 

Bioconductor. To overcome scaling biases resulting from background subtraction, the data 

were converted to obtain positive values throughout the dataset, at a minimum value of 1. 
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The raw and normalized microRNA data are available through GEO accession number 

GSE17498. The gene expression was profiled on Affymetrix GeneChip® Human Gene 1.0 

ST Array. The raw intensity signals of genes were extracted from CEL files and normalized 

using robust multi-array average (RMA) normalization method, which consists of three 

steps: background correction, quantile normalization (each performed at the individual probe 

level), and robust linear model fit using log-transformed intensities (at the probeset level) 

implemented in the affy package for Bioconductor and re-annotated using Manhong Dai 

custom cdf, HuGene10stv1_Hs_ENSG (available at 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/12.1.0/ensg.asp). 

To the reconstruction of the transcriptional regulatory network a bigger dataset of gene 

expression (hereafter denoted as MM158GE) comprising 5 normal, 11 monoclonal 

gammopathies of unknown significance (MGUS), 133 MM, and 9 plasma cell leukemia 

(PCL) for a total of 158 samples was collected and were quantified using RMA (affy 

Bioconductor package) and the GeneAnnot custom Chip Definition Files. 

 

4.2.2. Acute Lymphoblastic Leukemia dataset 

Acute Lymphoblastic Leukemia dataset (ALL) dataset consists of matched miRNA and 

genes expression profiles in nineteen adult Acute Lymphoblastic Leukemia (ALL) cases, 

including T-lineage and B-lineage cells, harboring specific molecular lesions (Fulci et al., 

2009)(GEO accession GSE14834). Human miRNA data obtained by Lc Sciences Human 

470 miRHuman 9.0 microarray were background subtracted, quantile-normalized between 

the intra-array replicates, and summarized for each microRNA as the average of its seven 

repeating spots on the array. The background value was set for each array as quantified by 

the service provider. Processed miRNA intensity values were normalized between-array by 

quantile normalization. Quantile normalization was performed using function 

normalize.quantiles from R package preprocessCore. Gene expression was profiled on 

Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array. The raw intensity signals of 

genes were extracted from CEL files and normalized using RMA algorithm of affy package 

for Bioconductor and re-annotated using Manhong Dai custom cdf, 

HGU133Plus2_Hs_ENSG (available at 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/12.1.0/ensg.asp). 

 

4.2.3. Normal and Alzheimer's parietal lobe cortex 

Normal and Alzheimer's parietal lobe cortex (ALZ) dataset consists of 16 matched 

miRNA and gene expression experiments, obtained by USC/XJZ Human 0.9 K miRNA-

940-v1.0 and Affymetrix Human Genome U133 Plus 2.0 Array, in parietal lobe tissue from 

4 Alzheimer Disease patients and 4 age-matched controls (GSE16759)(Nunez-Iglesias et 
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al., 2010). The raw intensity signals of genes were extracted from CEL files, normalized 

using RMA algorithm of affy package for Bioconductor, and re-annotated using Manhong 

Dai custom cdf, HGU133Plus2_Hs_ENSG. Human miRNA data were processed using the 

same approach of gene expression reconstruction.  

 

4.2.4. Normal prostate and prostate cancer 

Normal prostate and prostate cancer (PRO) dataset consists of the subset of 140 matched 

miRNA and gene expression experiments, obtained respectively by Agilent-019118 Human 

miRNA Microarray 2.0 and Affymetrix Human Exon 1.0 ST, of the prostate data reported 

in (Taylor et al., 2010)(GEO accession GSE21032) regarding primary and metastatic 

prostate cancer samples and control normal adjacent benign prostate. Human miRNA data 

were processed using the same approach suggested by the original paper. Gene expression 

profiles was obtain using RMAExpress, a standalone GUI program to compute gene 

expression summary values for Affymetrix Genechip data using the Robust Multichip 

Average expression summary and to carry out quality assessment using probe-level 

metrics. 

 

4.2.5. Multiple cancers and normal tissues dataset 

Multiple cancers and normal tissues dataset (MCN) dataset includes miRNAs expression 

profiles in 32 samples from 14 different patients and 8 different tumor types, with tumor 

cells and normal cells counterpart for each patient (GEO accession GSE14985). Tissue 

samples were from various embryonic lineages: one pair from breast, lymphoma and 

prostate; two from liver, ovary, testes and lung and three from colon: two technical 

replicates are included for ovary and testes samples. MiRNA expression was profiled using 

Agilent Human miRNA Microarray 2.0. Agilent's Feature Extraction software version 

9.5.3.1 was used to generate GeneView files. These files contain the processed signals for 

each of the 799 miRNAs on the array. For each miRNA, expression values 

(gTotalGeneSignal) below the noise level (gTotalGeneError) were replaced by the value of 

the corresponding total gene error. All samples were then normalized to have the same 75
th

 

percentile value(Navon et al., 2009). 

 

4.2.6. Colorectal cancer dataset 

From the institutional colorectal database, 55 patients with colorectal cancer, who 

underwent primary surgery at University of Padova, were selected. Tissue samples were 

obtained from the patients during the surgical procedure. Colorectal cancer dataset 

includes 78 and 80 miRNA and gene expression experiments, respectively.  
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MiRNA expression was profiled using GeneChip miRNA 1.0 Array. We used free 

miRNA QC tool software from Affymetrix to normalize data and perform preliminary 

quality control procedures for all miRNA experiments. miRNA expression measures were 

reconstructed from .cel files by using the Robust Multichip Average (RMA) method. 

miRNAs resulting detected in less than 20 samples were discarded. In this way we 

obtained 309 miRNAs with expression profiles in the considered set of tissue samples, 

which were considered for the following analyses. 

GeneChip Human Exon 1.0 ST (Affymetrix) has been used to obtain high quality gene 

expression quantification. Raw data were processed by RMAExpress, a GUI program to 

compute gene expression summary values for Affymetrix Genechip® data using the 

Robust Multichip Average expression summary and to carry out quality assessment using 

probe-level metrics. Gene expression profiles were obtained from exon data by RMA 

using EntrezGene-based custom CDF (http://brainarray.mbni.med.umich.edu/Brainarray). 

Using Shannon entropy calculated on expression profiles as variability measure, 30% of 

genes with less variable expression profile across considered samples were filtered out.  

Quality control of miRNA and gene chips was grounded on two main PLM-based quality 

statistics, Normalized Unscaled Standard Error (NUSE) and Relative Log Expression 

(RLE), to assess the global quality of signals in each array, on the basis of distribution of 

standard errors and of relative log of expression of the single probeset. MA plots before 

and after RMA were evaluated to identify biases associated to specific classes of signal 

intensity. IQR Limits option was used to visualize control limits (1.5*IQR above the 

upper quartile and 1.5*IQR below the lower quartile) derived based on normal boxplot 

outlier identification rules.  

 

4.2.7. Adult T-cell leukemia lymphoma dataset 

Adult T-cell leukemia lymphoma dataset (ATLL) consists of 15 matched miRNA and 

gene expression experiments deriving from peripheral blood mononuclear cells (PBMC) of 

7 ATLL patients (6 with leukemia, 1 with lymphoma) and from 4 resting and 4 stimulated 

CD4+ cells. miRNA expressions were quantified using Agilent microRNA microarrays 

(V1). Signal intensities were normalized using quantile-quantile normalization after 

substituting negative values with the lowest positive value obtained for the arrays. The 

distribution of signal intensities was then plotted to filter out microRNAs with weak signals 

having probably no biological relevance. This procedure yielded 137 microRNAs with at 

least two samples in the upper 75th percentile (corresponding to a signal intensity of 

>5.91). Gene expression data for resting and stimulated CD4+ cells (sample sets A, B, D, 

P) were obtained using Affymetrix hgu133plus2 arrays. ATLL samples were analyzed 

using Affymetrix hgu133a2 arrays as described (Pise-Masison et al., 2009). Data were 

extracted from CEL files and normalized using the RMA package for Bioconductor and 
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custom Gene-Annot-based Chip Annotation Files, Version 2.0.1 (CDF)(Ferrari et al., 

2007). Total RNA was subjected to reverse transcription and quantitative PCR to detect 

known microRNAs using Applied Biosystems Taqman microRNA assays and 7900HT Fast 

Real-Time PCR System according the manufacturer's protocol. Results were analyzed by 

relative quantification using total RNA from freshly isolated PBMC (pooled from 3 donors) 

as a calibrator and RNU44 as an endogenous control. 

 

4.2.8. SET2 cells line dataset 

SET2 cells line dataset comprises a small RNA library generated from exponentially 

growing SET2 cells (DSMZ, Braunschweig, Germany) and sequenced on Illumina GAIIx. 

Raw sequencing reads were obtained using Illumina’s Pipeline v1.5 software following 

analysis of sequencing image by Pipeline Firecrest Module and base-calling by Pipeline 

Bustard Module. Library construction and sequencing were performed at LC Sciences 

(Houston, Tx; www.lcsciences.com). 

 

 

4.3. Cluster analysis 

Hierarchical cluster analysis on microarray data was performed on gene and miRNA 

expression data to arrange gene or miRNA according to similarity in pattern of gene 

expression, or arrange biological sample according to similarity in different biological 

conditions or tissue types. Average-linkage method was used for clustering correlation 

microarray expression matrices. The object of this algorithm is to compute a dendrogram 

that assembles all elements into a single tree. For any set of n genes or miRNAs (similar 

processes was computed for microarray sample), an upper-diagonal similarity matrix is 

computed by using the metric described above, which contains similarity scores for all 

pairs of genes. The matrix is scanned to identify the highest value (representing the most 

similar pair of genes). A node is created joining these two genes, and a gene expression 

profile is computed for the node by averaging observation for the joined elements (missing 

values are omitted and the two joined elements are weighted by the number of genes they 

contain). The similarity matrix is updated with this new node replacing the two joined 

elements, and the process is repeated n-1 times until only a single element remains. 

Clustering expression data were used to see how much considered biological microarray 

samples groups together efficiently the same tissue type in the same biological condition or 

simply similar biological condition, such as normal and tumor samples(Eisen et al., 1998). 
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4.4. miRNA and gene differential expression analysis 

A Significance analysis of microarrays (SAM) was performed to identify significant 

genes in a set of microarray experiments. The input to SAM is gene expression 

measurements from a set of microarray experiments, as well as a response variable from 

each experiment. The response variable may be a grouping like untreated, treated (either 

unpaired or paired), a multiclass grouping (like breast cancer, lymphoma, colon cancer, 

etc…), a quantitative variable (like blood pressure) or a possibly censored survival time. 

SAM computes a statistic for each gene, measuring the strength of the relationship 

between gene expression and the response variable. It uses repeated permutations of the 

data to determine if the expression of any genes is significantly related to the response. 

The cutoff for significance is determined by a tuning parameter delta, chosen by the user 

based on the false positive rate. One can also choose a fold change parameter, to ensure 

that called genes change at least a pre-specified amount(Tusher et al., 2001). 

The cutoff for significance is determined by a tuning parameter delta, chosen based on the 

false positive rate (FDR). We considered significant a FDR lower than to 0.01.  

 

 

4.5. MicroRNA target predictions 

4.5.1. miRanda 

miRNA targets have been predicted applying miRanda algorithm(Enright et al., 2003a; 

John et al., 2004) on human miRNA and transcript sequences of miRBase Release 123 

and ENSEMBL Release 52, respectively. The score threshold of miRanda, associated 

with each predicted miRNA-transcript targeting relationship and depending on the 

sequence alignment and thermodynamic stability of the RNA duplex, has been set at 160. 

Finally, the correspondence between ENSEMBL_transcript and EntrezGene_ID was 

defined. 

 

4.5.2. Pita 

PITA algorithm was used to compute miRNA target predictions over up-to-date versions 

56 and 38 of ENSEMBL and RefSeq transcript sequences, respectively. The miRNA 

sequences were downloaded from mirBase version 14. Based on known transcript to gene 

correspondences, gene-centered predictions were then derived combining transcript-based 

results into a single group for each gene. In this way a gene is predicted target of a given 

miRNA if at least one of its transcripts carries predicted target site(s)(Kertesz et al., 2007). 
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4.5.3. TargetScan 

TargetScan predictions (versions 5.0 or 5.1) were downloaded from 

http://www.targetscan.org. The set of microRNA-target predictions comprises both 

conserved and non conserved sites that match the seed region of each miRNA(Friedman et 

al., 2009). 

 

 

4.6. Regulatory network reconstruction 

4.6.1. Transcriptional regulatory network 

The transcriptional regulatory network was reconstructed using ARACNe and gene 

expression signals. ARACNe utilizes information and data transmission concepts (i.e., 

mutual information and data processing inequality) to identify statistically significant co-

regulations among genes from microarray expression profiles. Mutual information and data 

processing inequality allow reconstructing gene-gene relationships which most likely 

represent either direct regulatory interactions or interactions mediated by post-

transcriptional modifiers. Briefly, the algorithm first uses the expression data to calculate 

pair wise Mutual Information (MI) through a computationally efficient Gaussian kernel 

estimator. ARACNe calculates the kernel width depending on the size and statistics of the 

dataset. The second step is the elimination of the interactions that are not statistically 

significant according to a p-value or a MI threshold and returns a series of irreducible 

statistical dependencies. The post-processing step eliminates interactions that are likely to 

be indirect. The Data Processing Inequality (DPI) theorem removes indirect regulatory 

influences that appear as direct because of a high MI score due to the presence of a 

common neighbor. An additional parameter, called DPI tolerance, can be used to 

compensate for errors in the MI estimate that might affect DPI application(Basso et al., 

2005a). The parameters of the kernel width and the Mutual Information threshold were 

calculated using MATLAB scripts. The p-value to determine the MI threshold was set at 

1e
-7

, while the DPI tolerance was set equal to 10%. A list of Transcription Factors (TF) for 

the platform HG-U133A was also imputed as a parameter to prevent the DPI from 

removing transcriptional interactions in favor of non-transcriptional ones (interactions 

between two non-TFs). 

 

4.6.2. Integrative analysis 

The integrative analysis of miRNAs and target genes expression profiles is based on the 

assumption that, at least for miRNAs acting at post-transcriptional level on mRNAs 

stability, for a given miRNA, true targets expression profiles are expected to be anti-
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correlated with that of the miRNA (Figure 6). The assumption is corroborated by the 

findings of different proteomics studies (Baek et al., 2008). It was shown that most targets 

with significantly reduced protein level also experienced detectable reduction in mRNA 

levels, indicating that changes in mRNA 

expression are reasonable indicators for 

microRNA regulation. 

This analysis combines target predictions 

with miRNAs and gene expression data 

correlation-based analysis to identify, among 

predicted target genes for each considered 

miRNA, those regulatory relationships 

significantly supported by expression data. 

In details, the procedure comprises the 

identification of miRNA target genes by 

computational predictions and compilation of 

the adjacency matrix of targeting relationships, 

and the computation of pair-wise relatedness 

of miRNAs and targets from matched 

expression matrices, to identify relationships 

supported by expression data, which could be 

used for post-transcriptional regulatory 

networks reconstruction and study. The set of 

microRNA-target relations were defined using 

a prediction algorithm as TargetScan, miRanda 

and Pita. The pair-wise Pearson correlation 

coefficient between miRNA and target genes 

expression profiles in exactly the same samples 

was calculated. We then selected as reliable 

and potentially functional the subset of 

predicted relationships associated to most negative Pearson coefficients. Different 

percentile-based cutoffs were applied, to define the groups of supported regulatory 

interactions. 

 

4.6.3. Post-transcriptional regulatory networks 

The posttranscriptional regulatory network of miRNA and genes in MM has been 

defined as a directed, bipartite graph in which miRNA-mRNA relationships are supported 

by both targeting predictions and expression data. Specifically, the network reconstruction 

required to: 

Figure 6. Assumption of integrative analysis. 

miRNAs act at post-transcriptional level on 

mRNAs stability. Thus for a given miRNA, true 

targets expression profiles are expected to be 

anti-correlated with that of the miRNA.As can be 

seen from the schema, only miRNA1 have an 

opposite behavior with genei so miRNA1-genei is 

considered a regulatory relation supported by 

expression data. 
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i) identify the miRNA target genes basing on computational predictions; 

ii) compute the integrative analysis; 

iii) reconstruct the post-transcriptional regulatory network from the regulatory relations 

supported by miRNA and mRNA expression levels obtained by integrative analysis. 

Computational prediction of miRNA targets presents significant challenges due to the 

lack of a sufficiently large group of known miRNA targets to be used as training set. As 

such, most computational algorithms for target prediction (miRanda, TargetScan, PicTar, 

PITA, RNAhybrid) result in a significant proportion of false positives, i.e. in the prediction 

of not-functional miRNA-mRNA interactions. The integrative analysis can be performed 

using a variational Bayesian model(Huang et al., 2007c) or, as in this case, through a non-

heuristic methodology based on the anti-correlation between miRNA and mRNA matched 

expression profiles(Gennarino et al., 2009; Xin et al., 2009). Genes were considered 

genuine miRNA targets only if included within the top 3% of all anti-correlated pairs. This 

selection gave rise to a final adjacency matrix S of regulatory relations supported by 

expression levels. The adjacency matrix S defined a bipartite directed network with two 

types of nodes (miRNAs and mRNAs) connected by directed edges, each representing a 

probably functional regulatory effect of a miRNA on a target gene. The same matrix S was 

used to derive a gene-only network in which genes (nodes) are connected by undirected 

weighted links and the edge weight quantifies the number of shared miRNAs regulating 

each gene pair. 

 

4.6.4. Network critical components analysis 

 The topological structure of a network can be used to identify the components (nodes or 

links) that are critical for the functioning of the system (critical components). Network 

critical components analysis has been successfully applied in different fields as 

communication or transportation. For instance, critical analysis is used to identify nodes 

that must be protected from terrorist attacks in communication networks, in social networks 

finding critical nodes can be fundamental to reduce the spreading of viruses, and in 

biological systems, this analysis can be extremely helpful to understand complex 

phenomena and to find more powerful ways to defend the system from a disease. Nodes 

and links can be removed using various techniques and different networks exhibit different 

levels of resilience to such disturbances. Networks can be perturbed simulating the deletion 

of node/links chosen at random (error removal or failure) or targeting a specific class of 

nodes/links (removal through intentional attacks). Attacks can be addressed sorting and 

removing progressively the nodes in descending order of degree or betweenness or the links 

in descending order of betweenness or range(Albert et al., 2004; Holme et al., 2002; Motter 

and Lai, 2002). The network robustness is usually measured by the size of the largest 

connected component and by the average node-node distance as a function of the 
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percentage of nodes/links removed. The method used here to identify the critical 

components of gene regulatory networks is based on an ad-hoc definition of network 

performance, rather than on local node information such as the number of ingoing or 

outgoing links. Specifically, the importance of a node is measured by the drop in the 

network efficiency caused by the removal of that node, where the network efficiency E(G) 

quantifies how efficiently the nodes of the network exchange information(Latora and 

Marchiori, 2001). The definition of E(G) requires recalling some formalism from the graph 

theory. A network can be modeled by a graph G of nodes that are tied by one or more 

specific type of interdependency. Formally, an undirected graph G=(N, L) consists of two 

sets N and L such that N≠  and L is a set of unordered pairs of element of N. The elements 

of N={n1,n2,...nM} are the nodes of the graph G while the elements of L={l1,l2,...,lK} are the 

edges. Two nodes joined by an edge are referred to as adjacent or neighboring. A graph is 

weighted when exists a function w: L→R from edges to real numbers, such that each edge 

has associated a number that represents the strength of the connection. A graph is called m-

partite if N admits a partition into m classes such that every edge has its ends in different 

classes: vertices in the same partition class must not be adjacent. When m=2, the graph is 

called bipartite. A walk from node i to node j is an alternating sequence of nodes and edges 

that begins with i and ends with j. If no node is visited more than once, the walk is called a 

path. A graph G is said to be connected if, for every pair of distinct nodes i and j, there is a 

path from i to j in G. The degree or connectivity ki of a node i is the number of edges 

incident with the node, i.e. the number of neighbors of that node. One of the most relevant 

topological characterizations of a graph G can be obtained from the degree distribution 

P(k), which is normally represented plotting the number of nodes having degree of 

connectivity k against k in a loglog scale. A decreasing linear dependency in this plot 

indicates that the network has a scale-free structure, associated with a corresponding 

power-law  (Figure 7). 
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Figure 7. Effect of node removal through error and attack in scale free (A., solid lines) and in 

random (B., dotted lines) networks. In a scale-free network (solid lines), the random removal (error) of 

even a large fraction of vertices impacts the overall connectedness of the network very little (black line), 

while targeted attack (red line) destroys the connectedness very quickly, causing a rapid drop in efficiency. 

On the contrary, in random graphs, removal of nodes through either error or attack has the same effect on 

the network performance. 

 

Graphs can be further classified as assortative if knn(k), i.e., the average degree of the 

neighbors of degree k, is an increasing function of k; otherwise they are referred to as 

disassortative. In assortative networks the nodes tend to connect to their connectivity peers, 

while in disassortative networks nodes with low degree are more likely connected with 

highly connected ones. The efficiency of G relies on the calculation of the shortest path 

lengths dij between two generic nodes i and j. In a weighted graph dij is defined as the 

smallest sum of the physical distances throughout all the possible paths in the graph from i 

to j, while in an un-weighted graph dij reduces to the minimum number of edges traversed 

to get from i to j. The maximum value of dij is called the diameter of the graph and the 

average shortest path length L is quantified as follows:  

 

(4) 

 

Supposing that every node sends information along the network, through its links, the 
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efficiency εij in the communication between node i and node j is assumed to be inversely 

proportional to their shortest distance, i.e. . It’s worthwhile noting that the 

assumption that efficiency and distance are inversely proportional is a reasonable 

approximation although sometimes other relationships might be used, especially if justified 

by a more specific knowledge of the system. By assuming  , when there is no 

path in the graph between i and j, and consistently . Consequently, the average 

efficiency E(G) of the graph G can be defined as: 

 

 
 

The definition of E(G) according to Eq.(5) avoids the divergence of L in case of 

disconnected components thus allowing the analysis of the entire network and not only of 

the biggest connected sub-graph. Since E(G) varies in the range [0,∞), it would be more 

practical to normalize E(G) in the interval [0,1]. The most natural way to normalize E(G) is 

with respect to the efficiency of a network G
ideal

 composed of all the possible 

edges:  

 

(6) 

 

Though the maximum value E(G)=1 is reached only when there is a link between each 

pair of nodes, real networks can nevertheless assume high values of E. This definition is 

valid for both un-weighted and weighted graphs and can also be applied to disconnected 

graphs. The efficiency can be evaluated on any sub-graph G’=(N’,L’) of G=(N,L), where 

G’ of G is a graph such that  and . The sub-graph of the neighbors of a given 

node i, denoted as Gi, is the sub-graph induced by Ni, i.e., the set of nodes adjacent to i. 

Given ci the node cardinality of Gi, the local efficiency Eloc is defined as the average of the 

sub-graph efficiencies E(Gi) normalized with respect to the ideal sub-graphs in which all 

the  edges are present:  

 

 
 

Since , the local efficiency Eloc quantifies the efficiency of the system in tolerating 

faults, i.e., how efficient is the communication between the first neighbors of i when i is 

removed. Graphs that have high value of Eglob and Eloc, i.e., that are very efficient both in 

their global and local communication, are defined as small-words networks. Given the 
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definition of E(G) and assuming that the efficiency is an appropriate quantity to 

characterize the average properties of a network, critical components can be identified 

considering the efficiency drop, caused by the deactivation of a component, as a measure of 

the centrality of that component. Therefore, the topological importance of a node α in a 

graph is quantified by the network relevance rα: 

 

 
 

where Gα is the graph obtained by removing node α from G, for each α= 1,…,M. The 

most critical nodes are those whose removal causes the largest drop in efficiency, i.e., those 

with the highest rα (Figure 7). Although here the focus is on the determination of the critical 

nodes, the method is of general applicability to any subset (nodes, links and combination of 

nodes and links) of G(Crucitti et al., 2004). 

 

 

4.7. MAGIA web-based tool 

MAGIA is a novel web-based tool that allows: 

to retrieve and browse updated miRNA target predictions for human miRNAs, 

based on a number of different algorithms (PITA, miRanda and TargetScan), with 

the possibility of combining them with Boolean operators,  

the direct integration through different functional measures (parametric and non-

parametric correlation indexes, a variational Bayesian model, mutual information 

and a meta-analysis approach based on P-value combination) of mRNA and 

miRNA expression data  

the construction of bipartite regulatory networks of the best miRNAs and mRNA 

putative interaction and finally and  

to retrieve information available in several public databases of genes, miRNAs 

and diseases and via scientific literature text-mining. Step-by-step tutorial pages 

and sample data sets are provided to the user to easily introduce him to the use of 

the tool. 

MAGIA is divided into two separate sections: the query and the analyses frameworks. 

The query section of MAGIA allows the user to search for target predictions of specific 

miRNAs obtained through PITA, miRanda or TargetScan or combinations thereof, setting 

cutoffs on prediction scores. Target prediction algorithms have been selected according to 

their different strategies: sequence similarity (miRanda), sequence similarity with 

conservation (TargetScan) and sequence similarity with free energy minimization (PITA). 

We run each of these algorithms on our servers to update predictions every 6 months. The 
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query output is a table including, for all considered miRNAs, the list of predicted target 

genes or transcripts with the different prediction scores according to the method(s) chosen 

by the user. The same information may be downloaded as a text file for processing and 

further elaboration. 

The analysis pipeline is composed by three different steps through which MAGIA refines 

target predictions using miRNA and mRNA gene expression data (Figure 8): 

• selection of the gene or transcript annotation (EntrezGene, RefSeq, ENSEMBL 

gene or transcript) and of the integration method or the relatedness measure; 

• choice of target prediction algorithms, their score cut-offs and Boolean 

combinations; 

• upload of two matrices representing mRNA and miRNA normalized expression 

profiles. 

MAGIA takes into account two different experimental designs: 

• mRNA and miRNA data collected on different biological samples, resulting in 

different sample sizes (hereafter called non-matched case) 

• mRNA and miRNA expression data obtained from the same biological samples 

(the matched case). 

The tool employs a meta-analysis approach based on a P-value combination in the first 

case, while one of four different measures of relatedness can be adopted for the analysis 

of matched profiles: Spearman and Pearson correlation, mutual information, and a 

variational Bayesian model. Computational intensive calculations of MAGIA analyses are 

carried out by a multicore cluster. 

 

4.7.1. Input files 

MAGIA analysis pipeline takes as input two expression matrices (in the tab-delimited 

format) with genes and miRNAs on the rows and samples on the columns. When profiles 

are matched, the names of the columns of mRNA and miRNA data sets should 

correspond exactly, while in the non-matched-case the columns labels should represent 

sample classes: samples belonging to the same class should have the same label. The first 

column of both matrices should represent miRNA and gene IDs. MAGIA allows 

EntrezGene or Ensembl IDs for genes and RefSeq or Ensembl IDs for transcripts, while 

miRNA IDs must represent miRBase-compliant mature miRNA identifiers. Expression 

matrices should be pre-processed and a filtering procedure for the removal of invariable 

(‘flat’) expression profiles is highly recommended. A series of quality checks are 

performed during the upload. 

Sample files for miRNA and gene expression, fully compliant with the user choices of 

steps 1 and 2, are also provided in this step for tutorial purposes. These sample files 
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derive from expression data publicly available at GEO database (GSE14834) (Fulci et al., 

2009). 

 

 

 
Figure 8. Work flow diagram of the three main steps of analysis pipeline performed by MAGIA web 

tool.  

 

4.7.2. Target predictions 

We have used the miRanda and PITA algorithms to compute miRNA target predictions 

over up-to-date versions 56 and 38 of ENSEMBL and RefSeq transcript sequences, 

respectively. The miRNA sequences were downloaded from mirBase version 14. Based 
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on known transcript to gene correspondences, gene-centered predictions were then 

derived combining transcript-based results into a single group for each gene. In this way a 

gene is predicted target of a given miRNA if at least one of its transcripts carries 

predicted target site(s). TargetScan predictions (version 5.0) were downloaded from 

http://www.targetscan.org. 

 

4.7.3. Computation of interaction measure 

Pearson and Spearman correlations. Correlation indicates the strength and direction of a 

linear relationship between two random variables. Parametric (Pearson) or non-parametric 

(Spearman) correlation coefficients are computed in the case of matched samples between 

gene/transcript and miRNA data. Pearson's correlation coefficient between two variables is 

defined as the covariance of the two variables (X, Y) divided by the product of their 

standard deviations:  

 
 

The Spearman correlation coefficient is defined as the Pearson correlation coefficient 

between the ranked variables. The n raw scores Xi, Yi are converted to ranks xi, yi, and ρ is 

computed from these: 

 
Tied values are assigned a rank equal to the average of their positions in the ascending 

order of the values. 

In general, non-parametric statistic has different expected values from the Pearson 

correlation coefficient, even for large samples. Since they estimate different population 

parameters, they cannot be directly compared: they generally should be viewed as 

alternative measures of association. The non-parametric coefficient should be chosen in 

case of outliers or with small number of measures; otherwise a parametric approach may be 

more appropriate. Moreover, Pearson coefficient testing requires that both variables derive 

from a bivariate normal distribution, an assumption not necessary for the Spearman 

coefficient testing. The tool computes correlation coefficients for all the predicted miRNA–

target interactions and also provides a false discovery rate (FDR, following Benjamini and 

Hochberg estimation method) for each one. 

Mutual information. Mutual information is a measure of the mutual dependence of two 

variables. The mutual information of two discrete random variable X and Y can be formally 

defined as: 
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Intuitively, it captures the information that a variable X (a gene expression profile) and a 

variable Y (a miRNA expression profile) share: how much the knowledge of one of these 

variables reduces our uncertainty about the other. Thus, the mutual information can be 

interpreted as a generalized measure of correlation, analogous to the Pearson correlation, 

but sensitive to any functional relationship, not just to linear dependencies. There are 

several possible strategies for the reliable estimation of the mutual information in case of 

finite data, each of them characterized by a systematic error due to the finite size sample 

[see (Steuer et al., 2002) for a review]. In particular, following the Kraskov and colleagues 

(2003) approach (Kraskov et al., 2004), MAGIA calculates mutual information based on 

nearest neighbor distances with k = 5. Mutual information, identifying any functional 

relationship between miRNA and gene expression profiles, does not allow the identification 

of the sign of such relationship. 

GenMir++. The variational Bayesian model, called GenMiR++ (Huang et al., 2007c) 

uses as prior information target predictions derived from one of the previous mentioned 

algorithms (e.g. PITA) and updates such information using expression matrices. It 

combines predictions with miRNA and mRNA expression profiles, under the assumption of 

anti-correlation. Under a complex model, the posterior probability of miRNA–gene 

interactions (S) is calculated, known the target predictions (C), expression matrices (X and 

Z), by integrating over nuisance variables gamma (Γ, tissue scaling) and lambda (Λ, 

regulatory weights) and other parameters in the equation,  

 
An estimate of such posterior probability is calculated through an EM algorithm. Thus 

GenMir++ could have convergence problems, particularly in case of non-sparse incidence 

matrices. 

