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Sommario 

Il completamento del progetto genoma umano ha aperto numerosi nuovi orizzonti di 

ricerca. Tra questi, la possibilità di conoscere le basi genetiche che rendono ogni 

individuo suscettibile alle diverse malattie ha aperto la strada ad una nuova rivoluzione: 

l’avvento della medicina personalizzata. Le tecnologie di sequenziamento del DNA hanno 

subito una notevole evoluzione, ed oggi il prezzo per sequenziare un genoma è ormai 

prossimo alla soglia psicologica dei $ 1 000. La promessa di identificare varianti genetiche 

che influenzano il nostro stile di vita e che ci rendono suscettibili alle malattie sta quindi 

diventando realtà. Tuttavia, molto lavoro è ancora necessario perché questo nuovo tipo 

di medicina possa trasformarsi in realtà. In particolare la sfida oggi non è più data dalla 

generazione dei dati di sequenziamento, ma è rappresentata invece dalla loro 

interpretazione. L'obiettivo del mio progetto di dottorato è lo sviluppo di metodi 

bioinformatici per predire la predisposizione a patologie, a partire da dati di 

sequenziamento. Molti di questi metodi sono stati testati nel contesto del Critical 

Assessment of Genome Interpretation (CAGI), una competizione internazionale 

focalizzata nel definire lo stato dell’arte per l’interpretazione del genoma, ottenendo 

sempre buoni risultati. Durante il mio progetto di dottorato ho avuto l'opportunità di 

affrontare l’intero spettro delle sfide che devono essere gestite per tradurre le nuove 

capacità di sequenziamento del genoma in pratica clinica. Uno dei problemi principali che 

si devono gestire quando si ha a che fare con dati di sequenziamento è l'interpretazione 

della patogenicità delle mutazioni. Decine di predittori sono stati creati per separare 

varianti neutrali dalle mutazioni che possono essere causa di un fenotipo patologico. In 

questo contesto il problema del benchmarking è fondamentale, in quanto le prestazioni 

di questi tool sono di solito testate su diversi dataset di varianti, rendendo impossibile un 

confronto di performance. Per affrontare questo problema, una comparazione 

dell’accuratezza di questi predittori è stata effettuata su un set di mutazioni con fenotipo 

ignoto nel contesto del CAGI, realizzando la valutazione per predittori di patogenicità più 

completa tra tutte le edizioni di questo esperimento collaborativo. La previsione di 

fenotipi a partire da dati di sequenziamento è un'altra sfida che deve essere affrontata 

per realizzare le promesse della medicina personalizzata. Durante il mio dottorato ho 

avuto l'opportunità di sviluppare diversi predittori per fenotipi complessi utilizzando 

dati provenienti da pannelli genici ed esomi. In questo contesto sono stati affrontati 
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problemi come errori di interpretazione o la sovra interpretazione della patogenicità 

della varianti, come nel caso della sfida focalizzata sulla predizione di fenotipi a partire 

dall’Hopkins Clinical Panel. Sono inoltre emersi altri problemi complementari alla 

previsione di fenotipo, come per esempio la possibile presenza di risultati accidentali. 

Specifiche strategie di predizione sono state definite lavorando con diversi tipi di dati di 

sequenziamento. Un esempio è dato dal morbo di Crohn. Tre edizioni del CAGI hanno 

proposto la sfida di identificare individui sani o affetti da questa patologia infiammatoria 

utilizzando unicamente dati di sequenziamento dell’esoma. L'analisi dei dataset ha 

rivelato come la presenza di struttura di popolazione e problemi nella preparazione e 

sequenziamento degli esomi abbiano compromesso le predizioni per questo fenotipo, 

generando una sovrastima delle performance di predizione. Tenendo in considerazione 

questo dato è stata definita una strategia di predizione completamente nuova per questo 

fenotipo, testata in occasione dell'ultima edizione del CAGI. Dati provenienti da studi di 

associazione GWAS e l’analisi delle reti di interazione proteica sono stati utilizzati per 

definire liste di geni coinvolti nell’insorgenza della malattia. Buone performance di 

predizione sono state ottenute in particolare per gli individui a cui era stata assegnata 

una elevata probabilità di essere affetti. In ultima istanza, il mio lavoro è stato focalizzato 

sulla predizione di gruppi sanguigni, sempre a partire da dati di sequenziamento. 

L'accuratezza dei test sierologici, infatti, è ridotta in caso di gruppi di sangue minori o 

fenotipi deboli. Incompatibilità per tali gruppi sanguigni possono essere critiche per 

alcune classi di individui, come nel caso dei pazienti oncoematologici. La nostra strategia 

di predizione ha sfruttato i dati genotipici per geni che codificano per gruppi sanguigni, 

presenti in database dedicati, e il principio di nearest neighbour per effettuare le 

predizioni. L’accuratezza del nostro metodo è stata testata sui sistemi ABO e RhD 

ottenendo buone performance di predizione. Inoltre le nostre analisi hanno aperto la 

strada ad un ulteriore aumento delle prestazioni per questo tool.  
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Abstract 

The sequencing of the human genome has opened up completely new avenues in research 

and the notion of personalized medicine has become common. DNA Sequencing 

technology has evolved by several orders of magnitude, coming into the range of $1,000 

for a complete human genome. The promise of identifying genetic variants that influence 

our lifestyles and make us susceptible to diseases is now becoming reality. However, 

genome interpretation remains one the most challenging problems of modern biology. 

The focus of my PhD project is the development of bioinformatics tools to predict diseases 

predisposition from sequencing data. Several of these methods have been tested in the 

context of the Critical Assessment of Genome Interpretation (CAGI), always achieving 

good prediction performances. During my PhD project I faced the complete spectrum of 

challenges to be address in order to translate the sequencing revolution into clinical 

practice. One of the biggest problem when dealing with sequencing data is the 

interpretation of variants pathogenic effect. Dozens of bioinformatics tools have been 

created to separate mutations that could be involved in a pathogenic phenotype from 

neutral variants. In this context the problem of benchmarking is critical, as prediction 

performance are usually tested on different sets of variants, making the comparison 

among these tools impossible. To address this problem I performed a blinded comparison 

of pathogenicity predictors in the context of CAGI, realizing the most complete 

performance assessment among all the iterations of this collaborative experiment. 

Another challenge that needs to be address to realize the personalized medicine 

revolution is the phenotype prediction. During my PhD I had the opportunity to develop 

several methods for the complex phenotype prediction from targeted enrichment and 

exome sequencing data. In this context challenges like misinterpretation or 

overinterpretation of variants pathogenicity have emerged, like in the case of phenotype 

prediction from the Hopkins Clinical Panel. In addition, other complementary issues of 

phenotype predictions, like the possible presence of incidental findings have to be 

considered. Ad hoc prediction strategies have been defined while facing with different 

kinds of sequencing data. A clear example is the case of Crohn’s disease risk prediction. 

Always in the context of the CAGI experiment, three iterations of this prediction challenge 

have been run so far. Analysis of datasets revealed how population structure and bias in 

data preparation and sequencing could affect prediction performance, leading to inflated 
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results. For this reason a completely new prediction strategy has been defined for the last 

edition of the Crohn’s disease challenge, exploiting data from Genome Wide Association 

Studies and Protein Protein Interaction network, to address the problem of missing 

heritability. Good prediction performance have been achieved, especially for individuals 

with an extreme predicted risk score. Last, my work has been focused on the prediction 

of a health related trait: the blood group phenotype. The accuracy of serological tests is 

very poor for minor blood groups or weak phenotypes. Blood groups incompatibilities 

can be harmful for critical individuals like oncohematological patients. BOOGIE exploits 

haplotype tables, and the nearest neighbor algorithm to identify the correct phenotype of 

a patient. The accuracy of our method has been tested in ABO and RhD systems achieving 

good results. In addition, our analyses paved the way for a further increase in 

performance, moving towards a prediction system that in the future could become a real 

alternative to wet lab experiments. 
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Introduction 

The technological advances achieved after the conclusion of the Human Genome Project, 

has opened the possibility to easily sequence individuals genome. Thanks to the 

introduction of high throughput technologies, for the first time is possible to investigate 

patients genome, looking for variants responsible for disease onset and on this basis, 

define personalized therapies. Capability to obtain patients genetic data is now easier 

than ever. These achievements in the sequencing technologies lead to the definition of 

new promises like, the possibility to prevent disease onset and the possibility to predict 

adverse effects of pharmacological treatments, moving the clinical practice towards a 

new kind of personalized and preventive medicine. Wherever for monogenic diseases big 

progresses have been achieved, at the moment the realization of such promises is still far 

away from being realized for complex phenotypic traits. In this context, the aim of my 

research has been to develop bioinformatics tools useful to predict individual risk for 

complex diseases and to predict health-related genetic phenotypes. 

In this thesis I will try to summarize my contribution in answering demands of translating 

the sequencing revolution in real advantages for patients of tomorrow.  

A comprehensive assessment of bioinformatics tools predicting variants pathogenicity 

was performed to address the problem of interpretation for the thousands of variants 

identified in genome or exome sequencing experiments. In addition several different 

strategies has been applied to the problem of phenotype prediction from sequencing 

data. Both data coming from targeted enrichment sequencing and exome sequencing 

have been used to predict the onset of disease phenotypes or to define relevant 

phenotypes for human health like blood types. 

1 The personalized medicine revolution 
 

1.1 The advent of personalized medicine 

The completed sequencing of the human genome in 2003 has been a scientific watershed 

with great potential to improve medicine. The resulting technological advance has 

opened the possibility to sequence individual genomes in a short amount of time and at 

a reasonable price. The promise of identifying genetic variants that influence our 

lifestyles and make us susceptible to diseases is now becoming reality. A new era for 
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healthcare is beginning, the era of personalized treatments. This has been anticipated 

since the end of the 19th century by Sir William Osler, a Canadian Physician, who said that 

“If it were not for the great variability among individuals, medicine might as well be a 

science and not an art”1. 

Until the last decade, the prevalent idea was that susceptibility to diseases could be 

described as a normal distribution, considering the incidence of a specific phenotype in 

the general population. Influenced by this idea, for many years, pharmaceutical research 

focused its attention on the discovery of drugs that could be effective on the general 

population. Increasing cases of individuals with reduced or toxic effects, makes evident 

that personal genetic variations in the normal phenotypical distribution have to be 

considered carefully. 

Two pioneers of the genetic era were among the first to have their genome sequenced: 

James Watson (Nobel Prize for discovering the DNA structure) and Craig Venter (lead 

scientist of Celera genomics at the time of Human Genome Project). This fact created great 

expectations among the general public, especially with the publication of their genetic 

code. Venter published his entire genome sequence, revealing the presence of 

polymorphisms that make him potentially susceptible to antisocial behavior, alcoholism, 

obesity, stroke and Alzheimer’s disease2. Interestingly, Watson decided not to publish a 

short part of his genome containing the APOE gene, which is linked to Alzheimer’s disease 

onset3, saying something very inspiring “Since we can’t do much about Alzheimer’s 

disease, I didn’t want to know if I was at risk”4. The hard reality is that great advance in 

diagnosis often has no reflection on our ability to treat genetic diseases.  

The advent of personalized medicine promises to achieve a shift in future healthcare not 

only with a predictive, but mainly a proactive approach to medicine, where emphasis 

should be placed more on disease prevention than treatment. A change of paradigm in 

research is also needed to achieve this goal. Different disciplines cannot be considered 

separated anymore and patient data obtained by different high-throughput techniques 

has to be necessarily integrated in a conceptual data cloud. What over a dozen years ago 

could only be considered fiction will only become reality in this way. The time is ripe for 

the next revolution in healthcare: personalized medicine. 
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1.2 Evolution and perspectives of personalized medicine 

New achievements of high throughput sequencing did not stop with the end of the Human 

Genome Project. Year after year, this technology continues to evolve, chasing the goal of 

the $1 000 genome. Pushed by public research and private companies, this new challenge 

lead to a rapid decrease of DNA sequencing costs. Over the last 15 years, the sequencing 

cost for a human genome dropped from $100 000 000 (estimated cost of the Human 

Genome Project) to less than $10 000 for a genome. See Table 1 for a comparison of 

technology before and after the Human Genome Project. During the last few years, several 

companies claim to have reached the goal of $1 000 dollars. Illumina HiSeqX Ten in 

particular seems to have found this “holy grail”.  

At present, state-of-the-art technology allows to genotype any sample of interest at an 

affordable price in a short period of time, sometimes less than a couple of weeks. Whole 

Genome Sequencing (WGS) and Whole Exome Sequencing (WES) have become affordable 

tools for understanding the genetic bases of human phenotypes and diseases5. Analysis 

of genetic variants in an individual genome has allowed to examine the genetic bases of 

disease with an unprecedented level of detail. The huge amount of data generated for 

both healthy and diseased individuals, has not only helped in the definition of the 

molecular bases of genetic diseases, but is also transforming future healthcare. The 

overlay of genomic data with medical patient records will soon allow to predict and 

prevent disease onset, enabling new pro-active therapeutic strategies. 

In this context, National Cancer Institute (USA) in 2011 coined the term “personalized 

medicine” for healthcare considering information about individual genome, proteins and 

environment for diagnosis and to treat diseases6. This will transform the perspective of 

future healthcare from disease diagnosis and treatment to personalized health 

monitoring and preventive medicine. First examples of personalized healthcare are 

based on the analysis of patient genomic markers to define whether a person is likely to 

respond to a given pharmacological therapy, adjusting dosage to optimize drug efficacy 

and safety.  
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HGP begins HGP ends 
10 years 

after HGP 

 

Cost to generate a 

human genome 

sequence 

 
$1 billion 

 

 
$10-50 million 

 

 
$3-5 thousand 

 

 

Time to generate a 

human genome 

sequence 

 
6-8 years 

 

 
3-4 months 

 

 
1-2 days 

 

 

Vertebrate genome 

sequences 

 
0 

 
3 

 
112 

 

Prokaryotic genome 

sequences 

 
0 

 
167 

 
8760 

 

Human single 

nucleotide 

polymorphisms 

 
4.4 thousand 

 

 
3.4 million 

 

 
53.6 million 

 

 

N° genes with known 

phenotype/disease 

causing mutation 

 
53 

 
1474 

 
2972 

 

Drugs with 

pharmacogenomics 

information on label 

 

 
4 

 
46 

 
104 

 

HGP human genome project 

 

Table 1. Quantitative advances since the Human Genome Project. From the 

beginning of the human genome project, both price and time needed to sequence a 

genome have dramatically decreased. Modified from data of the National Human 

Genome Research Institute. 

 

One of the most famous attempts of personalized treatment based on the analysis of 

genetic variants is warfarin, the most commonly used anticoagulant worldwide. Warfarin 

targets the vitamin K epoxide reductase complex subunit 1 (VKORC1) enzyme. Inhibition 

of VKORC1 by warfarin leads to the production of coagulation factors with reduced 

activity. Several VKORC1 mutations have been identified and most are common variants 

affecting VKORC1 expression influencing warfarin dosage within the normal range. Rare 

mutations have been associated with warfarin resistance, requiring an increase in drug 

dosage. Without knowing the personal characteristics of patients and their genetic 
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background, it could take months of trial-and-error testing to find the right drug dose. 

The problem could be more widespread than expected. Mutations can also affect enzymes 

involved in the process of drug metabolization such as the Cytochrome P450 family 

members. E.g. for Cytochrome P450 2D6 (CYP2D6), one of the best studied drug-

metabolizing enzymes, about 10% of the general population has a slow-acting form, while 

another 7% have a super-fast-acting form6. Some subjects may therefore process drugs 

too rapidly (ultra-metabolizers), rendering them ineffective, or too slowly (poor 

metabolizers), causing an increase in blood concentration and potentially leading to toxic 

effects. At the moment, several studies are trying to optimize drug dosage after Single 

Nucleotide Polymorphism (SNP) genotyping and the first on-line tools become available 

to identify and suggest if patients need a more specific drug dosage based on their genetic 

background. A growing number of drugs It is expected to have companion diagnostics, as 

about 10% of marketed medications will propose or recommend genetic testing for 

treatment optimization in the future. 

Another field of personalized medicine that has greatly advanced is precision disease 

diagnosis (see Figure 1). The decrease in WGS cost allow causal gene identification for 

diseases and complications at a personalized level. E.g. Bainbridge and colleagues 

sequenced the complete genomes of a twin pair and identified compound heterozygous 

mutations in the SPR gene responsible for the dopa (3,4-dihydroxyphenylalanine)-

responsive dystonia in both twins5. Precise identification of the specific causal variants 

open the possibility of improving child health by supplementing L-dopa therapy with 5-

hydroxytryptophan, the serotonin precursor whose synthesis depends on SPR. Precise 

diagnosis in cancer research has markedly benefited from WGS/WES. Hundreds of cancer 

genomes have been sequenced, allowing previously unimaginable collaborative efforts 

that led to the creation of fundamental resources such as the Cancer Genome Atlas. In 

addition to bulk cancer sequencing, single-cell cancer exomes have also been examined. 

When compared to normal tissues, somatic mutations for specific cancer genomes, as 

well as molecular markers for cancer subtyping, could be identified. Børresen-Dale 

propose to classify breast carcinomas on the basis of different gene expression patterns 

to link tumor characteristics with clinical outcome. For patients that had received the 

same therapy, estrogen receptor positive tumors could be divided into at least two 

groups, each with its specific gene expression profile and different prognosis7. These data 

could provide potential targets for personalized cancer treatment in the future. WGS 
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could also help identify spontaneous mutations in the ‘normal’ genome of cancer patients 

that may lead to carcinogenesis. Sequencing has already been applied to patients with 

suspected increased cancer susceptibility such as those with multiple primary tumors. 

E.g. a germline de novo p53 deletion was identified in a patient who developed 3 different 

cancer types in 5 years5. 

So far, we described how disease diagnosis and treatment are changing in the “omics” 

age, but something is still missing. The personalized medicine revolution seems to be 

dramatically deeper than could be expected. Knowing patient biological background, 

preventive risk assessment will become possible, defining individuals as “not-yet 

patients”. Not-yet patients are individuals with a genetic background predisposing for a 

specific disease, who do not present any symptoms (yet). This situation could be very 

dramatic in the case of patients at risk of a lethal or disabling disease that may never 

develop. Examples, are cases of individuals found to be positive for a BRCA gene mutation 

in genetic testing. BRCA1 and BRCA2 tumor suppressors ensuring the stability of genetic 

material by helping in DNA damage repair. When either is mutated, DNA damage may not 

be properly repaired and cells are more likely to develop additional genetic alterations 

that can lead to cancer. Specific BRCA1 and BRCA2 variants increase the risk of several 

cancer types8,9. In particular, BRCA gene mutations account for about 5 to 25% of 

hereditary breast cancers and around 15% of ovarian cancers10. Individuals positive to 

BRCA mutations and with a strong familiarity for cancer, could even decide to undergo to 

preventive mastectomy and removal of ovaries and fallopian tubes, to prevent a 

pathology that they may have never developed. An additional a chapter could be 

dedicated to incidental or secondary findings. These are unexpected results, not related 

with the clinical condition for which sequencing has been performed. New specific 

regulations are needed to manage these situations, ranging from the uncommon 

“misattributed paternity” to findings of critical medical value like possible predisposition 

to degenerative diseases11. 
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Figure 1. The three main steps of precision disease diagnosis. Genetic tests 

could lead to more precise diagnosis and more effective treatments. 

 

1.3 Omic sciences and their interaction 

New technologies and knowledge developed in the context of the Human Genome Project 

opened the field to the so-called omics revolution during the beginning of the 21st 

century12. The technological effort needed to sequence the human genome lead to the 

definition of new protocols and technologies, suitable for the production and analysis of 

an enormous quantity of scientific data. These technologies generating a previously 

unbelievable amount of data thanks to the high processivity of the new approaches, 

defined new “high-throughput” standards of performance. In fact, high-throughput 

technologies were essential to reach the ambitious aim of the Human Genome Project. 

Without the ability to rapidly and accurately measure thousands of data in a short time 

period, there would be no way to sequence an entire genome.  

Like the new approaches developed in the context of Human Genome Project, all 

disciplines focused on the development of new techniques and on their data analysis have 

been call “omics”, from “-ome”, a term derived from the word genome. Genomics has been 

the first “omic” discipline to be defined in the context of the Human Genome Project. 

Genomics focuses on the sequencing and analysis of genomes and exomes. E.g. single 
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nucleotide polymorphism genotyping (SNP genotyping) measures individual genotypes 

for several hundred thousand SNPs in the genome. Approaches like WGS and WES were 

not anticipated. Other assays to sequence and analyze a small amount of the genome have 

been proposed to focus only on positions that could be causal of disease onset. After more 

than 15 years from the conclusion of the Human Genome Project, genotyping 

technologies are now accurate and affordable, but analysis at DNA level sometimes 

presents limitations. DNA sequence variations tend to be very common, generating a lot 

of noisy signals that can be hard to decipher. In addition, other epigenetic modifications 

and environmental factors may modify gene expression in a non-predictable way. Even 

so, SNP genotyping is currently considered among the most useful techniques to predict 

disease risk.  

Use of high-throughput technologies is not limited to genome analysis but at least three 

others omics disciplines can be identified: Transcriptomics, Proteomics and 

Metabolomics. Transcriptomics is the simultaneous measurement of gene expression 

levels in a cell or tissue by oligonucleotide arrays in which hundred thousands of probes 

capture RNA molecules. Proteomics, instead, focuses directly on protein levels in a tissue 

as mainly obtained by mass spectrometry. The size of each peptide is defined after 

protein extraction and digestion. Proteins can be identified by comparing the size of the 

peptides extracted from the tissue with a database containing the digest of all known 

proteins. Last but not least, metabolomics is the high-throughput measure of metabolites 

present in a cell or a tissue. In general, each discipline offers a different perspective on 

the molecular mechanisms underlying disease initiation and progression. 

The omics revolution also opens new challenges, as laboratories usually do not have 

sufficient computational resources and storage to process this large amount of data. Since 

storage and analysis costs are not falling as fast as data generation, this represents a new 

bottleneck for advancing the field. New kind of scientists and technical infrastructures 

are needed. One way to address these challenges is the training of an ever-increasing 

number of bioinformaticians. Cloud computing is a promising technology to fill the gap 

between data generation and storage, such as the Embassy cloud which is part of the 

European ELIXIR bioinformatics infrastructure12. 
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1.4 Systems biology: a further starting point 

Despite WES/WGS genotyping is the most useful techniques to predict risk for genetic 

diseases, genomic information may not always be sufficient to predict a person’s health. 

Environmental factors in fact, can contribute to disease development or even trigger 

disease onset in susceptible individuals. For complex and multifactorial diseases, many 

authors consider the analysis of WES/WGS data like the starting point to predic disease 

outcome. E.g. Baranzini and colleagues failed to find evident genomic or transcriptomic 

differences in monozygotic twin pairs discordant in multiple sclerosis. Despite a strong 

genetic component having been postulated for this disorder, it is likely that other factors 

contribute to disease onset. Access to large omics data could provide new insights for the 

treatment of human diseases. Transcriptomic, proteomic and metabolomic information, 

could be considered a more precise index of human health than genomic sequence alone. 

Combining genomic information with a scheduled monitoring of these omics parameters 

should serve to obtain real-time information of an individual’s condition. 

Integration of different omics data has led to a new discipline called systems biology, 

aiming to model complex biological interactions integrating information in a holistic 

manner. In contrast to treating a mixture of factors as single entities, systems biology 

relies on experimental and computational approaches to provide mechanistic insights12. 

In systems biology, data are often elements integrated into networks. E.g. consider 

information coded in our genome and environmental signals. In systems biology, these 

two information types have to be considered together, integrated into the individual 

organism to produce its phenotype – normal or diseased. These two information types 

and the phenotypes they produce are considered part of biological networks that capture, 

integrate and transmit the information to molecular machines. A fundamental postulate 

in systems biology is that disease arises from networks perturbed by genetic changes 

and/or environmental signals. The resulting altered molecular machinery encoded by the 

perturbed network leads to the disease pathophysiology13. Integrated omics data 

analysis could monitor molecular profiles and detect subtle changes that may indicate 

network perturbation. E.g. Snyder and colleagues studied the omics profile of healthy 

volunteers monitored for 14 months with a so-called integrative Personal Omics Profile 

(iPOP) analysis5. The individual’s genome was sequenced at high accuracy with 

WGS/WES and genetic predispositions for diseases and drug responses were identified. 
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The physiological state changes occurring during two viral infections and onset of type 2 

Diabetes were monitored with information from the transcriptome, proteome and 

metabolome. The generated integrative profile could observe both trend changes, 

associated with more gradual changes, and spikes of particularly enriched genes and 

pathways, especially at the beginning of each physiological event. This integrative 

analysis provided a much more comprehensive view of the biological pathways changing 

during disease onset. Importantly, thanks to the previous genome sequencing and active 

monitoring, Diabetes onset was detected in its early stage and could be effectively 

controlled by proactive interventions such as diet change and physical exercise. It is clear 

that neither “genomic medicine” in the future will be sufficient to describe the new 

horizons offered by system biology. Genomic medicine is one-dimensional in nature, 

considering only nucleic acid information. In contrast, this new medicine will be holistic, 

using all types of biological information from DNA and RNA to proteins, metabolites, 

interactions, cells, organs, and external environmental signals, integrating them in 

predictive models for health and disease. A new term for future systems biology-based 

medicine has been coined: systems medicine.  

2 Next Generation Sequencing 
 

During the development of the Human Genome Project sequencing technologies 

undergone a rapid development. The end of this big scientific and technological effort is 

universally recognized as a watershed that separates two scientific eras: the era of Sanger 

sequencing and the so-called “Next Generation Sequencing” (NGS) era. Sanger sequencing 

was used for the Human Genome Project, however, from the beginning, it was clear that 

a faster, high throughput and cheaper technology was required to make genetic 

sequencing available to the scientific community. The huge amount of time and resources 

required for sequencing the first human genome was in fact unsustainable if applied to a 

large number of patients. For this reasons, in 2004 the National Human Genome Research 

Institute (NHGRI) started a funding program with the goal of reducing the cost of single 

genome sequencing to $1,000 in ten years14. This, stimulated the development of the 

next-generation sequencing (NGS) technology. This new method presents several 

improvements respect to Sanger sequencing. In particular the enormous numbers of 

reads generated by NGS in parallel enabled the sequencing of entire genomes at an 

unprecedented speed. 
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Thanks to high performance achieved by NGS technologies, for the first time the role of 

genetic variants in disease onset could be investigated on a large scale. Three main 

approaches are nowadays used to perform this kind of analysis: Whole Genome 

Sequencing (WGS), Whole Exome Sequencing (WES) and targeted enrichment 

sequencing15. Currently WES represents the most efficient approach to investigate the 

whole spectrum of genetic variants carried by an individual. Thanks to WES, it is usually 

possible to identify 3 to 4 millions Single Nucleotide Variants (SNVs) per genome. In 

general, 80-90% of the retrieved variants are single nucleotide polymorphisms already 

present in the dbSNP database, while 0.5 millions are novel16. Compared to WGS, which 

requires the analysis of the whole haploid human genome (3.2*109 bases), WES focuses 

only on protein coding regions which correspond approximately to 1% of the genome. In 

this way WES allows a strong reduction of both time and resources in respect to WGS. An 

even more effective approach is the targeted enrichment sequencing which is at the basis 

of gene panels development. Targeted enrichment sequencing focuses on the analysis of 

a small set of specific genes or genetic sequences usually associated with a disease or a 

molecular pathway of interest. This kind of technology is particularly effective while 

studying monogenic or oligogenic diseases associated to specific phenotypes. In this 

work we mainly used WES and targeted enrichment sequencing data for diagnosis and 

phenotype prediction. 

 

2.1 Whole Exome Sequencing 

During the last years, several groups have demonstrated the power of WES in the 

discovery of variants involved in human diseases. This approach is characterized by two 

distinct phases. The first phase is mainly experimental and consists in the preparation of 

genomic DNA libraries, exome hybridization by means of capture probes and sequencing 

(NGS) of the captured sequences. The second phase instead, is based on a series of 

computational analyzes that allow the analysis of the sequences, the identification of all 

the variants and the detection of those associated with the phenotype of interest (see 

Figure 2). 
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Figure 2. Whole Exome Sequencing experimental and computational 

pipeline. WES is composed by two phases: the experimental phase and the 

computational analysis. Figure modified from17.  

 

Focusing on the first phase, despite various exonic DNA sequencing technologies exist, 

most of them follow a similar procedure. They typically differ only for the capture method 

and for the NGS platform used for sequencing. The first step is the extraction of genomic 

DNA from the samples of interest. Once the extraction has been completed it is possible 

to proceed with exons capture, which filters out all non-coding sequences. At this stage, 

the extracted DNA is fragmented by sonication or enzymatic digestion. DNA fragments 

are then ligated to specific adapters and amplified to obtain a library containing the entire 

sequence. At this point the exome is captured through a hybridization process with 

specific probes for protein-coding sequences. This hybridization process can be carried 

out using two main technologies: liquid phase hybridization or solid phase hybridization. 
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Liquid phase methods use biotinylated DNA or RNAs complementary to the coding 

regions that. Exonic sequences, once hybridized, are captured by means of streptavidin-

coated magnetic beads. In solid-phase protocols, DNA probes are bound to a solid support 

such as such as microarray slides or paper filters. Several kits could be used in this phase. 

Commercial kits differ mainly for probes features, which typically may differ by length 

and/or overlap with target sequences. For this reason, although all capture kits use 

probes to hybridize the coding regions, the captured sequences may actually be slightly 

different allowing for examples the capture of regulative or spicing sequences. Once 

hybridization of the coding regions is completed, sequences not bound to probes are 

removed by repeated washes. Captured sequences are then eluted and the whole 

procedure is checked by quantitative PCR at control loci. At this point, the captured exon 

fragments are sequenced by NGS, which generates short reads of 25-100bp covering the 

whole exome. 

The second phase of WES consists in a series of bioinformatics analyzes. The first step 

consists in the alignment and mapping of the reads obtained from the NGS to the 

"reference sequence" of the human genome. The number of differences between the 

reference and the sequenced genome is generally very high. Often it contains many false 

positives due to sequencing errors or errors generated in the alignment phase. They are 

mainly generated by the presence of repeated sequences. In order to clean up the data, 

different quality control tools and filters can be used. These tools allow to obtain a list of 

reliable variants representing the starting point for investigating the role of mutations in 

the onset of genetic pathologies. 

 

2.2 Strengths and weaknesses of Whole Exome 

Sequencing 
 

Before new sequencing technologies emerged in the last decade, all genetic studies on 

hereditary pathologies were based on linkage disequilibrium analyses, followed by 

positional cloning of candidate regions. Very often, however, these regions are 

characterized by the presence of numerous genes, which makes necessary to clone and 

sequence all genes separately, causing a considerable waste of time and resources. 

Sequencing the entire genome by means of current NGS techniques instead, allows to 

quickly define the entire variability of an individual. Unfortunately, costs related to WGS 
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are not yet accessible for large-scale analysis and generates a huge amount of data 

difficult to interpret. 

In this context, i.e. where the focus is exclusively on coding sequences, WES allows to 

obtain the advantages of NGS and with reduced costs and time. By limiting the sequencing 

to a small number of sequences, it is possible to obtain a higher quality and simplify the 

analysis of the results, as the number of variants is considerably lower in respect to WGS. 

The loss of information is minimal, since the 85% of mutations involved in genetic 

pathologies fall within protein coding sequences18. 

The weaknesses of WES are the following. First, in some cases some of the coding regions 

may not be sequenced. This problem is mainly due to the GC content of the region to be 

sequenced (which may affect the sequence capture process). A second disadvantage of 

WES is the limited ability to detect structural variations, like Copy Number Variations 

(CNVs), translocations and inversions. To date, WES is the most popular method for the 

genetic study of human phenotypes. 

 

2.3 Targeted enrichment sequencing 

Despite the power of WGS and WES approaches, single-gene testing and targeted 

enrichment sequencing still holds great value for many types of disorders (see Table 2), 

in particular for molecular diagnosis. Due to resource limitations, researchers can focus 

on a subsets of genes strongly related to the phenotype of interest with a strong cost 

reduction. It also enables multiplexing, i.e. parallel sequencing. 

Gene panels are also useful for monogenic and oligogenic phenotypes, where approaches 

like WES are considered an overkill. Experimental procedures to produce gene panels are 

very similar to those used for WES. A crucial phase for gene panel is the definition of 

target genes. Since the introduction of NGS into clinical practice, the number of disorders 

for which gene panel are offered is increased dramatically. The number of genes for 

diagnosis of the same disease may vary significantly among different clinical laboratories. 

As an example, there are several epilepsy gene panels, with the number of testing genes 

ranging from 70 to 37719. These differences depend on the available previous knowledge, 

i.e. association studies, for a given disease or just on different confidence thresholds 

applied by different groups . 
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Several considerations have to be taken into account when deciding which genes will be 

included in a panel. Definitely, genes with a strong disease association are worth to be 

included. Genes associated with disorders that have overlapping phenotypes with the 

studied pathology, could be included for the purpose of differential diagnosis. For 

example, the SLC2A2 gene for Fanconi–Bickel syndrome could be included in a glycogen 

storage disease gene panel because when a patient shows fasting hypoglycemia, both 

Fanconi–Bickel syndrome and glycogen storage disease are considered19. In addition 

even genes for phenotypes associated with syndromic and nonsyndromic forms could be 

considered depending on the purpose of the gene panel. In such context of different 

possible choices, a strong partnership between clinicians and geneticists is required. 

 

 
Single-gene test Gene panel Exome sequencing 

    

Phenotype 
level 

Specific features 

point to one disorder 

associated with one 

gene 

Genetically 

heterogeneous disorders 

Multiple non specific 

features 

Extreme heterogeneity  

    

Gene level Disease-causing 

genes 

Well-defined disease 

associated genes 

All 20,000 genes with   

4,600 medically well 

defined genes 

    

Variant level Minimal VUS 

No IFs 

Fewer VUS than exome 

sequencing 

Less likely to find IFs 

Large number of VUS 

Potential to find IFs 

    

Technical 
issues 

Traditional Sanger: 

gold standard for 

sequencing 

Need Sanger 

confirmation 

Overall higher coverage 

than exome sequencing 

 

Need Sanger confirmation 

 

 

IF incidental finding, VUS variants of unknown significance 

 

Table 2. Comparison between single-gene, gene panel and exome 

sequencing test. Different kinds of genetic test could target different clinical needs. 

