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Abstract

The aim of this work is to study the propagation of orbital angular momen-
tum (OAM) of light for astrophysical applications and a method for OAM
detection with optical telescopes.
The thesis deals with the study of the orbital angular momentum (OAM) as
a new observable for astronomers, which could give additional information
with respect to those already inferred from the analysis of the intensity, fre-
quency and polarization of light. Indeed, the main purpose of this work is to
highlight that light can have a much more complex structure, and therefore
can transport much more information.
In particular, firstly we show that OAM can be imparted to light from
interstellar media with a perturbed electron density function in the plane
perpendicular to the propagation direction, revealing that the study of OAM
could give information about the spatial structures of the traversed inho-
mogeneous media.
The second part of the thesis deals with an experimental verification of
the preservation of orbital angular momentum even for uncorrelated non-
monochromatic wave beams, showing that this observable of light is pre-
served, thus we can aim at detecting it.
Finally, if OAM can transport information, and if it is preserved in propa-
gation, the obvious consequence is the study of its detection, in particular
by an OAM mode sorter fitted to optical telescopes.
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Riassunto

La radiazione elettromagnetica trasporta energia e momento. Solitamente
il momento trasportato dalla luce viene associato al momento lineare, re-
sponsabile della pressione di radiazione e associato all’azione di una forza.
Tuttavia vi è un’altra componente del momento, il momento angolare: esso
è associato all’azione di un un momento torcente e, in certe condizioni, può
essere approssimato alla somma vettoriale del momento angolare di spin e
del momento angolare orbitale (OAM ). Il momento angolare di spin è la
componente più conosciuta del momento angolare, ed è associato all’elicità
destrogira o levogira del fascio di luce, perciò è connesso al concetto di polar-
izzazione. Recenti studi hanno evidenziato l’importanza anche del momento
angolare orbitale della luce. Quest’ultimo è associato a una forma elicoidale
del fronte d’onda, causata dalla precessione del vettore di Poynting attorno
alla direzione di propagazione del fascio di luce. Questo nuovo osservabile
del campo elettromagnetico trova diverse applicazioni nella fisica (sia speri-
mentale che teorica) e nell’astrofisica, aprendo nuovi scenari all’astronomia.
Il momento angolare orbitale trova un uso pratico in molti campi: nelle tec-
nologie radar, nelle nanotecnologie, negli esperimenti quantistici, nell’informazione
quantistica etc. [25, 57]; in astronomia viene sfruttato per migliorare il
potere risolutivo degli strumenti ottici altrimenti limitati dalla diffrazione
[77], e per facilitare il rilevamento di pianeti extrasolari tramite l’utilizzo del
coronografo a vortici ottici [8, 24, 40, 41, 46, 49, 82]. Alcuni lavori teorici
dimostrano che l’OAM potrebbe essere usato come un nuovo strumento di-
agnostico per lo studio di campi gravitazionali rotanti, ad esempio i buchi
neri di Kerr [81], e che potrebbe fornire informazioni riguardo la struttura
spaziale del mezzo attraversato dai fotoni durante il loro viaggio dalla sor-
gente all’osservatore [80].

In questa tesi vengono studiati la propagazione del momento angolare
orbitale della luce per applicazioni astrofisiche, e un possibile metodo per il
rilevamento dell’OAM con i telescopi ottici. Lo scopo principale di questo
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lavoro è quello di evidenziare che la luce può avere una struttura molto
più complessa di quello che solitamente credono gli astronomi, e perciò che
può trasportare molta più informazione. In particolare, in questa tesi il
momento angolare obitale della luce viene trattato come un nuovo osserv-
abile per gli astronomi, che potrebbe dare informazioni aggiuntive rispetto
a quelle che già si deducono dall’analisi dell’intensità, della frequenza e della
polarizzazione della luce.

Nel capitolo 1 introduciamo il concetto di momento angolare orbitale
della radiazione elettromagnetica (e, nel limite quantistico, dei fotoni).
Se consideriamo un fascio di luce laser polarizzata, esso trasporta OAM
quando il campo elettrico in coordinate cilindriche (r, θ, z) ha la seguente
forma:

~E(~r, t) = σ̂u(r, θ, z)ei(kz−wt) + c.c.

dove σ̂ è il versore della polarizzazione, c.c. rappresenta il complesso coniu-
gato e la funzione complessa u(r, θ, z) è la funzione che descrive il profilo di
ampiezza del campo, ed è definita come:

u(r, θ, z) = u0(r, z)eiℓθ.

Notiamo che la fase totale del campo ha acquisito una nuova componente,
adesso troviamo che:
fase dell′ onda = kz − wt + ℓθ .
La componente ℓθ, dove θ è un angolo, è la fase azimutale: è a causa della
presenza di questa componente azimutale che nasce il momento angolare
orbitale e che il fronte d’onda acquisisce una forma elicoidale che si avvolge
attorno all’asse di propagazione [3, 62]. Il contributo orbitale è determinato
solamente dalla dipendenza da una fase azimutale, e è equivalente a ℓ~ per
fotone. Consideriamo un fascio di luce caratterizzato da un determinato val-
ore intero di ℓ. In un piano perpendicolare alla direzione di propagazione, la
fase è sottoposta ℓ volte a una variazione di 2π, e lungo l’asse di propagazione
appare una singolarità di fase. L’interferenza distruttiva che ha luogo lungo
tale singolarità dà origine a un profilo di intensità a forma di anello.
Un fascio di Laguerre-Gauss, ben conosciuto nell’ottica parassiale, è un es-
empio fisico facilmente realizzabile della luce con questa distribuzione di
fase.

Nel capitolo 2 analizziamo il meccanismo di acquisizione di massa di
Anderson-Higgs per un fotone in un plasma, e studiamo il contributo a
tale massa dato dal momento angolare orbitale acquisito da un fascio di
fotoni quando attraversa una distribuzione di cariche con una certa strut-
tura spaziale. A questo fine applichiamo le equazione di Proca al caso di
un plasma statico con una particolare distribuzione spaziale delle cariche
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libere, nello specifico un vortice, in grado di imporre momento angolare or-
bitale alla luce. Troviamo che, in aggiunta alla massa acquisita attraverso il
tradizionale meccanismo di Anderson-Higgs, il fotone acquisisce un’ulteriore
massa connessa al momento angolare orbitale che riduce la massa del fotone
prevista dalle equazioni di Proca. In questo modo mostriamo che un fotone
acquisisce OAM ogni volta che attraversa un mezzo che, nel piano perpendi-
colare alla direzione di propagazione del fascio, è caratterizzato da una den-
sità con una componente azimutale non omogenea. Dato che questo OAM
dipende dalla distribuzione spaziale delle cariche (nel piano perpendicolare
alla direzione di propagazione), esso potrebbe essere sfruttato in astrono-
mia per ottenere informazioni riguardanti la struttura spaziale dei mezzi
attraversati dalla radiazione elettromagnetica. Perciò il momento angolare
orbitale potrebbe essere utilizzato dagli astronomi come nuovo strumento
di diagnosi: lo studio dell’OAM della luce catturata dai nostri telescopi
potrebbe infatti darci informazioni aggiuntive riguardanti la funzione di
densità del mezzo interstellare attraversato dai fotoni.
I risultati trattati in questo capitolo si possono trovare nella pubblicazione
"Photon orbital angular momentum and mass in a plasma vortex" [80].

Nel capitolo 3 riportiamo i risultati di alcuni esperimenti condotti nel
mondo reale, all’aperto, riguardanti lo studio della propagazione del mo-
mento angolare orbitale nelle frequenze radio: dato che l’OAM è una pro-
prietà del campo elettromagnetico, ha lo stesso comportamento a tutte le
frequenze. In questi esperimenti abbiamo generato e propagato onde radio
non monocromatiche, con diversi valori di OAM, per trasmettere simultane-
amente due canali radio sulla stessa frequenza, codificati con diversi stati
OAM (ℓ = 0 e ℓ = 1). Il risultato positivo di questi esperimenti dimostra
che:

- onde non monocromatiche, incoerenti (quindi interessanti nel campo
dell’astronomia, poichè è il principale tipo di luce che gli astronomi
ricevono), preservano l’impronta del loro momento angolare orbitale
anche nel far field;

- gli stati OAM sono stati ortogonali, cioè stati che non si influenzano
reciprocamente, e la loro ortogonalità è preservata.

Da un punto di vista astronomico, ciò significa che il messaggio trasportato
dalla luce può arrivare a noi e che noi possiamo quindi cercare di misurarlo.
I risultati descritti in questo capitolo si possono trovare nella pubblicazione
"Encoding many channels on the same frequency through radio vorticity:
first experimental test" [78].
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Se l’OAM può essere un nuovo osservabile astronomico in grado di
trasportare informazioni astrofisiche, e se queste informazioni si preservano
durante la propagazione, il passo successivo è cercare di misurare l’OAM
racchiuso nella luce raccolta dai telescopi astronomici. Finora l’OAM con-
tenuto nella luce proveniente da oggetti astrofisici non è mai stato misurato.
Nel capitolo 4 descriviamo un possibile modo per misurarlo con i telescopi
ottici, utilizzando il cosiddetto OAM mode sorter [15, 16, 43, 44], uno stru-
mento in grado di misurare lo spettro OAM. Tale dispositivo finora è stato
usato sui banchi ottici con luce laser, e noi lo abbiamo adattato in modo
da poter essere utilizzato al telescopio. Dopo aver costuito un OAM mode
sorter per telescopi ottici, lo abbiamo testato all’osservatorio del Celado.
I risultati ottenuti duranti una notte di osservazione mostrano che questo
strumento potrebbe aprire la strada alla prima misurazione dell’OAM rac-
chiuso nella luce proveniente da oggetti celesti.



Summary

Electromagnetic (EM) radiation carries energy and momentum.
Usually, associated to the momentum carried by light is the linear momen-
tum, responsible for the radiation pressure and associated to a force action.
Another component of the momentum is the angular momentum, which is
associated to a torque action and which can be approximated under cer-
tain circumstances to the vectorial sum of the spin angular momentum and
the orbital angular momentum (OAM ). The spin angular momentum, the
well-known component of the angular momentum, is associated to the right-
handed or left-handed helicity of the light beam, therefore it is connected
to the polarization. Recent studies gave evidence also to the importance of
the orbital angular momentum of light. It is associated to a helicoidal shape
of the wave front, caused by the precession of the Poynting vector around
the propagation direction of the light beam. This new observable of the
electromagnetic field finds several applications both in experimental and in
theoretical physics and astrophysics, opening new scenarios to astronomy.
OAM finds practical use in many fields: radar, nanotechnology, quantum ex-
periments, quantum information, etc. [25, 57]; in astronomy it is exploited
to improve the resolving power of diffraction-limited optical instruments
[77] and to facilitate the detection of extrasolar planets through the optical
vortex coronograph [8, 24, 40, 41, 46, 49, 82]. Theoretical works show that
it could be used as a new diagnostic instrument for the study of rotating
gravitational fields, e.g. Kerr black holes [81], and that it could provide in-
formation about the spatial structure of the medium traversed by photons
in their travel from the source to the observer [80].

In this thesis we study the propagation of orbital angular momentum of
light for astrophysical applications and a possible method for OAM detec-
tion with optical telescopes. The main purpose of this work is to highlight
that light can have a much more complex structure than what is usually
thought by astronomers, and therefore can transport much more informa-
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tion. In particular, this thesis deals with the orbital angular momentum
of light as a new observable for astronomers, which could give additional
information with respect to those already inferred from the analysis of the
intensity, frequency and polarization of light.

In chapter 1 we introduce the concept of the orbital angular momentum
of the electromagnetic radiation (and, in the quantum limit, of photons).
Considering a beam of polarized laser light, it carries OAM when the electric
field in cylindrical coordinates (r, θ, z) has the following form:

~E(~r, t) = σ̂u(r, θ, z)ei(kz−wt) + c.c.

where σ̂ is the polarization unit vector, c.c. represents the complex conjugate
and the complex function u(~r, θ, z) is a function describing the form of the
field amplitude profile, and is defined as:

u(r, θ, z) = u0(r, z)eiℓθ.

We notice that the total phase of the field has acquired a new component,
now we have:
wave phase = kz − wt + ℓθ .
The component ℓθ, where θ is an angle, is the azimuthal phase: it is because
of the presence of this azimuthal component that the orbital angular mo-
mentum arises and the wave front acquires an helicoidal shape that wraps
itself up around the propagation axis [3, 62]. The orbital contribution is
determined solely by the azimuthal phase dependence and is equivalent to
ℓ~ per photon. In a plane perpendicular to the propagation direction the
phase undergoes ℓ times a change of 2π, and along the propagation axis a
phase singularity appears, giving rise to an intensity pattern with the shape
of a ring, because of destructive interference along the singularity.
A Laguerre-Gaussian beam, familiar from paraxial optics, is a physically
realizable example of light with this phase distribution.

In chapter 2 we analyze the Anderson-Higgs mechanism of photon mass
acquisition in a plasma and study the contribution to the mass from the
orbital angular momentum acquired by a beam of photons when it crosses a
spatially structured charge distribution. To this end we apply Proca equa-
tions in a static plasma with a particular spatial distribution of free charges,
notably a plasma vortex, that is able to impose orbital angular momentum
onto light. In addition to the mass acquisition of the conventional Anderson-
Higgs mechanism, we find that the photon acquires an additional mass from
the OAM and that this mass reduces the Proca photon mass. In this way
we show that a photon acquires OAM every time it goes through a medium
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with a density that is azimuthally inhomogeneous in the plane perpendicu-
lar to the propagation direction of the beam. Since this OAM depends on
the spatial distribution of charges (in the plane perpendicular to the prop-
agation direction), it could be exploited in astronomy to get information
about the spatial structure of the traversed media. Thus, orbital angular
momentum could be used by astronomers as a new diagnostic instrument:
studying the OAM of light we catch with our astronomical telescopes could
give us additional information about the density function of the interstellar
medium traversed by photons.
The results of this chapter can be found in the publication "Photon orbital
angular momentum and mass in a plasma vortex" [80].

In chapter 3 we report the results of real-world, outdoor radio experi-
ments concerning the study of the propagation of orbital angular momen-
tum: since OAM is a property of the electromagnetic field, it has the same
behavior at all wavelengths. In these experiments we generated and propa-
gated non-monochromatic incoherent radio waves with different OAM val-
ues to simultaneously transmit two radio channels on the same frequency
encoded with different OAM states (ℓ = 0 and ℓ = 1). The positive outcome
of this experiment shows that:

- non-monochromatic incoherent waves (which are interesting in the
field of astronomy, since it is the main kind of light astronomers re-
ceive) preserve their orbital angular momentum signature in far-field;

- OAM states are orthogonal states, they do not influence each other,
and their orthogonality is preserved.

From an astronomical point of view, this means that the message brought
by light can arrive to us and we can aim at detecting it.
The results exposed in this chapter can be found in the publication "En-
coding many channels on the same frequency through radio vorticity: first
experimental test" [78].

If OAM can be a new astronomical observable carrying astrophysical
information, and if this information is preserved during its propagation, next
step is trying to measure OAM enclosed in light collected by astronomical
telescopes. Up to now, OAM of light from astrophysical objects has never
been detected. In chapter 4 we describe a possible way to detect OAM
with optical telescopes through the so-called OAM mode sorter [15, 16,
43, 44], a device performing the OAM spectrum already used with laser
light on optical benches, and that we have adapted to be used with optical
telescopes. After having built an OAM mode sorter for optical telescopes,
we tested it at Celado observatory. The results obtained during an observing
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night show that this instrument could pave the way to the first detection of
OAM of light from celestial objects.



Chapter 1
Orbital angular momentum of light

It has been recognized for a long time that a photon has spin angular mo-
mentum, observable macroscopically in a light beam as polarization. It is
less well known that a beam may also carry orbital angular momentum
linked to the wave phase structure. Although both forms of angular mo-
mentum have been identified in electromagnetic theory for very many years,
it is only during the past decades that orbital angular momentum has been
the subject of intense theoretical and experimental study.
The aim of this chapter is to give an overview on the orbital angular mo-
mentum of light.

1.1 Electromagnetic waves in classical physics

That light should have mechanical properties has been known, or at least
suspected, since Kepler proposed that the tails of comets were due to the
radiation pressure associated with light from the sun. A quantitative theory
of such effects became possible only after the development of Maxwell’s
unified theory of electricity, magnetism and optics. However, his treatise
on electromagnetism [52] contains only little about the mechanical effects
of light. It was Poynting who quantified the momentum and energy flux
associated with an electromagnetic field [67].

1.1.1 Maxwell’s equations

In Maxwell’s theory the electric field ~E(t, ~x) and the magnetic field ~B(t, ~x)
are unified in a unique field, the electromagnetic field, which in empty space
and in the presence of electric charges and conduction currents (respec-
tively distributed with density ρ(t, ~x) and ~j(t, ~x)) is formally described by

9



10 Chapter 1. Orbital angular momentum of light

Maxwell’s equations:

~∇ · ~E =
ρ

ε0

~∇× ~E = −∂ ~B

∂t
(1.1)

~∇ · ~B = 0 ~∇× ~B = µ0

(
~j + ε0

∂ ~E

∂t

)
(1.2)

where ε0 is the electric constant (permittivity) in vacuum, µ0 is the magnetic
constant (permeability) in vacuum, c = (ε0µ0)

−1/2 is the speed of light in
vacuum, and we are using MKS system of units. From these fundamental
equations we infer the following properties for an electromagnetic wave,
traveling in a homogeneous and isotropic medium, with no free currents or
free charges (empty to the limit):

1. ~E and ~B propagate with the same phase velocity v, which assumes
the following value in vacuum:
v = c = 1/

√
ε0µ0 = 3 × 108m/s ;

2. the absolute values of the fields are connected by the proportionality
relation:
B = E/v, in vacuum B = E/c ;

3. ~E and ~B are orthogonal to each other and to the direction of propa-
gation: electromagnetic waves are transverse waves;

4. the direction of the vectorial product ~E × ~B defines the propagation
direction, which is pointed by the wave vector ~k.

