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Abstract 

This PhD thesis deals with the investigation of damage initiation in a short glass fiber 

reinforced polyamide under fatigue loading. This material belongs to Short Fiber Reinforced 

Plastics (SFRPs) and is widely used in load-bearing applications in the automotive sector. 

Lifetime prediction models represent a powerful tool for optimizing structural parts in the 

early stage of a project reducing the number of prototypes needed before the series 

production. Multi-scale predictive models aim to integrate the relevant damage mechanisms 

in order to obtain accurate estimation of the lifetime to failure reducing empirical parameters 

and assumptions. The aim of this PhD thesis is to gain insight into the conditions for damage 

initiation in a short glass fiber reinforced polyamide under fatigue loading in order to prepare 

the basis for the development of a multi-scale, mechanism-based lifetime prediction model. 

This objective was addressed through three main activities: 1) The quantification of the 

lifetime to crack initiation during fatigue tests (Chapter 4); 2) The investigation of the fatigue 

damage mechanisms (Chapter 5 - 6); 3) The study of the local stress concentrations at crack 

initiation (Chapter 7).  

Chapter 4 describes the development of an optical method for the quantification of the 

lifetime to crack initiation during fatigue tests. Using the proposed experimental method, it 

was possible to generate a set of fatigue data to crack initiation for the calibration of a lifetime 

prediction model. 

The investigation of the damage mechanisms constitutes a major part of the PhD. In Chapter 5 

an extensive damage investigation on PA66-GF35 plain and notched specimens is presented. 

In Chapter 6 the influence of the fiber volume fraction on the damage mechanisms is 

investigated. Fatigue damage mechanisms were studied at multiple scales by means of Field 

Emission Scanning Electron Microscopy (FESEM). Damage investigation was carried out 

analyzing either the fracture surface of failed specimens or the polished side surface of 

specimens subjected to interrupted fatigue tests. Specific fractographic features were analyzed 

and compared with the results from the literature. These are: ductile / brittle matrix fracture 

behavior, fiber failure / pull-out, degree of fiber-matrix interfacial adhesion. Particular 

attention was devoted to the analysis of the fiber-matrix interface. Mirror-clean fibers on the 
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fracture surface indicate fiber-matrix debonding. By contrast, fibers covered by a resin layer 

suggest the damage occurs in form of matrix-cracking in the resin, at a certain distance from 

the interface.  

In Chapter 7, the influence of the fiber distribution on the local stress concentrations at crack 

initiation is studied. Stress concentrations are potential locations for damage initiation. In 

SFRPs, fiber-fiber and fiber-matrix interactions lead to stress concentrations at micro-scale. 

X-Ray Computed Tomography (X-Ray CT) was used for the quantitative description of the 

fiber distribution around a molded notch, at crack initiation. For this purpose, a fatigue test of 

a notched specimen was interrupted before failure. A sample surrounding the notch and 

including a crack propagated during the fatigue test was scanned by means of X-Ray CT. A 

manual procedure for reconstructing the real fiber orientation distribution around the notch is 

proposed. The reconstructed volume was simulated with the FEM code ABAQUS with the 

aim to study the stress concentrations at crack initiation. 

Finally, the findings of the experimental and modeling activities were used for the 

development of a preliminary multi-scale approach for the prediction of the crack initiation in 

a short glass fiber reinforced polyamide under fatigue loading. This activity is presented in 

Chapter 8. 
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Sommario 

Il tema del presente dottorato di ricerca è lo studio della nucleazione del danneggiamento in 

una poliammide rinforzata con fibre di vetro corte soggetta a un carico di fatica. La 

poliammide è un materiale termoplastico molto utilizzato nell’industria automobilistica per 

applicazioni strutturali sotto il cofano della vettura. Questo materiale è caratterizzato da 

ottime proprietà meccaniche e da un’elevata resistenza ad alte temperature e alla corrosione. 

Inoltre è leggero contribuendo in questo modo a ridurre il peso dell’autovettura. I componenti 

strutturali realizzati con questo materiale sono soggetti in esercizio a sollecitazioni cicliche di 

natura termica e meccanica che provocano una rottura a fatica. Lo sviluppo di modelli 

previsionali è pertanto di fondamentale importanza perché permette una stima della vita a 

fatica nella fase di progettazione riducendo il numero di prototipi necessari prima dell’avvio 

della produzione in serie. Lo sviluppo di questi modelli richiede la comprensione dei 

meccanismi di danneggiamento che causano l’innesco di una cricca e la sua propagazione fino 

alla rottura finale. 

L’obiettivo che si pone questo dottorato di ricerca è la comprensione del fenomeno di 

nucleazione del danneggiamento in una poliammide rinforzata con fibre di vetro corte, 

soggetta a un carico di fatica al fine di porre le basi per lo sviluppo di un modello previsionale 

basato sui meccanismi di danneggiamento. Le tre principali attività svolte sono: 1) 

L’identificazione dell’inizio cricca durante test di fatica (Capitolo 4); 2) L’analisi dei 

meccanismi di danneggiamento (Capitolo 5 - 6); 3) Lo studio dei campi tensione locali a 

inizio cricca (Capitolo 7). 

Il Capitolo 4 descrive lo sviluppo di un metodo ottico per l’identificazione dell’inizio cricca 

durante i test di fatica. È stata condotta una campagna sperimentale di test a fatica su provini 

lisci e intagliati. Lo sviluppo della tecnica sperimentale ha reso possibile lo studio dell’effetto 

della frazione di volume sulla vita a innesco della poliammide. In questo modo è stato 

generato un set di dati sperimentali per lo sviluppo di un modello previsionale a inizio cricca. 

L’analisi dei meccanismi di danneggiamento copre una parte importante del dottorato. Nel 

Capitolo 5 è presentata l’analisi del danneggiamento su provini lisci e intagliati per una 

poliammide rinforzata con il 35 % (in peso) di fibre. Nel Capitolo 6, l’analisi del 

danneggiamento è estesa a diverse frazioni di volume. È stato utilizzato un microscopio a 
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scansione ad alta risoluzione. L’analisi del danneggiamento è stata condotta analizzando o la 

superficie di frattura di provini giunti a rottura durante test di fatica o la superficie laterale di 

provini soggetti a test di fatica interrotti. I meccanismi di danneggiamento sono stati studiati 

analizzando specifiche evidenze frattografiche: il comportamento duttile / fragile della 

matrice; la presenza di fibre rotte o estratte intere dalla superficie di frattura; il grado di 

adesione fibra-matrice. In particolare, l’evidenza sulla superficie di frattura di fibre pulite o 

coperte da un strato di resina è importante nell’ottica di sviluppo modello. Nel primo caso il 

danneggiamento avviene all’interfaccia in forma di debonding. Nel secondo caso, il 

danneggiamento avviene fuori dall’interfaccia in uno strato di resina che potrebbe essere stato 

modificato chimicamente dal sizing usato durante il processo di formatura delle fibre per 

migliorarne l’adesione con la matrice. 

Il Capitolo 7 tratta l’effetto dell’orientazione delle fibre sui campi di tensione locali a inizio 

cricca. Le concentrazioni di tensione rappresentano potenziali fonti di innesco di una cricca. 

Nei materiali plastici rinforzati, l’interazione tra fibre e matrice su scala microscopica dà 

luogo a concentrazioni di tensione. È stato condotto un test di fatica su un provino intagliato 

fino alla comparsa di una cricca. A questo punto, il test è stato interrotto e un volume di 

materiale attorno all’intaglio e comprendente la cricca è stato fresato dal provino e analizzato 

con un tomografo computerizzato. In seguito, la reale distribuzione delle fibre a bordo 

intaglio è stata riprodotta manualmente in un software agli elementi finiti con l’obiettivo di 

studiare i campi di tensione locali nella matrice che possono causare l’innesco di una cricca. 

Infine i risultati dell’attività sperimentale e di modellazione sono stati utilizzati per lo 

sviluppo di un approccio multi scala per la previsione della vita a innesco di cricca in una 

poliammide rinforzata soggetta a un carico di fatica. Quest’attività è presentata nel Capitolo 8. 
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Chapter 1 

Introduction 

1.1. Motivation 

The interest for Short Fiber Reinforced Plastics (SFRPs) in structural applications is growing 

due to the need to balance increasing demands in terms of reliability and lightness with cost 

reduction and productivity improvements. SFRPs find applications in a wide range of fields as 

construction, electronics, packaging and automotive. Let us consider the automotive sector. 

According to a recent research [1], in the US, the polymer composites are 8.4 % of the total 

vehicle weight. The wide range of applications where SFRPs are used include: exterior body 

of the vehicle, interior design parts, under-the hood components (fuel systems and engine 

systems), electronic, electric and mechatronic systems. Around 25 % of the total plastics 

(100 - 200 kg depending on the vehicle) are located under the hood. Robert Bosch GmbH is a 

leading automotive supplier. One of the main Bosch businesses is the development of 

innovative mobility solutions. Fuel injection systems, exhaust systems, brake systems are 

located under the hood and have several parts made of SFRPs. Typical under-the-hood plastic 

components are plug-in connectors, sensor units (oil, position, tank), housings (battery, 

electrical motors), gears, fuse boxes, pumps, fuel rails, valve covers, air manifolds, filters. 

Size and weight of plastic parts vary from a few millimeters and grams (sealing elements) to 

some hundred millimeters and some kilograms (air intake manifold). Figure 1.1 shows some 

typical applications of SFRPs in Bosch automotive systems. In order to satisfy this large 

demand, several SFRPs are available on the market differing in terms of cost, mechanical 

properties but also compatibility with fluids, chemicals and high temperatures.  

The success of SFRPs is connected to the advantages of the injection molding process. This 

technology enables complex geometries to be manufactured at high production rates, with low 

production waste and without the need for additional post-molding finishing operations. In 

fact, injection molded parts are generally ready to use after ejection from the mold. The 

possibility to inject multiple molds simultaneously makes the production particularly cost 

efficient.  
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Thanks to their advantages in comparison to standard materials, SFRPs offer new solutions 

being key enablers of product innovation. In particular, the design freedom has been very 

welcomed by designers becoming a key factor for the wide use of these materials. For 

example, threaded parts can be manufactured by injection molding without any post-molding 

machining operation.  

Application of SFRPs enables a significant component weight saving, improving the fuel 

efficiency of the vehicle. In addition, these materials show outstanding mechanical properties. 

High strength to weight ratio, high temperature and chemical resistance make these materials 

excellent candidates for under the hood applications. For example in the 90s, the use of a 

short fiber reinforced polyamide instead of aluminum for an air intake manifold reduced 

significantly the manifold weight and improved its performance [2]. Recently, the increasing 

demand for SFRPs is also driven by the improvement of the Noise Vibration Harshness 

(NVH) properties of mechanical systems, due to their better sound absorption properties in 

comparison to metals. SFRPs also find several applications in gears by virtue of their inherent 

lubricity and wear resistance. 

The mechanical parts mentioned in this chapter belong to the category “structural parts”. That 

means they have to fulfill a function under specific load conditions for a minimum expected 

lifetime. These parts have to be designed against mechanical and environmental loading. 

During the vehicle’s operation, engine compartment parts come in contact with fluids like 

water, diesel, gasoline and motor oil. They have to guarantee their functionalities for severe 

ranges of temperatures which arise from the engine warming up but also from the climatic 

condition in which the vehicle is operated. In addition, real injection molded parts are exposed 

to cyclic loading which leads to fatigue failure.  

Lifetime prediction models aim to reduce the number of prototypes needed before the series 

production by virtually optimizing the product in the early stages of the project. This leads to 

a reduction of development costs and time to market. The formulation of accurate models 

implies the understanding of the mechanisms responsible for material degradation during the 

product lifetime. The development of mechanism-based models is not an easy route but 

represents the only way to reduce the number of assumptions and empirical parameters to be 

included in the model for accurate lifetime estimations.  

 

 

 



Chapter 1. Introduction 

3 
 

(a) (b)

(c) (d)

(e) (f)

 

Figure 1.1 Mechanical systems produced by Robert Bosch GmbH with SFRPs components. 

(a) ESP (b) iBooster; (c) Low pressure sensor for tank pressure; (d) Electrical coolant pump; 

(e) Fuel Rail; (f) Accelerator pedal. 
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1.2 Current state of research 

In the literature, some approaches for the lifetime prediction of SFRPs are available. 

However, most of them are extensions of models originally developed for homogeneous, 

isotropic materials and therefore are not based on the damage mechanisms occurring in 

SFRPs. An example is the Tsai-Hill criterion  extended by De Monte et al. [3, 4] to predict the 

influence of the fiber orientation on the tensile and fatigue strength of PA66-GF35 specimens. 

The Hill’s criterion [5] (eq. 1.1) is a generalization of the Von Mises criterion (eq. 1.2) for 

orthotropic metals. The Von-Mises criterion states that yielding occurs when the second 

invariant of the deviatioric stress tensor reaches a critical value (measured from uniaxial 

tensile test). 

 

1222 222222
xyxzyzzxzyyx NMLHGF              (1.1) 

 
2222222 26 Yxzyzxyzxzyyx                 (1.2) 

 

Hence, the six constant of the Hill’s criterion refer to one physical phenomenon: yielding. In 

the 1968, Tsai applied the Hill’s criterion to continuous fibers reinforced composite materials 

(eq. 1.3) [6].  

 

x1: fiber direction

x2

(3)

 

Figure 1.2 Material coordinate system. 

He replaced the six yield stress constants with six composite strength constants (four for plain 

stress conditions, eq. 1.3) obtained testing a unidirectional composite in different loading 

directions. In doing so, he implicitly assumed that the composite material fails as a 

homogeneous solid and that the main mechanism is yielding. Conversely, there is a growing 

body of evidence indicating that the damage mechanisms strongly depend on the relative 

orientation between fibers and loading direction. In particular, Asp and coworkers [7] 

observed that for unidirectional fiber composites under static loading, the mechanisms depend 

(1.3) 
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on the stress state. If the stress state is mainly deviatoric, the mechanism is yielding while, if 

the stress state is equitriaxial (hydrostatic), failure occurs due to matrix cavitation. An 

equitriaxial stress state typically occurs in the matrix between parallel-aligned fibers if the 

loading direction is perpendicular to the fibers. Concluding, even if some lifetime prediction 

models can be successfully extended to SFRPs, particular caution must be exercised because 

some damage mechanisms may not have been taken into account. 

Another example is the volume-based Strain Energy Density (SED) approach originally 

developed by Lazzarin et al. [8-10] for isotropic materials. This criterion was successfully 

extended by De Monte and coworkers [11] in order to predict the lifetime of PA66-GF35 

specimens with notches. The SED model was further extended by Schaaf and coworkers [12] 

for the lifetime prediction of a PBT-GF30 under thermomechanical loading. A third example 

is the volume-based approach proposed by Sonsino and  Moosbrugger [13] for the lifetime 

prediction of notched SFRP parts.  

In the last years, the improvement of the damage investigation methods and the explosion of 

the computational power have prompted researchers to deeply investigate the damage 

mechanisms before formulating damage criteria. At the same time, there is a growing 

recognition that the accurate prediction of the material response requires the understanding of 

the manufacturing process. SFRPs are heterogeneous, anisotropic material. This means that 

the load transfer from the matrix (softer phase) to the fibers (stiffer phase) is higher if the 

fibers are aligned to the loading direction. The material microstructure is frozen during the 

process thus determining the mechanical response of the material. Recently, approaches have 

been proposed which reproduce the observed damage mechanisms. Huang and Talreja [14] 

presented the application of a ductile fracture model for the prediction of the crack 

propagation in the matrix between two fibers aligned with the loading direction. Horst et. al. 

[15] modeled the fiber-matrix debonding of a single fiber studying the role of the tensile 

stress at the fiber-matrix interface. Hoffmann [16] modeled the static behavior of a short glass 

fiber reinforced Polybutylene terephthalate (PBT-GF30) including the main dominant damage 

mechanisms (matrix damage, fiber-matrix debonding and fiber fracture). These models 

contribute to improve the understanding of damage evolution in SFRPs. However, they deal 

with the static behavior of SFRPs while the fatigue behavior remains to be explored. From a 

point of view of a reliability engineer, the understanding of the damage processes should be 

integrated in models for the lifetime prediction of real injection molded parts. This modeling 

strategy is referred to as multi-scale modeling. 
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1.3. Goals and outline  

The aim of this PhD thesis is to investigate damage nucleation in a short glass fiber reinforced 

polyamide 6.6 (PA66) under fatigue loading. This objective was addressed through three 

major activities: 1) The experimental quantification of the lifetime fraction spent in the crack 

initiation during fatigue tests; 2) The investigation of the fatigue damage mechanisms; 3) The 

investigation of typical stress distributions at crack initiation related to local fiber orientation 

distributions. The results of this work lay the foundation for the development of a multi-scale, 

mechanism-based, lifetime prediction model for SFRPs.  

In Chapter 2, the material used in this work and the injection molding technology are 

introduced. The discussion focuses on the material constituents (fiber, matrix, interface) and 

the microstructural variables affecting the mechanical behavior of SFRPs. Chapter 3 is 

dedicated to the study of the fatigue behavior of SFRPs and the factors influencing it. 

After necessary fundamentals on the investigated material, the PhD activities are discussed. 

The PhD structure is depicted in Figure 1.2. In Chapter 4 an optical method for the 

quantification of the lifetime to crack initiation in fatigue tests is presented. An image 

acquisition system with a high resolution CCD camera was developed for detecting the crack 

onset. Fatigue curves up to crack initiation and until failure for specimens having different 

fiber loadings were compared to each other. In Chapter 5, Fatigue damage mechanisms in 

SFRPs discussed in literature were reviewed by reference to specific fractographic features: 

matrix fracture behavior (ductile / brittle), fiber failure / pull-out, fiber-matrix interfacial 

adhesion. Thereafter an extensive damage investigation by means of electron microscopy on 

plain and notched PA66-GF35 specimens is described. In Chapter 6 the damage investigation 

is extended for considering the effect of the fiber volume fraction on the fatigue damage 

mechanisms. Chapter 7 is dedicated to the quantitative analysis of the microstructure at crack 

initiation. For this purpose, a fatigue test was interrupted at crack initiation. A region 

surrounding the notch was analyzed by means of X-Ray Computed Tomography (X-Ray CT). 

The real fiber orientation was modeled with the Finite Element (FE) code ABAQUS in order 

to study the stress concentrations at crack initiation. In Chapter 8 the results of the 

experimental activities were used for the development of preliminary multi-scale, lifetime 

prediction model. The PhD closes with Chapter 9 with a summary of the most relevant 

results. 
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Chapter 2 

Short fiber reinforced plastic materials 

2.1 Preliminary remarks 

SFRPs are composite materials. According to Jesson and Watts [1] a material which belongs 

to the category “composite materials” respects three conditions: 1) It is composed of at least 

two materials which are physically and mechanically distinguishable; 2) It can be 

manufactured by mixing two or more materials in such a way that the dispersion of one 

material into the other can be controlled; 3) Mixing the constituents, the mechanical 

properties of the composite material are higher than those of the constituents. In SFRPs fibers 

and matrix have complementary roles. The matrix provides the shape of the part and confers 

toughness and great elongation properties while the composite stiffness and strength is 

increased by the fibers. The fiber-matrix interaction occurs through the fiber-matrix interface. 

In order to improve the fiber-matrix adhesion, the surface of the fibers is subjected to a 

coating treatment called sizing. 

A large range of thermoplastic materials is available on the market. However, the most used 

thermoplastic resins in the automotive sector are PA66, PA6, PBT, POM and PP. In the work 

at hand a short glass fiber reinforced polyamide (PA66) is investigated. 

2.2 Matrix material 

Polyamide 66 is a semi-crystalline thermoplastic material.  Under quasi-static cooling 

conditions the polymer melt solidifies with the formation of semi-crystalline spherical 

structures called spherulites. Spherulites grow radially as long as they do not touch each other. 

Spherulite diameter is strongly depending on cooling conditions and local molecular 

configuration. In injection molded parts, spherulite diameter is typically in the range 5-50μm.  

Spherulites consist of ordered lamellae (crystalline regions) linked to each other by 

amorphous regions. Lamellae are composed by folded polymer chains that align between 

them forming ordered structures. The crystalline regions enable the material to work at high 

temperature while the amorphous regions enhance the material-toughness characteristics.  
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When an idealized amorphous polymer is subjected to a mechanical load, the molecular 

chains uncoil and align into the loading direction. After removal of the load, the molecular 

chains coil again. If the load is held constant, the molecules slip over each other resulting in a 

viscous material behavior. This simplified description of the molecular behavior under an 

external load is the basis for understanding the viscoelastic material character of polymers. 

The material response of this class of materials is represented in Figure 2.1. 
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Figure 2.1. Schematic representation of the viscoelastic material behavior for various 

temperatures. (a)-(b) strain response under constant applied stress; (c)-(d) stress response 

under constant applied strain. 

Figure 2.1 a-b shows the material response under constant stress. As the stress σ0 is applied 

(t = t0), the strain increases instantaneously showing an elastic material behavior. If the stress 

is held constant, the strain increases continuously due to the viscous material flow. This 

material behavior is known as creep. Figure 2.1 c-d shows the material response under 

constant deformation ε0. At t = t0, the stress increases instantaneously exhibiting an elastic 

material behavior. If the applied strain is held constant, the stress in the material relaxes over 

the time. Creep and stress relaxation are two complementary aspects which reflect the 

viscoelastic nature of polymers. Both effects strongly depend on the stress level, temperature 

and time. Since the material response of polymers is time dependent, a durability analysis is 
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needed even under static loading. Creep and stress relaxation may lead to failure of plastic 

parts albeit in different ways. The strain increase due to the application of a constant tensile 

stress may result in an unacceptable stiffness decrease or, if the strain overcomes its critical 

value, in the breakage of the part.  

The creep behavior can be divided in three parts (Figure 2.2a): Initially, strain hardening 

occurs. The second phase is characterized by a linear increase of the strain; strain hardening 

and softening balance each other. The final stage prior failure is characterized by an increase 

of the strain rate. In this phase, the strain softening is dominant. Creep rupture data are 

represented by plotting the stress level against the number of hours (Figure 2.2b).  

log

TimelogTime

III III

(a) (b)

 

Figure 2.2. (a) Creep behavior divided in three stages [2]; (b) Schematic representation of 

creep rupture data.  

Even though stress relaxation cannot cause failure in sense of part breakage, it may be critical 

for structural applications as well. Let us consider a plastic-to-metal friction connection. In 

such a case, the stress relaxation causes the reduction of the friction force and, hence, 

compromises the stress transfer through the connection. 

As all other semi-crystalline polymers, the mechanical properties of polyamide exhibit strong 

variations across the glass transition temperature (Tg). Above Tg, portions of the molecular 

chains in the amorphous regions have enough molecular mobility for enabling local rotations 

of atoms or group of atoms. The increase of the molecular mobility leads to a decrease of the 

Young’s modulus [3] and increase of the impact strength [4]. For the material under study in 

this work (PA66-GF35), glass transition occurs around 70 °C.  
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2.3 Fibers material 

Injection molded materials are available on the market unreinforced and reinforced. Short 

glass and carbon fibers are the most widely used fillers but there are also different types of 

reinforcement like beads and minerals.  Glass fibers are by far the most used. Carbon fibers 

are more expensive than glass fibers but lead to a better mechanical resistance (including 

fatigue resistance [5]). In particular, carbon fiber reinforced materials are used by virtue of 

their wear resistance [6]. The fiber stiffness and strength are generally assumed constant. 

Thomason [7] reported that annealing effects during the fiber forming process may cause a 

stiffness reduction of the fibers while the strength is generally reduced due to fiber-fiber and 

fiber-machine interaction during injection molding. 

2.4 Fiber-matrix interface 

The mechanical properties of SFRPs strongly depend on the ability of the matrix to transfer 

the stress onto the fibers across the fiber-matrix interface. The “quality” of this transfer 

depends primarily on the fiber sizing.  

