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Abstract

Department of Biomedical Sciences

Doctor of Philosophy

Design, characterization and validation of an innovative biosensor for illegal

hypertrophy treatments detection in cattle breeding

by Giulio Rosati

English version

The work done during this PhD program, and presented in this thesis had the goal to

design, develop and characterize a system for the detection of illegal anabolic treatments

in cattle breeding, independently from the particular anabolic substance used. The sys-

tem is aimed to allow for faster and cheaper controls with respect to standard techniques

such as mass spectrometry, gas chromatography, and histological exams. Moreover, the

system allows for on-the-field controls, drastically reducing the costs related to sample

transportation, analysis, and trained personnel.

The main strength of this system is the independence of the anabolic treatments de-

tection, from the particular substance employed, which makes this system optimal as

screening method. Then, once identified the animals which has been treated, further

analysis can be performed by standard techniques for the anabolic substance identifica-

tion and quantification.

The independence from the anabolic substance is achieved by adopting a novel paradigm

for anabolic treatments detection, based on the identification of a common hypertrophic

effect induced by the anabolic substance on an in-vitro culture of mouse myogenic cells.

The cells provided with the anabolic substances receptors, are engineered to react to

the hypertrophic stimulus with the over-production of lactate, which is then released

in the cell medium. Then, the lactate concentration in the medium is detected by an

electrochemical enzyme-based biosensor, which allows for a rapid and precise quantifi-

cation by a cheap and miniaturizable device. The quantification of lactate produced by

the engineered cells allows the detection of on-going hypertrophic effect and thus of the

presence of anabolic substances in the biological sample collected from the cattle.

http://www.unipd.it/
http://www.biomed.unipd.it/
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Italian version

Il lavoro svolto durante questo dottorato di ricerca e riassunto in questa tesi ha avuto

l’obiettivo di progettare, realizzare e caratterizzare un sistema unificato per la rilevazione

di trattamenti anabolizzanti sui capi di bestiame bovini da carne, indipendentemente

dalla sostanza utilizzata per i trattamenti. La tecnologia ideata consente di effettuare gli

esami in modo molto più rapido che con i sistemi tradizionali e direttamente sul campo,

su campioni d’urina dell’animale. Il suo principale punto di forza è l’indipendenza dal

tipo di sostanza utilizzata che la rende ottimale per essere utilizzata come tecnica di

screening. Una volta individuati gli animali trattati mediante il sistema, sará possibile

andare ad identificare e quantificare la sostanza anabolizzante mediante le tecniche stan-

dard di analisi. Tale indipendenza è ottenuta cambiando il paradigma di rilevazione delle

sostanze e basandolo sull’effetto ipertrofico che queste hanno in vitro su una coltura di

cellule miogeniche. L’effetto ipertrofico attiva nella linea cellulare miogenica, dotata dei

recettori per le sostanze anabolizzanti e geneticamente modificata allo scopo, la sovrapro-

duzione di acido lattico, che viene rilasciato dalla cellula nel mezzo. Qui l’acido lattico

viene quindi quantificato da un biosensore elettrochimico enzimatico, grazie al quale

è possibile ottenerne una veloce e precisa quantificazione con un’apparato di misura

economico e miniaturizzabile. La quantificazione della concentrazione di acido lattico

prodotto dalle cellule consente, a ritroso, di individuare la presenza di sostanze anabo-

lizzanti nel campione d’urina dell’animale.

http://www.unipd.it/
http://www.biomed.unipd.it/
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Chapter 1

Introduction

1.1 Meat market in Europe

In terms of value, in Europe bovine animals represent 8.1% of total agricultural output

and 33% of animal output, without taking account of animal products (e.g., milk).

The major part of the meat bovine herd is located in four European Member States:

France (34.5%), Spain (14.9%), the United Kingdom (13.0%) and Ireland (9.1%). To-

gether, they represent more than 70% of the European meat herd. This type of herd is

susceptible to changes in the sector’s limited profitability and is thus sensitive to the level

of subsidies from the common agricultural policy. Between 2009 and 2013, production

of meat from heifers and bulls fell in both EU-28 (-10%) and EU-15 (-13%). However,

there has been an increase for veal, i.e. meat from calves (aged under 8 months) and

young cattle (aged between 8 and 12 months), and for which production increased by

around 27% in the EU-28 and 30% for EU-15 during this period. Meanwhile, the average

carcass weight has increased by 2% for adult cattle (aged one year and over) and by 7%

for calves and young cattle.

Italy is the fourth European country in the production of beef and veal, after France

and Germany as can be seen in figure 1.1 and in the table of figure 1.2. However,

Italy imports more than the 25% of the bovine meat which consumes (ERSAF - Market

evolution service 2011).

Compared with pigmeat production, beef production has a longer production cycle (fig-

ure 1.3), its feed efficiency is lower and the value of individual animals is higher. In

addition, the diversity of animals produced for slaughter (feeding mode, age, dairy or

meat breeds) makes the production systems more complex. All these factors have led

to tight margins and low profitability. The purchasing power of consumers is also a key

1
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Figure 1.1: Meat production in europe in 2013

determinant of the level of meat consumption. This is noticeable especially in the beef

and veal sector where prices are significantly higher than for pig (or poultry) meat. This

explains why pigs and poultry are raised and consumed much more in Europe.

In the recent years, the Italian consumer has shown an increased lack of confidence

toward the consumption of meat products and particularly towards the meat of ruminant

animals. The main reasons of this negative trend are:

• The new food habits of the young generations;

• The negative impact of the food scandals involving meat products;

• The progressive decline of the organoleptic traits of the meat.

As in many other North European Countries, Italy is showing a continuous increase in

the number of vegetarians particularly among the young generations. Support to this

trend comes by the progressive concern of the people about the animal rights and the
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Figure 1.2: Production of beef and veal, by type of bovine animals in 2013 (Eurostat
2013)

Figure 1.3: Bovine livestock and its production cycle in Europe (Eurostat 2013)
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rearing conditions of the farm animals which has led to the issue of several EU regulations

in the matter of animal welfare (EU, 2003). Food scandals like the BSE or the dioxin-

contaminated poultry in Belgium or those ones related to anabolic treatments, have

created a negative shadow on the safety and genuineness of meat products. In April

2000, the Italian Institute of Food Research and Nutrition (INRAN, 2000) carried out

an opinion poll on what Italian consumers thought about the food safety at that time.

Virtually, every Italian had heard about the BSE problem. People were also very much

aware of the cases of food-born botulism and salmonella that occurred in Italy shortly

before the poll as well as the discovery of dioxin-contaminated poultry and eggs in

Belgium. Therefore, it was not surprising that they rated meat and eggs to be unsafe

foods.

A recent poll carried out to understand the consumer perception of food quality by the

Italian consumer has rated in the top positions factors such as genuineness and safety

leaving flavor and cost behind (figure 1.4).

Figure 1.4: The main meaning of food quality for Italian consumers (%)

The general decline observed in the organoleptic traits of the meat has arisen from several

reasons. In the case of red meat the loss of taste and flavour can be mainly related to

the reduced marbling since the lipid fraction plays a key role in the determination of

these traits [1]. Moreover, the reduced intramuscular fat deposition has a negative effect

on meat tenderness which in cattle has also been worsened by the progressive reduction

in the time of muscle tissue maturation after slaughtering [2] and this could be related

also to the anabolic treatments.

1.2 Illegal anabolic treatments in cattle breeding

In this big market, there is the need to check, both the imported meat and the internally

produced one, for the presence of substances and compounds which can be dangerous
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for the consumer health. Between all these compounds, a particular class is that one of

the anabolic substances, which are used by the breeders to increase the muscle growth

of the animal and thus to increase their profits. For this reason, Europe has introduced

a plan for the control of meat and each member state has to carry on control policies

which have to satisfy this plan’s points. In Italy, this controls are performed within the

National Residues Plan, which is described in Chapter 2.

At the present time this controls are hampered by the enormous number of anabolic

substances which can be employed and by the use of always new substances. This forces

the control authorities in a continuous race for the insertion of these new substances on

the ”black list”, as the creation of a new antibiotic in medicine is accompanied by the

apparition of new resistant bacteria. Therefore, in the present the need is for control

systems which are not sensitive to the presence of a substance but to its effects on the

animal. For this reason histological tests on animal’s organs have been introduced as

screening method for anabolic treatments control, but this method and the standard

substances identification and quantification techniques still have a lot of problems (as

discussed in Chapter 2). Two main problems, which limits the applicability of the

anabolic treatments controls are the impossibility of on-the-field measurements, the

time consumption of the tests, and their costs.

1.3 Engineered cells and organisms

In recent years our ability and knowledge about the manipulation of the genetic mate-

rial of cells and organisms has led to smart solutions in several sectors as agriculture,

healthcare, and energy harvesting. Genetic engineering consists in the modification of

the genetic material of an organism or a cell in order to alter the expression of particular

proteins by the organism.

In agriculture, the genetically modified organisms (GMO) are plants which express pro-

teins able to protect them from the action of parasites or from severe climate conditions,

and to increase the productivity. In the healthcare sector, the recombinant DNA tech-

nology is used to produce widely used drugs such as insulin and human growth hormone,

decreasing their costs, or to fight genetic diseases.

Nowadays, modified organisms for biomass treatments are becoming a promising im-

provement in the energy harvesting sector, allowing to generate fuel gasses like hydrogen

or methane from biomass.

Cells, engineered or not are currently used also in the biosensors field. Monitoring sys-

tems for the cells adhesion over substrates or for cells electroporation have been realized
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by micro-electrodes arrays and electrochemical impedance measurements. Cells recep-

tors have been used as biological components for the detection of toxins or particular

proteins, monitoring the cells detachment from conductive surfaces.

1.4 Electrochemical biosensors

Biosensors are systems formed by a bio-component, such as enzymes, antibodies, DNA,

cells or tissues and by a transducer, which can be electrochemical, optical, acustic etc.

The bio-component is sensitive to a particular substance, the analyte, which has to be

detected by the biosensor. The interaction between the bio-component and the analyte

is sensed by transducer which converts this event to a signal that can be elaborated.

There are two types of interaction between the bio-component and the analyte: the

affinity interaction, where the analyte specifically binds to the bio-component, and the

catalytic interaction, in which the enzymatic bio-component reacts with the analyte pro-

ducing substances detectable by the transducer.

Nowadays, biosensors are a widespread technology in our society. It’s sufficient to think

to the pregnancy tests, based on colorimetric or electrochemical hormones detection by

specific antibodies (affinity interaction), or to the glucose measurement systems, used by

people affected by diabetes and based on the electrochemical detection of the enzyme-

based glucose catalysis products (catalytic interaction).

Electrochemical enzyme-based biosensors constitutes one of the most classical biosensors

category that has been studied since 1960, and is normally characterized by the electro-

chemical detection of the products of a catalytic reaction. Usually, the reaction takes

place on electrodes covered by the enzyme. A potential is applied to these electrodes

and the resulting current, proportional to the catalysis products and thus to the analyte

concentration, is read through the same electrodes. There exist several techniques for

this kind of measurements, applying different potential signals as sinusoidal waves or

ramps. Two of the most common are Electrochemical Impedance Spectroscopy (EIS)

and Cyclic Voltammetry (CV).

1.5 The Myo-Screen project

The Myo-Screen project has the goal to design, develop and validate a biosensor to detect

the presence of anabolic compounds in living breeding animals by a rapid, non-invasive,

and on-the-field screening of a small urine sample. The main innovation brought by

this project is the detection of the anabolic substances presence in the sample, not by

their formulation or structure, but by their common hypertrophic effect on a culture of



Chapter 1. Introduction 7

mouse myogenic cells. Therefore, the biosensor will be able to detect the presence of

any anabolic compound, even of the unknown ones, by their effect.

The hypertrophic effect on the myogenic cells, induced by the anabolic substances in

the urine sample, will be monitored by an electrochemical biosensor. This will be pos-

sible engineering the myogenic cells to over-produce lactate in presence of the anabolic

substances, and detecting the lactate production by the biosensor.

Figure 1.5 illustrates the working principle of the Myo-Screen system: the animal urine

sample (1.5a) is poured into the myogenic mouse cell culture (1.5b) and incubated for a

fixed time. During this time the cells’ receptors bind the anabolic substances present in

the urine sample and start a signaling cascade inside the cells (1.5c), which causes the

lactate overproduction in the cells medium (1.5d). The cell medium is then removed

and additioned by the Lactate Dehydrogenase enzyme (LDH) which catalyzes the lac-

tate conversion in pyruvate producing also the same concentration of a compound called

NADH (1.5e). Finally, the NADH produced is oxidized on a carbon screen-printed sen-

sor, obtaining an electrical current proportional to its concentration (1.5f), and thus

allowing to verify the presence of anabolic substances in the animal urine sample.

Figure 1.5: Myo-Screen project working principle.

This project has been carried on by four partners:

• University of Padova - Departments of Biomedical Sciences and of Information

Engineering

• The Association of the Veneto region meat producers (UNICARVE)

• The Experimental Zoo-prophylactic Institute of Venice (IZSVe)

• University ”La Sapienza”, Rome
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1.6 Work Packages

The work has been divided into five parts: the first part dealt with the individuation

and classification of the most used anabolic compounds in animal breeding, and with

the determination of the specific cell receptors for these substances. These tasks have

been carried out by the IZSVe. The second part consisted in the individuation of a myo-

genic cell line with the anabolic compounds receptors, and in the determination of the

genomic effects of induced hypertrophy on these cells. In the third part of the work, the

promoters of the over-expressed genes by the hypertrophic stimuli have been used for

the transfection of the gene codifying for the L-Lactate Dehydrogenase enzyme (LDH).

This causes an increment of the intracellular and extracellular lactate concentration in

presence of anabolic compounds. Both the second and third parts involved the Biomedi-

cal Sciences Deprtment of the University of Padova, with the advice of the University of

Rome, ”La Sapienza”. The fourth part of the work had the goal to design and develop

a reliable lactate electrochemical biosensor, able to detect the lactate over-production of

the cells in presence of anabolic compounds. This work package has been carried on in

parallel with the second and the third ones. Finally, the last part of the work deals with

the integration of the cellular and the sensor parts, and with the validation of the whole

biosensor on real samples, reducing the possible interferences due to the wide variety of

substances which will be present in the final solution, in contact with the biosensor. The

last two work packages have been performed with the collaboration of the Information

Engineering Department of the University of Padova.



Chapter 2

Illegal anabolic treatments to

cattle breeding

2.1 History

The illegal use of anabolic substances on breeding animals took place in Italy since

1960. This procedure allows to improve the nutrients assimilation from the animals,

obtaining an increase of the muscle growth rate, and consequently softer and less fat

meats [3]. The problem of the effects of the anabolic substances treatments on health

are under discussion since 1981, when the WHO regional office for Europe took stock of

the situation of these substances use in Europe and defined limits and detection methods

for each substance [4]. Today, it’s known that the exposure to growth factors is harmful

for the animal and for the consumer, causing damages to the endocrine glands and to

the immune system. Moreover, these substances are also potentially at the origin of

genotoxic and carcinogenic effects [5].

The current legislation in Italy prohibits the dispensation of these substances, if not for

defined therapeutic or zoo-technical treatments [6].

2.2 National Residues Plan

In Italy, the activities related to the residual controls in food are planned and reported

in the annual National Residues Plan (PNR). The actuation of this plan has the goal to

detect pharmacological active substances, contaminants and residues within the animal

breeding process and during the first transformation of the animal origin products.

These compounds presence is checked in the living animals, in their feces, in the biological

9
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liquids and tissues, in animal origin products, and in animal feeding and water.

The PNR is actuated in order to find out the cases of:

• Administration of illegal substances;

• Abusive administration of authorized substances in not authorized conditions;

• Non conformity of the vet medicines residues with the maximal limits (UE n.37/2010);

• Non conformity of the pesticides and environmental contaminants quantities.

This plan identifies the competent authorities for planning, coordinating, verifying and

executing the official controls, and also to actuate the non conformity actions. These

authorities are the following:

• The Health Ministry (central authority): for the annual arrangement of the plan,

and to coordinate the regional services for the residues surveillance, and of all the

control services for the use of illegal substances or products in breeding. Moreover,

the central authority is responsible for the information collection, for the evaluation

of the actions, and of the obtained results. Finally, the central authority has the

duty to transmit the collected information to the European Commission.

• Regional Departments of Health and Agriculture (regional authority): are respon-

sible for the repartition of the Regional Residues Plan actions and to coordinate

the activities of the territorial vet services (Local Health Agencies - ASL). The

regional authority has also the responsibility to verify the correct plan execution

and to establish the Regional Operational Supervision Units (NORV).

• Local Health Agencies - ASL (local authority): have the duty to perform the

official controls and to execute the following non-conformity actions.

The residues and substances to be quantified in the collected samples, defined by the

legislative ordinance 158 of the 16th of March 2006 are reported in the following table.

The PNR control tests sampling is performed unexpectedly and in not fixed moments

or days of the week, with variable intervals during the year. The activities related to

the PNR are mainly three:

• Planned activities: which are organized by the ministry, depending on the volumes

of the national productions and following the European regulations;
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Category Subtype A - Anabolic substances and illegal substances

Group A A1 Stilbens and derived salts and esters

A2 Antithyroid agents

A3 Steroids

A4 Resorcilic acid lactones

A5 β-agonists

A6 Substances included in the CEE rule n. 2377/90

Category Subtype B - Veterinary medicines and contaminant agents

Group B B1 Antibacterial substances

B2a Antielmintics

B2b Coccidiostatics

B2c Carbammats and piretroids

B2d Tranquillants

B2e NSAIDs

B2f Other substances with pharmacological actions

B3a Organochlorurated compounds

B3b Organophosphate compounds

B3c Chemical elements

B3d Mycotoxins

B3e Colorants

B3f Other

Table 2.1: Main illegal anabolic substances tested in bovines, their categories, and
their control concentrations in the respective sample materials.

• Extra-plan activities: extra sampling disposed by the Ministry or the Regions

toward specific targets if the planned activities proved the non conformity of the

related samples;

• Suspect: extra sampling disposed in case of suspects after histo-anatomical-pathologic

tests.

The samples are analyzed by the accredited laboratories of the Zoo-prophylactic Experi-

mental Institutes (ISZ) network, with techniques and criteria approved by the 2002/657/CE

decision.

All the ISZs monthly upload the results obtained in the informative system NSIS/PNR

for the samples of their competence. The regional departments verify the information in

the system and validate them for the transmission to the Ministry and to the European

Commission.

In 2014, the planned activities of the PNR allowed to test 40806 samples, 16276 for the

presence of residues of category A (39.9 % of the total), and 24530 for category B (60.1%

of the total).

The highest number of samples have been collected for bovines (191625), overcoming the

minimum number of samples recommended by the Community standards. In particular,



Chapter 2. Illegal anabolic treatments to cattle breeding 12

in the Veneto region, the bovine samples have been the 131.5% of the planned number.

The analysis of the samples have been mainly directed to substances of the categories

B1 and B2, as represented in figure 2.1, while the 41% of the analysis have been directed

to category A substances (anabolic substances).

Figure 2.1: Percentage distribution of the analyzed samples in actuation of the PNR
2014 divided by substance group category (see table 2.1)

In 2014, the samples which resulted in the excess of residues from the analysis have

been 44 (the 0.11% of the total of the analyzed samples). In the 34.1% of the positive

samples it has been detected the presence of substances of category A, while the 65.9%

was characterized by the presence of substances of category B, as schematized in the

following table.

Category Sample analyzed Not complying samples

A 16276 15

A1 587 0

A2 616 0

A3 1325 0

A4 1052 13

A5 7422 0

A6 5274 2

B 24530 29

B1 11185 15

B2 8679 6

B3 4666 8

Total 40806 44

Table 2.2: Results of the PNR 2014 divided by substance category.

The results obtained in 2014 are in line with the trend recorded during the last years,

both in terms of analyzed samples and of not complying ones. Moreover, the not com-

plying samples percentage is in line with the results obtained by the other EU states in

2014 (0.11%)

The PNR plan procedures state that the freezed samples must be delivered to the anal-

ysis lab within 4 days from the sampling. Anyway, only 9 regions over 21 respected this

delivery time for more than the 95% of the samples. Veneto respected the delivery time
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Figure 2.2: Trends of the number of analyzed samples (on the left) and of the number
of not complying samples (on the right) in recent years.

for the 83.7% of the samples and the average percentage has been 92.6%.

When the samples are delivered to the laboratories, the maximum time allowed for the

emission of the analytic report is of 14 days for the detection of category A substances

and of 42 days for the detection of category B compounds. Only one Region over 21

respected both these times for more than the 90% of the samples. The Veneto Region

respected the cat. A substances analysis time and the cat. B one, for respectively the

91.8% and the 78.6% of the samples.

2.3 Anabolic compound detection

The main families of anabolic substances used in cattle breeding, with their control levels

and the respective fluids or locus of investigation are reported in table 2.3.

To analyze the animal samples several techniques are available but all of them need

advanced laboratory procedures and a variable amount of time which is usually longer

than a week.

2.3.1 Analytical techniques for cat. A samples analysis

The most used techniques for the detection of anabolic substances (cat. A) in bovine

samples are mass spectrometry (MS) and gas chromatography (GC) which can also be

used in tandem configuration [7], [8].

2.3.1.1 Mass spectrometry (MS)

The main technique used for the analytical tests on the samples is mass spectrometry.

This technique is based on the ionization of a molecule and on its consecutive fragmenta-

tion in ions with different mass/charge ratio (M/z). The mass spectrometry experiment

consists in the ionization of gas phase molecules, in the separation of the produced ions
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Substance Category Sample Control level

Diethylstilbestrol Stilbens Urine 1.0 µg/kg

Dienenestrol Stilbens Urine 1.0 µg/kg

Esestrol Stilbens Urine 1.0 µg/kg

Thiouracile Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Methylthiouracile Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Propylthiouracile Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Fenylthiouracile Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Tapazole Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Mercaptobenzoimidazole Thyroid antagonists Urine, Thyroid 10.0 µg/kg

Ethynilestradiol Synthetic estrogens Muscle 2.0 µg/kg

Estradiol Estrogens (natural) Plasma, Urine 0.04 µg/kg

Testosterone Androgens (natural) Plasma, Urine 10.0 µg/kg

Progesterone Progestinics (natural) Plasma, Urine 1.0 µg/kg

Methyltestosterone Androgens (synthetic) Urine 1.0 µg/kg

Nortestosterone Androgens, (synthetic) Urine 2.0 µg/kg

Trenbolone Androgens, (synthetic) Urine 2.0 µg/kg

Boldenone Androgens, (synthetic) Urine 1.0 µg/kg

Zeranol Resorcilic acid lactones Urine 2.0 µg/kg

Clenbuterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Bhromebuterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Clenpenterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Mabuterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Mapenterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Cimaterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Cimbuterol Clenbut.-like β-agonists Urine, liver 1.0 µg/kg

Salbutamol Salbut.-like β-agonists Urine, liver 3.0 µg/kg

Terbutaline Salbut.-like β-agonists Urine, liver 3.0 µg/kg

Isoxuprine Salbut.-like β-agonists Urine, liver 3.0 µg/kg

Ractopamine Salbut.-like β-agonists Urine, liver 3.0 µg/kg

Zilpaterol Salbut.-like β-agonists Urine, liver 3.0 µg/kg

Table 2.3: Main illegal anabolic substances tested in bovines, their categories, and
their control concentrations in the respective sample materials.

and in their detection. The experiment result is the mass spectrum which represents

the abundance of the ions with respect to their M/z ratio. The fragmentation profiles

obtained by mass spectrometry are peculiar of each compound and constitutes its finger-

print. This allows for the individuation of the structure formula even of small quantities

of unknown compounds.

The sample introduction in the ionization chamber can be done both for solid samples

(using a probe), and for liquid/gas samples, by a valves system which allows to get

the access to the chamber without any contamination from the external. The sample

quantity needed is in the micrograms/nanograms orders of magnitude. It’s possible to

use the output of a GC or HPLC system as input for the mass spectrometer. These

techniques called GC-MS and HPLC-MS are very useful in the analysis of products mix.
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Figure 2.3: Scheme of a mass spectrometry system.

The sample is ionized in the ionization chamber where a ionic source produce an elec-

tronic beam which hits and ionizes the sample molecules. The electrons which didn’t

hit the molecules are collected by an electrons trap and the not ionized molecules are

removed by the high vacuum pump. The ionized molecules are accelerated and carried

to the analyzer.

Depending on the power of the ionization the MS techniques can be distinguished in

hard techniques, which cause a high fragmentation, and soft techniques. The analyzer

can be of different types:

• Magnetic analyzer - is the most used as it allows for the highest resolution. It’s

based on the deflection by a magnetic field through a curved pipe, selecting the

ions with a particular M/z ratio;

• Double focus analyzer - it adds an electrostatic filter after the magnetic selector

in order to further focus the ions beam;

• Quadrupole analyzer - it’s constituted by four cylinders kept at an oscillating

potential which cause the ions to have a particular trajectory, which becomes

sinusoidal if they have a particular M/z ratio;

• Ionic trap analyzer - it’s a variant of the quadrupole analyzer which uses three

electrodes to create an ion trap, in order to increase the sensitivity.
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Finally, the detecting unit usually is an electronic multiplier composed by a cascade of

electrodes.

2.3.1.2 Gas chromatography (GC)

It’s a common type of chromatography used to separate and analyze compounds that

can be vaporized without decomposition. This technique is often used to separate the

different components of a mixture in order to prepare the samples for other identification

techniques, e.g. mass spectrometry.

In gas chromatography, the so called mobile phase is a carrier gas, usually helium (inert)

or nitrogen (unreactive), while the stationary phase is a microscopic layer of liquid or

polymer on an inert solid support inside a glass or metal tubing called column. The

gaseous compounds being analyzed interact with the walls of the column, which is coated

with the stationary phase. This causes each compound to elute at a different time, known

as the retention time of each compound. The differences between the retention times

allow to separate the compounds in the mixture.

Figure 2.4: Shematics of a gas chromatography system

A detector is used to monitor the outlet stream from the column, thus the time at which

each component reaches the outlet and the amount of that component can be deter-

mined. Generally, substances are qualitatively identified by the order in which they

emerge from the column and by the retention time of the analyte in the column.

The most commonly used detectors are the flame ionization detector (FID) and the ther-

mal conductivity detector (TCD). Both are sensitive to a wide range of components, and

both work over a wide range of concentrations. While TCDs are essentially universal

and can be used to detect any component other than the carrier gas (as long as their

thermal conductivities are different from that of the carrier gas, at detector tempera-

ture), FIDs are sensitive primarily to hydrocarbons, and are more sensitive to them than

TCD. However, a FID cannot detect water. Both detectors are also quite robust. Since
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TCD is non-destructive, it can be operated in-series before a FID (destructive), thus

providing complementary detection of the same analytes.

The type of detector determines also which gas to use as the carrier gas. Typical carrier

gases include helium, nitrogen, argon, hydrogen and air. When analyzing gas samples,

however, the carrier selection is sometimes based on the sample’s matrix, for example,

when analyzing a mixture in argon, an argon carrier is preferred, because the argon in

the sample does not show up on the chromatogram. Safety and availability can also

influence carrier selection, for example, hydrogen is flammable, and high-purity helium

can be difficult to obtain in some areas of the world. As a result of helium becoming

more scarce, hydrogen is often being substituted for helium as a carrier gas in several

applications.

The purity of the carrier gas is also frequently determined by the detector, though the

level of sensitivity needed can also play a significant role. Typically, purities of 99.995%

or higher are used. The most common purity grades required by modern instruments

for the majority of sensitivities are 5.0 grades, or 99.999% pure meaning that there is a

total of 10 ppm of impurities in the carrier gas that could affect the results. The highest

purity grades in common use are 6.0 grades, but the need for detection at very low levels

in some forensic and environmental applications has driven the need for carrier gases

at 7.0 grade purity and these are now commercially available. Trade names for typical

purities include ”Zero Grade,” ”Ultra-High Purity (UHP) Grade,” ”4.5 Grade” and ”5.0

Grade.”

The column in a GC are contained in an oven, the temperature of which is precisely con-

trolled electronically. The rate at which a sample passes through the column is directly

proportional to the temperature of the column. The higher the column temperature,

the faster the sample moves through the column. However, the faster a sample moves

through the column, the less it interacts with the stationary phase, and the less the

analytes are separated. In general, the column temperature is selected to compromise

between the length of the analysis and the level of separation.

The carrier gas linear velocity affects the analysis in the same way that temperature

does (see above). The higher the linear velocity the faster the analysis, but the lower

the separation between analytes. Selecting the linear velocity is therefore the same com-

promise between the level of separation and length of analysis as selecting the column

temperature. The linear velocity will be implemented by means of the carrier gas flow

rate, with regards to the inner diameter of the column.

Regarding the stationary phase, the polarity of the solute is crucial for its choice,

which in an optimal case would have a similar polarity as the solute. Common station-

ary phases in open tubular columns are cyanopropylphenyl dimethyl polysiloxane, car-

bowax polyethyleneglycol, biscyanopropyl cyanopropylphenyl polysiloxane and diphenyl

dimethyl polysiloxane. For packed columns more options are available.
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The real chromatographic analysis starts with the introduction of the sample onto the

column. The development of capillary gas chromatography resulted in many practi-

cal problems with the injection technique. The technique of on-column injection, often

used with packed columns, is usually not possible with capillary columns. The injection

system in the capillary gas chromatograph should fulfill the following two requirements:

1. The amount injected should not overload the column;

2. The width of the injected plug should be small compared to the spreading due to

the chromatographic process. Failure to comply with this requirement will reduce

the separation capability of the column. As a general rule, the volume injected

and the volume of the detector cell should be about 1/10 of the volume occupied

by the portion of sample containing the molecules of interest (analytes) when they

exit the column.