Being vectorial properties of the field, these properties are valid in any
coordinate system.

1.1.2 Electromagnetic potentials

Just as in mechanics, it turns out that in electrodynamics it is often more
convenient to express the theory in terms of potentials rather than in terms
of the electric and magnetic fields themselves.
Here I just give the definitions of the electromagnetic potentials, for any
demonstration the reader can refer to chapter 3 of the book "Electromag-
netic Field Theory" [85].

The electrostatic scalar potential

The time-independent electric (electrostatic) field ~Estat(~x) is irrotational,
hence it may be expressed in terms of the gradient of a scalar field, that we
denote by −φstat:

~Estat(~x) = −~∇φstat(~x). (1.3)
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The magnetostatic vector potential

Since ~∇ · ~Bstat(~x) = 0 and any vector field ~a has the property that ~∇ · (~∇×
~a) ≡ 0, we can always write:

~Bstat(~x) = ~∇× ~Astat(~x) (1.4)

where ~Astat(~x) is called the magnetostatic vector potential.

The electrodynamic potentials

If we generalize the static analysis above to the electrodynamic case, i.e.,
the case with temporal and spatial dependent sources ρ(t, ~x) and ~j(t, ~x),
we find the following expressions for the corresponding fields ~E(t, ~x) and
~B(t, ~x):

~B(t, ~x) = ~∇× ~A(t, ~x) (1.5)

~E(t, ~x) = −~∇φ(t, ~x) − ∂

∂t
~A(t, ~x) (1.6)

where ~A(t, ~x) is the electromagnetic vector potential, and −~∇φ(t, ~x) is the
electromagnetic scalar potential.

1.1.3 Energy and momentum of electromagnetic waves

Electromagnetic waves carry energy and momentum. The presence of an
electric field ~E and a magnetic field ~B in a region of space involves the
presence of a certain quantity of energy, distributed in that volume of space
with density u; in a homogeneous medium the instantaneous electromag-
netic energy density is

u =
1

2
εE2 +

B2

2µ
(1.7)

where ε is the dielectric constant, and µ is the magnetic permeability of the
medium.
It’s useful to define the flux of electromagnetic energy traveling through a
surface perpendicular to the direction of the wave propagation. This can be
expressed by the electromagnetic energy flux or the Poynting vector, defined
by:

~Sp =
1

µ
~E × ~B (1.8)

that can also be viewed as the electromagnetic energy current density. Its
modulus expresses the electromagnetic energy per unit time that traverses
the unit surface orthogonal to the propagation direction. Its direction is
same of the wave vector ~k.
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The momentum carried by an electromagnetic wave in vacuum is expressed
by the momentum density, or linear momentum density:

~p = ε0
~E × ~B =

~Sp
c2

. (1.9)

1.2 The orbital angular momentum of light

1.2.1 OAM in classical electrodynamics

We start this section recalling how the orbital angular momentum of a
system of massive particles is defined, in order to get to the definition of
the orbital angular momentum of an electromagnetic wave by analogy. The
orbital angular momentum density of a system of massive particles is given
by:

~jmech(~x) = ~x × ~pmech(~x) (1.10)

where ~x = ~xr − ~x0 is the radius vector connecting the reference system
origin (in ~x0) with the point we are considering (in ~xr), and ~pmech(~x) is
the linear momentum density in that point. The total angular momentum,
which is given by the integral of ~jmech over the volume V considered, can
be decomposed into two parts:

~Jmech =

∫

V

~jmech(~x)d3x = ~Lmech + ~Smech (1.11)

where ~Lmech is the extrinsic angular momentum, that is the angular mo-
mentum associated to the motion of particles around the reference frame
origin, whereas ~Smech is the intrinsic angular momentum, that is the angular
momentum describing the single particle rotation around itself. It is evi-
dent that the angular momentum of a body measured in its centre-of-mass
reference frame is zero.
Now we go back to electromagnetic waves: the total angular momentum
density in vacuum can be defined similarly to the previous case:

~h = ~x × ~p = ε0~x × [ ~E × ~B] (1.12)

and the total angular momentum of the field in a volume V becomes

~J = ε0

∫

V

~x × ( ~E × ~B)dx3. (1.13)

Careful examination of this last term shows that polarisation does not ac-
count for all of the angular momentum that can be carried by the electro-
magnetic field [75]. The part associated with polarisation is known as spin,
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but in addition there is also an orbital contribution. Indeed, if we develop
the previous expression, we obtain the result

~J = ε0

∫

V

~E × ~Ad3x + ε0

∫

V

~x × [(~∇ ~A) · ~E]d3x

− ε0

∫

V

~∇ · ( ~E~x × ~A)d3x + ε0

∫

V

(~x × ~A)(~∇ · ~E)d3x.

(1.14)

If we:

- assume that the vector potential ~A is sufficiently well-behaved (it is
regular enough and falls off sufficiently fast at large distances) that it
can be Helmotz decomposed into a sum of an irrotational part, ~Airrot,
and a rotational part, ~Arot, so that the magnetic field can always be
expressed as ~B = ~∇× ~Arot

- introduce the gauge invariant formula for the intrinsic part of the
angular momentum, i.e. the part that is not dependent on the choice
of the moment point ~x0,

~S = ε0

∫

V

~E × ~Arotd3x (1.15)

which we identify as the spin angular momentum (SAM)

- introduce the likewise gauge invariant extrinsic part, i.e. the part that
does depend on the choice of ~x0,

~L = ε0

∫

V

~x × [(~∇ ~Arot) · ~E]d3x +

∫

V

~x × ρ ~Arotd3x (1.16)

which we identify with the orbital angular momentum (OAM) (if there
is no net electric charge density ρ, the second integral in the above
expression vanishes)

after some calculations we find that expression (1.14) can be approximated
as [85]:

~J = ~S + ~L − ε0

∮

Σ

d2xn̂ · ( ~E~x × ~Arot). (1.17)

If ~E~x × ~Arot ≡ ~E(~x × ~Arot) falls off sufficiently fast with | ~x |, the con-
tribution from the surface integral

∮
Σ

in the previous expression can be
neglected. This is the reason that why one usually considers the total an-
gular momentum composed by two terms, the spin angular momentum, ~S,
and the orbital angular momentum ~L :

~J = ~S + ~L. (1.18)



14 Chapter 1. Orbital angular momentum of light

With regard to the SAM, in 1909 Poynting reasoned that circularly po-
larised light must carry angular momentum [66], and in the 1930’s Beth
experimentally demonstrated his idea from the observation of the twisting
moment (torque) which acted on a birefracting metal foil illuminated by
circularly polarized light [20].
More recent is the discovery of the orbital angular momentum (OAM),
which is connected with the spatial structure of the field [2]. If the SAM
of light makes an absorbing particle spin around its own axis, the OAM of
light makes the particle rotate around the beam axis ([4, 7, 32, 61, 73]).

1.2.2 OAM in quantum mechanics

In the previous section we have described the orbital angular momentum
referred to a beam of light, whereas this section wants to be a brief summary
about the characterization of the orbital angular momentum when referred
to single photons.

Angular momentum operators

Quantum mechanics associates operators to the physical measurable quan-
tities of a system (the observables): the possible and only result of a mea-
surement is the average value of the operator associated to the quantity we
are interested in, calculated with respect to the wave function describing
the state of the system.
To the physical quantity angular momentum, quantum mechanics asso-
ciates an operator Ĵ 1 [13]. In the same way as for the classical field, this
operator can be decomposed into two terms, corresponding to spin and
orbital angular momentum [91]:

Ĵ = Ŝ + L̂ (1.19)

The z component of the orbital angular momentum operator turns out to
be:

L̂z = (~̂r × ~̂p)z =
~

i

(
x̂

∂

∂y
− ŷ

∂

∂x

)
= −i~

∂

∂θ
(1.20)

which is valid in Cartesian and cylindrical coordinates respectively, where
φ is the polar angle of ~r.
The operators Ŝ, L̂ and Ĵ satisfy the standard commutation rules for angular
momentum operators:

[Si, Sj] =
∑

k

i~εijkSk (1.21)

1Differently from all the others sections, in this section the symbol ˆ indicates an
operator instead of a unit vector.
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[Li, Lj ] =
∑

k

i~εijkLk (1.22)

[Ji, Jj ] =
∑

k

i~εijkJk (1.23)

for i, j, k = x, y, z, with εijk the Levi-Civita pseudotensor.
Besides, in quantum regime there exists a severe limit on measurements of
angular momentum: it is impossible to measure simultaneously the angular
momentum and the spin of a photon

[Ĵi, Ŝj] = i~ǫijkŜk, (1.24)

the angular momentum and the orbital angular momentum

[Ĵi, L̂j] = i~ǫijkL̂k, (1.25)

and the spin and the orbital angular momentum

[L̂i, Ŝj ] = i~ǫijkŜk. (1.26)

This is expressed saying that the two operators associated to these physical
quantities do not commute.

OAM quantization compared to spin quantization

The spin of the photon is connected to the helicity and is described by the
circular polarization basis. The single photon spin along a fixed axis, e.g.
z-axis, is:

Sz = sz~ (1.27)

where sz can assume only two values: sz = ±1. All the other values are
possible only in beams of light, as superposition of the spin values of different
photons. In light beams the spin angular momentum is connected to the
polarization (figure 1.1):

sz = 0 for linearly polarized waves,

sz = +1 for waves with right circular polarization,

sz = −1 for waves with left circular polarization,

−1 < sz < 1 for elliptically polarized waves.

A deeper explanation of the concept of spin can be found in appendix A.
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Figure 1.1: The spin angular momentum of light is connected to the polarization of the
electric field. Left: light with linear polarization carries no spin. Right: right or left
circularly polarized light carries a spin of ±~ per photon (source: A. M. Yao and M. J.
Padgett, 2011 [94]).

On the other hand, the orbital angular momentum is described by the
quantum number ℓ and at the single photon level its component along z-axis
is:

Lz = ℓ~ (1.28)

where ℓ can assume any integer number, both positive and negative.

In classical electrodynamics it is connected with the spatial structure of
the field and gives rise to a helicoidal form of the wave front (figure 1.2 ):

- if ℓ = 0 the wave front is plane and the direction of the Poynting
vector is the same of the wave vector direction, i.e. ~S ‖ ~k ; 2

- if ℓ 6= 0 the wave front is helicoidal because, during the propagation
of the electromagnetic wave (along the direction of ~k), the Poynting
vector spirals around ~k, with constant inclination with respect to the
propagation axis (see next section).

1.2.3 Intrinsic and extrinsic nature of OAM

For a light beam

When we study the motion of massive quanta, the spin angular momentum
is considered as the intrinsic angular momentum, because it is the only an-
gular momentum that remains constant when the reference frame chosen
by the observer is changing. Instead, the orbital angular momentum of a

2When we mention the direction of the wave vector ~k we mean the average direction
of the electromagnetic wave propagation. This direction does not always coincide with
the instantaneous direction of propagation, which is represented instead by the Poynting
vector direction ~S.
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Figure 1.2: Plane wave front for (a) ℓ = 0 and helical wave fronts for (b) ℓ = 1, (c) ℓ = 2
and (d) ℓ = 3 (source: A. M. Yao and M. J. Padgett, 2011 [94]).

particle is considered extrinsic because its value depends on the reference
frame chosen by the observer and it can even vanish when the observer is
in the reference frame of the particle.
This distinction between spin and orbital angular momentum that applies to
massive particles, is no more valid when we refer to paraxial beam of light.
In this case, we have highlighted that spin is connected to the polarization,
whereas the orbital angular momentum depends on the spatial structure
of the beam, so it is possible to find even a paraxial beam of light with
an intrinsic orbital angular momentum. We can find this situation when,
in the reference frame we are considering, the transverse orbital angular
momentum integrated over the entire plane perpendicular to the z axis of
propagation is null. In other words, the spin angular momentum is always
intrinsic, while the z component of the orbital angular momentum can be
defined intrinsic only if the z direction is such that the transverse momen-
tum integrated over the entire beam is null [58]. So, when we make sure
the axis direction is chosen in order to obtain a null transverse momentum,
we can state that the orbital angular momentum does not depend on which
lateral position relative to the axis we select. Therefore, unlike the spin
angular momentum of a light beam which is always intrinsic, the orbital
angular momentum of an electromagnetic beam may be either extrinsic or
intrinsic.
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For a single photon

If we consider a single photon, its intrinsic properties are:

- null mass,

- null electrical charge,

- spin quantum number equal to 1.

These three properties define a photon, and do not depend on the chosen
reference frame.
Orbital angular momentum is associated with the phase profile of the light
beam and directly depends on the spatial coordinates: because of this, it
is not an intrinsic property of photons, it is a property of the field. It can
be defined for a single photon [45], but it depends on the reference frame
used. Indeed, to define the OAM of a single photon, we need at least two
photons (one used as a spatial reference for the other) or an axis to be used
as a reference frame. So, we can define the OAM of a single photon, but
this measurement requires an appropriate set-up of the experiment.
In [83], Tamburini and Vicino discussed that the OAM of a photon is an ex-
trinsic property, i.e. OAM of a single photon depends on the used reference
frame.

1.3 Paraxial beams of light: the Laguerre-Gaussian

modes

In quantum mechanics the wave function describing a specific state of the
analyzed system is represented by a vector in a space defined by a complete
set of basic and arbitrary functions in a Hilbert space. The square of the
absolute value of the components of such a vector along the axes of the
adopted reference frame gives the probability to find our system in the states
identified by the corresponding eigenvector axes. Analogously, the field
amplitude of an electromagnetic wave can be described by using different
orthonormal bases.
The modern study of optical angular momentum [25] can be said to have
started with the paper of Allen et al. [2]. In this work it was found that
Laguerre-Gaussian light beams possess an orbital angular momentum of
ℓ~ per photon, where ℓ is the so-called azimuthal index of the beam. This
paper showed that any beam with the following expression for the amplitude
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distribution in cylindrical coordinates3:

u(r, θ, z) = u0(r, z)eiℓθ (1.29)

carried orbital angular momentum about the beam axis4. The orbital con-
tribution is determined solely by the azimuthal phase dependence and is
equivalent to ℓ~ per photon. A Laguerre-Gaussian beam, familiar from
paraxial optics, is a physically realizable example of light with this phase
distribution.

In the following sections, we are going to analyze light beams emitted
by lasers under paraxial conditions (i.e., when the second order aberrations
can be neglected), because under these conditions the separation of optical
angular momentum into spin and orbital parts is straightforward. On the
other hand, in exact (or non-paraxial) beams with exp(iℓθ) dependence,
neither the spin nor the OAM are physically observable quantities. Indeed,
in a general situation, the polarization and spatial degrees of freedom are
coupled by Maxwell equations [9]. However, in beams with sizes much
larger than the wavelength, which thus propagate in paraxial regime, both
properties may be controlled separately.

Paraxial beams in a refractive medium

If the beam propagates paraxially in vacuum or in a homogeneous and
isotropic medium, Lz and Sz are separately conserved. On the other hand,
the anisotropy of a medium acts on the polarization and affects SAM,
whereas the inhomogeneity of a medium acts on the wavefront and affects
OAM [18]5.

1.3.1 Paraxial beams and nature of the orbital angular

momentum

It is evident from equation (1.9) that the linear momentum of a plane wave
lies along the direction of propagation (which we suppose to be along the z
axis), so there cannot be any component of the angular momentum along

3If we consider a plane perpendicular to the propagation axis z, r is the distance from
the propagation axis and θ is the azimuthal angle.

4In the literature, the argument of the exponential term can be expressed both with
+ and with − sign, it makes no difference for the discussion.

5Whenever SAM and OAM affect each other during propagation, optical spin-orbit

coupling effects take place . A special case of spin-orbit coupling effect is SAM-OAM

conversion, which is defined as an optical process in which SAM and OAM both vary
during propagation but the total angular momentum is conserved, whatever the input
state of light is [12, 50].
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this direction. However, the electric and magnetic fields generated by a laser
are not perfectly transverse, but they have some small components along
direction ẑ. Considering these beams of polarized laser light, the electric
field in cylindrical coordinates (r, θ, z)6 has the following form:

~E(~r, t) = σ̂u(r, θ, z)ei(kz−ωt) + c.c. (1.30)

where σ̂ is the polarization unit vector, ω is the angular frequency of the elec-
tromagnetic wave, c.c. represents the complex conjugate, and the complex
function u(r, θ, z) is a function describing the form of the field amplitude
profile, and is defined as:

u(r, θ, z) = u0(r, z)eiℓθ. (1.31)

We notice that the total phase of the field has acquired a new component,
so now we have:
wave phase = kz − ωt + ℓθ .
The component ℓθ, where θ is an angle, is the azimuthal phase: it is be-
cause of the presence of an azimuthal component of the linear momentum
density that the orbital angular momentum arises [3]. In fact, in the case
where the electric field and the magnetic field are transverse to the prop-
agation direction ~k, the linear momentum density ~p = ε0

~E × ~B is parallel
to ~k and therefore the integration of the angular momentum density (which
varies according to the position with respect to the considered z axis, but
which is always perpendicular to ~k) turns out to be equal to zero. So, when
the electromagnetic wave fields have no components along the propagation
direction ~z, there is no orbital angular momentum. Instead, when the elec-
tric field and the magnetic field of the electromagnetic wave have also a
component along ~k 7, the linear momentum density is no more parallel to
~k, therefore the radial and azimuthal components of ~Sp appear. This last
component, in its turn, gives origin to an angular momentum density no
more perpendicular to ~k: in this way, when it is integrated, it does not
completely cancel out, but a component along ~k remains still present. If
those conditions are valid,

~J =
1

c2

∫
~r × ~Spdτ = ~Jz 6= 0 when Ez 6= 0, Bz 6= 0, (1.32)

then the Poynting vector ~Sp spins around the average propagation direction,
and in this way it creates a helicoidal wave front and gives rise to the or-
bital angular momentum. It’s important to put in evidence again that it is

6From now on it will be convenient the use of cylindrical coordinates (z, r, θ), with
the z axis coinciding with the average direction of the field’s propagation.