During the fiber forming process, fibers are coated by a mixture of different chemicals 

(0.05 - 10 %) and water (> 85 %) called sizing.  For a detailed description of the fiber forming 

process see [8-10]. The sizing formulation aims to improve the coating process itself and to 

promote the fiber-matrix adhesion. The sizing composition consists mainly of the following 

components: 1) Coupling agent which provides the fiber-matrix adhesion; 2) Film former for 

holding the filaments together in a strand and avoid the fiber damage during the process; 3) 

Lubricant to improve the abrasion resistance. If the material is susceptible to hydrolysis, 

sizing also contains anti-hydrolysis agents.  Further agents are emulsifiers, wetting agents and 

anti-static agents. The high water fraction used in the sizing process has a twofold function: 

cooling down the fibers during the process and transporting homogeneously the chemicals on 

the fibers surface.  Thomason and Schoolenberg [11] observed that the interfacial strength of 

a glass fiber reinforced polypropylene varies significantly depending on the sizing 

composition. In particular, if sizing is composed by only silane coupling agent, the 

improvement in terms of interface strength is low. Instead, in combination with other 

chemicals, the resulting interface strength is much higher. The performance of the interface is 

thus determined by the interaction between different chemicals.  
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Sizing covers the fiber surface with exception of the fiber extremities. Fiber breakage during 

injection molding process due to fiber-fiber and fiber-machine interaction results in the 

formation of new surfaces which are not covered by the sizing coating. From this evidence it 

may be assumed that at the extremities of each fiber there is a pre-existing crack. Starting 

from this consideration, Huang and Talreja [12] described the crack propagation between two 

aligned fibers under static loading, Horst and Spoormaker [13] modeled the debonding of a 

single fiber from the matrix material. 

Sizing may affect the composite material at the interface between fibers and matrix. The 

interface is not simply a bi-dimensional border between fibers and matrix. Instead, it can be 

thought of as a region of a certain thickness, an additional phase having chemical and 

mechanical properties different from both matrix and fibers (Figure 2.3) [1, 14-16]. 

Lastly, studying the fiber-matrix interface, one should not neglect the effect of polymer 

shrinkage around the fibers during cooling down after injection molding. Due to the mismatch 

between the thermal expansion coefficient of matrix and fibers, a compressive radial stress is 

generated on the fiber surface contributing to increase the fiber-matrix interfacial strength.  
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Figure 2.3. (a) Interface represented as a demarcation between fiber and matrix; (b) 

Interphase represented as a three-dimensional region surrounding the fibers. 

The characterization of the fiber-matrix interface is still an open issue in the scientific 

community. A significant effort has been devoted over the years for the development of 

characterization methods of the fiber-matrix interface. The development of micromechanical 

tests for the interface characterization has been discussed in a certain number of papers during 

the last decades. These tests are based on the measurement of the resistance of a single fiber 

to be extracted from the matrix. Single fiber fragmentation test, push-out test, micro-bond test 
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and pull-out test are some of micromechanical tests shown in the literature [16-18]. For 

SFRPs the most used tests are the pull-out test and the micro-bond test [19, 20]. The 

differences between the two tests are shown in Figure 2.4. In the pull-out test the fiber is 

embedded in a matrix film, block or disk. In the micro-bond test, the specimen is prepared by 

laying a piece of a polymer fiber on a single glass fiber and curing the sample above the 

melting temperature of the polymer in order to obtain a droplet. The polymer droplet is 

characterized by the embedded length and the droplet diameter. The specimen is drawn 

through shear blades. In both tests, the applied axial force generates a shear stress between the 

fiber and the polymer. The test ends with fiber-matrix separation. 
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Figure 2.4. Schematic representation of micromechanical tests for measuring the fiber-matrix 

interface strength.; (a) Pull-out test; (b) Micro-bond test. 

In [18] Zhandarov and Maeder reported that stress- and energy-based failure parameters can 

be used to measure the interfacial strength in a micro-mechanical test. Yang and Thomason 

[20] measured the value of the Interfacial Shear Strength (IFSS or τ). 
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Le is the embedded length, D is the fiber diameter and Fmax is the maximum force obtained 

during the test (Figure 2.4).  

These micro-mechanical tests enable the investigation of different types of sizing on the 

interfacial strength. Moreover, the effect of environment [21, 22] and mechanical loading [23] 

on the fiber-matrix interface can be investigated. However, these methods encounter 

difficulties in finding industrial application due to the labor effort in preparing the samples 

and due to the fact that the composite system created in the laboratory may differ from the 

effective material system. For this reason, Thomason [24, 25] proposed an analytical method 

based on the residual fiber length distribution and the static values of stress and strain at 

failure for a first estimation of the IFSS in SFRPs. 

2.5 Injection molding process 

Injection molding is the most widespread technology in use today to manufacture plastic 

parts. The plastic material in form of pellets is firstly melted and then conveyed at high 

pressure into a mold cavity where it solidifies taking the design form. Finally, the mold opens 

and the part can be removed or ejected. In order to give a brief overview of the injection 

molding technology, this section describes only the reciprocating screw injection molding 

machine. For a more detailed overview, the interested reader is referred to e.g., [26]. The 

injection molding machine consists of injection system, mold and clamping system 

(Figure 2.5). The injection system comprises the screw, the hopper, the injection barrel, the 

motor and the injection cylinder. The material is fed to the injection barrel via a hopper. As 

the material is poured into the barrel, it is pushed forward by the screw which slides axially 

and rotates, powered by a hydraulic or electric motor. The plastic material melts since the 

screw drags it towards the nozzle. While flowing, the polymer molecules slide over each other 

leading to frictional heat. Heating bans surround the barrel to supply additional heat needed to 

melt the resin. The screw has three functions, namely: melting pellets, homogenizing resin 

molten flow, injecting melt into the mold cavity and finally press it. The three-section screw 

(also called universal screw) is the most widely used screw. The first zone of the screw from 

the hopper side has a constant flight depth and aims to homogenize the material. In the 

subsequent zone, the flight depth is decreasing resulting in a compression effect on the molten 

material. This increases the sliding between neighboring molecules causing an increment of 

the polymer melting process. In the last zone, the material must reach an adequate 

temperature and viscosity to properly fill the mold. This zone is characterized by a constant 
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flight depth but smaller than the other two zones. The molten flow leaves the barrel and 

moves into the mold through a nozzle. The mold can accommodate one or multiple cavities 

which are connected to each other via channels. The mold consists of two halves which are 

held together by the clamping system. The clamping system is composed by the support plate, 

the moving and stationary platens, the tie bars, and the ejector system. One half of the mold is 

fixed to the stationary platen while the second half is attached to the moving platen and thus it 

is allowed to slide. As the mold cavity is completely filled, the injection molding machine 

exerts an additional pressure (hold pressure) to compensate the loss of volume due to the 

material shrinkage. In this phase, the screw does not rotate but pushes the material forward as 

a plunger. After this step, the screw rotates backward in preparation for the next cycle. The 

injected part is cooled down in the mold so that it can be ejected when the mold is opened.  

 

Figure 2.5. Injection molding machine (http://www.mechscience.com/4922-injection-

moldinginjection-molding-machineinjection-molding-processinjection-molding-on-plastics/). 

Several process parameters have to be optimized to obtain high-quality injection molded 

parts. Among the most important process parameters are resin and mold temperature, fill and 

hold pressure, injection speed, injection time. The optimization of the process parameters 

aims to achieve cost-efficient production. That means that a compromise should be found for 

obtaining the best quality for the required performances. For this reason, the constraints 

related to use of the injection molding process (dimensional tolerances, surface requirements, 

target cycle time) should be taken into account in the early stages of the development of a 

new product.  
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2.6 Microstructure of SFRPs 

In any material, the microstructure is designed by the process. This is all the more true with 

regard to SFRPs. The material properties of composites depend primarily on the material 

properties of the constituents and how the stress is transferred from the softer phase (matrix) 

to the stiffer phase (fibers). This depends on the fiber distribution, on the relative orientation 

between fibers and loading direction, and finally on the fiber-matrix interface. In a first 

analysis, the SFRPs can be described as three-phase materials (fiber, matrix, fiber/matrix 

interface). The material microstructure is determined by three variables: fiber orientation, 

fiber volume fraction and fiber aspect ratio. The material properties of SFRPs vary from point 

to point depending on the microstructural variables. Ideally, it can be assumed that all the 

fibers are align in the injection direction, that they are uniformly distributed and have the 

same length, that the fiber-matrix interface ensures continuously the stress transfer from the 

matrix to the fibers and that the matrix is homogenous and devoid of any defect. The reality is 

that the microstructure is much more complex. In the following, a description of the 

microstructural factors is given. 

2.6.1 Fiber orientation 

Unlike continuous fiber reinforced composites where the fiber orientation is a design variable, 

in SFRPs it can be determined only to a limited extent. Fiber orientation depends on a 

combination of various factors: injection molding process (process parameters, injection gate 

position, mold cooling system), fiber volume fraction, geometry of the mold. If the mold 

contains any geometrical discontinuity, the molten flow of plastic is forced to change 

direction during the process resulting in a variation of the fiber orientation distribution. SFRPs 

are heterogeneous anisotropic materials. If the fibers are aligned to the loading direction, the 

Young’s modulus and the static strength will be higher than if the fibers lie crosswise to this 

direction while the strain at failure will be lower [27-30]. In the literature, static and fatigue 

characterization of a SFRPs are carried out by testing specimens which are machined out of 

an injection molded plate at different angles with respect to the injection molding direction. 

However, the fiber orientation distribution has a layered structure along the thickness of an 

injection molded specimen [28, 29, 31-33]. This takes the name of “skin- shear-core” or more 

simply “shear-core or shell-core” depending on the number of layers which are identified 

(Figure 2.6). 
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Figure 2.6. Velocity and shear rate profile resulting from polymer melt flow in a plate having 

rectangular section with constant thickness [34]. 

A molten plastic is a non-Newtonian fluid. The viscosity of the fluid increases with 

decreasing of temperature. The cooling down and consequently the material solidification in 

the mold cavity is not uniform. The perimeter surface gets cold before than the inner regions. 

This temperature gradient results in a viscosity gradient (higher viscosity close to the walls of 

the mold cavity and lower viscosity in the inner region). The fluid moves from the central 

region to the external surface and decelerates next to the walls of the mold cavity. This 

phenomenon is called fountain flow and it is schematically represented in Figure 2.6. The 

melt elements forced towards the mold walls are exposed to a high elongational deformation. 

As they come in contact with the cooler walls cavity, they solidify immediately. This layer is 

generally called skin layer and it is characterized by a random fiber orientation distribution. 

The molten plastic flowing between the surfaces is subjected to a shear loading which is 

higher near the solidified skins. Going towards the interior, fibers align to the shear lines. This 

layer is called shear layer. At the middle thickness, the shear deformation of the flow relaxes. 

Due to the divergent melt flow, fibers align transversally to the mean flow direction. Taken 

together, the described effects lead to a layered microstructure known as skin-shear-core 

microstructure. This structure is symmetric with respect to the mid-thickness plane of the 

specimen. The process parameters influence the shear and elongated flow affecting the 

resulting material microstructure. Karger-Kocsis [35] observed that the shear-core structure is 

strongly influenced by the injection speed. He reported that a slow injection speed results in 

the formation of a 5-layers structure, while a higher injection speed leads to a 3-layers 

structure. The shear-core effect also applies to unreinforced materials. Analyzing the 

microstructure of unfilled polymers (PA6, PBT), Friedrich and Karger-Kocsis [36] observed a 
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layered structure along the specimen thickness. They observed amorphous thin regions 

adjacent to the specimen surfaces and a more crystalline region at the mid-thickness. 

Analyzing the skin-core morphology along the thickness of a PA66 plate, Karger-Kocsis [35] 

observed that an increase of the mold temperature results in a reduction of the skin layer, an 

increase of the spherulite diameter and an increase of the crystallinity in the skin layer.  

An essential contribution to the development of mathematical instruments for the quantitative 

description of the fiber orientation distribution has been provided by Advani and Tucker [37]. 

The authors presented a framework aimed to describe the fiber orientation in diluite systems 

without considering the mutual interaction between neighboring fibers. The assumptions 

underlying their theory are as follows: 1) Fibers have a cylindrical shape; 2) Length and 

diameter of the fibers are uniform; 3) Fiber volume fraction is constant. The orientation of a 

fiber in the three-dimensional space can be described by using two angles θ, ϕ (Figure 2.7). 

One also can specify the fiber orientation through a unit vector. The two representations are 

related to each other by the following equations: p1 = sin θ cos ϕ; p2 = sin θ sin ϕ; 

p3 = p1 = cosθ.  

 

Figure 2.7. Cartesian coordinate system for the determination of the orientation vector. 

Now if the discussion is extended to a larger number of fibers, one can introduces the 

probability distribution function ψ(θ, ϕ) or, equivalently, ψ(p).  This function identifies the 

probability to find a fiber between the angles θ1 and θ1 + dθ1 and ϕ1 and ϕ1 + dϕ1. The 

probability distribution function satisfies two conditions: 1) The fiber ends are 

indistinguishable from each other (periodic condition). 
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)()( pp                       (2.2) 

2) The integral of the probability fiber distribution function over all possible directions is one 

(normalization condition).  

 

1)( dpp                        (2.3) 

 

For the sake of convenience, the origin of the Cartesian coordinate system shown in 

Figure 2.7 corresponds to one fiber extremity. If one would to extend the framework to 

another fiber, )( p would be also a function of the fiber position. 

Due to the difficulties in handling )( p , the concept Fiber Orientation Tensor (FOT) was 

introduced by Advani and Tucker [37]. The expressions of the second and fourth-rank FOT 

are: 

 

dppppa jiij  )(                       (2.4) 
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The FOT provides in a compact form a statistical description of the fiber orientation 

distribution in a material volume. The order of the FOT is arbitrary but must be even. In fact, 

due to the symmetry condition expressed for the probability distribution function, the FOTs of 

odd order are zero. The higher the order of the FOT the more accurate is the reproduction of 

the probability distribution function. However, the order of the FOT is related to the effective 

property that has to be homogenized. For example, for the calculation of the effective thermal 

conductivity tensor or thermal expansion tensor which are both second order tensors, the 

second order FOT is needed. Instead, since the elastic stiffness tensor is of the fourth order, 

the fourth order FOT is required. However, the fourth-order FOT is computationally more 

expensive than the second-order tensor and it is not outputted by the process simulation. 

The process simulation returns the second order FOT for each element of the mesh. The 

second-order FOT can be mathematically described through an ellipsoid. The principal axes 

of the ellipsoid are the eigenvectors (V1, V2, V3). The eigenvalues (A1, A2, A3) indicate the 

magnitude of the fiber orientation along the three coordinate axes. The eigenvalue A1 
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indicates the portion of fibers aligned in the preferential direction V1. This direction 

corresponds to the direction of maximum stiffness for the composite material. 

The fiber orientation tensor has the following properties which derive from the conditions 

imposed to the probability distribution function. 

 
Taa                              (2.6) 

 

1atr                                   (2.7) 

 

,
2
1

2
1

ija ji                                  (2.8) 

 

Therefore, only five of the nine components of the second-order FOT are independent. The 

fiber orientation distribution varies between two extremes: the full fiber alignment and the 

random fiber distribution. Actually neither of the two cases is representative of the real fiber 

orientation distribution. Instead, even for simple geometries, fiber orientation distribution is 

quite complex depending on the injection direction, the process parameters and the mold 

thickness (Figure 2.8). 
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Figure 2.8. Three-dimensional representation of the skin-shear-core structure. (b) Schematic 

orientation of the axx trend along the specimen thickness. 

Hoffmann [34] showed that different fiber orientation sets may result in the same second 

order FOT. The three fiber orientations analyzed by Hoffmann [34] are reported in Figure 2.9, 

lead to the same FOT: a = diag(0.5; 0.5; 0). 
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Figure 2.9. Three different fiber orientation distributions resulting from the same FOT 

a=diag(0.5; 0.5; 0) [34]. 

The matrix stiffness related to the three fiber orientations is different. Being aware of the 

inaccuracy deriving from the calculation of the second-rank FOT, it is worthwhile noting that 

the fiber configurations shown in Figure 2.9a and Figure 2.9b are rarely to be found in the 

reality. What is mostly occurring is a combination between them. Therefore, the error 

resulting from the derivation of the second-order FOT can be considered negligible. 

Nevertheless it should be pointed out that the adoption of the fourth-order FOT would remove 

this inaccuracy.  

2.3.2 Fiber volume fraction 

SFRPs are available on the market with different fiber contents. Typically, the fiber mass 

fraction varies between 15 and 50 % of the total weight. Fiber weight fraction Wf and fiber 

volume fraction Vf are related to each other by the following equation: 

 

fffm

fm
f W

W
V                      (2.9) 

 

Where m  is the density of the matrix, f  is the density of the fibers. 

Fiber fraction influences the other microstructural variables (fiber orientation, fiber aspect 

ratio). In [24, 38], it was found that an increase in fiber fraction results in a higher alignment 

of the fibers in the MFD. Friedrich and Karger-Kocsis [36] observed that the ratio between 

the core and the shear layer increases with increasing fiber fraction.  
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The higher the fiber content, the higher the elastic modulus and the tensile strength, and the 

lower the toughness of the material system will be [34, 38-40]. Testing short glass fiber 

reinforced PA66 specimens having different fiber volume fractions under quasi-static loading, 

Thomason [3] and Bernasconi [38] showed that a small addition of short glass fibers results in 

a marked decrease of the strain to failure. With fiber contents in the range of 10 to 35 wt. % 

the strain to failure is pretty constant and it decreases again for Wf > 35 wt. %. 

2.6.2 Fiber aspect ratio 

Fiber aspect ratio (af) is the ratio of fiber length over fiber diameter. During the injection 

molding process, the average fiber length is reduced due to the fiber-fiber and fiber-machine 

contact. Fiber breakage also occurs during the previous chopping and compounding steps 

(Figure 2.10a) [41, 42]. 
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Figure 2.10. (a) Fiber shortening during fiber production process and injection molding; (b) 

fiber length distribution with different fiber contents. 

The amount of fiber breakage depends on several factors as process parameters, fiber volume 

fraction, and complexity of the mold geometry. Figure 2.10b shows typical fiber length 

distributions varying the fiber volume fraction. The fiber length distribution is obtained using 

optical microscopy or image analysis after high temperature ashing [43-45]. However, as 

reported by Pyrz [46] the pyrolysis can also introduce some fiber breakage. 

In [3], Thomason measured the fiber length in short glass fiber reinforced polyamide 

specimens having different fiber volume fractions. He observed that with low fiber loadings 

(Wf < 10 wt. %), the average fiber length is almost independent of the fiber content. For 

Wf < 10 wt. %, the resulting average fiber length is 0.7 mm; almost 6 times lower than the 

initial value (lf = 4 mm). For higher fiber fractions (10 – 40 wt. %), the residual fiber length 
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scales inversely with the fiber fraction. A reduction of the fiber length with the increase of the 

fiber fraction was also reported in [35, 38, 47]. Comparing the fiber length distribution in a 

plain specimen and in an injection molded clutch pedal, Bernasconi and coworkers [48] 

observed that the average length is lower in the latter case probably due to the complexity of 

the mold geometry. In [7], Thomason studied the effect of fiber diameter on stiffness and 

strength properties of injection molded PA66-GF30 specimens. He observed that while the 

composite stiffness is not directly affected by the fiber diameter, the tensile and flexural 

strength as well as the strain at failure increase with increasing the fiber diameter.  

2.6.3 Defects in the microstructure 

As in all other manufacturing processes, the microstructure resulting from injection molding 

is not homogeneous and defect free. Among the most important defects, weld lines, fiber 

breakage, voids, air traps and fiber clusters are briefly discussed in this section. 

Weld lines are regions where two or more streams of molten plastic join together. A weld line 

represents a weak point of a composite structure since it exhibits lower mechanical properties. 

Testing PA66-GF33 specimens milled out of plates in three different configurations: 1) MFD 

aligned to the loading direction; 2) MFD crosswise to the loading direction 3) Specimens 

characterized by a central weld line which is oriented perpendicularly with respect to the 

loading direction, Zhou and Mallick [49] showed that the mechanical properties (Young’s 

modulus, static stress and strain to failure, fatigue resistance) at the weld line are the lowest.  

Fiber breakage occurs during the injection molding process due to fiber-fiber and fiber-

machine contacts. This phenomenon leads to two considerations: 1) The stress transfer 

between matrix and fibers is reduced since the average fiber length is lower; 2) New free 

surfaces due to the fiber breaking are formed which are not covered by any sizing treatment.  

Voids and entrapped air are different types of cavities occurring in injection molded parts. 

Voids are vacuum cavities forming due to material shrinkage, while entrapped air refers to the 

occurrence of air bubbles in the material. These defects can be mitigated by adjusting the 

geometry and the process parameters. They represent structural discontinuities inside the 

material and thus potential location of damage initiation.  

Fiber clusters should be included in the microstructural defects since they reflect the 

inhomogeniety of the fiber distribution. Segurado and Llorca [50] performed a stress analysis 

on matrix material reinforced by spherical particles, for different clustering configurations of 

the particles. Yang and Qin [51] studied the effect of fiber clusters in relation to the 
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mechanical properties of a unidirectional fiber composite. In both cases, it was observed that 

fibers clusters do not significantly influence the stiffness properties of the composite material 

but the local stresses in the matrix. Therefore, fiber clusters may represent preferential 

locations for damage initiation and should be considered in a lifetime prediction model. 
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Chapter 3 

Factors affecting the fatigue material behavior of 
SFRPs 

3.1. Preliminary remarks 

In this chapter, a review of the most important factors affecting the fatigue behavior of SFRPs 

is presented. Firstly, the microstructural variables (fiber orientation and fiber volume fraction) 

are discussed. This is followed by an analysis of the testing parameters (frequency, load ratio, 

mean stress). The discussion continues on the effect of geometrical discontinuities (notches) 

and multiaxiality. Since SFRPs find applications in harsh environments (like under the hood) 

the influence of temperature and fluids on the fatigue behavior is analyzed.  

3.2. Fiber orientation 

In literature, the most common approach for studying the influence of the fiber orientation on 

the mechanical properties of SFRPs has been to test specimens machined from injection 

molded plates at different angles with respect to the Mold Flow Direction (MFD). This 

approach was also used for studying the effect of the fiber orientation on the fatigue strength 

of plain and notched specimens [1-3] and on the fatigue crack propagation using CT 

specimens [4-7]. Bernasconi and coworkers [1] observed a marked decrease of the fatigue 

strength of PA66-GF35 plain specimens with increasing off-axis angle. De Monte and 

coworkers [2] carried out a similar analysis but varying the plate thickness. For 1 mm thick 

specimens, a marked decrease of the fatigue strength with increasing off-axis angle was 

observed. The same fatigue tests carried out on 3 mm thick specimens showed that the fatigue 

data fall into a narrow band irrespective of the machining direction indicating a more isotropic 

material behavior. The analysis of the fiber orientation distribution revealed that 3 mm thick 

specimens are characterized by a thicker core layer than 1 mm thick specimens. Hence, the 

load portion carried by the shear layers varies with the specimen thickness. This result shows 

the limits of such a procedure. In particular, the assumption that the dominant fiber orientation 

coincides with the MFD is strongly dependent on specimen thickness.  
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Horst and Spoormaker [8], milled five parallel specimens from the same plate and tested them 

under static and cyclic loading. They showed that both the static and fatigue strength vary 

depending on the machining position. Specimens located at the plate sides exhibited higher 

static and fatigue strength than those machined out from the center of the plate. At the side 

walls of the mold the fibers are oriented in the MFD (shear layer). The specimens machined 

out from the center of the plate are thus characterized by a more pronounced core effect. 

Similar results were also shown by Laspalas et al. [9] who tested specimens under quasi-static 

loading which were machined at different positions in the plate. However, they reported that 

only specimens machined longitudinally with respect to the MFD are sensitive to the position 

on the plate. Instead, specimens machined transversally to the MFD exhibited similar stress-

strain curves independently of the machining position.   

The knowledge of the MFD is not sufficient to understand the effect of the fiber orientation 

on the fatigue behavior of SFRPs. Instead a three-dimensional analysis of the fiber orientation 

is needed. Moreover, in the real world components, the fiber orientation is much more 

complex than in plain specimens. Thickness variations and geometrical discontinuities 

strongly influence the fiber orientation distribution. A possible approach to deal with these 

cases is to analyze the fiber orientation around a molded notch. The insert used to create the 

notch is an obstacle for the molten flow. Hence, it is representative of geometrical 

discontinuities in injection molded real parts. Bernasconi et al. [10] studied the fatigue 

strength of notched specimens injected at different positions (longitudinally and laterally). 

They found that the specimens injected laterally exhibit lower fatigue strength than those 

injected longitudinally. However, they did not observe any significant variation of the fiber 

orientation at the notch tips. In both cases the fibers were mainly found to be aligned in the 

longitudinal direction of the specimen.  

The effect of the fiber orientation on FCP was investigated in [4-7]. It has been noted that 

fiber orientation affects the threshold for fatigue crack propagation with lower values if the 

fibers are aligned to the crack propagation direction. Moreover it was found that Paris’s 

curves referring to different fiber orientations fall within a scatter band if the crack 

propagation rate is reported as a function of the strain energy release rate. 
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3.3. Fiber volume fraction 

The addition of fibers to the pure matrix leads to an increase of both the lifetime to failure 

(plain specimens) [11, 12] and the fatigue crack propagation resistance (CT specimens) 

[6, 13-19]. In Chapter 6 the influence of the fiber volume fraction on the fatigue strength of 

notched specimens will be analyzed focusing on the damage mechanisms. 

