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Abstract

Fiber Reinforced Polymers (FRP) have been widely exploited in different civil en-
gineering applications to enhance the performance of concrete structures through
flexural, shear or compression strengthening. One of the most common and suc-
cessful use of FRP sheets can be found in confinement of existing concrete vertical
elements which need rehabilitation or increased capacity in terms of strength and
ductility. The efficient design of FRP retrofitting requires full understanding of the
concrete behavior under the complex triaxial stress state due to the passive confine-
ment mechanisms and, for this reasons, realistic numerical models are commonly
sought by the research community. In this study, experimental data gathered from
the literature and relevant to the problem of FRP-confined columns subjected to
uniaxial compression are simulated by the so called Lattice Discrete Particle Model
(LDPM) which was recently developed to simulate concrete materials by modeling
the meso-scale interaction of coarse aggregate particles. LDPM has been extensively
calibrated and validated with comparison to a large variety to experimental data
under both quasi-static and dynamic loading conditions but it has not been fully
validated with reference to low confinement compressive stress states, relevant to
the targeted application. This task is pursued in the present research. The results
show that, with the improvement of the existing LDPM constitutive equations to
account for low confinement effects, LDPM is able to predict the concrete material
response under FRP-confinement and the developed model can capture the realistic
behavior of FRP confined columns with different cross sections.
The present research also deals with the computational aspects of the simulations:
the LDPM computational framework is implemented into a multi-purpose structural
analysis program called MARS, which is based on an explicit dynamic algorithm
scheme, advantageous in terms of convergence. However, decreasing the maximum
stable time step with the highest natural frequency of the system, the computational
time necessary to carry out simulations of quasi-static events, like the compression
tests in the present study, might be highly demanding. In order to decrease the com-
putational cost of the simulations, the Proper Orthogonal Decomposition (POD) as
a model reduction technique has been explored for the application to the LDPM
models of FRP confined columns and the relationship between efficiency gain and
accuracy loss is discussed.
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Sommario

I materiali fibrorinforzati a matrice polimerica (FRP) sono utilizzati in svariate ap-
plicazioni nel campo dell’ingegneria civile, per migliorare le prestazioni delle strut-
ture in calcestruzzo, dal punto di vista della resistenza a flessione, a taglio, a com-
pressione. Uno degli utilizzi più comuni e apprezzati di questi materiali è legato
al confinamento di membrature verticali esistenti, che necessitano di recupero o di
un’aumentata resistenza e/o duttilità. La progettazione efficace del rinforzo con
FRP richiede piena comprensione del comportamento del calcestruzzo soggetto ai
complessi stati tensionali dovuti al confinamento passivo e, per questa ragione, lo
sviluppo di un modello numerico realistico è stato ed è tutt’ora uno degli obiet-
tivi principali dei ricercatori. In questa sede, il cosiddetto Lattice Discrete Parti-
cle Model (LDPM), recentemente sviluppato per simulare il calcestruzzo attraverso
l’interazione degli aggregati a livello di mesoscala, è stato applicato al problema della
modellazione di colonne confinate con FRP e sottoposte a compressione, utilizzando
come riferimento dati sperimentali di letteratura. LDPM era stato estesamente cal-
ibrato e validato sulla base di una larga varietà di condizioni di carico, sia quasi
statiche che dinamiche, ma non in relazione a stati tensionali dovuti a compressione
con bassi livelli di confinamento, che sono quelli rilevanti nella presente applicazione.
Con il miglioramento proposto delle equazioni constitutive in compressione, LDPM
è in grado di predire la risposta del calcestruzzo confinato con FRP e il modello
sviluppato può simulare realisticamente il comportamento di colonne confinate con
differenti sezioni.
La presente ricerca affronta, parallelamente, gli aspetti più computazionali delle sim-
ulazioni con LDPM: questo modello è implementato in un software chiamato MARS,
che si basa su un algoritmo esplicito, vantaggioso in termini di convergenza. Tut-
tavia, per ragioni di stabilità, il costo computazionale richiesto per simulare eventi
quasi statici, come i test di compressione di questo studio, può risultare molto scon-
veniente. Per ridurre i tempi di analisi, la tecnica della Proper Orthogonal Decom-
position (POD) è stata esplorata in relazione all’applicazione di LDPM al caso delle
colonne confinate con FRP sottoposte a compressione, valutando il rapporto tra
guadagno computazionale e accuratezza dei risultati.
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Introduction

General Background

During the last decades, many existing reinforced concrete (RC) constructions have
needed intervention for structural enhancement, due to deterioration and durability
issues, with consequent decrease in performance. Furthermore, the need of strength
and ductility upgrade appears to be crucial for structural members under bending,
shear and compression loads in terms of seismic design, assessment and retrofitting.
Under these circumstances, fiber reinforced polymers (FRP) composites have proven
to be an effective strengthening and repair technique which has gained increasing
popularity thanks to the material excellent mechanical properties, high strength-to-
weight ratio and corrosion resistance.
FRPs can be described as composite, anisotropic materials made of a polymer ma-
trix reinforced with fibers in a preferred direction. The fibers - made of carbon, glass
or aramid- supply for stiffness and strength, while the matrix - generally epoxy resin
- properly bonds and envelopes the fibers protecting them from cuts and notches
and allowing force transfer.
Their application in civil engineering is diffused in the renewal of buildings, bridges

and other infrastructures, for example for shear strengthening and flexural strength-
ening of beams or slabs in needs of rehabilitation, where the direction of the fibers
will be parallel to the stirrups, in case of shear, and to the longitudinal bars in case
of bending.
One of the most common and successful use of FRP, though, can be found in the
jacketing of existing RC vertical elements, where the composite material can work
by restraining the lateral expansion of concrete in order to increase the ultimate
strength and the ductility of the structural members, in particular when highest
performances or seismic assessment works are required.
Externally bonded FRP sheets, with fibers in the hoop direction, are wrapped
around bridge piers or column building, in order to provide for lack of transverse
reinforcement, material degradation or performance deficiency. The FRP jacket can
be formed by rolling from a prefabricated flat sheet or, more often, in a wet layup
process, with a manual procedure. In this last case, a layer of polymeric primer is
firstly applied to the concrete external surfaces, after being sanded and cleaned, in
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(a) Layup process for the applica-
tion of FRP sheets around columns

(b) Compression Test set-up for
FRP-confined column

Figure 1: FRP-confined columns

order to fill air voids and provide high bond strength; then a layer of epoxy saturant
is applied followed by a single ply fiber sheet and another layer of saturant. A plastic
roller is generally used to remove the trapped air and allow a better impregnation.
This procedure is repeated for every FRP layer.
Several studies have focused on fully understanding the behavior of FRP-confined
concrete. In fact, in practical applications, the design of FRP jackets can be reliable
only if the stress-strain relationship of FRP confined concrete is understood and
correctly modeled [1]. The classical stress-strain model developed by Mander and
coworkers in 1988 [2] for confined concrete has proved to be inappropriate because a
constant confining pressure is assumed. While in the case of steel-confined concrete,
this assumption is correct (after the yielding of the steel, the confining pressure
provided is almost equivalent to the yield strength of the material), this is no longer
true for FRP-confined concrete. In this case, the confining pressure provided by
the external jacket increases continuously with the lateral strains of concrete, which
in turn depend on the axial strains -being the composite material linear elastic till
collapse.

Literature reviews show that, on one hand, several axial compression tests have
been performed on concrete cylinders confined by FRP jackets and, on the other
hand, diverse models have been formulated, aiming to predict the stress-strain re-
sponse and the failure mechanisms during the loading history.
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Figure 2: Axial stress - Axial strain responses for unconfined and confined concrete

Various analytical models have been proposed in terms of a stress-strain relation-
ship, mostly for cylindrical columns characterized by uniformly-confined concrete
[1], including design-oriented model, [3, 4, 5], in form of closed expressions deduced
from test data on FRP-confined concrete specimens, and analysis-oriented models
[6, 7, 8], in form of an incremental iterative formulation explicitly accounting for
the concrete core-FRP interaction. The behavior of non uniformly confined con-
crete, typical of square and rectangular sections, can also be approximately taken
into account [9, 10, 11] through aspect ratio factors or by later modifications of
the original formulations, but the stress variations are complex to be captured and
understood over the section [12]. In addiction, the finite element method has been
used for advanced numerical models in order to capture the interaction mechanisms
between FRP and concrete in further details. FEM simulations need a solid consti-
tutive model for concrete, in order for the results to be accurate and many different
formulations have been proposed to this scope. Several 3D FE implementations
use plasticity models, mostly based on Drucker Prager Plasticity formulations, with
different definitions of yield criterion, hardening rule, flow rule to take confinement
effects into account (e.g. [13], [14], [15], [16]). Amongst them, the method devel-
oped by Yu et al. [12] makes use of a hardening/softening rule which is assumed
to depend on the confining pressure and of a confinement-dependent non-associated
flow rule. Other 3D formulations are based on plastic-damage models [17], to sim-
ulate reductions in elastic stiffness of concrete and capture non-uniformly stresses
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and, more recently, on the microplane model [18], considered capable of realistically
simulating behavior of concrete under dominant tension, compression and complex
non-proportional loading histories elastic damage models. Simplified 1D models
have also been proposed as quick numerical tools to simulate cycling loading, using
for instance elastic-damage models [19] and using fibers models allowing non linearly
distributed inelasticity [20].
Some models also include the steel stirrups and the longitudinal bars in the columns
and the interaction with FRP is studied. One of the latest has been developed by
J.G. Teng and coworkers in 2015 [21], where a 3D finite element approach for circu-
lar concrete has been presented, based on a plastic-damage model for concrete and
where the confinement mechanisms of steel bar-confined RC columns is examined.
In general, however, while the mechanisms governing the behavior of uniformly con-
fined concrete as in FRP confined circular concrete columns are well understood, the
behavior of concrete columns under non-uniform confinement, such as FRP confined
columns with non circular cross section, needs further investigation[22].

Research Significance and Objectives

Most of these FE macroscopic models present limitations due to the simplifications
in the constitutive laws for the concrete softening response and often the good agree-
ment between experimental data and numerical models are not general but oriented
to specific applications and derived from limited empirical evidences, as often high-
lighted [12, 17, 18]. An interesting summary of the challenges faced by the research
community on the development of a realistic constitutive relation for concrete, es-
pecially if subjected to complex stress states such the ones experienced with FRP
confinement, is given by Yu-Fei Wu [23]: Wu highlights the lack of a general consti-
tutive relationship or stress-strain model for concrete and, consequently, to overcome
this difficulty, a large number of empirical models have been developed for different
applications. Most of these models, though, are very local in their applicability,
being mostly at the macroscopic scale and phenomenologically based. On the con-
trary, as Wu writes, mesoscale and miscroscale models can be able to describe the
interaction between concrete particles or molecules and, so, can potentially provide
a global solution. For instance, the precise and accurate material dilatation prop-
erties during the microcracking evolution and fracture propagation turned out to
be crucial for capturing the post-peak response of FRP confined concrete [3]. The
confining action of FRP jackets, in fact, develops progressively during the vertical
member compression process, increasing gradually and continuously in response the
lateral strain of concrete, which is, in turn, dependent on the axial strain. The mech-
anisms activated during the fracturing process of the material are complex and not
easy to be captured in a simplified macroscopic model: for these reasons, a recently
developed meso-scale model for concrete, called the Lattice Discrete Particle Model
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(LDPM) developed by Cusatis and coworkers [24] has been explored with relation
to the FRP confinement response. LDPM, modeling concrete materials through the
meso-scale interaction of coarse aggregate particles, has been extensively calibrated
and validated with comparison to a large variety to experimental data under both
quasi-static and dynamic loading conditions and its unique capability of predicting
stress-strain curve and failure modes for concrete and other quasi brittle material
is due to the simulation of compressive failure through tensile and shearing soften-
ing at the meso-scale, without postulating the existence of softening in compression
[25, 26, 27, 28, 29]. LDPM, though, has not been fully validated with reference to
low confinement compressive stress states relevant to the targeted application and
this is the first aim of the present research, mainly focused on the development of a
general model able to describe the behavior of FRP confined concrete.
The LDPM computational framework is implemented into the MARS code [30],
which is a multi-purpose structural analysis program based on a object-oriented ar-
chitecture. MARS performs structural analysis by an explicit dynamic algorithm
based on a central difference scheme and is very effective in the management of the
various computational entities (nodes, finite elements, loads, etc.) making possible
the numerical simulation of very large systems. In addition, the explicit character
of the computational scheme implemented in MARS makes it advantageous because
is not affected by the convergence problems that implicit schemes often have in
handling softening behavior. Explicit algorithms, however, are not unconditionally
stable and require an accurate evaluation of the numerical stability of the numerical
simulations. Decreasing the maximum time step with the highest natural frequency
of the computational system, a prohibitive number of increments may be required
for problems governed by low frequencies and, consequently, application of explicit
dynamics to quasi-static events, like the ones related to the present study, may
become critical in terms of time analysis. The computational time necessary to
carry out the simulations performed in this effort, in fact, turned out to be sig-
nificantly demanding. As highlighted by de Frias et al. (2014) [31], though, time
steps much larger than the critical one would be sufficient to accurately describe the
low-dynamic overall response and, in literature, different solutions have been inves-
tigated to artificially increase the speed of the process in simulations (see, amongst
others [32, 33, 34]). Mass scaling techniques, for instance, have been developed to
increase the time step size by adjusting the mass of the most critical elements; signif-
icant errors, though, can originate if those elements where the mass scaling is applied
have a significant contribution to the global system response. Another interesting
and promising approach can be found in the Proper Orthogonal Decomposition as a
Model Reduction technique, which has now found applications in different fields of
engineering and physics (e.g.[35, 36, 37, 38, 39]). Dynamic systems can be projected
onto subspaces containing the solution of the problem or a good approximation, so
that a high-dimensional process is converted into a low-dimensional description of
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it [40].
First of all, POD allows to achieve good results with a reduced number of op-

erations, feature which is particularly profitable for implicit methods; furthermore,
the stable time step for the simulation is likely to increase. In fact, the natural
frequencies of the complete computational system are reasonably higher than the
natural frequencies of the projected computational system, capturing only the dom-
inant components of the response with a limited number of modes.
These considerations bring to the second aim of this research, which is to inves-
tigate if and how the Proper Orthogonal Decomposition can be efficiently applied
to explicit methods, in particular for LDPM quasi-static dynamics systems. Focus-
ing both on the a posteriori data reconstruction for validation purposes and on its
possible prediction capability, this technique has been considered in relation to the
current simulations.

Outline of the thesis

The present effort aims to study the response of FRP confined columns subjected to
compressive loading with the Lattice Discrete Particle Model (LDPM), in order to
explore its capabilities of simulating and capturing the behavior of concrete under
complex loading conditions and, in particular, to use it as a more general constitu-
tive relationship of concrete for applications in FRP confined concrete members.
The second objective has been to investigate the potential of the Proper Orthogonal
Decomposition (POD) as a model reduction technique, taken in consideration to
reduce the overall computational cost of LDPM simulations and hence making it
practical for engineering applications.