7In this ~kcase represents only the average propagation direction, but not the instan-
taneous one, i.e. the direction of the Poynting vector ~Sp is not constant.
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fundamental the existence of the electric and the magnetic field components
along ~k: thanks to them the azimuthal and radial components of the linear
momentum density are created, and when they are vectorially multiplied
with ~r, they generate a component of the angular momentum density along
z, so that ~J = ~Jz 6= 0
We said that (1.31) is the complex scalar function describing the field ampli-
tude distribution of a wave carrying OAM, and satisfying the wave equation
in paraxial approximation conditions (i.e. | ∂2ψ

∂z2
|≪ k | ∂ψ

∂z
|). In this

approximation we do not consider the second derivative with respect to
the z coordinate, so there are no second order aberrations. One can easily
demonstrate that under these conditions the radial and azimuthal compo-
nents along the z-axis of the linear momentum density ~p = ε0

~E × ~B for a
circular polarized beam propagating in the z direction are:

pr = ε0
ωkrz

z2
R + z2

|u|2, (1.33)

pθ = ε0

[
ωℓ

r
|u|2 − 1

2
ωsz

∂|u|2
∂r

]
, (1.34)

pz = ε0ωk|u|2. (1.35)

The component (1.33) is due to the divergence of the beam during its prop-
agation. The first term of (1.34) depends on ℓ, where ℓ~ has been defined
as the orbital angular momentum along z for the single photon; the second
term is related to the spin, where sz~ is the spin angular momentum along
z of the single photon. The last component, (1.35), is the linear momentum
in the propagation direction.

In the description of the field given by Laguerre-Gaussian modes (an-

Figure 1.3: The trajectory of the Poynting vector and the components of linear momen-
tum density (source: Allen et al. 1992 [2]).
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alyzed in the next section), the temporal average of the real part of the
linear momentum density of arbitrarily polarized light is given by:

ε0

2
( ~E∗ × ~B + ~E × ~B∗) = iω

ε0

2
(u∗~∇u − u~∇u∗) + ωkε0|u|2ẑ + ωsz

ε0

2

∂|u|2
∂r

θ̂

(1.36)
where the first two terms are independent from polarization (one can demon-
strate that the gradient is only on the azimuthal phase) and depend on the
structure of the beam phase, while the last term depends on the polariza-
tion state and the gradient of the beam intensity [2]. So it is important to
notice that:

- the orbital terms are generated by the phase gradient;

- the spin term is related to the polarization and the intensity gradient.

1.3.2 The Laguerre-Gaussian modes

The field amplitude of a laser light beam is well described by the Laguerre-
Gaussian (LG) modes: in the paraxial approximation such modes satisfy
Maxwell’s equations [56] and represent the form of the amplitude profiles
of the electric field inside a laser cavity 8. Since the electric and mag-
netic fields in laser beams are not perfectly transverse, in Laguerre-Gaussian
modes appears the term exp(−iℓθ) which encodes an azimuthal phase and,
consequently, an azimuthal angular momentum additional to spin angular
momentum. These modes have a rotational symmetry along their own axis
of propagation and an intrinsic orbital angular momentum ℓ~ for the single
photon.
It is useful to express most beams in a complete basis set of orthogonal
modes. For OAM carrying beams this is most usually the Laguerre-Gaussian
mode set. Indeed, the analogy between quantum mechanics and optics in
paraxial conditions9 suggests that these modes are the autofunctions of
the orbital angular momentum operator Lz. Thus, the Laguerre-Gaussian
modes define a basis for the orbital angular momentum description in parax-
ial light beam, i.e. they constitute a complete set of orthonormal autofunc-
tions, which are solutions of the paraxial wave equation.

8One can say the same for the Hermite-Gauss modes.
9There is a powerful analogy between paraxial optics and quantum mechanics. Here

the Schrödinger wave equation is identical to the paraxial form of the wave equation with
t replaced by z. The analogy allows much of paraxial optics, including orbital angular
momentum, to be studied using the formalism of quantum mechanics.
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A Laguerre-Gaussian mode has amplitude:

upl(r, θ, z) =
C

(1 + z2/z2
R)1/2

[
r
√

2

w(z)

]ℓ
Ll
p

[
2r2

w2(z)

]
exp

[ −r2

w2(z)

]
exp

[ −ikr2z

2(z2 + z2
R)

]
×

× exp(−iℓθ) exp

[
i(2p + ℓ + 1) tan−1

(
z

zR

)]

(1.37)

where zR is the Rayleigh range, w(z) is the beam waist, Lℓ
p is the associated

Laguerre polynomial, and C is the constant of normalization. The integers
p and ℓ are indices characterizing the different Laguerre-Gaussian modes:

- the index ℓ represents the number of helices interweaving each other
within the space of a wavelength λ and is equal to the OAM parameter
ℓ; when Laguerre-Guassian modes are interfered with a plane wave,
we observe on a screen ℓ spiral arms (fig. 1.4);

Figure 1.4: On the left: wave front shapes for different ℓ values. In the middle: LG
intensity patterns on a plane perpendicular to the propagation direction. On the right:
intensity patterns on a plane perpendicular to the propagation direction for Laguerre-
Gaussian beams interfered with a plane wave. p = 0 for each beam. (source: Optics
Group of the University of Glasgow, www.physics.gla.ac.uk/Optics/Miles).

- the index p constitutes the number of radial nodes; (p + 1) is the
number of rings we see on a screen when we observe a Laguerre-
Gaussian beam (fig. 1.5).
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Figure 1.5: Laguerre-Gaussian intensity patterns, for different ℓ and p
values (source: Sasada Lab., Department of Physics, Keio University,
http://www.phys.keio.ac.jp/guidance/labs/sasada/research/orbangmom-en.html).

When ℓ = 0 and p = 0 Laguerre-Gaussian modes reduce to Gaussian modes
(i.e. modes where the function describing the spatial distribution of the
field in the plane perpendicular to the propagation direction is a Gaussian
function) because the beam has no orbital angular momentum.
Instead, for a Laguerre-Gaussian mode with ℓ 6= 0, surfaces of constant
phase have helicoidal form and the resulting phase discontinuity (the singu-
larity) which is present along the axis, causes the annulment of the intensity
along the axis.

1.3.3 The Poynting vector in Laguerre-Gaussian modes

If we neglect small terms in the ẑ coefficient, the Poynting vector for a
Laguerre-Gaussian mode with linear polarization becomes [62]:

~Sp = C
zr

z2
r + z2

( zr

z2
r + z2

r̂ +
ℓ

kr
θ̂ + ẑ

)
(1.38)

where z is the distance from the beam waist, zr is the Rayleigh range,
k is the wave number, and C is a constant which depends on the radial
position within the intensity distribution, the wavelength of the light and is
proportional to the total power in the beam. The presence of the component
θ̂ implicates that the Poynting vector has an azimuthal component during
its propagation: therefore it spirals around the propagation axis, as we can
see in figure 1.6.
Let us summarize: the intensity pattern projected by a LG beam on a screen
perpendicular to the propagation direction has the following characteristcs:

- if ℓ = 0

- for p = 0: Laguerre-Gaussian modes reduce to Gaussian modes,
the beam has no orbital angular momentum. The Poynting vec-
tor is parallel to the z axis, giving rise to a spot of light with
intensity decreasing from the spot’s center to outside, according
to a typical gaussian profile;
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Figure 1.6: The helical wavefront characterized by an azimuthal phase term (ℓ = 1) and
the associated Poynting vector, the azimuthal component of which gives rise to an orbital
angular momentum (source: Torres et al. 2011 [88])

- for p 6= 0: a central spot of light is still present, and around it
there are p concentric rings;

- if ℓ 6= 0: the Poynting vector, spinning around the z axis, creates a field
distribution with (p + 1) maxima, which originate (p + 1) concentric
rings around a singularity with null intensity. The radius of the rings
is proportional to the ℓ value.

From equation (1.38) we find that, away from the beam waist, the azimuthal
rotational velocity is given by:

∂θ

∂z
=

ℓ

kr
z2. (1.39)

From this equation we see that, fixing constant the radius, the Poynting
vector follows a spiral path, characterized by a constant angle between ~Sp
and ~k, given by

θ =
ℓ

kr
(1.40)

and by a step zp necessary to carry out a complete rotation of 360◦, expressed
as:

zp =
2πkr2

ℓ
. (1.41)

We notice that zp ∝ r2, so in the proximity of the z axis the Poynting vector
spirals around ~k with a short step, whereas moving away from the axis of
the beam we find that ~Sp spirals with a step greater and greater, infinite to
the limit (see figure 1.7).

1.4 Optical vortices

Traditionally wave propagation is analyzed by means of regular solutions of
wave equation. These solutions often have some singularities, namely some
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Figure 1.7: Propagation of the Poyinting vector associated to the different rings of the
Laguerre-Gaussiam mode p = 3, ℓ = 1 (source: Allen et al. 1995 [62]).

points or lines in the space where the mathematical quantities describing
the physical properties of waves become infinite or change abruptly. For
example, a phase singularity is a point where the wave phase is undefined
and intensity vanishes. Phase singularities can be found in every type of
wave, from tidal waves whose singularity is the point at which all cotidal
lines meet and at which tide height vanishes giving rise to a whirlpool, to
electromagnetic waves.
In waves of light, phase singularities [19, 21] form the so-called optical
vortices. Phase singularities are topological features of the wave front,
which one can find in light beams having orbital angular momentum: in-
deed, the helicoidal form of wave front causes an indetermination of phase
on the axis around which the wave front wraps itself up. This wave front
discontinuity along the axis has a null field intensity associated, due to the
destructive interference of all the different wave phases which meet along
the axis [47]. In other words, the phase of an electromagnetic wave carrying
a certain quantity of orbital angular momentum turns out to be undefined
along the propagation axis, because it is where different wave phases join,
giving rise to destructive interference. Therefore such phase singularities
of the wave function appear as points where the wave function modulus
becomes equal to zero, and are called dislocations or optical vortices: such
a name is due to the structure of the surface of constant phase, which looks
like a dislocation with the form of a helix, and to the direction of the phase
gradient, which spins and wraps itself up around the singularity line, simi-
larly to a fluid in a water whirlpool. The Poynting vector spins around the
vortex nucleus in a given direction: from equation (1.39) we infer that at
the centre of the vortex this rotational velocity is infinite. So, the features
of an optical vortex are essentially two (fig. 1.8):
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1. a wave front with a helicoidal form, therefore the beam of light is
endowed with orbital angular momentum,

2. a wave front discontinuity along the propagation direction, therefore
a phase discontinuity: light intensity is equal to zero along that axis
(no more gaussian spot of light, but rings of light around a singularity
with null intensity).

Figure 1.8: The wave front (top) and the intensity pattern (bottom) of the simplest
Laguerre-Gaussian mode. The index ℓ is referred to as the winding number, and (p + 1)
is the number of radial nodes. Here we only consider the case of p = 0. The azimuthal
phase term exp(iℓθ) of the Laguerre-Gaussian modes results in helical wave fronts. The
phase variation along a closed path C around the beam center is 2πℓ. Therefore, in order
to fulfill the wave equation, the intensity has to vanish in the center of the beam (source:
Mair et al. 2001 [47]).

Phase singularities (or dislocations, or optical vortices) are characterized
by the fact that phase undergoes a changing of an entire multiple of 2π
along a closed circuit C around the middle of the vortex (fig. 1.9). As a
consequence, it becomes useful to define the concept of topological charge of
an optical vortex. We remind that, in order to describe the field amplitude,
we have defined a complex scalar function given by eq. (1.31), which can
be expressed also in the following way:

u(~r) = |u(~r)|eiχ(~r) (1.42)

where χ(~r) represents the phase of the wave amplitude.
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Figure 1.9: On the left: wave front shapes for different ℓ values and p = 0. In the
middle: LG intensity patterns on a plane perpendicular to the propagation direction.
On the right: phase variation on a plane perpendicular to the propagation axis, with
different colours for different phase values (source: Optics Group of the University of
Glasgow, www.physics.gla.ac.uk/Optics/Miles).

The topological charge of the vortex is defined as the circuitation of the
phase gradient around the singularity, so we define the topological charge
as the following integral:

Q =
1

2π

∮

c

∇χ · d~s (1.43)

which is positive if the phase grows up along the path of integration, and
negative in the opposite case. It is evident that it turns out to be:

Q = ℓ, (1.44)

so the topological charge of the vortex is a measure of the orbital angular
momentum of the beam [42].
The phase variation along the closed path C circuiting the centre of the
beam is 2πℓ, therefore intensity must vanish in the middle of the beam in
order to fulfill the wave equation. The value of ℓ is the number of times the
phase undergoes a change of 2π in a wavelength, whereas its sign represents
the handedness of OAM.
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Optical vortices in Nature

Optical vortices do not represent a purely artificial feature of light (orig-
inated, for example, when a beam of laser light goes through a hologram
created by computers, or a spiral phase plate [11, 89]), but can be generated
naturally by some deformations of the wave front, which can be caused by
the passing through a non linear medium.
Anisotropic optical vortices occur in speckle patterns, which arise naturally
from the interference of a large number of more or less random plane waves
[17]. At particular places in a speckle pattern the amplitude of the field van-
ishes, causing the phase to be singular. Around these phase singularities
an optical vortex is formed, whose exact form is determined by the local
interference of plane waves. Natural optical vortices are anisotropic, i.e.
they still have a complex amplitude with an azimuthal behaviour charac-
terized by the term exp(iℓθ) but, unlike isotropic optical vortices, the phase
increase does not go linear with the azimuth coordinate θ. Not only does
the phase increase in a nonlinear way around an anisotropic vortex, also the
intensity profile around it is anisotropic, i.e. the lines of constant intensity
are ellipses (fig. 1.10).
Describing the azimuthal behaviour of the field around an anisotropic op-

Figure 1.10: Phase of the field for (a) an isotropic ℓ = 1 optical vortex and (b) an
anisotropic ℓ = 1 optical vortex. Black lines (there are eight lines, from the center
outwards) indicate equal-phase lines and are spaced π/4 radians apart. In (b) the lines
are more closely spaced around the y axis, showing the anisotropic character of the vortex.
In addition, the dashed lines indicate lines of constant intensity. For an isotropic optical
vortex, the lines of constant intensity are circles, while for an anisotropic optical vortex
they are ellipses (source: Berkhout 2011 [17]).

tical vortex requires more than one pure optical vortex mode, such that the
field can be decomposed in the orthogonal basis of pure vortex modes:

u(θ) =
∑

ℓ

cℓ√
2π

eiℓθ (1.45)
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where the factor 1/
√

2π ensures the normalization. The coefficient c0 is
related to the local intensity of the field, the coefficients c−1 and c+1 are
related to the derivatives of the field. In the case of an isotropic optical
vortex cℓ = δℓ,m, where δi,j is the Kronecker delta.

The optical vortex coronograph

Light coming from astronomical sources can be manipulated at the tele-
scope. We have seen that when a beam of light carries orbital angular
momentum, its intensity vanishes on the propagation axis: this property
of optical vortices can be used in astronomical field to detect extrasolar
planets. Using appropriate manipulation of light, one can induce orbital
angular momentum in the light coming from the on-axis star, in order to
obscure it and allow to observe nearby planets, which otherwise would be
invisible because of the great difference of their magnitude with respect
to the star. In this case star light behaves like a coronograph for itself
[8, 24, 40, 41, 46, 49, 82].



Chapter 2
Photon orbital angular momentum

and mass in a plasma vortex

As astronomers, we are interested in how the orbital angular momentum of
light can be exploited in the field of astronomy:

• astronomers may produce OAM:

- with the so-called optical vortex coronograph, an optical instru-
ment that exploits the geometrical properties of optical vortices
to allow seeing very faint objects near very bright objects, that
would normally be obscured by glare (e.g. extrasolar planets near
their host star). Vortices are artificially produced by optical el-
ements (spiral phase plates) inserted in the optical path of light
through the telescope, so that the light of the on-axis source (e.g.
the hosting star) is rejected without altering the light of off-axis
sources (e.g. extrasolar planets) [8, 24, 40, 41, 46, 49, 82];

- to overcome the Rayleigh criterion limit with optical vortices, in
order to resolve two sources at angular distances much below the
Rayleigh limit [77];

• astronomers may use OAM as a new diagnostic observable of light,
in order to get additional information about the Universe [23, 31], in
particular about:

- very massive and rotating objects, e.g. Kerr black holes, since
their space-time dragging can imprint OAM on light passing
through their surroundings [81];

- inhomogeneous plasmas traversed by photons during their travel
from the astrophysical source to the observer (this is the topic
dealt with in this chapter) [80].