3.4. Frequency 

In a viscoelastic material, loading and unloading processes are not reversible. The energy loss 

per cycle is represented by the area enclosed by the hysteresis loop in a stress-strain diagram 

(Figure 3.1a). In an equilibrium state, the amount of dissipated energy per cycle is released to 

the environment. If the testing frequency is too high, part of the energy is stored in the 

material causing an increase of the specimen temperature (self-heating). 

Testing specimens machined from injection molded plates in the MFD, at R = 0, at room 

temperature, Zhou and Mallick [20] showed that, the acceleration of the testing frequency up 

to 2 Hz results in an increase of the fatigue life. A further increase of the testing frequency 

leads to a reduction of the fatigue life (Figure 3.1b). For f < 2 Hz the decrease of the fatigue 

life is due to the increase of the cycle time. In fact, the lower the frequency, the longer the 

stress is applied during the cycle. For viscoelastic materials, the application of a constant 

stress results in material creep. The creep effect becomes increasingly important as the testing 

frequency diminishes. For f > 2 Hz, the dominant effect accelerating material failure is the 

storage of energy in form of temperature increase. The decrease of the fatigue life with 

increasing the testing frequency was also observed in [21, 22].  
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Figure 3.1. (a) Phase delay between stress and strain signal and hysteresis loop; (b) Effect of 

the frequency on the fatigue life [20].  
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Bernasconi and Kulin [22] showed that fatigue data at different frequencies can be 

synthesized in a unique scatter band if plotted in terms of cyclic creep rate (defined as the 

variation of the mean strain over the cycles) against the number of cycles to failure. Wyzgoski 

et al. [23] studied the effect of the testing frequency on the crack propagation of CT 

polyamide specimens. He reported that low frequency leads to higher crack propagation rate. 

Both investigations on plain and CT specimens published in the literature have shown that the 

fatigue behavior of plastic materials is strongly influenced by the testing frequency. Hence, 

care should be taken when determining the testing frequency in a fatigue test to avoid the 

material self-heating. 

3.5. Mean stress 

Except for the case R = -1, every fatigue stress can be described as the sum of a mean stress 

σm and a stress amplitude σa. Due to the viscoelastic material behavior exhibited by SFRPs, 

the application of a constant stress leads to a gradual increase of the strain over the time. 

Under tension-tension loading mean strain is not zero (Figure 3.2a). In this case, one can 

observe a progressive shift of the hysteresis loop throughout the test (Figure 3.2b) [2, 19, 22, 

24]. This means that, for tension-tension cyclic loading the material undergoes a combination 

of creep and fatigue loading.  
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Figure 3.2. (a) Strain increase due to cyclic loading; (b) Shift of the hysteresis loops due to 

increasing mean stress. 
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Mallick and Zhou [20] carried out fatigue tests on PA66-GF33 plain specimens for different 

load ratios. Comparing two fatigue tests characterized by the same stress amplitude but 

different load ratios, they showed that fatigue strength diminishes with increasing the mean 

stress. If the comparison is made between two fatigue tests characterized by the same 

maximum stress but different load ratios, the higher the stress amplitude, the lower the fatigue 

strength will be (Figure 3.3).  
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Figure 3.3. Effect of the mean stress on the fatigue behavior of PA66-GF35 plain specimens 

[20]. 

Mallick and Zhou also showed that a modified Gerber equation can be used to relate the mean 

stress with the stress amplitude for a specific number of cycles (Figure 3.4).  

 

1
2

rupture

m

f

a

SS
                       (3.1) 

 

Where Srupture is the creep rupture strength and Sf is the fatigue strength for R = -1. Unlike for 

metals, the intercept with the x axis (σa = 0)  is the creep strength and not the static strength. 
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Figure 3.4. Effect of the mean stress on the fatigue strength [20]. 

The results reported by Zhou and Mallick [20] were confirmed in [2, 25]. In [2], De Monte 

and coworkers tested plain specimens made of PA66-GF35 under tension-compression 

loading (R = -1) and tension-tension loading (R = 0) reporting a lower fatigue strength in the 

second case. Sonsino and Moosbrugger [25] confirmed the detrimental effect of a positive 

mean stress for specimens with holes. 

3.6 Notch 

Injection molded parts are characterized by several geometric discontinuities. These regions 

represent stress concentrations and therefore are potential locations for the damage initiation. 

Examples of failure of real parts at notches are reported by Sonsino and Moosbrugger [25] 

and by Bernasconi et al. [26]. In order to investigate the notch effect on the fatigue strength of 

SFRPs, Sonsino and Moosbrugger [25] tested specimens with different notch geometries 

under uniaxial cyclic loading. They reported a significant decrease of the fatigue resistance 

with decreasing notch radius.  

Zhou and Mallick [20] tested specimens with holes varying the hole diameter. They plotted 

the fatigue data in terms of gross and net cross-sectional area against the number of cycles to 

failure. In the former case, they observed a reduction of the fatigue strength increasing the 

hole radius, while in the latter case all the fatigue data fell within a scatter band so that they 

could be fitted by a unique S-N line. 

De Monte and coworkers [27] reanalyzed fatigue data on notched specimens with different 

notch radius, for R = 0 and R = -1, in terms of local Strain Energy Density (SED) range 

showing the fatigue data can be summarized in a single scatter band. The SED model was 
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originally developed by Lazzarin et al. [28-30]. The criterion was applied to weld joints 

[31, 32] and it was used for predicting the static failure of quasi-brittle materials [33]. One of 

its main advantages is that singular stress fields can be analyzed. In fact the energy averaged 

over a material volume surrounding the notch tip has a finite value even if the radius at the 

notch tip tends towards zero (crack). The energy is averaged over a volume of radius R which 

is a material property. Only two fatigue curves are needed for calibrating the model namely 

one for plain specimens and one for cracked specimens.  

Basing on the same fatigue data reported by De Monte [27], Sonsino and Moosbrugger [25] 

proposed a volume based method originally developed for metallic materials [34]. The failure 

variable is the material volume included in the range (σpeak – 80 % σpeak). The fatigue analysis 

can be carried out using a calibration curve which is derived experimentally from fatigue tests 

on notched specimens. This curve correlates the maximum peak stress for a given number of 

cycles with the material volume in the range σpeak and 80 % σpeak.  

3.7 Multiaxiality 

Quaresimin and coworkers [35] distinguished between external and internal multiaxiality 

depending upon whether a multiaxial stress state is generated by an external load or due to the 

material anisotropy. Local stress fields depend on the mutual orientation between external 

load and on fiber-matrix and fiber-fiber interactions. In the literature, the effect of external 

multiaxiality on the fatigue behavior of SFRPs was investigated in [36-40]. De Monte et al. 

[40] investigated the effect of multiaxial loading on the fatigue life of hollow tubular 

specimens made of PA66-GF35. They also considered the effect of load ratio, temperature 

and shifting phase. It was observed that for both tension-tension (R = 0) and tension-

compression (R = -1) loading, at room temperature, the fatigue strength under pure torsion 

loading is lower than under pure tensile loading (Figure 3.5). However, the most severe case 

is represented by the combination, in equal parts, of tensile and torsion loading. The 

combination of tension and torsion loading is expressed by the biaxiality factor λ = τ/σ. A 

lower biaxiality factor λ = 1/3 resulted in a higher fatigue resistance. A slight beneficial effect 

of the out-of-phase loading (δ = 90°) on the fatigue resistance was observed for both λ = 1 and 

λ = 0.3. The same considerations apply in the case R = -1. However, for R = -1, the beneficial 

effect of the phase shifting is negligible. At high temperature, (T = 130 °C) the fatigue 

strength is lower for all the considered cases. In particular, for R = -1, pure torsion, λ = 1 and 
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λ = 0.3 fatigue data fall in an unique scatter band revealing that the shear stress is controlling 

the fatigue life. 
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Figure 3.5. Effect of multiaxial loading on the fatigue resistance of tubular specimens [40] 

In a subsequent work, De Monte et al. [37] studied the effect of the notch on the fatigue 

resistance of PA66-GF35 tubular specimens under multiaxial loading. Firstly tubular 

specimens characterized by a molded-in V-shaped notch (Rnotch root = 0.2 mm) were 

manufactured by injection molding. These specimens were tested at R = 0 and R = -1 under 

the four testing conditions already reported in the previous work (pure tensile loading, pure 

torsion loading, λ = 1 and λ = 0.3). Unlike for plain tubular specimens tested at R=0, no 

significant difference in terms of fatigue strength was observed between specimens tested 

under pure torsion and pure tensile loading. Instead, the combination in equal parts of tension 

and torsion loading resulted in a decrease of the fatigue strength. For tension-compression 

loading (R = -1), pure torsion resulted in a slight reduction of the fatigue resistance in 

comparison to pure axial loading. S-N lines of plain and notched tubular specimens under 

pure torsion loading, were found to overlap each other. This result suggested that the material 

is notch insensitive when subjected to pure torsion. The second step was to drill a circular 

hole of radius (R = 1 mm) in the central part of the plain tubular specimens. The hole was 

obtained at 90° with respect to the weld line which resulted from the injection molding 

process. Fatigue tests of these specimens under pure torsion revealed a significant decrease of 

the fatigue strength when compared to plain tubular specimens. This occurs in spite of the fact 

that the notch radius is 5 times larger than the tip radius of the molded V-shaped notch. This 
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result indicates that the fatigue material behavior exhibited by specimens with molded-in 

notches is affected by the fiber orientation distribution at the notch tip. The multiaxial fatigue 

behavior of SFRPs was also investigated by Klimkeit and coworkers [38, 39]. Tubular and 

plain specimens made of PBT-GF30 were tested under multiaxial fatigue loading. The authors 

confirmed that the fatigue strength of tubular specimens is really sensitive to shear stress. In 

particular, they observed that the fatigue strength of tubular specimens under multiaxial 

fatigue loading with biaxiality ratio λ = 0.5 is between the pure tensile and the pure torsion S-

N lines confirming the results shown by De Monte et al. [40]. 

3.8 Fluids 

The choice of polymer for under-the-hood applications is driven by the compatibility of the 

material with automotive fluids such as gasoline, diesel, brake fluid, motor coolant. 

Polyamides are known to absorb a significant amount of water and other polar fluids. Water 

content in PA66-GF35 at ambient temperature and 50 % relative humidity is typically 2.5 % 

by weight. Fluid absorption by the composite leads to volume increase (swelling). Thomason 

and coworkers [41-44] investigated the mass and volume change of short fiber reinforced 

polyamide after conditioning in three different fluids: water, ethylene glycol and water-glycol 

mixture. They observed that swelling is anisotropic being lower in the fiber direction since 

fibers prevent matrix to deform.  They also showed that 1) Water-absorption rate increases 

with temperature; 2) water uptake at equilibrium is almost temperature independent but fluid 

dependent, being higher for water-ethylene glycol antifreeze than for water alone. 

The fluid uptake leads to chemical and mechanical changes in the material. It is well known 

that the glass transition temperature of polyamides strongly decrease with increasing water 

content [43-47]. This means that some polyamide parts that have been exposed exposed to 

water or other polar fluids could be found in the rubbery state at room temperature. The fluid 

absorption has normally a plasticizing effect on polyamides leading to a decrease of both 

Young’s modulus tensile strength [48, 49], an increase of the notch impact [44] and strain at 

failure [50].  

The influence of the media on the fatigue behavior of SFRPs was studied, although in lower 

extent than for quasi-static loading. Karger-Kocsis and Friedrich [51] performed FCP tests on 

dry and water saturated unfilled polyamide specimens. They found that conditioned 

specimens exhibit a lower ΔKth and a higher crack propagation rate. The same results were 

confirmed by Günzel and coworkers [52]. They performed FCP tests on DAM and 
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conditioned (water content: 2.1 wt. %) PA66-GF30 specimens and observed a shift of the 

Paris curve to the left due to the water absorption. Brodowsky et al. [53] performed fatigue 

tests on single-fiber specimens (matrix: PA, fiber: Glass) in DAM condition and after water 

conditioning. In the latter case they reported for the same applied displacement a lower 

resulting force due to the mollifying effect of water. 

3.9 Temperature 

The temperature under the hood depends mainly on the following factors: Motor and exhaust 

systems, external temperature, cooling system. A typical temperature range for under-the-

hood component goes from -40 to 120 °C. -40 °C is typically the temperature experienced by 

mechanical and electro-mechanical systems when motor starts in extremely cold ambient 

conditions. On the other hand, just after motor switch off, when the cooling system ceases to 

function, temperature under the hood can reach up to 120 °C. Thermal loading affects both 

the stiffness and the strength of SFRPs and represents challenging requirements for SFRPs in 

automotive applications. Mechanical properties of SFRPs vary significantly through Tg.  

The detrimental effect of the temperature on the fatigue strength of short glass fiber reinforced 

polyamide was reported in [2, 25, 48, 54]. Jia and Kagan [48] observed that fatigue data at 

different temperatures fall within a scatter band if the stress amplitude is divided by the 

corresponding tensile strength. 

Heating is non-negligible ahead of the crack tip during crack propagation [23, 55]. Lang and 

Manson [55] studied heating at crack tip during crack propagation on CT specimens of PA 

and PS systems. They identified two mechanisms which lead to temperature increase at the 

crack tip: hysteretic heating and frictional heating. The hysteretic heating is the mechanical 

energy supplied during one cycle and corresponds to the area enclosed by the hysteresis loop. 

The frictional contribution is due to the damage mechanisms such as friction between crack 

surfaces during the unloading part of a fatigue cycle and the fiber matrix friction occurring 

when fibers are pulled out from matrix.  

In some applications failure is not caused by cyclic loading at a specific temperature, but 

rather due to cyclic temperature variation. When the cyclic stress is caused by temperature 

variations we refer to Thermomechanical Fatigue (TMF). The TMF test developed at the 

Department of Management and Engineering-University of Padova and presented in [56, 57] 

consists firstly in the application of a constant pre-strain to the specimen (which is held 

constant throughout the test) and then in a cyclic temperature variation between two extreme 
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temperatures (i.e. -40 °C < T < +120 °C) within a short span of time (for example, 5 min). 

The resulting stress profile follows the temperature profile where maximum stress 

corresponds to the minimum temperature and the minimum stress to the maximum 

temperature. The application of the previously described test to plain and notched specimens 

leads to earlier failure when compared with displacement controlled fatigue tests carried out at 

constant temperature [57]. 
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Chapter 4 

Life to crack initiation in notched specimens of 
unreinforced and short fiber reinforced polyamide 
under fatigue loading 

Keywords: Short Fiber Reinforced Plastics, Fatigue, Polyamide, Crack initiation 

Abstract 
An optical method was developed to quantify the lifetime to crack initiation during fatigue 

tests of unreinforced and short glass fiber reinforced polyamide notched specimens. During 

the fatigue test execution, pictures of the region surrounding the notch were captured using a 

CCD camera. The image acquisition system was synchronized with the testing machine. The 

crack initiation detection is based on the variation of the grey value distribution along a 

straight path tangent to the notch tip due to the crack occurrence. 

The contribution of the crack initiation and growth phase to the total lifetime was studied for 

different load levels and fiber volume fractions. S-N lines to failure and to crack initiation 

were compared against each other. The proposed experimental methodology is validated by 

interrupting fatigue tests before failure and measuring the crack length by means of optical 

microscope. 

4.1  Introduction 

Short Fiber Reinforced Plastics (SFRPs) find an increasing number of applications in the 

automotive sector. Thanks to their high strength to weight ratio, high temperature and 

chemical resistance, SFRPs are excellent candidates for under-the-hood applications. Under-

the-hood parts are exposed to cyclic loading due to vibrations, pulsating pressure, temperature 

variations [1, 2]. When subjected to fatigue loading, the typical failure scenario of an injection 

molded part is the crack initiation at a geometric discontinuity [3] and its propagation until 

separation into two or more parts.  
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In the last decades, the research on the fatigue behavior of SFRPs has proceeded on separate 

tracks. On one side, the derivation of fatigue curves for plain specimens, on the other side, the 

Fatigue Crack Propagation (FCP) tests using Compact Tension (CT) specimens. The 

specimen geometries in the two cases reflect the two extremes of the fatigue material 

behavior. As shown in [4], failure of plain specimens is not preceded by any observed stable 

crack propagation. On the other hand, the use of CT specimens aims to study only the crack 

propagation. Fatigue failure of injection molded parts is likely to stand in the middle of these 

two scenarios. Cracks are expected to initiate at structural discontinuities such as notches or 

section changes and to propagate until final failure. 

In certain structural components such as fuel rails, failure corresponds to the onset of a crack. 

According to the definition by Talreja [5], failure is the inability of a material system to 

perform its design function. The function of the fuel rail, is to convey fuel under high pressure 

to the injectors. If a crack occurs, the function of the fuel rail is lost. In other applications (i.e. 

plastic cases of power tools), injection molded parts may fulfill the design function even after 

the nucleation of a crack. The use of a model able to predict the crack initiation or the total 

lifetime should be related to the application. Nevertheless, “no-crack” is the dominant 

criterion in the durability analysis of SFRP parts. This is primarily due to the lack of models 

able to distinguish between the two phases of the total lifetime (initiation and propagation). In 

[2] thermo-mechanical fatigue tests of short glass fiber reinforced polybutylene terephthalate 

(PBT-GF30) notched specimens were interrupted when a 0.5 mm crack was observed. The 

distinction between crack initiation and crack propagation has been investigated more 

extensively for continuous fiber reinforced composites. Quaresimin et al. [7, 8] used two 

different representations (S-N lines and Paris-like curves) for illustrating the initiation and the 

propagation phase of Glass/Epoxy tubes undergoing multiaxial fatigue loading. 

The aim of this work is to quantify the fraction of the total fatigue life of notched specimens 

spent in the initiation of a crack. An experimental optical method was developed for the crack 

initiation detection. The present work is part of the long-term collaboration between the 

University of Padova and the corporate research of Robert Bosch GmbH aimed to develop 

lifetime prediction models for SFRPs.  
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4.2  Experimental set up 

Unreinforced and short glass fiber reinforced polyamides (PA66) were used in this work. Five 

material systems were considered: PA66, PA66-GF15, PA66-GF25, PA66-GF35, 

PA66-GF50 which correspond to 0 %, 15 %, 25 %, 35 %, 50 % weight fiber fraction 

respectively. Injection molded specimens characterized by a central slit (Rnotch = 0.2 mm) 

were used. The Mold Flow Direction (MFD) corresponds to the horizontal direction in 

Figure 4.1.  Fiber length as well as the fiber orientation varies with the fiber fraction. In 

[9, 10] it was observed that an increase of fiber fraction results in an increase of the fiber 

alignment to the MFD and a decrease of the average fiber length.  

 

Figure 4.1. Specimen geometries and dimensions (in mm). 

The notch was molded in and not machined afterwards. This configuration is closer to real 

injection molded parts which, in most cases, do not require any post-molding finishing 

operation since they are ready to use after ejection from the mold. Each geometric 

discontinuity in the mold represents a stress concentration but also a perturbation for the 

plastic molten flow which locally affects the fiber orientation distribution. The effect of 

molded-in and machined notch on the torsional fatigue resistance of PA66-GF35 hollow 

tubular specimens was studied by De Monte and coworkers in [11, 12]. In [11] it was found 

that the torsional fatigue resistance of plain and notched (molded-in V-shaped notch, 

Rnotch  = 0.2 mm) hollow tubular specimens is similar. In another work [12], a strong decrease 

of the torsional fatigue resistance was observed when drilling a hole (R = 1 mm) in the central 

part of plain tubular specimens. Even if the drilled hole has a larger diameter than the molded 
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notch, it strongly affects the torsional fatigue strength of the composite material. This is due 

to the reinforcement effect of the fiber orientation distribution at the notch tip. 

The optical method for the determination of the lifetime to crack initiation was developed in 

two phases. An automated picture capturing system based on NI Labview® was developed at 

DTG-University of Padova (Figure 4.2a). This method was used by Schaaf and coworkers [2] 

for interrupting thermo-mechanical fatigue tests of notched specimens when a 0.5 mm crack 

was observed. Uniaxial load-controlled fatigue tests were carried out on a 25 kN hydraulic 

test system. Some fatigue tests were interrupted for studying the effect of various lighting 

techniques on the picture quality (Figure 4.2b-d). A 600 x 800 analog CCD Camera with 

optical magnification was used for this purpose. Firstly, indirect halogen lamps were used to 

illuminate the specimen (Figure 4.2b) revealing cracks departing from the tips of the notch. 

Figure 4.2c-d shows pictures of the region surrounding the notch when the specimen is 

illuminated using LED lamps. The orientation of the LED lamps strongly affects the quality 

of the pictures. In Figure 4.2c the illumination is horizontal. The specimen is cracked at both 

the sides of the notch but the cracks are hard to see. Instead, the vertical scratches on the 

specimen surface due injection molding are highlighted due to the horizontal direction of the 

luminous flux. Figure 4.2d shows the picture when the luminous flux of the LED lamps is 

vertical. Cracks at both the tips of the notch are easier to see. Hence, by comparing the three 

pictures to each other, it can be concluded that LED lamps oriented parallel to the crack 

opening direction enable the best possible crack detection. 
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Figure 4.2. (a) Experimental set up at DTG; (b) Indirect halogen lamps, homogeneous 

illumination; (c) Direct led lamps, horizontal illumination; (d) Direct led lamps, vertical 

illumination and inverted colors. The circle around the notch is the mark left by the insert on 

the specimen surface. 

The proposed methodology was further developed at Robert Bosch GmbH (Figure 4.3a). A 2 

Megapixels CCD camera was used. According to the work done in the set-up phase of the 

initial investigation, two high-performance LED lamps were mounted on the framework to 

illuminate the specimen surface. To improve the image contrast, the specimen surface was 

sprayed in white (Figure 4.3b). The image acquisition system was synchronized with the 

testing machine. The system takes a picture when the 90 % of the maximum applied load is 

reached. The image acquisition rate was adapted to the testing frequency. Since only the 

specimen surface was investigated, it was assumed that the crack front is homogeneous 

through the thickness. This was verified by dedicated through-the-thickness analyses. 
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Figure 4.3. (a) Experimental set up at Robert Bosch GmbH; (b) White spray pattern applied 

to the specimen surface. 

Uniaxial load-controlled fatigue tests were carried out on a 10 kN servo-hydraulic testing 

machine, under tension-tension loading (load ratio: R = 0). The fatigue tests were carried out 

at room temperature; variations of ambient relative humidity were not controlled. The 

specimens were tested in dry-as-molded conditions. Right after the injection molding, they 

were stored in a drum containing a drying agent (silica gel pearls). The test frequency was 

chosen in order to avoid the self heating of the specimen and varies inversely with the load 

level. Fatigue tests were carried out until the separation of the specimen into two parts. Data 

were post processed using Matlab® after completion of the test. The procedure for the data 

analysis is summarized in Figure 4.4. A segment tangent to notch tip was superimposed to the 

picture taken before starting a fatigue test (Figure 4.4a-b). Each pixel has a grey value 

between 0 and 255. Before crack onset, the grey value distribution along the path is roughly 

constant (Figure 4.4b). The crack occurrence appears as a discontinuity on the white pattern. 

A negative peak in the grey value distribution indicates the onset of a crack (Figure 4.4e). 

This procedure is applied through a loop operation to all the pictures taken during the fatigue 

test. Figure 4.4c-f shows the trend of the minimum grey value along the path, throughout the 

fatigue test. The trend remains approximately constant during the first part of the test. At a 

certain point, a sudden drop of the minimum grey value is noticed. This point corresponds to 

the crack initiation. The cracks at the right and the left of the notch may not occur at the same 
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time. In this work, the criterion for determining the crack initiation is based on the first 

detectable crack. 

 

 

Figure 4.4. (a) Sprayed surface around the notch; (b) Grey value profile along the defined 

path; (c) Trend of the minimum gray value during the fatigue test. (a)-(c) Before the crack 

onset; (d)-(f) After crack onset. 
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The minimum grey value along the path decreases even after crack initiation. This is due to 

the increasing distance between the crack surfaces (Figure 4.5).  

 

 

Figure 4.5. Crack initiation and propagation during fatigue test of notched specimens. 
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4.3 Validation of the experimental method 

For the validation of the proposed method, some fatigue tests on PA66-GF35 specimens were 

interrupted at 50 % of the expected total lifetime. In this way, it was possible to compare the 

real crack length with the values measured according to the optical method. Once a fatigue 

test was interrupted, a sample around the notch was machined from the specimen and 

prepared for microscopic investigations. For the measure of the crack length, an optical 

microscope (Axio Scope.A1) was used. Figure 4.6 shows a comparison between the crack 

length measured by the optical method (on the left) and the real crack length measured by 

means of the optical microscope after polishing the specimen surface (on the right). The 

measure of the crack length is based on the distance between the two crack extremities. 