Meta-analysis. The meta-analysis approach is suggested only in the case of non-matched 

biological samples. Given the diverse nature and number of samples between miRNA and 

gene profiles, neither correlation coefficients nor mutual information or posterior 

probabilities can be computed. MAGIA adopts in their place a meta-analyses approach 

based on P-value combination allowing, unlike other web tools, the presence of more than 

two groups. Empirical Bayes test (Smyth, 2004) (as implemented in limma package in R) is 

separately performed on miRNA and mRNA expression levels and lists of differentially 

miRNAs and genes are stored. Then, only for predicted miRNA–mRNA interactions (based 

on the target prediction algorithms the user has chosen) the inverse Chi-squared 

approach(Moreau et al., 2003) is used to combine miRNAs and genes P-values. In 

particular, in the case of a two classes experimental design, P-values of over-expressed 
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miRNAs (e.g. under-expressed in Class 1 versus Class 2) are combined with those of 

under-expressed genes (Class 1 versus Class 2) and vice versa. In the case of more than two 

classes the tool combines P-values derived from miRNAs, genes and from the test on 

Spearman correlation coefficient computed between vectors representing the average 

expression values of miRNAs and genes within each class. Only the interactions with small 

P-values (<0.1) will be considered as functional. 

 

4.7.4. Output and links to other database resources 

MAGIA reports results in a web page containing different sections. For the top 250 most 

probable functional miRNA–mRNA interactions according to the association measure 

selected by the user, the interactive bipartite regulatory network obtained through the 

analysis is reported along with the corresponding browsable table of relationships. It 

gives a hyperlink allowing the functional enrichment analysis by the DAVID web tool 

(Huang da et al., 2009) on the desired number of target genes. The tool also provides the 

complete list of the predicted interactions, ranked by statistical significance computed 

from the integrated expression data analysis. Such information is given as HTML tables 

and as two (Cytoscape-compliant) flat files for network reconstruction. Each mRNA, 

miRNA or miRNA–mRNA interaction can be further investigated by the user and used 

for different queries. In particular, each gene is linked to EntrezGene (Maglott et al., 

2005), and ArrayExpress Atlas (Parkinson et al., 2009) databases, each miRNA is linked 

to miRNA2disease (Jiang et al., 2009) and miRecords (Xiao et al., 2009b). Furthermore, 

to allow efficient and systematic retrieval of statements from Medline, MAGIA directly 

links results to PubFocus (Plikus et al., 2006) and EbiMEd (Rebholz-Schuhmann et al., 

2007) for a text-mining search using genes and miRNAs as keywords. 

 

4.7.5. Bi-partite networks visualizations 

The miRNA and gene bipartite network is rendered using Graphviz 

(http://www.graphviz.org/) open source graph visualization software. Each node of the 

network can be selected and the user is directly linked to the corresponding miRNA/gene 

full interactions results. Thus the user is allowed to ‘walk through the network’ following 

miRNA and gene interactions. The complete list of significant interactions can be 

downloaded as a tab-delimited text file that can be imported into Excel or Cytoscape, to 

allow further processing. 
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4.8. Analysis of sister miRNA pairs expression ratio.  

For each sister miRNA pair represented in at least one of the five considered datasets, we 

calculated the per sample log2(ratio) between expression values of sister miRNAs (e.g. 

miR-X/miR-X*, miR-X-5p/miR-X-3p according to miRBase annotation). Matrix values 

were standardized and used for cluster analysis of samples and of miRNA pairs, using 

Euclidean distance and average clustering. Then, for each dataset we considered not 

expressed in a given sample those miRNAs associated to expression values lower than the 

median of the dataset expression matrix (i.e. low values were set to 0). We calculated the 

per sample log2(ratio) between expression values of sister miRNAs as indicated before, but 

miRNA pairs expressed in alternative way in a given sample were associated to extreme 

values. When only one out of two sister miRNAs was expressed over the threshold, 

log2(ratio) values (generating ±∞) were artificially set to maxLog(ratio)+0.1, if only the 

first miR is expressed, or to minLog(ratio)-0.1 in the opposite case. Values of log2(ratio) of 

samples in which both miRNAs of the pair are not expressed were not considered for the 

clustering analyses. 

 

 

4.9. Statistical analysis 

Conventional statistical procedures were applied, where appropriated using standard 

packages for R software. Wilcoxon rank-sum tests was used to evaluate the length of host 

gene in comparison with all human genes. This is a non-parametric statistical hypothesis 

test for assessing whether one of two distribution samples of independent observations 

tends to have larger values than the other. Studend’s t-test was applied with independent 

samples having a standard normal distribution. In particular this was performed for test 

the difference between the expression level of new and novel miRNAs and moRNAs in 

SET2 cells. Shannon Entropy was used for filter out invariant miRNAs or genes in the 

expression datasets. Entropy is a measure of the uncertainty associated with a random 

variable and in particular Shannon entropy quantifies the expected value of the 

information contained in different type of data. 

 

 

4.10. New miRNA target prediction 

The prediction of target genes of novel miRNAs, discovered by small RNA deep 

sequencing constitutes one of the final parts of a complex analysis employing for data 

handling and analysis summary in a flow-chart outline of study procedures (Figure 9). 
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Figure 9. Computational pipeline. A computational pipeline was set up using the Scons build tool 

(http://www.scons.org/) as skeleton. It includes third party libraries and programs and in house developed 

code and aims to analyze in a reproducible way short RNA sequencing data using up to date metadata from 

human genome sequence and miRBase (http://www.mirbase.org/). As shown in Figure S1, the pipeline 

includes raw data pre-processing, different filtering steps before and after mapping to reference sequences, 

as well as methods for known miRNAs quantification, isomiR characterization, and for miRNA and other 

short RNA discovery. 

 

Genes target of new miRNAs were predicted by using TargetScan run locally using as 

input new miRNA sequences and the set of 3’UTR sequences of all human transcripts and 

orthologs in 23 species (TargetScan database v5.2). TargetScan groups miRNAs (intra- and 

inter species) in a family if they have conserved 8mer and 7mer sites representing the seed 
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region, required by the prediction algorithm. For each novel miRNA, a family was created 

aggregating to all known miRNAs the novel miRNA satisfying a custom similarity 

condition. Specifically, for each novel miRNA we performed a pair-wise alignment with all 

known miRNAs, using ClustalW2 algorithm, from above-mentioned species set. If the 

number of matches between the 5’ regions of miRNA pairs exceeded the half-length of the 

shorter miRNA minus 3, the novel and the known miRNAs were included in a custom 

family. The process was repeated iteratively. Then for each custom family we performed a 

multiple alignment with ClustalW2 to find the common substring of 7nt in the 5’of all 

miRNAs sequences, which was used as seed sequence for target predictions.



 

 

 



45 

 

5. Results 
 

 

 

5.1. Identification of microRNA expression patterns and definition of a 

microRNA/mRNA regulatory network in distinct molecular groups of 

multiple myeloma  

Multiple myeloma (MM) is a malignant proliferation of bone marrow (BM) plasma cells 

(PCLs), characterized by a profound genomic instability involving both numerical and 

structural chromosomal aberrations of potential prognostic relevance.1 Nearly half of MM 

tumors are hyperdiploid (HD) with multiple trisomies of nonrandom odd-numbered 

chromosomes and a low prevalence of chromosomal translocations involving the 

immunoglobulin heavy chain (IGH) locus at 14q32 and chromosome 13 deletion1; the 

others are nonhyperdiploid (NHD) tumors often showing chromosome 13 deletion, 1q gain, 

and IGH translocations with the most frequent partners being 11q13, 4p16, 16q23, 20q11, 

and 6p21. The deregulation of at least one of the cyclin D genes is observed in almost all 

MM cases and, in combination with recurrent IGH translocations, has been proposed for a 

molecular classification of MM called translocation/cyclin (TC) classification. The 

occurrence of specific transcriptional patterns associated with the molecular subgroups and 

major genetic lesions of MM has been extensively described in several studies by us and 

others(Biasiolo et al., 2010; Lionetti et al., 2009). 

 

5.1.1. Global miRNA expression profiling in MM patients 

MiRNA profiles were analyzed by high-density microarrays, specific for 723 human 

miRNAs, in 40 patients representative of the 5 TC groups (supplemental Table S 1), and 

in PCLs from 3 NCs. To determine whether global miRNA profiling could distinguish the 

molecular groups, we performed an unsupervised analysis using conventional hierarchical 

agglomerative clustering: the 43 samples were described by 74 miRNAs whose average 

change in expression levels varied at least 2-fold from the mean across the dataset. The 

most striking finding was that all of the TC4 patients were tightly clustered (Figure 10, 

gray cluster, P < .001), as were 4 of 5 TC5 cases (red cluster, P < .001). The TC2 cases 

were partially grouped (blue cluster, P < 0.005), whereas the TC1 and TC3 samples were 

scattered along the dendrogram. The NCs were clearly grouped in a distinct sub-branch. 
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Figure 10. Unsupervised analysis of miRNA expression profiles. Hierarchical clustering of the samples 

using the 74 most variable miRNAs (patients in columns, miRNAs in rows). The color scale bar represents 

the relative miRNA expression changes normalized by the standard deviation. The patients' molecular 

characteristics are shown above the matrix; n indicates unavailable information. Specific characteristics are 

enriched in colored sub-branches. 

 

Next, multiclass analysis allowed identifying a set of 26 miRNAs showing highly 

significant differential expression (at q value = 0) across the 5 TC groups (Table 1).



47 

 

Table 1. List of the 26 differentially expressed miRNAs identified by a high stringent supervised 

multiclass analysis between TC1, TC2, TC3, TC4, and TC5 MM groups (SAM, q-value 0). The 

chromosome cytoband at which the corresponding miRNA gene/s is/are localized is indicated. miRNAs are 

ordered according to the SAM score(d). The contrast value for each miRNA in each class is also shown 

(positive score means positive correlation)  

miRNA 
miRNA gene/s 

localization 
Score(d) 

contrast-

score 1 

contrast-

score 2 

contrast- 

score 3 

contrast-

score 4 

contrast-

score 5 

miR-125a-5p 19q13.33§ 0.7472 -1.4968 -1.8431 -1.7395 8.1205 -1.8574 

let-7e 19q13.33§ 0.6708 -1.2939 -1.4103 -1.5334 6.4867 -1.1717 

miR-99b 19q13.33§ 0.4704 -1.3015 -1.2546 -1.2724 5.8095 -0.9912 

miR-150 19q13.33 0.3609 -0.7045 -0.6055 -0.4235 -0.5503 4.0117 

miR-133b 6p12.2 0.2887 -0.5039 -0.3723 -0.5199 -0.5128 3.3054 

miR-99a 21q21.1§ 0.2812 0.1671 -1.2936 -0.7954 0.9321 2.4131 

miR-133a 18q11.2/20q13.33§ 0.2756 -0.7064 0.2715 -0.9625 -0.6040 3.3067 

miR-222 Xp11.3§ 0.2625 -1.1590 1.0105 -0.4665 1.5522 -1.2681 

miR-361-3p Xq21.2 0.2482 1.7843 -1.0305 -0.9277 0.2793 0.1283 

miR-221 Xp11.3§ 0.2441 -1.0911 0.5539 -0.2468 1.7780 -1.1887 

miR-155 21q21.3 0.2423 -0.3002 -0.3749 -0.3554 -0.5491 2.6985 

miR-221* Xp11.3§ 0.2394 -0.9400 0.8958 -0.6144 1.5611 -1.1791 

miR-874 5q31.2 0.2340 -0.8797 1.6302 0.1426 -0.8693 -0.7167 

miR-125b 11q24.1/21q21.1§ 0.2267 -0.1313 -1.0237 -0.4915 0.8975 1.9118 

miR-582-5p 5q12.1 0.2163 1.8273 -0.7122 -0.6474 -0.4508 -0.0684 

let-7c 21q21.1§ 0.2155 0.1471 -0.9872 -0.6295 0.7477 1.7960 

miR-1 20q13.33§/18q11.2 0.2124 -0.4974 -0.1322 -0.6193 -0.5520 3.0473 

miR-155* 21q21.3 0.2004 -0.1358 -0.4634 -0.4272 -0.3900 2.4862 

miR-365 16p13.12/17q11.2 0.1996 0.2296 -1.0822 -0.4609 1.2668 0.8072 

miR-1237 11q13.1 0.1968 -0.4815 1.4353 -0.6621 -0.6048 0.0346 

miR-512-3p 19q13.41 0.1950 -0.3898 1.4555 0.1524 -0.6234 -1.6107 

miR-940 16p13.3 0.1943 -0.7961 1.3778 -0.2156 -0.3388 -0.4601 

miR-30e* 1p34.2 0.1943 1.5317 -0.9238 -0.3565 -0.2639 0.1017 

miR-34b* 11q23.1 0.1921 -0.3151 -0.2336 -0.3820 -0.3134 2.1606 

miR-933 2q31.1 0.1897 -0.4687 1.4930 -0.5137 -0.6568 -0.2981 

miR-1226* 3p21.31 0.1883 -0.9248 1.0605 0.7737 -0.9275 -0.5508 

 

As shown in Figure 11A, all of the TC groups except TC3 were characterized by the up-

regulation of specific miRNAs. In particular, 10 (38%) miRNAs (miR-150, miR-133b, 

miR-99a, miR-133a, miR-155, miR-125b, let-7c, miR-1, miR-155*, and miR-34b*) were 

expressed at higher levels in TC5 than in the other classes, 7 (27%) in TC4 (miR-125a-

5p, let-7e, miR-99b, miR-222, miR-221, miR-221*, and miR-365), 6 (23%) in TC2 (miR-

874, miR-1237, miR-512-3p, miR-940, miR-933, and miR-1226*), and 3 (11%) in TC1 

(miR-361-3p, miR-582-5p, and miR-30e*). Notably, miR-125a-5p, let-7e, and miR-99b, 

which were associated with the highest scores in the supervised analysis and 
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overexpressed specifically in the TC4 samples, belong to a cluster at 19q13.33, whereas 

mir-99a, let-7c, and mir-125b-2, highly expressed in the TC5 cases, belong to a 

paralogous cluster at 21q21.1. Figure 11B shows the 40 MM samples clustered according 

to the expression profiles of the 26 miRNAs, suggesting their capacity to drive TC 

distribution into separate branches. To test the correctness of the obtained signature and 

its capability to discriminate the 5 TC groups, we additionally tested the predictive power 

of the 26 miRNAs using linear discriminant analysis for classification of multivariate 

observations. The procedure led to confirm the accuracy of the identified signature, at a 

percentage of an overall classification rate of 89.3%: specifically, all TC1, TC4, and TC5 

samples were classified correctly, whereas TC2 and TC3 cases showed a 

misclassification error of 32.8% and 11.1%, respectively. 

 
Figure 11. Identification of miRNA signatures characterizing TC classes. (A) Heatmap of the 

differentially expressed miRNAs in MM patients stratified into the 5 TC groups. (B) Dendrogram of the 40 

MM samples clustered according to the expression profiles of the 26 miRNAs. 
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We also investigated the differential miRNA expression on the basis of the occurrence of 

other recurrent chromosomal alterations, such as 1q gain and 13q and 17p deletions, and 

identified several differentially expressed miRNAs, none of which was located in the 

involved chromosomal region. Similarly, comparison of the HD and NHD cases revealed 

a set of up-regulated miRNAs only in the latter. Some of the miRNAs identified in these 

analyses were the same as those found in IGH-translocated patients, in all likelihood 

because of their representativeness within 1q gain, del(13), del(17), and NHD cases 

(Figure 12). 

 

 
Figure 12. Identification of miRNA signatures characterizing distinct MM genetic subgroups. 

Supervised analyses identifying the miRNAs that are differentially expressed in MM patients harboring: 

(A) gain/amplification of the 1q arm, (B) del(13q14), (C) deletion of 17p, and (D) hyperdiploidy. 

 

5.1.2. Integrative analysis of miRNA/mRNA expression and reconstruction of a 

regulatory network in MM 

The integrative analysis of miRNA/mRNA expression profiles allows reconstructing a 

network of functional interactions occurring in MM from the panel of potential regulatory 

relationships predicted from sequence information. Our integrative approach assumes that 

the final effect of a truly functional interaction between a miRNA and its predicted 

mRNA targets can be seen as a pair of anticorrelated expression profiles. Thus, the set of 

MiRanda predicted targeting relationships was refined selecting those more strongly 

supported by the miRNA and mRNA expression data. The entire procedure led to the 

identification of 23 729 regulatory relationships, namely, anticorrelation, involving 628 

miRNAs and 6435 predicted target genes, as approximately 47% of the genes associated 
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with an expression profile were not targets of any of the considered miRNAs and 93 

miRNAs (13%) were not significantly anticorrelated with any target gene. The data from 

the integrative analysis were used to reconstruct a bipartite direct miRNAs/mRNAs 

regulatory network. The number of target genes per miRNA ranged from 1 to 440 

(average, 34; mean, 3.7 miRNAs per gene). 

Various subnetworks can be derived from the global identified network, as those 

accounting for the targeting relationships of specific miRNA signatures associated with 

distinct TC groups. 

 
Figure 13 Probably functional regulatory effects (represented by direct edges) of miRNAs up-

regulated in t(4;14) cases (green nodes) to their target genes (orange nodes). The network-based frame 

allows visualization of possible post-transcriptional co-regulated groups of genes and of groups of miRNAs 

sharing one or more target genes. 

 

Figure 13 reports the subnetwork of the t(4;14) miRNA signature, i.e., one of the most 

consistent and specific subgroups of our dataset. The network of t(4;14) consists of 7 

miRNAs and 289 anticorrelated targets, with the number of targets per miRNA ranging 

from 1 to 113, and approximately 29% of the genes being targeted by at least 2 miRNAs. 

Interestingly, 3 genes are commonly regulated by 5 miRNAs (CBFA2T2, core-binding 

factor, runt domain, α subunit 2, translocated to, 2; PPP1R16B, protein phosphatase 1, 
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regulatory inhibitor subunit 16B; and GOSR2, Golgi SNAP receptor complex member 2). 

Functional enrichment analysis of anticorrelated targets revealed various overrepresented 

biologic processes, including chromosome segregation, protein polyubiquitination, cell 

cycle regulation, and unfolded protein response. Interestingly, a comparison between the 

identified supported miRNA target genes and mRNAs down-regulated in the t(4;14) cases 

(as identified in a larger proprietary dataset of 132 MMs, data not shown) highlighted that 

the miRNA targets were significantly enriched in down-regulated genes (P < 0.001). 

Similarly, subnetworks were derived considering the sets of miRNAs differentially 

expressed in TC5 and TC1 groups (supplemental Table S 2). 

 

5.1.3. Critical analysis of transcriptional and post-transcriptional regulatory 

networks 

Network analysis has emerged as a powerful approach to understand complex 

phenomena and organization in social, technological and biological systems. In particular, 

it is increasingly recognized the role played by the topology of cellular networks, the 

intricate web of interactions among genes, proteins and other molecules regulating cell 

activity, in unveiling the biological mechanisms underlying the physiological states of 

living organisms. Critical analysis of network components has been applied to inspect the 

transcriptional and post-transcriptional regulatory networks reconstructed from mRNA and 

microRNA expression data of multiple myeloma (MM) samples. Specifically, the 

importance of a gene as a putative regulatory element has been assessed calculating the 

drop in the network performance caused by its deactivation instead of quantifying its 

degree of connectivity.  

ARACNe inferred a transcriptional network with 9666 nodes (i.e. genes) and 86846 

edges (i.e. interactions) from the MM158GE dataset. The topological characteristics of the 

network are reported in Table 2, in terms of number of nodes, number of edges, maximum 

kmax and average kmean connectivity (k being the degree of a node, i.e. the number of its 

interactions), diameter (representing the maximum value of dij) and global and local 

efficiencies. 

 

Table 2. Metrics of transcriptional and post-transcriptional networks 

NETWORK TYPE Nodes (M) Edges (K) kmax kmean Diameter Eglob Eloc 

Transcriptional 9666 86846 219 17.96 8 0.279 0.150 

Post-transcriptional 6435 909324 1811 282.62 8 0.611 0.866 
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The connectivity distribution shows a power-law tail suggesting that the underlying 

structure of the network is scale-free (Figure 14A). At low connectivity values (k<11), 

the degree distribution loses its linear progression probably as a consequence of the 

limited number of genes. The relationship between the average connectivity knn of the 

neighbors of a node and the node connectivity suggests an assortative behavior of the 

network, i.e., the nodes tend to connect with nodes with a similar connectivity thus partly 

implying a hierarchical structure of the network (Figure 14B). Ranking the nodes 

according to their connectivity allowed indentifying 27 hubs, i.e. genes with more than 

100 interactions (data not shown). The miRNA-mRNA integrated analysis resulted in a 

post-transcriptional gene network with 6435 nodes (genes) and 909324 weighted edges. 

The network was reconstructed first refining the predicted targeting relationships of 

MiRanda through the selection of those predictions more supported by miRNA-mRNA 

expression data (the 3% most highly anti-correlated miRNA-gene pairs). This 

corresponded to 23729 regulatory relations involving 692 miRNAs and 6,435 target 

genes. It’s worth noting that about 48% of genes associated to an expression profile 

resulted not to be real target of any considered miRNA and 9 miRNAs were not detected 

as sufficiently active on any target gene. Then, the remaining 692 miRNAs and 6,435 

target genes were employed to reconstruct a bipartite directed miRNAs-mRNAs 

regulatory network, representing the probably functional regulatory effects of all these 

miRNA to their targets in MM. The number of target genes per miRNA ranges from 1 to 

440 (average 33.3 with a mean value of 3.7 miRNAs per gene). Finally, a weighted post-

transcriptional network of 6435 genes was extracted from the bipartite miRNA-mRNA 

regulatory network with the weight of an edge representing the number of functional 

interactions with microRNAs shared by the couple of connected genes. The topological 

characteristics of the network are reported in Table 1. Similarly to the transcriptional 

network, the connectivity distribution and the relationship between average connectivity 

knn of the neighbors of a node and the node connectivity suggest a scale free, assortative 

structure (Figure 14C and Figure 14D). 

The critical nodes of both the transcriptional and post-transcriptional regulatory networks 

have been determined by the static analysis of error and attack tolerance. The drop in the 

network efficiency caused by the node removal (i.e., the node relevance rα as defined in Eq. 

(8)) has been used as the criteria to determine the importance of a node. The critical 

analysis has been applied to the transcriptional network, to the post-transcriptional one, 

and, for testing the robustness of results, to a random graph(Crucitti et al., 2003). The 

random network has been constructed starting from an initial condition of M nodes and no 

edges and then adding K edges between pairs of randomly selected nodes, where M and K 

were the same as in the transcriptional network. 
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Figure 14. Connectivity properties of transcriptional (A. and B.) and post-transcriptional (C. and D.) 

networks. A. Connectivity distribution P(k) of nodes with a specific number of incident edges (degree of 

connectivity k) in the transcriptional network. The connectivity distribution shows a power-law tail 

suggesting a scale-free structure of the network. B. Relationship between the average connectivity knn of 

the neighbors of a node and the node connectivity k. The linear trend suggests an assortative behavior of 

the transcriptional network. C. Same as A. for the posttranscriptional network. D. Same as B. for the post-

transcriptional network. 

 

Figure 15A and Figure 15B show the global efficiency for the transcriptional scale-free 

network and for the random graph (both with M=9666 nodes and K=86846 edges) as 

functions of the number of removed nodes through efficiency-based attacks (i.e., attacks 

performed removing nodes with the highest efficiency; red line) and random removals 

(errors; black line). The true transcriptional network shows a different behavior with 

respect to attacks and errors (Figure 15A). The removal of ~30% of nodes in a targeted way 

(attack) reduces the network efficiency to about half the initial value and removing ~60% 

of the nodes destroys completely the system. Instead, when removing nodes randomly 

(error), the drop of the network global efficiency shows a linear dependency with the 

number of removed nodes and even for high value of removals (>60%) the system 

maintains a considerable efficiency (Figure 15C). The fact that removing specific nodes 

causes a rapid drop in the capability of the system to communicate further supports the 

scale-free structure of the regulatory graphs and proves the existence of a discrete number 

of critical components, i.e. of nodes responsible for the specific structure of the network. 

As far as the random graph is concerned (Figure 15B and Figure 15C), differences of 
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tolerance to attacks and to errors are much less pronounced. In this case, in fact, there is no 

substantial variability in the efficiency and the removal of a node in a targeted or in a 

random way produces similar, though not equal, behaviors. 

 

 
Figure 15. Global efficiency E(G) as a function of the number of removed nodes. In both the cases, the 

graphs were composed of M=9666 nodes and K=86846 edges and the node removal simulated by errors 

(black line) and efficiency-based attacks (red line). A. Transcriptional network generated by ARACNe using 

gene expression data from the MM158GE dataset. B, Random graph. C. Difference of tolerance to attacks and 

to errors (i.e., difference between the drop in efficiency caused by efficiency-based attacks and error node 

removals) for true transcriptional (unbroken line) and the randomly generated networks (broken line). 

 

 

 

The analysis of critical components revealed that, in the transcriptional and post-

transcriptional networks, critical nodes are not limited to hub genes and that also genes with 

a limited number of connections can be critical for the structure of the network. Figure 16 

reports the comparison between the node rankings calculated according to node degree (k) 

and node criticality (rα) in the random, transcriptional, and post-transcriptional networks. 

As expected, this comparison indicates that i) in random network there is no significant 

Figure 16. Comparison between the rank according to node degree k (rank degree) and the rank 

given by criticality rα (rank criticality) for the nodes of A. random, B. transcriptional, and C. post-

transcriptional networks. 
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difference between node degree and node criticality (Figure 16A) and ii) the vast majority 

of hub genes are critical nodes, i.e., the nodes whose removal causes a large drop in global 

efficiency correspond to the most connected genes (Figure 16B and Figure 16C). 

Nevertheless, there exist a fraction of nodes that are characterized by a higher criticality 

value than expectable according to their degree. These nodes, even if characterized by a 

low node degree, are indeed critical and would have been disregarded as putative regulatory 

targets due to their limited number of connections. For instance, in the MM transcriptional 

network, the B cell linker gene (BLNK) emerged as one of the most critical genes although 

being connected to only 34 other nodes (as compared to hubs characterized by >100 links). 

BLNK is known to be involved in normal B-cell development and deficiency in this protein 

has been shown in some cases of pre-B acute lymphoblastic leukemia, suggesting its 

putative role as a tumor suppressor gene. A search in the network for putative targets of 

BLNK allowed identifying 8 genes that, once ranked according to the mutual information, 

indicated CDKN1B (cyclin dependent kinase inhibitor, p27 kip1) as the most strongly 

connected target. This interaction was confirmed by the same analysis conducted on 

another MM dataset (Chng et al., 2007); data not shown) and by recent experimental 

evidences, which reported p27 kip1 induction by BLNK trough JAK3 (Nakayama et al., 

2009). Unfortunately, JAK3 was not present in the datasets used for the network 

reconstruction and thus this evidence could not be further confirmed. To integrate the 

results of the critical analyses, a list of 5145 non redundant genes/nodes represented in both 

transcriptional and post-transcriptional networks was compiled and used to select, in each 

network, the top 1% critical nodes and the top 1% most connected nodes (hubs). The 

intersections of such lists could help clarifying the role of nodes, which are critical in terms 

of network efficiency, although being not highly connected (Figure 17). In particular, when 

comparing the lists of top 1% critical genes for the two networks, 2 genes emerged as 

critical for both transcriptional and post-transcriptional regulation, i.e. CHRNA4 

(cholinergic receptor, nicotinic, alpha 4) and TMX4 (thioredoxin-related transmembrane 

protein 4), both known to be expressed in B cells and the latter involved in B cells 

activation and in cancer. Interestingly, CHRNA4 shares, as post-transcriptional regulators 

supported by expression data, two miRNAs (i.e., hsa-miR-15a* and hsa-miR-30c-1*) that 

regulate also ELAVL3 and MLXIPL, two genes which are hubs and critical in the 

transcriptional and post-transcriptional network, respectively. Both miR-15a and miR-30c 

are differentially expressed in peripheral blood cells (Merkerova et al., 2008) and the 

presence of a MYB/miR-15a auto-regulatory feedback loop is of potential importance in 

human hematopoiesis (Zhao et al., 2009). In particular, miR-15a expression inversely 

correlates with MYB expression in cells undergoing erythroid differentiation and the 

overexpression of miR-15a blocks both erythroid and myeloid colony formation in-vitro. 
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Figure 17. Venn diagram of critical and hub nodes in transcriptional and post-transcriptional 

networks. Venn diagram showing the intersections of four sets: CR TR (top 1% critical nodes in the 

transcriptional regulatory network), HUB TR (1% most connected nodes, hubs, in the transcriptional 

regulatory network), CR PTR (top 1% critical nodes in the post-transcriptional regulatory network) and 

HUB PTR (1% most connected nodes, in the post-transcriptional regulatory network). 

 

5.2. miRNAs modulation in colon cancer and metastasis development 

and its impact on regulatory networks and pathways 

The association between abnormal expression levels of miRNAs colon cancer has been 

mainly demonstrated in primary tumors. More recently ability of specific miRNA to 

promote or inhibit metastasis has been reported. Non-overlapping sets of oncomirs, tumor 

suppressor miRs and metasta-miRs have been found or proposed by different studies. 

 

5.2.1. miRNA and genes expression in normal colon, colon carcinoma and liver 

metastasis samples 

Out of 55 patients, evaluable samples from 46 patients, whose characteristics are 

described in Table 3, was obtained. For each patient, colon primary tumor (T), adjacent 

normal tissue (N), and tissue from liver metastases (M) were collected and used for exon 

and miRNA chips hybridization, respectively. 

After quality control analyses, a total of 78 and 80 samples constituted the final miRNA 

array datasets for miRNA and gene respectively  

miRNA dataset comprise 23 N, 31 T, 24 M, including 24 samples pertaining to 8 cases 

with three samples per patient (primitive tumor, metastasis and normal mucosa from the 

same patient). Thus we obtained expression profiles of 847 miRNAs in 78 samples 

(normal colon, colon carcinoma and liver metastasis samples). Only miRNAs detected in 
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more than 20 samples were considered for the following analyses obtained a total of 309 

miRNA considered for the following analyses. 

Gene dataset comprise 23 N, 30 T, 27 M, including 27 samples pertaining to 9 cases with 

three matched samples (primitive tumor, metastasis and normal mucosa from the same 

patient). Out of 22,517 genes expression profiles obtained in 80 samples only a subset was 

selected, according to expression level and informativity. Therefore by filtering out 30% of 

genes with poor expression profile variability, calculated using Shannon entropy as a 

variability measure, 15,761 genes with moderately to highly variable expression profile 

were considered for subsequent analyses. 

Considering miRNAs and genes expression experiments, we obtained a set of 77 samples 

(23N, 29T, 25M) with miRNAs and genes expression data from the same biological 

sample. 

Table 3. Patient data. 

CHARACTERISTICS 

No of patients (n) 46 
Age (years, mean ± s.d.) 60,7±10,2 

 
Sex 

Female 17 
Male 29 

 
Localization of tumor 

Cecum 3 
colon ascendens 8 
colon transversum 2 
splenic flexura 1 

colon descendens 3 
colon sigmoideum 17 

Rectum 9 
Colon 3 

 
Stage 

 
IV 
 

 
Metastasis 

Synchronous 39 
Metachronous 7 
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Table 4. Sample set description for miRNA and gene array datasets. Both for miRNA and gene array 

samples, column three indicates the number of patients for which we obtained paired data for different 

tissue types combinations; last column reports the total number of samples for each tissue type. 

