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Abstract The state-of-the-art approach for the genetic molecular cause research relies on massively parallel gene sequencing, which represents a challenge both in data handling and variant prioritization. The univocal assignment of disease pathogenicity to the sequence variants is often difficult, and requires the integration of different lines of evidence for a comprehensive interpretation. During my thesis, I contributed to the development of novel approaches to evaluate rare variant contribution to the clinical phenotype. These methods were presented and evaluated at the Critical Assessment of Genome Interpretation, ranking among top programs considering either performance or the number of correct assigned disease predictions. A similar strategy was employed for identification of disease genes linked to neurodevelopmental disorders (NDDs) comorbidity. In this case, computational methods were applied to select the most promising candidate genes for the design of diagnostic panel, which is currently used for patient screening at Pediatrics Clinic of the University of Padova. The variants found within the panel genes have been selected according frequency, pathogenicity prediction and variant segregation analysis within the family. Furthermore, I took advantage of different computational tools to investigate the mutated gene function, and used this information to demonstrate the impact of likely pathogenic variant on clinical phenotype. In several cases, likely pathogenic mutations mapped to intrinsically disordered regions (IDRs), which lack a fixed three-dimensional structure. Coherently, several studies demonstrate that mutations in IDRs are often associated with the pathogenesis of various human diseases. Thus, IDRs classification could represent a critical step for understanding the impact of possibly disease-causative variants mapping in these regions. Due to the influence of intrinsically disordered proteins (IDPs) in diseases, I participated to the manual curation and update of entries in the DisProt database, the primary repository of disorder-related data on sequence. Interestingly, increasing evidence from literature highlights the IDPs involvement in neuronal signal transduction. Among the proteins encoded by diagnostic panel genes, TANC2 especially emerged as intrinsically disordered protein with a possible role in synaptic signal transduction. As TANC2 and its protein family function was poorly characterized, I performed an in silico analysis to characterize the TANC protein activity, and the implicated biological processes. The functional hypothesis emerged from the 
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bioinformatics analysis was used to drive further experimental investigations. In vitro validation of predicted TANC2-CDKL5 interaction highlighted the relevance of the IDRs in regulating degradation of CDKL5, whose mutations are associated with a heterogeneous set of NDD phenotypes. Furthermore, I demonstrated that TANC2 contributes to downregulate CDKL5 expression levels. For this reason, TANC2 protein could represent a novel therapeutic target to design new drugs for the treatment of CDKL5 over-expression associated diseases. 
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Riassunto La strategia di elezione per l'identificazione di varianti causative di malattie genetiche consiste nell’utilizzo di piattaforme di Next Generation Sequencing. Questo tipo di approccio rappresenta una sfida, sia per quanto riguarda la gestione della mole di dati da sequenziamento, che per l’interpretazione clinica dei risultati. L’identificazione di varianti chiaramente implicate nella determinazione della patologia è un processo complesso, che richiede l'integrazione di diversi tipi di informazione. Durante il mio dottorato, ho contributo all’implementazione di metodi computazionali per predire la probabilità che un determinato genotipo sia associato al fenotipo clinico di interesse. Questi metodi sono stati presentati, e valutati, in occasione del Critical Assessment of Genome Interpretation (CAGI), dove si sono posizionati tra i migliori classificati sia per prestazioni che numero di predizioni corrette. Una strategia analoga è stata applicata all’identificazione di geni implicati nella comorbidità tra disordini del neurosviluppo. Anche in questo caso, l’utilizzo di tecniche bioinformatiche si è reso fondamentale per la selezione di geni candidati, che sono stati poi utilizzati nella progettazione di un pannello genico diagnostico attualmente in uso presso la Clinica Pediatrica dell’Università di Padova. Data la gran quantità di dati prodotti per esperimento, le varianti trovate nei geni inclusi nel pannello sono state filtrate in base alla frequenza, alla predizione di patogenicità e all'analisi di segregazione all'interno della famiglia. In alcuni casi, un ulteriore contributo a supporto dell’effettiva patogenicità della variante è stato dato dall’analisi bioinformatica della proteina mutata. Frequentemente, la variante candidata provoca alterazioni a livello di regioni intrinsecamente disordinate (IDR), caratterizzate dall’assenza di una conformazione tridimensionale stabile. Questo dato è coerente con la più recente letteratura: diversi studi, infatti, dimostrano l’implicazione di mutazioni nelle IDR in diverse patologie umane. La classificazione delle IDR, quindi, può rappresentare un primo passo per comprendere l'impatto di eventuali varianti causative all'interno di queste regioni. Data la rilevanza delle IDR a livello biologico e clinico, ho partecipato alla curazione manuale e all'aggiornamento delle voci presenti nel database DisProt, la principale banca dati relativa al disordine nelle proteine. È interessante notare che, tra i vari processi biologici in cui le IDR sono coinvolte, queste regioni svolgono un ruolo molto importante nel signaling neuronale. Tra le proteine codificate dai geni inclusi nel pannello genico, TANC2 si è distinta per essere una proteina 
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disordinata, probabilmente implicata alla trasduzione del segnale a livello delle sinapsi neuronali. Dato che la funzione di TANC2 e della rispettiva famiglia proteica risultava ancora poco chiara, ho eseguito un’analisi in silico delle proteine TANC, grazie alla quale è stato possibile caratterizzare le funzioni e i diversi processi cellulari in cui queste sono coinvolte. Le ipotesi funzionali emerse dall'analisi bioinformatica sono state utilizzate per condurre ulteriori indagini sperimentali. In particolare, la validazione in vitro dell'interazione TANC2-CDKL5 ha evidenziato l’estrema importanza di regioni intrinsecamente disordinate nella regolazione della degradazione di CDKL5, le cui mutazioni sono associate con manifestazioni cliniche legate a disordini del neurosviluppo. Inoltre, gli esperimenti hanno dimostrato che TANC2 contribuisce alla down-regolazione dei livelli di espressione di CDKL5. Per questo motivo, TANC2 si candida a rappresentare un nuovo target terapeutico per lo sviluppo di nuovi composti per il trattamento di condizioni cliniche associate all’over-espressione di CDKL5.  
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1 Introduction Since the first publication of the human genome sequence, human genetics and genomics have been significantly improving1. The release of the raw sequence by the Human Genome Project (HGP) prompted multiple secondary studies, aimed at improving our understanding in genome architecture and function. According to the initial annotation, there are at least 20,000-25,000 protein-coding genes in human genome1,2. Understanding the function of genes and related encoded proteins is the unavoidable starting point to design effective diagnostic tools and therapies for genetic pathologies2. Next-generation sequencing (NGS) has revolutionized medical research and clinical diagnostics in the last decades3. Indeed, NGS employs powerful massively parallel sequencing, allowing to screen from subsets of few genes to the full human DNA sequence at once3,4. Targeted exon capture before genomic sequencing, i.e. the whole exome sequencing (WES), covers the analysis of most of the coding regions, which is less than 2% of the genome. Conversely, whole genome sequencing (WGS) can inspect also non-coding and regulative regions, allowing the identification of splicing site variants, enhancers, as well as promoter regions2,4. In both cases, hundreds to millions of genetic variants are detected from a single individual5. Thus, the most demanding challenge in human genetics currently consists in isolating a (small) subset of genomic variations that can be proven to be causative for a disease phenotype2,5,6. There are plentiful online prioritization tools and interpretation sources to address the variant filtering and interpretation. However, the first common step required is annotation, by which information about the variant location and effects are added. The variant effect describes how the variation influences the reference sequence characteristics, and it is defined by the Sequence Ontology. A common practice is to annotate variants based on the transcripts with the most severe effects, allowing to identify all potentially causative variants5. Furthermore, additional information can be added by the annotation tools, such as data from disease associated mutation databases (e.g. ClinVar, and COSMIC), population allele frequency, and large scale genome and exome sequencing, such as the 1000 Genome Project and ExAC consortium5. Despite being a mainly automated and preliminary process, this step is a powerful resource for setting the a priori expectation for mutation impact on the pathology, allowing the variant prioritization5. Generally, an initial selection is made considering Sequence Ontology variant classification. The assumption is 