 

(a)

(c)

0.42

0.47

(b)

(d)

0.34

0.59

 

Figure 4.6. Comparison between the crack length measured by the optical method (on the 

left) and the real crack length measured by optical microscopy (on the right). 

The results of the comparative analysis are summarized in Table 4.1. Due to sample 

preparation for the microscopic analysis, a layer of about 0.5 mm is removed from the 

specimen thickness. This may have an effect on the results of the measurements. Excluding 
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the test n°6 for which the crack on the left side was not noted using the optical method, for all 

the other tests, the maximum deviation between the measurements by the two techniques is on 

the order of 0.1 mm.  

Table 4.1. Comparison between the crack length measured using the optical method and the 

crack length measured by optical microscopy after specimen preparation. 

Test  σa(net)  Frequency  
Cycles at 

interruption  

Crack measure: 

CCD camera  

Crack measure: 

Microscope  
Deviation 

n°  [MPa]  [Hz]  [Cycles]  
Left 

[mm]  

Right 

[mm]  

Left 

[mm]  

Right 

[mm]  

Left 

[mm]  

Right 

[mm]  

1 31 8 7080 0.30 0.22 0.29 0.27 0.01 0.05 

2 31 8 7080 0.26 0.40 0.23 0.25 0.03 0.15 

3 23 10 65000 0.47 0.34 0.59 0.42 0.12 0.08 

4 23 10 65000 0.53 0.44 0.56 0.33 0.03 0.11 

5 18 20 392000 0.66 0.72 0.61 0.80 0.05 0.09 

6 18 20 392000 0.00 0.53 0.40 0.57 0.40 0.03 

4.4  Fatigue tests results 

Life to crack initiation and to final failure (specimen separation) are compared in Figure 4.7. 

Fatigue data were fitted by power laws using eq. 4.1 assuming a log-normal statistical 

distribution. 

 

constNk
a                                                                                                                  (4.1) 

 

The values of σA(N = 1E6 cycles), for 50 % survival probability, k and the scatter index 

Tσ = σa,10%/σa,90% are summarized in Table 4.2. Although the amount of data is limited, it is 

worthwhile noting that the fatigue data to failure have lower scatter than fatigue data to crack 

initiation. Fatigue resistance increases with increasing fiber fraction. A similar result was 

reported for other material systems in [13, 14]. For neat polyamide specimens, it was 

observed that the contribution of the crack propagation to the total lifetime is negligible. In 
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this case, only the fatigue curve to failure was drawn. The fatigue curve of the unreinforced 

polyamide is significantly flatter than the others. A similar result was reported by Mandell et 

al. [13, 15] for PPS, PA66 and PEEK based materials. The fatigue curves to failure and to 

crack initiation are nearly parallel except for PA66-GF50. According to the proposed optical 

method, the fraction of the lifetime spent for the crack initiation remains the same irrespective 

of the load level. 
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Figure 4.7. Fatigue curves to failure and to crack initiation for different fiber volume 

fractions. 
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Table 4.2. Summary of the fatigue curve parameters for each test series. 

Material 

Initiation Failure 

σA k Tσ σA k Tσ 

[MPa] - - [MPa] - - 

PA66 9.50 20.12 1.051 9.50 20.12 1.051 

PA66-GF15 10.31 9.72 1.136 10.80 9.17 1.052 

PA66-GF25 12.42 7.46 1.073 13.99 7.59 1.032 

PA66-GF35 15.10 7.60 1.124 16.94 6.81 1.022 

PA66-GF50 15.03 6.18 1.128 18.99 6.95 1.056 

  
Figure 4.8 shows the average fraction of the total lifetime spent in the crack initiation for the 

various fiber contents analyzed in this work. With low fiber fractions (Vf = 15 wt. %) the 

crack initiation and propagation phases are almost equal. Instead, with high fiber fractions, the 

lifetime spent for the crack initiation is lower than the crack propagation. Friedrich et al. [16] 

observed that the crack propagation rate slows down with increasing fiber fraction. These 

results were confirmed by Karger Kocsis [17] for a short glass fiber reinforced polyamide 

(PA6), by Evans et al. [18] for a Polyether ether ketone (PEEK) reinforced by short glass 

fibers, by Voss and Karger Kocsis [19] for a long glass fiber reinforced polybutylene 

terephthalate (PBT) and finally by Pegoretti and Riccò [20] for a short glass fiber reinforced 

polypropylene (PP).  
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Figure 4.8. Contribution of the crack initiation and growth phase to the total lifetime for 

various fiber fractions.  

4.5 Conclusions 

An optical method for the quantification of the life to crack initiation in unreinforced and 

short glass fiber polyamide notched specimens has been presented. The easy set up and high 

degree of automation make the method particularly suitable for large experimental testing 

campaigns. The proposed methodology was validated by carrying out interrupted fatigue tests 

and measuring the crack length by optical microscopy. It was found that the maximum 

deviation between crack length measured with the optical method and the real crack length 

measured by means of optical microscope is on the order of 0.1 mm. The analysis shows that 

the fraction of the total lifetime spent in the crack initiation diminishes with increasing fiber 

fraction. For unreinforced materials, the crack propagation phase is negligible.  
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Chapter 5 

Damage mechanisms in a short glass fiber 
reinforced polyamide under fatigue loading 

Keywords: Short Fiber Reinforced Plastics, Damage Mechanisms, Fatigue, 

Interface / Interphase 

Abstract  
This paper presents a damage investigation on a short glass fiber reinforced polyamide 

(PA66-GF35) under fatigue loading. Plain and notched specimens were tested at room 

temperature and humidity with load ratio R = 0.  Electron microscopy was used to analyze the 

fracture surface of failed specimens and the crack path of specimens subjected to interrupted 

fatigue tests. Damage mechanisms were studied investigating the following fractographic 

features: matrix fracture behavior (ductile / brittle), fiber failure / pull-out, degree of fiber-

matrix interfacial adhesion. The aim of the present paper is to understand the nature of 

damage initiation and propagation in order to lay the foundations for the development of a 

multi-scale, mechanism-based lifetime prediction model for short fiber reinforced plastics. 

5.1. Introduction 

In the car engine compartment, Short Fiber Reinforced Plastics (SFRPs) are increasingly 

replacing metals in structural applications. High strength to weight ratio, high temperature and 

chemical resistance make these materials excellent candidates for under-the-hood 

applications. The competitiveness of SFRPs is also related to the advantages offered by the 

injection molding process. This technology enables complex geometries to be manufactured 

at high production rates without the need for additional post-molding machining operations. 

The durability assessment of SFRPs plays a key role in the design of injection molded 

structural parts. Typical under-the-hood parts such as fuel rails, pump housings and sealing 

elements are exposed to cyclic loading due to vibrations, pulsating forces, temperature 

variations. Often, in the automotive industry, several prototypes are needed before beginning 

the series production. Lifetime prediction models aim to reduce the number of recursions 
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before the series production by virtually optimizing the product in the early stages of the 

project. Lifetime predictions are accurate when the damage mechanisms are understood and 

properly integrated in the model. In SFRPs, damage mechanisms occur at a length scale 

below the macroscopic scale due to the interactions between the material constituents (fiber, 

matrix, fiber-matrix interface). Multi-scale models aim to bridge the scale at which the 

damage mechanisms occur and the macro-scale of structural applications. The first step in 

developing such a model is an extensive damage investigation.  

The aim of this work is to investigate the fatigue damage mechanisms in plain and notched 

short glass fiber reinforced polyamide specimens in order to lay the basis for the development 

of a multi-scale lifetime prediction model. In the last 30 years, many papers were dedicated to 

the investigation of damage and failure mechanisms of SFRPs under fatigue loading. 

Considering the first works in this field in the 1970s [1, 2], the investigation techniques have 

taken huge steps in terms of accuracy of observation, image quality and development of new 

methodologies. Fractographic examinations by means of Field Emission Scanning Electron 

Microscope (FESEM) on a short fiber reinforced PBT were shown recently by Hoffmann [3]. 

Comparing the micrographs in [1, 2, 4, 5] with those in [3], the improvement of the 

microscopy technique in terms of resolution, magnification, image quality becomes 

immediately evident. 

In Section 5.2, the authors reviewed the damage mechanisms from literature and sorted them 

based on specific fractographic features: matrix fracture behavior (ductile / brittle), fiber 

failure, fiber pull-out and degree of fiber-matrix interfacial adhesion. The results from the 

literature were compared with the results of an extensive damage investigation carried out at 

Robert Bosch GmbH on plain and notched short fiber reinforced polyamide specimens 

(Section 5.5). The damage investigation was conducted by means of three methods: 1) 

Infrared (IR) Thermography (Section 5.5.1); 2) Microscopic investigation of the fracture 

surface (Section 5.5.2); 3) Microscopic investigation of the crack path (Section 5.5.3). 

Damage mechanisms were investigated at multiple scales. Macro- meso- micro- nano-scale 

are frequently referred in the literature. Macro-scale is the scale of the specimen. At this scale, 

SFRPs are treated as homogeneous materials. The objectives of the macroscopic damage 

analysis are: 1) Localization of the crack initiation; 2) Investigation of the failure mode of 

plain and notched specimens. The meso-scale is the scale of the Representative Volume 

Element (RVE) [6]. At this scale, fibers and matrix are treated discretely, whereas the 

microstructural variables (fiber orientation, fiber volume fraction, fiber aspect ratio) are used 
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to globally describe the RVE [7]. The analysis at the meso-scale aims to study the influence 

of the fiber orientation on the crack initiation / propagation. The micro-scale is determined by 

the fiber diameter. At this scale SFRPs are described as three-phase materials (fiber, matrix, 

fiber-matrix interface). Particular attention is given to the analysis of the fiber-matrix interface 

after the application of cyclic loading. Fracture in composite materials can be either cohesive 

or adhesive depending upon whether a layer of matrix adheres to the fibers or not. Modern 

electron microscopes allow the investigation of the fiber-matrix interface at such a level of 

detail that was impossible just a few years ago. The issue whether damage occurs at the 

fiber-matrix interface or in the resin, at a certain distance from the interface, is crucial for the 

development of a damage-based model. Mirror-clean fibers on the fracture surface indicate 

fiber-matrix debonding. Otherwise, the mechanism is matrix cracking and the analysis should 

be focused on the resin layer covering the fibers. During the fiber forming process, fibers are 

coated by a mixture of chemicals and water called sizing in order to improve the fiber-matrix 

adhesion. Fiber sizing can chemically and mechanically affect the resin layer at the 

fiber-matrix interface leading to the formation of an interphase layer with different 

mechanical properties from the bulk matrix. Finally, a preliminary analysis of the damage 

mechanisms preceding the initiation of micro-cracks is presented.  

5.2. Literature review on the damage mechanisms investigated by 
means of electron microscopy 

The first works on the damage investigation of SFRPs under fatigue loading date back to the 

1970s and were motivated by the following reasons: 1) Comparing the fatigue behavior of 

different material systems; 2) Improving the mechanical properties varying the material 

microstructure; 3) Finding quantitative relationships between material failure modes and 

macroscopic material response. Historically, the damage investigation by means of electron 

microscopy has been based on two techniques: analysis of the fracture surface or of the crack 

path [1, 2, 4, 8-10]. In the former case, specimens are tested until failure. In the latter case, 

fatigue tests are interrupted before failure and the side surface of the specimen is polished for 

microscopic investigations. These two analyses offer complementary and mutually enriching 

points of view. The degree of fiber-matrix adhesion, the pull-out length, the amount of broken 

fibers can be examined through both analyses. Instead, the observation of the fracture surface 

is better for investigating the matrix fracture behavior (ductile / brittle) while the analysis of 
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the side surface of the specimen enables the study of the influence of the fiber distribution on 

the crack path. Both methodologies present some disadvantages. The analysis of the fracture 

surface requires the specimen separation into two parts limiting the access to the mechanisms 

responsible for the first event of damage. The observation of the side surface of a specimen 

limits the damage analysis to one planar section of the crack without any information on the 

damage mechanisms along the specimen thickness. A comprehensive analysis should 

consider multiple sections along the specimen thickness increasing the effort in the samples 

preparation.  

Through the traces left by the crack on the fracture surface, it is possible to study the damage 

mechanisms occurring due to cyclic loading in a fatigue test. The damage mechanisms 

reported in literature were reviewed by reference to specific fractographic features: matrix 

fracture behavior (ductile / brittle), fiber failure / pull-out, degree of fiber-matrix interfacial 

adhesion. Finally, the effect of the fiber distribution on the damage mechanisms was also 

reviewed. 

 

1) Matrix fracture behavior 

 

Evidence of ductility / brittleness on the fracture surface reflects the local mode of crack 

advance. Ductile matrix behavior was observed on the fracture surface caused by initiation 

and stable Fatigue Crack Propagation (FCP) [4, 11-15]. Brittle matrix behavior indicates 

unstable crack propagation. Ductile matrix fracture indicates matrix yielding and appears in 

form of polymer filaments. The degree of matrix ductility on the fracture surface is related to 

the length of the polymer filaments. It depends on the material system, testing conditions 

(temperature, humidity), load level. Analyzing PA6-GF30 Compact Tension CT specimens 

under fatigue loading, Karger-Kocsis [16] observed a higher ductile matrix behavior at the 

end than at the beginning of the stable FCP. Horst and Spoormaker [15] compared the fracture 

surface of conditioned PA66-GF35 plain specimens, failed under static and fatigue loading. 

They observed a much larger ductile area in the latter case. Horst and Spoormaker [15] also 

compared the fracture surface of conditioned and dry-as-molded fatigued specimens, 

reporting a higher degree of the matrix ductility in the former case. Karger-Kocsis and 

Friedrich [17] observed that the degree of matrix ductility on the fracture surface of PA66-

GF30 specimens failed under fatigue loading increases with testing temperature. The same 

result was reported by Noda et al. [18] for a short glass fiber reinforced polyamide 
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(PA66-GF33) tested under fatigue loading below and above the glass transition temperature 

of the material and by Schaaf and coworkers [19] testing a short fiber reinforced polybutylene 

terephthalate (PBT-GF30) under strain controlled fatigue loading at different temperatures 

(T = -40; 23; 120 °C). 

 

2) Fiber failure / fiber pull-out 

 

The amount of broken fibers on the fracture surface depends on the loading type. In [4] it was 

found that the fracture surface of specimens failed under fatigue loading shows a higher 

amount of broken fibers than the fracture surface caused by static loading. According to Lang 

[4, 20] fiber failure is due crack closure effects. During the unloading part of the cycle, fibers 

fail by buckling and bending. Sato [21] observed more pulled-out fibers than broken fibers on 

the fracture surface of PA66-GF30 specimens failed under static loading. Testing PA66-GF33 

plain specimens under fatigue loading, Noda et al. [18] observed pulled-out and broken fibers 

depending upon whether the temperature is above or below the glass transition temperature. 

Lang et al. [4, 20] noticed that the pull-out length is shorter on the fracture surface caused by 

stable FCP than unstable FCP. Horst and Spoormaker [15] observed that the pull-out length is 

shorter for specimens failed under fatigue loading than under static loading. 

 

3) Fiber-matrix adhesion 

 

The quality of fiber-matrix adhesion strongly affects the fatigue strength of SFRPs. Friedrich 

[22] analyzed the crack propagation behavior for a short glass fiber reinforced Polyethylene 

terephthalate (PET) in case of good (commercial) and very poor sizing. The poorly bonded 

material system exhibited higher crack propagation rate. Friedrich observed mirror-clean 

fibers on the fracture surface of the poorly bonded material system and high interfacial 

fiber-matrix adhesion on the fracture surface of the commercial material. The degree of 

fiber-matrix adhesion strongly depends on the material system and the testing conditions. 

Horst [15] and Bernasconi [13] observed mirror-clean fibers analyzing the fracture surface of 

conditioned short glass fiber reinforced polyamide specimens failed under fatigue loading. 

The same result was reported by De Monte [23] testing PA66-GF35 tubular specimens under 

multi-axial loading in Dry As Molded (DAM) condition. Contrary to previous results, 



Chapter 5.  Damage mechanisms in a short glass  
fiber reinforced polyamide under fatigue loading 
 

70 
 

Karger-Kocsis noticed very good fiber-matrix bonding in a short fiber reinforced PA66 [24] 

and in a short glass fiber reinforced PBT [25] under fatigue loading.  

Mirror-clean fibers on the fracture surface indicate fiber-matrix debonding. Instead, fibers 

covered by a resin layer suggest that damage occurs at certain distance from the interface in 

form of matrix cracking. Sizing can affect the resin layer surrounding the fibers leading to the 

formation of the interphase. Mechanical properties of the interphase differ from those of the 

bulk polymer ad the fibers. Hence, the transition between the fiber and the matrix should be 

described as a region with a specific thickness. The interphase in short glass fiber reinforced 

thermoplastics was investigated by Thomason in [26]. Recently, Brodowsky and coworkers 

[27] developed an experimental technique to characterize the interphase of single fiber 

specimens under fatigue loading. 

 

4) Summary of the literature review 

 

The literature review demonstrated general agreement between different authors on the effect 

of failure mode (stable / unstable FCP), testing parameters (temperature, humidity) and 

material systems (matrix, fiber-matrix bonding) on matrix fracture behavior and fiber 

failure / pull-out. Instead, the degree of fiber-matrix interfacial adhesion remains a 

contentious issue with little agreement in the scientific community. This is due to the fact that 

only a few years ago microscopes did not allow researchers to study the fiber-matrix adhesion 

with high accuracy. In Section 5.5 a comprehensive damage investigation on plain and 

notched short glass fiber reinforced polyamide specimens is presented. A high resolution 

FESEM microscope was used to study the effect of fatigue loading on the mentioned 

fractographic features. Particular attention was devoted to the analysis of the fiber-matrix 

interfacial adhesion. 

 

5) Fiber distribution at crack initiation 

  

To complete the damage investigation, the role of the microstructure on the damage 

initiation / propagation should be taken into account. In fact, the worst combination of the 

weakest location due to local material microstructure and the local stress state creates the 

condition for crack initiation. The microstructure of the SFRPs is characterized by three main 

variables: fiber orientation, fiber aspect ratio and fiber volume fraction. The influence of the 
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fiber orientation on the fatigue behavior of SFRPs is generally studied by machining 

specimens from an injection molded plate at different orientations with respect to the injection 

direction [4, 10, 25, 28-30]. If the fibers are aligned to the loading direction, damage was 

found to initiate at the fiber ends, where no sizing is expected [14, 18, 19, 28, 31, 32]. 

The scenario changes if the fibers are aligned transversely with respect to the loading 

direction. Analyzing the fracture surface of CT specimens machined from injection molded 

plate crosswise to the mold flow direction (MFD), Lang et al. [4] reported that pre-existent 

micro-regions of poor adhesion along the fiber-matrix interface are sites for crack initiation. 

The fiber orientation also varies along the thickness showing a typical shell-core structure [15, 

29, 32-34]. Arif and coworkers [32] observed fiber-matrix debonding in the shell layers and 

matrix micro-cracks in the core layer. Analyzing tubular specimens under torsional fatigue 

loading, De Monte et al. [14] observed cracks nucleating in the core region where the fibers 

exhibit a lower alignment to the axial direction than in the skin layers. In [14, 23] De Monte 

and coworkers, studied the combined effect of the local microstructure and the notch on the 

torsional fatigue strength of short glass fiber reinforced polyamide tubular specimens. In [14] 

it was found that the torsional fatigue strength of plain and notched (molded-in V-shaped 

notch, Rnotch = 0.2 mm) is similar. In another work [23], it was found that the torsional fatigue 

strength of plain tubular specimens decreases when drilling a hole (R = 1 mm) in the central 

part of the specimen. Even if the drilled hole has a larger diameter than the molded V-shaped 

notch, it affects more strongly the torsional fatigue strength. This is due to the local 

microstructure which, in case of molded notch, locally increases the material strength. The 

mutual position of the fibers affects the crack initiation. Dally and Carrillo [2] observed that 

for a long fiber reinforced polyamide under fatigue loading, clusters of fibers perpendicularly 

oriented to the load direction are preferred sites for crack initiation. By studying a 

PA66-GF30 Arif and coworkers [35] reported that the distance between two neighboring 

fibers affects the damage initiation area.  

5.3. Material, geometry and test equipment 

The material investigated in the present work is a short fiber reinforced polyamide containing 

35 wt. % glass fibers (designation: PA66-GF35). Plain and notched specimens were injected 

along the longitudinal axis, which corresponds to the loading direction. Geometries and 

dimensions of the specimens are reported in Figure 5.1. The notch is a central slit of 10 mm 

with notch radius of 0.2 mm. The net stress concentration factor, calculated using isotropic 
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material model, is Ktnet = 9.81.The notch was created with an insert in the mold cavity in order 

to reproduce the local fiber orientation at structural discontinuities in real injection molded 

parts. In fact, the majority of real plastic parts manufactured by injection molding are ready to 

use after ejection from the mold. Structural discontinuities in the mold perturb the melt flow 

affecting the local fiber orientation and consequently the material strength.  

Relative humidity in the samples was kept under 0.1 wt. % by storing them before testing, in a 

container with a drying agent (silica gel parts). Hence, specimens were tested in Dry 

As-Molded (DAM) conditions.   

 

 

Figure 5.1. Specimen geometries and dimensions (in mm). 

Uniaxial fatigue tests were carried out on a 10 kN servo-hydraulic testing machine. The 

fatigue tests were carried out under load control, applying a sinusoidal load with constant 

amplitude.  Load ratio was kept constant and equal to zero for all the performed tests. All the 

specimens were tested at room temperature. Relative humidity in the room was not controlled 

during the fatigue tests. Testing frequency was chosen so as to avoid self-heating.  

Fatigue tests were carried out until specimen separation. An optical method presented by the 

authors in [36] was used to quantify the contribution of the crack initiation to the total 

lifetime. An Infrared (IR) camera (FLIR ThermaCAM SC500) was used to monitor the 
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macroscopic damage evolution in plain and notched specimens during the fatigue tests. 

Optical and electron microscopy were used. The optical microscope is a Zeiss Axioplan 1. 

The FESEM microscope is a Zeiss Supra 55 VP with 7 kV accelerating voltage equipped with 

a EDAX X-Ray Si(Li)-Detector. The specimens analyzed through the FESEM microscope 

were gold sputtered in order to improve the quality of the micrographs. 

Cryogenic fracture tests on specimens previously tested until crack initiation were carried out 

to study the damage mechanisms ahead of the crack tip. The specimens were cooled down to 

T = - 196 °C and broken by using two pliers. 

5.4. Fatigue tests results 

S-N curves up to crack initiation and up to failure (specimen separation) are shown in 

Figure 5.2. Fatigue data are represented in a double logarithmic diagram, plotting the net 

stress amplitude (σa) against the number of cycles (N) to crack initiation / failure for a 

survival probability of 50 %.  Fatigue curves are plotted using eq. 5.1. 

 
k
AA

k
a NN                                                                (5.1) 

 

Where NA = 1E6 cycles and σA = σa(1E6). The values of σA, k and the scatter index 

Tσ = σa,10%/σa,90% are reported in Table 5.1. Plain specimens failed suddenly by unstable crack 

propagation. Hence, life to failure corresponds to life to crack initiation. Instead, notched 

specimen exhibit stable FCP. In [36] it was found that the amount of lifetime spent in the 

crack initiation depends on the fiber volume fraction. For PA66-GF35 notched specimens, the 

crack initiation takes some 35 % of the total lifetime. The rest of the lifetime is spent in stable 

FCP. 
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Figure 5.2. S-N curves up to crack initiation and up to failure of plain and notched 

specimens, T = RT, R = 0. 

Table 5.1. Summary of the fatigue curve parameters for each test series. 

Geometry 

Initiation Failure 

σA k Tσ σA k Tσ 

[MPa] - - [MPa] - - 

Plain 42.12 14.69 1.041 42.12 14.69 1.041 

Notched 15.10 7.60 1.124 16.94 6.81 1.022 

5.5. Damage investigation 

5.5.1. Analysis of the failure mode of plain and notched specimens 
by means of IR thermography 

The IR camera was used to monitor the temperature field on the specimen surface during the 

fatigue tests. This experimental method makes the macroscopic damage evolution before 

failure particularly evident (Figure 5.3). Plain specimens fail due to the unstable propagation 

of a crack. Failure is preceded by a localized temperature spot at one of the four stress 
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concentrations at the shoulder tips (Figure 5.3a). The temperature spot can be observed just 

few cycles before the separation of the specimen in two parts. Similar results were reported by 

Klimkeit et al.[37]. Instead, the notched specimens show stable FCP at both the sides of the 

notch (Figure 5.3b). The peaks of temperature, observable at a certain distance from the notch 

tips, indicate the crack front (Figure 5.3b).  