In Chapter 1 the material models are described- in particular an overview of the
Lattice Discrete Particle Model (LDPM) for concrete is presented, going through
its geometry, kinematics, equilibrium and constitutive equations; also an overview
of the Spectral Stiffness Microplane Model for composite laminates is given.

In Chapter 2 the proposed modification for the micro-scale constitutive law in
compression is described in details - the new formulation was required in order to
capture the behavior of concrete under low confinement pressures (up to 20 MPa),
usually experienced by FRP-confined concrete;

In Chapter 3 the application of the numerical model for FRP confined concrete
columns is shown in relation to an experimental campaign carried out by Wang and
Wu (2007) [41] and results are discussed highlighting strengths and limitation of the
proposed model;
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In Chapter 4 the Proper Orthogonal Decomposition (POD) technique is intro-
duced and applied to the dynamic equations of motions. Applications to 1D and
2D benchmark cases are carried out and finally POD has been applied to LDPM
simulations; some tension and compression tests have been carried out and finally
POD algotithm has been applied to the circular FRP confined concrete column.

In Chapter 5 the overall conclusions of this works are summarized and the goals
of future research are set.
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Chapter 1

Material Models for Concrete and
FRP

1.1 The Lattice Discrete Particle Model (LDPM)

for concrete and quasi-brittle materials

The Lattice Discrete Particle Model (LDPM) has been developed by Cusatis et
coworkers ([24, 25]) in order to simulates concrete and quasi brittle-material mesostruc-
ture, by taking into account the mechanical interaction of the coarser aggregate
particles. LDPM has been extensively calibrated and validated with comparison to
a large variety to experimental data under both quasi-static and dynamic loading
conditions: its unique capability of predicting stress-strain curve and failure modes
for concrete and other quasi brittle material is due to the simulation of compressive
failure through tensile and shearing softening at the meso-scale, without postulating
the existence of softening in compression.

1.1.1 Geometrical characterization of the mesostructure

As accurately described in [24], the procedure defining the concrete mesostructure is
based on the definition of the number and size of the aggregates pieces, their position,
their interconnections and also the surfaces through which forces are transmitted
between them. The following steps illustrate how the material internal structure is
built:

1. The coarse aggregate pieces (particles), assumed to be spherical, are intro-
duced into the concrete volume by a try-and-reject random procedure. The
number and dimension of particles to be placed inside the specimen volume
V are determined from a set of mix-design parameters, i.e. cement content
c, water-to-cement ratio w/c, aggregate-to-cement ratio a/c, maximum ag-
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Figure 1.1: LDPM geometry in 2D

gregate size da, minimum aggregate size d0 (governing the model resolution),
Fuller coefficient f , to be given as input. The aggregate volume fraction is
then computed and a consistent granulometric distribution of particles size,
spanning from da to d0, randomly generated according to the Fuller curve.

2. Over the external surfaces, zero-radius aggregate pieces (nodes) are distributed
so that the surface discretization resolution is comparable to the one inside the
specimen, firstly placing the vertex nodes, then the edge and surface nodes.
The particles are finally located inside the specimen in order to create a statis-
tically isotropic random mesostructure, using the procedure described in (vedi
citazioni). The straight lines connecting the particle centers define the lattice
system.

3. A three-dimensional domain tessellation, based on the Delaunay tetrahedral-
ization of the generated aggregate centers, creates a system of cells interacting
through triangular facets, which can be represented, in a two-dimensional set-
ting, by straight line segments as shown in Figure. The tessellation of a tetra-
hedron, whose vertices particles govern the mechanical interactions, is shown
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in figure 1.2: in general, it can be obtained by a set of triangles, defined by a
point on the tetrahedron edge (edge-points), a point on the tetrahedron face
(face-points) and a point inside the tetrahedron (tet-point). A polyhedral cell
containing the particle is created by the collection of facets associated with
each particle. The definition of the these surfaces where the interaction forces
are exchanged, corresponds to damage localization zones, consistently with
the fracture initiating and propagating in the mortar paste.

Figure 1.2: a) Mesostructure tessellation b) Three dimensional discrete cells c) Def-
inition of nodal degrees of freedom and contact facets in two-dimensions.

1.1.2 Compatibility and Equilibrium: governing equations

The governing equations are derived from the basic unit of the model, which is
the four-particle tetrahedron shown in Fig.1.3a, to be subdivided into four subdo-
mains, each associated to one particle, the portion of the three tetrahedron edged
attached to the node and the six triangular tessellation facets attached to those
edges (Fig.1.3b). Then, the displacement field is defined according to the rigid-
body kinematics for every subdomain:

u(x) = ui + θi × (x− xi) (1.1)
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where x = [x1, x2, x3]T ∈ Vi, xi defines the node i position, ui its translational
degrees of freedom and θi its rotational degrees of freedom.
Consequently, a displacement jump can be defined at the centroid C of each tetra-
hedron facet

JuCkK = uCj − uCi (1.2)

where i and j are nodes adjacent to the k facet and uCj = u(x+
Ck), x

+
Ck ∈ Vj and

uCi = u(x−Ck), x
−
Ck ∈ Vi. The facet strain vector can be defined as the displacement

jump at the contact point divided by the inter-particle distance JuCkK/`e. The
strain vector JuCkK/`e is decomposed into its normal ans shear components: the
projections are used instead of the facets themselves for the decomposition, in order
to ensure that the shear interaction between adjacent particles does not depend on
the shear orientation. The components of the strain vector in a local system of
reference in the plane of the projected facets, characterized by the unit vectors n,
l, and m, are the normal and shear strains. Through their definition, the discrete
compatibility equations for the LDPM formulation are given:

εNk =
nTk JuCkK

`e
; εMk =

mT
k JuCkK
`e

; εLk =
lTk JuCkK

`e
. (1.3)

The corresponding normal and shear stress are calculated through the meso-scale
constitutive laws. In general, σk = F (εk, ζk), where σk, εk, ζk collect the facet
stresses, the facet strains and internal variable respectively.
The equilibrium is finally imposed through the Principle of Virtual Works (PVW).
The internal work associated with a generic facet is expressed as

δWk = `eAkσ
T
k δεk = `eAk(σNkδεNk + σMkδεMk + σLkδεLk) (1.4)

where Ak is the projected facet area. Replacing the strain components definition
(Eq.1.3) the nodal forces at node i and j associated with facet k. Summing up
the contributions of all the facets and equating the total internal work with the
total external work, the discrete equilibrium equations of the LDPM formulation
can be obtained. It can be shown that the equilibrium equations obtained through
the PVW correspond exactly to the translational and rotational equilibrium of each
polyhedral LDPM cell.

1.1.3 Analogies between LDPM and Microplane Models

LDPM can be interpreted as a discrete version of the Microplane Models, firstly
introduced by Bažant and Oh in 1984 ([42]). In fact, as explicitly stated in [43],
the constitutive relations defined on the microplanes, lumped into a single material
point in the microplane models, can also be used in an explicitly mesoscale model
on planes of various orientations separating the neighboring aggregates embedded in
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Figure 1.3: a) tessellation of a LDPM tetrahedron connecting four particles b)
Portion of a tetrahedron associated to one particle.

a cement mortar matrix, which are the LDPM facets. The microplanes models have
been introduced to simulate softening damage in quasi-brittle materials as concrete
and rocks and they can in fact capture the inelastic phenomena characterizing the
concrete microstructure.
The constitutive relations characterizing the microstructural behavior are formu-
lated not with a traditional tensorial constitutive model of the macroscopic con-
tinuum but in terms of the stress vector and strain vectors acting on planes of
all possible orientations at a given point of the continuum (microplanes) [44]; the
microplane vectors are then related to the continuum tensors through a variation
principle.
Accoriding to [42] and [43], the strain vector on the microplane εN is the projection
of ε: εNi

= εijnj, being ni, i = 1, 2, 3 the components of the unit normal vector n
of the microplane in global cartesian coordinates. The orthogonal unit coordinate
vectors laying within the microplane are l and m. Projecting the strain vector, one
can define the normal and shear components:

εN = Nijεij, εL = Lijεij, εM = Mijεij; ( εT =
√
ε2
L + ε2

M )
(1.5)

where

Nij = ninj Lij = (linj + ljni)/2; Mij = (minj +mjni)/2 (1.6)

The deviatoric and volumetric strain are also defined:

εD = εN − εV , εV = εkk/3 (1.7)
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The static equivalence between stress vectors on all the microplanes and the stress
tensor is superimposed through the principle of virtual works:

2π

3
σijδεij =

∫
Ω

(σNδεN + σLδεL + σMδεM)dΩ (1.8)

where Ω is the surface of a unit hemisphere centered at the material point and
2π

3
its volume. The virtual work of continuum stresses within a unit sphere must

be equal to the virtual work of the microplane stress components. The following
basic equilibrium equation can be written, combining eq.(1.5) and eq. (1.8) and
considering that it mush hold for any virtual work:

σij =
3

2π
=

∫
Ω

(σNNij + σLLij + σMMij)dΩ (1.9)

1.1.4 Constitutive laws

Elastic Behavior

As described in details in [24], the elastic behavior for LDPM is formulated assuming
that stresses and corresponding strains are proportional to each other:

σN = ENεN ; σM = ET εL; σL = ET εL; (1.10)

where EN = E0 (E0: effective normal modulus), ET = αE0 (α shear-normal coupling
parameter). E0 and α are considered as elastic material properties to be identified
from experimental tests. The relationship between the meso-scale LDPM parame-
ters, α and E0 and the traditional macroscopic parameters E (Young Modulus) and
ν (Poisson ratio) can be obtained considering an infinite number of facets surround-
ing the aggregate piece (see for example Bažant and Pratt [45], Carol and Bažant
[46]):

E0 =
1

1− 2ν
E ⇔ E =

2 + 3α

4 + α
E0 (1.11)

and

α =
1− 4ν

1 + ν
⇔ ν =

1− ν
4 + ν

(1.12)

According to Cusatis et al. [24], Eqs. (1.11) and (1.12) and (16) can be confidently
used to estimate the LDPM elastic parameters from macroscopic experimental mea-
surements of Young’s modulus and Poisson’s ratio.
Negative values of α and, consequently, of shear stiffness are associated with ν >
0.25, so the entire range of thermodynamically acceptable Poissons ratios are not
covered but this limitation doesn’t affect concrete modeling, being its Poisson’s ratio
less or equal to 0.2.
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Fracturing Behavior

The fracturing behavior, characterized by tensile normal strains εN > 0 , can be for-
mulated with a relationship between the effective strain (σ =

√
σ2
N + (σ2

L + σ2
M)/α)

and the effective stress (ε =
√
ε2
N + α(ε2

L + ε2
M)). The effective stress is assumed to

be incrementally elastic σ̇ = E0ε̇ and its values can span from 0 to a limit strain
dependent boundary σbt(ε, ω) where

σbt(ε, ω) = σ0(ω)exp

[
−H0(ω)

〈εmax − ε0ω〉
σ0(ω)

]
(1.13)

The variable ω represents the degree of interaction between shear and normal stress:

tanω =
εN√
αεT

=
σN
√
α

σT
(where εT in the total shear strain and σT the total shear

stress).
The function σ0(ω), strenght limit for the effective stress, it is defined as:

σ0(ω) = σt
− sinω +

√
sin2 ω + 4α cos2 ω(σ2

t /σ
2
s)

2α cos2 ω(σ2
t /σ

2
s)

(1.14)

being σt the tensile stress and σs the shear stress.
When the maximum elastic strain reaches the elastic limit, the boundary σbt starts
to decay. The softening modulus, governing the decay rate, is defined as:

H0(ω) = Ht

(
2ω

π

)nt

=
2E0

`t/`− 1

(
2ω

π

)nt

(1.15)

where `t = 2E0Gt/σ
2
t , Gt is the meso-scale fracture energy and ` is the length of the

tetrahedron edge associated with the current facet. For further details, one can see
[24].

Compressive Behavior

LDPM constitutive law is compression, in order to simulate pore collapse and ma-
terial compaction, is based on a strain-dependent normal boundary σbc limiting the
compressive normal stress component at the facet level. It is assumed to be a func-
tion of the volumetric strain εV = (V − V0)/V0, being V and V0 the current and
initial volume of the tetrahedron, and deviatoric strain εD = εN − εD, σbc(εD, εV ).
For a constant deviatoric-to-volumetirc strain ratio rDV = εD/εV , the compressive
boundary can be written:

σbc(εD, εV ) =


σc0, for −εDV ≤ 0

σc0 + 〈−εDV − εc0〉Hc(rDV ), for 0 ≤ −εDV ≤ εc1

σc1(rDV )exp[(−εDV − εc1)Hc(rDV )/σc1(rDV )], otherwise

(1.16)
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Figure 1.4: a) Idealized effect of compression on heterogeneous materials. b) Typical
normal stress versus normal strain curves in compression.

where εDV = εV + βεD (β is a material parameter), εc0 = σc0/E0 is the compaction
strain at the beginning of the pore collapse, Hc(rDV ) the initial hardening modulus,
εc1 = κc0εc0 the compaction strain at which rehardening begins, κc0 the material
parameter governing the rehardening and σc1(rDV ) = σc0 + (εc1 − εc0)Hc(rDV ).

The slope of the initial hardening modulus tends to zero for increasing values of
rDV and this feature is achieved setting:

Hc(rDV ) =
Hc0

1 + κc2 〈rDV − κc1〉
(1.17)

where Hc0 κc1 κc2 are assumed to be material parameters. For further details, one
can see [24].

Frictional Behavior

In case of compression, the shear strenght of concrete increases because of fric-
tional effects. They have been simulated through incremental plasticity: incremental
stresses are defined as ˙σM = ET ( ˙εM − ˙εpM) σ̇L = ET (ε̇L − ε̇pL). The plastic potential
can be expressed as ϕ =

√
ε2
M + ε2

L − σbs(σN), where

σbs = σs + (µ0 − µ∞)σN0 − µ∞σN − (µ0 − µ∞)σN0 · expσN/σN0 (1.18)

being σs the cohesion, µ0 and µ∞ the initial and final friction coefficients, σN0 is the
normal stress at which the friction coefficient translation occurs.
The plastic strain increments are assumed to obey the normality rule.
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1.1.5 Calibration and Validation

As already introduced earlier and described in details in [25],the LDPM response
depends on two sets of parameters to be calibrated.

Geometrical Parameters

The first set of parameters to be calibrated is relevant to the geometrical definition
of the concrete internal structure:

1. Cement Content (c)

2. Water-to-Cement Ratio (w/c)

3. Aggregate-to-Cement Ratio (a/c)

4. Maximum Aggregate Size (da)

5. Fuller Coefficient (nF )

6. Minimum Aggregate Size

The first four parameters can be obtained directly from the mix design, the Fuller
coefficient from the best fitting of the experimental particle-size distribution (sieve
curve), the minimum aggregate size d0 governs the resolution of the problem and it
is generally chosen to be as small as possible while keeping the computational cost
reasonable.

Constitutive Parameters

The second set of parameters to be calibrated is relevant to the meso-scale mechan-
ical behavior, governing the facet constitutive laws The calibration of these param-
eters can be achieved through the best fitting of the complete load-displacements
curves relevant to the following experimental tests: hydrostatic compression, uncon-
fined compression, fracture test, triaxial compression at low-confinement, triaxial
compression at high-confinement.