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that variants affecting protein-coding regions, e.g. non-synonymous or frameshift single nucleotide variants (SNVs), are more likely to be damaging in respect to synonymous or intronic variations5. Conventional approaches use conservation and protein structure to predict the consequence on the protein function from missense changes, and integrate allele frequency and gene conservation into a prioritization workflow (see Chapter 2 for more details). Even though generally correct, these methods convey some limitations. Stop-codon and frameshift SNVs are either ignored at all, or systematically assigned with the highest damaging score by prediction tools7. Moreover, some classes of genes, e.g. large genes and paralog gene family members, are more likely to bear “damaging” variants by chance, either for the amount of nucleotides comprised in the gene, or due to probe mapping errors7. Of note, not all damaging variants are causal mutations, as they do not necessarily have an effect on the clinical phenotype6,7. For these reasons, variant genotype frequency in population should be taken into consideration, excluding those variants recurrently found in healthy individuals, and with a frequency higher than the disease prevalence6,7. Further complications are represented by non-coding and synonymous SNVs, which do not directly affect encoded protein function. The difficulty in predicting the non-coding variant effects relies in the insufficient knowledge of regulatory elements in non-coding DNA7. Conversely, emerging observations are consistent with the concept that synonymous variants can influence a broad range of molecular mechanisms, such as splicing and miRNA regulation, though only early achievements have been made in predicting their impact8. In addition to the SNVs and small insertion/deletions (indels), variants implicated in human diseases also include structural variants (SVs), such as copy number variations (CNVs), large deletions and duplication, and balance rearrangements2. Due to their width, their phenotypic effects are potentially large, but hard to assess, as they can affect gene dosage, disrupting several genes, and regulatory elements at once5. Moreover, structural variants are difficult to observe, and WGS is the preferred approach for SV identification, despite the cost and complexity of results5. A body of literature9–11, however, proves that structural variant identification to improve our knowledge and comprehension of mechanisms underlying both Mendelian and complex diseases, and provides useful information needed to establish a proficient diagnosis5. Exome sequencing is now the most commonly used tool for genetic disease gene discovery, i.e. the identification of novel disease associated genes4,6,12. Considered for diagnostic purpose, WES is extremely useful and cost effective when applied to cases remaining undiagnosed from previous multiple single-gene tests6,12. Indeed, targeted exon sequencing does not require knowledge a priori about patients’ 
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disease6,12, as it does not focus on a precise subset of genes, making it a better diagnostic tool for disorders with nonspecific symptoms12. Despite their contribution to human genetic research4,6,12, WES/WGS routinely application to medical practice is generally complicated, both by the cost, the unprecedented scale of data to handle, and challenges in variant interpretation4,12. Moreover, these approaches strike a balance between coverage depth and the large quantity of targeted regions, resulting in a reduced clinical sensitivity for lower covered regions12. In cases of diseases with a limited genetic heterogeneity, a more appropriate tool for efficient molecular diagnosis consists in the targeted re-sequencing of a selected subset of well-established disease genes, i.e. a gene panel12. The gene inclusion criteria consider manifold aspects, ranging from the previously single-tested genes with a strong disease association, to the novel gene gathering from literature and specific case reports2,12. Targeted gene re-sequencing generally involves coding regions of the panel genes, reaching a significantly higher coverage depth in all sequenced regions compared to WES or WGS12. In clinical practice, gene panel tests are systematically complemented with Sanger sequencing, either for in low-coverage and missed exons coverage, or to confirm variants12. As in other NGS applications, the interpretation outcome largely depends on the curation of clinical phenotype information, and the strength of evidence supporting gene association to the disease6,7. Indeed, after the preliminary automated prioritization, the variants interpretation mainly relies on experts review and human curation according standardized guidelines5. Despite validated by direct sequencing, genetic data itself does not provide a direct diagnosis, but has a primarily role. Generally, several types of clinical and genetic tests are combined to maximize the diagnostic yield4,12. A major challenge is shifting genetic information, i.e. variant prioritization score, into the main diagnostic tool to drive clinical decisions and patients’ long-term treatment upon integration with clinical observations 4,12. In this context, methodologies investigating the mutated gene function can be useful in demonstrating the impact of candidate mutations on clinical phenotype, as well as in identifying the disease related molecular mechanisms 4,6. Lots of possibly disease variants map to newly discovered genes, whose role in determining a clinical phenotype is still under validation12. A first line of evidence can be obtained by an extensive analysis in silico, aimed at collecting as much data as possible about protein structure, function, and interactions13 (see Chapter 2 for details). Structural characterization is a key step in understanding the role of proteins in cellular processes13. Indeed, either experimentally determined or in silico modeled structures allow the identification of residues and regions, which are fundamental for protein functioning, e.g. globular 
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domains13. Moreover, functional motifs are also located in unstructured regions, to include motifs mediating either direct binding or post-translational modifications, and signals for cellular localization14,15. Proteins do not work as isolated system. They exert their activity through interactions with other polypeptides, forming the so called protein-protein interaction networks16,17. As causative mutations generally yields perturbation of key cellular pathways17,18, the modeling of protein-protein interactions can help to shed light on molecular mechanisms involved in a specific pathology16. Secondly, functional hypothesis emerging from bioinformatics predictions can drive further experimental validation. Several techniques in vivo can be employed for this purpose, including animal model systems and, evidence derived from patient’s tissues, though a valuable support can be provided by cell culture tests or in-vitro assays for protein-protein interaction assessment as well2,4,6. 1.1 Contribution of the thesis The leading thread of my thesis consists in deciphering the molecular causes of genetic diseases. The project involves both the application of bioinformatics tools for variant interpretation and protein analysis, and in vitro experiments for hypothesis validation (see Chapter 2). In the former section of this thesis (Chapters 3-5), I present the application of computational methods for NGS data analysis. This section includes the publications related to the Critical Assessment of Genome Interpretation (CAGI) international experiment and the work aimed to the design of a gene panel for the neurodevelopmental disorder (NDD) diagnosis. Chapter 6 consists in the publication related to the last DisProt database release. Chapter 7 summarizes the bioinformatics strategies employed for functional and structural characterization of TANC protein family. The hypothesis emerged by the in silico analysis was used to drive further experimental investigations, reported in Chapter 8. This section is followed by a conclusive part, where I discuss the results of my PhD research. Hereafter, a summary of each contribution to the different tasks addressed in my thesis project is reported. 1.1.1 Challenges in genotype-phenotype association in genetic diseases Despite the increasing employment of NGS technologies in medical practice, the computational sequence data analysis remains challenging and critical for successful 
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interpretation of results3. In this context, Critical Assessment of Genome Interpretation (CAGI) international experiment aimed to assess the accuracy of different bioinformatics tools in predicting the functional impact of genetic variants and their relevance in determining a clinical phenotype19, promoting their application in the medical practice. Chapter 3 is based on the published article: Daneshjou, R., et al. Working towards precision medicine: predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Human Mutation 38, no. 9 (September 1, 2017): 1182-1192. doi:10.1002/humu.23280. This Chapter summarizes the results for exome-sequencing based challenges of the fourth CAGI edition (Crohn's disease, bipolar disorder, and warfarin dosing). Our group participated to two challenges: the bipolar disorder, and Crohn’s disease challenges. Both bipolar disorder and Crohn’s diseases are complex pathologies, for which the interplay among genetic and environmental factors is still debated. Bipolar Disorder (BD) is a common mood disorder characterized by episodes of manias and depression with a high component of heritability19. However, two decades of research with linkage and association studies failed to identify any susceptibility gene19. Crohn’s disease (CD) is a chronic inflammatory bowel disease, caused by the complex interplay between autoimmune response and environmental factors in genetically susceptible individuals19. For both the diseases, the challenge was the (blind) identification of affected patients from a cohort of hundreds of exomes, in which both affected patients and healthy controls were present. My contribution to the prediction method definition consisted in integrating genetic information used for variant filtering and prioritization. I performed an extensive literature review to identify, list and select all genes and genetic variants associated with either BD or CD traits. For the BD challenge, the variant sets were selected favoring those mapping to genes involved in nervous system development or pathways impaired by the pathology, and used to train the neural network implemented for variant effect prediction. In the case of Crohn’s disease, manually curated lists allowed to filter patient variants mainly considering known variants from WES studies. A particular attention was placed on very early onset cases and rare variants (MAF ≤ 5%) probably affecting the activity and/or expression of disease associated genes or direct interactors of Crohn’s genes identified by STRING20. In both cases, our methods were statistically more efficient than random algorithm in assigning the correct phenotype, better discriminating between genetic and environmental factors.   