The choice of column depends on the sample and the active measured. The main chem-

ical attribute regarded when choosing a column is the polarity of the mixture, but

functional groups can play a large part in column selection. The polarity of the sample

must closely match the polarity of the column stationary phase to increase resolution

and separation while reducing run time. The separation and run time also depends on

the film thickness (of the stationary phase), the column diameter and the column length.

2.3.2 Histological tests

In 2013, EFSA published the ”Scientific opinion on the public health hazards to be

covered by inspection of meat (bovine animals)” [5]. This article reports the use of

samples like feces, eyes, hairs, etc. for the analysis because of the higher persistence of

residues in them. Moreover, the use of indirect techniques such as genomic, proteomic

and metabolomic tests is encouraged for the identification of treated animals.

In Italy, the Health Ministry recently associated the histology tests to the chemical

analysis of the samples, in order to look for Histo-anato-pathological damages in or-

gans collected in the slaughter houses. This techniques, in the case of positive results,

authorizes the traditional investigation in the company of origin of the suspected ani-

mal. The histological test individuates the microscopic alterations induced by growth

promoting substances (natural or synthetic anabolic substances) on target organs i.e.

thymus, thyroid and sexual glands. This kind of control allows for the detection of the

secondary biological effect of molecules like steroids, thyreostatics and cortisonics, which

effect remains longer than in the official samples for the chemical analysis (serum, liver,
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urine, hairs, eyes, muscle, thyroid, adipose tissue). However, this type of analysis gives

only the probability that an animal has been treated with anabolic substances.

The 2014 PNR histological tests has been conducted by the CIBA (National Reference

Center for the Anabolic Substances Investigations) which detected an increment in the

cortisone treatments and a similar number of suspected anabolic treatments, with respect

to the previous years. However, some Regions didn’t participate to the tests, i.e., Veneto

and Basilicata.

With this kind of tests the estimations indicate that almost the 15% of the bovine ani-

mals could be subject to illegal anabolic treatments in our country [9].

Figure 2.5: Example of a positive hystologic sample of a seven month bovine. The
anabolic treatments caused a huge increase in the adipose tissue (the white cells) in the

thymus [9].

There is a huge difference between this conclusion and the 0.11% of treatments individ-

uated by the standard techniques. This difference highlights the possible inappropriate-

ness of the standard techniques as weapons to stem the anabolic treatments diffusion.

2.3.3 Issues with the present detection techniques

There are several issues within the detection techniques nowadays used to monitor the

use of anabolic substances in cattle breeding. The recent introduction of histological

tests as control procedure in the official PNR protocol is a step forward. However, this

technique is based on a probabilistic approach, thus it can only rise the suspect of illegal
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treatments which will need further investigations.

Moreover, the histological test is performed on the animal organs, therefore it’s possible

only when the animal is processed at the slaughterhouse. This means that the eventual

suspects verifications will take place on other animals of the same breeder.

Another relevant drawback of all the techniques presented above is the fact that they

have to be performed in a laboratory, with consistent efforts for the sample delivering,

the possibility of damages and the needing of trained personnel and time, with the re-

lated high costs.

Conversely, a detection technique ”on-the-field” would allow to perform rapid controls

by a minimally trained person, and to increase their frequency, and consequently in-

creasing the ”surprise effect” on the breeder.

Anyway, the most problematic issue of all these techniques, and more generally of this

anabolic substances control approach, is that everything depend from the official list of

banned substances.

This list states what is permitted and what is forbidden but, even though it’s continually

updated, it can’t contain all the illegal substances which are used. The illegal pharma-

ceutical commerce behind the animal anabolic treatments carries always new substances

to the market and even the old ones, not controlled anymore, sometimes reappear.

2.4 The Myo-Screen project: problems and solutions

The issues and problems related to the present anabolic substances detection techniques,

described in the previous paragraph, are the innovation boost through the development

of innovative detection methods. Nowadays, the focus of the new techniques is not on

the substance detection but on its effects revelation, as with the histological tests on the

animal’s organs.

With this method, the identification of the substance type is not important because

the goal, at least in a first screening step, is just the verification of the presence of the

hypertrophic effects in the animal organism. However, since the histological tests are

based on different animal organs, there is always the possibility that the variations ob-

served could be due to something not related to the illegal anabolic substances, such as

pathologies or peculiarities of the animal.

Therefore, these results need a confirmation by the standard substance detection tech-

niques.

The key idea behind the Myo-Screen project is to follow this new direction toward the

identification of the anabolic substances effects, but on a mouse myogenic cell culture

prepared in the laboratory, and put in contact with a urine sample of the animal sus-

pected to be treated by illegal substances. These type of cells, deeply described in
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the following chapter, undergoes severe modifications if exposed to anabolic substances,

which cause an hypertrophic effect and the expression of several proteins. Therefore,

the cell culture state monitoring will allow for the detection of the illegal substances

presence (over certain concentrations) in the animal urine.

In order to simplify the observation of the anabolic substances effect on the myogenic

cell culture, the cells have been modified to express the Lactate Dehydrogenase (LDH)

enzyme in presence of these substances. This causes the increase of the intra- and extra-

cellular lactate concentrations, which can be detected by a portable electrochemical

lactate sensor, testing the cell’s solution after the cells exposition to the animal urine

sample.

For the prototype of the Myo-Screen project system, a single anabolic substance has

been selected for the tests on real urine samples by the Experimental Zoo-prophylactic

Institute of Legnaro (IZSVe). This substance is Clenbuterol and has been found to be

widely used for the illegal cattle anabolic treatments. Other important substances, used

in the preliminary tests on the cells are Testosterone and 17-β Estradiol, as presented

in the next chapter.
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Myogenic cells for hypertrophy

transduction

3.1 The skeletal muscle

The skeletal muscle is a complex biological machine which converts chemical energy into

mechanical and thermal energy. Each muscle is composed by thousands of large elon-

gated cells, called muscle fibers placed in parallel to each other and connected at both

ends to tendons. Each muscle is covered by three layers of connective tissue: epimisium,

perimisium and endomisium. The first one contains the entire muscle and is formed by

a dense layer of collagen fibers which separate the muscle from the nearby tissues and

organs. The perimisium is made by interstitial connective tissue and divides the muscle

in compartments. Each compartment contains a set of muscular fibers called fascicle.

Perimisium also contains nerves ad blood vessels. Inside a fascicle, each muscle fiber is

surrounded by a basal membrane and by reticular connective fibers called endomisium,

that links the muscle fiber to the other ones. This layer of reticular fibers contains a

network of blood vessels and nerves contacting directly the single muscle fibers. Between

the muscle fiber and the connective envelope there are some stem cells for the reparation

of the damaged muscle tissue called satellite cells. These cells can proliferate, merge and

form new fibers. At each end of the muscle, the collagen fibers of epimisium, perimisium

and endomisium converge into a unique dense connective tissue called tendon, by which

muscles are attached to the bones.

Each mature muscle fiber has a characteristic cylindrical shape, its diameter varies be-

tween 100 and 500 µm, and can reach a length of some centimeters. The fiber contains

several nuclei beneath the plasmatic membrane (called sarcolemma). Inside the fiber

there are long cylindrical elements called myofibrils, with a diameter of about 1-3 µm,

22
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which fill virtually the entire fiber volume.

In the remaining space inside the fibers there are a small Golgi apparatus, many mitho-

condria, the endoplasmic/sarcoplasmic reticulum, glycogen, and myoglobin, a chromo-

protein which binds oxygen and gives to the fibers the characteristic red color. Impor-

tantly, the fibers contain a particular form of endoplasmic reticulum, called sarcoplasmic

reticulum which acts as calcium storage. Muscle fibers appear striated as their inter-

nal myofibrils structure is highly organized. The myofibrils unit are responsible for the

muscle contraction and are composed by a regular distribution of cytoskeletal elements,

i.e., myosin and actin filaments.

Figure 3.1: Structure of the skeletal muscle and its substructures organization.

The muscle contraction function has the goal to generate force, both to keep the body

balance, and to produce movements. The muscle contraction process involves several

phases, i.e., the excitation, excitation-contraction, and contraction phases. The skeletal

muscle communicates with the nervous system thanks to neuromuscolar junctions. Ac-

tually, the skeletal muscle fibers are innervated by the motoneuron-α axons terminals,

which determine the contraction of the muscle fiber.

The muscle contraction needs high amounts of energy. This energy derives from the

ATP, which is consumed at a rate 100 folds higher in maximal contraction compared to

rest state. ATP is available for the muscle through different biochemical processes:

1. Phosphocreatine - When muscle fiber is in rest condition, it produces more ATP

than what is needed. The excess ATP can be accumulated as phosphocreatine, a

high energy compound. During the contraction, myosin consumes ATP, producing

ADP and inorganic phosphate. The energy stored in phosphocreatine is used to
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regenerate ATP from ADP in a reaction catalyzed by the enzyme creatinephospho-

kinase (CPK). A muscle fiber in rest state contains a creatinephosphate concen-

tration six times greater than ATP concentration. When the fiber is contracting

for a prolonged period of time, this amount allows to maintain the ATP available

for no more than 15 seconds.

2. ATP production - Glycolisis is an anaerobic process used by the cells to produce

two molecules of ATP from each molecule of glucose. During this process also

pyruvic acid is produced and when it enters in the Krebs cycle it allows to obtain

17 ATP molecules per each pyruvic acid molecule employed, in a process called

oxidative phosphorylation. This process is possible only in presence of oxygen

which is supplied by blood. Therefore, when the energy request is low and oxygen

is available, large amount of ATP is produced by oxidative phosphorilayion, while

ATP is produced by glycolysis when the muscle is engaged in a heavy and short

exercise condition since the oxygen available is not enough. When the ATP is

produced by the anaerobic glicolysis, the process produces more pyruvic acid than

what is needed, thus its concentration increases. To reduce the NADH oxidized

during glycolysis it is converted to lactic acid. Lactic acid is then released from

the fibers and transported to the liver where it can be converted back in glucose.

High amount of piruvic and lactic acid can cause a decrease of pH in muscle cells

and in the whole body. When the ATP is produced by the anaerobic glicolysis, the

process produces more pyruvic acid than what is needed, thus its concentration

increase in the sarcolemma and it’s reduced to lactic acid. Lactic acid is then

transported to the liver where it’s converted back in glucose but it also decrease

the pH in the muscle cells, causing pain during intense exercise.

Depending on metabolism, the skeletal muscle fibers can be classified in four types [10]:

• Type I: slowly contracting oxidative fibers which are characterized by a dark color

due to myoglobine presence, a small diameter and contain abundant oxidative

enzymes. These fibers are fatigue resistant;

• Type IIB: fast contracting glycolytic fibers, not resistant to fatigue. These fibers

have a large sarcoplasmatic reticulum for the rapid release of calcium ions and are

characterized by an anaerobic metabolism;

• Type IIA: fast contracting oxidative-glycolitic fatigue resistant fibers;

• Type IIX: which have characteristic intermediate between type IIA and IIB.
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Figure 3.2: Scheme of the metabolic pathways for the generation of ATP in the
aerobic and anaerobic cases.

Different types of fibers have different types of myosin molecules. In fact, both the

myosin heavy and light chains are present with different isoforms [10] with different and

distinct distributions. Most skeletal muscles have both fast and slow fibers in a specific

proportion and the improvement related to the training type are partly based on change

of this proportion.

3.2 Cell signaling and receptors

The millions of cells that make up a multicellular organism can work together only

because they continually exchange chemical messages called transmitters. Transmitter

mechanisms can be classified in two ways. The first depends on their lifetime in the

extracellular fluid. A transmitter that is rapidly broken down or taken up into cells

acts only near its release site. One that is broken down slowly can diffuse a long way

and may act on cells a long way away. The shortest lived transmitters of all are those

released at synapses, where the distance from release site to receptor is only 100 nm.

At the other extreme are transmitters that last many minutes or, sometimes, even longer.

Hormones are long-lived transmitters that are released into the blood and travel around

the body before being broken down. Most are released by specialized groups of secretory
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cells that form a structure called an endocrine gland. Paracrine transmitters may also

last many minutes before being broken down, but they are released into specific tissues

rather than into the blood, and only diffuse within the tissue before they are destroyed.

The second way of classifying transmitter mechanisms depends on the location and

action of the receptor on the target cell. There are three types of receptors: ionotropic

cell surface receptors, metabotropic cell surface receptors, and intracellular receptors.

3.2.1 Ionotropic cell surface receptors

Ionotropic cell surface receptors are channels that open when a specific chemical binds

to the extracellular face of the channel protein. The nicotinic acetylcholine receptor,

so named because the drug nicotine binds to it, is one example. In the absence of a

transmitter called acetylcholine, the channel is closed. When acetylcholine binds, the

channel opens and allows ions to pass through. The electrochemical gradient driving

sodium ions into the cell is much greater than that driving potassium ions out of the

cell, so when the channel opens, sodium ions enter the cell carrying positive charge

and depolarizing the plasma membrane. A similar mechanism holds for the inositol

trisphosphate-gated calcium channel. There is, however, a major difference: the IP3

channels are opened by cytosolic solutes, while ionotropic cell surface receptors are

opened by extracellular solutes, such as acetylcholine.

3.2.2 Metabotropic cell surface receptors

Metabotropic cell surface receptors are linked to enzymes. When the ADP receptor

binds extracellular ADP, it activates Gq and hence phospholipase Cβ. The β-adrenergic

receptor are linked to Gs and hence adenylate cyclase and this enzyme increases cytoso-

lic cAMP. Tyrosine kinase receptors are themselves protein kinases which are activated

when their ligand binds. The α-adrenergic receptor is another receptor that causes

cytosolic calcium concentration to increase, mainly acting through phospholipase C ac-

tivation. The α- and β-adrenergic receptors are distinct membrane proteins that bind

the same transmitters, adrenaline and noradrenaline. To simplify the issue somewhat,

we can say that noradrenaline acts mainly on α receptors and adrenaline acts mainly on

β receptors. Because the α and β receptors are distinct proteins, it is possible to design

drugs (α and β blockers) that interfere separately with one or the other.
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Figure 3.3: Noradrenaline activates Gq and hence phospholipase Cβ in many cells
including smooth muscle.

3.2.3 Intracellular cell surface receptors

Intracellular receptors are localized within the cell (mainly in the cytosol) and bind

transmitters that diffuse through the plasma membrane. The receptors for nitric oxide

and steroid hormones are two examples.

Nitric oxide, or NO, is a transmitter in many tissues. It is not stored ready to be re-

leased but is made from arginine at the time it is needed. NO diffuses easily through the

plasma membrane and binds to various cytosolic proteins that are NO receptors. One

particularly important NO receptor is the enzyme guanylate cyclase, which in the pres-

ence of NO converts the nucleotide GTP to the intracellular messenger cyclic guanosine

monophosphate, or cGMP.

Steroid hormones have intracellular receptors such as the glucocorticoid receptor. In

the absence of hormone this receptor remains in the cytosol and is inactive because it is

bound to an inhibitor protein. However, when the glucocorticoid hormone binds to its

receptor, the inhibitor protein is displaced. The complex of the glucocorticoid receptor

with its attached hormone now moves into the nucleus. Here two molecules of the com-

plex bind to a 15-bp sequence known as the hormone response element (HRE), which

lies upstream of the TATA box. The HRE is a transcriptional enhancer sequence.The

binding of the glucocorticoid hormone receptor to the HRE stimulates transcription.
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3.2.4 The MAPK pathway

The MAPK (Mitogen-Activated Protein Kinase) pathway is one of the primordial sig-

naling systems that nature has used in several permutations to accomplish an amazing

variety of tasks. It exists in all eukaryotes, and controls such fundamental cellular pro-

cesses as Proliferation, Differentiation, Survival and Apoptosis. Mammalian MAPK can

be divided into four groups based on their structure and function: ERKs (Extracel-

lular signal-Regulated Kinases), p38MAPKs, JNKs (c-Jun NH2-terminal Kinases) and

ERK5 (Extracellular signal-Regulated Kinase-5) or BMK. Activation of these MAPKs

occurs through a cascade of upstream kinases; a MAPKKK (MAPK Kinase Kinase)

first phosphorylates a dual-specificity protein kinase MAPKK (MAPK Kinase), which

in turn phosphorylates the MAPK. This set-up provides not only for signal amplifica-

tion, but, maybe even more importantly, for additional regulatory interfaces that allow

the kinetics, duration and amplitude of the activity to be precisely tuned. ERK, a

member of the MAPK family, have been established as major participants in the reg-

ulation of cell growth and differentiation, but when improperly activated contribute

to malignant transformation. ERK1 and 2 form a central component in the MAPK

cascade. The MAPK/ERK signaling cascade is activated by a wide variety of receptors

involved in growth and differentiation including GPCRs (G-Protein Coupled Receptors),

RTKs (Receptor Tyrosine Kinases), Integrins, and Ion channels. The specific compo-

nents of the cascade vary greatly among different stimuli, but the architecture of the

pathway usually includes a set of adaptors like SHC, GRB2 (Growth Factor Receptor

Bound protein-2), Crk, etc. linking the receptor to a GEF (Guanine nucleotide Ex-

change Factor) like SOS (Son of Sevenless), C3G, etc. transducing the signal to small

GTP binding proteins (Ras, Rap1), which in turn activate the core unit of the cascade

composed of a MAPKKK (Raf), a MAPKK (MEK1/2 (MAPK/ERK Kinase-1/2)) and

MAPK (ERK). An activated ERK dimer can regulate targets in the cytosol and also

translocate to the nucleus where it phosphorylates a variety of transcription factors reg-

ulating gene expression [11], [12]. GPCRs constitute a superfamily of Plasma membrane

receptors. Members of this family include receptors for many Hormones, Neurotrans-

mitters, Chemokines and Calcium ion, as well as sensory receptors for various odors, and

bitter and sweet tastes. GPCR play an important role in activation of ERKs. Stimula-

tion of the GN-AlphaI (Guanine Nucleotide Binding Protein-Alpha Inhibiting Activity

Polypeptide)-coupled Neuropeptide Y1 and GN-AlphaQ (Guanine Nucleotide-Binding

Protein-Alpha-Q) -coupled Muscarinic M1 Acetylcholine Receptors lead to the activation

of ERK. When the GPCR becomes activated, it leads to the exchange of GDP for GTP

on the GN-Alpha subunit. Upon activation, GN-AlphaI or GN-AlphaQ subunits are

separated from GN-Beta (Guanine Nucleotide-Binding Protein-Beta) and GN-Gamma

(Guanine Nucleotide-Binding Protein-Gamma) subunits and are converted to their GTP
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bound states that exhibit distinctive regulatory features on the nine tmACs (Trans-

membrane Adenylate Cyclases) in order to regulate intracellular cAMP (Cyclic Adeno-

sine 3’,5’-monophosphate) levels. cAMP activate Rap1A (Ras-Related Protein-1A) and

Rap1B (Ras-Related Protein Rap1B) through EPAC (Exchange Protein Activated by

cAMP)-dependent pathway. cAMP activates cAMP-GEFI (cAMP-Regulated Guanine

Nucleotide Exchange Factor-I)/EPAC1 and cAMP-GEFII (cAMP-Regulated Guanine

Nucleotide Exchange Factor-II)/EPAC2 that in turn activate Rap1A and Rap1B, respec-

tively. Rap1A and Rap1B then forms an active complex with BRaf (v-Raf Murine Sar-

coma Viral Oncogene Homolog-B1) for MEK1/2 activation finally resulting in ERK1/2

activation. cAMP may also activate PKA (Protein Kinase-A), which may further acti-

vate Rap and thus BRaf. On the other hand, PKA also inactivates C-Raf. GN-Alpha

also directly activate PI3K (Phosphatidylinositide-3 Kinase) and c-Src and modulate

their activity through stimulation of Ras under the influence of many extracellular fac-

tors. Rac is also a key downstream target/effector of PI3K. A new mechanism have

been identified that regulates MEK1-ERK interactions and is dependent on Rac and

PAK (p21-Activated Kinase). Besides GN-Alpha subunit, GN-Beta Gamma complex

can also lead to activation of ERK. GN-Beta and GN-Gamma subunits when activated

separate from GN-alpha subunit and it further activates PKC (Protein Kinase-C) via

PLC-Beta (Phospholipase-C-Beta). PLC-Beta converts PIP2 (Phosphatidylinositol 4,5-

bisphosphate) to DAG (Diacylglycerol), which activates PKC. PKC once formed can

activate ERKs via Ras, Raf and MEKs. PKC also activates Src-PYK2 (Proline-Rich

Tyrosine Kinase-2) complex which activates GRB2, which is also involved in ERK acti-

vation [13], [14].

The canonical ERK MAPK cascade is also stimulated upon the binding of extracellular

Growth factors to their respective transmembrane RTKs (Receptor Tyrosine Kinases).

The subsequent auto-phosphorylation of the cytoplasmic tails of the receptor on tyrosine

leads to the tyrosine phosphorylation of the adapter protein SHC. SHC can then recruit

the GRB2-SOS complex to the membrane via the SH2 domain of GRB2 binding to the

phosphotyrosine on SHC. SOS, a GEF for Ras, can then exchange the GDP bound to

Ras to GTP. Once Ras binds GTP, it can then recruit the serine/threonine kinase Raf

to the membrane. When Raf translocate to the membrane, it becomes activated and

then phosphorylates the dual specificity kinase MEK. MEK binds and restricts inactive

ERK to the cytosol. The MEK and ERK complex dissociates when MEK is activated

and phosphorylates ERK. The ERK may then dimerize and this dimerization is appar-

ently required for ERK to translocate into the nucleus by an active functions. Growth

Factors may also activate ERK through PLC-Gamma and PKC. Integrins also play an

important role in regulating the efficiency of the RTK/Ras/ERK pathway. Integrin

regulation occurs at three (or more) different loci within the ERK pathway. First, in
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Figure 3.4: MAPK signaling pathway scheme, from the cell membrane receptors to
the DNA expression regulation.
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some cell systems, Integrin engagement with ligands enhances the activation and au-

tophosphorylation of the RTKs. Secondly, Integrin engagement enhances the efficiency

of the cytoplasmic cascade comprising Raf1, MEK and ERK. Finally, Integrin engage-

ment is necessary for trafficking of activated ERK from the cytoplasm to the nucleus.

FAK (Focal Adhesion Kinase) is a major nonreceptor tyrosine kinase activated after

Integrin-mediated adhesion to ECM (Extracellular Matrix) proteins such as FN (Fi-

bronectin). Interaction between FAK and the cytoplasmic tail of Beta1 Integrins results

in autophosphorylation of FAK tyrosine 397 (FAK pY397) that can lead to stimulation

of a cell-signaling cascade that ultimately activates the Ras/MAPK/ERK pathway. In

addition to FAK, members of the Src family of nonreceptor protein-tyrosine kinases also

associate with focal adhesions and are involved in Integrin signaling. Interestingly, Src

and FAK appear to function in association with each other as a result of the binding

of the Src SH2 domain to an autophosphorylation site of FAK. Src then phosphorylates

additional sites on FAK. Tyrosine phosphorylation of FAK creates binding sites for the

SH2 domains of other downstream signaling molecules, including PI3K and Rac. A key

target of Rac is the protein-serine/threonine kinase PAK. Rac and CDC42 (Cell Division

Cycle-42) can synergize with Raf to promote activation of the ERKs through mecha-

nisms involving PAK1 phosphorylation of the MEK1 proline-rich sequence and PAK3

phosphorylation of Raf1. PAK3 can phosphorylate Raf1, enhancing Raf1 activation.

Raf1 finally activates ERK1/2 via MEK1/2. The non-receptor tyrosine kinase PYK2

appears to function at a point of convergence of Integrins and certain GPCR signaling

cascades. PYK2 acts with Src to link GN-AlphaI- and GN-AlphaQ-coupled receptors

with GRB2 and SOS to activate the ERK signalling pathway [15], [16].

TCR (T-Cell Receptor)-CD3 complex also plays an important role in regulating ERK

pathways in T-Cells. VHR is particularly interesting from a TCR signalling point of

view because it accumulates at the T-Cell/APC (Antigen-Presenting-Cell) contact site,

where it is phosphorylated at Tyr-138 by ZAP70 (Zeta-Chain-Associated Protein Ki-

nase). This phosphorylation is required for VHR to inhibit the ERK MAPKs, giving

ZAP70 an unanticipated control over MAPK dephosphorylation, in addition to its role as

upstream activator of the Ras/Raf/MEK pathway. Other negative regulators of ERK

pathway include PP2A (Protein Phosphatase-2A) and MKPs (MAPK Phosphatase).

PP2A inhibits ERK pathway by dephosphorylating MEKs and is involved in the con-

trol of many cellular functions including metabolism, transcription, translation, RNA

splicing, DNA replication, cell cycle progression, transformation, and apoptosis. The

mammalian MAPK signaling system employ scaffold proteins, in part, to organize the

MAPK signaling components into functional MAPK modules, thereby enabling the ef-

ficient activation of specific MAPK pathways. The ERK scaffold protein KSR (kinase

suppressor of Ras) binds ERK, its direct activator MEK and Raf. In unstimulated
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cells KSR is mainly cytoplasmic but translocates to the Plasma membrane after growth

factor stimulation, thus targeting MEK and ERK to the plasma membrane. A second

targeting protein, p14, targets ERK2 to an endosomal location through its interaction

with MP1 (MAPKK1-Interacting Protein-1), an adaptor protein that binds MEK and

ERK. In addition, MEKK1 (MAP/ERK Kinase Kinase-1) can serve both as a scaffold

and as MAPKKK, interacting specifically with MAPKK and MAPK [15], [17], [18].

ERK once activated can either translocate to the nucleus to phosphorylate and activate

transcription factors, while other pools of activated ERK phosphorylate a number of

cytoplasmic targets. Cytosolic substrates for ERK include several pathway components

involved in ERK negative feedback regulation. Multiple residues on SOS are phospho-

rylated by ERK following growth factor stimulation. SOS phosphorylation destabilizes

the SOS-GRB2 complex, eliminating SOS recruitment to the plasma membrane and

interfering with Ras activation of the ERK pathway. Negative feedback by ERK also

occurs through direct phosphorylation of the EGF (Epidermal Growth Factor) receptor

at Thr669. Finally, ERKs have also been demonstrated to negatively regulate themselves

by phosphorylating MKPs (MAP Kinase Phosphatases) , which reduces the degrada-

tion of these phosphatases through the Ubiquitin-directed Proteasome complex. ERK

also activate MNKs (MAPK-Interacting Kinases) by phosphorylation at Thr197 and

Thr202. MNKs upregulate eIF4E (eukaryotic initiation factor-4E) through phosphory-

lation at Ser209 and play an important role in translation or they may also phosphorylate

PLA2 (Phospholipase-A2). ERK1 and ERK2 regulate transcription indirectly by phos-

phorylating the RSKs (90 kDa Ribosomal protein S6 Kinases). Active RSKs appear to

play a major role in transcriptional regulation, translocating to the nucleus and phos-

phorylating such factors as the product of proto-oncogene c-Fos at Ser362, SRF (Serum

Response Factor) at Ser103, and CREB (Cyclic AMP Response Element-Binding pro-

tein) at Ser133. p90RSK also play an important role in cell survival by phosphorylating

BAD (Bcl2-Antagonist of Cell Death). Another important cytoplasmic target of ERK

is IKK-Alpha (I-KappaB Kinase-Alpha). IKK-Alpha phosphorylates I-KappaB-Alpha,

which leads to ubiquitination and then leads to the degradation of I-KappaB-Alpha by

the Proteosome, resulting in the translocation of NF-KappaB to the nucleus. In the nu-

cleus it binds to its consensus sequence (5’-GGGACTTTC-3’) and positively regulates

the transcription of genes involved in immune and inflammatory responses, cell growth

control, and apoptosis [19], [20].

Upon phosphorylation, nuclear translocation of ERK1 and ERK2 is critical for both

gene expression and DNA replication induced by growth factors. In the nucleus, ERK

phosphorylates an array of targets, including transcription factors and a family of RSK-

related kinases, the MSKs (Mitogen- and Stress-activated protein Kinases). MSKs phos-

phorylate and activate the AP1 component ATF1 (Activating Transcription Factor-1)
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at Ser63, and may be more important in vivo than RSKs in CREB phosphorylation

at the activating Ser133. MSKs were also found to phosphorylate Histone H3 at Ser10

and Ser28, and the HMG14 (High-Mobility-Group protein-14) at Ser6, facilitating the

rapid induction of immediate early genes following mitogenic stimulation. Probably the

best-characterized transcription factor substrates of ERKs are TCFs (Ternary Com-

plex Factors), including Elk1, which is directly phosphorylated by ERK1 and ERK2

at multiple sites, including the activating Ser383. Upon complex formation with SRF,

phosphorylated TCFs transcriptionally activate the numerous Mitogen-inducible genes

regulated by SREs (Serum Response Elements). TCFs Sap1 and Sap2 are also phos-

phorylated by ERK, as are other Ets family members. Another direct target of ERK is

the product of proto-oncogene c-Myc, a short-lived transcription factor involved in mul-

tiple aspects of growth control. Following phosphorylation at Thr58 and Ser62 within

its transactivation domain, Myc activates transcription as a heterodimeric partner with

Max. ERK can also phosphorylate CREB directly as well as AP1 components c-Jun

and c-Fos. ERK1/2 also phosphorylates MLCK (Myosin Light Polypeptide Kinase),

Capn (Calpain), Pax6 (Paxillin-6) and FAK that play important role in Cytoskeletal

rearrangement. Other ERK targets include STAT1/3 (Signal Transducer and Activator

of Transcription-1/3) and ESR (Estrogen Receptor). Finally, it can be concluded that

ERKs are involved in the regulation of important neuronal functions, including neuronal

plasticity in normal and pathological conditions. The kinetics and localization of ERK

are intrinsically linked, in that the duration of ERK activation dictates its subcellular

compartmentalization and/or trafficking. The latter, in turn, dictates whether ERK-

expressing cells would enter a program of cell death, survival or differentiation. With

aberrations in the ERK cascade implicated in a high proportion of human cancers, many

emerging therapies target proteins in the pathway. As these candidate therapies against

ERK signaling components undergo development and enter trials, reagents that monitor

their targets’ inhibition are critical for future success [21], [22], [23].