 

 

Figure 5.3. Crack path and temperature distribution at failure in (a) Plain specimens; (b) 

Notched specimens. 

5.5.2. Analysis of the fracture surface  

The microscopic analysis of the fracture surface of plain specimens reveals two different 

areas. At crack initiation, where the temperature spot was observed (Figure 5.3a), the matrix 

exhibits a ductile behavior (Figure 5.4b). The rest of the fracture surface is comparatively 

brittle (Figure 5.4c).  

 

bc

(c)(b)(a) m20

v v

m20

 

Figure 5.4. Fracture surface morphology of a plain specimen; (a) Investigated specimen; (b) 

Fracture surface at crack initiation; (c) Fracture surface caused by unstable crack propagation. 
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The examination of the fracture surface at high magnifications provides valuable insight into 

the state of the fiber-matrix interfacial adhesion (Figure 5.5). On both ductile and brittle areas, 

fibers are covered by a resin layer. Evidence of local matrix yielding in form of polymer 

fibrils is shown in Figure 5.5a. The high stress carried by the fibrils can cause either their 

failure or their detachment from the fiber surface. This second mechanism may be the reason 

of some clean regions on the fiber surface (Figure 5.5a). Conversely, on the brittle zone of the 

fracture surface, fibers are covered uniformly by a resin layer (Figure 5.5b).  

 

(b)(a) m4 m4

v v  

Figure 5.5. Degree of fiber-matrix interfacial adhesion on the fracture surface of a plain 

specimen; (a) Fracture surface at crack initiation; (b) Fracture surface caused by unstable 

crack propagation. 

Failure of notched specimens occurs in three steps: crack initiation, stable and unstable 

fatigue crack propagation. Fracture surface caused by stable and unstable FCP can be 

identified with unaided eye. The fracture surface caused by stable FCP is stress whitened and 

smooth (Figure 5.6a). Instead, fracture surface caused by unstable FCP has a comparatively 

more irregular morphology (Figure 5.6a). This result was also reported in [4, 23, 38] for 

similar material systems. In Figure 5.6a, the stable FCP is indicated by the letter “s”, while the 

unstable FCP is indicated by the letter “u”. The fracture surface morphology varies according 

to the crack propagation mode. Near the notch tip, no evidence of ductile matrix deformation 

was observed (Figure 5.6b). At the end of the FCP, higher degree of matrix ductility was 

observed (Figure 5.6c). However, as indicated in Figure 5.6a, this region is very small. Next 

to this area, the fracture surface is brittle (Figure 5.6d). This region is caused by unstable FCP 

and it is similar to that observed in Figure 5.4c. Hence, unstable FCP leads to brittle fracture 

surface regardless of the specimen geometry. Comparing Figure 5.6b with Figure 5.6c-d, the 
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matrix material behavior can be described neither as ductile nor as brittle. A similar 

description was provided in [16, 24, 38, 39], although there is no full agreement on the 

terminology to be used. Hereinafter, the term “microductility” is associated with the evidence 

of ductile deformation at micro-scale only. The degree of the matrix ductility depends in fact 

on the scale of observation. An example is provided in Figure 5.7. Figure 5.7a shows a low 

magnifications FESEM micrograph of the fracture surface caused by stable FCP. The 

micrograph shown in Figure 5.7b is an enlargement of Figure 5.7a. In this case, the ductile 

matrix response is evident. Moreover, matrix cavitation around particles is observed.  

The pull-out length on the fracture surface caused by unstable FCP is longer when compared 

with stable FCP. This result confirms the observations in [4, 15, 40]. During the stable FCP, 

crack propagates in a fiber avoidance mode. This mechanism was also observed in [5, 14, 19, 

22, 40, 41]. Therefore, either the fibers are slightly below the free surface of the crack, or just 

a small portion of them is visible from the observation of the fracture surface. On the fracture 

surface caused by unstable FCP, the high amount of released energy leads to a more irregular 

crack path. Fibers are extracted from the fracture surface. Few broken fibers are observed on 

both the fracture surfaces caused by stable and unstable FCPs. This indicates that fiber failure 

is not the dominant mechanism.  
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Figure 5.6. Fracture surface morphology of a notched specimen; (a) Failed specimen; “s” and 

“u” indicate the fracture surface caused by stable and unstable FCP respectively; (b) Fracture 

surface at crack initiation; (c) Fracture surface at the end of the stable FCP; (d) Fracture 

surface caused by unstable FCP. 
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Figure 5.7. Fracture surface caused by stable FCP (notched specimen); (a) Low 

magnification; (b) High magnification. 
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So far, it is not clear if cavities observed on the fracture surface precede or follow the crack 

onset. In order to study this mechanism, a fatigue test of a notched specimen was interrupted 

at crack initiation (Figure 5.8a). Then the specimen was cryo-fractured at T = - 196 °C 

(Figure 5.8b). This test has a twofold aim: 1) Investigate whether the cavities can be observed 

also in the region ahead of the crack tip. 2) Investigate if there are pre-existing foreign 

particles in the material. If so, evidence of particles should be provided also on the 

cryo-fractured surface. Figure 5.8c-d shows the fracture surface caused by stable FCP and the 

cryo-fractured surface. Cryo-fracture leads to brittle fracture surface.  

 

(d)(c)

v v

m4m20

Cryo-fracture surface stable FCP Cryo-fracture surface stable FCP

Stable FCP Cryo-fracture

(b)(a)

 

Figure 5.8. Stable FCP and the cryo-fractured surface; (a) Fatigue test was interrupted at 

crack initiation; (b) Cryo-fracture; (c) Fracture surface, low magnification; (d) Fracture 

surface, high magnification. 

Figure 5.9 shows FESEM micrographs of different regions on the fracture surface of the cryo-

fractured specimen shown in Figure 5.8. Cavities and particles are observed on the fracture 

surface caused by stable FCP (Figure 5.9b). On the region immediately ahead of the crack tip, 

a certain amount of cavities is observed (Figure 5.9c). Cavities can also be observed on the 

cryo-fractured surface (Figure 5.9d), far away from the crack tip. However they are few in 

number and also smaller. This preliminary investigation suggests that coalescence of voids 

precedes the formation of a micro-crack. The result would confirm some experimental 
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evidence of voids in a short fiber reinforced polyamide under static loading, recently provided 

in [11, 42]. 
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Figure 5.9. Fracture surface of notched specimen. Fatigue test was interrupted at crack 

initiation and then cryo-fractured. (a) Overview of the fracture surface; (b) Fracture surface 

caused by stable FCP region; (c) Cryo-fractured surface ahead the crack tip; (d) Cryo-

fractured surface far from the crack tip.  

Figure 5.10 shows examples of particles on the cryo-fracture surface, immediately ahead of 

the crack tip. The smooth fracture surface is interrupted by cavities of different sizes. Some 

cavities are filled by particles, some others are instead empty. A difference in terms of surface 

appearance between the particle and the matrix around it can be also appreciated in 

Figure 5.10b. This experimental evidence seems to suggest that the particles are not made by 

the same material of the matrix. 
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(b)(a) nm400m1

v v  

Figure 5.10. Particles on the cryo-fractured surface ahead the crack tip. 

Energy-dispersive X-ray spectroscopy (EDX) analyses of the particles were also performed to 

study their elemental composition (Figure 5.11). The EDX analysis was performed with an 

excitation voltage of 15 kV. The peaks of carbon, oxygen and nitrogen (between the first two 

elements) are attributed to the polymer. A peak of gold is due to gold-sputtering. Smaller 

peaks of Silicon and Calcium were also noticed and may be related to the occurrence of a 

fiber fragment in the analyzed volume. Hence, the EDX analysis did not provide clear 

indication on the nature of the observed particles. It is worthwhile noting that the spatial 

resolution of the EDX detector is on the order of 3 μm and it is probably too coarse for the 

elemental analysis of particle of diameter 0.1 - 0.3 μm. The aim of this preliminary analysis 

was to highlight a new damage mechanism occurring below the micro-scale and preceding the 

formation of a micro-crack. For better understanding of this mechanism, further investigations 

are needed using more accurate experimental techniques. 
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Figure 5.11. EDX analysis of particles found on the cryo-fractured surface ahead the crack 

tip. 

The fracture surface shown in Figure 5.6b is caused by stable FCP. Therefore, between the 

three areas described in Figure 5.6, the area shown in Figure 5.6b was examined at high 

magnifications in order to observe the state of the fiber-matrix interfacial adhesion. Figure 

5.12 shows two fibers (one perpendicular to fracture surface, (Figure 5.12a) and the other 

lying on the fracture surface, (Figure 5.12b) near the free surface of the notch. In both cases, 

fibers are covered by a resin layer. The microscopic examination suggests that damage occurs 

at a certain distance from the fiber-matrix interface. A thorough examination reveals that the 

resin layer is thicker for the fiber perpendicularly oriented to the fracture surface than for the 

fiber lying on the fracture surface.  
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Figure 5.12. Fiber-matrix adhesion on the fracture surface of a notched specimen caused by 

stable FCP; (a) Fiber perpendicular to the fracture surface; (b) Fiber lying on the fracture 

surface. 

5.5.3. Analysis of the crack path 

In this Section, damage mechanisms were investigated on the side surface of the specimens. 

Fatigue tests were interrupted before failure using the IR camera (Section 5.5.1). Samples at 

crack initiation were machined from the specimens and analyzed by means of optical and 

field emission scanning electron microscope. The goals of this Section are: 1) To analyze the 

damage mechanisms at crack initiation in plain and notched specimens; 2) To study the fiber 

orientation distribution at crack initiation.  

Figure 5.13 shows the damage analysis on the side surface of a plain specimen. Evidence of 

damage was found using the reflected light microscope (Figure 5.13a). This region was 

thoroughly investigated by means of FESEM. Figure 5.13 shows typical mechanisms 

occurring just before the specimen failure. Several micro-cracks were observed indicating that 

a macro-crack forms due to the coalescence of micro-cracks. An example of fiber failure is 

shown in Figure 5.13b. Figure 5.13c shows a small crack occurring between the matrix and a 

fiber fragment. Figure 5.13d shows a crack at the end of a longitudinally oriented fiber. Here 

the crack propagates at a distance of some tens of micrometers from the fiber surface. Figure 

5.13e-f represent two high magnification pictures of the region 4. Voids can be observed close 

the fiber (Figure 5.13f). Coalescence of voids seems to represent the damage stage preceding 

the formation of a micro-crack in the matrix. If one compares Figure 5.13f with Figure 5.9b-c, 

it can be deduced that the size of the voids is comparable.  



Chapter 5.  Damage mechanisms in a short glass  
fiber reinforced polyamide under fatigue loading 
 

84 
 

 

1

2

3

4

(b)
(1)

(a) m4m40

 

(d)
(3)

(c)
(2)

m4 m4

vv  

(f)
(4)

(e)
(4)

m4 m1

v  

Figure 5.13.  Damage investigation on the side surface of a plain specimen, interrupted 

fatigue test; (a) Damage zone observed through optical microscopy; (b) Fiber failure; (c) 

Crack at fiber fragment; (d) Crack at the fiber end; (e),(f) Voids in the matrix. 

Figure 5.14 shows the side surface of a notched specimen subjected to interrupted fatigue test. 

The crack does not initiate at the notch tip as it would be expected if the material was 

homogeneous. At higher magnifications (Figure 5.14b-c), it is possible to examine the fiber 
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orientation distribution around the notch. At the close vicinity of the free surface of the notch, 

fibers are oriented through the thickness. This is deduced observing the circular footprints left 

by the fibers on the polished section. Few tens of millimeters from the free surface of the 

notch, the fibers are mostly in-plane oriented. Around the notch, fibers are unevenly 

distributed. They tend to agglomerate and form clusters. It is worthwhile noting that the 

location of crack initiation corresponds with a cluster of through-the-thickness oriented fibers 

(Figure 5.14c-d). The analysis of the side surface of other specimens confirmed the 

occurrence of fiber clusters around the notch. As well as being a geometric discontinuity, the 

insert also represents an obstacle for the melt stream during injection molding affecting the 

local fiber orientation. The analysis of the crack propagation shows that the crack exhibits a 

zig-zag path (Figure 5.14a). As soon as the effect of the insert vanishes, the crack follows the 

direction imposed by the in-plane fibers growing in a fiber avoidance mode (Figure 5.14b). 
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Figure 5.14. Fiber distribution at crack initiation for a notched specimen, interrupted fatigue 

test. 
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Figure 5.15 shows damage mechanisms along the crack path in different specimens. Crack 

propagates in a fiber avoidance mode (Figure 5.15a-b). Fibers are covered by a resin layer. 

Figure 5.15c provides an example of fiber pull-out in which the fiber extracted from the 

fracture surface is completely covered by a resin layer. This layer is around half a micrometer 

thick (Figure 5.15d).The FESEM micrographs shown in Figure 5.15 indicate that damage 

occurs at a certain distance from the fiber matrix interface in form of matrix cracking and not 

in form of fiber-matrix debonding. Hence, the lifetime prediction model should be able to 

reproduce the damage initiation and propagation at the resin layer covering the fibers. These 

results confirm the observations of the fracture surface in Section 5.5.2. They are valid for the 

material system and for the testing conditions reported in this paper.  
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Figure 5.15. Damage mechanisms along the crack path  (notched specimen). 
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5.6. Conclusions 

In this work a damage investigation on a short glass fiber reinforced polyamide under fatigue 

loading is presented. The use of IR thermography enabled the localization of the damage 

initiation site. The damage mechanisms were studied by means of optical and electron 

microscopy investigating the following fractographic evidences: matrix fracture behavior 

(ductile / brittle), fiber failure / pull-out, degree of fiber-matrix interfacial adhesion. The 

results can be summarized as follows. 

 

1. Failure modes. Plain and notched specimens exhibit different failure modes. Plain 

specimens fail due to unstable FCP preceded by a local temperature spot at shoulder tips. 

Failure scenario of notched specimens follows three steps: 1) Crack initiation; 2) Stable 

crack propagation; 3) Unstable crack propagation. 

2. Damage mechanisms. The analysis of the fracture surface reveals that the material 

response varies according to the crack propagation mode (stable / unstable FCP). Matrix 

fracture behavior is micro-ductile on the fracture surface caused by stable FCP and brittle 

on the fracture surface caused by unstable FCP. FESEM fractographic analysis showed 

that fibers are mostly covered by a resin layer. This result, valid for the material system 

and the testing conditions presented in this work, indicates that damage does not occur at 

the fiber-matrix interface in form of fiber-matrix debonding but in the resin, at a certain 

distance from the interface in form of matrix cracking. A better understanding of the 

effect of sizing on the matrix at the fiber-matrix interface would be required to determine 

to what extent sizing affects the resin layer around the fibers leading to the formation of 

the interphase. 

Cavities were found on the fracture surface caused by stable FCP. With the aim to 

investigate this damage mechanism, fatigue tests of a notched specimens were interrupted 

at crack initiation and then cryo-fractured. Cavities were observed on the cryo-fracture 

surface immediately ahead of crack tip. Far from the crack tip, cavities are fewer and 

smaller. This preliminary analysis suggests that coalescence of voids in the matrix 

precedes the formation of a micro-crack. Evidence of voids was also proved analyzing 

the side surface of a plain specimen subjected to interrupted fatigue test.  

3. Fiber distribution at crack initiation. The insert used in the mold for creating the notch 

affects the fiber orientation at crack initiation. Clusters of through-the-thickness oriented 
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fibers characterize the fiber orientation distribution around the notch. The crack was 

found to initiate in the matrix between through-the-thickness oriented fibers. 

In plain specimens, micro-cracks were found at the end of fibers aligned to the loading 

direction. Some evidence of fractured fibers (longitudinally oriented with respect to the 

loading direction) was also provided.  
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Chapter 6 

Influence of fiber loading on the fatigue damage 
mechanisms in short glass fiber reinforced 
polyamide 

Keywords: Short Fiber Reinforced Composites, Damage Mechanisms, Fatigue, Polyamide 

Abstract  
This paper investigates the influence of the fiber volume fraction on the damage mechanisms 

in a short glass fiber reinforced polyamide (PA66) under tension-tension fatigue loading. 

Uniaxial fatigue tests were carried out on notched specimens characterized by different fiber 

contents (0 %, 15 %, 25 %, 35 %, 50 % in weight). The notch was molded-in in order to 

reproduce a typical fiber orientation distribution at structural discontinuities in real injection 

molded parts. The damage investigation was performed by using Field Emission Scanning 

Electron Microscopy (FESEM). Interrupted fatigue tests were carried out to analyze the 

influence of the fiber volume fraction on the crack path. Fracture surfaces of specimens failed 

in the high cycle regime were also examined. Specific fractographic features (ductile/brittle 

appearance of the fracture surface, pulled-out/broken fibers, degree of fiber-matrix interfacial 

adhesion) were examined with the aim to study the effect of the fiber volume fraction on the 

fatigue damage mechanisms. 

6.1. Introduction  

Due to the increasing use of SFRPs in structural applications, lifetime prediction models play 

an important role in the durability estimation of real injection molded parts. This is the topic 

of a long term collaboration between the University of Padova and the corporate research of 

Robert Bosch GmbH. The effect of anisotropy and temperature on tensile and fatigue 

behavior of SFRPs was studied by De Monte and coworkers in [1, 2]. The study was extended 

to include the effect of notch [3], multiaxial loading [4, 5] and recently thermomechanical 

loading [6, 7] on the fatigue behavior of SFRPs. A comprehensive literature review recently 

published by Mortazavian and Fatemi [8] shows that several studies have been conducted to 
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analyze the factors affecting the fatigue behavior of SFRPs. In spite of that, lifetime 

prediction models found in the literature are extensions of phenomenological models 

originally developed for isotropic materials [3, 9]. In the last years, the improvement of the 

damage investigation methods and the explosion of the computational power have prompted 

researchers to deeply investigate the damage mechanisms in SFRPs. Mechanisms-based 

lifetime prediction models aim to integrate the relevant damage mechanisms in order to obtain 

an accurate estimation of the lifetime to failure reducing empirical parameters and 

assumptions. 

Recently in [10], the authors studied the damage mechanisms in plain and notched PA66-

GF35 specimens under fatigue loading. In the present paper, the damage investigation is 

extended to consider the effect of the fiber volume fraction on the fatigue damage 

mechanisms in notched specimens. With this work, the authors aim to lay the foundations for 

the development of a multi-scale lifetime prediction model taking into account the material 

microstructure. In literature, the influence of the fiber volume fraction on the fatigue damage 

mechanisms in SFRPs was studied mainly with regard to crack propagation using Compact 

Tension (CT) specimens [11-14]. A study of the influence of the fiber volume fraction on the 

damage mechanisms at crack initiation is missing. A comparison between the fatigue life to 

crack initiation and to failure for short glass fiber reinforced polyamide notched specimens 

has been recently published by the authors in [15]. In the present paper, the fatigue behavior 

to crack initiation and to failure was studied by investigating the damage mechanisms. In 

literature, more emphasis has been given to the influence of fiber orientation on the lifetime of 

SFRPs rather than fiber volume fraction. In fact, a change in fiber content results in a 

variation of the other microstructural variables. The higher the fiber volume fraction the 

shorter the average fiber length will be due to fiber-fiber and fiber-machine interaction during 

injection molding [11, 16-18]. The fiber volume fraction also influences the fiber orientation. 

Bernasconi [18] and Thomason [19] observed that the higher the fiber volume fraction the 

more the fibers are aligned in the Mold Flow Direction (MFD). Instead, the analysis of the 

influence of the fiber orientation on fatigue behavior of SFRPs can be conducted cutting 

specimens out of injection molded plates at different orientations with respect to the injection 

molding direction [1, 2, 20-23]. Such approach keeps the other microstructural variables 

unchanged. However, the fiber orientation distribution also varies along the thickness 

affecting the material behavior. In [1, 2], De Monte and coworkers reported higher anisotropic 

tensile and fatigue strength for thinner specimens. Moreover, this method is not suitable for 
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studying the effect of the local fiber distribution on the crack initiation. In real injection 

molded parts, cracks occur at geometrical discontinuities [9, 24]. At these locations, fiber 

orientation is far from being unidirectional. Fiber orientation at critical locations strongly 

affects the fatigue strength of SFRPs. In [4] it was found that the torsional fatigue strength of 

hollow tubular specimens with V-shaped molded notch (Rnotch = 0.2 mm) is higher than that of 

the same specimens with a drilled hole (R = 1 mm). This result was explained as a 

compensation of notch geometry and fiber orientation distribution at crack initiation. In [10, 

15], the authors used rectangular specimens with a central molded-in notch with the aim to 

reproduce the fiber orientation at structural discontinuities in real injection molded parts. The 

MFD was parallel to the long dimension of the specimen. The insert used for creating the 

notch represents an obstacle for the melt flow affecting the local fiber orientation distribution. 

The authors observed that around the notch, fibers are oriented through-the-thickness.  

In this work, the damage investigation is divided in two parts. Section 6.4.1 is dedicated to the 

analysis of the crack path. For this purpose, fatigue tests were interrupted before specimen 

separation. Then the side surface of the specimens was polished for microscopic 

investigations. Section 6.4.2 is dedicated to the analysis of the fracture surface. For this 

purpose, fatigue tests were carried out until failure which corresponds to specimen separation 

into two parts. The damage analysis was carried out at multiple scales. The influence of the 

fiber volume fraction on the specimen failure mode (stable/unstable Fatigue Crack 

Propagation (FCP)) was primarily investigated with unaided eye on the fracture surface of 

failed specimens. Meso- and micro-scale investigations were carried out by means of Field 

Emission Scanning Electron Microscopy (FESEM). At meso-scale, the effect of the fiber 

volume fraction on the crack path was investigated. At micro-scale, damage mechanisms were 

studied examining the following fractographic features: matrix fracture behavior 

(ductile/brittle), fiber failure/ pull-out and degree of fiber-matrix interfacial adhesion.  

6.2. Materials geometry and test equipment 

The material investigated in the present paper is a short glass fiber reinforced polyamide 

(PA66). Five material systems were tested varying the fiber content (Vf = 0 %, 15 %, 25 %, 

35 %, 50 % by weight).  

Uniaxial fatigue tests were carried out on a 10 kN servo-hydraulic testing machine. The 

fatigue tests were performed under load control, applying a sinusoidal load with constant 

amplitude. A specimen where the notch is created through an insert within the mold was 
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preferred to a specimen where the notch is machined afterwards. This geometry reflects the 

real injection molded parts, which are ready to use after ejection from the mold without any 

need of post-molding machining operation. Specimen geometry and dimensions are reported 

in Figure 6.1. The notch is a central slit of 10 mm with notch radius of 0.2 mm. Stress 

concentration factor (referring to the net section) calculated using isotropic material model is 

Ktnet  = 9.81. Specimens were injected along the longitudinal direction which coincides with 

the loading direction. 

The fatigue data were already published by the authors in [15]. Fatigue tests were carried out 

until specimen separation. An optical method was used to quantify the contribution of the 

crack initiation to the total lifetime of the specimen. Moreover, some fatigue tests were 

interrupted before failure in order to investigate the effect of the fiber volume fraction on the 

crack path. The load ratio R (= σmin/σmax) was set to 0 for all the performed fatigue tests. The 

fatigue tests were carried out at room temperature. Relative humidity in the room was not 

controlled during the fatigue tests. The specimens were tested in dry-as-molded conditions 

since right after injection molding, they were stored in a drum containing a drying agent 

(silica gel pearls).  

 

 

Figure 6.1. Specimen geometry and dimensions (in mm). 

The damage investigation was performed by means of Zeiss Supra 55VP Field Emission 

Scanning Electron Microscope (FESEM) with 7kV accelerating voltage and equipped with a 

EDAX X-Ray Si(Li)-Detector.  For improving the quality of the analysis, the samples 

analyzed by means of FESEM were gold sputtered. Energy-dispersive X-ray spectroscopy 

(EDX) was used for the elemental characterization of particles observed on the fracture 

surface caused by stable FCP. 
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6.3. Fatigue tests results  

Figure 6.2 summarizes the S-N curves up to crack initiation and up to failure of the notched 

specimens for reinforced and unreinforced polyamide specimens. Fatigue data are represented 

in a double logarithmic diagram, plotting the net stress amplitude (σa) against the number of 

cycles (N) to crack initiation / failure. Fatigue curves with 50 % failure probability are plotted 

using eq. 6.1. 

 
k
AA

k
a NN                                                                                                                    (6.1) 

 

Where NA = 1E6 cycles and σA = σa(1E6).The values of σA,  k and the scatter index 

Tσ = σa,10%/σa,90% are reported in Table 6.1.  With the same applied stress amplitude, an 

increase in fiber fraction results in an increase of both the lifetime to crack initiation and to 

failure. The beneficial effect of the fibers amount on the fatigue life to failure was also 

reported by Avanzini et al. [25] for plain specimens of short carbon fiber reinforced PEEK. 