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Chapter 4 is based on Chandonia, J.-M, et al. Lessons from the CAGI-4 Hopkins clinical panel challenge. Human Mutation 38, no. 9 (September 1, 2017): 1155–68. doi:10.1002/humu.23225. This Chapter recapitulates the results of Hopkins clinical panel challenge from the fourth edition of CAGI. The dataset was provided by the Johns Hopkins’ DNA Diagnostic Laboratory, and it included data from 106 patients, resulting from the targeted re-sequencing of 83 disease genes. The participants were asked to group the panel genes into 14 diverse disease classes (e.g. lung disorder, and craniofacial disorders), and to predict the putative disease-causing genes and variants for each patient basing only on sequencing data. In this challenge, I curated the Hopkins panel gene assignment to the clinical phenotypes based on literature. I also contributed to the candidate variant selection, considering only exonic variants and filtering out common (MAF > 5%) and synonymous variants. Finally, I participated in the development of a disease-probability scoring scheme, helping with the variant effects ranking according to the disease inheritance mode and variant state (e.g. heterozygosity/homozygosity). Our method ranked third according to the number of correct predicted phenotypes, resulting in one of the state-of-the-art algorithms for predicting clinical phenotype-genotype association. In different genetic conditions, disease-associated genes are numerous and, thus, single-gene testing generally fails to provide an accurate diagnosis21. This is the case of Neurodevelopmental disorders, which represent the main thread of my PhD research. NDDs are common conditions including clinically heterogeneous diseases. Due to the wide genetic heterogeneity and recurrent overlapping clinical features, single-gene testing for diagnosis of NDD is especially challenging21,22. As consequence, high-throughput methods, such as NGS targeted gene re-sequencing are increasingly employed for NDD genetic testing21,22. Chapter 5 collects the computational techniques used for identification of a subset of genes involved in autism and intellectual disability co-morbidity for the development of a diagnostic gene-panel. In this project, I worked on the candidate gene list generation, gathering data from publicly available sources such as disease-specific databases, exome sequencing studies and meta-analysis publications. During the gene selection process, I curated the annotation and enrichment analysis of the candidate genes used for the final panel gene list identification. The so-selected gene panel is currently employed in clinical screening of individuals affected by intellectual disability (ID) and/or autism spectrum disorder (ASD) and referred to the Molecular Genetics of Neurodevelopment Laboratory (Paediatric Department, University of Padova) for genetic testing. Given the huge amount of NGS data per patient, the following analysis step 
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consisted in variant selection. Specifically, I contributed to the filtering and interpretation of patient genetic variants, integrating predictions with literature, clinical findings and case specific research data. For the most promising missense variants, I performed an in silico evaluation of the effects on protein function/structure. Our analyses allow us to assign a molecular diagnosis to twenty-four of the screened patients, with a diagnostic yield of 16,4%. For twenty-three probands, at least one likely pathogenic (LP) variant has been detected. The causative role of LP variants is under assessment and will be established through segregation analysis.  1.1.2 Annotation and classification of intrinsically disordered proteins Intrinsically disordered proteins (IDPs) are proteins lacking a fixed or ordered three-dimensional structure, which folding state ranges from fully unstructured to partially structured. Interestingly, many proteins encoded by genes in ASD/ID panel contain intrinsically disordered regions (IDRs) that were found mutated in 45,6% (26/57) of patients bearing at least a possibly causative variant. This is consistent with the evidence in literature proving the association of mutations in IDRs with numerous human diseases23. Indeed, despite the lack of stable conformation, IDPs play an important role in regulatory and signaling processes of the cell, frequently acting as hubs in protein-protein interaction network24. Due to the relevance of IDPs in cellular processes and clinical phenotypes, characterization and classification of IDRs and IDPs should be viewed as a crucial step for understanding the impact of possibly disease-causative variants mapping within these regions. For these reasons, our group decided to update and manual curate the entries forming the DisProt database. DisProt is the primary database of disorder-related data on sequence- and functional annotations, being primarily focused on IDPs or IDRs with experimental validation. Chapter 6 is based on the published article: Piovesan, D., et al. DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 45, D1123–D1124. In this work, I contribute to the manual curation of 32 DisProt entries, totaling 101 annotated intrinsically disorder regions. The annotation process involved both newly added IDPs and entries from the previous release of the database. In both cases, the first step of analysis consisted of identifying the position of each IDR, either using MobiDB25 predictions or retrieving experimental data reported in literature. Then, each entry was associated to the PubMed ID related to the experimental evidence, e.g. circular dichroism or nuclear magnetic resonance, confirming the disordered state and the function 
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of the annotated region. The new release, DisProt 7.0, contains more than 800 intrinsically disordered proteins, entries of the previous one, resulting in the most valuable resource for a better understanding of the structural disorder.  1.1.3 Molecular mechanisms involved in neurodevelopmental disorders: focus on TANC2 Due to their structural and functional plasticity, IDPs are highly represented in regulation and recognition processes, including signal transduction in neurons26. Indeed, disordered proteins mediate interactions with their targets with relatively high specificity and low affinity, which could trigger signaling events and favoring rapid disassociation when signaling is completed26. In neurons, these functions are exerted by the scaffold proteins. Scaffold proteins typically contain IDRs and domains for protein binding, by which selectively gather specific proteins within signaling pathways, influencing the specificity and kinetics of signaling interactions27. The ASD/ID panel comprises known and most promising candidate disease-associated genes, including post-synaptic scaffold proteins. In some cases, the scaffold protein function is not fully understood, and in silico analyses aimed at characterizing of protein structure/function could address this issue. Two examples are the TANC2 protein, and its paralog TANC1, which I extensively analyzed taking into advantage of different bioinformatics tools. Chapter 7 is based on Gasparini A., Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family Sci Rep. 2017 Jul 28;7(1):6829. This work had two main purposes: the functional and structural characterization of TANC protein family and the identification of the TANC interaction network, aimed to elucidate TANCs influence on neuronal pathways. Integrating structural and functional elements, this work provides the basis for interpretation of genetic variants found in TANC encoding genes. Furthermore, our findings shed light on possibly molecular mechanisms, which would be worth of experimental validation, such as the assessment of the interactions with key proteins in regulating synapse function. Chapter 8 describes the experimental techniques employed for the validation of TANC2 interaction with PP1 and CDKL5, and the functional significance of the TANC2-CDKL5-PP1 interplay (paper in preparation, presenting author). To validate our hypothesis, I assessed the interaction among endogenous full length proteins, both by co-localization in different cell lines, and immune-precipitation from rat synaptosomes. Furthermore, I outlined TANC2, PP1 and CDKL5 minimal interacting regions through 
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yeast two-hybrid system. To assess the functional relationship among regulative TANC2 activity and CDKL5 protein levels, I evaluated the effects of TANC2 silencing in SHSY5Y cells. The experiments suggest that TANC2 forms complexes both with CDKL5 and PP1, and links the phosphatase PP1 to its substrate CDKL5, allowing its dephosphorylation and subsequent degradation. Given its role in downregulation of CDKL5 expression levels, we propose TANC2 as a new therapeutic target for the treatment of clinical phenotypes associated to CDKL5 duplication, though further investigations are required to confirm our hypothesis.  
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2 NGS data analysis and interpretation Next-generation sequencing (NGS) has revolutionized medical research and clinical diagnostics in the last decades, allowing to screen from subsets of few genes to the whole genome at once3. Millions of single nucleotide variants (SNVs) are identified per genome, resulting in the most common type of genetic differences within population28. Therefore, distinguishing diseases causing genetic variants from the thousands of potential candidates represents the prevailing challenge in human genetics2,3,28. In this Chapters, I discuss the workflow aimed to identification and interpretation of disease causative variants from sequencing data. Data interpretation is a multidimensional task, which relies on the analysis of sequence data per se, patient phenotype and literature review, and can be integrated with functional information inferred by in silico analysis. The first part of this Chapter deals about the strategies commonly employed for variant/gene prioritization, and publicly available sources of genetic data used for variant interpretation, whereas the description of computational methods to predict protein function is provided in the second section. As disease genes are highly interconnected29, prediction and validation of protein-protein interactions can shed light on molecular mechanism involved in disease pathogenesis. The approaches for protein-protein interaction (PPI) assessment are discussed in the last part of the Chapter. 2.1 Variant filtering After obtaining the data from a NGS experiment, the variant filtering aims at detecting potentially causing disease variants. The process relies on a multistage workflow; whose first step consists in focusing on those variants mapping to known disease associated genes or discovered by gene prioritization. Then, different parameters are taken into account for variant selection, e.g. allele frequency, predicted pathogenicity, a priori knowledge about the variant and/or the pathology, which will be discussed as following.   



22   Figure 2.1: Schematic representation of a general variant investigation workflow 
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2.1.1 Gene prioritization The main goal of gene prioritization is the identification of the most promising disease related genes (and variants). Gene prioritization largely relies on prior knowledge about gene association to the disease, and can be applied in different scenarios, either for the design of targeted re-sequencing panel, or to direct exome/genome sequencing data analysis6,12. However, the need of prioritization methods is particularly pressing in case of highly impacting clinical conditions, for which underlying molecular causes remain mostly uncharacterized30. Moreover, besides the consequences on patients’ diagnosis, identification of novel disease genes represents the first step in the understanding of the protein and molecular pathways involved in genetic disorder, and, thus in developing targeted therapeutic strategies4,6. In silico techniques for prioritization are numerous, and require two main inputs, i.e. a list of candidate genes to prioritize, and the criteria considered for gene ranking, typically a list of keywords, or a set of training genes31, respectively. The choice of training keywords/ “seed” genes is crucial for prioritization outcome and selected elements generally have a well-established connection with the clinical phenotype of interest. It is necessary to assess the relevance of each seed gene to the disease across different sources, e.g. from a locus based repository or specific research data. Moreover, the number of seed genes greatly affect the outcome of the gene prioritization process. A dataset with less than five genes is uninformative, whereas large gene lists are likely to be too heterogeneous and could produce unreliable results31. Another element greatly influencing the analysis quality is the identification of candidate genes for prioritization, which is extrapolated from different kind of sources, such as disease specific databases (e.g. AutismKB32, SFARI database33). Prioritized candidate genes can be either filtered, selecting only a small subset of the most promising genes, or ranked according to the training list. In the latter case, gene ranking strategies can be further divided in three categories: text mining, similarity profiling and network analysis. The first step of text mining workflow includes gathering of keywords/data relevant for the clinical phenotype from literature. Then, gene terms present in the texts are gathered, and statistically assessed for strength of extracted information. Data mining from literature represent the most conservative ranking approach, as it generally identifies only genes with the strongest evidence of disease association31. Conversely, similarity-based profiling methods compare candidate genes to the training set, favoring genes which are similar to known seed genes according to a particular feature, e.g. the cellular process. These methods are based on the 