3.2.5 The IGF1 signal system

The IGF-I (Insulin Growth Factor-I) represent an important muscle growth mediator

[24]. There are different IGFI isoforms, those expressed in the skeletal muscle acting

locally in an autocrine/paracrine way to stimulate muscle growth [25]. Several biological

effects of IGF-I are mediated by the IGFI type I receptor, which has a etero-tetrameric

structure with an extracellular binding domain, a trans- membrane region, and an in-

tracellular domain with tyrosine kinasic activity. IGF-I binds to the receptor which

mediates the phosphorilation of tyrosine inside the cell. These tyrosine may belong

to substrates like IRS-1 (Insulin receptor substrate-1) which activates the regulatory
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subunit of the PI3K enzyme (Phosphatidyl-inositol 3- kinase). This, in turn, activates

the Akt protein which phosphorylates a series of substrates me- diating protein synthe-

sis, gene transcription, and cell proliferation [26]. The most relevant target proteins in

the hypertropy induction are m-TOR (mammalian target of rapamycin), and GSK-3β

(Glycogen synthase kinase-3) [27], [28].

Moreover IGF-I can induce hypertrophy through the activation of the transduction path-

way of the calcineurine dependent signal, which involves the induction of the transcrip-

tion factor NFAT [29].

3.2.6 The β−drenergic signal system

The chronic administration of β−adrenergic agonists, i.e., Clenbuterol, Formeterol and

Albuterol, significantly stimulates the skeletal muscle hypertrophy [30], [31].

It has been observed that the adrenergic induced-hypertrophy is the result of an in-

crease of the proteins synthesis and of the decrease of their degradation. In in vivo

experiments, it has been observed a muscle mass increase, an increment of the RNA

levels, of the proteins, and of the RNA/DNA and protein/DNA ratios. Even the protein

synthesis rate has been increased by these substances [30].

Similar studies on mice skeletal muscle cells showed that the β−adrenergic agonists

mediate the hypertrophic effect through the binding to the β2−adrenergic receptor [32].

This receptor is a member of the super-family of the receptor connected to a G protein,

and the binding with the ligand cause the Gα subunit to activate. This induces the

activation of the adenilate cyclase which, in turn, is responsible for the cAMP production

(cyclic adenosine monophosphate). The increase of the cAMP levels causes the activation

of protein kinase A (PKA), which promotes the transription of several genes through

the CREB phosphorylation (cAMP response element binding protein) activating the

protein synthesis. Moreover, the adrenergic stimulation can also modulate the AKT-

mTOR pathway, described in the previous paragraph [33], [34].

3.2.7 The steroids signalling system

The steroid hormones are chemical messengers synthesized from cholesterol. They are

produced and released from several organs as gonads and adrenal glands. These hor-

mones are not stored but, after a specific stimulus they are readily synthesized and

released in the plasma where they have to bnd to transport proteins since they are al-

most not soluble in water.

The steroid hormones can diffuse through the lipidic component of the plasma mem-

brane and bind to specific intracellular receptors. Their action is defined as ”genomic
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effect” since the hormone-receptor complex moves to the nucleus, where it binds to spe-

cific DNA sequences called ”hormones-responsive elements”. The binding activates the

trascription of specific genes thus stimulating the protein synthesis.

However, for some steroid hormones as testosterone, estrogens and aldosterone, it has

been reported the mediation by specific membrane receptors able to trigger cellular

responses much more rapid with a ”non genomic effect” [35]. The main androgenic hor-

mone is testosterone, which is produced by the interstitial Leydig cells in the gonads.

Its function is to promote the reproductive process and to determine the appearing of

the secondary sexual characteristics.

Since the “40s,testosterone os known for its effects on muscle tissue growth. Sovra-

physiological doses markedly increase the muscle mass and strength [36], [37]. Recent in

vitro studies point out that androgens can influence the myogenic process also through

a local IGF-I concentration increase [38].

3.3 Cell cultures

The cell is the basic unit of life. Microorganisms such as bacteria, yeast, and amoebae

exist as single cells. By contrast, the adult human is made up of about 30 trillion cells

which are mostly organized into collectives called tissues. Cells are, with a few notable

exceptions, small with lengths measured in micrometers and their discovery stemmed

from the pioneeristic work of a small group of seventeenth-century microscope makers

who observed that a new and undiscovered world lay beyond the limits of the human

eye. These pioneers set in motion a science and an industry that continues to the present

day.

During the last 20 years we have witnessed the extraordinary impact of biotechnology

in the academic research laboratory and in industry. This development not only has

provided a stimulus for the creation of a large number of companies in the new biotech-

nology industry, but it has also been a catalyst for new approaches in existing industries.

The result has been the development of many, important, new methods of diagnosis and

therapy in human healthcare and, increasingly, new approaches to solving problems in

agriculture. These applications represent the tangible and often remarkable end prod-

ucts of biotechnology, and it is clear that their development would not have been possible

without the development of an equally remarkable array of new manufacturing technolo-

gies and laboratory tools. Within the biotechnologist’s toolkit, animal cell culture has

come to play a particularly prominent role. In the pharmaceutical industry, cell culture

is used to produce a significant proportion of biopharmaceuticals as well as monoclonal
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anti- bodies for diagnostic use. In addition, the use of animal and human cells is ex-

panding in a wide range of other applications: drug screening, tissue engineering, gene

therapy, toxicology and traditional applications such as virology. Clearly, the practical

application of animal and human cell culture has to be underpinned by well-developed

laboratory protocols. There are a significant number of cell culture procedures that are

used across the broad range of cell culture applications in both academic and industrial

laboratories and frequently there are several methods that can be used to solve a given

problem.

Large numbers of cell lines look identical. Cell lines with very different origins and

biological characteristics typically cannot be separated on grounds of morphology or

culture characteristics. Infection or contamination of a cell line with an adventitious

virus or mycoplasma may significantly change the characteristics of the cells but again

such contamination may not be apparent. Cell lines will also change with time in cul-

ture, and to add to all these natural hazards it is all too easy to incorrectly label or

cross-contaminate different cell lines in a busy cell culture laboratory.

The opportunities for inadvertently introducing error into a cell line are limitless and

ever present. It is in the nature of the science that once introduced, an error will be

propagated, compounded, consolidated and disseminated.

The integrity and biological characteristics of a cell line have to be actively maintained

by a well organized management system based on systematic cell banking supported by

testing regimens in a structured quality assured environment. Such a controlled envi-

ronment will only prevail in a dedicated professionally organized cell culture laboratory

or cell bank. A small research laboratory with a high throughput of short-term research

students, a minimum of permanent laboratory staff and no formal quality management

program will find it difficult to maintain its cell lines unchanged over many years.

For all these reasons it is strongly recommended that new cell lines should only be

acquired from a specialist, reputable culture collection such as ECACC. Moreover, if

a laboratory believes it already has a certain cell line in its liquid nitrogen store, the

identity and purity of such a cell line should be questioned in the absence of a well

recorded culture history and recent test data. If there is a doubt, it is straightforward

and cost effective to replace such cell stocks with authenticated material from a Cul-

ture Collection. When a Culture Collection acquires a new cell line it will characterize

the cell line using techniques such as isoenzyme analysis and DNA profiling so that the

identity of the cell line subsequently can be verified. The Collection will then establish a

hierarchy of Master and Working cell banks, cryo-preserved in liquid nitrogen, that are

demonstrated free from microbial contamination including mycoplasma. Customers are

supplied from the authenticated Working Cell Banks (WCB). Replacement WCBs are

manufactured from the original Master Cell Bank (MCB) and the new WCB will again
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be fully tested.

ECACC supplies its cell lines with advice on how to maintain the line. The technical

support team can subsequently assist with difficulties and provide additional technical

information about the cell line. Culture Collections exist to ensure that animal cell

research is conducted using standardized, authenticated material that ensures the work

can be reproduced. An authenticated cell line of known provenance is the very bedrock

of any cell based project.

3.3.1 Cell types and culture characteristics

• Primary Cultures: primary cultures are derived directly from excised, normal

animal tissue either as an explant culture or following dissociation into a single

cell suspension by enzyme digestion. Such cultures are initially heterogeneous but

later become dominated by fibroblasts. The preparation of primary cultures is

labour intensive and they can be maintained in vitro only for a limited period of

time. During their relatively limited lifespan primary cells usually retain many

of the differentiated characteristics of the cell in vivo. Important Note: Primary

cultures by definition have not been passaged, as soon as they are passaged they

become a cell line and are no longer primary. ‘Primary’ cells sourced from most

suppliers are in fact low-passage cell lines.

• Continuous Cultures: continuous cultures are comprised of a single cell type

that can beserially propagated in culture either for a limited number of cell divi-

sions (approximately thirty) or otherwise indefinitely. Cell lines of a finite life are

usually diploid and maintain some degree of differentiation. The fact that such

cell lines senescence after approximately thirty cycles of division means it is essen-

tial to establish a system of Master and Working banks in order to maintain such

lines for long periods. Continuous cell lines that can be propagated indefinitely

generally have this ability because they have been transformed into tumor cells.

Tumor cell lines are often derived from actual clinical tumors, but transformation

may also be induced using viral oncogenes or by chemical treatments.

Transformed cell lines present the advantage of almost limitless availability, but the

disadvantage of having retained very little of the original in vivo characteristics.

• Culture Morphology: in terms of growth mode cell cultures take one of two

forms, growing either in suspension (as single cells or small free floating clumps)

or as a monolayer that is attached to the tissue culture fl ask. The form taken by

a cell line reflects the tissue from which it was derived e.g. cell lines derived from

blood (leukaemia, lymphoma) tend to grow in suspension whereas cells derived

from solid tissue (lungs, kidney) tend to grow as monolayers.
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Attached cell lines can be classified as endothelial such as BAE-1, epithelial such

as HeLa, neuronal such as SH-SY5Y, or fibroblasts such as MRC-5 and their

morphology refl ects the area within the tissue of origin.

Figure 3.5: Examples of cell morphology: (a) HeLa epithelial cells, (b) BAE-1 en-
dothelial cells, (c) MRC-5 fibroblasts cells, (d) SH-SY5Y neuronal cells.

3.3.2 Phases of cell growth

It is important to know and record the growth characteristics of the cell line of use be-

fore starting any experiments. An alteration in cellular growth can indicate a significant

problem within the cell line and if undetected can have detrimental effects on experi-

mental results. A typical growth curve for cultured cells displays a sigmoid pattern of

proliferation. The growth phases associated with normal cells are defined as:

1. Lag Phase – at this stage the cells do not divide. During this period the cells adapt

to the culture conditions and the length of this phase will depend upon the growth

phase of the cell line at the time of subculture and also the seeding density.

2. Logarithmic (Log) Growth Phase – cells actively proliferate and an exponential

increase in cell density arises. The cell population is considered to be the most

viable at this phase, therefore it is recommended to assess cellular function at this

stage. Each cell line will show different cell proliferation kinetics during the log

phase and it is therefore the optimal phase for determining the population doubling

time.
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Cell line Species Cell type

NIH3T3 mouse embryonal fibroblasts

C3H10T1/2 mouse embryonal mesenchimal

C2C12 mouse myoblasts

mRAW 264.7 mouse macrophages

3T3-F442A mouse preadipocytes

MC3T3-E1 mouse ostheoblasts

H9C2 rat embryonal ventricular myoblasts

C6 rat glioma

L6 rat skeletal muscle

RGM1 rat epithelial cells of the normal gastric mucose

INS-1 β-cells rat insulinoma

A549 human alveolar adenocarcinoma epithelial cells

hTERT human miometral telomerase reverse transcriptase cells

H292 human respiratory epithelial cells

SaOS-2 human osteoblasts like

TE-85 human osteoblast like

MG-63 human osteoblast like

MCF7 human breast cancer

T-47D human breast cancer

ZR-75-1 human breast cancer

HCC1954 human breast cancer

SK-BR-3 human breast cancer

PC-3 human prostate cancer

DU-145 human prostate cancer

LNCaP human prostate cancer

CWR22R human prostate cancer

Table 3.1: Common cell types, their origin, and cells morphology

3. Plateau (or Stationary) Phase – cellular proliferation slows down due to the cell

population becoming confluent. It is at this stage the number of cells in the active

cell cycle drops to 0-10% and the cells are most susceptible to injury.

4. Decline Phase – cell death predominates in this phase and there is a reduction

in the number of viable cells. Cell death is not due to the reduction in nutrient

supplements but the natural path of the cellular cycle.

Two terms are predominantly used to define the age of a cell culture: (i) passage number

- indicates the number of times the cell line has been sub-cultured and (ii) the popula-

tion doubling (pd) number - indicates the number of cell generations the cell line has

undergone i.e. the number of times the cell population has doubled. The in vitro age of

a cell culture is particularly useful to know for cell lines with a fi nite lifespan or unstable

characteristics that change over time in continuous culture.
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Figure 3.6: Representation of the cells growth phases over time.

It is bad practice to maintain a cell line in continuous or extended culture for the

following reasons:

• Risk of microbial contamination

• Loss of characteristics of interest (e.g. surface antigen or monoclonal antibody

expression)

• Genetic drift particularly in cells known to have an unstable karyotype (e.g. CHO,

BHK 21)

• Loss of cell line due to exceeding finite life-span e.g. human diploid cells such as

MRC-5

• Risk of cross contamination with other cell lines

• Increased consumables and staff costs

All of these potential risk factors may be minimized by the implementation of a cell

banking system as described below. This type of system is known as a tiered banking

system or Master Cell Banking system. On initial arrival into the laboratory a new

cell culture should be regarded as a potential source of contamination e.g. harbouring

bacteria, fungi and mycoplasma and should be handled under quarantine conditions

until proven negative for such microbial contaminants. Following initial expansion 3-5

ampoules should be frozen as a Token Stock before a Master Cell Bank is prepared.

One of the Token Stock ampoules should then be thawed and expanded to produce a

Master Cell Bank of 10-20 ampoules depending upon the anticipated level of use. Am-

poules of this Master Cell Bank (2-3) should be allocated for quality control comprising

confirmation that the cell count and viability of the bank is acceptable and that the
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bank is free of bacteria, fungi and mycoplasma. Additional tests (such as viral screening

and authenticity testing) may also be required. Once these tests have been completed

satisfactorily an ampoule from the Master Cell Bank should be thawed and cultured to

produce a Working Cell Bank. The size of this bank will again depend on the envis-

aged level of demand. Quality control tests (cell count and also important at this stage

to confirm that the Master and Working Cell Banks are genetically identical by DNA

profiling techniques.

Implementation of this banking system ensures:

• Material is of a consistent quality

• Experiments are performed using cultures in the same range of passage numbers

• Cells are only in culture when required

• The original cell line characteristics are retained

3.3.3 Cell quantification

The cell counting is an important subset of cytometry, the measurement of the charac-

teristics of cells i.e. cell size, cell count, cell morphology, cell cycle phase, DNA content

and existence of specific proteins on the cell surface or in the cytoplasm. Cell counts

within liquid media (such as blood, plasma, lymph, or laboratory rinsate) are usually

expressed as a number of cells per unit of volume, thus expressing a concentration.

There are several methods for cell counting. Some are primitive and do not require

special equipment, thus can be done in any biological laboratory, whereas others rely on

sophisticated electronic appliances.

3.3.3.1 Counting chamber

A counting chamber, also known as hemocytometer, is a microscope slide that is espe-

cially designed to enable cell counting. The slide has a sink in its middle; the area of

the sink is marked with a grid. A drop of a cell culture is placed in the sink. Looking

at the sample under the microscope, the researcher uses the grid to manually count the

number of cells in a certain area. The depth of the sink is predefined, thus the volume

of the counted culture can be calculated and the concentration of the cells with it.

Counting chambers are often used in clinical blood counts. Their advantage is being

cheap and fast; this makes them the preferred counting method in fast biological exper-

iments in which it needs to be merely determined whether a cell culture has grown as
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expected. Usually the culture examined needs to be diluted, otherwise the high density

of cells would make counting impossible. The need for dilution is a disadvantage, as

every dilution adds inaccuracy to the measurement.

3.3.3.2 CFU counting

To quantify the number of cells in a culture, the cells can be simply plated on a Petri

dish with growth medium. If the cells are efficiently distributed on the plate, it can be

generally assumed that each cell will give rise to a single colony or Colony Forming Unit

(CFU). The colonies can then be counted, and based on the known volume of culture that

was spread on the plate, the cell concentration can be calculated. As is with counting

chambers, cultures usually need to be heavily diluted prior to plating; otherwise, instead

of obtaining single colonies that can be counted, a so-called ”lawn” will form: thousands

of colonies lying over each other. Additionally, plating is the slowest method of all: most

microorganisms need at least 12 hours to form visible colonies.

Although this method can be time consuming, it gives an accurate estimate of the

number of viable cells (because only they will be able to grow and form visible colonies).

It is therefore extensively used in experiments aiming to quantify the number of cells

resisting drugs or other external conditions (for instance the Luria–Delbrück experiment

or the gentamicin protection assay). In addition, the enumeration of colonies on agar

plates can be greatly facilitated by using colony counters.

3.3.3.3 Spectrophotometry

Cell suspensions are turbid: they absorb or scatter some of the light letting the rest of it

pass through. The higher the cell concentration is, the higher the turbidity. Spectropho-

tometers are electrical appliances that can measure intensity of light very accurately. The

culture is placed in a transparent cuvette, the cuvette is placed in the machine, and the

optical density can be measured immediately. Optical density (OD) is proportional to

the biomass in the cell suspension. Using spectrophotometry for measuring the tur-

bidity of cultures is known as turbidometry. Of all the electrical appliances used for

measuring biomass, a spectrophotometer is the cheapest and its operation the fastest

and most straightforward. This has made spectrophotometry the methods of choice

for quick measurements of bacterial growth and related applications. A drawback of

spectrophotometry is its limited accuracy; it is the only method in which the cells are

not counted directly—the machine measures light, not cells. This, combined with the

stochastic nature of liquid cultures, enables only an estimation of cell numbers.
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3.3.3.4 Electrical resistance

A Coulter counter is an appliance that can count cells as well as measure their volume.

It is based on the fact that cells show great electrical resistance. In a Coulter counter

the cells, swimming in a solution that conducts electricity, are sucked one by one into a

tiny gap. Flanking the gap are two electrodes that conduct electricity. When no cell is

in the gap, electricity flows unabated, but when a cell is sucked into the gap the current

is resisted. The Coulter counter counts the number of such events and also measures

the current (and hence the resistance), which directly correlates to the volume of the

cell trapped.

Coulter counters are much cheaper than flow cytometers, and for applications that

require cell numbers and sizes, such as cell-cycle research, they are the method of choice.

Its advantage over the methods above is the large number of cells that can be processed

in a short time, namely: thousands of cells per second. This offers great accuracy and

statistical significance.

3.3.3.5 Flow cytometry

Flow cytometry is by far the most sophisticated and expensive method for cell counting.

In a flow cytometer the cells flow in a narrow stream in front of a laser beam. The beam

hits them one by one, and a light detector picks up the light that is reflected from the

cells.

Flow cytometers have many other abilities, such as analyzing the shape of cells and their

internal and external structures, as well as measuring the amount of specific proteins and

other biochemical markers of the cells. Therefore, flow cytometers are rarely purchased

for the sole purpose of counting cells.

3.3.3.6 Image counting

Recent approaches consider the use of high-quality microscopy images over which a sta-

tistical classification algorithm is used to perform automated cell detection and counting

as an image analysis task. Generally performs with a constant error rate as an off-line

(batch) type process. A range of image classification techniques can be employed for

this purpose.
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3.3.4 Culture environment

In general terms cultured cells require a sterile environment and a supply of nutrients

for growth. In addition, the culture environment should be stable in terms of pH and

temperature. Over the last 30 years various defi ned basal media types have been de-

veloped and are now available commercially.

Originally, balanced salt solutions were used to maintain contractility of mammalian

heart tissue and the Tyrode salt solution was designed for use in work with primary

mammalian cells. These have since been modified and enriched with amino acids, vita-

mins, fatty acids and lipids. Consequently media suitable for supporting the growth of

a wide range of cell types are now available. The precise media formulations have often

been derived by optimising the concentrations of every constituent.

3.3.4.1 Constituents of media

Media are composed by a wide variety of constituents. Each type of constituent performs

a specific function as outlined below:

• Inorganic salts: the inclusion of inorganic salts in media performs several functions.

Primarily they help to retain the osmotic balance of the cells and help regulate

membrane potential by provision of sodium, potassium and calcium ions. Many of

these are required in the cell matrix for cell attachment and as enzyme cofactors.

• Buffering systems: most cells require pH conditions in the range 7.2-7.4 and close

control of pH is essential for optimum culture conditions. There are major varia-

tions to this optimum. Fibroblasts prefer a higher pH (7.4-7.7) whereas, continuous

transformed cell lines require more acid conditions pH (7.0-7.4).

Regulation of pH is particularly important immediately following cell seeding when

a new culture is going to be established and is usually achieved by one of two buffer-

ing systems; (i) a “natural” buffering system where gaseous CO2 balances with

the H2CO3/HCO3- concentration ratio of the culture medium and (ii) chemical

buffering using a zwitterion called HEPES. Cultures using natural bicarbonate

/CO2 buffering systems need to be maintained in an atmosphere of 5-10% CO2 in

air usually supplied in a CO2 incubator. Bi-carbonate/CO2 is low cost, non-toxic

and also provides other chemical benefits to the cells. HEPES has superior buffer-

ing capacity in the pH range 7.2-7.4 but is relatively expensive and can be toxic to

some cell types at higher concentrations. HEPES buffered cultures do not require

a controlled gaseous atmosphere. Most commercial culture media include phenol

red as a pH indicator so that the pH status of the medium is constantly indicated
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by the colour. Usually the culture medium should be changed/replenished if the

colour turns yellow (acid) or purple (alkali).

• Carbohydrates: the main source of energy is derived from carbohydrates generally

in the form of sugars. The major sugars used are glucose and galactose, how-

ever, some media contain maltose or fructose. The concentration of sugar varies

from basal media containing 1g/L to 4.5g/L in some more complex media. Media

containing the higher concentration of sugars are able to support the growth of a

wider range of cell types.

• Amino acids: amino acids are the building blocks of proteins. ‘Essential’ amino

acids must be added to culture media as cells are not able to synthesize these

themselves. The concentration of amino acids in the culture medium will deter-

mine the maximum cell density that can be achieved as once depleted the cells will

no longer be able to proliferate.

In relation to cell culture, glutamine, an essential amino acid, is particularly sig-

nificant. In liquid media or stock solutions glutamine degrades relatively rapidly.

Optimal cell performance usually requires supplementation of the media with glu-

tamine prior to use. Adding supplements of non-essential amino acids to media

both stimulates growth and prolongs the viability of the cells in culture.

• Vitamins: serum is an important source of vitamins in cell culture. However, many

media are also enriched with vitamins making them consistently more suitable

for a wider range of cell lines. Vitamins are precursors for numerous co-factors.

Many vitamins, especially B group vitamins, are necessary for cell growth and

proliferation and for some lines the presence of B12 is essential. Some media also

have increased levels of vitamins A and E. The vitamins commonly used in media

include riboflavin, thiamine and biotin.

• Proteins and peptides: these are particularly important in serum free media. The

most common proteins and peptides include albumin, transferrin, fibronectin and

fetuin and are used to replace those normally present through the addition of

serum to the medium.

• Fatty acids and lipids: like proteins and peptides these are important in serum

free media since they are normally present in serum e.g. cholesterol and steroids

essential for specialized cells.

• Trace elements: these include trace elements such as zinc, copper, selenium and

tricarboxylic acid intermediates. Selenium is a detoxifier and helps remove oxygen

free radicals.
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• Preparation of media: Whilst all media may be made from the basic ingredients

this is time consuming and may predispose to contamination. For convenience

most media are available as ready mixed powders or as 10x and 1x liquid media.

If powder or 10x media are purchased it is essential that the water used to reconsti-

tute the powder or dilute the concentrated liquid is free from mineral, organic and

microbial contaminants. It must also be pyrogen free and of tissue culture grade.

In most cases water prepared by reverse osmosis and resin cartridge purification

with a final resistance of 16-18 MΩ is suitable. Once prepared, the media should

be filter sterilized before use.

3.3.4.2 Serum and serum-free cultures

Serum is a complex mix of albumins, growth factors and growth inhibitors and is proba-

bly one of the most important components of cell culture medium. The most commonly

used serum is fetal bovine serum (FBS). Other types of serum are available including

newborn calf serum and horse serum. The quality, type and concentration of serum can

all affect the growth of cells and it is therefore important to screen batches of serum

for their ability to support the growth of cells. In addition, there are other tests that

may be used to aid the selection of a batch of serum including cloning efficiency, plating

efficiency and the preservation of cell characteristics. Serum is also able to increase the

buffering capacity of cultures that can be important for slow growing cells or where the

seeding density is low (e.g. cell cloning experiments). It also helps to protect against

mechanical damage which may occur in stirred cultures or whilst using a cell scraper.

A further advantage of serum is the wide range of cell types with which it can be used

despite the varying requirements of different cultures in terms of growth factors. In

addition, serum is able to bind and neutralize toxins. However, serum is subject to

batch-to-batch variation that makes standardization of production protocols difficult.

There is also a risk of contamination associated with the use of serum. These risks

can be minimized by obtaining serum from a reputable source since suppliers of large

quantities of serum perform a battery of quality control tests and supply a certificate of

analysis with the serum. In particular, serum is screened for the presence of bovine viral

diarrhoea virus (BVDV) and mycoplasma. Heat inactivation of serum (incubation at

56◦ C for 30 minutes) can help to reduce the risk of contamination since some viruses are

inactivated by this process. However, the routine use of heat inactivated serum is not

an absolute requirement for cell culture. The use of serum also has a cost implication

not only in terms of medium formulation but also in downstream processing. A 10%

FBS supplement contributes 4.8 mg of protein per ml of culture fluid which complicates

downstream processing procedures such as protein purification.
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Component type Components DMEM HBRS PBS Tris

Aminoacids Glycine 30 0 0 0

L-Alanine 84 0 0 0

L-Cystine 2HCl 63 0 0 0

L-glutamine 580 0 0 0

L-Histidine HCl 42 0 0 0

L-Isoleucine 105 0 0 0

L-Leucine 105 0 0 0

L-Lysine HCl 146 0 0 0

L-Methionine 30 0 0 0

L-Phenylalanine 66 0 0 0

L-Serine 42 0 0 0

L-Threonine 95 0 0 0

L-Tryptophan 16 0 0 0

L-Tyrosine disodium salt 72 0 0 0

L-Valine 94 0 0 0

Vitamins Choline chloride 4 0 0 0

Folic acid 4 0 0 0

D-calcium pantothenate 4 0 0 0

Niacinamide 4 0 0 0

Pyridoxine HCl 4 0 0 0

Riboflavin 0.4 4 4 0

Thiamine HCl 4 0 0 0

i-Inositol 7.2 0 0 0

Inorganic salts Calcium chloride anhyd. 264 294 100 0

Cupric sulfate 0.1 0 0 0

Magnesium chloride 0 204 0 0

Magnesium sulfate 200 0 47 0

Potassium chloride 400 370 200 0

Sodium bicarbonate 3700 0 0 0

Sodium chloride 6400 9058 8000 0

Sodium phosphate m. 141 276 1150 0

Potassium phosphate m. 0 0 200 0

Others D-glucose 4500 1800 0 0

Phenol red 15 0 0 0

HEPES 0 2384 0 0

Trizma Base R© 0 0 0 1230

Trizma HCl R© 0 0 0 5130

Table 3.2: Example of cell growth/maintainance media and common buffers compo-
sitions (given in mg/l). Tris-HCl composition refers to a pH 8.8 solution.
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Fetal bovine serum (FBS) has been used to prepare a number of biological media and

has an excellent record of safety. The recognition of Bovine Spongiform Encephalopathy

(BSE) in 1986 and its subsequent spread into continental Europe along side the an-

nouncement of the probable link between BSE and a new variant of Creutzfeldt Jacob

disease in Humans stimulated an increased concern about safe sourcing of all bovine

materials. In 1993, the Food and Drug Administration (FDA) ”recommended against

the use of bovine derived materials from cattle which have resided in, or originated from

countries where BSE has been diagnosed”.

The current European Union (EU) guidelines on viral safety focus on sourcing, test-

ing and paying particular attention to the potential risk of cross contamination during

slaughtering or collection of the starting tissue.

As far as BSE is concerned, the EU guidance on minimizing the risk of BSE transmission

via medicinal products, EMEA/410/01 Rev. 2, recommends the main measures to be

implemented in order to establish the safety of bovine material. Similarly the focus is

on geographical origin, the age of the animals, the breeding and slaughtering conditions,

the tissue to be used and the conditions of its processing.

The use of FBS in production processes of medicinal products is acceptable provided

good documentation on sourcing, age of the animals and testing for the absence of ad-

ventitious agents is submitted. All responsible suppliers of FBS for bio-pharmaceutical

applications will provide such documentation.

Regulatory requirements in Europe stress the importance of justifying the use of ma-

terial of bovine, caprine or ovine origin in the production of pharmaceutical products.