31
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In this chapter we analyze the mechanism of photon mass acquisition in
a plasma and study the contribution to the mass from the orbital angular
momentum acquired by a beam of photons when it crosses a spatially struc-
tured charge distribution. To this end we apply Proca-Maxwell equations
in a static plasma with a particular spatial distribution of free charges, no-
tably a plasma vortex, that is able to impose OAM onto light. In addition
to the mass acquisition of the conventional Anderson-Higgs mechanism, we
find that the photon acquires an additional mass from the OAM and that
this mass reduces the Proca photon mass.
The results exposed in this chapter can be found in the publication "Photon
orbital angular momentum and mass in a plasma vortex" [80].

2.1 Introduction

Influenced by results derived in 1962 by Schwinger [71], in 1963 Anderson
showed that a photon propagating in a plasma acquires a mass, called also
effective mass, defined as:

meff =
~ωp
c2

(2.1)

where ωp is the plasma frequency1, ~ is the reduced Planck constant and
c is the velocity of light in vacuum [5, 54]. In this process the photon ac-
quires an effective mass because of its interaction with plasmons (collective
oscillations of the free electron gas density at precise frequencies) [53].
In order to study photons that have acquired an effective mass, it is con-
venient to replace Maxwell’s equations by Proca-Maxwell equations, which
are the equations describing a massive electromagnetic field [29, 37]. In this
chapter we are going to use this approach to analyze the contribution to the
mass from the orbital angular momentum acquired by a beam of photons
as it traverses a spatially structured charge distribution.
OAM can be generated by the imprinting of vorticity onto the phase distri-
bution of a beam when it crosses inhomogeneous non-linear optical systems
[6] or particular spatial structures such as fork holograms or spiral phase
plates. Such a beam can be described by a superposition of Laguerre-
Gaussian (LG) modes characterized by the two integer-valued indices ℓ and
p [2]. The azimuthal index ℓ describes the number of twists of the helical
wavefront in a wavelength and the radial index p gives the number of radial
nodes of the mode. The electromagnetic field amplitude of a generic LG

1Free electrons and positive ions within a plasma have densities oscillating at a natural
frequency ωp, the plasma frequency. It defines a cutoff frequency below which there is
no electromagnetic propagation and the penetrating wave drops off exponentially, while
at frequencies above ωp absorption is small and the plasma is transparent.
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mode, in a plane perpendicular to the direction of propagation, is

Fpl(r, θ) =

√
(ℓ + p)!

4πp!

(
r2

w2

)|ℓ|

L|ℓ|
p

(
r2

w2

)
e−

r
2

2w
2 eiℓθ (2.2)

obeying to the orthogonality condition

∫ ∞

0

rdr

∫ 2π

0

F ∗
pℓFp′ℓ′dθ = δpp′δ

ℓℓ′ (2.3)

where w is the beam waist, L
|ℓ|
p is the associated Laguerre polynomial, and

r and θ are the cylindrical coordinates in the plane perpendicular to the
direction of propagation z. As we stated in chapter 1, the phase factor
exp(−iℓθ) is associated with an OAM of ℓ~ per photon, and a phase sin-
gularity is embedded in the wavefront, along the propagation axis, with a
topological charge ℓ [2, 93].
As is well known, not only the linear momentum of light but also its angular
momentum can propagate to infinity [38, 72, 85]. The OAM property of
the field remains stable during the propagation in free space and has been
experimentally verified down to single-photon limit [58]. It has also been
studied theoretically [83].
Different is the case of photons propagating in inhomogeneous media [39].
The exchange of angular momentum between a photon beam and a plasma
vortex and the possible excitation of photon angular momentum states in
a plasma was analyzed in ref. [55]. In this chapter we show that the OAM
acquired by a photon in a spatially structured plasma can be interpreted as
an additional mass-like term that appears in Proca equations. More specif-
ically, we study the propagation of a photon with wavelength λ in a static
helicoidally distributed plasma with step q0 = λ/b, where b is an integer.
The possibility of studying space plasma vorticity remotely by measuring
the OAM of radio beams interacting with the vortical plasma was pointed
out by Thidé in 2007 [84]. Here we analyze this possibility theoretically
by studying the exchange of angular momentum between a plasma medium
and a photon beam.

2.2 Photons in a static plasma vortex

Let us consider an isotropic plasma, cast to form a helicoidal static plasma
vortex. The heavy ions constitute a neutralising background and their mo-
tion can, in the first approximation, be neglected. If we consider transverse
electromagnetic waves propagating through this kind of plasma, we can
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describe them by the electric field propagation equation2

(
∇2 − 1

v2
ph

∂2

∂t2

)
~E = µ

∂~j

∂t
(2.4)

where vph = (εµ)−1/2 is the phase velocity of light in a medium with permit-
tivity ε and permeability µ, and the electron current~j = −en~v is determined
by the electron fluid equations

∂n

∂t
+ ∇ · n~v = 0, (2.5)

∂~v

∂t
+ ~v · ∇~v = − e

m
( ~E + ~v × ~B). (2.6)

where n is the electron number density, ~v is the velocity of the electrons in
the medium, e is the electron electric charge and m is the electron mass.
Thermal and relativistic mass effects are ignored.
The presence of a static plasma perturbation with helical structure brings
about a new definition of the mean electron velocity and density, which
become:

~v = ~v0(~r, t) + δ~v (2.7)

where ~v0 is the background velocity and δ~v is the perturbation associated
with the propagating electromagnetic wave, and

n = n0 + ñ(r, z) cos(ℓ0θ + q0z) (2.8)

where n0 is the background plasma density, and the plasma helix vortex
density perturbation is described by the second term. It is expressed in
cylindrical coordinates, ~r ≡ (r, θ, z), and it depends on the distance with
respect to the vortex axis of symmetry and can vary slowly along z, on a
scale much longer than the spatial period z0 = 2π/q0 (where q0 is the helix
step)3 .
So, ignoring the plasma rotation and considering the case of a static helical
perturbation, the current density of the plasma now becomes ~j = −en(~r)δ~v,
and the propagation equation of the electric field takes the following form:

{

∇2 − 1

v2
ph

∂2

∂t2
−

ω2
p0

v2
ph

[1 + ε(r, θ, z)]

}
~E = 0 (2.9)

where

ω2
p0 =

e2n0

ε0m
(2.10)

2We use MKS system of units.
3For a typical double vortex we will have ℓ0 = 1.
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represents the square of the frequency of the plasma with no density per-
turbation (where ε0 is the permittivity of free space), and

ε(r, θ, z) =
ñ(r, z)

n0
cos(ℓ0θ + q0z) (2.11)

expresses the vortex perturbation.
We further assume that waves propagate along the vortex axis Oz, and
consider solutions of the form

~E(~r, t) = ~A(~r) exp

[
−iωt + i

∫ z

k(z′)dz′
]

(2.12)

where ω is the wave frequency, k = 2π/λ is the wave number, and ~A(~r) is
the wave amplitude: it varies slowly along z and satisfies 4

∣∣∣∣∣
∂2 ~A

∂z2

∣∣∣∣∣ <<

∣∣∣∣∣2k
∂ ~A

∂z

∣∣∣∣∣ . (2.13)

We can reduce the wave equation (2.9) to the perturbed paraxial equation:
[

∇2
⊥ + 2ik

∂

∂z
−

ω2
p0

v2
ph

ε(r, θ, z)

]
~A = 0 (2.14)

with the dispersion relation connecting k and ω that has the form:

k2 =
1

v2
ph

(ω2 − ω2
p0). (2.15)

We observe that if there was no vortex perturbation, equation (2.14) would
reduce to the usual paraxial optical equation 5. Instead, considering our
case characterized by a vortex perturbation, a general solution to the wave
equation in the paraxial approximation can be represented in a basis of
orthogonal Laguerre-Gaussian modes, according to the expansion [55]

~A(r, θ, z) =
∑

pℓ

Apℓ(r, z)eiℓθe−
r
2

2w
2 êpℓ (2.16)

where w ≡ w(z) is the beam waist, êpℓ are unit polarization vectors and Apℓ

are the amplitudes, defined by

Apℓ(r, z) = Apℓ(z)

√
(ℓ + p)!

4πp!

(
r2

w2

)|ℓ|

L|ℓ|
p

(
r2

w2

)
(2.17)

4Equation (2.13) states that an acceleration (the term on the left) is much smaller than
the corresponding velocity (the term on the right), and so it mathematically expresses

that ~A(~r) varies slowly along z.
5The paraxial equation is the equation describing the wave in the immediate vicinity

of the optical axis.
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where L
|ℓ|
p (x) are the associated Laguerre polynomials, the integer p is the

radial quantum number and ℓ is the azimuthal quantum number. Substi-
tuting equation (2.16) in equation (2.12), we can express the total electric
field as a superposition of Laguerre-Gaussian states:

~E(~r, t) =
∑

pℓ

~Epℓ(~r) exp

(
−iωt + i

∫ z

k(z′)dz′
)

(2.18)

with
~Epℓ(~r) = ~Apℓ(z)Fpℓ(r, θ) (2.19)

where Fpℓ(r, θ) is the one given in eq. (2.2). When a vortex perturbation
ε(r, θ, z) is present, these modes will be coupled to each other through the
relation [55]

∂

∂z
Apℓ(z) =

i

2kv2
ph

∑

p′ℓ′

K(pℓ, p′ℓ′)Ap′ℓ′ (2.20)

where K(pℓ, p′ℓ′) are the coupling coefficients, defined by:

K(pℓ, p′ℓ′) = ω2
p0

∫ ∞

0

rdr

∫ 2π

0

F ∗
pℓFp′ℓ′ε(r, θ)dθ. (2.21)

They can be reduced to

K(pℓ, p′ℓ′) = ω2
p0δpp′

∫ 2π

0

ε(θ)ei(ℓ
′−ℓ)θdθ (2.22)

when we consider the simplest case, that is the case when ε depends only
on the azimuthal angle θ 6.
Let’s try to understand the physical meaning of the mode coupling. We
have to imagine that the photon, traveling through the static plasma vor-
tex, bumps into the electrons forming the vortex, and the different and
subsequent impacts generate the photon orbital angular momentum. Ob-
viously, there is not a transfer of a sharp OAM characterized by a precise
topological charge l, but as long as the photon goes through the plasma, it
hits electrons and, by this way, acquires orbital angular momentum.

Generally speaking, it is important to highlight that the superposition of
states is different from the coupling. In fact, in superposition the different
states are independent, while in coupling the different states depend on
each other, according to a defined relation. So, in coupling, a mode is not
necessarily composed by all the other modes. An example is given by the
case analyzed right now: the mode coupling is weak, and so it is simply
given by a basic mode and some perturbations.

6This expression remains valid when the radial scale of the plasma vortex is much
larger than the photon beam waist w(z).
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Special solution: photon beam with no initial OAM

Now we want to analyze the special case of:

- a photon beam with no initial OAM, and that can be described by
~Epl = 0 for l 6= 0. We are particularly interested in this case because
ordinary stars should not emit OAM, so starlight traversing interstel-
lar plasma should have no initial orbital angular momentum;

- a mode coupling sufficiently weak to consider the zero OAM mode
dominant over the entire interaction region, such that |Ep0| >> |Ep′l′ 6=0|.
We are interested in this assumption because it reflects the character-
istics of rarefied astrophysical plasmas.

So, starting from a helical static plasma perturbation defined by equation
(2.9), with these assumptions we obtain [55]:

K(pl, p′l′) = πω2
p0

ñ

n0

δpp′[δl′,−l0e
iq0z + δl′,l0e

−iq0z] (2.23)

Now we substitute this expression of the coupling coefficients in the coupled
mode equation (2.20), then we integrate over the axial coordinate z and
finally we obtain Apl(0) = A(0)δl0. If we assume the same polarization
state for all the interacting modes, we find that the field mode amplitudes
are given by

Ap,±l0(z) = i
πA(0)

2c2

∫ z

0

ω2
p0(z

′)

k(z′)

ñ(z′)

n0
e∓iq0z

′

dz′. (2.24)

The rate of transfer of OAM from the static plasma vortex to the electro-
magnetic field is described by this equation. We have to notice that this
last equation is only valid when the transfer of OAM is small, such that
the amplitude of the initial Gaussian mode Ap0 can be considered constant
along the axis.

General solution: photon beam with an initial OAM

A more general solution, where the amplitude of the initially excited mode
is allowed to change, is discussed in ref. [55]. The authors show that the
initial OAM state ℓi of the electromagnetic beam passing through the vortex
plasma decays over all the other states (ℓi + uℓ0), where u is an integer,
on a length scale approximately determined by the inverse of the coupling
constant, showing an effective exchange of OAM states between photons
and plasma.
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2.3 Proca equations

When one considers a photon propagating in a plasma, the usual Maxwell’s
equations can be replaced by the set of Proca equations (or Maxwell-Proca
equatios) in which there appears a mass-like term for the photon due to
light-matter interaction [37].
In the presence of charges ρ and currents

−→
j , the three-dimensional version of

the Proca equations, can be written in terms of the electric ~E and magnetic
~B fields (in SI units) as:

∇ · −→E =
ρ

ε0

− µ2
γφ (2.25)

∇×−→
E = −∂

−→
B

∂t
(2.26)

∇ · −→B = 0 (2.27)

∇×−→
B = µ0j + µ0ε0

∂
−→
E

∂t
− µ2

γ

−→
A (2.28)

(where ε0 and µ0 are the permittivity and the permeability of free space
respectively) together with the equations

~B = ∇× ~A (2.29)

~E = −∂ ~A

∂t
−∇φ (2.30)

and the Lorentz condition

∇ · −→A = − 1

c2

∂φ

∂t
(2.31)

where
−→
A is the vector potential, c = (ε0µ0)

−1/2 is the phase velocity of
light in vacuum, and φ is the scalar potential. µ−1

γ is a characteristic length
associated with the photon rest mass mγ by the relation:

mγ =
µγ~

c
(2.32)

For mγ tending to zero, Proca equations smoothly reduce to Maxwell’s
equations.
The Poynting vector for massive photons depends directly on both the scalar
and the vector potentials

−→
S =

1

µ0

(
−→
E ×−→

B + µ2
γφ

−→
A ) (2.33)

and also the energy density of the massive electromagnetic field has an
explicit dependency on the potentials

u =
1

2
(ε0

−→
E 2 +

1

µ0

−→
B 2 + ε0µ

2
γφ

2 +
1

µ0
µ2
γ

−→
A 2). (2.34)
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2.3.1 Proca equations for photons in a plasma

We have seen that a photon in a plasma gains an effective mass. On the
other hand we have seen Proca equations, which are equations describing
massive photons. Therefore we can try to use Proca equations to describe
the motion of photons in a plasma.
Before starting our analysis, it is important to remark that the scalar poten-
tial φ appearing in Proca equations and in the expression of the Poynting
vector and of the energy density u for a massive electromagnetic field must
be set equal to zero. In fact we know that along a fixed direction, e.g.
the z direction, the photon has spin with only two values, ±1, the third
component Sz = 0 does not have meaning because it is not a property of
the photon. So the photon rest mass has to be null because, according to
Heitler, if the photon had a finite rest mass, three independent polarizations
would exist, including a longitudinal polarization [35]. In a plasma there
is not an effective longitudinal component of polarization, because the one
we find actually is given simply by the scattering processes with electrons,
and not by a a real intrinsic nature of the photon. Therefore the lack of
this third spin component induces to consider equal to zero the photon rest
mass. As a consequence φ must be null, because such a scalar field is also
massive.

If we want to apply Proca equations to the plasma case, we have to insert
the effective photon mass that a photon acquires going through a plasma.
The photon mass in Proca equations is expressed by equation

mγ =
µγ~

c
(2.35)

whereas the effective photon mass is

meff =
ωp~

c
(2.36)

so, comparing these two equations, the inverse of the characteristic length
in a plasma, µγ, is equal to the plasma frequency: µγ = ωp.
With these assumptions (φ = 0 and µγ = ωp) the equations describing a
massive electromagnetic field become:

∇ · −→E =
ρ

ε0
(2.37)

∇×−→
E = −∂

−→
B

∂t
(2.38)

∇ · −→B = 0 (2.39)
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∇×−→
B = µ0J + µ0ε0

∂
−→
E

∂t
− ω2

p

−→
A, (2.40)

the Poynting vector takes the form

−→
S =

1

µ0

(
−→
E ×−→

B ) (2.41)

and the energy density is expressed by:

u =
1

2

(
ε0
−→
E 2 +

1

µ0

−→
B 2 +

1

µ0
ω2
p

−→
A 2

)
. (2.42)

Let’s start to develop the four-dimensional expression of Proca equations in
the case of a plasma. When considering the electromagnetic wave equation
of the Proca field, one obtains a Klein-Gordon equation for the 4-vector
potential Aµ:

(� − µ2
γ)Aµ = −µ0jµ (2.43)

where � = ( ∂
2

∂t2
−∇2) is the D’Alembertian differential operator. By differ-

entiating this expression with respect to time, and considering the simplest
case where µγ is a constant in time, one obtains

(� − µ2
γ)

∂

∂t
Aµ = −µ0

∂

∂t
jµ (2.44)

This last equation is constituted by four components, and separating the
temporal component from the spatial one we have:






(� − µ2
γ)

∂
∂t

A0 = µ0
∂
∂t

ρ

(� − µ2
γ)

∂
∂t

Ai = µ0
∂
∂t

ji.
(2.45)

From now on we are interested only in the second equation of (2.45). We
want to apply these equations to the case of photons moving in a plasma,
in particular we consider the case of a plasma with a well-defined structure,
a static plasma vortex. In this case the current density has the form
~j = −en(~r)δ~v, so its derivative becomes

∂

∂t
ji = −e[δ~v

∂

∂t
n(~r) + n(~r)

∂

∂t
δ~v] = −en(~r)

∂

∂t
δ~v (2.46)

where the first term in the square brackets has been eliminated because
we are considering a static plasma vortex, so the density n = n(~r) is not
a function of time. Since we are considering the case of a rarefied plasma
(because it is the case of interstellar plasmas), vph ∼ c and from now on
we use the unitary value for the phase velocity of light in vacuum, i.e.