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assumption that at least one among prioritized genes is enriched for the feature of interest34. One example is Endeavour 34, which integrates seventy-five different sources (e.g. genomic data, expression levels, and clinical phenotype) into a comprehensive ranking score, allowing prediction of novel disease genes34. Endeavour prioritization can be started either by selecting the species of interest or defining the seed gene list. It allows to choose all data sources to be used in the prioritization of the candidate loci. The seed gene list is used to build a feature of interest model according to each source (e.g. gene ontology) by which the candidate genes are scored and ranked. The individual weights are then integrated in a global score correlating with the gene association to the phenotype of interest, e.g. a specific disease trait. Despite their effectiveness, similarity profiling algorithms have been recently integrated or replaced by network analysis strategies. Network-based methods rely on the assumption of “guilt by association”, by which genes share molecular and phenotypic features with their direct interactors31. Indeed, genes and respective encoded proteins exert their function by interacting with other molecules, generally meaning that mutations in disease associated genes yield to perturbations in key cellular pathways, directly affecting the protein interaction network (PIN)18. A network is defined by means of nodes (proteins) and edges (e.g. protein-protein interactions, PPI), where the number of connections linking nodes reflects its centrality, thus the importance of the gene/protein within the network and for the clinical condition18. Genes involved in a same pathology display more interactions among themselves than what would be expected for a random set of genes, allowing to identity disease specific clusters17. The nodes can be retrieved either from experimentally determined interaction repositories (such as InAct35, Biogrid36, and STRING20) or from large scale proteomics studies. As for other prioritization methods, the network based algorithms aim at identifying genes (i.e. nodes) relevant to the clinical phenotype or biological process, and take advantage of prior information, such as gene expression or presence of known associated causative mutations, to select the best candidates17,31. Different approaches can be considered in analyzing networks. The so-called linkage methods consider the direct interactors of disease genes in the network as disease genes themselves. Conversely, disease module based strategies focus on identifying modules enriched for disease-associated genes in a given larger network (e.g. tissue specific interactomes). Other algorithms, such as the network propagation methods, based on random walker algorithms, that are allowed to diffuse from a node along all the connections of the network, moving to any neighboring gene with equal probability. In this way, the most often “visited” nodes are assigned with a high probabilistic weight based on the 
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number of connections with known disease genes, which is in turn used for gene ranking18. Both linkage and disease modules based techniques are quite effective strategies for gene discovery, and they are generally validated by demonstrating that selected genes belong to related pathways, or are expressed in the same cell type18. This kind of information can be obtained automatically by gene set enrichment analysis. Enrichment algorithms use statistical approaches to assess if the selected gene set displays over-represented features (e.g. gene ontology terms, or clinical phenotype) in respect to random gene-feature associations, thus helping in discriminating disease genes from background37.  2.1.2 Genomic data repositories Even focusing only on a small subset of candidate genes, the amount of data to handle is almost huge, with the need of other parameters, by which refining the candidate list, is evident. An absolutely essential resource for variant interpretation consists of catalogues of genetic variants among human populations, where allele frequencies for each observed variant are reported5. Variants can be prioritized by allele frequency, discriminating from potential causative alterations, assumed to be rare (minor allele frequency < 1%), and common neutral SNVs. The Database for Short Genetic Variations (dbSNP) is the first public domain archive of genetic variations. dbSNP contains both known disease associated variants and non-pathogenic single nucleotide polymorphisms (SNPs), and aimed to facilitate large-scale association studies38. However, with the improvement of sequencing technologies, several databases have been developed by assembling genomes and/or exomes data, with the main goal to provide a deep catalogue of protein-coding variations for both population studies, and for the clinical interpretation of variants5. First attempts in this direction are the 1000 Genomes Project (1000GP), which contains variants resulting from WGS of 2,504 individuals39, and the NHLBI Exome Sequencing Project that comprises exome data of approximately 6,500 patients with heart, lung and blood disorders, providing a catalogue of extremely rare protein-coding genomic alterations40. More recent efforts resulted in the Exome Aggregation Consortium (ExAC), comprising of 60,706 exomes from 6 broad populations and 14 disease cohorts, and the genome Aggregation Database (gnomAD), which catalogues genetic variants observed in 12,3136 WES and 15,496 WGS of unrelated individuals41,42. Another important source in candidate prioritization is represented by variant–phenotype databases, such as ClinVar43, COSMIC44 and the Human Gene Mutation Database (HGMD)45. These databases collect variant 
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known to be linked with different pathologies, ranging from rare Mendelian disorders, common diseases and cancer. The different lines of evidence for disease association are retrieved from multiple scientific publications, locus specific databases and clinical case reports43,44,46. In particular, ClinVar keeps a record of support for each variant interpretation submission, by which conflicts about the variant clinical significance are kept, allowing a better understanding of genetic variations in disease pathogenesis43. Moreover, disease inheritance pattern and patient’s phenotype should be taken into account for variant interpretation, providing further evidence of variant causality5. The Online Mendelian Inheritance in Man (OMIM) repository collects information on all known Mendelian disorders and over 15,000 genes, focusing on relationships between genes and diseases47. Analogously, Human Phenotype Ontology (HPO) represents a standardized and hierarchical catalogue of phenotype descriptions (symptoms), for which the association to known disease genes is provided48. Both HPO and OMIM clinical definitions can be employed in variant/gene prioritization pipelines to link genomic alterations to patient’s phenotype, or to discover new gene-disease associations5.  2.1.3 Variant effect prediction  A common approach to cope with variant filtering consists in focusing only on rare non-synonymous variants (NSVs) to restrict the candidate list, allowing the identification of few potentially disease causative variants5. Indeed, variants in coding sequences have a clear potential for altering their phenotype, though only a small fraction of NSVs have a clear damaging functional effect on protein function5. Numerous computational strategies have been developed to prioritize variants on the basis of their functional/structural effects on proteins5. The theoretical basis for interpretation of coding SNVs rely on two main concepts: i) changes in protein sequence modify its functioning, and ii) different residues contribute to protein function to different levels28. Key residues with prominent functional role can be either inferred from evolutionary conservation resulting from the comparison with orthologous sequences, or identified directly inspecting the protein structure49. Evolutionary conservation among homologous proteins reflects the effects of negative selection against harming variants, with residue substitutions being tolerated only in regions free from functional constraints50. Thus, the first step of sequence conservation methods consists in building a multiple sequence alignment (MSA) of homologous sequences, allowing the identification of regions affected by amino acid replacement 
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constraints. The quality of MSA has wide effects on predictions, and restricting the analysis to orthologous proteins have been demonstrated to increase the method accuracy28. Replacement probabilities are empirically derived from MSA, measuring positional conservation according to probabilistic scoring functions. The multiple sequence alignments can be derived from PSI-BLAST, as in the case of SIFT51, or constructed from specific protein sequence repositories, such as the non-redundant protein sequence database UniRef100 (Polyphen-252) or SwissProt (Mutation Assessor53)54. However, the scoring schemes of the presented tools rely on sequence homology and physic-chemical amino acid similarities, assuming that variations in orthologous alignment are functionally neutral52,55. A SNV could map to specific functional motifs, including active sites, and regions for cofactor binding, or elements required for interaction with other proteins56. In most of the cases this information can be retrieved from protein databases, such as Uniprot54, and integrated in a machine learning method to improve missense prediction28, as proposed for SNAP257. In other cases, experimentally determined protein structure is available, allowing the assessment of effect variant on protein stability28. Despite causing free energy fluctuation of few kcal/mol, mutations can substantially affect structure stability, e.g. substituting hydrophobic residues with charged ones in the protein core58. Stability methods rely on free energy differences among folded and unfolded protein states (ΔΔG). An amino acid substitution can shift protein conformational equilibrium either in favor of folded or unfolded states, and ΔΔG differences among wild-type and mutated protein reflects the variant impact on protein stability58. Most stability prediction tools rely on physic-base potential algorithms, which require the tridimensional structure to calculate the protein force field from the full atomic description (e.g. FoldX)28,59. The information can be integrated with available experimental and structural knowledge, atomic modeling and fast side chain packing, to improve method predictive power60,61. As a consequence, these methods can be very compute-intensive and allow the analysis of few mutations at once. Other approaches for stability prediction, such as I-Mutant2.020 and MUpro21, consists in machine learning, trained on known protein substitutions with experimentally determined free energy variations, allowing to run predictions directly on protein sequence62,63. Despite similar performances, variant effect predictions obtained from distinct tools significantly differ one from each other5,28. In the last years, several meta-predictions method, based on machine learning approaches, have been proposed, integrating different data sources such as scores schemes from multiple tools for variant impact assessment28. The first implemented meta-predictor was PON-P, which combines conservation with structural 
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stability and machine learning methods to statistically derive the final prediction64. Numerous other tools were created following this integrative approach due to the high performance on benchmark sets, including computational methods for non-coding variant interpretation5,28. These prediction programs range from tools of DNA conservation assessment, e.g. GERP++65, to unified methods combining experimental data and biochemical features for variant prioritization, including chromatin methylation state, such as FitCons66, and presence of transcription factor target sites, e.g. CADD67. Another example is SnpEff68, a multi-platform program that allows variant prioritization, including splice site variants. Moreover, SnpEff uses different types of annotations, such as ENSEMBL69 functional site prediction, DNA methylation, histone modifications, chromatin accessibility and small RNA transcripts mapping from NIH Roadmap70, and proteomic annotation from Nextpro database71, to categorize candidate SNVs according their effect impact, favoring the identification of most significant variants68. 2.2 Variant effects interpretation Albeit being extremely informative, SNV filtering represents only the first step in proving the causality between variants and clinical phenotypes. For some variants, case-control studies, segregation, and prior literature based knowledge strongly support the direct association with the disease. More often, the SNVs map to novel disease associated genes identified by single case reports. These studies mainly rely on genetic and clinical tests, and rarely provide information about encoded protein. Bioinformatics analysis can address this issue, allowing to predict gene product function, thus, structural or functional effects of variants mapping to these genetic regions13. 2.2.1 Inferring protein function from primary sequence Intuitively, the first step for in silico protein characterization consists in retrieving the protein reference sequence of interest. The central protein sequence repository is the UniProt Knowledgebase (UniProtKB), which combines manually curated datasets (UniProtKB/Swiss-Prot) and proteins automatically derived from high throughput DNA sequencing experiments (UniProtKB/TrEMBL)54. UniProtKB provides different annotations, from protein function, to clinical phenotypes, and many links to other sources, facilitating the data mining process. Generally, protein functional regions are under 
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evolutionary selective constraint and are conserved among homologous proteins across species (orthologous). Consequently, the multiple alignment (MSA) of an unknown protein with its orthologous sequences is a powerful strategy to identify function-discriminating residues.   