The fatigue curve of unreinforced polyamide notched specimens is flatter than those of 

reinforced material systems. 
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Figure 6.2. (a) S-N curves up to crack initiation and up to failure of notched specimens, 

T = RT, R = 0, for different fiber volume fractions; (b) Contribution of the crack 

initiation / propagation to the total lifetime. 
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As reported in [10] failure of notched specimens under fatigue loading occurs in three phases: 

crack initiation, stable crack propagation, unstable crack propagation. The contribution of the 

crack initiation/crack propagation to the total lifetime changes with varying fiber volume 

fraction. The higher the fiber volume fraction the higher the contribution of the crack 

propagation to the total lifetime will be (Figure 6.2b). In fact, as reported in [11, 13, 14, 26] 

an increase in fiber content results in a reduced crack propagation rate. For unreinforced 

polyamide specimens, life to failure corresponds to life to crack initiation. Moreover, the life 

spent in crack propagation depends on the geometry of the notch. The sharper the notch, the 

longer the contribution of the crack propagation to the total lifetime will be [27]. In the next 

Section the effect of the fiber volume fraction on the fatigue material behavior will be 

investigated by analyzing the damage mechanisms. 

Table 6.1. Summary of the fatigue curve parameters for each test series. 

Material Initiation Failure 

  σA k Tσ σA k Tσ 

  [MPa] - - [MPa] - - 

PA66 9.50 20.12 1.051 9.50 20.12 1.051 

PA66-GF15 10.31 9.72 1.136 10.80 9.17 1.052 

PA66-GF25 12.42 7.46 1.073 13.99 7.59 1.032 

PA66-GF35 15.10 7.60 1.124 16.94 6.81 1.022 

PA66-GF50 15.03 6.18 1.128 18.99 6.95 1.056 

6.4. Damage investigation 

6.4.1 Analysis of the crack path 

Fatigue tests were interrupted before failure with the aim to study the influence of the fiber 

volume fraction on the crack path. The crack path was analyzed on the side surface of the 

specimens. In literature, similar analyses were carried out to study the influence of different 

material systems [28, 29] and fiber orientations [30, 31] on the fatigue crack propagation 

using CT specimens.  
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Figure 6.3 shows FESEM micrographs of the crack path for different fiber volume fractions. 

Cracks show a zig-zag pattern. As reported by many authors [5, 28, 30, 32, 33], in SFRPs a 

crack grows avoiding fibers. This mechanism is called fiber avoidance mode. The higher the 

fiber content, the more irregular the path of the crack is. With low fiber fraction (15 wt. %), 

the crack grows perpendicularly to the loading direction (Figure 6.3a). The fibers along the 

crack path represent isolated obstacles which lead to a local variation of the crack direction. 

An increase in fiber fraction leads to the reduction of the interfiber distance. Fibers 

agglomerate forming clusters which force the crack to change direction in a far more effective 

way than isolated fibers. A similar observation was made by Mandell et al. [28]. They showed 

that fiber clusters have a stronger influence on the crack path than isolated fibers. Each 

variation of the crack direction imposed by the fibers causes an energy dissipation and, as a 

consequence, a slowing down of the crack. An increase in fiber fraction results therefore in 

the reduction of the crack growth rate.  

Figure 6.3 shows the location of crack initiation for different fiber volume fractions. Apart of 

Figure 6.3b, the observed cracks do not initiate from the notch tip as it would be expected if 

the material was homogeneous. This evidence indicates that the crack initiation site is affected 

by the fiber distribution around the notch. 
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Figure 6.3. Crack path on the side surface of the specimens. 

Two examples of damage mechanisms observed on the side surface of the PA66-GF25 

specimen are shown in Figure 6.4a-b. Figure 6.4a shows an example of fiber pull-out. A 

significant portion of the fiber is pulled out from the matrix since the fiber ends are far from 

the crack plane. The fiber represents an isolated obstacle to the crack growth which does not 

cause any significant deviation of the crack plane. Figure 6.4b provides an example of fiber 

failure. Even in this case, the fiber is crossing the crack plane. This mechanism is far less 

frequent than fiber pull-out.  
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Figure 6.4. Damage mechanisms along the crack path, PA66-GF25 specimen (a) Fiber pull-

out; (b) Broken fiber. 

 

With higher fiber volume fraction (50wt. %), fractured fibers are noticed ahead of the main 

crack tip (Figure 6.5). Some fibers are broken into fragments which are still close to each 

other (Figure 6.5b). A similar analysis (not shown in this paper) was carried out for virgin 

specimens with the aim to see if fiber breakage occurs due to cyclic loading or during 

injection molding. No evidence of fiber breakage was found indicating that the broken fibers 

observed in Figure 6.5 are due to cyclic loading. Instead, the occurrence of many isolated 

fiber fragments is due to fiber breakage during injection molding. Analogously to the fiber 

ends, the new surfaces generated by fiber breakage during injection molding can be identified 

as being preferential locations for the crack propagation since are not covered by any sizing. 

While propagating, the crack is continuously forced to change direction by the fibers. With 

high fiber fractions, the crack plane is not perpendicularly oriented to longitudinal fibers as 

observed in Figure 6.4b.  As a result, with high fiber volume fractions, the pull-out length is 

shorter.  
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Figure 6.5. Damage mechanisms along the crack path, PA66-GF50 specimen; (a) Fractured 

fibers ahead of the crack tip; (b) Crack at the fiber end and fiber failure. 

6.4.2. Analysis of the fracture surface 

In this Section the influence of the fiber volume fraction on the fatigue damage mechanisms 

was studied by means of microscopic analysis of the fracture surface of failed specimens. 

Firstly the influence of the fiber volume fraction on the specimen failure mode (crack 

initiation, stable and unstable crack propagation) was investigated. As reported in [5], the 

distinction between the fracture surface caused by stable FCP and unstable FCP is evident to 

the unaided eye. The fracture surface caused by stable FCP is stress whitened and smooth. 

Instead, the fracture surface caused by unstable FCP is more irregular reflecting the sudden 

failure mode typical of quasi-static tensile tests. Table 6.2 reports the applied stress amplitude 

and the fatigue life to failure of each analyzed specimen. 

Table 6.2. Stress amplitude and number of cycles to failure of the specimens used for the 

analysis of the fracture surface morphology. 

Material designation σa [MPa] Nf 

PA66 9 1784240 

PA66-GF15 11 877157 

PA66-GF25 14 1027310 

PA66-GF35 17 2182042 

PA66-GF50 18 3334750 
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Figure 6.6 shows the fracture surfaces of the analyzed specimens. The stress whitened area 

corresponds to the fracture surface caused by stable FCP. The fracture surfaces of the 

reinforced polyamides are similar to each other. Conversely, there is a significant difference 

between the unreinforced and the reinforced material systems. The fracture surface caused by 

stable FCP in the neat matrix specimen is noticed only at the left of the notch. Instead, for the 

reinforced materials, it is observed at both sides of the notch. In PA66 and PA66-GF15 

specimens, the area caused by stable FCP is smaller if compared with the other materials 

indicating a lower contribution of the crack propagation to the total lifetime. Fracture surfaces 

of unreinforced and reinforced polyamides also differ in the unstable FCP. Markings in form 

of curved lines converging to the middle thickness are noticed on the fracture surface of 

unreinforced polyamide specimens. According to Herzberg [34], they are called “chevron 

markings” and are characteristics of brittle failure. These markings were also observed by 

Lang et al. [35] on the fracture surface of a polystyrene matrix failed under fatigue loading. 

 

 

Figure 6.6. Fatigue crack surfaces of the analyzed specimens. 

As reported by Hertzberg [34], terms which have a descriptive function but not the scientific 

agreement are used to describe the fracture surface morphology. This is the case of the term 

“micro-ductile” used to describe evidence of ductile fracture behavior on the fracture surface. 

In the following, the term “micro-ductility” will be used if a clear evidence of ductile matrix 

behavior can be provided only at micro-scale. In fact, by increasing the magnification at 

which the fracture surface is analyzed, some evidence of ductile matrix deformation can be 
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provided which was not visible at low magnifications. An example is given in Figure 6.7. On 

the left column of Figure 6.7, low magnifications FESEM micrographs (5000X) of the 

fracture surfaces are shown. For each picture on the left column, there is the corresponding 

high magnification enlargement (20000X) on the right column. All the FESEM micrographs 

are taken close to the notch. Apart from the unreinforced polyamide (Figure 6.7a), the 

observation of the fracture surface at low magnifications does not give any clear evidence of 

ductile matrix behavior. Instead, by observing the fracture surface at high magnification 

(Figure 6.7b), ductile matrix deformation is evident. Therefore, the matrix on the stable FCP 

of reinforced material systems shows a micro-ductile behavior. Instead, the unfilled matrix 

exhibits a macro-ductile matrix behavior. Referring to Figure 6.7 (left column) it was found 

that the higher the fiber volume fraction, the more peaks and valleys characterize the 

morphology of the fracture surface (Figure 6.7e). This result is consistent with the previous 

observation of the crack path (Section 6.4.1). Fiber clusters are obstacles which the crack 

avoids, leading to an irregular fracture surface. Isolated fibers have not the same effect. When 

not broken, they are pulled out leaving holes on the fracture surface (Figure 6.7b). The 

observation of the fracture surface also confirms that the pull-out length decreases with 

increasing fiber fraction. With high fiber fractions, fiber clusters force the crack plane to kink 

towards the fiber ends. Hence, the fracture surface of specimens characterized by high fiber 

fraction reveals only the ends or small portions of the fibers (Figure 6.7e).  
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Figure 6.7. Fracture surface near the notch; low magnification micrographs on the left 

column; high magnifications micrographs on the right column (crack grows from the right to 

the left). 

High-magnification FESEM micrographs in Figure 6.7 show evidence of matrix cavitation 

around particles. The same mechanism was recently reported by the authors in [10]. In [10] 

EDX analyses were carried out to study the elemental composition of the observed particles 

on the fracture surface of a PA66-GF35 specimen failing to capture their nature. The same 

particles observed in [10] were found on the fracture surface of the other short glass fiber 

reinforced polyamide specimens. Instead, the particles observed on the fracture surface of the 

neat polymer shall be distinguished by their shape and dimension. In fact, they are bigger and 

have a crystal-like form. Figure 6.8 shows high magnification FESEM micrographs of the 

investigated particles and the corresponding EDX maps. Gold peaks observed in Figure 6.8 

are due to gold sputtering of the sample surface. Carbon and oxygen peaks are related to the 

polymer. Aluminum peaks are noticed which should not be related to the polymer. Hence the 

particles may be aluminum oxide.  
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Figure 6.8. EDX analysis of particles on the fracture surface caused by stable FCP of 

unreinforced PA66 notched specimens. 

Figure 6.9 shows the analysis of the degree of fiber-matrix adhesion for different fiber volume 

fractions. Fracture in composite materials can be either cohesive or adhesive depending upon 

whether a layer of matrix adheres to the fibers or not. The fibers shown in Figure 6.9 are 

completely covered by a resin layer. This experimental evidence indicates that damage occurs 

in form of matrix cracking at a certain distance from the interface. Accordingly, for the 

material system and the testing conditions analyzed in this work, damage mechanisms in the 

resin layer covering the fibers should be taken into account in a lifetime prediction model 

while fiber-matrix debonding should be excluded. 
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Figure 6.9. Analysis of the fiber-matrix adhesion on the fracture surface near the notch. 

6.5. Conclusions 

The effect of the fiber volume fraction on the fatigue behavior and the damage mechanisms of 

a short glass fiber reinforced polyamide were studied in this paper. Specimens with molded 

notch were used in order to reproduce the fiber orientation at structural discontinuities in real 

injection molded parts. An increase in fiber content improves both the fatigue strength to 

crack initiation and to failure of the composite material. The relative contribution of the crack 

propagation to the total lifetime increases with increasing fiber volume fraction. The results of 

the damage investigation are summarized according to the length-scale at which the analysis 

was performed. 

Macro-scale: Fatigue failure of notched specimens occurs in three phases: crack initiation, 

stable FCP, unstable FCP. The fracture surface caused by stable FCP can be identified with 
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unaided eye. In fact, it is stress whitened and smoother than the fracture surface caused by 

unstable FCP. 

Meso-scale: The crack path is strongly influenced by the fiber volume fraction. With high 

fiber contents, fibers tend to agglomerate forming clusters deviating the crack plane more 

effectively than isolated fibers and thereby reducing the crack propagation rate. 

Micro-scale: At this scale, the following fractograhic features were studied: matrix fracture 

behavior (ductile/brittle), fiber failure/pull-out, degree of the fiber-matrix interfacial adhesion. 

 Matrix fracture behavior: The degree of matrix ductility observed on the fracture 

surface caused by stable FCP in the unfilled polyamide is higher compared to 

reinforced polyamides. The fracture surface of short glass fiber reinforced polyamide 

specimens show similar micro-ductile matrix behavior independently of the fiber 

volume fraction. 

 Fiber failure/pull-out: Fiber pull-out is dominant compared to fiber failure. Fiber 

failure was found to be more relevant for higher fiber volume fractions.   

 Degree of fiber-matrix interfacial adhesion: The analysis of fracture surface near the 

notch revealed that the fibers are completely covered by a resin layer. This result 

indicates that damage occurs in form of matrix-cracking at a certain distance from the 

interface.  

Lastly, the analysis of the fracture surface revealed evidence of matrix cavitation around 

particles irrespective of whether the material is reinforced or not. A preliminary EDX analysis 

revealed aluminum oxide particles on the fracture surface of unreinforced polyamide 

specimens. Instead no clear understanding of the particles on the fracture surface of short 

glass fiber reinforced polyamide specimens was achieved.  
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Chapter 7 

Local microstructure and stress distributions at the 
crack initiation site in a short fiber reinforced 
polyamide under fatigue loading 

Keywords: Short Fiber Reinforced Composites, Damage Mechanisms, Fatigue, Polyamide, 

Micro-tomography 

Abstract  
This work aims to study the influence of the fiber distribution on the damage onset in a short 

glass fiber reinforced polyamide under fatigue loading. A fatigue test of a notched specimen 

was interrupted at crack initiation, then a small sample around the notch was machined from 

the specimen and analyzed by means of X-Ray Computed Tomography (X-Ray CT) for the 

quantitative description of the fiber distribution. The real microstructure was reconstructed 

and then simulated in the Finite Element Method (FEM) code ABAQUS. The analysis gives 

an insight into the typical local matrix stress distributions at the notch tip.  

7.1. Introduction  

Short Fiber Reinforced Plastics (SFRPs) are extensively used in the automotive industry as 

load bearing materials. Major advantages are offered by the injection molding technology in 

terms of design of complex geometries, high production output rates, low production waste, 

good reproducibility. The increasingly use of these materials in structural applications has 

driven the development of lifetime prediction models. The advantage of using predictive 

models is that lifetime estimation is possible in the design phase of the product project, thus 

reducing the number of prototypes before the series production. Accurate lifetime prediction 

models depend on their ability to reproduce the damage mechanisms which lead to material 

failure. Nowadays, the improvement of the investigation techniques enables a deeper 

understanding of the damage mechanisms. In addition, with the increase in computational 

power, it is possible to model the observed damage mechanisms and to integrate them in a 
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lifetime prediction model. In [1, 2] the authors investigated the damage mechanisms in short 

glass fiber reinforced polyamide under fatigue loading using specimens with molded notch. 

It was found that the crack initiation position is not at the notch tip as for homogenous 

materials but at clusters of through-the-thickness oriented fibers located around the notch. In 

this paper, the real microstructure around the notch was investigated by means of X-Ray CT 

and simulated using a FEM software with the aim to investigate the local matrix stress 

distributions at crack initiation.  

The microstructure of SFRPs is characterized by three variables: fiber volume fraction, fiber 

aspect ratio and fiber orientation. Only fiber volume fraction is known beforehand. Fiber 

aspect ratio and fiber orientation depend on many factors such as process parameters, mold 

geometry, fiber volume fraction. Typically, the influence of the fiber orientation on the 

mechanical behavior of SFRPs has been studied by machining specimens from an injected 

plate at different orientations with respect to the Mold Flow Direction (MFD) [3-12]. In the 

mentioned works, the fiber orientation is assumed constant and corresponds to the angle 

between the longitudinal axis of the specimen and the MFD. However, even for plain 

specimens, fiber orientation has a complex structure since it varies through the specimen 

thickness. Close to the surface of the specimen, fibers are well aligned to the MFD, whereas 

at the mid-plane region, fibers are aligned transversely to the MFD. This structure is better 

known by the name shell-core where shell indicates the material layer adjacent to the 

specimen surfaces, and core indicates the layer at the middle thickness. This effect is to be 

ascribed to the dynamics of the melt flow and makes the material characterization for well 

defined fiber orientations difficult if not impossible. De Monte et al. [9, 10] showed that for 

specimens milled out from injection molded plates, the higher the specimen thickness, the 

larger the core layer is with an increasing isotropic response both under quasi-static and 

fatigue loading. Hine et al. [13] reported that the thickness of the shell and core layers is not 

constant in an injection molded transverse ribbed plate but varies along the injection direction. 

In real injection molded parts, geometric discontinuities within the mold make the fiber 

orientation distribution even more complex. They represent in fact, from a fluid-dynamic 

point of view, locations where the melt flow changes direction and from a structural point of 

view, typical areas for crack initiation [14, 15]. Hence, the study of the fiber orientation 

distribution at potentially critical locations such as geometric discontinuities is considered to 

be highly relevant for the lifetime prediction of real injection molded parts. Testing hollow 

plain tubular specimens under multiaxial (tension + torsion) fatigue loading, De Monte and 
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coworkers [16] observed cracks within the specimen thickness where fibers are transversely 

oriented with respect to the loading direction. In another work, De Monte and coworkers [17] 

compared the torsional fatigue strength of hollow plain tubular specimens, hollow tubular 

specimens with molded V-shaped notch (Rnotch = 0.2 mm), and hollow tubular specimens with 

drilled hole (R = 1 mm). They found that in the first two cases the torsional fatigue strength is 

similar. Instead, specimens with drilled hole exhibited lower torsional fatigue strength even 

though the stress concentration in this case is lower than that of V-shaped notch. This result 

can be explained as an effect of the local microstructure at the crack initiation site. Bernasconi 

and coworkers [18] investigated the fatigue behavior of rectangular PA6-GF30 specimens 

characterized by lateral molded notches (R = 7.5 mm) varying the position of the injection 

gate. Specimens were injected either longitudinally or laterally. The fatigue strength of 

laterally injected specimens was found to be lower than that of longitudinally injected 

specimens. Nevertheless, they reported similar fiber orientation distributions at the notch tips 

in the two cases. As a continuation of this work, Bernasconi and coworkers [19] investigated 

the fiber orientation at the notch tip of longitudinally injected specimens for three different 

notch geometries (R = 0.5, 1.0 and 2.0 mm) reporting a significant decrease of the fiber 

alignment in the longitudinal direction only for the sharpest notch (R = 0.5 mm). 

Over the last decade, new methods were developed to analyze the fiber orientation 

distribution. An established technique is based on the analysis by means of optical or electron 

microscopy of the footprints left by the fibers on a polished section [20, 21]. Nowadays, this 

method is largely applied due to the easy set-up but allows the analysis of the fiber orientation 

distribution on a single section. Inaccuracies in measurement may arise when the fibers cross 

the plane almost perpendicularly. In this case, small ellipticity changes of the footprints result 

in a strong variation of the measured angles [22]. 

The use of the X-Ray CT has been on the rise in recent years. This technique, although it 

requires an expensive facility, enables a three dimensional description of the microstructure 

without the need of polishing the sample. Unlike the optical method, X-Ray CT does not need 

the destruction of the sample which can be thus analyzed a second time. However, in order to 

reach high resolution, a small sample has to be machined from a specimen / part. X-Ray CT 

can be thus considered a semi-destructive method. The continuous improvement of this 

investigation technique in terms of resolution and image contrast provides support for the 

investigation of the damage mechanisms [23-25].  
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This paper is organized as follows: In Section 7.3.1, the quantitative description of the 

microstructure around a molded notch is presented. For this purpose, a sample surrounding 

the notch tip and containing a crack propagated due to fatigue loading was analyzed by means 

of X-Ray CT. In Section 7.3.2 a procedure for the reconstruction of the volume analyzed by 

means of X-Ray CT is described and the local stress distributions around the notch are studied 

with the FEM software ABAQUS (Version 6.11/Standard) [26]. 

A step-wise approach would have required to separate the effects of the notch (stress gradient) 

and the fiber orientation. However, they are intrinsically linked to each other. As observed in 

[1], the possibility to study the crack path is limited to notched specimens. For plain 

specimens, a distinction between crack initiation and final failure is usually not possible. The 

present analysis aims to study the microscopic matrix stress distribution in a case 

representative of real injection molded parts and therefore represents a preliminary step for 

the development of a multi-scale lifetime prediction model for SFRPs. 

7.2. Experimental 

7.2.1. Material system  

The material studied in the present investigation is a short glass fiber reinforced polyamide 

containing 35 wt. % glass fibers (designation PA66-GF35). The dimensions of the specimen 

are shown in Figure 7.1.  

 

 

Figure 7.1. Specimen geometry and dimensions (in mm). 

The specimen was injected along the longitudinal axis. The notch is molded-in and not 

machined after injection molding. This configuration is typical of the real injection molded 

parts where all the geometrical discontinuities are already within the mold in order to avoid 

post-molding machining operations. Some of the fatigue tests on notched specimens 
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performed in [1] were interrupted to study the fatigue damage mechanisms along the crack 

path. One of the specimens used for these tests was investigated by means of X-Ray CT with 

the aim to quantitatively analyze the fiber orientation distribution around the notch, at crack 

initiation. The testing parameters used in this case are: (σa = 23 MPa; 

Ninterruption = 71000 Cycles; f = 20 Hz, room temperature and humidity).When the test was 

interrupted, two cracks of circa 0.4 mm length were observed at the notch tips. A sample 

surrounding one of the two notch tips was machined from the specimen and analyzed by 

means of X-Ray CT (Figure 7.2). The dimensions of the analyzed sample are 

(1.2 x 1.2 x 3 mm). A smaller volume (0.41 x 0.36 x 0.21 mm), extracted from the machined 

sample at the middle thickness was reconstructed in the FEM software (ABAQUS/CAE).  

 

 

Figure 7.2. Location of the volume analyzed by means of X-Ray CT. 

7.2.2. X-Ray Computed Tomography 

A phoenix v|tome|x s 3D computed tomography system was used. The scans were carried out 

with these parameters: Tube voltage: 80 kV, Current intensity: 190 μA, Integration time 

1600 ms. The three-dimensional volume is obtained by stacking a set of CT slices. A standard 

PC with a videocard AMD Radeon HD7900 was used. The sample was rotated by 360°. The 

number of the projections which compose the volume is 720. Pixels are cubics. Pixel pitch is 

200μm. One picture is composed by 1000 x 1000 pixels which become 2000 x 1000 due to 

the shift of the detector. The X-Ray CT device is equipped with a high dynamic temperature-
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stabilized GE DXR digital detector with 30 frames per second. X-Ray CT resolution is 1.6 μm 

(voxel edge size). The software VGStudio Max 2.2 of the company Volume Graphics was 

used for the analysis of the X-Ray CT dataset. The algorithm for the quantitative analysis of 

the fiber distribution is based on the grey value analysis. With this technique, the fibers are 

identified since they have a higher image contrast than the matrix. The threshold grey value 

between matrix and fibers was set by the operator. The choice of this threshold value aims to 

reproduce the global fiber fraction and the single fibers as they look like. For example, a too 

high threshold value would lead to too thin fibers. Such algorithms are not limited to the 

identification of the fibers but can also be used to distinguish other bodies in the material 

volume. The method implemented by the company Volume Graphics for the analysis of the 

fiber orientation was validated by Riedel in [27].  

