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Abstract

The origin of cement, employed as a binding material, can be attributed to

Romans who found that a mixture of lime and crushed volcanic ashes was able to

set under water, the resistance being increased along the time, in a way

completely different to any other material. Since that age, a huge amount of

different kind of cements have been produced to satisfy the request of different

mechanical behaviors. To deeply understand the mechanisms that lead to the

development of mechanical strength, reaction kinetics that occur during the

hydration process must be known. Nowadays we can affirm that cement research

has set many important results but despite of this “long-time story”, a lot of

improvements are required to better understand the mechanisms of kinetics.

Cements mixed with water are complex systems undergoing critical chemical and

physical changes during the hydration process. A unique hydration model able to

explain the controlling mechanisms is the main purpose of cement research, but

the physical-chemical parameters involved are actually too many. To partly

overcome the chemical complexity of common cement materials, simplified

cement systems are often used for research purposes. A project has been set to

investigate the fundamental reactions occurring during the hydration process and

has been divided within 3 different partners: NIST (National Institute of Standards

and Technology), W.R. GRACE and University of Padua. Our part of the project

was to collect x-ray powder diffraction patterns on the hydrating suspensions,

using Rietveld refinement for quantitative phase analysis.

Three simplified cement systems formed by the synthetic phases tricalcium

silicate Ca3SiO5 (C3S), tricalcium aluminate Ca3Al2O6 (C3A) and a varying

amount of gypsum CaSO4∙2H2O (CŠH2) were investigated by means of in-situ x-

ray powder diffraction (XRPD) and isothermal calorimetry (IC) in order to

evaluate dissolution-precipitation kinetics. The main hydration products detected

by means of XRPD were ettringite, hemicarboaluminate, portlandite, Ca-Si

hydrates (C-S-H): the same occurring in real cements.
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The Avrami nucleation and growth model successfully fits the degree of hydration

data, confirming that C-S-H should have a layered structure as well as the phases

resulting from the decomposition of ettringite. The mass balance method was used

to calculate the exact amount of C-S-H formed during hydration, which is not

directly accessible from Rietveld refinement. The comparison between the degree

of hydration calculated from isothermal calorimetry data and the degrees of

hydration calculated from x-ray diffraction has revealed how much the reactant

phases are responsible for heat release. In particular, it was seen that the study of

C3S-C3A-Gy systems is not a simple sum of the investigations of C3S-Gy and

C3A-Gy systems, which are two further simplified model cements. The synthetic

materials suffered a loss on reactivity despite of the under-vacuum sealing,

leading to a continuous and unpredictable change of the materials features

(particle size, degree of reactivity) during time.

The obtained experimental data should be necessary to proof the effectiveness of

software modelling (HydratiCA). The software has been tested and returned

satisfactory results for further simplified systems, such C3S-Gy. Nevertheless, the

software is still under a development stage and improvements has to be planned

for C3A-Gy systems before testing more complex blends.

Key words: x-ray powder diffraction, isothermal calorimetry, cement, simplified

system, C3S-C3A-Gy, hydration kinetics.
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Riassunto

L’origine del cemento, utilizzato come legante nell’industria costruttiva, può

essere attribuita direttamente ai Romani, i quali osservarono come una miscela di

calcare e ceneri vulcaniche finemente macinate fosse in grado, quando miscelata

con acqua, di dar luogo a presa, prima, e ad alte resistenze meccaniche, poi, in un

modo così efficace mai osservato precedentemente con altri materiali. Da quando

i Romani hanno dato il via all’utilizzo di leganti idraulici, diverse tipologie di

cemento sono state prodotte per diversi impieghi costruttivi. Per comprendere

esaustivamente i meccanismi che conducono allo sviluppo delle resistenze

meccaniche, è fondamentale conoscere a fondo come procedano le cinetiche di

reazione durante il processo di idratazione.

La ricerca sui materiali cementizi ha oramai raggiunto risultati ragguardevoli in

merito allo studio delle cinetiche chimiche ma, nonostante la lunga storia relativa

a questi materiali ancora molto lavoro dev’essere svolto.

I cementi miscelati con acqua formano miscele complesse che si modificano in

maniera significativamente complessa, sia dal punto di vista chimico sia dal punto

di vista fisico, durante il processo di idratazione. Un modello di idratazione

univoco che riesca a spiegare tutte le fasi del processo di idratazione è il fine

ultimo della ricerca sui materiali cementizi, sebbene questo obiettivo sia ancora

lontano, a causa dei numerosi parametri chimico-fisici coinvolti. Per ovviare

almeno in parte la complessità dei materiali cementizi tradizionali, per scopi

scientifici vengono prodotti sistemi cementizi semplificati, caratterizzati

soprattutto da un numero di fasi inferiore rispetto ad un cemento tradizionale.

Un progetto di ricerca è stato messo a punto per approfondire l’aspetto delle

cinetiche di reazione. Tre partner sono coinvolti: NIST (National Institute of

Standards and Technology), W.R. GRACE ed Università degli Studi di Padova.

La parte di progetto inerente al nostro gruppo di ricerca riguardava l’utilizzo della

diffrazione in-situ di raggi X per polveri sulle paste in idratazione, utilizzando

l’analisi quantitativa con il metodo Rietveld per quantificare l’andamento delle
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fasi nel tempo. Sono stati scelti tre diversi sistemi cementizi semplificati, formati

da materiali sintetizzati in laboratorio: silicato tricalcico Ca3SiO5 (C3S),

alluminato tricalcico Ca3Al2O6 (C3A) e diverso contenuto di gesso CaSO4∙2H2O

(CŠH2). Sono state impiegate le tecniche di diffrazione in-situ di raggi X per

polveri (XRPD) e calorimetria isoterma (IC) per valutare le cinetiche di

dissoluzione e precipitazione di reagenti e prodotti. Dall’analisi qualitativa dei

diffrattogrammi, i principali prodotti di idratazione individuati sono ettringite,

emicarbonato, portlandite, idrati di Ca-Si (C-S-H): gli stessi prodotti di

idratazione che si possono individuare nei cementi tradizionali.

Il modello di nucleazione e crescita di Avrami descrive adeguatamente la curva

del grado di idratazione, confermando che il C-S-H mostra una struttura a strati,

come pure le fasi che derivano dalla decomposizione dell’ettringite. Il metodo del

bilancio di massa è stato utilizzato per ricavare quanto C-S-H precipita durante

l’idratazione, quantità che non è direttamente calcolabile neanche attraverso

l’analisi quantitativa col metodo Rietveld. Confrontando la curva del grado di

idratazione calcolato dalla calorimetria isoterma e le curve del grado di

idratazione ricavate dai dati in diffrazione rivelano le fasi che qualitativamente e

quantitativamente sono maggiormente implicate nello sviluppo di calore. In

particolare, si è visto che lo studio dei sistemi C3S-C3A-Gy non coincide con la

“somma algebrica” dei risultati sugli studi di C3S-Gy e C3A-Gy (due sistemi

cementizi ulteriormente semplificati). I materiali di partenza hanno subito una

perdita di reattività, nonostante siano stati conservati sottovuoto. La perdita di

reattività ha di fatto modificato continuamente i materiali, cambiando spesso le

condizioni iniziali (distribuzione granulometrica, grado di reattività) portando a

risultati non facilmente prevedibili.

I risultati ottenuti sperimentalmente dovrebbero essere propedeutici per provare

l’efficacia del software di modellazione (HydratiCA). Il software è stato provato

sul sistema C3S-Gy, fornendo risultati incoraggianti. Tuttavia, tale software,

essendo ancora in fase di sviluppo, necessita di miglioramenti soprattutto per

quanto riguarda il sistema C3A-Gy, prima di poter passare alla simulazione di

miscele più complesse.
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sistema semplificato, C3S-C3A-Gy, cinetiche di idratazione.
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NOMENCLATURE AND ABBREVIATIONS

The composition of a cement is usually expressed as the constituents oxides. For

example, tricalcium silicate Ca3SiO5 is then indicated as 3CaO·SiO2, abbreviated

C3S. In common cement nomenclature, oxides are expressed as single capital

letters, as following:

C = CaO M = MgO T = TiO2

S = SiO2 K = K2O P = P2O5

A = Al2O3 Š = SO3 H = H2O
F = Fe2O3 N = Na2O  Č = CO2

General components are written as common chemical formula (i.e., CaO) while

phases are written as abbreviations (i.e., C3S). Chemical formula, oxides

composition and abbreviations of principal cement phases are reported in table

1.1.

MINERAL NAME CHEMICAL FORMULA CEMENT ABBREV.

Calcite
Calcium Silicate

Hydrates
Dicalcium Silicate

(belite)
Ettringite
Gypsum

Monosulphate
Portlandite

Tetracalcium aluminate
ferrite

Tricalcium aluminate
Tricalcium silicate

CaCO3

CaOx(SiO2)x

Ca2SiO4

Ca5Al2(SO4)(OH)12·26H2O
CaSO4·2H2O

Ca4Al2(SO4)(OH)12·6H2O
Ca(OH)2

Ca4Al2Fe2O10

Ca3Al2O6

Ca3SiO5

CČ 
C-S-H

C2S

C6AŠ3H32

CŠH2

C4AŠH12

CH
C4AF

C3A
C3S

Table 1.1: summary of principal cement phases, expressed as minerals, chemical
formulas and abbreviations used in cement science.

GLOSSARY

Cement: hydraulic binder

Concrete: it is a composite mix of cement and mineral aggregates. Such

aggregates (sand, rock fragments, gravel) do not reduce mechanical strength

despite they represent the 80%-85% of total volume

Mortar: composite mix of cement and mineral aggregates, which dimension is

lower than 2 mm



9

Set: loss of workability of cement paste

Hardening: increase of mechanical strength

Clinker: multiphase aggregate of calcium silicates and aluminates, produced by

heating limestone and clay at 1450°C; it is the main cement component (94-96%)

Portland cement: hydraulic binder principally used in construction. Its

constituents are finely grinded clinker plus a certain amount of calcium sulphates

(4-6%).

Cement paste: viscous material obtained by mixing cement powder with water.

1. Introduction

1.1. General considerations about cement-based materials

When considering cement and, more generally, cement-based materials, we think

about a very common material, principally used in construction operations. First

use of cementitious materials is directly related to Romans by the engineer

Vitruvius, who described the increasing resistance during time of a mixture of

lime and crushed volcanic ashes when mixed with water [1]. During the medieval

age, masons were able to produce structures with hydraulic cement such as canals,

fortresses, harbours and shipbuilding facilities [2], [3]. Later in the 18th century,

French and British engineers set the technical knowledge in making hydraulic

cements [2], reaching the important result of patenting the process for

manufacturing the Portland cement in 1824 by Joseph Aspdin [4], refined by C.

Johnson in 1845 who increased the firing temperature and producing a binder

more similar to the actual Portland cement.

Portland cement is produced by firing at 1450°C a blend of limestone and

claystone or closely related materials with proper reactivity. The firing process

induces a partial melting that is responsible of the production of clinker grains.

Such grains are finely grinded and mixed with a varying amount of Gypsum (3 –

5% of weight) or other calcium sulphates to obtain the cement.
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A general cement composition can be expressed by oxides as well as by phases. In

table 1.2 a common cement composition is reported both as oxides and

major/minor phases [5].

Oxides [wt %] Major phases [wt %] Minor phases [3% wt]
CaO 67
SiO2 22
Al2O3 5
Fe2O3 3
SO3 2
MgO 2
K2O + Na2O 1
Others 3

C3S (alite) 50 – 70
β-C2S (belite) 15 – 30
C3A (alluminates) 5 – 10
C4AF (ferrite) 5 – 15

Periclase (MgO)
Free lime (CaO)
Portlandite (Ca(OH)2)
Arcanite (K2SO4)
Aphtitalite ((K,Na)SO4)

Table 1.2: Portland cement composition described as oxides, major and minor
crystalline phase

This long-term story should suggest a deep knowledge into the cement science,

but this is not completely exact. Considering cements as non-natural powders we

know that they produce huge mechanical strength when mixed with water. The

whole processes involved during hydration are not completely understood because

physic, chemical (phase compositions and solubility, pH, ions concentration in

solution) and microstructural (pores distribution) parameters are vary and

interdependent. An exclusive hydration model for different type of cements is

hard to develop but it represents the most important goal in cement science.

Furthermore, the poorly crystalline and nanometric main hydration products,

which assure the mechanical strength to hardened cement, are difficult to be

investigated by traditional analytic methods.

In this direction simplified cement systems offer a different insight into the

hydration process of cementitious materials. Simplified systems become useful

because their composition is originally known and the reaction that occur during

hydration processes can be predicted more accurately.

1.2. The hydration process

The mechanical strength that characterizes cementitious materials is developed

during the process called hydration, which involves crystalline phases and water
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to produce a cement paste. Hydration always entails an increase of paste

temperature, because reactions involved are mostly exothermic. Solid to solid and

solid to liquid transformations occurring during these complex processes pass

through set and hardening stages. Set is recognizable because cement suffers a

loss of workability till it becomes no more handable: in particular this is due to

aluminate hydration. Hardening is the subsequent step, related to the marked

increase in mechanical strength. Chemical transformations such as clinker phases

dissolution lead to the precipitation of hydrous phases. Dissolution and

crystallization are controlled by the chemical composition of percolating fluids

and by diffusion processes. Such processes are strictly connected to porosity

(microstructural properties) that evolves during the evolution of hydration.

Each phase has a different dissolution reaction rate and this lead to a different

development of mechanichal strength:

- C3S hydration kinetics is very fast (time scale: days) and it is the main

responsible for the mechanical strength measured at 28 days.

- C2S shows slower kinetics and it influences the rheological behaviour in

the long period.

- C3A and C4AF are more responsible for material setting: during the first

minute of hydration they release a great amount of heat. Sulphate addition

is necessary to avoid the undesiderable flash setting.

In most cases the hydration process is described looking at its temporal evolution,

measuring the heat production of hydration pastes. We can distinguish 4 main

phases (figure 1.1):

1. First minutes of hydration: alluminate dissolution (especially C3A) and

preceipitation of Ca-Al-sulphate hydrates (especially Ettringite).

2. Induction period (2 – 4 hours): hydration kinetics become very slow.

3. Main hydration period (until 24 – 48 hours): clinker phases suffer a

dramatic increase in dissolution rate called acceleration period, with a

consequent fast precipitation of Ca-Si hydrates (C-S-H) and Ca-hydroxide

(Portlandite) that lead to hardening of cement.
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4. Long-term hydration (days – months): continuous process where

mechanichal strength increase is very slow.

Figure 1.1: calorimetric curve related to the rate of heat evolution during the
hydration of an Ordinary Portland Cement [6].

Considering cement workability, the first minutes and the induction period play a

fundamental role. Acceleration period determines the end of workability. The fast

heat release is generally associated to alluminate hydration, while the loss of

workability to silicate hydration. Summarizing the hydration scheme of figure 1.1.

we have i) the alluminate hydration controls the workability while ii) silicate

hydration determines the end of setting and the subsequent increase in mechanical

strength.

Alluminate hydration

Al-rich phases lead to the production of ettringite (C6AŠ3H32), if sulphates content

is sufficient. Otherwise, monosulphoaluminate (C4AŠH12) and Ca-Al hydrates (C-

A-H) become the dominant phases. Without any sulphate phase present, the so-

called flash set occurs (loss of workability in the first minutes of hydration). This

is an undesired effect, solved with the addiction of Ca-sulphates (mainly gypsum)

that act as set control.

C3A + 26H2O + 3CŠH2 C6AŠ3H32 (1.1)

C3A + 10H2O + CŠH2 C4AŠH12 (1.2)



13

Silicate hydration

Hydration of C3S e C2S produce poorly crystalline calcium-silicate hydrates C-S-

H and portlandite:

Ca3SiO5 + (3 + y – x)H2O (CaO)x(SiO2)·H2O + (3 – x)Ca(OH)2 (1.3)

C-S-H has not a fixed stoichiometry and and a precise crystalline structure.

During hydration, C-S-H composition varies in water content (y) and in Ca/Si

ratio (x) [6].

1.3. Tricalcium Aluminate

1.3.1. Crystal Structure

C3A (Ca3Al2O6) is a synthetic phase with cubic symmetry, as the cell side a =

15.263 Å, space group P a 3 and Z = 24. The structure is built by Ca2+ cations and

rings composed by 6 AlO4 tetrahedra, with formula (Al6O18)
18- [6].

Figure 1.2: Al6O18 rings in C3A structure. Al atoms are located close to the edges of a
cube [6, 7].

The unit cell is composed by 64 subcells, with a side length of 3.816 Å, and eight

of these subcells are occupied by (Al6O18)
18- rings. Ca2+ cations are localized in
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the middle of, or in proximity of the edges of the remaining subcells. Edge Ca2+

cations have 6-fold coordination while the rest of Ca2+ have an irregular

coordination number. Na+ can partly substitute Ca2+, generating solid solutions

with general formula Na2xCa3-xAl2O6 (con 0 < x < 0.25). Up to 1% of Na2O (x ≈ 

0.04) in the structure implies no significant changes while if Na2O content

increases, the symmetry passes from cubic to monoclinc, passing through

orthorhombic (table 1.5). Without any other chemical substitution, Na+ content

reach 5.7% of Ca2+ substitution (x = 0.25).

% Na2O Compositional
range x

Abbreviation Crystal system Space group

0 – 1-0

1.0 – 2.4

2.4 – 3.7

3.7 – 4.6

4.6 – 5.7

0 – 0.04

0.04 – 0.10

0.10 – 0.16

0.16 – 0.20

0.20 – 0.25

CI

CII

CII + O

O

M

Cubic

Cubic

-

Orthorhombic

Monoclinic

P a 3

P 21 3

-

P b c a

P 21 / a

Table 1.3: structural changes of Na2xCa3-xAl2O6 at different Na contents [6, 7].

The two cubic forms of C3A are difficult to be distinguished by x-ray powder

diffraction (XRPD): the cell parameter a of CI (a = 15.263 Å) is too similar to that

of CII (a = 15.248 Å). The orthorhombic structure is close to CI and CII regarding

the unit cell composed by pseudo-cubic sub-cells (a = 3.8 Å), but it differs for the

Al6O18 rings positions in the sub-cells. The monoclinic structure is obtained from

a distortion of the orthorhombic, showing a β angle of 90.1°.  

Al3+ cations can be substituted by Fe3+ and Si4+, up to 4% for Fe2O3 and 2% for

SiO2. Higher substitution values can be reached only for non-equilibrium

conditions, i.e. the crystallization from under-cooled melts.

1.3.2. Hydration Products

Tricalcium aluminate is extremely reactive when mixed with water. As soon as

the first molecules interact together, metastable products are immediately
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produced (AFm phases) and later converted to the more stable hydrogarnet. These

intermediate phases are poorly crystalline, with a varying composition, mostly

producing a gel of blurred phases. Such phases can grow as hexagonal crystals,

with a perfect basal cleavage (0001), if certain conditions (pH, Ca/SO3 ratio)

become opportune. They are called hexagonal aluminate hydrates or AFm phases

(A: Al2O3 F: Fe2O3 m: monosulphate), with general formula [Ca2(Al,

Fe)(OH)6]·X·xH2O, where X stands for OH-, (SO4)
2-, (CO3)

2-, Cl- anions which

can be all included in the same phase [6]. A common feature of AFm phases is the

6-fold coordination of Ca(OH)6 portlandite-like sheets, with a third of all Ca2+

cations substituted by Al3+ or partly by Fe3+ (figure 1.7). The positive charge

obtained after the substitution Al3+ Ca2+ is balanced by in-layer anions X or X2-

and water molecules. Al3+ and Fe3+ replacement induces a distortion in the main

layers, which lead Ca2+ to coordinate even the oxygen of water molecules, besides

the 6 OH- anions. The general formula representing a unit sheet can be

summarized as [Ca2(Al,Fe)(OH)6·2H2O]+. In a simple AFm phase these units are

piled up to build octahedral pits that contain X-type ions and water molecules.

Figure 1.3: the structure of one [Ca2Al(OH)6]+ layer in an AFm phase, a-b projection.
Length values are expressed in pm. H atoms have been omitted. Big circles show the

distortion of CaO6 octahedra, that give to Ca atoms a coordination number up to 7 with
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the addition of one water molecule (not in the figure) above or below the plane of this
projection [6, 9, 10].

Because of this peculiar structure, the variation of cell parameters a and b is not

wide within compounds of different composition, while parameter c significantly

change depending on which ions and molecules enter in the interlayer levels

(table 1.6).

Table 1.4: structural characteristics of AFm phases. H: Hexagonal, T: Triclinic, M:
Monoclinic [6].

Another important factor is the thermodynamic stability of different AFm, that

changes with the entering anion or the molecule in the interlayers of these

metastable phases (table 1.7). During hydration, (OH)- anions are present in

solution at high concentrations; (SO4)
2- and (CO3)

2- are less soluble and so low

amounts are detectable at high pH values. Various sources are responsible for

sulphate and carbonate contents, either during clinker preparation or after

clinkerisation (e.g. gypsum, which can be contaminated by carbonates). These

notes are useful to consider the variety in cements composition, because some

AFm are metastable in any conditions and tend to decompose while other AFm

are included in well-defined stability fields. To give an example,

hemicarboaluminate and monocarboaluminate bear only 3.9% and 7.7% by
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weight of CO2, respectively: this is one reason to evaluate the carbonate (and

sulphate, that will be treated in a separate section) content.

Table 1.5: thermodynamic stability features of main AFm phases at 25°C [11].

Certain AFM phases show polytypism due to the different piling of structural

units. A wide compositional range, linked with marked instability and poor

crystallinity, lead to a difficult distinction among the hydrous phases during the

cement hydration process. For example, in CaO – Al2O3 – H2O ternary system, up

to 50°C the equilibrium phase is C4AH19, for which 2 polytypes are known (α 1 

and a α2). The interlayer water content decreases with decreasing relative 

humidity and increasing temperature: 81% of relative humidity is sufficient to

produce C4AH13. C4AH19 can be obtained adding a layer of water molecules to

C4AH13.