 Figure 2.2: In silico protein analysis pipeline. Protein functional regions can be predicted by sequence and structure analysis.  Orthologous sequences can be obtained from specific orthologous protein database, such as the Orthologous MAtrix (OMA) browser72, and used for the MSA. Although the MSA constructions can be performed by different algorithms depending on the considered 
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dataset73, MSA manual inspection is always recommended. Indeed, alignment can be edited and refined according prior structural information, avoiding gaps in conserved structural elements. Manually curated MSA can be used to assess the evolutionary relationships within a protein family by phylogenic analysis. In spite of the variety of algorithms, sequence evolution process in small divergent group of sequences is usually evaluated by maximum likelihood approach, whereas the robustness of the phylogenetic tree reconstruction is generally assessed with bootstrap resampling74. Another useful application of phylogenic analysis is the inter-species protein annotation transfer, according to the concept that sequence similarity suggests structural and functional similarities75. However, protein structure, as well as the overall domain architecture, can be directly inferred from the single protein sequence. Several web servers, e.g. InterPro76, provide functional analysis of proteins, integrating classification into protein families, structural domain annotation and functional sites predictions from different sources. Assessment of secondary structure elements represents the first step in characterizing of predicted protein domains. Among others, PSIPRED77 is a machine learning based method, which uses PSI-BLAST profiles to calculate secondary structure propensity, and to classify residues according their alpha-helix (H), extended (E) or beta-strand, and coil (C) propensity. Besides structural domains, a large portion of both eukaryotic and prokaryotic proteins contains intrinsically disordered regions. IDRs are characterized by the lack of a fixed tridimensional structure, low hydrophobicity and a net composition bias for charged residues78. Intrinsically disorder is encoded in protein sequence and can be predicted from amino acid composition79. Among the available prediction methods, in-house MobiDB database25 has been recognized as the primary repository of ID annotations, due to integration of the DisProt database manually curated information, IDR automatically derived from the Protein Data Bank (PDB) and the consensus computed from several different ID prediction tools80. Another in-house tool is FELL78, a program for latent local structure prediction. It estimates secondary structure, intrinsic disorder or amphipathicity propensity from protein primary sequence. Despite unstructured, IDRs play an important role in cellular processes, mainly thank to the presence of functional interaction modules, known as short linear motifs (SLiMs)81. Indeed, SLiMs-mediated interactions have been proven to be involved in many molecular pathways, such as cell cycle regulation, proteosomal degradation, and protein complex structure stabilization81. Moreover, these short modules are target of post translation modifications (PTMs), allowing the context-dependent, integrative modulation of protein activity81. The ELM repository is the most 
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important database for the annotation and classification of linear motifs. The database also present a prediction tool module for identification of motif instances81. As short and highly degenerated, detected linear motifs are more likely false positive predictions82. Discriminating true matches among all the predicted short linear motifs is a complex task that should take in consideration: i) conservation in multiple sequence alignment, ii) presence of structural elements, iii) experimentally determined interactors82. All these data can be gathered and annotated on protein sequence by ProViz (Protein Vizualisation)83tool web-based visualization program. ProViz main advantage consists in providing a comprehensive graphical annotation of functional elements, e.g. domain structure, PTM, short linear motif, known sequence variant, on MSA related to query protein. Integrating both functional and evolutionary information with ANCHOR67protein binding site prediction, this tool can be used to predict most likely interactions regions in the query protein83.  2.2.2 Identification of structural features relevant for protein function  Structural similarities correlate with function, thus characterizing the three-dimensional folding of a protein is a key step in understanding its role in cellular processes. The Protein Data Bank (PDB) represents the hub for collecting experimentally determined structure. PDB is divided in three main organizations, PDBe (UK), PDBj (Japan), and RCSB (USA), whose primary goal consists in maintaining a global and uniform repository of biological macromolecules. PDB files are lists of structure atomic coordinates, which are determined by X-ray crystallography, nuclear magnetic resonance (NMR), or cryo-electron microscopy (cryoEM). The file can contain either single proteins, or proteins forming complexes with other molecules, such as ligands, nucleic acids or other proteins. Unfortunately, PDB structures are not always available for the protein of interest, and protein fold should be determined by structure modeling. Homology modeling methods use protein sequence of interest for the identification of homologous protein with experimentally determined structures, which can be used as templates for three-dimensional model construction84. The prediction mainly relies on the principle that structures diverge with a lower rate compared to protein sequences, and homologous proteins can display similar folding even with divergent sequences84,85. Despite the higher conservation of protein tertiary structure, templates for homology modeling should share at least 30% sequence identity with query sequence, as most of protein pairs with lower sequence identity are unrelated84. The 
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template search can be performed using HHpred86, which compares Hidden Markov Model profiles (HMMs) from alignment databases, such as Pfam87 or SMART88. It returns a list of pairwise alignments between the query sequence and detected distant homologous protein structures, allowing to select the best one accordingly to sequence identity, or secondary structure prediction. Then, selected HHpred alignment can be forwarded to Modeller89 for comparative modeling of the protein/domain of interest86. Model reliability is determinant to infer function, and thus, should be assessed. One of the most used quality model assessment program is the QMEAN web server90. QMEAN is a composite scoring function that calculates absolute quality estimates both for the entire model (global score) and for each residue in the structure (local score)90. Moreover, model quality can be directly explored by structure visualization. Pymol is an open-source molecular visualization software available for different operating systems91. Its widespread diffusion is due to the user-friendly interface, and the possibility to easily inspect structures in details, or to integrate results from other tools, such as Consurf92 and Bluues93. ConSurf server identifies conserved amino acids from multiple sequence alignment and maps them on protein structures92. Residues on structure are assigned with different colors according to the evolutionary conservation rate, ranging from magenta, i.e. most conserved residues, to cyan for variable amino acids92. Generally buried residues are important for protein folding and, thus, are more conserved than the exposed ones. However, conserved residues on the surface may suggest the presence of functional sites, e.g. binding site94. Together with conservation, highly charged surfaces can indicate nucleic acid binding sites, or catalytic regions in proteins94. Hence, electrostatic potential analysis can be used to infer functional sites. The Bluues web server computes generalized born radii and surface potential either from PDB structure, or from user defined model. The software uses this information to build a PQR file, which can be visualized with Pymol93. The electrostatic potentials are represented on the solvent accessible surface, with blue indicating negative amino acids and red positive charged residues93. 2.3 Variant effects on protein interactions Protein-protein interactions (PPIs) are essential for the proper functioning of the molecular mechanisms underlying cellular homeostasis, and events affecting PPIs play a major causal role in disease pathogenesis18,95. In medical research, the disease PPI network analysis represents a useful strategy for the identification of new therapeutic targets and treatment-
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responsive biomarkers for diagnostic and prognostic purposes95. Besides the clinical applicability of PPI studies, PPI information are used to predict the function of a uncharacterized protein on the evidence of its interactions with other proteins, whose function is already established96. Due to recent progresses in proteomics, experimentally determined PPIs have been impressively increased, mainly thanks to the application of high-throughput techniques, e.g. yeast two-hybrid (Y2H) screening and mass spectrometry96. To organize and process the extensive production of PPI data, several databases have been developed. BioGRID36 (biological general repository for interaction datasets) contains protein-protein, genetic and chemical interactions, and post-translational modifications from thirteen different species. The entries are retrieved by an extensive curation of data from the literature and large-scale experiments. Another PPI database is IntAct35, which provides both textual and graphical representations of interactions. Other sources, such as STRING20, rely on integrated networks of PPIs, which assign probabilistic scores to each interaction based on a variety of sources, such as text mining and experimental evidence, to identify all possible functional associations. Indeed, PPIs identified by high-throughput methods generally suffer from high false positive rate, e.g. unspecific interactions, and they should be considered as a starting point for further experimental validations95. Moreover, the specific interaction interfaces are usually not detected, and require further analysis to be determined. Thus, computational methods are often employed both to reduce large lists of potential binding partners and for the identification of the putative binding regions96. Interactions occur both among different classes of domains, and between domains and short linear motifs 97,98. In both cases, the PPI specificity is linked to the complementarities between interacting regions, and typically depends on few highly conserved residues. These residues encode the affinity and specificity of the binding, and more variable surfaces that selectively contribute to the interaction97,98. This means that a domain is expected to interact with a specific counterpart module, either a folded domain type or a peptide motif class. Thus, information about interactions can be transferred from a functionally defined protein to the target one based on similarity96, as interfaces are generally conserved among homologous proteins, but also considering interactions complementarities. E.g., a protein contains a conserved SRC Homology domain 3 (SH3), which specifically recognizes the poly-proline motif PxxP98. Hence, possible interactors should display an exposed conserved PxxP motif, mapping in an accessible region of the protein, such as an IDR. These considerations can be used to filter putative interactors retrieved from large scale experiment data or predicted by 
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computational tools (e.g. ELM), allowing to focusing only on the most promising binding partners. After these preliminary filters, it is clearly important to experimentally validate selected PPIs by additional low-scale experimental techniques to exclude artifacts99. One strategy consists in evaluating the cellular colocalization of the proteins involved in the interaction. Colocalization analysis is based on the hypothesis that interacting molecules should be placed in the same physical location, and should display an overlapped intracellular distribution99. The colocalization experiments can be performed either with transfected cells, where target macromolecules are over-expressed, or on endogenous proteins. In both cases, target proteins are labeled with antibodies conjugated with fluorophores. Fluorophores are chosen so that they emit at different wavelengths, allowing to monitor their distribution within the cells. When the proteins colocalize, fluorophore signals are overlapped. Images are recorded by confocal microscopy, and statistically analyzed to assess correlation among protein distributions100. Despite supporting the interaction, colocalization does not discriminate between direct binding and PPIs mediated by common interaction partner. Thus, a common practice consists in combining colocalization analysis with other experimental tests for direct-binding assessment, such as the co-immunoprecipitation (co-IP). In co-IP experiments, the antibodies are used to capture proteins in native form, bound to other interacting macromolecules. The main advantage of this approach is that physiological endogenous protein complexes are studied. However, co-IP cannot recognize the specific regions involved in protein binding99. Yeast two hybrid system can be used to address this issue. Y2H is one of the most used methods to screen and confirm PPIs, as it allows the direct identification of PPI between protein pairs. The Y2H system takes advantage of the modularity of Gal4 transcription factor, which is formed by two modules: i) DNA binding domain (DBD), and ii) an activation domain (AD). Both domains are required for the transcription of a reporter gene, e.g. HIS3 gene, which enables the yeast to grow on a selective medium96,99. Moreover, Y2H can be used to examine sub-regions of proteins, by which uncover interactions not revealed by full-length proteins and validate interaction minimal regions; e.g. validate linear motif mediated interactions101.  