 
Array Match type Number of patients Tissue type Number of samples 

m
iR

N
A

 

N-T-M 8 
N 23 

N-T 7 

T-M 8 
T 31 

M-N 2 

N 6 
M 24 

T 8 

M 6 
Total 78 

Total 45 

G
en

es
 

N-T-M 9 
N 23 

N-T 5 

T-M 8 
T 30 

M-N 3 

N 6 
M 27 

T 8 

M 7 
Total 80 

Total 46 
 

5.2.2. Informativity of miRNAs and genes for samples classification and 

variability in the N-T-M transitions 

Heatmap and samples dendrograms in Figure 18 show the results of unsupervised 

hierarchical cluster analysis performed in parallel using selected microRNAs and genes, 

respectively. 

According to both miRNAs and genes expression data, normal samples cluster together 

and are relatively well separated from tumor/metastatic samples. miRNA profiling has a 

higher capability to separate T and M, that partially mix in both cases. We also evaluated 

the distance of samples belonging to the same patient. The color-coding used for heatmap 

columns annotation refers to samples matching per patient: triples and couples of samples 

from the same patient are shown in the same color. Apparently, a considerable per-patient 

pairing of T and M samples is observed in both dendrograms, which is more evident when 

samples are classified according to gene expression data. (20% and 28% of per-patient 

sample pairing, in miRNA and gene heatmap respectively). In other words, in 25% of 

patients, the M tends to be more similar to the T from which it derives, rather than to the M 

samples of other patients. Besides, the few N samples cluster together with T and M 

samples derived from the same patient. 
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Figure 18 Sample classification and heatmap based on 309 miRNAs (top panel) and 15,761 genes 

(bottom panel) expression profiles. In both panels, color-coding of samples reported in three different 

lines refers to different information. First line indicates tissue type (normal colon, primary tumor and 

metastasis) as shown in the legend. The two lines below indicate the per-patient matching of samples, 

separately for triples (upper line) and couples (lower line) of samples from the same patient (i.e. samples 

from the same patient are in the same color). 

 

To further explore miRNA expression variability in the two transitions from normal 

tissue (N) to primary tumor (T), and from tumor to metastasis (M), we considered the 

number of miRNAs and of genes resulting up-, down-modulated or invariable, using a 

simple fold-change 1 criterion, per each contrast, applied to mean values per miRNA (per 

gene) calculated on all available data, for the three sample classes.  
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Figure 19 shows two alternative patterns of miRNA and gene expression variation in the 

N-T-M progression: i. miRNAs/genes that are up- or down-modulated in the N-T transition 

and then remain basically stable in the T-M transition; ii. miRNAs/genes invariant in the N-

T transition, but modulated in the T-M transition. This suggests that most expression 

variation takes place in the N vs T transition. Almost 100% of miRNAs modulated in the 

N-T transition are not modulated after metastasis development, where 4% of invariant 

miRNAs in the N-T transition are modulated in the metastasis phase. 93% of genes 

modulated in the first transition remain invariant in the second, so a not-negligible fraction 

of genes is modulated in both transitions. On the other hand, the percentage of genes 

modulated only in the T-M transition is 0.2%.  

 

 
Figure 19. miRNA and gene expression variation in the N-T-M progression. Figure shows two patterns 

of miRNA and gene expression variation in the N-T-M progression: i. miRNAs/genes that are up- or down-

modulated in the N-T transition and then remain basically stable in the T-M transition; ii. miRNAs/genes 

invariant in the N-T transition, but modulated in the T-M transition. 

 

5.2.3. Differentially expressed miRNAs 

Differentially expressed miRNAs (DEMs) were identified in two different types of pair-

wise group comparisons. First two-class unpaired test was performed to identify differences 

in miRNA expression between groups of normal mucosa (N), primary colon tumor (T) and 

liver metastases (M) samples (Table S 3). The cutoff for significance is determined by a 
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tuning parameter delta, chosen based on the false positive rate (FDR). We considered 

significant a FDR lower than to 0.01. Second two-class paired test compares groups of 

samples matched per patient (e.g. N vs T samples matched per patient) with FDR threshold 

lower 0.01 (Table S 4). The size of considered datasets in the two types of comparisons is 

considerably different. The whole set of samples with miRNA expression data is 

considered in unpaired tests (e.g. all N vs all T samples), while different samples subsets 

matched by patient are used for different paired comparisons (e.g. the subset of N vs T 

samples, with N and T coming from the same patient). 

Respectively 62, 63 and 11 DEMs were identified in T vs N, M vs N and M vs T 

comparisons, using the unpaired but large dataset. Besides, 34, 38 and 5 DEMs were found 

respectively in T vs N, M vs N and M vs T comparisons, using paired but smaller datasets. 

Figure 20 top panels summarize, both for paired and unpaired design, the numbers of DEM 

per contrast, and intersections thereof.  

The significantly (about six times) 

lower number of DEMs observed in 

the M vs T unpaired contrast, as 

compared with corresponding T vs N 

and M vs N contrasts, indirectly 

indicates the similarity between tumor 

and metastatic tissue. Nevertheless, 

considering paired M vs T dataset, at 

least five miRNAs expression is 

significantly different between 

primitive tumor and the corresponding 

liver metastasis of the same patient. 

The upper part of Figure 3 shows 

DEM common paired and unpaired 

design, for the three contrasts. It is 

worth note that the comparison of 

paired and unpaired contrasts 

between the same tissue types is 

mainly descriptive, since a direct comparison of absolute DEM numbers is challenged by 

different sample sizes, affecting calculations of differential expression p- and q-values of. 

However, the majority of miRNAs resulting DEM according to the paired test were found 

also with unpaired test conducted on the larger dataset. A group of 53 miRNAs were 

common in at least two comparisons. Among them, 25 were under- and 26 over-expressed. 

Two miRNAs do not follow the same trend in the comparisons: miR-100 and mir-99a, both 

putative tumor suppressors, are under-expressed in T vs N comparison, and over- expressed 

in M vs T comparison. miR-10b, that is DEM in the three comparisons, decreases gradually 

Figure 20. Venn diagrams of intersections among DEM 

obtained in different contrast and with different 

methods. 



62 

 

in the N, T and M series. 

 

5.2.4. RT-PCR miRNA expression validation 

A key issue for evaluating results robustness is the agreement of expression estimations 

obtained by array and qRT-PCR techniques. The goodness of array-based results was tested 

with two strategies using: i. qRT-PCR on the same RNA samples and ii. on an independent 

set of patients. Quantitative RT-PCR analysis was performed using TaqMan MicroRNA 

Assays (Applied Biosystems Technologies, Milan, IT) in all 78 samples constituted the 

final miRNA array dataset three times in triplicate. We used Shannon entropy, a measure of 

the information content of expression profiles (i.e. of profile variability) and identified 

miR-200c as a trustable control with minimum entropy and detectable expression used for 

normalize miRNA expression results obtained by qRT-PCR. 

So the expression measure of 5 miRNA, three down-regulated miRNA (has-miR-150, 

hsa-miR-10b, hsa-miR-146a) and two up-regulated (has-miR-210 and has-miR-122). 

miR-150 is the most down-regulated miRNAs in T vs N comparison, whereas miR-10b 

since it is DEM in all the three contrasts. miRNA-122 and miRNA-146a are DEM in 

comparison M vs T. miR-122, highly liver-specific and important in hepatitis C virus 

infection, cholesterol metabolism and hepatocellular carcinoma (Filipowicz and Grosshans, 

2011), appeared to be strongly up-regulated in M vs T. Instead miR-146a is the most down-

regulated miRNA in the same comparison. miR-210 was selected because up-regulated in 

M vs T and M vs N comparisons and a robust target of hypoxia-inducible factor, and its 

overexpression has been detected in a variety of cardiovascular diseases and solid tumors. 

High levels of miR-210 have been linked to an in vivo hypoxic signature and associated 

with adverse prognosis in cancer patients (Huang et al., 2010).  

For the first strategy, we correlated the qRT-PCR data (2
-∆Ct

 as expression estimation) for 

each miRNA with the corresponding expression level measured by microarray experiments 

using Spearman rank correlation, that is robust against outliers. The correlation coefficients 

were all significantly positive and significant (P < 0.01). 

Furthermore, miR-150 and miR-146a were also tested in an independent set of 7 patients 

which matched tissue and the results confirmed data obtained with microarray data. 

The expression level of miR-122, a highly liver-specific miRNA, was significantly 

different between primary and liver metastatic tumors (7.9 Fold Change) suggesting the 

effect from normal hepatocyte contamination. In order to verify this hypothesis, miR-122 

expression was evaluated in samples where normal colon and liver tissue had been mixed 

in different proportions. Results obtained in RT-PCR confirmed the contamination effect, 

since a combination including more than 80% of colon tissue still revealed the expression 

of miR-122. 
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5.2.5. miRNA and genes expression profiles integration allows the identification 

of most probable miRNA targets 

The combined analysis of target prediction and of expression profiles in the same set of 

samples of 305 miRNAs and 12,748 genes, with variable expression profile, allowed us to 

reconstruct post-transcriptional regulatory networks describing most probable regulatory 

interactions and circuits active in transitions characterizing tumor origin and progression. 

With the selected FDR threshold, 3,078 miRNA/target relations, predicted by mirSVR, 

resulted to be supported by expression data analysis, i.e. by significant anticorrelation of 

miRNAs and predicted target genes expression profiles. These supported relations were 

3,078 and involved 117 miRNA and 1,423 target genes (corresponding to about 1% of top 

anticorrelated miRNA-target predicted pairs). Among supported relationships, 2,690 

resulted to be based on predicted target sites that are conserved across species. The number 

of supported target genes per miRNAs ranges from 1 to 216 (hsa-miR-195), with an 

average value of 26.3. About one half of genes are supported target of only one specific 

miRNAs, whereas other genes appear to be putatively regulated by up to 10 different 

miRNAs.  

Moreover, it should be noticed that the whole group of supported target genes includes 

different subsets of DEGs, i.e. genes resulting significantly expressed in at least one of the 

considered contrasts. 

 

5.2.6. Regulatory networks modulated in tumor and metastasis development 

The intersection between the post-transcriptional network and miRNA differential 

expression analysis results induced different subnetworks, describing post-transcriptional 

regulatory circuits involving those miRNAs whose expression variation may be important 

for tumor development and evolution. As previously said, only 5 miRNAs appeared 

significantly modulated in the transition from tumor to metastasis, whereas the number of 

DEMs observed when comparing normal tissue with primary tumor and with metastasis 

was large. We reasoned that, in these cases, those DEM being moderately highly expressed 

in considered samples would be responsible for the majority of target repression. Moreover, 

for each the T vs N and M vs N a contrasts, we focused on those supported regulatory 

interactions involving DEM up- and down-regulated in each comparison with a FC>3. 

Post-transcriptional regulatory networks were reconstructed with miRNAs differentially 

expressed in the normal vs primary tumor comparison and their supported relations with 

target genes. In particular two networks were generated involving respectively 6 up-

regulated ( 

Figure 21) and 17 down-regulated (Figure22) miRNAs and all their target genes. The 

network relating 6 up-regulated miRNAs is smaller and a large fraction of genes appear to 

be regulated by hsa-miR-182. 
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Figure 21. Post transcriptional regulatory network of miRNAs up-modulated in T vs N contrast 

(FC>3). The bipartite network represents DEM up-modulated in the T vs N comparison (red triangles), 

supported target genes (circles) and their relations (gray dotted lines). Target genes being differentially 

expressed in the T vs N contrast are colored in blue, whereas other genes are shown in grey. The pink solid 

line outlines an experimentally validated relation. 

 

The networks obtained by 17 down-regulated DEMs seems to regulate a number of 

targets in average about two times bigger than that observed for the whole set of 

considered miRNAs. As shown in the Figure22, a considerable fraction of supported 

target genes resulted significantly differentially expressed (DEG). This is more evident of 

the component involving up-regulated miRNAs, in which 62 down-regulated DEGs are 

supported target of up-regulated DEM (27% of supported targets). Few genes are 

supported target of more than one up-regulated miRNA. 
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Figure22. Post transcriptional regulatory network of miRNAs down-modulated in TvsN contrast 

(FC>3). The bipartite network represents DEM down-modulated in the TvsN comparison (green triangles), 

supported target genes (circles) and their relations (gray dotted lines). Target genes being differentially 

espressed in the TvsN contrast are colored in orange, whereas other genes are shown in grey. The pink solid 

line outline an experimentally validated relation. 
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Figure 23 represents the network 

involving five DEM observed in the M vs 

T contrast and their supported target genes. 

This network is small and consists of five 

unconnected components. No differentially 

expressed genes were observed among the 

supported targets on miRNAs differentially 

expressed in the tumor to metastasis 

transition. 

 

5.2.7. miR-182 control ENTPD5 

Among the interactions between miRNA 

and target genes detected in our 

regulatory network, miR-145–c-Myc and 

miR-182–ENTPD5 relationships were 

experimentally validated using RT-PCR.  

Data from expression arrays indicated 

that c-Myc mRNA is up-regulated in T vs N samples anti-correlating with down-regulation 

observed for miR-145. We examined this expression profile by qRT-PCR confirming the 

miR-mRNA modulation in the transition from normal to primary tumor and metastasis. As 

in literature, even in our series miR-145 is down-modulated in primary tumor and in 

metastases, while c-Myc is up-modulated (Figure S 1). 

ENTPD5, known also as PCPH proto-oncogene, belongs to the family of ectonucleoside 

triphosphate diphosphohydrolase enzymes that hydrolyze extracellular tri- and 

diphosphonucleosides and are components of cellular purinergic signaling.  

The importance of the interplay between miR-182 and ENTPD5, is supported by their 

expression behavior that was investigated by qRT-PCR in a panel of 5 tumor cell lines of 

colon cancer. As shown in Figure 24B, higher expression of miR-182 and lower expression 

of ENTPD5 were observed in all tumor cell lines as compared to normal colon mucosa. 

This result not only confirms the microarray profiling data but also suggests a role of the 

anti-correlated relationship in conferring some advantageous property to the tumor cells. 

The functional relationship was further validated by Luciferase reporter assay in HEK293T 

cells transfected with construct containing the firefly luciferase gene fused to the 3’-UTR of 

ENTPD5 (pMIR-ENTPD5). When cells were co-transfected with hsa-miR-182, we 

observed a 50% reduction in luciferase expression as compared to cells transfected with a 

control plasmid (P<0.05) (Figure 24A). 

Figure 23. Post transcriptional regulatory network 

of miRNAs modulated in MvsT contrast. The 

bipartite network represents DEM up- and down-

modulated (red and green triangles, respectively) in the 

MvsT comparison, supported target genes (circles) and 

their relations (gray dotted lines). 
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Figure 24. Luciferase reporter assay of the 3’UTR region of ENTPD5. The average relative light units 

(RLU) of six biological replicates are compared between control (HEK293T pMIR-ENTPD5),  non-target 

siRNA (HEK293T pMIR-ENTPD5 non-target siRNA) and miR-182 overexpression (HEK293T pMIR-

ENTPD5 miR-182). *P<0.05. 

 

5.2.8 miRNAs modulated KEGG pathways  

For each considered contrast, KEGG pathways enriched in genes resulting supported 

target of differentially expressed miRNAs were identified. Significantly perturbed KEGG 

pathways (p-value<0.05) were identified using two parallel strategies, implemented with 

the statistical procedure GAGE (Luo et al., 2009) for gene-set enrichment analysis, which 

takes into account gene expression variations in both directions. For the NT contrast we 

first identified those pathways enriched in genes target of DEMs whose expression change 

in considered comparisons. Then we identified those pathways enriched only taking into 

account DEGs target of DEMs.  Results are partially but not totally overlapping. Some very 

interesting pathways, as “Cell cycle”,  “Purine metabolism” and “pathways in cancer” are 
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found in both cases, whereas other as “P53 signaling” is identified by the first, less 

conservative strategy. On the other hand, “Wnt signaling” and “Colorectal cancer” 

pathways are found specifically enriched in DEGs target of DEMs (Table S 5). 

 

 

5.3. microRNA expression in HTLV-1 infection and adult T-cell 

leukemia/lymphoma 

Human T-cell leukemia virus type 1 (HTLV-1) infects approximately 20 million people 

worldwide. About 5% of infected individuals develop an aggressive malignancy of mature 

CD4+ T-cells termed adult T-cell leukemia/lymphoma (ATLL) or a progressive 

neurological disease termed tropical spastic paraparesis/HTLV-associated myelopathy 

(TSP/HAM)(Goncalves et al., 2010). The transforming potential of HTLV-1 is attributable 

primarily to the viral protein Tax, which, in addition to transactivating the viral promoter, 

affects the expression and function of cellular genes controlling cell turnover and 

chromosome stability(Saggioro et al., 2009). 

 

5.3.1. microRNAs with altered expression in ATLL cells 

Expression of microRNAs in 7 ATLL samples was examined using microRNA-

microarrays  

 

Table 5.  

 

Table 5. ATLL patient samples 

Patient Gender/age (years) Diagnosis WBC (cells/µl) 
CD4+CD25+ 

(cells/µl) 
%  CD4+CD25+ Therapy 

ATL1 M/48 Leukemia 40,500 31,646 78 RIT 

ATL3 M/53 Leukemia 39,700 30,211 76 Zenapax 

ATL5a F/50 Leukemia 49,300 40,640 82 CHOP 

ATL12 M/41 Leukemia 10,500 4,958 47 CVP 

ATL14 M/34 Leukemia 90,600 84,715 94 None 

ATL24 F/36 Lymphoma 6,680 1,486 22 CHOP 

ATL32 M/54 Leukemia 34,400 26,595 77 None 

 

Controls consisted of 4 sets of resting and stimulated CD4+ cells. Only miRNA with 

signal intensities in the upper 3 quartiles in at least 2 samples, corresponding to an 

expression value of 5.91, was selected, giving rise to a subset of 137 microRNAs. 

Unsupervised cluster analysis was performed on this dataset using SPSS software, with 
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Pearson correlation as metric and average clustering as linking method. Hierarchical cluster 

analysis performed using expression data for the 137 microRNAs indicated high 

heterogeneity among the ATLL patients, although all samples except PT 1 were more 

similar to resting CD4+ cells than to their stimulated counterparts (Figure 25). 

microRNAs with a significant difference in expression in ATLL samples versus normal 

resting CD4+ cells, and in resting vs. in vitro-stimulated normal CD4+ cells were identified 

using the samr package for R software from Bioconductor, considering a false discovery 

rate threshold of 0.05; the lymphoma sample (#24) was omitted from this analysis. 

Statistical analysis revealed 21 downregulated microRNAs and 6 upregulated microRNAs 

in ATLL samples compared to resting CD4+ cells ( 

Figure 26). 

Comparison of vitro-stimulated and resting CD4+ controls revealed 6 upregulated 

microRNAs and 6 downregulated microRNAs. Three of the downregulated microRNAs 

(miR-99a, miR-192 and miR-194) were also downregulated in ATLL cells compared to 

resting CD4+ cells.  

qRT-PCR to detect miR-34a, found down-regulated in several solid tumors, in 10 ATLL 

samples and 11 resting CD4+ confirmed a 100-fold upregulation of miR-34a in ATLL 

samples. To our knowledge, this is the first description of upregulated miR-34a expression 

in a T-cell malignancy. 

 

Figure 25. Cluster analysis of microRNA expression in ATLL samples and control CD4+ cells.

Unsupervised cluster analysis was performed on ATLL samples (PT) and CD4+ controls [A,B,D,P; 

resting and in vitro-stimulated (S)] using microRNA expression data and SPSS software, with 

Pearson correlation as metric and average clustering as linking method. 
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Figure 26. Differentially expressed microRNA. microRNAs with a significant difference in 

expression in ATLL samples versus normal resting CD4+ cells, and in resting vs. in vitro-stimulated 

normal CD4+ cells. The analysis was performed on data from samples reported in panel A (excluding #24, a 

lymphoma) using the samr package for R software from Bioconductor, considering a false discovery rate 

threshold of 0.05. 

 

5.3.2. microRNA target prediction 

Integrative analysis, performed on TargetScan predictions (release 5.2), yielded a total of 

755 supported anticorrelated relationships between gene and microRNAs, differentially 

expressed in ATLL cells, selected in those anti-correlated relations falling in the top 10% 

among all negative Pearson correlation coefficients. Restriction of the analysis to genes 

whose expression differed significantly in ATLL cells compared to resting CD4+ controls 

yielded a total of 465 genes regulated by 13 microRNAs. Within the network, only five 

differential expressed genes were anticorrelated with 2 upregulated microRNAs (miR-146a 

and miR-15b); the remaining 460 genes were anticorrelated with 11 downregulated 

microRNAs (let-7g, miR-101, miR-142-5p, miR-192, miR-193b, miR-194, miR-212, miR-

26a, miR-29c, miR-30b, miR-31) (Figure 28). miR-193b and miR-31 had the highest 

numbers of potential targets (108 and 190, respectively). 
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Figure 27. Piechar of the mapping of enriched BP terms to respectively 20 main functional classes of 

GO biological process terms. Figure shows the mapping of enriched BP terms to respectively 20 main 

functional classes. 

 

 

Enrichment analysis performed using GOstats R packages highlighted 109 genes (out of 

460 present in the network) belong to the GO term “developmental processes”, enriched 

with a P-value of 0.0036. twenty-one genes belong to GO Term “growth” and 11 to 

“regulation of cell growth” (see Table S 6). Figure 27 shows the result of enriched GO 

terms group in the respectively 20 main functional classes of biological process GO terms. 

Moreover the most represented pathways according to KEGG (Kyoto Encyclopedia of 

Genes and Genomes) analysis of pathways (http://www.genome.jp/kegg/) using DAVID 

are “pathways in cancer”, “Wnt signaling pathway” and again “cell cycle”.  
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Figure 28. Post-transcriptional regulatory network involved differentially expressed miRNAs 

between ATLL and resting CD4+. Figure shows a total of 755 supported miRNA-gene relations. Blue and 

orange nodes represent down- and up-regulated miRNAs, respectively. Green and red nodes represent gene 

down- and up-regulated, respectively. Grey nodes are genes not differentially expressed in the considered 

comparison.  
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5.4. MAGIA, a web-based tool for miRNA and Genes Integrated 

Analysis 

miRNAs can have multiple targets and that each protein-coding gene can be targeted by 

multiple miRNAs, it has been suggested that more than one third of human genes could 

be regulated by miRNAs. In this perspective, the networks of post-transcriptional 

regulatory relationships tend to have a highly complex nature. All computational 

approaches applied to predict miRNA targets are plagued by a significant fraction of false 

positives. This is caused not only by the limited comprehension of the molecular basis of 

miRNA–target pairing, but also by the context-dependency of post-transcriptional 

regulation. According to the increasing experimental evidences supporting the miRNA 

mechanism of target degradation rather than translational repression, the integration of 

target predictions with miRNA and gene expression profiles has been proposed to 

improve the detection of functional miRNA–mRNA relationships. Since miRNAs tend to 

down-regulate target mRNAs (Bagga et al., 2005; Lim et al., 2005; Wu and Belasco, 

2008), the expression profiles of genuinely interacting pairs are expected to be anti-

correlated. Integrative analysis can be performed adopting a variational Bayesian model 

(Huang et al., 2007b; Huang et al., 2007c), or by using a non-heuristic methodology 

based on the anti-correlation between miRNA and mRNA expression profiles. 

Unfortunately, the combination of large-scale target prediction results obtained with 

different algorithms is not straightforward for most experimental researchers, whereas the 

integrative analysis of miRNA and gene expression profiles is complicated by the many-

to-many nature of predicted relationships and target annotations to be considered. 

Then MAGIA (miRNA and genes integrated analysis, freely available at 

http://gencomp.bio.unipd.it/magia) will be presented. This novel web tool allows 

integrating target predictions and gene expression profiles using different relatedness 

measures either for matched or un-matched expression profiles, using miRNA–mRNA 

bipartite networks reconstruction, gene functional enrichment and pathway annotations 

for results browsing(Sales et al., 2010). 

 

5.4.1. MAGIA application and testing to a case study 

As a benchmark case study we used the mRNA and miRNA expression profiles published 

by Fulci et al.(Fulci et al., 2009). In this study, the Authors investigated miRNA and gene 

expression profiles in a series of adult Acute Lymphoblastic Leukemia (ALL) cases. ALL 

is a heterogeneous disease comprising several subentities that differ for both 

immunophenotypic and molecular characteristics. In particular, T-lineage and B-lineage 

harboring specific molecular lesions have been considered by expression analyses. 
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In this example, we choose EntrezGene IDs, Pearson correlation measure and the 

intersection of TargetScan and PITA target prediction algorithms. A total number of 468 

miRNA–mRNA interactions with absolute correlations >0.25 have been identified, 249 of 

these show negative while 219 show positive correlation coefficients. Among the 468 

putative interactions 23 have an FDR value <0.1.  

Figure 29 shows, for the top 250 miRNA–target relationships most supported by 

expression data, the bipartite network and the corresponding list with hyperlinks to 

mirBase, EntrezGene, PubFocus, EbiMed and mir2disease, whereas for all predicted 

interactions, a link to an html table and to a tab delimited flat file Cytoscape compliant 

are given, as well as the link to the DAVID annotation tool for a number of interactions 

that can be defined by the user (default is set to 250). 

In this example, the top 250 interactions include a total number of 81 different miRNAs 

and of 197 different genes. Pathways enrichment analysis, conducted on target genes and 

aiming at clarifying the role of miRNAs in terms of cell activities under post-

transcriptional regulation, leads to highly relevant and interesting results: chronic myeloid 

leukemia is the KEGG most enriched pathway according to DAVID, followed by Wnt-

signaling pathway, pancreatic cancer and ubiquitin mediated proteolysis. Chronic 

myelogenous leukemia is a biphasic disease, initiated by expression of the BCR/ABL 

fusion gene product in self-renewing, hematopoietic stem cells; among the 43 B-ALL 

patients used in the expression analysis 17 had a BCR/ABL rearrangement. On the other 

hand, the Wnt family of secreted glycoproteins regulates early B cell growth and survival 

(Qiang et al., 2003) and aberrant activation of the Wnt-signaling pathway has major 

oncogenic effects (Peifer and Polakis, 2000). Finally, the ubiquitin pathway plays a 

central role in the regulation of cell growth and cell proliferation controlling the 

abundance of key cell-cycle proteins. Increasing evidence indicates that unscheduled 

proteolysis of many cell-cycle regulators contributes significantly to tumorigenesis and is 

indeed found in many types of human cancers(Bashir and Pagano, 2003). 

Among the top miRNA–gene anti-correlated interactions we found RALB (v-ral simian 

leukemia viral oncogene homolog B), a gene encoding a GTP-binding protein that 

belongs to the small GTPase superfamily and Ras family of proteins, highly associated to 

either let-7d (r = −0.82) and let-7c (r = −0.71). Recently RALA and RALB have shown to 

collaborate to maintain tumorigenicity through regulation of both proliferation and 

survival (Chien and White, 2003) while both let-7d and let-7c have been shown to be 

involved in the human acute promyelocytic leukemia(Garzon et al., 2007). 
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Figure 29. Screenshot of the MAGIA analysis results summary page, obtained with the ALL data 

case study analysis. The summary page reports the regulatory network corresponding to the 250 relations 

most supported by expression data and the corresponding details, as genes and miRNAs involved, with 

links to databases and text-mining tools. This is also the entry point to reach gene- or miRNA-centered 

pages, to carry out functional enrichment analysis and to download complete results. 
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hsa-miR-222 and let-7e have been recently found to be two of the most discriminant 

miRNAs markers between ALL and AML (Mi et al., 2007) and in our analysis have been 

found highly anti-correlated with respectively ETS1 (v-ets erythroblastosis virus E26 

oncogene homolog 1) (r = −0.58) recently found to be involved in tumor development 

and progression (Hahne et al., 2009) and with p53 (r = –0.51) whose oncogenic role has 

been extensively studied in the last years(Hrstka et al., 2009). 

Several other interactions have been reported by MAGIA, most of them including 

miRNAs and/or genes involved in tumor development and progression. Indeed, repeating 

the sample analysis with the same expression data and settings indicated above, but only 

for the 12 miRNAs reportedly differentially expressed across samples (Fulci et al., 2009) 

an interaction biologically relevant and validated (according to Diana Tarbase and 

miRecords), regarding hsa-let-7e and HMGA2 (high mobility group AT-hook 2 gene) is 

indicated by MAGIA at the first ranked position. While a complete investigation of 

biological relevance of all interactions reported by MAGIA is beyond the scope of this 

work, they validate the MAGIA integrative approach, the usefulness of the display of 

results and the discovery power of data analysis with this tool. 

 

 

5.5. Impact of host genes and strand selection on miRNA and miRNA* 

expression 

Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, 

multifactorial disorders and in human cancers. We exploited sequence, genomic and 

expression information to investigate two main aspects of post-transcriptional regulation in 

miRNA biogenesis, namely strand selection regulation and expression relationships 

between intragenic miRNAs and host genes(Biasiolo et al., 2011). 

 

5.5.1. Microarray-based expression datasets analyses description 

Table 6 shows details about microarray-based expression datasets considered for each 

different analysis performed in this study. An amount of five dataset was collected to obtain 

expression profiles of large numbers of known miRNAs, measured in many samples, 

representing fairly different biological contexts. They comprise four microarray-based 

datasets including matched miRNA and gene expression profiles, two regard blood cells 

(Multiple Myeloma and normal plasma cells samples (MM), Acute Lymphoblastic 

Leukemia samples (ALL)) whereas the other two regard parietal lobe cortex (normal and 

with in Alzheimer's disease, ALZ) and prostate (normal and cancer), and a fifth dataset, 

include miRNA only expression profiles in 8 different cancer types and corresponding 

normal tissues samples (MCN). The number of miRNAs represented in each expression 



77 

 

dataset is also indicated in Table 6.  

We considered all mature miRNAs in miRBase, where 676 (corresponding to 869 mature 

sequences) were assigned to unique genomic locations whereas the remaining were 

discarded, since unmapped or corresponding to more than one different localization per 

miRNA.  

 

Table 6. Schema of expression datasets used for different levels of analyses in this study. Among five 

expression datasets obtained by microarray technology, four comprise matched miRNA and gene expression, 

whereas one includes only miRNA expression data. 

 

DATASETS 

Matched miRNA and genes expression data 

miRNA-only 

expression 

data 

MM ALL ALZ PRO MCN 

Total number of miRNAs in the original 

series matrix 
722 470 462 373 722 

A
N

A
L

Y
S

E
S

 

sister miRNA pairs √ √ √ √ √ 

Intragenic 

miRNA/host 

gene 

Co-expression √ √ √ √  

Real/Proxy for 

network 

reconstruction 

√ √ √ √  

 

5.5.2. Expression of sister mature miRNA pairs belonging to the same hairpin 

Two different mature miRNA sequences (miRNA/miRNA*) are generated from a fraction 

of precursor hairpins and are associated to different sets of target genes and regulated cell 

activities. We considered expression profiles of mature miRNAs, obtained by microarray 

platforms specifically designed to measure mature forms.  

Part of miRNA hairpin sequences is represented, in each dataset, by two different mature 

miRNAs, each one associated to an individual expression profile. After removing 

redundancy due to existence of identical mature pairs derived from hairpins belonging to 

different genomic localizations, a set of 237 couples of sister mature miRNAs from the 

same hairpin represented in the MCN, MM datasets was considered. In ALL, ALZ and 

PRO datasets we found respectively 32, 37 and 95 sister miRNA pairs.  

The investigation of expression relationships between sister miRNA pairs provided 

interesting clues for a better understanding of the regulation of the strand selection bias. We 

were willing to comprehend if one miRNA in the pair is more expressed than the other in 

all tissues/cell types/conditions or if the strand selection bias may be cell/tissue-specific. 
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The cluster analysis of samples and of miRNAs pairs according to standardized per sample 

log2(ratio) between expression values of sister miRNAs provides a general picture of 

expression prevalence among sister miRNA pairs. Only five miRNA pairs are represented 

in all considered datasets (Figure 30).  