C3AH6 – Hexahydrate tricalcium aluminate – Hydrogarnet

This phase is the result of the hydration of C3A and its structure is very similar of

Grossular (Ca3Al2Si3O12), in which Si, Al and Ca have tetrahedral, octahedral and

distorted cubic coordination, respectively. Each oxygen is bond to 1 Si atom, 1 Al

and 2 Ca. The absence of a some Si atoms (up to all atoms), in hydrogarnet, lead

to a negative charge increase balanced by the substitution of O atoms, previously

bonded to Si, with (OH)-. The Ca3[Al(OH)6]2 crystal structure is cubic, with a =

12.57 Å, space group I a 3 d and Z = 8 [6]. The icosytetrahedron habitus is clearly

visible and cubic symmetry is easily detectable (figure 1.8).
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Figure 1.4: Hydrogarnet SEM micrograph in back-scattered electrons (scale in figure).

Al3+ anion can be partly substituted by Fe3+. Hydrogrossular (another name for

hydrogarnet) is the only stable phase at ambient temperature in the chemical CaO

– Al2O3 – H2O system. Other aluminate hydrated phases grow at lower

temperature, with an hexagonal structure (AFm) and tend to transform to the more

stable hydrogarnet with increasing temperature and time of hydration.

1.3.3. The role of gypsum

In the presence of gypsum, C3A dissolves to produce ettringite, following the

reaction:

C3A + 26H2O + 3CŠH2 C6AŠ3H32 ettringite (Calcium trisulphate, AFt)

Primary ettringite precipitation forms a thin barrier of needles over C3A surface,

stopping or delaying C-A-H formation. Anions (SO4)
2- content become extremely

important, especially if the pore water solution is saturated about sulphate content

after the paste hardening: secondary ettringite precipitation can occur, leading to
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the formation of pervasive cracks due to the expansive behaviour of ettringite

formation.

Ettringite is a stable phase until the solution is saturated in respect of (SO4)
2-. The

saturation character is guaranteed by the continuous dissolution of sulphate

phases: when all of them are completely disappeared, ettringite is converted into

monosulphoaluminate (or monosulphate, AFm phase):

2C3A + C6AŠ3H32 + 4H 3C4AŠH12 monosulphoaluminate (1.4)

The conversion of ettringite into monosulphoaluminate breaks the barrier and C3A

can hydrate originating Ca-Al hydrates. C4AŠH12 produces solid solutions in

which more than half of (SO4)
2- anions are substituted by (OH)- anions. It is still

debated if C4AŠH12 and C4AH13 can form a solid solution: optical microscopy

shows a complete solid solution while XRPD shows a miscibility gap.

Concerning about the crystal structure, monosulphate is well described by the

natural mineral Kuzelite which shows trigonal system, space group R 3, with cell

parameters a = 5.76 Å and c = 53.66 Å, Z = 3. The first three most intense peaks

appears at 9.89°, 20.13° and 40.71° 2θ. The crystal shape is very similar to that of 

micas, showing platy microcrystals.

Ettringite crystal structure is also well established: it grows in prismatic or needle-

like hexagonal-based crystals, belonging to the trigonal system, with a = 11.23 Å

and c = 21.50 Å, space group P 31 c and Z = 8 [12]. The structure is composed by

columns parallel to c axis made of octahedra [Al(OH)6]
3- each followed by groups

of CaO8 polyhedra. Each Ca2+ is bonded to 4 (OH)- and 4 H2O molecules;

columns have empirical formula {Ca6[Al(OH)6]·12H2O}3. Every 2 columns there

are 4 sites, three of them filled by (SO4)
2+ and one occupied by 1 or 2 H2O

molecules [13, 14]. This structure lead to write the ettringite formula as

{Ca6[Al(OH)6]·12H2O}·3SO4·2H2O, with columns repetition period along c axis

of about 10.75 Å.
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Figure 1.5: crystal structure of ettringite. (A) projection of a part of single column. (11-
20). A=Al, C=Ca, H=O of one OH group, W=O of one water molecule. Hydrogen atoms
and water molecules bonded to Ca atoms in the middle of the vertical line have been
omitted. (B) a-b projection that shows columns (big circles) channels (small circles).
Unit cell with a = 11.23 Å is drawn in the middle of the figure [6, 12].

Ettringite can bear Fe3+ in substitution of Al3+ at low amounts. Other important

substitutions involve (CO3)
2- in place of (SO4)

2- and Si in place of Al until

reaching the composition of Thaumasite (C3SŠČH15), which has a crystal

structure very similar to ettringite but showing the peculiar Si4+ in octahedral

coordination. The 2 phases are not completely miscible, but they probably

constitute a partial solid solution.

The upper thermal stability limit for ettringite stands at 110°C, but in many

cements its content decreases at increasing temperature: over 50°C AFm phase is

favoured.

Water content in ettringite reaches 50% in weight, giving a density of 1.77 g/cm3.

C3A-gypsum hydration can give different products when the CŠH2/C3A molar

ratio is considered (table 1.8). Such information can become useful when we are

not able to discriminate which Ca-Al hydrates grow in the presence of gypsum.
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Table 1.6: comparative table which indicates the stable hydrate phase that
precipitates depending on the molar ratio CŠH2/C3A [5].

1.3.4. State of the art about C3A – Gypsum hydration

As previously described, C3A hydration in the presence of gypsum lead to the

formation of Afm and Aft sulphoaluminates. Hampson and Bailey [14] consider

pH the fundamental parameter to discriminate the formation of different products.

When pH increases (form 11.5 to 12.8) ettringite forms in low amounts but it

remains for a long time without dissolving. TEM micrographs show C3A grains

enveloped by small sulphoaluminates fibres [14]. Moreover, SEM micrographs on

solutions at different pH show that such fibres remains stuck at C3A for pH

values between 12.6 and 13.0. At pH = 13 fibres are smaller than that observed at

lower pH. At pH = 13.2 no fibres are present, after 30 minutes of hydration [14].

At pH ≤ 12.4 foils or platelets are observed and interpreted as Afm belonging to 

the C2AH8-C4AH19 – C4AŠH12 solid solution: these phases dissolve to precipitate

ettringite from the solution [14]. The authors also used a gypsum/portlandite

solution to hydrate C3A, where small platelets similar to that described by Breval

[13] have been observed; such platelets are rapidly substituted or covered by a

layer of thin fibres of dimensions 0.2 µm x 0.5 µm. Finally at 4 hours of hydration

such thin layer brakes and underneath bigger hexagonal fibres become visible.

There are no evidence about Ca-sulphoaluminate hydrates tubular fibres seen in

Portland cement [14]. These hexagonal phases are clearly metastable [15] and the

natural development of the reaction should go into the formation of ettringite and

C3HA6,effectively observed after 60 days of hydration. Actually, at low pH
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platelets of C2AH8 can precipitate while at high pH values it is expected to find a

mix of C4AH19 and Ca(OH)2.

Jensen, Christensen e Hanson [16] tried to characterize the aluminate in-situ

hydration in hydrothermal conditions. They used C3A (but also CA and C2A) to

produce C2AH8 and C4AH19. The principal chemical reaction responsible for this

transformation is:

2C3A + 27H ➝ C2AH8 + C4AH19 (1.4)

Actually, C3A hydration lead to the formation of different compounds with

general formula C4AHx (x = 11, 13 or 19) and amorphous Al-hydroxides [16]. X-

ray powder diffraction data C2AH8 – C4AH19 are detectable until the temperature

is below 70°C; over this temperature C3AH6 (hydrogarnet) become the stable

phase also caused by the presence of amorphous Al-hydroxides:

3C4AH19 + Al(OH)3 ➝ 4C3AH6 + 36H (1.5)

2C2AH8 ➝ C4AH13 + 2Al(OH)3 (1.6)

In their experiments Jensen et al. [16] state that to have hydrogarnet the

intermediate step, with formation of C2AHx and C4AHx, is required. Moreover,

amorphous gibbsite Al(OH)3 is necessary to complete the transformation to

hydrogarnet.

Matschei, Lothenbach and Glasser [11] reviewed the composition, synthesis and

stability of AFm phases, excluding iron-bearing AFm. In literature the solid

solution within various AFm phases is still debated, especially for such phases

containing OH and SO4. Several authors claim the complete solid solution [15],

[17–19], some others describe only a partial solid solution [20–23] while Zhang

[24] states there is no solid solution at long hydration times. Within the complete

solid solution supporters there are some incompatibilities, for example Turriziani

[18] support this theory only on the basis of optical microscopy, in some ways

ignoring his x-ray data. Zhang [24] states that, even after long hydration times, no



23

solid solution is clearly detectable even if this hypothesis cannot be excluded

when applied to the first steps of hydration process. Matschei et al. [11] start from

the hypothesis of a solid solution, even partial, that lasts for the whole experiment

time and sufficient to produce an hydration model. Purpose of that work is to

verify if a real solid solution can occur on C4AŠHx – C4AHx, C4AŠHx – C4AČHx,

C4AČHx – C4AHx systems. In the first case they considered the general compound

C4AHx, since both x = 13 and x = 19 can precipitate. A miscibility gap between

these 2 compounds have already been described [11] at constant pH values. In the

second case no solid solution can form; in the third case a partial solid solution

occurs. Analyzing further details, authors came to the conclusion that AFm phases

bearing (OH)-, (SO4)
2- and (CO3)

2- as principal anions are not completely

combinable [11]. Furthermore, some thermodynamic parameters have been

calculated during the work because literature lacked these parameters. Even if it is

not specifically mentioned, iron leads to a slight miscibility between AFm phases

bearing (OH)-, (SO4)
2- and (CO3)

2-.

Christensen, Jensen, Scarlett, Madsen and Hanson [25] provide a more precise

explanation about the possible aluminate hydration products, either as single

phases or in a clinker. They identified firstly C4AH19 rather than C2AH8 using the

intensity ratio between the first two diffraction peaks. At 55°C they observed the

maximum C4AH19 content (that remain stable till > 170°C) when more stable

products as C4AH12 and C3AH6 starts to appear. Hydrogarnet can also derive from

a the transformation of C12A7, passing through C4AH19 as intermediate step. The

investigation of aluminates present in the clinker the first hydration products were

C4AH19 and C4AH13 [25]. After the decomposition of C4AH13, which grows over

C4AH19, C4AH11 starts to grow. C3AH6 stands in 43°C – 170°C temperature range

and grows consuming C4AH19 and C4AH13 [25]. C4AH19 shows a multi-layered

structure: the water loss from such layers lead to the formation of C4AH13,

C4AH11, C4AH7 [25, 26]. An amorphous phase can be also qualitatively detected

looking at the background values visible on diffraction data, mostly at low 2θ 

values, probably responsible for the transformation of all the hydrated aluminates

into C3AH6 [25]. Christensen, Jensen and Hanson [27] studied the formation of
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ettringite and monosulphoaluminate in the CaO – Al2O3 – CaSO4 – H2O system.

From literature, in this system ettringite can grow very rapidly [27, 28]. Reaction

products AFm-14 and C4AH19 are produced only when ettringite starts to dissolve

and their content depends on gypsum initial amount: this limit the temperature

range at which C4AH19 can precipitate [27]. AFm-14 is apparently stable for

temperature > 170°C; C3AH6 grows typically at 85°C and remains stable up to >

170°C [27]. Ettringite has been shown hydrating a white Portland cement at T >

48°C, after the conversion of AFm-14 caused by increased temperature.

If we then consider a Portland cement with SO3 content of 3.37%, ettringite is

stable in the temperature range 25°C < T < 75°C [29]. Ettringite precipitates in

CaO – Al2O3 – CaSO4 only if sufficient C3A and gypsum content are present. If

this condition is not satisfied, ettringite already formed will be converted into

monosulphate when gypsum is completely depleted. If C3A and gypsum are

unsufficient from the beginning, monosulphate is the first phase which

precipitates (AFm-14). The intermediate aluminate hydrate formed has been

detected as C4AH19 [27].

1.4. Tricalcium Silicate

1.4.1. Crystal Structure

C3S is a synthetic phase that crystallize during the industrial process of clinker

production. The crystal structure of the most abundant cement phase is very

complex and many researchers are still involved in refining existent structures or

to solve new ones. Due to the different thermal regime suffered by raw materials,

different polymorphs can form during the clinkerization process. Three types of

polymorphs can form: triclinic, monoclinic and rhombohedral. Such polymorphs

crystallize undergoing the following temperature regime [5]: T1 620°C T2

920°C T3 980°C M1 990°C M2 1060°C M3 1070°C R. All of these

phase transitions are temperature-reversible. The more stable polymorph seems to

be T1 but, since C3S occurs mostly as an impure phase (Mg, Al, Zn can enter and
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stabilize the structure [30]), at room temperature the most frequent polymorphs at

become M1 and M3. When impurities substitute part of the original cations, we

call C3S as Alite

The first crystal structure determination was performed by Jeffery [31]: he

showed that T1, M3 and R had closely similar structures and he was able to solve

them using an approximate pseudo-structure with space group R 3 m. Ca2+,

(SiO4)
4- and O2- are the constituent ions, the latter bond only to six Ca2+, as in

CaO. Several works aimed at improving the knowledge of C3S crystal structure:

the known structures are all closely similar as regards the positions of the Ca2+,

O2- ions and Si atoms, but differ markedly in the orientations of the (SiO4)
4-

tetrahedra, which in some case are disordered [5], [30]. For each polymorph, there

are different crystallographic Ca2+ sites with different coordination; sometimes,

for each given site, the coordination number varies because of the differences in

(SiO4)
4- tetrahedra orientations.

Figure 1.6: Crystal structure of R modification of C3S, showing Ca atoms (large open
circles), Si atoms (small open circles), oxide ions (large hatched circle) and oxygen
tetrahedra (triangles). Heights of atoms are in thousandths of the cell height (c = 2-
5586nm), slashes denoting statistical alternatives [5].
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During the years, data coming from single crystal have been joined with improved

powder diffraction data to have a summary table on crystallographic parameters

of all the known structures, from pure C3S to different kind of Alite.

Table 1.7: summary table on C3S crystallographic parameters [30].

1.4.2. Hydration products

C3S hydration can be expressed as a quite simple reaction, in which tricalcium

silicate dissolves to produce Ca-Si hydrates (C-S-H) and portlandite. The

following reaction explain this dissolution:

3(CaO)3(SiO2) + 16H2O 4Ca(OH)2 + 3(CaO)1.7(SiO2)4H2O (1.7)

In spite of this apparent simplicity, the C-S-H is a wide family of very different

products, crystalline only at the nanoscale, expressing a huge stoichiometry and

structure variability. Generally speaking, crystalline C-S-H are characterized by a

layer structure composed of silicate tetrahedra that are coordinated to Ca2+ in a

repetitive pattern as to form a kinked pattern [32]. Such pattern is composed of

three tetrahedra, two of them sharing a O-O edge (Paired tetrahedra) with the

central Ca-O octahedron and linked together by the third tetrahedron (Bridge
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tetrahedron). Intensive research is justified by its importance for cement and

concrete science: C-S-H are the main responsible for mechanical strength

performance of cements. Being aware of the different microstructures can give a

definitive insight on the mechanisms which dominate the mechanical strength

increase in mature cements and concretes.

An extensive and exhaustive review has been written by Richardson [32], where

he gathered synthetic and natural C-S-H into 7 groups, depending on the crystal

structure type identified: Wollastonite, Tobermorite, Jennite, Gyrolite, γ-C2S,

various phases, various phases at high temperature. It is underlined that C-S-H

can bear also Na, K, Al, F and Mn, providing a further complexity on the

comprehension of the structures. In the review the author stressed the attention to

2 of the most implemented models, Tobermorite and Tobermorite-Jennite, mostly

because the structure of 1.4 nm Tobermorite has been solved by Merlino et al.

[33, 34, 35] and becomes a significant base for any structural model.

1.4.3. State of the art about C3S – Gypsum hydration

In despite of C3S + gypsum hydration does not show any clear hydration product,

several experiments have been performed to understand the interactions between

C3S hydration products (especially C-S-H) and gypsum. Authors reports about

different theories and results, which are briefly summarized in next paragraphs.

Fu et al. [36] investigated the role of C-S-H as reservoir of sulphate anions for

delayed ettringite formation with a particular insight into the temperature effect on

the sorption process. Practically, they demonstrated that C-S-H acts as a source

for (SO4)
2- even when all gypsum is depleted from the solution: introducing C3A

in the hydrated C3S solution led to the precipitation of ettringite. Such

precipitation is followed by a consumption and a secondary precipitation of

ettringite itself. C-S-H gel adsorbs (SO4)
2- anions faster at higher temperatures but

releasing slower at long hydration age (6 months), leading to retarded ettringite

formation.
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Gunay et al. [37] focused the attention on the optimum gypsum quantity to add to

a cementitious system in order to have the best compressive strength values. The

interactions between C3A and gypsum are well described in literature [38], as well

as some theories are proposed for C3S + C3A interactions [33, 34], C3S hydration

in the presence of gypsum is not so well investigated, especially if this hydration

process is then related to mechanical strength properties.

Gypsum increases the growth rates of C-S-H and its permeability leading to a

greater degree of hydration for the same curing time [37] of a paste composed

only by hydrating C3S: this is well explained by an anisotropic growth model. An

optimum gypsum content is established to be true only for early age (3 days)

mechanical strength, when a water/(C3S + gypsum) ratio remain constant because

an increase of the degree of hydration is observed at early ages when gypsum is

added to the C3S hydrating system. When water/C3S ratio is considered, a lower

mechanical strength is detected at 28 days, even if the degree of hydration

remains constant. Considering that all the sulphate is being adsorbed at 28 days

[41], the loss on mechanical strength is described by measuring the C-S-H

interparticle forces, which are smaller than that measured for C-S-H with no

sulphate adsorbed, resulting in a lowering of the measured compressive strength.

They investigated the alite hydration (since it is responsible for the 80% of cement

hydration) compared to type I, II and III Portland cements and then alite plus

gypsum mixes, at two different fineness grades. From the determination of time

setting using ASTM C266 and C186 methods they found that alite hydrated alone

shows delayed initial time setting in respect of Portland cements, while these

timings become comparable when 3% of gypsum is added and an acceleration

become visible: 3 hours for Portland cement, 8.5 hours for alite, 3.5 hours for alite

+ 3% gypsum. A reason for such a different behaviour is given claiming C3A

acting as an accelerator for setting in Portland cements. It is not the same story

when 6% of gypsum is put in, because even if an acceleration is still detectable,

this is not of the same amount: 5 hours of initial time setting. This could be due to

more than an optimum gypsum quantity present in the system [42]. Another

important evidence come from the heat of hydration measure, which revealed how
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alite + gypsum showed an higher heat release in respect to Portland cements. X-

ray diffraction data confirmed that alite hydrates faster when gypsum is added,

because the alite most intense peak shows a lower intensity in alite + 3% gypsum

mix while with 6% gypsum the diminution of intensity is smaller. The free lime

content shows an increase when 3% gypsum is put in, in respect to the amount

detected when only alite is hydrated. Early strengths of mortars and concretes

made with alite cements were generally higher than Portland cements of the same

fineness, however the behaviour becomes opposite at later ages. Addition of 6%

of gypsum to alite cements caused significant deterioration in the strength

characteristic [42].

Menetrier et al. [43] report again previous literature experiments, where a certain

amount of (SO4)
2- can be incorporated into C-S-H, the main C3S hydration

product. From their experiments, the CaO concentration in solution for C3S +

gypsum system reaches the saturation level considerably before the C3S hydrated

alone: with gypsum, the C3S dissolution rate increases during the acceleration

period. This led to the observation of different C-S-H shapes: with gypsum Ca-Si

hydrates morphology are more similar to that observed in a lime saturated

solution (since gypsum dissolves and Ca2+ saturation is reached faster, this is quite

reasonable) than shapes observed when C3S is hydrated in deionized water. From

EDS microanalysis, authors suggest that some (SO4)2- can be incorporated

somehow into C-S-H [43], which is clearly in contrast with the adsorption theory

[37].

Barbarulo et al. [44] propose a different approach, studying mixes of C-S-H and

ettringite at different temperatures, evaluating the kinetics of ettringite

precipitation and the importance of sulphate bound to C-S-H. In a preliminary

study, from the same authors, they found that sulphate binding to C-S-H increases

with the sulphate concentration in solution but also with increasing Ca/Si ratio in

C-S-H. First of all it can be clearly seen that ettringite dissolution is favoured at

high temperature (85°C) instead of low temperature (20°C). Before ettringite

precipitation, no other sulphate-bearing crystalline phase can be detected by XRD.

This result is a good indication that below ettringite equilibrium, sulphate present
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in the solid phase is bound to the C-S-H only [44]. Even if these are synthetic

systems, some discussion are useful: the amount of sulphate anions bound to C-S-

H can be measured and the authors report that 13% of the total sulphate initially

present in the cement would be fixed by C-S-H at 20°C. This values increases to

26% at 85°C. These are the maximum quantity that can be bound for a Ca/Si =

1.5, as chosen by the researchers when synthetizing C-S-H. At high temperature

(85°C) ettringite introduced in the system is completely dissolved and part of the

sulphate is incorporated into C-S-H in a non-negligible quantity. When the return

kinetics are considered (85°C  20°C), C-S-H releases (SO4)
2- to precipitate

again ettringite, showing a very slow precipitation rate (more than 1 month to

complete the reaction). This model seems to be quite useful to explain the

undesired effect of Delayed Ettringite Formation (DEF) in steam-cured cements.