Sometimes, all the experimental curves needed for the calibration are not avail-
able, so the relevant LDPM parameters should be estimated on the basis of experi-
mental data available in the literature and relevant to concrete mixes similar to the
one being simulated.

These parameters and their effect in the response are accurately describes by
Cusatis and co-workers, in [25]:

1. Normal Elastic Modulus E0 and Shear-Normal Coupling Parameter α govern
LDPM response in the elastic regime.
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2. Tensile Strength σT and Characteristic Length `t govern the softening ten-
sile fracturing behavior of LDPM facets and, consequently, all macroscopic
behaviors featuring softening.

3. Softening Exponent nt governs the interaction between shear and tensile be-
havior during softening at the facet level. At the macroscopic level, it governs
the post-peak ductility observed during tensile and compressive failure simu-
lations.

4. Shear Strength σs is the facet strength for pure shear and affects mostly the
macroscopic behavior in compression.

5. Yielding Compressive Stress σc0, Initial Hardening Modulus Hc0, Transitional
Strain Ratio κc0 and Densified Normal Modulus Ed, define the behavior of
the facet normal component under compression and affect the macroscopic
behavior in compression.

6. Initial Internal Friction Coefficient µ0, Internal Asymptotic Friction Coefficient
µ∞ and Transitional Stress σN0, contribute to LDPM response in compression,
with basically no effect on tensile behavior.

7. Parameters κc1 and κc2 govern the nonlinear evolution of the normal facet
stress in compression. κc1 is the Deviatoric-to-Volumetric Strain Ratio at
which rehardening after pore collapse is prevented by deviatoric strain induced
damage, κc2 determines the extent of this deviatoric effect on rehardening
behavior

The excellent modeling capability of LDPM has been fully demonstrated, as shown
in [25]. Fig. 1.5 gives some examples of numerical results achieved with LDPM
simulations: not only the stress-strain curves can be accurately captured for various
loading conditions but also the cracking patterns and the fractures mechanisms can
be realistically simulated.
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Figure 1.5: Examples of LDPM simulations results for different loading conditions

35



1.2 Spectral Stiffness Microplane Model for com-

posite laminates

For the simulation of the columns wrapping, FRP jacketing has been modeled fol-
lowing the Spectral Stiffness Microplane Model [47], which is a general constitutive
model for unidirectional and textile composite laminates able to simulate orthotropic
stiffness, pre-peak nonlinearity, failure envelopes, and the post-peak softening and
fracture.

1.2.1 Theoretical background on Microplane Model and Spec-
tral Stiffness Theorem

The Spectral Stiffness Microplane Model is based on the framework of the original
kinetically constrained microplane model [42] which rests on two basic ideas: (1) the
constitutive relations describe microstructural phenomena not in terms of stress and
strain tensors, but in terms of the stress vector and strain vector acting on planes
of all possible orientations at a given point of the continuum; and (2) a variational
principle is used to relate the microplane vectors to the continuum tensors.
According to [47], the Spectral Stiffness Decomposition theorem [48, 49, 50, 51] is
used to extend the microplane framework to account for material anisotropy. The
stiffness matrix of the composite C is decomposed as follows:

C =
∑
I

λ(I)C(I) (1.19)

where I = 1, 2...6, λ(I) are the eigenvalues of the stiffness matrix and C(I) =∑
n ΦInΦ

T
In are a set of second-order tensors constructed from the elastic eigen-

vectors ΦI . The I-th eigenvector ΦI has multiplicity n and is normalized such that
ΦT
I C(I)ΦI = λ(I).

An important characteristic of the elastic eigenmatrices C(I) is that they provide a
way to decompose the stress and strain tensors into energetically orthogonal modes.
These are called here eigenstresses and eigenstrains and are defined as:

σI = C(I)σ and εI = C(I)ε (1.20)

It is easy to show that σ =
∑

I σI and ε =
∑

I εI whereas the relation between
eigenstresses and eigenstrains can be found introducing the related elastic eigenval-
ues: σI = λ(I)εI . By the spectral decomposition of the strain tensor and a separate
projection of each eigenstrain, each microplane vector can be decomposed into mi-
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croplane eigenstrain vectors as:

εP =
N∑
I

ε
(I)
P where

{
ε

(I)
P = Pε(I) = P(I)ε

P(I) = PC(I)
(1.21)

where N = number of independent eigenmodes and:

P =

N11 N22 N33

√
2N23

√
2N13

√
2N12

M11 M22 M33

√
2M23

√
2M13

√
2M12

L11 L22 L33

√
2L23

√
2L13

√
2L12

 (1.22)

is a 3×6 matrix relating the macroscopic strain tensor to the microplane strain as a
function of the plane orientation. In facts, Nij = ninj, Mij = (minj +mjni)/2 and
Lij = (linj + ljni)/2, where ni, mi and li are local Cartesian coordinate vectors on
the generic microplane with ni being the i-th component of the normal (Fig. 1.6a).
With reference to the spherical coordinate system represented in Fig. (1.6b), the
foregoing components can be expressed as a function of the spherical angles θ and ϕ:
n1 = sin θ cosϕ, n2 = sin θ sinϕ, n3 = cos θ while one can choose m1 = cos θ cosϕ,
m2 = cos θ sinϕ, m3 = − sin θ which gives, for orthogonality, l1 = − sinϕ, l2 =
cosϕ and l3 = 0. In this way, different constitutive laws describing the material
behavior at the microplane level can be related to each eigenmode, allowing not
only the description of the material anisotropy but also to address the different
damaging mechanisms related to different loading conditions. Accordingly, from the
microplane eigenstrains, the microplane eigenstresses σ

(I)
P can be defined through

specific constitutive laws: σ
(I)
P = f (εP1, εP2...) ε

(I)
P and the macroscopic stress tensor

can be computed in a variational sense through the principle of virtual work [47]:

σ =
3

2π

∫
Ω

PT

N∑
I

σ
(I)
P dΩ (1.23)

where Ω is the surface of a unit sphere representing all the possible microplane
orientations.

1.2.2 Constitutive laws

Elastic Behavior

The elastic behavior is formulated by assuming that normal and shear eigenstresses
on the microplanes are proportional to the corresponding eigenstrains:

σ
(I)
N = λ(I)ε

(I)
N , σ

(I)
M = λ(I)ε

(I)
M , σ

(I)
L = λ(I)ε

(I)
L (1.24)

where λ(I) = I-th elastic eigenvalue.
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Figure 1.6: a) Mesostructure tessellation b) Three dimensional discrete cells c) Def-
inition of nodal degrees of freedom and contact facets in two-dimensions.

Constitutive laws: inelastic behavior

Similar to Cusatis et al. [52, 24],the inelastic constitutive laws for each eigenmode are

expressed introducing an effective eigenstrain defined as: ε(I) =

√
(ε

(I)
N )2 + (ε

(I)
T )2

where ε
(I)
T =

√
(ε

(I)
M )2 + (ε

(I)
L )2= total shear strain component of I-th microplane

eigenstrain.The relation between the stress and strain microplane components can
be found introducing an effective eigenstress, σ(I) and imposing the consistency of
the virtual work:

δWI = σ(I)δε(I) =
σ(I)

ε(I)
(εNδεN + εMδεM + εLδεL)(I) = (σNδεN)(I)+(σMδεM)(I)+(σLδεL)(I)

(1.25)
By means of Eq. (1.25), the relationship between normal and shear stresses ver-
sus normal and shear strains can be formulated through damage-type constitutive
equations:

σ
(I)
N =

(
σ
εN
ε

)(I)

, σ
(I)
M =

(
σ
εM
ε

)(I)

, σ
(I)
L =

(
σ
εL
ε

)(I)

(1.26)

The effective stress σ(I) is assumed to be incrementally elastic, i.e. σ̇(I) = λ(I)ε̇(I)

and it is formulated such that 0 ≤ σ(I) ≤ σ
(I)
bi (ε(1), ε(2)..., θ, ϕ) where σ

(I)
bi (ε(1), ε(2)..., θ, ϕ)
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with subscript i =t for tension and i =c for compression is a limiting boundary en-
forced through a vertical (at constant strain) return algorithm. It is worth mention-

ing here that, in general, σ
(I)
bi is a function of the microplane orientation and of the

equivalent strains pertaining to other modes. This allows to inherently embed in the
formulation the effects of damage anisotropy and the interaction between damaging
mechanisms.

Inelastic behavior in the fiber direction

It was shown in [47] that the stiffness tensor for a UD composite, treated as trans-
versely isotropic, can be decomposed into 4 energetically orthogonal eigenmodes,
each being associated to a particular type of deformation. Mode 1 is related to
the normal and shear deformation in out-of-plane direction, mode 2 is related to
a macroscopic normal deformation in the direction of the fibers, mode 3 is asso-
ciated to an in-plane normal deformation orthogonal to the fibers and mode 4 is
related to in-plane shear deformation. In this work, it is assumed that failure of
the composites happens mainly by fiber failure and pullout. Accordingly, a strain
dependent nonlinear constitutive law is defined for mode 2 whereas elastic behavior
is assumed for all the other modes. This assumption is largely supported by the
experimental analysis of the fracture surfaces of the failed composite jackets. The
strain dependent boundary in tension, ε

(2)
N ≥ 0, can be expressed by the following

equations:

σ
(2)
bt = s(2) (θ, ϕ) exp

−

〈
ε

(2−t)
max − ε(2)

0t

〉
k

(2)
bt

at2 (1.27)

where s(2) (θ, ϕ) = s
(2)
0 cos2(θ) with s

(2)
0 = mode 2 microplane tensile strength. The

boundary σ
(2)
bt evolves exponentially as a function of the maximum effective strain,

which is a history-dependent variable defined as ε
(2−t)
max (t) = maxτ≤t[ε

(2)(t)]. The
exponential decay of the boundary σ2

bt starts when the maximum effective strain

reaches its elastic limit ε
(2)
0t (θ, ϕ) = s(2)/λ(2). For the sake of simplicity, the behav-

ior of the composite has been assumed linear elastic in compression, failure always
occurring in tension for the cases under study. The total number of required param-
eters to describe mode 2 in tension is 3 and they should be calibrated according to
the experimental behavior.
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Chapter 2

New constitutive law for concrete
in compression

Preliminary simulations revealed that the constitutive law in compression governs
the post-peak response of FRP-reinforced concrete. The original LDPM formu-
lation, described in chapter 1 and with more details in [24], has been conceived
for describing the strain hardening plasticity under high compressive hydrostatic
deformations, with micro and meso-scale pore collapse under load followed by a
densification due to the contact between completely collapsed pores. In fact, its
aim was to capture concrete re-hardening behavior after yielding due to compaction
under high confinement pressures.

The aforementioned constitutive law, though, has shown its limits when applied
to the low confinement stress states, which are typical of the FRP confinement
problems: the Hardening Modulus Function Hc, defined in Eq.1.17 revealed to be
not suitable for the negative deviatoric-to-volumetric strain ratios, generally expe-
rienced by the material in these cases. In fact, when transitioning from negative to
positive volumetric strains, the original formulation provides for a discontinuity in
the definition of Hc (figure 2.1a) such that the material appears to gain strength
during the dilatation process, because of the sudden increase in value of Hc itself.
This response is unrealistic and in contrast with the well known phenomenon of hard-
ening in compression due to the material densification, which is correctly described
for the positive deviatoric-to-volumetric strain ratios: the Hardening Function in-
creases during the process of volume contraction, allowing to accurately model the
improvement in strength experienced by highly confined materials. The same formu-
lation, though, cannot be properly used in case the material volumetric deformations
transition from positive to negative values, which is typical of low confined concrete
and, in particular, FRP confined concrete. This happens because of the sudden drop
in the Hardening function, implying in turn a sudden drop in the material strength.

Figure 2.2 illustrates the typical deformative behavior of FRP confined concrete
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Figure 2.1: 3D plot of the Hardening Modulus Function (Hc) a) before the modifi-
cation and b) after the modification

columns compared to unconfined concrete columns, from experimental data by [41].
The deviatoric strain - axial strain curves, where strains are computed as defined in
chapter1, are regularly increasing for both confined and unconfined concrete spec-
imens, while the volumetric strain - axial strain curves show a different tendency:
after an initial compaction, the material expands as long as the external confine-
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Figure 2.2: Stress-strain responses of FRP confined concrete

ment is able to contrast it by constraining the lateral deformations. The stiffer the
wrapping, the sooner the material can reverse the dilation trend and experience re-
compaction. If the confining stress is high, the material do not experience dilation
at all.

The same behavior is shown in figure 2.3, where the axial stress is plotted against
the volumetric strain for both actively and passively confined concrete specimens.
As detailed described in [1], for active confinement, the change from compaction to
dilation occurs at different stress levels depending on the confining pressure, and
thereafter the dilation tendency remains until failure. For passive confinement, in-
stead, the dilatation can be taken over again by compaction, therefore the accurate
description of the Hardening Function around the zero volumetric strains is particu-
larly crucial in this case. A new definition for the Hardening Module is proposed in
this work with (2.1), to overcome the jump in the Hc function and allow a continuous
hardening with compaction:
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Figure 2.3: Stress-Volumetric strain responses of confined concrete

Hc =


Hc0 −Hc1

1 + κc2 〈rDV 1 − κc1〉
+Hc1 for εV ≤ 0

Hc0 −Hc1

1 + κc2 〈rDV 2 − κc1〉
+Hc1, for εV > 0

(2.1a)

rDV 1 = − |εD|
εV − εV 0

; rDV 2 =
|εD|
εV

(2.1b)

with εV 0 = κc3ε0 = 0.1 · ε0 and Hc1 to be calibrated.
This new function permits a smooth and coherent transition from contraction to ex-
pansion and vice versa: the Hardening Modulus decreases for increasing volumetric
strain and increases for increasing deviatoric strains.
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Chapter 3

Numerical Analysis of FRP
confined concrete columns

3.1 Summary of the experimental tests

The experimental tests performed by Wang and Wu [41] have been taken as a
reference for the present numerical study, where concrete specimens (width/height
= 150 mm/300 mm) with different corner radii (see figure 3.1), unconfined and
wrapped by 1 or 2 CFRP plies (equivalent thickness per layer s = 0.165 mm), are
subjected to uniaxial compression. The C30 series has been considered and the
elastic properties of the materials are summarized in table 3.1. For the CFRP, the
manufacturer values are reported. In particular, parameters shown in table 3.2 are

Figure 3.1: Corner radius variations of the column section
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Table 3.1: Elastic Properties of Materials

Mechanical Constant Concrete FRP: fibres
Modulus of Elasticity (MPa) 30000 230000

Poisson’s ratio 0.2 -
Compressive strenght (MPa) 32 -

Tensile strenght (MPa) 3 3482

considered a good summary of the mix design characteristics for concrete.
After sanding and cleaning the specimen surface, the FRP was wrapped around it by
the manual lay-up procedure, orienting the fibers in the hoop direction and forming
one or two layers. Strain gauges were mounted prior to the testing at multiple points
at the mid-height of the specimens to measure the strains at different locations of
the CFRP laminate. Three identical specimens had been manufactured for each
geometry and the average response was taken into account.