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3 Working toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges This Chapter has been published in “R. Daneshjou, Y. Wang, Y. Bromberg, S. Bovo, P. Martelli, G. Babbi, P. Di Lena, R. Casadio, M. D. Edwards, D. K. Gifford, D. T. Jones, L. Sundaram, R. Bhat, X. Li, L. R. Pal, K. Kundu, Y. Yin, J. Moult, Y. Jiang, V. Pejaver, K. A. Pagel, B. Li, S. Mooney, P. Radivojac, S. Shah, M. Carraro, A. Gasparini, E. Leonardi, M. Giollo, C. Ferrari, S.C.E. Tosatto, E. Bachar, J. Azaria, Y. Ofran, R. Unger, A. Niroula, M. Vihinen, B. Chang, M. H. Wang, A. Franke, B. Petersen, M. Pirooznia, P. Zandi, R. McCombie, J. B. Potash, R. B. Altman, T. Klein, R. Hoskins, S. Repo, S. E. Brenner, A. Morgan. Hum Mutat. 2017 Jun 21.” For Supplementary Materials, check the online version of the paper. 3.1 Summary Precision medicine aims to predict a patient’s disease risk and best therapeutic options by using that individual’s genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome sequencing data: bipolar disorder, Crohn’s disease, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn’s disease challenge. Here, we discuss the range of techniques used for phenotype prediction and discuss the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships. 
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3.2 Introduction Precision medicine aims to use a patient’s genomic and clinical data to make predictions about medically relevant phenotypes such as disease risk or drug efficacy 102,103. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment, which aims to advance methods for phenotype prediction from genotypes through a series of “challenges” with real data (CAGI, 2011). Exome sequencing data, which captures exons and nearby flanking regulatory regions, is already being used clinically to solve medical mysteries with well-defined symptoms 104. However, in order to advance precision medicine, clinicians and scientists will need to be able to make inferences about disease risk or drug efficacy from genetic data. Interpretation of genetic data is one of the major difficulties in the implementation of precision medicine 105. CAGI is an example of the Common Task Framework, a phrase coined by Mark Liberman to describe the approach of using shared training and testing datasets and evaluation metrics to advance machine learning 106,107. The Common Task Framework has been called the 'secret sauce' behind the recent successes in machine learning 107. Starting with common task challenges in the 1980's for machine translation, this approach has led to significant gains in speech recognition and dialog systems, protein structure prediction, biomedical natural language processing, autonomous vehicles, and collaborative filtering for consumer preferences 108–112. Through this same approach, CAGI aims to push forward the field of precision medicine. At CAGI 4 held in 2016, three challenges involved making predictions using exome sequence data: A Crohn’s disease challenge, a bipolar disorder, and a warfarin dosing challenge. These challenges represent the spectrum of phenotypes seen in clinical practice. Bipolar disorder and Crohn’s disease are discrete phenotypes, with the former being a clinical diagnosis (based on meeting clinical criteria) and the latter a pathological diagnosis (based on biopsies). Therapeutic warfarin dose, on the other hand, is a continuous phenotype. The Crohn’s disease challenge has been a part of previous CAGI iterations, while the warfarin dosing and bipolar disorder challenges debuted during CAGI 4. We will describe the nature of each challenge in greater detail. The number of groups participating in each challenge can be found in Table 3.1.     
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Table 3.1 The number of predictors and predictions for each CAGI challenge. Challenge Number of predictors Number of Predictions Crohn’s Disease Exomes Challenge CAGI 2 – 10 groups  CAGI 3 – 14 groups  CAGI 4 – 14 groups CAGI 2 – 33 predictions CAGI 3 – 58 (+3 late) predictions CAGI 4 – 46 predictions Bipolar Exomes Challenge CAGI 4 – 9 groups CAGI 4 – 29 predictions Warfarin Exomes Challenge CAGI 4 – 3 groups CAGI 4– 9 predictions  3.2.1 Crohn’s Disease Challenge Crohn’s disease is a chronic inflammatory bowel disease marked by transmural inflammation of the gastrointestinal tract that can occur anywhere from the mouth to the rectum 113. Symptoms include pain and debilitating diarrhea, which can lead to malnutrition 113. Monozygotic twin studies have shown a concordance of 40-50%, and genome wide association studies have identified genetic risk loci 113,114. Age of onset is typically between 20-40 years old, but early age of onset, such as in early childhood is associated with more severe disease features 115.  The 2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all of German ancestry 116. The 2013 (CAGI 3) dataset has 66 exomes (51 cases, 15 controls). Though these samples were also of German ancestry; cases were selected from pedigrees of German families with multiple occurrences of Crohn’s disease. As such, some of these cases were related. For the most part, the samples sequenced as controls were unrelated healthy individuals; the exceptions to this were the unaffected parents of three cases and the unaffected twin of one case. The most recent challenge, CAGI 4 in 2016, was to identify cases from controls in 111 unrelated German ancestry exomes (64 cases, 47 controls). For CAGI 4, submitting groups were allowed to use the data from the Crohn’s disease CAGI challenges of 2011 and 2013. In all iterations of the challenge, groups were asked to report a probability of Crohn’s disease (between 0 to 1) for each individual and a standard deviation representing their confidence in that prediction. For the most recent Crohn’s disease evaluation, teams were also asked to predict if age of onset was greater or less than age 10; an age cutoff selected by CAGI based on the literature 115. Additional details of the CAGI 4 challenge can be found under Supplementary Exhibit 3.1. 
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3.2.2 Bipolar Disorder Challenge Bipolar disorder is a mood disorder marked by elevated mood (mania or hypomania) and depressed mood that disrupts an individual’s ability to function117. In the general population, the lifetime risk of bipolar disorder is 0.5-1% 118. However, bipolar disorder has a high component of heritability, with studies demonstrating a 40-70% monozygotic twin concordance 118. In this CAGI 4 challenge, 1000 exomes of unrelated bipolar disorder cases and age/ancestry-matched controls of Northern European ancestry were provided. 500 exomes were used as the training set and 500 exomes were for the prediction set 119. Groups were asked to report a probability of bipolar disorder (between 0 to 1) for each individual and a standard deviation representing their confidence in that prediction. Additional information on the challenge can be found under Supplementary Exhibit 3.2. 3.2.3 Warfarin Dosing Challenge Warfarin is an anticoagulant with over 30 million prescriptions written in 2011 (IMS, 2012). Warfarin remains a clinical staple despite the introduction of novel oral anticoagulants because of multiple factors – warfarin’s lower cost, longer half-life, and clinical indications for which novel oral anticoagulants have not yet been approved 120. However, warfarin is responsible for one third of hospitalizations due to adverse drug events because of its narrow therapeutic index and high inter-individual dose variability 121. Both clinical and genetic factors affect the therapeutic dose of warfarin 122. For this challenge, participants were provided with exomes of African Americans on tail ends of the warfarin dose distribution (≤ 35 mg or ≥ 49 mg) 123. Clinical covariates were provided for all exomes. The training set consisted of 50 exomes, and participants submitted dose predictions with standard deviations on 53 test set exomes. Additional details of the challenge can be found under Supplementary Exhibit 3.3. 3.3 Methods 3.3.1 Data Distribution Data was distributed to the participants who consented to the CAGI data use agreement. Data providers worked with their home institution to ensure adherence with local privacy regulations and predicting groups agreed not to share the anonymized data. Data was provided as described above, with genetic variant data shared in the VCF file format. 