2.3. Proca equations 41

vph ∼ c = 1. Thus, from the second equation in (2.45) and from equation
(2.46), in the case of a static plasma vortex one finds

(� − µ2
γ)

∂

∂t
~A = −en(~r)

∂

∂t
δ~v. (2.47)

Using equation (2.30) ( ~E = −∇φ − ∂ ~A/∂t) and remembering that we are
considering a scalar potential φ equal to zero, we can substitute the vector
potential so that the last equation can be expressed as

(� − µ2
γ)

~E = en(~r)
∂

∂t
δ~v. (2.48)

Explicating the D’Alembertian, assuming that δ~v is parallel to ~E (remem-
ber that δ~v is the perturbation of electrons velocity associated with the
propagating electromagnetic wave), and substituting from now on the light
velocity in vacuum (which, in our case, is a good approximation of the phase
velocity of light in the plasma, vph) with the unitary value, c = 1, we can
write (

∂2

∂t2
−∇2 − µ2

γ −
en(~r)∂t~v

ε0| ~E|

)
~E = 0. (2.49)

We want to compare this last equation (which is an expression of the Proca
equations applied to a rarefied plasma, so that vph ∼ c, with a static vortex
density) to the equation derived by the electric field propagation equation
developed for the case of a static plasma vortex, which was:

{
∇2 − ∂2

∂t2
− ω2

p0[1 + ε(r, ϕ, z)]

}
~E = 0. (2.50)

In order to make equal these last two equations, (2.49) and (2.50), we arrive
at the following relation:

µ2
γ +

en(~r)

ε0| ~E|
= ω2

p0[1 + ε(r, ϕ, z)] (2.51)

where, as we stated previously, ε0 is the permittivity constant of the vacuum,
while ε expresses the vortex perturbation. Explicating the ωp0 and ε terms
(defined by equations (2.10),(2.11)) we obtain

µ2
γ =

e2n0

ε0m
+

e2

ε0m
ñ cos(l0ϕ + q0z) − en(r)

ε0| ~E|
(2.52)

which after some passages can be written as:

µ2
γ =

e

ε0

(
e

m
− 1

| ~E|

)
[n0 − ñ cos(l0ϕ + q0z)]. (2.53)
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This is the key equation, which shows that there is a relation between the
effective mass that a photon acquires in a plasma and the orbital angular
momentum. In fact, if we remember that:

- µγ is related to the photon effective mass gained in a plasma,

- ñ(r, z) cos(l0ϕ + q0z) is related to the vortex perturbation, which in
section (2.2) we showed to cause a transfer of OAM to the electro-
magnetic field traversing it

we understand the meaning of equation (2.53):

1- the negative term in the effective photon mass acquired in a turbulent
plasma can be interpreted as an expression of orbital angular mo-
mentum. It can be considered as a fictitious term, because it is an
interaction term generated by the scattering of photons with electrons
in a plasma, and cannot be ascribed as an intrinsic property of the
photon;

2- when the electron number density exhibits certain spatial properties,
such as vortices, any photon has an associated virtual mass term that
is smaller than that expected from Proca equations in a homogeneous
plasma, because of a negative term that corresponds to a precise or-
bital angular momentum component.

So every time a photon goes through a plasma, it gains this virtual mass
term that corresponds to a precise orbital angular momentum component, if
the density of electrons has certain spatial properties. The electron number
density does not necessary need to exhibit a vortex structure, what is nec-
essary is that it is azimuthally inhomogeneous in the plane perpendicular
to the propagation’s direction of the electromagnetic beam.

From an ideal to the real case of OAM transfer

If we want to study the orbital angular momentum gained by a photon
passing through a real plasma, we have to consider the special case of a
static plasma vortex, even if we will never find a plasma with such a precise
well-defined spatial distribution. We are interested in understanding this
particular case, because it can be used as a basis to build any other type of
structure. The real problem is extremely complex and difficult to resolve,
so we can analyze the simplest special solution, and consider our problem
as a superposition of many simple solutions, whose combinations could give
every possible value of orbital angular momentum.
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For example, a simple planar slab of astrophysical plasma with uniform elec-
tron spatial density can be represented by the superposition of left-handed
and right-handed plasma vortices that gives a final null OAM component
as expected.

2.4 Conclusions

In this chapter we have investigated the problem of photon mass in an
inhomogeneous plasma and showed that part of the acquired mass term is
related to the orbital angular momentum of light imposed by certain spatial
distributions of plasma electrons. We have focused our attention on the sim-
plest case of spatial distribution described by a static plasma vortex. This
approach shows that the spatial distribution of charges can impose OAM,
and that this OAM is related to an additional mass term that reduces the
effective mass of the photon inside a non-structured plasma. When the den-
sity function of the traversed plasma is azimuthally inhomogeneous in the
plane perpendicular to the propagation’s direction of the electromagnetic
beam, we have found that the virtual photon mass term is smaller than
that expected from Proca equations in a homogeneous plasma, because of
a negative term that corresponds to a precise orbital angular momentum
component. In this case, a cascading process of OAM transfer between the
plasma and the photon beam is achieved, which is related to the electron
number density function.
Therefore, studying the OAM of light we collect with our telescopes could
give additional information about the spatial structure of the interstellar
medium traversed by photons during their travel from the source to the
observer. OAM of light could acquire the same importance as spectroscopy:
spectroscopy can give us information about the energy of light, while the
orbital angular momentum could provide us information about the spatial
structure of the traversed media.
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Chapter 3
Experimental verification of vorticity

preservation in the far field

In the previous chapter we have shown that the orbital angular momen-
tum encoded in a beam of light can bring further information about the
universe, in particular about the spatial structure of the traversed media
[80]. We also know that orbital angular momentum can be imparted by the
space-time dragging of massive rotating sources, so it can bring information
about these kind of objects, in particular Kerr black holes [81].
Therefore, if orbital angular momentum can be seen as an additional carrier
of information, now it is important to test if its topology (which is connected
to the orbital angular momentum value) is preserved in the far field. This
chapter deals with an outdoor test we performed, which for astronomical
purposes has the meaning of an experimental confirmation of a theoretical
prediction, first made almost a century ago by Abraham [1], that the to-
tal electromagnetic angular momentum can propagate over huge distances.
This test was done in the radio domain: since OAM is a property of the
electromagnetic field, it has the same behaviour at all wavelengths.
We have shown experimentally how to propagate and use the properties of
twisted non-monochromatic incoherent radio waves to simultaneously trans-
mit two radio channels on the same frequency encoded with different orbital
angular momentum states. The positive outcome of this experiment shows
that:

- non-monochromatic incoherent waves (which are interesting in the
field of astronomy, since they are the main kind of light astronomers
collect with their instruments) preserve their orbital angular momen-
tum signature in far field;

- OAM states are orthogonal states, they do not influence each other,
and their orthogonality is preserved.

45
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Apart from the field of astronomy, in the radio domain the natural con-
sequence of these properties is a novel radio technique, which allows the
implementation of, in principle, an infinite number of channels in a given,
fixed bandwidth, even without using polarization, multiport or dense cod-
ing techniques.
The results exposed in this chapter can be found in the publication "En-
coding many channels on the same frequency through radio vorticity: first
experimental test" [78].

3.1 Introduction

Here we report the results of real-world, outdoor radio experiments in the
2.4 GHz band (it’s the same band than WiFi). The results reported here
show that OAM and vorticity are preserved throughout the long-distance
propagation. Therefore, from an astronomical point of view, i.e. when we
are the receivers of electromagnetic radiation, this means that the message
brought by light can arrive to us 1; from a telecommunications point of view,
when we are also the transmitters, this means that OAM states can be used
as a new and very large set of communication channels that are mutually
orthogonal to each other in the OAM state space [86].
Our findings extend previous indoor laboratory test experiments in which
the transmission of optical OAM states [28] and radio [79] beams was
demonstrated.

3.2 Our apparatus: technical details

In our radio vorticity communication experiments, we generated and de-
tected two orthogonal OAM channels within a fixed frequency band: one
untwisted with OAM ℓ = 0 and the other with an ℓ = 1 OAM twist. Two
identical WiFi FM transmitters, each with an output power of 2 Watt and
driven by a signal generator, were tuned to the carrier frequency of 2.414
GHz to feed two antennae. In an FM transmission the amplitude and inten-
sity of the electromagnetic wave remain constant in time, only the carrier
frequency is modulated. The signal-to-noise ratio of the WiFi modules was
39 dB for the video channel and 45 dB for the audio band. The receiver
sensitivity was −90 dBm 2 , i.e. 10−9 mW. The transmitted signal band-
widths of both signals were 15 or 27 MHz (like those used in video signals).

1Obviously, for frequency domains affected by the terrestrial atmosphere, this is true
when we can neglect or compensate for or remove the effects of the turbulent atmosphere
on the wave phase.

2The decibel (dB) is a logarithmic unit that indicates the ratio of a physical quantity
(usually power or intensity) relative to a specified or implied reference level. A ratio in
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The ℓ = 0 source was radiated with linear polarization by a commercial 16.5
dBi gain Yagi-Uda antenna.
To generate the ℓ = 1 vortex beam, we mechanically modified a pair of 26
dBi commercial off-axis steel parabolic antennas 3, with 15◦ offset and di-
ameter D = 80 cm, to attain an off-axis spiral parabolic-shaped phase mask
reflector. To get the parabolic shape the dish was transformed into a vortex
reflector by attacching together the two antennas, one upon the other, and
elevating, from the original shape, the surface of the antenna laying on the
top (see fig. 3.1). The elevation, H , depends on the desired ℓ value, and is
related to the wavelength λ by the following relation:

ℓ =
∆n · H

λ
(3.2)

where ∆n is the difference between the refractive index of the medium be-
fore the wave impinges on the antenna, and the one after. Since in our case
we have a reflection, ∆n = 2. Thus, if our wavelength is λ ∼ 12.5 cm, and
if we want ℓ = 1, H has to be ∼ 6.25 cm.
The expected beam waist, given by the diffraction limit of the antenna,

is ∆ϕ = 1.22λ/D ≈ 10.9◦. The half-power beam width (HPBW), i.e. the
angular separation between the points on the antenna radiation pattern at
which the power or, equivalently, the linear momentum, drops to half its
maximum value is θ = kλ/D = 8.75◦, where k is the characteristic param-
eter of the antenna 4. The ℓ = 1 beam was also linearly polarized.
Additional technical details of the experiment and some definitions of an-
tenna parameters can be found in the last section of this chapter and in
appendix B.

decibels is ten times the logarithm to base 10 of the ratio of two quantities. For example,
the ratio of a power value P1 to another power value P2 can be represented by the ratio
expressed in decibels, LdB, which is:

LdB = 10 log
10

(
P1

P2

)
. (3.1)

dBm, i.e. dB(mW), is the power relative to 1 milliwatt.
dBi, i.e. dB(isotropic), is the forward gain of an antenna compared with the hypothetical
isotropic antenna, which uniformly distributes energy in all directions (linear polarization
of the electromagnetic field is assumed unless noted otherwise).

3Parabolic antennas can be classified by the type of feed, that is, how the radio waves
are supplied to the antenna. For an off-axis or offset feed parabolic antenna, the reflector
is an asymmetrical segment of a paraboloid, so the focus, and the feed antenna, are
located to one side of the dish. The purpose of this design is to move the feed structure
out of the beam path, so it does not block the beam.

4The characteristic parameter of the antenna is a factor that depends on the shape of
the reflector and the method of illumination.
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Figure 3.1: The helicoidal parabolic antenna.

3.3 Intensity mapping of the twisted field

As a fist step, we experimentally characterized the physical properties of
the twisted uncorrelated5 non-monochromatic6 EM wave train, proving that
vorticity (and therefore OAM) can indeed be radiated into the far zone (in
principle all the way to infinity [85]) and that the topological properties of
twisted waves, namely the presence of the singularity and the spatial phase
signature, are preserved in the far field zone.
For an antenna, the Fraunhofer or Rayleigh distance dR at which the near/far
field transition zone exists, is determined by the largest dimension of the
antenna, D, and the operating wavelength λ, by the following relationship:

dR = 2
D2

λ
. (3.3)

In our case with D = 80 cm and λ = 12.5 cm, it turns out to be 10.24
m. The intensity distribution of the radio vortex was mapped out 40 m
(320λ) distant from the transmitting antenna. The HPBW diameter of the
twisted parabolic antenna at 40 m distance is of the order of 6 m. The radio
noise background measured in a 15 MHz bandwidth centered on the carrier
frequency ν = 2.414 GHz was −90 dBm. The polarization of the signal
was linear and kept fixed horizontally. For safety reasons a calibrated 10dB
signal attenuator was inserted at the output of the transmission line. As
shown in figure 3.2, we determined the position of the field singularity with

5The EM wave train is uncorrelated because it is composed by two independent beams,
ℓ = 0 and ℓ = 1.

6The EM wave train is non-monochromatic because it is frequency-modulated (FM
transmission).
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Figure 3.2: Intensity map of the radio beam vortex at 40 m (320λ) in free space in the
region around the singularity. The intensity distribution in this regions exhibits fluctu-
ations caused by environmental interference effects and perturbations. The central dip
indicates the region where the field singularity is located, less than 3 cm wide, with a
measured intensity of −82 dBm. The actual position of the singularity was confirmed by
the phase change measured by the two-antenna interferometer (see text). The electro-
magnetic background is −90 dBm. The scale is in centimeters.

an inaccuracy of 3 cm (∼ 0.24λ). This inaccuracy was due to the experi-
mental limitations dictated by the resolving power of the spectrum analyser
used for sampling the electric field. The average intensity measured in the
3 cm region around the singularity was −82 dBm.
That the minimum found was the phase singularity of the field was con-
firmed by measuring the phase distribution around it with a phase interfer-
ometer: it was constructed from two identical Yagi-Uda antennae deployed
along a baseline perpendicular to the direction of the transmitter, as can
be seen in figure 3.3. Firstly we positioned the centre of the interferome-
ter’s baseline where the minimum of the field was measured and then we
mechanically tilted the transmitting antenna in the horizontal and vertical
directions and measured the ensuing phase change.
Finally, we verified the phase and field intensity distribution of the Yagi-
Uda antenna used for transmitting the untwisted signal during the following
experiment in Venice. No appreciable phase twist in the Yagi-Uda beam
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was detected.

Figure 3.3: The phase interferometer constructed from two identical Yagi-Uda anten-
nae positioned along a baseline perpendicular to the direction of the transmitter (the
helicoidal parabolic antenna is in the background, on the top left corner of the picture).
The two antennae are connected together with a 180◦-phase-shifted cable through a beam
adder module, in order to obtain a phase-difference interferometer. They can be mechan-
ically tilted in the horizontal and vertical directions. The center of the interferometer’s
baseline was positioned where the minimum of the field was measured.

3.4 Radio transmission with orbital angular

momentum

The purpose of the second stage of the experiment was to transmit with
the same antennas, on the same frequency of 2.414 GHz, and within a fixed
given bandwidth, two mutually orthogonal OAM modes, ℓ = 0 and ℓ = 1
at a distance of 442 meters (3536λ) from the phase-detecting interferom-
eter. After having verified that the phase properties of the twisted beam
were preserved, by analyzing the beam shape with an intensity/spectrum
analyzer, we transmitted the two OAM modes from the lighthouse of San
Giorgio Island (the transmitters can be seen in figure 3.5) in the direction
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of the balcony of Palazzo Ducale in Venice (Italy), where they were received
(figure 3.4). The HPBW diameter of the parabolic antenna at that distance
was 67 meters. During the experiment, we measured a maximum signal
power Pmax = 30.7 dBm, with a background noise of −87 dBm generated
by external radio sources.

Figure 3.4: View of the San Marco experiment site in Venice, Italy (reproduced from
Google Earth). The T and R letters indicate the locations of the transmitters and
receivers respectively.