 

 
Figure 30. Variability of strand selection bias across samples among all considered datasets. Figure 

shows patterns prevalence for a set of 5 sister miRNA pairs obtained by the combination of all considered 

datasets. 

 

The heatmap in Figure 31 shows patterns of prevalence for a set of 95 sister miRNAs in 

211 samples deriving from the combination of three datasets giving rise to the maximum 

number of miRNA pairs (MM, PRO and MCN). It is worth notice that heatmap in Figure 

30 and Figure 31 are not quantitative results derived from expression data meta-analysis, 

but rather they provide qualitative information about the prevalence among sister miRNA 

pairs.  
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Figure 31. Variability of strand selection bias across samples. The heatmap evidences patterns 

prevalence for a set of 95 sister miRNA pairs obtained by the combination of three out of five considered 

datasets giving rise to the maximum number of represented miRNA pairs (MM, PRO and MCN). The 

group includes 211 samples representing normal and malignant B cells plus two sets of solid tumors and 

corresponding normal tissues. Lines and columns of the heatmap respectively represent miRNA pairs and 

samples ordered by hierarchical cluster analysis of standardized per sample expression values log2(ratio) of 

sister miRNA pairs. Samples are tagged according to cell or tissue type and to normal or cancer state, to 

facilitate the interpretation of sample clustering. The red-blue color scale indicates the extent of prevalence 

of one or another miR in the pair according to miRBase miRNA annotation. A positive (red) value 

indicates that, in a given sample, the first miRNA of the pair is more expressed than the second, negative 

(blue) values indicates the opposite case and comparable expression values between sister miRNAs are 

indicated by log2(ratio) values around 0 and are shown in white or pale colors. The heatmap shows clearly 

the existence of pairs in which only one miRNA is prevalent across the majority of samples, but also pairs 

showing variable strand selection bias in different sample groups, representing different tissue types. 

Moreover, sample clustering based on standardized per sample log2(ratio) of sister miRNAs expression 

values is able to fairly well classify different tissues, and in case of MM, to distinguish normal and 

malignant B cells. 

 

We found that the standardized log2(ratio) of expression values between two sister 

miRNAs, is able to fairly well separate different samples/tissue types. Even if a 

laboratory/study effects cannot be excluded, normal and malignant B cells, derived from 

the same dataset (MM) are correctly separated, suggesting that standardized log2(ratio) of 

expression values may help distinguish normal and tumor samples. Figure 31 shows that, for 
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a considerable fraction of the pairs, the same miRNA is the most expressed in the majority 

of considered samples. Among pairs expressed at comparable level in part of considered 

samples, only minority are associated to standardized log2(ratio) of expression values close 

to zero in all considered samples. We can conclude that for the large majority of pairs the 

strand selection bias may be tissue/cell specific. Indeed, the heatmap shows lines in which 

positive and negative values are mixed, corresponding to sister miRNA pairs showing a not 

deterministic strand selection bias. At least two sets of miRNAs seem to be expressed in B 

cells with inverse ratio respectively to other tissues. For instance, 22 pairs shows mean 

values of expression log2(ratio) in the two sample sets of opposite sign, and 16 miRNA 

pairs shows mean values of expression log2(ratio) in MM and in all the other samples 

differing at least one point in the scale of standardized values.  

Many mature miRNAs are characterized by low expression values, slightly over 

background, and possibly associated to miRNA cellular concentrations insufficient to 

guarantee the biological activity. Thus, as explained in Methods, mature miRNAs were 

tagged as “expressed” in a given sample whenever the expression level was higher than the 

median of all expression values in the matrix. Then, sister miRNA pairs may be 

alternatively (i.e. only one out of two sister miRNAs is present) or concurrently expressed 

(both miRNA and miRNA* are present) in a given sample. Therefore, for each of the five 

considered datasets, miRNA pairs fall in one of the following categories ( 

Figure 32,Table 7): 

- A: alternatively expressed, with concurrent expression never occurring in considered 

samples;  

- C: concurrently expressed pairs in the same set of samples (expressed concurrently 

whenever expressed);  

- AC: miRNAs pairs resulting alternatively expressed in some samples and 

concurrently expressed in others.  

According to microarray data, the majority of miRNA pairs (60%±25%, mean and standard 

deviation across datasets) belong to the AC class, whereas a more or less negligible 

percentage results always concurrently expressed (11%±10%, maximum 27%). Pairs 

showing pure “alternative” behavior, according to the classical biogenesis model, represent 

less than one quarter of total expressed pairs, in average (23%±7%). When two mature 

forms are expressed in the same sample, we considered the comparability between their 

expression levels, as per sample expression ratios distribution among C pairs expression 

levels, in those samples showing concurrent expression. We considered that two expression 

levels are comparable when their absolute value of expression log2(ratio) not exceeds 1. 

Excluding the PRO dataset, in which only one C pair was recorded, in the remaining 

datasets in average 17%±13% of miRNA pairs have comparable expression levels. 

Moreover, the distribution of log2(ratio) among expression levels of AC class miRNA pairs 

shows that about one third of them (34%±28%), are expressed at comparable level. 
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Figure 32. miRNA sister pairs categories. miRNA sister pairs were classified according to their tendency of 

being concurrently or alternatively expressed in those samples in which at least one of the pairs is expressed 

over the threshold (median of all expression values). Left panels show the criteria for classification, using 

example expression profiles in four theoretical samples (S1-4) for a general miRNA pair (miR/miR*). Single 

miRNAs are considered expressed in those samples with signal intensity over the threshold (black dotted 

line). A sister pair may result alternatively (A) or concurrently (C) expressed, in a given sample. Then, 

considering expression in all samples, a sister pair will be: alternatively expressed (A; the two miRNAs of the 

pair are never expressed together in considered samples); alternatively expressed in some samples and 

concurrently expressed in others (AC); always concurrently expressed in the same set of samples (C). For 

each category, right panels show example expression profiles in MM samples of specific miRNA pairs 

belonging to the category. 
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Table 7. miRNA sister pairs classification. Categories of miRNAs pairs derived from the same precursor 

were classified according to their expression characteristics, for each dataset, in: alternatively expressed 

(A); concurrently expressed (C) or alternatively expressed in some samples and concurrently expressed in 

others (AC). 

 
PRO MM ALZ ALL MCN 

# % # % # % # % # % 

C 1 1.1 13 5.5 10 27 4 12.5 25 10.5 

AC 75 78.9 197 83.1 7 18.9 19 59.4 144 60.8 

A 19 20 26 11 10 27 9 28.1 65 27.4 

Total expressed 95 100 236 99.6 27 73 32 100 234 98.7 

Both not expressed 0 0 1 0.4 10 27 0 0 3 1.3 

 

The heatmap in Figure 33 reports, for sister miRNA pairs and datasets considered in Figure 

1, patterns of prevalence recalculated according the above reported miRNA pairs 

classification and considerations.  

 

 
 

Figure 33. Variability of strand selection bias across samples considering miRNA pair classification. 

Figure reports patterns prevalence for a set of 95 sister miRNA pairs obtained by the combination of three out 

of five considered datasets giving rise to the maximum number of represented miRNA pairs (MM, PRO and 

MCN). As detailed in Methods, miRNA pairs concurrently or alternatively expressed were associated 

respectively to the per sample standardized log2(ratio) and to extreme values derived from observed 

distribution. Cluster analysis performed with these values, produce an heatmap showing both the regulation of 

the strand selection bias and alternative expression occurrence in different samples. 
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5.5.3. miRNA are hosted by long genes  

A few studies considered miRNAs host genes genomic length/organization and their 

possible regulatory role. In particular, Golan and colleagues (Golan et al., 2010) observed 

that miRNA genes are hosted within introns of short genes and hypothesized that miRNA 

integration into short genes might be evolutionary favorable due to interaction with the pre-

mRNA splicing mechanism. Here, we evaluated the length of the 279 host genes in 

comparison with all human genes. The average gene span of the 279 host genes (180867 nt; 

Wilcoxon rank sum test p-value 2.2*10
-16

, Figure 34) is significantly longer (on average 6 

times) than that of remaining 49, 506 human genes (29, 945 nt).  

 

 
Figure 34. Host genes are relatively long. The back-to-back histogram compares the length distribution 

of host genes with that of all human genes. Host genes are longer than expected by chance and the 

difference is highly significant. 

 

5.5.4. Limited co-expression of intragenic miRNAs and host genes 

We considered the pair-wise expression correlations of respectively 309, 147, 148 and 

170 mature miRNA/host gene pairs in the MM, ALL, ALZ and PRO datasets (Table 8). 

In all datasets, more than one half of miRNA/host pairs (63±13, average and standard 

deviation across datasets) were positively correlated, with slightly positive value for the 

median correlation per dataset. However using a criterion of FDR<0.01, no pairs meet a 

correlation significance in the ALZ dataset, whereas in the remaining datasets from the 

5% to the 36% of correlations result significant. Overall, our data indicated that in all four 

different datasets a large majority of miRNA/host gene expression profiles are not 

significantly positively correlated and are instead poorly correlated or even anti-

correlated, in contrast with the notion that intragenic miRNAs are co-expressed with host 

genes. 

 



84 

 

Table 8. Intragenic miRNAs and host genes correlations. The correlation between intragenic miRNA and 

host genes expression profiles tends to be slightly positive, but with prevalently low percentages of 

significantly positively correlated pairs. 

  MM ALL ALZ PRO 
m

iR
N

A
-h

o
st

 

g
en

e 
co

rr
el

at
io

n
 Total 309 % 147 % 148 % 170 % 

Positive 199 64 81 55 77 52 138 81 

>0.25 78 25 53 36 47 31 56 33 

>0.5 33 11 20 13 21 14 13 8 

FDR<0.01 34 11 8 5 0 0 60 36 

 

We reasoned that about 20% considered host genes is associated each to two mature 

miRNA forms, derived from the same hairpin whereas the remaining host genes are 

associated to only one mature miRNA. Since sister miRNA expression profiles may not 

be considered independent, we carried out again, for each of the four expression datasets, 

the above reported analysis of co-expression between intragenic miRNAs and host genes, 

but considering, for host genes including two mature miRNAs, only the mature miRNA 

of the pair with the highest miRNA-host correlation. Considering only the highest 

miRNA-host gene correlation, when a pre-miRNA hosted in a gene produces two mature 

forms, may give an overestimation of general miRNA-host co-expression tendency. 

Anyway, the percentages of miRNA-host correlations being positive, >0.25 and >0.5, for 

each dataset (data not shown), resulted to be almost equal to that reported in Table 8 and 

showed limited co-expression of intragenic miRNAs with host genes.  

 

5.5.5. Impact of host genes expression used as proxy for miRNAs on target 

selection. 

These observations discouraged the usage of host gene expression profiles as a proxy to 

monitor the expression of its embedded miRNA. Thus, we tested whether such procedure 

affected the results of an integrated analysis of target prediction with miRNA and target 

expression profiles, using datasets in which real and not inferred miRNAs expression data 

are available. In particular, for each of the four miRNA and genes matched datasets, a 

comparative evaluation of results was obtained, by contrasting two integrated analyses, 

the first (REAL) was conducted on real miRNA and gene expression profiles, whereas the 

second one (PROXY) was conducted on host genes expression profiles, used as proxy for 

miRNAs, and gene expression profiles. For each dataset, different numbers of miRNA 

and genes were considered for target prediction, using TargetScan, after filtering out 

those miRNAs with almost invariable profile (25% with lower Shannon entropy) and/or 

weakly expressed (25% with lowest average values). For each dataset, both for the REAL 

and PROXY analysis, the sets of predicted relationships mostly supported by expression 
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profiles anti-correlation analysis were identified according to different percentile cut-offs 

on miRNA-target expression profiles anti-correlation values. It is worth notice that in 

different studies cutoffs around 1-3% were considered adequately stringent for a selection 

of candidate functional miRNA-target relationships. 

A set of 2, 848 validated miRNA-target interactions, resulting from Diana Tarbase 

(Papadopoulos et al., 2009b) and/or miRecords (Xiao et al., 2009a) was collected to 

provide an independent, also if narrow, true solution for comparative evaluation. In total, 

756 validated miRNA-target relations were represented in the considered set of predicted 

relations, with different small subsets represented for different expression datasets. The 

average of total numbers of predicted relations associated to negative correlation values 

in different datasets (representing the group from which we selected most supported 

relations according to anti-correlation ranking cutoffs) was about 81,500. For each dataset 

and each threshold, we evaluated the number of validated relations included in the 

selected set of supported relations, according to the REAL and the PROXY analysis, as 

compared with the expected number of validated relations. The ratio between observed 

and expected numbers of validated relations included in a selected set of supported 

relations defines an “enrichment score”, measuring the helpfulness of expression profiles 

anti-correlation analysis to identify functional regulatory interactions among simply 

predicted relations. Figure 35 reports the variation of enrichment score, against stringency 

of anti-correlation-based percentile threshold, for each considered expression dataset. 

Plainly, the REAL analysis is able to enrich in validated relations, when it focuses on 

anti-correlated miRNA-target subsets defined with high stringency (from 1% to 5%), but 

loses its power, as expected, at lower stringency. Besides, the REAL analysis results 

outperform those of the PROXY, which seems to find, almost in all datasets, proportions 

of validated (over supported) relations comparable or even lower than expected by 

chance, almost independently from the applied stringency on anti-correlation. We 

observed also that, for each considered expression dataset, the groups of validated 

relations detected by the REAL and PROXY methods are almost completely disjointed. 
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Figure 35. Enrichment in validated miRNA-target relations obtained by REAL and PROXY analyses 

of different datasets. Comparative evaluation of integrated analysis results was performed using real 

miRNA and gene expression profiles (REAL) and host genes expression profiles, as proxy for miRNAs, 

and gene expression profiles (PROXY). For each dataset, first we filtered out miRNAs with almost 

invariable or weak expression, then we identified the miRNA and genes target prediction set using 

TargetScan. Both for the REAL and PROXY analysis, the groups of predicted relationships most supported 

by expression profiles anti-correlation analysis were identified according to different percentile of anti-

correlation cut-offs. A subset of miRNA-gene validated relations, from Diana Tarbase and/or miRecords, 

provided an independent true solution for comparative evaluation. The figure shows the variation of 

“enrichment score” (ratio between the observed number of validated relations, included in the selected set 

of supported relations, and the expected number of validated relations, based on proportions) against 

stringency of anti-correlation-based percentile cutoff. Each dataset is considered separately to compare 

REAL and PROXY analysis methods. The REAL method is able to enrich in validated relations, 

outperforming the PROXY, when it focuses on anti-correlated miRNA-target subsets defined with high 

stringency. Also the REAL method looses any power, as expected, at low stringency. 
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5.6. Characterization and discovery of novel miRNAs and moRNAs in 

JAK2V617F mutated SET2 cell 

The JAK2V617F mutation, that occurs in most patients with polycythemia vera (PV) and 

about 60% of those with essential thrombocythemia (ET) and primary myelofibrosis 

(PMF)1, is considered integral to the pathogenesis of myeloproliferative neoplasms (MPN), 

although additional, antecedent mutations are required for a MPN to develop. The disease 

can be reproduced in mice expressing the JAK2V617F allele 5. Cells harboring the 

JAK2V617F mutation display autonomous activation of several cell signaling pathways, 

particularly JAK/STAT, and proliferate and maturate in a cytokine-independent manner. 

Recent information highlighted that deranged epigenetic gene regulation(Vannucchi et al., 

2009) and abnormal expression of microRNAs(Bruchova et al., 2007; Bruchova et al., 

2008; Guglielmelli et al., 2007) also contribute to the pathogenesis of MPN(Bortoluzzi et 

al., 2012). 

 

5.6.1. Small RNA library 

The Illumina GAIIx sequencing of the small RNA library from SET-2 cells produced 

32,760,003 reads which, after extensive preprocessing and quality control, were 

reduced to 27,906,609 reads, representing about 85% of sequenced reads. A first 

mapping phase aimed at discarding contaminations and repeats, yet tolerating for 

possibly unknown miRNA loci, produced 22,167,999 reads (68% of raw data). These 

were accurately mapped to “extended hairpins” in order to identify and quantify known 

miRNAs and for discovery and characterization of novel isomiRs and other miRNA-

associated expressed RNAs. In total, 1,421 known hairpin precursors, corresponding to 

1,731 known mature miRNA sequences. 

 

5.6.2. Known miRNAs and isomiRs expressed in SET2 cells 

A total of 652 known miRNAs were found expressed in SET2 cells with expression levels 

ranged from 10 to 2,268,333 (mean 29,830, median 613), with 300 and 124 miRNAs 

presenting read counts of at least 10
3 

and 10
4
, respectively. Only 21 highly expressed 

miRNAs accounted for 70% of known miRNAs expression (Table 9) and are thus 

predicted to account for most of miRNA-mediated gene repression in SET2 cells. KEGG 

pathway enrichment for known miRNAs was obtained using DIANA-miRPath web-tool 

(Papadopoulos et al., 2009a) based on TargetScan5 miRNA target predictions. mirPath is 

a software to identify molecular pathways potentially altered by the expression of single 

or multiple microRNAs. Most relevant KEGG pathways significantly enriched in genes 

predicted target of 21 most expressed miRNAs are the MAPK signaling pathway, TGF-
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beta signaling pathway, mTOR signaling pathway, and Wnt signaling pathway, pathways 

having functional relevance for MPN-associated cellular abnormalities. 

 

Table 9. Twenty-one miRNAs highly expressed account for 70% of total known miRNAs expression 

in SET2 cells. 

miRNA Expression level 
Cumulative % of total known 

miRNAs expression 

hsa-miR-21 2268333 12 

hsa-miR-148a 1737364 21 

hsa-miR-146b-5p 1632959 29 

hsa-miR-101 1293074 36 

hsa-miR-142-3p 1037658 41 

hsa-miR-19b 1025647 46 

hsa-miR-378 561770 49 

hsa-miR-92a 538422 52 

hsa-miR-191 416870 54 

hsa-miR-425 391247 56 

hsa-miR-126 349719 58 

hsa-miR-17 314388 59 

hsa-miR-181b 310800 61 

hsa-miR-181a 301902 63 

hsa-miR-93 223220 64 

hsa-miR-126* 216687 65 

hsa-miR-30e 201602 66 

hsa-miR-99b 200438 67 

hsa-let-7f 196921 68 

hsa-miR-25 191693 69 

hsa-miR-20a 186436 70 
 

The majority of expressed mature miRNAs were not represented by a unique sequence 

corresponding to that annotated in miRBase. The whole group of reads belonging to 

each miRNA, including the “classic” mature sequence annotated in miRBase (“exact” 

alignment) as well as those reads perfectly matching the precursor but overlapping the 

mature position by 3nt (longer/shorter), those presenting 1 mismatch (1-Mismatch), 

and those presenting two mismatches, both at the 3’ end (2-3’-Mismatches) was 

evaluated. 
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Considering the whole set of variants presenting at least 10 reads each, 636 miRNAs 

were identified, 232 of which (36%) appeared “invariant” whereas the remaining 404 

(64%) represented a mixture of 2 to 6 sequence variants (Figure 36). 

 

Figure 36. miRNAs variants. Figure shows the number of isomiRs observed per miRNA 

by considering those sequence variants with a read count of at least 10 reads or those 

accounting each for at least the 10% of the total count of the miRNA. 

 

But the most important sequence variation is represented by 5’ and 3’ length variability, 

possibly occurring as a consequence of alternative, non- canonical, regulated processing 

of the precursor sequence. 

 

5.6.3. Novel miRNAs expressed in SET2 cells were discovered in known hairpin 

precursors 

For novel miRNA discovery, we operationally defined as “expressed RNA elements” 

(ERE) those discrete hairpin regions covered by overlapping reads with a minimum 

count of 10 and with a start position within 4 nt each from the following one. We found 

that a discrete number of regions located outside known mature miRNAs were 

expressed from detectable to high level; among them, we identified a number of ERE 

able to pair with known miRNAs in the most probable duplex produced by Dicer 

processing of the hairpin structure. Specifically, we considered 943 hairpins associated 
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to only one annotated mature miRNA, whereas an additional 478 included two known 

sister mature miRNAs. 

The analysis of known hairpin precursors associated to only one known miRNA 

produced a set of 78 novel miRNAs expressed in SET2 cells (Table S 7).  

 

 
Figure 37. Examples of new miRNAs discovered. Plots show the number of reads per nt position 

mapping in extended hairpin loci for hsa-mir-1307, hsa-mir-376a-2, hsa-mir-382 and hsa-mir-539, 

expressing both known and new miRNAs. Known miRNA positions respective to the extended hairpins 

indicated in the plot. In the upper part of panel, the sequence of mature miRNAs is shown (known miRNA 

in red, new miRNA in pink). 

 

Plots in Figure 37 show, for the four most expressed new miRNAs (hsa-miR-1307*, 

hsa-miR-376a-2*, hsa-miR-382* and hsa-miR-539*), the number of reads aligned per 

nucleotide position. This information was integrated with hairpin sequence and folding 
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data to define new miRNA sequences. Table 10 reports name, sequence and expression 

level of novel miRNAs having a read count of at least 500.  

Table 10. Novel miRNA expressions. Name and predicted sequence of 15 new miRNAs with read 

count greater than 500. Seven new miRNAs associated to read counts over 10
3
 are shown in bold. 

New miRNA Sequence Expression 

hsa-miR-1307* CTCGACCGGACCTCGACCGGCTCGT 72670 

hsa-miR-376a-2* GGTAGATTTTCCTTCTATGGTTA 14296 

hsa-miR-382* CGAATCATTCACGGACAACACTTTTT 8296 

hsa-miR-539* AATCATACAAGGACAATTTCTTTTTGA 3332 

hsa-miR-181b-1* CTCACTGAACAATGAATGCAACT 1542 

hsa-miR-561* ATCAAGGATCTTAAACTTTGCC 1315 

hsa-let-7c* CTGTACAACCTTCTAGCTTTCCT 1195 

hsa-miR-652* ACAACCCTAGGAGAGGGTGCCATTCA 982 

hsa-miR-301a* GCTCTGACTTTATTGCACTACT 880 

hsa-miR-487a* GTGGTTATCCCTGCTGTGTTCG 823 

hsa-miR-370* AAGCCAGGTCACGTCTCTGCAGTTACAC 624 

hsa-miR-412* TGGTCGACCAGTTGGAAAGTAAT 578 

hsa-miR-376c* GTGGATATTCCTTCTATGTTTAT 568 

hsa-miR-381* AAGCGAGGTTGCCCTTTGTATATTC 567 

hsa-miR-376b* GTGGATATTCCTTCTATGTTTA 532 
 

Expression levels of new miRNAs identified in SET2 cells ranged from 10 to 72,670 

(mean 1471, median 63) and were significantly lower than those of known miRNAs 

(Two Sample t-test of mean equality p-value =6.521e-06) (Figure 38). 

Nevertheless, 11 new miRNAs (14%) showed an expression level higher than the 

median value observed for known miRNAs. In particular, hsa-miR-1307*, hsa-miR-

376a-2* and hsa-miR-382* resulted very highly expressed, at level even greater than 

75% of known miRNAs. 

Conserved TargetScan custom target predictions (See Methods) for 15 novel miRNAs 

with a read count of at least 500 are included in Table S 8. Specifically, conserved and 

not-conserved target sites were predicted using TargetScan and filtered according to the 

context score. Only conserved target sites associated to top 25% scores and non-

conserved sites included in top 5% scores were reported. 
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5.6.4. Sister miRNA expression prevalence 

Considering known and new miRNAs expressed in SET2 cells as a whole, we found that 

both miRNA and miRNA* were expressed concurrently in 260 hairpins, corresponding 

to about one half of those with at least one miRNA expressed (Table 11). miRNA and 

miRNA* of the same hairpin, called a sister miRNA pair, have different sequences, 

thus targeting different sets of coding RNAs and contributing uniquely, but possibly in a 

coordinate way, to transcriptional regulation. When increasing thresholds of read count 

were applied in order to consider a miRNA as being “expressed”, the fraction of hairpins 

producing concurrently miRNA and miRNA* decreased (Table 11). 
 

Table 11. Number of expressed miRNAs respective to number of known miRNAs, per hairpin (A). 

Percentages of hairpins associated to concurrently expressed miRNA/miRNA* pairs, according to 

different thresholds on expression level (B). 

A 

 # of expressed miRNAs 

# known miRNAs Hairpins 
2 1 0 

# % # % # % 
2 478 189 39.54 102 21.3 187 39.1 
1 943 71 7.53 175 18.6 697 73.9 

Hairpins 1421 260 18.30 277 19.5 884 62.2 

B 

Expression of at least 
Hairpins with at 
least one miRNA 

expressed 

Hairpins with two 
miRNAs expressed 

% of expressed 
hairpins with two 

miRNAs 
10 522 250 47.9 
102 331 175 52.9 
103 229 94 41.0 
104 125 15 12.0 

Figure 38. SET2 expression levels distributions 

for known and novel miRNAs shown as boxplot 

with log10 scale. 
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Nevertheless, the fraction of hairpins producing a meaningful quantity of both miRNAs 

remained considerable at all thresholds. 

No strand prevalence in expressed miRNAs was observed (Figure 39). Out of 277 

hairpins expressing only one miRNA, 47% and 53% expressed only the 5’ or the 3’ 

miRNA (130 and 147), respectively. Regarding 260 hairpins expressing both sister 

miRNAs, the highly expressed miRNA was the 5’ or 3’ form in 135 and 125 of them, 

respectively. A considerable fraction of concurrently expressed miRNA pairs were 

found to be expressed at comparable level: 66 (25%) and 38 (14%) of concurrently 

expressed pairs were associated to an absolute log2(ratio) of expression values not higher 

that 2 and 1, respectively. 

 

Figure 39. Prevalence of 5' and 3' miRNAs expression. A) Scatterplot showing 5' and 3' 

miRNAs expression, both for the sister pairs including two known  miRNAs  and for those  

including one new miRNA. B) Distribution of log2ratio of 5' and 3' miRNAs  expression 

values. 
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5.6.5. miRNA-offset RNAs (moRNAs) identification in known hairpin 

precursors 

ERE was found also outside known and novel miRNAs. These were classified as 5’ 

moRNAs, 3’ moRNAs and expressed loops (Figure 40). In particular, 58 moRNAs 

expressed from 56 hairpins, at moderate to high level (mean 127, median 52) was 

identified. 

A considerable prevalence of 5’ moRNAs was observed: 95% of moRNAs derived 

from the 5’ arm of the hairpin precursor (n=55 versus 5 for the 3’ moRNAs). The 

average expression level of 5’ moRNAs (129) was higher than 3’ moRNAs (89) but the 

difference was not statistically significant (t-test p-value = 0.5804). 

Expressed miRNA length ranged from 16 to 27 nt, with an average of 21, at variance 

with moRNA sequences that were less variable in length, ranging from 18 to 25 nt, 

average of 20.2. 

It is worth noticed that, among the 55 5’ moRNAs, 8 were included in the “classic” 

hairpin precursor sequence while only one belonged to the region of 30 nt flanking the 

hairpin, whereas 46 (84%) were partially overlapping the hairpin 5’ border. This may 

indicate that moRNA sequence spanned the canonical Drosha cutting site and supports 

a role for non-canonical Drosha cleavage in moRNAs biogenesis. 
 

 
Figure 40. Two miRNAs and two moRNAs may be produced by transcription and processing of a 

single miRNA locus. The plots show expression levels of miRNAs, moRNAs and loops from 15 hairpins 

corresponding to most expressed moRNAs 



95 

 

 

6. Discussion and Conclusions 
 

 

 

In this thesis I illustrated results obtained combining different type of data and 

bioinformatic analyses to investigate different aspect of miRNA. An integrative genomic 

and systems biology approach based on computational prediction of miRNA targets in 

combination with experimentally-determined miRNAs and genes expression measures is 

more effective for the identification of biologically relevant miRNA-target relationships. 

Integrating miRNA and gene expression data we are able to identify miRNA target gene 

most reliable among the vast number of computational prediction available on-line 

providing an important contribution aimed at characterizing the role of specific miRNAs 

in different neoplasms. Moreover the reconstruction of transcriptional and post-

transcriptional regulatory networks became a crucial step to understand mechanism of all 

biological systems. We exploited method deriving from social network theory to analyze 

these regulatory networks to hamper our capacity of extracting de-novo knowledge from 

biological networks. To delve into some miRNA aspects, post-transcriptional regulation 

in miRNA biogenesis, namely the strand selection theory, and the relation between 

intragenic miRNAs and their host gene, we used sequence, genomic and expression 

information in different biological context in 5 large dataset. And lastly the deep 

sequencing data analysis help us to portray a general picture of short RNAs expressed in 

SET2 cells, a JAK2V617F mutated cell line, where known and novel miRNA expressions 

was quantified and a new class of short RNAs, moRNAs, was discovered.  

 

 

6.1. Identification of microRNA expression patterns and definition of a 

transcriptional and post-transcriptional regulatory network in distinct 

molecular groups of multiple myeloma 

The integrative analysis of the different types of genomic data (i.e., miRNA and mRNA 

expression levels and genome-wide CN profiles) allowed the definition of distinct 

patterns of miRNA deregulation and the prediction of the miRNA/mRNA regulatory 

networks in molecular subtypes of MM. 

Particularly, results highlighted that specific patterns of miRNA expression may 

differentiate MMs with distinct and well-known genetic alterations. Specific signatures 

were found to be associated with t(4;14) or translocated MAF genes and, to a lesser 
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extent, with t(11;14) and TC2 group (expressing moderate levels of CCND1 in the 

absence of IGH translocation). 

Most of the 26 miRNAs significantly discriminating the TC groups have previously been 

found to be involved in solid and hematologic tumors. The most extensively investigated 

are miR-155, miR-221 and miR-222, and the let-7 family. MiR-155 is involved in many 

biologic processes, including hematopoiesis, inflammation, and immunity, and its 

deregulation has been found to be associated with certain types of solid and hematologic 

tumors, in which it is predominantly overexpressed and acts as an oncomiR (Esquela-

Kerscher and Slack, 2006). Notably, miR-155 has been very recently found deregulated 

in Waldenström macroglobulinemia (WM), suggesting a role in the proliferation and 

growth of WM cells acting on signaling cascades, including MAPK/ERK, PI3/AKT, and 

nuclear factor-κB pathways(Roccaro et al., 2009). In addition, miR-155 knockdown leads 

to significant increase of WM cells in G1 phase and to the down-regulation of cyclin-

dependent kinases and cyclins D and the simultaneous up-regulation of p53 expression, 

suggesting a critical role in the regulation of cell-cycle proteins responsible for G1 

arrest(Roccaro et al., 2009). MiR-221 and miR-222 have also been found to be up-

modulated in many tumors and described to target the C-KIT, p27, and p57 genes 

(Lotterman et al., 2008; Visone and Croce, 2009). Finally, many human let-7 genes, 

which are known to target RAS genes and oncogenes involved in the cell cycle, such as 

HMGA2, MYC, CDK6, and CDC25,(Medina and Slack, 2008) map to regions frequently 

deleted in human tumors, indicating that they may function as tumor suppressors. The 

most striking finding was the very specific expression of 3 miRNAs (miR-99b, let-7e, and 

miR-125a-5p), encoded in a conserved genomic cluster, in the t(4;14) cases. They are 

coordinately up-regulated during metamorphosis in Drosophila, where they are 

cotranscribed as a single polycistronic transcript (Sempere et al., 2003; Sokol et al., 

2008). Although their involvement has been suggested in various tumors, to our 

knowledge, this is the first evidence of their coordinated deregulation in cancer.  