Bentur [45] describe the effect of different amount of gypsum in the hydration of

C3S pastes. Mainly from x-ray data, he points out the existence of an optimum

quantity of gypsum, because the degree of hydration and compressive strength

show a maximum at a certain gypsum quantity. Such quantity decreases with

ageing of the material. Looking at the plot of degree of hydration vs. compressive

strength, it becomes evident that gypsum has a dominant role, in respect to C3S

pastes: when gypsum is added, degree of hydration increases in respect to pure

C3S paste. This can be due to the quantity and quality of C-S-H gel and its

intrinsic strength: the optimum gypsum content is the value at which the optimum

combination of quantity and quality occurs. As hydration proceeds, the quality

factor becomes more dominant and, as a result, the optimum gypsum content

decreases [45].

Brown el al. [46] studied the effect of different salts dissolved in water in C3S

hydration. Salts involved were CaCl2, NaOH, NaCl, CaSO4. Generally speaking,

all the dissolved salts provoked an acceleration in C3S hydration, possibly due to

hydroxyl suppression mainly caused by Ca(OH)2 precipitation. Considering only

CaSO4, from calorimetric measurements authors detected an initial delaying in

hydration (within 5 hours) and later an increase in the C3S dissolution rate.

Researchers cited that the role of anions in accelerating C3S hydration may be



31

related to their ability to flocculate hydrophilic colloids, that coupled with the

morphological differences on C-S-H seen in CaCl2 saturated solutions, led to the

conclusion the depression of hydroxyl ion concentration in solution may be a

contributing factor to explain C3S hydration acceleration [46].

1.5. State Of The Art About C3S – C3A – Gypsum Blends

Since the main object of my Ph.D. project is to provide insights in C3S – C3A –

Gypsum simplified cement systems, a general overview on the literature can be a

solid standpoint to make further considerations on new data.

As previously mentioned, Portland cement is a very complex system that

undergoes several transformations when mixed with water. It is well known [5]

that the main actors of cement hydration at early age are tricalcium silicate and

tricalcium aluminate, with gypsum especially that regulates the so-called set

timings. In spite of these evidence, not many authors decided in the past to get rid

of minor components and those phases which reacts at later age (C2S and C4AF).

One of them was Tenoutasse [40], who studied the effect of calcium chloride and

calcium sulphate addition to C3S and C3A by means of x-ray diffraction and

isothermal calorimetry. He found that different amount of gypsum influence not

only the time of appearance of thermal phenomenon related to C3A dissolution

but also the amplitude of the peak: with increasing gypsum concentration the rate

of hydration decreases. When this thermal peak occurs, gypsum is completely

depleted [40] and so the time needed for complete consumption can be measured.

Adding 5%, 15%, 17.5%, 20% of gypsum to C3A the time occurred to consume

all the gypsum is linear dependent to the square of initial gypsum content: this

suggests that it reacts by a diffusion mechanism [40]. He states that during C3A

dissolution in presence of gypsum, the only hydration product formed is Ettringite

following the reaction:

C3A + CaSO4 + 32H2O C3A∙ CaSO4∙32H2O (1.8)

But when all the gypsum has been dissolved, the remaining C3A is hydrated to

give C4AH13 and ettringite is converted into monosulphoaluminate:
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C3A∙ CaSO4∙32H2O + 2C3A∙ Ca(OH)2∙12H2O C3A∙ CaSO4∙12H2O + 20H2O +

2CH2 (1.9)

Indeed, the author claims the existence of a solid solution between

monosulphoaluminate and C4AH13.

C3S hydration is also influenced by the addition of C3A: in fact, it becomes slower

than the hydration of C3S alone. From calorimetric data, when the peak related to

C3A dissolution lies before the peak related to C3S, the latter is greatly retarded

and showing a slow rate of hydration [40].

Garrault et al. [39] studied the Alite – C3A – Gy system in order to evaluate Alite

hydration and mechanical strength. Firstly focusing on Alite – C3A hydration

(without any sulphate addiction), they verified that the hydration of C3A is not

modified by Alite. Furthermore, they state that Al ions have a negative effect on

the growth rate of C-S-H but also that AFm can give a useful surface for C-S-H

growth. As a fact, it has been shown that the mechanical efficiency decreases

when a tricalcium silicate paste is hydrated in a solution containing aluminate ions

[47]. At early ages the storage modulus is higher when C3A is present more than

5% in the mix: AFm phases are the main responsible for the stiffening of the

paste. Considering Alite-C3A-Gy hydration, authors have seen a slowing down of

AFm formation when both alite and gypsum are present and this is not observed

with only gypsum or with only alite. Here again a thermal peak due to all sulphate

consumption is observed and the greater the quantity of gypsum, the later the time

of appearance of such peak. Finally, when C3A alone is hydrated with gypsum,

the thermal phenomenon related to sulphate depletion occurs before the silicate

hydration peak, leading to a delayed ettringite formation. Concerning alite

hydration, it is practically unchanged in the presence of C3A and gypsum, even if

a slower hydration rate is observed (in respect to C3A alone). In the presence of

gypsum there is formation of ettringite in place of C-A-H and ettringite does not

seem to act as a precipitation surface for C-S-H [39]. In Alite-C3A-Gy systems the

mechanical efficiency of C-S-H increases with increasing gypsum and the effect

is emphasized also with C3A increase. A possible explanation of the increase of

mechanical efficiency is given by the presence of solid gypsum when this quantity
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is measured. In Alite-C3A-Gypsum the hydration path seems very similar to that

of alite: C3A seems not to affect the hydration process and ettringite does not

interact with C-S-H nucleation and growth.

More recently, Hesse et al. [48] worked on a synthetic cement made of polyphase

clinker of C3S, C3A and a sulphate carrier. They used especially XRD and

isothermal calorimetry to investigate this material. From calorimetric data, the

authors proposed an already published explanation for the induction period: this

period is a result of slowdown of C3A dissolution due to the increase of sulphate

content in the pore solution. Furthermore, they claim for the existence of an

amorphous aluminate phase which can serve as a reservoir for ettringite formation

when the sulphate carrier is completely dissolved. The constant rate of formation

during the acceleration period can be attributed to these amorphous phases

consumption. When the pore solution becomes free of sulphate ions, ettringite

should start the conversion to monosulphate, but this is not visible at 23°C and

ettringite remains stable even when no sulphate is available to grow [48].

Also C3S hydration contribute to the onset of the induction period: Julliand et al.

[49] concluded that the induction period is mainly controlled by alite hydration.

Thomas et al. [50] state that the duration of the period is expression of the

availability of reactive nuclei. With the addition of synthetic C-S-H seeds they

have shown a shortening of the dormant period.

In the last few days, a very important work has been published by Quennoz et al.

[51], who worked on alite and C3A-gypsum hydration on model cements. The

hydration kinetics have been measured by means of XRD, SEM and isothermal

calorimetry. They take into account the concept of “proper sulphation” content:

when the gypsum content is too low, precipitation of monosulphate due to C3A

dissolution occurs before alite reaction, which is delayed and lowered in

consequence. Undersulphation is still a matter of interest because certain cements

properly sulphated when hydrated with water become undersulphated when

additives are used [51]. Minard [47] found that C3S hydration was observed to be

accelerated in presence of gypsum while the alite in decelerated when Al ions are

present into the solution. More generally speaking, the heat evolution of alite-
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C3A-gypsum systems is very influenced by gypsum content, alternatively

behaving as undersulphated (aluminate reaction before silicate reaction) or

properly sulphated (silicate reaction first, aluminate reaction second). In this last

case, alite hydration rate has been observed to be faster during the acceleration

period than the same period of plain alite hydration [51]. Studying alite-water and

alite-gypsum-water systems, the authors related this acceleratory effect to the

entrance of gypsum in the hydration process. Minard [47] observed a similar

effect for C3S and suggested a modification on C-S-H growth due to the

absorption of (SO4)
2- that increases the nucleation and growth velocity of Ca-Si

hydrates. On the other hand, the hydration of alite is retarded in the presence of

gypsum, but this is otherwise explained evoking a negative effect of Al on the rate

of hydration. Also Garrault [52] reported Al-bearing alite may be at the origin of

the difference in the reaction rate observed between pure C3S and alite pastes.

Quennoz detected sulphate ions absorbed on C-S-H of both alite and C3S by

means of energy-dispersive x-ray spectroscopy (EDS) which discard the gypsum

effect on acceleration and support the Al suppression effect: alite hydration rate is

slowed down by the presence of aluminium in solution. In the presence of

gypsum, such aluminium is removed from solution and incorporated into

ettringite, resulting in an acceleration of alite hydration rate. From isothermal

calorimetry, in undersulphated systems the alite hydration shows a very broad

peak: this should be the effect of Al in the solution, but the physics of the

phenomenon is not completely clear. Possible explanations given are: 1) the

previous dissolution of some C3A and consequent precipitation of Ca-Al hydrates

removes space for nucleation and growth of C-S-H; 2) the presence of Al in pore

solution or incorporated in C-S-H structure. EDS measurements on C-S-H

precipitated in undersulphated systems revealed an higher Al content than C-S-H

grown in proper sulphated systems, supporting the Al negative effect [51].

Another possible effect of gypsum is that it leads to the highest strength values at

early age acting on alite much more than on C3A [51].

The presence of alite in C3A-gypsum system changes the time of appearance of

the thermal peak due to aluminate reaction: for the same C3A/gypsum ratio it is
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suggested that about 17% of the added gypsum is not available for the reaction

with C3A. This peak is usually very sharp and intense for the pure C3A-gypsum

system but it becomes broader and lower with increasing gypsum in model

cements. A possible justification is given considering the free specific surface: in

C3A-gypsum system the free specific surface is higher than in alite-C3A-gypsum

systems, where the matrix is filled up by C-S-H and CH, at the time of

corresponding to aluminate reaction [51]. For such reasons the peak is lower and

broader.

The EDS analysis on C-S-H shell associated to ettringite formation, during the

deceleration period revealed a desorption of sulphate anions from C-S-H that are

then available to form more ettringite after gypsum depletion.

Talking about the temperature effect, the authors evaluated cement kinetics at

different temperature, in order to obtain reliable activation energy values. They

observed a typical Arrhenius effect: reactions occur faster with increasing

temperature and the peak intensities are higher. Another interesting feature it that

the “sulphation feature” of each cement is a temperature-dependent variable,

because an undersulphated cement at 20°C become proper sulphated at 15°C [51].

This means that cements can be considered “properly sulphated” only within a

certain range of temperature values. Such a behaviour can be explained with the

higher sensitivity to temperature of aluminate reaction, in respect to silicate

reaction, which seems to be less affected to temperature changes. The activation

energy of alite is higher when gypsum is present in the system, confirming the

sulphate acting as a sink for Al which leads to ettringite precipitation. Values of

35 KJ/mol for alite and 40-45 KJ/mol for cements are similar to those reported in

the literature [53, 54]. Activation energy for aluminate reaction seems to show an

increasing trend with increasing gypsum quantity; moreover, absolute values are

higher than those of alite, confirming an higher temperature sensitivity than alite

reaction.

When I will discuss my data, we will see how there are some agreement with

published theories and data. But such agreement is not complete and further
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discussion is needed to have an exhaustive comprehension of the kinetic

processes.
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2. Analytical methods

The aim of this chapter is to describe the analytical methods used during this

thesis work.

2.1. X-ray Diffraction

X-ray diffraction (XRD) is an analytical technique based on the x-ray scattering

produced when passing through the matter. The scattering phenomenon occurs

when x-ray photons interacts with the electrons present in the studying material.

Electrons behave as diffusion centers for X radiation of the same wavelength

(coherent scattering) or different wavelength (incoherent scattering) of incident

radiation. Diffraction is related to the coherent part of the scattering phenomenon:

a crystalline solid covered by an x-ray beam produces diffracted x-rays along

those directions where all the waves diffused by atoms in the crystal lattice are in

phase concordance (constructing interference). To obtain a diffracted beam,

certain geometric conditions have to be satisfied and such conditions are well

described by Bragg’s law:

2dhkl sin θ = nλ 

Where dhkl is the interplanar distance between a family of hkl planes, θ is the angle 

between the direction of incident x-ray beam and the lattice planes hkl (figure

2.1.1), λ is the incident radiation wavelength and n is an integer number. Figure 

2.1.1 underlines that the difference in the optical path between parallel and

contiguous lattice planes is:

AB + BC = 2dhkl sen 
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Constructive interference occurs only when the difference path is equal to an

integer number of wavelengths, from which diffracted beams (Bragg reflections)

are possible just for discrete  values that satisfy the Bragg equation. In this way,

diffraction can be stated as a selective reflection because it occurs only for certain

incident angle values between x-rays and lattice planes.

Figure 2.1.1.: coherent scattering of the incident x-rays on a crystalline material and
the geometric construction that represents the Bragg’s law [redrawn from 1]

The crystal cell parameters can be calculated from the positions of Bragg

reflections while the type of atoms and their distribution in crystal cell can be

inferred by the measured integrated intensities. The scattering power of any single

atom controls the amplitude of scattered waves. The diffusion amplitude depends

on the number of electrons that diffuse x-rays at the same time and so the

diffusion power is related to the atomic number Z. The diffusion amplitude is

defined as the atomic scattering factor, fs, which is controlled also by the

scattering angle, the wavelength and it can be limited by the vibrational

movement of atoms in the crystal cell. The highest the thermal motion (atomic

motion factor or Debye-Waller Factor) the lowest will be the scattering power. To

describe the intensity of a single hkl reflection, all atoms that contribute to that

A

B

C
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single reflection have to be considered. The intensity of a Bragg reflection is

proportional the square of the amplitude of the resulting wave produced by the

scattering contributions of all atoms in the primitive cell. The amplitude of the

resulting wave is described by the magnitude of the structure factor Fhkl:

I  A2  |Fhkl|
2

where

n = total number of atoms in the primitive cell

fs = atomic scattering factor

is the atomic motion factor, with

u2 = mean square deviation of the a-th atom expressed as Å2 from the equilibrium

position x,y,z

i = √-1 

h, k, l = Miller indices

xa, ya, za = fraction coordinates of the a-th atom

2 (hxa + kya + lza) is the phase of the resulting wave.

Experimentally, it is possible to measure the intensity of the resulting wave and

subsequently to calculate the amplitude A, but it the phase is not directly

accessible. If we were able to solve the phase wave, we would determine the

atomic coordinates in the primitive cell and so we would solve the crystal

structure.

The problem of the phase in ab-initio structure determination is treated and solved

using different approaches, e.g. direct methods and Patterson methods.


n

1=a aaaas )]lz+ky+(hxi[2exptf= hklF

ta = exp [-Ba (sin2 / 2)]

Ba = 8 2 (u2)a
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2.2. X-ray Powder Diffraction (XRPD)

An ideal powder is a polycrystalline material composed by an infinite number of

crystallites randomly distributed, with desirable dimension lower than 10 µm.

Each crystallite is linked to a reciprocal lattice and the random distribution of

many crystallites is the basic condition to observe the diffraction phenomenon for

all the reticular planes simultaneously. For each family of reticular planes having

the same interplanar distance d, diffracted rays form different cones (Debye-

Scherrer cones) of different 4 angular apertures (figure 2.2.1).

Figure 2.2.1. schematic representation of Debye-Scherrer cones in powder diffraction
[readapted from 2].

If the scattered beams are collected in photographic screen (area detector), it can

be seen that diffraction is a “portray” of concentric circles which diameters are

strictly related to the Bragg diffraction angles. If a cylinder chamber would be

employed (Debye chamber), with radius R, measuring the distance S between the

circle sectors on the screen and applying the relation:

S / 2πR = 4θ / 360°

Bragg diffraction angles can be immediately determined for many reticular planes

and finally cell parameters can be calculated. Alternative detectors are photon

counters (point detectors) used in modern automated diffractometers. Such
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diffractometers measure step-by-step the selected 2θ range, which is a completely 

different approach in respect of simultaneous diffraction detection. The result of

the diffraction phenomenon for an ideal powder is a distribution of intensities

(count of diffracted radiation exiting from a sample) as a function of 2θ, where 2θ 

is the angle between the direction of the incident beam and the direction of the

diffracted beam. Plotting the total measured counts versus the 2θ angle, the so-

called diffraction pattern can be observed: above a background noise (coming

from air and/or sample holder scattering), peaks of maximum intensities reveal

that the Bragg’s equations is satisfied for that 2θ angle. The diffraction pattern of a 

monophasic powder represents the complete map of its microstructure and crystal

structure in the reciprocal space. With this technique, the problem of peaks

overlapping cannot be avoided as in single crystal diffraction: in fact, all the

diffracted intensities bear information on the three dimensions of reciprocal space

which are projected along only one direction. To deconvolve the contribution of

every single peak, it is necessary to describe properly the shape of the peaks with

mathematical expressions. Peaks position (in terms of the interplanar distance d)

depends on the primitive cell dimensions of the investigated phase and,

eventually, on instrumental errors. Peaks intensity depends on the structure factor,

which is actually the type of atoms and their distribution in the unit cell, but also

on preferred orientations effect and beam polarization effect. Peaks shape is

related to instrumental factors and physic features of the sample (strain,

dimension of diffraction domains). On the basis of such relations, the detailed

study of a diffractogram can give information on: unit cell dimension, space

group, atomic structure and dimension of diffracting domains. Particular attention

and correction have to be posed on instrumental effects related to different

measuring strategies: such effects have to be absolutely corrected.
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2.2.1. Experimental geometries in x-ray powder diffraction

An x-ray powder diffractometer is essentially constituted by an x-ray source, a

sample holder and a detector that measure diffracted x-rays intensities and

positions. Different experimental geometries are obtained varying the reciprocal

position of these elements. A first big classification is between reflection and

transmission geometries.

In flat-stage reflection geometry measurements, the diffracted radiation is

measured as if it were “reflected” by the sample surface (actually such radiation is

diffracted by a certain volume, since x-ray can penetrate the sample). In

transmission geometry measurements, both for flat-stage or capillary samples, the

diffracted radiation, which passes through the sample, is directly detected. This is

a fundamental difference because different instrumental effects are produced and

such effects have to be treated and corrected in different ways.

Generally speaking, in reflection geometry a divergent beam incident onto the

sample results in a convergent diffracted beam; in transmission geometry an

incident divergent beam will diverge a lot more when diffracted while an incident

convergent beam will result in a more convergent diffracted beam (figure 2.2.2).

To increase instrumental resolution (measured peak width), a divergent diffracted

beam that reaches the detector is a huge source of problems.

The most diffuse geometry implemented in a laboratory instrument is the so-

called “Bragg-Brentano”, described in figure 2.2.3. Such geometry is also called

focussing because the divergent incident beam into the sample switch to a

diffracted beam focussed on the detector that lies at the intersection between the

goniometric circle and the focussing circle. Actually, it should be indicated as

parafocusing, because to have a complete focussing diffracted beam the sample

should stay always on the focussing circle: this condition would have satisfied

only with a curve sample. The focussing circle radius changes accordingly to the

variation of 2 angles while the distances source-sample and sample detector

remain constant. During a measurement, source and detector move along the
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goniometric circle with the same angular velocity. The sample stays at the centre

of the goniometric circle, with its surface tangent to the focussing circle.

Figure 2.2.2: schematic portray of reflection (a, b) and transmission (c, d) geometries.
In transmission geometry, a divergent beam will result in a more divergent diffracted
beam. On the contrary, convergent x-rays will be diffracted as more convergent by the

sample [2].

Figure 2.2.3: schematic representation of Bragg-Brentano geometry. All the most
important features are plotted with their angular dependence [2].



48

Bragg-Brentano setup bears the advantage of very good instrumental resolution

(narrow peaks) but the disadvantage of double x-ray wavelength (α1,2). Strictly

monochromatic radiation can be obtained by means of monochromator crystals

with a certain loss of intensity. In modern diffractometers, acquisition time is

dramatically reduced through linear detectors, which are able to investigate a

small 2θ ranges without loosing the improved experimental resolution. 

A comparable Bragg-Brentano setup exists also in transmission, where the

incident beam has to be convergent: in this way the sample will diffract a

convergent beam recordable on the focussing circle by the detector (figure 2.2.4)

but to obtain a convergent beam, a monochromatic crystal or a focussing mirror is

needed. While in Bragg-Brentano the diffracting planes are parallel to the sample

surface, in transmission setup the reticular planes that contributes to the

diffraction phenomenon have to be perpendicular to the sample surface.

Figure 2.2.4: transmission analogue of Bragg-Brentano setup [2]. M: focussing mirror.
CS: convergent slits. Sp: sample. S2: Soller slits. RS: receiving slits. AS: antiscatter slits.

D: detector.

A critical parameter in transmission measurements is the absorption caused by

sample thickness that has to be optimized to avoid wrong measurements of

diffracted intensities. The ideal thickness (t0) depends on the linear absorption

coefficient of the analysed material that varies with the θ angle (figure 2.2.5):

t0 = cos/ 
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In the plot of figure 2.2.5, It is the measured diffraction intensity of a certain

reflection and Imax is the maximum detectable intensity of the same reflection.

Form the same plot, it can be seen that too thin and too thick samples suffer up to

30% errors in peak intensity measure.

Figure 2.2.5: relative intensities in transmission geometry for samples of different
thickness t. t = -1(1); t = 0.5 -1 (2) e t = 2 -1 (3) [2].

For limited 2 range (< 60°) and limited absorbing materials, absorption

correction can be independent from  and for the ideal sample thickness the

approximation t0  -1 is still valid. Focussing transmission setup measurements

bear advantages and disadvantages, in respect to Bragg-Brentano reflection

geometry

Advantages:

- Low instrumental errors at low 2 angles

- Absorption correction independent from θ

- No surface effects (roughness)

- Confined sample (no carbonation)
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Disadvantages:

- Lower diffracted intensities

- Sequential measurements

- Limited 2 accessible range (max 2θ = 90°) 

- Limited sample thickness (to avoid absorption problems)

The most implemented experimental geometries have been briefly described for

laboratory instruments, where the x-rays production is demanded to conventional

sources (x-ray tube or rotating anode). Unconventional sources can be employed

in powder diffraction investigations, such as synchrotron radiation sources (SRS),

more briefly referred just as “synchrotron”. In a synchrotron source, electrons or

positrons are accelerated very close to the speed of light along wide circular

orbits. When charged particles are maintained in movement along a circular orbit

by strong magnetic fields, along the orbit tangent such particles produce electro-

magnetic radiations. The radiation energy depends on the particles velocity and

for the velocity range close to the speed of light, particles produces x-rays. When

using a synchrotron radiation, instrumental defects are reduced a lot because the

incident beam exits the storage ring polarized and travels through a parallel path.