Table 3.2: Concrete Mix Design Parameters

Mix Design Parameters
c 280 kg/m3 estimated
w/c 0.77 from [41]
a/c 7.5 estimated
da 10 mm from [41]
nF 0.5 estimated

3.2 Model Generation

Firstly, the geometry of the concrete meso-structure is computationally generated,
defining the coarse aggregate particles and their interconnections from a first set of
parameters taken form the mix design shown in table 3.2, through the procedure
described in chapter 1. The last parameter (minimim aggregate size, d0= 5 mm)
governs the resolution of the model.

A second set of parameters is required for the definition of the facet constitu-
tive law [24, 25] and their calibration is supposed to be obtained through the best
fitting of the complete load-displacement curves relevant to different experimental
tests, in particular hydrostatic compression, unconfined compression, fracture test,
triaxial compression at low-confinement, triaxial compression at high-confinement
are needed for a direct and complete calibration. In the present study, all the needed
experimental curves were not available from Wang and Wu [41], consequently some
of the parameters have been estimated from other available experimental data con-
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Figure 3.2: Fitting of the experimental curves for the cylindrical column during the
calibration process and cracking patterns of the plain concrete column during the
loading history .

Figure 3.3: Cracking patterns development of the plain concrete column during the
compressive loading history.

sidered relevant to the simulated concrete mix. The experimental axial stress- axial
strain curve and the axial stress-lateral strain were fitted for unconfined concrete
(cylindrical column) using the following parameters: E0 = 40000 MPa, α = 0.25,
σt = 3.65 MPa, lt = 200 mm, σs/σt = 2.5, nt = 0.2, σc0 = 45 MPa, Hc0/E0 = 0.3,
κc0 = 4, κc1 = 1, κc2 = 5, κc3 = 0.1, µ0 = 0.2, µ∞ = 0, σNO = 600 MPa, Ed/E0 = 1.

The load is applied as an imposed velocity of 10 mm/s through steel platens,
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modeled as rigid bodies, directly in contact with the specimens ends to simulate
high friction conditions. Specifically, the constraint forces the set of top and bottom
nodes of the specimen to move over the platen surface with a master-slave formu-
lation for the direction perpendicular to the surface and with a stick-slip friction
model for the resistance to sliding within the plane. The friction factor µ is com-
puted as a function of the contact slippage s µ(s) = µd + (µs − µd)s0/(s0 + s) with
the friction parameters optimized for high friction (µs = 0.13, µd = 0.015, s0 = 1.3
mm) according to Cusatis and coworkers [25]. Figure 3.7 shows an example of the
geometry representation of the LDPM structures with facets and the rigid plates for
the boundary conditions.
The FRP jackets are modeled as quadrilateral shell elements with physical hourglass
stabilization and they are given the orthotropic behavior through the described spec-
tral stiffness microplane model, which allows to orient the fibers in the hoop direc-
tion. The shell integration scheme has been intended for composite shells consisting
of multiple layers and employs a full tensorial material formulation, with internal
degrees of freedom across the thickness, so that the transversal strains can properly
be characterized. Four Gauss integration points are used. The mechanical proper-
ties of the CFRP laminates are assigned according to the manufacturer data (Elastic
Modulus in the matrix directions: E1 = E2 = 3000 MPa, Elastic Modulus in the
fiber direction: E3 = 230000 MPa, Poisson Ratio in plane: ν31 = ν32 = 0.25) [41, 18]
or estimated from literature (Shear Modulus out of plane: G12 = 1300 MPa, Shear
Modulus in plane: G13 = G23 = 4000 MPa). The interaction between the concrete
column and the FRP plies is modeled through a master-slave formulation where the
FRP nodes are forced to lay on the external lateral surface of the concrete column,
without constraining rotations.

3.3 Results with linear elastic FRP

At first, in order to evaluate the new constitutive law for concrete in compression
and check the overall model, the simulations have been carried out considering the
FRP as a linear elastic material, not activating the boundaries controlling inelastic-
ity in the fibers direction.
The uniaxial stress vs strain curves are reported in figures 3.5 and 3.6, where each
graph shows the experimental and numerical response for unconfined specimen com-
pared to 1 FRP ply and 2 FRP plies confined specimens. Similarly to the exper-
iments, the axial stress shown is obtained by dividing the global axial force over
the concrete section area, the axial strain is obtained by dividing the global axial
displacement over the specimen height and the lateral strain as an average of the
radial displacements over the undeformed radial length, measured at the middle of
each side face and at the center of each corner, in the middle height of the specimen.
The comparison between numerical and experimental results proves that, after the
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calibration of the LDPM parameters for the unconfined concrete curve, the devel-
oped model can capture the general trend of the FRP-confined columns in com-
pression. As well-known from the majority of existing experimental tests, the axial
stress axial strain curves of CFRP-confined concrete are characterized by a mono-
tonically ascending bilinear shape (the turning point is always around the onset of
the unconfined concrete strength) in contrast with the softening branch typical of
actively confined concrete. In fact, as the axial stress increases, the confining pres-
sure provided by the jacket also increases instead of remaining constant and if the
stiffness of FRP exceeds a certain threshold value, this confining pressure increases
fast enough to ensure that the stress strain curve is monotonically ascending. Nat-
urally, the higher the FRP stiffness, the higher the slope of the second branch. This
typical evolution of stress-strain can be captured for different number of FRP layers
with the current model, as shown in figure 3.5. The corner radius effect is also cap-
tured: the post peak behavior after the onset of the unconfined concrete strength is
related to the section shape and the post peak stiffness is higher for columns with a
larger corner radius, as the experiments already showed. The model can reproduce
efficiently not only the uniform but also the non uniform confinement effects and
simulate the reduction of confinement efficiency with the decreasing of the corner
radius.

The behavior of sections with more rounded corners (radius from r = 75 mm to

(a) Concrete Column with loading
plates

(b) FRP jacketing

Figure 3.4: Model example of column (r=15 mm)
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Figure 3.5: Typical stressstrain curves measured in the experiments and predicted
by the analysis with elastic FRP. Rounded Corners Set.

r = 30 mm) is almost perfectly captured, while this is not longer true for sections
with smaller corner radii (r = 15 mm and r = 0 mm), where the FRP fracture
mechanisms seem to become essential for the overall column response to be cap-
tured. In fact, the FRP plies can experience high stress concentrations around the
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corners, leading to progressive rupture of the material and, consequently, a softening
behavior of the FRP confined square sections. However, the numerical simulations
can catch some interesting aspect; for instance, being the confining effect given by
the wrapping highly non uniform and less effective in case of square sections, it can
happen that, initially in the loading history, the increase in confinement pressure
is not fast enough to ensure that the stress-strain curve is monotonically ascending
and then, after softening, a further increase in stress occurs due to the later increase
of lateral deformation. This phenomenon has been observed and described in liter-
ature (e.g. [6]) and it is well captured by the model as shown in figure 3.6. In the
experimental tests, though, these aspects interact with the FRP rupture, lacking so
far in the model.
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Figure 3.6: Typical stressstrain curves measured in the experiments and predicted
by the analysis with elastic FRP. Square Corners Set.
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3.4 About FRP ultimate condition

3.4.1 Experimental observations

The eventual failure of FRP-confined column is due to the rupture of the FRP
jacket, so the ultimate tensile strain or tensile strength of the confining FRP jacket
in the hoop direction [1]. Although in many existing theoretical or numerical models
[53, 54] the tensile rupture of FRP is assumed when the hoop stress reaches the
tensile strength given from material tests such as coupon tests, different experimental
results have shown that the hoop rupture strains of FRP measured in FRP-confined
columns are on average significantly lower (e.g. [55, 56, 57, 58]). Also Wang and
Wu [41] report that the FRP ultimate strain of many tested specimens is at least
25% below that of the coupon test and the reduction is more significant in the
corners and in case of multiple layers. Several potential causes for the variability in
the empirical strain efficiencies are suggested in the literature, however, no rational
model is currently available to account for these observations. and, as reported
by Chen and coworkers (2013) [59] there is little consensus on this issue in the
literature. A systematic analysis of the factors influencing the ultimate condition of
FRP-wrapped concrete columns is given in [59], where different contributory causes
have been highlighted to affect the composite rupture; the material does not allow
any stress redistribuition because of its elastic brittle nature so the identification of
the highest tensile strain is decisive to understand the column collapse mechanisms.
In particular, the following factors have been considered potentially important:

1. geometrical factors: geometrical discontinuities, FRP overlap region, geomet-
rical imperfections and curvature of the FRP jacket;

2. FRP material factors: unintentional fiber orientation, misalignment and un-
even tension of fibers, damage of fibers, triaxial stress state in the FRP;

3. concrete material factors: nonuniform deformation and strain localization in
concrete;

4. adhesive material and geometry factors: mechanical properties an geometrical
details of the adhesive;

5. loading factors: eccentric or non uniform loading, stressing attributable to
thermal deformation and creep.

The numerical model developed in the present paper is able to account for the
concrete material factors, being LDPM a mesoscale model. The non uniform local
deformations on concrete leads to a non uniform strain deformation in the FRP, in
both the circumferential and axial direction, which in fact can be captured as well
as the FRP strain localization resulting from concrete cracking. By contrast, the
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FRP jacket is modeled using shell elements with respect to the nominal thickness of
fibers, so the numerical simulation cannot be sensitive to any FRP material or geo-
metrical factor related to the fibers or adhesive. In order to take these phenomena
into account, a stochastic model has been used for the composite strength.
Infact, it has been seen from experiments that FRP failure initiation occurs with-
out extensive inelastic strain redistribution. In this case, the process of failure is
strongly affected by the random distribution of the strength and fracture properties
of the material and this aspect has been addressed in this contribution assigning
a statistical distribution of strength to each shell element used to model the com-
posite material. Conveniently calibrating the probabilistic function, all the factors
governing the premature failure can be included in the form of uncertainty.

(a) CFRP rupture initiating at the
outer end of the FRP wrap

(b) FRP rupture at the inner end of
the FRP wrap

(c) Debonding failure of FRP (d) Mixed FRP debonding and frac-
ture failure

Figure 3.7: Example of FRP failure modes, from [59]
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3.4.2 Stochastic model for composite strength

Recent studies by Bažant and co-workers [60, 61] have shown that the strength
of one Representative Volume Element (RVE) of a quasibrittle material follows a
Gaussian distribution grafted to a power law in the tail of probability within the
range of 10−5 to 10−3:

P1(σ) = 1− exp(−〈σ〉m/bm0 ) for σ < σgr
P1(σ) = Pgr +

rf√
2πδG

∫ σ
σgr

e−(σ′−µG)2/2δ2Gdσ′ for σ ≥ σgr
(3.1)

where 〈x〉 = max(x, 0) = Macaulay brackets, µG and δG are the mean and stan-
dard deviation of the Gaussian core if considered extended to −∞, b0 and m are
the scale and shape parameters of the Weibull tail, rf is a scaling parameter re-
quired to normalize the grafted cdf such that P1(∞) = 1, Pgr = grafting probability
= 1 − exp[−σmgr/bm0 ]. The continuity of the probability density function at the
grafting stress requires that: (dP1/dσ)|σ+

gr
= (dP1/dσ)|σ−gr where P1 denotes the

failure probability of one RVE. The foregoing distribution has been used in this

pdf

Figure 3.8: Stress-Strain Curve in the Fibers direction with associated pdf

work for the assignation of random strength. Strength autocorrelation has not been
considered, the adopted element size being much larger than the expected autocor-
relation length (which, for UD composites, is expected to be no larger than 2-3 mm
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[62, 63]). This rather simplified the process of random strength assignation to the
N elements describing the FRP. This process consisted of two steps: 1) generation
of N independent standard Gaussian variables by Latin Hypercube Sampling using
the mean value of each subinterval and reordering their values to minimize spurious
correlation [64]; 2) computation of random strength according to Gauss-Weibull dis-
tribution by isoprobabilistic transformation: σ(x) = P−1

1 (ΦG (x)) where ΦG (x) =
standard Gaussian cdf.
The parameters of the Spectral Stiffness Microplane Model governing the inelastic
behavior of the fibers have been calibrated according to given ultimate stress and
strain values fracture energy (Gf = 260 N/mm). Spurious mesh sensitivity due to
train localization was avoided by means of the crack band model. For a 5 mm ×5
mm shell element the calibrated parameters for the microplane model definition are
the following: s

(2)
0 = 3482 MPa, k

(2)
bt = 0.04. The parameters governing the stochas-

tic formulation, estimated according to [62, 63] are the following: m = 56, b0 = s
(2)
0 ,

Pgr = 10−5, µG = 1.05× b0, δG = 0.1×µG, then rf = (1−Pgr)/[1−ΦG(σgr, µG, δG)]
where ΦG is the Gaussian cdf with average µG and S.D. δG.

3.5 Results

3.5.1 Results for columns with largest corner radius

The model with the previously described non-linear constitutive features for the
FRP sheets allows to capture accurately enough the ultimate condition of the tested
FRP confined columns with larger corner radius. In particular, figure 3.9 shows the
comparison between the experimental and numerical results for the set of columns
with rounded corners: one can observe that non only the typical stress-strain loading
curves are well captured for the different shapes and thickness of the FRP wrapping,
as already mentioned, but also the ultimate strength of the columns together with
the ultimate strain are caught with a very good approximation, which is unique in
terms of numerical models for FRP confined concrete columns.