Thus, although FBS has been used for many years in the production process of many

medicinal products such as viral vaccines and recombinant DNA products, at present

there is a justifi ed trend to remove all material of animal origin from manufacturing

processes. Sigma-Aldrich has recognised this growing trend and works closely with cus-

tomers to optimise animal free media formulations to meet each customer’s cell culture

requirements. Serum-free cell lines that have been adapted to media that do not con-

tain serum are available from ECACC. The United States Department of Agriculture

(USDA) regulates all products that contain a primary component of animal origin. With

specific reference to serum the USDA has declared that for materials which fall under

their jurisdiction, only biological products manufactured using serum from approved

countries of origin will be allowed in to USA.

Standard tests performed on serum commonly include tests to determine the presence

and/or level of the following:

• Sterility

• Virus Contamination
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• Mycoplasma Contamination

• Endotoxin

• Haemoglobin

• Total Protein

• Immunoglobulin

• Hormone Testing

• pH (at room temperature)

• Osmolality

3.4 Genetic engineering techniques

Genetic engineering is the direct manipulation of an organism genome using biotech-

nology. New DNA may be inserted in the host genome by first isolating and copying

the genetic material of interest using molecular cloning methods to generate a DNA

sequence, or by synthesizing the DNA, and then inserting this construct into the host

organism. Genes may be removed, or ”knocked out”, using a nuclease. Gene targeting

is a different technique that uses homologous recombination to change an endogenous

gene, and can be used to delete a gene, remove exons, add a gene, or introduce point

mutations.

An organism that is generated through genetic engineering is considered to be a ge-

netically modified organism (GMO). The first GMOs were bacteria generated in 1973

and GM mice were genrated in 1974. Insulin-producing bacteria were commercialized

in 1982 and genetically modified food has been commercially available since 1994.

Genetic engineering techniques have been applied in numerous fields including research,

agriculture, industrial biotechnology, and medicine. Enzymes used in laundry detergent

and medicines such as insulin and human growth hormone are now manufactured in GM

cells, experimental GM cell lines and GM animals such as mice or zebrafish are being

used for research purposes, and genetically modified crops have been commercialized.

Genetic engineering alters the genetic make-up of an organism using techniques that

remove heritable material or that introduce DNA prepared outside the organism either

directly into the host or into a cell that is then fused or hybridized with the host. This

involves using recombinant nucleic acid (DNA or RNA) techniques to form new combi-

nations of heritable genetic material followed by the incorporation of that material either

indirectly through a vector system or directly through micro-injection, macro-injection
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and micro-encapsulation techniques. If genetic material from another species is added to

the host, the resulting organism is called transgenic. If genetic material from the same

species or a species that can naturally breed with the host is used the resulting organism

is called cisgenic. Genetic engineering can also be used to remove genetic material from

the target organism, creating a gene knockout organism.

The process of genetic engineering involves different consecutive steps. The first one is

gene isolation, which has the objective to isolate and obtain the gene from the source

organism. Then, the gene has to be complemented by a promoter and a terminator in

order to be expressed by the host cell. Now, the complemented gene has to be inserted

into the host cell, procedure which is called transformation, transfection or transduction

depending on the type of host cell and vector. In fact, in case of a bacterial host

we talk about transformation or transduction if the vector is a virus, conversely it’s

transfection in the case of eukaryotic animal cells. Whichever the host type, there are

several techniques that allow the completed gene insertion in the cell. In every case,

not all the host cells will be transformed with the new genetic material, therefore it’s

necessary to select and differentiate the transformed from the untransformed cells. The

last step that has to be accomplished in the process is the confirmation of the gene

integration in the host cell. An alternative method to obtain the gene when its sequence

is known is artificial gene synthesis. Currently based on solid-phase DNA synthesis, it

differs from molecular cloning and polymerase chain reaction (PCR) in that the user

does not have to begin with preexisting DNA sequences. Therefore, it is possible to

make a completely synthetic double-stranded DNA molecule with no apparent limits on

either nucleotide sequence or size.

3.4.1 Gene isolation

To isolate a gene which sequence is not known from the souce cell, the DNA is first di-

gested with a random digestion method, commonly by cutting the DNA with restriction

enzymes. A partial restriction digest cuts only some of the restriction sites, resulting in

overlapping DNA fragment lengths. The DNA fragments are put into individual plas-

mid vectors and grown inside bacteria. Once in the bacteria the plasmid is copied as

the bacteria divides. To determine if a useful gene is present on a particular fragment

the bacterial library is screened for the desired phenotype. Thus, if the phenotype is

detected then it is possible that the bacteria contains the target gene. Conversely, if

the gene does not have a detectable phenotype or a DNA library does not contain the

correct gene, other methods can be used to isolate it. In fact in the case the position of

the gene can be determined using molecular markers then chromosome walking is one

way to isolate the correct DNA fragment, while if the gene expresses close homology to a
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known gene in another species, it could be isolated by searching for genes in the library

that closely match the known gene.

When the DNA sequence of the gene and the organism is known, restriction enzymes

can cut the DNA on either side of the gene and gel electrophoresis can sort the fragments

according to length. The DNA band at the correct size should contain the gene, where

it can be excised from the gel. Then, polymerase chain reaction (PCR) can be used to

amplify the gene, which can then be isolated through gel electrophoresis.

3.4.2 Gene complementing

The gene to be inserted into the genetically modified organism must be combined with

other genetic elements in order for it to work properly. As well as the gene to be inserted

most constructs contain a promoter and terminator region as well as a selectable marker

gene. The promoter region initiates transcription of the gene and can be used to control

the location and level of gene expression, while the terminator region ends transcription.

The selectable marker, which in most cases confers antibiotic resistance to the organism

it is expressed in, is needed to determine which cells are transformed with the new gene

in the selection stage. The constructs are made using recombinant DNA techniques,

such as restriction digests, ligations and molecular cloning.

3.4.3 Genes insertion in the host cell

3.4.3.1 Transformation

The transformation is the genetic modification of a bacteria cell by the direct uptake

or incorporation of exogenous genetic material. This process naturally occurs in several

species of bacteria, but it can also be performed by artificial means in other cells.

Transformation was first demonstrated in 1928 by British bacteriologist Frederick Grif-

fith. Griffith discovered that a strain of Streptococcus pneumoniae could be made vir-

ulent after being exposed to heat-killed virulent strains. Griffith hypothesized that

some ”transforming principle” from the heat-killed strain was responsible for making

the harmless strain virulent. In 1944 this ”transforming principle” was identified as

being genetic material by Oswald Avery, Colin MacLeod, and Maclyn McCarty. They

isolated DNA from a virulent strain of S. pneumoniae and using just this DNA were

able to make a harmless strain virulent. They called this uptake and incorporation of

DNA by bacteria ”transformation”. The results of Avery’s experiments were at first

skeptically received by the scientific community and it was not until the development

of genetic markers and the discovery of other methods of genetic transfer (conjugation
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in 1947 and transduction in 1953) by Joshua Lederberg that Avery’s experiments were

accepted.

In general, transformation is a complex, energy requiring developmental process. In

order for a bacterium to bind, take up and recombine exogenous DNA into its chromo-

some it must become competent, that is, enter a special physiological state. Competence

development in Bacillus subtilis requires expression of about 40 genes. The DNA in-

tegrated into the host chromosome is usually (but with rare exceptions) derived from

another bacterium of the same species, and is thus homologous to the resident chro-

mosome. The capacity for natural transformation appears to occur in a number of

prokaryotes, and thus far 67 prokaryotic species (in seven different phyla) are known to

undergo this process. Competence for transformation is typically induced by high cell

density and/or nutritional limitation, conditions associated with the stationary phase of

bacterial growth. Transformation in Haemophilus influenzae occurs most efficiently at

the end of exponential growth as bacterial growth approaches stationary phase. Trans-

formation in Streptococcus mutans, as well as in many other streptococci, occurs at

high cell density and is associated with biofilm formation. Competence in B. subtilis

is induced toward the end of logarithmic growth, especially under conditions of amino

acid limitation. Competence is specifically induced by DNA damaging conditions. For

instance, transformation is induced in Streptococcus pneumoniae by the DNA damaging

agents mitomycin C (a DNA crosslinking agent) and fluoroquinolone (a topoisomerase

inhibitor that causes double-strand breaks). In B. subtilis, transformation is increased

by UV light, a DNA damaging agent. In Helicobacter pylori, ciprofloxacin, which in-

teracts with DNA gyrase and introduces double-strand breaks, induces expression of

competence genes, thus enhancing the frequency of transformation. About 1% of bacte-

rial species are capable of naturally taking up DNA under laboratory conditions; more

may be able to take it up in their natural environments. DNA material can be trans-

ferred between different strains of bacteria, in a process that is called horizontal gene

transfer. Some species upon cell death release their DNA to be taken up by other cells,

however transformation works best with DNA from closely related species. These natu-

rally competent bacteria carry sets of genes that provide the protein machinery to bring

DNA across the cell membranes.

Artificial competence can be induced in laboratory procedures that involve making the

cell passively permeable to DNA by exposing it to conditions that do not normally occur

in nature. Typically, the cells are incubated in a solution containing divalent cations

(often calcium chloride) under cold conditions, before being exposed to a heat pulse

(heat shock).

It has been found that growth of Gram negative bacteria in 20 mM Mg reduces the



Chapter 3. Myogenic cells for hypertrophy transduction 53

number of protein to lipopolysaccharide bonds by increasing the ratio of ionic to co-

valent bonds, which increases membrane fluidity, facilitating transformation. The role

of lipopolysaccharides here are verified from the observation that shorter O-side chains

are more effectively transformed — perhaps because of improved DNA accessibility.

The surface of bacteria such as E. coli is negatively charged due to phospholipids and

lipopolysaccharides on its cell surface, and the DNA is also negatively charged. One

function of the divalent cation therefore would be to shield the charges by coordinating

the phosphate groups and other negative charges, thereby allowing a DNA molecule to

adhere to the cell surface.

DNA entry into E. coli cells is through channels known as zones of adhesion or Bayer’s

junction, a typical cell carries as many as 400 such zones. Their role was established

when cobalamine (which also uses these channels) was found to competitively inhibit

DNA uptake. It is suggested that exposing the cells to divalent cations in cold condi-

tion may also change or weaken the cell surface structure of the cells making it more

permeable to DNA. The heat-pulse is thought to create a thermal imbalance on either

side of the cell membrane, which forces the DNA to enter the cells through either cell

pores or the damaged cell wall.

Electroporation is another method of promoting competence. In this method the cells

are briefly shocked with an electric field of 10-20 kV/cm which is thought to create holes

in the cell membrane through which the plasmid DNA may enter. After the electric

shock the holes are rapidly closed by the cell’s membrane-repair mechanisms.

The discovery of artificially induced competence in bacteria allow bacteria such as Es-

cherichia coli to be used as a convenient host for the manipulation of DNA as well as

expressing proteins. Typically plasmids are used for transformation in E. coli. In order

to be stably maintained in the cell, a plasmid DNA molecule must contain an origin of

replication, which allows it to be replicated in the cell independently of the replication

of the cell’s own chromosome.

The efficiency with which a competent culture can take up exogenous DNA and express

its genes is known as transformation efficiency and is measured in colony forming unit

(CFU) per µg DNA used. A transformation efficiency of 1x108 CFU/µg for a small

plasmid like pUC19 is roughly equivalent to 1 in 2000 molecules of the plasmid used

being transformed.

In calcium chloride transformation, the cells are prepared by chilling cells in the pres-

ence of Ca2+ (in CaCl2 solution) making the cell become permeable to plasmid DNA.

The cells are incubated on ice with the DNA, and then briefly heat-shocked (e.g., at

42 ◦ C for 30–120 seconds). This method works very well for circular plasmid DNA.

Non-commercial preparations should normally give 106 to 107 transformants per µg of

plasmid; a poor preparation will be about 104 per µg or less, but a good preparation

of competent cells can give up to 108 colonies per µg of plasmid. Protocols however
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exist for making supercompetent cells that may yield a transformation efficiency of over

109. The chemical method, however, usually does not work well for linear DNA, such as

fragments of chromosomal DNA, probably because the cell’s native exonuclease enzymes

rapidly degrade linear DNA. In contrast, cells that are naturally competent are usually

transformed more efficiently with linear DNA than with plasmid DNA.

The transformation efficiency using the CaCl2 method decreases with plasmid size, and

electroporation therefore may be a more effective method for the uptake of large plas-

mid DNA. Cells used in electroporation should be prepared first by washing in cold

double-distilled water to remove charged particles that may create sparks during the

electroporation process.

3.4.3.2 Transduction

Transduction is the process by which DNA is transferred from one bacterium to another

by a virus. It also refers to the process whereby foreign DNA is introduced into another

cell via a viral vector. Transduction does not require physical contact between the cell

donating the DNA and the cell receiving the DNA (which occurs in conjugation), and

it is DNase resistant (transformation is susceptible to DNase).

Transduction is a common tool used by molecular biologists to stably introduce a foreign

gene into a host cell’s genome.

When bacteriophages (viruses that infect bacteria) infect a bacterial cell, their normal

mode of reproduction is to exploit the replication, transcription, and translation ma-

chinery of the host bacterial cell to make numerous virions, or complete viral particles,

including the viral DNA or RNA and the protein coat.

Transduction happens through either the lytic cycle or the lysogenic cycle. If the lyso-

genic cycle is adopted, the phage chromosome is integrated (by covalent bonds) into the

bacterial chromosome, where it can remain dormant for thousands of generations. If the

lysogenic cycle is induced (by UV light for example), the phage genome is excised from

the bacterial chromosome and initiates the lytic cycle, which culminates in lysis of the

cell and the release of phage particles. The lytic cycle leads to the production of new

phage particles which are released by lysis of the host.

The packaging of bacteriophage DNA has low fidelity and small pieces of bacterial DNA,

together with the bacteriophage genome, may become packaged into the bacteriophage

genome. At the same time, some phage genes are left behind in the bacterial chromo-

some. There are generally three types of recombination events that can lead to this

incorporation of bacterial DNA into the viral DNA, leading to two modes of recombi-

nation.

Generalized transduction is the process by which any bacterial gene may be transferred
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to another bacterium via a bacteriophage, and typically carries only bacterial DNA and

no viral DNA. In essence, this is the packaging of bacterial DNA into a viral envelope.

This may occur in two main ways, recombination and headful packaging. If bacterio-

phages undertake the lytic cycle of infection upon entering a bacterium, the virus will

take control of the cell’s machinery for use in replicating its own viral DNA. If by chance

bacterial chromosomal DNA is inserted into the viral capsid which is usually used to

encapsulate the viral DNA, the mistake will lead to generalized transduction. If the

virus replicates using ’headful packaging’, it attempts to fill the nucleocapsid with ge-

netic material. If the viral genome results in spare capacity, viral packaging mechanisms

may incorporate bacterial genetic material into the new virion.

The new virus capsule now loaded with part bacterial DNA continues to infect another

bacterial cell. This bacterial material may become recombined into another bacterium

upon infection.

When the new DNA is inserted into this recipient cell it can fall to one of three fates:

1. The DNA will be absorbed by the cell and be recycled for spare parts.

2. If the DNA was originally a plasmid, it will re-circularize inside the new cell and

become a plasmid again.

3. If the new DNA matches with a homologous region of the recipient cell’s chromo-

some, it will exchange DNA material similar to the actions in bacterial recombi-

nation.

Specialized transduction is the process by which a restricted set of bacterial genes is

transferred to another bacterium. The genes that get transferred (donor genes) depend

on where the phage genome is located on the chromosome. Specialized transduction

occurs when the prophage excises imprecisely from the chromosome so that bacterial

genes lying adjacent to the prophage are included in the excised DNA. The excised

DNA is then packaged into a new virus particle, which then delivers the DNA to a

new bacterium, where the donor genes can be inserted into the recipient chromosome

or remain in the cytoplasm, depending on the nature of the bacteriophage. When the

partially encapsulated phage material infects another cell and becomes a ”prophage”

(is covalently bonded into the infected cell’s chromosome), the partially coded prophage

DNA is called a ”heterogenote”. Example of specialized transduction is λ phages in

Escherichia coli discovered by Esther Lederberg.
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3.4.3.3 Transfection

Transfection is the process of introducing nucleic acids with non-viral methods in eu-

karyotic cells. The word transfection is a blend of trans- and infection. Genetic material

(such as supercoiled plasmid DNA or siRNA constructs) may be transfected. Transfec-

tion of eukaryotic cells typically involves opening transient pores or ”holes” in the cell

membrane to allow the uptake of material. This can be accomplished by using chemical

or physical protocols:

• Calcium phosphate;

• Dendrimers;

• Liposomes;

• Cationic polymers;

• Electroporation;

• Sonoporation;

• Optical transfection;

• Protoplast fusion;

• Impalefection;

• Magnetofection;

• Particle bombardment;

• Nucleofection.

One of the cheapest methods uses calcium phosphate, originally discovered by F. L. Gra-

ham and A. J. van der Eb in 1973. HEPES-buffered saline solution (HeBS) containing

phosphate ions is combined with a calcium chloride solution containing the DNA to be

transfected. When the two are combined, a fine precipitate of the positively charged

calcium and the negatively charged phosphate will form, binding the DNA to be trans-

fected on its surface. The suspension of the precipitate is then added to the cells to

be transfected (usually a cell culture grown in a monolayer). By a process not entirely

understood, the cells take up some of the precipitate, and with it, the DNA. This process

has been a preferred method of identifying many oncogenes.

Other methods use highly branched organic compounds, so-called dendrimers, to bind

the DNA and get it into the cell.
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A very efficient method is the inclusion of the DNA to be transfected in liposomes, i.e.

small, membrane-bounded bodies that are in some ways similar to the structure of a

cell and can actually fuse with the cell membrane, releasing the DNA into the cell. For

eukaryotic cells, transfection is better achieved using cationic liposomes (or mixtures),

because the cells are more sensitive.

Another method is the use of cationic polymers such as DEAE-dextran or polyethylen-

imine. The negatively charged DNA binds to the polycation and the complex is taken

up by the cell via endocytosis.

Electroporation (Gene electrotransfer) is a popular method, where transient increase in

the permeability of cell membrane is achieved when the cells are exposed to short pulses

of an intense electric field.

Cell squeezing is a method invented in 2012 by Armon Sharei, Robert Langer and Klavs

Jensen at MIT. It enables delivery of molecules into cells by a gentle squeezing of the

cell membrane. It is a high throughput vector-free microfluidic platform for intracellular

delivery. It eliminates the possibility of toxicity or off-target effects as it does not rely

on exogenous materials or electrical fields.

Sonoporation uses high-intensity ultrasound to induce pore formation in cell membranes.

This pore formation is attributed mainly to the cavitation of gas bubbles interacting with

nearby cell membranes since is enhanced by the addition of ultrasound contrast agent,

a source of cavitation nuclei.

Optical transfection is a method where a tiny (less than 1 µm diameter) hole is tran-

siently generated in the plasma membrane of a cell using a highly focused laser. This

technique was first described in 1984 by Tsukakoshi et al., who used a frequency tripled

Nd : Y AG to generate stable and transient transfection of normal rat kidney cells. In

this technique, one cell at a time is treated, making it particularly useful for single cell

analysis.

Protoplast fusion is a technique in which transformed bacterial cells are treated with

lysozyme in order to remove the cell wall. Following this, fusogenic agents (e.g., Sendai

virus, PEG, or electroporation) are used in order to fuse the protoplast carrying the

gene of interest with the target recipient cell. A major disadvantage of this method is

that bacterial components are non-specifically introduced into the target cell as well.

Impalefection is a method of introducing DNA bound to a surface of a nanofiber that is

inserted into a cell. This approach can also be implemented with arrays of nanofibers

that are introduced into large numbers of cells and intact tissue.

Hydrodynamic delivery: in mice and rats, but to a lesser extent in larger animals, DNA

most often in plasmids, including transposons, can be delivered to the liver using hydro-

dynamic injection that involves infusion of a relatively large volume in the blood in less

than 10 seconds; nearly all of the DNA is expressed in the liver by this procedure. A
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direct approach to transfection is the gene gun, where the DNA is coupled to a nanopar-

ticle of an inert solid (commonly gold) which is then ”shot” directly into the target cell’s

nucleus.

Magnetofection, or Magnet assisted transfection is a transfection method, which uses

magnetic force to deliver DNA into target cells. Nucleic acids are first associated with

magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid par-

ticle complexes towards and into the target cells, where the cargo is released.

Another particle-based method of transfection is known as particle bombardment. The

nucleic acid is delivered through membrane penetration at a high velocity, usually con-

nected to microprojectiles.

DNA can also be introduced into cells using viruses as a carrier. In such cases, the

technique is called viral transduction, and the cells are said to be transduced.

Other methods of transfection include nucleofection, which has proved very efficient in

transfection of the THP-1 cell line, creating a viable cell line that was able to be differ-

entiated into mature macrophages, heat shock.

For some applications of transfection, it is sufficient if the transfected genetic material

is only transiently expressed. Since the DNA introduced in the transfection process is

usually not integrated into the nuclear genome, the foreign DNA will be diluted through

mitosis or degraded. Cell lines expressing the Epstein–Barr virus (EBV) nuclear antigen

1 (EBNA1) or the SV40 large-T antigen, allow episomal amplification of plasmids con-

taining the viral EBV (293E) or SV40 (293T) origins of replication, greatly reducing the

rate of dilution. If it is desired that the transfected gene actually remain in the genome

of the cell and its daughter cells, a stable transfection must occur. RNA can also be

transfected into cells to transiently express its coded protein, or to study RNA decay

kinetics. The latter application is referred as siRNA transfection or RNA silencing, and

has become a major application in research (to replace the ”knock-down” experiments,

to study the expression of proteins) with potential applications in gene-therapy.

3.4.4 Selection

In a cloning experiment, a gene may be inserted into a plasmid used for transformation.

However, in such experiment, not all the plasmids may contain a successfully inserted

gene. Additional techniques may therefore be employed further to screen for transformed

cells that contain plasmid with the insert.

Antibiotic resistance is the most commonly used marker for prokaryotes. The transform-

ing plasmid contains a gene that confers resistance to an antibiotic that the bacteria are

otherwise sensitive to. The mixture of treated cells is cultured on media that contain

the antibiotic so that only transformed cells are able to grow. A common agent for
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selecting stable transfection is Geneticin, also known as G418, which is a toxin that can

be neutralized by the product of the neomycin resistance gene.

Reporter gene can be used as markers, such as the lacZ gene which codes for β-

galactosidase used in blue-white screening. This method of screening relies on the princi-

ple of α-complementation, where a fragment of the lacZ gene (lacZα) in the plasmid can

complement another mutant lacZ gene (lacZ∆ M15) in the cell. Both genes by them-

selves produce non-functional peptides, however, when expressed together, as when a

plasmid containing lacZ-α is transformed into a lacZ∆ M15 cells, they form a functional

β-galactosidase. The presence of an active β-galactosidase may be detected when cells

are grown in plates containing X − gal, forming characteristic blue colonies. However,

the multiple cloning site, where a gene of interest may be ligated into the plasmid vector,

is located within the lacZα gene. Successful ligation therefore disrupts the lacZα gene,

and no functional β-galactosidase can form, resulting in white colonies. Cells containing

successfully ligated insert can then be easily identified by its white coloration from the

unsuccessful blue ones.

Another method of selection is the use of certain auxotrophic markers that can com-

pensate for an inability to metabolize certain amino acids, nucleotides, or sugars. This

method requires the use of suitably mutated strains that are deficient in the synthesis or

utility of a particular biomolecule, and the transformed cells are cultured in a medium

that allows only cells containing the plasmid to grow.

Other commonly used reporter genes are green fluorescent protein (GFP), which pro-

duces cells that glow green under blue light, and the enzyme luciferase, which catalyzes

a reaction with luciferin to emit light. The recombinant DNA may also be detected

using other methods such as nucleic acid hybridization with radioactive RNA probe,

while cells that expressed the desired protein from the plasmid may also be detected

using immunological methods.

To accomplish this, a marker gene is co-transfected, which gives the cell some selectable

advantage, such as resistance towards a certain toxin. Some (very few) of the transfected

cells will, by chance, have integrated the foreign genetic material into their genome. If

the toxin is then added to the cell culture, only those few cells with the marker gene

integrated into their genomes will be able to proliferate, while other cells will die. After

applying this selective stress (selection pressure) for some time, only the cells with a

stable transfection remain and can be cultivated further.

3.4.5 Confirmation

The finding that a recombinant organism contains the inserted genes is not usually suf-

ficient to ensure that they will be appropriately expressed in the intended tissues. To
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confirm the presence of the gene, PCR, Southern hybridization and DNA sequencing are

employed to determine the chromosomal location and number of gene copies.

To assess gene expression, transcription, RNA processing patterns and expression and

localization of protein products must usually be assessed, using methods including north-

ern hybridization, quantitative RT-PCR, Western blot, immunofluorescence and pheno-

typic analysis. When appropriate, the organism’s offspring are studied to confirm that

the trans-gene and associated phenotype are stably inherited. In some cases further gen-

erations must be produced and confirmed, to ensure the absence of undesirable traits in

the modified organism.

3.5 The Myo-Screen engineered cells

In the Myo-Screen project, the myo-genic engineered cells are the key element for the

transduction of the illegal anabolic substances presence in the bovine urine sample.

Normal myogenic cells react to hypertrophic stimuli by activating a series of intracellular

signaling pathways which connect the substance-receptor binding event to a variation

in the expression of several genes or to an imbalance between protein synthesis and

degradation.

Therefore, the phases of this process are the following:

1. Binding of the anabolic compound molecules to the correspondent cell receptors

(Outside or inside the cell membrane);

2. Activation of the correspondent signaling pathway which cause a cascade of events

pointing to activate/deactivate the transcription factors in the nucleous;

3. Increment/decrement in the expression of the proteins related to the genes under

the transcription factors control;

4. Effects of the expression variation inside/outside the cell.

The key-idea behind the project is to discover which genes are specifically expressed in

presence of the anabolic substances and to use their promoters, together with the DNA

sequence codifying for the Lactate Dehydrogenase (LDH) enzyme, in order to obtain a

LDH over-expression in presence of any anabolic compound. The LDH over-expression

will cause an increase in the intracellular LDH concentration. Then, the cells will expel

the lactate surplus, increasing its extracellular concentration.

Therefore, the cells will release the lactate surplus, increasing its extracellular concen-

tration. Therefore, the engineered myogenic cells will be able to react in the same way
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(overproducing lactate) to the presence of any anabolic compound, known or not. In

order to obtain these engineered cells, the following steps have been performed:

1. Identification of the main illicit anabolic substances used within the bovine breed-

ing, and of the types of receptors which binds them on the membrane of the

myogenic cells;

2. Identification of a stable cell line expressing all the above identified receptors;

3. Test of the cell responsivity to a set of receptors agonists (anabolic substances);

This step has been divided into the verification of the signaling cascade activation,

and into study of the genomic effect to determine which genes are involved with

the hypertrophic stimulus;

4. Preparation of plasmids with the LDH coding gene and a constitutively active

promoter;

5. Stable transfection of the cells with the plasmids for the continuous or constitutive

lactate over-expression;

6. Cloning of the over-expressed gene promoters and preparation of plasmids for the

hypertrophy-stimulated LDH over-expression;

7. Stable transfection of the cells with the plasmids for the hypertrophy-stimulated

LDH over-expression;

Steps number four and five have been introduced in order to test the efficiency of the

system of lactate production (by the engineered cells) and detection ,i.e., the electro-

chemical lactate sensor in ideal conditions. The success of these test is a fundamental

prerequisite for the project.

3.5.1 Illegal substances and cell receptors

The main illicit substances used for bovine treatments in breeding are reported in table

2.3, together with their category and control levels. Conversely, table 3.3 shows the cell

receptor which binds to the same illicit substances.

The receptors involved in the detection of these substances by the cell are four, i.e.,

receptors for Estrogens (ER), Androgens (AR), Progesterone (PR), and β2-adrenergic

(β2-Ar) compounds. Therefore, a basic requirement is that the myogenic cells to be

engineered for the substances detection must have all these receptors.



Chapter 3. Myogenic cells for hypertrophy transduction 62

Substance Category Receptors

Diethylstilbestrol Stilbens Estrogens

Dienenestrol Stilbens Estrogens

Esestrol Stilbens Estrogens

Thiouracile Thyroid antagonists

Methylthiouracile Thyroid antagonists

Propylthiouracile Thyroid antagonists

Fenylthiouracile Thyroid antagonists

Tapazole Thyroid antagonists

Mercaptobenzoimidazole Thyroid antagonists

Ethynilestradiol Synthetic estrogens Estrogens

Estradiol Estrogens (natural) Estrogens

Testosterone Androgens (natural) Androgens

Progesterone Progestinics (natural) Progesterone

Methyltestosterone Androgens (synthetic) Androgens

Nortestosterone Androgens, (synthetic) Androgens

Trenbolone Androgens, (synthetic) Androgens

Boldenone Androgens, (synthetic) Androgens

Zeranol Resorcilic acid lactones Estrogens

Clenbuterol Clenbut.-like β-agonists β2-adrenergic

Bhromebuterol Clenbut.-like β-agonists β2-adrenergic

Clenpenterol Clenbut.-like β-agonists β2-adrenergic

Mabuterol Clenbut.-like β-agonists β2-adrenergic

Mapenterol Clenbut.-like β-agonists β2-adrenergic

Cimaterol Clenbut.-like β-agonists β2-adrenergic

Cimbuterol Clenbut.-like β-agonists β2-adrenergic

Salbutamol Salbut.-like β-agonists β2-adrenergic

Terbutaline Salbut.-like β-agonists β2-adrenergic

Isoxuprine Salbut.-like β-agonists β2-adrenergic

Ractopamine Salbut.-like β-agonists β2-adrenergic

Zilpaterol Salbut.-like β-agonists β2-adrenergic

Table 3.3: Main illicit anabolic substances, their categories, and the cell receptors
which detect them.