The differential miRNA expression associated with distinct genetic subgroups is a novel 

finding in MM. Of note, it has already been reported in other hematologic malignancies, 

such as acute myeloid leukemia (Jongen-Lavrencic et al., 2008) and chronic lymphocytic 

leukemia. As regards this latter neoplasia, in which the role of miRNA has been 

extensively investigated, (Calin and Croce, 2009) the presence of miRNA signatures 

associated with the major specific genetic lesions (trisomy 12 and 13q14, 11q23, and 

17p13 deletions) has been reported very recently (Visone et al., 2009). Interestingly, as 

found in our study, the discriminating miRNAs were not localized in the chromosomal 

regions specific for the corresponding cytogenetic abnormalities. Overall, the 

identification of specific miRNA patterns may help not only to distinguish distinct MM 

genetic subgroups known to show differences in term of response to therapy and survival, 

but also to provide a better understanding of their pathogenesis. 
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The computational prediction of miRNA targets currently presents several significant 

challenges because all of the most widely used tools (miRanda, TargetScan, PicTar, 

PITA, and RNAhybrid) are characterized by a significant proportion of false-positive 

interactions(Didiano and Hobert, 2008; Grimson et al., 2007b)(Curtale et al., 2010) that 

are partly because posttranscriptional regulation is context-dependent. On the basis of 

increasing experimental evidence supporting the hypothesis that miRNAs can act through 

target degradation, it has been proposed that target predictions could be integrated with 

miRNA and gene expression profiles to select functional miRNA/mRNA relationships. 

This can be done by adopting a variational Bayesian model and software, (Huang et al., 

2007b; Huang et al., 2007c) or simply using a nonheuristic method based on 

miRNA/mRNA anticorrelation. We applied the latter to our dataset, which allowed the 

reconstruction of a general miRNA/mRNA regulatory network that represents the 

putative functional regulatory effects (as supported by expression data) of all of these 

miRNAs on their targets in MM. 

On the basis of the target genes identified here, several the miRNAs differentially 

expressed in IGH translocated cases may play important roles in the biology of MM 

PCLs. With regard to the t(4;14) miRNA signature, 5 miRNAs target CBFA2T2, a 

nuclear repressor homologous to ETO that binds to the AML1-ETO complex and may 

play a role in hematopoietic differentiation(Fracchiolla et al., 1998; Lindberg et al., 

2005). Furthermore, let-7e targets PTPRE, a positive regulator of osteoclast 

function(Chiusaroli et al., 2004) and a selective inhibitor of IL-6– and IL-10–induced 

JAK-STAT signaling(Tanuma et al., 2001). Interestingly, the expression of the tumor 

suppressor gene PDCD4 (programmed cell death 4)(Lankat-Buttgereit and Goke, 2009), a 

supported target of miR-221 based on our analysis, has recently been found to depend on 

the levels of MMSET, which is deregulated by the t(4;14)(Brito et al., 2009). ING4, a 

tumor suppressor frequently mutated or down-regulated in human cancers, which was 

recently described to exert an inhibitory effect on MM-induced angiogenesis(Colla et al., 

2007; Kim, 2005a), is a supported target of miR-365. Concerning the TC5 signature, 

miR-133a targets DM vs TF1, a putative tumor suppressor that activates the ARF-p53 

pathway, leading to cell growth arrest or apoptosis; notably, it maps at 7q21, often 

deleted in human malignancies(Inoue et al., 2007). Finally, among the miRNAs up-

regulated in t(11;14), miR-361-3p and miR-30e* target PPP2R4, an activator subunit of 

PP2A, which plays an important role in the survival and growth of MM cells because it 

dephosphorylates the GP130 subunit of the IL-6 receptor, thus preventing its degradation 

and allowing the activation of IL-6 signaling(Kang et al., 1996; Mitsuhashi et al., 2005). 

All this findings strongly suggest that understanding the molecular biology of myeloma 

requires considering the miRNome in the context of the genomic and transcriptomic 

features of malignant PCLs. Based on this integrated approach, our data may provide an 
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important contribution to future investigations aimed at characterizing the role of specific 

miRNAs in MM pathogenesis. 

Furthermore, reconstructing regulatory network from expression data is a crucial step to 

understand the mechanisms underlying biological systems. However, the high number of 

genes and interactions still represents a challenging issue for the extraction of relevant 

targets and relationships from such large systems. A standard approach is searching 

targets among the most connected genes (hubs) or among sub groups of genes known to 

be relevant in the analyzed phenotype. The goal of this type of analysis is to identify 

previously unknown relationships that can be the object of a subsequent experimental 

validation. An alternative approach is studying the network characteristics to identify 

groups of genes organized in sub-networks, which may suggest novel interactions and 

shed light on regulatory modules involving these genes or their common targets. 

Although effective, both strategies rely on prior knowledge to select the genes of interest, 

thus hampering the capacity of extracting de-novo knowledge from the network. A way to 

overcome this limitation could be adapting techniques commonly used in the analysis of 

communication and infrastructure networks. In these fields, a key analysis is the 

resilience of the network to external disturbances and to malfunctioning. Network 

robustness strongly relies on the network structure and, in particular, on the existence of 

paths between the nodes. When nodes or links are removed, the lengths of these paths can 

increase and some nodes will become disconnected. It is therefore interesting to find the 

critical component of the network, i.e. the nodes or edges that are really important for the 

functioning of the network. In Latora and Marchiori, the authors proposed a method to 

evaluate the importance of a network element (that can be a node or an edge) by 

considering the drop in the network performance caused by its deactivation (Latora and 

Marchiori, 2005). The performance of the perturbed network is compared with the 

original one. Iturria-Medina and colleagues applied a similar approach to investigate the 

human brain anatomical network(Iturria-Medina et al., 2008). Different criteria can be 

used to measure the performance, such as efficiency or mean flow rate of information. 

Efficiency measures how efficiently the nodes of the network exchange information. 

Applying this concept to regulatory network, critical nodes and edges are critical genes 

and critical regulatory interaction, respectively. Usually the most important nodes are 

considered the most connected ones (hubs), but this is not always the case. In genetic 

networks a gene can be connected to many genes simply because is a transcription factor 

that normally controls many targets or a gene that is controlled by many other genes. For 

instance, in the analysis of the B cell networks, the largest hub with more than 300 

interactions was a poorly characterized gene, BYSL. Instead, a much more interesting 

gene was MYC that, with only 56 neighbors, ranked 410th in terms of connectivity. 

MYC, a well-known proto-oncogene, had neighbors that were themselves genetic hubs 

(including BYSL), such that MYC could modulate a substantial percentage of all genes in 
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the cell trough a relatively small number of neighbors(Basso et al., 2005b). Recently, 

some approaches exploited the topological features of large gene regulatory networks to 

identify individual components that are biologically relevant or to elucidate the role of 

each particular element in regulation. Patapov and co-workers introduced the pair-wise 

disconnectivity index to quantitatively evaluate the topological significance of each 

element (i.e., nodes and edges) in the context of all other elements of the regulatory 

network (Potapov et al., 2008). The application of this approach to the analysis of the 

TLR4 signal transduction network allowed identifying a number of key signaling and 

transcription regulators among the nodes top-ranking in terms of disconnectivity index. 

Differently, Emmert-Streib and Dehmer used the concept of functional robustness, 

originally introduced by Li et al.(Li et al., 2004), to study the functional robustness of the 

transcriptional regulatory network in yeast(Emmert-Streib and Dehmer, 2009). The 

definition of an information theoretic measure to estimate the influence of single node 

perturbations on the global network topology allowed identifying nodes which are fragile 

with respect to single node knockouts and revealed significant differences between fragile 

nodes and hubs. Interestingly, the set of fragile nodes was statistically enriched in 

essential genes, i.e. in genes required to sustain vital yeast. Here, the critical analysis of 

network components has been applied to inspect the transcriptional and 

posttranscriptional regulatory networks reconstructed from mRNA and miRNA 

expression data of multiple myeloma samples. The transcriptional and post-

transcriptional networks were reconstructed using ARACNe and the Pearson correlation 

coefficient of the expression vectors of miRNA target genes, respectively. Both networks 

showed a scale free structure, i.e. a type of structure reported with evidence in lower 

organisms, but still argument of debate in eukaryotes. The connectivity plots of Figure 14 

strengthen the hypothesis that the structure of human interaction 406 networks has a scale 

free nature with a saturation effect also reported for other scale-free networks, when the 

maximum connectivity range is below 1000(Albert, 2005; Almaas, 2007; Barabasi and 

Albert, 1999; Basso et al., 2005a). Both networks are also slightly assortative, meaning 

that they tend to have an aristocratic behavior where nodes with high degree tend to 

connect with nodes with similar degree. This suggests a hierarchical control mechanism, 

as also reported in(Basso et al., 2005a). The analysis of critical components revealed that 

genes with a limited number of connections could be critical for the structure of the 

network and that hubs are not necessarily critical nodes. Indeed, about one half of most 

connected nodes in each considered network were not included in the corresponding list 

of most critical nodes and genes like BLNK, characterized by a low node degree, were 

instead critical. These non-hub critical nodes would have been disregarded as putative 

regulatory targets due to their limited number of connections although they may provide 

clues to the detection of key regulatory circuits. Finally, the integration of the 

transcriptional and post-transcriptional levels allowed identifying critical genes for both 
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types of regulatory interactions and dissecting direct critical relationships at 

transcriptional level from interaction that are instead indirect since mediated by post-

transcriptional regulation.  

 

 

6.2. miRNAs modulation in colon cancer and metastasis development 

and its impact on regulatory networks and pathways 

The impact of miRNA in colorectal cancer (CRC) development and progression has been 

clearly demonstrated in the recent years, and for several miRNAs tumor-suppressor or 

tumor promoter roles have been proposed. Furthermore, different miRNA signatures have 

been found informative for tumor prognosis and clinical outcome in various cohorts of 

patients.  

In this study, we carried out a genome-wide integrative analysis of miRNA and genes 

expression profiles in CRC samples, comprehensive of normal colon mucosa, primary 

tumor and liver metastasis, in order to identify differentially expressed miRNAs and their 

anti-correlated targets, defining modulated post-trancriptional regulatory networks. The 

ultimate aims were to discover specific miRNA-gene relationships significantly supported 

by expression data and associated with tumor progression, and to gain new insights into 

the cellular pathways affected by identified miRNAs. 

Our results suggested that miRNA and gene expression profiles had different capability to 

discriminate different sample classes. The fairly good separation of normal samples from 

tumor and metastases that was obtained according to both miRNA and gene profiles, 

confirmed the quality of tissue enrichment procedure implemented in the study. On the 

other hand, expression profiles of miRNAs resulted to be more informative than those of 

genes to distinguish primary tumors from metastases. Interestingly, by considering per-

patient match of different tissue samples, we showed that tumor and metastatic samples 

obtained from the same patient have a not negligible tendency to cluster together. This 

finding indicates that, on the basis of gene expression characteristics, a metastasis is more 

similar to the matched tumor that to the metastases of other patients. Differently, our 

results seem to suggest that the variability of miRNAs expression profiles observed after 

metastasis development process, is more extensively shared between different patients. 

For the identification of miRNAs and genes differentially expressed in different tissue 

types (DEM and DEG, respectively), we adopted stringent criteria. We implemented two 

strategies for the identification of DEM modulated between sample classes: considering 

the whole set of samples and by using per-patient matching information, but using a 

smaller group of patients. We observed that the second approach seem to be less 

powerful, since it discover set of DEMs largely represented in those already found by the 

first one. This may be partially due to the reduced number of patients for which all tissue 
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types were available. Besides, the T vs N contrast identified about six times more DEM 

than the M vs T comparison, confirming above raised observations.  

A global reduction of miRNA expression levels has been reported as a general trait of 

human cancer(Lu et al., 2005), and the experimental repression of miRNA biogenesis in 

cancer cell lines has been shown capable to promote cell proliferation and invasion 

(Martello et al., 2010). These observations led to the hypothesis that cancer cells may use 

down regulation of miRNA to foster invasive and metastatic behaviors. However, in 

contrast with these findings are studies on clinical samples showing that in solid tumors 

the most common miRNA event is gain of expression, whereas loss of expression is a 

more limited event and more tissue specific(Volinia et al., 2006). Partially in agreement 

with this last report, we did not observe a preferential down-regulation of miRNAs in our 

set of samples, since a similar number of up- and down-regulated miRNAs (29 and 33, 

respectively) was obtained when an all tumors (paired and unpaired samples) were 

contrasted vs all normal tissues. Also, among the robust group of miRNAs resulting 

modulated in the NT contrast according to both paired and unpaired samples 

comparisons, up- and down-regulated miRNAs are equally represented. 

The number of dysregulated miRNAs was basically maintained from tumor to metastasis 

transition. A more general tendency towards the down-regulation was instead 

demonstrated in gene expression data, as 100 up-regulated and 355 down-regulated genes 

were observed when tumor vs normal comparison was carried out, while 29 and 9 genes 

were up- and down-regulated, respectively, in the tumor vs metastasis transition. Clearly, 

it is difficult to exactly establish how much gene expression down-regulation is a direct 

effect of miRNAs modulation and how much it may be due instead to different forces, 

working at other regulatory levels. Nevertheless, our data confirm that miRNA 

dysregulation is essential at all stages of tumorigenesis, since it largely  occurs in primary 

tumor as well as in metastasis. Furthermore, once present, the specific miRNA pattern is 

almost steadily maintained even in advanced primary tumors and in their distant 

metastases.  

The list of miRNAs differentially expressed between tumor and normal mucosa (both in 

paired and unpaired comparisons) includes miRNAs that have been previously described 

as members of a miRNA "signature" common to different types of solid tumors(Negrini 

et al., 2009). Many of them have been also implicated in molecular and biological 

processes that drive tumorigenesis in CRC. Relevant examples are miR-143, miR-145, 

miR-125b and miR-21, which are associated with cell growth and survival; the miR-17-

92 cluster, miR-20 and miR-100, which are involved in uncontrolled cellular 

proliferation; the miR-183 cluster and miR-31, which are implicated in cell migration; 

and miR-150, which has been very recently identified as a potential biomarker of 

prognosis and therapeutic outcome in CRC (for the details about up- or down-regulation 

of these miRNAs see Table). Interestingly miR-139-5p, the most down-regulated in the T 



102 

 

vs N comparison, has been very recently identified as a member of a signature predictive 

of the tumor status in stage II CRC(Chang et al., 2011b); moreover, miR-224, the most 

up-regulated together with miR-183 in the same comparison, was identified for its ability 

to distinguish CRC with a proficient or a deficient DNA mismatch repair(Oberg et al., 

2011). For some of these miRNA the tumor-promoting or tumor-suppressing functions in 

CRC as well as in other tumors have been previously suggested. However, in the light of 

the large number of mRNA regulated by each miRNA, it is very likely that two or more 

genes from different molecular pathways may be altered in their expression, and 

considering the tissue specificity of the miRNA activity, a strict classification of cancer-

associated miRNAs into onco- or tumor-suppressor miRNAs might be an over-

simplification.  

When primary tumor and metastatic samples were compared, a limited number of 

differentially expressed miRNAs comprising 5 over and 6 under expressed miRNAs was 

obtained in unpaired comparison; while only 5 over expressed miRNA were obtained in 

paired comparison. Common to both paired and unpaired comparison were miR-210, 

whose over expression in solid tumors has been associated with hypoxia, cell survival and 

invasion, miR-100 that has been considered a regulator of ATM/mTOR pathway, and 

miR-122, that it was shown being a contamination from residual liver tissue.  

Notably, two other miRNAs, miR-100 and miR-139-5p, were characterized by an 

inversion of their down modulation in the tumor toward metastasis transition (in paired 

and unpaired group, respectively) even if their expression level in the metastatic samples 

was still lower in comparison with normal tissue. 

The identification of a limited number of miRNAs differentially expressed between tumor 

and metastases may be explained in two different ways. On one hand, as a consequence 

of cancer progression a malignant tumor contains multiple cell populations with 

heterogeneous behaviors, and clones with the ability to invade and develop metastases 

might be present in the primary lesion. Thus, miRNAs associated with metastasis may 

already be expressed in early tumors, which implies that clones with metastatic potential 

are present from the beginning in the primary lesion. Alternatively, primary tumors that 

we had used were of advanced stage and then of high metastatic potential, thus 

dysregulated miRNAs associated with primary tumor were not further modified during 

the transition from primary tumor to metastatic lesion. 

In the second part of the study, we carried out the integrative analysis of miRNA and 

genes expression profiles to reconstruct post-transcriptional regulatory networks. Post-

transcriptional regulatory networks unveil a significant layer of interconnection among 

different miRNAs and genes during the transition from normal to tumor stage 

Clearly, the point is understanding how much miRNA expression variation through the 

main steps of disease progression impacts on gene expression modulation, and ultimately 

on cell behavior. We exploited miRNAs and genes matched expression profiles to 
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identify a very reduced set of miRNA-gene targeting relationships, which are most likely 

to take place in the considered cells. miRNA activity is part of complex regulatory 

networks and gene expression profiles are the result of different forces, working at 

multiple regulatory levels. Proteomics studies(Baek et al., 2008), showed that most 

miRNA targets with significantly reduced protein levels also experienced detectable 

reduction in mRNA levels, indicating that changes in mRNA expression are reasonable 

indicators for microRNA regulation. Using a stringent significance criterion (FDR<0.01) 

and controlling for multiple testing, we were able to identify a set of 3,078 miRNA-target 

relations, involving 117 (39%) out of 309 selected miRNAs. Afterwards, we considered 

the results of this enrichment analysis in the light of information about differentially 

expressed miRNAs and genes in the T vs N and M vs T comparisons. The study of the 

regulatory network in tumor development is particularly relevant: it involves the subset of 

miRNAs differentially expressed in the T vs N comparison, showing a sizeable fold-

change and resulting to be associated to at least one supported target gene. The T vs N 

network we identified includes two components (unconnected subnetworks), involving 

respectively 6 up-regulated and 17 down-regulated miRNAs together with their putative 

target genes, part of which are significantly differentially expressed in the same contrast. 

The biological meaning of the smaller component (Figure22) pertaining to the 6 miRNAs 

up-modulated in the T vs N contrast is witnessed by the large proportion of significantly 

modulated genes among the set of supported target genes represented in the network. This 

observation outlines that the pure number of up- or down-regulated miRNAs may be 

scarcely relevant to predict the impact of miRNA regulation on cell behavior, for which 

gene expression is a proxy.  

Some genes are shared targets of different miRNAs. For instance, the PDCD4 gene, a 

tumor suppressor gene, appears to be the target of three different miRNAs, miR-21, miR-

182 and miR-183 (these last are members of the same family), up-regulated in the 

primary tumor compared with normal counterpart, and resulted significantly down-

regulated in the same comparison.  

The interplay between the sub-networks modulated by miR-21 and miR-182 deserves 

some comments. miR-21 is an oncomiR whose role in "licensing" and supporting the 

neoplastic process since the earliest step of tumorigenesis is well known in different solid 

tumors; its overexpression, indeed, has been detected in pre-neoplastic lesions of colon 

mucosa and in advanced adenocarcinomas (Chang et al., 2011a). The connection between 

miR-21 and miR-182 is particularly intriguing in view of the role of miR-182 in the 

cytoskeleton reorganization, a process that favors the epithelial-to-mesenchimal transition 

and fosters cell proliferation and invasion. Among the miR-182 predicted targets, 

ENTPD5 resulted differentially down-regulated in our analysis. The gene product is a 

member of the family of ectonucleoside triphosphate diphosphohydrolase (E-NTPDases) 

enzymes that hydrolyze extracellular tri- and diphosphonucleosides, are components of 
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cellular purinergic signaling and involved in energy metabolism(Stella et al., 2010). 

Recently, Mikula et al. showed that both ENTPD5 mRNA and protein levels 

progressively decrease during the transition from normal colon mucosa, through 

adenoma, to adenocarcinoma(Mikula et al., 2010). This finding is in line with our results, 

which additionally indicate miR-182 as a possible regulator of ENTPD5 expression. 

Overall, our results go beyond the idea of up- or down-regulated miRNA signatures 

affecting a given cell behavior. Instead, they suggest a complex interplay between up- and 

down-regulated miRNAs: the admixture thereof is a specific signature of tumor 

development (or progression), whose modulation (up- or down-) impact in different ways 

to genes belonging to the same pathway. Final biological output obviously depends on 

miRNA and gene quality, on direction of modulation, as well as on the pathway structure 

(i.e. the role of gene products and their direct relationships in the pathway). 

 

 

6.3. microRNA expression in HTLV-1 infection and adult T-cell 

leukemia/lymphoma 

Using microRNA-arrays, we identified 21 downregulated microRNAs and 6 upregulated 

microRNAs in ATLL samples with respect to resting CD4+ T-cells. 

First of all an unsupervised cluster analysis was performed on selected microRNA 

expression profiles, to eliminate miRNA with very weak signals. The hierarchical cluster 

analysis showed high heterogeneity among the ATLL patients, although all samples except 

PT 1 were more similar to resting CD4+ cells than to their stimulated counterparts. The 

resting CD4+ controls well clustered together, while the stimulated counterparts differed 

considerably from each other.  

Differential expression analysis on microRNA data highlighted a preponderance of 

downregulated microRNA expression in tumor cells versus their normal counterparts in 

agreement with early profiling studies of broad panel of human tumors (Lu et al., 2005). 

Indeed the two classes statistical analysis performed on ATLL versus resting CD4+ 

miRNAs evidenced 21 down-regulated and 6 up-regulated miRNAs. In particular, 

functional data in the context of HTLV-1 are already published for miR-130b(Yeung et 

al., 2008). The predicted promoter region of miR-130b contains potential binding sites for 

NF-κB, and is responsive to Tax(Yeung et al., 2008). miR-130b as well as miR-93 

(upregulated in ATLL samples examined by Yeung et al.) were found to provide a 

survival advantage to ATLL cell lines through downregulation of TP53INP1 (tumor 

protein 53-induced nuclear protein 1)(Yeung et al., 2008), a protein that contributes to 

cell cycle-arrest- and apoptotic signals transmitted by p53 and p73 in response to DNA 

damage and other stress conditions(Pouyet and Carrier, 2010; Savkovic et al., 2004). 
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miR-146b-5p is identical to miR-146a except for 2 differing nucleotides near their 3' 

ends. Downregulation of miR-146b-5p in ATLL samples is therefore interesting in light 

of the documented  increase in levels of miR-146a in HTLV-1-infected cells(Pichler et 

al., 2008; Tomita et al., 2009). miR-146a was initially distinguished by its upregulation in 

myeloid cells exposed to the innate immune stimulus lipopolysaccharide; this induction 

occurs through the NK-kB pathway and has a role in fine-tuning the innate immune 

response(Zhao et al., 2011). In CD4+ T-cells, miR-146a is induced upon TCR stimulation 

(Cobb et al., 2006; Curtale et al., 2010), where it contributes to attenuation of the IL-2 

signal and protects the cells from AICD (activation-induced cell death)(Curtale et al., 

2010; Taganov et al., 2006). Induction of miR-146a in HTLV-1-infected cells is also NF-

kB-mediated through Tax, and confers a survival advantage to these cells (Tomita et al., 

2009). Increased expression of miR-146a is also observed in EBV-infected B-cells during 

latency III, the viral growth program that drives B-cell proliferation(Cameron et al., 

2008b).These properties, along with the fact that several solid tumors display 

upregulation of miR-146a/b(Li et al., 2010; Wang et al., 2011), suggest that they could 

contribute to the transformation process associated with HTLV-1. On the other hand, 

studies in breast cancer cells (Bhaumik et al., 2008; Hurst et al., 2009) and glioma cells 

(Xia et al., 2009) indicate that miR-146a and 146b interfere with metastasis and invasion, 

therefore suggesting tumor suppressor function for these microRNAs in some cell 

contexts. miR-146a and miR-146b map to chromosomes 5q33 and 10q24, respectively, 

and their genomic regions differ in terms of  promoter elements, length and intron-exon 

content(Taganov et al., 2006). Determination of the mechanism responsible for 

downregulation of miR-146b-5p in ATLL cells may therefore add to the understanding of 

alterations in transcription factors and RNA processing pathways that contribute to the 

transformation process.  

The sequence of miR-125a-5p is very similar to miR-125b, one of 5 microRNAs that 

target the HIV-1 3'UTR (along with miR-150, miR-28, miR-223 and miR-382) and 

influence the ability of the virus to productively infect CD4+ T-cells, monocytes and 

macrophages (Huang et al., 2007a; Wang et al., 2009b).  

Interesting among 6 miRNA upregulated in the ATLL-resting CD4+ comparison is miR-

34a known to be upregulated by p53 in response to genotoxic and oncogenic stress and 

targets genes affecting cell proliferation and survival, resulting in growth arrest, senescence 

and apoptosis; miR-34a downregulation in several solid tumors suggests its function as a 

tumor suppressor(Hermeking, 2010). However, miR-34a is upregulated in Epstein-Barr 

virus-transformed B-cells (Mrazek et al., 2007) during latency type III (Cameron et al., 

2008a) and in hepatitis B virus-associated hepatocellular carcinoma (Mizuguchi et al., 

2011), and might exert diverse effects depending on the cell context (Dutta et al., 2007). 

Among hematological cancers miR-34a has been studied most extensively in chronic 

lymphocytic leukemia (CLL). miR-34a levels vary among CLL cases and can exceed those 
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found in normal CD19+ B-cells (Asslaber et al., 2010), but are consistently lower in tumors 

bearing mutated or otherwise inactivated p53(Asslaber et al., 2010; Mraz et al., 2009). This 

is of interest, as ATLL cells generally harbor functionally inactive p53(Wang et al., 2009a; 

Yamada and Kamihira, 2005), implying involvement of alternative pathways driving miR-

34a expression. This is supported by studies of human papillomavirus-infected 

keratinocytes, which show initial downregulation of miR-34a due to interaction of E6 with 

p53, followed by restoration of miR-34a expression despite continued p53 

inactivation(Wang et al., 2009a). 

The post-transcriptional regulatory network, involving miRNA differentially expressed 

in ATLL versus resting CD4+ cells and their putative target mRNAs, was reconstructed. 

Network observation suggests that down-regulated miR-192, miR-212 and miR-31 seem to 

act in a cooperative way in the cAMP signaling by determining the upregulation of several 

forms of Adenylate cyclase. Previous studies of miR-34a demonstrated that it targets 

mRNAs coding for genes affecting cell proliferation and survival, including Cyclins D1 

and E2, Bcl-2, CDK4 and CDK6, c-Myc and N-Myc, E2F3, Met, and SIRT1. In turn, 

downregulation of SIRT1 enhances p53 activity (Hermeking, 2010; Yamakuchi and 

Lowenstein, 2009). Among the potential microRNA targets revealed for miR-34a in our 

analysis, STAT4 is of particular interest. STAT4 is a transcription factor that plays an 

important role in mediating proinflammatory immune responses(Kaplan, 2005). Studies of 

STAT4-deficient mice demonstrated its importance for biologic responses to IL-12, 

including production of IFN-gamma(Watford et al., 2004).  

Moreover, in some enriched GO term “regulation of biological quality”, “primary 

methabolic process” and “developmental process” we found several members of the RAS 

superfamily of small GTPase, RAB14, RAB23, RHOQ (Ras homolog gene family, member 

Q), and RAC1, predicted to be targets of several miRNA in the network (miR-31, miR-30b, 

miR-142-5p). Several RAS proteins have been associated with cancer cell migration and 

invasiveness.  

Furthermore, the involvement of many miRNA supported target genes in critical 

biological circuits leading to ATLL was also reinforced from the enrichment in KEGG 

pathway in “pathway in cancer”, “Wnt-signaling pathway” and “cell cycle”.  

 

 

6.4. MAGIA, a web-based tool for miRNA and Genes Integrated 

Analysis 

The integrative analysis of target prediction, miRNA and gene expression profiles is not 

straightforward for most experimental researchers, not only for problems regarding 

miRNA and targets annotations, but also for the many-to-many nature of predicted 

relationships to be considered and the extensive time requirements of computations. 
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However, there is an increasing amount of experimental studies aiming at gaining 

molecular understanding of biological processes or diseases from the computation and the 

visualization of high-throughput systems biology analyses results. Available tools are not 

adequate to the rapidly increasing amount of matched miRNA–gene profiles, the analysis 

of which could gain a remarkable advantage from target predictions and miRNA–gene 

expression profiles integration. MAGIA (MiRNA And Genes Integrated Analysis) tries to 

fill these gaps allowing the combination of target predictions for either matched or un-

matched expression miRNA–gene profiles. Using different relatedness measures and 

integration methods, MAGIA refines target predictions and reconstructs miRNA–gene 

bipartite networks. In this context, MAGIA is a useful, timely and easy-to-use web tool 

that will facilitate users in the investigation of the post-transcriptional regulatory 

networks and in the discovery of biologically relevant regulatory circuits. 

 

 

6.5. Impact of host genes and strand selection on miRNA and miRNA* 

expression 

Post-transcriptional regulation in miRNA biogenesis, namely strand selection, and 

expression relationships between intragenic miRNAs and host genes was investigated 

exploiting sequence, genomic and expression information.  

Our observations were based on a comprehensive collection of miRNAs and 

genes/transcripts whose annotation and localization was integrated with expression 

profiles computed from five large microarray-based datasets, regarding different 

biological contexts and including both normal and tumor/disease samples. At least 8 

different tissues types are represented (breast, prostate, liver, ovary, testes, lung, colon 

and brain) plus different T- and B-lineage blood cells. The high number of samples and 

the broad coverage of cell types would guarantee both significance and fair generality of 

the obtained results.  

The first evidence emerging from our analysis regards the expression behavior of pairs of 

sister mature miRNAs produced from the same hairpin. In the classic model of miRNA 

biogenesis, the duplex of mature miRNAs is produced by Dicer processing of the hairpin 

precursor. Then, a following strand selection step determines which mature miRNA is the 

degraded “passenger” strand and which is the major and stable form that will act as guide 

for the mature miRISC complex in the post-transcriptional silencing of target genes. It is 

worth notice that the two mature miRNAs have different sets of target genes and may 

differently contribute to the regulation of cell activities. The analysis of expression 

profiles showed that, considering different samples, representing different tissue types 

under various conditions, the strand selection is highly regulated. In fact, we observed 

miRNA pairs in which the same miRNA is the most expressed in the majority of 
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considered samples, as well as miRNA pairs expressed at comparable level in almost all 

considered samples. Nevertheless, the large majority of miRNA pairs show a not 

deterministic strand selection bias, which may be highly regulated since it shows tissue-

/cell-/condition-specific modulation. This is confirmed by the fact that unsupervised 

analysis, using for samples classification only information about the direction and the 

strength of the strand selection bias, is able to distinguish different tissues, and sometimes 

also different conditions (as normal and malignant cells). Moreover, when considering a 

minimum expression threshold, only a minority of pairs were expressed alternatively in 

all considered cell types, whereas the majority were concurrently expressed in some cell 

types and alternatively in others. A significant fraction of concurrently expressed pairs 

showed highly comparable levels, suggesting that both the major and the minor forms 

may contribute to post-transcriptional gene silencing, possibly in a coordinate way. Also 

considering separately alternatively and concurrently expressed pairs, the regulated nature 

of the strand selection is evident. All these results highlighted once again the complexity 

of miRNA biogenesis regulation that is also emerging from sequencing data analysis, 

continuously adding novel layers to miRNAs biogenesis pathways and enriching 

possibilities for their regulation. 