How is the radiation intensity measured? The most useful unit of measurement is

the brightness (photons number·s-1·(mm·mrad)-2): for 3rd generation synchrotron

the brightness value reaches 1020, when for a conventional x-ray tube is at

maximum 107. The high photons number permits the use of a monochromator on

the primary beam to obtain a strictly monochromatic radiation.

In x-ray powder diffraction, transmission setups are generally used coupled with

capillary samples (Debye-Scherrer geometry with parallel incident beam). On the

diffraction beam path, one or more analysing crystals can be mounted in order to

remove possible fluorescence effects (figure 2.2.6). Area detectors are widely

mounted because measurement timings are dramatically reduced without loosing

resolution (0.1° – 0.05° 2θ) but point detectors are still implemented coupled with 

an array of analysing crystals.
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Figure 2.2.6: schematic portray of a synchrotron powder diffraction beamline. The
parallel beam exists from the source (SR), it passes through 2 monochromators (M)

and heat the sample (S). Diffracted x-rays are deviated to the detector array (D)
through a series of analysing crystals (A).

High angular resolution (up to 0.005° 2θ), high counting statistics and non-

ambient experimental conditions make the synchrotron sources incomparable

facilities where structure solution on powders and in-situ time-resolved

experiments can be practically developed.

2.2.2. Qualitative analysis of a powder diffraction pattern

The very first step for a correct interpretation of a powder pattern is the phase

identification occurring in a sample (qualitative analysis). Each crystalline phase

shows a peculiar combination of position and intensity of diffraction peaks. In this

way, every diffractogram of crystalline compounds is a sort of “fingerprint” for

the compounds, which allow its identification.

The identification process consists firstly in a database search (PDF – Powder

Diffraction File) that collects about 300,000 files of inorganic and organic

crystalline phases. PDF database is maintained and updated by the International

Centre for Diffraction Data (ICDD – http://www.icdd.com). PD Files report

information related to the crystalline compound, references and list of dhkl

interplanar distances with relative intensities and characteristic Miller indices of

each phase.

The correct phase identification procedure applied to a polyphase sample assume
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different difficult degrees depending on the sample preparation, data collection

strategy and the complexity of the phase blend.

2.2.3. Rietveld method

Obtaining detailed structural data (atom positions in the primitive cell,

crystallographic site occupancies, thermal motion parameters) from powder

diffraction experiments was unconceivable before the groundwork experiments of

Hugo Rietveld during the 1960’s [3, 4] He is a Dutch physician who demonstrated

the possibility to extract accurate structural data from neutron powder diffraction

experiments. Later, he extended the same approach to x-ray powder diffraction

data, with successful results. The basics of the Rietveld method lays on the

complete exploitation of the whole powder profile without extracting the

integrated intensities, all the structure and instrumental parameters are refined

during the fitting procedure between the calculated and measured data. The

refinement procedure implements the least square regression and it requires a

reasonable scheme of starting values that approximate the real datum. Such

parameters include:

- A function that describe the peak shape

- A function that describe the instrumental effects (on the shape, position

and intensity of diffracted peaks)

- Structural parameters as cell dimension, space group and unit cell atomic

coordinates

The reliability of the Rietveld method is strictly connected to the quality of

powder diffractograms (a well-prepared polycrystalline sample, high counting

statistics and limited instrumental problems). During the refinement procedure

developed by H. Rietveld, a system of equations is solved using a non-linear leas

square regression:

Y1
calc = k Y1

obs

Yn
calc = kYn

obs
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Where k: pattern scale factor; n: total number of measured points. The minimized

function becomes:

n is the total number of measured points that depends on the angular range and on

the sampling step. The calculated intensity Yi
calc of the ith point (1 ≤ i ≤ n) in the 

diffraction pattern is the sum of the background contribution bi and the whole jth

Bragg reflections (1 ≤ j ≤ m) that contribute in that point. Each crystalline phase 

in the sample adds its own parameters (structure, profile shape) that can be

refined. The number of variables is increased when a great amount of phases are

involved in the sample: in this case it is not possible to obtain detailed structural

parameters due to the strong correlation within the variables. The scale factor Kl

of each phase comes to the evidence because this parameter is fundamental in

calculating each crystalline fraction in a polycrystalline sample (quantitative

analysis):

Background is an unavoidable contribution in a powder diffraction pattern. It is

composed of anelasting scattering, air scattering, fluorescence effects, non-

monochromatic beam detector noise. Polynomial, Chebyshev polynomial and

Fourier polynomial are the most used analytical functions to describe the

background contribution. The peak shape functions describe the intensity

distribution around the Bragg position. A peak can assume different shapes

(different intensity distributions nearby the central position). To quantify the

width of a peak, the parameter Full Width at Half Maximum (FWHM) is

calculated. Another fundamental parameter that measure the peak width is the

 = wi (Yi
obs - Yi

calc)2

i1

n



Yi = bi + K ll=1

p

 I j y j(x j)j1

m


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integral breath, which is equivalent to the width of a rectangle having the same

height and the same area of the peak. The peak shape function PSF(θ) is the 

resultant of the convolution of different functions: instrumental broadening,

wavelength dispersion, sample contribution. The peak shape can be described

following three different approaches:

1. Empirical functions that try to model the peak shape without assigning a

physical meaning to the parameters in use

2. A semi-empiric approach based on empiric functions for the instrumental

and wavelength functions while to the sample function parameters are

given realistic physical meaning

3. Fundamental parameters approach where all the components are associated

to a precise physical meaning

Empirical functions employed to describe the peak shape are the Gaussian, the

Lorentzian, Pseudo-Voight and Pearson VII. Among these functions, the Pseudo-

Voight is often mentioned because data obtained from laboratory instruments are

effectively well described by this type of function. It is composed by a gaussian

and a lorentzian term in variable proportions, with η as the mixing coefficient that 

can assume values between 0 (full Lorentzian term) and 1 (full Gaussian term):

The lorentzian part is sharper at the maximum but it shows wider tails than the

gaussian; both functions are symmetric, G(x) = G(-x). The shape of measured

peaks is seldom purely gaussian or lorentzian. Only neutron diffraction data (but

not Time-of-flight neutrons) show almost pure gaussian peak shape.

In all the equations the term H determines indirectly the value of the argument x.

H depends on the θ angle and its dependence is described by the Caglioti function 

(an empiric function that describes the peak width at half maximum) where the

parameters U, V and W can be refined.

y(x) = PV(x) = 
CG

1/ 2

H
+ (1 - )

CL
1/2

H
(1CL x 2)1
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Finally, when authors address to the peak intensity, this is actually the integrated

intensity. The observed (and calculated) Bragg reflection intensity depends on

multiple variables (experimental setup included) such as the structure factor, the

polarization effect, the reflection multiplicity, the magnitude of incident radiation,

receiving slits width, the goniometric circle, the radiation wavelength, the

absorption effect and preferred orientation effect. The structure effect for a single

reflection bears the structural information for that reflection, i.e. type and position

of atoms in the primitive cell, thermal motion factor. To extract the structural

information it is necessary to describe all the parameters that contribute to the

diffracted intensity, in order to isolate the contribution of the structure factor. The

structural parameters modified during a Rietveld refinement are: atomic

coordinates (x,y,z), crystallographic site occupancy and thermal motion factor.

Such parameters are the same factors previously described in the structure factor

description.

2.2.4. Quantitative analysis of a powder diffraction pattern

The Rietveld method can be used as a tool to get detailed structural information

from powder diffraction data. In this way, monophase samples are easier to treat

because each crystalline phase contributes with its own pattern and its own

intensities to the resultant pattern, as occurs during a polyphase sample

investigation. Furthermore, the peak intensities of each phase are directly

proportional to the relative fraction of a certain phase in the sample.

The Rietveld method is one of the possible methods to determine the relative

quantity of each phase in a blend.

The other methods are:

- Absorption-diffraction method.

- Internal standard method.

Considering the peak intensity formula in a multiphase system:
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are constants for the hkl reflection of the phase  (Mhkl is the reflection

multiplicity, V is the cell volume and Fhkl the structure factor). The last term
ఔೌ

ఓೞ
is

the ratio between the volume fraction of phase  and the linear absorption

coefficient of the whole sample. The same formula can be reduced expressing the

phase quantity as weight fraction:

ఈ(௛௞௟)ܫ =
ఈܺఈ(௛௞௟)ܭ௘ܭ

ߤ)ఈߩ ⁄ߩ )௦

Where X is the weight fraction of phase ,  is the phase density, (/)s is the

mass absorption coefficient of the sample. In this equation there are two unknown

variables: X and the mass absorption coefficient of the sample. The different

methods used to quantify a phase try to calculate or to simplify the unknown

quantity (/)s.

Absorption-diffraction method.

The equation intensity for each hkl reflection has to be differently considered

when treating a pure phase or the single phase in a multi phase system. When

considering the ratio between these two different intensities, the resulting formula

is:
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ఈ(௛௞௟)ܫ
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଴ =
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If the multiphase system is constituted only by polymorphs (n number of phases

with the same linear absorption coefficient), ߤ) ⁄ߩ )ఈ = ߤ) ⁄ߩ )௦ = ߤ) ⁄ߩ )௡ and

the formula becomes:

ఈ(௛௞௟)ܫ

ఈ(௛௞௟)ܫ
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This linear relation is applied for the quantitative phase analysis of SiO2

polymorphs (Quartz, Cristobalite, amorphous silica) systems, TiO2 polymorphs

systems (Anatase, Brookite, Rutile) ZrO2 polymorphs (monoclinic, cubic,

tetragonal).

In a binary system with two phases of different ߤ) ⁄ߩ )ఈ, when ߤ) ⁄ߩ )ఈ is different

from ߤ) ⁄ߩ )௦, the following relation is used:

ఈ(௛௞௟)ܫ

(௛௞௟)ܫ
଴ =

ܺఈ(ߤ ⁄ߩ )ఈ

ܺఈ ߤൣ) ⁄ߩ )ఈ − ߤ) ⁄ߩ )ఉ൧+ ߤ) ⁄ߩ )ఉ

Mass absorption coefficient calibration curves are extracted measuring systems

for which the composition is well known and determined; alternatively, /

values published in literature can be still useful. This last formula is applicable

only to binary systems. When calibration curves deduced from literature /

values, microabsorption effects can be ignored and the analysis can be affected by

systematic errors. In the absorption-diffraction method, the absolute intensity

values are used, both for a pure phase reflections and for the reflections of the

same pure phase in a in a multiphase system. The method is greatly affected by

the starting experimental conditions.
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Internal standard method

The internal standard method avoid the sample absorption coefficient (/)s

dividing two equations as following:

ఈ(௛௞௟)ܫ =
ఈܺఈ(௛௞௟)ܭ௘ܭ

ߤ)ఈߩ ⁄ߩ )௦

ఈ(௛௞௟)ܫ

ᇲβ(௛௞௟)ܫ
= k

ܺఈ

ఉܺ

Where  is the unknown phase,  the internal standard, k is the calibration

constant calculated from the plot I / I vs X / X. When k is defined, adding a

precise amount of standard  in a system, the weight fraction of every phase can

be calculated, also for amorphous compounds. Multiphase systems have to be

accurately prepared to obtain the calibration curves and the standard has to have

non-overlapping peaks to be reliable.

If k is generated from the intensity ratio between the most intense reflection of

phase  and the most intense reflection of corundum (reference standard) in a

system composed of 50%  and 50% corundum, the method is called RIR

(Reference Intensity Ratio). For most of the crystalline phases, RIR values are

referred into the PDF database.

Generalized RIR method

With this method, different reflections can be chosen, both for the  phase and

corundum: the most intense reflection is not essential. Another internal standard,

different from corundum, is also allowed.

ܫܴܴ ఈ,ఉ�ൌ�ቆ
ఈ(௛௞௟)ܫ

ᇲఉ(௛௞௟)ܫ
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Normalized RIR method

The weight fractions ratio between two phases, for which RIR is known, can be

calculated. Considering a blend of n phases, with known RIR values in respect of

corundum, and the sum of each weight fractions equals to 1, it is possible to

arrange a system of (n-1) equations that can be solved. If the blend is constituted

only by crystalline phases, the system of (n-1) equations can be solved without

adding any internal standard.

Limitations on traditional methods

The accuracy on quantitative phase analysis performed with traditional methods

depends on the way the intensity values are determined. If the maximum intensity,

instead of the integrated area of peak, is considered the potential error is huge.

Furthermore, extracting reliable intensity values becomes difficult if reflections

are overlapped. Preferred orientation and microabsorption are two of the most

effective problems in determining the right peak intensity value. The use of

published RIR and Irel values does not guarantee reliable results because often for

a certain phase more than one RIR value is published.

Quantitative phase analysis (QPA) with the Rietveld method

Quantitative phase analysis methods discussed in the previous paragraphs are

based on the evaluation of integrated intensity of one or a couple of reflections for

each phase. If the investigated system shows more than two phases, with an high

degree of overlapping peaks, quantitative phase analysis becomes much more

difficult. Quantitative phase analysis with the Rietveld method is based on the

whole diffraction profile analysis for each phase. The parameter proportional to

the weight fraction of a phase in the system is the scale factor of that phase. The

expression for the calculated intensity of one phase  can be considered:

௜ܻ,௖�ൌ�ܵఈ ෍ (ఏ௜∆)ܩఈ(௛௞௟)ܭ (ܲ௛௞௟)ఈ ௜,௕ܫ�+
(௛௞௟)



60

G: profile function, P: preferred orientation, S: scale factor.

For each Bragg reflection, the integration and a background correction are

performed:

ఈܵ =
ఈ(௛௞௟)ܫ

ఈ(௛௞௟)ܭ

In a multiphase system:

௜ܻ,௖�ൌܫ�௜,௕ +�෍ ఈܵ ෍ (ఏ௜∆)ܩఈ(௛௞௟)ܭ (ܲ௛௞௟)ఈ

(௛௞௟)

௡
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Comparing scale factor and intensity:

ఈܵ =
ఈ(௛௞௟)ܫ

(݇௛௞௟)ఈ
ఈ(௛௞௟)ܫ����������� =

ఈܺఈ(௛௞௟)ܭ௘ܭ

ߤ)ఈߩ ⁄ߩ )௦

The final formula for the scale factor of phase  is:

ఈܵ ௘ܭ�=
ܺఈ

ߤ)ఈߩ ⁄ߩ )௦

The Rietveld scale factor of phase  is related to the absolute value of diffracted

intensity of that phase corrected for the absorption effect gave by the sample.

Compared to traditional methods, the Rietveld scale factor behaves as the

integrated intensity value of one reflection.

The mass attenuation coefficient of the sample still remains unknown. The

internal standard method is applied; otherwise the normalization method is used

forcing the sum of weight fractions to equal to 1 (if no amorphous phases are

present).
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Internal standard method normalized with the Rietveld method

The normalization equation (sum of all phases = 1) applied to the scale factor

returns the following equation:

ܺఈ =
ఈܵߩఈ

∑ ௡ܵߩ௡௡

Quantitative phase analysis with Rietveld method is similar to normalized RIR,

but while the normalized RIR method calculate the coefficients K(hkl) from the

published RIR values, the Rietveld method uses the structural model for each

phase to obtain the same values. True Rietveld quantitative phase analyses are

possible only if reliable structural models are available for any crystalline phase

present in a sample. One important database for structural models is the ICSD

(Inorganic Crystal Structure Database - http://icsd.ill.fr/icsd/index.html).

2.2.5. Cement hydration investigation through diffraction techniques

Several works on cement hydration products have been carried on through in-situ

synchrotron radiation experiments or conventional sources experiments,

principally on synthetized pure phases. There are still some problems in

performing quantitative phase analyses with Rietveld method on hydrating cement

systems since some hydrated phases, among which there are C-S-H and hydroxyl-

AFm, don’t have reliable structural models. Lots of research groups used x-ray

powder diffraction to determine CH, AFt, AFm and other hydration products

content as a function of time. This technique became useful to improve the

comprehension of chemical reactions and reactivity of cements [5].

Table 2.2.1 reports the main diffraction techniques employed in hydrated phases

of cements research.

Sample XRD Method Reference
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Synthetic ettringite,
monosulphate
Mexican OPC

Ferrite hydrates

Ettringite
C3A hydrates
C3A paste
Ettringite
OPC cement (XRD,
synchrotron, neutron). Time
resolved powder diffraction
Calcium aluminoferrite
hydrates
C3A hydrates
OPC hydration
Rich C2S cements

R

C

C

C
R
C
C

Profile fitting

C

XRD identification
C
C

Fullmann et al. (1999) [6, 7]

Escalante-Garcia and Sharp [8]
Emanuelson et al. [9, 10]
Yang et al. [11]
Kuzel [12]
Omotoso et al. [13]
Talero [14]
Clark and Barnes [15]

Liang and Narru [16]

Kuzel and Pollmann [17]
Parrot et al. [18]
Ftikos and Philippou [19]

Table 2.2.1: main diffraction techniques used in hydrated cement phases research. R:
Rietveld method [20], C: XRD conventional method [5].

2.3. Scanning Electron Microscopy (SEM)

Scanning electron microscope (SEM, same acronym of microscopy) is a powerful

instrument especially suited for high-resolution imaging applied to the

investigation of morphological and compositional contrast between different

compounds. Images are produced by means of an electron beam that scans the

sample surface. Secondary electrons (SE) and backscattered electrons (BSE) are

emitted by the sample after the interaction between the sample surface and the

incident beam: such emission during beam scanning constitutes the basis of

imaging reconstruction. A high-energy electronic beam produced by an electron

gun operating at high voltages constitutes the scanning probe. The most used

electron source is a Tungsten wire, with diameter ∼ 0.01 mm, which produces

electrons because of the thermoionic emission. The spatial resolution is dependent

on the electronic beam diameter as a first approximation; however, when diameter

decreases, an energy loss is expected to occur. To avoid such problem, a LaB6

crystal can substitute the Tungsten filament, which shows a 10 times higher

brightness than Tungsten. Certain instruments mount the so-called Field Emission

Gun (FEG), which is made of a sharp and thin Tungsten filament tip: from such
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tip electrons are accelerated by an intense electric field. Electrons are focussed on

the sample through electromagnetic lenses: these lenses are source of instrumental

aberrations that reduce the instrumental precision.

SE – Secondary Electrons

The very first surface layer (a few mm) produces Secondary Electrons (SE) and

their energy is lower than 50 eV. These electrons are previously born in the atoms

and later released when the incident electrons strike into the surface. The number

of ejected electrons per incident electron is generally 0.1 – 0.2 at 10 – 30 KeV

incident electrons energy. This value doesn’t change with the variation of the

mean atomic number in the surface volume of interaction. An increase in

secondary electrons can occur when the angle between the incident beam and the

surface becomes lower or when the incident beam energy is lower than 5 KeV.

Secondary electrons are responsible for three-dimensional surface images with the

best spatial resolution of 10 nm, wide depth of field and not affected by the

chemical contrast between the chemical species occurring in the sample.

BSE – BackScattered Electrons

Backscattered electrons are high-energy electrons (> 50 eV) which penetrate into

the sample and re-emerge after a certain number of collisions. The fraction of re-

emerging electrons is strictly dependent from the mean atomic number in the

interaction area of the sample. Such relation stands at the basis of high-contrast

images when chemical species with different mean atomic number are present. To

discover compositional contrasts at the micron scale, the sample surface has to be

properly flattened and accurately polished in order to avoid shadow effects that

modify the quality of the images.

2.4. Isothermal Calorimetry (IC)

The thermal exchange between the sample and the heat sink, the measure of the

temperature difference between the sample and the surrounding environment
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stand at the basis of this technique. The heat generated by the thermal events

occurring in the reaction cell can freely flow in the surrounding environment

through an Aluminium cage, in a way to keep constant the sample temperature.

The thermal sensors, typically thermopiles, can detect the heat flow and can

convert it into an electric signal proportional to the thermal power of the reaction.

Two twin sites, one for the sample and one for the reference, constitute the

calorimeter cell. The reference is necessary because it reduces the noise level in

the measure (and increase the signal/noise ratio) and because if a perturbation

occurs, this will affect both the sample and the reference at the same way and the

effects can be discarded. With this technique, the cement hydration heat flow is

measured directly, monitoring the sample when either the sample or the

environment is kept in isothermal conditions. One critical condition stands in

measuring the released heat flow during the first hydration phases. This particular

aspect succeeds in a possible solution in the internal mixing apparatus of

calorimeters, which is able to acquire the whole heat flow signal.

In the last twenty years a variety of cements and blends have been studied:

Portland cement mixed with high alumina cements, effects of lithium salts in

cement mixes, organic additives as retarders [21]. In principle all chemical

processes are either exothermic or endothermic and the released/acquired heat can

be monitored and measured: the reaction rate is proportional to the production or

consumption of heat. Working at isothermal conditions, IC is very sensitive both

to small and huge variations in exchanged heat, with the possibility to monitor

very slow as very fast reactions. IC is a laboratory technique where the heat

reaction rate (mJ/sec = mW) and cumulative heat reaction (mJ) of hydrating

cement can be measured in real-time mode at a constant temperature. The

produced/consumed heat is proportional to the chemical and physical changes

occurring on the sample and the heat flow is proportional to the aggregate rate of

changes taking place at a given time. IC is thus a means for dynamic, quantitative

evaluation of the rates and energetics of a broad range of rate processes.
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3. Materials and Methods

Mix NIST were produced after grinding and blending raw materials, synthetized

from chemical laboratory grade CaO, SiO2, Al2O3 and Gypsum (CaSO4·2H2O).