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3.3.2 Predicting Phenotypes Predicting groups were required to return a simple text file with appropriate predicted values (such as disease status and confidence in prediction) for each sample. They were also provided with a validation script to check their output formatting. Submitting groups were asked to submit a methods description for each submission. The prediction results from selected groups that submitted predictions and methods descriptions were presented at the CAGI meeting. Additionally, the ground truth data and scoring scripts used to perform the evaluation were shared with participants. 3.3.3 Data Quality For the Crohn’s disease and bipolar disorder exome challenges, biases in the data were assessed using principal component analysis and clustering after pruning for linkage disequilibrium using plink 124. For the warfarin challenge, data had previously undergone QC using ancestry informative markers to confirm self-reported ancestry and identity by State (IBS) analysis in order to ensure that samples were not related, as previously described 123. 3.3.4 Assessing Discrete Phenotypes (Crohn’s Disease and Bipolar Disorder) A simple accuracy of prediction per sample score, such as derivable from setting a threshold for prediction (such as 0.5), although tantalizing in its simplicity neither supports the goals of CAGI nor is it representative of a likely clinically relevant scenario for prediction. Because the genetic datasets from CAGI are drawn from case-control studies, as well as pedigree studies in families with a strong burden of disease, it does not represent a random sampling of the population. Requiring a fixed threshold for evaluation and reporting a basic accuracy score of prediction in such a dataset would obscure interpretation. Also, using this as a Figure of merit for ranking encourages participants to optimize their system predictions for the anticipated case/control distribution instead of focusing on features that selectively prioritize and rank disease likelihood in the absence of that calibration. The use of Receiver Operator Characteristics (ROC) curves for genomic test evaluation has been previously investigated by Wray et, al 125. The ROC offers many advantages for evaluating a test, and is often used to characterize clinical tests. The shape of a ROC curve can help differentiate between highly sensitive tests, which could rule in a possible diagnosis, and highly specific 
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tests that could rule out a diagnosis. The prediction of Crohn’s disease status from sequencing data might be used in either of those situations depending on clinical presentation, risk factors, or stage of patient evaluation. Additionally, ROC curves allow easy selection of a classification threshold (based on selecting a position on the curve). Based on the selected threshold, a positive or negative likelihood ratio can be derived and applied in standard evidence based techniques of patient diagnosis, which rely on a Bayesian framework that takes into account the pre-test probabilities and the characteristics of a given test depending on the threshold chosen for prediction 126. Additionally, we evaluated the robustness of the prediction accuracy when making predictions on different subsamples of exomes and assessed the confidence intervals reported by the participants. To capture confidence intervals on the predictions, multiple samples with replacement were drawn. Each prediction was then modified by adding a random amount drawn from a normal distribution with a mean of zero and a standard deviation equivalent to the standard deviation reported for the original prediction. If no confidence interval was reported for the original prediction, the standard deviation was taken to be zero. If a prediction for a particular exome was missing, the prediction score for that sample was set to the mean reported prediction value in that submission. In order to compare submissions by a single Figure of merit, the average area under the ROC curves from the bootstrap sampling was used, accompanied by the bootstrapped confidence interval around that area under the curve, to estimate the robustness of differences between prediction performances. The evaluation scripts were provided to all participants. A cross-validated logistic regression based meta-classifier using lasso regularization was also trained on the submissions as features for CAGI 4 Crohn’s disease and CAGI 4 bipolar disorder. This step allowed us to assess whether combining the features selected across the different groups would improve prediction over a single method. The meta-classifier could perform better than any single method if the different methods use significantly different predictive features. 3.3.5 Assessing Continuous Phenotypes (Therapeutic Warfarin Dose) For the warfarin exomes challenge, several metrics of assessment were used. Each participant provided a predicted therapeutic dose of warfarin for each individual as well as a standard deviation for that prediction. To look at the amount of variation in dose explained by the predicted doses, we used linear regression with the linear model function (lm) in the R statistical package (v 2.15.3). We evaluated each method using the R2 and the sum of 
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squared errors. Additionally, we compared each prediction against one of the best performing warfarin predictive algorithms, the International Warfarin Pharmacogenetic Consortium (IWPC) algorithm 122. To assess, on average, how many participant-provided standard deviations the predicted dose was from the actual dose, we used a mean of the absolute value of the z-score for each prediction, as seen in equation 1. Here, dose_actual is the known therapeutic dose of warfarin for each individual i, while dose_predicted is the therapeutic dose predicted by that group for that individual. SD_predicted is the standard deviation for each individual’s predicted dose, as provided by the participant’s prediction method. The number of individuals is n. Equation 1:  To assess the range of each prediction’s standard deviation compared to the predicted dose, we calculated the mean of the coefficient of variation, which was the mean of the standard deviation for each prediction divided by the predicted dose, as seen in equation 2. Equation 2:   We also evaluated the mean absolute value of the z-score multiplied by the mean coefficient of variation for each method. This value allowed us to assess the mean z-scores with a penalization for mean z-scores whose values were closer to 0 because of larger standard deviations. Additionally, we calculated rho and p-values using the spearman rank correlation between 1) each group’s predicted warfarin doses and the actual therapeutic doses across individuals and 2) each group’s predicted warfarin doses and the IWPC predicted doses across individuals. These calculations were made with the spearmanr command from the stat package in scipy (python v 2.7.5).    
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3.4 Results With each year, CAGI has expanded the number of challenges and participants. Table 1 displays the number of participants and predictions for each CAGI challenge. 3.4.1 Crohn’s Disease Exomes Challenge (CAGI 2-4) For the 2011 Crohn's disease (CAGI 2) challenge, during the assessment phase, a substantial batch effect was discovered in the data as a side effect of sample preparation and sequencing (Figure 3.1).   
  Figure 3.1: Clustering of patients from the CAGI 2 Crohn’s Disease Challenge. The black and gray bars at the bottom represent the controls; the red represents the cases. Many of the controls cluster together, likely due to batch effects. For instance, the controls represented in black were sequenced separately from the gray controls and the cases.  Overall, the control samples that clustered separately due to this batch effect had overall fewer variants reported that did not match the reference genome. The participants were not 
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aware of this batch effect; their methods were not designed to exploit it. However, this raises the possibility that techniques that used a very large list of genes were more likely to correctly identify case samples as coming from individuals with Crohn's disease. Indeed, many different methods did better than random based on AUC, with a maximum AUC of 0.94, and in general approaches that favored a large list of potentially Crohn’s disease related genes and gave more weight to rarer variants did the best. A full description of all methods used by the participants can be found in the supplement under Exhibit 3.1: CAGI 2. Supplemental File 3.1 shows comparative results of the CAGI 2 Crohn’s disease challenge predictive methods. It is certainly biologically plausible that increased burden of variation in a large number of Crohn’s disease related genes leads to increased likelihood of disease; however, it is also possible that there was systematic over reporting of variation as a batch effect. Therefore, it was important to re-evaluate with more data. In the 2013 CAGI 3, a much greater effort was made to carefully collect and prepare samples in a completely consistent way. In this case, case samples were collected from German families with a particularly high burden of Crohn's disease (two or more effected family members), including a pair of twins discordant for disease, and another pair of twins concordant with disease. Additional healthy controls were drawn from the unaffected German general population. During the 2013 CAGI 3, there was once again a substantial difference in clustering between cases and controls, but in this dataset there was substantially more homogeneity in the cases. Individuals from different case families clustered much more closely with other high Crohn’s burden family individuals (Figure 3.2). This prompted two possible hypotheses. The first is that there might be a hidden founder effect and that these families with a high burden of disease may all actually be closely related. The second is that reduced heterogeneity and perhaps increased ancestor consanguinity may contribute to increased risk of Crohn's disease in these families with a high burden. Either one alone or a mixture of both possibilities is biologically plausible. In this instantiation of CAGI, groups that simply did some version of partitioning the test datasets based on hierarchical clustering did quite well, and the top performing methods had an AUC of 0.87. Once again, all of these methods were implemented without awareness of the bias in the data. A full description of all methods used by the participants can be found in the supplement under Exhibit 3.1: CAGI 3. Supplemental File 3.2 shows comparative results of the CAGI 3 Crohn’s disease challenge.  
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  Figure 3.2: Clustering of samples for CAGI 3 Crohn’s Disease challenge. Black represents controls, while red represents cases. This dataset included healthy family members of cases as well as random controls. Samples with a “ped” designation in the sample name came from a pedigree; samples that share the same “ped” number came from the same pedigree.   In CAGI 4, the 111 exomes were derived from a mix of 64 Crohn's disease patients, with a skew toward early onset of disease, and 47 healthy controls, all taken from individuals of German descent. With this data, the simple separation of cases and controls based on genetic variants was not present (Figure 3.3), suggesting the problems with batch effects and sampling bias were no longer present; the only noticeable structure indicated the possibility of a few related samples, as seen in the PCA and IBD plots shown in Supplementary Figure S1 and Supplementary Figure S2. Correspondingly, the peak performance dropped from previous CAGI iterations down to an AUC of 0.72. However, given the elimination of biases in the data, this incarnation of the Crohn’s disease challenge is likely the best reflection of how the prediction methods perform. A meta-classifier created by the assessment team using all submitted methods for this challenge, as shown in Supplementary Figure S3.3, had an AUC of 0.78, a small improvement over the top 
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method. The distribution of AUCs across methods is shown in Figure 3.4. A full description of all methods used by the participants can be found in the supplement Exhibit 3.1: CAGI 4. Supplemental File 3.3 shows comparative results of the CAGI 4 Crohn’s disease challenge.  
 Figure 3.3: Clustering of samples for CAGI 3 Crohn’s Disease challenge   The top approach in CAGI 4 used a compiled list of genes and genomic regions associated with Crohn’s disease from prior studies, used imputation to evaluate risk contribution from known regions associated with Crohn’s disease but not covered by exome sequencing, and used the Welcome Trust Case Control Consortium (WTCCC) Crohn’s disease genotyping array data to train a disease classifier to score relative risk for each sample. Across participants, numerous methods were used for selecting the covariates, highlighting the many different approaches to building a Crohn’s disease classifier. Similar to the top 
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approach, many groups used variants previously found to be associated in genome-wide association studies; the NHGRI catalog was a popular choice to identify these associated variants (Welter, et al., 2014). Other approaches relied on gene lists of associated and “predicted” Crohn’s disease genes to select variants of interest. To create the “predicted” list of Crohn’s disease genes, groups used a variety of methods. Examples include using (1) existing tools such as Phenolyzer, which associates disease terms with genes based on prior research, expands the gene list by using gene-gene relationships, and then creates a ranked list of candidate genes and (2) creating gene lists based on GO pathways enriched with Crohn disease associated variants (3) using natural language processing to identify genes of interest from Pubmed abstracts127,128. From a gene level, different groups would then devise different strategies to select variants of interest. For some approaches, population level frequency data was used to help distinguish variants more likely to be pathogenic. Other methods relied on pathogenicity prediction tools such as SNAP, PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant selection and weighting129–132. A range of machine learning approaches were used to actually build the classifiers- naïve Bayes, logistic regression, neural nets, and random forests. Additionally, some groups improved on prior iterations by creating meta-classifiers based on combinations of prior methods. 
 Figure 3.4: CAGI 4 Crohn’s disease challenge distribution of AUCs across all methods. 