3.5.2 Cell line selection

A wide variety of cell lines were considered for the process of genetic engineering in

the project. Unfortunately, no cells expressing the Progesteron receptor were found.

However, several cell lines expressing the other receptor were identified (Table 3.4).

Between these cases, particular attention was directed to NIH3T3, C3H10T1/2, C2C7

and H9C2 cell lines. A literature search was performed to consolidate the theoretical

basis for the usage of one of these cell lines for the project purpose. The NIH3T3 cell

line have been used to highlight the importance of adrenoceptors in the cardiovascular

system [39], the role of androgen receptors in the cell migration [40], and that one of

estrogens in breast tumor [41].



Chapter 3. Myogenic cells for hypertrophy transduction 63

Cell line Type Specie β2-Ar AR ER PR

NIH3T3 Embryo fibroblasts mouse X X X

C3H10T 1/2 Embryo Mesenchimals mouse X X X

C2C7 myoblasts mouse X X X

mRAW 264.7 Macrophages mouse X

3T3-F442A preadipocytes mouse X

MC3T3-E1 ostheoblasts mouse X

H9C2 Ventr. embryo myoblasts rat X X X (Erβ)

C6 Glioma rat X

L6 Skeletal muscle rat X X (Erα)

RGM1 gastric muc. epith. rat X

INS-1 β-cells Insulinome rat X

A549 Adenocarcinome epith. human X

hTERT miometr. rev. transcript. human X

H292 Respiratory epithelials human X

SaOS-2 osteoblasts-like human X

TE-85 osteoblasts-like human X

MG-63 osteoblasts-like human X

MCF7 breast cancer human X (ERα)

T47-D breast cancer human X (ERα,β)

ZR-75-1 breast cancer human X (ERα)

HCC1954 breast cancer human X (ERα,β)

SK-BR-3 breast cancer human X (ERα,β)

PC-3 prostate cancer human X

DU-145 prostate cancer human X

LN-CaP prostate cancer human X

CWR22R prostate cancer human X

Table 3.4: Main illicit anabolic substances, their categories, and the cell receptors
which detect them.

The C3H10T1/2 cell line androgen and β2-adrenergic receptors have been studied by

Jasuja et al. [42] and Takahata et al. [43], respectively.

Conversely, the C2C7 cell line have been sub-cloned from the C2C12 in CH3 mice, which

have been recently characterized by Baek et al. in 2011, Wannenes et al [44], Yong et

al. in 2010, and Vasconsuelo et al. [45].

Finally, H9C2 cell line androgen and Estradiol receptors have been studied by Ikeada et

al in 2010, Urata et al [46], and Yano et al. in 2007.

3.5.2.1 FBS deprivation tests

An important characteristic of the cell line to be selected for this project is its survival

into a medium as poor as possible of substances which could interfere with the lactate

biosensor electrochemical measurements. A first fundamental point in the medium choice

is that its composition has to be completely known. Therefore, the Fetal Bovine Serum
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(FBS) has to be avoided. In order to check if the cells can survive without FBS, the

four cell lines selected for the project were grown in Dulbecco’s Modified Eagle Medium

(DMEM) and 20% FBS, then rinsed and kept in pure DMEM for six days. The cells

were counted, by image counting, at the beginning and at the end of the experiment. As

reported in table 3.5, the cells of all the cell lines survived but only the C2C7 cells kept

their final number almost identical to the initial one, while the other cell lines increased

their number.

Counting set NIH3T3 C3H10T1/2 C2C7 H9C2

Initial 225672 299172 292343 301679

Final 402527 374863 296951 394564

Variation 176855 75691 4608 92885

Table 3.5: Number of cells before and after the six day experiment in DMEM without
FBS for the selected cell lines.

The stability of the cells number during the experiments will allow to easily normalize

the lactate production in contact with the urine animal sample to the cell number.

Therefore, the C2C7 cell line was selected for the next experiment in the project. Figure

3.7 shows both white light and fluorescence microscope pictures of the C2C7 cells.

Figure 3.7: White light and fluorescence pictures of C2C7 myo-genic cells.

3.5.2.2 Medium/buffers tests

Once selected the cell line, another series of tests regarding the cell medium were per-

formed. In fact, the exclusion of FBS allows to know the complete composition of the

cell medium but this doesn’t exclude the presence in the medium of substances which

could interfere with the electrochemical measurements.

Therefore, the survival of the C2C7 cells in different buffer solutions/medium was tested

with an incremental approach. Four medium/buffers were selected, starting from a min-

imal one, i.e. Tris-HCl, and going on with more rich medium/buffers, i.e. Phosphate
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Buffered Saline (PBS), often used within a large set electrochemical measurements, and

HEPES-Buffered Ringer’s Solution (HBRS). The last and richest medium considered

was DMEM. The compositions of these medium/buffers is reported in table 3.2 of this

chapter.

The cells were kept in DMEM without FBS for 48 hours, then the medium was sub-

stituted with the medium/buffer. For each buffer, four cultures with a density of 12.5

cells/cm2 were prepared. Two cultures were kept inside the incubator and the other two

were kept outside, at room temperature. Their status was checked at the microscope at

2, 4, 6, 8, 24 hours. As expected, after 24 hours the cells in DMEM were still adherent to

the flask surface, while the cell in PBS and Tris-HCl showed signs of deterioration just

1 and 2 hours after the beginning of the experiment, respectively. The cultures status

at 4, 6, 8 hours shows an increment of the cells in suspension. At 24 hours all the cells

of all the cultures were detached from the flask surface.

The cells in HBRS in the incubator start detaching from the flask after 4 hours and

died entirely after 24 hours. Conversely, the 70-80% of the cells outside the incubator

survived after 48 hours.

3.5.3 Anabolic substances effect on cells

The classes of anabolic substances analyzed cause different effect on the cells. Their

detection by the correspondent receptors causes a cascade of events which arrive to

the nucleus, affecting the gene expression, thus modifying the proteome of the cells.

Therefore, this cascade of events can be divided into a signaling pathway, which is

triggered by the substance detection by the receptor and is concluded by the activation

of specific transcription factors, and a genomic effect, that is related to specific genes

over-expression and the over-production of the relative proteins.

3.5.3.1 Signaling pathway

Regarding the signaling pathway, in literature there are several studies which investi-

gate the non-genomic fast effect of β2-adrendergic, androgen, estrogen and progesteron

receptors effects. Most of these studies prove that these substances have a direct effect

on the MAPK signaling pathway, previously described in this chapter. For example,

in 2012 Kaya et al. stated that β2-adrendergic receptor mediates ERK phosphoryla-

tion [47], while Dubois proved found that Androgens may exert fast non-genomic effects

through interactions between the AR receptor and the tyrosine kinase c-Src, inducing

the MAPK signaling cascade [48]. In 2008, Boland stated that, among the rapid actions



Chapter 3. Myogenic cells for hypertrophy transduction 66

of the Estradiol receptor, the activation of PI3K/Akt and MAPKs have been demon-

strated [49] and even Progesterone induces a rapid increase in ERK phosphorylation in

cells doted by the correspondent receptor [50]. The scheme of figure 3.8 summarizes

the effect of the anabolic substance classes considered in this project. All these sub-

stances cause a variation in the ERK phosphorylation. Therefore, a preliminary test

to observe their short term non-genomic effect was directed to the quantification of the

phosphorylated ERK.

Figure 3.8: Signaling pathway from the anabolic substances binding with their re-
ceptors to the transcription factors in the nucleous through the MAPKs

The C2C7 cells were kept in absence of serum for 48 hours, then they were treated

for 5 minutes with 20% FBS (positive control), or 1 µ M Clenbuterol, or 100 nM 17-β

Estradiol, or 100 nM Testosterone, or 100 nM Progesterone.

After the treatment, the cell proteins were extracted by centrifugation and ERK, pERK

and GAPDH were separated by Western Blot and quantified by the bands intensity

measurement. GAPDH were used as negative control.
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Figure 3.9: Phosphorylated/not phosphorylated ERK bands obtained by the Western
blot tests and their intensity ratio for C2C7 cells treated with four different anabolic
compounds for 5 minutes. Cells treated with 20% FBS were used as positive control,

untreated cells as negative one.

As shown in the figure, both Clenbuterol and Testosterone cause a significant increase

of the phosphorylated/not-phosphorylated ERK ratio. Conversely, Estradiol cause a

reduction of this ratio with respect to the untreated cells.

3.5.3.2 Genomic effect

In order to monitor the anabolic substances genomic effect, four target genes were con-

sidered:

• IGF1 (Insuline Growth Factor 1): mediates the skeletal myotube hypertrophy

through the Akt pathways [51], [52], [53];

• IGF1R (Insuline Growth Factor 1 Receptor): is involved in the myoblast-independent

muscle hypertrophy via PI3K and P110α pathways [54], [55];

• Pgc1-α (Peroxisome proliferator-activated receptor gamma co-activator 1 alpha):

is a transcriptional co-activator related to metabolic remodeling and muscle hy-

pertrophy [56], [57], [58];

• EGR2 (Early Growth Response 2): ”zinc finger” type transcriptional factor which

can interact with the NFAT trascriptional factors, involved in the hypertrophic

processes [59].
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A first experimental test were directed towards the investigation of the effect of different

concentrations of the anabolic substances on the target genes expression. Therefore, two

concentrations which could be found in treated animal urine were used to treat C2C7

cell cultures for 24 hours, for each anabolic substance.

In particular, the cells were kept without FBS for 48 hours and then were treated with

the selected substances (Clenbuterol, Testosterone,a nd 17β-Estradiol) at the selected

concentrations, i.e., 100 nM and 1 µM. Three cell cultures were used for each test. After

24 hours the cells RNA were extracted and gene expression was quantified by qRT-PCR.

The target gene EGR2 was not been tested for 24 hours because these tests have already

been performed in a recent work of the group. However, its expression over time were

further characterized in the next analysis.

Figure 3.10 shows the relative fold induction of the target genes expression for the C2C7

cells treated with Clenbuterol, with respect to the not treated cells (n.t.). Figures 3.11

and 3.12 show the same results for Testosterone and Estradiol, respectively.

Figure 3.10: Target genes expression dependence upon the Clenbuterol concentration.
The n.t. cells have not been treated with any anabolic substance.

Although for both Clenbuterol and Estradiol the highest variations were recorded in

correspondence to the highest concentrations, Testosterone showed higher variation for

the 100 nM concentration than for the 1 µM one. For this reason, in the next experiments

Testosterone was tested at 100 nM concentration. The same was done with Estradiol,

but for a different reason. In fact, Estradiol control level in animal urine is 20 times
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Figure 3.11: Target genes expression dependence upon the Testosterone concentra-
tion. The n.t. cells have not been treated with any anabolic substance.

Figure 3.12: Target genes expression dependence upon the Estradiol concentration.
The n.t. cells have not been treated with any anabolic substance.
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lower than the Testosterone one (2.3), thus it is necessary to test its detection at smaller

concentration than Testosterone. Finally, since Clenbuterol show a huge increment of

the target genes expression for the 1 µM concentration (in particular for IGF1), this

concentration was chosen for its next tests.

Having proved the 24 hours genomic effect of the anabolic substances over the consid-

ered target genes, the question to be answered is which is the minimal time required for

the cells to express these genes. In order to answer this question, a time course for each

target gene was performed for each anabolic substance.

The RNA was quantified as in the previous experiment 2, 4, 8 hours after the cultures

exposition to the anabolic substances at the concentrations defined from the results of

the previous experiment.

The following figures represent the induction fold expression of IGF1 (figure 3.13),

IGF1R (figure 3.14), Pgc1-α (figure 3.15), and EGR2 (figure 3.16), for the three an-

abolic substances considered. As in the previous experiment, three C2C7 cultures were

tested for each target gene/time/anabolic substance combination, and the bars in the

plots represent the standard deviations obtained within these tests.

Figure 3.13: Time course of the IGF1 gene expression for cells treated with Clen-
buterol, Testosterone and Estradiol.

Regarding IGF1, after 8 hours all the anabolic substances caused an over-expression

of the target gene, but a remarkable effect is correlated to Clenbuterol after just 2

hours of treatment. The same effect was found with IGF1R. However, in this case the



Chapter 3. Myogenic cells for hypertrophy transduction 71

Figure 3.14: Time course of the IGF1R gene expression for cells treated with Clen-
buterol, Testosterone and Estradiol.

Figure 3.15: Time course of the Pgc1-α gene expression for cells treated with Clen-
buterol, Testosterone and Estradiol.
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Figure 3.16: Time course of the EGR2 gene expression for cells treated with Clen-
buterol, Testosterone and Estradiol.

Testosterone treatment did not cause the over-expression of this gene while the reaction

to the Estradiol treatment has become relevant only after 8 hours. Conversely, the

target gene Pgc1-α didn’t show any result with the three anabolic compounds. Even

worse, Clenbuterol in this case showed the induction of a reduction in the gene over-

expression. Finally, EGR2 showed good results for Clenbuterol and Testosterone after

4 hours. In fact, the gene over-expression reached 1.5 and 3.5 that one of the untreated

cells, respectively. However, Estradiol caused a reduction of EGR2 expression which

persisted after 8 hours. Therefore, only IGF1 showed over-expression in presence of all

the anabolic substances considered and for this reason it was chosen as election gene for

the myogenic C2C7 cell hypertrophy transduction.

3.5.4 Cells genetic engineering

The gene which is naturally over-expressed in C2C7 cells in presence of the selected

anabolic substances was identified. Therefore, in order to modify the cells for the lactate

production in presence of these substances, the IGF1 gene promoter has to be isolated

and used as promoter of the gene codifying for the enzyme Lactate Dehydrogenase

(LDH). This will cause the over-expression of LDH under the hypertrophic stimulus and

thus the over-production of lactate in the cell, which will be rapidly released from the
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cells. The IGF1 promoter sequence was obtained from the GenBank and it’s reported

in figure 3.17.

Figure 3.17: Mouse IGF1 promoter DNA sequence of the ATG exon 1 (GenBank:
Y18062.1, 2070 bp)

To obtain the cells engineered for the hypertrophy-stimulated LDH over-expression,

three steps were performed:

1. Verification of the IGF1 promoter triggering effect for the expression, in the C2C7

cells, of the gene incorporated into the transfected plasmid;

2. Verification of the extracellular lactate production of C2C7 cells transfected with

a plasmid containing the LDH gene and an always active promoter;

3. Verification of the extracellular lactate production of C2C7 cells transfected with

a plasmid containing the LDH gene and the IGF1 promoter in presence of different

anabolic substances.

In every case, the C2C7 cells transfection was performed by Lipofection, using Lipofectamine3000 R©

by Life Technologies. Within this method the plasmid DNA is inserted in a liposomes

which are absorbed by the cell membrane forming endosomes. The endosome free the

plasmids into the cell and they penetrate into the nucleus through its pores. Here, they

are used to codify mRNA which is exported in the cytoplasm and used for the expression

of the protein of interest, as schematized in figure 3.18.

Lipofectamine reagent contains lipid subunits that can form liposomes in aqueous envi-

ronment, which entraps the transfection materials, i.e., DNA plasmids. Lipofectamine is

a cationic liposome formulation, which complexes with negatively charged nucleic acid
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Figure 3.18: The Lipofection is a four step process that involves attachment to the
cell, endocytosis int the cell, endosomal escape and nuclear entry for transcription to
mRNA. The mRNA is then exported from the nucleous to the cytoplasm and translated

into the protein of interest.

molecules to allow them to overcome the electrostatic repulsion of the cell membrane.

Lipofectamine cationic lipid molecules are formulated with a neutral co-lipid (helper

lipid). The DNA-containing liposomes (with positive charge on their surfaces) can fuse

with the negatively charged plasma membrane of living cells, due to the neutral co-lipid

mediating fusion of the liposome with the cell membrane, allowing nucleic acid to cross

into the cytoplasm and contents to be available to the cell for replication or expression.[2]

In order for a cell to express this transgene, the nucleic acid must reach the nucleus

of the cell to begin transcription. This process involves many risks. The transfected

genetic material may never reach the nucleus in the first place, instead being disrupted

somewhere along the delivery process. In dividing cells, the material may reach the

nucleus by being trapped in the reassembling nuclear envelope following mitosis. But

also in non-dividing cells, research has shown that Lipofectamine improves the efficiency

of transfection, which suggests that it additionally helps the transfected genetic material

penetrate the intact nuclear envelope.

The protocol used for Lipofection is described in the following scheme (figure 3.19):

To verify that the proper sequences are inserted in the vector, each time that the vector

is modified by the addition or removing of some genetic material it undergoes a sequenc-

ing step. The sequencing technique adopted is Cycle sequencing with Sanger method.

Cycle sequencing is a simple method in which successive rounds of denaturation, anneal-

ing, and extension in a thermal cycler result in linear amplification of DNA extension

products (figure 3.20). The products are then injected into a capillary for electrophoretic

separation.
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Figure 3.19: Life Technologies Lipofectamine3000 R© protocol used for the C2C7 cells
transfection in 24 wells plates.

Figure 3.20: Cycle sequencing schematic. Consecutive annealing, extension and de-
naturation steps are cyclically repeated in order to increase the sequencing yield.
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The extension product grows by the formation of a phosphodiester bridge between

the 3’-hydroxyl group on the primer and the 5’-phosphate group of the incoming de-

oxynucleotide. Growth occurs in the 5’ to 3’ direction. DNA polymerases can also

incorporate analogues of nucleotide bases. The dideoxy method of DNA sequencing

developed by Sanger et al. in 1977 takes advantage of this characteristic by using 2’,3’-

dideoxynucleotides as substrates. When dideoxynucleotides are incorporated at the 3’

end of the growing chain, chain elongation is terminated selectively at A, C, G, or T.

This is because once the dideoxynucleotide is incorporated, the chain lacks a 3’-hydroxyl

group so further elongation of the chain is prevented.

3.5.4.1 Verification of the IGF1 promoter triggering effect

In order to verify the triggering effect of the IGF1 promoter and the effectiveness of

the C2C7 cells transfection, a vector was prepared inserting IGF1 as promoter for the

expression of a reporter gene. The vector is of the type pGL4 (Promega) and is composed

by seven blocks (figure 3.21):

• The gene coding for the Ampicillin resistance: used to select the successfully trans-

fected cells fro the other ones;

• The inserted IGF1 promoter: to trigger the reporter gene expression in presence

of the anabolic substances;

• The reporter gene: coding for the Luciferase enzyme, in order to measure its

luminescence if the promoter will trigger its expression;

• The SV40 late polyA: promote efficient polyadenilation;

• The SV40 early promoter: promote efficient polyadenilation;

• The selectable marker block: which allow to select marker genes for hygromycin

(Hygro), Neomycin (Neo), and puromycin (Puro);

• The synthetic polyA block.

Three cultures of C2C7 cells, transfected by the IGF1-modified pGL4 vector with the

Lipofection protocol described in the previous paragraph, were treated with Clenbuterol

1 µM for 24 hours. The proteins of these three cultures were extracted and analyzed at

the luminometer. Their average luminescence was compared to that one of other three

C2C7 cultures transfected with the basic pGL4 vector (without the IGF1 promoter

insertion). The results are depicted in table 3.6 and show a 4 fold induction of the

Luciferase expression, proving the capability of the transfected C2C7 cell to transduce

the hypertrophic stimulus by the IGF1 promoter triggering effect.
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Figure 3.21: The figure on the left depicts the concept of the Luciferase test. The
figure on the right represent the pGL4 vector prepared for the test, where the upstream

element is the IGF1 promoter.

Transfected vector Av. Luminescence (RLU) Std. deviation (RLU)

pGL4-IGF1 12252 206

pGL4-basic 3097 123

Table 3.6: Luciferase test results for the C2C7 cells transfected by the IGF1 modified
pGL4 vector with respect to the basic vector.

3.5.4.2 Transfection for continuous lactate production

In order to verify the maximum lactate production levels of the C2C7 transfected cells, a

vector for the continuous LDH expression was created and used for the cells transfection.

The vector is of the pcDNA3-LDH type and it contains the gene coding for LDH and

the CMV promoter, as depicted in figure 3.22. The promoters for Cytomegalovirus

(CMV) and SV40 are commonly used in mammalian expression vectors to drive protein

expression, since they are very active and have a high yield. The transfection was

performed again by Lipofection, using the same method that was previously described,

and selecting the transfected cells by gentamicin, an antibiotic to which the pcDNA3

construct gives resistance.

The efficiency of the system in C2C7 cells have not been sufficient since the transfection

positive cells didn’t produce a large excess of LDH with respect to the negative controls,

i.e., the not transfected C2C7 cells or the cells transfected with the pcDNA3 vector

without the sequence codifying for the LDH enzyme. This could be due to the high

basal level of production of LDH in this type of cells, as showed in figure 3.23

Therefore, in order to verify the proper functioning of the pcDNA3-LDH vector, this

was tested on different cell lines. The cell lines considered were COS-1 (fibroblasts from
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Figure 3.22: Schematic drawing of the pcDNA3-LDH vector used for the C2C7 trans-
fection for the continuous or constitutive lactate production (left) and Western Blot of

the expressed LDH and of Actine as control

Figure 3.23: Western blot and densitometry for the LDH levels analysis in two prepa-
rations of C2C7, C2C7 pcDNA3 and C2C7 pcDNA3-LDH cells. The tubulin expression

was used for normalization.
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monkey kidney), HeLa (human cervix cancer derived cell line), NIH3T3 (embryonal

fibroblasts), and HEK-293T cells (human embryo kidney derived cell line). The data

obtained and showed in figure 3.24 prove that the pcDNA3-LDH vector works properly.

However, it seems that this construct it’s not able to induce a stable increment of the

LDH expression in C2C7 cells. Therefore, the development of a new vector, containing

regulatory structures more efficient in this cell line is necessary.

Anyway, a batch of C2C7 cells which pcDNA3-LDH vector transfection showed a small

increment of LDH expression, with respect to both the wild type and the pcDNA3

transfected cells, was obtained (figure 3.25). This cell’s batch was used to test the

biosensor sensitivity to the lactate produced and released by the cells. The experiment

is described at the end of Chapter 5.

3.5.4.3 Transfection for stimulated lactate production

With the aim to obtain the stable transfection of the cells with the pcDNA3-LDH

vector modified with the IGF1 promoter, the vector containing the CMV promoter was

modified and the IGF1 promoter was inserted just before the LDH gene. The vector

was sequenced in order to verify the IGF1 and LDH gene sequences. Finally, the CMV

promoter was removed and the vector was sequenced again to confirm its structure before

the C2C7 transfection. The pcDNA3-LDH/IGF1 promoter transfection experiments are

still running, in parallel with those related to the continuous lactate overproduction and

to the vector optimization for the C2C7 cells.
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Figure 3.24: Western blot and densitometry for the LDH levels analysis in COS-1
cells (A), HeLa cells (B), NIH-3T3 cells (C), and HEK293T cells (D), respectively for
the wild type cells, the pcDNA3, and the pcDNA3-LDH transfected ones. Tubulin

expression was used for the levels normalization.
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Figure 3.25: Western blot and densitometry for the LDH levels analysis in two prepa-
rations of C2C7, C2C7 pcDNA3 and C2C7 pcDNA3-LDH cells. The tubulin expression

was used for normalization.



Chapter 4

Electrochemical biosensor for

lactate detection

4.1 Biosensors fundamentals

A biosensor is defined as a device for the detection of a specific molecule or compound

(called analyte), that combines a biological element and a transducer. The transducer

converts a physical or chemical observed event in a measurable signal, whose magnitude

is proportional to the analyte concentration.

Figure 4.1: Main blocks of a generical biosensor and comparison with the olfactory
system for the detection of a specific analyte.

82
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4.1.1 Biosensors performance parameters

Depending on the analyte type which has to be detected, several biological components

can be employed, e.g. antibodies, proteins, ssDNA, and enzymes. Usually, these compo-

nents are immobilized over the device surface where the transduction process is guided

by the chosen measurement technique which can be physical, chemical/electrochemical

or optical.

Independently to the measurement technique and to the biological component employed,

the biosensor performance is mainly evaluated by six parameters:

• Sensitivity: the minimal detectable analyte concentration change also defined as

the slope of the linear part of the calibration plot [60];

Figure 4.2: Example of a glucose amperometric biosensor calibration curve. The
glucose concentration is measured as an electrical current which varies linearly with it,
in the biosensor quantification range. The sensitivity of this biosensor is 1.1µA/mM .

• Signal to noise ratio (SNR): the ratio between the amplitude of a signal and of its

noise, to the second power;

• Limits of detection and of quantification (LOD/LOQ): respectively the minimum

analyte concentration that can be distinguished from its absence, and the minimum

analyte concentration that can be quantified;

• Selectivity: the ability to detect only one analyte without interferences from other

substances;

• Repeatability: similarity of repeated measurements on the same device;
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Figure 4.3: Representations of the same signal with four SNR values: for the top left
plot the SNR is 0.5, for the bottom left one the SNR is 0.3, while for the top right plot

the SNR is 5, and for the right bottom one the SNR is 20.

Figure 4.4: Schematic representation of the limits of detection, quantification, and
linearity in a generical biosensor’s calibration plot.

• Reproducibility: similarity of the responses of different biosensors in the same

conditions.

4.1.2 Affinity vs catalytic biosensors

The nature of the interaction between the analyte and the biological component of the

biosensor, and thus the biosensor itself, may be classified in two types:

• Affinity biosensor: the analyte binds specifically to the biological component, i.e.

to immobilized antibodies, aptamers or ssDNA;

• Catalytic biosensor: the analyte interacts with the biological component, i.e. an

enzyme, causing chemical modifications detectable by the transducer.
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A widely used implementation of an affinity biosensor is the Enzyme-Linked Immunosor-

bent Assay (ELISA) to detect the concentration of a protein of interest in a fluid sample.

The test is performed putting in contact the sample with a surface functionalized with

antibodies specific for the target protein (primary ABs), which strongly binds to them.

Then the sample is washed away and a solution of antibodies (secondary ABs), specific

for another site of the protein of interest and labeled by a fluorescent molecule, is added

to the surface and then washed away. The secondary ABs, bound to the target proteins

trapped by the primary ABs will then be detected by their fluorescent labels, allowing

to indirectly measure the target protein concentration in the sample.

Figure 4.5: Schematic representation of the sequence of operations for the target
protein detection in an ELISA assay using the Horseradish Peroxidase (HRP) enzyme

and TMB as label for the colorimetric test.

The main drawback of this technique is the needing of the secondary ABs which intro-

duce a step that makes difficult the in-field and rapid use of the biosensor by not trained

operators. Moreover, the optical measurements makes the biosensor system very expan-

sive. For these reasons, the point of care (PoC) biosensors are often based on label-free

strategies and electrochemical (and cheaper) measurements detecting the variations in-

troduced by the target molecule binding to the biological component, without the need

of secondary molecules for the transduction of the binding event (e.g. for antibiotics de-

tection on low-cost devices [61]). Regarding the catalytic (or enzyme-based) biosensors,

a relevant example is constituted by the strips used by people affected by Diabetes to

check their glucose levels in blood. This strips are functionalized by an enzyme which

converts glucose in an electrochemically detectable molecule (a redox mediator) in a

reversible process.

A mediator is a redox chemical compound which acts as electron carrier between the

enzyme’s catalytic site and the device surface, where the transported electrons are de-

tected and measured by the appropriate technique.
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Figure 4.6: Compact scheme representing the detection pathways used by amperomet-
ric enzyme-based biosensors over years. The central cube faces represent the electrode

surface where the electron transfer allows the amperometric detection.

The enzyme-based biosensors are historically classified in three generations, depending

on the electrochemical reactions which define the analyte detection, and thus by the

mediator used in these reactions:

1. The first generation is constituted by biosensors which use the oxygen molecules

as mediators and oxidase enzymes;

2. The second generation biosensors use the enzyme cofactors or artificial molecules

as redox mediators;

3. The third generation biosensors are characterized by nano-structured device sur-

faces allowing the direct transition of the electrons between the enzyme’s catalytic

site and the device surface, with no needing of a redox mediator.

4.1.3 Measurement techniques

Affinity and enzyme-based biosensors are usually characterized by different measure-

ment techniques. For example, Electrochemical Impedance Spectroscopy (EIS) is a

widespread technique used for label-free electrochemical affinity biosensors, while Cyclic

Voltammetry (CV) is a common technique for amperometric electrochemical enzyme-

based biosensors. Some of the techniques commonly used for this kind of biosensors are

presented below.
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4.1.3.1 Electrochemical Impedance Spectroscopy (EIS)

EIS is used to measure the impedance of an electrochemical cell, usually composed by

the device working electrode, by a reference electrode (external or integrated), and by

an electrolyte solution in which the electrodes are immersed. The impedance, calcu-

lated imposing an AC potential between the electrodes ad measuring the AC current

flowing between them in function of the AC potential frequency, is sensitive to the

working electrode surface conditions in the low-frequency region, and this allows the

detection of the analyte binding to the biological component immobilized on the sur-

face in affinity biosensors. EIS data can be further analyzed by fitting it with electrical

equivalent circuits (EECs), allowing for the interpretation of each electrical parameter

with a chemical-physical phenomenon.

4.1.3.2 Cyclic Voltammetry (CV)

Cyclic Voltammetry is normally performed in three electrode cells, composed by the

device working electrode, the reference electrode, and a counter-electrode. With this

technique a linearly increasing potential, from a minimum value (Vmin) to a maximum

one (Vmax) with respect to the time, is imposed between the working and the reference

electrodes. The slope of the potential ramp is called scan rate (SR). Then, the potential

linearly decrease with the same absolute slope coming back to Vmin.

During each cycle, the current flowing through the working electrode and the counter-

electrode is measured, and usually it’s represented in the cyclovoltammogram with re-

spect to the imposed potential, in a i/v plot.

Figure 4.7: Schematic representation of a generic three-electrode electrochemical cell.