Alite was synthetized by W.R. Grace while Cubic Tricalcium Aluminate by

NIST.

NIST also chose a reagent-grade 99% Gypsum to obtain the final mixes.

3.1 Characterization of raw materials and blends

The first characterization on raw materials has been carried out by NIST. Particle

size distribution (PSD) on C3A returned a d50 of 13.2 µm and d90 of 49 µm; on

Gypsum a d50 equals to 11.2 µm and d90 of 28.5 µm; C3S showed a d50 of 14 µm

and a d90 of 39 µm. The goal to produce synthetic cement mixes was to study the

proper content of Gypsum: it is reached when the calorimetric peak attributed to

C3S dissolution occurs just before the calorimetric peak due to the complete

Gypsum consumption. In order to do so, the work of Tenoutasse [1] has been

considered and finally three blends was produced and named Mix 1, 2 and 3.

Table 3.1 summarizes the mixtures, in which phases are expressed as mass ratios

and as weight percentages.

Mass
ratios

C3S C3A Gypsum Weight
%

C3S C3A Gypsum

MIX 1 80 20 2.3 78.20 19.55 2.25

MIX 2 80 20 4.3 76.70 19.18 4.12

MIX 3 80 20 6.3 75.26 18.81 5.93

Table 3.2: mass ratios (left side) and weight percentages (right side) of synthetic NIST
mixes.

We performed X-ray powder diffraction (XRPD) characterization on Mix 1, 2 and

3 using a PANalytical X’Pert Pro MPD diffractometer. This instrument is very

reliable and permits the operator to switch from reflection Bragg-Brentano
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geometry to focussing transmission capillary geometry in a very easy way, thanks

to PreFIX© technology. The diffractometer implements a ceramic x-ray tube with

a linear focus and Cu anode, 40 kV and 40 mA, goniometric radius of 240 mm

(PW 3050/60), θ/θ mode. When used in reflection geometry, incident beam optics 

includes divergence slits of ½, Soller slits of 0.04 rad and antiscatter slit of ¼.

Diffracted beam optics are composed of antiscatter slits of ¼ and Soller slits of

0.04 rad, Ni-Kβ filter and PIXcel Position Sensitive Detector, with a 3.347° 2θ 

maximum aperture. We measured the dry powders in Bragg-Brentano reflection

geometry between 6° and 76° 2θ, CuKα1,2, step size of 0.026° 2θ, counting 80s 

per step. Every measure lasts 15 minutes and we performed two repetitions in

order to improve the counting statistics.

We performed a qualitative phase analysis in order to determine the real powders

content: We determined the presence of monoclinic and triclinic C3S, C2S, C3A

and Hydrogarnet. Rietveld quantitative phase analysis underlined some

peculiarities:

- A small amount of Hydrogarnet (3-4%).

- The structural model of C3S proposed by Nishi et al. [2] does not fit well

the experimental diffraction pattern. On the other hand, using the M1

structural model proposed by De Noirfontaine et al. [3] and the Triclinic

model of Golovastikov et. al. [4] the profile fitting become markedly

better.

- C3S and C3A peaks overlap all the strongest C2S peaks, making very

difficult its determination.

In the following diagrams we show the difficulty on choosing the right C3S

structural model on some 2θ ranges. Figures are all referred to Mix 3, but we 

found the same problems in Mix 1 and 2 profiles fitting. Refinement strategy

considered an initial step to calculate the instrument contribution to line profile

fitting measuring the SRM-640c Si NIST standard. This preliminary procedure

involved the calculation of the instrumental zero shift, sample displacement,

divergence slit and Soller slits values. Fundamental parameters approach [5] has

been implemented in Topas v. 4.1 [6] and used in the Rietveld calculations.
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Refinement strategy included a continuous background refinement using

Chebyshev polynomial function and scale factor, while cell parameters and

Lorentzian crystallite size were refined in this order. Neither atomic coordinates

nor atomic displacement parameters were considered in the refinement.

Figure 3.1: profile fitting using the M3 and Triclinic C3S structural models (28°-36° 2θ 
range, CuKα) 
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Figure 3.2: profile fitting using the M1 and Triclinic C3S structural models (28°-36° 2θ 
range, CuKα) 
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Figure 3.3: profile fitting using the M3 and M1 C3S structural models (28°-36° 2θ range, 
CuKα) 
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Figure 3.4: profile fitting using the M3, M1 and Triclinic C3S structural models (28°-36°
2θ range, CuKα) 

As we can see from figures 1, 2, 3 and 4, some differences are remarkable. In

particular, where the triclinic structural model is not considered the profile fitting

worsen (figure 3.3). On the other hand, when triclinic + M3 and/or M1 are

considered together the profile fitting becomes markedly better (figures 3.1, 3.2

and 3.4). In particular, the 28.5° and the 32.5° 2θ peaks show a different fit when 

the Triclinic + M3 and/or M1 structural models are applied. It is difficult to say

which combination is the true one.
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Figure 3.5: profile fitting using the M3 and Triclinic C3S structural models (35°-55° 2θ 
range, CuKα) 
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Figure 3.6: profile fitting using the M3 and M1 C3S structural models (35°-55° 2θ range, 
CuKα) 
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Figure 3.7: profile fitting using the M1 and Triclinic C3S structural models (35°-55° 2θ 
range, CuKα) 
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Figure 3.8: profile fitting using the M3, M1 and Triclinic C3S structural models (35°-55°
2θ range, CuKα) 

Figures 3.5, 3.6, 3.7 and 3.8 point out the same situation described before. In these

figures we considered the 35° - 55° 2θ range, where the 36.6°, 45.7°, 46.8° and 

49.9° peaks are better described when we choose to apply the triclinic structural

model in addition to M3 and/or M1 structural models.

In any case, some peaks are still not completely well described by such models.

Taking into account all the information described above, we performed a Rietveld

quantitative phase analysis on dry powders, considering the three structural

models for C3S. Results are shown in the table below.
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C3S-

M3

C3S-

M1

C3S-

Tri

C3S-

Tot

C2S C3A Gypsum Katoite

MIX

1

23.32 17.12 31.76 72.20 1.84 19.21 3.20 3.54

MIX

2

21.57 18.81 29.33 69.71 1.65 18.45 5.86 4.32

MIX

3

19.17 17.95 31.15 68.27 1.86 18.46 7.73 3.88

Table 3.3: Rietveld quantitative phase analysis performed on Mix 1, 2 and 3.

As we can see from table 3.2, we have a very low amount of C2S (under the

instrument detection limit) and this led us to exclude it from the kinetic

calculations. A reason for this choice lays on the parametric quantitative phase

analysis, where minor phases (< 3%) and slow reacting phases (as C2S) are

difficult to monitor. On the other hand, Gypsum is overestimated even applying

the March-Dollase [7] preferred orientation correction.

One possible choice can be then M1 + Triclinc structural models for C3S, even if

this is not the definitively choice.

3.2 Preparation of pastes for XRD in-situ measurements

There is more than one choice in preparing a cementitious paste for a XRD study.

One is well developed in synchrotron radiation facilities where the sample is

being hydrated directly during the measure (in-situ hydration and measure). A

capillary works as sample holder and water is injected by air compression directly

into the capillary. A disadvantage of this technique is that the sample is not

completely hydrated, becoming non homogeneous.

Another possibility is to hydrate and cure the sample ex-situ until the setting time

and later cutting the sample in slices at increasing time, stopping the hydration

process with chemical solvents or salts and studying the remaining part.

Unfortunately, solvents can alter the metastable crystal structure of AFm phases

or even making them disappear. A third technique is to hydrate the sample ex-situ,



78

seal the paste and follow the hydration through in-situ measurements: it is not

possible to analyse the paste in the first 15 minutes because and it is no more

possible to modify the water to cement ratio after sealing. Actually we decided to

use the last described approach, because it assures longer measurements timings,

even if the first minutes of hydration cannot be assessed.

To analyse the pastes three different instrumental setups can be used:

1. Reflection Bragg-Brentano with a Kapton ® foil that protect the surface

2. Focussing transmission flat stage, with 2 Kapton ® foils that contain the

sample.

3. Focussing transmission capillary.

Kapton ® is a synthetic organic compound produced from the condensation of

pyromellitic dianhydride and 4,4’-Oxydianiline [8]. It is manufactured as yellow

thin foils and the main feature for our purposes is that it is transparent to x-rays,

apart from a unique reflection at 5.5° 2θ, λCu. 

In focussing transmission geometry incident beam optics includes a focussing x-

ray mirror: it is a multi-layered crystal of W/Si, manufactured to give no

diffraction lines and to produce a convergent beam. Another important feature of

this mirror is to select the incident wavelength, reducing the Kβ under 

instrumental resolution, avoiding the use of a Ni filter. Divergence slits and

antiscatter slits of ½ and Soller slits of 0.04 rad are equipped using this setup.

Focussing flat-stage requires a very low amount of material (0.02 g) squeezed

between two Kapton ® foils, which unfortunately are not able to seal a hydrating

ambient and water loss becomes certain. This is the main reason why we avoided

the use of flat stage transmission geometry.

Bragg-Brentano samples show a chemical shrinkage due to the evolution of

hydration: during XRD measurements we can see a significant left-shift of the

whole profile because the sample lays no more on the focussing circle. Moreover,

Kapton ® is suspected to be cause of water loss at long hydration time. For these

reasons we avoided the use of reflection Bragg-Brentano geometry and we

concentrated our attention to focussing capillary geometry.
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A common mixing protocol to standardize samples has been developed by W.R.

Grace. It consists in using the same power-control mixing unit, holders and

scrapes, hydrating pastes with water to cement ratio (w/c) equals to 0.5. Hereafter

the necessary equipment and the protocol itself are described.

I. EQUIPMENT

1. Eurostar-power basic (IKA) with hand mixer beater

2. Lab scissor jack

3. Lab scrape blade

4. Lab timer (to plug mixer into)

5. 20 cl plastic cups

Figure 3.9: Eurostar mixer (power digi-visc, IKA Labotechnic) setup with hand mixer
beater and timer connected to the mixer.
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Figure 3.10: Plastic cup with cement paste prepared with Eurostar mixer.

II. PROTOCOL

1) Have equipment ready:

Mixer plugged into lab timer-mixer set to run at 400rpm

Mixer, holding bar and lab jack at proper positions (important to insert cup into

notch before and during mixing)

Have mix materials weighed and ready

Have both water and chemical(s) in the same 20 cl cup (make sure they are

mixed, using hand vortex technique)

2) Hold plastic mixing cup with cement, in position to mix

- Start mixer (set at 4minutes)

- Pour water into mixing cup at mixing start – there is enough time to rotate

mixing cup to get good mixing

- At 30 seconds into mixing stop the mixer (clock is continuing to run) and

use scrape blade to scrape bottom and sides of the mixing cup. Scrape for roughly

15 seconds.

- Insert cup back into notch, and begin mixing after scraping.

- At 120 seconds into mixing, stop the mixing and scrape again (clock is

still running).
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- Insert cup back into notch and let the suspension rest until 180 seconds.

Start mixing again at 180 seconds.

- At 240 seconds, the mixer will shut off. Remove cup.

3) To clean mixer blade, place 1 liter cup of water (Labeled “Rinse H2O”)

under mixing support with lab jack and turn timer to 5 minutes. This can be done

right after removal of the cup with cement paste suspension.

4) The cleaning water contaminated with cement paste should be poured into

the special waste container. The paper towels from wiping the blade should be

thrown to the trash container.

We collected data on pastes in 0.3mm boron-glass capillaries to avoid absorption

problems, just pushing the hydrating paste in the capillary funnel till the capillary

itself seemed to be properly loaded. Capillaries were sealed with vax in order to

prevent carbonation. Measures were carried out between 2° and 66° 2θ angle, 

using a 0.02° step size, counting 120s per step, 20 min/run. This measuring

strategy gives us a good compromise within counting statistics, precision on

reflections positions and useful time coverage for systems which evolve rapidly

during the first hours of hydration.

We stressed our attention on controlling temperature stability in the diffractometer

case. Since kinetics are directly influenced by a rising/dropping temperatures, it is

fundamental to control the temperature parameter in the case. Reaction

temperature can be estimated to be of 23.0°C ± 0.5°C. Table 3.3 resumes

experimental setup information on measured pastes.
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Mix
Quantity

(g)

Mixing

method

2th

range

(°)

Step (°)
Time/step

(s)

Meas.

Time

(min)

Total

meas.

time

1

5g +

2.5g

H2O

4 min,

GRACE

protocol

3 - 66 0.026 120 20

26h

53min

2

5g +

2.5g

H2O

4 min,

GRACE

protocol

3 - 66 0.026 120 20

82h

48min

3

5g +

2.5g

H2O

4 min,

GRACE

protocol

3 - 66 0.026 120 20

105h

59min

Table 3.4: experimental XRD program

Qualitative phase analysis presents C3S, C3A, Gypsum, Portlandite and Ettringite

in all pastes.

We also detected Hemicarboaluminate, which can crystallize only when CO2 is

present. Considering that capillaries are sealed with wax during hydration, we

excluded the air contamination and so we measured the dissolved CO2 content in

water by chemical titration, which gave a content of 1.50 ± 0.15 mg/l. This acts as

a source for Hemicarboaluminate precipitation (thermodynamically more stable)

when Ettringite starts to dissolve. Nevertheless, since Hemicarboaluminate has no

crystal structure, it has not been considered in Rietveld-QPA.

Dissolution/precipitation kinetics are obtained after mass balance recalculation

based on the consumption of anhydrous calcium silicate hydrates which produces

C-S-H and Portlandite [9].

3.3 Isothermal Conduction Calorimetry (IC) on pastes

First calorimetric measurements was carried out by W.R. Grace to establish the

right Gypsum quantity to be added to C3S-C3A mix. The final mix result has been

shown in table 3.1. Temperature greatly influences the cement hydration kinetics
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and studying how kinetics change varying the temperature is an important issue to

solve. In order to understand the calorimetric effect produced by

dissolution/precipitation reactions, we performed 4 different tests for each mix at

4 different curing temperatures: 20°C, 23°C, 26°C, 32°C. 2g of material for each

experiment has been hydrated ex-situ with 1g of Millipore water in a plastic vial,

stirred in an orbital stirrer for 30s (in order to ensure an homogeneous hydration

of the powder) and immediately put into the sample cell of the calorimeter. A

proper amount of water, with the same heat capacity of the sample, has then put

into the reference cell to avoid perturbations and to have a better signal/noise

ratio.

In this way we calculated also the apparent activation energy (Ea) for each

reaction and for pastes, with a possible interpretation of the reaction rate and the

rate limiting factors because the apparent activation energy is the parameter

relating the sensitivity of the hydration kinetics of cement to a variation in

temperature [10].
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4. Results e Discussion

4.1. X-ray Powder Diffraction on pastes

In the following sections, the quantitative phase analysis of in-situ XRPD on

hydrating pastes will be presented and discussed. Qualitative phase analysis

showed the presence of C3S, C3A, Gypsum, Portlandite, Ettringite and

Hemicarboaluminate in all the hydrating pastes. It is possible to follow the

dissolution kinetics of the starting phases and the precipitation kinetics of their

products. The hydration kinetics have been followed until all the gypsum is

depleted and C3A shows the increase in the dissolution rate.

It is well known that the hydration of cement materials produces amorphous

phases, such as C-S-H and C-A-H [1]. Rietveld quantitative phase analysis is

based on the assumption that the investigated system is composed only by

crystalline phases: in such context, only crystalline phases can be directly

quantified. Nevertheless, it is possible to calculate the amorphous content of a

system by means of reliable methods, such as internal standard method, external

standard [2] method and PONCKS method [3]. In literature there are controversial

results about the which internal standard is suitable for cements [4–7]: Al2O3 has a

linear absorption coefficient too different from the main cement phases while

TiO2 is claimed to be not perfectly unreactive. Another way to quantify the

amorphous content is to perform a mass balance. Specifically performed to obtain

the C-S-H content, when the initial phase content and the water amount are

known, it is possible to recalculate the exact amount of each phase. As described

in Valentini et. al. [8], C-S-H weight fraction can be calculated starting from

Portlandite content following equation (4.1):

3CଷS + 16H → 3Cଵ.଻SHସ + 4CH (4.1)

Assuming that all the amorphous material produced during hydration by unique

consumption of C3S is C-S-H, Ca/Si and water content remaining constant, the C-
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S-H content is obtained by mass balance calculation. Young and Hansen [9]

proposed a Ca/Si ratio of 1.7 and 4 water molecules for curing conditions closed

to water saturation.

All the phase kinetics described below are recalculated from the original Rietveld

quantitative phase analysis through the software RieCALc, using the mass balance

approach developed by Valentini [8].

4.1.1 Mix 1

Mix 1 is characterized by the lowest amount of gypsum and can be referred also

as undersulphated system. In this model cement, C3A shows a continuous

dissolution from the very beginning (0.1%/h), with a sharp increase of the

dissolution rate after 4 hours (0.5%/h) that lasts totally 6 hours. Between 10 hours

and 20 hours from the beginning of hydration, C3A dissolution enters the

deceleration period (0.08%/h). The kinetics have been monitored until 26 hours

after the beginning of hydration (figure 4.1).

Figure 4.11: dissolution kinetic of C3A in mix 1.

Gypsum dissolution is also very rapid: after 6 hours it is completely depleted from
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of C3A and the complete dissolution of gypsum, possibly related to the

uncertainty in measuring the exact moment of complete gypsum depletion (figure

4.2).

Figure 4.12: dissolution kinetic of Gypsum in mix 1.

From the dissolution of C3A and gypsum, the precipitation of ettringite occurs. It
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Figure 4.13: precipitation kinetic of Ettringite in mix 1.

C3S dissolution kinetic is characterized by an initial apparent precipitation which

will be discussed in one of the next sections. Actually, a precipitation of C3S can

be excluded and the dissolution has been taken into account as the only possible

chemical process that affects the C3S. In this scenario, the C3S kinetic is

characterized by a dissolution rate of 0.4%/h between 3 and 8 hours, 1%/h

between 8 and 20 hours and 0.3%/h between 20 and the of the measure (figure

4.4).

Figure 4.14: dissolution kinetic of C3S in mix 1.
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From equation 4.1, when C3S dissolution occurs the subsequent precipitation of

portlandite can be detected. Ca-Si hydrates is calculated from a mass balance

when the initial components are known [8]. Portlandite shows a period between

the zero time and 3-5 hours when it is practically undetectable; subsequently, the

precipitation rate is almost constant (0.4%/h) until 20 hours, when the rate

becomes lower (0.17%/h).

C-S-H precipitation behaviour is practically the same of portlandite, with a

precipitation rate between 4 and 20 hours of 1.1%/h and a lower velocity in the

last 6 hours (0.5%/h).

Portlandite and C-S-H kinetics are shown in figure 4.5.

Figure 4.15: Portlandite (black squares) and C-S-H (red dots) precipitation kinetics in
mix 1.
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0.125%/h (first 2 hours). Subsequently, an apparent precipitation of C3A is
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slowly between 17 and 25 hours (0.06%/h), increase its rate up to 0.16%/h till 40

hours and then slows again until the end of detection (0.03%/h).

Figure 4.16: dissolution kinetic of C3A in mix 2.

Gypsum dissolution progress at a rate of 0.17% per hour completing the depletion

after 17 hours (figure 4.7). As in mix 1, gypsum depletion signs the increase in

C3A dissolution rate.

Figure 4.17: dissolution kinetic of gypsum in mix 2.

0 20 40 60 80 100
0.08

0.09

0.10

0.11

0.12

0.13 C3A

W
e
ig

h
t

fr
a

c
tio

n

time(h)

-2 0 2 4 6 8 10 12 14 16 18

0.00

0.01

0.02

0.03

0.04

0.05

gyp

W
e

ig
h

t
fr

a
c
ti
o
n

time(h)



91

Ettringite precipitates from the beginning of hydration up to 39 hours, when it

starts to dissolve. From 0 to 11 hours the precipitation rate is 0.3%/h while

between 11 and 39 hours it decreases to 0.1%/h. The dissolution rate, when all the

sulphate source is extinguished, is almost constant (0.014%/h) up to the end of

detection (figure 4.8).

Figure 4.18: precipitation and subsequent dissolution kinetic of ettringite in mix 2.

C3S kinetic is characterized by an initial apparent precipitation and a subsequent

dissolution that starts after 3 hours and lasts till the end of detection. The

acceleration in dissolution rate (0.75%/h) lasts 12 hours, from 3 to 15 hours after

the beginning of hydration. This period is followed by a deceleration in

dissolution rate, 0.25%/h between 15 and 29 hours and 0.03% till the end of

detection (figure 4.9).
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Figure 4.19: dissolution kinetic of C3S in mix 2.

Portlandite precipitation shows a correlation with the variations in C3S dissolution

rate. The first period (3 – 15 hours) shows a precipitation rate of 0.25% of

portlandite per hour; during the second period (15 – 50 hours), portlandite

precipitates at a rate of 0.11%/h and finally in the last period the precipitation rate

becomes much slower (0.003% per hour).

C-S-H precipitates at a rate of 0.63%/h between 3 and 15 hours; at 0.24%/h

between 15 and 39 hours and finally at 0.06% per hour up to the end of detection.

Portlandite and C-S-H kinetics are shown in figure 4.10.
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Figure 4.20: Portlandite (black squares) and C-S-H (red dots) precipitation kinetics in
mix 2.

4.1.3 Mix 3

In figure 4.11 C3A dissolution starts when powder is mixed with water but, after 3

hours, it shows an apparent increase, which lasts until all the gypsum is depleted

(46 hours). The dissolution becomes visible first at 0.02%/h from 46 hours till 75

hours, when an increase in dissolution rate occurs: 0.13%/h up to 94 hours. The

C3A deceleration period (0.05%/h) starts after 94 hours.