Modified from19. 
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3 Genome-Wide Association Studies 
 

Genome-Wide Association Studies (GWAS) are based on the comparison of allelic 

frequencies in a sample of patients with a specific phenotype or disease (defined as 

cases), and a group of healthy individuals (defined as controls). By means of specific 

statistical tests, it is possible to detect whether some variants could predispose to a 

disease onset (statistically significant in cases), or have a protective role (more common 

in controls)20. 

GWAS represent one of the principal methods to investigate etiology of complex 

pathologies. The first GWA study was published in Science in 2006 with the aim of 

identifying susceptibility variables for age-related macular degeneration21. Since that, 

GWAS have been applied to the most common complex pathologies (rheumatoid arthritis, 

bipolar disorder, hypertension, coronary artery disease, psoriasis, etc.). To date, more 

than 2,000 loci associated with multifactorial phenotypic traits have been discovered 

thanks to GWAS21. Many of them never hypothesized before (see Figure 3). The total 

number of associated loci varies considerably for different phenotypic traits, from dozens 

for psychiatric disorders, to hundreds for chronic intestinal inflammatory diseases like 

the Ulcerative Colitis and Crohn's disease21. 

Although association studies have made significant progress in defining the genetic risk, 

they have to be interpreted carefully. The first problem is the high rate of false positives 

due to the extremely high number of statistical tests necessary to infer an association. 

The Bonferroni correction solves this problem. For a typical GWAS study, the statistical 

significance of an association is defined by a corrected p-value threshold of 10-7 20. Second 

limitation of GWAS studies is that, despite the high number of loci identified, very often 

these are not able to fully explain the estimated inheritance for the specific trajectory, 

resulting in a phenomenon called "missing heritability"22. In conclusion, despite GWAS is 

essential to investigate genotype-phenotype relationships, the results should be 

integrated with alternative analysis. 
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Figure 3. The exponential growth of GWAS. Data obtained from GWAS studies 

published in the GWAS Catalog23. Only SNPs with a p-value lower than 5*10-8 are 

reported. Figure modified from21. 

 

4 Rare and common variants in complex diseases 
 

An interesting debate in the scientific community is about the contribution of high 

frequency and rare variants on the onset of complex pathologies. Various hypotheses 

have been formulated on this topic, most of which could be summarized in the so-called 

“Common Disease, Common Variant” (CDCV) vs. “Common Disease, Rare Variant” (CDRV) 

controversy.  

The CDCV hypothesis claims that genetic variants with a relatively high frequency in the 

population, but characterized by low penetration, are the main responsible for 

individuals susceptibility to pathologies, and particularly to complex disorders24. This 

hypothesis is supported by the consideration that mutations involved in complex 

pathologies are subjected to a very weak purifying selection. This assumption can be 

considered true in particular for the low penetrance mutations involved in complex 

phenotypes.  

Recent studies, however, hypotheses that even a weak purifying selective pressure could 

be sufficient to maintain variants involved in complex pathologies at low frequencies. 
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These considerations could be realistic in particular for cases where purifying selection 

acts on a very long time scale (Pritchard, 2001). On the basis of this kind of hypothesis, 

the CDRV thesis was defined. This theory claims that genetic variants that have a low 

frequency within the population can be considered as the main responsible for 

susceptibility of individuals to complex pathologies24. This hypothesis is supported by 

numerous studies on multifactorial phenotypes such as lipid metabolism, immune 

system and blood pressure regulation. For these kind of phenotypes in fact, it has been 

shown that key role is played by genetic variants with very low frequency25. Considering 

the existence of supporting evidence for both CDCV and CDRV hypothesis, it is important 

to considered that the applicability of both theory is probably dependent on the 

phenotypic trait analyzed. It can therefore be concluded that the two hypotheses does not 

have to be considered mutually exclusive, and indeed the debate should probably be 

more focused on how the interplay between common and rare variants contributes to the 

onset of complex phenotype. 

5 Interaction networks in the study of complex 

phenotypes 
 

All cell components perform their functions interacting with other cellular structure. In 

some cases both actors are located within the same cell, in some other cases instead, it is 

possible that these elements interact with structures located at considerable distance, 

even in different organs. The overall set of interactions between the various cellular 

components constitutes a network that takes the name of "interactome". In the human 

being it is estimated that the number of non-coding proteins, metabolites and non-coding 

RNAs present in the cell is abundantly greater than 100,000 units, and that the number 

of interactions between these units should be even much higher. In a system 

characterized by such degree of interdependence, a pathology cannot be considered as 

the simple consequence of an alteration of a single component. Diseases in fact should 

rather be investigated considering how variations in single cell components are reflected 

and propagated within the network interaction. Just considering protein interactions 

only, it is evident that the impact of a mutation is not limited to the activity of the protein 

encoded by the mutated gene. It is possible to imagine in fact, that an alteration in the 

activity of a single protein may potentially be spread along the meshes of the network 

and affect the activity of other proteins that actually do not present any alteration. In this 
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perspective, in order to estimate the effect of a single mutation on a phenotype, it is 

necessary to consider the role of altered components within the interaction network.  

Nowadays, thanks to the availability of several interaction databases and network 

analysis tools, pathologies can be finally investigated under this new lens. This network-

based approach has numerous biological and clinical applications. By mean of this kind 

of analysis a deeper understanding of the pathophysiological role of mutations identified 

by association studies cold be achieved, maybe leading to the discovery of new genes 

involved in the onset of the same phenotype. 

As anticipated, the increasing number of GWAS studies has led to the identification of 

many genes involved in human diseases. Unfortunately, these genes usually are not 

sufficient to explain the entire estimated inheritance for the investigated phenotype22. 

However, taking in account the role of these genes in the interaction network, it is 

potentially possible to identify new ones playing a role in disease onset. In support of this 

hypothesis, numerous studies have shown that proteins involved in the same pathology 

have a high propensity to interact with each other26. These observations allow 

hypothesizing that, if an element associated with the pathology has been identified, other 

elements could be discovered by analyzing elements neighborhood within the interaction 

network. 

Once genes associated with a pathology have been identified (for example, by mean of 

GWAS studies), three main types of methods can be used to expand the list of candidate 

genes by exploiting the interaction network: linkage methods, module or cluster-based 

methods, and diffusion-based methods26 (See Figure 4).  

In linkage methods it is assumed that genes located in the linkage interval of a disease 

whose protein interact with a known disease-associated protein are considered likely 

candidate disease genes (See Figure 4 -1-). 

In the second type of methods, it is assumed that for each pathology an interaction subset 

made by elements involved in the onset of disease could be defined. These portions of the 

network are defined like "modules" or "clusters" of the disease. To define a cluster, all the 

proteins encoded by the genes associated with the pathology are initially identified on 

the network. At this point, clustering tools could be used to test the existence of 

topological or functional modules within the network that contain most of the associated 

proteins. The genes coding for members of such modules are therefore considered as 

candidate genes (See Figure 4 -2-). 
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In the third type of methods, “random walkers” are released from the protein products of 

the known disease genes. These explorers are then allowed to diffuse along the links of 

the interactome, moving to any node with the same probability. 

During this exploration, proteins that are closer to ones involved in pathology will be 

"visited" more often. To these proteins, a higher probability score will be assigned respect 

to other interactors. In this way, direct interacters and indirect interacters that are close 

to the associated proteins will have the highest score. Genes encoding for these proteins 

can therefore be considered as candidate genes to play a role in disease onset (See Figure 

4 –3- ). 

Each of the three methodologies described above exploits, to an increasing degree, the 

topological and functional information encoded by the interactome. Linkage methods 

exploit only interactions between protein couples (direct interactors), while cluster-

based methods consider a small portion of the interaction network. Finally, 

dissemination methods exploit the entire information contained in the network. In this 

respect, it should not be surprising that results of a comparative analysis have shown that 

using the same data set, diffusion-based methods are those that provide the best 

prediction performance26. Overall, it is clear that protein network analysis is crucial to 

expand knowledge on the genetic basis of human disease. In the future, thanks to the 

increasing spread of GWAS studies and the increase of data stored in interaction 

databases, it is possible to assume that the contribution provided by the study of 

interaction networks will become fundamental to investigate the molecular background 

of complex phenotypes. 

 

 

Figure 4. Methods to identify disease candidate genes exploiting 

information of interaction networks. -1- Linkage methods -2- Disease module-

based methods -3- Diffusion-based methods. Figure modified from26. 
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6 Development of a prediction algorithm 
 

Advances achieved thanks to the introduction of high-throughput sequencing 

technologies have made large biological datasets available to the scientific community. In 

this context, it is not only possible to interrogate and analyze big datasets, but it is also 

possible to infer knowledge from this huge amount of data. To this end, dozens of 

algorithms have been developed to detect hidden patterns. This kind of predictors have 

been applied to different biological problems, in particular when knowledge is 

incomplete or when the amount of available data is too large to be handled manually. The 

development of these prediction algorithms could be divided in three main processes: i) 

the analysis of the dataset and the underling features, ii) the selection (or development) 

of the learning algorithm and iii) the analysis of prediction performance. 

 

6.1 Analysis of the dataset 

The first important step for the definition of a reliable predictor is the analysis of dataset 

properties or features.  First, before beginning with the definition of the predictor itself, 

is crucial to identify if enough data are available to solve the specific biological problem. 

Nowadays, in the Big Data era, with very large biological datasets available online, this 

point might appear irrelevant, but in reality it raises an important problem that has to be 

address before moving forward with the definition of a predictive method. The ideal 

situation would be having at least ten times as many data instances as the number of 

measurable property or characteristic of the observed  phenomenon (data features)27.  

Different datasets have specific features and often contain errors hard to be identified. 

Given the uniqueness of each dataset, a reliable predictor could be defined only if we are 

able to clearly understand dataset strengths and weaknesses, and we are able to arrange 

them properly. This phase is usually made by several steps, often grouped together under 

the name of data pre-processing. First, an initial useful practice is to randomly shuffle the 

dataset. This operation is crucial to remove any possible bias related to the order of the 

data instances. Another step is data cleaning. The aim of this process is to reduce 

redundancy and bias present in the dataset.  Analysis based on non-redundant dataset 

for example, will be more representative of all the items in the dataset, rather than just 

the largest dominant group. In addition, in this phase all the data which have corrupt, 

inaccurate, inconsistent values should be removed28. When dataset is too small instead, 
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outliers can be rounded to the maximum (or minimum) accepted limit. Finally for 

numerical datasets, the normalization of values into the [0, 1] interval is often necessary 

to improve prediction performance.  

6.1.1 Definition of data subsets 

Many textbooks state that in order to refine a reliable model, data have to be split in two 

subsets: training and testing. In practice, this approach is wrong as training and testing 

dataset may contain the same bias. This is a common mistake and can lead to inflated 

prediction performance29. To avoid this kind of problem, data should always be split into 

three independent subsets: training, validation and testing sets. Typically, the suggested 

ratio is 50% for the training, 30% for the validation, and 20% for the test set. When the 

dataset is small, alternative techniques such as cross-validation could be used30. The 

training and validation sets are used to refine the predictor model and to optimize hyper-

parameter values. The test set is used to evaluate prediction performance. This three 

steps approach is commonly defined as the “lock box approach” and constitute the best 

practices to be use while developing prediction algorithms31. 

 

6.2 Choice of the prediction method 

Many prediction algorithms have been already developed and are available as open 

source libraries. The first important step to choose the most suitable algorithm for 

prediction purpose is to clearly define the problem that has to be addressed. Tasks where 

training data comprises examples along with their corresponding target value are known 

as supervised learning problems. Among these, cases in which the aim is to assign each 

input to one of a finite number of discrete categories, are called classification problems. If 

the desired output consists of one or more continuous variables instead, then the task is 

called regression. In other cases the training data consists of a set of input data without 

any corresponding target values. These cases are called unsupervised learning problems 

and in these cases the task may be to discover groups of similar examples within the data 

(clustering), or to determine the distribution of data within the input space (density 

estimation).  

To address these different problems several specific algorithms have been developed. A 

general suggestion for algorithm selection is to start with the simplest one32. Using a 

simple algorithm will make possible to better understand what is happening during the 
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application of the method. In addition, a simple algorithm will provide better 

generalization and present less chance of overfitting respect to more complex methods. 

Some examples of simple algorithms are the k-means and the k-nearest neighbors 

clustering algorithms. More complex models such as Bayesian classifier and neural 

networks should be employed only if the dataset features provide some reasonable 

justification for their usage32. As algorithm selection could be a non-trivial task, a general 

advice is to use multiple techniques and compare their results27. 

Another main task to be considered while dealing with a prediction algorithm, is to avoid 

that the model memorize training set properties instead of learning hidden relationship 

among the data. This phenomenon is called overfitting. Several powerful strategies exist 

to minimize this phenomenon, cross-validation is among the most used. In 10-fold cross-

validation for example, the algorithm defines 10 different portions of the dataset as 

training set and validation set. After shuffling the input dataset instances and setting 

apart the test set, the algorithm takes the remaining data and divides it into ten shares. 

The model is then evaluated on each share while being trained on the remaining data27.  

 

6.3 Evaluation of predictor performance 

Several measures describe strength and weakness of a prediction method by highlighting 

different performance aspects. Predictors can be classified as discrete or probabilistic, 

depending on whether they provide a score for predictions or not. They are evaluated by 

different metrics. In this chapter I will focus my attention on the description of statistics 

for the evaluation of discrete predictors, as most of the algorithm presented in this 

manuscript are binary classifiers. To evaluate the outcome of binary predictors, results 

are often presented in a 2x2 contingency table. The number of correctly predicted cases 

are indicated by TP (True Positives) and TN (True Negatives), and the number of 

incorrectly predicted cases are FN (False Negatives) and FP (False Positives), 

respectively. Based on these four metrics evaluation measures can be derived and listed 

in the following. The sensitivity, also called True Positive Rate (TPR) or recall. The 

specificity (true negative rate, TNR). The positive predictive value (PPV), also called 

precision. The negative predictive value (NPV). 

 

= +  
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These statistics are useful to evaluate prediction performances only when positive and 

negative cases are balanced. Instead, for unbalanced datasets, Accuracy and the 

Matthew’s Correlation Coefficient (MCC) can give better estimation of the real 

performance33.  

=  ++ + +  

 

=  × − ×( + )( + )( + )( + ) 

 

For all the measures here presented the higher the value the better. Except for MCC, all 

these values range from 0 to 1. MCC ranges from -1 to 1, where -1 indicates a perfect 

negative correlation and 1 perfect positive correlation, 0 represents a random predictor.  

To visually compare different classifier (tested upon the same test set) Receiver 

Operating Characteristics (ROC) analysis that can be useful. To draw a ROC curve data 

have to be ranked based on the prediction score. Data are than divided to intervals of 

equal size in a graph where the x-axis represents 1-specificity (also called FPR) and the 

y-axis represents sensitivity (TPR). In an ideal case all the true positive cases should be 

on the first half of the ranked list. In this case the plot will rise to (0, 1) and then continues 

straight to the right with all the true negative cases33. The faster the curve rises the better 

the method is. A random classification would be on the diagonal. Area under the ROC 

curve (AUC) could been used as a numerical measure of goodness for predictions starting 

from the ROC curve. For this index, a value of 0.5 indicates random classification while 1 

would indicate a perfect classifier. This analysis is particularly useful also to highlight the 

presence of tradeoffs between sensitivity and specificity. 

When dealing with probabilistic predictors different indices are calculated33. For example  

the Humming distance, the Pearson Correlation Coefficient (PCC) and the Kendall 
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Correlation Coefficient (KCC). In addition, results can still be presented in a contingency 

table, dividing the date in several partition of two categories. 

 

7 Genome-based prediction of complex 

phenotypes 
 

The availability of NGS techniques allowed an exponential increase in the number of 

sequenced individuals. This huge amount of data is revolutionizing the study of genetic 

pathologies. The future perspective is to exploit the considerable amount of available 

sequences to develop methods that will allow us to predict the risk of developing genetic 

diseases and possibly prevent their onset. Thanks of these methods, it will be possible to 

obtain important benefits both in diagnostic and in preventive medicine. Focusing to the 

diagnostic side, it would be possible to reduce the use of costly and invasive instrumental 

investigations, e.g. the use of painful colonoscopy in subjects who are predisposed to 

Crohn’s disease, knowing the genetic characteristics of an individual. Interesting is also 

the idea of undergoing newborns to NGS screenings that will help to define the genetic 

predispositions for inheritable disorders34. Knowing genetic predispositions in childhood 

will make possible to suggest lifestyles, or to begin preventative medical therapies, which 

could reduce disease onset probability.  

Initial models to predict disease predisposition from NGS data were called risk prediction 

models. These models were based on small numbers of SNPs, typically considering only 

statistically significant variations identified in GWAS. Subsequent studies shown that 

predictive ability of these methods could be further increased by considering in the model 

all SNPs including also the ones that did not reach the genome-wide significance 

threshold35. These methods were based on polygenic scoring, summing the estimated 

effects of a limited number of known risk alleles, sometimes by simply counting the 

number of risk alleles each sample carries.  

Different kind of methods are the one based on machine learning algorithms like neural 

networks, logistic regression, support-vector machines (SVM) and Bayesian models 

employing. Regardless of the used algorithm, each method built a mathematical mapping 

from the SNP data to the phenotype. Main advantages of these sophisticated approaches 

are that they can account for inter-SNP correlations rather than assuming SNPs 

independence like in risk prediction models. For these kind of methods, care must be 
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taken to minimize the issue of overfitting, when a model mistakes noise for signal. This 

kind of issue could typically be identified when good performance are present in training 

dataset but poor performance are achieved in independent datasets instead. In this 

context it should be noted that population stratification, usually considered as an 

unwanted noisy signal, may be useful instead, as SNPs sometimes can also serve as 

proxies for shared environmental conditions, such as proximity to a pollutant or 

adherence to a particular diet35. Available tools in literature analyze variants present in 

the genomes, identifying the presence of potentially pathogenetic mutations such as, 

VAAST 2.036 focus on the identification of variants that cause amino acids substitutions 

and on the frequency of mutated alleles. Other methods such as VEST37 use a different 

approach exploiting a machine learning based algorithm. 

Despite the interest in predicting individuals phenotype, it is evident that at the moment 

universally valid standard methods does not yet exist. Whether polygenic scoring 

methods or other more sophisticated models are more suitable for a given disease 

depends on several factors. Among these factors, the most important are probably: the 

genetic architecture of the disease, the availability of training data, and the available 

sample size. Existing methods in fact, often need to be adapted to the phenotype or 

pathology analyzed, with results that sometimes are far away from being considered 

satisfactory. An example is the case of the 23andme company, which offered for $ 99 the 

possibility of sequencing DNA and getting information on the presence of mutations 

involved in pathogenesis. As 22 November 2013, FDA (Food and Drug Administration) 

suspended the sale of the kit, since the company was unable to provide sufficient evidence 

to ensure that the genetic test was validated for clinical38. In this context, in 2010 the first 

prototype of Critical Assessment of Genome Interpretation was proposed, an 

international experiment in which the most recent computational methods are tested to 

predict effects of genetic variants on phenotypes.  

8 Critical Assessment of Genome Interpretation 
 

The Critical Assessment of Genome Interpretation (CAGI) is a community effort to 

objectively evaluate the state-of-the-art in relating genetic information to phenotype, 

particularly the relationship between human genetic variation and disease. The primary 

goals of CAGI are to assess current computational methods for interpreting genomic data, 

highlight innovations & progress, and broadly disseminate the results. CAGI aims to guide 
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future research efforts in computational genome interpretation and build a strong 

community for collaboration and interaction. In order to achieve these goals, CAGI 

conducts experiments in which participating analysts are provided genetic variants and 

asked to make predictions of corresponding molecular, cellular, or organismal 

phenotypes.  

Many successful genome interpretation studies have been published39–43, and in the 

clinic, exome and genome sequencing are increasingly being used to improve prevention, 

diagnosis, treatment and understanding of human diseases. Variants of uncertain 

significance are perhaps the greatest current challenge in clinical genetics, and the 

availability of individuals’ whole genomes has vastly increased the ascertainment of such 

variants without comparably aiding their interpretation. Yet, the field lacks a clear 

consensus on what kind of methods provide useful tools to interpret the data. For 

example, although there are now dozens of techniques for assessing the impact of 

missense single base variants on in vivo protein function, the accuracy and robustness of 

these methods are generally not known, and newer methods are often overlooked 

because of uncertainty about their performance. Critically, it is almost unclear what is the 

appropriate use of these and other methods for informing clinical decisions. CAGI aims to 

address these gaps, in order to help the broader community, understand the appropriate 

level of confidence they should have in variant prediction methods, and which classes of 

approaches are most suitable to a particular application. 

To date, four CAGI experiments were conducted: a pilot experiment to test the 

methodology in 2010 (CAGI 1), and three full-scale events in 2011 (CAGI 2), 2013 (CAGI 

3), and 2016 (CAGI 4). Participations in CAGI has increased with each experiment, 

including participants from academic, clinical, and commercial laboratories (See Table 

3). The principles for the conduct of CAGI experiments are similar to those in use in other 

community experiments that evaluate the state-of-the-art in areas of computational 

biology, particularly those established by Critical Assessment of protein Structure 

Prediction (CASP)44–46. Challenges are constructed from unpublished datasets generously 

provided by collaborating academic, commercial and clinical laboratories. Phenotype 

predictions are made by academic and commercial groups without knowledge of the 

experimental answers. Performance of methods is evaluated in terms of agreement 

between the predictions and corresponding experimental data; and independent 

assessors, who do not participate as predictor, judge the significance of the results. 
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Addressing the challenges requires the development of new computational approaches 

that build on a common core of existing computational methods and knowledge, thus 

providing a community of potential participants with shared interests. CAGI challenges 

are chosen on the basis of two primary criteria: first, to probe the performance of 

methods as effectively as possible, over a broad range of genome interpretation 

scenarios. Second, to provide continuity over the CAGI experiments, so that it is possible 

to evaluate progress.  

CAGI datasets are selected to reflect the range of challenges pertinent to assessing health-

related phenotype prediction. Conditions include rare diseases, common traits and 

diseases, and germline and somatic cancer. The type of variation data used mirrors that 

encountered in current and imminent clinical practice, with a focus on genomes, exomes, 

SNPs, eQTL, splice-affecting SNPs, and CNVs as well as additional data such as 

transcriptomics. In general, challenges can only be finalized immediately before the 

prediction season. This is because datasets must be robust enough to share with 

predictors, but must not be publicly released before the conclusion of the prediction 

season.  

Edition 
Number of 

challenges 

Number 

of 

prediction 

submitted 

Number of 

groups 

participating 

Participating 

Countries 
Conference 

CAGI 4 

(2016) 
11 191 37 13 

25-27 March 

2016, San 

Francisco (USA) 

CAGI 3 

(2012/2013) 
10 188 33 15 

17-18 July 2013, 

Berlin (DE) 

CAGI 2 

(2011) 
11 114 21 16 

9-10 December 

2011, San 

Francisco (USA) 

CAGI pilot 

(2010) 
6 108 17 8 

10 December 

2010, Berkeley 

(USA) 

 

Table 3. Summary of the CAGI experiments. Participation to the several 

editions of the CAGI experiments has always increased since the first pilot edition. 
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In several editions of CAGI, our group focused its attention on two main kind of 

challenges: genome oriented predictions and nonsynonymous variant challenges. 

Research exome and genomes challenges assess methods for interpretation of whole 

exome or whole genome sequence data, generally collected in case-control studies of 

complex diseases. Predictors are asked to provide a probability that each individual in 

the provided dataset displays the phenotype in question (i.e. probability that the 

individual has been diagnosed with the disorder). In the second kind of challenges, the 

ability to predict the functional impacts of variants in single protein in targeted assay is 

assessed. In general, quantitative prediction of the impact of a set of missense or 

nonsense single base variants on gene function are requested, reflecting measurements 

in targeted in vitro or in vivo assay. These challenges objectively compare published and 

unpublished methods for quantitative prediction of variant impact on phenotype. There 

are many such methods available, and CAGI seeks to assess their relative and absolute 

performance, albeit in the context of laboratory assays which may not accurately reflect 

clinical impact.  

When prediction session is over, rigorous assessments are performed for each 

challenges. Assessor are instructed to use a variety of measures to highlight the different 

goals one might have in predicting the impact of genetic variation and also to reveal 

deeper insights into a method’s strengths and weaknesses. In the end each CAGI 

experiment culminates in a conference at which participants report on and discuss their 

results. Predictors make presentations on their approaches, assessors make presentation 

on their evaluations of the submitted predictions and the state of the field is discussed.  

Our group has a solid track record, participating in CAGI since its pilot edition in 2010 

and having a particular focus especially on genome oriented challenges. We performed 

predictions for Crohn’s disease, a chronic intestinal inflammation, for three editions since 

2011, always with statistically significant results and ranking among best scoring groups 

for most of the times. Remarkable results has been even achieved during last edition for 

the Hopkins Clinical Panel (HCP acronym) challenge where genetic information were 

available only for some dozens of genes. Regarding nonsynonymous variant predictions, 

we participated with the role of assessor in the p16INK4A challenge dealing with the 

problem of giving back to the community a rigorous evaluation of predictor’s 

performance and trying to pave the way for the definition of the state of the art methods 

in this field.  
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9 Thesis outline 
 

This manuscript is organized in seven chapters. Chapter 2 is based on Carraro et al., 

Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI. 

Hum. Mutat. doi:10.1002/humu.23235. In this work I had the opportunity to face with one 

of the main critical issue of the NGS-revolution: interpretation of Variants of Unknown 

Significance (VUS). Most of the variants identified in genome and exome sequencing 

experiments are rare or even personal. For these kind of variants evidences of 

pathogenicity are predicted by bioinformatics tools, usually exploiting sequence 

conservation and secondary structure information. The focus of this work was to perform 

an extensive assessment of VUS pathogenicity predictors over an unpublished set of 

variants. In this work we exploited all possible benchmarking techniques producing one 

of the most complete assessment performed over the fourth editions of the CAGI 

experiment. All the evaluation scripts used in this work have been reimplemented by 

myself starting from a draft produced for the final conference of the third CAGI edition. 

Final discussion on predictors performance have been defined in association with the 

other authors of the paper. 

Chapter 3 is based on Chandonia et al., Lessons from the CAGI-4 Hopkins clinical panel 

challenge. Hum. Mutat. doi:10.1002/humu.23225. In this work we dealt with the 

prediction of disease phenotypes from targeted enrichment sequences. Good prediction 

performance were achieved for this challenge, with our group ranking among best 

performers. Interesting for this challenge was the fact that several groups predicted 

individuals to be affected by pathologies that were not being diagnosed. In addition, some 

groups based right prediction on variants that were not considered to be causative by 

clinicians. In this way, central for this challenge was the emerging of another of the NGS-

based personalized medicine crucial issues: the overinterpretation of variants and the 

presence of incidental findings. All the scripts used to define our group submissions have 

been defined and realized by myself. Variants selection and scoring system used for 

phenotype prediction has been defined in association with other colleagues from our 

group. Final performance assessment has been performed by the main authors of the 

paper.  

Chapter 4 is based on Giollo et al., Crohn disease risk prediction-Best practices and pitfalls 

with exome data. Hum. Mutat. doi:10.1002/humu.23177. In this work we analyzed 
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performance of main methods proposed in the first three CAGI editions, tested on CAGI 4 

Crohn’s dataset. Critical aspect that biased performance evaluation in the previous CAGI 

editions of this challenge was found to be population structure. Due to the presence of 

such bias in datasets, performance of prediction methods were found to be overinflated 

and reliable performance assessment was possible only with test set of last CAGI edition. 

Thanks to this compared analysis performed over several editions, best practices in 

Crohn’s disease risk prediction could be identified. In this work, my contribution was 

limited to the definition of some prediction methods and to results interpretation and 

discussion. 

Chapter 5 is focused on the description of the Crohn’s disease challenge in the fourth 

edition of CAGI experiment. In this part, the approach used to predict individuals 

phenotype for this complex disease using exome sequencing data, is described. Initially, 

analysis of population structure followed by identification of disease predisposing 

variants was performed. Trying to uncover genetic basis of missing heritability, a system 

biology approach was exploited, leading to the definition of new candidate genes involved 

in disease onset. All the analyses presented in this chapter have been planned and 

realized by myself (clustering analyses have been taken from47, only for graphical 

reasons). Variants selection has been performed in association with other colleagues 

from our group. Assessment part of this chapter is based on Daneshjouet al., Working 

toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment 

of Genome Interpretation (CAGI) challenges. Hum. Mutat. doi:10.1002/humu.23280. 

Chapter 6 describes the upgrade of BOOGIE, a Java tool to predict blood phenotypes from 

sequencing data. The main update was performed on the prediction algorithm. In this 

project I had the opportunity to deal with the prediction of a completely genetic 

phenotype for which rules that link genetic variants with phenotypes have been only 

partially defined. Knowledge about blood groups definition has been extracted from on 

line resources and a great effort was put on the definition of the algorithm responsible 

for phenotype prediction. To this aim, trade-off between performance and computational 

resources has been managed to realize a prediction tool usable both in bioinformatics 

facilities and in clinics. All the analyses presented in this chapter have been planned and 

realized in association with other colleagues from our group.  

In chapter 7 I summarized the main findings obtained in the previous chapters, 

describing their relevance in the research and clinical context.  
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Performance assessment of in silico tools for 

the evaluation of p16INK4a (CDKN2A) 

variants in CAGI  

This chapter is based on “Carraro, M. et al. Performance of in silico tools for the 

evaluation of p16INK4a (CDKN2A) variants in CAGI. Hum. Mutat. (2017). 

doi:10.1002/humu.23235”. 

1 Introduction 
 

Genetic tests are nowadays become routinely applied to the investigation of disease-

associated variants and relevant efforts are made by the scientific community to develop 

computational tools for genetic variant evaluation48. A number of methods presenting 

different strategies have been presented, and their application is becoming a common 

routine in cancer research49,50. In silico predictors are generally designed to provide a fast 

simplified response when compared to experimental screening protocols. However, lack 

of properly validated benchmarking represents the main limiting factor hampering wider 

application in a clinical scenario51. Variants affecting tumor suppressor genes, such as 

TP5352, VHL53 and CDKN2A54 are actively investigated and collected in freely accessible 

databases55–57. However, the correct interpretation of their pathogenic significance is far 

being from definitively addressed. One relevant issue remains our ability to correctly 

predict disease-causing gene variants among variants of unknown significance (VUS)58. 

Correct prediction of susceptibility variants can foster the identification of molecular 

pathways causative of human diseases, particularly when variants affect well-understood 

genes previously validated by functional studies59. Since 2010, the Critical Assessment of 

Genome Interpretation (CAGI) experiment tries to objectively assess the state of the art 

of computational tools developed for genotype-phenotype determination. Here I will 

present the critical assessment of pathogenicity predictors applied to variants from the 

CDKN2A (OMIM ID: 600160) tumor suppressor also known as p16. CDKN2A is the major 

susceptibility gene identified in familial malignant melanoma. Approximately 40% of 

melanoma prone families worldwide have CDKN2A germline variants60. The CDKN2A 

locus maps to chromosome 9p21 and its regulation is particularly complex, involving 

alternative promoters, splicing and reading frames of shared coding regions. Two 

structurally unrelated tumor suppressors, p16INK4a and p14ARF, involved in cell cycle 
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regulation, are coded by alternative splicing of different first exons (1-α and 1-β). 

p16INK4a is a cyclin-dependent kinase (CDK4/6) inhibitor and p14ARF acts in TP53 

stabilization, binding and sequestering the MDM2 proto-oncogene61,62. Thus, alterations 

of this single locus compromises two important tumor suppressor pathways at the same 

time63,64. When associated with D-type cyclins, CDK4/6 promotes cell cycle progression 

through the G1 phase by contributing to the phosphorylation and functional inactivation 

of Retinoblastoma-associated protein65,66. Structurally, p16INK4a consists of four 

repeated ankyrin-type motifs, composed of two anti-parallel helices and a loop forming 

the CDK4/6 binding interface (See Figure 5).  

 

Figure 5. Overview of CDK6-P16INK4A tumor suppressor complex. Cartoon 

representations of the p16INK4a 3D structure (PDB code 1BI7) colored blue, while 

CDK6 is presented as full surface (light grey). Magenta spheres represent positions of 

variants considered for the challenge mapped on its surface. The ankyrin repeats 

composing p16INK4a structure are presented below with a schematic representation 

of mutated amino acid positions (magenta spots). Variant nomenclature refers to 

CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4), nucleotide numbering 

starts with the A of the ATG translation initiation site. 

 

In the context of pathogenicity prediction, the ankyrin fold is challenging. Ankyrin repeats 

stack against one another to form a unique elongated single domain, with a multistate 

folding pathway conferring high structural plasticity. This highly modular nature confers 
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unique characteristics such as a high affinity for protein-protein interactions67. However, 

stack modularity can also be seen as a gradient of transiently folded states, where a single 

amino acid substitution may be able to interrupt p16INK4a-specific periodicity, causing 

a severe perturbation of the entire protein structure68. For this CAGI challenge, 

participants were asked to predict the effect of 10 CDKN2A variants in the p16-challenge, 

previously validated in cell proliferation rate assays. Twenty-two predictions using 

different strategies, e.g. scoring functions based on sequence conservation, or machine 

learning predictors, were assessed. The results allow us to propose where pathogenicity 

prediction might be improved, as methods combining information from different 

strategies were found to have the most promising results. 

2 Materials and Methods 

2.1 Dataset and classifications 

The challenge includes 10 nucleotide variants affecting only the CDKN2A gene coding 

region without interfering with p14ARF. Each variant codes for a single amino acid 

substitution, with no insertions or deletions. The variant nomenclature used in this 

chapter refers to CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4). 

Participants were requested to perform predictions of the cellular proliferation rate for 

each of the 10 mutant protein as a percentage of the proliferation rate relative to 

pathogenic mutants (See Table 4). A proliferation rate of 100% is used for pathogenic 

variants (positive controls), and 50% for wild-type-like variants (negative controls). 