The resulting plot usually represent a closed curve where, the presence of any current

peak represent the reduction or the oxidation of the chemical species present in the
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measured solution. Each redox chemical compound has its own reduction and oxidation

potentials depending on the electrodes materials, area, and on the measurement settings.

However, at sufficiently high (low) potentials, several compounds are reduced (oxidized)

and it becomes difficult to measure the concentration of each compound because of the

other compounds interferences.

Figure 4.8: Typical cyclic voltammogram of a reversible redox system. The arrows
along the curve give a representation of the measured current values over time during
the linear variation of the potential from Einitial to Efinal and back to Einitial. The
cathodic peak is related to the reduction of the oxidated molecules in the solution while

the anodic one is related to the oxidation of the reduced ones.

4.1.3.3 Amperometric i-t curves

Another common technique performed with the three electrodes electrochemical cell

described above is the amperometric i-t. This technique simply impose a constant

potential between the working and the reference electrodes and it measures the current

flowing through the counter-electrode over time.

This technique is often used in microfluidic systems, where the measurement solution is

driven over the electrodes by a channel with dimensions in the micrometer scale, and in

stirred electrochemical cells.

The imposition of the oxidation (reduction) potential of a particular redox molecule

allows measuring an electrical current proportional to the redox molecule concentration

in the solution if no interferences, due to other redox molecules, are present at the same

potential.
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4.1.3.4 Surface Plasmon resonance (SPR)

A label-free biosensor technique of increasing importance is Surface Plasmon Resonance

(SPR). This optical technique is based on the stimulation of evanescent waves on a

grating by a laser, which produce a resonance peak at a specific angle of the grating

with respect to the incident wave. The change of the surface conditions i.e. the binding

of a protein to the antibodies-functionalized surface causes a shift of the resonance angle

which is proportional to the concentration of the bound protein.

Figure 4.9: Schematic representation of a possible implementation of SPR biosensor
based on a gold film functionalized by probe molecules exposed to the analyte in a flow

cell and by a polarized light source, a prism, and an optical detection unit.

SPR and EIS measurements are probably the most common label-free detection tech-

niques. They allow the detection of few nanometers wide molecules, monitoring dif-

ferent (respectively optical and electrochemical) effects of the molecules binding on a
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surface. The complementarity of the information given by these technique can be ex-

ploited by performing them on the same nanostructured surface for the detection of a

Self-Assembling Monolayer (SAM) of thiolated molecules has it has been done in [62].

4.1.4 Devices design and fabrication

Optical and electrochemical devices design is a key step for the realization of a perform-

ing biosensor. Its goal is the optimization of characteristics such as the transduction

efficiency, the device usability, and the device surface features, which are fundamental

for a correct immobilization of the biological component.

The fabrication of the devices may involve both methods typical of the integrated cir-

cuit facilities, i.e., lithographic techniques in cleanrooms, and also cheaper and easier

techniques as screen-printing with conductive and insulating inks.

4.1.4.1 Finite Element Modeling and simulations

Several simulation softwares allow modeling the devices and calculating their theoret-

ical performance. These simulations are usually performed in order to identify which

geometrical and material characteristics mostly influence the biosensor behavior. For

example, for electrochemical EIS-based biosensors the geometrical characteristics of the

device electrodes and of the flow channels often are the keystones of the biosensor perfor-

mances. These characteristics improvement becomes fundamental to obtain a working

biosensor in the case of semi-conductive electrodes materials i.e. conductive polymers like

Poly(3,4-ethylenedioxythiophene) (PEDOT). An example of the performance improve-

ment induced by a correct device design has been achieved with PEDOT electrodes [61].

In this work, distributed elements simulations allowed to find the proper geometrical

characteristics for the biosensor electrodes and microfluidic channels, in order to obtain

a more sensitive detection, which has been validated with a clinically relevant molecule,

i.e., Ampicillin.

4.1.4.2 Electrochemical devices fabrication methods

Electrochemical devices are usually composed by an insulating substrate covered by

conductive electrodes and wires connecting them to the device cable or connection port.

Then, the electrochemical devices usually have an insulating flow channel or contain-

ment pool for the solution to be tested by the biosensor. The electrodes constitute the

most important part of the device because over them take place the electrochemical reac-

tions and the target molecules binding. For this reasons, the electrodes geometrical and
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morphological characteristics are of primary importance for the biosensor performance

improvement. However, the conductive wires importance may not be undervalued be-

cause they are often responsible for introducing parasitic resistive and capacitive effects.

All the elements described, i.e. the device electrodes, wires and channels/pools, can be

of a common USB pen drive dimension but they can be also scaled down to micrometric

and even to nanometric dimensions.

In general, the devices fabrication should allow high throughput, mass production, and

low costs. However, the most important characteristic of the devices in the biosensor

field is their reproducibility.

Some of the main techniques for the electrodes and wires conductive layer deposition

are described in the following:

• Standard silicon wafer lithography: this is the technology on which the entire

electronic industry is still based for the production of the microchips inside our

televisions, PCs, mobile phones, ecc. With this technology, flat silicon wafers,

characterized by a thin superficial insulating oxide layer, are uniformly covered

by a thin layer of a photosensitive solution, which is then dried and is called

photo-resist. Then, the covered wafers are exposed to UV light under a glass plate

with the electrodes and wires design printed on it. The photoresist that was not

under the design is removed by an appropriate solution, leaving the silicon surface

uncovered. This surface is etched, removing the insulating oxide layer patterning a

conductive path on the surface under the design. Finally, the remaining photoresist

is removed. Unfortunately, these kind of processes requires a clean and controlled

environment i.e. cleanrooms, free of dust particles which would fatally interfere

with it.

• Plasma sputtering: this method allows to cover a substrate by a thin metal

layer which can be directly patterned by putting a mask between the sputter and

the substrate. This technology is based on a magnetron sputtering cathode under

a sample of the material with which the substrate (target), in front of them at a

defined distance, has to be coated. The magnetron creates an electromagnetic field

which accelerates energetic ions e.g. Ar+ to collide with the target. The collisions

cause the emission of target atoms that coat the exposed surface of the substrate.

This technique is used for the mass-production of optical storage disks as CDs

and DVDs, coating patterned polycarbonate surfaces with reflective metals. Some

process changes allow to redirect the CD/DVD production technology for the out-

of-cleanroom realization of electrochemical/optical biosensors [63],[62], [64].

• Conductive inks screen-printing: screen-printing is a widespread technique for

the mass-production of T-shirts, DVDs and other every day things. This process



Chapter 4. Electrochemical biosensor for lactate detection 92

Figure 4.10: Schematic representation of a sputtering process (the collisions cascade
between the Argon ions collision to the target and the target atom emission is not

represented).

is based on printing over objects making the ink pass through a silk patterned

screen. The use of conductive and insulating inks makes this technique available

also for the production of electrochemical sensors. The resolution of the printed

electrodes depend on the distance between the silk wires of the patterned screen.

• Conductive polymers coatings: is a method which is increasing its popularity.

Usually, the coatings are performed by two techniques, both starting from a fluid

form of a monomer which is polymerized over a solid surface. In fact, the poly-

merization process can be done electrochemically by imposing specific potentials

to pre-existing electrodes which are then coated with the conductive polymer, or

it can be achieved chemically, adding a polymerization initiator to the monomer

solution. This last method allows the coverage of an insulating substrate also,

therefore the creation of conductive layers. Usually, the conductivity of these ma-

terials strongly depends on the compounds used to dope the polymer. A common

example is polystirene sulfonate (PSS) doping for the PEDOT polymer.

• Nanoparticles/Nanotubes coatings: are materials with surprising surface prop-

erties, which can strongly increase the sensitivity of an electrochemical biosensor

by augmenting its effective surface area. Unfortunately, they often require strong

acids/bases for their usage and they are quite expansive.
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4.1.4.3 Devices validation

The validation of a device to be used for electrochemical biosensing involves different

parameters:

• Coherence with standards: the device has to give responses coherent with those

expected with known conductivity standard solutions and with common redox

mediator. Typical measurements used to verify this coherence are EIS with elec-

trolytes of known conductivity (based on salts), and CV measurements with fer-

ro/ferricyanide. With the EIS measurements, the high frequency spectra should

results in a plateau which impedance values are related to the electrolyte con-

ductivity by the geometrical electrodes characteristics i.e. their distance and the

working electrode surface area, with an ideally not-polarized reference electrode of

infinite dimensions. Conversely, with CV measurements on ferro/ferricyanide, the

reversibility of the redox reaction is verified checking the vicinity of the oxidation

and reduction current peaks ratio to the unit, and that of the peak potentials

average to the redox potential of the mediator used with respect to the type of

reference electrode (e.g. 236 mV for ferro-ferricyanide with respect to Ag/AgCl

KCl 1 M reference electrode). Moreover, the reversibility of the redox reaction is

checked by testing the linearity of the current peaks in function of the Scan Rate

(SR) of the CV measurements.

• Response reproducibility and repeatability: The reproducibility of the responses

obtained from the devices is usually tested by measuring the same solution over

a sufficiently high number of devices, at least three, exactly in the same con-

ditions and reducing the possible variables such as temperature humidity and

solution drop-casting method as much as possible. Therefore, the similarity of

the obtained measurements reflects the devices fabrication process reproducibility.

Conversely, the repeatability is usually tested by repeating the same measurement

consecutively or changing each time the solution over the electrodes. With these

measurements it can be tested also the stability of the electrodes over time.

• Stability over time: this device’s characteristic is usually evaluated by measuring

with the same solution devices exposed to defined conditions (e.g. room tem-

perature and humidity) in different moments. These evaluations allow defining

the proper conservation conditions e.g. vacuum-sealed bags and low temperature

environment.
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4.2 Lactate enzyme-based biosensors

The ability to monitor enzymatic reactions through the rapid and reliable assessment of

their specific substrates concentrations has a growing importance both in clinical anal-

ysis and in biotechnological applications. Frequently, enzymatic reactions allow con-

verting analytes which are not electrically active, and are too small for affinity sensors,

in molecules detectable by electrochemical methods. Lactate is one of these important

analytes due to its relevance in various fields: in clinical analysis it is well-known that its

concentration in human blood samples can be related to cardiac or respiratory patholo-

gies [65], and therefore its detection enables early diagnosis of critical situations [66]; in

sport medicine, blood lactate concentration is an indicator of the physical effort intensity

through the aerobic and anaerobic thresholds [67]; in food processing applications, lac-

tate measurements are an easy and effective way to monitor microbial contamination of

dairy products [68]. When dealing with lactate concentration assessment in liquid sam-

ples, enzyme-modified electrodes represent common and reliable tools [69]. This kind of

biosensors have been used for a wide variety of applications such as the quantification of

Escherichia Coli in crude cell culture medium [70], continous monitoring of myocardial

hypoxia [71], and real-time measurements of lactate by a contact lens [72]. This kind

of biosensors provides high selectivity to a specific substrate and fast response time [73]

but the detection performance indicators, e.g. linear range, stability, sensitivity and

lifetime, are tightly related to the technique used to bind enzymes to electrodes surface

[74]. For this reason, an in-depth study of the functionalization protocol is crucial when

developing reliable biosensors oriented to mass-production.

4.2.1 Strategies and enzymes for lactate detection

Lactic acid is a carboxylic acid with chemical formula C2H4OHCOOH, it has a hydroxyl

group adjacent to the carboxyl group, making it an alpha hydroxy acid. In solution it can

lose a proton from the carboxyl group, producing the lactate ion CH3CH(OH)COO−.

Lactic acid is chiral and has two optical isomers. One is known as L-(+)-lactic acid or

(S)-lactic acid and the other is D-(-)-lactic acid or (R)-lactic acid. In animals, L-lactate

is constantly produced from pyruvate via the enzyme Lactate Dehydrogenase (LDH) in

a process of fermentation during normal metabolism and exercise. The concentration

of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during

intense exertion. Conversely, D-lactate is not present in eukaryotic metabolism but

only in the bacteria one. The main enzymes involved in the lactic acid catalysis are

Lactate Oxidase (LOx) and Lactate Dehydrogenase (LDH). The LOx enzyme catalyzes

the following reaction:
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LA+O2 ⇐⇒ PA+H2O2 (4.1)

While the LDH enzyme catalyzes the reaction:

LA+NAD+ ⇐⇒ PA+NADH (4.2)

Where LA stands for Lactic Acid and PA for Pyruvic Acid. As for other enzymes,

the catalysis direction can be from LA to PA or viceversa from PA to LA. The direc-

tion depends on the selected isoenzyme and from the conditions in which the catalysis

happens (e.g. pH, temperature, concentration of the substrates and of the cofactors).

Both LOx and LDH have a tetrameric structure [75]. The LOx enzyme uses Flavin

Mono-Nucleotide (FMN) as cofactor while the LDH enzyme uses Nicotinamide Adenine

Dinucleotide (NAD).

The strategies for the electrochemical detection of LA can involve the use of natural

or artifical redox mediator (for respectiveley first and second generation sensors). In

the second case, with proper redox mediators, the electron transfer from the natural to

the artificial mediator during the catalysis allow detecting the lactate presence at lower

potentials, reducing the interferences due to other compounds in solution. For instance,

a common artificial redox mediator used with LOx is ferricyanide, which has a formal

potential of 236 mV with respect to Ag/AgCl; much lower than that one of hydrogen

peroxide. Conversely, a strategy implemented for the LA detection with LDH enzyme

has been to keep the NAD as mediator but to introduce new electrodes materials to

lower the potential of the NADH oxidation, e.g. carbon electrodes.

4.2.2 Enzymes immobilization

LOx and LDH enzymes provide different ways for LA detection but, in both the cases,

they need to be immobilized over the electrodes surface in a stable way and to keep their

3D native fold in order to obtain a working and ready-to-use biosensor. Enzymes are very

delicate proteins for biosensing applications because a small change in their structure

could results in the complete inactivation of the enzyme and thus in the impossibility

to detect LA. Moreover, they are characterized by sites on their surface which have to

be reached both by the target molecules and by their cofactors. If the enzymes are

immobilized with these sites too close to the electrode surface they will not be able to

catalyze the LA reaction. Several techniques and methods have been proposed over the

years in order to obtain easy and reproducible enzyme functionalizations over different
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kind of surfaces, keeping them stable [76], [77], [78]. Some of these techniques are

presented below:

• Non-covalent adsorption and deposition: this technique is particularly effective im-

mobilizing enzymes with a large lipophilic surface area to hydrophobic electrodes

or carriers, while enzymes with a surface prevalence of hydrophilic residues have

to be immobilized on hydrophilic carriers. The Van der Waals forces and entropy

changes ensure the immobilization of the enzyme to the carrier. The advantage of

this immobilization is that the enzyme does not have to be pre-treated or chem-

ically modified. However, a significant disadvantage is that the enzyme tends to

leach readily from the carrier when used in aqueous media [64].

• Immobilization via ionic interactions: depending on the pH of the solution and the

isoelectric point the surface of the enzyme may bear charges. Any ion exchanger

can act as carrier in immobilization via ionic and strongly polar interactions. De-

pending on the predominant charge on the enzyme, the ion exchanger needs to

be negatively or positively charged. Ionic immobilization is strongly dependent

on the pH value and salt concentration during immobilization , but also during

application. An interesting application of this method is the layer-by-layer enzyme

deposition. This technique consists in the deposition over the biosensor electrodes

of layers with opposite charge with respect to the predominant enzyme charge,

and on the immobilization of the enzymes between these layers [79].

• Covalent binding to solid supports: covalent binding of enzymes to electrodes has

the advantage that the enzyme is tightly fixed, thus enzyme leaching in aqueous

media is minimized. Moreover, the formation of multiple covalent bonds between

the enzyme and the surface reduces conformational flexibility and thermal vibra-

tions thus preventing protein unfolding and denaturation. A distinct disadvantage

of this technique is that the enzymes have to be chemically modified and all com-

ponents of the native enzymatic preparations must be carefully considered.

• Cross-linking of enzymes: this is a particular case of covalent binding using a

di-functional agent such as glutaraldehyde or dithiobis-n-succynimidil propionate

(DTSP). Instead of fixing the enzyme to the electrode, the enzyme here is deposited

in a spray-dried form and then cross-linked, or cross-linked directly in solution.

• Encapsulation: is the best means of avoiding any negative influence on the struc-

ture of an enzyme. Many encapsulation methods have been developed, the sol-gel

method being the most prominent and widely used technique. Sol-gels are sil-

ica materials that are highly porous and readily prepared. Although sol-gels are
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porous, diffusion of substrate to the enzyme can be restricted and care has to be

taken to avoid this.

• Structure-based development of immobilization: Recent research has demonstrated

how the combined use of experimental and computational methods can provide ra-

tional guidelines for the selection of optimal polymeric supports as well as for the

choice of immobilization technique. Maps of regions suitable for the establishment

of interactions with different supports can be created. This is of particular impor-

tance for protein orientation upon binding, since different areas will interact with

different supports.

4.3 The Myo-Screen Lactate biosensor

The strategy followed for the Myo-Screen lactate biosensor realization was to use low-

cost commercial devices (supplied by DropSens Ltd.) and the Lactate Dehydrogenase

(LDH) enzyme, which catalyzes the conversion of lactic acid (LA) to Pyruvic acid (PA),

and the conversion of the cofactor Nicotinamide Adenine Dinucleotide (NAD) to its

reduced state (NADH). Then, NADH is oxidized back to NAD at the device electrode’s

surface, recording an electrical current proportional to the NADH concentration, and

thus to the LA one.

In order to avoid the inactivation of the enzyme due to the possible unfolding related

to the device functionalization process, the first prototype of the lactate biosensor was

designed without the immobilization of the enzyme to the electrodes surface. In fact,

the lactate detection was planned to be performed through the following steps:

1. Preparation of the lactate sample in a defined buffer/medium;

2. Catalysis of the lactate in the sample in presence of the cofactor (NAD), and of

the LDH enzyme at controlled conditions, in liquid phase;

3. Extraction of a sample from the liquid phase after the steady state of the catalysis

kinetics was reached;

4. CV measurement of the NADH concentration contained in the liquid phase sample.

The catalysis of the lactate sample is monitored over time by UV-visible spectropho-

tometric measurements of the NADH concentration. In fact, with this widespread and

classical technique it’s possible to distinguish the oxidized and reduced forms of NAD, re-

spectively NAD+ and NADH, and thus to estimating the equimolar amount of lactate

converted in pyruvate during the catalysis. Cyclic Voltammetry (CV) measurements
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were chosen for the NADH electrochemical detection. The starting, minimum and max-

imum potentials, together with the scan rate of the CV measurements were selected in

order to optimize the NADH detection.

The commercial devices chosen for the NADH CV detection are screen-printed strips

with a ceramic substrate, a circular working electrode, a counter-electrode, and a silver

reference electrode disposed in circle around the first one. The electrodes contact are

passivated by an isolating and hydrophobic ink, in order to maintain the liquid drop of

the measurement solution over the electrodes. The DropSens (DS) devices are connected

to a CH440a potentiostat through an adapter module and BNC grounded cables.

Figure 4.11: DropSens Carbon device (DS-110)

4.3.1 Devices characterization

Two electrodes materials were evaluated and compared: gold and carbon. The gold

devices (DS − 220AT , called DSAu devices) and the carbon devices (DS − 110, called

DSC devices) were tested by EIS and CV measurements, in PBS and ferro/ferricyanide 1

mM, respectively. The aim of these characterizations was to evaluate the devices surface

characteristics and the repeatability/reproducibility of their EIS and CV responses.

4.3.1.1 EIS measurements

The EIS measurements were performed in the 100 mHz - 1 MHz range applying a 5

mV peak-to-peak AC potential and a 0 V DC potential to the working electrode with

respect to the reference one. The electrodes were covered by a 100 µl PBS drop. 50

consecutive measurements (sweeps) were performed on three devices, both for the gold

and the carbon electrodes. Figure 4.12 shows the average Bode diagrams of the first and

the fiftieth sweeps calculated from the impedance values recorded from the three DSAu

devices. These diagrams represent the magnitude and phase of the complex impedance
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data in function of the frequency of the applied signal. The Bode diagrams obtained

from the DSC data are plotted in figure 4.13.

Figure 4.12: Bode diagrams of the EIS measurements in PBS 1x on DropSens Au
devices. The average impedance data measured over three devices were plotted for

respectively the first and the fiftieth sweeps.

With the purpose to exploit the variation of the impedance values in the Bode diagrams

among the sweeps, the EIS impedance magnitude percentage variations were plotted

in function of both the frequency and the sweep number. These 3D plots show which

frequencies undergo the major variations over time and EIS measurements repetitions.

Figures 4.14 and 4.15 show the average percentage variations, with respect to the first

sweep, of the impedance magnitude values and of the phase values for the DSAu de-

vices, while figures 4.16 and 4.17 show the average percentage variations obtained from

measurements of the DSC devices.

EIS measurements on electrochemical systems without a redox mediator are usually

modeled by a simple electrical equivalent circuit (EEC) composed by a resistor and a

capacitor in series (RC circuit). The resistance value depends on the electrodes geo-

metrical characteristics and the solution conductivity, while the capacitance depends on

the electrodes surface area and its eventual coverage by attached molecules. Commonly,

the EIS spectra obtained from these systems are not perfectly adherent to the RC EEC

transfer function. Therefore, some elements were introduced to fit the variations due to

specific surface characteristics and to the diffusion which takes place in the electrolyte

solution between the electrodes. Two of these elements are the Constant Phase Element
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Figure 4.13: Bode diagrams of the EIS measurements in PBS 1x on DropSens C
devices. The average impedance data measured over three devices were plotted for

respectively the first and the fiftyth sweeps.

Figure 4.14: Percentage variations of the mean impedance magnitude measured on
DropSens Au devices in function of both the frequency and the sweep number.
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Figure 4.15: Percentage variations of the mean impedance phase measured on
DropSens Au devices in function of both the frequency and the sweep number.

Figure 4.16: Percentage variations of the mean impedance magnitude measured on
DropSens C devices in function of both the frequency and the sweep number.
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Figure 4.17: Percentage variations of the mean impedance phase measured on
DropSens C devices in function of both the frequency and the sweep number.

(CPE) ad the Warburg element (W).

The EIS data obtained from the measurements over the DSAu devices showed to be

better fitted by a R-(CPE//W) model with the Warburg element in parallel to the CPE

one and the resistor in series with them. Conversely, the DSC devices EIS measurements

are almost perfectly fitted by a R-CPE model. Figures 4.18 and 4.19 show the values of

the EEC elements parameters in function of the EIS sweep, for the DSAu and the DSC

devices, respectively.

Summarizing the obtained results, the EIS measurements on the DSAu and DSC devices

showed that:

• The impedance of the DSAu devices is characterized by a phase minimum of about

−70◦ around 40 Hz while the impedance of the DSC devices does not present local

minimum phase values and reaches −80◦, with a behavior more similar to an R-C

EEC;

• The variation of the impedance magnitude and phase values are significantly lower

with DSC than with DSAu devices;

• As a consequence of the phase minimum peak obtained with DSAu devices, which

affect also the linearity of the related Nyquist plots, in this case the DSAu devices

EIS measurements are better fitted by an EEC which takes into account for the
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Figure 4.18: Equivalent circuit elements fitted values from the EIS sweep in PBS on
DropSens Au devices.

Figure 4.19: Equivalent circuit elements fitted values from the EIS sweep in PBS on
DropSens C devices.
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diffusion by a Warburg element. Conversely the DSC devices EIS measurements

are better fitted by a R-CPE EEC.

• The trends of the EEC elements fitted parameters, in function of the EIS sweep

number, show a stabilization of the CPE parameters (CPE, n) after the fifteenth

sweep for both DSAu and DSC devices;

• The electrolyte solution resistance varies linearly after the fifteenth EIS sweep,

most probably as an effect of solution drying over the measurements time which

increases the solute concentration, and thus decreases the solution resistance.

4.3.1.2 CV measurements

Cyclic Voltammetry measurements were performed both on three DSAu and three DSC

devices in 1 mM ferro/ferricyanide diluted in PBS. The measurements were performed

in the potential range between -0.3 V and +0.5 V for DSAus and between -0.2 V and

+0.6 V for DSCs. The initial potential were the highest one for both the devices types.

Two complete cycles were measured.

For each device, five scan rate values ranging from 25 mV/s to 100 mV/s were tested,

performing two complete CV cycles per each scan rate value. Figures 4.20 and 4.21 show

the CV measurements obtained from one DSAu and one DSC device, respectively, with

the five scan rate values.

The oxidation (anodic) and reduction (cathodic) peak currents for a reversible system are

linearly dependent on the square root of the scan rate value. Moreover, for a reversible

system the peak currents ratio is 1 and the difference between the peak currents potential

is independent from the scan rate and equal to 57 mV.

Figures 4.22 and 4.23 show the average peak currents values obtained from the CV

measurements on the DSAu and on the DSC devices, respectively. Conversely, figures

4.23 and 4.25 show the average peak potential difference of the CV measurements at the

different scan rates. The bars in these figures represent the standard deviations obtained

from the three DSAu and DSC devices.

The results obtained from the CV characterizations show that:

• The peak currents ratio is very close to 1 for DSAus but not for DSCs;

• Both the devices types show linearity of the peak currents in function of the square

root of the CV scan rate;
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Figure 4.20: Cyclic voltammograms measured in ferro/ferricyanide 1 mM in PBS
over DSAu devices with different Scan rate values

Figure 4.21: Cyclic voltammograms measured in ferro/ferricyanide 1 mM in PBS
over DSC devices with different Scan rate values
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Figure 4.22: Cathodic and anodic mean peak currents modules in function of the
square root of the CV scan rate over DSAu devices.

Figure 4.23: Cathodic and anodic mean peak currents modules in function of the
square root of the CV scan rate over DSC devices.
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Figure 4.24: Peaks potential mean differences in function of the square root of the
CV scan rate over DSAu devices.

Figure 4.25: Peaks potential mean differences in function of the square root of the
CV scan rate over DSC devices.
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• The peak potentials difference is close to 57 mV and independent from the scan

rate only for DSAus. DSCs show much higher values which are almost linear with

the square root of the scan rate;

• Finally, as can be seen in figure 4.26, the peak current values measured on the

DSCs are much lower than those measured on the DSAus in the same conditions

because of the lower conductivity of the carbon electrodes.

Figure 4.26: Average CV measurements performed in 1 mM ferro/ferricyanide at a
scan rate of 100 mV/s on three DSAu and three DSC devices.

4.3.2 NADH detection

The EIS characterizations of the DSAu and DSC devices showed that the DSC devices

have electrode surfaces more stable over time, with a smaller drift of the EIS spectra at

low frequencies. Moreover, the DSC electrodes are fitted by a simpler and classical model

in literature than the DSAus one. However, the CV characterizations showed that the

DSAu devices in contact with a ferro/ferricyanide solution present the characteristics of a

reversible system, while the DSC devices are better defined as a quasi-reversible system,

in the same conditions. Anyway, both the devices types showed a good reproducibility

level in both EIS and CV measurements.

For this reason they were both tested for the electrochemical NADH detection which is
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performed by CV measurements and checked by UV-Visible spectrophotometry, used as

control technique for the definition of the NADH real concentration.

Figure 4.27: Schemes of the NAD+ and of the NADH molecules and representation
of the UV-Visible spectra of the two molecules.

NADH UV-Visible spectra is characterized by two absorption peaks at 339 nm and

at 260 nm while the NAD+ molecule present only the 260 nm peak. This peculiar

characteristic is used to distinguish the reduced (NADH) and oxidized (NAD+) forms

of NAD, and to obtain the respective concentrations in solution. Anyway, the oxidation

of NADH to NAD+ can be detected also electrochemically since it is accompanied by

the release of two electrons.

The UV-Vis spectrophotometric measurements are performed pouring the test solution

into a quartz cuvette, since quartz transmit more light than glass in the UV region (figure

4.28). Different kind of measurements are possible but, the common principle is that

a defined-wavelength light beam hits the cuvette, and the light which passes through

the cuvette (and the contained solution) is quantified by the instrument transducer,

obtaining its transmittance at that wavelength. The UV-Vis measurements are always

referred to a blank one, usually performed by setting the transmittance to 100% for the

cuvette filled with the testing solution buffer. In this way, the measured transmittance

will be related only to the analyte in the test solution.

The cuvette used for this study has an internal volume of 4 ml but it has always been

used with 2 ml of solution because it was verified which this volume allows the solution

level in the cuvette to be higher than the instrument optical center height (figure 4.29).

Two main types of measurements are possible with this technique: it’s possible to scan

a wavelengths interval, recording the transmittance peaks in function of the wavelength
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(the spectra) of a solution, and it’s possible to monitor the transmittance variations at

a fixed wavelength over time (the kinetics at that wavelength).

Figure 4.28: Cuvette transmittance tests performed on two glass and two quartz
empty cuvettes, with respect to a blank measurement in air.

4.3.2.1 UV-Vis spectrophotometry of NADH in different medium/buffers

The NADH detection is the basic and fundamental point for the electrochemical lactate

biosensor realization, therefore it’s the first that was tested. Since NADH in the final

biosensor will have to be detected in a solution containing both the animal urine sam-

ple, the cells sample media, and the LDH enzyme buffer, there will be many substances

which would interfere with the electrochemical measurements. As starting point, the

NADH detection was tested in different buffers and cell media.

The tested cell media are Dulbecco’s Modified Eagle Medium (DMEM) and HEPES

Buffered Ringer’s Solution (HBRS), while the tested enzymes buffers are Tris-HCl 50

mM with a pH of 8.8 and Phosphate Buffered Saline (PBS) 10 mM.