7.3. Results and discussion 

7.3.1. Quantitative analysis of the fiber distribution around the 
notch 

Figure 7.3 shows the fiber orientation plotted as color-coded overlay on the real material 

microstructure. The y-axis is the reference axis.  The MFD is aligned to the y-axis but in the 

opposite direction. Off-axis fibers are oriented either in the x- or z-axis. In [1] it was found 

that crack initiates at clusters of fibers oriented in the through-the-thickness direction which 

corresponds to the z-axis in Figure 7.3. On the right side of Figure 7.3 the fiber orientation 

distribution around the notch tip is shown. A mix of longitudinally and through-the-thickness 

oriented fibers can be noticed. Even if the specimen was injected in the longitudinal direction, 

not all the fibers around the notch are aligned in the MFD. This result suggests that a more 

thorough investigation of the fiber orientation distribution should be carried out. 
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Figure 7.3. Fiber orientation distribution in the material volume analyzed by means of 

X-Ray CT. 

The sample shown in Figure 7.3 was discretized into cubic elements (Figure 7.4) for the 

quantitative analysis of the fiber orientation distribution in such a way that all the components 

of the Fiber Orientation Tensor (FOT) are equally weighted. The number of elements and the 

element dimension for each analysis are reported in Table 7.1. 

Table 7.1. Number of elements used in the quantitative analysis of the fiber distribution by 

means of X-Ray CT. 

Analysis N° of elements Element size (mm) 

1x1x1 1 1.2 

2x2x2 8 0.6 

4x4x4 64 0.3 

8x8x8 512 0.15 

 

In Figure 7.4, the values of the fiber content for each element are displayed as color-coded 

overlays on the X-Ray CT micrographs. The average second order FOT calculated by the 

software in each element can be geometrically represented as an ellipsoid. The ellipses 

observed within the elements are the projections on the x-y plane of these ellipsoids. The 

principal axes of the ellipsoids correspond to the eigenvectors of the tensor. The major axis 

indicates the main fiber orientation in the corresponding element. The orientation of the 
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ellipsoids shown in Figure 7.4 reproduces the curved path of the melt flow around the notch. 

Since only the projections of the ellipsoids on the x-y plane are shown, the magnitude of 

eigenvectors aligned in the z-axis (thickness direction) are not visible in Figure 7.4 but will be 

analyzed later on in this paper. The aim of the quantitative analysis of the fiber orientation 

distribution by means of X-Ray CT is to investigate how fine the discretization should be to 

capture local microstructural effects at the notch tip (such as clusters of through-the-thickness 

oriented fibers). 
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Figure 7.4. Discretization of the analyzed volume; (a) One single element of length 1.2 mm; 

(b) 8 elements of length 0.6 mm; (c) 64 elements of length 0.3 mm; (d) 512 elements of length 

0.15 mm. 

The one element analysis is shown in Figure 7.4a. The software provides the average FOT 

and fiber volume fraction over the whole volume. The FOT is almost two-dimensional 

(axx = 0.40; ayy = 0.44; azz = 0.16). The through-the-thickness component is lower than the 

other two diagonal components.  The evaluation of the fiber volume fraction (Vf ) gives 

Vf = 15 % which is lower than the nominal value Vf = 19.7 %. However, the fiber volume 

fraction strongly depends on the threshold grey value set to distinguish between fibers and 

matrix. The curved path of the plastic molten flow is already noticeable in the 2 x 2 x 2 

discretization scheme. Figure 7.4b also shows that the elements at the left side of the notch are 

characterized by lower fiber content when compared with the elements at the right side. The 

reason is that the MFD is parallel to the y-axis but in the opposite direction. As the melt front 

approaches the insert, it splits into separated streams which rejoin after the notch leading to a 
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weld line. The majority of the fibers are pushed toward the end of the mold cavity leaving the 

region immediately downstream of the notch with fewer fibers. The 4 x 4 x 4 discretization 

and especially the 8 x 8 x 8 discretization results in a more accurate description of the local 

fiber distribution around the notch.   

Figure 7.5 shows the analysis of the three diagonal components of the FOT and the fiber 

volume fraction for six sections along the thickness. The fiber orientation distribution is 

planar (x-y plane) with the exception of the layer surrounding the notch (see Figure 7.5, first 

row, azz). Here, high values of the azz component are observed. The occurrence of through-

the-thickness oriented fibers at the notch tip is particularly relevant since this region 

corresponds to the crack initiation site. The distribution of the ayy and axx are complementary 

to each other reflecting the curvature of the melt flow around the insert.  

Figure 7.5 shows that fiber volume fraction varies in each element of the discretization. The 

maximum variation of the fiber volume fraction is by a factor 3. Fiber rich zones alternate 

with matrix rich zones without a precise scheme except for the elements downstream of the 

notch which are characterized by a lower fiber volume fraction. Examining the layer 

surrounding the curved part of the notch (see Figure 7.5, first row, Vf), for the six sections 

along the specimen thickness shown in Figure 7.5, the fiber volume fraction varies by almost 

a factor 2 having a minimum value of 10.8 % and a maximum value of 17.7 %. The average 

value is 12.95 %, lower than the average fiber volume fraction over the entire analyzed 

volume.  
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Figure 7.5. Analysis of the fiber orientation distribution and fiber content; 8 x 8 x 8 

discretization. 
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7.3.2 Reconstruction of the material volume in the FEM Software 
ABAQUS 

7.3.2.1. Geometry 

A commercial software (Simpleware ScanIP [28]) was used for the automatic conversion of 

the X-Ray CT dataset into a solid mesh to import in a FEM software. Other examples of solid 

model generation from X-Ray CT datasets are reported in [29, 30]. In our case, this approach 

has shown some limitations illustrated in Figure 7.6. As reported in Section 7.2.2, the 

software for the analysis of the X-Ray CT dataset is based on the grey gradient. Artifacts in 

the X-Ray CT datasets likely due to material impurities which show a similar contrast as the 

fibers are included in the geometry creation (Figure 7.6 - right side). Moreover, if the fibers 

are close to each other, the software considers them as attached, leading to the formation of 

structures which are not characteristic of the real microstructure (Figure 7.6 – right side).  

Lastly, the shape of the fibers is not cylindrical but more irregular further complicating the 

geometry.  

 

 

Figure 7.6. Reconstruction of the X-Ray CT data-set using the software Simpleware ScanIP. 

Figure 7.7 illustrates why some fibers after reconstruction by the software are attached to each 

other. For example, if one looks at the fibers n°1 and n°2 in Figure 7.7a, they are really close 

to each other. Figure 7.7b shows the pixel distribution on the picture. Between the fibers and 

the matrix, the grey value varies gradually. If the fibers are too close to each other, the grey 

values of the pixels in the narrow space between the fibers may not be in matrix range. Hence, 
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the software cannot distinguish between two separated bodies. A possible solution of this 

problem would be the increase of the analysis resolution which is however not compatible 

with the available X-Ray CT. 

 

(a) (b) (c)
1

2

0.015 mm0.015 mm 0.015 mm  

Figure 7.7. Detection of the fibers based on the grey values; (a) X-Ray CT picture; (b) Pixel 

distribution; (c) Grey gradient based fiber detection. 

In order to overcome the limitations of the automatic reconstruction method, we propose just 

for this detailed investigation, a manual procedure to model the fibers. For each considered 

fiber, the operator identified the spatial coordinates of the fiber ends using the software 

dedicated to the analysis of the X-Ray CT dataset. Each fiber was modeled as a cylinder 

extruding a circle of diameter 10 μm (fiber diameter) along a straight path defined by the 

spatial coordinates of the fiber ends. The fibers showing a noticeable curvature were modeled 

by sweeping the circle along a spline joining multiple points extrapolated along the curved 

fiber axis. One example is the fiber n°5 in Figure 7.8. The numeration of the fibers shown in 

Figure 7.8 will be kept the same in the following pictures. To speed up the procedure, a 

python script was created. 50 fibers were modeled within the sub-volume of interest. The 

number of fibers in the material volume does not meet the requirements of the numerical 

homogenization but aims to describe and investigate the matrix stress distribution in the 

damaged zone. The matrix solid model was created extruding along the thickness a sketch 

including the notch profile and large enough to incorporate all the considered fibers. The two 

solid models (matrix and fibers) were merged together in ABAQUS/CAE retaining the 

intersecting boundaries. The reconstructed material volume does not represent an RVE 

because it does not meet the requirement of reproducing the effective material properties. 

From another perspective, the scale separation law is not respected; the average length of the 

fibers (lf = 0.280 mm) is in fact almost equal to the notch radius (Rnotch = 0.2 mm).  
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Figure 7.8. (a) Volume analyzed with X-Ray CT; (b) Volume reconstructed in 

ABAQUS/CAE. 

7.3.2.2. Boundary conditions and mesh 

The submodeling technique was used to assign the boundary conditions to the analyzed 

volume. A linear elastic simulation of the entire specimen was performed to calculate the 

global displacement distribution (Figure 7.9a). The software DIGIMAT-MF [31] was used to 

create a linear elastic material model homogenizing the elastic properties of glass fibers and 

pure resin. The material properties adopted for the constituents are reported in [9]. The 

software DIGIMAT-MAP [31] was used to map the FOTs calculated with the software 

MOLDFLOW [32] onto the structural mesh created in ABAQUS. The homogenized elastic 

properties depend on the local fiber orientation. The nodes on the bottom face of the specimen 

were constrained in all directions while uniform pressure, equal to 1 MPa was applied to the 

top surface. Because of the large dimension difference between the global model and the 

reconstructed volume, it was decided to add another submodel as intermediate step with the 

same material properties of the global model (Figure 7.9b). The displacements derived by the 

first sub-model were finally applied to the reconstructed volume. In this last step 

(Figure 7.9c), the constituents (fibers and matrix) were modeled as isotropic, linear elastic 

materials. It is worthwhile noting that the global model and the first sub-model are 

homogeneous while in the second sub-model is heterogeneous since fibers and matrix are 

explicitly modeled. In first approximation, perfect fiber-matrix bonding was assumed also 

between the fibers ends and the matrix where no adhesion is expected. In fact, during the 
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injection molding process, the fibers which are subjected to sizing treatment in order to 

improve the fiber-matrix adhesion, are broken up in shorter parts. The ends of these shorter 

fibers are new surfaces not covered by sizing.  The mesh contains 60330 C3D8 elements for 

the global model, 528000 C3D8 elements for the first sub model and 1758635 C3D10 

elements for the reconstructed volume. While mapped meshes with hexahedral elements were 

used for the global model and the fist sub model, a mesh with tetrahedron elements was used 

for the reconstructed model due to the presence of the fibers in the material volume which 

lead to a more complex geometry. In the reconstructed model, the element size is 5.95E-003 

mm. 

 

(a) (b) (c)

 

Figure 7.9. (a) Global model; (b) First sub model; (c) Reconstructed model. 

7.3.2.3. Analysis of the results 

Figure 7.10 shows the distribution of the maximum principal stress in the fibers. Fibers 

aligned in the loading direction (y-axis) undergo, on average, higher stresses than those 

aligned either to x- or z-axis. In fact, longitudinally oriented fibers carry the load transferred 

by the matrix leading to an increase of the Young’s Modulus of the composite material.  
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(a) (b)

 

Figure 7.10. Stress distribution in the fibers of the reconstructed model (a) Front view, (b) 

Top view. 

Figure 7.11 – 7.13 show a comparison between X-Ray CT micrographs and the corresponding 

contour plots of the maximum principal stress. In the contour plots, the fibers are hidden in 

order to highlight the matrix stress distribution. The direction of the maximum principal stress 

at the matrix hot-spots is also shown. Small discrepancies of the fiber positions between the 

FE model and the reality can be observed in Figure 7.11c-d. For example, fiber n°6 in the FE 

model is slightly moved from its reference position. That is essentially due to two reasons: 

Firstly, fiber n°6 is characterized by a large curvature being difficult to reproduce accurately. 

Secondly, in order to avoid any interference between the fibers, slight adjustments of the fiber 

positions were found to be necessary. Since the matrix stress concentrations are controlled by 

the mutual positions of the fibers, small microstructural variations lead to local variations of 

the stress field. For this reason, the stress analysis described in Figure 7.11 - 13 does not 

provide the absolute stress values in the matrix. Instead, it aims to figure out the local stress 

distributions around the notch. X-Ray CT micrographs reveal that crack initiates with little 

offset from the notch tip, in a fiber-rich region (Figure 7.11c). In this region, the highest 

matrix stress concentration occurs between through-the-thickness oriented fibers.  

The direction of the local maximum principal stress is mostly perpendicular to the crack 

plane. In Figure 7.11, crack growths between the fibers n°1 and n°2 and it is forced to change 

direction due to the fiber n°3. The crack path develops between fibers in a typical fiber 

avoidance mode.  
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Figure 7.11. Comparison between X-Ray CT micrograph (a) and reconstructed model in the 

FEM code (b), front view; (c) Enlargement of Figure 7.11a; (d) Enlargement of Figure 7.11b. 

The arrows indicate the direction of the maximum principal stress. 

Figure 7.12 shows another section along the thickness of the same sample analyzed in Figure 

7.11.Two clusters of through-the-thickness oriented fibers are noticed. These clusters are 

located almost symmetrically about the x-z plane passing through the notch tip. However, 

there is only one crack on the right side of the notch. Concluding, there are multiple stress 

concentrations around the notch which are all potential sources of irreversibility. The 

combination of the weakest location due to local material morphology and the local stress 

state creates the condition for crack initiation. From this step on, the crack propagation is 

dominated by the singular stress field at the crack tip.  
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Figure 7.12. Comparison between X-Ray CT micrograph (a) and reconstructed model in the 

FEM code (b), front view; (c) Enlargement of Figure 7.12a; (d) Enlargement of Figure 7.12b. 

The arrows indicate the direction of the maximum principal stress. 

Figure 7.13 shows the matrix stress distributions at crack initiation from a different 

perspective (y-z plane tangent to the notch tip). The fiber orientation is dominated by through-

the-thickness oriented fibers. It is worthwhile noting that the matrix stress concentrations are 

influenced by the interfiber distance (see fiber n°1 and n°2).  
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Figure 7.13. Comparison between X-Ray CT micrograph (a) and reconstructed model in the 

FEM code (b), top view; The arrows indicate the direction of the maximum principal stress. 
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7.4. Conclusions 

An analysis of the fiber distribution at crack initiation for a short glass fiber reinforced 

polyamide (PA66-GF35) notched specimen was presented in this work. X-Ray CT was used 

for a quantitative description of the microstructure in a volume around the notch and for the 

reconstruction of the real fiber orientation distribution in the FEM software ABAQUS. Stress 

concentrations at the locations of crack initiation were also studied.  

The insert within the mold used for creating the notch, leads to a perturbation of the melt flow 

during the injection molding process resulting in a three-dimensional fiber orientation 

distribution around the notch. At the close vicinity of the free surface of the notch, 

through-the-thickness oriented fibers were observed. Moreover, fiber clusters were found to 

be statistically distributed around the notch indicating that fiber content is not constant but 

varies significantly within the material. These local microstructural effects could be 

quantitatively captured by reducing the size of the elements where the FOT and the fiber 

content are measured. 

The reconstruction of a material volume surrounding the notch in a FEM software had the 

objective to investigate the relation between the fiber distribution and the local stress 

concentrations in the matrix. With the use of the submodeling technique it was possible to 

study, from the qualitative point of view, the matrix stress distributions around the notch. The 

maximum matrix stress concentrations were found at clusters of through-the-thickness 

oriented fibers. The analysis of the stress concentrations is a preliminary step in investigating 

a crack initiation criterion.  
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Chapter 8 

Multi-scale modeling of the fatigue behavior of short 
glass fiber reinforced polyamide notched specimens 

Keywords: Short Fiber Reinforced Composites, Fatigue, Polyamide, Multi-scale modeling 

Abstract 
This paper presents a multi-scale strategy for the lifetime prediction, in terms of crack 

initiation, of short fiber reinforced polyamide specimens. Fatigue tests of specimens 

characterized by a central molded-in slit were carried out. In the first part of this work, the 

development of a two-dimensional geometric representation of the real microstructure around 

the notch is presented. The second part of the paper deals with the formulation of the criterion 

for the durability assessment. A local threshold stress which includes the microscopic matrix 

stress concentrations is used to summarize the fatigue data for different fiber volume fractions 

in a single scatter band. The strengths and the weaknesses of the proposed criterion as well as 

its possible extensions are also discussed. 

8.1. Introduction 

The use of Short Fiber Reinforced Plastics (SFRPs) in the automotive sector is motivated by 

several reasons, among which: 1) Minimization of the vehicle weight; 2) Reduction of the 

manufacturing costs; 3) Design freedom. SFRPs exhibit high strength to weight ratio, high 

chemical and temperature resistance. Such characteristics make these materials ideal 

candidates for metal replacement in under-the-hood applications. Under-the-hood parts are 

exposed to cyclic loading due to vibrations, pulsating pressure, temperature variations. 

Approaches to durability become essential to predict the lifetime already in the design phase.  

In the literature, some phenomenological approaches for the lifetime prediction of SFRPs are 

available. Most of them are extensions of models originally developed for homogeneous, 

isotropic materials. Such approaches require test data to determine the phenomenological 

constants and do not provide the physical insight needed to improve the material performance. 

The Tsai-Hill criterion was extended by De Monte et al. [1, 2] to predict the influence of the 
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fiber orientation on the tensile and fatigue strength of PA66-GF35 plain specimens. The 

volume-based Strain Energy Density (SED) approach originally developed by Lazzarin et al. 

[3-5] quasi-brittle material and weld joints, was extended by De Monte and coworkers [6] in 

order to predict the  lifetime of PA66-GF35 specimens with different notch geometries. The 

SED model was further extended by Schaaf and coworkers [7] for the lifetime prediction of a 

PBT-GF30 under thermomechanical loading. Recently, thanks to the increase of the 

computational power and the improvements of the experimental methods for the damage 

investigation, models able to take into account the microstructure have been proposed [8]. 

In this paper, a multi-scale model for the lifetime prediction up to crack initiation of SFRPs is 

presented. In certain components, the initiation of a crack corresponds to the component 

failure. An example is the fuel rail shown by Sonsino and Moosbrugger in [9]. In that case, 

the occurrence of a crack may lead to fuel leakage compromising the functioning of the 

component.  According to Talreja [10], the first step of a durability approach is the stress 

analysis of the considered geometry under expected service environment using the assumed 

material model. SFRPs are heterogeneous materials. In addition to the macro stress 

concentrations at geometric discontinuities, microscopic stress concentrations emerge due to 

fiber-fiber and fiber-matrix interactions. The knowledge of the fiber distribution at crack 

initiation is thus of great interest since it enables the study of typical local stress 

concentrations. Analyzing the microstructure around a molded notch in a longitudinal injected 

specimen, the authors revealed the occurrence of through-the-thickness oriented fibers [11]. 

Building on these achievements, in Section 8.3 a geometric description of the microstructure 

around the notch is illustrated.  In Section 8.4, a multi-scale modeling strategy is proposed. In 

order to study the effect of the fiber distribution on the fatigue material behavior, polyamides 

characterized by different fiber fractions were considered. 

8.2. Experimental 

In this work, unreinforced and short glass fiber reinforced polyamides (PA66) were used. The 

material designations (PA66, PA66-GF15, PA66-GF25, PA66-GF35, PA66-GF50) 

correspond to 0 %, 15 %, 25 %, 35 %, 50 % weight fiber fraction respectively. Dog-bone 

plain specimens were tested under quasi-static loading to measure elastic and strength 

properties of the considered material systems. Notched specimens were tested under fatigue 

loading. The specimen geometries are shown in Figure 8.1. Both plain and notched specimens 

were longitudinally injected.  The notch is created with an insert within the mold. Real 
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injection molded parts generally do not need any post-molding machining operation. All the 

geometric discontinuities are already within the mold.  

 

Figure 8.1. Specimen geometry and dimensions (in mm); plain specimen on the left; notched 

specimen on the right (see the enlargement of the notch tip at the bottom right of the figure). 

Static and fatigue tests were carried out at room temperature without controlling the relative 

humidity of the room. Just after molding, the specimens were stored in drums containing a 

drying agent. Hence, we assume that all the specimens were tested in Dry-As-Molded (DAM) 

conditions. A Zwick/Roell Z050 was used to test plain specimens under quasi-static loading. 

The crosshead rate was kept slow for the measurement of the Young’s modulus (1 mm/min) 

and accelerated (5 mm/min) in the second part of the test until specimen failure. The tensile 

properties for different fiber volume fractions are summarized in Table 8.1. Interestingly, 

while the Young’s modulus (E) and the Ultimate Tensile Strength (UTS) increase with 

increasing fiber fraction, the strain to failure (ε at failure) of the reinforced materials is 

independent of the fiber content. Similar results were reported also by Bernasconi and Cosmi 

in [12]. Uniaxial fatigue tests were carried out on a servo-hydraulic testing machine, equipped 

with a load cell of 10 kN. Fatigue tests were performed under load control in tension-tension 

mode (load ratio R = 0). The testing frequency was kept low in order to avoid the material self 

heating. In Figure 8.2b the fatigue results are reported by plotting the nominal net stress 

amplitude against the number of cycles to crack initiation (dotted line) and to failure (solid 

line). Fatigue data are represented in a double logarithmic diagram, plotting the net stress 

amplitude (σa) against the number of cycles (N) to crack initiation/failure. S-N curves with 

50 % failure probability are plotted using eq. 8.1. 

 
k
AA

k
a NN                                                                                                                    (8.1) 
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Where NA = 1E6 cycles and σA = σa(1E6), k is the inverse slope of the S-N line. For the crack 

initiation detection, an optical capturing method was used [13]. The fitting parameters used in 

the eq. 8.1 are reported in Table 8.1. 
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Figure 8.2. (a) Static tests of plain specimens for different fiber volume fractions; (b) Fatigue 

tests of notched specimens for different fiber volume fractions. 

Table 8.1. Tensile properties of short glass fiber reinforced polyamides (PA66) having 

different fiber volume fractions. 

Material E UTS ε at failure 

  [MPa] [MPa] [%] 

PA66-GF15 6176 120 2.50 

PA66-GF25 8991 164 2.70 

PA66-GF35 10899 184 2.60 

PA66-GF50 16025 202 2.20 

Table 8.2. S-N lines up to crack initiation and up to failure of short glass fiber reinforced 

polyamides (PA66) having different fiber volume fractions. 

Material Initiation Failure 

  σA [MPa] k σA [MPa] k 

PA66-GF15 10.31 9.72 10.80 9.17 

PA66-GF25 12.42 7.46 13.99 7.59 

PA66-GF35 15.10 7.60 16.94 6.81 

PA66-GF50 15.03 6.18 18.99 6.95 
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8.3. Equivalent description of the microstructure  

In this section, a statistical equivalency approach for the description of the fiber distribution at 

crack initiation is proposed. According to Pyrz [14], SFRPs can be described as statistically 

homogeneous materials. This means that the effective material properties can be obtained by 

averaging over a Representative Volume Element (RVE). Averaging is useful if the global 

elastic material properties have to be calculated. Instead, damage initiation is governed by 

local stresses. The mismatch between the elastic properties of fibers and matrix and the 

interaction between neighboring fibers lead to matrix stress concentrations which are 

preferred locations for crack initiation. Segurado and Llorca [15] studied the effect of 

particles spatial distributions in a RVE on the local stress distributions and the elastic global 

properties. They observed that the spatial arrangement of the particles (in particular the 

clusters of particles) influences the matrix stress peaks whereas it does not affect the effective 

material properties of the composite material. Bulsara and coworkers [16] investigated the 

RVE size with respect to the damage mechanisms matrix cracking and fiber-matrix 

debonding. 

Figure 8.3 shows the statistical distribution of the maximum principal stress in the matrix in a 

real material volume around a molded-in notch tip. On the right of Figure 8.3, three contour 

plots represent the same distribution of the maximum principal stress but varying the lowest 

limit of the contour scale. For example, on the contour plot at the top-right of Figure 8.3 the 

stress from 2 MPa is plotted. The microscopic matrix stress concentrations occur either 

between through-the-thickness oriented fibers or at the ends of longitudinally oriented fibers 

and correspond to a small fraction of the total stresses. Through-the-thickness oriented fibers 

are restricted to a thin layer surrounding the notch, where damage is most likely to initiate.    
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Figure 8.3. Max principal stress contours plots referring to percentage portions of the area 

under the stress distribution curve. 

The microstructure shown in Figure 8.3 closely reproduces the fiber orientation distribution in 

the reality. However, the effort required for preparing and scanning the sample and for the 

analysis of the X-Ray CT datasets discourages the extension of this procedure for large 

experimental campaigns. The proposed strategy for the development of an equivalent 

geometric representation of the fiber orientation distribution aims to reproduce the typical 

observed matrix stress concentrations.  

In a first approximation, the failure process in specimens weakened by molded-in notches can 

be divided into two parts. In a first phase, matrix cracking occurs in a zone characterized by 

clusters of through-the-thickness oriented fibers. From this point on, the crack propagates in a 

fiber avoidance mode leading to a zig-zag pattern mostly avoiding in-plane oriented fibers. 