Predictors were also allowed to specify a prediction confidence (standard deviation) for 

each variant, with a maximum of six alternative submissions per group. The standard 

deviation was only reported for 14 submissions and the same confidence value was used 

for all predictions in 5 submissions. In a few cases, predictions have been manually 

rescaled during assessment as proliferation levels were wrongly reported as a fraction of 

1 rather than 100 (where 100 represents the 100% positive control proliferation rate). A 

training set composed of 19 CDKN2A variants from49,50 was also provided to the 

participants for training the prediction methods. This choice was justified based on the 

similar use of bioinformatics tools to predict CDKN2A variant effects on cell proliferation 

as verified by experimental assays. Bioinformatics predictions were described to be 

comparable with verified real values for most variants49,50. Real proliferation levels 
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obtained from the literature were rescaled between 0.5 and 1 (proliferation level of wild-

type and disease-like phenotypes respectively). 

 

  Proliferation rate 

Nucleotide 
variant 

Protein 
variant 

Average 
Standard 

Deviation 

c.67G>A p.Gly23Ser 0.69 0.04 

c.67G>C p.Gly23Arg 0.91 0.14 

c.67G>T p.Gly23Cys 0.86 0.13 

c.68G>C p.Gly23Ala 0.53 0.09 

c.68G>T p.Gly23Val 0.90 0.1 

c.103G>A; 
c.103G>C 

p.Gly35Arg 0.53 0.02 

c.103G>T p.Gly35Trp 0.86 0.09 

c.104G>A p.Gly35Glu 0.60 0.11 

c.194T>C p.Leu65Pro 0.66 0.1 

c.281T>C p.Leu94Pro 0.93 0.13 

    

 

Table 4. p16INK4a proliferation rate test set. Identifiers of variants 

affecting cell proliferation and relative proliferation level. Variant nomenclature 

refers to CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4), nucleotide 

numbering starts with the A of the ATG translation initiation site. Proliferation 

levels were rescaled between 0.5 (WT-like phenotypes) and 1 (tumor-like 

phenotypes). 

 

 

2.2 In vitro proliferation assay of CDKN2A variants and 

data normalization 
 

The experimental validation of the pathogenic effect of the variants used in CAGI is 

described in detail in54. Briefly, the full-length CDKN2A cDNA was cloned in the 

pcDNATM3.1 D/V5-His-TOPO®_expression vector (Invitrogen, Life Technologies 

Corporation, Carlsbad, CA), engineered by site-specific mutagenesis (QuikChange® II XL 

Site-Directed Mutagenesis Kit; Stratagene, CA), and finally transfected in U2-OS human 

osteosarcoma cells (p16INK4a and ARF null, p53 and pRb wild type), as previously 

described54,69. Three controls, no vector (G418 selection control), pcDNA3.1–EGFP 

(positive, variant-like control), and pcDNA3.1–p16INK4a wild-type (negative control), 
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were included in each experiment. All variants were independently tested at least three 

times. The proliferation rate (PR) was calculated as a percentage of the proliferation of 

variant transfected-cells (average of all replicates) at day 8 relative to the proliferation of 

EGFP-transfected cells, which was set as 100%. Transfection with wild-type CDKN2A 

induced a detectable, substantial growth inhibition (proliferation rate 50%), whereas 

various p16INK4a variants had different effects on cell proliferation, from wild-type-like 

to loss-of-function. The proliferation rates used for CAGI are shown in Table 4.  

 

2.2 Performance assessment 

Evaluating the performance of bioinformatics tools in predicting VUS impact is a non-

trivial task. The assessment should not be seen as a mere discrimination of 

winners/losers, but rather aim at identifying which tool generated the most reliable 

prediction. A considerable number of performance measures were considered in order 

to perform a thorough assessment. The final goal was to generate a global overview of 

the strengths and weaknesses of each method. Correlation indices were considered first, 

as predictions are in a continuous range (cell proliferation rate). Both the Pearson (PCC) 

and Kendall’s Tau correlation coefficients (KCC) were calculated. Both range from +1 

(perfect positive correlation) to -1 (perfect inverse correlation) with 0 representing a 

random performance. Root Mean Square Error (RMSE) was calculated to better estimate 

the difference between predicted and real values. To further assess the prediction 

reliability in a medical setting, a binary classification was used. Proliferation levels were 

divided in two classes, benign and pathogenic, with three different proliferation 

thresholds suggested by the data provider, i.e. potentially pathogenic (>65%), probably 

pathogenic (>75%) and likely pathogenic (>90%). The Area under the ROC curve (AUC) 

for each classification threshold was also calculated. The standard deviation of the 

predicted proliferation rate was used to calculate the fraction of Predictions Within 

Standard Deviation (PWSD). To address issue related to missing and very large 

confidence range, PWSD was calculated assuming a standard deviation of 10% for all 

submissions (PSWD10). All performance indices are presented in Table 6. To assess the 

statistical significance of each performance index, 10,000 random predictions were 

generated and used to calculate an empirical continuous probability (score s), with a p-

value defining the proportion of random predictions scoring > s. 
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3 Results  
 

3.1 Participation and similarity between predictions 

In the p16INK4a CAGI challenge, participants were requested to predict the effects of ten 

p16INK4a VUS potentially causing malignant proliferation validated with cellular 

proliferation assays54. This challenge attracted 22 submissions from ten participating 

groups, which were assessed without knowing the identity of the predictors. After the 

assessment was completed, only one group remained anonymous. Table 5 lists the 

participating groups, their submission IDs and main features used for prediction. The 

majority of methods used evolutionary information derived from multiple-sequence 

alignments for prediction. Several methods also used the available crystal structure of 

p16INK4a bound to CDK6 (See Figure 5) to calculate folding energies. Combinations of 

both approaches or of different predictors were also submitted. A summary for each 

method could be found in the Supplementary Material of the on-line version of this work. 

Of the ten participating groups, four contributed one prediction, one submitted two, four 

submitted three and only one group submitted four different submissions.  

An analysis of prediction similarity was performed to better highlight the peculiarity of 

each submission. Almost all groups performing multiple submissions made very similar 

predictions (See Figure 6). This is particularly evident for predictions from the Bromberg 

group, which were de facto mostly identical for many variants. A similar situation can be 

drawn for the Moult group, where a different fitting of two linear models (submissions 9, 

15) produced identical predictions for most variants. The third prediction (submission 

20) was defined by a different rescaling process of submission 15. Submissions 9 and 15 

both predicted a majority of variants between 0.88 and 1. Predictions from the Gough and 

BioFolD groups are also quite strongly correlated among each other. Interestingly, 

submissions 5 and 3 (BioFolD and Casadio lab, respectively) are also highly correlated as 

both are based on two versions of the SNPs&GO method70,71. The Vihinen lab 

(submissions 6, 13) presents a weak anticorrelation among its predictions, probably due 

to fact that predictions for all except one variant were very high (>=0.85). The four 

submissions from Yang&Zhou lab (10, 16, 21, 22) present almost no correlation, possibly 

also due to a sign error affecting three submissions. 

 



49 

 

 

Submission ID Group ID Prediction features 

Submission 1 Anonymous / 

Submission 2 Bromberg Lab. conservation, annotation 

Submission 3 Casadio Lab. conservation, Gene Ontology 

Submission 4 Lichtarge Lab. conservation 

Submission 5 BioFolD Lab. conservation, Gene Ontology 

Submission 6 Vihinen Lab. meta-predictor 

Submission 7 Dunbrack Lab. protein structure 

Submission 8 Gough Lab. conservation 

Submission 9 Moult Lab. meta-prediction 

Submission 10 Yang&Zhou Lab. conservation, folding energy 

Submission 11 Bromberg Lab. conservation, annotation 

Submission 12 BioFolD Lab. conservation, Gene Ontology 

Submission 13 Vihinen Lab. 
conservation, amino acid features, 

Gene Ontology 

Submission 14 Gough Lab. conservation 

Submission 15 Moult Lab. meta-prediction 

Submission 16 Yang&Zhou Lab. conservation 

Submission 17 Bromberg Lab. conservation, annotation 

Submission 18 BioFolD Lab. meta-prediction 

Submission 19 Gough Lab. conservation 

Submission 20 Moult Lab. meta-prediction 

Submission 21 Yang&Zhou Lab. folding energy 

Submission 22 Yang&Zhou Lab. folding energy 

   

 

Table 5. Predictor overview. For each submission, predictor and a summary of 

features used for prediction are indicated. 
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Figure 6. Correlation among submissions. Each cell shows the Pearson 

correlation coefficient between two submissions, with a color scale ranging from green 

(+1, perfect correlation) to red (0, no correlation) and black (-1, perfect anti-

correlation). Submissions are clustered by group. 

 

3.2 Assessment criteria and performance measures 

The type of insights to be gained from assessing a CAGI challenge depends strongly on 

the criteria used for evaluation. As this is a relatively novel field, extra care was given to 

this point. Ideally, the criteria should reflect the true performance of the methods, 

highlighting submissions which are of practical relevance. The simplest measures, binary 

classification and derived measures such as AUC, suffer from the choice of an arbitrary 

threshold that may obfuscate interesting results. Correlation measures are good to 

indicate overall trends, but of little use to guide the selection of pathogenic cases as no 

threshold is used. At the other numerical extreme, RMSE is very clear, but can result in 

poor performance for all submissions. For an inherently continuous prediction challenge 

such as p16, determining the number of predictions within a fixed distance can arguably 

provide a measure combining features of binary classification and correlation. In order 

to understand better how related the assessment criteria are among each other, their 

correlation was plotted (See Figure 7). The PCC and KCC correlation coefficients are 
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highly correlated with each other and with the three AUC measures. RMSE and two PWSD 

variants are less correlated and offer two alternative views of the data.  

Using a reduced set of measures for the final ranking is suggested by the high pairwise 

correlation coefficients, suggesting they are measuring very similar features (see Figure 

7). A ranking including largely orthogonal measures should prove more robust and 

informative. For this reason, only four measures (one for each group) with low pairwise 

correlation were considered for the final ranking, i.e. Kendall Correlation Coefficient 

(KCC), Root Mean Square Error (RMSE), Area Under the Curve considering a 75% of 

proliferation threshold (AUC75) and Prediction Within Standard Deviation considering a 

standard deviation of 10% for all submission (PWSD10). In particular, KCC was chosen 

as it is a rank-based measure appropriate when targets are continuous and their relative 

order is critical. The data provider recommended to use AUC75, as the corresponding 

proliferation level appeared to be the best threshold to separate pathogenic and neutral 

phenotypes. Finally, PSWD10 was preferred over PSWD as many predictors did not 

report standard deviation for their submissions.  

 

 

 

Figure 7. Correlation among performance indices. Each cell shows the 

Kendall correlation coefficient between the two corresponding measures, with a 

color scale ranging from green (+1, perfect correlation) to red (-1, perfect anti-

correlation). Notice how similar measures tend to cluster together. The four 

selected measures are highlighted in bold face. 
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3.3 Performance evaluation 

The assessment of performance achieved by the 22 methods showed many predictions 

to have good results on average. This is particularly true considering AUC75, where most 

of the submissions achieved values between 0.7 and 1. For KCC, the average of the 

submissions shows a moderate to strong correlation with real data (See Table 6). Good 

results were however not sufficient for most predictions to be statistically significant. 

Very demanding thresholds emerged to separate significant results from random for this 

challenge, with only the top ranking methods being significant for most of the 4 

performance indices. This is probably due to the limited number of variants present in 

the test set, where wrong prediction of one variant corresponds to 10% of the dataset. 

Small variations in predictions could be reflected in remarkable fluctuation of 

performance indices due to the small number of variants considered. To perform a global 

assessment of predictor performance we therefore decided to focus more on ranking 

than on numerical values achieved for each measure. Ranking variations not only may 

better reflect the magnitude of performance variation, but can also be considered more 

intuitive for non-specialist readers. The Yang&Zhou lab (submission 10) performed best, 

ranking first in all performance indices except AUC75, where it is fifth (See Table 7). 

Higher AUC75 values were obtained by the Lichtarge lab (submission 4), an anonymous 

prediction (submission 1) and the Moult lab (submissions 15, 20). The Lichtarge lab also 

obtained good results considering KCC, where it ranked second. BioFolD (submission 5) 

also achieved good results, ranking second for both PSWD10 and RMSD and third for KCC. 

Furthermore, the BioFolD lab also performed well with submission 12, being second and 

third for PSWD10 and RMSD, respectively. Among the lower ranked predictions, an 

inverse correlation is found for Submission 8 (-0.40), mainly resulting from low 

proliferation levels being predicted when real proliferation levels were high. Submissions 

16 and 21 rank poorly, achieving an inverse KCC correlation (-0.56, -0.6). Notably, while 

all three submissions perform poorly, they probably followed opposed strategies. 

Submission 8 tends to be very conservative, with most of the predicted values close to a 

wild-type phenotype. Submissions 16 and 21 tend to be more biased towards the 

prediction of malignant phenotypes, with only one predicted value close to a milder 

phenotype. This trend seems to be shared among lower ranking predictions.  
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A statistical test of the average ranking over all four performance measures, confirmed 

submission 10 (Yang&Zhou lab) as the best performer. No statistically significant 

difference can be identified between submissions 4 and 5 (Lichtarge, BioFolD; See Figure 

8) ranked second and third, respectively. A bootstrap simulation with 10,000 replicas 

was used to test whether the performance achieved by the three best submissions could 

be achieved by chance. Submission 10 performs better than random (p-value < 0.05) for 

three out of four measures, the only exception being PSWD10. Submissions 4 and 5 

perform better than random only considering KCC and AUC75 (See Table 8).  

 

Submission PCC KCC RMSE AUC65 AUC75 AUC90 PWSD PWSD10 

S1 0.83 0.45 23.51 0.81 1 0.76 5 3 

S2 0.33 0.02 21.29 0.57 0.62 0.55 3 2 

S3 0.53 0.47 25.5 0.83 0.7 0.64 2 2 

S4 0.84 0.63 16.48 0.81 1 1 4 5 

S5 0.66 0.6 15.81 0.9 0.88 0.9 7 6 

S6 0.23 0.34 25.67 0.57 0.58 0.79 2 3 

S7 0.22 0.2 18.2 0.57 0.68 0.62 3 4 

S8 -0.34 -0.4 39.21 0.19 0.42 0.26 1 1 

S9 0.7 0.38 20.18 0.86 0.88 0.71 3 3 

S10 0.83 0.69 9.24 1 0.92 1 7 7 

S11 0.33 0.02 21.29 0.57 0.62 0.55 2 2 

S12 0.57 0.47 15.93 0.67 0.84 0.9 4 6 

S13 0.11 0.05 20.08 0.57 0.42 0.64 5 5 

S14 -0.22 -0.4 23.29 0.19 0.42 0.26 5 5 

S15 0.76 0.51 18.83 0.86 0.96 0.81 4 3 

S16 -0.45 -0.56 22.48 0.12 0.08 0.14 2 2 

S17 0.43 0.25 21.8 0.67 0.72 0.57 2 2 

S18 0.46 0.28 16.35 0.67 0.72 0.76 6 2 

S19 0.3 0.07 20.3 0.45 0.76 0.55 2 3 

S20 0.76 0.51 17.7 0.86 0.96 0.81 4 4 

S21 -0.62 -0.6 23.71 0.19 0.12 0 2 2 

S22 0.15 0.2 18.45 0.6 0.4 0.76 3 3 

 

Table 6. Performance indices. Results are shown for the main performance indices 

considered in the assessment. The top performing submission in each category is shown in bold 

and the second best is underlined. 
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    Rank    

Submission KCC RMSE AUC75 PWSD10 Average Overall 

S1 8 18 1 9 9 8 

S2 17 13 14 15 14.75 18 

S3 6 20 12 15 13.25 15 

S4 2 5 1 4 3 2 

S5 3 2 6 2 3.25 3 

S6 10 21 16 9 14 16 

S7 14 7 13 7 10.25 10 

S8 19 22 17 22 20 22 

S9 9 11 6 9 8.75 7 

S10 1 1 5 1 2 1 

S11 17 13 14 15 14.75 18 

S12 7 3 8 2 5 4 

S13 16 10 17 4 11.75 12 

S14 19 17 17 4 14.25 17 

S15 4 9 3 9 6.25 6 

S16 21 16 22 15 18.5 20 

S17 12 15 10 15 13 14 

S18 11 4 10 15 10 9 

S19 15 12 9 9 11.25 11 

S20 4 6 3 7 5 4 

S21 22 19 21 15 19.25 21 

S22 13 8 20 9 12.5 13 

 

Table 7. Submission ranking. Ranking of the different prediction methods based on 

performance indices in Table 1. To define the final ranking average of ranking position 

for each performance index was used. The top performing submission in each category is 

shown as bold, while underlined is for the second best performance. 

 

 S10 S4 S5 

KCC 0.015 0.015 0.015 

AUC75 0.029 0.004 0.048 

RMSE 0.006 0.222 0.151 

PWSD10 0.059 0.389 0.183 

 

Table 8. Statistical significance test for top three submissions. The p-value for 

random predictions scoring better using each assessment metric is shown over 10,000 

simulations. P-values < 0.05 are shown as bold. 
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Figure 8. Pairwise difference between submissions. Statistical differences 

between submissions based on the overall ranking achieved by each submission. 

Submissions were sorted in agreement with the final ranking. White squares are 

indices of tied predictions (P-values > 0.05) meaning that performances are similar and 

the difference between two predictors is not statistically significant. 

 
 

3.4 Difficult variants 

An analysis of submissions shows prediction reliability to depend on position, with 

p.Gly23Ser, p.Gly35Glu and p.Gly35Arg being particularly complex to address (See Table 

9). p.Gly23Ser and p.Gly35Arg are the most mispredicted variants using PWSD10, with 

only two correct predictions. Both variants affect conserved positions that are known to 

have role in correct p16INK4a folding and CDK inhibition. A previous study54 addressing 

the same genetic changes showed p.Gly23Ser to introduce a weak interaction with S56. 

Although weak, this is thought to stabilize the overall fold, inducing a small local 

rearrangement of the p16-CDK4/6 binding interface. Predictions seem to miss this 

twofold effect. The p.Gly23Ser variant is mainly predicted as damaging, suggesting that 

current methods over-predict a pathogenic effect. A similar scenario can be seen for 
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p.Gly35Glu and p.Gly35Arg. The G35 is a solvent-exposed residue, which localizes at the 

end of the first α-helix in the p16INK4a structure. Substitution of G35 with charged 

residues can be accommodated in the Ankyrin fold, likely yielding neutral phenotypes54 

mispredicted in this case. The only notable exception is submission 20, which shows the 

best accuracy with these difficult variants but misses most of the other variants. The 

p16INK4a challenge shows how different variants on the same residue can have widely 

diverging effects which are not well predicted by many submissions. 

 

 G23S G23R G23C G23A G23V G35R G35W G35E L65P L94P 

S1 0 1 0 0 1 0 0 0 0 1 

S2 0 0 1 1 0 0 0 0 0 0 

S3 0 1 0 0 0 0 0 0 0 1 

S4 0 1 1 0 1 0 1 0 0 1 

S5 0 1 1 0 1 0 1 1 0 1 

S6 0 1 0 0 0 0 0 0 1 1 

S7 0 1 1 0 1 0 1 0 0 0 

S8 0 0 0 0 0 0 0 1 0 0 

S9 0 1 0 0 0 0 0 0 1 1 

S10 1 1 0 0 1 0 1 1 1 1 

S11 0 0 1 1 0 0 0 0 0 0 

S12 0 1 1 0 1 0 1 0 1 1 

S13 0 1 1 0 1 0 1 0 0 1 

S14 0 1 1 0 1 0 1 0 1 0 

S15 0 1 0 0 0 0 0 0 1 1 

S16 0 0 1 0 0 0 1 0 0 0 

S17 0 0 0 1 0 0 0 0 0 1 

S18 0 0 1 0 0 1 0 0 0 0 

S19 0 0 0 1 1 0 1 0 0 0 

S20 1 0 0 1 0 1 0 1 0 0 

S21 0 0 1 0 0 0 1 0 0 0 

S22 0 1 1 0 0 0 0 0 0 1 

Total 2 13 12 5 9 2 10 4 6 12 
 

Table 9. Correct predictions per variant. Submissions are shown as rows, followed by the 

total count of correct predictions. Columns list each variant of the p16INK4a challenge and whether 

the corresponding submission correctly predicted (1, grey background) the effect according to 

PWSD10. Notice how certain substitutions at the same position were more difficult to predict than 

others. 
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4 Conclusions 
 

Pathogenicity prediction of VUS is a challenging problem. It can manifest at different 

levels, such as protein function, sub-cellular localization and pathways, as well as 

impairing multiple interactions a specific protein can exert with different partners72. 

Pathogenicity predictions are frequently performed through a priori knowledge of the 

biological problem, in most cases from an experimental characterization of disease-

associated variants. In silico prediction can be considered a realistic benchmark of our 

understanding of these biological problems. In this chapter I presented, we presented 

results from the critical assessment of 22 different predictions in the CAGI p16INK4a 

challenge. Different submissions were compared to highlight the strengths and 

weaknesses of prediction strategies as applied to the human tumor suppressor 

p16INK4a. The challenge had several peculiar characteristics. p16INK4a is a cancer-

associated kinase inhibitor whose main function is protein-protein binding. It is also an 

Ankyrin repeat protein, characterized by repetitive local short-range interactions54,68. In 

an ideal scenario, a reliable pathogenicity predictor should discriminate variations 

affecting both p16INK4a features. From a computational point of view, most predictors 

use Position-Specific Scoring Matrices (PSSM) and machine learning. The assessment 

suggests that our knowledge is sufficient to perform reliable predictions for most of the 

analyzed variants. However, relevant differences emerged among predictions. These 

differences stem in part from the strategy used for pathogenicity assessment. Others 

arise from expert knowledge, with similar approaches generating discordant predictions. 

Groups combining different strategies seem more robust when predicting CDKN2A 

variants. Predictions supplied from the Yang&Zhou lab are emblematic of this 

phenomenon. This group contributed four different submissions, rescaling PSSM value 

differences between wild type and variants, computing ΔΔG variation with ROSETTA373, 

computing ΔΔG with Dmutant74 or combining them in a support vector machine using a 

linear kernel. Our assessment showed the Yang&Zhou lab reliability improving with 

prediction complexity (See Tables 6 and 7), peaking with the most complex submission 

10. A similar reliability gradient was observed for other groups using different strategies, 

suggesting how a single method may be insufficient for pathogenicity prediction. 

Submission 10 presents the best fit with experimental data. On the other hand, a sub-

optimal AUC75 suggests the submission is not the most convenient for discriminating 
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pathogenic from a wild-type-like phenotype. Conversely, submission 4 (Lichtarge group) 

presents the best AUC75 value, which may make it useful in a clinical setting. However, 

submission 4 predicts all variants as pathogenic at this threshold, which probably 

renders this method unreliable for clinical practice. Prediction performance seems to be 

also influenced by variant type. For example variants affecting glycine 35 are on average 

easier to predict than glycine 23. The latter is known to be relevant for the correct 

Ankyrin fold68, as well as to localize at the p16INK4a/CDK4/6 binding interface50,54. For 

a generic pathogenicity predictor this may be the worst case scenario. Sequence 

conservation analysis highlights the residue as conserved and relevant for protein 

structure, but may miss the pathogenic effect caused by interference at the protein-

protein interaction interface. More advanced approaches, such as Hidden Markov Models 

and neural networks, turned out to be the best strategies for this specific problem. It can 

be argued that the limited number of variants composing the dataset may limit 

generalization of the results and a larger set of variants might produce a different ranking. 

The dataset was chosen to represent a balanced ratio between pathogenic and neutral 

variants. Despite these intrinsic limitations, we believe this challenge may be 

representative of a clinical setting, where disease-associated genes are poorly described 

when it comes to variants found in patients. It is evident from this assessment that no 

method is able to perform errorless predictions. We expect the CAGI results to provide a 

starting point to further improve the available methods for VUS pathogenicity 

predictions. 
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Phenotype  prediction  in  the  CAGI  4  

Hopkins clinical  panel  challenge. 

This chapter is based on “Chandonia, J.-M., Adhikari, A., Carraro, M., Chhibber, A., Cutting, 

G.R., Fu, Y., Gasparini, A., Jones, D.T., Kramer, A., Kundu, K., Lam, H.Y.K., Leonardi, E., Moult, 

J., Pal, L.R., Searls, D.B., Shah, S., Sunyaev, S., Tosatto, S.C.E., Yin, Y., Buckley, B.A., 2017. 

Lessons from the CAGI 4 Hopkins clinical panel challenge. Hum. Mutat. 

doi:10.1002/humu.23225”. 

 

1 Introduction 
 

DNA sequencing tests are increasingly used in medical practice to confirm or assign 

clinical diagnoses75. However, the interpretation and classification of novel sequence 

variants identified in a patient remains difficult, even for well-studied disorders like 

cystic fibrosis76. Improved computational methods may aid in the interpretation of 

sequence variants and, when used in conjunction with clinical data, could increase the 

confidence of a diagnosis77. Until recently, genetic testing was limited to genes associated 

with a specific clinical phenotype. However, recent technological advances have made it 

feasible to sequence large gene panels, exomes, and genomes78–80. As the number of genes 

sequenced per patient increases, the number of novel, rare, and unclassified variants also 

increases. Clinical molecular geneticists must determine which variants, if any, are likely 

to contribute to the patient’s clinical presentation. The current gold standards for 

assessing a variant’s pathogenicity are segregation of the variant with the clinical 

phenotype in multiple pedigrees, and functional assays demonstrating a detrimental 

effect of that specific nucleotide change. In most instances, when a novel genetic variant 

is identified there is no rapid and reliable method to assess its pathogenicity. Predictive 

software tools are interrogated, but none are considered strong evidence to assert a novel 

variant’s pathogenicity81. The shift towards analyzing large datasets has led to a need for 

high-throughput methods to aid in variant classification and also for computation tools 

to help better interrogate the increasing number of variants of uncertain clinical 

significance. 

Crowd sourced data analysis challenges such as the 4th Critical Assessment of Genome 

Interpretation (CAGI 4) have emerged as a framework to compare predictive methods 

and assess the overall state of particular analysis areas 82. In the CAGI 4 Hopkins Clinical 
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Panel challenge, participants were asked to develop or use existing computational 

methods to analyze data from a next generation sequencing (NGS) panel in order to 

match a patient’s genotype to their clinical phenotype in the absence of additional clinical 

information. The Johns Hopkins DNA Diagnostic Laboratory (henceforth, Hopkins), a 

CLIA and CAP certified lab that specializes in clinical molecular testing for rare, inherited 

disorders, provided data for this challenge. The Hopkins lab offers testing for 

approximately 50 phenotypes and disorders totaling 3,500 tests annually. They offer 

NGS-based tests targeted for ~20 specific phenotypes. The same NGS capture probe set 

is used for all panels and only the requested genes are analyzed in each patient. Hopkins 

provided CAGI 4 organizers with the VCF files for the entire NGS panel for 106 patients 

with a range of clinical presentations. The genetic disorders associated with variants in 

the 83 genes on the panel were grouped into 14 ‘disease classes’ which include lung 

disorders, peroxisomal disorders, aneurysm disorders and craniofacial disorders (See 

Table 10). The goal of the challenge was for the participants to match each patient to a 

disease class based on informatics analysis of the sequence data. A further part of the 

challenge was to predict the specific gene and variant(s) that is/are the underlying cause 

of disease. 

2 Materials and methods 
 

2.1 Sequencing, variant calling, and analysis by the 

Hopkins lab 
 

Gene sequences were captured using one of two custom probe sets (Agilent SureSelectXT 

Target Enrichment Kit) and sequenced by a NGS platform (Illumina MiSeq, 2x100 nt 

reads). The NGS panels used to test assessed exons and exon-adjacent sequences for 64 

or 83 loci. Sequences were aligned to the human reference genome (GRCh37/hg19) using 

the Burrows-Wheeler Aligner (bwa). Sequence variants were called individually for each 

patient to produce two Variant Call Format (VCF) files, one for single nucleotide variants 

(SNVs; GATK UnifiedGenotyper, v2.7-4) and one for insertion-deletion variants (InDels; 

GATK HaplotypeCaller, v2.7-4). Deidentified VCF files were provided to the CAGI 4 

organizers. Note that the CAGI 4 organizers combined individual VCF files for each patient 

into a single VCF, resulting in potentially misleading data in the INFO and FILTER fields 

of the file. The panel of 83 genes was sequenced in 96 of the 106 patients; for the other 
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10 patients, a partially overlapping list of 64 genes were sequenced. Although the whole 

NGS panel was sequenced in all patients, only the genes selected on the patient’s test 

requisition form were analyzed by the lab (n=1-24 genes/patient).  

For more information on the specific NGS tests offered by the lab refer to the Hopkins lab 

website (http://www.hopkinsmedicine.org/dnadiagnostic/tests/).  

The Hopkins lab included variants in the genes they analyzed that were classified as 

Variants of Uncertain Significance (VUS), Likely Pathogenic, and Pathogenic as an answer 

key. The disease class of each patient was also provided in the answer key and reflects 

the test selected by the patient’s physician on the test requisition form. The ~20 

phenotypes that Hopkins tests for were narrowed down to 14 disease classes in order to 

simplify the challenge. Some disease classes were not represented by any patients and 

were included as red herrings.  

 

2.2 Challenge format 

Participants in the Hopkins clinical panel challenge were provided with the two VCF files 

above, a detailed description of the 14 disease classes given in Table 10, a submission 

template, a submission validation script, and the gene capture regions used in sequencing 

the patients (in Browser Extensible Data, or BED format). Participants were also 

instructed that every patient matched exactly one disease class.  

Participants were asked to submit predictions of each patient’s disease class based on 

their gene panel sequences, along with predicted causal variant(s). Each participant was 

allowed to submit up to six distinct submissions, in which each submission contained 

predictions for each patient. For each submission, participants were required to predict 

the probability that the patient has a referring disease in each of the 14 disease classes in 

the provided list, as well as the predicted causal variant(s) from the gene panel sequence 

dataset for every disease class with a non-zero probability. Each predicted probability of 

disease class also included a mandatory standard deviation (SD) field indicating 

confidence in the prediction, with low SD indicating high confidence, and high SD 

indicating low confidence. 
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Disease class Description 

Cystic fibrosis and CF-

related disorders 

Classic cystic fibrosis consists of progressive lung disease, exocrine 

pancreatic insufficiency, and male infertility. 

Diffuse lung disease 
Diffuse lung disease is an umbrella term encompassing multiple lung 

disease phenotypes. 

Primary ciliary dyskinesia 
Primary ciliary dyskinesia is a genetically heterogeneous group of 

disorders resulting from dysfunction in different parts of the cilia. 

Peroxisomal beta-

oxidation defects 

The majority of patients with peroxisomal beta-oxidation defects have 

liver disease, brain malformations, developmental retardation, sensory 

deficits, and dysmorphic craniofacial features. 

Rhizomelic 

chondrodysplasia 

punctata 

Symptoms of rhizomelic chondroplasia punctata include proximal 

shortening of the limbs, cataracts, severe intellectual disability, seizures, 

and calcific stippling of cartilage. 

Zellweger spectrum 

disorders 

Zellweger spectrum disorders consist of Zellweger syndrome (cerebro-

hepato-renal syndrome; most severe phenotype), neonatal 

adrenoleukodystrophy (intermediate phenotype), and infantile Refsum 

disease (mildest phenotype). 

Loeys-Dietz syndrome 
Loeys-Dietz syndrome is a connective tissue disorder that predisposes 

individuals to aortic aneurysms. 

Marfan syndrome 
Marfan syndrome is an inherited connective tissue disorder that affects 

the skeletal, ocular, and cardiovascular systems. 

Thoracic aortic aneurysm 

and dissection 

Thoracic aortic aneurysm and dissection is a cardiovascular disease 

characterized by dilation of the aorta, which leads to aortic aneurysms 

(most commonly in the ascending aorta) and aortic dissection. 

Ataxia telangiectasia 
Ataxia-telangiectasia is a disorder of childhood onset progressive 

cerebellar ataxia and occulocutaneous telangiectasias. 

Liddle syndrome 

Liddle syndrome is a rare genetic disorder characterized by early onset 

high blood pressure (hypertension) and low blood potassium 

(hypokalemia). 

Pseudohypoaldosteronism 

type 1 

Pseudohypoaldosteronism type 1 is a salt-wasting disease with onset 

during infancy. 

Telomere shortening 

disorders 

Telomere shortening disorders represent a spectrum of phenotypes that 

result from mutations in genes involved in telomere maintenance protein 

complexes. 

Treacher Collins and 

related syndromes 

Treacher Collins syndrome is a rare disorder affecting craniofacial 

development. 

 

Table 10. Summary of the 14 disease classes. Disease classes and description for the CAGI 

4 Hopkins clinical panel challenge are provided in the table. 
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2.3 Assessment 

Formatting errors in all submissions were corrected to the best of the assessor’s ability, 

and redundant submissions were removed. Predicted disease classes made in each 

submission for each patient were assessed against the correct disease class given in the 

Hopkins answer key, using the metrics described below. The predicted causal variant(s) 

were also compared to interpretations from the clinical laboratory, but because these are 

not known with certainty, such predictions cannot be rigorously assessed. In their 

answer key, Hopkins noted which variants they regarded as Variants of Uncertain 

Significance (VUS), Likely Pathogenic, and Pathogenic; however, for purposes of matching 

participants’ predictions to the answer key, all variants noted by Hopkins for each patient 

were treated equivalently. Assessors first calculated the number of correct predictions of 

disease class made in each submission. For each patient, the predicted disease class was 

the one assigned the highest probability among all 14 disease classes. Ties (i.e., cases 

where multiple disease classes were all assigned the highest probability) were handled 

as described below.  

1. If all 14 probabilities for a patient were equal (e.g., all zeroes), those predictions 

were not counted in the following three metrics. 

2. In other cases, assessors calculated one metric (nCorrect) in which the number of 

correct predictions was counted, giving ties full credit; another metric 

(nCorrecttie) was calculated in which N-way ties were given 1/N credit. 