Figures 3.10,3.11,3.12,3.13 show snapshots of the stress distribution pattern in
the FRP jacket at the ultimate condition with the fracture location and the corre-
sponding cracking pattern in the FRP column. The fracture mechanisms are well
captured by the model, which is the reason for such accurate fitting of the exper-
imental loading curves and it is interesting noticing that the FRP jacket breaks
exactly where the shape of the cross section changes from the rounded corner to
the flat side part, where it has been experimentally demonstrated the fracture more
often occurs and starts developing.
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Figure 3.9: Typical stressstrain curves measured in the experiments and predicted
by the analysis with non-linear FRP. Rounded Corners Set.
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(a) Cracking Patterns in the Con-
crete Column

(b) Fracture in the FRP jacketing

Figure 3.10: Example of ultimate Condition for FRP confined column (r=30 mm)
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(a) Cracking Patterns in the Con-
crete Column

(b) Fracture in the FRP jacketing

Figure 3.11: Example of ultimate Condition for FRP confined column (r=45 mm)

58



(a) Cracking Patterns in the Con-
crete Column

(b) Fracture in the FRP jacketing

Figure 3.12: Example of ultimate Condition for FRP confined column (r=60 mm)
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(a) Cracking Patterns in the Con-
crete Column

(b) Fracture in the FRP jacketing

Figure 3.13: Example of ultimate Condition for FRP confined column (r=75 mm)
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3.5.2 Results for columns with smallest corner radius

While the non-uniform confinement pressure and the reduction of confinement effect
with the decreasing of the corner radius can be properly simulated, the overall
behavior of the columns with the smallest corner radius (r = 15 mm and r = 0 mm)
cannot be well captured still, as shown in figure 3.14, even if the ultimate strength
of the FRP material has been taken into account with a stochastic model.
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Figure 3.14: Typical stressstrain curves measured in the experiments and predicted
by the analysis with non-linear FRP. Squared Corners Set. Full contact

The reasons for the discrepancy between numerical and experimental behavior in
case of columns with sharp corners are related to the limitations of the current model
and are discussed in this paragraph. Firstly, as previously mentioned in section 3.4,
the model cannot take into account the FRP material or geometrical factors related
to the fibers or adhesive that lead to the rupture of the composite and, consequently,
to the column collapse. In fact, the jacket is modeled with orthotropic shell elements
of equivalent thickness s = 0.165 mm/layer, which also prevents the capability of
capturing any flexural behavior. These aspects become more important with the
decreasing of the corner radius and cannot be neglected when the cross section is
right-angled, mainly because of the high local stress concentrations and the following
local damage accumulation; it should be observed that, in contrast to the standard
behavior of FRP confined concrete columns, the experimental stress-strain curves
of the FRP confined square-shaped columns are not bilinear but, instead, have a
softening tendency after the peak due to the progressive rupture of the jacketing,
able to provide, at this point, only ductility and not longer strength. The stochastic
approach for the composite strength is not enough to deal with the complexity of
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the FRP response.
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Figure 3.15: Comparison between experimental and numerical stress-strain curves
for the square column (r = 0 mm) and the circular column (r = 75 mm) with 1
FRP ply. (1): normal and tangential contact; (2): normal contact only

Furthermore, another reason for the poor prediction is thought to be related
to the modeling of the interaction between FRP and concrete, currently obtained
through a master-slave formulation which cannot take into account the debonding
processes occurring at the interface. Such failures may significantly decrease the
effectiveness of the strengthening [65], especially if the delamination interacts with
the local rupture of the composite. Figure 3.15 compares the behavior in terms of
axial stress-axial strain response for both the square shaped and the circular shaped
specimen with different contact models, as an example. It can be noticed that, in
case of r = 0 mm, the confinement effect decreases substantially when the tangen-
tial interaction between the surfaces is neglected: the numerical curve (2) can be
considered a good approximation of the experimental response, being the maximum
stress and the ultimate strain correctly predicted; on the contrary, in case of r = 75
mm, the response does not change significantly whether the tangential component is
taken into account or not, leading to the assumption that the tangential effects be-
come more important with the decreasing of the corner radius. These observations
bring to the conclusion that the development of a proper contact algorithm could
considerably improve the simulations of sharp corner shaped specimens and this will
be the focus of the future research. 3.16 further proves these considerations: the
numerical curves obtained with the Full contact algorithm generally overestimate
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both the confining effect and the failure of the FRP, while these two features are
underestimated when the Normal contact algorithm is adopted. Therefore, to con-
firm what has been preliminary noticed, a more sophisticated formulation of the
FRP-concrete bond is required for sharp cornered columns, to be able to get the
delamination mechanisms occurring at the interface.
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Figure 3.16: Typical stressstrain curves measured in the experiments and predicted
by the analysis with non-linear FRP. Squared Corners Set. Normal Contact and
Full contact compared
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Chapter 4

Proper Orthogonal Decomposition
Approach for the Explicit Solution
of Large Discrete Systems

4.1 Explicit Integration of the Dynamics Equa-

tions of Discrete Systems

As anticipated in Chapter 1, the simulations presented in this research have been
performed using the software MARS, which is a powerful and robust object-oriented
solver developed for simulating the mechanical response of structural systems sub-
jected to short duration events and it employs an explicit time integration scheme
for solving the equation of motion of large systems. For quasi-static events, like the
compression tests described in Chapter 3, the application of explicit dynamics may
become inconvenient in terms of time analysis, although extremely beneficial as far
as convergence is concerned, especially when highly non linear phenomena are in-
volved. In this section, the algorithmic framework for the solution of the Dynamics
Equation through a reduced order method is discussed.
Discrete Systems are of particular concern in this study, being focused on the appli-
cability of model reduction techniques to Lattice Discrete Particle Models [24]; more
generally, though, the presented algorithm can be applied to any discrete dynamic
equilibrium problem solved through explicit integrators such as Discrete Elements
Methods (DEM) and Discrete Particle Models (DPM).
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4.1.1 Full-Order Integration Algorithm

Let consider the motion governing equation in Rn, a domain which has already been
discretized in space: {

Mü + (Gu̇) + fint (u) = fext

u (t0) = u?, u̇ (t0) = u̇?
(4.1)

defined ∀t ∈ [t0, tf ] and where M is the mass matrix, u is the nodal displacements
vector, fint is the internal forces vector, fext is the external forces vector; u? and u̇?

denote the initial displacements and velocities; Neumann Boundary Conditions are
applied in the space domain in the form u̇i = v0,i ∀xi ∈ B ⊂ Rn.
The system 4.1 can be discretized in time to be solved numerically; the middle point
rule is applied as a time integrator (explicit algorithm):

üm = M−1 (fext
m − fint (um))

u̇m+1/2 = u̇m−1/2 + üm∆t(
um+1 = um + u̇m+1/2∆t

) (4.2)

being ∆t the time step and m ∈ [1, nsteps] , nsteps ∈ N∗ the number of the current
time step. In elastic regime, the time step ∆t must be subjected, because of stability
conditions, to the constraint ∆t < tcr = 2/ωmax where ωmax represents the highest
natural frequency of the computational system [66]. Belytschko at al. (2000) [67]
showed that ωmax < max(ωi), where max(ωi) are the natural frequencies of each
element belonging to the mesh, so the stable time step can be computed solving the
eigenvalue problem given by det (K− ω2M) = 0, where K is the Stiffness Matrix
and M the Mass Matrix.

4.1.2 Reduced Order Explicit Dynamics through the Proper
Orthogonal Decomposition

With the application of Model Reduction Techniques as POD, a low dimensional
approximation for the full high dimensional dynamical system, can reproduce the
characteristic dynamics of the system itself, reducing the computational costs and
storage requirements.

General introduction to POD

As detailed explained by Lianget al. (2001) [68] and many others, the main idea
of POD is to find a projection of a vector space V ⊂ Rn, where vectors of interest
take their values, onto a subspace S ⊂ Rk of fixed dimension k < n, containing the
best approximation of those vectors. The method, thus, seeks a set of n ordered
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orthonormal basis vectors for V such that the selected first k < n basis vectors
generate the optimal orthogonal projection S ⊂ Rk of defined rank k.
The optimal problem can be stated as follows.
Assume that u ∈ V ⊂ Rn is a random vector and {φi}ni=1 is a set of arbitrary
orthonormal basis vectors spanning V . Then u can be expressed as a linear combi-
nation of these basis vectors through the coefficients di, as:

u =
n∑
i=1

diφi = φd (4.3)

where d = (d1, d2, . . . , dn) and Φ = [φ1, φ2, . . . , φn].
The objective of the POD is to find the set of basis vectors that can span a vector

subspace of order k containing the most accurate approximation û(k) of the vector
u. The following extreme value problem is to be satisfied, using the mean square
error as a measure of the optimal problem:

min
Φi

ε2 (k) = E
{
‖u− û(k)‖2} (4.4)

such that φTi φj = δij i, j = 1, 2, . . . , n, where û(k) =
∑k

i=1 diφi (k ≤ n). These
special, orthonormal, basis vectors are called the proper orthogonal modes for u and
û(k) can be called the POD of u.

Application of POD in a finite dimensional case

As an emerging tool in dynamic analysis, POD is intended as a means of extracting
spatial information from a set of time-series data available on a domain. Consider-
ing a system of n state variables and capturing, at m instants of time, a set of n
simultaneous measurements of these n state variables, data can be arranged in an
n×m matrix U , such that element Uij is the measurement of the i-th state variable
taken at the j-th time instant [69]. The final result of the data collection is assumed
here to be the n×m matrix U .

U =

 u1 (t1) · · · u1 (tm)
...

. . .
...

un (t1) · · · un (tm)


The Schmidt-Eckart-Young-Mirsky Theorem ([70]) shows the following statement:

- Let define the n-by-n real symmetric matrix C = UUT;

- Let denote by λ̂1 ≥ λ̂2 · · · ≥ λ̂n ≥ 0 the eigenvalues of C and φ̂i ∈ Rn, i =
1, . . . , n their associated eigenvectors such that Cφ̂i = λ̂iφ̂i i = 1, . . . , n;
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- Let assume λ̂k ≥ λ̂k+1.

The subspace optimizing the orthogonal projection of fixed rank k is the invariant
subspace of C associated with the eigenvalues λ̂1 . . . λ̂k.
Computationally, the calculation can be carried out computing eigenvalues and
eigenvectors directly from the matrix C = UUT . If n > m, though, it is more
efficient to compute the eigenvalues and eigenvectors of interest from the matrix
Ĉ = UTU , being the non-zero eigenvalues of the matrix Ĉ = UTU ∈ Rm×m equal
to the ones of C = UUT ∈ Rn×n and standing the following relationship between
eigenvectors:

φi =
1√
λi
Uψi, 1, . . . , r = rank(Ĉ), (4.5)

where ψi 1, . . . , r are the eigenvectors of Ĉ and φi 1, . . . , r are the eigenvectors
of C ([70]).
In general, however, in numerical applications, the direct computation of the matrix
C as well as Ĉ are not directly evaluated but the Singular Value Decomposition
is applied ([69]). Being the matrix U ∈ Rn×m , the singular value decomposition
allows it to be rewritten as:

U = BΣVT (4.6)

where the matrix B ∈ Rn×n is an orthogonal matrix BTB = In and its columns
are called left singular vectors of U; the matrix Σ ∈ Rn×m has diagonal entries
Σii = σi satisfying σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0 and zero entries elsewhere;
the matrix V ∈ Rm×m is an orthogonal matrix VTV = Im and its columns are

called right singular vectors of U. In particular, {σ2
i }

min(m,n)
i=1 are the eigenvalues of

the symmetric matrices UUT and UTU and the columns of B are the associated
eigenvectors of UUT

Φi = Biλi = σi (4.7)

The distribution of the state variables of interest is sampled from the full model for
each node and various time. These samples are called snapshots of the full model
and are used in an interpolation scheme to approximate the full model. The act
of interpolating, in fact, is equivalent to considering only a subspace of the vector
space where the full-model solution resides. This subspace is evaluated so that it
captures the majority of the variation in the model solution. The entire model
is then projected onto this subspace and solved, resulting in a fast approximate
solution to the original model.

Reduced Order Integration Algorithm

The Proper Orthogonal Decomposition technique, as described in 4.1.2 can be ap-
plied to the full-order integration algorithm described in (4.2).
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Let consider, a n-by-Nsnap matrix U , such that each element uij is the value of dis-
placement in the i-th node taken at the j-th time snapshot and define the n-by-n
real symmetric matrix C = UUT.
The first k < n eigenvalues Bk = [φ1 . . . φk] and the corresponding eigenvectors
λ = [λ1 . . . λk] of the matrix C can be computed. Bk is the projection matrix, such
that Bk

TBk = I.
If the selected snapshots are representative enough, the following equivalence

holds:

u ≈
k∑
i=1

diφi = Bkd; (4.8)

therefore, (4.1) can be projected onto Rk through Bk.
The equation of motion (4.1) can be re-written as a function of di, through (4.8):

MBkd̈ + GBkḋ + fint (Bkd) = fext (4.9)

Premultiplying both equation members by Bk
T the following equation holds, which

is the projection of eq.(4.1) onto the subspace generated by Bk:

Bk
TMBkd̈ +

(
Bk

TGBkḋ
)

+ Bk
Tfint = Bk

Tfext. (4.10)

The equation can be integrated numerically with the middle point rule in the
reduced subspace Rk through the following algorithm:

d̈m =
(
BTMB

)−1
(fext

m − fint)

ḋm+1/2 = ḋm−1/2 + d̈m∆tr

dm+1 = dm−1 + ḋm+1/2∆tr

(4.11)

The unknowns are the coefficients di with i = 1, k, guaranteeing that the linear
combination with the Bk columns is as closer as possible to the real, sought, solution.
In each time step, though, the full dimensional displacement u and the corresponding
velocity u̇ are evaluated,from the associated projected values, because the internal
forces and the residual forces are computed in the full original domain. The main
reason for this choice is to keep the reduced system algorithm as close as possible
to the original one, preserving all the explicit algorithm features and allowing an
easy transition from one to the other in the snapshot collecting process. In a fully
explicit integration algorithm, in fact, the stiffness matrix is not assembled.

The new time step ∆tr must be subjected to a different constrain, ∆tr < trcr =
2/ωkmax, leading to the following eigenvalue problem:

det
(
Bk

TKBk − ω2
kBk

TMBk

)
= 0. (4.12)

Bk
TKBk is the Projection of the Stiffness Matrix in S = span (Bk) ⊂ Rk and

Bk
TKBk the Projection of Mass Matrix.
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4.1.3 Essential and Natural Boundary Conditions

The Proper Orthogonal Modes, through which the reduced system is computed, will
automatically satisfy any fixed boundary conditions in terms of displacements (or
velocities) for construction. In fact, the U matrix has a ’zero’ row corresponding to
any fixed degrees of freedom and this information will be transferred to the Proper
Orthogonal Modes themselves and, consequently, to any object in the subspace they
span.
The non-zero BCs, though, need to be re-applied in the reduced system, these data
not being preserved by the Proper Orthogonal Modes. It is not easy however, to
apply the BCs directly to the projected degrees of freedom in the reduced subspace,
because this would lead to a overdetermined system. To elude the obstacle, the BCs
are applied indirectly as equivalent external forces through the penalty method:

fext = Kp · (up − u) (4.13)

where fext is the external force equivalent to the BC, Kp is the Penalty coefficient, set
around 103− 104 times the stiffness of the elements, up is the penalty displacement,
whose value comes from the BC (if given in terms of displacement) or from its
integration in time (if given in terms of velocities) and u is the current displacement
of the node of interest. The Penalty enforcement of the boundary conditions in
the reduced order model has been previously explored by Kalashnikova and Barone
(2012), [71].
Due to instability issues, the node mass Mii where the penalty constrain is applied
is artificially increased (mass scaling) by adding a quantity which is proportional to
the penalty coefficient Kp and to the square time step dt :

Mii := Mii + 1.1 ·Kp · dt2. (4.14)

When the Penalty Method is applied, the computation of the stable time step in the
projected system should take into account the increased stiffness due to the penalty
constrain.