The second aim of the study was to clarify to what extent intragenic miRNAs were co-

expressed with the corresponding host genes. An intragenic miRNAs and host genes 

related behavior has been taken for proven by different Authors and used as a strong 

assumption for the design of computational methods for miRNA targets identification 

(Moreau et al., 2003) or to go further and explore the possible role of intragenic miRNAs 

in supporting the regulatory activity of host genes products(Mi et al., 2007). We 

considered four expression datasets including expression profiles in various cell types 

(brain in normal and with Alzheimer disease conditions, normal prostate and prostate 

cancer, normal blood cells and different blood cell diseases) and clearly showed, that the 

large majority of intragenic miRNAs do not share similar expression profiles with their 

host genes. Only 10% of miRNA and host gene pairs appear significantly co-expressed. 

This may be partially explained by the fact that not all miRNAs located in introns of 

protein coding genes are under the transcriptional control of coding gene promoter(s). In 

fact, Corcoran and colleagues (2009) (Corcoran et al., 2009) experimentally identified 

mammalian miRNA Polymerase II promoters by chromatin immunoprecipitation. They 

discovered that the nearest ChiP-chip peak for a number of intragenic miRNAs overlaps 

the host gene’s TSS but that reportedly one quarter of intragenic miRNAs may be 

transcribed from their own promoters and thus showing different expression behavior and 

modulation than the protein-coding gene transcript(s). This result, as well our findings 

and considerations, encourage much more detailed studies about transcriptional 

regulation of miRNAs expression. 
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Moreover, host genes expression profiles were proposed as possible proxies for the 

intragenic miRNA expression profile, when the latter is unavailable, to identify most 

probable miRNA target genes. So we conducted two integrated analysis of target 

prediction and expression profiles, one using real miRNA and gene expression profiles, 

and the second using host genes expression profiles as proxy for miRNAs, and gene 

expression profiles. The comparative evaluation of the two methods was based on an 

independent true solution, represented by a set of validated regulatory interactions. This 

allowed to measure and compare the effectiveness of the two methods in finding 

validated regulatory interactions, among the subset of predicted miRNA-target relations 

supported by negative correlations of expression profiles. Our results support the 

usefulness of the integrated analysis conducted on real miRNAs expression profiles, 

when stringency is kept reasonably high. Moreover, as expected from previous 

observations about intragenic miRNAs and host genes scarce co-expression, we 

experienced that the use of host genes expression as a proxy for miRNA profiles for the 

integrated analysis seems not significantly enrich in validated relations.  

We can conclude that the large majority of miRNA pairs show a not deterministic strand 

selection bias, which may be highly regulated, since it presents tissue-/cell-/condition-

specific modulation reinforcing the importance of the strand selection regulation, adding 

the role of such layer of miRNA biogenesis in miRNA-based control of cell activities. 

Furthermore, our results showed that most host genes and intragenic miRNAs are 

scarcely co-expressed. In specific cases, they might be co/expressed but mainly in a 

cell/tissue-specific way. This actually does not rule out the importance of already 

documented cooperation of specific intragenic miRNAs and host genes products, but 

proves that the expression information of corresponding host genes can hardly be used as 

estimator for actual expression of the co-transcribed miRNA and encourage more detailed 

studies of transcriptional regulation of miRNAs expression. 

 

 

6.6. Characterization and discovery of novel miRNAs and moRNAs in 

JAK2V617F mutated SET2 cell 

By exploiting deep sequencing data the fraction of short RNAs expressed in SET2 cells, a 

JAK2V617F mutated cell line was characterized and analyzed in integration with 

different levels of genomic information and metadata concerning known hairpin loci. 

We focused on known miRNA loci by considering 1,421 known hairpin precursors and 

1,731 known mature miRNAs, including hundreds of new miRNAs discovered by 

massive sequencing approaches. 

The expression of known mature miRNAs from sequencing data has been estimated with 

a method able to correct for multiple mapping issues. Reads multiple mapping might arise 
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from variable reasons largely attributable to miRNA loci redundancy and similarity, to 

the existence of miRNA families, as well to reads-to-reference sequence mapping 

choices. The problem of mapping quality was considerably overlooked by different 

studies that recently exploited RNA-seq for miRNAs and isomiRs discovery. It has been 

shown(Papadopoulos et al., 2009a) that short reads are prone to map to multiple genomic 

loci with an equal number of mismatches (or even without mismatches), in particular 

among multicopy miRNA precursors (identical mature miRNAs may be produced by 

different hairpins, transcribed from different loci) and miRNA families. Other studies 

considered only reads with unique mapping(Petrocca et al., 2008), although a too 

restrictive mapping settings may affect quantitative estimation of multicopy miRNAs. 

Basically, we implemented a “multiple-mapping corrected read count” to quantify 

correctly expression levels relatively to both hairpin and mature miRNAs, also including 

multilocus miRNAs and miRNA families. 

Another main finding of the study regards mature miRNA sequence variation. We 

showed that mature miRNAs were no longer represented by a unique sequence, i.e. the 

one annotated in miRBase, rather they were found as mixtures of sequence variants, 

called isomiRs, that derive mainly from non-canonical processing of hairpin precursors. 

Two third of miRNAs expressed in SET2 cells were found associated to different 

sequences. Data showed that 60% of miRNAs are associated to 2-4 isomiRs, that differ 

from the most expressed isomiR only for 5’ and 3’ sequence length, but align exactly to 

the hairpin precursor. This might imply that most isomiRs arise as a consequence of 

alternative processing of miRNA precursors. Interestingly, the sequence variability of 

isomiRs regards prevalently the 3’ region of mature miRNAs, but 8% of isomiRs differ 

from the “classic” miRNA sequence in the 5’ region, possibly impacting on target 

recognition and/or regulatory activity and strength. Future evaluations of isomiR quality 

and proportion in different cell types will help to clarify if and how much this miRNA 

biogenesis feature is cell- and context-specifically regulated. 

In the second part of the study, we exploited the discovery power of RNA-seq to identify 

a consistent number of novel short RNAs expressed from miRNA loci in SET2 cells. It is 

worth notice that RNA discovery results were produced using only read aligning exactly 

to hairpin loci in order to minimize artifacts. At variance with other studies, we mapped 

sequence reads to extended hairpin loci, i.e. the hairpin precursor genomic regions plus 

30 nucleotides upstream and downstream. This allowed us to uncover novel short RNAs 

derived from extended hairpin loci transcription and canonical or non-canonical 

processing. More specifically, we discovered 78 novel miRNAs expressed from known 

hairpin precursors. These are all new miRNA*, 11 of which are expressed in SET2 cells 

over the median value observed for the group of detected known miRNAs. 

These data confirm recent findings about the importance of miRNA*(Kuchenbauer et al., 

2011). Considering known and new miRNAs together, we took into account expression 



111 

 

behavior of pairs of miRNAs derived from 5 and 3’ strands of the same hairpin 

(miRNA/miRNA*, so called “sister miRNAs”). Sister miRNAs have different sequences 

and target different sets of coding RNAs. We showed that for about one half of hairpins 

both sister miRNAs are expressed concurrently; very likely, both contribute to target 

repression. Moreover, slightly less than one quarter of concurrently detected sister 

miRNA pairs were expressed at the same or comparable level. No strand prevalence was 

observed. These results further support theories about the not deterministic nature of 

strand selection bias, that appears to be regulated in cell-, tissue- and condition-specific 

way. Also, our findings are compatible with the two-steps cleavage of hairpin RNA by 

Dicer(Burroughs et al., 2011); bidirectional binding of processed dsRNAs by Dicer may 

indeed result in directional presentation of double strand miRNA duplex to Argonaute 

influencing the strand selection bias. 

Very interestingly, we found short expressed RNAs derived from regions of extended 

hairpins outside known and new miRNAs. These are members of a novel class of 

miRNA-related RNAs, called micro-RNA offset RNAs (moRNAs)(Fernandez-Valverde 

et al., 2010) recently identified by massive short RNAseq. In the present study 58 

moRNAs expressed from 56 hairpins at moderate to high level were identified. In 

particular hsa-5'-moR-103a-2, hsa-5'-moR-106b, hsa-5'-moR-19b-1 and hsa-5'-moR-16-1 

were highly expressed in SET2 cells. It was also of interest that 5 of the 16 most 

expressed moRNAs  were associated with the 17-92 (miR-19b-1, miR-20a, miR-92a, 

miR-19a) and the 106-25 (miR-106b) cluster, as discussed above for miRNAs. Of note, 

some of the highly expressed moRNAs were unique and did not perfectly overlap the 

most expressed miRNAs from the same cluster, suggesting that activation of the cluster 

might result in global up- regulation of the genes but also in a non-balanced ratio between 

miRNAs and moRNAs. 

Evidence regarding possible functions of moRNAs is still fragmentary(Fernandez-

Valverde et al., 2010); one hypothesis claims that moRNAs might guide RISC to 

complementary target mRNAs as miRNAs do(Guo et al., 2011). Nevertheless, the fact 

that moRNAs are nuclear enriched may support the alternative hypothesis that moRNAs 

intervene specifically in nuclear processes as other nuclear short and long RNAs do. 

Therefore, moRNAs can be viewed as a new class of regulators whose qualitative and/or 

expression abnormalities might impact on human diseases. In this view, the discovery of 

expressed moRNAs in SET2 cells is intriguing. 

In summary, we have extensively characterized the profile of short RNAs expressed in 

SET2 cells, a model used for mechanistic and drug sensitivity studies in the field of 

MPNs. This information could be useful for further characterization of the cell model and 

future studies involving primary MPN cells. It will be key to understand how the 

interplay of known and new miRNAs, isomiRs, and moRNAs contribute to the abnormal 

regulation of cell proliferation that characterizes MPN cells and whether and how novel 
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drugs affect this complex system of regulators. Taken together, our results regarding 

isomiRs and moRNA expression fit well in the “RNA in pieces” phenomenon(Berezikov 

et al., 2011b): many transcripts undergo post-transcriptional cleavage to release specific, 

functionally independent, fragments expanding the spectrum of regulatory RNAs 

produced by the human genome and from single loci. 
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Supplementary material 

 

Table S 1. Demographic, clinic and biomolecular data concerning the 40 MM/PCL 

patients investigated for miRNA expression by microarray analysis. 

Sample 
name 

Sex 
Age at 

diagnosis 
(years) 

Stage* 
Monoclonal 
component 

TC§ HD⊕⊕⊕⊕ del(13)• 
del(17p) 

• 
+1q • 

MM-212 F 55 IIIA Nd 1 - - - - 

MM-246 M nd nd Nd 1 - - - - 

MM-015 M 70 II A Gk 1 - + - - 

MM-037 F 51 II A Gk + Ak 1 - + - - 

MM-052 F 39 IA Gl + Al 1 - + - + 

MM-115 F 53 IIIA K 1 - + - + 

MM-032 M 56 IIIB Gl 1 + - - - 

MM-179 M 50 IIIA Gl 1 + - + - 

MM-026 F 73 IIIB K 1 nd - - - 

MM-131 M 69 IA Gk 2 + - - - 

MM-043 F 73 IA Gk + Gl 2 - - - + 

MM-030 M 69 IIIA Gl 2 + - - - 

MM-034 M 72 IA Gk 2 + - - - 

MM-039 M 49 IIA Gl 2 + - - - 

MM-049 M 63 IIIB K 2 + - - - 

MM-143 M 56 IIA Gk 2 + - - - 

MM-243 F 68 nd Nd 2 + - - + 

MM-038 F 67 IIA K 2 + + - - 

MM-035 M 74 IA Gk 2 nd - - - 

MM-229 M 75 IIA Gk 3 - - - - 

MM-036 M 66 IIA Gk 3 - + - + 

MM-177 M 73 IIIA Gk 3 - + - + 

MM-016 M 66 IIIB Gk 3 + - - + 

MM-239 F 72 nd A 3 + + - - 

MM-027 M 61 IA Gk 3 + + - + 

MM-040 F 77 IIIB Gl 3 + + - + 

MM-253 F 46 nd L 3 + + - + 

MM-050 M 71 IA Al 3 Nd - - Nd 

MM-087 F 85 IIIA Gl 4 - + - + 

MM-104 F 63 IIIA Al 4 - + - + 

MM-123 M 56 IIIA Gk 4 - + - + 

MM-206 F 73 IA Gk 4 - + - -⊗⊗⊗⊗ 

MM-067 F 74 IIIA Gk 4 - + + + 

MM-042 M 54 IIIA Al 4 + + - + 

MM-074 M 69 IIIA Ak 4 + + - + 

MM-025 F 64 IA Gl 5 - + - + 

MM-069 M 66 IIA Gk 5 - + - + 

MM-154 F 71 IIA G 5 - + - + 



134 

 

PCL-011 M 76 PCL Gk 5 - + + + 

PCL-006 M 55 PCL Gk 5 Nd - + Nd 

*The Durie clinical staging system was adopted. §The TC (translocation/cyclin D expression) group 

according to Hideshima classification is indicated. ⊕HD =  presence of the hyperdiploid status on the basis 

of FISH evaluation criteria. •del(13), del(17), 1q gain/amplification were determined by FISH and/or 

microarray genome-wide analysis. ⊗⊗⊗⊗ FISH revealed multiple copies of the BCL9 locus (1q21.1), and two 

copies of the ARF9 locus (1q42.13), so the patient was not considered in the supervised analysis regarding 

1q gain.  
 

 

Table S 2. List of supported target genes of miRNAs up-regulated in TC5 Cases (A) and 

TC1 cases (B). 

A 
GeneID 

Gene 
symbol 

GeneID 
Gene 
symbol 

B 
GeneID 

Gene 
symbol 

GeneID Gene symbol 

 21 ABCA3 23107 MRPS27  10057 ABCC5 26156 RSL1D1 

 32 ACACB 26292 MYCBP  11057 ABHD2 9092 SART1 

 177 AGER 4624 MYH6  57406 ABHD6 26135 SERBP1 

 79796 ALG9 8775 NAPA  31 ACACA 10147 SFRS14 

 57538 ALPK3 79829 NAT11  8728 ADAM19 51092 SIDT2 

 271 AMPD2 26151 NAT9  219 ALDH1B1 65010 SLC26A6 

 22881 ANKRD6 26012 NELF  513 ATP5D 54946 SLC41A3 

 10307 APBB3 65083 NOL6  598 BCL2L1 4090 SMAD5 

 362 AQP5 55270 NUDT15  55643 BTBD2 27293 SMPDL3B 

 411 ARSB 4987 OPRL1  56946 C11orf30 9892 SNAP91 

 472 ATM 114884 OSBPL10  79622 C16orf33 6619 SNAPC3 

 489 ATP2A3 22953 P2RX2  203197 C9orf91 27131 SNX5 

 540 ATP7B 5058 PAK1  11007 CCDC85B 11063 SOX30 

 554 AVPR2 50855 PARD6A  55573 CDV3 6749 SSRP1 

 651 BMP3 5071 PARK2  1951 CELSR3 8677 STX10 

 8927 BSN 10336 PCGF3  11261 CHP 23102 TBC1D2B 

 7832 BTG2 58488 PCTP  81570 CLPB 6925 TCF4 

 54906 C10orf18 5153 PDE1B  1503 CTPS 10227 TETRAN 

 79096 C11orf49 9409 PEX16  79901 CYBRD1 60436 TGIF2 

 25906 C11orf51 5217 PFN2  54205 CYCS 26517 TIMM13 

 29965 C16orf5 8503 PIK3R3  1613 DAPK3 9854 TMEM24 

 51279 C1RL 26034 PIP3-E  79016 DDA1 7126 T vs NFAIP1 

 
51754 C9orf127 5310 PKD1 

 
54555 DDX49 8764 

T vs 
NFRSF14 

 79886 C9orf82 8681 PLA2G4B  10522 DEAF1 27348 TOR1B 

 11092 C9orf9 5338 PLD2  1718 DHCR24 9830 TRIM14 

 81617 CAB39L 23203 PMPCA  1717 DHCR7 5976 UPF1 

 857 CAV1 5454 POU3F2  8721 EDF1 10975 UQCR 

 54862 CC2D1A 8541 PPFIA3  8178 ELL 27089 UQCRQ 

 9720 CCDC144A 5536 PPP5C  256364 EML3 81605 URM1 

 892 CCNC 5562 PRKAA1  23404 EXOSC2 7756 ZNF207 

 1235 CCR6 5742 PTGS1  56915 EXOSC5 54811 ZNF562 

 912 CD1D 5778 PTPN7  2313 FLI1 51042 ZNF593 

 1003 CDH5 5787 PTPRB  55101 FLJ10241   

 1029 CDKN2A 9727 RAB11FIP3  23171 GPD1L   

 1138 CHRNA5 9649 RALGPS1  2821 GPI   
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 23529 CLCF1 29098 RANGRF  131601 GPR175   

 1184 CLCN5 10633 RASL10A  9380 GRHPR   

 1186 CLCN7 11228 RASSF8  2962 GTF2F1   

 55118 CRTAC1 5962 RDX  3108 HLA-DMA   

 1408 CRY2 9827 RGP1  3159 HMGA1   

 54205 CYCS 6007 RHD  3382 ICA1   

 27065 D4S234E 89941 RHOT2  7866 IFRD2   

 9988 DM vs TF1 9912 RICH2  3633 INPP5B   

 57171 DOLPP1 9853 RUSC2  64768 IPPK   

 8444 DYRK3 284904 SEC14L4  3669 ISG20   

 1871 E2F3 25956 SEC31B  23383 KIAA0892   

 1889 ECE1 79048 SECISBP2  23095 KIF1B   

 1947 EFNB1 10500 SEMA6C  26468 LHX6   

 51386 EIF3EIP 23064 SETX  4012 LNPEP   

 2043 EPHA4 25970 SH2B1  11253 MAN1B1   

 54869 EPS8L1 57823 SLAMF7  4242 MFNG   

 9715 FAM131B 4891 SLC11A2  6945 MLX   

 79981 FRMD1 57468 SLC12A5  130916 MvsTERFD2   

 9758 FRMPD4 54977 SLC25A38  10608 MXD4   

 26515 FXC1 65010 SLC26A6  4686 NCBP1   

 9513 FXR2 66035 SLC2A11  51517 NCKIPSD   

 64223 GBL 1317 SLC31A1  56926 NCLN   

 2648 GCN5L2 55234 SMU1  374291 NDUFS7   

 10755 GIPC1 11262 SP140  26012 NELF   

 57720 GPR107 56928 SPPL2B  26155 NOC2L   

 9380 GRHPR 90864 SPSB3  55651 NOLA2   

 2948 GSTM4 6714 SRC  4957 ODF2   

 2954 GSTZ1 58477 SRPRB  5032 P2RY11   

 2995 GYPC 6483 ST3GAL2  56652 PEO1   

 51409 HEMK1 55576 STAB2  5830 PEX5   

 3207 HOXA11 8614 STC2  10471 PFDN6   

 8809 IL18R1 8675 STX16  51588 PIAS4   

 64806 IL25 25830 SULT4A1  8503 PIK3R3   

 26512 INTS6 9900 SV2A  58473 PLEKHB1   

 3673 ITGA2 8189 SYMPK  64425 POLR1E   

 3748 KCNC3 55633 TBC1D22B  5434 POLR2E   

 23201 KIAA0280 7074 TIAM1  5441 POLR2L   

 84726 KIAA0515 283232 TMEM80  10622 POLR3G   

 9776 KIAA0652 7274 TTPA  56342 PPAN   

 23251 KIAA1024 57348 TTYH1  60490 PPCDC   

 55243 KIRREL 51271 UBAP1  5524 PPP2R4   

 26249 KLHL3 29855 UBN1  27339 PRPF19   

 10536 LEPREL2 81605 URM1  8934 RAB7L1   

 51149 LOC51149 7433 VIPR1  5962 RDX   

 4017 LOXL2 51352 WIT1  57109 REXO4   

 4034 LRCH4 64328 XPO4  55312 RFK   

 23162 MAPK8IP3 51364 ZMYND10  9025 RNF8   

 7867 MAPKAPK3 7692 ZNF133  6158 RPL28   

 53615 MBD3 10472 ZNF238  6227 RPS21   

 23263 MCF2L 10127 ZNF263  6228 RPS23   

 6837 MED22 55311 ZNF444  6198 RPS6KB1   
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 4248 MGAT3 26048 ZNF500  6203 RPS9   

 

 

Table S 3. miRNA differentially expressed in different contrast, according to unpaired 

test.  

T vs N DEM  M vs N DEM 
miRNAs FoldChange q-value  miRNAs FoldChange q-value 

hsa-miR-139-5p -3.272177914 0  hsa-miR-215 -3.929340947 0 

hsa-miR-215 -2.988818352 0  hsa-miR-497 -3.0947646 0 

hsa-miR-99a -2.383513412 0  hsa-miR-195 -3.03721844 0 

hsa-miR-143* -2.366759526 0  hsa-miR-10b -2.817199413 0 

hsa-miR-497 -2.34419323 0  hsa-miR-143* -2.74101808 0 

hsa-miR-100 -2.324930718 0  hsa-miR-139-5p -2.438803085 0 

hsa-miR-138 -2.238032916 0  hsa-miR-138 -2.395860799 0 

hsa-miR-195 -2.107741275 0  hsa-miR-422a -2.32174352 0 

hsa-miR-150 -2.069699018 0  hsa-miR-375 -2.279264002 0 

hsa-miR-145 -1.91804478 0  hsa-miR-145 -2.086918938 0 

hsa-miR-378 -1.850939299 0  hsa-miR-133a -2.078677786 0 

hsa-miR-422a -1.81814864 0  hsa-miR-143 -2.067109714 0 

hsa-miR-375 -1.793533624 0  hsa-miR-378* -2.012477446 0 

hsa-miR-30a -1.793453612 0  hsa-miR-378 -2.005904658 0 

hsa-miR-378* -1.790182405 0  hsa-miR-30a -1.758636411 0 

hsa-miR-133a -1.773823053 0  hsa-miR-150 -1.741173237 0 

hsa-miR-125b -1.77084525 0  hsa-miR-130a -1.526273828 0 

hsa-miR-10b -1.713863042 0  hsa-miR-194* -1.510021172 0 

hsa-miR-194* -1.632313259 0  hsa-miR-28-3p -1.440290149 0 

hsa-miR-143 -1.57945413 0  hsa-miR-140-3p -1.365613614 0 

hsa-miR-342-5p -1.526441766 0  hsa-miR-342-5p -1.317922801 0 

hsa-miR-140-3p -1.334735965 0  hsa-miR-27b -1.166394486 0 

hsa-miR-28-3p -1.299378565 0  hsa-miR-28-5p -1.134539748 0 

hsa-miR-342-3p -1.295561642 0  hsa-miR-192* -1.122937275 0 

hsa-miR-149 -1.294815379 0  hsa-miR-574-3p -1.101312861 0 

hsa-miR-574-3p -1.251981975 0  hsa-miR-30e -1.067718574 0 

hsa-miR-30a* -1.206077017 0  hsa-miR-29c -1.059051697 0 

hsa-miR-127-3p -1.163578041 0  hsa-miR-342-3p -1.058066906 0 

hsa-miR-130a -1.116957708 0  hsa-miR-147b -1.050725923 0 

hsa-miR-152 -1.116820485 0  hsa-miR-199b-3p -1.021067375 0 

hsa-miR-487b -1.075980581 0  hsa-miR-152 -1.020728547 0 

hsa-miR-379 -1.031769391 0  hsa-miR-30a* -1.010530732 0 

hsa-miR-125a-5p -1.025384903 0  hsa-miR-25* 1.002975554 0 

hsa-miR-421 1.000284994 0  hsa-miR-17* 1.028867701 0.55 

hsa-miR-424* 1.003380509 0  hsa-miR-106b* 1.071120871 0 

hsa-miR-429 1.007465396 0  hsa-miR-18a* 1.072760582 0 

hsa-miR-21* 1.026996086 0  hsa-miR-20a 1.075735491 0 

hsa-miR-106a 1.042630924 0  hsa-miR-92a-1* 1.094289701 0 

hsa-miR-17 1.091146105 0  hsa-miR-188-5p 1.098647694 0 

hsa-miR-1290 1.093749518 0  hsa-miR-19a 1.106163101 0 

hsa-miR-20a 1.111479331 0  hsa-miR-210 1.111334098 0 

hsa-miR-25 1.122075965 0  hsa-miR-20b 1.117501533 0 

hsa-miR-17* 1.13475031 0  hsa-miR-106a 1.132522457 0 
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hsa-miR-25* 1.149337691 0  hsa-miR-17 1.236828699 0 

hsa-miR-552 1.208369576 0  hsa-miR-1275 1.250592958 0 

hsa-miR-19a 1.221854517 0  hsa-miR-203 1.261763799 0 

hsa-miR-92a-1* 1.227938987 0  hsa-miR-483-5p 1.359232784 0 

hsa-miR-181d 1.282578776 0  hsa-miR-552 1.391223984 0 

hsa-miR-29b-1* 1.328202727 0  hsa-miR-421 1.42187077 0 

hsa-miR-203 1.389987787 0  hsa-miR-886-5p 1.463191451 0 

hsa-miR-886-5p 1.46179031 0  hsa-miR-1308 1.593441466 0 

hsa-miR-20b 1.468807073 0  hsa-miR-885-5p 1.625067821 0 

hsa-miR-1246 1.775916675 0  hsa-miR-181d 1.657513172 0 

hsa-miR-1308 1.857166271 0  hsa-miR-424* 1.689271681 0 

hsa-miR-31 1.877829229 0.51  hsa-miR-224 1.747108666 0 

hsa-miR-18b 1.909565741 0  hsa-miR-1290 1.998961285 0 

hsa-miR-21 1.913670952 0  hsa-miR-18b 2.026686411 0 

hsa-miR-18a 1.93394207 0  hsa-miR-18a 2.065786605 0 

hsa-miR-503 1.950664843 0  hsa-miR-1246 2.384683531 0 

hsa-miR-224 2.058520635 0  hsa-miR-182 2.388952962 0 

hsa-miR-182 2.187797216 0  hsa-miR-503 2.616172225 0 

hsa-miR-183 2.53733318 0  hsa-miR-183 2.693341196 0 

  hsa-miR-122 8.312462259 0 

     

M vs T DEM 
  miRNAs FoldChange q-value   

  hsa-miR-146a -1.379160258 0   

  hsa-miR-708 -1.292819562 0   

  hsa-miR-15a -1.212038005 0   

  hsa-miR-196a -1.166896704 0   

  hsa-miR-10b -1.103336371 0   

  hsa-miR-15b -1.068075875 0   

  hsa-miR-210 1.114739685 0   

  hsa-miR-99a 1.483966648 0   

  hsa-miR-885-5p 1.506612383 0   

  hsa-miR-100 1.753641519 0   

  hsa-miR-122 7.943847008 0   
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Table S 4. miRNA differentially expressed in different contrast, according to paired test. 

T vs N  M vs N 
miRNAs Fold Change q-value  miRNAs Fold Change q-value 

hsa-miR-139-5p -3.843098125 0  hsa-miR-215 -4.0958715 0 

hsa-miR-497 -3.09369775 0  hsa-miR-195 -3.200875 0 

hsa-miR-138 -2.7540045 0  hsa-miR-497 -3.154721875 0 

hsa-miR-150 -2.743002375 0  hsa-miR-139-5p -2.717419125 0 

hsa-miR-195 -2.73133675 0  hsa-miR-10b -2.615537125 0 

hsa-miR-375 -2.59429075 0  hsa-miR-133a -2.569697875 0 

hsa-miR-99a -2.577299125 0  hsa-miR-375 -2.40409025 0 

hsa-miR-133a -2.322061088 0  hsa-miR-138 -2.402280625 0 

hsa-miR-30a -2.217122625 0  hsa-miR-422a -2.323093 0 

hsa-miR-145 -2.09149625 0  hsa-miR-143 -2.1387105 0 

hsa-miR-342-5p -1.919002875 0  hsa-miR-145 -2.11873625 0 

hsa-miR-378 -1.917125125 0  hsa-miR-30a -2.046916625 0 

hsa-miR-194* -1.8245275 0  hsa-miR-130a -1.8769065 0 

hsa-miR-143 -1.70583375 0  hsa-miR-378* -1.819690375 0 

hsa-miR-140-3p -1.665123125 0  hsa-miR-378 -1.791166375 0 

hsa-miR-342-3p -1.5621085 0  hsa-miR-381 -1.312789 0 

hsa-miR-30a* -1.55852025 0  hsa-miR-140-3p -1.261712125 0 

hsa-miR-422a -1.505709875 0  hsa-miR-342-5p -1.180007875 0 

hsa-miR-768-3p -1.450829 0  hsa-miR-20a 1.004735125 0 

hsa-miR-28-3p -1.342629625 0  hsa-miR-93 1.043093625 0 

hsa-miR-574-3p -1.284033875 0  hsa-miR-210 1.0654855 0 

hsa-miR-381 -1.1066095 0  hsa-miR-18a* 1.0906075 0 

hsa-miR-768-5p -1.095674125 0  hsa-miR-106a 1.11549275 0 

hsa-miR-20a 1.115748875 0  hsa-miR-27a* 1.147799375 0 

hsa-miR-106a 1.20225525 0  hsa-miR-92a-1* 1.198501875 0 

hsa-miR-17 1.29234875 0  hsa-miR-17 1.238445 0 

hsa-miR-20b 1.41034325 0  hsa-miR-29b-1* 1.473451375 0 

hsa-miR-106b* 1.460387125 0  hsa-miR-885-5p 1.487745625 0 

hsa-miR-421 1.63622425 0  hsa-miR-106b* 1.77119125 0 

hsa-miR-1308 2.2919085 0  hsa-miR-181d 2.02541625 0 

hsa-miR-183 2.5195705 0  hsa-miR-1246 2.284496125 0 

hsa-miR-224 2.590309875 0  hsa-miR-18b 2.287867 0 

hsa-miR-18a 2.830789875 0  hsa-miR-183 2.604235875 0 

hsa-miR-18b 2.862260875 0  hsa-miR-18a 2.615767875 0 

  hsa-miR-552 2.622208375 0 

    hsa-miR-503 3.0354695 0 

    hsa-miR-182 3.0650235 0 

    hsa-miR-122 9.42885325 0 
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  M vs T   

  miRNAs FoldChange q-value   

  hsa-miR-139-5p 1.125679 0   

  hsa-miR-210 1.597213875 0   

  hsa-miR-150 1.67365425 0   

  hsa-miR-100 2.444512125 0   

  hsa-miR-122 9.23824025 0   

 

 

Table S 5. KEGG pathways significantly modulated in T-N and in T-M contrasts. For 

each contrast, significantly modulated pathways were identified considering expression 

profiles of all genes being supported targets of DEMs and considering only the subset of 

genes being supported targets of DEMs and differentially expressed in the same contrast. 

In bold, genes in common for DEM and DEM.DEG.  