3. Finally, assessors calculated a third metric (nCorrectvar) in which they counted the 

number of predictions for which the disease class was correct (giving ties full 

credit) AND for which at least one of the variants submitted in the corresponding 

column for that disease class matched one of the variants noted by Hopkins. 

Assessors also calculated the following metrics for each submission: 

1. avgPCorrect – the average probability assigned by the predictor to the correct 

disease class. This statistic provides an assessment of predictions that is not 

dependent on whether the submitter’s highest probability prediction was correct. 

2. avgPCorrectnorm– the average probability assigned by the predictor to the correct 

disease class, after normalizing all probabilities predicted in each submission for 

each patient to sum to 1.0. (Exception: if all probabilities for a patient were zero, 

they were not normalized). 
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3. avgRank – the average rank assigned by the predictor to the correct disease class. 

Ties were assigned the average rank of each set of tied predictions; e.g., if the two 

highest probability disease classes had equal rank, both were assigned a rank of 

1.5; a 3-way tie for 2nd highest probability would be assigned a rank of 3. Note that 

because there were 14 disease classes, an all-zero prediction would have an 

avgRank score of 7.5 (i.e., was scored as a 14-way tie). 

4. avgError – the average error in predictions, where the error was measured as the 

absolute difference between the probability assigned each disease class and zero 

(if not the correct disease class) or one (if the correct disease class). Like 

avgPcorrect, avgError assesses predictions independent of their rank, but also 

includes correct negative predictions. 

 

2.4 Prediction Methodology 

A summary of each group’s prediction methods is given below. 

Group 57 (Jones): The Jones-UCL group made use of one-class Support Vector Machine 

(SVM) classifiers to automatically assign disease classes according to the supplied exome 

data. In a normal machine learning experiment, sufficient positive and negative cases are 

needed to define a hypersurface which separates the two classes. Standard SVMs attempt 

to define this hypersurface such that the chance of misclassifying new cases is minimized. 

In some applications, however, only positive or negative cases are readily available, but 

not both. One-class SVMs 83 have been proposed for problems where either negative or 

positive case data is unavailable. In this situation, the SVM attempts to identify outliers 

from a distribution modeled on the available single class of data, and it is assumed that 

the outliers belong to the alternative class. In this CAGI challenge, of course, neither 

negative nor positive training data was readily available. However, the assumption was 

made that the 1000 Genomes data set84 could be used as a proxy for negative case data. 

This is a reasonable assumption if we assume that the diseases in question are relatively 

rare. To start with, gene variants relating to each disease class were collated using 

ClinVar85. Feature sets were generated for each disease class by encoding variant 0/0, 

0/1 and 1/1 calls as 0, 1 and 2 respectively, and for each disease-specific feature set, a 

one class ν-SVM (using a RBF kernel) was trained. The single parameter ν, which controls 

both the number of support vectors and the misclassification cost, was optimized for each 
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disease class so as to minimize the number of outliers detected in the 1000 Genome 

training data. Once trained, the SVM was then applied to the test sample data, and the 

distance to decision boundary was used as a proxy for classification confidence. The most 

important variant was identified in each case by systematically removing each variant 

from the feature set and recalculating the confidence scores. 

Group 58 (Tosatto): The analysis started with a manually curated association between 

the genes of the panel and the 14 clinical phenotypes of interest based on literature 

review. Sequencing data was annotated with ANNOVAR86, considering for each variant 

the corresponding affected gene, frequency estimated from the 1000 Genomes Project87 

and predicted pathogenicity score from SIFT88 and PolyPhen289. The method to define 

association between genetic data and phenotypes was based mainly on two phases. For 

each individual, variations that are less probable to be disease causing were filtered out 

and a probability to be affected based on the analysis of variants defined. Only coding and 

splice-site variants which can affect protein function were considered according to the 

Common Disease-Rare Variant Hypothesis (CDRVH)90. Common (Minor Allele Frequency 

MAF > 5%) and/or synonymous single nucleotide variations (SNVs) were filtered out. 

Insertion and deletions were excluded as their impact on protein function is difficult to 

predict compared to SNVs. Only insertions and deletions (indels) affecting the coding part 

of a gene and predicted to be “damaging” or known to be pathogenic were considered. 

Heterozygous indels in genes with autosomal recessive inheritance, occurring in GC-rich 

or repeated regions were filtered out from the disease candidate mutation pool. An 

empirically derived scoring scheme was implemented to define association between 

patients and phenotypes, considering both disease inheritance and predicted SNV 

pathogenicity. Different weights were assigned to different mutation types, i.e. a high 

score for known variants associated with a specific disease (mainly by literature review) 

and a lower score for mutations not affecting protein function according to predictor 

output (i.e. tolerated, benign and unknown). For autosomal dominant (AD) pathologies, 

only heterozygous variants plus few manually curated homozygous mutations were 

considered (i.e. the one with the highest probability score). The disease cutoffs were set 

at different values between submissions, allowing the stringency of the analysis to vary. 

Both homozygous and compound heterozygous variants were considered for autosomal 

recessive (AR) conditions. When more than one match per patient occurred, only the 

most likely was considered (e.g. the one with higher probability score). Different 
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submissions correspond to different sets of weights. In particular, for submission 58.1 a 

slightly lower weight was assigned to variants whose effect is more difficult to assess (i.e. 

compound heterozygous, homozygous variants with uncertain significance, variants 

affecting different genes coding for subunits of the same complex) with respect to 

submission 58.1. 

Group 59 (Qiagen Bioinformatics): All 106 samples were uploaded to Ingenuity Variant 

Analysis (QIAGEN- Hereditary Disease Solution) and set up an analysis with all samples 

to filter low quality (call quality < 20) and common variants (>0.5% MAF in 1000 

Genomes84, NHLBI-EVS (http://evs.gs.washington.edu/EVS/), ExAC91, and Allele 

Frequency Community (www.allelefrequencycommunity.org), using the Confidence and 

Common Variants filters, respectively. The Allele Frequency Community is a QIAGEN 

hosted allele frequency database, founded by QIAGEN and participating members in 

2014. It is a freely accessible “opt-in” community resource designed to facilitate sharing 

of anonymized, pooled allele frequency statistics among community members. The 

Predicted Deleterious filter was used to keep only those variants that are previously 

published and classified Pathogenic or Likely Pathogenic, using ACMG guidelines, DM 

variants (pathological mutations reported to be disease causing in the original literature 

report) present in HGMD, along with other loss of function (frameshift, start/stop loss or 

gain, splice site) and missense variants. Finally, the biological context filter was applied 

to find variants linked to each one of the 14 categories and patient disease category was 

predicted based variant-disease connection, using path-to-phenotype evidence. 

Group 60 (RSS): Gene phenotype associations were mined from the Hopkins diagnostic 

panels, OMIM92, and GeneReviews93. Inheritance mode and penetrance information were 

extracted from online resources for each gene-phenotype pair. Variants with low quality 

or high population allele frequencies were filtered out and the functional impact was 

annotated with Variant Effect Predictor94. To estimate the probability that a variant is 

damaging to protein function, we integrated multiple prediction methods to score all 

types of variants, e.g. missense, nonsense, indels and intronic variants. The damaging 

scores were scaled and normalized to reflect the relative deleteriousness, e.g. frame-shift 

/ nonsense variants would have higher scores than missense variants. We then used the 

damaging scores to estimate the probability that each individual has a particular 

phenotype with a probabilistic model, i.e. calculated as the probability that at least one 

associated gene in the individual causes the phenotype. For a particular gene, the 
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probability the gene causes the phenotype was calculated as the probability that the gene 

is disrupted (taking into account inheritance mode) multiplied by its penetrance score. 

The confidence level of the prediction was calculated from the distribution of the 

estimated probabilities across phenotypes and across individuals. Considering the 14 

phenotypes are Mendelian like diseases, if one individual has high prediction scores 

across phenotypes, it is more likely to be false positive. Thus high confidence was 

assigned to individuals with high variability across phenotypes. 

Group 61 (Moult): The method (implemented in Python) has four modules – Variant 

annotation, QC (quality check), Variant Prioritization, and Probability scoring for the 

disease. The modules were executed sequentially. Inputs were the two gVCF files and a 

gene configuration file containing the genes associated with each disease class and their 

inheritance pattern. The Varant tool (http://compbio.berkeley.edu/proj/varant) was 

used to annotate variants with: region of occurrence in the genome, allele frequency from 

ExAC91, predicted pathogenicity based on four methods89,95–97 (for missense), and 

previously reported disease associations in database85,98. Three QC analyses were run: 

(1) Variant counts (common vs. rare vs. novel & homozygous vs. heterozygous) per 

sample, (2) Read depth for each gene in each sample was obtained by averaging DP values 

over all bases in a gene recorded in the gVCF file, and (3) Exons with relatively low or no 

coverage compared to other exons in a gene. The QC qualified variants per sample were 

prioritized by first assigning them to one of three classes, ranked by the likelihood that 

the variant is causative and further grouping the variants in each class by frequency 

based on its ExAC MAF (group 1 – novel, 2 - very rare (MAF <= 0.005), or 3 – rare (MAF 

<= 0.01).. Class-1 identified variants previously reported in disease databases as 

pathogenic, Class-2 identified loss of function, splice and missense variants predicted 

damaging by in-silico prediction tools, and Class-3 identified missense variants (not 

predicted damaging), UTR, and intronic variants. Variants were further filtered for 

inheritance model. For each sample, once putative causative variants were found, the 

process was terminated (e.g. if a suitable variant or variants were found using Class-1, 

Class-2 and Class-3 were not executed). Finally, a probability score for a sample to have 

a particular disease was computed based on the type of prioritized variant(s) and 

inheritance pattern. For the missense variants, the probability model was based on the 

extent of consensus among the four prediction methods, using a previous HGMD derived 

calibration. For other variant types, subjective probability rules were used. 
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3 Results 
 

3.1 Summary of submissions 

Five groups submitted predictions (with 4, 2, 2, 2, and 1 distinct predictions per group). 

An overview of the challenge and results is shown in Figure 1. The 106 patients in the 

challenge can be roughly grouped into two difficulty classes: 1) patients for whom 

Hopkins noted a potentially causal variant in the answer key (43 patients) and 2) patients 

for whom Hopkins did not note any variants (63 patients) (Figure 9A). At least one CAGI 

4 predicting group correctly predicted the disease class for 36 of the 43 patients who had 

a reported variant (Figure 9B). Fewer groups correctly predicted both the disease class 

and at least one of the variant(s) that Hopkins reported (Figure 9C). CAGI 4 predictors 

were not as accurate at predicting disease classes for the remaining 63 patients for whom 

Hopkins did not note a variant, although at least one group correctly predicted the 

disease class for the majority of these patients (Figure 9D). The lower prediction accuracy 

is perhaps unsurprising given the negative test results for these 63 patients. 

Figure 9. Summary of CAGI 4 Hopkins clinical panel challenge and results. 

A: One-hundred six patients were included in the study. Hopkins noted at least one 

variant relevant to the disease class for which the patient was referred in 43 cases, and 
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did not note a variant for the remaining 63 cases. Hopkins noted variants of the 

following classes: variant of uncertain significance, likely pathogenic, or pathogenic. 

Clinically, Hopkins would have reported 25/43 as positive and 18/43 as uncertain. B: 

Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI 4 

prediction group predicted the correct disease class in 36 cases, and one patient’s 

disease class was predicted correctly by all five groups. C: Among the 43 patients for 

whom Hopkins had noted a variant, at least one CAGI 4 prediction group predicted both 

the correct disease class and a causal variant noted by Hopkins in 32 cases. D: Sixty-

three patients for whom Hopkins did not note a variant were more difficult for CAGI 4 

groups to predict: 24were not predicted correctly by any group, and only five patients’ 

disease class was predicted correctly by three groups (none were predicted correctly 

by four or more groups).  

 
 

3.2 Numeric assessment summary  

Table 11 summarizes our numeric assessment metrics for each non-redundant, 

submitted prediction, for all patients. Table 12 shows the same statistics for only the 43 

patients for which Hopkins noted at least one potentially causal variant. The best values 

for each metric in each table are indicated in bold. Each group’s overall performance is 

briefly discussed below.  

Table 13 shows a summary of the performance of all predicting groups on each patient. 

Tables 5 and 6 summarize the most frequent combinations of groups that predicted the 

correct disease class for patients (Table 14 ignores causal variant predictions, while 

Table 15 requires each group to predict one of the variants noted by Hopkins). 

Group 57 (Jones): Group 57’s primary submission (57.1) scored much higher than their 

other submissions by our metrics. Their method was less accurate than other groups in 

cases where Hopkins reported a potential causal variant, but it was more accurate at 

predicting the correct disease class in cases where Hopkins didn’t report a variant. Group 

57’s primary submission was also the most accurate among all submissions at rank-

ordering the disease classes. As seen in Table 14, Group 57 predicted disease classes 

correctly for 18 patients that no other group predicted correctly, with seven of these 

cases in their primary submission. This method was unique in that it did not attempt to 

mimic a traditional clinical genetics approach. No attempt was made to independently 

predict the pathogenicity of the ClinVar variants used as features or to correct for linkage 

disequilibrium, which may explain why the method was able to make correct inferences 

where no causal variants were reported and why correct inference can arise without 



70 

 

reporting the correct variants. A possibility is that some or even a majority of the variants 

relied on by the classifiers were non-causal variants which simply happen to be in linkage 

disequilibrium with one or more true causal variants. Thus the occurrence of these 

variants were sufficient to identify the sample as a genetic outlier, though not indicating 

true causation. It is possible that by addressing these issues, the method might be further 

enhanced to make more accurate predictions relating to true causal variants. It would be 

interesting to test this method on a larger dataset to rule out the possibility that there is 

some underlying structure in this dataset that the algorithm is detecting. 

Group 58 (Tosatto): As seen in Table 14, most cases that Group 58 predicted correctly 

were also predicted by at least one other group. However, Group 58 predicted the disease 

class for one patient (P81) that no other groups predicted; they also assigned 100% 

probability of the correct disease to that patient, and predicted exactly the same causal 

variants as noted by Hopkins. Many of the diseases in this challenge result from loss of 

function variants in a given gene, thus by excluding frameshift variants (out of frame 

deletions and/or insertions within an exon) Group 58 missed these cases. The genes and 

molecular mechanisms associated with each of the 14 disease classes were not provided 

as part of the dataset, which increased the difficulty of the matching exercise. 

Group 59 (Qiagen): Group 59 had the highest average P values for the correct disease 

classes, after normalization; they also had some of the best scores in the avgError metric. 

Group 59 correctly predicted the disease class for five patients that no other groups 

predicted. Among all the groups, they were the only group for which both P values and 

SD values were independent and positively correlated with the values they were 

expected to correlate with (see discussion of P and SD, below). This challenge was well-

suited for the Qiagen group, as they specialize in large scale variant interpretation99. 

Group 60 (RSS: Due to the misleading fields in the combined VCF files (see the Methods 

section on sequencing and variant calling), Group 60 made only 11 high-confidence (P > 

0.6) predictions, of which 9 were correct. Interestingly, four of these nine cases were not 

predicted correctly by any other group. Because of the small number of high-confidence 

predictions, Group 60 had the lowest avgError score among all groups, and the best 

correlation between assigned P values and correct answers (see discussion of P and SD, 

below). After the challenge closed, Group 60 provided the CAGI organizers with a 

corrected submission, in which the misleading VCF fields were ignored. In this corrected 

submission (which arrived late and therefore was not formally assessed), Group 60 
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correctly predicted 38 disease classes. Group 60 adeptly used a series of online clinical 

genetics resources in their analysis pipeline. 

Group Prediction nCorrect nCorrecttie avgPCorrect avgPCorrectnorm avgRank avgError 

Jones 57.1 24 24 0.305 0.098 5.32 0.251 

 57.2 9 9 0.239 0.068 7.66 0.287 

 57.3 7 7 0.236 0.068 7.78 0.289 

 57.4 7 6.5 0.426 0.074 7.1 0.42 

Tosatto 58.1 23 23 0.178 0.217 6.48 0.105 

 58.4 26 25 0.223 0.227 6.15 0.107 

Qiagen 59.1 32 29.5 0.302 0.278 5.82 0.09 

 59.2 31 28.5 0.292 0.269 5.88 0.091 

RSS 60.1 12 12 0.072 0.102 7.14 0.08 

 60.2 12 12 0.068 0.094 7.15 0.082 

Moult 61.1 38 34.99 0.261 0.265 5.65 0.105 

Note: Predictions are numbered according to the group’s (formerly anonymized) group 

number (57, Jones; 58, Tosatto; 59, Qiagen Bioinformatics; 60, RSS; 61, Moult). 
 

Table 11. Performance assessment, all patients. Summary of assessment metrics 

for each nonredundant, submitted prediction, for all patients 

 

 

Group Prediction nCorrect nCorrecttie nCorrectvar avgPCorrect avgPCorrectnorm avgRank avgError 

Jones 57.1 5 5 2 0.255 0.082 6.53 0.257 

 57.2 5 5 2 0.325 0.091 6.29 0.274 

 57.3 2 2 0 0.22 0.063 8.49 0.296 

 57.4 1 1 0 0.394 0.07 7.5 0.421 

Tosatto 58.1 15 15 13 0.32 0.349 5.56 0.087 

 58.4 17 16 16 0.38 0.339 5.16 0.094 

Qiagen 59.1 23 21 19 0.535 0.488 4.24 0.065 

 59.2 22 20 19 0.512 0.465 4.4 0.066 

RSS 60.1 9 9 8 0.149 0.193 6.41 0.073 

 60.2 9 9 8 0.145 0.181 6.4 0.075 

Moult 61.1 26 26 25 0.5 0.512 3.78 0.07 

 

Table 12. Performance assessment, 43 patients dataset. Summary of assessment 

metrics for each nonredundant, submitted prediction, for the 43 patients for which 

Hopkins noted at least one potentially causal variant. 
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Group 60 (RSS: Due to the misleading fields in the combined VCF files (see the Methods 

section on sequencing and variant calling), Group 60 made only 11 high-confidence (P > 

0.6) predictions, of which 9 were correct. Interestingly, four of these nine cases were not 

predicted correctly by any other group. Because of the small number of high-confidence 

predictions, Group 60 had the lowest avgError score among all groups, and the best 

correlation between assigned P values and correct answers (see discussion of P and SD, 

below). After the challenge closed, Group 60 provided the CAGI organizers with a 

corrected submission, in which the misleading VCF fields were ignored. In this corrected 

submission (which arrived late and therefore was not formally assessed), Group 60 

correctly predicted 38 disease classes. Group 60 adeptly used a series of online clinical 

genetics resources in their analysis pipeline. 

Group 61 (Moult): Group 61 made more correct predictions of both disease class and 

Hopkins-annotated variants than any other group. For the 43 cases where Hopkins noted 

variants, Group 61 did especially well, getting 26 disease classes correct, and predicting 

the best average rank for the correct disease. In 25 of these cases, Group 61 also predicted 

at least one causal variant that was noted by Hopkins. Group 61 correctly predicted the 

disease class for six patients that no other groups predicted correctly, and also predicted 

at least one of the potentially causal variants noted by Hopkins in four of these six cases. 

 

3.3 Accuracy of P and SD values 

We expected that predictors’ submitted probabilities for each patient and disease should 

correlate with the correct disease class for each patient, and we also expected that their 

submitted standard deviations on each prediction should correlate with the error in each 

prediction (i.e., the absolute difference between the P value and either 1 or 0, for cases 

where the patient does or does not have the disease, respectively). Overall, predictors did 

better in the first case, and not as well in the second. Only one group (59; Qiagen) had an 

independent SD model that correlated positively with error.  
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Patient nC nCV Correct 

groups 

Correct groups, 

with variant 
Correct predictions Correct predictions, 

with variant 

P1 4 4 57, 59, 60, 61 57, 59, 60, 61 
59.2, 60.1, 60.2, 61.1, 
57.1, 57.3, 59.1 

59.2, 60.1, 60.2, 61.1, 
57.1,, 59.1 

P2 1 N/A 57 N/A 57.2 N/A 

P3 0 N/A None N/A None N/A 

P4 5 3 57, 58, 59, 58, 59, 61 
59.2, 58.4, 60.1, 60.2, 
61.1, 57.1, 

59.2, 58.4, 61.1, 58.1, 
59.1 

      60, 61   58.1, 59.1   

P5 2 2 60, 61 60, 61 60.1, 60.2, 61.1 60.1, 60.2, 61.1 

P6 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A 

P7 0 N/A None N/A None N/A 

P8 1 1 60 60 60.1, 60.2 60.1, 60.2 

P9 1 0 57 None 57.4, 57.1 None 

P10 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 

P11 1 1 61 61 61.1 61.1 

P12 0 N/A None N/A None N/A 

P13 3 N/A 57, 58, 60 N/A 
57.4, 58.4, 60.1, 60.2, 
57.2, 58.1 

N/A 

P14 0 N/A None N/A None N/A 

P15 0 N/A None N/A None N/A 

P16 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 

P17 3 3 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P18 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A 

P19 1 1 60 60 60.1, 60.2 60.1, 60.2 

P20 1 N/A 57 N/A 57.1 N/A 

P21 1 N/A 57 N/A 57.1 N/A 

P22 1 N/A 59 N/A 59.2, 59.1 N/A 

P23 0 0 None None None None 

P24 4 3 57, 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 57.2, 
58.1, 59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P25 1 0 57 None 57.2 None 

P26 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P27 3 1 58, 59, 61 59 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 59.1 

P28 2 N/A 57, 59 N/A 59.2, 57.1, 59.1 N/A 

P29 1 N/A 57 N/A 57.1 N/A 

P30 3 2 58, 59, 61 58, 61 58.4, 61.1, 58.1, 59.1 58.4, 61.1, 58.1 

P31 1 N/A 57 N/A 57.1 N/A 

P32 4 3 58, 59, 60, 61 58, 60, 61 
59.2, 58.4, 60.1, 60.2, 
61.1, 58.1, 59.1 

58.4, 60.1, 60.2, 61.1, 
58.1 

P33 0 N/A   N/A None N/A 

P34 3 3 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P35 0 N/A None N/A None N/A 

P36 0 0 None None None None 
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P37 0 0 None N/A None N/A 

P38 3 3 58, 60, 61 58, 60, 61 
58.4, 60.1, 60.2, 61.1, 
58.1 

58.4, 60.1, 60.2, 61.1, 
58.1 

P39 1 0 59 None 59.2, 59.1 None 

P40 0 N/A None N/A None N/A 

P41 0 N/A None N/A None N/A 

P42 2 1 59, 61 61 59.2, 61.1, 59.1 61.1 

P43 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P44 1 N/A 59 N/A 59.2, 59.1 N/A 

P45 1 N/A 57 N/A 57.1 N/A 

P46 0 N/A None N/A None N/A 

P47 1 1 61 61 61.1 61.1 

P48 0 0 None None None None 

P49 1 N/A 57 N/A 57.1 N/A 

P50 0 N/A None N/A None N/A 

P51 1 N/A 61 N/A 61.1 N/A 

P52 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P53 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A 

P54 1 N/A 57 N/A 57.3 N/A 

P55 0 0 None None None None 

P56 2 1 58, 59 59 59.2, 58.1, 59.1 59.2, 59.1 

P57 1 1 61 61 61.1 61.1 

P58 0 N/A None N/A None N/A 

P59 0 0 None None None None 

P60 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 

P61 1 N/A 57 N/A 57.4, 57.3 N/A 

P62 2 N/A 57, 60 N/A 60.1, 60.2, 57.1 N/A 

P63 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A 

P64 1 1 60 60 60.1, 60.2 60.1, 60.2 

P65 3 N/A 58, 60, 61 N/A 58.4, 60.1, 60.2, 61.1 N/A 

P66 0 N/A None N/A None N/A 

P67 0 0 None None None None 

P68 1 N/A 59 N/A 59.2, 59.1 N/A 

P69 0 0 None None None None 

P70 0 N/A None N/A None N/A 

P71 0 N/A None N/A None N/A 

P72 3 2 57, 59, 61 59, 61 59.2, 61.1, 57.2, 59.1 59.2, 61.1, 59.1 

P73 4 3 57, 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 57.1, 
58.1, 59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P74 0 N/A None N/A None N/A 

P75 0 N/A None N/A None N/A 

P76 0 N/A None N/A None N/A 

P77 0 N/A None N/A None N/A 
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P78 1 N/A 61 N/A 61.1 N/A 

P79 0 N/A None N/A None N/A 

P80 3 3 57, 59, 61 57, 59, 61 
59.2, 61.1, 57.1, 57.2, 
59.1 

59.2, 61.1, 57.1, 57.2, 
59.1 

P81 1 1 58 58 58.4, 58.1 58.4, 58.1 

P82 1 N/A 57 N/A 57.2 N/A 

P83 1 N/A 57 N/A 57.4, 57.3 N/A 

P84 4 4 57, 58, 59,61 57, 58, 59, 61 
59.2, 58.4, 61.1, 57.2, 
58.1, 59.1 

59.2, 58.4, 61.1, 57.2, 
58.1,59.1 

P85 2 N/A 57, 61 N/A 57.4, 61.1 N/A 

P86 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A 

P87 3 N/A 57, 58, 61 N/A 
57.4, 58.4, 61.1, 57.1, 
58.1, 57.3 

N/A 

P88 1 N/A 57 N/A 57.1 N/A 

P89 1 N/A 57 N/A 57.4, 57.1 N/A 

P90 2 N/A 58, 61 N/A 58.4, 61.1, 58.1 N/A 

P91 1 N/A 57 N/A 57.2 N/A 

P92 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 

P93 1 1 60 60 60.1, 60.2 60.1, 60.2 

P94 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 

P95 3 3 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P96 1 0 57 None 57.3 None 

P97 0 N/A None N/A None N/A 

P98 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P99 1 N/A 59 N/A 59.2, 59.1 N/A 

P100 0 N/A None N/A None N/A 

P101 2 N/A 57, 61 N/A 61.1, 57.1 N/A 

P102 1 N/A 57 N/A 57.3 N/A 

P103 0 N/A None N/A None N/A 

P104 3 3 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P105 3 3 58, 59, 61 58, 59, 61 
59.2, 58.4, 61.1, 58.1, 
59.1 

59.2, 58.4, 61.1, 58.1, 
59.1 

P106 1 N/A 61 N/A 61.1 N/A 

 

Note: nC, number of groups predicting the disease class correctly, among all submissions from each group 

(counting ties, except in cases where all 14 disease classes were assigned equal probability; nCV, number of 

groups predicting both the correct disease class and at least one variant noted by Hopkins; correct groups, a 

list of groups in which the disease class was predicted correctly in at least one submission (counting ties, except 

in cases where all 14 disease classes were assigned equal probability); correct groups, with variant, a list of 

groups with at least one prediction of the correct disease class, and also at least one variant noted by Hopkins 

(N/A in this field indicates that Hopkins did not note any variants); correct predictions, with variant, same 

as above, but indicating individual submission numbers that were correct. 

 

Table 13. Performance assessment for each patient. Summary of the performance of all 

predicting groups on each patient. 
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3.4 Commentary on novel variant predictions 

One large limitation in the design of this challenge is that only a subset of the sequence 

data were clinically analyzed in each patient. This allowed for the possibility of false 

negatives, where true pathogenic variants may have been present in genes that were not 

analyzed by the lab. Further, Internal Review Board (IRB) restrictions prevented the data 

provider from acting as an assessor for the challenge or providing detailed feedback on 

variant predictions in genes that were not clinically analyzed. In addition, specific 

variants cannot be listed in the following discussion. In the future, advanced planning is 

needed to ensure that the appropriate consents and approvals are in place to maximize 

the use of clinical data. Ideally, a dataset should be fully analyzed by a clinical lab and 

patients should be specifically asked for consent that their data be used for research 

purposes such as the CAGI challenge. This would allow a more critical analysis of the 

challenge data, would eliminate the possibility of unwanted incidental findings, and 

would allow more in-depth discussion of challenge results. Clinical data from human 

patients makes an interesting challenge set, but data from human subjects involve 

privacy concerns vastly different from that of laboratory model organisms.  

The CAGI 4 Hopkins clinical panel challenge gives us an opportunity to test state-of-the-

art genetic analysis pipelines on a subset of the data that would be obtained from 

complete exome sequencing of patients, and to explore potential advantages and 

disadvantages of genomics-driven approaches to clinical testing versus the phenotype-

driven approach currently employed by Hopkins.  

In some cases multiple groups reported the same causal variant for a case where Hopkins 

did not identify a variant. Since Hopkins only analyzed the genes ordered by the 

physician, it is possible that there were true pathogenic variants identified in the 

challenge that were not included on the answer key, such cases are elaborated on below. 

In order to explore the potential complication of false positives in the genomics-driven 

approach, we also examined cases in which CAGI 4 predictors consistently predicted the 

wrong disease class along with the same causal variants. Several of these cases are 

described below. 
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Number of 

patients 

Groups predicting correct 

disease class 
 

Number of 

patients 

Groups predicting correct 

disease & variant 

31 
No group predicted correct 
disease 

 

63 (Hopkins did not note any variants) 

18 57 (Note: 7 from 57.1) 
 

11 58, 59, 61 

10 58, 59, 61 

 

11 
(No group predicted disease and 
variant correctly) 

6 61 
 

4 61 

5 59 
 

4 60 

4 60 
 

3 59, 61 

4 57, 61 
 

2 59 

4 57, 59, 61 
 

2 58, 60, 61 

3 59, 61 
 

1 60, 61 

3 58, 59 
 

1 58, 61 

3 57, 58, 59, 61 
 

1 58 

3 57, 58 
 

1 57, 59, 61 

2 58, 60, 61 
 

1 57, 59, 60, 61 

1 60, 61 
 

1 57, 58, 59, 61 

1 58, 59, 60, 61 
 

 

Table 15: Frequency with which each 

combination of groups correctly diagnosed 

patients, and also noted a Hopkins variant. 
 

1 58 
 

1 57, 60 
 

1 57, 59, 60, 61 
 

1 57, 59 
 

1 57, 58, 61 
 

1 57, 58, 60 
 

1 57, 58, 59, 60, 61 
   

 

Table 14. Frequency with which each 
combination of groups correctly diagnosed 
patients. 

   

 

Patient P7 – Groups 57 (submission 4), 58, 59, and 61 all predicted Telomere Shortening 

Disorders, and the latter 3 groups consistently noted a missense variant in TERT. The 

patient’s diagnosis was Cystic Fibrosis and CF-Related disorders, and Hopkins did not 

note any reportable variants and did not analyze the TERT gene. The TERT variant is 

described in the literature; it leads to telomere shortening and is involved in bone 

marrow failure. Telomere shortening due to mutations in TERT is known to be involved 

in pulmonary fibrosis. Clinical presentation of pulmonary fibrosis is very different from 

cystic fibrosis. This TERT variant is annotated in ClinVar as involved in pulmonary 

fibrosis, but literature support for this phenotype is unclear. The variant is found in 120 

ExAC participants including 2 homozygotes. 
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Patient P36 – Groups 57 (submission 2), 58, 59, and 61 all predicted Liddle syndrome, 

with the same missense variant in SCNN1G. The patient’s diagnosis was Diffuse Lung 

Disease. The SCNN1G variant is a known pathogenic variant observed in two independent 

patients with bronchiectasis. The predictors presumably predicted Liddle syndrome 

because the same gene is involved in that disorder. This is likely an example of another 

false positive prediction common to multiple groups. Hopkins did not note a reportable 

variant for this patient and the SCNN1G gene was not analyzed. 

Patient P37 – Groups 57 (submission 2), 58, 59, and 61 all predicted Marfan syndrome 

with the same variant, a missense variant in FBN1. The patient’s diagnosis was Diffuse 

Lung Disease. FBN1 is involved in Marfan syndrome and in other cardiac phenotypes. A 

subgroup of Marfan patients develop lung emphysema, which is possibly a reason for the 

predictions. The missense variant is a known low frequency polymorphism annotated as 

“benign” in ClinVar, so this is likely a false positive prediction. Hopkins did not note any 

variants for this patient and did not analyze the FBN1 gene. 

Patient P14 – Groups 57 (submissions 3 and 4), 58, 59, and 61 all predicted Cystic Fibrosis 

and CF-Related disorders, along with one to two out of four variants in CFTR. The patient’s 

diagnosis was Diffuse Lung Disease, and Hopkins did not analyze the CFTR gene. All the 

predicted CFTR variants have previously been reported. One is a common polymorphism, 

and unlikely to contribute to disease. Another is intronic, and it is not clear whether it 

may be involved in splicing. The remaining two CFTR variants were rare missense 

variants. One missense variant is seen in ExAC 739 times including once in the 

homozygous state, and there is no information on its pathogenicity reported in the 

literature or public databases. The second missense variant is seen in ExAC 623 times 

including once in the homozygous state, and there is conflicting evidence reported in the 

literature regarding its pathogenicity. The latter two variants appear to be too common 

to be causal in this case, but as mentioned above, CF studies may be included in ExAC. It 

would be prudent to study the background frequencies of these two variants in further 

detail, in order to decide whether they are likely to be causative. 
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4 Conclusions 
 

Overall, we found that current state of the art computational prediction methods do a 

reasonable job of predicting clinical phenotype from genotype, even when blinded to 

clinical diagnoses. At the same time, current genotype-driven prediction methodologies 

generate false positives and false negatives at a rate unacceptable for clinical use. In cases 

where the Hopkins lab reported a variant, predictors did relatively well, with at least one 

group correctly identifying the disease class in 36 of 43 patients (84%), and at least one 

group identifying the correct disease class and variant in 33 of 43 cases (77%). In cases 

where the Hopkins lab did not find a reportable variant in the genes they analyzed, at 

least one group correctly matching the disease class in 39 of 63 patients (62%). In the 

latter cases, methods based on machine learning (SVM) technology appeared to be most 

effective at correctly identifying the disease. Interestingly, despite the ability to correctly 

match genotype to phenotype, the SVM-based method could not correctly identify the 

pathogenic variant. It is unclear what is happening in cases where groups correctly 

identify the disease class, but not the causal variant. In retrospect, it would have been 

prudent to include a list of gene-disease associations as well as modes of inheritance to 

the predictors to aid in the matching process. 