Focusing on the damage initiation only, the microstructure was represented as a bi-

dimensional layer surrounding the notch and containing a random distribution of through-the-

thickness oriented fibers (Figure 8.4). The nominal fiber fraction was kept constant. The fiber 

diameter (df) was kept constant and equal to 10 μm. A hard-core method was used by 

applying a uniform distribution for the fiber centers and considering a minimum permitted 

distance (dist = 1.05*df) between any two centers. The size of the geometric representation of 

the microstructure is related to the layer within which through-the-thickness oriented fibers 

were observed. The layer width is set to 3.5 times the fiber diameter and indicates the distance 
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delimiting damage initiation area. The fiber-matrix interface was not modeled. Perfect fiber-

matrix bonding was assumed. Plane strain elements were used in the simulation thus 

assuming that the fibers are endless. The element size was kept constant for various fiber 

fractions. The simplifications introduced in the geometric representation imply that the stress 

concentrations are only affected by the distance between neighboring fibers. Effects such the 

fibers overlapping as well as the influence of the fiber orientation were not taken into account. 

The boundary conditions of the microstructure were assigned using the submodeling 

technique. Two-dimensional homogeneous, isotropic, linear elastic simulations of the entire 

specimen were performed by only varying the Young’s modulus depending on the fiber 

volume fraction (Figure 8.4a). The adopted values of the Young’s modulus are summarized in 

Table 8.1. The nodes on the bottom face of the specimen were constrained in all the degrees 

of freedom while uniform pressure, equal to 1 MPa was applied to the top surface. Because of 

the huge size difference between the global model and the microstructure, an additional sub-

model having the properties of the global model was simulated (Figure 8.4b). The 

displacement field resulting from the analysis of the first sub model model was finally 

assigned to the second sub-model (Figure 8.4c). In the second sub-model, fibers and matrix 

were explicitly modeled. In this case, the linear elastic material properties of fibers and matrix 

were adopted from [1]. 

 

(a) (b) (c)

R 0.2

 

Figure 8.4. Description of the submodeling technique: (a) global model; (b) first sub model; 

(c) second sub model. One homogeneous material model was assigned to the global and the 
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first sub model while two different material models (fibers and matrix) were assigned to the 

second sub model. 

8.4. Formulation of the failure criterion and analysis of the results 
 

Figure 8.5 shows the contours of the maximum principal stress in the matrix for different fiber 

fractions. For a given percentage area under the statistical stress distribution curve 

(Figure 8.3), the corresponding threshold stress is higher for lower fiber fractions. The reason 

is that the Young’s modulus assigned to the global model influences the displacement 

distribution. A lower Young’s modulus results in higher displacements transferred to the 

submodel. On the other hand, the interfiber distance decreases with increasing fiber volume 

fraction resulting in higher local stresses. The Young’s modulus of the global model and the 

interfiber distance are the two factors which influence the matrix stress distribution in the 

microstructure. 

  

Vf=15wt% Vf=25wt% Vf=35wt% Vf=50wt%

 

Figure 8.5. Contours of the microscopic matrix stress distributions varying the fiber volume 

fraction. 

We followed a statistical approach for the derivation of a local, critical stress-based variable 

to be used in the multi-scale model. Taking as example the PA66-GF35 material, 20 random 

microstructures were generated. For each microstructure, the highest maximum principal 

stress and the stress thresholds referring to different portions of the total area under the stress 

distribution were calculated. For each stress threshold, the average value over the 20 

microstructures and the standard deviation are reported in Figure 8.6. For a correct analysis of 

the scatter, the standard deviation was divided by the average value of the corresponding 

stress threshold. The high scatter shown by the highest maximum principal stress prevents its 



Chapter 8. Multi-scale modeling of the fatigue behavior of  
short glass fiber reinforced polyamide notched specimens 

 

145 
 

use as failure variable in the multi-scale model. Instead, the threshold stress value referring to 

a specific portion of the total area under the curve exhibits a lower scatter. The standard 

deviation diminishes with increasing of the area under the stress distribution curve. However, 

if we take into account a large portion of the total area, we include stress regions which do not 

participate to the damage phenomenon (Figure 8.3). Following an engineering approach, the 

adopted stress threshold is the result of a trade-off between these two objectives. Finally, we 

found that the stress threshold referring to the 10 % of the area under the stress distribution 

curve exhibits a low scatter and identifies the stress concentrations which correspond to the 

potential sources of irreversibility in the microstructures (Figure 8.6). 
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Figure 8.6. Evaluation of the average value and standard deviation of the local matrix 

threshold stress related to different percentage areas under the curve over 20 random 

microstructures. 

The fatigue data were rearranged in terms of local matrix threshold stress amplitude σA
* 

according to the eq. 8.2.  

 

 **
IAA                                                                                                                         (8.2)                         

 

Where σA is the nominal fatigue strength for a given number of cycles and σI* is the 

concentration factor expressed as the threshold stress related to the 10 % of the area under the 

matrix stress distribution curve when a pressure equal to 1 MPa is applied to the global 
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model. The data represented in terms of local matrix threshold stress amplitude fall within a 

single band as shown in Figure 8.7. The scatter index Tσ is the ratio between the stress values 

at 90 % and 10 % failure probability. 
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Figure 8.7. Fatigue data plotted in terms of nominal stress amplitude (a) and local matrix 

threshold stress amplitude against the number of cycles to crack initiation. 

 

Assuming that σA
* is constant for each fiber volume fraction, the model enables the 

calculation of the nominal S-N curves for different fiber volume fractions basing on a single 

calibration curve. In fact the parameter σI* can be calculated through a linear elastic FE 

analysis. Figure 8.8 shows the performance of the model reporting the experimental number 

of cycles against the estimated values using as calibration curve the S-N line referring to one 

of the considered fiber volume fractions. The dashed lines indicate the ± 200 % error bands. 

Given a set of fatigue data for a specific fiber volume fraction, the relation between the stress 

amplitude (σa) and the number of cycles to crack initiation (N) is expressed by the eq. 8.1. 

The same equation is valid for the S-N line plotted in terms of local matrix threshold stress 

amplitude (σa
*) against number of cycles to crack initiation (N) (eq. 8.3).  

 
k

AA
k

a NN **           (8.3)                         

 

The slope of the S-N line (k) is kept constant. Given a value of the stress amplitude, it is 

possible to calculate the number of cycles to crack initiation for any other fiber volume 

fraction. For example, in the eq. 8.4, the calibration curve is the S-N line for PA66-GF35. 
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Where NA = 1E6 cycles, σA
GF35 is the stress amplitude referring to 1E6 cycles, σI

*GF35 the 

threshold stress limiting the highest 10 % of the stress distribution curve when a pressure 

equal to 1 MPa is applied to the global model. The appendix “?” indicates the fiber volume 

fraction of the outputted S-N line.  

 

103

104

105

106

107

103 104 105 106 107

 PA66-GF15
 PA66-GF35
 PA66-GF50

N
mod

 (Rif: PA66-GF25)

N
ex

p

103

104

105

106

107

103 104 105 106 107

 PA66-GF25
 PA66-GF35
 PA66-GF50

N
mod

 (Rif: PA66-GF15)

N
ex

p

103

104

105

106

107

103 104 105 106 107

 PA66-GF15
 PA66-GF25
 PA66-GF35

N
mod

 (Rif: PA66-GF50)

N
ex

p

103

104

105

106

107

103 104 105 106 107

 PA66-GF15
 PA66-GF25
 PA66-GF50

N
mod

 (Rif: PA66-GF35)

N
ex

p

safe

unsafe

safe

unsafe

safe

unsafe

safe

unsafe

(a)

(c)

(b)

(d)

 

Figure 8.8. Performance of the criterion in terms of fatigue life considering as calibration 

curve the S-N curve of PA66-GF15 (a); PA66-GF25 (b); PA66-GF35 (c); PA66-GF50 (d); 

the dashed lines indicate the ± 200 % error bands. 
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Despite the simplifications included in the model, the proposed multi-scale strategy gives 

acceptable results and in particular appears to be a rapid tool for the derivation of S-N lines 

for different fiber configurations. 

8.5. Conclusions 

A multi-scale modeling strategy for the prediction of the lifetime up to crack initiation in 

notched specimens was presented. Despite its simplicity, the proposed multi-scale model 

gives good results requiring only one calibration curve. The approximations of the model 

(isotropic material model for the global model, bi-dimensional model, perfectly aligned fibers, 

absence of an interface model) could be removed without varying the proposed multi-scale 

strategy. The microstructure modeled in this work is representative of specimen weakened by 

a molded-in central notch. The fiber distribution should be investigated also for other 

specimen geometries and typical regions for crack initiation in real-world-components. In a 

future work, the fatigue data of plain specimens will be reanalyzed using the same multi-scale 

model. 
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Chapter 9 

Concluding remarks 

Engineering approaches to durability of SFRPs give accurate lifetime estimation when the 

damage mechanisms operating under the stress state conditions at critical locations are 

properly understood and incorporated in a lifetime prediction model. Currently, thanks to the 

improvements of the experimental techniques for the damage investigation and the explosion 

of the computational power, the time is ripe for the development of mechanism-based models. 

In this context, the damage initiation in a short glass fiber reinforced polyamide under fatigue 

loading has been investigated. 

In Chapter 4, an optical method for the quantification of the lifetime to crack initiation in 

notched specimens has been presented. It was found that the contribution of the crack 

initiation / propagation phase to the total lifetime varies with the fiber volume fraction. For 

unfilled polyamide specimens, crack initiation corresponds to failure. The contribution of the 

crack propagation to the total lifetime increases with increasing fiber fraction. The accuracy 

of the method was validated by interrupting fatigue tests before specimen failure and 

measuring the real crack length on the polished side surface of the specimen by optical 

microscopy. 

The initiation and progression of damage in plain and notched PA66-GF35 specimens have 

been studied in Chapter 5. Damage mechanisms discussed in literature were reviewed by 

reference to specific fractographic features: matrix fracture behavior (ductile / brittle), fiber 

failure / pull-out, degree of interfacial adhesion. The results of the literature review were used 

as basis for a comprehensive damage investigation on plain and notched PA66-GF35 

specimens. High resolution Field Emission Scanning Electron Microscope (FESEM) was 

used to investigate the fractures surface of failed specimens and the side surface of specimens 

subjected to interrupted fatigue tests. Fibers on the fracture surface were found to be covered 

by a resin layer. This evidence suggests that damage occurs at a certain distance from the 

interface in form of matrix-cracking and not at the interface in form of fiber-matrix 

debonding. Cryogenic fracture of specimens previously tested until crack initiation revealed 

the occurrence of cavities on the cryo-fracture surface ahead of the crack tip. This evidence 

suggests that the mechanism of coalescence of voids in the matrix precedes the initiation of a 

crack. Analyzing the side surface of notched specimens subjected to interrupted fatigue test, it 
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was found the crack initiation position does not correspond to the notch tip as for 

homogeneous materials. Instead, the crack was found to initiate at clusters of 

through-the-thickness oriented fibers unevenly distributed around the notch. 

In Chapter 6, the damage investigation has been extended to consider the effect of the fiber 

volume fraction on the fatigue damage mechanisms in notched specimens. It was shown that 

the crack path is strongly affected by the fiber fraction. With high fiber fraction, fibers 

agglomerate forming clusters which force the crack to change continuously its propagation 

direction reducing the crack propagation rate. The analysis of the fracture surface showed that 

the fibers are covered by a resin layer thus indicating that damage occurs at a certain distance 

from the interface independently of the fiber content. 

The effect of the fiber orientation on the local stress concentrations at crack initiation has been 

investigated in Chapter 7.  For this purpose, a fatigue test of a notched specimen was 

interrupted at crack initiation and analyzed by means of X-Ray CT. The quantitative analysis 

of the fiber orientation distribution around the notch revealed the occurrence of 

through-the-thickness oriented fibers even though the specimen was injected in the 

longitudinal direction. The real fiber distribution around the notch was manually 

reconstructed and simulated with the FEM code ABAQUS. The combined effect of the notch 

and the fiber orientation distribution at crack initiation was studied. Highest matrix stress 

concentrations were found between through-the-thickness oriented fibers. This analysis is a 

preliminary step for the definition of a crack initiation criterion. 

Finally, a multi-scale model for the crack initiation prediction of short glass fiber reinforced 

polyamide notched specimens has been presented in Chapter 8. In Chapter 5 and Chapter 7 it 

was found that in notched specimens, crack initiates mostly at clusters of 

through-the-thickness oriented fibers. Building on this experimental evidence, the 

microstructure was modeled as a bi-dimensional layer around the notch with a random 

distribution of through-the-thickness oriented fibers. The local stress distribution was studied 

with the submodeling technique. The global model was modeled at continuum level with the 

material properties of the composite. In the sub-model, fibers and matrix were explicitly 

modeled. This multi-scale strategy was used for the computation of the stress threshold which 

includes the highest 10 % of the stress distribution in the matrix. It was shown that this failure 

parameter was suitable for compress crack initiation data for different fiber fractions into a 

single scatter band relating the local matrix threshold stress amplitude to the number of cycles 

to crack initiation. 
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Appendix A.  Damage investigation 

1. Analysis of the cryo-fracture surface of PA66-GF35 specimen 
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2. Fiber avoidance mode 

PA66-GF35

 

PA66-GF35
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3. Clusters of through-the-thickness oriented fibers 

PA66-GF25

 

PA66-GF15
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4. Fiber pull-out 

PA66-GF25

 

PA66-GF25
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5. Fiber failure 

PA66-GF50

 

PA66-GF25
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6. Degree of fiber-matrix adhesion 

PA66-GF35
Crack initiation site – plain specimen

 

PA66-GF35
Fracture surface caused by stable FCP
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PA66-GF35
Fracture surface caused by stable FCP

 

PA66-GF25
Fracture surface caused by stable FCP
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PA66-GF50
Fracture surface caused by stable FCP

 

PA66-GF35
Fracture surface caused by stable FCP
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7. Matrix cracking 

PA66-GF35

 

PA66-GF35
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8. Voids and particles 

 PA66-GF35
Cryogenic fracture surface

 

 PA66-GF35
Cryogenic fracture surface
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 PA66-GF35
Cryogenic fracture surface
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PA66-GF35
Fracture surface caused by stable FCP

 

 
PA66-GF35
Fracture surface caused by stable FCP
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Appendix B 

Use of Digital Image Correlation (DIC) for the crack 
initiation detection during fatigue tests of 
PA66-GF35 notched specimens 

1. Introduction 

Digital Image Correlation (DIC) was used for the crack initiation detection in short glass fiber 

reinforced polyamide notched specimens under fatigue loading. Bernasconi and coworkers [1] 

used DIC to study the strain field of notched specimens injected through different injection 

gates (longitudinal and lateral). They compared the local strain fields applying in a quasi-

static manner a nominal stress corresponding to a lifetime of 1E6 cycles of the lateral injected 

specimen. They measured higher local strain values for the lateral injected specimen due a 

different fiber orientation distribution.  

The aim of this work is to use the DIC as experimental method for the crack initiation 

detection in notched specimens of short fiber reinforced polyamide undergoing cyclic loading. 

2. Experimental 

Uniaxial fatigue tests were carried out on a servo-hydraulic testing machine, equipped with a 

load cell of 10 kN under tension-tension loading (load ratio: R = 0). Frequency was chosen in 

order to avoid the self-heating of the specimen and varies inversely with the load level. 

Temperature and humidity were not controlled during the tests. Fatigue tests were carried out 

until the separation of the specimen into two parts.  

The material studied in the present investigation is a short fiber reinforced polyamide 

containing 35wt % glass fibers (designation PA66-GF35). Fibers have a diameter of 10 μm 

and an average length of approximately 280 μm. Notched specimens were used to facilitate 

the crack initiation detection. The dimensions of the specimen are shown in Figure 1.  
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Figure 1. Specimen geometry and dimensions (in mm). 

DIC analysis was performed using a commercial hardware and software package (ARAMIS) 

of the company GOM [2]. The image acquisition was performed using two digital CCD 

cameras with a resolution of 2 Megapixels (Figure 2a). Two high-performance LED lamps 

were mounted on the framework to illuminate the specimen surface resulting in a better image 

contrast (Figure 2a). The angle between the cameras and the angle between the lamps are set 

based on the size of the volume of interest. The image of the specimen surface is digitized on 

a pixel-by-pixel basis using the CCD digital cameras. Each pixel is characterized by a specific 

grey value. DIC is based on tracking the movement of a pixel subset (facet) over a series of 

images. Facets are therefore like strain gages which measure the strains at the local level on 

the specimen surface. For a better image contrast, the specimen surface was sprayed by means 

of a semi-gloss white spray (Figure 2b).  
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Figure 2. (a) Experimental set up; (b) Applied speckle pattern. 

The grayscale histogram is a measure of the image contrast. The application of a speckle 

pattern to the specimen surface results in a more balance distribution of the black and white 

pixels in the facets. In the present analysis, each facet has 17 x 13 pixels. The image capture 

rate was adapted to the testing frequency. The image capture system was triggered with the 

cyclic loading. A picture was taken when the load reaches the 90 % of the maximum load. 

Data were post processed using the ARAMIS software. The filter option was used to reduce 

some of the experimental noise.  

Some fatigue tests were interrupted before final failure in order to study a possible correlation 

between the strain evolution at the notch tips and the crack length. A sample surrounding the 

notch was machined from the specimen and prepared for the microscopic investigation. For 

the measure of the crack length, an optical microscope (Axio Scope.A1) was used. 
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3. Results and discussion 

Figure 3 shows the evolution of the normal strain εyy during a fatigue test (σa = 18 MPa; Nf = 

954241 Cycles). The U-form of the notch leads to a butterfly-shaped strain distribution. Strain 

peaks are located at the notch tip. No significant variation of the normal strain at the notch 

tips was observed for approximately half of the fatigue test. Thereafter, two local strain spots 

at the notch tips occur.  

 

 

Figure 3. Evolution of the normal strain εyy at the notch tips during a fatigue test. 

The strain evolution shown in Figure 3 is graphically reported in Figure 4a. The maximum 

strain values at left and right side of the notch are plotted against the number of cycles. The 

strain profiles can be divided into two stages. At the beginning, the strain increases linearly. 

Before the specimen failure, a non linear trend of the maximum strain profile is noted. The 

two strain profiles almost coincide indicating that the crack propagation at left and right of the 

notch is almost equal. That is not true for all the performed tests. Figure 4b shows the strain 

evolution in another fatigue test carried out at the same load level. During the first part of the 

fatigue test, the maximum normal strain εyy does not show any significant discrepancy 

between the left and the right of the notch. A gap opens when the curves develop a nonlinear 

trend. That occurs when one of the two cracks becomes dominant over the other.  
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Figure 4. Maximum strain profile at the notch tips during the fatigue tests. (a) Strain profiles 

almost coincide throughout the whole fatigue test. (b) A gap between the strain profiles is 

observed in the non-linear part of the curves.  

In Figure 5, the maximum strain profiles are plotted for different tests characterized by the 

same load level. The trend of the strain profiles is similar. However, a significant scatter of 

the absolute strain values in the first stage of the fatigue tests can be appreciated (Figure 5b).  

 

 

Figure 5. Strain profiles plotted against the normalized lifetime. The fatigue tests are 

characterized by the same load level: (a) Strain profiles throughout the tests; (b) Strain 

profiles until 50 % of the total lifetime. 

Due to the data scatter, the maximum strain cannot be used for the crack initiation detection. 

Another criterion is that a crack occurs when the strain profile develops a nonlinear trend. In 

Figure 6, the profiles of the maximum strain at the both sides of the notch are plotted for a 

fatigue test carried out until failure and for a interrupted fatigue test, for the same load level 

(σa = 18 MPa). The fatigue test was stopped at half of the expected total lifetime of the 
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specimen. No variation of the strain profile can be appreciated before interrupting the test. 

Figure 6c and Figure 6d show that when the test fatigue test was interrupted, two macro 

cracks were already propagating from the notch tips.  

 

 

Figure 6. Interrupted fatigue test (N / Nf = 50 %) and microscopic analysis of the crack 

length: (a) Profile of the maximum strain over the lifetime; (b) Profile of the maximum strain 

rate over the lifetime; (c) Micrographs at the right of the notch; (d) Micrographs at the left of 

the notch; 

Another fatigue test was interrupted for N/Nf = 70 % (Figure 7). The length of the cracks is 

almost twice of the crack measured in Figure 6. At the left of the notch, where the longer 

crack is measured, the strain profile has just overcome the linear part of the diagram. The 

analysis of the interrupted fatigue tests gives an idea of the method accuracy. With the DIC 

based method, it is not possible to measure cracks shorter than 0.7 mm. 
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Figure 7. Interrupted fatigue test (N / Nf = 70 %) and microscopic analysis of the crack length 

4. Conclusions 
DIC was used for the crack initiation detection in notched short glass fiber reinforced 

polyamide specimens under fatigue loading. The profile of the maximum normal strain at the 

notch tips during a fatigue test can be divided into a linear and a non-linear part. Two 

variables were investigated for the crack initiation detection. 1) The maximum normal strain; 

2) The maximum strain rate. The maximum normal strain has high scatter. Therefore it cannot 

be used for the crack initiation detection. It was found that the maximum strain rate is non 

zero when a macro crack is already propagating. Concluding, for the set-up presented in this 

work, DIC enables the detection of macro cracks longer than 0.7 mm. Improvements in terms 

of resolution and accuracy are under investigation. 

References of Appendix B 

[1] A. Bernasconi, F. Cosmi, E. Zappa, Combined Effect of Notches and Fibre Orientation on 

Fatigue Behaviour of Short Fibre Reinforced Polyamide, Strain. 46 (2010) 435-445. 

[2] ARAMIS, User Manual by GOM GmbH. Germany, Braunschweig, 2011, version.



 

174 
 



List of publications 
  

175 
 

List of publications 

International Journals 

1. Belmonte E. Moosbrugger E. Quaresimin M. De Monte M. Life to crack initiation in 

notched specimens of unreinforced and short fiber reinforced polyamide under fatigue 

loading. To appear. 

2. Belmonte E. De Monte M. Quaresimin M. Hoffmann C. Fatigue damage mechanisms 

in a short glass fiber reinforced polyamide 6.6. To appear. 

3. Belmonte E. De Monte M. Quaresimin M. Hoffmann C. Damage evolution in short 

fiber reinforced polyamide under fatigue loading: influence of the fiber volume 

fraction. To appear. 

4. Belmonte E. De Monte M. Riedel T. Quaresimin M. A study of the matrix 

microscopic stress concentrations at crack initiation in a short fiber reinforced 

polyamide under fatigue loading. To appear 

International Conferences 

5. Belmonte E. De Monte M. Quaresimin M. Multi-scale modeling of the fatigue 

behavior of short glass fiber reinforced polyamide notched specimens, 20th 

International Conference of Composite Materials, Copenhagen (Denmark), July 19-24 

(2015). 

6. Cruz C.A, Belmonte E. Lux A. De Monte M. Quaresimin M. Multi-scale analysis of 

the ageing of a reinforced polyamide 66 in ethanol-based fuels, 20th International 

Conference of Composite Materials, Copenhagen (Denmark), July 19-24 (2015). 

7. Belmonte E. Moosbrugger E. Quaresimin M. De Monte M. Detection of crack 

initiation in notched specimens of unreinforced and short fiber reinforced polyamide 

under fatigue loading, 6th International Conference on Fatigue of Composite, Paris 

(France), March 25-27 (2015). 

8. Belmonte E. De Monte M. Riedel T. Quaresimin M. A study of the matrix 

microscopic stress concentrations at crack initiation in a short fiber reinforced 

polyamide under fatigue loading, 6th International Conference on Fatigue of 

Composite, Paris (France), March 25-27 (2015). 



List of publications 
  

176 
 

9. Belmonte E. De Monte M. Quaresimin M. Hoffmann C. Damage mechanisms of short 

glass fiber reinforced polyamide 6.6 under fatigue loading, 16th European Conference 

on Composites Materials, Seville (Spain), June 22-26 (2014). 

National Conferences 

10. Belmonte E. De Monte M. Quaresimin M. Hoffmann C. Damage evolution in short 

fiber reinforced polyamide under fatigue loading: influence of the fiber volume 

fraction. 43° Convegno Nazionale AIAS, Rimini, (2014). 

11. Belmonte E. De Monte M. Quaresimin M. Hoffmann C. Matrix stress distributions at 

the crack initiation site in a short fiber reinforced polyamide under fatigue loading. 43° 

Convegno Nazionale AIAS, Rimini, (2014).



 

177 
 

 