At the phase singularity point, we expected the field to drop almost to
zero, as found in experiments at optical frequencies. The narrow zone where
the central singularity was located, defined by a 10 dB (i.e. tenfold) drop
in the mean field intensity, had a diameter of about 2λ. This small region
was contained inside a wider zone with a diameter of ∼ 190 cm (∼ 15λ)
where a 3-5 dB drop in the mean field intensity was observed. Outside this
region, at distances larger than 2 m (∼ 16λ) from the singularity, the field
intensity was found to be more stable and flatter. The measured signal in-
tensity was only 3 dB lower than expected from a non-helicoidal parabolic
antenna with the same diameter. The field strength, measured around the
beam singularity, was higher than expected from a perfectly coherent beam.
In fact, the signal intensity near the singularity, where the electric field is
expected to tend to zero, exhibited a more uniform and flatter intensity pro-
file than expected from a coherent beam with a Laguerre-Gaussian profile.
The phase distribution of the entire antenna lobe was preserved. This ac-
tually resembles the behaviour typical of incoherent beams carrying OAM.
Such beams preserve the phase profile but the region of the lobe in which
the singularity is located appears much more filled by the signal because
of the large width of the transmission band and, in our case, probably also
because of the shape of the transmitting antenna. The only insignificant
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Figure 3.5: The two transmitters located in the lighthouse of San Giorgio island (in front
of Palazzo Ducale, at a distance of 442 m). The helicoidal parabolic antenna generates
the ℓ = 1 signal, while the Yagi-Uda antenna below transmits the ℓ = 0 signal.

variable interference noted during the experiments was due to reflections of
the beam from the water surface of the lagoon that varied with the tidal
height of the sea.
By using an interferometric phase discrimination method we were able to
separate the two OAM modes by identifying their "phase fingerprints"
[64, 79] . The receiving station consisted of a COTS (commercial off the
shelf) frequency-modulation (FM) radio module receiver fed by two identi-
cal 16.5 dBi Yagi-Uda antennas (hereafter called antenna A and antenna B)
connected together with a 180◦-phase-shifted cable through a beam adder
module, in order to obtain a phase-difference interferometer (figure 3.6).
We decided to use such directive antennas to spatially reduce any possible
background interference due to the presence of other WiFi sources. The
antenna parameters are given in the appendix at the end of this chapter.
Antenna A was mounted on a mechanical translator oriented towards the
direction of the transmitting station to select one of the two channels by
exploiting the spatial phase front properties of different OAM states present
in the two beams, whereas antenna B could be moved mechanically in the
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Figure 3.6: Phase difference interferometer: two identical Yagi-Uda antennas are con-
nected together with a 180◦-dephased cable through a power-combiner adder module.

orthogonal horizontal direction only.
The interferometer measured the phase difference between the two anten-
nas, A and B, and therefore characterized the spatial phase properties of
the beams, i.e. the fingerprints of the vorticity OAM states of the field.
To discriminate the two different spatial modes of the electromagnetic field,
we aligned antenna A, antenna B and the field singularity along a line par-
allel to the horizon, and the singularity was positioned in the middle of
the segment delimited by antennas A and B (figure 3.7). If the setup were
perfectly aligned, the twisted electromagnetic wave with ℓ = 1 would have
shown an exact 180◦ azimuthal phase difference between the two anten-
nas, subsequently compensated by the cable electric delay thus producing
an intensity maximum. The untwisted beam (ℓ = 0), with 0◦ azimuthal
phase difference, would have produced an intensity minimum for the same
settings.
Electromagnetic waves with wavelength λ, propagating along the two paths

from the source to the two receiving antennae A and B, acquired a total
phase difference φ that depended on:

- the angle θ between the incident plane wavefront and the interferom-
eter baseline,

- the relative azimuthal term between the two receiving antenna φℓ due
to the beam vorticity (φℓ = 0 when ℓ = 0, φℓ = π when ℓ = 1),

- a generic additional spatial/temporal phase term φ0 introduced by
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Figure 3.7: Sketch of the experiment in San Marco (not to scale). From left to right:
the transmitting antenna, the twisted radio beam and the two antennae A and B aligned
with the singularity of the beam. The two receiving antennae were positioned so that
the singularity was located on the baseline between the two antennae at the midpoint of
the segment AB. Rightmost panel: schematic representation of the experiment.

the experimental setup (e.g. cable delay, imperfect parallelism of the
receiving antennae, etc.).

This total phase difference can be approximated by:

φ = 2π
d sin θ

λ
+ φℓ + φ0 (3.4)

where d is the separation of the two receiving antennas. The signal was
collected equally by antennae A and B in phase and the signal of antenna
A arrived at the signal adder 180◦ out of phase with respect to that of
antenna B because of electric λ/2 cable delay, resulting in a difference signal
configuration, | A − B |, such that

| VA − VB |≈| V0 − V0e
iφ |= 2V0 sin

(
φ

2

)
(3.5)

where V0 is the voltage measured at the antenna cable end (receiver input).
A maximum is obtained when φ = (2k + 1)π and k is an integer.
By adding a phase delay to the signal from antenna A, one can change the
pointing direction of the antenna system in such a way that the segment
A−B, delimited by the two antennae, would effectively rotate rigidly around
the field singularity in the horizontal direction orthogonal to the propagation
of the electromagnetic signal, with the result of moving the position of the
null interference fringes and compensating for the presence of additional
phases and the inclination of the interferometric base with respect to the
direction of the source. Alternatively, a similar compensation is obtained
by moving antenna A along the direction of the source by a quantity

∆x =
λn

2π
. (3.6)
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Consequently, if we consider the ℓ = 0 signal, φℓ is null and the phase
difference between the two paths can be written as

φ = 2π
d sin θ

λ
− n. (3.7)

The bearing to the transmitter for ℓ = 0 is, in the ideal case, determined by
a minimum or total absence of signal. The parameter n can be adjusted to
improve the tuning of the receiving system and read a signal minimum in
the exact direction to the transmitting antenna. Here, n is negative when
antenna A is moved towards the source.
If the beam carries OAM, the phase distribution of the wavefront arriving
at antennae A and B will exhibit a characteristic topological signature and
φℓ will be different from zero. In the simplest case, when the centre of the
vortex coincides with the centre of the interferometer and φ0 is negligible,
the two antennae will experience a phase gap due to the OAM of the elec-
tromagnetic wave φℓ = ℓπ and a maximum of the signal is obtained when
the phase factor is:

φ = 2π
d sin θ

λ
− n + ℓπ = (2k + 1)π, k ∈ Z, (3.8)

where Z is the set of all integer numbers. Considering the case where, if we
do not move antenna A, the interferometer basis is parallel to the incident
plane wavefront, the first term of equation (3.8) is null. When ℓ = 1, a
maximum for the vortex is achieved when n = 0 and k = 0. Because of
destructive interference due to the 180◦-dephased cable connecting antenna
A and antenna B, the ℓ = 0 signal intensity will at the same time experience
a minimum. On the other hand, a maximum for the ℓ = 0 mode will be
obtained when n = −π, thus, from equation (3.6), when ∆x = −λ/2, corre-
sponding to a minimum for the vortex. Following these considerations, we
aligned the interferometer so as to have the field singularity at the midpoint
of the line joining the two receiving antennas (i.e. the interferometer basis)
and obtained a phase gap φℓ between the two antennae. To better optimize
the interference fringe structure we oriented the baseline by an inclination
θ ∼ 10◦ with respect to the balcony in order to be orthogonal to the incom-
ing beam (figure 3.7).

In order to have a simple, straightforward and practical method to
discriminate between the two orthogonal OAM channels, transmitted on
the same carrier frequency, we frequency modulated them with constant-
level audio signals at different modulation frequencies (400 Hz and 1000
Hz for the untwisted and twisted wave, respectively) by injecting a −5
dBm monophonic audio signal in the video band of each transmitter. The
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thus-modulated radio signals were received by the two Yagi-Uda anten-
nas, summed by a beam adder module (a 3 dB power splitter/combiner
Mini-Circuits ZX10-2-42+) and then re-converted (demodulated in the FM
receiver) into monophonic audio signals, that were subsequently digitally
sampled, recorded and analyzed in real time with 32-bit resolution. Each
dataset so produced was 22870008 bytes long.
The total signal loss measured in the receiving line of the interferometer was
6 dB (we attribute it to cables losses and to the use of the 3 dB beam adder
module). In order to reduce the power of the signal we inserted a 10 dB
attenuator into the receiving line so that the audio digitizer connected to
the receiver output would not saturate due to overvoltage. In a conventional
single-antenna receiver setup that detects linear momentum only, the two
radio signals were audible simultaneously. By mechanically moving the an-
tenna A with respect to B to select one of the two orthogonal OAM beams,
one signal was alternately suppressed with respect to the other due to the
different spatial phase signature of the two OAM states. We adjusted the
baseline in order to optimize the discrimination of the two different OAM
channels by moving antenna A.
Since a FM (frequency modulation) transmission has the property of gen-
erating a constant amplitude output, we adjusted the output of the two
transmitters to measure the same receiver output voltage, 1 VCC (Volt in
continuous current) for each channel. In this way we were able to character-
ize the transition between equal-intensity twisted and untwisted channels.
Figure 3.8 shows the voltage of the signal measured at the output of the an-
tenna receiver and amplifier. The untwisted beam (line marked ’o’) showed
destructive interference in the interval 8.5-9.4 cm (approximately 0.7λ -
0.8λ) from the initial antenna position. In the corresponding audio track,
the carrier disappears and the 400 Hz tone is suddenly replaced by white
noise, which appears louder due to the automatic gain control (AGC) of
the receiver. This is a clear indication of destructive interference. Similar
behavior was observed in two other smaller regions and is possibly due to
effects of the secondary Yagi lobes that were not considered in our auto-
correlation analysis. The twisted beam (red continuous line), on the other
hand, presented a richer forest of alternating maxima and minima due to
the sampling of the field from a finite-sized antenna; only near the initial
position of the antenna (0.4 - 1.6 cm) a wide region of total destructive
interference was observed. The inner boundaries of the two main minima
regions (from the initial position of the antenna, these regions are at 0.4-1.6
cm for ℓ = 1, and at 8.5-9.4 cm for ℓ = 0) are separated in distance by half
a radio wavelength, as we predicted from equation (3.8).
In figure 3.9 we display the audio frequency spectrum, from 0 to 3 kHz,
of the two separate OAM channels (ℓ = 0, upper panel; ℓ = 1, middle
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panel) obtained from the best acquisition made during our OAM tuning
experiments. Each single channel is said to be tuned when the other one
experiences destructive interference and the corresponding audio tone dis-
appears. In the lower panel we show the spectrum of the superposed ℓ = 0
and ℓ = 1 channels, measured outside the regions of destructive interfer-
ence. This result is confirmed by the Tolonen-Karjalainen autocorrelation
for multi-pitch detection7 [87], as shown in figure 3.10. Whereas the ℓ = 0
mode always shows a clear autocorrelation, the ℓ = 1 mode always presents
a series of harmonic tones at higher frequencies (due to the imperfection of
the hardware we were using).
We recorded three MP3 audio files of the tuning between the two OAM
channels, that are provided as additional material in our publication "En-
coding many channels on the same frequency through radio vorticity: first
experimental test" [78], available online at http://iopscience.iop.org/1367-
2630/14/3/033001. The first audio file is the recording of the spatial tuning
of the channel without OAM only. One can hear the main tone at 400 Hz
and then strong white noise in the position where antenna A, moving in
the direction of the source with respect to antenna B, reaches the point
where the signal is cancelled by the interferometer. The second file shows
that the twisted beam has a much richer spatial structure than that of the
untwisted beam. Finally, the third file is the recording of the vortex tuning
between the two different OAM states transmitted simultaneously on the
same frequency and used in the data analysis reported in figures 3.8, 3.9
and 3.10.
Already with this setup, one can obtain four physically distinct channels
on the same frequency by additionally introducing the use of polarization
(which is related to the spin angular momentum, SAM), which is indepen-
dent of OAM.

3.5 Conclusions

Our experimental findings confirm that the spatial phase signature is pre-
served even in the far field region and for incoherent non-monochromatic
wave beams. These results open up new perspectives both for wireless com-
munication and for physics and astronomy: we can hope to detect OAM in
the light coming from astrophysical sources, and get new information about
the sources [81] and the traversed interstellar medium [80].

7We used sound techniques because we had audio signals, and not digital signals.
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Figure 3.8: Diagram of the monophonic audio recordings of the twisted/untwisted beams.
The output of the two transmitters was adjusted to ensure the same maximum input
voltage of 2 V when both channels were present, and 1 VCC max for each individual
channel. The first minimum is found at about 1 cm of antenna shift for the ℓ = 1 mode
(continuous line). Here the ℓ = 0 channel (marked with symbol ’o’) has a maximum and
the associated audio tone is clearly audible. The same was found for the ℓ = 0 mode
around the 9 cm antenna position. The inner boundaries of the two minima regions are
separated in distance by half a radio wavelength. Between these positions there was a
forest of minima of the ℓ = 1 mode, a phenomenon due to the sampling of the field from
a finite-sized antenna. Beyond the minimum located at 9 cm, two additional alternating
signal minima due to the cross-talk of the two Yagi-Uda antennae were found.
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Figure 3.9: Spectral analysis of the demodulated audio signal when the antenna interfer-
ometer was tuned by the spatial motion of one antenna to receive two independent and
superposed OAM modes in the same frequency band. The spectra are truncated at 3
kHz for better clarity. Upper panel: audio frequency spectrum of the beam in the region
where the interferometer is tuned for the ℓ = 0 mode signal. Clearly visible is the main
peak at 400 Hz followed by the higher-frequency harmonics. The power of the signal is
distributed with decreasing power at higher frequencies. Middle panel: audio spectrum
in the position where only the ℓ = 1 mode audio signal is audible. Also in this case the
power is distributed with less power for higher-frequency harmonics of the 1 kHz main
frequency. In both the two spectra there are no spurious frequencies introduced by the
other signal. Lower panel: audio spectrum of the signal where the two beams (ℓ = 0 and
ℓ = 1) are not separated. Both the audio frequencies are visible.
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Figure 3.10: Autocorrelation spectral analysis of the audio transmission in three different
antenna positions. Upper panel: the ℓ = 0 mode (∼408 Hz) detectable when the antenna
is at a position between 0.4 and 1.6 cm. Middle panel: the ℓ = 1 (1 KHz), from 8.5 cm
to 9.4 cm, with the exception of the two small intervals where a cross talk of the two
antennae was observed. In the lower panel, the superposition of both the audio signals
at 400 Hz and 1 kHz is clearly evident, showing the impossibility of separating the two
channels when the moving antenna is in the interval 1.8 - 8 cm.
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3.6 Appendix: technical details

Hardware

To demonstrate the feasibility of implementing multiple radio communica-
tion channels on the same frequency, discriminated only by their OAM, we
adopted a very basic hardware configuration, comprising a couple of com-
mercial audio/video tuneable receiver and 2W transmitter modules feeding
the twisted parabolic antenna for the twisted beam with OAM (ℓ = 1), and
a 16.5 dBi Yagi-Uda antenna for beams without OAM (ℓ = 0) (figure 3.5).
The COTS receiver was connected to two identical 12-element, 16.5 dBi
gain Yagi-Uda antennae (figures 3.11, 3.12 and 3.13), tuned to 2.4 GHz
and mounted on the top of two identical plastic columns (ε ≈ ε0). The
baseline between the receiving antennae was 4.50 m, with laser-controlled
levelling and calibrated mutual distance. Each of the receiving antennae
was mounted on a mechanical translator that provided fine-tuning in an
interval of 10 cm (∼ 0.8λ). The cable connections were made with Belden
H155 WiFi coaxial cable, 50 Ω impedance and 5.4 mm diameter. The veloc-
ity factor in the cable for this type of cable is 79 % with (9.3 dB loss)/(100
m), characterized by the producer at a frequency of 100 MHz. Then, the
half-wavelength cable junction used to build the phase difference interfer-
ometer resulted to be 4.94 cm long.

Figure 3.11: One of the two receiving Yagi-Uda antennae of the interferometer mounted
on the top of an isolated plastic pillar.

For the production of the offset helicoidal parabolic antenna, from a pair
of identical, 15◦ offset, 80 cm diameter steel parabolic antennae, the dish
was transformed into a vortex reflector by elevating, from the original shape,
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Figure 3.12: Horizontal and vertical linear momentum radiation (Poynting vector) dia-
grams of the lobes of the COTS Yagi-Uda antennae used in the interferometer.

Figure 3.13: Main characteristics of the Yagi-Uda antennae used in the experiment.

the surface of one of the two parabolic antennae of the quantity necessary
to produce a ℓ = 1 beam (see equation (3.2)). The main characteristics of
the non-helicoidal parabolic antennae used to build the vortex reflector are
listed in figure 3.14.

Transmitter/receiver modules

The audio and radio signals used in the calibration and with the actual radio
transmission were generated with commercial high-quality super-heterodyne
frequency modulating (FM) transmitting modules. The output impedance
was 75 Ω. The deviation in frequency relative to the carrier frequency (2.414
GHz) due to the FM modulation (15 MHz) can be considered negligible and
not to cause significant distortion of the vortex or a consequent change of
the topological charge generated by the twisted parabolic antenna.
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Figure 3.14: Main characteristics of an non-helicoidal parabolic antenna lobe width hav-
ing the same diameter and focal ratio as the twisted parabolic antenna. The theoretical
gain is expressed as a function of the angular deviation from the beam direction.

Site of the experiment in Venice

Transmitting station: Torretta della Compagnia della Vela in San Giorgio,
altitude: 10m msl (mean sea level),
latitude: 45◦25′48′′ N,
longitude: 12◦20′35′′ E.

Receiving station: Loggetta del Palazzo Ducale,
altitude: 16m msl,
latitude: 45◦26′00′′ N,
longitude: 12◦20′25′′ E.

Geometrical distance between the two stations: 442m as measured with
GPS and Google Maps.

Electrosmog-Loggia (Lobby) of Palazzo Ducale

The following data are environmental parameters that we measured to be
sure that the signals we acquired did not depend on the destructive or con-
structive environmental resonances.

date: 13 June 2011
time: 9.00 - 9.45 GMT
height of the balcony rail: 130cm
distance between two columns of the lobby: 214 cm
See figure 3.15 and 3.16.
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Figure 3.15: Lobby of Palazzo Ducale, 50m long, location of the receiving station.

Figure 3.16: The electrosmog background measured in the lobby of Palazzo Ducale
(vertical and horizontal polarizations).