Different groups performed better depending on which metric was used; there was no 

clear “winner” that dominated performance across all metrics. Indeed, every group 

predicted at least one patient’s disease class correctly that no other group predicted 

correctly. This result suggests that a “meta-predictor” or a human clinical expert with 

access to all groups’ results might improve on the performance of each individual group. 

Currently, clinical genetic testing is almost entirely phenotype-driven: given a clinical 

diagnosis, laboratories analyze variants in genes known to be relevant to the diagnosed 

disease. This is partially due to the historic technical limitations on genetic testing, e.g., 

sequencing costs limited the number of genes for which data could be obtained. The 

standards for reporting variants to the patient are also currently conservative, in part 

because common, benign polymorphic variants have caused many false positives in past 

genetic analyses100,101. However, as whole-exome and whole-genome sequencing become 

more economical, the phenotype-driven paradigm may be replaced by a genomics-driven 

approach, in which all rare, putatively functional variants in a patient’s genome are first 

identified, then evaluated based on the plausibility that they may be pathogenic. The 
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genomics-driven approach has the potential for higher sensitivity, due to more genes 

being analyzed, and also has the potential to diagnose diseases not identified by the 

referring physician. However, the main tradeoff compared to phenotype-driven 

approaches is a potentially higher false positive rate. 

Multiple CAGI 4 groups in the Hopkins challenge were in consensus in identifying several 

possible causative variants that were not identified by the current panel testing 

paradigm. They also identified several other variants that were likely to be false positives. 

Distinguishing these two possibilities, and identifying which variants to report to the 

patient, is a topic that requires further research. The American College of Medical 

Genetics and Genomics has published guidelines for the interpretation of sequence 

variants in order to help codify variant assessment81. However, even when adhering to 

these guidelines there are still elements of variant interpretation that are subjective and 

vary between labs102,103. Given large databases of “control” exomes (i.e., without a known 

phenotype), researchers could develop statistical models to predict whether particular 

variants are in fact causative91. Such models could inform the development of new 

statistically justified reporting standards based on, for example, particular thresholds on 

the probability that the prediction of a causal variant is a false positive. 

This challenge was designed to reflect the range of cases seen in the Hopkins diagnostic 

lab (Figure 9A). This includes a high percentage of cases for which no likely pathogenic 

variant was identified, despite the patient presenting with a clinical phenotype. Even for 

clinical exome sequencing, nearly 75% of cases are negative78,79. Negative cases proved 

especially challenging to participants, as ‘phenotype not discernable’ was not listed as a 

matching option. Despite the fact that no pathogenic variants were identified by the 

Hopkins lab, most groups were able to make a disease prediction and to identify putative 

pathogenic alleles in these negative cases. Indeed, the reason data from all 83 genes was 

included in the challenge was to highlight the difficulty in interpreting a large data set of 

rare variants that are unrelated to the patient’s phenotype. The presence of negative 

cases in the data set reflects clinical practice and cautions on the overinterpretation of 

rare variants. Unlike prior prediction challenges, where the activity of an enzyme had 

been quantitatively measured in the laboratory, there was no definitive answer key for 

this challenge. The predictors were asked to match sequencing data to a phenotype, and 

many groups did so by first identifying a causative variant. Only in a minority of cases 

(~23% in this dataset) could it be said with high confidence that a variant was likely 
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contributing to disease in a patient. When a clinical laboratory reports a variant as 

Pathogenic, this is often because the variant has previously been reported in patients 

with the same phenotype or the nucleotide change introduces a premature termination 

codon in a gene where loss-of-function variants cause disease81. Thus, with a foundation 

in clinical genetics and access to online resources one could identify a large proportion of 

the ‘Pathogenic’ variants in this dataset. However, many of the variants detected in the 

clinical laboratory are rare missense or synonymous variants that have not previously 

been reported in the literature; these are almost always classified as variants of uncertain 

clinical significance. It is for these variants of uncertain significance, that are difficult to 

interpret and for which there is no answer key, that better assessment tools are needed. 

A CAGI challenge focused on the interpretation of variants of uncertain clinical 

significance would be more relevant to current clinical genetics practice. A clinical lab 

may upgrade a variant’s classification from ‘Uncertain’ to ‘Pathogenic’ based on new 

clinical information, segregation of a variant within a family, or identification of the 

variant in multiple unrelated individuals. Many molecular diagnostic labs maintain 

internal variant databases; such databases could be mined to curate a challenge set of 

‘Uncertain’ variants for which there is unpublished data to support pathogenicity. In this 

proposed challenge, participants would have to correctly identify these ‘Pathogenic’ 

variants from a set of ‘Uncertain’ variants (for which there was unpublished data that 

they were NOT likely to contribute to disease). This would more directly test the 

challengers’ ability to predict pathogenicity without relying on allele frequency or online 

databases and without requiring knowledge of gene-disease associations. Assessment of 

the challenge would benefit from having fully vetted data and a clear answer key. This 

type of challenge, while still lacking a phenotype component, would more accurately 

mirror the clinical challenge of interpreting rare variants. Obtaining this data set would 

also invite communication between clinical testing labs (both academic and commercial) 

and the research community. 

In this vein, the development of a clinically useful variant assessment tool will require 

collaboration between clinical geneticists and data scientists. Discussions resulting from 

the Hopkins Clinical challenge demonstrated that although most participants 

incorporated genetic principles into their pipelines, they approached variant 

interpretation in a very different manner than a clinical laboratory. In future challenges, 

it would be interesting to pair an informatics group with a clinical group as a challenge 
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team, particularly for whole exome sequencing challenges. Ideally, the back-and-forth 

between clinical and informatics groups would produce a method that could outperform 

that of either group alone. Diverse collaborations at CAGI could help bridge the 

communication gap between fields and pave the way for development of better tools. 
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Crohn’s disease risk prediction - Best 

practices and pitfalls with exome data. 
 

This chapter is based on “Giollo, M., Jones, D.T., Carraro, M., Leonardi, E., Ferrari, C., 

Tosatto, S.C.E., 2017. Crohn disease risk prediction-Best practices and pitfalls with exome 

data. Hum. Mutat. doi:10.1002/humu.23177”.  

 

1 Introduction 
 

One of the main applications of next-generation sequencing is related to human health 

diagnostics. Although there are already solid demonstrations that disease causal variants 

could be identified104, only a few studies have tried to build predictive models for disease 

risk and phenotype prediction105–107. The Critical Assessment of Genome Interpretation 

(CAGI) is the first effort aimed at objectively assessing the state of the art for genome 

interpretation. As already introduced in this manuscript, in the literature there are a vast 

number of bioinformatics tools available to perform predictions and risk assessments, 

mostly based on statistical methods and machine learning108. It is possible to build a 

disease risk estimation tool using the same principles, but the curse of dimensionality109 

and limited sample size together represent a huge challenge in CAGI. The former issue is 

due to the high number of variants that can be observed in each sample, on the order of 

several thousands. Just a few of them are likely to be important for human health, but in 

most situations the key variants for a disease are unknown. Ideally, one should first 

perform feature selection110 in CAGI, with the aim to discard irrelevant variants for 

disease onset. This step is the main result of Genome-Wide Association Studies (GWAS)111 

and linkage analysis112, but there is still a huge number of variants that need to be 

annotated. Tools for pathogenicity prediction like SIFT113 and PolyPhen2114 can mitigate 

the problem just partially. In fact, these tools (1) only work on Single-Nucleotide 

Polymorphisms (SNPs), (2) have a limited accuracy115 and (3) predict protein loss-of-

function, which is not the same as predicting disease risk. The interaction among different 

variants116 and environmental relationships117 are even harder to assess for a proper 

disease risk prediction. These problems must be considered in CAGI, but their solutions 

require a large sample size which is not available. We participated successfully in all CD 

challenges and in this work we tested all the best methods ever proposed for disease risk 
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prediction. Here, we report the state-of-the-art in this challenge, and emphasize the key 

features of the most effective methods. We also highlight some issues related with all 

datasets and the proper evaluation of algorithm performance. 

2 Materials and Methods 
 

2.1 Datasets 

CAGI published three different CD datasets over the last three editions. For each of them, 

the task was always the same. Prediction of a disease risk indicator based on exome data. 

As introduced in the previous chapter, genotype sequences were collected from German 

patients, and part of them lead to the association of PRDM1 and NDP52 variants to CD118. 

It is therefore clear that careful study can extract valuable knowledge from CAGI exomes. 

From the experimental point of view, Illumina instruments were used for sequencing. In 

2011, reads were aligned with respect to the human genome build 18 (hg18), and base 

calling was obtained by a combination of BWA119, Picard and SAMtools120. The main 

differences in the 2013 and 2016 editions were the introduction of GATK121 and the use 

of hg19. Finally, data was provided to CAGI participants as a VCF formatted file (See Table 

16). An interesting peculiarity of CAGI 2013 was the presence of exomes from 28 

pedigrees, which included a pair of monozygous discordant twins. The number of cases 

and controls was declared during the prediction season. In addition, during the last two 

editions data from the previous challenges could be used for training. This idea will be 

explored heavily over the next sections. 

 

Edition Cases Controls Ref. Genome 

CAGI 2011 42 14 hg18 

CAGI 2013 51 15 hg19 

CAGI 2016 64 47 hg19 

Table 16. Summary of the Crohn’s disease challenge data. Over 

time, the number of samples increased significantly, with special attention 

for controls in the latest edition. All exomes data is provided by Andre 

Franke and Britt-Sabina Petersen. 
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2.2 Algorithms 

This section explains the ten algorithms used to prioritize exome variants and predict 

disease risk. These were implemented because they proved to be among the most 

effective methods in CAGI 2011 and 13. The goal was to validate them on the in CAGI 2016 

dataset. All implementations were written in R, with the intention of obtaining a fully 

automatic prediction. At first, coding variants with Minor Allele Frequency (MAF) < 0.04 

were selected using information from dbSNP122 and a collection of BioConductor 

packages123–125. Let ∈ {0, 1, 2, } ×  be the resulting matrix of exome variants, where 

n is the sample size and m represents the observed Single-Nucleotide Variants (SNVs). By 

construction,  represents the number of variants at genomic position j for sample . In 

other words, 0 and 2 are equivalent to observing twice the nucleotide with the major and 

minor allele frequency, respectively. A heterozygous variant is encoded with 1. Finally, 

NA is used to denote unobserved nucleotides in a sample, e.g. due to technical issues or 

different experimental setup. 

Algorithms developed for CD risk prediction exploit either a weighting scheme or machine 

learning (ML). A weighting scheme w is used as a linear model. Positive weights 

correspond to pathogenic mutations, whereas negative coefficients are protective 

variants. By computing the dot product between a genotype  and w a disease risk can 

be computed. Machine Learning instead assumes that one can identify patterns to predict 

a disease risk from a training set, i.e. CAGI 2011 and 2013 CD data. Based on these two 

ideas, the following methods were tested. 

2.1.1 Key variants weighting 

This is the simplest form of weighting, which looks at the presence of a predetermined 

set of important SNVs to predict disease risk. These variants are given a weight of 1, while 

all other variants are set to 0. This is the typical model used for Mendelian diseases, when 

a single SNV is evaluated. 

2.2.2 Odds Ratio weighting  

GWAS estimated odds ratios for variants related to a disease126. This is a risk measure of 

developing a disease based on direct associations on real data. Given this information, let 

define the weight  as follows: 



86 

 

= ∑( − 1)| | , ∈  
0, = 0  

where  is the set of CD associated variants with known odds ratios in gene g. In other 

words, all variants  within the same gene g will share the same average weight . 

2.2.3 Publication weighting 

Genes related to CD are reported in the literature. Independent studies also corroborate 

some associations, providing additional belief in previous findings. As an example, 623 

genes were linked CD127 so far. 67% of them were reported just once, while NOD2 alone 

appears in 356 publications. Phenopedia127 is a public database that stores the number 

of times  that a gene g was linked to a disease in a scientific publication. In this case, the 

weighting scheme  is defined as follows: 

= log , > 1 0, ℎ  

Once again, variants within the same gene share the same weight. 

2.2.4 NA weighting 

DNA sequencing techniques can measure a wide range of information, e.g. single SNVs, 

exomes and full genomes. Based on the experimental setup, some DNA regions are 

accessible or not detectable. On top of this, sequencing errors and computational 

limitations might lead to the impossibility of observing the nucleotides in some DNA 

regions. These are called Not Available (NA) variables, and pose big issues in data 

analysis. In this method, disease risk r for sample  is defined as = | ( )| 
where ( ) is the set of not observable variants in . 

2.2.5 Overrepresented weighting  

More than 50% of the samples in CD challenges are expected to be cases. This proportion is 

much larger than the disease prevalence in Europe128. Thus, variants that are overrepresented 

with respect to these in a reference populations (e.g. 1000 genomes129) might be the causal CD 

mutations. In this method, dbSNP122 was used to obtain the minor allele frequency of variants. 

The overrepresented ones were identified using a binomial test. Bonferroni correction was 
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applied to correct for the standard p-value threshold of 0.05. The variants selected in this way 

were given a weight of 1, and 0 for the others. 

2.2.6 Bi-clustering 

This is a type of unsupervised learning techniques that can divide automatically samples in two 

groups by looking at their reciprocal similarity. We used both k-means (with k = 2) and 

Hierarchical Clustering in order to solve this problem130. We assumed that the smaller cluster 

is the one with healthy samples.  

2.2.7 Transductive clustering  

This method is based on the Transductive Learning principle131. Similarity among samples was 

estimated using the cophenetic distance130. Small clusters ( ≤ 5) of highly similar samples 

were identified. Within such groups, the average disease onset age of CD was estimated using 

knowledge from past CD editions (where available) and transferred to the CAGI 2016 samples. 

Healthy samples were assumed to have a disease onset age of 1000, just to allow the 

computation of a trend within the group. 

2.2.8 Manual prediction 

By using the evidence gained from the previous methods, a manual assessment of each sample 

was performed. Clearly, this is not an algorithm. 

2.2.9 Transductive SVM 

To construct a suitable feature set for classification, an initial assessment of each variant 

sequence element was carried out against the CAGI 2013 training data. The Fisher exact test 

was used to select variants associated with disease onset. Overall, 43 variants had a p-value 

lower than 5x10-6 and were used to build a machine learning classifier. CAGI 2013 labels were 

attached to CAGI 2015 samples using transductive learning131. The fully labeled dataset was 

used to train an SVM classifier with RBF kernel. 

2.2.10 Logistic Regression  

Variant relevance was estimated using log-odds ratios on the CAGI 2013 dataset to build a 

classifier. Only protective SNVs were selected by looking at negative log-odds scores and 

logistic regression algorithm was used train a classifier. 
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2.2.11 Ensemble 

The disease risk was estimated by combining the previous techniques with bootstrap132. In this 

case, the disease indicator of a given sample was equal to the proportion of methods that ranked 

it higher than the 67th percentile of all samples. 

2.3 Performance Measures 

The main task in CAGI was the definition of a method that could estimate a disease risk 

probability given the exome data. The CAGI assessors used Receiver Operating 

Characteristic (ROC) curves to identify the best submissions133. ROC represents the 

relationship between True Positive Rate (TPR) and False Positive Rate (FPR): 

=      =   

where TP and FP are the number of True Positives and False Positives, while P and N are the 

total number of Positive and Negative examples in the test set. The ROC curve integral 

provides the well-known Area Under the Curve (AUC) metric133. Accuracy (ACC) and Pearson 

correlations (COR) are also used to indicate the association between variables: 

= ++    ( , ) =  ( , )ơ ơ  

where TN are True Negatives, while ơ is the standard deviation of a population. 

3 Results 
 

Each CD challenge proposed during CAGI has peculiarities that should be addressed properly 

to maximize performance. In this section a description for all three CD datasets is presented, 

with considerations about the best method to use in each case. 

 

3.1 CAGI 2011  

CAGI 2011 proposed a disease risk challenge based on exome data for the first time. It 

represents an important event in establishing best practice that should be taken into 

account in similar tasks. Unfortunately, there was a critical issue in this challenge, which 

hampered a proper evaluation of submissions. Cases and controls in the dataset were 

collected using different experimental setups, which produced incomparable sequencing 

results. Cases appeared to be sequenced in a limited amount of exome regions, whereas 

controls were covered in a much wider range. As a result, one could observe a very large 
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variation in the number of genetic variants reported depending on the two groups, which 

influenced most prediction algorithms and the submissions. Interestingly, the NA 

weighting strategy would pick-up this signal, and achieves a 95% classification accuracy. 

Given this huge bias, it is clear that bi-clustering can achieve the same results. An 

implementation of the publication weighting strategy by Yana Bromberg proved to be the 

most effective CAGI 2011 submission among all participants, leading to a nearly perfect 

ranking. However, it is very likely that this submission converged implicitly to NA 

weighting due to the dataset bias. 

In this edition, only a manual strategy was implemented by our group, which was based 

on ANNOVAR134 variants selection of rare SNVs (MAF < 0.04) for genes related to CD 

according to PheGenI135 and String136. Samples with fewer variants were assumed to be 

controls (See Table 17). The five submissions were very similar in terms of reciprocal 

correlation, mainly because they were based on the same variant set. However, 

rs76982592 was the one that dominated all submissions. By just looking at its presence, 

according to the key variants weighting, one would achieve 89% accuracy. 

 

Method Ranking Details AUC 

Uniform weight Count variants in CD genes. 0.66 

SNV co-occurrence Count twice variants that occurs frequently 

paired with others, according to association 

rules. 

0.678 

Bi-clustering K-means on the variants. Rank according to 

the number of variants in CD genes. 

0.666 

Ensemble Average of the previous 0.626 

Manual A manual evaluation of variants 0.678 

 

Table 17. Performance on the CAGI 11 dataset. The five methods rely on 9 

variants identified in PTPN11, DSPP, TDG, NCOA3, RBMX, PRKRA, ZFHX3, RUNX2 and 

CELA1 genes. Methods have a very high correlation, which ranged between 0.76 and 

0.96. 
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3.2 CAGI 2013  

Given the experience from CAGI 2011, one might try to use the same idea on the CAGI 

2013 challenge. However, this was quite a unique dataset, with knowledge about (1) of 

the number of controls (See Table 16), (2) 28 clear pedigrees, and (3) a pair of discordant 

twins. The CAGI 2011 data was available for training as well. Given this specific setting, 

any CAGI 2011 strategy should be refined to achieve better performance. In fact, the plain 

publication weighting strategy was not as effective as in the previous challenge, probably 

due to the complexity of this structured dataset. Clustering is a key technique to highlight 

the 28 pedigrees and the twins (See Figure 10). The overall best submissions used bi-

clustering and CAGI 2011 as training data. Using this, 94% accuracy could be achieved, 

with 13 out of 15 controls detected. Overrepresented weighting implemented by Rita 

Casadio’s group also proved to be very effective, even though this technique would be 

strongly biased by the presence of pedigrees. 

In this challenge, we implemented the most effective strategy. Transductive clustering 

managed to classify effectively 8 samples (blue samples in Figure 10), as they proved to 

be very similar to CAGI 2011 controls. The twins had mostly an identical set of variants, 

except for a variant in the MOC2 gene. This was assumed to be the causal mutation for CD 

in all submissions. After this initial screening, 9 out of 15 controls were detected. 

Interestingly, the majority of healthy samples are part of an outlier group, marked orange 

in Figure 10. In the best submission (Bi-clustering in Table 18), it was assumed that the 

blue and orange groups contained all controls. Within each group, disease risk was 

proportional to the number of variants – the same principle used in CAGI 2011. The bi-

clustering submission was somehow related to the same result seen in the CAGI 2011 

dataset. Healthy samples were very dissimilar with respect to the CD ones, probably due 

to a different experimental setup. Transductive clustering confirmed that this group was 

largely composed of controls, boosting significantly belief in this submission. It is still 

unclear if the controls were actually reused in the two challenges. However, CAGI 2013 

confirmed once again the need for better controls in a proper challenge setup. 
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Figure 10. Heatmap of CAGI 2013 data. Columns represent the 66 dataset 

samples (red: controls, green: cases), grouped by genetic similarity using hierarchical 

clustering. Rows contain mutations clustered by sample similarity. The orange 

columns are outliers forming a sub-cluster with most of the controls. Prior knowledge 

is available for samples blue due to control-group membership in CAGI 2011. 
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Method Ranking Details AUC 

Uniform weight 1 Count SNVs in CD genes. 0.743 

Uniform weight 2 Count SNVs in CD genes and their 

STRINGdb interactors. 

0.736 

Mixed pedigree 1 Max one control per family. Count SNVs in 

CD genes. 

0.844 

Mixed pedigree 2 Max one control per family. Count 

pathogenic SNVs (according to SIFT) in CD 

genes. 

0.688 

Mixed pedigree 3 Max one control per family. Look for 

families with large difference in SNVs count 

in CD genes. 

0.798 

Bi-clustering Bi-clustering on the dataset. Rank according 

to the number of SNVs in CD genes. 

0.866 

 

Table 18. Performance on the CAGI 2013 dataset. The submissions have a 

high correlation, ranging between 0.67 and 0.89. This is mainly due to (1) a similar 

set of variants selected for all methods and (2) the use of transductive clustering 

from CAGI 2011. The use of clustering is critical to maximize performance 

 

3.3 CAGI 2016  

This last challenge is probably the hardest ever proposed in CAGI. Samples are apparently 

quite uniform and there are no obvious issues with experimental settings, like the one 

described for CAGI 2011 or any prior information available like in CAGI 2013. The dataset 

size is also much larger compared to previous editions (See Table 16). Transductive 

clustering was not very effective, since it could match just a single sample as a control. In 

addition, just two pedigrees could be detected in the entire dataset. 

CAGI 2016 is hence composed of independent cases and controls, with basically no 

relationship to past challenges. This is a good dataset to validate the methods that proved 

to be most effective in previous challenges. The simplest approach to look for data bias is 

NA weighting. As can be seen in Table 19, it would be probably one of the best methods, 

with an AUC of 0.7. Methods dealing explicitly with missing data, like variable imputation, 

are likely to exploit the same source of information. The three methods using published 

SNVs associated to CD are significantly effective, with an AUC ranging between 0.59 and 
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0.61. Key variants weighting worked well with rs2066844, a SNP known to increase 

significantly CD risk137. On the other hand, Odds Ratio weighting proved that published 

GWAS variants are informative. Publication weighting and Overrepresented weighting 

results were not statistically significant, suggesting that ad-hoc weighting strategies are 

not effective.  

Importantly, tested methods rely on very different assumptions. Key variants weighting 

and Odds Ratio weighting are the most similar by design, with a correlation of 0.37. 

Nevertheless, this value is much lower than any method tested in the previous challenges. 

All other methods have a correlation between -0.1 and 0.26, proving that these strategies 

explore more divergent hypotheses than in the former CD challenges. Finally, NA 

weighting is apparently strongly related to bi-clustering on the dataset with a 0.74 

correlation between both. 

An ensemble prediction was realized with bootstrap, where the disease risk of a given 

sample was estimated as the amount of methods in agreement for a high risk. 

 

Method AUC Pearson Correlation 

NA weighting 0.7 *  0.36 * 

Publication weighting 0.56 0.05 

Key variants weighting 

(rs2066844) 
 0.59 *  0.23 * 

Overrepresented weighting 0.47 -0.06 

Transductive clustering 0.52 0.06 

Odds Ratio weighting  0.59 * 0.14 

Manual prediction  0.63 * 0.2 * 

Transductive SVM 0.6 * 0.2 * 

Logistic regression 0.57 0.16 

Ensemble  0.66 *  0.29 * 

Key variants weighting 

(clinical studies SNVs) 
 0.61 *  0.21 * 

 

Table 19. Results of the methods on CAGI 2016 dataset. Performances 

marked with a star are statistically significant. 
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4 Conclusions 
 

Present over the last three editions, the Crohn’s disease challenge represents well the 

idea behind CAGI: developing novel tools for genetic interpretation. During these years, 

the organizers proposed ever larger datasets where methods could be tested more 

accurately. The prior knowledge provided to participants and the sequencing pipelines 

varied slightly over time, but it is still obvious that the CD challenge is the only one 

enabling an analysis over time in this context. There are a few lessons that are clear from 

the reported results. 

In this work we test thoroughly all top performing approaches previously proposed in 

CAGI, implementing from scratch 10 methods. Many of these were previously proposed 

by other participants, so we could implement the core ideas based on our understanding. 

From the results, weighting schemes managed to assign proper importance to exome 

variants only when numerical coefficients were based on solid studies like GWAS. SNP 

rs2066844 is a clear example, as it is well known to be associated to CD and it was indeed 

a powerful discriminative variable in CAGI 2016. No heuristic could address effectively 

this problem in a similar way. From a perspective of machine learning methods, use of 

CAGI 2011 data was critically important in CAGI 2013 for the best submissions. During 

CAGI 16, past training sets were not as useful as in CAGI 2013, probably due to the high 

dissimilarity of new samples. It is clear that ML is very effective in simple scenarios where 

samples share high similarity. However, new methods for improved sample comparison 

are needed to boost the performance of ML algorithms. Overall, both weighting schemes 

and machine learning performance are limited in the same way, due to the curse of 

dimensionality. To deal with this issue it is critical to use training sets with a large number 

of samples. This would help with the selection of key variants and proper estimation of 

their effect on disease onset. This idea was already explored using data collected during 

the International IBD Genetics Consortium's Immunochip project138, where a simple 

regularized logistic model achieved an AUC of 0.86 on a very large CD test set. 

Interestingly, models based on Support Vector Machines and Gradient Boosted Trees 

decreased the predictive performance, suggesting that more complex algorithms are 

overfitting the data. Most of CAGI methods do not use any training set at all, mainly due 

to the efforts needed to request such controlled datasets to Data Access Committees. As 

a result, a significant number of CAGI submissions were no better than random. We 
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believe that the main improvements in CD prediction will be enabled by just using 

regularized additive data-driven models We therefore hope to see a simplified access to 

large datasets138 for all CAGI participants in the future. 

The huge number of variables in all datasets is the main motivation for the use variant 

selection tools like ANNOVAR. This tool was heavily used in CAGI 2011 as a black box, 

where its filtering process lead to the variants reported in Table 17. Variant rs76982592 

was the one with the highest impact given our weighting strategy. Just at the time of the 

first CAGI conference, it became clear that the variant was strongly associated with the 

different experimental setup. This is surely an important contribution of CAGI 

highlighting a bi-clustering pattern in the data. ANNOVAR was also used in CAGI 2013 for 

the annotation step. In that edition the tool was used carefully, as its blind usage might 

filter away important disease variants. Bi-clustering was once again an effective method. 

ANNOVAR filtering was finally replaced completely by a collection of R packages in this 

work. Having an in-house tool for variant selection helped to move from manual 

predictions, like in CAGI 2011, to a fully automated pipeline where human decisions are 

limited. This is a key step for reproducibility, which is achievable with a full control and 

understanding of the tools at hand. In this implementation, it was much simpler to 

identify the relationship between NAs and bi-clustering, ANNOVAR did not emphasize at 

all the unobserved variables. BioConductor packages allowed controlling in detail the 

entire filtering step, and learning more about the samples. 

Over these three editions, best method performances kept decreasing from an AUC of 

~0.9 to an AUC of ~0.7. This negative trend is probably unexpected, but we believe that 

this is the result of an improper performance evaluation, especially in the first CAGI 

editions. We believe that all submission results reported so far are not truly 

representative of our current ability to predict disease risk, but they are inflated due to 

the strong bias in the datasets. Bi-clustering appeared to be an effective method for 

predicting disease risk in CAGI datasets, but it is unlikely that this approach would work 

well in a real-world context. Case-control separation is in fact induced largely by NA 

variants and experimental issues. In well-designed genetic studies, a data normalization 

step typically adjusts the dataset for population stratification issues. NA variants are also 

addressed in this step, as they may lead to spurious associations. By evaluating 

submissions through a crude ranking of samples with AUC, CD submissions that exploit 

patient stratification (intentionally or not) will be the most effective. Therefore, it is 
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important to improve CD challenge either by normalizing the dataset provided to 

participants or by asking for a set of causal SNVs in the submission. The former step is 

probably easier to implement, so we hope to see this improvement in future CAGI 

editions. By doing so, we believe that submission performance will reduce even further, 

leading to a truly effective validation of our current ability to predict disease risk. A well-

structured dataset would also be a step forward to promote automated methods for 

disease risk prediction, as this should remove the manual analysis used to detect 

irrelevant facts like twins or pedigrees. 

Overall, CAGI was successful in increasing the attention toward genome interpretation. 

In CAGI 2011, many participants tested a number of approaches. Many submissions were 

much worse than random (AUC < 0.5), suggesting that there was a substantial lack of 

expertise in the field. Over time, the assessor and participant talks shed light on the 

common pitfalls and shared the most effective ideas. This has increased remarkably our 

understanding of this field, and raised the interest of many researchers. Even though 

submission results are currently inflated, we believe that CAGI organizers are also in the 

process of learning how to evaluate properly disease risk predictions, and there are 

positive signals of improvement in this direction. Therefore, we believe that with the next 

editions, and with bigger and well normalized datasets, CAGI will play a role in evaluating 

and testing innovative methods and provide novel ideas for disease risk evaluation.  
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Predicting Crohn’s disease phenotypes from 

exome data in the CAGI 4 experiment. 

The assessment part of this chapter comes “Daneshjou, R., Wang, Y., Bromberg, Y., Bovo, 

S., Martelli, P.L., Babbi, G., Lena, P.D., Casadio, R., Edwards, M., Gifford, D., Jones, D.T., 

Sundaram, L., Bhat, R., Li, X., Pal, L.R., Kundu, K., Yin, Y., Moult, J., Jiang, Y., Pejaver, V., Pagel, 

K.A., Li, B., Mooney, S.D., Radivojac, P., Shah, S., Carraro, M., Gasparini, A., Leonardi, E., 

Giollo, M., Ferrari, C., Tosatto, S.C.E., Bachar, E., Azaria, J.R., Ofran, Y., Unger, R., Niroula, A., 

Vihinen, M., Chang, B., Wang, M.H., Franke, A., Petersen, B.-S., Pirooznia, M., Zandi, P., 

McCombie, R., Potash, J.B., Altman, R.B., Klein, T.E., Hoskins, R.A., Repo, S., Brenner, S.E., 

Morgan, A.A., 2017. Working toward precision medicine: Predicting phenotypes from 

exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Hum. 

Mutat. doi:10.1002/humu.23280”.  

1 Introduction 
 

Precision medicine aims to use a patient’s genomic and clinical data to make predictions 

about medically relevant phenotypes such as disease risk or drug efficacy139,140. Exome 

sequencing data, which captures exons and nearby flanking regulatory regions, is already 

being used clinically to solve medical mysteries with well-defined symptoms141. 

However, in order to advance precision medicine, clinicians and scientists will need to be 

able to make inferences about disease risk or drug efficacy from genetic data. 

Interpretation of genetic data is one of the major difficulties in the implementation of 

precision medicine142. At CAGI 4 (2016), three challenges involved making predictions 

using exome sequence. In particular the Crohn’s disease challenge has been a part of 

previous CAGI iterations. In this chapter I will discuss the approach used by our group for 

Crohn’s phenotype prediction. In addition, I will present the assessment of proposed 

predictive models, always in the context of the Crohn’s disease challenge. 

 

1.1 Crohn’s disease 

Crohn's disease is a chronic inflammatory pathology that can affect the entire 

gastrointestinal system, but most frequently affects the terminal part of the small 

intestine (ileum), and colon. Disease may be manifested at any age, but the incidence is 

higher between 15 and 30 years. In recent years, an increase has been observed in both 

the incidence and prevalence of the disease in all ethnic groups143.  
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Main symptom is the presence of severe abdominal pain often accompanied by diarrhea. 

Symptoms can differ depending on the intestinal portion involved by the inflammation. 

In case of ileal localization, high volumes of blood-free aqueous feces are usually present, 

in the case of colitis instead, bloody diarrhea could be typically identified. In most of the 

cases fever, weight loss, and appetite decrease are often present. A number of extra-

intestinal manifestations of the disease could be also identified. In these cases, 

inflammation may affect different organs and apparatus, including liver (e.g. primary 

sclerosing cholangitis), cute (e.g. erythema nodosum), eyes (e.g. uveitis) and joints (e.g. 

peripheral arthritis, ankylosing spondylitis). 

Disease diagnosis is typically based on the presence of the symptoms described above. 

Unfortunately, most these signals are shared with other diseases and for this reason, 

patients affected by Crohn's disease may suffer symptoms for years before correct 

diagnosis is performed. In order to confirm diagnosis of Crohn's disease, several clinical 

analysis have to be carried out. Blood tests have little specificity as they may only indicate 

the presence of an inflammatory state (increased ESR, C- reactive protein, leukocytosis). 

More useful is the dosage of fecal calprotectin that can confirm the presence of intestinal 

inflammation. Useful analysis to achieve a more precise diagnosis are also: intestinal 

echography, which can detect wall thickening of the affected intestinal tracts, intestinal 

magnetic resonance tomography, and colon biopsy which is certainly the most reliable 

test for diagnosis of this inflammatory disease. As it is possible to understand, 

unfortunately, Crohn's disease diagnosis never relies on the results of a single 

investigation, but requires an overall evaluation of the patient's clinical status and the 

execution of several instrumental investigations. 

Causes underlying this pathology have not been fully clarified yet, however the prevailing 

hypothesis is that Crohn’s disease is an immune-related pathology due to an abnormal 

immune reaction of the intestinal tissues against antigens144. The onset of the 

inflammatory process seems to be due to a misregulated interaction between genetic 

factors and environmental factors. 

Particular cases are the Very Early Onset (VEO) forms of this pathology. Early onset is 

defined by the onset of the disease within the 6th year of age145.These forms of intestinal 

inflammation tend to be much more severe and much more difficult to control with 

conventional therapies, compared with adult-onset Crohn’s disease. Increasing evidences 
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suggest a stronger genetic contribution to these forms, compared to “classical” 

manifestations145. Distinguish such forms of the pathology has a crucial importance to 

provide better clinical treatments. In this context the identification of pathogenic genes 

by means of NGS technologies could lead to more rapid diagnosis and the definition of 

specific treatments for these severe forms of the pathology. 