4.1.4 Mode updating

The snapshots can be computed a posteriori, after the end of the regular analy-
sis. This method allows the definition of the reduced system for model validation
purposes and the snapshot collection can be the most efficient possible, since the
real solution is already known. Aiming to a predictive tool, though, the snapshots
should be collected during the analysis itself, in itinere, alternating the integration
in the complete system, for the snapshots collection, with the integration in the
reduced system, until the snapshots previously collected are enough representative
of the response. When dealing with quasi static problems, the complete system can
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Figure 4.1: Time Step Scheme

be integrated only for a small initial time interval ∆T , just to capture an adequate
number of snapshots, which sufficiently describe the system behavior. The corre-
sponding reduced system can, then, be computed from the first k Proper Orthogonal
Modes and the analysis carried out in the reduced system with a greater time step.
Obviously, the snapshots may need to be updated to take account of any variation of
the external (for instance in case of changes in applied forces, displacements, veloc-
ities) or internal conditions (for instance changes due to the constitutive law). So,
after a time interval ∆TR, when the old snapshots are not any more representative,
the analysis could be carried out back through the complete system to recompute a
new group of snapshots. . . and so on. The amplitude of ∆T and ∆TR can be fixed
and different ratios of them have been related to the accuracy of results.
Once the first snapshots have been collected and the corresponding reduced space
defined, the integration in the reduced system can start, using as initial condition
for the integration the following values, where u̇ and u are the values of velocity and
displacement given by the last time step integration in the complete system:

ḋ = BTu̇; d = BTu. (4.15)

As already explained, the stable time step in the reduced system is higher than
the one in the complete system dtR > dt. To allow a proper translation from one
integration scheme (4.2) to the other (4.11), an appropriate time step definition
is set for the first and the last time step in the reduced system: in the velocities
integration, the time step results as dtV = 1

2
(dtR + dt) in both the very first and

very last time step of the reduced space integration, while in the displacements
integration dtD = dtR for the first time step and dtD = dt for the last one before
the updating process.
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In particular, when the integration shifts from the fully explicit method to the
reduced space method, the velocities and the corresponding displacement in the full
order space are computed as shown in equation:

u̇k =
1

dtD
(Bdk − uk−1) ; uk = ·ukdtD (4.16)

Note that the term uk−1 comes from the fully explicit integration.
A possible improvement of the method could be the development of an adaptive
algorithm, able to automatically update the POD modes and consequently the sub-
space of the reduced system.

4.2 One-Dimensional Implementation and Anal-

ysis

4.2.1 System Description

In order to explore the potential applicability of the POD to dynamical problems and
to understand how this technique may be used to extract qualitative and quantitative
information about the spatial structure of large mechanical systems, a simple one-
dimensional benchmark example, made of trusses elements, has been tested. As
shown in figure 4.2, it can be considered as a simple discrete system, in which a
number n of masses mi = ρAil are connected to each others (and to a wall at one
end) by linear springs of assigned stiffness ki = EAi/l. An imposed constant velocity
v0 is applied to the last node.

For the benchmark study, the geometrical and mechanical parameters are the
following: L =

∑
i li = 10 cm, A = 5 cm2, E = 30000 MPa, ρ = 2500 Kg/m3 . The

values are chosen according to the concrete material characteristics and the typical
concrete specimens dimensions.

m1 m2 mi mn

v0(t)

node 1 node 2 node 3 node i node n

E; l; A 1 E; l; A 2 E; l; A i E; l; A n-1

Figure 4.2: Simple model of a dynamic system of trusses
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Figure 4.3: Shape of the first Proper Orthogonal Modes

4.2.2 Linear Elastic Material

Initially, the analysis has been focused on the system represented in figure (4.2),
assuming a linear elastic material (and consequently a linear elastic response). The
simplest case, in fact, provides the first overview of the technique operation and
allows a general comprehension of the problem.
Different numbers of elements have been considered for the same problem, to evalu-
ate how the efficiency of the Proper Orthogonal Decomposition, in terms of compu-
tational gain, varies with the number of degrees of freedom. Understanding how the
dimension of the projected system affects the goodness of the approximation and
the minimum time step required for the stability are the main goals of this section.

To begin, a 25 elements system has been considered and then more tests have
been carried out for a 50 elements system, a 100 elements system and, finally, a
200 elements system; for each of them, the algorithm described in 4.2 (fully explicit
solution) has been used, referring to a total time ttot = 0.01s . The velocity applied
to the last node has been imposed equal to v0 = 10mm/s. Then, the Proper Or-
thogonal Decomposition Technique has been applied , as following:

1. The fully explicit algorithm (4.2) runs, with dt time step for a time interval of
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about 2 · 10−4 s, which is 2% of the total time analysis;

2. 20 Equally Spaced Snapshots of the solution are collected from that time
interval, ;

3. The subspace of k dimension is computed;

4. The reduced-space algorithm (4.11) runs until the end of the analysis, with a
dtR > dt time step.

4.2.3 About the Subspace Dimension

The fully explicit algorithm runs for a number of time steps high enough to allow
a representative snapshots collection from the displacements of the real solution,
through which the projected subspace is computed with the Proper Orthogonal
Modes. As already explained in par. 4.1.2, the Proper Orthogonal Modes are the
eigenvectors associated with the eigenvalues of the matrix C = U · UT: the higher
the eigenvalue, the more representative of the response the associated eigenvector,
the smaller the Projected Subspace Dimension, the more advantageous the Proper
Orthogonal Decomposition Application, since only few modes would be representa-
tive enough. Figure 4.3 shows the course of the first 6 eigenvectors along the beam
lenght and evidences that the shape of the Proper Orthogonal Modes is independent
from the number of degrees of freedom, deriving from the geometry of the problem.

As far as the Linear Elastic Material is concerned, the analysis shows that the
first mode itself can be enough to represent the response of the system in terms of
displacements, forces and energy: it accounts for more than 99.9% of the total sum
of all eigenvalues, independently of the number of degrees of freedom of the original
problem. The first Proper Orthogonal Mode is in the form of a straight line, which
can be considered as the static response of the system, while the following modes
take account for the vibrations due to the dynamical effects.

There is no necessity to collect the snapshots every time step. In fact, it can
be shown that the shape of the first eigenvector of the 50 element truss does not
change whether the snapshots are being collected every time step or at different time
intervals. In addition, in the linear elastic case study, the snapshots do not need to
be updated during the analysis because the system response does not change.

For that reason, only 20 snapshots are collected once from the global analysis.
The stable time step in the reduced system dtR increases with the number of degrees
of freedom and so the so called PIF, performance improvement factor [31]. PIF is
defined as the ratio between the total CPU time of a fully explicit algorithm with
the critical time step (Tcd) and the total CPU time of the POD algorithm, including
the snapshots collection and the SVD computation. It should be noticed that the
stable time step during the reduced integration dtR is also a function of the chosen
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Figure 4.4: Displacements in time for selected nodes (50 elements)

Figure 4.5: First Node Stress - Last Node Strain (50 elements)
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DoF dtR/dt PIF en

25 2.4 3.2 1.6%
50 4.5 7.5 0.2%
100 11.6 15.5 0.9%
200 32.4 34.6 2.0%

Table 4.1: POD results for Linear Elastic Material

penalty stiffness Kp, when the penalty method is applied: the higher the coefficient,
the smaller the stable time step (and so the performance index factor) but the more
accurate the results. With Kp = 104, results are showed in table 4.1.

PIF =
Tcd

Tms

(4.17)

The error between the fully explicit algorithm and the POD application is evaluated
as the global error in Energy at the end of the analysis. The error en is evaluated
as:

En = En−1 +

(
fe1,n − fe1,n−1

2
+ fe1,n

)
· (uN,n − uN,n−1) (4.18)

E∗n = E∗n−1 +

(
fe∗1,n − fe∗1,n−1

2
+ fe∗1,n

)
·
(
u∗N,n − u∗N,n−1

)
(4.19)

en =

√
(E∗n − En)2

En
2 (4.20)

where En and En−1 are the Energy at time tn and time tn−1 for the fully explicit
algorithm while E∗n and E∗n−1 are Energy at time tn and time tn−1 for the POD
algorithm; fe1,n and fe1,n−1 are the internal forces in the first element at time tn
and time tn−1 for the fully explicit algorithm while fe∗1,n and fe∗1,n−1 are the internal
forces in the first element at time tn and time tn−1 for the POD algorithm; uN,n
and uN,n−1 are the last node displacements at time tn and time tn−1 for the fully
explicit algorithm while u∗N,n u

∗
N,n−1 are the last node displacements at time tn and

time tn−1 for the POD algorithm.
The results show that the first mode is enough to represent the response of the

system independently from the number of degrees of freedom of the system and the
gain in terms of increased time step is increasing as the dimension of the elements
decreases and the number of degrees of freedom increases. For each node, during the
whole time history, the displacements are perfectly caught by the POD algorithm
(as shown in fig (4.4)).

Figure 4.5 demonstrates, with a comparison between the fully explicit algorithm
results and the POD algorithm results, the agreement in terms of stress-strain curve.
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The first node stress is plotted against the last node displacement: the curves are es-
sentially overlapped.

Figure 4.6: Reduced System Responses
with different numbers of Modes.

It is of interest to notice that the 1st
Mode describes the system behavior in
average, through the shape of the eigen-
vector itself (a straight line) filtering all
the small vibrations. Obviously, the
higher number of modes considered by
POD, the greater the subspace where
the integration takes place and, thereby,
the closer the projected subspace to the
full space containing the real solution.
So, as more modes are included in the
Subspace definition, the POD system is
capable of represent a higher number of
details.
On the other hand, though, the sta-
ble time step of the analysis becomes
smaller because the POD subspace is
enlarging and getting closer to the full
space. Figure 4.6 illustrates this behav-
ior, referring to the 50 elements system:
by adding the second mode, the solution
is able to represent some vibrations in
the response and the following modes al-
low the approximate solution to include
some vibrations, until the numbers of
modes is equal to the numbers of degrees
of freedom of the problem so the POD
solution and the real solution coincide.
The counterpart is the rapid decreasing
of the stable time step. The goal of the
POD application for quasi static prob-
lems is to obtain an approximate solu-
tion capable of representing the macro
behavior, filtering the particles’ vibra-
tions, with the highest time step possi-
ble. The Proper Orthogonal Modes can
be interpreted as shape functions with
global support: if the eigenvectors are

properly normalized, imposing them to be equal to zero in correspondence to an
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assigned node, then the coefficients of the linear combination, been used for the
integration of the reduced system, can be considered the displacement portion as-
sociated to that Mode.

4.2.4 Softening Material

The studies and results related to Linear Elastic Materials have to be intended as a
preliminary step towards the application of the Proper Orthogonal Decomposition
technique to nonlinear problems, in which localized deformations occur, aiming in
fact to a relevant tool for concrete and quasi brittle materials.
The same geometry, material parameters and BCs described in section 4.2 are con-
sidered, except that a fracturing behavior has been introduced when a limiting stress
boundary is reached: the concrete material constitutive equations are reproduced,
following the formulation proposed by Cusatis et al.(2011) [24]. In order for the
fracture process to be realistically activated, one element (the central one) has been
considered weaker than the others, assigning a smaller tensile strength (σT = 3MPa
for a regular element, σT = 2.5 MPa for the central element). This mechanical char-
acterization leads to a softening branch in the stress-strain curve, which means a
discontinuity in the response. As long as the tensile stress in each element is smaller

Figure 4.7: Response with snapshots update

than the tensile strength, the behavior of the system is linear elastic and what has
been observed for the elastic material, in the previous section, identically holds: the
First Proper Orthogonal Mode can describe the average response of the system.
When the tensile strength of the weaker element is reached, though, the softening
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Figure 4.8: Response without snapshots update (50 elements)

mechanisms are activated and the fracture process starts. The old subspace, origi-
nated from the snapshots collected at the beginning of the linear elastic analysis, can
not represent the real solution any more, as figure (4.8) illustrates: a new adequate
subspace should be sought in order for the POD algorithm to continue.

Figure 4.9: Displacements distributions along the truss using only the 1st Mode (50
elements)

The POD algorithm, therefore, has to switch again to the fully explicit integra-
tion just before the maximum tensile stress is reached, to calculate the new snapshots
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and, from them, the new proper orthogonal subspace.

Figure 4.10: Stress-Strain Curve using two Proper Orthogonal Modes (50 elements)

Figure 4.11: Displacements distributions along the truss, in selected time snapshots
(50 elements)

At least 2 Modes (figure 4.10) are required to reproduce the softening branch
in the reduced integration. For the 50 elements system, with a penalty stiffness
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Figure 4.12: First Elements Stress- Last Element Strain Curves in case of automatic
update (50 elements)

set Kp = 103, the stable time step after the re-computation results to be equal to
dtR = 3.9dt and the index of performance is PIF = 7.7. For the 100 elements system
the stable time step after the re-computation results to be equal to dtR = 5.6 dt
and the index of performance is PIF = 11.5 (the efficiency of the algorithm is still
increasing with the number of degrees of freedom.)

The shape of the first and second Proper Orthogonal modes are directly corre-
lated with the displacements trend along the truss length and a combination of the
them is necessary and sufficient to reproduce the real pattern (figure 4.11). The
single 1st Mode is not sufficient as figure (4.11) allows to understand. The afore-
mentioned method can not obviously be applied if the material behavior is a priori
unknown. In this case, it is possible to automatically update the snapshots switching
to the fully explicit algorithm after a predetermined time interval. The more often
the snapshots are updated, the more accurate could be the approximate solution,
but the less the computational gain. In case of the 50 elements system, setting the
time interval for the fully explict algorithm to run and the snapshots to be collected
equal to ∆T = 0.25ms and the time interval for the reduced integration in a 2d
subspace equal to ∆TR = 0.58ms ( dtR = 5dt), an error in energy less than 3% can
be achieved in the softening branch (figure 4.12) with a performance index factor
equal to PIF = 2.5.
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4.2.5 Unloading Reloading

The Proper Orthogonal Modes computed when the softening response starts and
capable of representing the softening branch can represent the whole curve as well.
Using the same subspace, any unloading reloading behavior can be reproduced, with
no need of switching to the complete system in order to update the snapshots. The
case of 50 elements is reported in figure 4.13 where the estimated computational
gain in terms of Cpu performance is PIF = 5.

Figure 4.13: First Elements Stress- Last Element Strain Curves in case of unloading-
reloading (50 elements)
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4.2.6 Mass Scaling within POD

A further improvement of the reduced system efficiency in terms of computational
gain would be the use of a Mass Scaling Technique together with the Proper Orthog-
onal Decomposition. Applying the Mass Scaling only during the reduced integration,
the Snapshot computation remains unchanged and so the Proper Orthogonal Modes,
while the critical time step dtR in the corresponding subspace is allowed to increase
arbitrarily large. Obviously accuracy considerations are required in order to obtain
satisfactory results.
The mass scaling is applied to the original full scale mass matrix just before it is
projected to the low dimensional subspace. The modified mass matrix M̃ is com-
puted according to the method proposed by Heinstein et al. (1996) and described
by DeFrias et al.(2014):

M̃ = αM (4.21)

αi =
dtR2

4

Ki

Mi

(4.22)

where Mi is the element lumped mass at node i, Ki the element nodal stiffness
and dtR a user-defined time step.