Ten NADH concentrations ranging from 1 µM to 1000 µM were diluted in each medi-

a/buffers. Then, their spectra was measured by UV-Vis spectrophotometric measure-

ments. These spectra are showed in figure 4.30. The 339 nm absorption peak values

(A339nm) were used to calculate the experimental NADH concentrations (c) through
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Figure 4.29: Optical center height tests performed by progressively filling a 4 ml
quartz cuvette with 250 µl of ferricyanide per each measurement.

the well known Lambert-Beer law, the NADH 339 nm millimolar extinction coefficient

(ε339nm) equal to 6.22 Abs ·mM−1 · cm−1, and considering a cuvette depth (l) of 1 cm.

Aλ = ελlc (4.3)

The 339 nm peaks of the NADH concentrations in the four media/buffers have coherent

values considering the errors introduced by the NADH powder weighting and by the

serial dilutions. Conversely, the situation is different for lower wavelengths, where the

NADH in DMEM measurements do not show the 260 nm peaks and present a lot of

noise. This effect is due to the low transmittance of this media at wavelengths under 300

nm. The blanking measurements already have very high absorbance which saturates the

instrument transducer. Therefore, the NADH contribution at these wavelengths results

in pure noise around zero.

The experimental concentrations obtained from the 339 nm absorption peaks with the

four media/buffers were averaged and then compared to the theoretical ones (figure

4.31).

The bars represent the standard deviations. All the experimental concentrations are

just a little bit lower than the theoretical ones. This effect could be due to a lack of
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Figure 4.30: UV-Vis spectra obtained by measuring ten NADH concentrations in four
buffers, with respect to four blank measurements in each pure buffer. The continous
curve is related to HBRS spectra, the dashed one to PBS, the dash-dotted curve to the

DMEM, and finally the dotted one to Tris-HCl.

purity of the powder used to prepare the dilutions, thus the real NADH concentration

for the following tests will always been defined by a UV-Vis measurement at 339 nm.

4.3.2.2 CV measurements of NADH in different medium/buffers

The NADH solutions measured by UV-Vis spectrophotometry were tested by Cyclic

Voltammetry just after the UV-Vis measurements. Both DSAu and DSC devices were

used for the CV tests, three per each media/buffer. Each device was washed in milliQ

water first, and then measured by CV applying potentials from -0.4 V to +0.8 V with a

scan rate of 100 mV/s and performing five complete cycles. Each NADH concentration

for a media/buffer were tested on the same three devices, from the lowest concentration

to the highest one. The plots in figure 4.32 show the CV’s first cycle for each NADH

concentration measured on both the devices types. NADH dissolved in DMEM does not

result in any peak in the considered potential range (figures 4.32a and 4.32e) but just

in currents minimums at the highest (oxidation) potential.

The CV measurements of NADH in DMEM show a progressive decrease of the oxidation

currents modules with the NADH dilution tested, this trend changes direction after the

50 µM NADH concentration with the increase of the current module proportionally to
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Figure 4.31: Comparison between the theoretical NADH concentrations of the pre-
pared solutions and the experimental concentrations obtained from the 339 nm ab-

sorbance peak.

the NADH concentration. This effect was observed both on DSC and DSAu devices,

thus it seems to be related to the oxidation of one or more DMEM components instead

of NADH. However, in this case, the oxidation currents should be constant since the

solution is changed for each measurement. This allow to suspect a possible passivation

of the electrode’s surface by one or more DMEM components which would create a bar-

rier to the charges transfer between the solution and the surface. This would decrease

the oxidation currents during consecutive measurements, until the NADH concentration

becomes high enough to result again in high oxidation currents.

Conversely, the HBRS, PBS and Tris-HCl media/buffers give space to the rise of NADH

oxidation peaks. The DSC devices NADH current peaks, obtained in all the medi-

a/buffers a part with DMEM, are always characterized by a potential beneath 0.6 V,

while the DSAu devices present peaks potentials over 0.7 V except with Tris-HCl with

which the potentials are lower and vary significantly between the measurements.

The peak currents obtained from the three DSC and the three DSAu devices for the

NADH concentrations in the four media/buffers were averaged and reported in function

of the NADH concentration, obtaining the NADH calibration plots. Since the lowest

NADH concentrations do not present any peak a particular strategy was adopted to
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Figure 4.32: NADH consecutive CV measurments on DSCs (left column) and DSAus
(right column) in the buffers: DMEM, HBRS, PBS, 50 mM Tris-HCl (respectively from

the top).

choose the proper oxidation potential. The NADH current peaks potentials appears

to linearly increase with the NADH concentration (at least at high concentrations).

Therefore, this relation was fitted, obtaining the potential values, and thus the current

one, to be considered for the calibration plot.

In the case of DMEM, the minimum current (recorded at 0.8V ) was considered. The

resulting calibration curves for DSAus (figure 4.33) and DSCs (figure 4.34) have in

common the DMEM bell-shaped curve which clearly shows the possible effect of the

progressive formation of a passivation layer over the devices electrodes. The other curves

show different behaviors but the lowest NADH concentration that can be distinguished

from the error bars is NADH 10 µM .

Although this kind of measurements for the NADH calibration allows to reduce the

number of used devices, it does not allow to distinguish between the NADH oxidation

currents and the possible effect over the same devices surface of the repetition of the

measurements. In order to be able to distinguish these components, at least with DSC
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devices which proved to oxidize NADH at lower potentials than DSAu ones, it was

attempted a data post-elaboration. In fact, three DSC devices were tested with the

same protocol used for the previous ones but without dissolving NADH in the four

media/buffers. Practically, 10 consecutive CVs were performed over the same devices,

changing the solution over their electrodes for each measurement. These DSC devices

were called blank DSC.

Figure 4.35 shows the difference between the NADH average peak currents and the av-

erage current values recorded at the same potential and corresponding measurement

over the blank DSC. The error bars reported in this plot were obtained as the sum of

the standard deviations related to the average of the NADH peak currents and of the

blank DSC average currents. With this elaboration, the peak currents obtained with

the media/buffers, with the exception of DMEM, are coherent. Moreover, as can be

noted from the inset of the figure, the NADH peak currents are different from zero for

5 µM concentration, which represent the limit of detection of these system with this

protocol. With this elaboration, the DMEM bell-shaped calibration was compensated

too. However, the currents difference for the NADH concentrations over 20 µM are sig-

nificantly lower than those of the other media/buffers, enforcing the surface passivation

hypothesis.

Figure 4.33: Peak current averages obtained from the CV measurements on three
DSAu devices per each buffer. The bars represent the standard deviations obtained

averaging the peak currents of the three devices.
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Figure 4.34: Peak current averages obtained from the CV measurements on three
DSC devices per each buffer. The bars represent the standard deviations obtained

averaging the peak currents of the three devices.

After having obtained a preliminary calibration curve repeating the measurements on

the same devices with different NADH concentrations, as done until now, a one-shot

device testing procedure was adopted, in order to obtain the real NADH calibration

curve for DSCs in the selected media/buffers. With this approach, DSC devices were

used to measure 3 NADH concentrations (10, 100, 1000µM) in each media/buffers. For

each NADH concentration 3 DSC devices were tested. Figure 4.36 shows the calibration

curves obtained from the current peaks (and the 0.8 V values in the case of DMEM me-

dia). NADH in HBRS, PBS, and Tris-HCl result in almost overlapped and linear curves

while NADH in DMEM gives a completely different curve. This difference was investi-

gated and exploited by several CV measurements on pure DMEM, with the purpose to

understand the nature of its interaction with the DSC devices surface.

Two CV tests were performed in DMEM solutions on DSC devices with this purpose:

1. Consecutive CV measurements (75 cycles) on the same DMEM drop;

2. Five Consecutive sets of 15 CV cycles in DMEM (75 cycles total), washing the

devices surface between each sets and the following;
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Figure 4.35: Peak current averages obtained from the CV measurements on three
DSC devices per each buffer and subtracting the peak currents obtained from the blank
measurements. The bars represent the standard deviations obtained averaging the peak

currents of the three devices.

The first test showed the drift of the CV measurements performed with the same param-

eters adopted for the previous calibration curves among the cycles (figure 4.37). If this

drift would depend only on the irreversible oxidation of some of the DMEM components,

the CV measurements would start drifting from the same point with a new DMEM drop

over the electrodes. This behavior has not been verified with the second CV tests. In

fact, figure 4.38 shows the trend of the 0.8 V currents, recorded in function of the cycle

number, and after each solution washing, the 0.8 V current drift start from the previous

cycle current value.

In conclusion, the analysis performed show that DMEM is not a good media for the elec-

trochemical detection of NADH since it has a progressive and irreversible passivation

effect on the electrodes. Conversely, HBRS, PBS and Tris-HCl 50 mM seem not to affect

in any way the NADH electrochemical detection. DSC devices showed to be able to ox-

idize and detect NADH with lower over-potentials than the DSAu ones, thus they were

selected for the lactate sensor realization. Finally, since the consecutive measurements

repetition on a single device have proven to be affected by a small drift with every me-

dia/buffer, the following NADH detection will be performed by one-shot measurements,

as already tested.
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Figure 4.36: Peak current averages obtained from the CV one-shot measurements on
three DSC devices per each NADH concentration and per each media/buffer. The bars
represent the standard deviations obtained averaging the peak currents of the three

devices.

Figure 4.37: 75 CV cycles measured in DMEM on a DSC device with a scan rate
of 100 mV/s. The first cycles are plotted in red while the last ones are represented in

purple.
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Figure 4.38: Current values at 0.8 V in function of the cycle number, recorded by the
CV measurements on DSC devices in DMEM. The blue curve shows the current values
obtained by 75 consecutive CV cycles on a DMEM drop, while the red curve represent
the values recorded by 5 CV measurements each of 15 cycles, changing each time the

DMEM drop on the DSC electrodes.

4.3.2.3 NADH calibration curves

With the purpose to obtain an electrochemical NADH calibration curve with one-shot

measurements on DSCs, five NADH concentrations were tested. The same tests were

performed both for NADH in HBRS and for NADH in 50 mM Tris-HCl.

First, each NADH dilution UV-Vis spectra were measured, obtaining its real concen-

tration from the 339 nm peak absorbance, with respect to blank measurements in the

NADH pure buffer (figures 4.39 and 4.40). Then, the UV-Vis tested solutions were mea-

sured by CV on three DSCs per each NADH concentration (figure 4.41).

The NADH oxidation currents at 456 mV were represented in function of the exper-

imental NADH concentrations to obtain the calibration curves (figure 4.42) and the

respective linear fits.

As can be observed both in figure 4.40 and 4.42 the NADH concentrations obtained

don’t correspond exactly to the theoretical ones (1, 5, 10, 50, 100 µM). This is due

to weighting and dilution errors. Anyway, the UV-Vis measurements allow to refer the

electrochemical calibration plot to the real NADH concentrations.

The linear fits (Ip = a[NADH] + b) of the calibration curves reported in figure 4.42

are reported in table 4.1. The calibration curves for NADH in HBRS and Tris-HCl
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Figure 4.39: UV-Vis spectra of NADH dissolved in Tris-HCl 50 mM and in HBRS
with respect to blank measurements in Tris-HCl and HBRS, respectively.

Figure 4.40: Comparison between the experimental and theoretical NADH concen-
trations obtained from the 339 nm peaks of the measurements in Tris-HCl and HBRS.
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Figure 4.41: Average one-shot CV measurements performed on DSCs on the NADH
solutions previously tested by the UV-Vis measurements. The plot on the top shows

the measurements in Tris-HCl while that one on the bottom shows those in HBRS.

Figure 4.42: Calibration curves obtained by the NADH measurments in Tris-HCl and
HBRS. The lines represents the dots linear fits, while the dashed lines shows the blank

currents measured in Tris-HCl and HBRS, respectively.
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resulted almost coincident. Therefore, the DSCs and the CV technique proved to be valid

supports for the NADH detection in HBRS and Tris-HCl with an average sensitivity of

about 36 µA/mM and a limit of detection of 1 µM NADH.

Media/buffer 50 mM Tris-HCl HBRS

a -0.03533 -0.03702

b -0.2814 -0.2511

R2 0.9981 0.9992

Table 4.1: NADH calibration curves linear fits parameters for the detection in 50 mM
Tris-HCl and in HBRS.

4.3.3 LDH-mediated catalysis optimization

Lactate Dehydrogenase (LDH) is a tetrameric enzyme which catalyzes the conversion

of lactate to pyruvate through the reduction of its cofactor NAD to NADH. The four

monomeric units of LDH can be of two types called M-type or H-type depending on their

origin, skeletal muscle or heart, respectively. Therefore, it exists four LDH isoenzymes,

made by the possible combinations of M and H monomeric units:

• M4 made by four M subunits and mainly found in the skeletal muscle;

• M3H made by three M subunits and an H subunit;

• M2H2 made by two M subunits and two H subunits;

• H3M made by three H subunits and an M subunit;

• H4 made by four M subunits and mainly found in heart.

The reaction catalyzed by LDH is shown in paragraph 4.2 with a double arrow indicating

that the catalysis direction can be both from lactate to pyruvate, and viceversa. The

catalysis direction is strictly dependent on the LDH isoenzyme. It’s known that the

H4 isoenzyme promotes the lacatate to pyruvate catalysis while the M4 isoenzyme pro-

motes the converse reaction in the same conditions. Other factors strongly influence the

catalysis direction e.g. the pH of the solution, the concentrations of both the substrate

and the cofactor, and the temperature.

For the lactate sensor under analysis, the better choice would be H4 LDH isoenzyme.

However, this LDH form is difficult to isolate in high volumes and concentrations (and

very expansive). Moreover, it’s not commercially available. Thus, it was used a M4

form, from rabbit muscle. The structure of this isoenzyme is represented in figure 4.43.
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Figure 4.43: Structure of the rabbit muscle LDH isoenzyme. The four M subunits
are coloured in green, brown, blue, and purple.

The enzyme concentration has a key role in the catalysis kinetics thus four LDH concen-

trations, ranging from 0.1 U/ml to 100 U/ml, was tested by UV-Visible spectrophoto-

metric measurements, with the same substrate (LA) and cofactor (NAD) concentrations

equal to 36 mM and 2.7 mM, respectively. Both the test solution spectra and kinetics

were measured with the following protocols:

With regards to the spectra measurements:

• The blanking of the instrument was performed in 1.8 ml of 50 mM Tris-HCl and

0.2 ml PBS 1x and then the cuvette was washed;

• A solution of 3 mM NAD and 40 mM lactate in 50 mM Tris-HCl was poured into

the cuvette (1.8 ml), and 0.2 ml of LDH at the chosen concentration in PBS was

added;

• About 20 seconds after the solutions mixing, the first UV-Vis spectra measurement

was started;

• Each spectra measurement requires about 50 seconds. Twenty consecutive mea-

surements were repeated for a total period of observation of about 17 minutes.

For the kinetics measurements the protocol was easier:
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• The blanking of the instrument was performed in the same Tris-HCl and PBS

solution of the previous measurements;

• The NAD and LA solution was mixed with the LDH one;

• The measurements was started 15 seconds after the solutions mixing, setting 339

nm as monitored wavelength, 1 second as measurement resolution, and a total

duration of 17 minutes.

Figure 4.44 shows the spectra recorded with the 20 consecutive measurements with 1

U/ml LDH. NAD, having a 260 nm millimolar extinction coefficient of 14.4 results in a

3 Abs saturated absorbance peak around this wavelength. This peak remains constant

during the whole test. Conversely, absorbance variations are observed at 339 nm with

an increase proportional to the repetitions, due to the NADH formation during the

catalysis. However, the NAD concentration is so high that the tail of the 260 nm peak

does not allow the NADH to form a proper peak at 339 nm.

The same type of spectra and kinetic measurements were repeated with LDH 0.1, 10,

100 U/ml in PBS 1x. The results are showed in figure 4.45, where the dots represent the

339 nm consecutive spectra absorbance values while the lines are the measured kinetics

at the same wavelength. The contribute of the LDH concentration in the catalysis

kinetic is evident, with 1 U/ml LDH resulting the lowest concentration for the catalysis

observation with these LA and NAD concentrations in 20 minutes.

The 1, 10, 100 U/ml LDH concentrations have then been used for the UV-Vis spec-

trophotmetric measurements of LA calibration curves, testing the five minutes catalysis

kinetics of the LA concentrations from 1 µM to 1 mM . The same protocol of the pre-

vious measurements were adopted. Ten LA dilutions were prepared and mixed with

NAD+ in Tris-HCl 50 mM pH 8.8 in order to obtain the desired LA concentrations in

500 µM NAD+. Then, 1.8 ml of these dilutions were poured into the quartz cuvette

and 0.2 ml of LDH in PBS 1x at the selected concentration was added. The kinetics

of the resulting catalysis was measured for five minutes, starting 20 seconds after the

mixing of the LA/NAD and LDH solutions. All the kinetics measurements are referred

to a different blank measurement, performed by mixing 1.8 ml of each LA/NAD solution

with 0.2 ml of PBS. The resulting kinetics are shown in figure 4.46 for the three LDH

concentrations considered.

The enzyme kinetics are usually modeled by the Michaelis-Menten equation which de-

scribes the catalysis velocity (V) in function of the substrate concentration (S), which is

LA in this case. From the collected measurements, it’s possible to obtain the catalysis

velocity from the slope of the linear part of the UV-Vis kinetics measured. This was

done with the following formula:
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Figure 4.44: Consecutive absorbance spectra measured in the catalysis solution (with
1 U/ml LDH) with respect to a 1.8 ml of Tris-HCl 50 mM and 0.2 ml of PBS blanking

solution.

V = 60 · 1000 · Abs
339nm
20s −Abs339nm0s

20ε339nmNADH l
(4.4)

Where Abs339nm20s is the Absorbance measured at 339 nm 20 seconds after the start of

the measurement, Abs339nm0s is that one of the first measured point, ε339nmNADH is the mil-

limolar NADH extinction coefficient at 339 nm (6.22 mM−1cm−1), and l is the cuvette

pathlength (1 cm). Therefore, the calculated velocity measurement unit is µM/min.

Therefore, for each LA concentration it was obtained a velocity value and this was re-

peated for the three LDH tested dilutions. The Michaelis-Menten kinetics are described

by the following equation:

V =
Vmax[S]

KM + [S]
(4.5)

where [S] is the substrate concentration, i.e. the LA one, and V is the catalysis velocity.

Vmax and KM are two parameters estimated fitting the equation with the calibration

curves values. The first represents the maximal velocity of the catalysis, obtained with

the highest substrate concentrations, while the second represents the substrate concen-

tration necessary for a catalysis velocity which is the half of the maximum one. Figure
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Figure 4.45: LA catalysis kinetics obtained by consecutive UV-Vis spectra measur-
ments over time (dots representing the 339 nm absorbance), and by kinetic measure-
ments at 339 nm with a resolution of 1 s. The baseline of the measurements was 1.8

ml of Tris-HCl 50 mM and 0.2 ml of PBS.

4.47 shows the velocity points calculated from the UV-Visible measurement linear parts

in function of the LA concentration for the three LDH tested dilutions in PBS. The

curves represent the Michaelis-Menten fits, which parameters are reported in table 4.2.

LDH (U/ml) Vmax(µM/min) KM (µM)

1 3.23 2650.90

10 13.57 1465.90

100 14.44 202.50

Table 4.2: Michaelis-Menten kinetics parameters obtained by the catalysis velocity
curves fits, with three LDH dilutions.

Taking the steady state absorbance value related to the highest LA concentration, and

to the most concentrated LDH dilution from figure 4.46, it can be seen that the NADH

concentration resulting from the catalysis is almost 45 times less than the lactate con-

centration which was tested. This means that the catalysis, in this conditions, reach its

equilibrium when just a small fraction of the present LA is converted in pyruvate (PA).

This effect was expected as the LDH used in these experiments is of the M4 isoform,

thus it favors the PA to LA catalysis instead of the converse reaction, as showed in figure

4.48.
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Figure 4.46: LA catalysis UV-Vis calibration curves obtained measuring the kinetics
at 339 nm in solutions with ten LA concentrations from 1µM to 1000µM and three

LDH dilutions, from 1 to 100 U/ml.

Figure 4.47: Michaelis-Menten kinetic curves calculated from the data represented in
the previous figure, with three LDH dilutions.
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Figure 4.48: Comparison of the NADH concentrations obtained from the 339 nm
UV-Vis kinetics of the catalysis of 10 mM LA and PA in HBRS, in presence of 625 µM

NAD or NADH in HBRS respectively, and of LDH 100 U/ml in PBS 1x.

In order to contrast the strong PA effect on the LA to PA catalysis equilibrium, hydrazine

was introduced in the Tris-HCl buffer. Hydrazine (N2H4) has the ability to bind PA

without producing compounds which absorb at 339 nm, allowing for an higher NADH

production. Therefore, this component is particularly useful for the LA assay by M4

LDH isotypes ([80]). The hydrazine effect was tested measuring the UV-Vis kinetics of

1 mM LA in 625 µMNAD+ and 100 U/ml LDH either in HBRS and in HBRS with

0.5 M Hydrazine. As shown in figure 4.49 the kinetics are completely different and the

hydrazine-enhanced one does not reach the steady state even in 1500 seconds.

Unfortunately, hydrazine at this concentration causes interferences on the CV measure-

ments at the NADH oxidation potentials on DSC devices. For this reason its use was

avoided.

4.3.4 Lactate detection

4.3.4.1 Protocol selection

As previously shown in this chapter HBRS resulted a good candidate as buffer for the

NADH detection, and thus for the LA detection. Moreover, as proved in the previous

chapter the cells proved to survive for at least 24 hours in HBRS. However, HBRS has
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Figure 4.49: Comparison of the kinetics of 1 mM LA catalysis by the same concen-
tration of NAD+ and of LDH in HBRS and in HBRS+0.5 M Hydrazine.

a pH of 7.4 while Tris-HCl has a pH of 8.8, at which the LDH enzyme moves the LA

catalysis equilibrium in the direction of PA with an increase in the NADH production

and therefore in the measured oxidation currents.

Unfortunately, Tris-HCl is not a good buffer for the engineered cells who survived just

few hours in it. Following the previous points and imagining to collect the LA sample

from the cells in HBRS, two strategies are possible:

1. To perform the LA catalysis in Tris-HCl that implies the LA sample dilution 1:10

in the NAD+ in Tris-HCl, and LDH in PBS solution;

2. To dilute NAD+ directly in the LA sample, and then mixing it with the LDH in

PBS solution.

These strategies are resumed in figure 4.50. Since it’s not possible to foresee which of

these strategies gives the best results in terms of measured NADH oxidation current,

they were tested on the same LA samples in HBRS.

Three LA sample concentrations in HBRS, ranging from 10 µM to 1 mM were tested

with the described protocols. Five minutes UV-Vis kinetics were measured and two

DSC devices were used to perform CV measurements over the solutions at the end

of the UV-Vis measurements. For each tested LA sample, a blank UV-Vis and CV
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Figure 4.50: Scheme of the strategies tested for the LA in HBRS detection.

measurement were performed pouring in the cuvette HBRS instead of the LA sample.

The NADH concentrations obtained in the solution were calculated from the absorbance

values at the end of the kinetics. The NADH oxidation current values obtained from the

CV measurements were correlated with the UV-Vis calculated NADH concentrations in

figure 4.51.

Figure 4.51: Calibration curve obtained by the UV-Vis and the CV tests with the
protocols in HBRS and in Tris-HCl on DSC devices.
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The points on the right represent the currents/NADH concentrations obtained by the

highest LA concentrations while the last ones on the left are related to the blank mea-

surements in the two cases. Since the two calibration curves have almost the same

slope, we can conclude that the two protocols are equivalent, with the LA sample dilu-

tion compensated by the higher catalysis efficiency in Tris-HCl. Therefore, the Tris-HCl

protocol will be adopted as it allows for the preparation of the NAD+ solution before

the measurements, without the need to weight and dissolve NAD+ directly in the LA

sample.

4.3.4.2 Lactate calibration curve

The protocol selected with the previous tests was used for the construction of a lactate

calibration curve. Ten LA concentrations, in the range between 1 µM to 50 mM were

tested. The following operations were performed for each LA concentration:

1. Preparation of the LA dilutions in HBRS;

2. Mix of 1.6 ml of 625 µMNAD+ in 50 mM Tris-HCl and of 0.2 ml of LDH 100

U/ml in PBS in a quartz cuvette;

3. Addition of 0.2 ml of the LA dilution to the cuvette and 339 nm UV-Visible kinetic

measurement with respect to the same mix in the cuvette with the addition of 0.2

ml of pure HBRS;

4. CV tests on three DSC devices of the solution at the end of the UV-Vis kinetics.

Figure 4.52 shows the kinetics measured with the various LA concentrations, while figure

4.53 depicts the average CV measurements performed on the DSC devices at the end of

each LA concentration catalysis.

The NADH oxidation current values at 456 mV are reported, with their standard de-

viations, in figure 4.54 in function of the respective LA concentrations. The blue curve

show the data points fit by a power model within a LA concentrations logarithmic

representation. Conversely, the figure inset shows the same current values within the

LA concentration linear representation. As shown by the red line in the inset, the LA

detection with this protocol show linearity for concentrations beneath 5 mM, with a

sensitivity of 0.287 µA/mM and a detection limit of 10 µM .

Finally, in order to asses the correlation between the UV-Vis spectrophotometric mea-

surements at 339 nm and the CV currents at 456 mV, these values were plotted in figure

4.55, on the x and y axis, respectively. Almost all the points obtained lie on a line with
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Figure 4.52: UV-Visible 339 nm kinetics of the LA catalysis in the cuvette with 625
µMNAD+ in 50 mM Tris-HCl and 100 U/ml LDH in PBS 1x.

Figure 4.53: CV measurements on DSCs of the LA/LDH/NAD solutions at the end
of the UV-Vis kinetics.
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Figure 4.54: LA calibration curve. The inset reports the same current values in
function of the experimental NADH concentrations calculated from the UV-Vis data

at the end of the kinetics measurements.

slope 33.27 mA/M and an intercept of 489.5 nA. Therefore, the two measurements result

coherent.
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Figure 4.55: Correlation plot of the UV-Vis spectrophotometric and of the Cyclic
Voltammetry measurements for the LA detection.



Chapter 5

Real samples interference study

and biosensor calibration

In this chapter, the interference on the lactate detection caused by the molecules present

in urine samples and by the molecules released from the myogenic cells, were studied

both by spectrophotometrical and electrochemical measurements. These tasks were

accomplished in fours steps:

1. Firstly, real urine samples were diluted in HBRS and characterized by UV-Visible

spectrophotometry and CV measurements. From these measurements, veal urine

was selected for its low interference with respect to beef urine.

2. Then, veal urine dilutions were used for the evaluation of its natural (basal) lactate

content, with the same protocol used for the biosensor LA calibration in HBRS,

performed at the end of the previous chapter;

3. As third step, known LA concentrations were added to veal urine samples dilutions

in HBRS, and the biosensor was calibrated again in these solutions;

4. Finally, C2C7 cells were used to analyze the possible interferences of the molecules

released from the cells with the UV-Vis and CV measurements and to assess the

cells basal lactate production.

Moreover, the lactate biosensor was tested and calibrated for the detection of the lactate

released after different periods of time by C2C7 transfected cells for its constitutive

continuous production. This cells and their transfection protocol are described at the

end of Chapter 3.

135
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5.1 Urine samples interference

The spectrophotometric and electrochemical characterizations of urine samples were

performed both on beef (age between 12 and 18 months) and veal (age under 12 months)

urine. Assuming that, in the worst case, some urine components could interfere at 339

nm in the UV-Visible spectrum and at 456 mV in the Cyclic Voltammetries, several urine

dilutions in HBRS were prepared with the aim to find a concentration which allows for

the interference containment. The concentrations, expressed as urine percentage content

in HBRS, are: 100%, 25%, 10%, 2.5%, 1%.

5.1.1 Spectrophotometrical and CV characterizations

Figures 5.1 and 5.2 show the UV-Visible spectra of the urine dilutions and the equivalent

NADH concentrations obtained from the absorbance values at 339 nm, both for the veal

and beef urine samples.

Figure 5.1: UV-Visible spectra of beef and veal urine dilutions in HBRS.

The 100 % beef urine solution saturates the UV-Vis spectra at 339 nm with respect

to the HBRS blank measurement. Therefore this samples have to be diluted. In fact,

blanking the measurements to the 100% solution would result in noisy measurements

around zero, with no practical meaning. Conversely, veal urine present a much lower

interference at 339 nm, with an absorbance of about 0.2 Abs for the 100% solution.
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Figure 5.2: 339 nm absorbance values of beef and veal urine dilutions in HBRS.

Figure 5.3: CV measurements of beef and veal urine dilutions in HBRS.
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Figure 5.4: 456 mV oxidation current values of beef and veal urine dilutions in HBRS.

Moreover, the veal urine samples are characterized by the presence of two absorbance

peaks, differently from the beef ones which present only one peak. Figures 5.3 and 5.4

show the CVs of the urine dilutions and the respective current values at 456 mV, both

for the veal and beef urine samples. As for the spectrophotometrical measurements, the

beef urine samples CVs show much higher oxidation currents with respect to the veal

urine samples. The 100% beef urine solution brings to currents more than one order of

magnitude higher than the veal’s ones. Moreover, veal urine samples, differently from

the beef ones, are characterized by an oxidation peak around 300 mV.

5.1.2 Natural LA concentrations

In the previous paragraph, the interference of the urine samples were evaluated at the

wavelength and potential at which the NADH formation is monitored by spectropho-

tometry and cyclic voltammetry, respectively. Here, a different kind of interference will

be evaluated. In fact, urine samples are expected to naturally contain a lactate concen-

tration which can vary a lot, depending on the animal health status, its age and diet.