1.1.1 Genetic factors 

Genetic predisposition to the onset of this inflammatory disease is confirmed by the 

presence of 35% of concordance among monozygotic twins for this pathological 

phenotype, whereas in dizygotic twins phenotype concordance is present in only 3% of 

cases146. Current knowledge on the molecular basis this pathology has been mainly 

achieved thanks to gene association studies, followed by experimental validation and 

clinical investigations. Unfortunately, these studies have allowed to understand only part 

of the genetic background underlying the abnormal inflammatory response. 

The main gene associated with Crohn's disease is NOD2, which encodes for a protein 

responsible for the recognizing of muramyl dipeptide, a component of the bacterial wall. 

This protein, expressed primarily in epithelial cells and in the Antigen Presenting Cells 

(APC), once activated by the binding to muramyl dipeptide, activates in turn the 

transcription factor NF-kB and the MAP kinases pathway, leading to production cytokines 

and antimicrobial peptides. Experimental analysis confirms that subjects carrying 

mutations in NOD2, after stimulation with bacterial peptidoglycan, exhibit a reduced 

release of proinflammatory cytokines and a reduction in the activation of NF-kb 

complex144. 

Another gene playing a role in disease onset is ATG16L1. This gene is involved in the 

autophagy process, a mechanism by which cells can eliminate cytoplasmic components 

of degraded organelles and microbial fragments. 

In addition to the cellular processes involved in the innate immunity, such as the ones 

listed above, also pathways of adaptive immune response are involved in Crohn's disease 

onset. An example is the case of signaling activated by interleukin-23 (IL-23). The IL23R 

gene, one among the most associate to the pathogenesis, encodes for one of the two 

components of the heterodimeric receptor for the IL-23. Main function of the receptor, 

once binding with the interleukin has been established, is to determine the activation of 

the JAK-STAT signaling pathway, which regulates the transcription of several genes, 
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including IL-23 (Abraham et al., 2009). IL-23, in turn, contributes to regulating the 

proliferation and survival processes of Th-17 lymphocytes a typical misregulated process 

in autoimmune inflammatory diseases. Finally, also variants in the interleukin-10 

receptor (IL-10R), master regulator of intestinal mucosal homeostasis147, seem to be 

involved in the onset of this inflammatory pathology.  

1.1.2 Environmental factors 

Genetic predisposition is not sufficient to explain the onset of the disease by itself. The 

importance of environmental factors is mainly suggested by the relatively low 

concordance of the phenotype in monozygotic twins. A second aspect suggesting a role 

for the environmental component is the increase in incidence of the phenotype in ethnic 

groups which, as a result of migrator process, have shifted from low-incidence regions to 

areas characterized by a higher incidence143. Many aspects of life-style in industrialized 

societies have been linked to the onset of Crohn's disease such as improved hygienic 

conditions, sedentary lifestyle, junk food diet, exposure to pollutants and antibiotics 

consumption. Above all these factors, however, the most important seems to be cigarette 

smoking. It has been highlighted that early use of tobacco can significantly increase the 

likelihood of developing the disease. In addition, smokers generally present more severe 

phenotypic manifestations of the pathology if compared with non-smoking subjects148. 

Crohn's disease has also been linked with alterations in the intestinal microbiota. In 

particular, thanks to metagenomics studies, it has been highlighted that affected subjects 

present biodiversity reduction in the intestinal microbiota, in particular within the 

Firmicutes and Bacteroidetes phyla143. It has to be pointed out that to date it has not yet 

been clarified how this decrease in intestinal biodiversity can contribute to disease onset. 

Experiments on murine model have however shown that these alterations, alone, are not 

sufficient to be causative of disease onset that necessarily requires the presence of a 

genetic predisposition149. 

 

1.2 Crohn’s Disease Challenge in CAGI 4 

The CAGI 4 dataset was made by 111 unrelated German ancestry exomes. For CAGI 4, 

submitting groups were allowed to use the data from the Crohn’s disease CAGI challenges 

of 2011 and 2013 as training sets. As in all iterations of the challenge, groups were asked 

to report for each individual a probability to be affected by Crohn’s disease between 0 
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and 1 (0 healthy, 1 affected) and a standard deviation representing confidence in that 

prediction. 

2 Materials and methods 
 

2.1 CAGI 4 Datasets  

2.1.1 Test set 

The CAGI 4 dataset was made by 111 exomes (64 cases, 47 controls) sequence from 

unrelated German individuals. Proportion of healthy and affected individuals was not 

revealed during the prediction season. Exome sequencing was performed using the 

TruSeq exome enrichment kit (Illumina) and the Illumina HiSeq2000 instrument. Reads 

were mapped to the human genome build hg19, and variants were called for all 111 

exomes together using the Genome Analysis Toolkit (GATK version 3.3-0) Haplotype 

Caller. Variant calls were restricted to the TruSeq exome target. GATK was also used for 

variant quality score recalibration, and only high quality variants passing the filters were 

retained. Further information on data processing could be retrieved in the header of the 

provided .vcf file. In CAGI 4 predictors could use data from the previous iteration of the 

Crohn’s disease challenge as training sets. To further improve the possibility to use old 

data for training , both CAGI 3 and CAGI 2 datasets have been supplied with onset age for 

every individual. 

Being aware of possible bias in data distribution due to batch effects or population 

stratification, a clustering analysis of the CAGI 4 dataset was performed (See Figure 15). 

To further investigate the presence of artifacts that could affect the prediction process, 

the distribution of number of non sequenced positions has been investigated (See Figure 

16).  

2.1.2 Training sets 

CAGI 2 (2011) dataset 

The CAGI 2 dataset was composed by 56 exomes (42 cases, 14 controls), all of German 

ancestry. As reported by data providers, sequencing was performed for all the samples 

using an Illumina sequencing platform. Base calling was performed with the Burrows–

Wheeler Aligner (BWA) followed by duplicate removal by mean of Picard tools and 
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SAMtools Pileup. The chromosomal positions in the final .vcf files were according to hg18 

human build. No information were provided about the possible presence of population 

structure in the dataset. 

Looking for the presence of possible batch effects, clustering analysis (See Figure 11) and 

investigation of total number non sequenced positions have been performed (See Figure 

12).  
 

CAGI 3 (2013) dataset 

The CAGI 3 dataset was made by 66 exomes (51 cases, 15 controls). Again, the TruSeq 

exome enrichment kit was used for exomes capture and all the samples were sequenced 

using the same protocol. Variant calls was made for all 66 samples together, providing 

better quality calls. A TruSeq exome bed file was used for combined variant calling for all 

the 66 exomes using the GATK program. The Variant Quality Score Recalibration (VQSR) 

method was employed to identify true polymorphisms in the samples rather than those 

due to sequencing, alignment, or data processing artifacts. The chromosomal positions in 

the final .vcf files were according to hg19 human build. 

Out of 66 exomes, 51 are Crohn's patient and rest are healthy. Samples were of German 

ancestry, cases were selected from 28 pedigrees of families with multiple cases of affected 

individuals, including 1 monozygous discordant twin pair. For this reason, some of these 

cases were obviously related. Controls instead, were unrelated healthy individuals. 

Exceptions were the unaffected parents of three cases and the unaffected twin of one 

case. Even in this case a clustering analysis (See Figure 13) followed by investigation of 

total number of non sequenced positions was performed (See Figure 14).  

2.2 Annovar 

ANNOVAR (ANNOtate VARiation)150 is a bioinformatics tool that allows annotation of 

high-throughput sequencing data. This tool consists of a command-line application that 

can be used on a standard PC or cluster platform that has Perl modules installed. Since 

2012, even a web server called wANNOVAR151 exists, providing a simple and intuitive 

interface to help users in the definition of the functional significance of variants identified 

in sequencing experiments. In the context of the Crohn’s disease challenge, the stand-

alone version of the tool was used to annotate the 111 exomes. To perform the 

annotation, many databases have to be previously downloaded on your local machine. An 

essential database for the annotation was certainly the RefSeqGene152 database that has 
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been crucial to identify genes positions. Thanks to the information present in the 

RefSeqGene database we have been able to identify for each variant, if it is intronic, 

exonic, intergenic, or present in the 5 '/ 3' UTR regions of the gene. Other crucial 

information has been retrieved from the 1000 Genomes Project (1kGP)153 database from 

which, information on the Minor Allele Frequency (MAF) of each variant was obtained. 

The efficiency of this software allow us to annotate the exomes of all the 111 individuals 

in about one hour of calculation using a Linux desktop computer, equipped with an AMD 

4300 series, quad core CPU (3.8 GHz) and 8 GB of RAM. 

2.3 PheGenI 

Among the available resources that allow access to data obtained by GWAS studies, we 

chose the PheGenI (Phenotype-Genotype Integrator)154 database. This resource 

integrates content from numerous NIH databases (National Institutes of Health), 

allowing access to more than 66,000 associations between nucleotide variants and 

phenotypic traits. Associations are derived from two databases: dbGaP155 a database 

containing data of studies investigating associations between genotypes and phenotypes, 

and the NHGRI GWAS Catalog156 which contains GWAS data derived from the literature. 

These data are integrated with information obtained from other databases such as 

dbSNP157, which collects information on SNPs, and the NCBI Gene database which 

contains gene names, chromosomal localization and protein products encoded by each 

gene154. 

Two kinds of queries can be carried out by mean of graphic interface: genotype and 

phenotype-oriented query. 

Phenotype-oriented queries exploits data in dbGaP and GWAS Catalog, variants are 

assigned to a specific phenotype using the Medical Subject Headings (MeSH)158 

categories. Genotype-oriented queries can be performed by searching for a specific gene, 

SNP, or chromosomal region, resulting with all associations identified with that specific 

target. 

2.4 STRING 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is a PPI database. 

This resource contains both direct interactions such as physical link between proteins, as 

well as indirect associations e.g. the ones derived by the fact that 2 proteins are involved 

in the same cellular process159. 
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This interaction database is constantly updated and to date it contains interactions 

between approximately 9.6 millions proteins belonging to 2031 different organisms160.  

Interaction data can be divided into three types, depending on how the interaction has 

been defined: interactions detected by direct PPI experiments, associations defined by 

the fact that proteins that are involved in the same metabolic or signaling process and de 

novo interactions predicted by means of computational techniques. Predicted 

interactions are defined in turns, in three different ways: text mining of scientific 

literature, predicted interactions based on shared genomic characteristics, and predicted 

interactions based on orthology relationships between organisms. As interaction data 

can be obtained in very different ways, a score representing data reliability is assigned to 

each interaction. For predicted interactions and associations obtained by mean of high 

throughput experiments, interaction score is assigned by comparing predicated data with 

data present in the KEGG database161, used as reference database for interactions. In 

particular, each association between 2 proteins that are assigned to the same metabolic 

or biochemical pathway in KEGG is defined as a true positive interaction. For the 

interactions defined by mean of low throughput experiments, associations in known 

protein complexes and manually curated metabolic pathways, the confidence score is 

assigned according to the source from which the information is derived162. 

 

2.5 KEGG 

The KEGG (Kyoto Encyclopedia of Genes and Genomes) is an on-line resource made up of 

numerous databases, developed to allow a systematic analysis of genes functions. The 

purpose of this database is to enable the understanding of the mechanisms underlying 

cells and organisms functions, focusing on genomic data163. 

Databases in KEGG can be categorized into three main categories. 

The catalog of all genes found in the genomes of fully sequenced organisms and some 

partially sequenced genomes is contained in the GENES164. In this database, each gene is 

defined by a specific identifier that allows links to orthologs present in other species. The 

second type of database contains information about chemical reactions that occur in the 

cell: the LIGAND database. This resource contains information about chemical 

compounds and relevant cell reactions. Among these chemical compounds is possible to 

find cellular metabolites, drugs, and other environmental compounds. In this database 
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chemical reactions are typically enzymatic reactions. Finally, the third type of database 

contains information on protein interaction networks, such as signaling pathways and 

protein complexes involved in various cellular processes. This type of information is 

present in the PATHWAY database. This database can be considered as an attempt to 

compute current knowledge on PPI networks by means of a representation based on the 

graph theory. Within this database, each cellular process is described by mean of a graph 

in which gene products (proteins) correspond to nodes of the network that could be 

connected by means of three types of connections. For metabolic processes, the 

connections define enzyme-enzyme relationships, in which two enzymes catalyze 

metabolic reactions occurring in succession along the same metabolic pathway. The 

second type of connection defines direct protein-protein interactions, such as binding 

between two proteins, phosphorylation and ubiquitination. The third type of connection 

are gene expression interactions that describe relationship between transcription factors 

and protein products. Graphs describing each cellular process are typically manually 

produced exploiting literature data. In addition, interaction networks are expanded by 

exploiting information derived from high throughput experiments, such as two-hybrid 

assays to infer protein interactions, microarray to infer relations between co-expressed 

genes, and comparing graphs describing same cellular process in different organisms. 

 

2.6 Prediction Strategy 

Prediction strategy was planned taking in strong consideration lessons learned from the 

previous iteration of this CAGI challenge.  

In the previous editions, our predictions were used to be based on different 

implementation of agglomerative clustering to uncovered hidden relationships between 

samples. To test if this kind of approach could be useful to achieve good prediction 

performance even in the last iteration of this challenge a clustering analysis followed by 

investigation of total number of non sequenced positions was performed over all the 

available datasets. For the CAGI 2 dataset a strong bias in samples distribution was 

identified, with most of the controls clustering together (See Figure 11). In addition it 

seems clear that a discrimination of patients based on the simple count of variants that 

did not match the reference genome could achieve great results (See Figure 12). In the 

case of CAGI 3 dataset, is possible to see that once again a substantial difference in 
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clustering between cases and controls (See Figure 13 and Figure 14). However this biased 

is reduced if compared with the CAGI 2 dataset and a substantially more homogeneity 

cold be observed among the cases. Considering this result we decided to focus only on 

the CAGI 3 datasets for analyses aimed to increase prediction performance for this last 

edition of the Crohn’s disease challenge. For the current CAGI 4 dataset, the analysis 

demonstrates that no trivial bias in data distribution (See Figure 15 and Figure 16). It has 

to be noted that this was the first time, among all the iteration of the Crohn’s disease 

challenge, where predictions cold be performed on a homogenous dataset.  

In this context, seemed clear that a strong reduction of prediction performance could be 

recorded if our clustering prediction approach would be tested in a homogenous dataset. 

For this reason a completely new strategy was designed to approach the CAGI 4 Crohn’s 

disease challenge. Prediction strategy for this last CAGI edition was based on a simple 

working hypothesis: the higher is the mutation burden for Crohn’s related variants, the 

higher should be the probability for an individual to be affected. This working hypothesis 

has 2 advantages respect to our previous prediction strategy. First, no explicit influence 

of population structure is assumed. In this way the presence of bias or batch effects 

should not affect our prediction performance. Second, as predictions will be based on a 

pre-defined set of variants related to Crohn’s disease, the biological background that 

guided our prediction would be clear, leading to a better comprehension of the molecular 

basis that triggered disease onset in affected patients.  
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Figure 11. Clustering of patients from the CAGI 2 Crohn’s disease 

challenge. Black and grey bars at the bottoms are representative of controls, red 
represents the cases. As it is possible to see, strong bias in samples distribution could 
be identified with most of the controls clustering together. 

 

 

Figure 12. Distribution of non sequenced positions in the CAGI 2 dataset. 
Black represents cases, green represent controls. Evident differences could be found 
between cases and controls, with most of the controls what could be clearly classified 
considering this feature. 
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Figure 13. Clustering of patients from the CAGI 3 Crohn’s disease 

challenge. Black represents controls, red represent cases. As it is possible to see even 
in this dataset strong bias in samples distribution could be identified. 

 

 

Figure 14. Distribution of non sequenced positions in the CAGI 3 dataset. 
Black represents cases, green represent controls. In this case only few individuals 
could be classified exploiting this feature. 
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Figure 15. Clustering of patients from the CAGI 4 Crohn’s disease 

challenge. No trivial dataset stratification could be found. 
 

 

 

Figure 16. Distribution of non sequenced positions in the CAGI 4 dataset. 
Unless for a little subset of individuals, no evident population stratification could be 
identified. Healthy control are in green, black is for affected individuals. 
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Predicting disease status of unknown individuals considering only exome data is a rather 

complex challenge. In each exome in fact, dozens of thousands of variants could be 

identified. In order to discriminate between healthy and affected patients, it is necessary 

to reduce the number of variants to be analyzed, eliminating neutral variability and 

focusing only on variants involved in the onset of the phenotype of interest. In this 

context, prediction strategy for CAGI 4 Crohn’s disease challenge was composed by three 

phases: annotation and first variants reduction, definition of genes involved in pathology 

and second variants reduction, and finally, discrimination of healthy and affected patients 

(See Figure 17). 

 

Figure 17. Representation of our prediction workflow. On the left side, the 

bottleneck figure represents the need to reduce the number of variants to be 

considered for phenotype prediction. On the left side the three steps that compose our 

prediction strategy are listed. 



111 

 

2.6.1 Annotation and first variants reduction 

Before starting with the analysis of the genetic data, a first annotation phase was 

performed. In this phase all variants have been mapped on the reference genome. For this 

purpose we decided to use the ANNOVAR151 annotation tool. 

Once the annotation of all variants present in exomes of the 111 individuals was 

completed, a first variant reduction phase was carried out. Thanks to this first filter, we 

started to reduce the amount of data to be analyzed for classification purpose. First, all 

variants that are less likely to influence human phenotypes have been removed. In this 

way, all synonym mutations has been sifted out, while all the mutations that caused non-

synonymous and frameshift variations has been retained. 

We further decide to eliminate also all common variants. This choice was based on the 

hypothesis that the major contribution to susceptibility for complex pathologies is due to 

mutations present at low frequency in the population24. Based on this consideration, we 

filtered out all variants with MAF >5%165 in the 1kGP project. 

Resuming this first phase, in order to reduce the number of variants to be analyzed, we 

sifted out all mutations that do not affect the amino acidic sequence, as well as all 

variations that, by their frequency, are less likely to be involved in a pathological 

phenotype. Thanks to this phase, variants to be considered for prediction purpose has 

been reduced by about one third, from 60 000 to less than 20 000 for each patient. 

 

2.6.2 Definition of variants involved in pathology onset 

and second variants reduction 
 

In this second phase our attention was focused on variants and genes that if mutated 

could increase the probability to be affected by Crohn’s disease. However, it is necessary 

to remember that the molecular etiology of this inflammatory disease has not be fully 

understood yet. For this reason, in order to consider all possible variants involved in the 

onset of this pathology, we decided to define three variants lists. In a first list we store 

all variants associated to the VEO forms of the pathology. A second list was made 

considering genes associated to the phenotype by means of GWAS studies. Last, a third 

list was made performing an expansion of the GWAS genes list, exploiting information 

retrieved from the PPI network. 
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Definition of a list of variants associated to the VEO forms 

of the pathology 

As already introduced, some particular forms of Crohn’s disease have a very early 

phenotypic manifestation. These forms are not only characterized by the precocious 

onset of the pathology, but also present a more severe manifestation and a reduced 

responsiveness to pharmacological treatments.  

Increasing evidences suggest a stronger genetic contribution to these forms of the 

pathology, respect to adult onset manifestations145. For this reason we decided to start 

the collection of variants to be used for phenotype prediction, looking for mutations 

associated to these severe forms of disease. As genetic investigation of VEO 

manifestations is still a young field of research, dedicated databases to automatically 

retrieve variants involved in this phenotype have not been identified. For this reason a 

manual curation of the recent scientific literature has been performed. In particular, we 

focus our attention on case reports and works were VEO variants have been detected by 

means of WES or WGS experiments. Thanks to this analysis we retrieved a list of 77 

variants associated to VEO manifestations of Crohn’s disease. In order avoid possible 

misinterpretation of variants position, only variants defined by a Reference SNP “rs” ID 

have been further considered. In this way only 48 mutations have been retained. Finally, 

only 20 of these variants were present in at least one individual in the CAGI 4 datasets, 

and have been considered for phenotype prediction (See Table 20).  
 

Variant ID Affected gene  Variant ID Affected gene 

     
rs41313262 IL23R  rs5743266 NOD2 
rs11209026 IL23R  rs2066842 NOD2 
rs2241880 ATG16L1  rs2066843 NOD2 
rs72553867 IRGM  rs2066844 NOD2 
rs10065172 IRGM  rs5743277 NOD2 
rs4252249 IL10RA  rs2066845 NOD2 
rs3135932 IL10RA  rs2303015 NDP52/CALCOCO2 
rs2228054 IL10RA  rs8178561 IL10RB 
rs2228055 IL10RA  rs1058867 IL10RB 
rs2229113 IL10RA  rs34688635 NOX1 

     
 

Table 20. Variants associated to VEO form of Crohn’s disease. Variants 
associated to VEO manifestation of the pathology retrieved by manual curation of 
the academic literature. 
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To investigate if these 20 variants could be useful to classify affected individuals and 

healthy controls, we defined the following working hypothesis: the highest is the 

mutation burden for these VEO SNPs, the earlier should be the onset of the pathology. To 

test this hypothesis we exploit exomes and onset ages retrieved from the CAGI 3 Crohn’s 

disease dataset. The Pearson correlation coefficient was calculated between the counts 

of VEO variants and the onset age for all the 66 individuals present in the dataset. A 

correlation of -0.37 was found to link mutation burden and onset age, confirming our 

working hypothesis and suggesting that these variants could be useful to distinguish 

healthy and affected patients. The presence of an only moderate correlation could be 

justified by the fact that a simple mutation count, could not account for the different 

impact of heterozygous and homozygous variants. In addition, due to the phenotype 

heterogeneity present in the CAGI 3 dataset, it is possible to imagine that these variants 

alone, could not be sufficient to correctly separate healthy and affected individuals. For 

this reason we expand this short list of variants, considering also variants identified in 

GWAS studies and information retrieve from PPI network.  

Definition of a list of genes associated to the pathology by 

means of GWAS studies  

The underlying hypothesis of a Genome Wide Association Study is that the presence of 

genetic polymorphisms could be related with an increased or decreased probability to 

develop a phenotypic trait. By means of these studies in fact, it is possible to define if some 

variants could predispose to the onset of a pathology or instead could have a protective 

role. 

Variants associated to Crohn’s disease by means of GWAS studies, have been retrieved 

from the PheGenI154 database. A phenotype-oriented query was performed according to 

the MeSH term "Crohn Disease". In this way a list of 138 variants associated to the 

phenotype of interest has been retrieved. We than focus our attention on the genes 

affected by these variants: some variants in fact, could affect the same gene, while others 

could fall in intergenic regions. In this second case, both the upstream and downstream 

genes have been considered. In this way, a list of 133 genes associated to Crohn's Disease 

was obtained (See Table 21). 
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Genes associated to Crohn’s disease - PheGenI 

      

 IL23R  RPL12P7  ALDH7A1P4 

 ATG16L1  RPL30P13  ZNF300 

 NOD2  FABP3P2  GSDMC 

 CARD9  PRDX5  PTPN2 

 DAB2  DNMT3A  IPMK 

 ZMIZ1  CDKAL1  IL10 

 PDGFB  ITLN1  CCL7 

 ZNF365  C11orf30  ADRA1B 

 C5orf56  C21orf33  CPEB4 

 GOT1  FASLG  FOXD1 

 SMAD3  MRPL11P2  MAMSTR 

 IRGM  RPS12P16  LIF 

 PVT1  RCL1  KIF21B 

 GPR65  IL2RA  FNDC1 

 PSMG2  PLCL1  3.8-1.5 

 MST1  PUS10  PRDM1 

 MRPS35P3  BACH2  ZFP36L1 

 NKX2-3  C7orf72  LRRK2 

 UBE2L3  TRIB1  TNFSF11 

 TNFSF15  ZPBP2  CCDC88B 

 ZGPAT  PER3  LRRC32 

 RPS14P1  B3GNT2  ICOSLG 

 THADA  SATB1  TNFSF18 

 SCAMP3  SLC22A23  NDFIP1 

 C13orf31  NRIP1  CUL2 

 CCL2  SLC43A3  JAK2 

 SP140  DENND1B  IKZF1 

 IL12B  SLC7A10  FAM84B 

 FGFR1OP  PTPN22  GSDMB 

 TYK2  SLCO6A1  TMEM17 

 IL18RAP  C8orf84  KCNH8 

 BOD1  FAM5C  CYCSP42 

 TMEM174  TCERG1L  RTN4RL2 

 STAT3  BSN  CEBPA 

 FUT2  IL3  PAM 

 RPS3AP51  PSMB10  RGS18 

 C1orf81  FLJ45139  FLJ46300 

 TAGAP  HLA-DQB1  CSF2 

 C11orf10  SLC22A5  RPL23AP12 

 CLN3  NELL1  HLA-DQA2 

 GCKR  CNTNAP2  RPL32P17 

 ERAP2  C10orf67  OTUD1 

 C5orf62  KLF6  AKR1E2 

 IFITM4P  PTGER4   

 RPL35P3  RPL3   
 

Table 21. Genes associated to Crohn’s disease. Genes associated 
to Crohn’s disease by means of GWAS studies. Data have been retrieved 
from the PheGenI database. 
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Unfortunately, it is well established that these genes are not sufficient to explain the 

entire inheritance of this inflammatory pathology. Recent studies demonstrate that the 

71 genes with the highest association score are able to explain only 21.5% of the Crohn's 

disease estimated inheritability166. In addition, lessons learned from the previous edition 

of this challenge suggest that even these genes, alone, are not sufficient to clearly separate 

affected and healthy individuals. In order to effectively identify the phenotype of the 

unknown individuals, we decided to further expand this gene list exploiting the PPI 

network. 

Expansion of the candidate genes list, exploiting the PPI 

network 

In order to increase our ability to discriminate healthy and affected patients, we 

expanded the list of 133 genes obtained from PheGenI database, considering the 

interaction partners of proteins associated to Crohn's disease. It is well established in 

fact, that mutated proteins could produce perturbations of the PPI network, triggering 

disease onset. In several cases have been demonstrated that proteins involved in diseases 

could interact directly with each other or through common interactors167. Our aim was to 

identify these interactors and consider them as potential candidates, involved in Crohn's 

disease onset. The strategy used to expand the list of genes associated to the pathology 

was based on two steps. 

First, exploiting the STRING database, we tried to define an interaction distance that 

could separates random interactors and interactors potentially involved in the pathology. 

To this aim, we tested if the proteins coded by genes associated to Crohn's disease are 

closer than random within the PPI network, assuming the existence of a cluster of genes 

involved in the onset of the disease. 

Second, using the KEGG database, we expanded the list of candidate genes associated to 

the pathology considering the threshold distance defined in the previous analysis. 
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Definition of an interaction distance to separates Crohn’s genes 

and random interactors in the STRING database  

To expand the list of candidate genes, we initially used the STRING database159. This 

database was chosen as the number of interactions present in this resource is extremely 

high. Due to the presence of both validated and predicted interactions, crucial, is the 

presence of a confidence score representing edges reliability.  

As STRING is a protein-protein interaction database, we first identified proteins encoded 

by the 133 genes associated to Crohn's disease. To this aim, we exploited a STING 

mapping sub-database, which allowed us to link each gene to the encoded proteins. 

Thanks to this resource we identified 155 proteins. Of these, only 151 were present in the 

STRING PPI network. 

We then tested if these proteins, are actually "closer" than random interactors, assuming 

the involvement of Crohn’s associated proteins in a small subset of cellular process. 

Manipulations and analysis of interaction data has been performed by means of several 

R packages. 

Initially, the STRING human interaction network was imported and converted in a graph 

object using the igraph package. In this way, a direct graph consisting of 20 136 proteins 

connected by 4 442 852 edges was obtained. 

In order to verify our working hypothesis, the distribution of shortest paths between the 

Crohn’s associated proteins and a random set proteins was compared. The first 

distribution was obtained by computing the minimum distance between all possible 

couples of the 151 associated proteins. Distribution of shortest path between random 

proteins, instead, was obtained calculating the minimum distance between 10 000 

couples of proteins randomly selected within the network. 

The shortest paths have been calculated exploiting the shortest.paths function of the 

igraph package (Dijkstra algorithm). 

Comparison of the two distributions confirmed our working hypothesis that proteins 

associated to the disease are closer than random, forming a cluster inside the PPI network 

(Wilcoxon-Mann-Whitney test, p-value < 0.01) 

We than tried to define an interaction distance that will allow us to distinguish a random 

interactor from an interactor present within this cluster. To this aim, the mean of the 

shortest paths connecting the couples of pathogenic proteins, and the mean of the 
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shortest paths that connecting the couples of random proteins have been compared. The 

two mean values were respectively: 2.18 and 2.48.  

To further confirm our hypothesis we than verified if these findings were artifacts caused 

by the presence of a high number of low-confidence connections, or due to the presence 

of proteins with a very high degree. In particular, it is possible that low-confidence edges, 

derived from predicted interactions and high-throughput experiments could be false 

positive. On the other hand, proteins with an extremely high degree, such as ubiquitin, 

could bias our analysis as, most of the shortest paths could be of length 2 (e.g. protein A-

ubiquitin-protein B). To exclude these problems, our analysis has been repeated, 

removing from the network connections and nodes, considering different threshold of 

confidence scores and degree. For most of the thresholds, results of the comparison 

between the shortest paths distributions were in agreement with our working hypothesis 

(See Table 22) 

It has to be noted that in some rare cases the two distributions are not significantly 

different. However, it has to be consider that these situations are limited to the 

combinations of very high thresholds, reflecting a dramatic resizing of the PPI network 

(See Table 22). 

Resuming this part we can state that: 

1. analyzing differences between the shortest path distributions (See Table 22, 

column 5), the hypothesis that proteins involved in Crohn's disease are "closer" 

respect to random interactors has been confirmed. 

2. analyzing the average values of the two distributions (See Table CR 22, columns 

3 and 4), we can conservatively define that an interaction distance that can be 

used to distinguish between interactors within the Crohn cluster and random 

interactors, is equal to one step (a direct interaction).  

Considering these results only direct interactors of genes associated to Crohn's disease 

will be considered to expand the list of candidate genes.
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Definition of new candidate genes in the KEGG database  

Confirmed that genes associated to Crohn's disease are involved in a kind of “cellular 

module” and defined the threshold distance characterizing interactors present within 

this cluster, we expanded the list of candidate genes involved in the disease. 

To select these new putative genes we used the KEGG163 database. We decided to focus 

on this resource because interactions, even if less in number respect to STRING database, 

are more reliable thanks to the manual curation process. 

Using the KEGGREST package we searched for the 133 genes involved in Crohn's disease, 

inside the 281 human cellular processes (KEGG PATHWAYS sub-database). 16 cellular 

processes contained at least 5 (arbitrarily threshold) genes involved in Crohn's disease. 

These pathways have been merged in single graph considered only nodes representing 

genes and removing from the network all nodes that represent chemical compounds or 

links to other pathways. 

A final network composed by 1 298 genes and 8 041 edges was created. 

Within this graph we select all the direct interactors of genes involved in Crohn's disease, 

obtaining a list of 210 new candidate genes (See Figure 18 and Table 23). 

At this point, the list of 20 variants associated to VEO forms of the pathology, the 133 

genes retrieved from PheGenI and the 210 putative genes identified thanks to network 

expansion were used to further filter the exomes of the 111 individual. Thanks to this 

second phase of variants reduction, it was possible to reduce the number of mutations to 

be considered for phenotype prediction from around 20 000 to less 50 per patient. 
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Figure 18. Selection of candidate genes in the KEGG network. Image 

representing the custom network created by the combination of 16 KEGG pathways. 