KEGG ID Pathway 
T-N DEM and supported target genes 

 T-N DEM and supported target T-N 
DEG 

miRNA Sign genes sign miRNA sign genes sign 

4110 Cell cycle 

hsa-miR-182 
hsa-miR-100 
hsa-miR-497 
hsa-miR-195 
hsa-miR-30a 
hsa-miR-145 
hsa-miR-125b 
hsa-miR-139-5p 
hsa-miR-378 
hsa-miR-378* 
hsa-miR-422a 

up 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 

CDKN2B 
ATR 
CCND1 
CCNB1 
BUB1 
CDC25A 
CDC25B 
CDC25C 
E2F3 
MCM2 
MYC 
PRKDC 
YWHAG 
CDC23 
DBF4 
ORC6L 
ANAPC7 
ANAPC1 

down 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 

hsa-miR-195 
hsa-miR-145 

down 
down 

CDC25B 
MYC 
PRKDC 

up 
up 
up 
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230 Purine metabolism 

hsa-miR-422a 
hsa-miR-378 
hsa-miR-182 
hsa-miR-10b 
hsa-miR-150 
hsa-miR-183 
hsa-miR-1246 
hsa-miR-145 
hsa-miR-138 
hsa-miR-125b 
hsa-miR-30a 
hsa-miR-195 
hsa-miR-497 
hsa-miR-139-5p 

down 
down 
up 
down 
down 
up 
up 
down 
down 
down 
down 
down 
down 
down 

ENTPD5 
PDE1C 
PDE4D 
PDE7B 
PAPSS2 
PDE7B 
AMPD2 
GART 
NME1 
NM23A 
PFAS 
PKM2 
POLR2D 
PPAT 
RRM2 
POLR1A 
POLR1B 
PNPT1 

down 
down 
down 
down 
down 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 

hsa-miR-150 
hsa-miR-182 
hsa-miR-183 

down 
up 
up 

NME1 
ENTPD5 
PAPSS2 
PDE7B 
NM23A 

up 
down 
down 
down 
up 

240 
Pyrimidine 
metabolism 

hsa-miR-182 
hsa-miR-143* 
hsa-miR-125b 
hsa-miR-378 
hsa-miR-422a 
hsa-miR-150 
hsa-miR-30a 
hsa-miR-195 
hsa-miR-497 
hsa-miR-145 
hsa-miR-138 
hsa-miR-139-5p 

up 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 

ENTPD5 
CAD 
CTPS 
DTYMK 
NM23A 
POLR2D 
RRM2 
UCK2 
UMPS 
POLR1A 
POLR1B 
PNPT1 

down 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up  
up 

        

61 
Fatty acid 
biosynthesis 

hsa-miR-182 
hsa-miR-378 
hsa-miR-139-5p 
hsa-miR-145 
hsa-miR-497 
hsa-miR-195 

up 
down 
down 
down 
down 
down 

ACACB 
ACACA 
FASN 

down 
up 
up 

      

4914 
Progesterone-
mediated oocyte 
maturation 

hsa-miR-21 
hsa-miR-182 
hsa-miR-30a 
hsa-miR-195 
hsa-miR-497 
hsa-miR-100 
hsa-miR-194* 
hsa-miR-378* 
hsa-miR-125b 
hsa-miR-139-5p 

up 
up 
down 
down 
down 
down 
down 
down 
down 
down 

PIK3R1 
PRKACB 
BUB1 
CCNB1 
CDC25A 
CDC25B  
CDC25C 
HSP90AB
1 
CDC23 
ANAPC7 
ANAPC1 

down 
down 
up 
up 
up 
up 
up 
up 
up 
up 
up 
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4115 
p53 signaling 
pathway 

hsa-miR-182 
hsa-miR-183 
hsa-miR-30a 
hsa-miR-195 
hsa-miR-497 
hsa-miR-145 
hsa-miR-194* 
hsa-miR-378* 
hsa-miR-125b 
hsa-miR-139-5p 

up 
up 
down 
down 
down 
down 
down 
down 
down 
down 

FAS 
ATR 
CCND1 
CCNB1 
BID 
SERPINE
1 
RRM2 
SHISA5 
GTSE1 

down 
up 
up 
up 
up 
up 
up 
up 
up 

      

450 
Selenoamino acid 
metabolism 

hsa-miR-183 
hsa-miR-182 
hsa-miR-145 
hsa-miR-138 
hsa-miR-30a 

up 
up 
down 
down 
down 

PAPSS2 
AHCYL2 
MARS 
MARS2 
WBSCR2
2 

down 
down 
up 
up 
up 

hsa-miR-183 
hsa-miR-182 

up 
up 

PAPSS2 
AHCYL2 

down 
down 

970 
Aminoacyl-tRNA 
biosynthesis 

hsa-miR-145 
hsa-miR-150 
hsa-miR-195 
hsa-miR-497 
hsa-miR-138 
hsa-miR-30a 

down 
down 
down 
down 
down 
down 

AARS 
IARS 
KARS 
MARS 
TARS2 
MARS2 

up 
up 
up 
up 
up 
up 

      

5222 
Small cell lung 
cancer 

hsa-miR-21 
hsa-miR-182 
hsa-miR-497 
hsa-miR-195 
hsa-miR-150 
hsa-miR-194* 
hsa-miR-30a 
hsa-miR-125b 
hsa-miR-139-5p 
hsa-miR-145 
hsa-miR-378* 

up 
up 
down 
down 
down 
down 
down 
down 
down 
down 
down 

PIK3R1 
CDKN2B 
CCDN1 
CKS1B 
COL4A1 
E2F3 
MYC 
RELA 
ITGA2 

down 
down 
up 
up 
up 
up 
up 
up 
up 
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5200 Pathways in cancer 

hsa-miR-182 
hsa-miR-18a 
hsa-miR-1246 
hsa-miR-21 
hsa-miR-145 
hsa-miR-195 
hsa-miR-497 
hsa-miR-30a 
hsa-miR-194* 
hsa-miR-150 
hsa-miR-125b 
hsa-miR-139-
5p 
hsa-miR-378* 
hsa-miR-422a 
hsa-miR-378 
hsa-miR-138 
hsa-miR-183 

up 
up 
up 
up 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 
down 
up 

FAS 
BMP2 
CDKN2B 
GLI3 
PDGFRA 
PIK3R1 
PLD1 
SOS2 
BIRC5 
CCDN1 
BCR 
BID 
RUNX1 
CKS1B 
COL4A1 
E2F3 
HSP90AB
1 
ITGA2 
MYC 
PLCG1 
RELA 
SLC2A1 
VEGFA 
AXIN2 

down 
down 
down 
down 
down 
down 
down 
down 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 
up 

hsa-miR-1296 
hsa-miR-182 
hsa-miR-497 
hsa-miR-195 
hsa-miR-139-5p 
hsa-miR-145 
hsa-miR-30a 
hsa-miR-378 
hsa-miR-422a 

up 
up 
down 
down 
down 
down 
down 
down 
down 

PDGFR
A 
ITGA2 
MYC 
SLC2A1 
AXIN2 

down 
up 
up 
up 
up 

4210 Apoptosis 

hsa-miR-182 
hsa-miR-183 
hsa-miR-21 
hsa-miR-30a 
hsa-miR-195 
hsa-miR-21 
hsa-miR-497 
hsa-miR-378* 
hsa-miR-1246 

up 
up 
up 
down 
down 
up 
down 
down 
up 

FAS 
PIK3R1 
PRKACB 
T vs 
NFRSF1A 
T vs 
NFSF10 
BID 
IL1RAP 
IRAK2 
RELA 

Down 
down 
down 
down 
down 
up 
up 
up 
up 

        

3022 
Basal transcription 
factors 

hsa-miR-30a 
hsa-miR-422a 
hsa-miR-378 
hsa-miR-125b 
hsa-miR-378* 

down 
down 
down 
down 
down 

GTF2E1 
GTF2I 
TAF4 
GTF2IRD
1 
TAF5L 

up 
up 
up 
up 
up 

      

5220 
Chronic myeloid 
leukemia 

hsa-miR-21 
hsa-miR-182 
hsa-miR-1246 
hsa-miR-497 
hsa-miR-195 
hsa-miR-194* 
hsa-miR-30a 
hsa-miR-125b 
hsa-miR-145 
hsa-miR-378* 

up 
up 
up 
down 
down 
down 
down 
down 
down 
down 

PIK3R1 
SOS2 
CCND1 
BCR 
RUNX1 
E2F3 
MYC 
RELA 

down 
down 
up 
up 
up 
up 
up 
up 

        

30 
Pentose phosphate 
pathway 

hsa-miR-378* 
hsa-miR-150 
hsa-miR-422a 
hsa-miR-139-5p 
hsa-miR-30a 

down 
down 
down 
down 
down 

GPI 
TALDO1 
TKT 
RPIA 

up 
up 
up 
up 
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630 
Glyoxylate and 
dicarboxylate 
metabolism 

hsa-miR-378 
hsa-miR-145 
hsa-miR-30a 
hsa-miR-138 

down 
down 
down 
down 

M vs 
THFD1 
M vs 
THFD1L 
AFMID 

up 
up 
up 

        

4114 Oocyte meiosis 

hsa-miR-30a 
hsa-miR-195 
hsa-miR-145 
hsa-miR-497 
hsa-miR-378* 
hsa-miR-125b 
hsa-miR-139-5p 
hsa-miR-182 
hsa-miR-18a 

down 
down 
down 
down 
down 
down 
down 
up 
up 

BUB1 
CCNB1 
CDC25C 
PPP2R1A 
YWHAG 
CDC23 
ANAPC7 
ANAPC1 
ITPR1 
PRKACB 

up 
up 
up 
up 
up 
up 
up 
up 
down 
down 

      

100 
Steroid 
biosynthesis 

hsa-miR-139-5p 
hsa-miR-145 

down 
down 

DHCR7 
NSDHL 
HS17B7 

up 
up 
up 

        

670 
One carbon pool by 
folate 

hsa-miR-10b 
hsa-miR-30a 
hsa-miR-138 

down 
down 
down 

GART 
M vs 
THFD1 
M vs 
THFD1L 

up 
up 
up 

      

5219 Bladder cancer 

hsa-miR-497 
hsa-miR-30a 
hsa-miR-125b 
hsa-miR-195 
hsa-miR-145 
hsa-miR-138 
hsa-miR-182 

down 
down 
down 
down 
down 
down 
up 

CCND1 
E2F3 
MYC 
VEGFA 
RPS6KA5 

up 
up 
up 
up 
down 

        

4310 
Wnt signaling 
pathway 

     hsa-miR-145 
hsa-miR-497 
hsa-miR-195  
hsa-miR-143* 
hsa-miR-182 

down 
down 
down 
up 
down 

MYC 
AXIN2 
RUVBL1 
PRKACB 

up 
up 
up 
down 

5210 Colorectal cancer 

        hsa-miR-1246 
hsa-miR-182 
hsa-miR-145 
hsa-miR-497 
hsa-miR-195 

up 
up 
down 
down 
down 

PDGFR
A 
MYC 
AXIN2 

up 
down 
down 

750 
Vitamin B6 
metabolism 

     hsa-miR-195 
hsa-miR-497 
hsa-miR-145 
hsa-miR-30a 

down 
down 
down 
down 

PSAT1 up 
up 
up 
down 

5213 Endometrial cancer 

        hsa-miR-145 
hsa-miR-497 
hsa-miR-195 

down 
down 
down 

MYC 
AXIN2 

up 
up 

KEGG ID Pathway 

T-N DEM and supported target genes T-N DEM and supported target T-N DEG 

miRNA Sign gene sign miRNA sign gene sign 

230 Purine metabolism 
hsa-miR-10b 
hsa-miR-122 

down 
up 

GART 
PDE1C 

up 
down 
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280 
Valine, leucine and 
isoleucine 
degradation 

hsa-miR-10b Down MCCC2 up         

670 
One carbon pool by 
folate 

hsa-miR-10b Down GART up         

 

 

 

 

Figure S 1. Inverse correlation between c-Myc and miR-145 expression. Quantitative RT-

PCR was carried out for A. c-Myc target gene and B. miR-145 in 78 samples of N, T and M 

samples used for gene profiling. Quantification was normalized to the expression of 

DACT1 and miR-200c respectively. Data are shown as the mean ± standard deviation (SD) 

of the mean of three experiments performed in triplicate. **P<0.01 vs N. nRQ: normalized 

Relative Quantity. 
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Table S 6. Biological process GO Terms significantly enriched in supported target gene 

from miRNA differently expressed in ATLL versus resting CD4+.   

Symbol GOBPID Pvalue Count Term 

HSD3B1 
SRD5A1 
HSD17B6 

GO:0006702 2,09E+09 3 
androgen biosynthetic 

process 

CDC23 
CCND1 
PPP6C 
CDC7 
CUL3 
RB1 

CDK2AP1 
KPNA2 
CDC6 
APBB2 
GAS1 

GO:0051329 8,10E+09 11 
interphase of mitotic cell 

cycle 

INCENP 
MYH9 
RASA1 
ROCK2 
CCND1 
CCNF 
CDC6 
NEDD9 
NEK3 
RB1 

TACC1 
WEE1 
SMC1A 
CDC7 
CDC23 

ARHGEF2 
PDS5B 
PELO 
MIS12 

GO:0051301 0,0002 19 cell division 

MAP1B 
MAP4 

ARHGEF2 
MID1IP1 

GO:0007026 0,0006 4 
negative regulation of 

microtubule 
depolymerization 

SOAT1 
DHCR24 

PSEN1 
ACHE 

GO:0042982 0,0006 4 
amyloid precursor 
protein metabolic 

process 
KPNA2 
CDC23 
CCND1 
PPP6C 
CDC7 
CUL3 
RB1 

CDK2AP1 

MYH9 
SMC1A 
PDS5B 
CCNF 
CDC6 
INCENP 
NEDD9 
NEK3 

WEE1 
ARHGEF2 
MIS12 
SEH1L 
SPO11 
ADCY3 
APBB2 
GAS1 

GO:0022403 0,0007 24 cell cycle phase 

AQP2 AVPR1A GO:0009415 0,0008 2 response to water 

AQP2 AVPR1A GO:0042631 0,0008 2 
cellular response to 
water deprivation 

APBB2 
GAS1 

RB1 
CDC7 

GO:0033261 0,001 4 regulation of S phase 

AGT 
LEPR 

ADAM vs TS1 GO:0001542 0,001 3 
ovulation from ovarian 

follicle 

APBB2 
GAS1 

RB1 GO:0045749 0,001 3 
negative regulation of S 
phase of mitotic cell 

cycle 



146 

 

NDRG4 
SGMS1 
AGT 

IGFBP5 
HTRA1 
WISP1 
PAPPA2 

APBB2 
ING1 
ENPP1 
RB1 

NDRG3 
ADIPOR2 
SLC1A2 

NEDD9 
COL4A4 
FGA 
GAS1 
GLI3 

MST vs N 
BMP8A 

GO:0040007 0,001 21 Growth 

ST8SIA4 
MAN1A2 

ST8SIA3 GO:0006491 0,002 3 N-glycan processing 

APBB2 
ING1 
ENPP1 
RB1 

NDRG3 
ADIPOR2 

AGT 
IGFBP5 

HTRA1 
WISP1 
PAPPA2 

GO:0001558 0,002 11 regulation of cell growth 

ALDH9A1 
GAD1 
ACHE 
KCND2 
NDRG4 
SGMS1 
AGT 

IGFBP5 
HTRA1 
WISP1 
PAPPA2 
AVPR1A 
BCL10 
AQP2 
PLAU 
PRDX3 
DIO2 

HSD3B1 
SRD5A1 
HSD17B6 

RHAG 
CCL23 
TFRC 
CLCN3 

ATP6V1H 
LPAR1 
OPRL1 
SYT1 
RAB14 
F9 
FLI1 

AKR1D1 
MYH9 
RASA1 
RHOQ 
CPN2 
MCL1 

ABCA12 
PLP1 
PCSK2 

FGA 
APBB2 
ING1 
ENPP1 
RB1 

NDRG3 
ADIPOR2 
ARPC5 
ATP2C1 
PSEN1 
COL4A4 
NR5A2 
SLC2A4 
SOAT1 
LIPG 
USH2A 
SEH1L 
RDX 

KCNE1 
SLC22A5 

GO:0065008 0,002 47 
regulation of biological 

quality 
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KPNA1 
KPNA2 
ACHE 
NASP 
TK2 
T vs 

NFAIP1 
CDC7 

SUPT16H 
CDC6 
RB1 
RFX5 

SUPT4H1 
ST18 
LPAR1 
MET 

UBE2D1 
UBE2N 
TRIP12 

KIAA0317 
WWP2 
HECW1 
FBXW2 
UBR7 

TBL1XR1 
CRNKL1 
SF3A1 
CSTF1 
CSTF2 
SFRS2 
SMC1A 
DIO2 
PTGIS 
ITGB8 

PRKAR1A 
CCND1 
SELE 

FKBP15 
DNAJB5 
UBE2D3 
AKR1B1 
GBE1 
MGAT1 
NAGA 
SLC2A4 
POFUT2 

PC 
METTL4 
ADCY3 
ADCY6 
ADCY7 
RHOQ 
DHODH 
UMPS 
SPO11 

SMUG1 
SETX 

ALKBH1 
SIRT7 

PAPOLB 
RTF1 
TTF2 
ATF1 

RUNX1T1 
DLX4 
EN2 
ETV1 
EZH2 
FLI1 

NR5A2 
IRF4 
MITF 
NAB1 

NFATC4 
ZNF192 
LIMD1 
PREB 
IRF9 

CARHSP1 
YBX2 
ZNF117 
ZNF701 
ZNF695 
ZNF557 
MYCN 
MYF6 
SP4 

TCF12 
TIAL1 
MED20 
FTSJ1 
MAX 
MBD1 
GTF2E1 
TAF7L 

IVNS1ABP 
A2BP1 
PTBP2 
MRPL19 
MRPL15 
PELO 
MRP63 
DARS2 
USP6 
TTLL4 
ERBB4 
FLT3 
GMFB 
NEK3 

PRKAA2 

ROCK2 
OXSR1 
C7orf16 
STK39 

PPP2R2A 
PPP6C 
PTPN7 
PTPN9 

M vs TMR2 
ART3 

ST8SIA4 
B3GALNT1 
ST8SIA3 
ST6GALN

AC5 
MAN1A2 
CASP7 
F9 

MMP3 
MMP16 
MMP19 
NSF 

PCSK2 
PLAU 
HTRA1 

XPNPEP1 
ADAM vs 

TS1 
DPP3 
WDR7 
PAPPA2 
MYH9 
PSEN1 
UBE2K 
UBE2G1 
CUL3 
CDC23 
ARIH2 
FBXL7 
GOT2 
GAD1 
ACADL 
STS 

SOAT1 
SRD5A1 
AKR1D1 
HSD17B6 
ACAA2 

ADIPOR2 
SGMS1 
SCD 

PIP5K1A 
DHCR24 
HMGCS1 
HSD3B1 

ARHGEF2 
MID1IP1 
OPRL1 
GNAI3 
GRM3 
CHRM5 
C1orf25 
OSBP2 
LEPR 
NOVA1 
ITPA 
ENPP1 
NNAT 
LIPG 

ALDH9A1 
AGT 

ATP5G3 
ATP6V0A2 
ATP6V1H 
PLCB1 
GLI3 
CPN2 
IGFBP5 
DYRK1A 
SRC 
CLK4 

C14orf147 
ITIH5 
RASA1 
ARPC5 
PSMD5 
BCL10 
PLP1 

PPP2R5C 
APBB2 
CT vs 
NND2 
SALL1 
SOX11 
ZBTB24 
MLXIP 
ASXL2 
CNOT6 
MED28 
LBH 

VGLL3 
RAB23 
BCOR 
ESRRG 
NFYB 

MST vs N 
PCBD1 
MYF5 
MYO6 
POU2F3 

GO:0044238 
0,002097

948 
232 

primary metabolic 
process 
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DHODH UMPS GO:0006222 0,002 2 
UMP biosynthetic 

process 

DHODH UMPS GO:0009173 0,002 2 

pyrimidine 
ribonucleoside 
monophosphate 
metabolic process 

SMC1A 
PDS5B 
CDC23 

SEH1L 
INCENP 

PSEN1 
MIS12 

GO:0007059 0,002 7 
chromosome 
segregation 

NDRG4 
SGMS1 
AGT 

IGFBP5 
HTRA1 

WISP1 
PAPPA2 
APBB2 
ING1 

ENPP1 
RB1 

NDRG3 
ADIPOR2 

GO:0008361 0,002 13 regulation of cell size 

SUPT16H 
TTF2 
MAP1B 

MAP4 
ARHGEF2 

MID1IP1 
RDX 

GO:0034623 0,003 7 
cellular macromolecular 
complex disassembly 

SUPT16H 
TTF2 
MAP1B 

MAP4 
ARHGEF2 
MID1IP1 

LIPG 
LAMC1 
RDX 

GO:0022411 0,003 9 
cellular component 

disassembly 

ARHGEF2 
MYH9 
MYF5 
BMP8A 
LEPR 
MMP19 
ROBO4 
ADAM vs 

TS1 
AGT 

RASA1 
IGFBP5 
GLI3 
SALL1 
ZFAND5 
PRKAR1A 
MCL1 
MYF6 
DCX 
MET 
NASP 
BCL10 
CCNF 
KCNE1 
ACHE 
PVRL2 
BAG1 

DHCR24 

YWHAZ 
CIAPIN1 
COL4A3 
TIA1 
TIAL1 
NOD1 
CT vs 
NND2 
DLX4 

ELAVL1 
EN2 
MITF 
NNAT 

PLXNA2 
PRM1 
SOX11 
TCF12 
TMEFF1 
NUMB 
LIMD1 
ARIH2 
OLFM1 
DKK2 
TAF7L 

PPP1R9A 
OLFML3 
NDRG4 
SEMA6D 

LBH 
NR5A2 
RAC1 
T vs 

NFAIP1 
FLI1 

KRT6A 
DYRK1A 
ERBB4 
GMFB 
MOBP 
PCSK2 
SLC1A2 
ST8SIA4 
LGI1 

RAPGEF5 
RAB23 
GAS1 
C7orf16 
SLC5A3 
LAMC1 
NFATC4 
BCOR 

MST vs N 
SGCD 
SRD5A1 
MFN1 
RHOQ 

STS 
FGF7 
KRT34 
LAMC2 
POU2F3 
ATP2C1 
CUL3 

PPP3R1 
PLP1 
SOAT1 
MAP1B 
FLT3 
PRDX3 
NDRG3 
PAPPA2 
ENPP1 
CCND1 
SRC 

COL4A4 
FGA 
IRF4 

SGMS1 
RB1 

RUNX1T1 
TEK 

USH2A 
SLC2A4 

GO:0032502 0,004 109 developmental process 
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DHCR24 
HMGCS1 
PRKAA2 
ACAA2 
AKR1D1 

HSD3B1 
SRD5A1 
HSD17B6 

STS 

LEPR 
SOAT1 
AGT 

OSBP2 

GO:0008202 0,004 13 
steroid metabolic 

process 

ADCY3 
ADCY6 
ADCY7 
RHOQ 
DHODH 
UMPS 
ATP8A1 

ATP2C1 
ATP8B4 
OPRL1 
GNAI3 
GRM3 
CHRM5 

ITPA 
ENPP1 
ATP5G3 

ATP6V0A2 
ATP6V1H 
SMUG1 

GO:0006753 0,004 19 
nucleoside phosphate 
metabolic process 

MAP1B 
MAP4 

ARHGEF2 
MID1IP1 

GO:0031110 0,004 4 

regulation of 
microtubule 

polymerization or 
depolymerization 

ADCY3 
ADCY6 
ADCY7 
RHOQ 
ATP8A1 

ATP2C1 
ATP8B4 
OPRL1 
GNAI3 
GRM3 

CHRM5 
ATP5G3 

ATP6V0A2 
ATP6V1H 
ENPP1 

GO:0006163 0,004 15 
purine nucleotide 
metabolic process 

 

 

Table S 7. Expression values and sequences for 78 new mature miRNAs expressed in 

SET2 cells. 

New miRNA Sequence Expression 

hsa-miR-1307* CTCGACCGGACCTCGACCGGCTCGT 72670 

hsa-miR-376a-2* GGTAGATTTTCCTTCTATGGTTA 14296 

hsa-miR-382* CGAATCATTCACGGACAACACTTTTT 8296 

hsa-miR-539* AATCATACAAGGACAATTTCTTTTTGA 3332 

hsa-miR-181b-1* CTCACTGAACAATGAATGCAACT 1542 

hsa-miR-561* ATCAAGGATCTTAAACTTTGCC 1315 

hsa-let-7c* CTGTACAACCTTCTAGCTTTCCT 1195 

hsa-miR-652* ACAACCCTAGGAGAGGGTGCCATTCA 982 

hsa-miR-301a* GCTCTGACTTTATTGCACTACT 880 

hsa-miR-487a* GTGGTTATCCCTGCTGTGTTCG 823 

hsa-miR-370* AAGCCAGGTCACGTCTCTGCAGTTACAC 624 

hsa-miR-412* TGGTCGACCAGTTGGAAAGTAAT 578 

hsa-miR-376c* GTGGATATTCCTTCTATGTTTAT 568 

hsa-miR-381* AAGCGAGGTTGCCCTTTGTATATTC 567 

hsa-miR-376b* GTGGATATTCCTTCTATGTTTA 532 

hsa-miR-487b* AGTGGTTATCCCTGTCCTGTTCGT 491 

hsa-miR-1277* TATATATATATATGTACGTATGT 422 

hsa-miR-101-2* TCGGTTATCATGGTACCGATGCTGT 386 

hsa-miR-942* CACATGGCCGAAACAGAGAAGTTA 373 

hsa-miR-1185-1* ATATACAGGGGGAGACTCTTATT 355 

hsa-miR-503* GGGGTATTGTTTCCGCTGCCAGG 335 
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hsa-miR-210* AGCCCCTGCCCACCGCACACTGC 325 

hsa-miR-543* GAAGTTGCCCGTGTTTTTTTCGCT 305 

hsa-miR-152* CAGGTTCTGTGATACACTCCGACTC 301 

hsa-miR-1304* CATCTCACTGTAGCCTCGAACCCCT 296 

hsa-miR-659* CAGGACCTTCCCTGAACCAAGGAAGA 251 

hsa-miR-889* GAATGGCTGTCCGTAGTATGGTC 213 

hsa-miR-128-1* CGGGGCCGTAGCACTGTCTGAGA 201 

hsa-miR-410* AGGTTGTCTGTGATGAGTTCG 185 

hsa-miR-107* AGCTTCTTTACAGTGTTGCCTTGT 175 

hsa-miR-495* GAAGTTGCCCATGTTATTTTCG 158 

hsa-miR-758* ATGGTTGACCAGAGAGCACACG 143 

hsa-miR-181b-2* ACTCACTGATCAATGAATGCAAA 124 

hsa-miR-212* ACCTTGGCTCTAGACTGCTTACTG 110 

hsa-miR-1185-2* ATATACAGGGGGAGACTCTCAT 96 

hsa-miR-544* TCTTGTTAAAAAGCAGATTCT 87 

hsa-miR-134* CTGTGGGCCACCTAGTCACCAA 80 

hsa-miR-874* CGGCCCCACGCACCAGGGTAAGA 68 

hsa-miR-513c* TAAATTTCACCTTTCTGAGAAGA 65 

hsa-miR-1255a* AACTATCTTCTTTGCTCATCCTTG 61 

hsa-miR-301b* GCTCTGACGAGGTTGCACTACT 59 

hsa-miR-450a-2* ATTGGGGACATTTTGCATTCAT 55 

hsa-miR-98* CTATACAACTTACTACTTTCC 52 

hsa-miR-656* AGGTTGCCTGTGAGGTGTTCA 49 

hsa-miR-433* TACGGTGAGCCTGTCATTATTC 42 

hsa-miR-660* ACCTCCTGTGTGCATGGATTACA 42 

hsa-miR-4424* GTCCATTTCAAGTTAACTCTGT 41 

hsa-miR-496* GGTTGTCCATGGTGTGTTCATT 38 

hsa-miR-548j* CAAAAACTGCATTACTTTTGCA 38 

 

 

Table S 8. List of conserved predicted target genes for new miRNAs with read count over 

500. Conserved target sites were predicted using TargetScan and filtered according to the 

context score. Conserved predictions associated to top 25% scores were reported below. 