Chapter 4
Detection of the orbital angular

momentum of light from astrophysical

sources

In the previous chapters we have discussed the possibilities of getting new
information about the universe thanks to the study of the orbital angular
momentum of light, and we have reported an experimental demonstration
about the propagation and conservation of OAM in the far field region
and for incoherent non-monochromatic wave beams. If OAM can be a new
astronomical observable carrying astrophysical information, and if this in-
formation is preserved during its propagation, next step is trying to measure
OAM enclosed in light collected by astronomical telescopes.
Up to know OAM has been generated, created, observed, analyzed and ex-
ploited in several fields such as radar [64], nanotechnology [30] and quantum
experiments [93]. In astronomy and space sciences it has been used to im-
prove the resolving power of diffraction-limited optical instruments [77] and
coronography [24]-[49], but it has never been measured in light coming from
the sky as a new observable containing new information. Even if theoretical
works demonstrate that it could be produced by some astrophysical pro-
cesses [31, 80, 81] , it has never been detected and used as a new diagnostic
instrument for celestial light.
The first step towards this direction is the construction of astronomical de-
vices able to detect the orbital angular momentum enclosed in the collected
light. In this chapter we are going to analyze a possible way to detect OAM
with optical telescopes.

65
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4.1 Introduction

Several methods to measure orbital angular momentum of light have been
studied in the past:

- the interference of a beam containing an optical vortex with a flat wave
front results in an interference pattern with a fork-like structure that
reveals the topological charge of the vortex [63, 74] (e.g. diffraction
pattern from a triangular aperture [14, 27, 36, 76]). However, this
method is unfavourable for many applications, in particular for those
where the studied beam is spread out over a large area, because it
needs an additional extended flat wave front;

- the use of diffractive optical elements (DOEs) containing an ℓ-fold
fork dislocation can be used both to generate beams carrying orbital
angular momentum [10, 11, 33, 34], and to measure OAM [47]: the
forked diffraction grating, which produces an helical mode in the first
diffraction order then illuminated with a Gaussian beam, can also be
used in reverse to couple light with a helical phase into a single-mode
fibre, measuring the power of that mode. For each ℓ value one wants
to measure, one needs a different fork hologram with the appropriate
dislocation, so to check for N different states, one needs at least N
photons;

- similarly, a spiral phase plate and q-plate technology can be used to
test whether the input light is in a specific state or not, i.e. they can
be used as a filter for orbital angular momentum [51, 59];

- a system of Mach-Zender interferometers and Dove prisms can be used
to measure the OAM state, but it’s technically very challenging and
difficult to implement in large optical systems [45];

- the observation of the rotation of trapped particles in optical tweezers
[26, 32];

- the rotation of a beam with OAM, which shifts the frequency [22].

However, all these methods are not appropriate for detecting OAM enclosed
in light coming from astronomical objects, and a way to measure efficiently
the distribution of ℓ values contained within light has presented a challenge
for many years. Astronomical observations of the orbital angular momen-
tum of photons have apparently never been attempted, with the exception
of the work of Uribe-Patarroyo et al. in 2010 [90], where they tried to mea-
sure the OAM spectrum of light from an extended source, the Sun, but they
didn’t succeed.
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Recently, a method to measure the light orbital angular momentum spec-
trum using an optical geometric transformation has been developed, the
so-called orbital angular momentum mode sorter [15, 16, 43, 44], which sorts
many OAM states at the same time, with a great efficiency (≈ 100%) and
is easy to align and operate. For these reasons we have thought to try to
adapt it for optical telescopes, so that it can be used also in astronomy, and
not only on optical benches.

4.2 The orbital angular momentum mode sorter

In 2010 G. C. G. Berkhout, M. P. J. Lavery et al. ([15, 16, 43, 44]) devel-
oped a new method to efficiently sort the orbital angular momentum states
of optical light using two static optical elements which map azimuthal co-
ordinates to linear transverse coordinates. For each input OAM state, light
is focused to a different transverse position making possible simultaneous
measurements over many states, thus performing an OAM spectrum.
The method used in the OAM mode sorter utilizes an optical geometric
transformation enabling an efficient spatial separation and subsequent anal-
ysis of many OAM states and of their superposition. The intention of the
authors was to use this OAM analyzer for communications, which require an
efficient and simultaneous detection of light in different OAM states. The
same performances are required for the detection of OAM from astronom-
ical sources, since we are interested in analyzing all the OAM components
contemporaneously enclosed in the beams of light we collect.

Multiple plane waves can be distinguished by a lens thanks to their
transverse phase gradient. Indeed, a lens focuses a plane wave to a spot in
its focal plane, whose transverse position depends on the transverse phase
gradient of the wave. A requirement for the separation of any two plane
waves is an additional phase change of 2π across the aperture of the lens,
resulting in a difference in spot positions comparable to the Rayleigh reso-
lution limit. This is the basic idea for the OAM sorter and how it separates
different OAM states: a change in the mode index of ∆ℓ = 1 corresponds
to an increment in the azimuthal phase change of 2π. Therefore, the two
key optical elements of the OAM mode sorter are optical components that
transform azimuthal positions into transverse positions, i.e. two optical ele-
ments that transform a helically phased input beam into a transverse phase
gradient output before the beam traverses the focusing lens. Acting to-
gether these elements map a position (x, y) in the input plane to a position
(u, v) in the output plane, with:

u = −a · ln
(

x2 + y2

b

)
(4.1)
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v = a · arctan
(y

x

)
(4.2)

where a and b are constants related to the size of the optical components,
and (x, y), (u, v) are Cartesian coordinate systems. This mapping trans-
forms a set of concentric rings at the input plane into a set of parallel lines
in the output plane. Therefore, it transforms the azimuthal phase term
exp(iℓθ) into a transverse phase gradient: the phase and intensity of the
beam in the form exp(iℓθ) are transformed by the combination of the two
refractive optical elements into a complex amplitude at the output plane
of the form exp(iℓv/a) 1. A spherical lens placed after this second element
then separates the resulting transverse momentum states into specified lat-
eral positions in its back focal plane (s, t), thus allowing for the efficient
measurement of multiple OAM states simultaneously. In figure 4.1 one can
see the two refractive optical elements which convert orbital angular mo-
mentum states into transverse states, while in figure 4.2 one can see the
conversion of an helically phased input beam into a transverse phase gradi-
ent output and, in the end, into a transverse position related to the OAM
value of the input beam.

Figure 4.1: Refractive optical elements converting OAM states into transverse momen-
tum states. In red, the image of the beam overlaid to the image of the two optical
elements (source: M. P. J. Lavery et al. 2012 [44]).

1As it is stated in Berkhout, Lavery et al. (2010) [15], the first optical element is
the key one, transforming the azimuthal position in the input beam into a transverse
position in the output beam. The resulting variation in optical path length means that
the transformation introduces a phase distortion that needs to be corrected by a second
element. Therefore, the second optical element, positioned in the Fourier plane of the
first, corrects for this phase distortion, so that the the transverse beam obtained with
the first element does not closes again into a ring.
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Figure 4.2: Modeled and observed phase and intensity profiles at various planes in the
optical system. From left to right, the images show the modeled phase and intensity
distribution of the input beam just before the transforming optical element and just after
the second optical element, and the modeled and observed images in the CCD plane for
five different values of ℓ. The final row shows the results for an equal superpositions of
ℓ = −1 and ℓ = 2. The last two columns are 6× magnified with respect to the first two
columns (source: G. C. G. Berkhout et al. 2010 [15]).

4.3 The OAM mode sorter for optical tele-

scopes

Since the OAM mode sorter efficiently performs the OAM spectrum of light,
it paves the way to interesting astrophysical investigations which make use of
the OAM state basis. However, the OAM mode sorter is an instrument built
to be used with laser light on optical benches, so in controlled conditions.
We tried to adapt it in order to be mounted on the focal plane of a telescope,
with the aim of performing the OAM spectrum of light coming from the sky.
This work is the result of a period spent at the University of Glasgow, with
the Optics Group of the department of Physics and Astronomy.
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OAM mode sorter configuration for the telescope

Firstly, we configured the OAM mode sorter for a 19 cm telescope, than can
be seen in figure 4.3.

Figure 4.3: The 19 cm telescope we used for the first tests to adapt the OAM mode sorter
to an optical telescope. To align the OAM mode sorter, we used a Laguerre-Gaussian
beam entering in the sorter through a fiber (the yellow cable).

The telescope was a Maksutov-Newtonian reflector telescope, with the
following characteristics:

- f-number: f/5.3

- diameter of the primary mirror: D = 19 cm

- diameter of the secondary mirror (the central obstruction): d = 50mm
(26%)

- focal length: ftelescope = 1 m.

In figure 4.5 one can see the optical elements constituting the OAM
mode sorter:

1- element Ap: it is a pinhole aperture, placed on the focal plane of the
telescope, at a distance fA from lens A;

2- element A: it is a focusing lens, with focal length fA and at a distance
fA from the initial pinhole aperture and the first refractive element of
the mode sorter, S1;
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3- elements S1 and S2: they are the two refractive optical elements per-
forming the azimuthal to linear-transverse coordinates transformation,
they are the core of the OAM mode sorter which convert orbital angu-
lar momentum states into transverse momentum states. The distance
between them is 30 cm and depends on the wavelength;

4- element B: focusing lens, with focal length fB;

5- elements M1, M2, M3: flat mirrors tilted 45◦ with respect to the
incident beam;

6- element Micro: microscope objective at a distance fB from lens B,
with a 20× magnification and focal length fMicro;

7- element Filter: 633 nm filter;

8- element CCD: CCD camera, at a distance fMicro from Micro.

We want to describe these elements.

1- The pinhole aperture Ap is necessary to filter the Poynting vectors:
since now we are dealing with light from astrophysical sources (and not
from lasers), the OAM spectrum has a very large bandwidth. There-
fore we need to filter the Poynting vectors, otherwise we could detect
a flat spectrum just because we are collecting only a little portion of
a spectrum with a large bandwidth.

2- Lens A has the function to reduce the beam size, which has the di-
mension of the primary mirror of the telescope, and must be reduced
before passing through S1. It is at a distance ftelescope + fA from the
19 cm collecting mirror of the telescope, in order to make a telescope
configuration implementing the right demagnification (demagnifica-
tion: M = ftelescope/fA). We chose fA = 7.5 cm in order to have
the output beam with the dimensions appropriate for the two optical
lenses S1 and S2 of the OAM mode sorter (they worked best with an
input beam waist value w0 between 1.2 cm and 1.9 cm).

3- S2 is mounted on a translator, because our degrees of freedom for the
alignment of the OAM mode sorter with respect to the optical axis of
the telescope 2 were mirror M1 and lens S2. We decided to use M1

2The optical axis of the OAM mode sorter has to be aligned with the optical axis of the
telescope. Indeed, as we discussed in chapter 1, the OAM value depends on the reference
axis and a parallel lateral displacement of the incoming beam combined with a tilt (with
respect to the optical axis of the sorter) significantly changes the OAM spectrum (see
next section). Therefore it is essential that the sorter is stable and aligned to the axis of
the incoming beam.
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and S2 because for a good alignment we have to use two decoupled
degrees of freedom. The best way for this condition to be verified is
having the degrees of freedom in two different planes, one on a focal
plane and the other on an image plane.
The distance between the transformation elements S1 and S2 depends
on the dispersion in the PMMA constituting these two refractive ele-
ments, as one can see in figure 4.4. In our case we were using a filter
making pass only red light with λ = 633 nm, thus the right distance
was 30 cm.

Figure 4.4: Required distance between the two transformation elements of the OAM
mode sorter as due to the dispersion in the PMMA they are made of.

4- B is a spherical lens placed after lens S2, that separates the resulting
transverse momentum states into specified lateral positions in its back
focal plane, thus allowing for the efficient measurement of multiple
OAM states simultaneously, so performing the OAM spectrum. The
transverse position of spots at the back focal plane, tℓ, changes as a
function of ℓ, following the relationship:

tℓ =
λfB
dB

ℓ (4.3)

where dB = 18mm was the diameter of the lens.

5- M1, M2 and M3 are flat mirrors, that we decided to use in order to
make the sorter laying on the tube of the telescope and not hanging
on the eyepiece. In this way it was more stable during the tracking of
the telescope.

6- The microscope objective is used to distance the spots on the camera,
corresponding to different ℓ values of the incoming beam. Instead of
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using a microscope objective, according to relationship (4.3) one could
use a spherical lens with a larger focal length fB, but we preferred this
solution in order not to elongate the rods, to preserve the stability of
the OAM mode sorter.

7- Before the camera, we used a 633nm filter (only red light passed
through) to protect the camera from external light. We used a 633nm
filter because the first tests of the sorter on the telescope were done
in laboratory, where the light passing through the sorter was the light
of a He-Ne laser, which operates at 633nm.

Figure 4.5: The adapted OAM mode sorter on the tube of the 19 cm telescope. Ap is a
pinhole aperture placed on the focal plane of the telescope, A and B are focusing lenses,
S1 and S2 are the two optical elements performing the azimuthal to linear-transverse
coordinates transformation, M1, M2, M3 are flat mirrors tilted 45◦ with respect to the
incoming beam, Micro is a microscope objective, Filter is a 633 nm filter and CCD is
the camera.

One of the main difficulties in adapting the OAM mode sorter for a
telescope, was not knowing the precise position of the telescope’s focal plane.
Indeed, even if we knew the focal length of the telescope, we didn’t know
with high precision at which distance it was from the eyepiece, and therefore
we didn’t know exactly where lens A had to be placed. The consequence of
the lack of this piece of information is an enlargement of the bandwidth of
the spectrum. If lens A is not exactly at distance fA from the focal plane
of the telescope, the beam coming out from it and passing through the two
transforming lenses S1 and S2 of the sorter is not collimated, giving rise to
a larger bandwidth. However, even if the bandwidth is larger, this does not
affect the center of mass of the OAM spectrum.



74 Chapter 4. Detection of OAM from astrophysical sources

4.4 Test of the OAM mode sorter at Celado

Observatory

After having built an OAM mode sorter for telescopes, we tested it at Celado
Observatory. We used the main telescope of the observatory, a Newtonian
telescope with the following characteristics:

- diameter of the primary mirror: D = 800 mm

- focal length: F = 3200 mm

- 6 focal positions

- location: latitude N 46◦ 5’ 59. 99",

longitude E 11◦ 4’ 0. 00",

altitude 1260 m

Figure 4.6: The 80cm Newtonian telescope at Celado observatory.

We were able to detect data only one night, on 22nd September 2012,
because we spent the previous two nights for the tricky procedure of aligning
the sorter. The alignment of the sorter with the source (in our case with the
optical axis of the telescope) is very important because, as M. V. Vasnetsov
et al. demonstrated in 2005 [92], a misalignment of the incoming beam with
respect to the optical axis of the OAM mode sorter can change the OAM
spectrum. The effects are of two types:
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- if the beam undergoes a parallel lateral displacement, or a tilt (with
respect to the optical axis of the sorter), as a consequence a bandwidth
enlargement takes place, but the center of mass of the OAM spectrum
is not affected;

- if the beam undergoes both a parallel lateral displacement and a tilt,
the spectrum is affected both by an enlargement of the bandwidth
and by a shift of the center of mass.

On a focal position of the telescope, we mounted the adapted OAM mode
sorter, as can be seen in figure 4.7. To detect the spectrum, at the end of
the sorter we used a high sensibility CCD Watech camera.

Figure 4.7: The OAM mode sorter mounted on one of the six focal positions of the
80cm-Newtonian telescope.

Our first aim was simply testing our OAM mode sorter outdoor and with
the light of stars, instead of in laboratory with laser light. For this reason
the stars we decided to observe were simply bright stars, with no predicted
OAM in their light. We were simply interested in detecting the first OAM
spectra from celestial objects, even if these spectra were probably centered
on a OAM value equal to zero.
In figure 4.8 there is the list of the stars we pointed, the local times and
exposure times of their observations, their geometric altitudes and their
apparent visual magnitudes. We decided to observe these stars because of
their brightness. The seeing was ∼ 1.5 arcseconds. For these observations
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we replaced the 633nm filter used with laser light, with a 532nm filter. Con-
sequently, we optimized the OAM mode sorter for this wavelength, changing
the distance of the two refractive lenses S1 and S2 according to figure 4.4.

Figure 4.8: List of the pointed stars, with local times and exposure times of their ob-
servations, their geometric altitudes and their apparent visual magnitudes given by the
online Simbad catalogue (http://simbad.u-strasbg.fr/simbad/sim-fbasic).

In spectroscopy, a spectrum shows the photon counts3 (y-axis) for each
frequency (x-axis). Similarly, an OAM spectrum detected with an OAM
mode sorter shows the CCD counts (y-axis) for each transverse position4

(x-axis), thus for each OAM value (as expressed by equation (4.3)).
In figure 4.9 there is a comparison among the OAM spectra that we detected.
The ordinates have been calculated averaging the CCD counts referred to
pixels with the same abscissa, and then normalizing each spectrum, divid-
ing each y-value for the maximum y-value of that spectrum. The spectra
have been translated in order to have their maxima overlapping at the same
coordinates. One can notice that the half-spectra to the right of the cen-
tral peaks have always more light than those to the left. It seems to be
a systematic error, so we think that it was probably due to some inter-
nal reflections. Because of this, one has to compare the left half-spectra.
One can see that in general the broadening get smaller at higher altitudes,
apart from Algol, which is the highest but also one of the broadest: proba-
bly we just took the spectrum in a bad way (it was one of the firsts we took).

3If the data reduction has been performed, a spectrum shows the intensities or energy
densities or fluxes.