Highlighted nodes represent GWAS associated genes and their direct interactors. 
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Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

IL12RB1 9 
CSF2 IL3 IL10 IL12B 

JAK2 LIF STAT3 TYK2 
IL18RAP 

IL21R 8 
CSF2 IL3 IL10 IL12B 

JAK2 LIF STAT3 TYK2 

IL12RB2 8 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 
IL18RAP 

CSF3R 8 
CEBPA CSF2 IL3 IL10 
IL12B JAK2 LIF TYK2 

IL20RB 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL10RB 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL22RA1 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL2RG 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL2RB 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

CSF2RB 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

LIFR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL6ST 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IFNLR1 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL22RA2 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL20RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL10RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IFNGR2 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IFNGR1 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IFNAR2 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IFNAR1 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

MPL 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

PRLR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

GHR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

EPOR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

CRLF2 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL7R 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL15RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL9R 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL4R 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL5RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL3RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

CSF2RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL13RA1 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

LEPR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

CNTFR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

OSMR 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL11RA 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL6R 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

IL13RA2 7 
CSF2 IL3 IL10 IL12B 

JAK2 LIF TYK2 

IL6 5 
CEBPA IL23R IL2RA 

JAK2 STAT3 

SOCS4 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

SOCS7 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

SOCS1 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

SOCS2 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

SOCS3 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

SOCS5 5 
IL23R IL2RA JAK2 

STAT3 TYK2 

PTPN6 4 
IL23R IL2RA JAK2 

TYK2 

CBLC 4 
IL23R IL2RA JAK2 

TYK2 

CBL 4 
IL23R IL2RA JAK2 

TYK2 

CBLB 4 
IL23R IL2RA JAK2 

TYK2 

JAK1 4 
IL23R IL2RA IL3 

STAT3 

JAK3 4 
IL23R IL2RA IL3 

STAT3 

IL4 3 IL23R IL2RA JAK2 

IFNB1 3 IL23R IL2RA JAK2 

IFNA1 3 IL23R IL2RA JAK2 

IFNA2 3 IL23R IL2RA JAK2 

IFNA4 3 IL23R IL2RA JAK2 

IFNA5 3 IL23R IL2RA JAK2 

IFNA6 3 IL23R IL2RA JAK2 

IFNA7 3 IL23R IL2RA JAK2 

IFNA8 3 IL23R IL2RA JAK2 

IFNA10 3 IL23R IL2RA JAK2 

IFNA13 3 IL23R IL2RA JAK2 

IFNA14 3 IL23R IL2RA JAK2 

IFNA16 3 IL23R IL2RA JAK2 

IFNA17 3 IL23R IL2RA JAK2 

IFNA21 3 IL23R IL2RA JAK2 

PRL 3 IL23R IL2RA JAK2 

GH2 3 IL23R IL2RA JAK2 

CSH1 3 IL23R IL2RA JAK2 

EPO 3   IL23R IL2RA JAK2 

IL21 3 IL23R IL2RA STAT3 

IL7 3 IL23R IL2RA JAK2 

IL2 3 IL23R IL2RA JAK2 

CSF3 3 IL23R IL2RA JAK2 

OSM 3 IL23R IL2RA JAK2 

CSH2 3 IL23R IL2RA JAK2 
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Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

CSH2 3 IL23R IL2RA JAK2 

NFKB1 3 
IL12B CARD9 

IL18RAP 

RELA 3 
IL12B CARD9 

IL18RAP 

PIK3R5 3 IL2RA JAK2 TYK2 

PIK3CA 3 IL2RA JAK2 TYK2 

PIK3CB 3 IL2RA JAK2 TYK2 

PIK3CD 3 IL2RA JAK2 TYK2 

PIK3CG 3 IL2RA JAK2 TYK2 

PIK3R1 3 IL2RA JAK2 TYK2 

PIK3R2 3 IL2RA JAK2 TYK2 

PIK3R3 3 IL2RA JAK2 TYK2 

STAT6 3 IL10 JAK2 TYK2 

IL26 2 IL23R IL2RA 

IFNL1 2 IL23R IL2RA 

IFNL3 2 IL23R IL2RA 

IFNL2 2 IL23R IL2RA 

IL22 2 IL23R IL2RA 

IL24 2 IL23R IL2RA 

IL20 2 IL23R IL2RA 

IL19 2 IL23R IL2RA 

IFNG 2 IL23R IL2RA 

IFNE 2 IL23R IL2RA 

IFNK 2 IL23R IL2RA 

IFNW1 2 IL23R IL2RA 

TPO 2 IL23R IL2RA 

TSLP 2 IL23R IL2RA 

IL15 2 IL23R IL2RA 

IL9 2 IL23R IL2RA 

IL5 2 IL23R IL2RA 

IL23A 2 IL23R IL2RA 

IL12A 2 IL23R IL2RA 

IL13 2 IL23R IL2RA 

LEP 2 IL23R IL2RA 

CTF1 2 IL23R IL2RA 

CLCF1 2 IL23R IL2RA 

CNTF 2 IL23R IL2RA 

IL11 2 IL23R IL2RA 

EPAS1 2 PDGFB CUL2 

HIF1A 2 PDGFB CUL2 

CREBBP 2 SMAD3 STAT3 

Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

EP300 2 SMAD3 STAT3 

CCR2 2 CCL2 CCL7 

PTPN11 2 JAK2 TYK2 

STAT1 2 JAK2 TYK2 

STAT2 2 JAK2 TYK2 

STAT4 2 JAK2 TYK2 

STAT5A 2 JAK2 TYK2 

STAT5B 2 JAK2 TYK2 

STAM2 2 JAK2 TYK2 

STAM 2 JAK2 TYK2 

MYC 2 CEBPA STAT3 

RFX5 2 
HLA-DQA2 HLA-

DQB1 

RFXAP 2 
HLA-DQA2 HLA-

DQB1 

RFXANK 2 
HLA-DQA2 HLA-

DQB1 

CREB1 2 
HLA-DQA2 HLA-

DQB1 

NFYA 2 
HLA-DQA2 HLA-

DQB1 

NFYB 2 
HLA-DQA2 HLA-

DQB1 

NFYC 2 
HLA-DQA2 HLA-

DQB1 

RIPK2 1 NOD2 

SYK 1 CARD9 

KIT 1 PDGFB 

CSF1R 1 PDGFB 

EGFR 1 PDGFB 

MET 1 PDGFB 

FLT4 1 PDGFB 

KDR 1 PDGFB 

FLT1 1 PDGFB 

PDGFRB 1 PDGFB 

PDGFRA 1 PDGFB 

NGFR 1 PDGFB 

IGF1R 1 PDGFB 

FGFR1 1 PDGFB 

FGFR3 1 PDGFB 

FGFR2 1 PDGFB 

EPHA2 1 PDGFB 

FGFR4 1 PDGFB 

INSR 1 PDGFB 

TEK 1 PDGFB 

TGFBR1 1 SMAD3 

TGFBR2 1 SMAD3 
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Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

TGFB3 1 SMAD3 

TGFB2 1 SMAD3 

TGFB1 1 SMAD3 

MAPK1 1 IL12B 

MAPK3 1 IL12B 

MAPK8 1 IL12B 

MAPK9 1 IL12B 

MAPK10 1 IL12B 

MAPK14 1 IL12B 

MAPK11 1 IL12B 

MAPK13 1 IL12B 

MAPK12 1 IL12B 

FCGR2B 1 IL12B 

IL18 1 IL18RAP 

JUN 1 IL18RAP 

FIGF 1 STAT3 

VEGFC 1 STAT3 

VEGFA 1 STAT3 

VEGFB 1 STAT3 

CCND1 1 STAT3 

CCND2 1 STAT3 

CCND3 1 STAT3 

CISH 1 STAT3 

PIM1 1 STAT3 

IRF9 1 STAT3 

PIAS3 1 STAT3 

PIAS4 1 STAT3 

PIAS1 1 STAT3 

PIAS2 1 STAT3 

RORC 1 STAT3 

RORA 1 STAT3 

PGF 1 STAT3 

FAS 1 FASLG 

TNFRSF6B 1 FASLG 

FOXO3 1 FASLG 

NOS2 1 IL10 

PLA2R1 1 IL10 

MRC1 1 IL10 

MRC2 1 IL10 

CLEC4M 1 IL10 

Candidate 
gene 

n° of 
GWAS 

interactors 

GWAS 
interactors 

CD209 1 IL10 

CCR1 1 CCL7 

TNFRSF11A 1 TNFSF11 

TNFRSF11B 1 TNFSF11 

TNFRSF18 1 TNFSF18 

E2F1 1 CEBPA 

E2F2 1 CEBPA 

E2F3 1 CEBPA 

RUNX1 1 CEBPA 

RUNX1T1 1 CEBPA 

SLC2A1 1 SMAD3 

SMAD4 1 SMAD3 

 

Table 23. Candidate genes derived 

from the analysis of the PPI 

network. Direct interactors of GWAS 
genes in the KEGG network have been 
considered like candidate genes involved 
in Crohn’s disease onset. For each 
candidate gene, the GWAS interactors are 
reported. 
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2.6.3 Matching of patients phenotype 

After the application of our 2 steps-protocol of variants reduction, we moved to the 

definition of disease risk scores for the 111 individuals. As already introduced, our 

working hypothesis for this edition of the Crohn’s disease challenge was based on the 

following assumption: the higher is the mutation burden for Crohn’s related variants, the 

higher should be the probability for an individual to be affected. This hypothesis was 

already partially confirmed by the presence of a moderate negative correlation between 

mutation burden for VEO SNPs and onset age, in the CAGI 3 dataset. A maximum of 6 

prediction could be submitted to the assessors. For this reason, we decided to slightly 

differentiate our predictions considering different sets of weight for each category of 

variants. In particular, in the first three submissions, higher scores have been assigned to 

VEO SNPs respect to mutations present in the other lists of variants. In addition, scores 

for heterozygous and homozygous variants have been differentiated trying to maximize 

prediction performance in the CAGI 3 dataset. In the second set of three predictions 

instead, weights assigned to the three set of variants were more homogeneous. Also in 

these last three submissions, scores for heterozygous and homozygous variants have 

been differentiated maximizing prediction performance in the CAGI 3 dataset.  

3 Performance assessment and conclusions 
 

3.1 Performance assessment and comparison with other 

participants 
 

Performance assessment of methods predicting complex phenotypes is a rather complex 

task. Simple accuracy, calculated by setting a fixed threshold for prediction (e.g. at 0.5), 

neither supports the goals of CAGI nor is it representative of a clinically relevant scenario. 

Datasets from CAGI are derived from case-control studies, as well as pedigree studies in 

families with a strong history of disease, and so, not representing a random sampling of 

the population. The definition of a fixed threshold for evaluation, and the report of a basic 

accuracy score in such datasets, would obscure results interpretation. The use of Receiver 

Operator Characteristics (ROC) curves for genomic test evaluation has been investigated 

in several studies168. ROC offers many advantages for the evaluation of clinical tests. The 

shape of a ROC curve can help differentiate between highly sensitive tests, which could 
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rule in a possible diagnosis, and highly specific tests. The prediction of Crohn’s disease 

status from sequencing data might be used in either of those situations depending on 

clinical manifestations, risk factors, or stage of patient evaluation. Additionally, ROC 

curves allow easy selection of a classification threshold (based on selecting a position on 

the curve).  

Assessors evaluated also the robustness of prediction accuracy making predictions on 

different subsamples of exomes and assessed the confidence intervals reported by the 

participants. To capture confidence intervals on the predictions, multiple samples with 

replacement were selected. Each prediction was then modified by adding a random 

amount taken from a normal distribution with a mean of zero and a standard deviation 

equivalent to the standard deviation reported for the original prediction. The average 

area under the ROC curves from the bootstrap sampling was used, accompanied by the 

bootstrapped confidence interval, to estimate the robustness of differences between 

prediction performances.  

Finally a cross-validated logistic regression based meta-classifier was trained on the 

submissions for this challenge. This step allowed the assessor to identify whether 

combining the features selected across the different groups would improve prediction 

performance over a single method.  

As expected performance of prediction methods dropped from previous CAGI iterations 

with an Area Under the Curve (AUC) of 0.72 for the best performer169. The top approach 

used a compiled list of genes associated with Crohn’s disease. Imputation was used to 

evaluate risk contribution from known regions associated with Crohn’s disease but not 

covered by exome sequencing. Finally the Welcome Trust Case Control Consortium 

(WTCCC) Crohn’s disease genotyping array data were used to train the disease classifier. 

Regarding our submissions, overall good results have been achieved, with a maximum 

AUC of 0.609 (See Figure 19). Considering this result we ranked fourth among all the 

groups, confirming the good track record of our laboratory in this challenge. Definitely, 

an evident reduction of performance characterized our participation in this last edition 

of the Crohn’s disease challenge. In addition, considering the range of AUCs achieved by 

our submissions (AUCmin 0.587 - AUCmax 0.609), seems clear that the strategy used to 

differentiate our predictions has to be completely redefined.  
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Figure 19. Performance assessment of CAGI 4 Crohn’s disease challenge. The 

first column shows a scatterplot of predictions, with the sample number as the abscissa 

and the predicted value as the ordinate. Affected samples are shown in red, health 

individuals are black. The second column shows the same thing as the first, but with the 

predictions rank ordered. The third column shows the ROC curve for the predictions, and 

AUC is reported above the plot. The fourth column shows the ROC again, but with 

confidence intervals derived from bootstrap sampling with replacement over the 

submitted values. Modified from169. 

 

Figure 20. Matched and mismatched individuals, sorted by disease risk 

score. Submission 63, samples are ordered by disease risk score (magnification from 

Figure CR9). Affected individuals are marked in red, healthy samples are blue. As it 

possible to see on the right side, all patients with an extreme score are effectively 

affected. 

 

However, analyzing our best submission, an interesting pattern could be identified. 

Focusing on the right tail of the risk scores distribution, all the patients with an extremely 

high risk score, were effectively affected by Crohn’s disease (See Figure 20), suggesting 

that the right signal was caught by our method. This long tail of 14 matched individuals 
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(with only one exception) than reached a plateau, interrupted by the presence of a block 

of 10 mismatched individuals, and finally it starts again with another series of 8 matched 

affected individuals. Interesting is also the fact that all the 10 mismatched individuals 

present substantially the same disease risk score, underlining the fact that probably all 

these individuals present a shared pattern of mutations.  

The understanding of this phenomenon could be useful to improve our prediction 

performance in the next edition of the Crohn’s disease challenge. For this reason an a 

posteriori investigation of variants carried by these individuals was performed. Our 

attention was particularly focused on VEO SNPs (See Figure 21). Surprisingly these 

individuals presented a considerable number of variants involved in the precocious onset 

of the pathology. Almost all these healthy individuals, presented one or more 

heterozygous variants affecting the NOD2 gene, together with at least one homozygous 

mutation in one of the two subunits of the interleukin 10 receptor (IL10RA, IL10RB) 

genes or in the ATG16L1 gene. Particularly interesting are the S091, S087, S81 

mismatched individuals, which in addition to the several heterozygous VEO variants in 

the NOD2 gene, presented an homozygous variants for each of the three other genes 

(IL10RA, IL10RB, ATG16L1).  

 

Figure 21. Heatmap of VEO variants found in healthy individuals with high 

disease risk score. VEO variants found in the exomes of healthy individuals with a 
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high predicted risk score. Homozygous variants are represented in red, in yellow are 

heterozygous mutations. In green are wild-type positions. 

 

Several hypothesis could be formulated to explain this situation of healthy individuals 

with such a high mutation burden.  

One first hypothesis is based on the analysis and interpretation of the genotype data. As 

already anticipated most of these healthy patients presented at least three heterozygous 

variants affecting the NOD2 gene. Unfortunately, as typical of NGS data, no phasing 

information could be inferred from the .vcf file. In this way, the identification of cases of 

composed heterozygosis is impossible.  

It is possible in fact, that all of these variants could be inherited from one of the two 

parents, defining a situation where only one of the two copy of the gene is defective.  

Another possible explanation for these mismatched prediction, is related with the 

interpretation of the clinical significance of the NOD2 variants. As already presented, 

these variants have been manually selected from papers investigating the genetic 

background of the VEO forms of Crohn’s disease, focusing on case reports and WES 

studies. However, the investigation of the molecular background of these severe 

manifestations is still an open field of research. Several months after the conclusion of the 

Crohn’s disease challenge, the NOD2 variants selected for prediction purpose, have been 

annotated like benign in the Clinvar85 database. Some doubts could be raised for this 

classification as it seems that the benign tag for these variants comes from a kind of 

automatic annotation based on variant features like, the presence in other databases, 

results of pathogenicity predictors and frequency in the population. Despite these 

considerations on the annotation methods, seems clear than the definition of variants 

useful for prediction purpose is still far away from being a solved problem.  

Other considerations cold be raised to explain the presence of such row of healthy 

individuals with a high risk score. From the analysis of Figure 21 it is clear that these 

patients present a compromised genetic background for genes involved in the onset and 

regulation of the inflammatory process. Unfortunately, no phenotypic information, others 

than disease status for Crohn’s disease, have been released by data provider. This lack of 

complete phenotype description is a crucial limit of CAGI challenges where complex 

phenotype have to be predicted. It is well established in fact, that for most complex traits, 

the phenotype distribution could be described by a Gaussian curve. In this way the 
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classification of individuals in only two classes, healthy - affected, could not be sufficient 

to describe the spectrum of possible clinical manifestations. In our case, interesting 

would be the possibility to know if the healthy individuals with a predicted high risk 

score, are in reality affected by other auto inflammatory diseases like one among the 

typical extra intestinal manifestations associated with Crohn’s disease. Another 

interesting information that could help to better explain these mismatched predictions, 

is the presence of family within the dataset. It is possible in fact, that these individuals 

could be parents of affected individuals. Unfortunately, without a deeper phenotypic 

characterization of cases and controls, none of the above hypothesis can be confirmed.  

Regarding other groups, a plethora of different methods have been used to perform 

predictions. Several strategies have been used for variants selection, highlighting the 

many different approaches to building a Crohn’s disease classifier. Similar to our 

approach, many groups used variants previously found to be associated in GWAS studies; 

the NHGRI catalog was a popular choice to identify these associated variants170. Other 

approaches relied on gene lists of associated and “predicted” Crohn’s disease genes. Other 

examples include the usage of tools like Phenolyzer171, the creation of gene lists based on 

GO pathways enriched with Crohn disease associated variants and the use of natural 

language processing to identify genes of interest from Pubmed abstracts171,172. In 

addition, some groups used population level frequency data to help distinguish variants 

more likely to be pathogenic. Other methods relied on pathogenicity prediction tools such 

as SNAP, PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant selection and 

weighting 173–176 . A range of machine learning approaches were used to build the 

classifiers, such as naïve Bayes, logistic regression, neural networks, and random forests. 

Additionally, some groups purposed metaclassifiers based on combinations of methods 

used in previous editions of these challenge. 

Finally, a metaclassifier was created by the assessors using all the submitted predictions 

for this challenge. The combination of features selected by predictors produced an 

improvement of prediction performance over the top method, with AUC of 0.78 achieved 

by the metaclassifier169. 
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3.2 Conclusions 

Disease risk prediction from genetic data is still one of the biggest missed promises of the 

NGS-era. The Critical Assessment of Genome Interpretation is a community experiment, 

which aims to define the state of the art for phenotype prediction through a series of 

challenges with data coming from unpublished WES and targeted enrichment sequencing 

studies. For CAGI 4 (2016), three challenges proposed the use of exome sequencing data: 

warfarin dosing, bipolar disorder and Crohn’s disease. The Crohn’s disease challenge has 

been part of other two previous iterations of the CAGI experiment, giving the possibility 

to assess the evolution of methods predicting complex phenotypic traits over the last six 

years. The several iterations of this challenge gave also the possibility to understand how 

caveats in genetic data generation and processing could affect prediction performance. 

In addition, challenge assessments raised questions about how to correctly evaluate 

methods predicting disease risk score from genotype data. For these reasons, the Crohn’s 

disease challenge represents the best story of success of the CAGI experiment, pushing 

forward the field of genomic interpretation.  

Our group participated to all the previous editions of these challenge, always achieving 

remarkable results. Best results have been obtained using different implementations of 

agglomerative clustering, which allowed us to discover hidden relationships between the 

unknown individuals.  

Unfortunately, both in CAGI 2 and CAGI 3 evident bias in sample distribution have been 

found by challenge assessors. In the first iteration of this challenge a strong batch effect 

was discovered as consequence of sample preparation and sequencing. In the second 

edition, a great effort was made to avoid bias in data processing. In this case, samples 

were collected from German families characterized by strong history of Crohn's disease. 

Additional healthy controls were selected always among the German population, in order 

to avoid the presence of population structure in the dataset. Unfortunately, even in this 

case, challenge assessors revealed that affected individuals from different families 

clustered much more closely with other affected patients. In both the iterations of this 

challenge, predictors were not aware that such bias in the datasets could be used to 

achieve great prediction performance. Nevertheless it is not unlikely that several 

methods could have accidentally exploited such dataset structure, achieving great results. 
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For the first and second iteration of the Crohn’s disease challenge, amazing prediction 

performance have been recorded: AUC 0.92 and AUC 0.87 respectively. 

Nevertheless it is more likely that the problem of predicting Crohn’s disease status from 

exome data was far away from being solved. Last iteration of the Crohn’s disease 

challenge has been a kind of testing ground to understand if great results achieved in 

2011 and 2013 represent the real capacity of differentiate healthy and affected 

individuals. The 2016 dataset was composed by 111 individuals with 64 Crohn's disease 

patients and 47 healthy controls, all taken from the German population.  

Our investigation started with a clustering analysis aimed to detect the presence of 

possible bias in the dataset. An analysis of the distribution of non sequenced variants was 

even performed as this feature was helpful to reveal the presence of batch effects in 

previous datasets. These analyses revealed that in the 2016 dataset, clear separation of 

cases and controls based on genetic structure was not present, suggesting that problems 

with batch effects and sampling bias were no longer present. Dealing with a such 

unbiased dataset required a complete redefinition of our prediction strategy. Our old 

approach, based on the identification of hidden relationship between samples in fact, 

would be less effective to identify affected individuals in a homogeneous dataset. The new 

strategy defined to approach the 2016 edition of this challenge was based on the 

hypothesis that individuals with the highest mutation burden, for variants involved in 

Crohn’s disease, would be the one with the highest probability to be affected. On the base 

of this working hypothesis, a two step prediction approach has been defined. First, a great 

effort was made to define variants that are more likely to increase probability to be 

affected by Crohn’s disease. To this aim, all common and synonymous variants have been 

sifted out from our analysis, considering this variants less likely to be involved in the 

onset of a pathogenic phenotype. We than focus our attention on the definition of lists of 

variants involved in the onset of the pathology. To this aim three list of variants have been 

defined. A manual curation of the academic literature lead to the definition of a short list 

of mutations associated with the very early onset forms of the disease. A second list was 

defined considering genes associated to the pathology by means of GWAS studies. In the 

end, trying to address the problem of missing heritability, we expanded the list of GWAS 

genes exploiting information extracted from the PPI network.  

Interesting is to highlight the wide variety of methods used by other groups trying to 

identify variants useful for prediction purpose. Similar to our approach, many groups 
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used variants associated to the pathology by means of GWAS studies, other group created 

gene lists based on GO pathways, enriched with Crohn disease associated variants. Some 

other groups used variants frequency to identify pathogenic variants or pathogenicity 

prediction tools such as SNAP, PON-P2, SNPs&GO, and Variant Effect Predictor to guide 

variant selection and weighting. Considering the wide spectrum of methods used by the 

different group, is clear that the definition of variant involved in the disease is a problem 

that is still far away from being solved. This problem was even more clear considering 

that the clinical significance of some variants associated with the VEO forms of the 

pathology, in less than one year from the prediction season, changed their status to 

benign variants associated to the pathology. From this situation is clear that the great 

effort provided in the classification of variants collected in databases like Clinvar, 

HGMD85,177, has to be further improved to allow the achievement of better prediction 

performance. 

The second step of our prediction strategy was the scoring of variants present in the 

exomes, to define a personalized disease score. To this aim, critical was the usage of 

genetic data coming from the previous editions as training set. Unfortunately, as already 

anticipated, the 2011 dataset was useless for this purpose as strong batch effects could 

affect the training of our method. In addition, population structure was present also in 

the 2013 dataset. In this context we decided to avoid usage of machine learning or SVM 

algorithms, being aware that these methods could learn more about dataset bias than 

useful differences between healthy and affected individuals. It was clear that the 2016 

editions of Crohn disease challenge suffers the absence of a good training set. This 

weakness is even more clear considering that the top performing group exploited a 

different dataset coming from the WTCCC project, to train its method. 

However, considering the elimination of biases in the 2016 dataset, this incarnation of 

the Crohn’s disease challenge is likely to be the best reflection of how the prediction 

methods perform. In this edition an expected drop of prediction performance has been 

registered, with the best performing method achieving an AUC of 0.72. Good results have 

been even achieved by our method with an AUC of 0.609, registering anyway a strong 

performance reduction respect to previous editions. Interesting of our best performing 

submission is the fact the all the 14 individuals with the highest risk disease score were 

effectively affected by Crohn’s disease. A series of 10 healthy individuals with mostly the 

same risk disease score than interrupt the row of right predictions. An investigation of 
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the genetic background of these individuals revealed that most of them present several 

mutations associated to the VEO forms of the pathology. A further phenotypic 

characterization would be useful to understand reasons behind these mismatched 

predictions.  

Despite limitations, the three iterations of the Crohn’s disease challenge, has been the 

biggest story of success of the CAGI experiment so far. Not so much for performance 

achieved by predictors, but for lessons learned both by predictors, assessors and data 

providers, reflecting the real purpose of this community experiment. Even if the road to 

translate phenotype prediction of complex traits in clinical practice is still long, seems 

clear that we are moving in the right direction. 
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BOOGIE 2: Predict blood groups from high 

throughput sequencing data 

1 Introduction 
 

Blood groups are a classification of blood based on the presence or absence of inherited 

antigenic substances on the surface of Red Blood Cells (RBCs) and on the presence 

antibodies freely running into the blood flow. Before the 1900s, it was thought that all 

blood was the same, a misunderstanding that led to frequently fatal transfusions of blood 

between people and hazardous transfusions of animal blood into humans. Over the time, 

our understanding on blood groups has evolved to encompass not only transfusion-

related problems but also specific disease association with RBC surface antigens. Blood 

group antigens are either sugars or proteins, and in most of the cases they are attached 

to various components of the RBCs membrane. Antigens of the ABO blood group for 

example are sugars. They are produced by a series of reactions in which enzymes catalyze 

the transfer of sugar units. In this case, person's DNA determines the type of enzymes 

they have, and, therefore, the type of sugar antigens that end up on their red blood cells. 

In contrast, the antigens of the Rh blood group are proteins. A person's DNA holds the 

information for producing the protein antigens. The RhD gene encodes the D antigen, 

which is a large protein on the RBCs membrane. Some people have a version of the gene 

that does not produce D antigen, and therefore the RhD protein is absent from their red 

RBCs. Blood phenotype is long known to be dependent on the sole genotype. Inheritance 

is mostly Mendelian with only few exceptionalities reported so far178. Other than the most 

studied “major blood groups” ABO and RhD, at present more than thirty blood groups 

have been documented in literature179. Like for ABO and RhD, these “minor blood groups” 

could be defined by their carbohydrate structures on RBCs (H, P1Pk, I, GLOB); 23 are 

characterized by the protein sequence of the RBCs membrane protein, while two are 

obtained from the plasma (LE, CH⁄RG). Regarding the function of the proteins 
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responsible for blood group definition, some are expressed at higher levels and function 

as membrane transporters, whereas the functional importance of other antigens has not 

been well defined yet. Proposed functions of other antigens are: receptors involved in 

ligand signaling, enzymes, and protein/carbohydrates involved in glycocalyx 

formation180 (See Table 24).  

Blood group 
system 

Protein products Functions 

DI Band-3 Anion transport 

MNS Gliycophorin A 
Gliycophorin B 

Facilitates membrane 
assebly of band-3  

Rh D polypeptide 
CE polypeptide 

Facilitates band-3/RhAG 
complex assembly  

RhAG Rh associated glycoprotein Neutral gas transport 

GE 
Gliycophorin C 
Gliycophorin D 

Maintains red cell shape 
through interaction with 
protein 4.1 

 

CO Aquaporin-1 Water/CO2 transport 

FY Duffy glycoprotein (DARC) 
Chemokine receptor for 
proinflammatory 
cytokines 

Kell Kell glycoprotein Zinc endopeptidase 

Jk Urea transporter Urea transporter 

Cromer 
Decay accelerating factor 
(CD55) 

C3 convertase inhibitor 

LU Lutheran glycoprotein 
Ligand for laminin 
511/512 

XK Kx glycoprotein Amino acid tramsport 

 

Table 24. Summary of blood systems with protein determinants and 

relative function. Table modified from180. 
 

As anticipated, blood groups typing is crucial in transfusional medicine. In cases where 

patients undergo to incompatible blood transfusion a massive activation of the immune 

and clotting system can cause shock, kidney failure, circulatory collapse even leading to 

death. To avoid these kind of adverse reactions, blood compatibility test are always 

performed before transfusion. Both investigations at phenotype level and genotype level 

could be performed to test blood compatibility in clinical practice. Investigation of blood 
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system phenotype is routinely performed by mean of antiglobulin test (Coombs test), 

direct and indirect181. First phase of serologic test is the direct antiglobulin test where 

monoclonal antihuman globulin are used to detect either erythrocyte-directed IgG in 

plasma or IgG or complement coating on the surface of circulating erythrocytes. If 

agglutination occurs, the screen is considered positive. Indirect antiglobulin test instead, 

is used by the blood bank to detect unexpected erythrocyte antibodies in the patient's 

serum or plasma181. The indirect test is the second and final phase of the antibody screen 

and serologic crossmatch procedures. In an indirect antibody screen the recipient's 

serum is incubated with 2 or 3 different type O erythrocytes that express clinically 

significant antigens. Erythrocyte and serum mixture is then incubated with anti-IgG 

monoclonal antihuman globulin and observed for agglutination. Again, if agglutination 

occurs, the screen is considered positive181. Antiglobulin screening normally requires no 

more than a dozen of minutes to be performed so, blood compatibility could be 

guaranteed in emergency. Even thanks to its cost-effectiveness (approximately a dozen 

of US dollars) antiglobuline test is the state-of-the-art procedure for blood compatibility 

investigation. However, accuracy of Coombs test could be reduced in several cases. Many 

pharmacologic agents have been associated with positive direct antiglobulin test result, 

even after the drug has been cleared181. Many drugs indeed bind to the membranes of 

circulating cells. Antibodies elicited by these medications may be directed either against 

a combination of the drug and certain membrane components or against epitopes of the 

drug molecule that are bound tightly to the erythrocyte surface. Other conditions of 

reduced accuracy for antiglobulin test are cases where patients have had recent 

transfusions182, in this condition often unreliable results can occur. In particular if a 

patient has received a transfusion within the previous 3 months, a positive direct 

antiglobuline test may indicate alloimmunization to an antigen on the transfused cells 

that is not present on the recipient's own erythrocytes181. Cases of unreliable results to 

antiglobuline test con also occur with the presence of certain variant antigens that can 

cause false-negative reactions. This conditions are often related to the presence of 

specific minor blood groups (e.g. Duffy) or, so-called “weak blood groups” (that present 

weaker reactions to antiglobuline test respect to the population average), leading to 

inaccurate results183. Although for most of the patients minor blood or weak 

incompatibles are substantially armless, in some particular conditions these typing 

mismatches could be critical. Particular attention has to be a paid in case of sickle-cell and 
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Mediterranean anemia, thalassemia and cancer, where blood mismatch could have 

severe consequences183. Other critical cases are the transfusion dependent patients 

where a fine blood matching could extend period between transfusion, reduce 

hospitalization time, improve life quality and even increase life expectancy183. In this 

particular conditions an investigation of blood type even at a genotype level is needed. At 

present some solutions involving multiplex-PCR combined with flow cytometry already 

exists in the markets184 but these techniques are over an order of magnitude more 

expensive than serological test. As extensively described in this manuscript, the advent 

of NGS technology have led to a widespread availability of sequencing data thanks 

exponential reduction in sequencing cost and time. In such context were the possibility 

of having children sequenced at birth185 is closer than ever, blood groups typing from NGS 

data seems to be an appealing aim for such a genotype dependent trait. While trying to 

address this challenge, several problems has to be considered. First, for most of the blood 

groups, deep knowledge of genetic background reveals complicated relationship that 

links genotypes and blood types. Rh system is just an example with good genotype 

knowledge and a complicated basis, since it is encoded by two different genes resulting 

in the two proteins RhD and RhCE186. The former is the determinant of the most common 

Rh antigen while the latter is responsible for a large part of weak Rh phenotypes. To 

further complicate this scenario, more than 40 Rh antigens are known so far. Situations 

like this are common, even for other blood systems (See Table 25). 

 
 

Name Symbol 
Number of 

antigens 
Gene name 

ABO ABO 4 ABO 

MNS MNS 43 GYPA,GYPB,GYPE 

P P1 1 P1 

Rhesus Rh 49 RhD,RhCE 

Lutheran LU 20 LU 

Kell KEL 25 KEL 

Lewis LE 6 FUT3 
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Duffy FY 6 FY 

Kidd Jk 3 SLC14A1 

 

Table 25. Summary of blood systems with specified the number of antigens. It is 

possible to see that for most of the blood systems, prediction of phenotypes is complicated 

by the high number of different antigens coded by blood system genes. Table modified 

from180. 

A second level of complexity has also to be considered as the one mutation-one 

phenotype paradigm is clearly unable to explain many traits of clinical relevance like 

blood systems. For these kind of phenotypes in fact multiple co-occurring variants are 

involved in the definition of the trait187. The situation is finally complicated by 

heterozygous variants. For these kind of variants, inference of the correct phased 

haplotype is required to identify if alleles are co-located on the same chromosome or 

not188 (so-called “phasing problem”). Genetic data coming from NGS platforms generally 

take the form of unphased genotypes in which is not possible to define on which of the 

two chromosomes, or haplotypes, a particular allele falls on.  

Despite these complications, in 2015 we published the first version of BOOGIE, a Java tool 

to predict blood group phenotypes from NGS data. After more than two years, this tool 

need to be updated and upgraded to face several issue identified thanks to the increasing 

knowledge about genetic determination of blood phenotypes. First improvements regard 

the BOOGIE algorithm in case of complex heterozygous conditions, leading to the 

achievement of a less CPU time-consuming prediction phase. This is a critical 

improvement in cases where predictor runs on a local machine or predictions over a large 

set of patients are requested. Another algorithm upgrade is the capability to manage the 

presence of single variants with complete penetrance. The absence of this specific feature 

was one of the main reasons causing several mismatch in predictions for the first version 

of the tool. Other updates regard the possibility to perform prediction on patients 

sequenced with the last version of the human reference genome (hg38) and the update 

of genotype data for blood group prediction. In addition, the possibility to use the 

standard Variant Call Format (.vcf) like input for patients genetic data was introduced. 

Last, predictions for mutations with damaging phenotypic effects are now reported in 

BOOGIE output, providing a possible biological explanation for cases where mismatch 

between real and predicted phenotypes occurs. Performance against the first version of 
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the tool were tested for ABO and Rh blood groups, achieving slightly better performance 

for the former while same performance were recorded for the latter. 

2 Materials and methods 
From a conceptual point of view, the BOOGIE tool could be divided in two main 

components: knowledge about blood groups and the algorithm that perform prediction. 

Knowledge about blood groups genotype-phenotype relationships comes mainly from 

the BGMUT database189, while predictions are performed by the so-called “BOOGIE 

prediction framework”.  

2.1 The BGMUT database 

BGMUT was developed in 1999 as a locus-specific gene mutation database for blood 

groups. As of March 2014, 1,545 alleles representing 34 different blood systems were 

present with all except one recognized by the International Society Blood Transfusion 

(ISBT)190. Alleles in BGMUT are grouped by blood group system. For each allele in the 

database, BGMUT provides details on the nucleotide variants and the deduced amino acid 

changes in the protein encoded by the gene the allele belongs to. Obliviously the 

associated blood group phenotype is reported too. All loci of interest for genome 

classification have been grouped in haplotype tables for each blood group. These tables 

define all expected SNVs that should be observed for determination of a specific blood 

group allele (See Table 26). Whenever BGMUT reports no data about a SNV, that specific 

position is assumed to be the same of the reference hg19. Only exonic mutations were 

used, as we assumed that these are sufficient to cover the largest part of crucial positions 

involved in the definition of blood phenotypes. In the new version of the tool, haplotype 

tables have been updated introducing all the haplotypes uploaded in the database during 

the last three years. In this way, knowledge in particular for ABO and RhD systems has 

been strongly improved. Another huge contribution in increasing the knowledge about 

blood haplotypes comes from a recent paper191 where more than 110,000 individuals of 

German origin have been sequenced for the exon 6 and 7 of the ABO gene. In the work of 

Lange and colleagues, new 287 distinct so far not described alleles for the ABO system 

have been identified. To note that this new knowledge doesn’t seems to be related to low 

frequency, rare alleles as for example one has been identified in more than 150 

individuals. Even these new data have been added to the new set of BOOGIE haplotype 
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tables. Obtaining haplotype tables from such different sources required meticulous 

manual curation as many blood groups and traits assumed old reference genes. This is an 

important issue related to recent improvement of sequencing techniques, as they 

provided a number of different DNA sequence versions of increasing quality that cannot 

be easily combined. E.g. the ABO reference gene in BGMUT corresponds to the A group, 

while the reference gene in hg19 corresponds to the O group. This leads to a shift and re-

labelling of most mutations. Another problem due to the presence of different releases of 

the human genome was that the first BOOGIE version was not able to manage genetic data 

of patients sequenced with the last version of the human genome hg38 (GRCh38). As 

haplotypes tables are reference system specific, in the new version of the tool we address 

this problem providing tables compiled for last two reference systems: hg19 (GRCh37), 

and hg38 (GRCh38). Coordinates conversion was performed using CrossMap192. 