The modified mass matrix is then projected through the proper orthogonal
Modes BTM̃B and used for the reduced integration in the POD algorithm.
A considerable improvement can be observed in terms of efficiency combining proper
orthogonal decomposition and mass scaling. In fact, the combination of both meth-
ods allows a optimum compromise between accuracy and increased time step. As
far as the elastic material is concerned, in figures 4.14 and 4.15, it is highlighted
the improved efficiency of the mass scaling technique when coupled with the proper
orthogonal decomposition: the mass scaling technique alone is not accurate enough
when the increased time step dtR is much bigger than the standard time step, be-
cause the increased mass causes the development of high inertial forces . When the
mass scaling is combined with POD, though, this effect is much smoother being only
the first mode considered.
It has been observed that, in this case, the stress-strain curve remains overlapped to
the original full scale response independently from the time step dimension, which
means that a single step in the reduced system would lead immediately to the end
of the analysis. In terms of displacements in time, there are some fluctuations of
the response due to the additional mass, which is a function of dtR and so increases
with it, but the distorsions can be considered acceptable in terms of accuracy until
considerably large time steps (as shown in figure 4.16).

Mass Scaling can improve the results for the Softening Material as well: the
critical time step increases and the accuracy of the results rather than the stability
controls the choice of dtR.
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Figure 4.14: First Node Stress-Last Node Strain for 50 elements, linear elastic ma-
terial: comparison 1
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Figure 4.15: First Node Stress-Last Node Strain for 50 elements, linear elastic ma-
terial: comparison 2
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Figure 4.16: Displacements in time for the central node (50 elements system) with
different time steps dtR
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Figure 4.17: First Node Stress-Last Node Strain for 50 elements, softening material
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4.3 2D Application: Cantilever Beam

In order to be able to apply the Proper Orthogonal Decomposition to the solution
of any dynamic discrete system, the method validated for 1D trusses has then been
tested for a 2-dimensional cantilever beam with a superimposed vertical displace-
ment to the last node. Each node has 3 degrees of freedom, including a rotational
one. The application of the POD technique does not change: the snapshots are
collected during the initial fully explicit integration for each degree of freedom,
including the rotational one. Then, they are used for the computation of the appro-
priate subspace where the reduced integration will takes place. (problema rotazioni)
A cantilever beam as shown in figure 4.18 has been simulated. The lenght of the

Figure 4.18: Cantilever beam tested

beam is set to l = 1 m, the radius of the cross section R = 10 cm and a veloc-
ity of v = 10 mm/s has been applied to the last node, in vertical direction. One
case study with 10 elements and another one with 50 elements have been performed.

4.3.1 Results

The POD technique allows to achieve accurate and efficient results for both the
linear elastic material and the plastic material. The trend observed for the 1D case
study is reproduced for the 2D case. In particular, only the first POD mode is
sufficient to approximate the linear elastic behavior, while also the second one is
necessary to approximate the plastic behavior after yielding.

The stable time step in the reduced system increases with the number of elements:
the 10 elements beam allows a time step dtR = 10 · dt while the 50 elements beam
allows a time step of dtR = 400 · dt
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Figure 4.19: Force-Displacement curves (10 elements)

Figure 4.20: Force-Displacement curves (50 elements)
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4.4 3D Application in LDPM: the Dog-Bone Test

Finally, the Proper Orthogonal Decomposition Technique is tested for simple 3D
concrete specimens modeled with LDPM, where every node has 6 degrees of freedom,
in order to investigate the method’s applicability and understand its limitations in
more complex numerical simulations.
First, a direct tension test has been performed on a dog-bone shaped specimen, as
shown in figure 4.21, with dimensions H=30 cm, B=30 cm, D=20 cm. A constant
velocity of 10 mm/s is applied uniformly to the nodes belonging to the top surface,
while the bottom surface is fixed. With the only purpose of comparing the results
obtained from the fully explicit analysis with the ones from the POD analysis,
a coarse (2148 nodes) and a fine mesh (17441 nodes) have been considered and
compared.

v

B

H

Da) b)

Figure 4.21: Geometry and set up for the Dogbone Test: a)coarse mesh; b) fine
mesh

The force-displacement response of the coarse-meshed specimen is plotted in
figure 4.22, where a comparison between the fully explicit method and the POD
method is been shown. In particular, for the POD application, the basis for the
reduced system have been updated 3 times (3 ms, 6 ms, 9 ms) to take account of
the progressive fracturing. In terms of efficiency, the stable time step in the reduced
system is dtR = 6 · dt, leading to a global index of performance PIF = 3.4.
The force-displacement response of the fine-meshed specimen is shown in figure 4.23.
In this case, the POD application allows a performance 5 times faster than the one
achieved with the fully explicit analysis (PIF = 5.0). In this case, the stable time
step in the reduced system is dtR = 15 · dt and the basis is updated twice (3 ms and
5 ms).
In both the examples, just 2 modes are enough to capture a good approximation of
the response.
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Figure 4.22: Force-Displacement responses from the Dogbone test (coarse mesh)
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Figure 4.23: Force-Displacement responses from the Dogbone Test (fine mesh)
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4.5 3D Application in LDPM: Compression test

To pursue the final aim of this research, the POD has been tested also for columns
subjected to compressive loadings. Initially a plain concrete column has been studied
and then the problem of the FRP confined concrete column has been addressed.

4.5.1 Plain Concrete Column

The algorithm has been initially tested for a cylindrical concrete column with the
same dimensions of the specimens considered for the study of FRP confinement
(H = 300 mm, D = 150 mm) as shown in figure 4.24. Also the same parameters for
LDPM have been taken. In order to increase the speed of this phase, a coarse mesh
have been considered (1635 nodes), with the only purpose of checking the potential
efficiency of the algorithm, especially in relation to the softening response. Again,

Figure 4.24: Geometry of the plain concrete column

the force-displacements curves are plotted comparing the response of the fully ex-
plicit algorithm with the response of the reduced system. It has been noticed that,
during the softening in compression, frequent updates of the modes are required in
order to capture the decreasing branch. The current explanation for this behav-
ior is related to progressive and diffused fracturing process of the material, which
makes the POD modes almost immediately no longer representative of the ongoing
response. An automatic update of the modes has been set during the softening,
which are updated every regular intervals of time, and different moments for the
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updates have been compared (Figure 4.25). As previously, only 2 modes are used
he stable time step in the reduced system is dtR = 20 ms with a global index of
performance PIF = 2.5.
Figure 4.26 shows the same simulation which has run for a longer time: after the

Figure 4.25: Force-Displacement responses from the Compression Test of plain con-
crete column (different update combinations)
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material collapse, the simulation in the reduced space can approximate the fully
explicit response without need of further updates.
It should be noted that the column has a coarse mesh so the output curves might
not be representative of the real behavior, but the purpose of the simulations has
been only numerical, related to the comparison between the fully explicit and the
reduced algorithm.

Figure 4.26: Force-Displacement responses from the Compression Test of plain con-
crete column (longer simulation)
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4.5.2 FRP Confined Concrete Column

Finally, the POD algorithm has been applied to the case of the cylindrical column
wrapped by FRP jacket. The geometrical and material parameters are the ones used
for simulations described in Chapter 3. The original mesh is shown in figure 4.27
(9470 nodes). In order to apply the POD more easily, the contact between FRP

Figure 4.27: Geometry of the plain concrete column

and the external concrete surface is not longer given by a master-slave formulation,
but simply the surfaces are sharing the same nodes. Also, in these simulations, the
FRP material has been considered elastic.
In figure 4.28, the curve from the Fully Explicit algorithm and the one from the POD
are compared. Also in this case, in the post-peak phase more frequent updates are
required, as explained in the case of the plain concrete column. In this specific case,
the time step in the reduced algorithm is dtR = 60 · dt but the index of performance
is limited to PIF = 3. In fact the advantage in terms of time step is partially lost
because of the frequent update.
The algorithm has still room for improvement and the objective would be to achieve
a global gain of 10 times so that LDPM can be used also for practical applications.
Anyway, the algorithm as it is can still be considered useful in the calibration process,
to check the trend of the response in a shorter time.
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Figure 4.28: Force-Displacement responses from the Compression Test of FRP con-
fined column.
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A: Why the Penalty Method

The Penalty Method has proven to be the most effective way to apply the BCs in
the reduced system.

Figure 4.29: Last Element instability

Another method has been explored, based on the integration of the reduced
system without taking account of the BCs, superimposing then the velocities and
the displacements in the complete system just before the forces calculations. When
the residual forces are evaluated, the nodes where the boundary conditions have
been superimposed must be rewritten in order to satisfy the equation of motion.
The algorithm for the 1D case study with the imposed velocity to the last node is

97



written as following:

fint
m = fint (um) (4.23a)

rm = fext
m − fint

m; rmn = Mnn

(
u̇n

m+1/2 − u̇nm−1/2
)
/∆tr (4.23b)

d̈m =
(
BTMB

)−1
rm (4.23c)

ḋm+1/2 = ḋm−1/2 + d̈m∆tr (4.23d)

dm+1 = dm + ḋm+1/2∆tr (4.23e)

um+1 = Bdm+1;
(
un

m+1 = f (u̇n)
)

(4.23f)

(4.23g)

The described method, even if leading to good results, is characterized by an
effective stable time step smaller than the calculated one and this behavior, due to
an increased instability of the last element where the BC is superimposed. Figure
4.29 shows that the algorithm for the reduced system causes an increased internal
force in the last element, leading to a premature instability.
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Chapter 5

Conclusions and Future Research
Goals

5.1 Summary of the present research

5.1.1 Modeling of FRP confined concrete

A three-dimensional meso-scale model based on the Lattice Discrete Particle Model
(LDPM) has been developed for the simulation of FRP-confined concrete columns
subjected to compressive loading and different shapes of cross sections have been
considered. Being the meso-scale approach based on the interaction amongst con-
crete aggregates and particles, it can provide a global solution for the constitutive
relationship of concrete and, consequently, overcome many of the limitations of con-
tinuum mechanics dealing with the complex response of FRP confined concrete.
LDPM, in particular, has proved to be very effective in predicting the stress-strain
behavior and the failure modes of concrete under compression. This is because of
its unique capability of simulating compressive failure not postulating the existence
of softening in compression, as typical continuum-based models do, but through
tensile and shearing softening at the meso-scale, consistently with the experimental
evidence [25].
Experimental data have been gathered from literature, regarding FRP confined
columns with different shapes loaded in compression, in order to verify the capabil-
ity of LDPM to deal with the FRP confinement problems.
Firstly, an improvement in the LDPM constitutive laws in compression became nec-
essary, in order to correctly describe the behavior of concrete under low confinement.
In fact, before the present research, LDPM had been validated only for high confine-
ment stress (50-200 MPa) , while concrete is subjected to pressure up to 10-20 MPa
when the confinement is provided by the composite wrapping; the related equations
have been consequently rewritten in order to make them suitable for the most gen-
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eral case .
After that, LDPM parameters have been calibrated for the specific case study: a
first set of parameters is required for the creation of the internal geometry and the
values come directly from the concrete mix-design data, a second set is necessary
for the constitutive equations and those values are calibrated by fitting the experi-
mental curves available for plain concrete.
The FRP sheets have been modeled using quadrilateral shell elements and the Spec-
tral Stiffness Micropane Model as constitutive law, in order to simulate the or-
thotropic behavior of the composites and their brittle failure; in addiction, a stochas-
tic model has been assigned for its strength, to take into account the scatters in the
coupon tests in terms of ultimate strength. The contact between FRP and concrete
has been defined through a master-slave formulation where both the normal and the
tangential forces are transmitted at the interface level (full contact).
The results achieved by means of the present model are very satisfactory for columns
with larger corner radius: by calibrating LDPM parameters for the plain concrete
response, the typical bilinear stress-strain loading curves of FRP confined concrete
are captured when the wrapping is added. The match with the experimental curves
is good for different level of confinement (1 or 2 layers) and for different cross section
shapes (from r = 30 mm to r = 75 mm). The model, in fact, has not problems in
dealing with non uniform confinement.
In addiction, the ultimate condition of those specimens is also well predicted; the
ultimate stress and strain are captured with very good approximation and this is
not common amongst the models available in literature. In addition, also the failure
mechanisms of the columns can be realistically reproduced: the FRP, and therefore
the whole column, usually starts failing where the rounded corner joints the flat
side, as it happens in the numerical simulations.
On the other hand, the present model is not suitable for describing the response
of specimens with a corner radius equal or close to zero (r = 0 or r = 15 mm) .
Columns with right angled shapes, in fact, require a more sophisticated modeling
of the FRP jacket and, in particular, of the contact between FRP and concrete in
order to capture the complex phenomena related to the local stress concentrations
and delamination processes; in fact, with a full-contact master slave formulation,
the debonding process of the FRP cannot be simulated. If the tangential interac-
tion between the surfaces in contact is neglected (normal contact), the confinement
effect decreases significantly for these type of columns: in particular, in the case
of the square shaped specimen wrapped by 1 FRP ply, the experimental response
is almost captured. On the contrary, if the specimen is cylindrical, the stress vs
strain response is not affected by the type of contact, so one can assume that the
importance of modeling the debonding effect is likely to increase with the decreasing
of the corner radius up to becoming fundamental for square columns. In addition,
another limitation of the current numerical approach is related to the incapability
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of modeling directly the flexural behavior in the FRP, because an equivalent thick-
ness has been used. The flexural behavior, though, becomes more important in case
of small corner radius, increasing the triaxial stress state in the material and the
stochastic approach for the FRP strengths might be not enough to take into account
all these variegated characteristics.

5.1.2 Computational aspects

This research has been also developed along another, parallel path: to cope with
the high computational costs of the numerical simulations of LDPM problems, the
Proper Orthogonal decomposition (POD) has been explored as a model reduction
technique, in order to speed up the analysis.
The software MARS, where the LDPM computational framework is implemented,
performs structural analysis by an explicit dynamic algorithm based on a central
difference scheme, which on one hand is convenient in terms of convergence, espe-
cially if dealing with softening behaviors, but on the other hand, being the algorithm
stable under conditions, the time step required might be excessively small, in par-
ticular if low-dynamics is concerned. In this context, the POD method has been
considered an attractive possibility: it seeks only the dominant components of the
response by projecting dynamic systems onto subspaces containing the solution or
at least good approximation of it, so that a low-order problem can be solved instead
of the original one. The subspaces are generated by the so called Proper Orthogonal
Modes, which can be computed from the full-order system solution.
The Full-Order Integration Algorithm for the motion governing equation, based on
the middle-point rule, is projected according to the POD theory and a correspond-
ing Reduced-Order algorithm is defined, with a smaller number of unknowns and
a higher stable time step. In particular, the dimension of the subspace depends on
the number of modes used for the projection and the accuracy of the solution in
the subspace depends on the capability of those modes to represent the dominant
components of the global solution. Moreover, if the trend of the global solution
changes during the simulation, the modes have to be updated so that a different
subspace can be defined.
A new algorithm based on the POD method has been tested for 1D truss elements
and 2D beam elements, finding out that the efficiency of the method, based mainly
on the gain in terms of stable time step, increases with the number of degrees of free-
dom of the original problem. Also, just a very limited number of modes are enough
to achieve high levels of accuracy of the solution. If yielding or fracture occurs at
the material level, the subspace must be redefined, since the old one cannot contain
the new solution.
The application of POD to 3D case studies has been successful for direct traction
tests: the modes do not need frequent updates during the softening phase because
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the fracture in the specimens is localized, so the modes change suddenly and quickly.
This is no longer true for the compression tests, where the fracturing process is pro-
gressive and diffuse and, consequently, updating the modes is required more often
because the modes change gradually. Of course, the more the modes need to be
updated, the less convenient the POD method becomes. Finally, the method has
been applied to the case study of interest in the present research - the FRP con-
fined concrete columns. In particular, the response of the circular column has been
evaluated. The proper orthogonal modes need to be updated frequently during the
post-peak phase and for this reason, even if the gain in terms of time step is pretty
high, up to 60 times higher than the original one, the global gain in terms of cpu
time is limited to 3 times. However, the approximated solution can still be consid-
ered a good approximation of the correct one and might be used in the calibration
process.