This concentration has to be assessed before testing the lactate produced by the engi-

neered cells, in order to be able to distinguish one concentration from the other. With

this aim three urine dilutions in HBRS, i.e., 100%, 10%, and 1% were tested with the

same protocol used for the biosensor LA calibration, measuring the 5 minutes kinetics at
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339 nm and the testing the solutions by CV. Only veal urine was tested since beef urine

present high interferences both at 339 nm and at 456 mV in the spectrophotometrical

and Cyclic Voltyammetric measurements, respectively.

Figure 5.5: 339 nm kinetics of veal urine dilutions in HBRS.

Accordingly to the spectrophotometric calibration plot of figure 4.52, the steady state

NADH concentrations obtained by the isolated UV-Vis kinetics at 339 nm of figure 5.5

are compatible with a 100 µM lactate concentration for the 100% beef urine sample.

Conversely, for the veal 100% urine sample, the NADH concentrations indicate a lactate

content around 100 µM . The CV measurements performed in the solutions at the end

of the UV-Vis kinetics are reported in figure 5.6.

5.2 Biosensor calibration in urine samples

With the aim to accomplish the second step described at the beginning of the chapter,

i.e., the biosensor calibration in real urine samples in presence of known LA concen-

trations, the same protocol used for LA in HBRS were implemented for the same LA

dilutions in veal urine. Therefore, ten LA concentrations, ranging between 50 mM and

1 µM were prepared in veal urine and then mixed with LDH and NAD in the amounts

defined at the end of the previous chapter. The NADH formation kinetic was monitored
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Figure 5.6: CV measurements of veal urine dilutions in HBRS, after the end of the
UV-Vis kinetics measurements.

at 339 nm by UV-Vis spectrophotometry for 5 minutes. After that, the obtained solu-

tions were tested by Cyclic Voltammetry on DSC devices in order to detect the NADH

oxidation current. Veal urine were selected for this calibration because it causes less

interference than beef urine both at 339 in the UV-Vis measurements and at 456 mV in

the CV ones.

5.2.1 Calibration in 100% veal urine

Figure 5.7 shows the UV-Vis kinetics at 339 nm of the LA dilutions with respect to the

solution obtained adding pure veal urine to LDH and NAD (blanking solution) instead

of LA in urine. In fact, while in the LA in HBRS calibration experiment the blanking

solution was obtained by 1.6 ml NAD in Tris-HCl, 0.2 ml LDH in PBS, and 0.2 ml

HBRS, in this one the blanking solution is composed by 1.6 ml NAD in Tris-HCl, 0.2 ml

LDH in PBS, and 0.2 ml veal urine. Interestingly, the LA concentrations lower than

500 µM show kinetics characterized by negative absorbance values, and thus ”negative

NADH concentrations” with respect to the blank measurement. This is more clear from

the UV-Vis calibration plot shown in figure 5.8. This effect doesn’t depend on a wrong

blank measurement since the following measurements in urine, performed in the middle

and at the end of the tests, result in absorbance values very close to the first ones. The

Cyclic Voltammetry measurements on the solutions at the end of the NADH formation
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Figure 5.7: UV-Vis kinetic measurements at 339 nm of the catalysis of LA dissolved
in urine.

Figure 5.8: UV-Vis calibration plot of the NADH steady state concentrations ob-
tained from the catalysis of LA dissolved in veal urine. The lines represents the NADH

concentrations obtained by the tests in pure veal urine.
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kinetics are even more interesting, and are depicted in figure 5.9. The CVs on the

blanking solution (NAD, LDH, and pure urine) present a current peak around 300 mV

and a flex at about 500 mV.

Figure 5.9: Average CVs obtained from the measurements of the LA in urine solu-
tion after the catalysis. The measurements are plotted in three graphics in order to
distinguish them clearly. The first measurement in urine without added LA is plotted

in all the graphics as reference (red curve).

Three types of CVs were observed depending on the LA dissolved concentration:

• For high LA concentrations (LA > 1 mM) a peak between 400 and 500 mV is

clearly visible and can be associated to the formed NADH oxidation, as observed

for the LA in HBRS calibration curve. Anyway, this peak is moving to higher

potentials proportionally to the decrease of the LA tested concentration. Moreover,

the 300 mV peak current value is decreased by high LA concentrations but it

appears again as the LA concentration decrease.

• For medium LA concentrations (50 µM < LA < 5 mM) the oxidation currents

between 200 mV and 800 mV are lower than the currents obtained by the blanking

measurement in pure urine. The current peak at 300 mV is increasing proportion-

ally to the LA concentration decrease.
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• For low LA concentrations (LA < 50 µM) the oxidation currents between 200

mV and 800 mV are still lower than the blank measurements ones, but they are

approaching the them as the LA concentration decrease.

Figure 5.10: Average currents and related standard deviations, recorded at 456 mV,
of the CV measurements on the LA in urine solutions after the catalysis.

The oxidation current at 456 mV were plotted in figure 5.10. At this potential, the

oxidation currents becomes lower than that one of the blanking solution from 1 mM

LA concentration down to the lowest one. The following figure (figure 5.11) shows the

correlation between the UV-Vis and the CV measurements within this biosensor LA

calibration test. The star and the asterisk symbols represent the values obtained for the

blanking solutions, and they lie out of the fitted correlation line.

5.2.2 Comparison with diluted urine samples calibrations

In order to clearly identify the interference of the veal urine components on LA cali-

bration curves, the calibration were performed on the same LA concentrations in urine

100%, %10, and 1% in HBRS. The results of these calibrations were compared to those

ones obtained by the LA in HBRS calibration, reported at the end of chapter 4. In

figure 5.12 are plotted the NADH concentrations obtained at the end of the UV-Visible

measurements (reported in the inset) with respect to the tested LA concentrations. The

same data was also represented in function of the LA concentration (in logarithmic
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Figure 5.11: Correlation plot of the steady state NADH concentration obtained from
the UV-Vis measurements, and of the currents recorded at 456 mV during the CV
measurements on the same solutions. The star and the asterisk represent the NADH

and Ip values for the measurements in veal urine without the LA addition.

Figure 5.12: NADH concentrations obtained at the end of the LA catalysis kinetics
in different urine dilutions in HBRS. The inset shows the 339 nm kinetics recorded
for the LA concentrations (HBRS continuous line, urine 1% dashed line, urine 10%

dashed-dotted line, urine 100% dotted line).
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Figure 5.13: UV-Vis calibration curves reporting the NADH concentrations at the
end of the LA catalysis kinetics in different urine dilutions in HBRS.

scale), obtaining the curves represented in figure 5.13. The LA calibration curve in

urine 100% present lower NADH concentrations at the end of the kinetics and thus re-

sults translated with respect to the other curves, which are almost overlapped. Since

all the calibration curves are blanked to the respective urine concentration (e.g. the

calibration in 100% urine is blanked to NAD, LDH and 100% urine), the translation of

the UV-Vis calibration curve in urine 100% is unexpected. Although this behavior is

compatible with the inactivation of an urine compound absorbing at 339 nm by the LA

or NADH presence, more data are needed to formulate a sustainable explanation for the

curve translation. Regarding the CV measurements, figure 5.14 shows the average CVs,

for each LA concentration, for the calibrations in HBRS (red curves), urine 1% (blue

curves), 10% (magenta curves) and 100% (black curves). The comparison between the

blank measurements shows that, at this concentration, 100% veal urine present oxida-

tion current values much higher than the other urine dilutions ones. For the highest LA

concentration, i.e. LA 50 mM, all the CV curves present a peak at 456 mV related to

the NADH oxidation. Conversely, for lower LA concentrations, all the urine dilutions

a part the 100% one are compatible with the LA in HBRS curves. The 456 mV CV

calibration curves, showed in figure 5.15, confirm the compatibility of the 10% and 1%

urine-based LA calibration with the HBRS one for LA concentrations over 500 µM . For

lower concentrations the currents in 10% urine calibrations results higher than those ones

recorded for 1% urine and HBRS, while these last ones remain comparable. The 456
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Figure 5.14: Cyclic voltammetries measured in different LA concentrations in the
urine dilutions, after the LA catalysis by the LDH enzyme (HBRS red curves, urine 1%

blue curves, urine 10% magenta curves, urine 100% black curves).

mV currents related to the LA concentrations beneath 1 mM in 100% urine are smaller

than the currents recorded in absence of lactate. This is similar to what was observed

in the UV-Vis measurements but, in that case the first concentration which resulted

with a ”negative NADH concentration” was LA 100 µM . However, the particularity of

these CV and UV-Vis measurements allows to hypothesize for the interaction of one or

more compounds, present in veal urine, with LA or NADH and resulting in the drop of

the absorbance and of the oxidation currents. Unfortunately, these measurements don’t

allow to prove it.

Figure 5.16 shows the absolute 456 mV currents recorded during the CVs and the NADH

concentrations measured by the UV-Vis spectrophotometries at the end of the kinetics.
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Figure 5.15: Biosensor calibration curves of LA in urine dilutions in HBRS. The
dashed lines represent the 456 mV current values recorded for each calibration curve in

the UV-Vis blanking solution.

The points were fitted by a linear model, obtaining the slopes and intercepts reported

in table 5.1. The slopes of all the fits are similar, while the intercept related to the fit of

the LA calibration in 100% urine results radically different. In conclusion, a dilution

Urine dilution Slope (mA/M) Intercept (nA) R2

HBRS 33.27 489.5 0.9993

1% 30.39 485.8 0.9958

10% 28.43 581.7 0.9963

100% 30.47 1407 0.9425

Table 5.1: Coefficients of the linear fits of the correlation plot data for the urine
dilutions.

of 10% of the veal urine sample resulted sufficient to obtain a LA detection comparable

to that one in HBRS, for LA concentrations over 50 µM . Lower urine dilutions are

required for the detection of smaller LA concentrations.
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Figure 5.16: Correlation plot of the NADH concentrations obtained from the 339 nm
absorbance values at the end of the kinetics, and the 456 mV currents measured by CV

on the same solutions.

5.3 Myogenic cells interference

Having assessed the interference caused by the compounds in bovine urine samples, as

subsequente step the interference caused by the C2C7 cells products during the incuba-

tion was tested. With this purpose, a first prototype of the full cells-biosensor system,

with wild type (WT) C2C7 cells was realized. In order to keep this first prototype of the

complete Myo-Screen project system as simple as possible, the cells part was designed

separated from the biosensor part. This experiment had two main objectives:

• The identification of possible substances released from the cells which could inter-

fere with the UV-Vis spectrophotometric and/or with the CV measurements;

• The detection of the natural lactate concentrations produced by these type of cells

during a room temperature incubation in HBRS.

The setup used in this experiment is that one which will be implemented also in the final

Myo-Screen system prototype, with the myogenic cells for the hypertrophy-stimulated

lactate overproduction. Therefore, the present experiment is a necessary step to distin-

guish the lactate produced in response to the hypertrophic stimulation from the basal

one.
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5.3.1 Tests protocol

The tests were performed dividing the operations as described in the following:

Cells part: two flasks containing the C2C7 wild type cells (WT) were employed in this

part. The performed steps are:

1. Incubation of the confluent cells in DMEM without FBS for 48 hours;

2. DMEM removing and substitution by HBRS;

3. Incubation for n hours;

4. Cell medium sample extraction (1 ml) at 1,3 and 24 hours from the medium

substitution;

5. Cell counting for normalization of the results.

Biosensor part: In this part, a quartz 4 ml cuvette, the UV-Vis spectrophotometer,

DropSens Carbon devices and a CH440a potentiostat for the CV measurements have

been employed. The performed steps were:

1. Preparation of the LDH enzyme in PBS and of the NAD+ cofactor aliquots in

Tris-HCl;

2. Mixing of the LDH and NAD aliquots with the cell sample in a quartz cuvette for

the LA catalysis and the consequent NADH formation;

3. Monitoring of the kinetics at 339 nm of the NADH formation in the quartz cuvette

with the spectrophotometer, until a steady state is reached (5 minutes);

4. Quartz cuvette solution’s sample extraction (100 µl);

5. Drop of the sample on the DropSens screen-printed electrodes;

6. Cyclic Voltammetry measurement for the detection of the NADH oxidation and

its quantification.

Two independent data sets were collected from two different cells flasks. Each of the

1, 3, and 24 hours samples, from both the flasks, were tested by one UV-Vis kinetics

measurement and three CV on different DSC devices. The LDH and NAD concentrations

and buffers used for the tests were the same used for the biosensor calibration curves

obtained in Chapter 4 and in the previous paragraphs.
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5.3.2 Basal LA cells production

Figure 5.17 shows the average NADH concentrations, obtained from the two test sets,

in function of time during the lactate LDH-mediated catalysis. The NADH experimen-

tal concentrations were obtained from the 339 nm absorbance values as described in

paragraph 4.3.2.1.

Figure 5.17: UV-Vis spectrophotmetric kinetics of the NADH formation at 340 nm
in the quartz cuvette containing the LDH enzyme and the NAD+ cofactor and the

cells samples.

The blank measurements, represented by the black curves in the figure, were obtained

by mixing in the cuvette pure HBRS instead of the cells sample. As can be seen in

the figure, the 24 hours samples did not present any kinetics but a constant value over

the whole 5 minutes test. This feeds the suspicion that in this case the absorbance

at 339 nm would be caused by an interference and not by the lactate presence. This

hypothesis is enforced by the fact that, after all the samples extraction from the flasks,

i.e., after 24 hours from the DMEM substitution with HBRS, each cell culture was

observed in the microscope and the cells appeared prevalently detached from the flask

surface. Therefore, since the cells died after 24 hours, the 24 hours samples could be

polluted with something which absorbs light at 339 nm and that is not lactate. In order

to verify the reproducibility of the CV measurements on the same cells samples, the

average CV measurements obtained with the samples of the first set were calculated. A



Chapter 5. Real samples interference study and biosensor calibration 151

magnification of these average values and of their standard deviations around 456 mV

is depicted in figure 5.18.

Figure 5.18: Average currents and related standard deviations obtained by cyclic
Voltammetries on three devices per each cells sample and sampling time of the first cell
cultures set. The black curves represent the blank measurements, performed adding

HBRS instead of the cell sample in the quartz cuvette.

The standard deviations obtained from these measurements are small enough to detect

significant variations between the 1, 3 and 24 hours samples, which result maximal at

456 mV. The 24 hours samples 456 mV currents result lower than the 1 and 3 hours

ones. Moreover, the 24 hours CV measurements resulted in a different shape than the

other sample CVs, with a current peak at higher potentials than 456 mV. This could

be due to the presence of other substances in the test solution, which oxidize at higher

potentials than NADH.

Having verified the reproducibility of the DSC devices CV measurements on the same

samples, the second set of samples were tested with the same number of devices, in

order to assess the cells experiment repeatability. The average currents obtained by

these measurements on both the sets are depicted in figure 5.19.

The obtained results are very similar to those ones related to the devices reproducibility

testing on the first cell samples set and the previous considerations remain valid. The

456 mV average currents and the related standard deviations obtained from the devices,

and the cells experiment reproducibility tests are depicted in table 5.2.
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Figure 5.19: Average currents and related standard deviations obtained by cyclic
Voltammetries on six devices per each cells sample and sampling time, three for the
first cell cultures set and three for the second one. The black curves represent the
blank measurements, performed adding HBRS instead of the cell sample in the quartz

cuvette.

Sample Device reproducibility Ip (nA) Cells experiment reproducibility Ip (nA)

HBRS -342 ± 4.5 -342 ± 4.5

1 hour -492.6 ± 15.2 -481.1 ± 1.0

3 hour -543.2 ± 0.5 -538.8 ± 5.7

24 hours -411.5 ± 3.0 -416.5 ± 4.1

Table 5.2: 456 mV average currents and related standard deviations obtained for the
DSC devices, and the cells experiments reproducibility tests.

Finally, the average NADH concentrations obtained by the steady-state (300 s) ab-

sorbance values at 339 nm of the UV-Vis spectrophotometric measurements, and the

average 456 mV currents obtained by the CV measurements, were plotted together the

correlation plot of figure 5.20.

The 1 hour and 3 hours points define a correlation line parallel to that one obtained by

the LA calibration curve in HBRS, 1%, and 10% veal urine (with a slope of 32.37 mA/M

with respect to 33.27 mA/M of the calibration in HBRS). However, its intercept is a bit

smaller, with a value of 403.28 nA with respect to 489.5 nA. Differently from the 1 and 3

hours points, the 24 hours point lies out of the correlation line, enforcing the hypothesis

that the absorbance measured by the control technique in this case was due to another
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Figure 5.20: Calibration plot of the UV-Vis spectrophotometric measurements (con-
trol technique) and of the electrochemical cyclic voltammetric NADH (lactate) detection

techniques for the data of the two cell samples sets.

substance absorbing at 340 nm wavelength. In this case, the CV measurements were

more specific than the control technique for the individuation of this interference.

5.4 Engineered cells for continuous lactate over-production

In the transfected cells used for this experiment, the promoter of the LDH gene (CMV) in

the vector is always active, thus the cells express LDH and produce lactate continuously,

releasing it in the medium in which they are immersed. Two sets of three cells flask

were used in this experiment. The three flasks contain wild type C2C7 cells, C2C7

cells transfected with the vector without the LDH codifying gene, and finally the cells

transfected with the LDH gene vector.

For each set, the protocol described in the tests protocol paragraph has been followed.

During the cells incubation for 24 hours, two small samples were collected after 1 and

3 hours from the DMEM substitution with HBRS. Thus, a total of nine samples were

collected for each of the two performed set. The samples for the wild type, empty vector,

and LDH vector cells at 1, 3, and 24 hours of the two test sets were mixed with the LDH

enzyme and withNAD+ and the consequent NADH formation was monitored by UV-Vis

spectrophotometry at 340 nm. The LDH and NAD concentrations and buffers are the
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same used for the biosensor calibration curve obtained in Chapter 4. Figure 5.21 shows

the average NADH concentrations, obtained from the two test sets, in function of time

during the lactate LDH-mediated catalysis. The NADH experimental concentrations

were obtained from the 340 nm absorbance values as described in paragraph 4.3.2.1.

Figure 5.21: UV-Vis spectrophotmetric kinetics of the NADH formation at 340 nm
in the quartz cuvette containing the LDH enzyme and the NAD+ cofactor and the

cells samples.

The blank measurements, represented by the black curves in the figure, were obtained

by mixing in the cuvette pure HBRS instead of the cells sample. As can be seen in the

figure, the wild type C2C7 cells and the empty vector transfected ones showed similar

NADH formation kinetics and steady state values. Moreover, the 24 hours samples did

not present any kinetics but a constant value over the 5 minutes tests. Conversely, the

LDH vector transfected C2C7 cells showed higher steady state values than the previ-

ous ones, but the same 24 hours samples behavior. Figure 5.22 shows the steady state

NADH concentrations obtained by the UV-Vis spectrophotometric measurements, al-

lowing for an easier comparison of the average concentrations obtained from the different

cell cultures.

The 1 hour and 3 hours differences among the empty vector and LDH vector cells is

evident, while the 24 hours NADH concentrations are all similar. After the samples

extraction, each cell culture was observed at the microscope, and the cells appeared

prevalently detached from the flask surface. Therefore, since the cells died after 24

hours, the 24 hours samples could be polluted with something which absorbs light at

340 nm and which is not lactate. This hypothesis would be in accord with the lack of

any kinetics of NADH formation for these samples and with the fact that about the

same steady state values for all the cell cultures were obtained with them.
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Figure 5.22: Steady-state NADH concentrations obtained from the NADH formation
kinetics measured by UV-Vis spectrophotometry at 300 seconds.

Just after each UV-Vis spectrophotometric test, for each cell sample three DropSens

screen-printed carbon devices were used to quantify the formed NADH by Cyclic Voltam-

metry. The protocol used for the CV measurements is the sam that was defined in Chap-

ter 4. In order to verify the reproducibility of the CV measurements on the same cells

samples, the average CV measurements obtained with the samples of the first set were

calculated. A magnification of these average values and of their standard deviations is

depicted in figure 5.23 for the three cells types.

The standard deviations obtained from these measurements are small enough to detect

significant variations between the 1, 3 and 24 hours samples for each cells type. The

variations result maximal at 456 mV and a huge difference can be observed between

the empty vector C2C7 and the LDH vector transfected cells. Conversely, the average

currents recorded for the wild type cells are similar to those ones of the empty vector

ones. Here, as with the spectrophotometric measurements, the 24 hours samples CVs

are almost identical for all the cells types. However, within these measurements the

related 456 mV currents result lower than the 1 and 3 hours ones. Anyway, it has to

be highlighted that the 24 hours CV measurements resulted in a different shape of the

cyclic voltammograms with a current peak at higher potentials than 456 mV. This fact

could be due to the presence of other substances in the test solution, which oxidize at

higher potentials than NADH. With the aim to clearly see the differences between the
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Figure 5.23: Average currents and related standard deviations obtained by cyclic
Voltammetries on three devices per each cells sample and sampling time of the first
cell cultures set. The black curves represent the blank measurments, performed adding

HBRS instead of the cell sample in the quartz cuvette.

456 mV average currents obtained by the CV measurements, these ones were reported

in figure 5.24.

Figure 5.24: Average oxidation currents recorded at 456 mV during the cyclic voltam-
metries on the first set cell samples.

Having verified the reproducibility of the three CV measurements on the same samples,

the same number of CV measurements were repeated on the second set of cell samples.
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Therefore, 6 DropSens devices were used for each cell sample. The average currents

obtained by these measurements on both the sets are depicted in figure 5.25.

Figure 5.25: Average currents and related standard deviations obtained by cyclic
Voltammetries on six devices per each cells sample and sampling time, three for the
first cell cultures set and three for the second one. The black curves represent the blank
measurments, performed adding HBRS instead of the cell sample in the quartz cuvette.

The obtained results are very similar to those ones related to the devices reproducibility

testing on the first cell samples set and the previous considerations remain valid. This

is confirmed also by the figure representing the 456 mV average currents obtained from

the samples (figure 5.26).

Finally, the average NADH concentrations obtained by the steady-state (300 s) ab-

sorbance values at 340 nm of the spectrophotometric measurements, and the average

456 mV currents obtained by the CV measurements, were plotted together in figure

5.27.

In this way the results of the CV measurements were expressed in function of the NADH

concentrations verified by the control technique. It can be easily seen that the 1 and

3 hours measurements of all the cells types lie on the same line, which is compatible

with the correlation line obtained in the previous chapter (figure 4.55). Conversely, the

24 hours measurements lie out of this line, confirming that the absorbance measured

by the control technique in these cases were due to another substance absorbing at 340

nm wavelength. In this case, the CV measurements were more specific than the control

technique for the individuation of this interference.

This preliminary experiment shows that the lactate concentrations produced by the LDH

transfected C2C7 cells for the continuous overproduction are detectable by the biosensor.

However, this experiments showed some weak points which have to be avoided in the next

tests on the cells transfected with the optimized vector, still in preparation and discussed
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Figure 5.26: Average oxidation currents recorded at 456 mV during the cyclic voltam-
metries on the cell samples of the first and second sets.

Figure 5.27: Calibration plot of the UV-Vis spectrophotometric measurments (control
technique) and of the electrochemical cyclic voltammetric NADH (lactate) detection

techniques for the data of the two cell samples sets.
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at the end of Chapter 3. First of all, the cells survived for less than 24 hours and this

time could be not sufficient for the lactate detection in the case of tests on urine samples

and cells responding to the anabolic compound concentrations (which would produce less

lactate with respect to the cells for its continuous expression). Then, in the experiment

performed, the cells have not been counted, thus fluctuations of their number could

result in an increment of the lactate concentration not due to the transfected vector.

Finally, in this experiment, the same cells flasks were used for the 1, 3, and 24 hours

samples extraction. Although the samples volume is small compared to that one of the

medium contained by the flask, this protocol cause a slightly increase of the real lactate

concentrations in the samples after the 1 hour one. These considerations will allow the

improvement of the protocol in the next experiments in order to avoid the drawbacks

which characterized the preliminary biosensor calibration experiment described above.
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Conclusions

In this project, the Experimental Zoo-prophylactic Institute has identified the main an-

abolic substances used in cattle breeding and their control levels in the respective animal

samples, such as urine, blood and serum. Between these substances, three have been

selected to test the development of the transfected cells for lactate over-production, i.e.,

Clenbuterol, Testosterone, and Estradiol.

The Department of Biomedical Sciences of the University of Padova, with the collabora-

tion of the University of Rome ”La Sapienza”, has identified a stable cell line expressing

the receptors for the selected substances. The protein signaling cascade in presence of the

selected anabolic substances has been studied and tested, and the genes over-expressed

have been identified and isolated. The gene which is most rapidly expressed with the

highest ratio (IGF1) has been sequenced and its promoter has been selected to guide the

hypertrophy-stimulated LDH over-expression in the cell through an appropriate plasmid

vector, transfected in the cells.

Regarding the design, development and characterization of the electrochemical lactate

biosensor, the first step has been the planning of the electrochemical catalytic reaction

for the lactate detction, based on the Lactate Dehydrogenase (LDH) enzyme. This re-

action takes place in presence of the LDH cofactor NAD, and produces the reduced

form NADH in 1:1 ratio with the lactate concentration which is converted in pyruvate.

The next step consisted in the electrochemical characterization of devices composed of

different materials (gold and carbon) with the aim to select a device for NADH detec-

tion. At the same time, in order to have a confirmation for the NADH quantification,

spectrophotmetry has been employed as control technique, measuring the 339 nm ab-

sorbance peak (related to the NADH concentration and not NAD concentration).

Cyclic Voltammetry have been employed as electrochemical technique for the NADH

detection. The carbon devices showed to be more suitable for the NADH detection than

160
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the gold ones. In fact, the NADH oxidation current, proportional to its concentration,

can be detected at a lower potential, thus reducing the possible interference effects by

other compounds in solution.

The lactate samples are collected from a cell culture, thus the NADH obtained by their

catalysis has to be detected in a cell medium, which usually are rich of many chemical

compounds causing electrochemical interferences. In order to select a media which could

sustain the cells and at the same time avoid interferences during the Cyclic Voltamme-

try measurements of the NADH produced by the lactate catalysis, several cell media

have been tested. Hepes-buffered Ringer’s solution (HBRS) is the only cell media which

resulted compatible with the NADH measurements on the carbon devices. Once defined

the NADH medium, a calibration curve have been generated both by spectrophotomet-

ric and cyclic voltemmetry measurements.

The correlation between the two techniques emerged by the linearity of the NADH

concentrations oxidation currents with respect to their 339 nm absorbance values, from

which the experimental NADH concentrations have been calculated through the Lambert-

Beer equation. The sensitivity of the sensor for the NADH detection resulted of 35.33

mA/M with a limit of detection of 1 µM NADH.

Assessed the NADH detection by the Cyclic Voltammetry measurements and by the

UV-visible spectrophotometry control technique, the following step has been the char-

acterization of the lactate catalysis by the LDH enzyme. Several variables affecting the

lactate catalysis efficiency have been considered, i.e., the enzyme concentration, the pH

of the enzyme solution, and the testing protocol. The LDH employed is of the M4 iso-

form, thus it catalyzes preferably the conversion of pyruvate to lactate instead of the

converse one. Unfortunately, the isoform which would catalyze the conversion of lactate

to pyruvate, the H4 one, is more difficult to find it in commerce. However, even with

the M4 isoform, the lactate catalysis have been successfully achieved with our protocol.

Having defined the NADH calibration curve and the lactate catalysis protocol by the

LDH enzyme, the last step for the development of the lactate biosensor has been the

definition of a lactate calibration curve. Different lactate concentrations, covering more

than four orders of magnitude from 1 µM concentration, have been mixed with LDH

and NAD following the predefined catalysis protocol. The catalysis kinetics have been

monitored through the NADH formation by spectrophotometry. When, a steady state

NADH concentration has been obtained, the solution has been dropped on the carbon

sensor and analyzed by Cyclic Voltammetry for the electrochemical NADH quantifica-

tion.

Again, the two techniques showed a good correlation for the lactate detection as for the
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NADH one. The lactate biosensor showed a sensitivity of 0.287 mA/M with a detection

limit of 10 µM lactate.

In order to characterize the interference of real samples with the lactate detection, bovine

urine samples have been studied both by UV-Vis spectrophotometry and by Cyclic

voltammetry. Lactate calibrations have been performed in 1%, 10%, and 100% veal

urine, which showed to slightly interfere with the lactate detection, for concentrations

lower than 10%. This urine concentration is compatible with the Myo-Screen system

testing protocol.

In order to test the basal lactate production by C2C7 myogenic cells with the adopted

protocol and to assess the possible interferences by the molecules released in the media, a

culture of these cells have been sampled at 1, 3 and 24 hours and tested with the lactate

detection protocol. The 1 and 3 hours samples showed detectable lactate concentrations

with respect to the currents recorded in pure HBRS. Moreover, the interference intro-

duced by these samples is only additive with respect to the calibration in HBRS.

Conversely, the 24 hours sample resulted in not coherent UV-Vis and CV measurments,

probably due to the fact that after 24 hours from the beginning of the tests all the

cells died. This probably caused the release of some substances from the cells which in-

terfered both with the spectrophotometric and with the electrochemical measurements.

Anyway, this interference has been individuated by both the absence of a kinetic curve

in the UV-visible spectrophotometric measurements, and the fact that all the 24 hours

data points lie out of the correlation line of the two techniques. Therefore, both the cells

and the electrochemical biosensor are ready to be assembled in the Myo-Screen system.

Finally, a batch of transfected C2C7 cells for the constitutive continuous lactate over-

production has been tested with the lactate biosensor observing an increment of the

produced lactate with respect to the cells transfected with the empty vector (without

the sequence codifying for LDH) after just one hour of incubation. The results ob-

tained from this preliminary test are in line with those obtained previously in the cells

interference study.

The optimization of the cells transfection vector, both for the constitutive and the an-

bolic compound-stimulated lactate overproduction, is still going on. However, a precise

protocol for testing these cells has been set up and is ready for further developments.
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