 

Haplotype Chr9:136132908 Chr9:136131650 Chr9:136131414 

A101 GG C G 

A102 GG T G 

O02 G C G 

B101 GG C A 

 

Table 26. Sample of haplotype table for the ABO system. For each possible 

haplotype, positions and variants that differs from the reference are reported. 

 

2.2 The BOOGIE prediction framework 

BOOGIE 2 is written in Java. It requires two input files (See Figure 22), the haplotype table 

for the phenotype of interest and the target genotype file, i.e. the patient genome. Among 

all variants contained in the genotype file only those matching the haplotype tables are 

considered for the prediction. Once variants have been selected, all the possible 

assignments to the two chromatids are enumerated. The phenotype of each permutation 

is predicted by means of the 1-nearest neighbour algorithm, and the corresponding score 

stored. The haplotype assignment with the highest score becomes the predicted 

phenotypes. Note that predictions are performed for each chromosome, so it is up to the 
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user to determine the final phenotype. E.g., if the two copy of the ABO gene code for the 

A and 0 alleles respectively, the user should infer that the A group will be the resulting 

blood phenotype of the individual. In the second version of the predictor two main 

improvements were introduced. First, the possibility to manage standard “.vcf” files, in 

order to make possible to run the predictor directly from the output of NGS experiments. 

The second critical improvement regards the algorithm. In particular a sensible reduction 

of computing time for complex cases of heterozygosis without a reduction of prediction 

accuracy was achieved. This improvement of efficiency is crucial and leaves the door open 

to run BOOGIE on a local PC without the need of high performance computing units.  
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Figure 22. Schematic BOOGIE overview. Two files are required for prediction: 

the haplotype table and target genotype file. Variants in the genotype file are filtered 

and only the ones present in the haplotype table used for prediction. Phenotype is 

predicted by means of the 1-nearest neighbour algorithm, and the assignment with 

maximal score become the predicted phenotypes. Figure modified from193. 

2.2.1 Updated prediction system 

Prediction of phenotypes from genetic data is further complicated by the fact that NGS 

platforms usually provide unphased genotype data. With this kind of data is impossible 

to define on which of the two chromosomes a particular allele falls on in case of 

heterozygosity. This problem has been address in literature using information from 

HapMap194 and expectation maximization approaches with Hidden Markov Models195 but 

these methods are computationally expensive and usually cannot distinguish rare 

haplotypes or uncommon SNVs. Need of better computational performance in case of 

heterozygosity made the development of a new prediction algorithm necessary. To better 
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understand the problematic and the strategy used to address it, a comparison between 

the old and the new prediction system will be presented. 

As already introduced, variants present in the target genotype are parsed and only the 

ones present in the haplotype tables will be used for prediction (See Figure 23 -1-). In 

BOOGIE 1 each haploid allele in the genotype file is scored singularly against each entry 

in the haplotype tables using as scoring function the inverse Hamming distance. The 

genetic status for every position is compared and a positional score is given: 1 for match, 

0 for mismatch. Strong penalty is given to Indels accounting for frameshift variants. The 

overall score for each comparison can be expressed as the sum of positional scores, with 

the highest possible score equal to the number of considered positions. At the end of the 

process, an allele set will have a similarity score for each haplotype. The allele sets are 

rearranged for every possible combination of the allele status. The score is recalculated 

and only the highest combination score is taken for. Here emerges a critical issue of 

BOOGIE 1: the number of possible allele configurations is 2het where het is the number of 

positions in heterozygosis. This cause an exponential growth in the number of 

comparisons, proportional to the number of heterozygous mutations. Such situation is 

critical especially in cases where the number of variants that differ from the reference is 

high, as for example RhD negative patients, leading to a huge increase of computational 

time to perform phenotype prediction. 

BOOGIE 2 address this problem with an updated scoring algorithm and new 

heterozygous management. The new scoring function takes both allele sets at the same 

time as input, and compares them with a random couple of haplotypes (See Figure Figure 

23 -2a-). The positional score then becomes: 2 if both variants in the allele set match the 

ones in the couple of haplotype, 1 if just one match, 0 if no matches are present. If a 

heterozygous variant is present, it is considered in the fittest position for scoring 

purposes (See Figure Figure 23 -2b-). The overall score is again the sum of positional 

scores but this time it represents the similarity of the couple of haplotypes with the best 

possible arrangement of the alleles. The comparison is than repeated for all the possible 

couple of haplotypes in the haplotype table and the couple with highest score is selected 

as prediction (See Figure Figure 23 -3-). 

Concerning complexity, the new scoring function scales linearly with the length of the 

alleles array. Note that, in this case, time complexity does not depend on the number of 
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heterozygous positions in the input genotype file but is fixed, depending on the number 

of haplotypes present the haplotype tables. In this way, phasing problem is addressed 

with the same assumption of BOOGIE 1: the phase state of alleles is the one identical or 

most similar to a state already observed in literature (and therefore present in the 

haplotype table). The difference stands on the fact that in BOOGIE 2 the state of both 

alleles is assessed at the same time, while in BOOGIE 1 all the possible permutations of 

heterozygous alleles are score independently for both the alleles. 

 

Figure 23. BOOGIE 2 pipeline. -1- Variants present in the target genotype filtered 

and only the ones present in the haplotype tables will be considered for prediction. -2a- 

The new scoring function takes both allele sets at the same time as input, and compares 

them with a random couple of haplotypes. -2b- If a heterozygous variant is present, it is 

considered in the fittest position for scoring purposes. The comparison is than repeated 

for all the possible couple of haplotypes in the haplotype table. -3- The couple of 

haplotypes from BGMUT with highest score is selected as prediction. 
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2.2.2 Dominant variants management  

A further advancement has been introduced in the prediction system of BOOGIE 2. As it 

was reported in the BOOGIE 1 paper, some variants showed a greater effect on the 

resulting phenotype. In particular it was noticed that the ABO c.53G>T mutation had a 

complete penetrance for the determination of the O group196. Even if this position was 

reported in the ABO haplotype table, the BOOGIE 1 scoring system used the same weight 

for all SNVs leading to the definition of wrong phenotypes. As an example, for several 

profiles with the ABO c.53G>T variant, prediction of the A haplotype was supported by 

12–14 variants, real phenotype was O instead. To address this problem, a polyphasic 

scoring system has been defined, prioritizing the mutations with a determinant effect. A 

list of such dominant variants has been manually curated. During the initial step of the 

prediction phase, the genomic file is parsed, looking for such dominant variants. In case 

of match, prediction is straightforward in favour of the corresponding dominant 

phenotype. 

2.2.3 Variants of Unknown Significance management  

An additional feature has been introduced in BOOGIE 2, the interpretation of Variants of 

Unknown Significance (VUS) that affect blood group genes. Rational for this improvement 

is the inability for BOOGIE 1 to consider variants not present in the BGMUT but having a 

crucial role in blood group definition. SIFT197 and PolyPhen-2198 are tools that predict the 

possible impact of an amino acid substitution on the protein’s structure and function. 

SIFT is an application developed to predict the likelihood that a variant is damaging based 

on sequence conservation. PolyPhen-2 uses instead both sequence alignment and 

structural predictions, when available, and generates a final prediction based on an 

underlying machine-learning algorithm199. Considering predictions from both the tools 

we could expect to have rather good prediction performance, both for protein with 

known three-dimensional structure and also for the large number of proteins for which 

this information in not yet available. Both tools generate a score of deleteriousness that 

can be used to infer mutation effects. 

Exonic sequence of all BGMUT-reported genes has been extracted from Ensembl's 

BioMart200. Then, every possible point mutation in each possible position has been 
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simulated and scored by means of the previously mentioned software. Results has been 

stored in a prediction file included in BOOGIE 2 package. 

While reading a genomic file, all variants with the following features are selected: 

1. they must not be included in the haplotype table 

2. they must lie between the first and the last known mutation present in the 

haplotype table 

Reason for the first point is straight forward, as we want to consider only non-literature-

validated mutations that are therefore not present in the haplotype table. Rational for the 

second point explained by the assumption that a damaging mutation can more probably 

appears in the window between two observed critical variants. Of course, this is an 

oversimplification of the biological problem, which could underestimate the power of 

upstream and downstream variants. However for most of the of cases, intervals selected 

in this way contain most of the relevant part of the protein involved in blood group 

definition. Eventually it is important to underline that BOOGIE 2 predictions are not 

influenced by this additional procedure but a report of the unknown mutations found to 

be "deleterious" or "probably damaging" is given to the user as a warning. In this way, the 

predictions are still based on literature-validated data only but such warning could be 

useful to understand reasons of possible wrong predictions.  

2.2.4 Test set 

Test set for BOOGIE 2 was doubled compared to the test set for the former version. New 

dataset is composed by 133 phenotyped genomes, gathered from the Personal Genome 

Project (PGP). PGP is a scientific project in which genomic information of willing 

candidates, along with their specific phenotypic data over a number of medical traits, are 

freely shared. Types of genomic assays and phenotypic information varies wildly among 

candidates.  

For our research purposes, only candidates having blood serotyping and whole genome 

sequencing data (Complete Genomics data) available have been selected. Distribution of 

the blood types in this subgroup is represented in Figure 24. 
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Figure 24. Distribution of blood types for major blood groups in test set. 

Biased in assessment should be mitigated by the presence of all phenotype classes. 

 

A notable characteristic of this dataset is ancestry heterogeneity. Grandparent’s country 

of origin for test set individuals is reported in Figure 25. Most of candidates have North 

American (non-native) ancestry, which is heterogeneous per se. Other samples comes 

from Europe, Asia and South America. Prediction in such dataset is more challenging due 

to the differences in the genomic background and geographic blood types distribution201. 

Data gathering was complicated by the fact that some of the phenotypes could be self-

assessed by the patient as questionnaire. This leads to a degree of uncertainty for the data 

where this table is the only source of information regarding a patient blood group. E.G. 

for one sample (patient huC92BC9), the self-assessed blood group was in contrast with 

the blood group assessed by serological test.  
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Figure 25. Ancestry of individuals from the PGP dataset. In the map, 

grandparents origin of individuals in the test set is represented. Presence of individuals 

with ancestry from all over the word is crucial to mitigate effects of blood group alleles 

stratification. 

 

2.2.5 Bootstrap 

A bootstrap sampling of 10,000 simulated genotypes has been performed to further test 

BOOGIE 2 performance. In particular bootstrap simulation was used to test how well the 

phasing problem is addressed by the tool. Each sample has been generated from the 

haplotype tables in the following way: two haplotypes are randomly chosen, then 

variants are assembled to form a virtual diploid individual losing the phase information. 

The generated combination of alleles are chosen regardless of real world blood groups 

frequency, therefore exacerbating allele couples of rare haplotypes. It has to be noted for 

example that in ABO bootstrap test, the number of virtual individuals with AB blood 

group is 28%, in contrast to the 5% of cases recorded worldwide.  
 

2.2.6 Haplotypes repetition 

To test quality of the haplotype data retrieved from the BGMUT database, a simple test 

was performed: BGMUT haplotypes were tested for overlap considering only exonic 

variants. It is possible in fact that several blood haplotype could be rather similar, or even 

identical as they differ only for intronic variants. Considering that the BOOGIE 2 

prediction algorithm does not consider such non-coding variants, the presence of 
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identical haplotypes could produce equally scoring predictions, reducing BOOGIE 2 

prediction performance. Only the presence of identical haplotypes, after introns removal, 

was reported in our analysis (See Table BOOGIE 5).  

2.2.7 Analysis of ratio between BGMUT known and 

unknown variants  
 

An assessment of the number of variants occurring in the major blood groups genotype 

has been carried out. Every patient of the PGP dataset was divided in respect of its blood 

group, and the number of mutations on the exons of ABO and RhD genes was counted, 

resulting in Figure 29. As anticipated in the BOOGIE 1 manuscript193 the number of 

mutations occurring in patients with negative RhD is evidently higher compared to other 

phenotypes. Ratio between known and unknown mutations in BGMUT was even assessed 

for correctly and wrongly predicted individuals. Rational for this analysis was to test if 

wrong BOOGIE 2 predictions could be related to a high number of BGMUT unknown 

variants (See Figure 30).  

3 Results 
 

BOOGIE 2 is a tool to predict phenotypes from NGS data using explicit truth tables that 

link specific SNPs sets to phenotypic traits. Variants sets are extracted from the BGMUT 

database190 which stores information about experimentally validated mutations known 

to be relevant for the determination of 34 blood groups. Prediction performance have 

been tested on a test set that has been double from the publication of the first version of 

the tool (69 vs. 133 individuals of current test set). Prediction performance on the major 

blood groups will be here presented like case study. 

 

3.1 ABO blood group performance 

On the new PGP dataset, BOOGIE 2 accuracy is 94%, outperforming the first version of 

the software by 3.1 points (See Figure 26). A physiological reduction of accuracy has to 

be noted for both BOOGIE versions, respect to the older test set where accuracy is 97.1% 

and 94.2%, respectively for BOOGIE 2 and BOOGIE 1. Common mistakes could be 

identified between the two version of the tool, underlining a possible shared issue. 

Nevertheless, half of the wrong prediction of BOOGIE 1 have been recovered in the new 
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version. In particular better performance has been achieved for the O blood group were 

accuracy moved from 88.5% to 96.7%. In addition, for half of the mistakes, BOOGIE 2 is 

able to report along with the wrong prediction an equally scoring correct phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Accuracy for ABO blood system is compared between BOOGIE 2 

and BOOGIE 1. Overall performance are slightly improved, while for the O phenotype, 

accuracy is finally comparable to other classes in comparison with BOOGIE 1. 
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3.2 RhD blood group performance 

Performance for RhD blood system in the new test set are tied, but a strategic difference 

could be identified. Both BOOGIE versions correctly predict a total of 118 samples (See 

Figure 27). Although, in the case of six RhD negative patients mistakenly predicted as RhD 

positive, BOOGIE 2 report a warning about an unknown deleterious mutation detected 

with SIFT/PolyPhen-2. Analyzing wrong predictions, is possible to identify another 

particular situation. Sample hu627574 is predicted as RhD negative being instead RhD 

positive. For this individual, BOOGIE 2 reports a total of 41 mutations, 28 of which in 

homozygosis, a status that is typical of RhD negative samples (See Figure 29). In addition, 

also in this sample the deleterious variants detected with SIFT/PolyPhen-2 is present. A 

possible explanation for this wrong prediction was found by carefully examining the 

patient profile on the PGP website. In fact, the blood group phenotype is reported in a 

self-assessed survey and not by serological test, casting doubts on the reliability of this 

particular case. To test if cases of self-assessed phenotype could affect the prediction 

performance assessment, BOOGIE 2 was tested on the dataset resulting after the 

exclusion of blood group survey information (99 samples). As prediction accuracy for 

both ABO and RhD systems was exactly the same as in the full dataset, we can assume the 

performance assessment was only slightly affected by these cases of self-reported 

phenotypes.  

 

 

 

 

 

 

 

 

 



153 

 

 

 

Figure 27. Accuracy for RhD blood system is compared between BOOGIE 2 

and BOOGIE 1. Unfortunately no improvements have been achieved for this blood 

system. 
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3.3 Bootstrap 

Bootstrap analysis has been conducted to test the effect of the haplotype phasing problem 

on BOOGIE 2 performance. The blood systems taken into consideration are: ABO, RhD, 

Kell, Duffy and Lewis. For all blood systems, the identification of haplotype was tested, 

and for ABO and RhD also phenotype prediction was assessed. Results are shown in Table 

27.  

For both ABO and RhD blood systems real phenotype is reported in the 99% of the cases, 

while the haplotype is correctly assigned in 100% of the times (See Table 27). Same 

situation is present for haplotype detection even for minor blood groups (See Table 27). 

Considering results of this analysis is possible to assume that BOOGIE 2 management of 

haplotype phasing is pretty effective and only a marginal number of wrong prediction in 

real patients could be due to incorrect haplotype management.  

It has to be noted that that in some case, equally scoring predictions could be identified. 

In these conditions the most likely result is predicted by majority rule. This could be 

considered as a weak point of the BOOGIE 2 prediction algorithm leading to an increase 

level of uncertainty for blood group prediction. To test how common equally scoring 

predictions are, we decided to test how often this situation occurs in bootstrap 

simulation. We test the degree of certainty in the bootstrap predictions considering the 

number of times an haplotype is reported not univocally. Results are shown in Table 27. 

From this analysis it is possible to identify that for the ABO system, level of uncertainty is 

limited (8% of samples, 1552/20000 cases). A similar situation could be identified for 

most of the other blood systems (between 16% and 25% of the samples). A most complex 

case has been identified for the Kell system where for 87% (17372/20000 cases) of the 

samples, an equally scoring prediction was present defining a high degree of uncertainty 

for such predictions. The same analysis was performed over the haplotypes of the 133 

samples from the PGP project. Results are shown in Figure 28. Also in this case, degree of 

uncertainty is limited for the ABO system with 67% of cases (180/266 haplotypes) 

predicted with no or little degree of uncertainty (max 3 equally scoring haplotypes). Even 

better situation is present for the RhD system with 97% of the cases (258/266 

haplotypes) with no or little degree of uncertainty (max 3 equally scoring haplotypes). 
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 ABO RhD FY KEL LE 
Overall 
trials 

Correctly 
predicted 

haplotypes  
20000 20000 20000 20000 20000 20000 

Correctly 
predicted 

phenotypes 
9900 9942 - - - 10000 

Uncertain 
predictions 

1552 4396 5064 17372 3176 20000 

 

Table 27. Results of bootstrap analysis. All haplotypes have been correctly 

predicted and in more than 99% of cases even phenotypes have been matched. An 

uncertain prediction is counted every time an equally scoring prediction is recorded. 

 
 

 

Figure 28. Uncertain prediction count on the PGP test set. An uncertain 
prediction is counted every time an equally scoring prediction is recorded. 
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3.4 Haplotypes repetitions 

Haplotypes in the truth tables have been checked for repetitions. As shown in Table 28, 

ABO haplotype table shows a high absolute number of repeated haplotypes (77). This 

situation seems to be due to a little number of haplotypes (24) that seems to be repeated 

few times. Different and more complex situation could be reported (again) for the Kell 

system where repetitions are due to 41 haplotypes, most of which seems to repeated 

exactly two times. The explanation of this phenomenon lies in BGMUT database, from 

where data was gathered. In the ABO case, several alleles have the same exonic genotype 

but are annotated because they differ by the intronic sequence, which is not considered 

in BOOGIE 2 predictions. For this reason, such haplotypes in the input haplotypes table, 

appear the same. This happens few times for the most of the blood phenotypes (See Table 

28), resulting in many repetitions of few genotypes. The landscape is different for the Kell 

blood system. In this case, on many occasions, BGMUT has two identical genotypes with 

two different names, coming from two different papers. The supposed reason for this 

phenomenon could be due do the need of link the genotype to the names of both papers, 

but this obviously generates an issue that could lead to confusion. 

 

 

 

 

 ABO RhD FY KEL LE 

Haplotypes 
repeated 1 or 
more times 

24 8 1 41 2 

Total number 
of repetitions 

77 16 2 84 4 

 

Table 28. Haplotypes repetitions. To test quality data retrieved from the BGMUT 

database haplotypes were tested for overlap considering only exonic variants. 

 



157 

 

3.5 Analysis of ratio between BGMUT known and 

unknown variants  

The 133 PGP patients have been clustered by blood group and plotted by the total number 

of exonic mutations in Figure 29. As it was hinted in the previous BOOGIE paper193, RhD 

negative samples show a very high number of mutations in respect of the reference. 

Considering that RhD negative samples are also the most difficult to predict (43% of 

accuracy, see Figure 27) we speculate that the reason for this low performance could be 

due to a possible high number of variants which are not reported in the BGMUT database. 

To confirm this hypothesis we tested if wrongly predicted samples presents a higher 

number of unknown variants respect to guessed individuals. To this aim for each of the 

133 PGP genomic sample, the total number of exonic variants in ABO and RhD genes have 

been compared with the number of variants taken into account by BOOGIE 2 predictions 

(i.e. variants present in BGMUT). Results have been divided into two subgroups: correctly 

predicted and wrongly predicted samples (See Figure 30). Differences of two samples 

distributions have been tested by mean of Student’s t-test. For both ABO and RhD blood 

systems statistical test fails to support our hypothesis that wrong predictions correlates 

with a high number of variants not reported in the BGMUT database.  
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Figure 29. Exonic variants for major blood groups. The distribution of exonic 

variants for major blood groups in PGP individuals is reported. 
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Figure 30. Percentage of known variants in BGMUT for matched and wrong 

predictions. 
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4 Conclusions 
 

Blood typing has a crucial relevance in transfusional medicine. Incompatible transfusion 

for major blood groups can cause activation of the clotting system, leading to kidney 

failure, circulatory collapse and in the most severe cases causing the death of the patient. 

Incompatibilities for minor blood groups or weak phenotypes are substantially armless 

but in some particular conditions these mismatch could be critical too. In particular for 

patients affected by anemia, thalassemia and cancer, incompatible transfusions could 

have severe consequences183. Even for transfusion dependent patients, a fine blood 

matching could be crucial extending period between transfusion and increasing life 

expectancy183. To avoid these kind of reactions, blood compatibility test are always 

performed before transfusion. Both investigations at phenotype level and genotype level 

are performed to test blood compatibility in clinical practice. Investigation of blood 

system phenotype is routinely performed by mean of antiglobulin test but accuracy could 

be reduced in several cases like weak blood phenotypes, recent transfusion or drug 

assumption. In these cases an investigation of blood type even at a genotype level is 

performed thanks to dedicated platforms involving multiplex-PCR combined with flow 

cytometry. Unfortunately this level of analysis is ten times more expensive than 

serological test. Nowadays tanks to NGS technology a widespread availability of 

sequencing data has been achieved thanks exponential reduction in sequencing cost and 

time.  

Thanks to this NGS data deluge, blood groups typing from NGS data is becoming an 

appealing alternatives. In this context we proposed BOOGIE: is a java tool to predict blood 

group phenotypes from NGS data. First version of this predictor was published in 2015 

and after 2 years, an update and upgrade of this tool was performed.  

BOOGIE 2 performance were tested on a PGP dataset that has been doubled respect to 

test set for the first version of the tool. This dataset could be considered strongly 

representative of general population as samples cover all possible classes of major blood 

systems and heterogeneous ethnicity of samples should reduce effects of blood alleles 

stratification on performance assessment. In addition a complete separation of test set 

and training set (i.e BGMUT haplotypes) guarantees the presence of no overfitting of the 

prediction algorithm. Thanks to this independence of training and test sets, it is 
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reasonable to believe that prediction performance cold been maintained even in real 

clinical use.  

Despite improvements on both the knowledge about blood groups and the algorithm, 

only slightly improvements in predictions accuracy have been achieved. For the ABO 

system accuracy is 94%, outperforming the first version of the software by 3.1 points (See 

Figure 26). Better performance have been achieved on the older PGP test set where 

accuracy is 97.1% and 94.2%, respectively for BOOGIE 2 and BOOGIE 1. Unfortunately, 

such inflated accuracy could be probably explained by reduced heterogeneity of samples 

due to the limited dimension of the old test set (69 individuals). For this reason, an even 

bigger test set would be required to test BOOGIE 2 performance. Despite PGP samples 

heterogeneity, it is possible that rare blood phenotypes coded in BGMUT haplotype tables 

could be underrepresented or absent in such little test sets. Despite these limitations, for 

the ABO system half of the wrong prediction of BOOGIE 1 have been recovered in the new 

version. In addition, for half of the remaining mistakes, BOOGIE 2 was able to report along 

with the wrong prediction an equally scoring correct phenotype. Better predictions 

performance could be identified in particular for individuals with O phenotype. Probably 

these improvements are due to introduction of the dominant mutations framework as 

the ABO c.53G>T dominant variant, introduced in the dominant mutations list, code 

exactly for the O phenotype. For the RhD system, no improvements in prediction accuracy 

could been recorded instead. In particular prediction of RhD negative patients still 

remain a difficult task, probably due to the high rate of variants that differs from 

reference genome respect to other blood phenotypes (See Figure 29).  

To investigate reasons for such limited increase of performance, we focus again our 

attention on the algorithm and on the knowledge about blood groups.  

Our first analysis was focused on the algorithm responsible of heterozygous mutations 

management, addressing the haplotype phasing problem. To this aim an extensive 

bootstrap analysis was performed. In simulating patients, each sample was generated 

selecting two random haplotypes and variants are assembled to form a virtual diploid 

individual, losing the phase information. For all tested blood systems, real phenotype was 

reported in the 99% of the cases and haplotypes were correctly assigned in 100% of the 

times (See Table 27). Considering these results, is reasonable to assume that BOOGIE 2 is 

able to address effectively the haplotype phasing problem, with only a marginal number 

of wrong prediction due to incorrect haplotype management.  
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On the side of knowledge about blood groups, we tried to mitigate a crucial weakness of 

the BOOGIE framework: the inability to manage presence of VUS that could affect blood 

group genes. As anticipated, BOOGIE can only consider variants present in the BGMUT 

tables, while other deleterious mutations are ignored in the prediction process. To 

address this weakness, predictions of possible mutation impact on the protein’s structure 

and function have been introduced. In the new version of the tool, a report on the 

unknown mutations found to be "deleterious" or "probably damaging" by SIFT197 and 

PolyPhen-2198 is given to the user as a warning. In this way, BOOGIE 2 predictions are still 

literature-based, but these warnings could be useful to understand reasons of possible 

mistaken predictions. Another hint that knowledge on blood genotypes could be 

responsible for missed prediction comes from the observation that in half of wrong 

prediction, the correct phenotype was present as an equally scoring predictions. As 

already introduced, in case of multiple prediction with the same similarity score, final 

phenotype is defined by mean of majority rule. As BOOGIE considers in its predictions 

only exonic variants we speculate if haplotypes tables representing different blood 

haplotypes could be identical after intronic mutations were sifted out. Analysis of 

haplotypes repetitions confirmed that this problem seems to affect mainly to the ABO 

system with a high absolute number of repeated haplotypes (77) due to a little number 

of haplotypes (24) few times. Different situation could be identified for the Kell system 

where repetitions are due to 41 haplotypes, most of which repeated twice. Similar to this 

situation is the case of the RhD system. For this blood system repetitions are limited, 

respect to Kell, but also in this case same haplotypes are repeated twice with different 

names. In a context like this, it is possible that the presence of several identical 

haplotypes, coding all for the same blood phenotype could influence the majority rule 

based phenotype prediction leading to samples misclassification.  

Despite these flaws, test on the PGP dataset confirmed very good prediction performance. 

Even if BOOGIE 2 is not yet suitable for direct medical application, results of our analysis 

suggests that an improvement of prediction performance is still possible. In particular 

working on haplotype tables curation could probably reduce cases of equally scoring 

predictions and also use of majority rule for final phenotype prediction could be revised. 

As final consideration a crucial, still missing analysis, is test of BOOGIE 2 performance on 

minor blood systems where performance of serological test is reduced in respect to ABO 
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and Rh. Despite this deficiency, thanks to our bootstrap analysis (See Table27) good 

prediction performance are expected also for these blood groups phenotypes. 
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Conclusions 

The Human Genome Project leaded to new extraordinary technical achievements. DNA 

Sequencing technology has evolved by several orders of magnitude and nowadays 

sequencing the human genome is approaching the psychological threshold of $1,000. 

High-throughput data has never been so accessible, opening many new ways in both 

research and clinical practice. In this context a new trend in medicine has emerged: the 

personalized medicine. The central paradigm of personalized medicine is the use of the 

genetic data to find specific disease mechanisms that can be treated with a specific 

personalized therapy. Thanks to the combination of genome sequencing with other 

“omics” data, in the near future will be possible to define personalized disease risk and 

potentially apply specific prevention strategies to delay or avoid disease onset. In 

addition the possibility to achieve precise diagnosis early after disease onset, could allow 

more effective treatments. Several examples of personalized medicine have been already 

translated in clinical routine202, however these cases are usually limited to monogenic 

diseases and a greater effort in order to realize the potential of personalized medicine is 

required, especially for complex phenotypes. My PhD project focused on the development 

of bioinformatics tools to predict phenotypes from NGS-data. To achieve this aim I had 

the opportunity to deal with all the typical challenges that have to be address in the 

context of the NGS revolution. The problem of evaluating methods developed for the 

interpretation of variants of unknown significance, was addressed like assessor in the 

CAGI p16INK4a challenge. Our attention focused on the identification of methods that 

generated the most reliable prediction. To this aim, a plethora of different metrics was 

considered in order to perform a fair assessment. The results of this challenge suggest 

that methods combining different strategies seem to perform better than simpler 

approaches. Unfortunately, this trend needs to be further confirmed, considering a larger 

number of variants and different proteins. In addition, despite some methods scored 

reasonably well, their performance are far from making these predictors reliable 

resources to be used in the clinical practice. 

Several predictors have been developed during my PhD project, dealing both with data 

coming from targeted enrichment and exomes sequencing experiments. Most of these 

predictors have been tested in the context of the CAGI experiment. In the case of the 

Hopkins Clinical Panel, several disease phenotype have to be predicted from the few 
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genes present in a diagnostic panel developed for multiple pathology testing. Our group 

did a reasonable job in predicting clinical phenotypes but at the same time, false positives 

and false negatives have been predicted ad an unacceptable rate for clinical purposes. 

Interestingly about this challenge was the fact that several groups were able to make 

prediction and to identify putative pathogenic alleles even for patients where no 

pathogenic variants were identified by data provider. In addition, several individuals 

have been predicted by several groups like affected by pathologies that they didn’t 

develop, reporting even the same putative casual variants. These findings well explain 

two emerging issues in the personalized medicine, the misinterpretation and the 

overinterpretation of variants with unknown significance.  

Other kinds of predictors have been developed starting from exome sequencing data, like 

in the case of Crohn’s disease, a complex pathology characterized by a spectrum of clinical 

traits. The main phenotype corresponds to the misregulation of intestinal inflammation, 

sometimes extended to the whole digestive system and in some critical cases also 

affecting skin and joints. The onset age ranges from birth, with the most severe 

manifestation, to adulthood. We developed a Crohn’s predictor to identify healthy and 

affected individuals from exome sequencing data. Prediction performance have been 

tested in the context of the CAGI 4 experiment. Our prediction strategy is based on the 

hypothesis that the amount of Crohn’s related mutation correlates directly with the 

probability of being affected. To this aim, all common and synonymous SNPs have been 

sifted out, since less likely to be involved. In addition, a big effort was made to define the 

list of relevant variants by manually curating literature in order to identify a list of 

mutations associated with the very early disease onset. Another list was defined 

considering genes associated to the pathology from GWAS studies. At the end, trying to 

address the problem of missing heritability, we expanded the list of associated genes 

exploiting information extracted from protein-protein interaction networks. Our method 

scored an AUC of 0.61. Particularly interesting is the fact that all top scoring individuals 

are effectively affected by Crohn’s disease, indicating that by applying an appropriate 

confidence threshold our method is able to detect the disease phenotype unambiguously.  

Comparing the results of previous CAGI experiments, the best methods performance 

decreased from an AUC of ca. 0.9 to ca. 0.7. This can be explained by a bias in the datasets 

of previous CAGI experiments, i.e. the presence of a population structure. Previous results 

were inflated by the presence of strong bias in both training sets and test sets. In this 
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context, it will be crucial for the next CAGI Crohn’s disease challenges to provide 

normalized datasets.  

Finally, a predictor for blood types from exome sequencing data has been proposed. 

Blood type is an example of a phenotype fully determined by the genotype. Blood group 

typing is routinely performed in transfusional medicine. Incompatibilities for major 

blood groups are tested by means of cost effective antiglobuline tests. Unfortunately, the 

accuracy of these investigations for minor and weak phenotypes is very limited. Blood 

incompatibilities might have severe consequences for critical individuals as those 

affected by anemia, cancer or bounded to routinely transfusions. To improve blood typing 

we developed an improved version of BOOGIE (BOOGIE 2), a bioinformatics tool to 

predict blood types from NGS-data. The tool exploits haplotype tables storing genotype 

information for all known blood groups. Predictions are based on a nearest neighbor 

search to find the best match between a given genotype and the registered haplotypes. 

BOOGIE 2 for the ABO system on a dataset of 133 individuals, reaches 94% accuracy. For 

half of the wrong predictions, BOOGIE 2 is even able to identify the correct phenotype but 

two or more phenotypes with same score are returned. Predictions for the RhD system 

achieved an accuracy of 85.7%. In particular, the RhD negative type is particularly 

difficult to predict, probably due to the high rate of variants compared to other groups. A 

bootstrap analysis statistically validates the ability of BOOGIE to effectively address the 

haplotype phasing problem. Poor performances seem to be related to the limited 

knowledge about some groups genotypes. However, it is likely that in the near future, 

with more genotype data coming, further performance improvements will be possible.  

Personalized medicine is improving fast but genotype interpretation seems to be the real 

problem to solve in order to translate the benefits to clinics. Big companies are moving 

their business from genetic testing to genomic accumulation and data reselling203, 

suggesting the problem is not the cost but the scientific knowledge.  
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