Figure 4.21: dissolution kinetic of C3A in mix 3.
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Gypsum complete depletion occurs after 46 hours. The initial dissolution rate is

0.2% of material per hour within 10 hours. Between 10 and 46 hours this rate is

slower: 0.09% of gypsum per hour (figure 4.12).

Figure 4.22: dissolution kinetic of gypsum in mix 3.

Ettringite precipitation shows a continuous increase up to 90 hours at 0.09%/h
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Figure 4.23: precipitation and subsequent dissolution kinetics of ettringite in mix 3.

C3S kinetic shows an apparent precipitation within the first 3 hours. After this

period, the dissolution becomes much evident, showing a dissolution rate of

0.7%/h between 3 and 16 hours. The subsequent deceleration period is

characterized by 2 different dissolution velocities: the first period is between 16

and 78 hours, with a dissolution rate of 0.11%/h and the last period, up to the end

of the measurement, when the dissolution rate is very close to zero (figure 4.14).

Figure 4.24: dissolution kinetic of C3S in mix 3.
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Portlandite precipitates during the whole measurement. Two periods can be

distinguished: between 3 and 15 hours with a precipitation rate of about 0.33%/h

and between 15 and 106 hours with a slower precipitation rate of about 0.04%/h.

C-S-H shows the same behaviour of portlandite, but assuming higher precipitation

rates. During the first period, between 3 and 16 hours, the precipitation rate is

0.65%/h while during the second period (16 – 106 hours) the precipitation rate is

much slower: 0.12% of C-S-H per hour.

CH and C-S-H kinetics are shown in figure 4.15.

Figure 4.25: Portlandite (black squares) and C-S-H (red dots) precipitation kinetics in
mix 3.

4.2. Isothermal calorimetry on pastes

As mentioned in chapter 3, isothermal calorimetry measurements have been

performed at four different temperatures. Firstly, the experiment took at 23°C will

be described because it is strictly related to XRD measurement and secondly the

effect of temperature on dissolution/precipitation kinetics will be treated.
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4.2.1 Mix 1

At 23°C the heat flow curve vs. time shows a single intense peak of 12 mW/g

after 6.5 hours, with a small shoulder occurring after 10 – 12 hours of about 3

mW/g (figure 4.16). This intense peak can be related to C3A acceleration in

dissolution rate while the small shoulder can be considered as the expression of

C3S increase in dissolution rate.

Figure 4.26: heat flow produced by mix 1 hydration at 23°C.

Considering all the measured kinetics at different temperatures (figure 4.17), a

typical Arrhenius effect can be observed: at increasing temperatures, kinetics

become faster. In fact, when the temperature inside the calorimeter is raised, the

acceleration in C3A dissolution occurs 8.5 hours after the beginning of hydration

at 20°C, 6.5 hours at 23°C, 5.9 hours at 26°C and 5.8 hours at 32°C. C3S

acceleration is more difficult to detect, because this “shoulder” on the heat flow is

not so evident. It can be deduced after 15 hours at 20°C, 11 hours at 23°C, 10

hours at 26 °C and 4.7 hours at 32°C. At 32°C, it is no more a “shoulder” but a

peak with a precise intensity (7.4 mW/g), which occurs even before the same

acceleration period of C3A dissolution, actually inverting the previous order (C3A

acceleration in dissolution first, C3S second).
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Figure 4.27: measured heat flow of mix 1 hydration at 4 different temperatures: 20°C
(black), 23°C (red), 26°C(blue) and 32°C(pink).

4.2.2 Mix 2

At 23°C mix 2 heat flow present two main hydration peaks: the former occurs

after 7.6 hours with an intensity of 3.76 mW/g while the latter after 32.9 hours

with an intensity of 3.47 mW/g. These two hydration peaks can be easily

correlated with C3S increase in dissolution rate and C3A increase of dissolution

rate, respectively (figure 4.18).

Figure 4.28: heat flow of mix 2 paste measured at 23°C.
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As in mix 1, kinetics become faster when temperatures are increased. C3S

calorimetric peak occurs after 9.25 hours with an intensity of 2.96 mW/g at 20°C,

after 7.7 hours and 2.8 mW/g at 23°C, after 6.5 hours and 4.4 mW/g at 26°C, after

4.6 hours and 5.7 mW/g at 32°C. Temperature affects these peaks also by

increasing their absolute intensities.

C3A calorimetric peak occurs after 50.4 hours with an intensity of 2.3 mW/g at

20°C, after 32.8 hours and 3.5 mW/g at 23°C, after 25.2 hours and 4.1 mW/g at

26°C, after 15.5 hours and 6.3 mW/g at 32°C. As for C3S dissolution,

Temperature affects these peaks also by increasing their absolute intensities.

(figure 4.19).

Figure 4.29: measured heat flow at 20°C (black), 23°C (red), 26°C(blue) and
32°C(pink) for mix 2 pastes.

4.2.3 Mix 3

At 23°C, two different calorimetric peaks (as in mix 2 heat flow) can be detected,

the first after 7.8 hours with an intensity of 3.7 mW/g and the second after 88.8

hours with the intensity of 2.7 mW/g. The former is related to the increase in C3S

dissolution rate while the second to the increase in dissolution rate of C3A (figure

4.20).
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Figure 4.30: heat flow of mix 3 paste measured at 23°C.

As previously described, the same Arrhenius effect can be seen also in mix 3. The

calorimetric peak related to C3S occurs after 9.4 hours and with an intensity of 2.8

mW/g, after 7.8 hours and 3.7 mW/g at 23°C, after 6.5 hours and 4.3 mW/g at

26°C, after 4.7 hours and 5.8 mW/g at 32°C. On the other hand, the peak related

to C3A is occurs much later: after 143.6 hours and 1.7 mW/g at 20°C, after 88.9

hours and 2.7 mW/g at 23°C, after 73.6 hours and 3.3 mW/g at 26°C, after 35.8

hours and 6.3 mW/g at 32°C (figure 4.21).

Figure 4.31: measured heat flow generated by mix 3 pastes at 20°C (black), 23°C (red),
26°C(blue) and 32°C(pink).
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4.3. Calculation of kinetic parameters

Alexandra Quennotz [10] describes, on chapter 3.6 of her Ph.D. thesis, the

influence of temperature on hydration kinetics. In particular, on chapter 3.6.1, she

explains how to calculate the activation energy for a C3A-Gypsum system, but the

calculation can be extended to any cementitious system. The method is set on the

calculation of equivalent age based on the maturity concept described by Carino

[11].

Poole et al. [12] summarize three different methods for activation energy

calculation: the first deals with single linear approximation of reaction rate, the

second discusses about incremental calculation of activation energy and the third

is a modified ASTM C1074 model.

Hardison et al. [13] describe how to calculate the activation energy for ultra-high-

molecular-weight polyethylene (UHMWPE) using isothermal calorimetry.

Hereafter a brief explanation about each of above methods will be provided.

Quennotz method

The Quennotz method for activation energy calculation, as described in her Ph.D.

thesis, is taken from the maturity method calculation described by Carino [11].
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The method was developed for modelling the strength behaviour of cements

taking into account the combined effects of time and temperature, from the very

beginning of hydration process to long term curing. In our calculation, the

maturity method becomes useful because it includes some specific equations to

calculate the activation energy of cement-water reactions.

The hydration kinetic study is divided into two stages (figure 4.22), the former

involving the complete sulphate dissolution while the latter considering the

cement hydration with no solid sulphate phase present.

Practically, the first stage calculation is given by mathematic superposing the heat

evolution curves using the formula:

௘௤ݐ = ߙ ∙ ݐ (4.2)

Where ߙ is the proper age conversion factor to superpose the total heat curves, t is

the measured paste age and teq is the equivalent age: it represents the duration of

the curing period at the reference temperature that would result in the same

maturity as the curing period at other temperatures [11]. Concerning to the

second hydration stage, the heat flow curves are considered and a ߚ coefficient is

added to overlap the positive slope of heat peaks:

௘௤ݐ� = ߙ ∙ +ݐ) (ߚ (4.3)

Where ߙ is again the proper age conversion factor to superpose the total heat

curves. To calculate the activation energy is sufficient to apply equation (4.4):

௔ܧ = −
୪୬�(ఈ)∙ோ

(
భ

೅
ି

భ

೅ೝ೐೑
)

(4.4)

Where ߙ is the only calculated parameter. This is how, visually, the curves are

mathematically superposed:
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Figure 4.33: mathematical superposition of total heat curves for first stage Ea

calculation using equation (4.2) (left) and for the second stage using equation (4.3)

(right), [10].

Single linear approximation method of reaction rate

This method is based on the single linear approximation of the acceleration period

of a calorimetric peak (figure 4.24).

Practically, the best linear fit of acceleration period is performed: the angular

coefficient is equal to the maximum reaction rate k. A classical Arrhenius plot

ln(k) vs. 1/T can be drawn and the linear fit of data can be performed. The
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negative of the slope multiplied by the gas constant returns the activation energy.

The method to obtain k is explained by figure 4.24.

Incremental activation energy method

Since cement hydration is a continuous process, continuously varying activation

energy can also be considered, because the dissolution/precipitation processes

lead to a variation of phases. The incremental activation energy method consists

on calculating the activation energy at any hydration step. The result is a curve

that represents the variation of activation energy, which depends on the degree of

hydration.

To perform this method is then necessary to measure the heat flow at constant

degrees of hydration. In my case the only fixed parameter is temperature and this

is the reason why an incremental activation energy calculation is not applicable

for my experiments.

Modified ASTM C1074 method

The original ASTM C1074 method, proposed by Tank et al. [14], determines the

activation energy using mechanical strength data on mortars cured at three

different temperatures. The activation energy can also be calculated using

isothermal calorimetry and a similar method has been developed.

The ASTM C1074 method uses an asymptotic approximation to describe the

mechanical strength trend data. An important limitation of the asymptotic

approximation is that it assumes that the property being studied assumes a zero

value since the paste is not set. Such limitation is overcome by using an

exponential approximation of this form:

(௘ݐ)ߙ = ௨ߙ ∙ ݁
ି[

ഓ

೟೐
]ഁ

(4.5)

Where ߬ equals the chronological age while te is the equivalent age. The

relationship between ߬at the reference temperature (chosen arbitrary) and ߬at the

test temperature is equivalent to the relationship between t and te:
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௧೐

௧
= (݂ ௖ܶ) =

௞( ೎்)

௞(்ೝ೐೑)
=

ఛೝ೐೑

ఛ೎
(4.6)

Where ௖߬ equals the hydration time parameter at temperature of concrete ௖ܶ, ௥߬௘௙

is the hydration time parameter at reference temperature ௥ܶ௘௙, (݂ ௖ܶ) is the age

conversion factor, (݇ ௖ܶ) is the reaction rate at the temperature of concrete ௖ܶ,

(݇ ௥ܶ௘௙) equals the reaction rate at the reference temperature ௥ܶ௘௙. From equation

(4.6) we can find the relation for calculating the activation energy:

௔ܧ = −
୪୬(

ഓೝ೐೑

ഓ೎
)

(
భ

೅ೝ೐೑
ି
భ

೅೎
)
∙ ܴ (4.7)

The Ea value is obtained firstly fitting the degree of hydration curve using

equation (4), where ߬ is given by the fit. Secondly, an Arrhenius plot ln( )߬ vs. 1/T

can be drawn and finally Ea is given by multiplying the negative of the angular

coefficient of data fit and the gas constant.

Hardison method

In his paper Hardison et al. [13] describe a very simple way to calculate activation

energy. In practice, using the calorimetric peak height as the maximum reaction

rate and measuring the same material at different temperatures, it is possible to

draw an Arrhenius plot from where an activation energy value can be calculated.

In my case I have 2 distinct events, so 2 distinct values of Ea can be obtained.

This is not true for mix 1, where the 2 events almost coincide. For this reason only

mix 2 and 3 activation energies will be reported.

The high amount of Gypsum induces two well-separated heat peaks, the former

related to C3S dissolution while the latter to C3A dissolution, and this is the reason

why the modified ASTM C1074 method cannot be applicable to these systems.
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I used the isothermal calorimetry technique to measure the hydration kinetics. For

each mix the heat flow and the total heat of hydration have been measured until

the two calorimetric peaks appeared.

To summarize better the results, hereafter they will be subdivided starting from

the method used.

Quennotz Method

With this method for each calorimetric measurement, activation energy has been

calculated, excluding the measurement taken at the reference temperature (20°C).

Results are summarized in table 1:

FIRST STAGE

(KJ/mol)

SECOND STAGE

(KJ/mol)

MEAN VALUE

(KJ/mol)

MIX 1 62 3 32.5

MIX 2 62 24 43

MIX 3 65 6 35.5

Table 4.5: Quennotz method data for mix NIST. First stage: before gypsum
consumption. Second stage: when gypsum is totally ended up into solution.

For mix 1, first stage, I had only one reasonable datum while all the others are

mean values between the three different values related to each different

temperature measured. Considering the first stage, activation energy is almost

constant for all mixtures while for the second stage it becomes very different from

a mix to another. For mix 1 and 3 transport controlled reactions (<20 kJ/mol, [10])

seem to act while in mix 2 a surface controlled mechanism (>20 KJ/mol, [10])

seems to be more reasonable.
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Single linear approximation method

As described on the introduction, activation energy calculation is performed for

two stages: the first is related to the system before Gypsum dissolution, the

second to the system when the Gypsum dissolution has come to an end. In

particular, the single linear approximation method is applied to the positive slope

of every single, well-separated, peak.

Results are summarized in table 2:

FIRST STAGE

(KJ/mol)

SECOND STAGE

(KJ/mol)

MEAN VALUE

(KJ/mol)

MIX 1 121 101 (hypothetical)

MIX 2 81 123 102

MIX 3 82 167 124.5

Table 4.6: Single linear approximation method data for mix NIST. First stage: before
gypsum consumption. Second stage: when gypsum is totally ended up into solution.

Activation energy calculation for mix 1 first stage cannot be performed because

peaks are not separated and the contribution to heat flow from C3A dissolution is

much higher than C3S dissolution within 5 hours. It can be noted that for the first

stage the activation energy remain constant while for the second stage it increases

at increasing Gypsum content.

Modified ASTM C1074 method

Although this is the most efficient method, since it models all the degree of

hydration trend, it can be applied only to mix 1. It shows the most similar degree

of hydration evolution of a Portland cement and this trend is well fitted by

equation (4.5). Mix 2 and 3 show a degree of hydration that cannot be modelled

by an exponential function.

Finally, the activation energy for mix 1 is 33 KJ/mol.
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Hardison Method

In table 3 I summarized the activation energies calculated using the Hardison

method.

FIRST STAGE

(KJ/mol)

SECOND STAGE

(KJ/mol)

MEAN VALUE

(KJ/mol)

MIX 1

MIX 2 39 59 49

MIX 3 41 81 61

Table 4.7: Hardison method data for mix NIST. First stage: before gypsum
consumption. Second stage: when gypsum is totally ended up into solution.

Even if not reported, an estimate of second stage Ea for mix 1 returned an

overestimated (because the contribution of first stage reactions cannot be

removed) value of 57 KJ/mol.

Both first and second stages seem to be dominated by surface controlled reactions

(>20 KJ/mol) [10]. Again while for the first stage reactions the Ea values are

almost constant, for second stage reactions activation energy values increase with

increasing Gypsum content.

Mean values obtained from these calculations can be considered within usual

values published in literature for ordinary Portland cements.

Avrami kinetic model

The Avrami model can be used to model nucleation and growth reaction kinetics

in order to determine the general morphology of reaction products and the rate-

limiting step of the reaction [15–18]. It has to be noted that the Avrami model fits

well the acceleration stage of a dissolution reaction. When the nucleation and

growth process switch into a diffusion controlled regime, the model is no longer

valid [18–20]. The basic Avrami equation is:

(ݐ)ߙ = 1 + −଴ߙ ݁ି௞∙௧
ಾ

(4.8)
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Where ଴ߙ is the degree of reaction at the time to when this nucleation and growth

process becomes dominant and k is a rate constant that combines the effects of

nucleation, multidimensional growth, geometric shape factors, and diffusion. The

exponent M is related to the nature of the reaction through the parameters P, Q,

and S:

ܯ =
ܲ

ܵ
+ ܳ�������������������������������������������������������������(4.9)

where P is related to the dimensionality of the product phase: P = 3, P = 2, and P

= 1 corresponding to the growth of polygonal forms, sheets, and fibres (needles),

respectively. Similarly, S describes the type of growth, with S = 1 corresponding

to interfacial or phase boundary growth and S = 2 corresponding to diffusion of

components though the liquid phase. Finally, Q is related to the nucleation rate: Q

= 0 for no nucleation and Q = 1 for constant nucleation.

The application of the Avrami model to our blends has been divided in two parts,

one for each acceleration period observed. Measuring the hydrating pastes at

different temperature permits to calculate the activation energy of each dissolution

reaction: three temperature are sufficient to produce an Arrhenius plot and to

calculate the activation energy. In the next table the whole set of parameters is

shown.
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Temp Heat flow first acceleration Heat flow second acceleration

°C k M Ea (KJ/mol) k M Ea (KJ/mol)

Mix 1

20 5.19E-04 2.4 52.5

23 4.03E-04 2.8

26 3.37E-04 3.0

32 1.67E-02 1.4

Mix 2

20 3.67E-04 2.3 87.4 4.58E-03 1.1 48.2

23 3.97E-04 2.4 8.80E-03 1.3

26 8.75E-04 2.3 9.71E-03 1.2

32 1.35E-03 2.4 9.92E-03 1.4

Mix 3

20 4.46E-04 2.3 85.5 2.68E-03 1.2 64.6
23 4.69E-04 2.5 5.17E-03 1.2
26 1.41E-03 2.1 4.81E-03 1.3
32 1.63E-03 2.5 8.60E-03 1.2

Table 4.8: summary data of Avrami fit on the acceleration part of the degree of
hydration of mix 1, 2 and 3, as calculated from isothermal calorimetry.

It has to be noted that mix 1 kinetic parameters are obtained considering only one

acceleration period, because only one definite peak can be detected. Avoiding

kinetic data calculated at 32°C (when a more definite peak starts to appear), the

constant k decreases with increasing temperature. It is a strange behaviour

probably because the model is applied to two competitive systems (C3A

dissolution and C3S dissolution) which cannot be treated separately. The M value

is close to 3, which is consistent with (P, S, Q) = (3, 1, 0) that is polygonal

product phase, phase boundary growth with no nucleation. It is also consistent

with (P, S, Q) = (2, 1, 1) that is plate-type product phase and phase boundary

growth with constant nucleation.

Mix 2 data, related to the first acceleration period, show an increase in of k values

with increasing temperature. The M value can be approximated to 2, which is

consistent with (P, S, Q) = (2, 1, 0) and (P, S, Q) = (2, 2, 1) that is plate-type

product phase and phase boundary growth with constant nucleation or diffusion

controlled growth with no nucleation. It is also consistent with (P, S, Q) = (1, 1,

1); needle-type product phase morphology, phase boundary growth, and constant

nucleation.
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The fit of second acceleration period of mix 2 conducts to M = 1, with (P, S, Q) =

(1, 1, 0) or (P, S, Q) = (2, 2, 0) that is fibres products and phase boundary growth

with no nucleation or sheet products with diffusion of components through the

liquid phase and no nucleation.

Mix 3 data, related to the first acceleration period, show an increase in of k values

with increasing temperature. The M value can be approximated to 2, which is

consistent with (P, S, Q) = (2, 1, 0) and (P, S, Q) = (2, 2, 1) that is plate-type

product phase and phase boundary growth with constant nucleation or diffusion

controlled growth with no nucleation. It is also consistent with (P, S, Q) = (1, 1,

1); needle-type product phase morphology, phase boundary growth, and constant

nucleation.

The fit of second acceleration period of mix 2 conducts to M = 1, with (P, S, Q) =

(1, 1, 0) or (P, S, Q) = (2, 2, 0) that is fibres products and phase boundary growth

with no nucleation or sheet products with diffusion of components through the

liquid phase and no nucleation.

Excluding mix 1, it is possible to see that the activation energy related to the first

acceleration period is similar between mix 2 and 3 while an increase is seen

passing from mix 2 to mix 3 activation energy of the second acceleration period.

4.4. Recalculation of heat flow from XRD data

In cement research and, in particular, in industrial applications one of the most

effective and easiest technique to use is isothermal calorimetry. In general, the

proper way to obtain effective kinetic data is to investigate the hydrating pastes by

means of calorimetric techniques. Recently it has been introduced by some

authors [21–23] the possibility to obtain qualitative calorimetric data by using the

kinetics derived from in-situ x-ray powder diffraction and thermodynamic data.

These calculations are based on the quantitative phase analysis with the external

standard procedure described by O’Connor and Raven [2] by which all the

crystalline phases and the sum of non-crystalline compounds can be determined.

Two of the cited studies are performed on pure alite: a monophase system is more
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simple to be treated because the C3S dissolution and portlandite/C-S-H

precipitation is the only reaction involved.

When multiple reactions are involved, such as in our experiments, the interactions

between the dissolving phases present problems that are not completely

understood.

We decided to use a different approach based on the Rietveld scale factor, which

is a direct measure of the kinetic of a phase. Isothermal calorimetry data are the

reference to see how our calculations differ from the true values.