5.2 Steps Further...

As far as the future research related to the modeling of FRP confinement is con-
cerned, one of the main issues is related to the square columns response. As it has
been highlighted, the development of a more realistic contact algorithm will be the
next step in order to simulate the debonding and the detaching of the FRP jacket
from the concrete column surface; in fact the preliminary analysis reported in the
discussion of the related results, in Chapter 3, showed the importance of the correct
simulation of the interface between the two materials for the sharp corner shaped
sections, so a deeper study of this aspect will be the next goal.
Furthermore, another future development is related to the study of the behavior of
FRP-confined reinforced concrete columns. The model so far has proved to be pre-
dictive for FRP confined plain concrete columns. It will be interesting to study the
numerical response of reinforced concrete columns, when internal steel rebars and
stirrups are included and interacting with the external jacket: the mutual confining
action of the composite wrapping and steel stirrups originates complex stress states
along the section and the height of the columns. Moreover, the longitudinal bars
may suffer from buckling phenomena leading to peak stress in the FRP at rebar
positions, causing premature failure. The understanding of these aspects can lead
to the development of a practical numerical tool able to face applicative engineering
problems.
Regarding the computational aspects of the present study, the improving of the
POD application for LDPM in case of softening behaviors will be the next step, in
order to be able to achieve a global cpu time gain of 10 times. Also, it would be
interesting to develop an adaptive algorithm, able to predict when automatically
update the modes.

102



Bibliography

[1] J. Chen, S. Li, L. Bisby, Factors affecting the ultimate condition of frp-wrapped
concrete columns, Journal of Composites for Construction 17 (1) (2013) 67–78.
doi:10.1061/(ASCE)CC.1943-5614.0000314.

[2] J. Teng, L. Lam, Behavior and modeling of fiber reinforced polymer-confined
concrete, Journal of structural engineering 130 (11) (2004) 1713–1723. doi:

http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713).

[3] Theoretical stressstrain model for confined concrete, Journal of Structural Engi-
neering 114 (8) (1988) 1804–1826. doi:10.1061/(ASCE)0733-9445(1988)114:
8(1804).

[4] L. Lam, J. Teng, Design-oriented stressstrain model for frp-confined con-
crete, Construction and Building Materials 17 (67) (2003) 471 – 489, fibre-
reinforced polymer composites in construction. doi:http://dx.doi.org/10.

1016/S0950-0618(03)00045-X.

[5] T. C. Rousakis, T. D. Rakitzis, A. I. Karabinis, Design-oriented strength
model for frp-confined concrete members, Journal of Composites for Con-
struction 16 (6) (2012) 615–625. doi:http://dx.doi.org/10.1061/(ASCE)

CC.1943-5614.0000295.

[6] T. Ozbakkaloglu, J. C. Lim, Axial compressive behavior of frp-confined con-
crete: Experimental test database and a new design-oriented model, Compos-
ites Part B: Engineering 55 (2013) 607 – 634. doi:http://dx.doi.org/10.

1016/j.compositesb.2013.07.025.

[7] T. Jiang, J. Teng, Analysis-oriented stressstrain models for frpconfined con-
crete, Engineering Structures 29 (11) (2007) 2968 – 2986. doi:http://dx.

doi.org/10.1016/j.engstruct.2007.01.010.

[8] B. Binici, An analytical model for stressstrain behavior of confined concrete,
Engineering Structures 27 (7) (2005) 1040 – 1051. doi:http://dx.doi.org/

10.1016/j.engstruct.2005.03.002.

103

http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000314
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713)
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-0618(03)00045-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-0618(03)00045-X
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000295
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000295
http://dx.doi.org/http://dx.doi.org/10.1016/j.compositesb.2013.07.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.compositesb.2013.07.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2007.01.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2007.01.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2005.03.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2005.03.002


[9] J. Teng, Y. Huang, L. Lam, L. Ye, Theoretical model for fiber-reinforced
polymer-confined concrete, Journal of composites for construction 11 (2) (2007)
201–210. doi:10.1061/(ASCE)1090-0268(2007)11:2(201).

[10] C. Pellegrino, C. Modena, Analytical model for frp confinement of concrete
columns with and without internal steel reinforcement, Journal of Composites
for Construction 14 (6) (2010) 693–705. doi:http://dx.doi.org/10.1061/

(ASCE)CC.1943-5614.0000127.

[11] M. H. Harajli, Axial stressstrain relationship for {FRP} confined circular and
rectangular concrete columns, Cement and Concrete Composites 28 (10) (2006)
938 – 948, durability and Ductility of {FRP} Strengthened Beams, Slabs and
Columns. doi:http://dx.doi.org/10.1016/j.cemconcomp.2006.07.005.

[12] M. Maalej, S. Tanwongsval, P. Paramasivam, Modelling of rectangular
{RC} columns strengthened with {FRP}, Cement and Concrete Composites
25 (2) (2003) 263 – 276. doi:http://dx.doi.org/10.1016/S0958-9465(02)

00017-3.

[13] T. Yu, J. Teng, Y. Wong, S. Dong, Finite element modeling of confined concrete-
i: Drucker-prager type plasticity model, Engineering Structures 32 (3) (2010)
665–679. doi:10.1016/j.engstruct.2009.11.014.

[14] T. Rousakis, A. Karabinis, P. Kiousis, Frp-confined concrete members: Ax-
ial compression experiments and plasticity modelling, Engineering Structures
29 (7) (2007) 1343–1353. doi:10.1016/j.engstruct.2006.08.006.

[15] A. Karabinis, T. Rousakis, Concrete confined by frp material: A plastic-
ity approach, Engineering Structures 24 (7) (2002) 923–932. doi:10.1016/

S0141-0296(02)00011-1.

[16] A. Fam, S. Rizkalla, Confinement model for axially loaded concrete confined by
circular fiber-reinforced polymer tubes, ACI Structural Journal 98 (4) (2001)
451–461.

[17] A. Mirmiran, K. Zagers, W. Yuan, Nonlinear finite element modeling of concrete
confined by fiber composites, Finite elements in analysis and design 35 (1)
(2000) 79–96. doi:10.1016/S0168-874X(99)00056-6.

[18] T. Yu, J. Teng, Y. Wong, S. Dong, Finite element modeling of confined concrete-
ii: Plastic-damage model, Engineering Structures 32 (3) (2010) 680–691. doi:

10.1016/j.engstruct.2009.11.013.

[19] S. Gambarelli, N. Nistic, J. Obolt, Numerical analysis of compressed con-
crete columns confined with cfrp: Microplane-based approach, Composites Part

104

http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000127
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000127
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2006.07.005
http://dx.doi.org/http://dx.doi.org/10.1016/S0958-9465(02)00017-3
http://dx.doi.org/http://dx.doi.org/10.1016/S0958-9465(02)00017-3
http://dx.doi.org/10.1016/j.engstruct.2009.11.014
http://dx.doi.org/10.1016/j.engstruct.2006.08.006
http://dx.doi.org/10.1016/S0141-0296(02)00011-1
http://dx.doi.org/10.1016/S0141-0296(02)00011-1
http://dx.doi.org/10.1016/S0168-874X(99)00056-6
http://dx.doi.org/10.1016/j.engstruct.2009.11.013
http://dx.doi.org/10.1016/j.engstruct.2009.11.013


B: Engineering 67 (2014) 303 – 312. doi:http://dx.doi.org/10.1016/j.

compositesb.2014.06.026.

[20] C. Desprez, J. Mazars, P. Kotronis, P. Paultre, Damage model for frp-confined
concrete columns under cyclic loading, Engineering Structures 48 (2013) 519 –
531. doi:http://dx.doi.org/10.1016/j.engstruct.2012.09.019.

[21] J. Teng, L. Lam, G. Lin, J. Lu, Q. Xiao, Numerical simulation of frp-jacketed
rc columns subjected to cyclic and seismic loading, Journal of Composites
for Construction (2015) 04015021doi:http://dx.doi.org/10.1061/(ASCE)
CC.1943-5614.0000584.

[22] Three-dimensional finite element analysis of reinforced concrete columns with
{FRP} and/or steel confinement, Engineering Structures 97 (2015) 15 – 28.
doi:http://dx.doi.org/10.1016/j.engstruct.2015.03.030.

[23] J. F. C. J.G. Teng, J. J. Zeng, Measurement of axial stress distributions in
frp-confined concrete columns using tekscan pressure sensors, Vol. 1, 2015, pp.
8–10.

[24] Y.-F. Wu, Development of constitutive models for {FRP} confined concrete
structures, Vol. 1, 2015, p. 90.

[25] G. Cusatis, D. Pelessone, A. Mencarelli, Lattice discrete particle model (LDPM)
for failure behavior of concrete. I: Theory, Cement and Concrete Composites
33 (9) (2011) 881 – 890. doi:http://dx.doi.org/10.1016/j.cemconcomp.

2011.02.011.

[26] G. Cusatis, A. Mencarelli, D. Pelessone, J. T. Baylot, Lattice discrete particle
model (LDPM) for failure behavior of concrete. II: Calibration and validation,
Cement and Concrete Composite 33 (9) (2011) 891 – 905. doi:http://dx.

doi.org/10.1016/j.cemconcomp.2011.02.010.

[27] E. A. Schauffert, G. Cusatis, Lattice discrete particle model for fiber-reinforced
concrete. i: Theory, Journal of Engineering Mechanics 138 (7) (2011) 826–833.
doi:http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000387.

[28] E. A. Schauffert, G. Cusatis, D. Pelessone, J. L. ODaniel, J. T. Baylot, Lattice
discrete particle model for fiber-reinforced concrete. ii: Tensile fracture and
multiaxial loading behavior, Journal of Engineering Mechanics 138 (7) (2012)
834–841. doi:http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000392.

[29] M. Alnaggar, G. Cusatis, G. Di Luzio, Lattice discrete particle modeling (ldpm)
of alkali silica reaction (asr) deterioration of concrete structures, Cement and

105

http://dx.doi.org/http://dx.doi.org/10.1016/j.compositesb.2014.06.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.compositesb.2014.06.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2012.09.019
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000584
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000584
http://dx.doi.org/http://dx.doi.org/10.1016/j.engstruct.2015.03.030
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2011.02.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2011.02.010
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000387
http://dx.doi.org/http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000392


Concrete Composites 41 (2013) 45–59. doi:http://dx.doi.org/10.1016/j.

cemconcomp.2013.04.015.

[30] R. El-Helou, C. Moen, E. Lale, G. Cusatis, Lattice discrete particle modeling of
buckling deformation in thin ultra-high-performance fiber-reinforced concrete
plates, Vol. 1, 2014, pp. 365–371.

[31] D. Pelessone, MARS, modeling and analysis of the response of structures. User’s
manual, ES3 Inc., 2015.

[32] G. J. de Frias, W. Aquino, K. H. Pierson, M. W. Heinstein, B. W. Spencer,
A multiscale mass scaling approach for explicit time integration using proper
orthogonal decomposition, International Journal for Numerical Methods in En-
gineering 97 (11) (2014) 799–818. doi:http://dx.doi.org/0.1002/nme.4608.

[33] G. Cocchetti, M. Pagani, U. Perego, Selective mass scaling and critical time-step
estimate for explicit dynamics analyses with solid-shell elements, Computers
and Structures 127 (0) (2013) 39 – 52. doi:http://dx.doi.org/10.1016/j.

compstruc.2012.10.021.

[34] L. Gao, V. M. Calo, Fast isogeometric solvers for explicit dynamics, Computer
Methods in Applied Mechanics and Engineering 274 (0) (2014) 19 – 41. doi:

http://dx.doi.org/10.1016/j.cma.2014.01.023.

[35] S.-Y. Chang, A new family of explicit methods for linear structural dynamics,
Computers and Structures 88 (1112) (2010) 755 – 772. doi:http://dx.doi.

org/10.1016/j.compstruc.2010.03.002.

[36] M. Xiao, P. Breitkopf, R. F. Coelho, P. Villon, W. Zhang, Proper orthogonal
decomposition with high number of linear constraints for aerodynamical shape
optimization, Applied Mathematics and Computation 247 (0) (2014) 1096 –
1112. doi:http://dx.doi.org/10.1016/j.amc.2014.09.068.

[37] F. Behzad, B. T. Helenbrook, G. Ahmadi, On the sensitivity and accuracy of
proper-orthogonal-decomposition-based reduced order models for burgers equa-
tion, Computers and Fluids 106 (0) (2015) 19 – 32. doi:http://dx.doi.org/
10.1016/j.compfluid.2014.09.041.

[38] H. Chen, M. Xu, D. L. Hung, H. Zhuang, Cycle-to-cycle variation analysis
of early flame propagation in engine cylinder using proper orthogonal decom-
position, Experimental Thermal and Fluid Science 58 (0) (2014) 48 – 55.
doi:http://dx.doi.org/10.1016/j.expthermflusci.2014.06.017.

[39] X. Li, X. Chen, B. X. Hu, I. M. Navon, Model reduction of a coupled numerical
model using proper orthogonal decomposition, Journal of Hydrology 507 (0)

106

http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2013.04.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.cemconcomp.2013.04.015
http://dx.doi.org/http://dx.doi.org/0.1002/nme.4608
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruc.2012.10.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruc.2012.10.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2014.01.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2014.01.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruc.2010.03.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruc.2010.03.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2014.09.068
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2014.09.041
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2014.09.041
http://dx.doi.org/http://dx.doi.org/10.1016/j.expthermflusci.2014.06.017


(2013) 227 – 240. doi:http://dx.doi.org/10.1016/j.jhydrol.2013.09.

011.

[40] R. Mariani, D. Dessi, Analysis of the global bending modes of a floating
structure using the proper orthogonal decomposition, Journal of Fluids and
Structures 28 (0) (2012) 115 – 134. doi:http://dx.doi.org/10.1016/j.

jfluidstructs.2011.11.009.

[41] P. Kerfriden, O. Goury, T. Rabczuk, S. Bordas, A partitioned model order
reduction approach to rationalise computational expenses in nonlinear fracture
mechanics, Computer Methods in Applied Mechanics and Engineering 256 (0)
(2013) 169 – 188. doi:http://dx.doi.org/10.1016/j.cma.2012.12.004.

[42] L.-M. Wang, Y.-F. Wu, Effect of corner radius on the performance of cfrp-
confined square concrete columns: Test, Engineering Structures 30 (2) (2008)
493 – 505. doi:http://dx.doi.org/10.1016/j.engstruct.2007.04.016.
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