miRNA Symbol 
#Conserved 

Syte 
 miRNA Symbol 

#Conserved 
Syte 

hsa-let-7c* ABCC5 1  hsa-miR-181b-1* STXBP5L 1 

hsa-let-7c* ACVR1B 1  hsa-miR-181b-1* TAB2 1 

hsa-let-7c* ACVR2A 1  hsa-miR-181b-1* TAF5 1 

hsa-let-7c* ADAM19 1  hsa-miR-181b-1* TAOK3 1 

hsa-let-7c* ADAMTSL1 2  hsa-miR-181b-1* TASP1 1 

hsa-let-7c* ADAMTSL3 1  hsa-miR-181b-1* TBC1D9 1 

hsa-let-7c* ADCY6 1  hsa-miR-181b-1* TFRC 1 

hsa-let-7c* ADNP 1  hsa-miR-181b-1* TIPARP 1 

hsa-let-7c* AKAP1 1  hsa-miR-181b-1* TM9SF3 1 

hsa-let-7c* ANKRD12 1  hsa-miR-181b-1* TMEM26 1 
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hsa-let-7c* APC 1  hsa-miR-181b-1* TRA2A 1 

hsa-let-7c* ARHGAP29 1  hsa-miR-181b-1* TRIM55 1 

hsa-let-7c* ARID1B 1  hsa-miR-181b-1* TSC1 1 

hsa-let-7c* ARID4B 2  hsa-miR-181b-1* TSN 1 

hsa-let-7c* ARIH2 1  hsa-miR-181b-1* TTC33 1 

hsa-let-7c* ARNT 1  hsa-miR-181b-1* UBA6 1 

hsa-let-7c* ASAP1 1  hsa-miR-181b-1* UBE3C 1 

hsa-let-7c* ASCL1 2  hsa-miR-181b-1* UBQLN2 1 

hsa-let-7c* ATP1B1 1  hsa-miR-181b-1* USP50 1 

hsa-let-7c* ATP2B4 1  hsa-miR-181b-1* VSNL1 1 

hsa-let-7c* AUTS2 1  hsa-miR-181b-1* YWHAG 2 

hsa-let-7c* AXIN1 1  hsa-miR-181b-1* ZNF804A 1 

hsa-let-7c* B4GALT5 1  hsa-miR-301a* AP2B1 1 

hsa-let-7c* BBC3 1  hsa-miR-301a* BMP2 1 

hsa-let-7c* BCL11A 1  hsa-miR-301a* BNC2 1 

hsa-let-7c* BCL7A 1  hsa-miR-301a* CCNT2 1 

hsa-let-7c* BMI1 1  hsa-miR-301a* CDC23 1 

hsa-let-7c* BNC2 1  hsa-miR-301a* CHD9 1 

hsa-let-7c* BRD4 1  hsa-miR-301a* CUL3 1 

hsa-let-7c* BTBD7 1  hsa-miR-301a* DDX3Y 1 

hsa-let-7c* BTG1 1  hsa-miR-301a* EGR1 1 

hsa-let-7c* C10orf140 1  hsa-miR-301a* EIF2S2 1 

hsa-let-7c* C14orf43 1  hsa-miR-301a* ELOVL6 1 

hsa-let-7c* C5orf53 1  hsa-miR-301a* FAM46A 1 

hsa-let-7c* C7orf42 1  hsa-miR-301a* FOXJ2 1 

hsa-let-7c* CACNA2D2 1  hsa-miR-301a* GABPA 1 

hsa-let-7c* CALM2 1  hsa-miR-301a* GPR3 1 

hsa-let-7c* CD9 1  hsa-miR-301a* HNF1B 2 

hsa-let-7c* CDC27 1  hsa-miR-301a* KIAA1737 1 

hsa-let-7c* CDC42SE2 1  hsa-miR-301a* KIAA2022 1 

hsa-let-7c* CDH11 1  hsa-miR-301a* KLF12 1 

hsa-let-7c* CDKN1C 1  hsa-miR-301a* MAP2K4 1 

hsa-let-7c* CDYL 1  hsa-miR-301a* NFYB 1 

hsa-let-7c* CELF5 1  hsa-miR-301a* NR2C2 1 

hsa-let-7c* CITED2 2  hsa-miR-301a* NTM 1 

hsa-let-7c* CLK1 1  hsa-miR-301a* NUAK1 1 

hsa-let-7c* CLK2 1  hsa-miR-301a* OLFM3 1 

hsa-let-7c* CLK4 1  hsa-miR-301a* PACRG 1 

hsa-let-7c* COL13A1 1  hsa-miR-301a* PITPNB 1 

hsa-let-7c* COLEC12 1  hsa-miR-301a* PKIA 1 

hsa-let-7c* CREB5 1  hsa-miR-301a* RAB12 1 

hsa-let-7c* CRMP1 1  hsa-miR-301a* RAB1A 1 

hsa-let-7c* CSMD2 1  hsa-miR-301a* RRAS2 1 

hsa-let-7c* CUL3 1  hsa-miR-301a* SERBP1 1 

hsa-let-7c* CYFIP2 1  hsa-miR-301a* SGMS1 1 

hsa-let-7c* DACH1 1  hsa-miR-301a* SHOC2 1 

hsa-let-7c* DEK 1  hsa-miR-301a* SLC44A1 1 

hsa-let-7c* DKK1 1  hsa-miR-301a* SSR3 1 
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hsa-let-7c* DLX6 1  hsa-miR-301a* TMEM189 1 

hsa-let-7c* DMD 1  hsa-miR-301a* TRAF3 1 

hsa-let-7c* DNAJA2 2  hsa-miR-301a* UNC13B 1 

hsa-let-7c* DNAJC8 1  hsa-miR-301a* VEZF1 1 

hsa-let-7c* DOCK4 1  hsa-miR-301a* ZFX 1 

hsa-let-7c* DSCAML1 1  hsa-miR-370* ACVR2A 1 

hsa-let-7c* DYRK4 1  hsa-miR-370* BCL11A 1 

hsa-let-7c* E2F3 1  hsa-miR-370* BCL2L11 1 

hsa-let-7c* E2F4 1  hsa-miR-370* C11orf87 1 

hsa-let-7c* EIF4B 1  hsa-miR-370* CADM2 1 

hsa-let-7c* ELL 1  hsa-miR-370* CCDC6 1 

hsa-let-7c* ELMO1 1  hsa-miR-370* CEACAM1 1 

hsa-let-7c* ELOVL5 1  hsa-miR-370* CEBPG 1 

hsa-let-7c* EP300 1  hsa-miR-370* EIF2S1 1 

hsa-let-7c* ERBB2IP 1  hsa-miR-370* FAM110B 1 

hsa-let-7c* FAM108C1 1  hsa-miR-370* FAM193A 1 

hsa-let-7c* FAM160B1 1  hsa-miR-370* FAM98A 1 

hsa-let-7c* FAM49B 1  hsa-miR-370* FBXL7 1 

hsa-let-7c* FAM60A 1  hsa-miR-370* HIF1A 1 

hsa-let-7c* FAM76B 2  hsa-miR-370* HNRNPA0 1 

hsa-let-7c* FBN2 1  hsa-miR-370* MCAM 1 

hsa-let-7c* FBXL3 1  hsa-miR-370* NEK9 1 

hsa-let-7c* FBXO21 1  hsa-miR-370* ORMDL2 1 

hsa-let-7c* FBXO38 1  hsa-miR-370* PAPD7 1 

hsa-let-7c* FBXW11 1  hsa-miR-370* PPP2R5A 1 

hsa-let-7c* FERMT2 1  hsa-miR-370* PRKAB1 1 

hsa-let-7c* FGF18 1  hsa-miR-370* RAB3GAP2 1 

hsa-let-7c* FGF7 1  hsa-miR-370* RBM9 1 

hsa-let-7c* FLI1 1  hsa-miR-370* SH2D2A 1 

hsa-let-7c* FLRT2 1  hsa-miR-370* SH2D4B 1 

hsa-let-7c* FOXF1 1  hsa-miR-370* SORBS2 2 

hsa-let-7c* FOXO1 1  hsa-miR-370* SPATS2L 1 

hsa-let-7c* FXR1 1  hsa-miR-370* SRPR 1 

hsa-let-7c* FZD1 1  hsa-miR-370* TCAP 1 

hsa-let-7c* GABBR2 1  hsa-miR-370* YPEL2 1 

hsa-let-7c* GDF6 1  hsa-miR-370* ZBTB44 1 

hsa-let-7c* GJC1 1  hsa-miR-370* ZFC3H1 1 

hsa-let-7c* GNAI1 1  hsa-miR-376a-2* ACVR1 1 

hsa-let-7c* GOLGA1 1  hsa-miR-376a-2* C4orf40 1 

hsa-let-7c* GOPC 1  hsa-miR-376a-2* C6orf195 1 

hsa-let-7c* GPM6A 2  hsa-miR-376a-2* CAPRIN1 1 

hsa-let-7c* GPR126 1  hsa-miR-376a-2* CAPZB 1 

hsa-let-7c* GRB10 1  hsa-miR-376a-2* CD47 1 

hsa-let-7c* GRIA3 1  hsa-miR-376a-2* CHD9 1 

hsa-let-7c* GRIN3A 1  hsa-miR-376a-2* CHL1 1 

hsa-let-7c* GRPEL2 1  hsa-miR-376a-2* CNRIP1 1 

hsa-let-7c* GTPBP2 1  hsa-miR-376a-2* CSMD2 1 

hsa-let-7c* HAPLN1 1  hsa-miR-376a-2* DAZAP1 1 
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hsa-let-7c* HECTD2 2  hsa-miR-376a-2* FAM60A 1 

hsa-let-7c* HERC1 1  hsa-miR-376a-2* HDAC9 1 

hsa-let-7c* HERC4 1  hsa-miR-376a-2* HOXA13 1 

hsa-let-7c* HIF1A 1  hsa-miR-376a-2* HOXA9 1 

hsa-let-7c* HIVEP2 2  hsa-miR-376a-2* HTR2C 1 

hsa-let-7c* HMGA2 1  hsa-miR-376a-2* JAKMIP2 1 

hsa-let-7c* HMGCR 1  hsa-miR-376a-2* KPNA4 1 

hsa-let-7c* HMGCS1 1  hsa-miR-376a-2* LRRC4C 1 

hsa-let-7c* HMGN1 1  hsa-miR-376a-2* MAF 1 

hsa-let-7c* HMGXB4 1  hsa-miR-376a-2* MED14 1 

hsa-let-7c* HNRNPU 1  hsa-miR-376a-2* NEGR1 1 

hsa-let-7c* HOXB2 1  hsa-miR-376a-2* NRXN3 1 

hsa-let-7c* HOXB7 1  hsa-miR-376a-2* OLA1 1 

hsa-let-7c* HOXC9 1  hsa-miR-376a-2* PDS5B 1 

hsa-let-7c* INTS6 1  hsa-miR-376a-2* PHYHIPL 1 

hsa-let-7c* IQSEC1 1  hsa-miR-376a-2* PTBP2 1 

hsa-let-7c* IRF6 1  hsa-miR-376a-2* PURB 1 

hsa-let-7c* IWS1 1  hsa-miR-376a-2* SFRS9 1 

hsa-let-7c* JAZF1 1  hsa-miR-376a-2* SMAD5 1 

hsa-let-7c* JMJD1C 1  hsa-miR-376a-2* SP4 1 

hsa-let-7c* KAL1 1  hsa-miR-376a-2* STAT6 1 

hsa-let-7c* KCNJ2 1  hsa-miR-376a-2* USP38 1 

hsa-let-7c* KDM2B 2  hsa-miR-376a-2* XRN1 1 

hsa-let-7c* KDM6A 1  hsa-miR-376a-2* ZCCHC5 1 

hsa-let-7c* KIAA0247 1  hsa-miR-376b* ARID2 1 

hsa-let-7c* KIAA0317 1  hsa-miR-376b* ARID5B 1 

hsa-let-7c* KIAA1274 1  hsa-miR-376b* ATP7A 1 

hsa-let-7c* KIAA1486 1  hsa-miR-376b* BACH2 1 

hsa-let-7c* KIAA2026 1  hsa-miR-376b* BNIP3L 1 

hsa-let-7c* KIF26A 1  hsa-miR-376b* CHD9 1 

hsa-let-7c* KLF4 1  hsa-miR-376b* ETV1 1 

hsa-let-7c* KLF9 2  hsa-miR-376b* FAM19A2 1 

hsa-let-7c* KLHL14 1  hsa-miR-376b* FZD8 1 

hsa-let-7c* KPNA4 1  hsa-miR-376b* GRIA2 1 

hsa-let-7c* KRAS 1  hsa-miR-376b* IGF2BP2 1 

hsa-let-7c* KRIT1 1  hsa-miR-376b* IRF2BP2 1 

hsa-let-7c* KSR2 1  hsa-miR-376b* JOSD1 1 

hsa-let-7c* L3MBTL3 1  hsa-miR-376b* KY 1 

hsa-let-7c* LEPREL1 1  hsa-miR-376b* MAGI2 1 

hsa-let-7c* LMNB2 1  hsa-miR-376b* MBNL2 1 

hsa-let-7c* LRIG1 1  hsa-miR-376b* MYST3 1 

hsa-let-7c* LRP1B 1  hsa-miR-376b* NHLH2 1 

hsa-let-7c* LRP6 1  hsa-miR-376b* NKRF 1 

hsa-let-7c* LZTS2 1  hsa-miR-376b* NRN1 1 

hsa-let-7c* M6PR 1  hsa-miR-376b* ODZ1 2 

hsa-let-7c* MAGI3 1  hsa-miR-376b* PAX3 1 

hsa-let-7c* MAP4K3 1  hsa-miR-376b* PPAP2B 1 

hsa-let-7c* MBD5 1  hsa-miR-376b* RNF150 1 
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hsa-let-7c* MECOM 1  hsa-miR-376b* RNGTT 1 

hsa-let-7c* MED13 1  hsa-miR-376b* RPGRIP1L 1 

hsa-let-7c* MED31 1  hsa-miR-376b* RUNX1T1 1 

hsa-let-7c* MEF2C 2  hsa-miR-376b* RYR2 1 

hsa-let-7c* MEGF11 1  hsa-miR-376b* SALL1 1 

hsa-let-7c* MEMO1 1  hsa-miR-376b* SECISBP2L 1 

hsa-let-7c* MGAT4A 1  hsa-miR-376b* SLITRK1 1 

hsa-let-7c* MIER3 2  hsa-miR-376b* SMPD3 1 

hsa-let-7c* MITF 1  hsa-miR-376b* STMN1 1 

hsa-let-7c* MKL2 1  hsa-miR-376b* THRB 1 

hsa-let-7c* MLL3 1  hsa-miR-376b* ZBTB33 1 

hsa-let-7c* MLL4 1  hsa-miR-376b* ZNF281 1 

hsa-let-7c* MLL5 1  hsa-miR-376c* ARID2 1 

hsa-let-7c* MNT 1  hsa-miR-376c* ARID5B 1 

hsa-let-7c* MRPL49 1  hsa-miR-376c* ATP7A 1 

hsa-let-7c* MYCL1 1  hsa-miR-376c* BACH2 1 

hsa-let-7c* MYT1L 1  hsa-miR-376c* BNIP3L 1 

hsa-let-7c* NAA16 1  hsa-miR-376c* CHD9 1 

hsa-let-7c* NAMPT 3  hsa-miR-376c* ETV1 1 

hsa-let-7c* NAP1L4 1  hsa-miR-376c* FAM19A2 1 

hsa-let-7c* NAV3 1  hsa-miR-376c* FZD8 1 

hsa-let-7c* NCKAP5 1  hsa-miR-376c* GRIA2 1 

hsa-let-7c* NEDD4L 1  hsa-miR-376c* IGF2BP2 1 

hsa-let-7c* NEUROG1 1  hsa-miR-376c* IRF2BP2 1 

hsa-let-7c* NFKBIA 1  hsa-miR-376c* JOSD1 1 

hsa-let-7c* NKTR 1  hsa-miR-376c* KY 1 

hsa-let-7c* NPC1 1  hsa-miR-376c* MAGI2 1 

hsa-let-7c* NR2E1 1  hsa-miR-376c* MBNL2 1 

hsa-let-7c* NUDT21 1  hsa-miR-376c* MYST3 1 

hsa-let-7c* NUMB 1  hsa-miR-376c* NHLH2 1 

hsa-let-7c* NUP153 1  hsa-miR-376c* NKRF 1 

hsa-let-7c* NUP54 1  hsa-miR-376c* NRN1 1 

hsa-let-7c* OSBPL8 1  hsa-miR-376c* ODZ1 2 

hsa-let-7c* PAN3 1  hsa-miR-376c* PAX3 1 

hsa-let-7c* PARD6B 1  hsa-miR-376c* PPAP2B 1 

hsa-let-7c* PARVA 1  hsa-miR-376c* RNF150 1 

hsa-let-7c* PATL1 1  hsa-miR-376c* RNGTT 1 

hsa-let-7c* PCCA 1  hsa-miR-376c* RPGRIP1L 1 

hsa-let-7c* PCDH7 1  hsa-miR-376c* RUNX1T1 1 

hsa-let-7c* PDE4A 1  hsa-miR-376c* RYR2 1 

hsa-let-7c* PDIA3 1  hsa-miR-376c* SALL1 1 

hsa-let-7c* PGAP1 1  hsa-miR-376c* SECISBP2L 1 

hsa-let-7c* PHC1 1  hsa-miR-376c* SLITRK1 1 

hsa-let-7c* PHF2 2  hsa-miR-376c* SMPD3 1 

hsa-let-7c* PHTF2 1  hsa-miR-376c* STMN1 1 

hsa-let-7c* PIAS3 1  hsa-miR-376c* THRB 1 

hsa-let-7c* PKIA 1  hsa-miR-376c* ZBTB33 1 

hsa-let-7c* PKP4 1  hsa-miR-376c* ZNF281 1 
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hsa-let-7c* PLEKHA5 1  hsa-miR-381* DDN 1 

hsa-let-7c* PLS3 1  hsa-miR-381* PTPRU 1 

hsa-let-7c* PPIP5K1 1  hsa-miR-382* AHCYL1 1 

hsa-let-7c* PPP1R12A 1  hsa-miR-382* B4GALT5 1 

hsa-let-7c* PPP1R3B 1  hsa-miR-382* BTRC 1 

hsa-let-7c* PPP1R8 1  hsa-miR-382* C18orf34 1 

hsa-let-7c* PPP1R9A 1  hsa-miR-382* CACNA1C 1 

hsa-let-7c* PPP2R5C 2  hsa-miR-382* CFTR 1 

hsa-let-7c* PPP3CB 1  hsa-miR-382* COL24A1 1 

hsa-let-7c* PPP3R1 1  hsa-miR-382* CSMD3 1 

hsa-let-7c* PRDM10 1  hsa-miR-382* EGR3 1 

hsa-let-7c* PRKCE 1  hsa-miR-382* EIF4H 1 

hsa-let-7c* PRPF40A 1  hsa-miR-382* ENAH 1 

hsa-let-7c* PSMG2 1  hsa-miR-382* FZD4 1 

hsa-let-7c* PTMA 1  hsa-miR-382* G3BP1 1 

hsa-let-7c* PTPRB 1  hsa-miR-382* GJA1 1 

hsa-let-7c* PUM1 1  hsa-miR-382* GPR85 1 

hsa-let-7c* PUS7 1  hsa-miR-382* JAZF1 1 

hsa-let-7c* QSER1 1  hsa-miR-382* LMO3 1 

hsa-let-7c* R3HDM1 1  hsa-miR-382* MAPK6 1 

hsa-let-7c* RAB10 1  hsa-miR-382* MEX3C 1 

hsa-let-7c* RAB40B 1  hsa-miR-382* NFYB 1 

hsa-let-7c* RAPGEF2 1  hsa-miR-382* NLGN1 1 

hsa-let-7c* RBM16 1  hsa-miR-382* NOVA1 1 

hsa-let-7c* RBM23 1  hsa-miR-382* NR3C1 1 

hsa-let-7c* RBM27 1  hsa-miR-382* PARD6B 1 

hsa-let-7c* RBM5 1  hsa-miR-382* PLAGL2 1 

hsa-let-7c* RCAN2 1  hsa-miR-382* PRKD1 1 

hsa-let-7c* RDX 1  hsa-miR-382* QKI 1 

hsa-let-7c* REV1 1  hsa-miR-382* QSER1 1 

hsa-let-7c* RGS7BP 1  hsa-miR-382* RC3H1 1 

hsa-let-7c* RLF 1  hsa-miR-382* SFRS13A 1 

hsa-let-7c* RNF139 1  hsa-miR-382* SNRK 1 

hsa-let-7c* RNF38 1  hsa-miR-382* THRAP3 1 

hsa-let-7c* RNPS1 1  hsa-miR-382* TRIM8 1 

hsa-let-7c* ROPN1 1  hsa-miR-382* TRPS1 1 

hsa-let-7c* RP11-35N6.1 2  hsa-miR-382* UBE2D2 1 

hsa-let-7c* RPL29 1  hsa-miR-382* UBR3 1 

hsa-let-7c* RRP1B 1  hsa-miR-382* YTHDF3 1 

hsa-let-7c* RUNX2 1  hsa-miR-382* ZFC3H1 1 

hsa-let-7c* RXRA 1  hsa-miR-382* ZNF10 1 

hsa-let-7c* SAPS3 2  hsa-miR-382* ZNF281 1 

hsa-let-7c* SCAMP5 1  hsa-miR-412* CCPG1 1 

hsa-let-7c* SCRIB 1  hsa-miR-412* PCDH10 1 

hsa-let-7c* SCRN1 1  hsa-miR-487a* AP3M1 1 

hsa-let-7c* SCYL1 1  hsa-miR-487a* ATG2B 1 

hsa-let-7c* SEC11A 1  hsa-miR-487a* CDC27 1 

hsa-let-7c* SEC24D 1  hsa-miR-487a* CELF1 1 
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hsa-let-7c* SEPT3 1  hsa-miR-487a* CTNNA1 1 

hsa-let-7c* SEPT7 1  hsa-miR-487a* CTNND2 1 

hsa-let-7c* SERPINE2 1  hsa-miR-487a* DCX 1 

hsa-let-7c* SERTAD4 1  hsa-miR-487a* DIXDC1 1 

hsa-let-7c* SF3B3 1  hsa-miR-487a* GDF10 1 

hsa-let-7c* SLAIN2 1  hsa-miR-487a* GRIA1 1 

hsa-let-7c* SLC25A26 1  hsa-miR-487a* LAMC1 1 

hsa-let-7c* SLC35D1 1  hsa-miR-487a* MAGT1 1 

hsa-let-7c* SLC39A10 1  hsa-miR-487a* MECP2 1 

hsa-let-7c* SLC5A12 1  hsa-miR-487a* NAP1L1 1 

hsa-let-7c* SLC6A6 1  hsa-miR-487a* NUAK1 1 

hsa-let-7c* SMARCC1 1  hsa-miR-487a* RSF1 1 

hsa-let-7c* SMC6 1  hsa-miR-487a* SFRS2 1 

hsa-let-7c* SNRPB2 1  hsa-miR-487a* SMARCA2 1 

hsa-let-7c* SNRPD1 1  hsa-miR-487a* TPH2 1 

hsa-let-7c* SNX25 1  hsa-miR-487a* UBE2D2 1 

hsa-let-7c* SORBS2 1  hsa-miR-487a* UBTD2 1 

hsa-let-7c* SORCS3 1  hsa-miR-487a* ZC3H7A 1 

hsa-let-7c* SOX2 1  hsa-miR-539* ABTB2 1 

hsa-let-7c* SOX3 1  hsa-miR-539* ANKS1B 1 

hsa-let-7c* SOX4 1  hsa-miR-539* ARHGAP20 1 

hsa-let-7c* SOX8 1  hsa-miR-539* ARHGAP26 1 

hsa-let-7c* SP1 1  hsa-miR-539* ASAP2 1 

hsa-let-7c* SP8 1  hsa-miR-539* ATP11C 1 

hsa-let-7c* SPAST 1  hsa-miR-539* ATP8B1 1 

hsa-let-7c* SREBF1 1  hsa-miR-539* BMI1 1 

hsa-let-7c* SS18L1 1  hsa-miR-539* BOD1L 1 

hsa-let-7c* STAG1 1  hsa-miR-539* C5orf41 1 

hsa-let-7c* STAT5A 1  hsa-miR-539* C6orf106 1 

hsa-let-7c* STX16 1  hsa-miR-539* CCNT2 1 

hsa-let-7c* STXBP5L 1  hsa-miR-539* CHKA 1 

hsa-let-7c* SUFU 1  hsa-miR-539* CNKSR3 1 

hsa-let-7c* SUMO3 1  hsa-miR-539* CNR1 1 

hsa-let-7c* SUZ12 1  hsa-miR-539* CREBZF 1 

hsa-let-7c* SWAP70 1  hsa-miR-539* CSMD3 1 

hsa-let-7c* SYVN1 1  hsa-miR-539* CUL4B 1 

hsa-let-7c* TAB3 1  hsa-miR-539* DOCK4 1 

hsa-let-7c* TACSTD2 1  hsa-miR-539* DYRK1A 1 

hsa-let-7c* TANC1 1  hsa-miR-539* ENY2 1 

hsa-let-7c* TBC1D12 1  hsa-miR-539* EVI5 1 

hsa-let-7c* TBX18 1  hsa-miR-539* FSTL4 1 

hsa-let-7c* TCERG1L 1  hsa-miR-539* GPM6A 1 

hsa-let-7c* TCF4 1  hsa-miR-539* MAGI2 1 

hsa-let-7c* THBD 1  hsa-miR-539* MEGF9 1 

hsa-let-7c* THBS1 1  hsa-miR-539* NLK 1 

hsa-let-7c* TLK1 2  hsa-miR-539* PDE4D 1 

hsa-let-7c* TMEM2 1  hsa-miR-539* PDZD2 1 

hsa-let-7c* TNFRSF11B 1  hsa-miR-539* PPP4R4 1 
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hsa-let-7c* TOX 1  hsa-miR-539* PRPF40A 1 

hsa-let-7c* TP63 1  hsa-miR-539* PUM2 1 

hsa-let-7c* TRA2B 1  hsa-miR-539* RC3H1 1 

hsa-let-7c* TRIM2 1  hsa-miR-539* REPS2 1 

hsa-let-7c* TRRAP 1  hsa-miR-539* RGS14 1 

hsa-let-7c* TSHZ1 1  hsa-miR-539* RHOA 1 

hsa-let-7c* UBE2E2 1  hsa-miR-539* RNF38 1 

hsa-let-7c* UBE2F 1  hsa-miR-539* RNF44 1 

hsa-let-7c* UBE2G1 1  hsa-miR-539* SEMA3C 1 

hsa-let-7c* UBE2T 1  hsa-miR-539* SIRT1 1 

hsa-let-7c* UBQLN2 1  hsa-miR-539* SMAD7 1 

hsa-let-7c* USMG5 1  hsa-miR-539* SNRNP40 1 

hsa-let-7c* UST 1  hsa-miR-539* SNX6 1 

hsa-let-7c* VANGL2 1  hsa-miR-539* SOX9 1 

hsa-let-7c* VEZF1 1  hsa-miR-539* SP3 1 

hsa-let-7c* WDR33 1  hsa-miR-539* SPRED2 1 

hsa-let-7c* WWC1 1  hsa-miR-539* STIM2 1 

hsa-let-7c* YPEL2 1  hsa-miR-539* STYX 1 

hsa-let-7c* ZBTB33 1  hsa-miR-539* TEAD1 1 

hsa-let-7c* ZBTB39 1  hsa-miR-539* TMEM184B 1 

hsa-let-7c* ZCCHC14 1  hsa-miR-539* TNPO1 1 

hsa-let-7c* ZDHHC21 1  hsa-miR-539* TOP1 1 

hsa-let-7c* ZHX2 1  hsa-miR-539* TRIB2 1 

hsa-let-7c* ZHX3 1  hsa-miR-539* YPEL4 1 

hsa-let-7c* ZIC5 1  hsa-miR-539* ZEB2 1 

hsa-let-7c* ZNF638 1  hsa-miR-539* ZER1 1 

hsa-let-7c* ZNF704 1  hsa-miR-539* ZNF217 1 

hsa-let-7c* ZNF831 1  hsa-miR-561* ARHGAP5 1 

hsa-let-7c* ZNRF3 1  hsa-miR-561* ASH1L 1 

hsa-let-7c* ZZEF1 1  hsa-miR-561* BCL11B 1 

hsa-miR-181b-1* ABCD3 1  hsa-miR-561* C9orf41 1 

hsa-miR-181b-1* ACVR1C 1  hsa-miR-561* CCDC88A 1 

hsa-miR-181b-1* ADCY6 1  hsa-miR-561* CLCN5 1 

hsa-miR-181b-1* AHCYL1 1  hsa-miR-561* CNOT2 1 

hsa-miR-181b-1* AKAP2 1  hsa-miR-561* DIP2B 1 

hsa-miR-181b-1* ARHGAP5 1  hsa-miR-561* EIF3J 1 

hsa-miR-181b-1* ARID1A 1  hsa-miR-561* ELOVL7 1 

hsa-miR-181b-1* ARID1B 1  hsa-miR-561* FAM108B1 1 

hsa-miR-181b-1* ARMC1 1  hsa-miR-561* FNTB 1 

hsa-miR-181b-1* ATRX 2  hsa-miR-561* GALNT2 1 

hsa-miR-181b-1* ATXN7L1 1  hsa-miR-561* GLO1 1 

hsa-miR-181b-1* BPTF 1  hsa-miR-561* GOLT1A 1 

hsa-miR-181b-1* C10orf140 1  hsa-miR-561* HIPK1 1 

hsa-miR-181b-1* C11orf75 1  hsa-miR-561* HMGB1 1 

hsa-miR-181b-1* C20orf194 1  hsa-miR-561* KCTD12 1 

hsa-miR-181b-1* C21orf34 1  hsa-miR-561* KIAA0182 1 

hsa-miR-181b-1* CA10 1  hsa-miR-561* KIT 1 

hsa-miR-181b-1* CDC27 1  hsa-miR-561* LANCL3 1 
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hsa-miR-181b-1* CDK8 1  hsa-miR-561* MDGA2 1 

hsa-miR-181b-1* CEP135 1  hsa-miR-561* MED1 1 

hsa-miR-181b-1* CKS2 1  hsa-miR-561* MMP16 1 

hsa-miR-181b-1* CPSF6 1  hsa-miR-561* NMNAT2 1 

hsa-miR-181b-1* CSDE1 1  hsa-miR-561* NPAS4 1 

hsa-miR-181b-1* CYR61 1  hsa-miR-561* NPEPPS 1 

hsa-miR-181b-1* DDX3X 2  hsa-miR-561* ODZ1 1 

hsa-miR-181b-1* DDX3Y 2  hsa-miR-561* PBRM1 1 

hsa-miR-181b-1* DNAJB7 1  hsa-miR-561* PDE4DIP 1 

hsa-miR-181b-1* E2F5 1  hsa-miR-561* PICALM 1 

hsa-miR-181b-1* EIF4E 1  hsa-miR-561* PTPRB 1 

hsa-miR-181b-1* FAF2 1  hsa-miR-561* RAC1 1 

hsa-miR-181b-1* FAM176A 1  hsa-miR-561* RBM46 1 

hsa-miR-181b-1* FNDC3B 1  hsa-miR-561* RDH10 1 

hsa-miR-181b-1* FOXP1 1  hsa-miR-561* SDHC 1 

hsa-miR-181b-1* FUT9 1  hsa-miR-561* SEC24A 1 

hsa-miR-181b-1* GAPVD1 1  hsa-miR-561* SEPT7 1 

hsa-miR-181b-1* GPATCH2 1  hsa-miR-561* SLC4A10 1 

hsa-miR-181b-1* GRIA3 1  hsa-miR-561* SLC4A11 1 

hsa-miR-181b-1* HECW2 1  hsa-miR-561* SMAD2 1 

hsa-miR-181b-1* HELZ 1  hsa-miR-561* STK35 1 

hsa-miR-181b-1* HEPACAM2 1  hsa-miR-561* SUZ12 1 

hsa-miR-181b-1* KLF9 1  hsa-miR-561* TEAD1 1 

hsa-miR-181b-1* KPNA1 1  hsa-miR-561* TRPC5 1 

hsa-miR-181b-1* LMAN1 1  hsa-miR-561* TTN 1 

hsa-miR-181b-1* MAMDC2 1  hsa-miR-561* WAPAL 1 

hsa-miR-181b-1* MAP1B 1  hsa-miR-561* WDR26 1 

hsa-miR-181b-1* MAPRE1 1  hsa-miR-561* WNT1 1 

hsa-miR-181b-1* MATR3 1  hsa-miR-561* WWC3 1 

hsa-miR-181b-1* MEF2C 1  hsa-miR-561* ZBTB47 1 

hsa-miR-181b-1* MEX3B 1  hsa-miR-561* ZCCHC2 1 

hsa-miR-181b-1* MIER3 1  hsa-miR-561* ZNF777 1 

hsa-miR-181b-1* MOBKL1A 1  hsa-miR-561* ZNF804A 1 

hsa-miR-181b-1* MYH10 1  hsa-miR-652* C8orf34 1 

hsa-miR-181b-1* NAMPT 1  hsa-miR-652* CELF2 1 

hsa-miR-181b-1* NAV3 1  hsa-miR-652* CPEB2 1 

hsa-miR-181b-1* NHS 1  hsa-miR-652* ERBB4 1 

hsa-miR-181b-1* NKAIN2 1  hsa-miR-652* FNBP1L 1 

hsa-miR-181b-1* NMNAT2 1  hsa-miR-652* KHDRBS2 1 

hsa-miR-181b-1* P4HA2 1  hsa-miR-652* KIAA1409 1 

hsa-miR-181b-1* 
PALM2-
AKAP2 1  hsa-miR-652* MACROD2 1 

hsa-miR-181b-1* PDE4D 1  hsa-miR-652* MARCH4 1 

hsa-miR-181b-1* PDE4DIP 1  hsa-miR-652* PAFAH1B1 1 

hsa-miR-181b-1* PHC3 1  hsa-miR-652* PATZ1 1 

hsa-miR-181b-1* PLCXD3 1  hsa-miR-652* PRKCA 1 

hsa-miR-181b-1* PRDM10 1  hsa-miR-652* RCOR3 1 

hsa-miR-181b-1* PTP4A2 1  hsa-miR-652* SNTB2 1 
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hsa-miR-181b-1* PURA 1  hsa-miR-652* TCF12 1 

hsa-miR-181b-1* RAP2C 1  hsa-miR-652* TOP1 1 

hsa-miR-181b-1* RER1 1  hsa-miR-652* TSPAN9 1 

hsa-miR-181b-1* RIMKLB 1  hsa-miR-652* UBE2E2 1 

hsa-miR-181b-1* RSRC2 1  hsa-miR-652* VEGFA 1 

hsa-miR-181b-1* SEC11A 1  hsa-miR-652* YWHAG 1 

hsa-miR-181b-1* SH2B2 1  hsa-miR-652* ZNF618 1 

hsa-miR-181b-1* SLC1A2 1     

hsa-miR-181b-1* SLITRK3 1     

hsa-miR-181b-1* SON 1     

hsa-miR-181b-1* SPTBN1 1     

 

 

 