The degree of hydration ூ஼ߙ of a paste, in isothermal calorimetry, is the ratio

between the measured total heat H(t) (J/g) from time 0 to time t and the total

amount of heat that can be potentially released by the considered paste, Hu (J/g)

[4, 11–15]:

ூ஼ߙ (ݐ) =
(ݐ)ܪ

௨ܪ
(4.10)

The value Hu is a function of cement composition and amount and type of

supplementary cementing materials (SCMs) and may be calculated as follows [4,

11]:

௨ܪ = ௖௘௠ܪ ∙ ௖ܲ௘௠ + 461 ∙ ௦ܲ௟௔௚ + 1800 ∙ ிܲ஺ି஼௘ை ∙ ிܲ஺ (4.11)

where Pslag equals slag mass to total cementitious content ratio, PFA equals fly ash

mass to total cementitious content ratio, PFA-CaO equals fly ash CaO mass to total

fly ash content ratio, Pcem equals cement mass to total cementitious content ratio,

and Hcem equals heat of hydration of the cement (J/gram). The value Hcem can be

calculated as shown in equation 4.12 [29]:

௖௘௠ܪ = 500 ∙ ஼ܲయௌ+ 260 ∙ ஼ܲమௌ+ 866 ∙ ஼ܲయ஺ + 420 ∙ ஼ܲర஺ி + 624 ∙ ௌܲைయ +

1186 ∙ ிܲ௥௘௘஼௔ + 850 ∙ ெܲ ௚ை (4.12)
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where Hcem equals the total heat of hydration of Portland cement (J/gram) at α = 

1.0, and pi equals the mass of ith component to total cement content ratio [12].

Since in our blends no SCMs are added, equation (4.11) becomes:

௨ܪ = ௖௘௠ܪ ∙ ௖ܲ௘௠ (4.13)

While equation (4.12), without all that phases that are absent from our systems,

becomes:

௖௘௠ܪ = 500 ∙ ஼ܲయௌ+ 866 ∙ ஼ܲయ஺ + 624 ∙ ௌܲைయ (4.14)

Degree of hydration can be directly calculated from calorimetric data but if we are

able to obtain the same degree of hydration from XRD data, a recalculation of the

generated heat flow can be performed. The initial assumptions are that the main

contributors to the heat flow production are C3S and C3A dissolutions: these two

kinetics are used for the calculation of heat flow.

Using the degree of hydration calculated from isothermal calorimetry, ,ூ஼ߙ as a

reference we found the following relationships.

We can assume that the degree of hydration calculated from the Rietveld scale

factor, ,ௌிߙ for each phase is:

ௌிߙ (ݐ) = (଴ݐ)ܨܵ −
(ݐ)�ܨܵ

(଴ݐ)ܨܵ
(4.15)

Where SF(t0) is the scale factor at the initial time t0 and SF(t) is the scale factor at

time t. In this way, both C3S and C3A degree of hydration can be calculated. It has

to be proven which is the relationship (e.g., simple sum of the 2 degree of

hydration, cumulative sum) that stands at the basis of the reference degree of

hydration. Finally, with the calculated degree of hydration, it is possible to

recalculate the generated heat flow.



114

If the degree of hydration calculated from isothermal calorimetry, ,ூ஼ߙ is equal to

the degree of hydration calculated from the scale factor, :ௌிߙ

ூ஼ߙ = ௌிߙ (4.16)

And the measured heat flow (from isothermal calorimetry) is:

ூ஼ܨܪ = ூ஼ߙ ∙ ௨ܪ (4.17)

Then, the calculated heat flow results:

ௌிܨܪ = ௌிߙ ∙ ௨ܪ (4.18)

In the following sections we will refer to the degree of hydration calculated from

the scale factors of both C3S and C3A with ஼యௌߙ for and ,஼య஺ߙ respectively. All the

calculated ௌிߙ are affected by the “apparent precipitation” effect, which will be

treated in the discussion section, that alters the initial part of the hydration,

causing an apparent negative degree of hydration.

4.4.1 Mix 1

Comparing ூ஼ߙ with ஼య஺ߙ and ,஼యௌߙ we can see that up to 13 hours the hydration

is completely dominated by C3A dissolution and the contribution of C3S seems

not to be relevant. This further confirm what previously stated about the

correlation of the first calorimetric peak with the dissolution of C3A.
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Figure 4.35: comparison between the degree of hydration calculated from isothermal
calorimetry (alpha_IC) and the degree of hydration (alpha_C3A and alpha_C3S)

calculated from the Rietveld scale factors.

The contribution of C3S dissolution becomes remarkable after 13 hours, as we can

see from figure 4.28. The total ௌிߙ is not the simple sum of both ஼య஺ߙ and .஼యௌߙ

We had to consider to split the contributions: up to 13 hours it is all ஼య஺ߙ while

from 13 hours to 26 hours ஼యௌߙ is the dominant part, but with a further

contribution of ஼య஺ߙ of 5%. This means that during the hydration of C3S, C3A

dissolution still influences the cumulative heat released.
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Figure 4.36: comparison between the degree of hydration calculated from isothermal
calorimetry (blue) and from Rietveld scale factors (black). Adjacent-averaging smooth

has been performed for the black curve.

With the calculated ,ௌிߙ it is now possible to recalculate the generated heat flow

during the hydration of mix 1 (figure 4.30).

Figure 4.37: recalculation of generated heat flow starting from Rietveld scale factor
(black) and comparison with measured heat flow through isothermal calorimetry

(blue).
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On one hand, it is possible to see a consistent difference between the measured

heat flow and the calculated one (figure 4.30). It has to be noted that no further

parameter (such as particle size distribution and specific surface) has been

considered to calculate the heat flow. On the other hand, it is interesting to note

that the peak height (especially for C3A) is very close to the measured value: this

means that the kinetic derived from x-ray diffraction is reliable.

4.4.2 Mix 2

Comparing ூ஼ߙ with ஼య஺ߙ and ,஼యௌߙ we can see that also here the hydration

process can be split into two stages, each dominated by one of the considered

dissolving phases. Such stages can be defined as follow:

- First stage starts at the beginning of hydration up to the first deceleration

period

- Second stage lasts from the second acceleration period up to the end of the

measurement

The first stage is dominated by the hydration of C3S up to 30 hours, when the

second acceleration occurs caused by C3A (figure 4.31).

Figure 4.38: comparison between the degree of hydration calculated from isothermal
calorimetry (alpha_IC) and the degree of hydration (alpha_C3A and alpha_C3S)

calculated from the Rietveld scale factors.
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After 30 hours the dominating phase results C3A but C3S continues to contribute

to the total degree of hydration: such contribution is quantified to be of 13% of the

total degree of hydration of the second stage (figure 4.32).

Figure 4.39: comparison between the degree of hydration calculated from isothermal
calorimetry (blue) and from Rietveld scale factors (black). Adjacent-averaging smooth

has been performed for the black curve.

With the calculated ,ௌிߙ it is now possible to recalculate the generated heat flow

during the hydration of mix 2 (figure 4.33).
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Figure 4.40: recalculation of generated heat flow starting from Rietveld scale factor
(black) and comparison with measured heat flow through isothermal calorimetry

(blue).

Heat flow calculated from ௌிߙ shows a reliable absolute heat flow value for the

first peak while the second absolute heat flow value is remarkably

underestimated.

4.4.3 Mix 3

Very similar to mix 2, it differs for the time of occurrence of the events. From the

beginning of hydration up to 87 hours, the hydration is almost entirely dominated

by C3S dissolution. From 87 hours up to the end of the measurement C3A

dissolution dominates the degree of hydration profile (figure 4.34).
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Figure 4.41: comparison between the degree of hydration calculated from isothermal
calorimetry (alpha_IC) and the degree of hydration (alpha_C3A and alpha_C3S)

calculated from the Rietveld scale factors.

When C3A dissolution is the principal phenomenon, C3S continues to contribute

to the total degree of hydration: such contribution is quantified to be of 17% of the

total degree of hydration of the second stage.

Figure 4.42: comparison between the degree of hydration calculated from isothermal
calorimetry (blue) and from Rietveld scale factors (black). Adjacent-averaging smooth

has been performed for the black curve.
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With the calculated ,ௌிߙ it is now possible to recalculate the generated heat flow

during the hydration of mix 3 (figure 4.36).

Figure 4.43: recalculation of generated heat flow starting from Rietveld scale factor
(black) and comparison with measured heat flow through isothermal calorimetry

(blue).

Heat flow calculated from ௌிߙ shows a reliable absolute heat flow value, shape

and time of occurrence for the first peak; the absolute heat flow value related to

the second peak is remarkably underestimated but the time of occurrence is in

agreement with measured heat flow.

4.5. Discussion

4.5.1 Apparent precipitation of C3S and C3A

The first thing that can be pointed out is the apparent precipitation observed in

C3A and C3S dissolution kinetics. The reason why this can be referred just as

“apparent” is the assumption of the chemical behaviour of C3S and C3A when

mixed with water: in literature there is no evidence about a precipitation of

material after an initial dissolution.
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Figure 4.44: detail of C3S kinetics showing the apparent precipitation effect detected
during XRD measurement. Such effect is visible for all the blends within the beginning

of hydration and 3 hours later. Mix 1: black squares, Mix 2: red rhombs; Mix 3: blue
triangles

Figure 4.45: detail of C3A kinetics showing the apparent precipitation effect detected
during XRD measurement. Such effect is visible for all the blends from the beginning

of hydration until the hydration rate of C3A increases. Compared to C3S, here the effect
is enhanced and the duration is related to the initial gypsum quantity. Mix 1: black

squares, Mix 2: red rhombs; Mix 3: blue triangles.
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hypothesis. When XRD data on cement pastes are considered, the variation in

phase content during time can be due to:

1. Dissolution (or precipitation) of the phase

2. Absorption contrast between the cement phases, which overestimate the

less absorbing phase [30–32]

3. Variation in the illuminated volume of the sample

4. The presence of an amorphous layer that alters the diffracted intensities

[33]

Talking about C3S and C3A, we should see a continuous dissolution, with

variations in the dissolution rate, but no precipitation. In fact, considering the

Rietveld scale factor of both phases, we can see how the values decrease during

all the measurement. But if we observe the quantitative phase analysis trend of

both C3S and C3A, we can see how, initially, these 2 phases seem to precipitate

(increase in weight %) while they should dissolve (decrease in weight %). This

effect is much more enhanced in mix 2 and 3, where the quantity of gypsum

present in the system is higher (mix 1 is not excluded, but the effect is less

evident). Moreover, the apparent precipitation effect becomes larger in C3A than

in C3S. These last two considerations can drive to consider gypsum as a main

responsible for this effect. One possible explanation is given looking at the linear

absorption coefficient of C3S, C3A and gypsum: in our experimental conditions,

μC3S=252.24 cm-1, μC3A=215.55 cm-1 and μgy=88.57 cm-1. μC3S and μC3A values are

very close but a significant difference can be encountered looking at the two

couples C3S-gypsum and C3A-gypsum. During a period of slow dissolution rate

of C3S and C3A and a higher gypsum dissolution rate, the more absorbing phase

(C3S or C3A) becomes overestimated, leading to an “apparent precipitation” of the

dissolving phase. This is in contrast from what stated in the literature [30–32], in

which microabsorption problem affects the more absorbing phase (C3S or C3A)

underestimating it, while the less absorbing phase (gypsum) becomes

overestimated. So, the microabsorption problem seems not to be the principal

cause of this “apparent precipitation” effect.



124

Another possible explanation derives from the variation of illuminated sample

volume. During the experiment, the capillary sample rotates along the goniometer

axis to increase the diffracted count statistics and only a certain part of the

capillary is illuminated by the x-ray beam. We may suppose that a certain part of

C3S and C3A, previously out of the investigated volume, enters the illuminated

part of the sample causing an increase in the diffracted signal and, consequently,

in quantitative analysis. In this way, the investigated volume is not kept constant

during the measurement and the quantitative phase analysis cannot be considered

reliable. Moreover, the centrifugal movement can force the material to the walls

of the capillary, creating a laminar flux and a practically unchanged situation in

the centre of the capillary [34]. Furthermore, the same apparent precipitation

effect has been seen in other in-situ XRD experiments performed in Bragg-

Brentano geometry by Hesse et al. [6, 7] and in our laboratory, discarding the

rotation as the main responsible for this effect. For all these reasons, the variation

of investigated volume can be reasonably discarded.

Our last hypothesis about the apparent precipitation of C3S and C3A during their

dissolution is the formation of an amorphous layer, continuous or discontinuous,

that envelope the grains. Gordon and Harris [33] studied the effect of particle size

of quartz in the quantitative determination by x-ray diffraction. They report the

presence of an amorphous layer that reduces the intensity of the (11-22)

diffraction line when the size of quartz particle stands between 0.5 and 10

microns. They suggest that such layer is not a clear shell surrounding perfectly

crystalline material, but rather that a gradual increase in crystallinity occurs from

the surface of a particle towards the interior [33]. Nagelschmidt et al. [36] found

the same results on quartz graded sands, stating that the intensities in diffraction

experiments increased with decreasing size that is partly due to the presence of

such amorphous layer. If we consider the same effect on our materials, we can

claim the presence of an amorphous layer on both C3S and C3A. At the very

beginning of the hydration process, C3S may form a very thin layer of C-S-H that

temporally inhibits the dissolution but increasing the diffracted intensity, leading

to an “apparent precipitation” of material, evidenced by an increase in the



125

calculated weight fraction. In this period of time, the “apparent precipitation”

effect dominates the dissolution process. When the acceleration period of C3S

starts (after 3 hours), the dissolution assumes a greater importance, leading to the

decrease in calculated weight fraction, as expected.

A slightly different consideration has to be made for C3A. In this case the

“apparent precipitation” period duration increases at increasing amount of

gypsum. So, the amorphous layer may be considered as Ca-Al hydrates but also as

AFm phases. Such a theory has been previously advanced by Nonat et al. [37–

40], who proposed the formation of AFm phases during the initial part of

hydration process to explain the decrease of Ca2+ concentration in solution, but

which had no evidence in x-ray diffraction. Claiming the presence of this

amorphous layer shell around C3A grains, we can confirm this proposed theory.

Finally, when all the gypsum is consumed, the dissolution rate of C3A increases,

becoming the dominant effect and leading to the decrease in calculated weight

fraction, as expected.

4.5.2 Dissolution/precipitation kinetics calculated from XRD data

Considering the dissolution/precipitation kinetics calculated from x-ray

diffraction, we can separate the discussion between two systems: C3S-gypsum and

C3A-gypsum. During the following discussion, we will refer to different parts of

the kinetics specifying the transformations in dissolution/precipitation rate. Such

division will be useful also to discuss about isothermal calorimetry data.

In literature the interactions between C3A and gypsum are well reported and still

nowadays this topic is deeply investigated, probably because the reactions that

involve C3A and gypsum lead to the formation of detectable and determinable

phases. C3S-gypsum system does not give the same clear products. The

dissolution rate and the time of complete depletion of C3A are strictly related to

the initial amount of gypsum: in fact, from mix 1 to mix 3 we can see how the

increase of the dissolution rate of C3A occurs later in time and only when all the

gypsum has been consumed (figure 4.39).
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Figure 4.46: comparison of dissolution kinetis of C3A in mix 1 (black squares), mix 2
(red rhombs) and mix 3 (blue triangles).

The dissolution of C3A and gypsum produces ettringite, which remains the stable

phase until a source of sulphate ions is available. It is interesting to note that,

especially for mix 2 and 3, ettringite continues to precipitate even when gypsum

cannot be detected and it starts to dissolve when the dissolution rate of C3A

decreases.

Figure 4.47: correlation between C3A and gypsum dissolution with ettringite
precipitation in mix 3. It has to be noted that the precipitation of ettringite continues

after the complete depletion of gypsum, assuming another sulphate source that
contributes to the precipitation of ettringite.
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Figure 4.48: correlation between C3A and gypsum dissolution with ettringite
precipitation in mix 3. It has to be noted that the precipitation of ettringite continues

after the complete depletion of gypsum, assuming another sulphate source that
contributes to the precipitation of ettringite.

A possible explanation to this phenomenon is given in literature: it has been

proposed by several authors [41–44] that C-S-H can incorporate (SO4)
2- anions on

their structure, acting as a source of sulphates for the precipitation of ettringite

even when gypsum is completely depleted. This hypothesis presumes that

sulphates ions in C-S-H can be released only when gypsum is totally consumed.

Ettringite starts to dissolve only when any source of (SO4)
2- anions are exhausted;

the transformation into a more stable phase is not always clear. In mix 1 and 2 the

dissolution of ettringite lead to the formation of hemicarboaluminate while in mix

3 this is not clearly detectable. Such transformation is quite unexpected, because

we used the boron-glass capillary sealed with wax in order to avoid any

carbonation effect. Actually we properly sealed any sample before measurements

but the carbonation still occurs. After the chemical titration of Millipore water, we

found that a measurable quantity of CO2 is dissolved in water, which acts as a

source for the precipitation of hemicarboaluminate, thermodynamically stable in

our experimental conditions.

Considering C3S dissolution and the role of gypsum, we can see that gypsum
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increases. Although the dissolution process starts almost at the same time (3 hours

after the beginning of hydration), mix 1 shows an initial lower rate than mix 2 and

3, which lead to a greater delay in the dissolution of C3S when the gypsum

content is lower (figure 4.42).

Figure 4.49: zoom within 16 hours of hydration into normalized C3S weight fractions.
Black squares: mix 1; red rhombs: mix 2; blue triangles: mix 3.

This means that the same relative dissolution of C3S (e.g., 10%) occurs after 9.1

hours for mix 3, 9.5 hours for mix 2 and 10.8 hours for mix 1.

Within 26 hours (measuring time of mix 1), also portlandite and C-S-H show

precipitation trends strictly related to C3S dissolution: the same relative

precipitation of portlandite (e.g., 40%) occurs after 8.6 hours for mix 3, 9.7 hours

for mix 2 and 10.5 hours for mix 1 (figure 4.43).
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Figure 4.50: zoom within 26 hours of hydration into normalized Portlandite weight
fractions. Black squares: mix 1; red rhombs: mix 2; blue triangles: mix 3.

C-S-H precipitation kinetics exhibit slightly different timings but equal trends:

within 26 hours, the 40% precipitation occurs at 8.7 hours for mix 3, 9.7 hours for

mix 2 and 10.6 hours for mix 1. The base hypothesis for this normalization is that

all the precipitated portlandite and C-S-H are produced only by the dissolution of

C3S and no other calcium source (such as gypsum) is responsible for the

precipitation of both phases.

Figure 4.51: zoom within 26 hours of hydration into normalized C-S-H weight
fractions. Black squares: mix 1; red rhombs: mix 2; blue triangles: mix 3.
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Such behaviour has been partly described before when talking about ettringite

precipitation. Gypsum increases the growth rates of C-S-H and its permeability

leading to a greater degree of hydration for the same curing time [42]; Mehta et al.

[45] found that small amounts of gypsum (3%) added to C3S accelerates the

setting and hardening of alite cements, while bigger amounts (6%) result in

strength deterioration. Menetrier et al. [46] report again previous literature

experiments, where a certain amount of (SO4)
2- can be incorporated into C-S-H,

the main C3S hydration product. From their experiments, the CaO concentration

in solution for C3S + gypsum system reaches the saturation level considerably

before the C3S hydrated alone: with gypsum, the C3S dissolution rate increases

during the acceleration period. Similar results have been obtained by our group

monitoring the hydration of triclinic C3S-gypsum and Alite-gypsum systems.

Both systems show how the hydration of C3S and Alite is accelerated when

gypsum is added. Consequently, higher degree of hydration at early ages are

reached only when gypsum is present. Since in literature this phenomenon has

been described in the past, we can consider it valid also for C3S – C3A – Gypsum

blends.

4.5.3 Isothermal calorimetry data

The comparison of heat flow data measured at different temperatures returned

different results for undersulphated (mix 1) and proper sulphated systems (mix 2

and 3). Mix 1 is undersulphated because the characteristic sharp peak of the

aluminate reaction after gypsum depletion occurs before the silicate reaction and

this later reaction is delayed and its peak lowered compared to properly sulphated

systems. Mix 2 and 3 can be called properly sulphated as the aluminate reaction

occurs after the silicate one [47]. The peak due to aluminate reaction is delayed

with increasing gypsum content. This aluminate peak becomes also broader and

lower as the gypsum content in the cement increases.

At 20°C, mix 1 shows one intense and asymmetric peak; when the calorimeter

temperature is increased, this peak increases in intensity and occur earlier, with a
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small shoulder which occurs after the peak itself. The peak is referred to the

increase of the dissolution rate of C3A while the small shoulder to the maximum

dissolution rate reached by C3S. When the temperature is set at 32°C, an inversion

occurs: the small shoulder becomes a definite peak which occurs even before the

previously described one. With the peaks crossover we can see how the C3S

dissolution rate increases (higher heat flow value) while the C3A dissolution rate

decreases, both compared to the heat flow measured at 26°C.

Figure 4.52: measured heat flow of mix 1 hydration at 4 different temperatures: 20°C
(black), 23°C (red), 26°C(blue) and 32°C(pink).

A possible explanation is that when the rapid increase of C3A dissolution rate

occurs before that one of C3S, the Al cations inhibits the dissolution of C3S [41],

causing a lower dissolution rate of C3S. When temperature increases, reactions

become faster (Arrhenius effect) [19] enough to make the increase of dissolution

rate of C3S occurring before the equivalent acceleration in C3A dissolution rate:

the dissolved Al cations are not able to limit C3S dissolution, which occurs faster.

On the other hand, C3A dissolution rate result slower probably because the

limiting factor is a higher Ca2+ concentration given by the previous abundant

dissolution of C3S.
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Such hypothesis seems to be valid also for mix 2 and 3. In both the proper

sulphated systems, we can observe 2 distinct, well separated calorimetric peaks:

the first referred to an increase in C3S dissolution and the second to the increase in

C3A dissolution.

Figure 4.53: measured heat flow at 20°C (black), 23°C (red), 26°C(blue) and
32°C(pink) for mix 2 pastes.

The Arrhenius effect is clearly visible and affects both the dissolution rate of C3S

and C3A, but no crossover effect can be detected. From 20°C to 32°C we observe

a continuous increase in dissolution rates, especially for C3A which shows a

higher dissolution rate than C3S only at 32°C.
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Figure 4.54: measured heat flow generated by mix 3 pastes at 20°C (black), 23°C (red),
26°C(blue) and 32°C(pink).