4Transverse to the reference axis of the sorter.
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4.5 Conclusions and future steps

Since our test at Celado observatory has been the first time someone tried
to detect an OAM spectrum from astronomical sources (except for the ef-
forts of Patarroyo et al. in 2002, but they didn’t succeed [90]), our aim was
just to test the performances of the OAM mode sorter when applied to a
telescope, with celestial light. The plot in figure 4.9 shows that the OAM
mode sorter works even under these conditions: indeed, we can observe a
general trend for the bandwidth, to get larger when the geometric altitude
of the stars reduces, which is in accordance with the trend predicted by
Rodenburg et al. [68]. Following the theoretical work of Paterson in 2005
[65], they simulated in laboratory the atmospheric turbulence, which was
modeled as a randomly varying phase aberration that obeys the statistical
spread postulated by Kolmogorov turbulence theory.
The main problem of OAM in the optical domain are the effects of propaga-
tion through random aberrations on coherence. For OAM detection, what
one needs is the spatial coherence of the beam, therefore the decoherence ef-
fect of atmospheric turbulence cannot be neglected. If b is the beam width,
and r0 the Fried parameter, what Paterson stated [65] and Rodenburg et
al. found with simulations [68] is that for b << r0 the effects of the phase
aberrations are weak and the OAM scattering is small, but they increase
rapidly as b becomes comparable to r0 (see figure 4.10).
The trend showed by our plot in figure 4.9 seems to be in accordance with
the predictions of Paterson and Rodenburg 5. Indeed, when stars approach
the horizon, the atmosphere becomes more and more turbulent, correspond-
ing to smaller values of the Fried parameter, and the bandwidth gets larger,
i.e. the OAM scattering increases. Thus, we can affirm that the OAM mode
sorter applied to a telescope works, and our test can be considered a feasi-
bility study for an instrument able to perform the OAM spectrum of light
from celestial objects.

Future steps

Atmospheric turbulence has recently been added to the list of mechanisms
for the formation of OAM in traveling optical waves [48, 60, 69, 70]. In
order to get rid of the atmospheric effects on the OAM spectra, and to
get information about the astrophysical sources or the interstellar medium
traversed by light, next step could be differential interferometry. We could
build another sorter, in order to point at the same time two astrophysical
objects (the object we are interested in and a reference one) which are in the

5In our case the beam width b is determined by the diameter of the telescope, D.
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same isoplanatic angle6. Then, the two OAM spectra should be subtracted
to reveal any change in the spectrum due to astrophysical processes and not
to the atmosphere.

Figure 4.9: Spectra comparison. X-axis: transverse position with respect to the refer-
ence axis of the sorter. Y-axis: normalized CCD counts. In the box, there is a legend
associating different colors to the different observed stars (some of their names have been
abbreviated), with their geometric altitudes in brackets.

6In adaptive optics, the isoplanatic angle is the angle from the reference star where
the correction is still effective.
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Figure 4.10: Probabilities of obtaining different OAM measurements P = l0 ± ∆l for
a LG0

1
beam plotted against the ratio of the Gaussian beam width parameter b to the

Fried parameter r0. The probability of obtaining the original l value (∆l = 0) decreases
rapidly as the Fried parameter becomes comparable to the beam width parameter. There
is a corresponding increase in the probabilities of obtaining OAM measurements different
from the initial eigenvalues (∆l 6= 0), with those corresponding to adjacent azimuthal
modes increasing most rapidly (source: Paterson 2005 [65]).
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Chapter 5
Conclusions

This thesis highlights the relevance of the study of the orbital angular mo-
mentum (OAM) of light in the field of astronomy. Up to now astronomers
have not considered this observable, extracting all the information about the
radiating Universe by the study of the intensity, frequency and polarization
of the light that we receive. Showing that orbital angular momentum can
carry information of astrophysical interest, we propose to the astronomical
community to consider OAM as a new carrier of information and to study
the way it could be detected.

If we consider a reference frame with cylindrical coordinates, where the
z-axis corresponds to the direction of propagation of the considered electro-
magnetic beam, we have demonstrated that media characterized by a per-
turbed density in the azimuthal component impose orbital angular momen-
tum to the beam passing through [80]. When the electron number density
of a plasma exhibits certain spatial properties, such as vortices, any pho-
ton has an associated virtual mass term that is smaller than that expected
from Proca equations in a homogeneous plasma, because of a negative term
that corresponds to a precise orbital angular momentum component. In
this case, a cascading process of OAM transfer between the plasma and
the photon beam can be achieved, which is related to the electron number
density function. Therefore, studying the OAM of light we collect with our
telescopes could give additional information about the spatial structure of
the interstellar medium traversed by photons during their travel from the
source to the observer.

Our experimental findings demonstrate that the spatial phase signature,
namely the fingerprint of orbital angular momentum, is preserved even in
the far field region and for incoherent non-monochromatic wave beams [78].
These results confirm that new perspectives are opened for astronomers: if

81
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we can affirm that OAM is preserved when traveling in vacuum or homo-
geneous media, then the OAM fingerprint imposed by interstellar media or
other astrophysical processes (such as Kerr black holes)1 is preserved in its
travel to the observer.

Finally, our attempt to adapt an OAM mode sorter to a telescope and
our tests at Celado observatory, show that this kind of approach could pave
the way to the first detection of the orbital angular momentum of light from
celestial objects.

As future steps, we suggest to use at the same time two OAM mode
sorter fitted to an optical telescope, performing OAM differential interfer-
ometry. Pointing simultaneously two stars in the same isoplanatic angle,
and subtracting one spectrum by the other, we could get rid of the effects
given by the turbulent atmosphere. In this way, the spectrum left should
be the result of astrophysical processes, and not due to the atmosphere
distorting the wave front.

1The orbital angular momentum imposed by the interstellar medium can be discerned
by the orbital angular momentum imposed by the space-time dragging around a Kerr
black hole because of chromaticity: the former depends on the frequency of the electro-
magnetic beam, the latter is the same for all the spectrum.



Appendix A
Spin

In physics, spin is related to the intrinsic angular momentum of a body,
contrary to the orbital angular momentum, which is related to the motion
of the centre-of-mass around a point.
In classical mechanics, spin angular momentum is associated to a rotation
of a body around its own centre-of-mass.
In quantum mechanics spin is connected to the intrinsic angular momentum
associated to particles. The spin of an elementary particle is an intrinsic
physical property, akin to the particle’s electric charge and the rest mass.
Differently from rotating objects described by classical mechanics, which
derive their angular momentum from the rotation of the parts they are con-
stituted of, in quantum mechanics spin is not associated with any internal
structure. For example, elementary particles (such as electrons) have spin,
even if they are point particles.
Spin is not expected by the quantum mechanics non-relativistic theory, and
is introduced as a postulate. It is expected instead by the quantum me-
chanics relativistic theory (Dirac equation). The value of the spin quantum
number s for an elementary particle depends only on the type of particle,
and cannot be altered in any way (in contrast to the spin direction). The
spin angular momentum S of any physical system is quantized. The allowed
values of S are:

S = ~

√
s(s + 1)

where ~ is the reduced Planck’s constant.
Particles with integer spin quantum number (photons with s = 1 or the
hypothetical graviton with s = 2) correspond to bosons, and particles with
half-integer spin quantum number (s = 1/2 for electrons, neutrinos and
quarks) correspond to fermions.
Quantum mechanics states that the spin angular momentum components
measured along any direction (for example along i-axis) can take only the

83



84 Appendix A. Spin

following values:
Si = si~

where si is the spin projection quantum number along the i-axis, and it can
take on the following values:

si ∈ {−s,−(s − 1),−(s − 2), ..., s − 2, s − 1, +s} (A.1)

Conventionally, the chosen direction is the z-axis:

Sz = sz~

sz ∈ {−s,−(s − 1),−(s − 2), ..., s − 2, s − 1, +s} (A.2)

However, the possible values of si are not 2s + 1, but only 2s because the
eigenvalue with si = 0 does not exist. For example, there are only two
possible values for particles with spin 1: sz = +1 and sz = −1. These
values correspond to the quantum states with spin pointing to the +z or
−z direction respectively.
A pair of spin components along two non-parallel axis are subject to the
uncertainty principle:

[Si, Sj] = i~ǫijkSk.

where ǫijk is the Levi-Civita pseudotensor. This relation states that if the
particle is in a spin state with, for example, the Sz component completely
determined, then the direction of the spin component in the xy plane will
be completely indeterminate (only the amplitude will be known).

Spin of electrons

Particles with spin can have a magnetic dipole momentum, exactly as an
electrically charged body which rotates in a non-homogeneous magnetic
field. This applies to electrons as well: if a beam of hydrogen atoms in their
fundamental state passes through a non-uniform magnetic field, it separates
in two beams, each of them containing half atoms. The observed forces vary
for different electrons, and such differences are attributed to spin differences.
Therefore, electron spin is typically measured by observing the trajectory
in a non-homogeneous magnetic field.
Because of quantum uncertainty applied to spin, we are not able to measure
spin components along different axis at the same time. If we measure the
spin of an electron along a random axis, we will never find a fractionary spin
quantity: we can imagine that the measurement itself forces the electron
to use all its spin and to direct it clockwise or counter-clockwise along the
selected axis. Besides, because of the influence we exert on spin when we
measure it, we are no more able to define the state of particle before our
measurement.



85

Spin of photons

The case of photons is different: photon spin is not related to any magnetic
dipole momentum, but it is connected to the helicity : in quantum mechanics
spin photon states are called helicity states.
It’s important to underline that helicity states refer to the direction (+ or
−) of a spin component Si, and not to the total spin vector. For example,
let us consider a photon traveling along the direction determined by the z
axis. If the photon is in the helicity state +1, then it means that its Sz
component of the spin vector is positive (and equal to +~). Instead, if the
photon is in the helicity state −1, then its spin component Sz is negative
(and equal to −~), i.e. it is in the opposite direction with respect to the
propagation direction of the photon.
The case with Sz = 0 must be excluded for a photon with null mass.
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Appendix B
Antenna parameters

B.1 Definitions

Antennas are characterized by a number of parameters describing their per-
formances. Here a list of the main ones and some definitions necessary when
entering in the radio domain.

Radiation pattern

The antenna radiation pattern is a graphical representation of the radiation
properties of the antenna as a function of space coordinates. In most cases,
the radiation pattern is determined in the far field region.
Consider an antenna receiving radio waves from a distant point source.
The voltage at the terminals of the antenna as a function of the direction to
the point source, normalized to unity at maximum, is called the radiation
pattern of the antenna. This pattern is the same regardless of whether it is
used as a transmitting antenna or as a receiving antenna, i.e. if it transmits
efficiently in some direction, it will also receive efficiently in that direction
(this property is called reciprocity and follows from Maxwell’s equations).
A typical power pattern is shown in figure B.1. The power pattern has a
primary maximum called the main lobe, several subsidiary maxima called
side lobes, and minima called nulls.

Half-Power BeamWidth (HPBW)

The angular width of the beam radiated by high-gain antennas is measured
by the Half-Power Beam Width (HPBW), which is the angular separation
between the points on the antenna radiation pattern at which the power
drops to one-half (−3 dB) its maximum value. Namely, the points at which
the main lobe falls to half its central value are called the Half Power points
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Figure B.1: Typical polar radiation plot, with antenna facing 0◦. Most antennae
show a pattern of lobes or maxima of radiation. In a directive antenna, shown here,
the largest lobe in the desired direction of propagation is called the main lobe. The
other lobes are called sidelobes and usually represent radiation in unwanted directions
(http://en.wikipedia.org/wiki/Radiation_pattern).

and the angular distance between these points is called the Half Power
Beamwidth (figure B.2).

For radio astronomical applications one generally wants the HPBW to

Figure B.2: Schematic power pattern of an antenna, showing the Half-Power Beamwidth
(HPBW) (http://www.ncra.tifr.res.in).

be small (so that the nearby sources are not confused with one another),
and the sidelobes to be low (to minimize stray radiation). From simple
diffraction theory it can be shown that the HPBW of a reflecting telescope
is given by θHPBW ∼ λ/d where λ is the wavelength of the radiation and d
is the physical dimension of the telescope. So, the larger the telescope, the
better the resolution.
For parabolic antennas, the HPBW θ is given by:

θ =
kλ

D
(B.1)

http://en.wikipedia.org/w/index.php?title=File:Sidelobes_en.svg&page=1
http://www.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node29.html
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where k is a factor which varies slightly depending on the shape of the
reflector and the feed illumination pattern. For a typical parabolic antenna
k = 70 when θ is in degrees.

Gain

Gain is a parameter which measures the degree of directivity of the an-
tenna’s radiation pattern. A high-gain antenna will preferentially radiate
(and receive) in a particular direction. Specifically, the antenna gain is de-
fined as the ratio of the intensity radiated by the antenna in the direction
of its maximum output, at an arbitrary distance, divided by the intensity
radiated at the same distance by a hypothetical isotropic antenna.
The gain of an antenna is a passive phenomenon, power is not added by
the antenna, but simply redistributed to provide more radiated power in a
certain direction than would be transmitted by an isotropic antenna.

Near and far field

The near field and the far field of an antenna or other isolated source of
electromagnetic radiation are regions around the source, describing the way
characteristics of an electromagnetic field change with distance from the
source. The basic reason an electromagnetic field changes in character with
distance from its source is that Maxwell’s equations prescribe different be-
haviors of electric and magnetic fields, depending on the source terms: elec-
tric fields produced by charge distribution have a different character than
those produced by the change of magnetic fields. Similarly, Maxwell’s equa-
tions show a differing behavior for the magnetic fields produced by electric
currents, versus magnetic fields produced by the change of electric fields. For
these reasons, in the region very close to currents and charge-separations,
the electromagnetic field is dominated by electric and magnetic compo-
nents produced directly by currents and charge-separations, and these ef-
fects together produce the electromagnetic near field. At distances far from
charge-separations and currents, instead, the electromagnetic field becomes
dominated by the electric and magnetic fields, one indirectly produced by
the change of the other field, and thus it is no longer affected (or much
affected) by the charges and currents at the electromagnetic source. This
more distant part of the electromagnetic field is called far field, or radiative
field, or radiation zone, or free space, and it is the familiar type of elec-
tromagnetic radiation seen in free space, far from any electromagnetic field
sources.
The main characteristics of the near field are:

- this field is dominated by the dipole radiation: both currents and the
oscillating charge-distributions in antennae (and other radiators) pro-
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duce dipole type field behavior, whose intensities may be very powerful
near the source, but decay very rapidly with distance in comparison
to electromagnetic radiation (far field); strong inductive and capac-
itative effects from the currents and charges in the antenna cause
electromagnetic components not to behave like far field radiation, but
these effects decrease in power far more quickly with distance than do
the far field radiation effects;

- these non-radiative near field components of electromagnetic fields
dominate the electromagnetic field close to the object;

- absorption of radiation does affect the load on the transmitter (mag-
netic induction can be seen as a very simple model of this type of near
field electromagnetic interaction);

- the electric and magnetic fields are nearly independent of each other,
and each cannot be calculated from knowing the other (thus, they
must be independently measured in the near field), the relationship
between E and B becomes very complex; depending on the type of
source, the near field will be dominated by either a magnetic compo-
nent, or an electric component;

- in this close-in region of an antenna, the angular field distribution is
dependent upon distance from the antenna;

- all four polarization types (horizontal, vertical, circular, elliptical) can
be present.

The main characteristics of the far field are, instead:

- this field is dominated by a radiative intensity: the dipole near field in-
tensities, very power near the source, decay very rapidly with distance
in comparison to electromagnetic radiation. Radiative far field inten-
sity decays more slowly with distance, following the inverse square law
for total electromagnetic power that is typical of all electromagnetic
radiation. For this reason, the radiative component of the electro-
magnetic field wins out in intensity with increasing distance. Indeed,
far fields in general fall off in amplitude by 1/r. This means that the
total energy per unit area at a distance r is proportional at 1/r2 (in-
stead of 1/r3, valid for the dipole radiation). The area of the sphere
is proportional to r2, so the total energy passing through the sphere
is constant. This means that the far field energy radiates at infinity;

- electromagnetic radiation, or far field behaviors, dominate at greater
distance from the object than the near field components do;
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- the far field is the region in which the field acts as "normal" elec-
tromagnetic radiation: the power of this radiation decreases as the
square of distance from the antenna, and absorption of the radiation
has no effect on the transmitter;

- because each component (electric and magnetic) of the electromag-
netic field in the far field region is generated by a change in the other
component, the ratios of electric to magnetic field strength are fixed
and unvarying;

- the antenna radiation pattern is independent of distance from the
source;

- electromagnetic waves are usually characterized by a single polariza-
tion type (horizontal, or vertical, or circular, or elliptical).

The boundaries for these regions are approximate as there are no precise
cutoffs between them (all behavioral changes with distance are smooth
changes), and experts may differ in their definitions describing these re-
gions. The near field does not suddenly end where the far field begins,
rather there is a transition zone between these fields where both types of
electromagnetic field effects may be significant. In this region, near field
behavior dies out and ceases to be important, leaving far field effects as
dominant interactions.
There are different definitions about the boundaries for these regions. One
way to define them is associated to the dimension of the antenna with re-
spect to the dominant wavelength, λ.
For electromagnetically short antennae, i.e. for antennae shorter than half
of the wavelength of the radiation they emit, the far and near regional
boundaries are measured in terms of simple ratio of the distance from the
radiating source, r, to the wavelength of the radiation. Indeed, for such
an antenna, the near field is the region within a radius r << λ, while the
far field is the region for which r >> 2λ. Note that the dimension of the
antenna, is not important and the approximation is the same for all shorter
antennae (sometimes ideally called "point antennae").
For electromagnetically long antennae, i.e. antennae physically larger than a
half-wavelength of the radiation they emit, the near and far field are defined
in terms of the the Fraunhofer or Rayleigh distance dR:

dR = 2
D2

λ
(B.2)

where D is the largest dimension of the radiator, and corresponds to the
physical length of an antenna, or the diameter of a dish antenna. This
distance provides the limit between the near and far field.
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