Finally, a general consideration about the shape of the curve has to be written. In

Alexandra Quennoz Ph.D. thesis [10] it is reported a study of Di Murro [48] on

mixtures of pure phases (monophase grains) and polyphase grains of alite and

C3A mixed with gypsum. There are significant differences between the hydration

of two different nature of grains, especially regarding C3A. For polyphase grains

C3A dissolution occurs earlier and the calorimetric peak is not well defined; for

monophase grains the reaction is slower, the peak occurs later and appears to be

well separated and defined. She explains this phenomenon with the difference in

phase availability: in polyphase grains, C3A is better dispersed and present in

small amounts in all the cement grains instead of few monophase C3A grains. Its

specific surface is also higher than in monophase systems, leading to a higher

reactivity.
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Figure 55: Heat evolution and conductivity curves of monophase and polyphase model
cement pastes containing 73% alite – 18% C3A – 9% gypsum [48].
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5. Conclusions

The main topic of this Ph.D. thesis was to investigate the kinetics of simplified

cement systems, composed only by C3S, C3A and gypsum, mostly by means of in-

situ x-ray powder diffraction experiments. The choice to use a set of model

cements is to have a deeper insight into the kinetics at early age of the most

abundant and most important phases of a Portland cement. It has emerged the

opportunity to investigate the model cements also by means of isothermal

calorimetry, which is more suitable to obtain reliable kinetic data.

We have seen how in-situ x-ray diffraction with a laboratory instrument is a

useful technique to investigate cement kinetics, although the first 20 minutes of

hydration cannot be monitored (due to the ex-situ sample preparation). The boron-

glass capillary as sample holder confirmed that the sample does not suffer water

bleeding and carbonation; furthermore, the focussing transmission geometry and

the small size capillary (0.3mm) permit to avoid absorption problems. On the

other hand, to obtain reliable kinetics, we had to reduce the acquisition time,

which coupled with the use of 0.3mm capillary and a low amount of investigated

material produced very noisy measurements.

As explained in the appendix chapter, we performed also some measurements in

Bragg-Brentano geometry that force the use of a Kapton film to prevent

carbonation. The measurement in Bragg-Brentano geometry permits to avoid any

absorption problem and to investigate a more homogeneous amount of material.

Unfortunately, the water bleeding effect cannot be avoided, because the Kapton

film revealed to be not perfectly insulating. Also the chemical shrinkage cannot be

avoided and the result is a left shift of diffraction peaks, which is more difficult to

treat when a parametric refinement (as what we do to obtain kinetics) is

performed.

C3S kinetics has been observed to be very similar from mix 1 to mix 3: the

dissolution trends are very close in shape and time. Such trends seems to be
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slightly accelerated when gypsum is added to the system. This suggest an active

contribution of gypsum to the dissolution rate of C3S.

On the other hand, C3A is greatly influenced by the quantity of gypsum: the more

gypsum quantity, the more delayed C3A increase in dissolution rate.

It is proposed the presence of an amorphous layer that partially inhibits the

dissolution of C3A as long as gypsum is still present as solid phase and which is

claimed to be responsible of the “apparent precipitation effect” observed

especially in C3A kinetics.

Isothermal calorimetry measurements revealed the presence of two distinct peaks,

one related to the increase in C3S dissolution rate and the other one related to the

increase in C3A dissolution rate. The presence of these 2 distinct peaks is

particularly different from an OPC heat flow chart, where a wide and broad peak

is usually detected as a result of the convolution of C3S dissolution heat (mostly)

and C3A dissolution heat. Such feature can be explained with the monophase

nature of the grains that results in a greater specific surface, especially for C3A, in

our model cements, while an OPC is constituted by polyphase clinker grains that

conduct to a main hydration peak.

The increase in reaction temperature inside of the calorimeter drives to an increase

in reaction rates, as seen from the left shift of calorimetric peaks (earlier

occurrence) of heat flow plots. Peaks are very sharp and intense and this could be

explained with the synthetic nature of the materials. In a lab synthesis, materials

are usually finer than that produced in an industrial plant, leading to an higher

specific surface that is responsible for more sharp and intense calorimetric peaks.

From calorimetric data it is not possible to appreciate the influence of gypsum on

C3S hydration rate, as revealed by x-ray diffraction. It is much more evident the

delay, within the 3 blends, in the second calorimetric peak due to the total

depletion of gypsum.

It has emerged that C3S dissolution and C3A dissolution are not independent

processes. In particular, gypsum seems to interacts with both of them, accelerating

the C3S dissolution and decelerating C3A dissolution. In mix 1 (undersulphated

system) the first part of the hydration is dominated by C3A dissolution but the
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second part is controlled mainly by C3S dissolution. First/second part can be

identified with the occurrence of the first/second calorimetric peak, respectively.

As a consequence, in mix 1 there is not a clear distinction within 2 peaks but an

intimate bind between C3A and C3S dissolution processes. In mix 2 and 3

(properly sulphated systems) the first part is dominated by C3S dissolution while

the second part is mostly controlled by C3A dissolution. This can be recognized

by plotting ௌிߙ and .ூ஼vsߙ time: the first part of the hydration process is

controlled only by the dissolution of the first phase while the second ௌிߙ has to be

shifted upwards to obtain a sufficient fit with .ூ஼ߙ Such shift is the continuous

contribution of the first phase to the total degree of hydration and can be

considered as a proof that C3S and C3A dissolutions are not independent

processes.

The analysis of the kinetics revealed controversial results for activation energies

calculated using different approaches. The Avrami nucleation and growth model

has been useful to describe the acceleration periods of both C3S and C3A. The

calculated M values are in agreement with the possible nucleation, growth and

shape of C-S-H (from C3S dissolution), AFm and C-A-H (from C3A dissolution).

Unfortunately, the modelling part of the project has not been developed

sufficiently. On one hand, it was possible to model the early hydration of C3S-

gypsum systems, with results confirmed by experimental data (x-ray diffraction,

calorimetry, mechanical strength measurements). On the other hand, modelling

revealed several issues when focussed on C3A-gypsum, especially in treating the

right dimensions of particles and thermodynamic parameters of gypsum, probably

because the interactions between C3A and gypsum are much more complex and

difficult to describe than C3S-gypsum. For these reasons, the modelling of C3A-

gypsum hydration has to be improved before starting the more complex C3S-C3A-

gypsum systems.
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6. Appendix

The purpose of this chapter is to include selected Ph.D. experimental activities

performed that cannot be included in the dissertation of the main project.

Such activities were important to improve laboratory and data analysis skills and

for these reasons can be included in an appendix chapter.

Bragg-Brentano measurements on Portland cement pastes

In addition to transmission capillary measurements, we have performed also

transmission flat-stage and Bragg-Brentano reflection measurements. Flat-stage

transmission geometry is very useful when the available amount of material is

low, but it becomes unsuited for kinetic studies because of the water bleeding. In

fact, the 2 Kapton foils that squeeze the material within are not able to seal the

sample, causing the water bleeding effect and forcing the hydration stop.

Bragg-Brentano measurements can be considered much more suitable for kinetics

detection because of the proper amount of investigated material and more

homogeneous samples. Unfortunately, Kapton is not a perfect sealing cap and this

can cause water bleeding and sample segregation effects. Moreover, when the

chemical shrinkage occurs, a strong sample displacement effect can be detected.

In figure 1 it can be seen that such sample displacement affects the sample from

the very first measurements. Finally, Kapton is not completely x-ray transparent,

contributing with some diffraction peaks between 12° and 27° 2θ at CuKߙଵ,ଶ and

interfering with the detection of sample diffraction lines in that region (figure 2).
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Figure A.56: sample displacement effect occuring from the very first measurements.
2θ range: 28°-36°. 1 is referred to the first measure, 5 to the fifth.

Figure A.57: Kapton contribution to the measured background. At least 3 broad peaks
can be recognized between 12° and 27° 2θ, CuKࢻ૚ǡ૛.

The choice to use the focussing transmission capillary geometry was taken

because it guarantees the accessibility of low 2θ angles (between 1° and 3°), no 

segregation effects and no preferred orientations.
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Loss of reactivity on C3S-C3A-Gy systems

During these 3 years, we noted that our C3S-C3A-Gy blends were behaving in

different ways every time we measured them, although the materials have been

sealed in vacuum conditions. In particular, the occurrence time of C3A

acceleration period was measured to be more delayed at any experiment, both for

XRD and isothermal calorimetry. This means that C3A suffered a sort of reactivity

loss.

Figure A.58: isothermal calorimetry on the 3 C3S-C3A-Gy mix performed on January,
2010. It is important to focus on mix 2 (see next figure).
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Figure A.59: isothermal calorimetry on mix 1 performed at Dijon on February, 2011
(red) and at Mapei on October, 2011 (black).

Figure A.60: isothermal calorimetry on mix 2 performed at Dijon on February, 2011
(red) and at Mapei on October, 2011 (black).

Comparing figures A.3, A.4 and A.5 some remarkable notes can be underlined.

First of all, a general decrease in heat flow intensity with passing time can be
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detected mostly for C3A peak. Secondly, a progressive delay in the occurrence

time of calorimetric peaks is revealed. In mix 1 C3A calorimetric peak occurs

after 5 hours in Jan, 2010, after 4 hours in Feb, 2011 and after 6.5 hours in Oct,

2011. In mix 2 C3S calorimetric peak results slightly delayed whereas the such

delay can be clearly for C3A: 13 hours in 2010, 23 hours in Feb, 2011 and 33

hours in Oct, 2011.

Assuming that gypsum may have a crucial role in this phenomenon, we supposed

that C3A grains should have a reaction rim that could be detected by the scanning

electron microscope. To be sure to detect properly the phase, x-ray microanalysis

has been performed on each grain.

Figure A.61: C3A grain (centre, light gray) surrounded by a reaction rim (dark
gray),with a lower density in respect to C3A.

C3A grain in the middle of figure A.6 presents an uneven reaction rim

characterized by a lower grey value in respect to C3A grey value. Qualitative

speaking, this can be described as a difference in phase density: the lower the grey

value, the lower the material density. If this reaction rim is truly formed by AFm

phases, this is in agreement with initial hypothesis. The reaction rim works as
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physical barrier, limiting C3A reactivity as long as it remains stable during

hydration.

Figure A.62: partially reacted C3A grain (centre).

Even when a clear rim is not visible, C3A grains which suffer of low reactivity

show buttered holes and dull grain boundaries (figure A.7). Such evidences give

an idea on material decay during time, influencing its reactivity and, by a

consequence, reaction kinetics.

Even C3S shows a sort of reaction products that are grown on the grain surface,

instead of the boundary (figure A.8).
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Figure A.63: C3S grain showing a partly reacted surface and its reaction product.
Microanalysis showed only the presence of CaKα and SiKα.

One possible explanation is that partial gypsum decomposition occurs, causing the

formation of hydration products and the already claimed loss of reactivity.

Another plausible justification is that the vacuum sealing was not sufficient to

avoid the formation of these hydration products.

In any case, the loss of reactivity was a difficult issue to consider because it was

practically unpredictable. Since the materials decay cannot be avoided, XRD and

isothermal calorimetry measurements have to be performed simultaneously to

obtain reliable and comparable data.
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Synthesis of hemicarboaluminate: an attempt to solve the

crystal structure

Hemicarboaluminate, Ca4Al2(CO3)0.5(OH)135.5H2O, is one of the AFm phases [1,

2] that can precipitate once the sample is exposed to air or to water containing

dissolved CO2, when CaCO3 is present in a cement. It is a metastable phase that

precipitates when the increase in dissolution rate of C3A occurs. The

corresponding stable phase is monocarboaluminate, Ca4Al2(CO3)(OH)125H2O,

which occurs only at later hydration ages [1]. For these reasons, it is a common

product in cements pastes.

Despite of its occurrence, it was only known to have a layered structure, such as

other AFm, but the structure was unsolved. The aim of this work was to perform a

crystal structure solution on a powder sample using a laboratory instrument.

First of all, pure hemicarboaluminate is necessary to perform a crystal structure

solution. We synthetized the material starting from a paper of Balonis and Glasser

[3]: C3A, CaCO3 and CaO have been mixed in stoichiometric proportions with

Millipore water at room temperature, water to solid ratio equal to 10 and

continuously stirred in a glass flask for 14 days before filtration. The chemical

reaction that set hemicarboaluminate precipitation is:

4C3A + 2CaCO3 + 2CaO + 48H2O 4Ca4Al2(CO3)0.5(OH)135.5H2O (A.1)

Laboratory C3A was supplied by Sorrentino, CaCO3 by Sigma-Aldrich and CaO

was obtained after calcination of CaCO3 for 1 hour at 100°C. CaO quality and

crystallinity were checked by means of XRD.

After 14 days the precipitated solute has been filtered by centrifugation and

measured by x-ray powder diffraction, in focussing transmission geometry, using

a 0.5mm boron-glass capillary as sample holder. The angular range chosen was

5°-80°, angular step 0.026° and 150s of counting time per step. The result is

described in figure A.9. The pattern is characterized by two sharp, very intense
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(>40000 counts) diffraction peaks while all the others result broader and smaller

(<4000 counts). Qualitative phase analysis detected hemicarboaluminate (ICDD

41-221) and Portlandite (ICDD 44-1481).

Figure A.64: diffraction pattern of synthetic hemicarboaluminate. Zoom into 7°-70°
2th range.

Considering the number of detected phase, the synthesis product can be suitable to

perform a crystal structure solution. From a crystallographic point of view, the

measured pattern showed that the starting material seems to be not so appropriate

to achieve a crystal structure solution.

A preliminary attempt determined the presence of a layered structure, as for other

AFm phases, but the work has to be improved to reach a good stability on the

solution.

When this structure solution attempt started, the first hemicarboaluminate

structure has been published by Runčevski et. al [4]. They measured a synthetic 

hemicarboaluminate in a synchrotron radiation facility, which is the solution to

have an high signal to noise ratio. It becomes evident that such crystal structure

will be a significant starting point to solve the structure of our synthetic material.
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Selective dissolution: a powerful technique to characterize

cement phases

Selective dissolution is a peculiar technique that permits to concentrate a preferred

phase (or group of phases) eliminating the unwanted ones from a powder by

dissolving them in an acid or basic solution.

Coupled with x-ray powder diffraction, it permits to quantify ratios between

certain phases better than the analysis on the whole clinker.

Two different solutions are considered to dissolve aluminates and silicates.

KOH/sugar solution is used to dissolve aluminates and sulphates, giving a residue

of silicates and minor phases (e.g. Periclase). Salicylic Acid/ Methanol (SAM)

solution is alternatively took to extract the interstitial, sulphate and minor phases,

dissolving silicates and free lime present in a clinker. We followed the schematic

procedure described by Stutzman [5], preparing the two solutions before

proceeding to the selective dissolution.

We chose a CEM I 52.5R (Rossi) to perform the selective dissolution procedure.

Qualitative phase analysis showed the presence of C3S, C2S, MgO and CaCO3

after KOH/sugar extraction. C3A, C4AF, Bassanite, Gypsum, Arkanite, Syngenite,

MgO, Calcite and Portlandite have been detected after SAM extraction. The

presence of Portlandite could be interpreted as a product of unreacted free lime

when mixed with methanol.

Quantitative phase analysis through Rietveld refinement has been performed in

order to obtain an accurate quantification of phases ratios (i.e. C3S/C2S) and also

to optimize the crystal lattice parameters.
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QPA on extracted powder KOH/sugar extraction SAM extraction

C3S 64.12

C2S 24.02

C3A 29.60

C4AF 23.50

CaCO3 9.22 15.16

Gypsum 1.82

Bassanite 14.59

Syngenite 5.64

Arcanite 3.32

Periclase 2.43 5.18

Portlandite 0.21 1.19

Table A.9: QPA on extracted powders, after selective dissolution.

QPA on cement Pre lattice parameters

optimiz.

Post lattice parameters

optimiz.

C3S 59.11 57.96

C2S 17.50 18.05

C3A 6.90 6.52

C4AF 4.42 5.36

CaCO3 3.56 3.78

Gypsum 0.88 0.96

Bassanite 2.55 3.24

Syngenite 1.24 1.02

Arcanite 1.36 1.18

Periclase 1.72 1.34

Portlandite 0.75 0.58

Table A.10: QPA on CEM I 52.5R comparing pre lattice parameters optimization
(before selective dissolution procedure) and post lattice parameters optimization
(after selective dissolution procedure).
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KOH/sugar SAM Pre optimiz.

(cem)

Post optimiz.

(cem)

C3S/C2S 2.67 3.38 3.21

C3A/C4AF 1.26 1.56 1.22

All sulphates 6.03 6.40

Accessories 6.03 5.70

Table A.11: comparison between different ratios and sums.

From table A.3 we can assume a lower C3S/C2S ratio when extraction is

performed, compared to C3S/C2S ratio calculated from a standard QPA on the

cement: the difference is about 17%. This can be due to a better estimation of C2S

when KOH/sugar extraction is carried out. C3A/C4AF ratio calculated after SAM

extraction is very similar to that calculated after phase parameters optimization on

cement QPA. This is not true when considering the pre-optimization: the

difference is about 20%.

In order to be sure about the presence of calcite, portlandite and sulphates, we

performed TGA (coupled with D-TGA) and DTA.

TGA analysis showed three endothermic events, related to water consumption of

hydrous sulphates (~200°C), OH- consumption from portlandite (450-550°C) and

CO2 release from calcite (650-830°C). Quantitative analysis returned 4.81% of

hydrous sulphates, 0.22% of portlandite and 3.55% of calcite. These values are

not so distant from Rietveld calculations, especially referring to calcite, while the

hydrous sulphates calculation can be considered an appropriate estimation.

DTA showed three endothermic events, referred to water consumption described

above. At 720°C and 980°C we detected also two main exothermic events,

probably related to two phase transitions: the first involving β-C2S  α-C2S and

the second involving M1C3SM2C3S.
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Characterization of selected phases for internal and

external standard methods in Rietveld quantitative phase

analysis

An internal or external standard in quantitative phase analysis results really useful

to determine the exact content of all the other phases present in the investigated

mixture.

When a weighted amount of a standard phase is added to a mixture, the

quantitative phase analysis can be scaled to the amount of standard, revealing the

presence of unknown or amorphous phases. This is, practically, what the internal

standard method requires to have a reliable quantification of all the phases of a

sample [6, 7]. In cement science, it is a matter of debate which should be the most

appropriate standard to quantify the unknown phases: Al2O3 [8–10] and TiO2 [11]

seems to work both properly. Al2O3 produced by NIST (National Institute of

Standards and Technology) is the leading standard for quantitative phase analysis

but its linear absorption coefficient (127 cm-1) is pretty different from the related

cement phases coefficients (C3S=323cm-1, C3A=274cm-1, [11]). Such difference

causes microabsorption problems that are difficult to correct. On the other hand,

TiO2 and most absorbing phases of a clinker have comparable linear absorption

coefficients but different particle size distributions (TiO2=0.4 µm, clinker

phases=23-27µm) that can induce a non-uniform distribution of particles in the

sample.

It is also possible to determine the amount of all the crystalline phases by using

the external standard method developed by O’Connor and Raven [12] and more

recently used by Jansen et al. [13]. The external standard depends only by the

instrument settings (tube intensity, divergence slits, Soller slits, beam masks,

monochromators): for this reason it has to be calculated periodically (e.g., tube

ageing causing intensity loss) and each time the instrumental setting is changed. It

is related to the quantification of a phase as expressed in equation A.2:
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ܹఈ =
ఈܵ(ܼܸܯ)ఈμ௠

∗

ܭ
.ܣ) 2)

Where ܹఈ is the calculated weight fraction of phase ,ߙ ఈܵ is the Rietveld scale

factor of phase ,ߙ ఈ(ܸܯܼ) are the number of formula units in the unit cell, the

mass and the volume of unit cell of phase ,ߙ μ௠
∗ is the linear absorption

coefficient of the mixture and ܭ is the external standard. With this method, it is

possible to obtain the amount of each crystalline phase and, by difference, the

amount of the whole unknown/amorphous content of a sample.

Before using the internal or external standard method for our purposes, we wanted

to verify the reliability of the methods by producing a set of mixed and weighted

standards, which are generally useful also to characterize the materials.

For these purposes, we used Dupont Ti-Pure® R900 TiO2 for internal standard

method, quartz and Boron Carbide (BC, high availability in our laboratory) for

external standard method. The original choice of boron carbide is also due to the

request of using a low absorbing phase “to simulate” Si NIST that has been

chosen by Jansen [13]. At this point it becomes useful to distinct the

characterization of TiO2 for internal standard and Al2O3 and boron carbide for

external standard.

Internal standard

We prepared 2 samples composed by a mix of 50:50 and 75:25 of TiO2 and ZnO

(used as reference), both measured in Bragg-Brentano reflection geometry, within

23° and 120° of angular range, step size 0.017° counting 60s per step.

Results are controversial: in the 50:50 sample, the amount of amorphous material

detected was 0.7%-0.9% while in the 75:25 sample the calculation returned

negative amorphous content.

The same blends were also measured in focusing capillary geometry, using a

0.3mm and a 0.1mm capillary, with the same instrumental parameters as in

Bragg-Brentano. Results here are much more controversial than in Bragg-

Brentano, because of unsolvable microabsorption problems.
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External standard method

We measured 2 different blends: Al2O3-BC and Al2O3-SiO2, with Al2O3 used as

reference. Al2O3-BC samples have been measured in reflection and transmission

geometry while Al2O3-SiO2 blends have been measured only in reflection

geometry.

Unfortunately, in both cases the difference between the weighted amount of

materials and the quantitative phase analysis derived from external standard

calculation is too wide to consider the method reliable. Considering that these

samples are very simple, the method cannot be extended to a cement system.
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