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3.4.2 Bipolar Disorder Exomes Challenge (CAGI 4) As noted, a substantial difference between the Crohn’s disease phenotypic prediction challenge and the bipolar disorder challenge, was that a substantial amount of training data was provided for the bipolar disorder challenge, with 500 of the 1000 exomes randomly selected and provided as training data for the challenge. These samples were unrelated, and analysis steps assessing the relationships between samples can be found in Supplementary Figures S3.4, S3.5, and S3.6. The top performing group had a method with an AUC of 0.64. The distribution of AUCs across methods is shown in Figure 3.5. Although many groups used approaches similar to those used for the Crohn’s disease challenge, the top performing group (which did not apply this method to Crohn’s disease data), treated the genotype data as linear features and trained a neural network with 3 hidden layers, with the middle layers looking at local features in the linear space of the ordered SNPs of the VCF file, tuning for performance using cross validation on the test data. Importantly, this approach used essentially no prior knowledge of genetics or the results of prior studies on disease-gene relationships. Supplemental File 3.4 shows comparative results of the CAGI 4 bipolar disorder challenge. Overall descriptions of prediction methods are available under Exhibit 3.2: CAGI 4. A meta-classifier created by the assessment team using all submitted methods for this challenge, as shown in Supplementary Figure S3.7, had an AUC of 0.64, which was not significantly different from the top method.   Figure 3.5: CAGI 4 bipolar disorder challenge distribution of AUCs across all methods 
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3.4.3 Warfarin Exomes Challenge (CAGI 4) With the warfarin exomes challenge, similar to the Crohn’s disease challenge, many groups used a priori data to create a list of covariates used. This included known pharmacokinetic and pharmacodynamics warfarin genes, genes mentioned in the literature, and also using tools to find functional neighbors of the known gene set. One prediction method (Group 50, Prediction 1) was ahead of the others when looking across multiple performance metrics described in the methods section - R2, mean absolute value of z-score, and mean absolute value of z score multiplied by the coefficient of variation (Figures 3.6A-D, Supplementary Table S3.1). The R2 of the top prediction method was 0.25, compared to 0.35 for the IWPC prediction method, one of the best performing predictive algorithms. A visualization of the predictions compared to the actual dose can be seen in Supplementary Figures S3.8 and S3.9. Details of all methods can be found under Supplementary Exhibit 3.3: CAGI 4. The methods submitted for this challenge had several similar features. Every method submitted took advantage of the fact that the range of doses were published in the paper from which the data came. Thus, these methods either fit rankings to the dose range or set doses above or below the known range to the lower or upper limits. Additionally, most methods used prior information from the literature to help set the initial clinical and genetic covariates to consider in their models. 3.5 Discussion The CAGI exome challenges revealed lessons specific to each particular challenge as well as generalizable principles for future genotype-phenotype prediction challenges. 3.5.1 Crohn's Disease Overall, there were substantial challenges with bias and population stratification in the datasets that make evaluation and comparison of techniques for identifying Crohn's Disease status from exome data difficult. In the latest crop of prediction systems, it may be that techniques such as using imputation to infer variants in regions not covered by the exome sequencing and large external microarray SNP chip datasets are key factors in superior performance. The top AUC varied across the three evaluations, demonstrating the substantial differences in the data sets. Groups who created meta-classifiers based on combining previous methods from previous CAGI challenges demonstrated the value of 
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applying the Common Task Framework to genetic problems – through iteratively improving their methods based on prior learning. Importantly, across the three CAGI evaluations, the average system performance performed better than random, including in the most recent, CAGI 4, implying that there is some level of useful information in predicting likelihood of Crohn’s disease from exome data in the population, something previously not demonstrated. 3.5.2 Bipolar Disorder Surprisingly, the group that created the best performing prediction in the Bipolar disorder challenge acknowledged having little background in biomedicine or genetics. This group approached the problem as purely a data classification challenge. On the one hand this may be hailed another example of the unreasonable effectiveness of data and the success of machine learning over human expertise; the quotation "Every time I fire a linguist, the performance of our speech recognition system goes up," has been attributed to Fred Jelinek in the 1980's, and something similar may be afoot in genomics, promising an exciting future as datasets expand and machine learning techniques improve. However, one of the major challenges is that prediction accuracy with case-control data does not really reflect most applications we can envision for a phenotypic prediction system. Moreover, while not detected by any of our quality control methods, it is still possible that the top performing method picked up on hidden population stratification/biases in the data. Although we were unable to find evidence of this, a sophisticated machine learning system may be identifying features which partition the cases and controls but which are not related to biological drivers of disease risk. Unfortunately, the tools to dissect the deep neural net architecture in the context of genomic features are currently too primitive to help us deepen our biological understanding using these results. There has been recent work into advanced techniques to understand the decisions made by previous black box systems in areas like image processing and natural language processing; however, similar tools for understanding genomic prediction systems are less developed 133. 3.5.3 Warfarin Predicting warfarin dose using clinical information and genetics is a difficult problem; one of the best performing algorithms (IWPC) has an R2 of 0.35 on this data set. Existing algorithms have poorer performance on diverse populations since most algorithms are 



50 

trained on European descent 122,123. For this challenge, the winning method had an R2 of 0.25. The warfarin exomes challenge had several limitations. The sample size was limited, with only 50 samples for training and 53 for testing. This data was generated at a time when exome sequencing was more expensive; falling costs may allow an expansion of available exome data. Additionally, all groups used the known dose range of the cohort when assigning their predicted doses. Because of the use of this known range, some of these methods may be tailored particularly to this challenge and not be generalizable to the wider population. 3.5.4 Overall lessons from CAGI exomes challenge An advantage of the common task structure is the ability to iterate quickly and learn from the setbacks of the groups analyzing the data. The exome challenges allowed us to glean several important lessons that will inform future iterations of CAGI. The importance of population stratification, batch effects, and hidden biases became evident early on with CAGI 2 Crohn’s disease challenge (Figure 3.1). In that particular instance, either population stratification or batch effects created a discernable difference between cases and controls that was unlikely related to actual disease status. Based on that finding in CAGI 2, every subsequent CAGI challenge included a pre-analysis of the whole exome data trying to identify if there were samples that clustered together inappropriately based on case-control status. Population stratification has long been an issue in genetic studies. The most obvious issue arises when cases and controls come from distinctly different ancestral populations – such as comparing Northern European cases against Chinese controls. However, less obvious stratification can also be an issue – such as differences in admixture/population substructure or cryptic relatedness 134. Batch effects can occur at many different steps in the pipeline, for example if samples from the cases and controls have differences in sample preparation, DNA quality, sequencing coverage, or genotype calling. Any of the above can result in prediction methods that perform well due to systemic biases between cases and controls rather than true features that define case-control status. How these challenge datasets emulate the real world was another important consideration and was a topic of discussion among the CAGI 4 community. A majority of the challenges used samples of Northern European ancestry –only the warfarin dose prediction challenge used samples of African ancestry. In order for the 
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methods to be generalizable to real world populations, representation of human diversity is necessary, particularly since disease risk and pharmacogenetic variants can be population-specific 135. Moreover, the CAGI exome datasets all came from research studies, which are often designed to maximize the possibility of picking up a significant signal. One way to achieve this is through selecting for extreme phenotypes – a strategy employed by both the Crohn’s disease exome dataset (which selected a subset of cases who had early-onset Crohn’s disease) and the warfarin prediction exome dataset (selected from individuals requiring “low” and “high” doses to achieve the therapeutic index)136. However, while this strategy works well for increasing signal strength in research, using such data for building a classifier may lead to a biased predictor that has difficulty differentiating between the subtler variations seen in the real world. Having larger datasets and using data generated for clinical use may help remedy some of these issues in the future. And finally, one of the most promising lessons from CAGI was on the effectiveness of data. As mentioned before, for complex tasks, the common task framework has provided a way to have many people work on a problem and iterate quickly. After a challenge has ended, sharing the evaluation scripts and the challenge answers allows participants to analyze when their prediction methods succeed or fail in order to improve further. Additionally, large datasets, even if imperfect, have also been shown to be a critical part of developing algorithms to tackle a complicated task 137. Critical to accumulating large enough datasets is data sharing, and the open data movement aims to encourage increased biomedical data sharing 138. However, one of the difficulties with genetic data that includes protected health information is sharing data in a secure manner. CAGI, which includes data encryption and verifies the groups participating can provide a platform to facilitate sharing such data. As a result of the data accumulated thus far, CAGI has demonstrated how data can, in certain cases, surmount prior biological knowledge. For CAGI 4, the Bipolar Disease challenge was the best example; individuals with no biological background, but a strong background in data science had the best performance. In particular, this should inspire a more multi-disciplinary approach to genotype-phenotype prediction and a greater effort to engage those whose backgrounds are more data-driven rather than biologically-driven.  Overall, the CAGI exome challenges provided an opportunity to begin building the classifiers required to implement precision medicine. While there is still a long road ahead for genotype-phenotype prediction, the accumulation of larger datasets and the participation of more groups with every subsequent CAGI holds promise for continued improvement.  
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4 Lessons from the CAGI-4 Hopkins clinical panel challenge This Chapter has been published in “Chandonia J.M, Adhikari A., Carraro M., Chhibber A., Cutting G.R., Fu Y., Gasparini A., Jones D.T., Kramer A., Kundu K., Lam H.Y.K., Leonardi E., Moult J., Pal L.R., Searls D.B., Shah S., Sunyaev S., Tosatto S.C.E., Yin Y., Buckley B.A. Lessons from the CAGI-4 Hopkins clinical panel challenge. Hum Mutat. 2017 Apr 11.”. For Supplementary Materials, check the online version of the paper. 4.1 Summary The CAGI-4 Hopkins clinical panel challenge was an attempt to assess state of the art methods for clinical phenotype prediction from DNA sequence. Participants were provided with exonic sequences of 83 genes for 106 patients from the Johns Hopkins DNA Diagnostic Laboratory. Five groups participated in the challenge, predicting both the probability that each patient had each of fourteen possible classes of disease, as well as one or more causal variants. In cases where the Hopkins laboratory reported a variant, at least one predictor correctly identified the disease class in 36 of 43 patients (84%). Even in cases where the Hopkins laboratory did not find a variant, at least one predictor correctly identified the class in 39 of 63 patients (62%). Each prediction group correctly diagnosed at least one patient that was not successfully diagnosed by any other groups. We discuss the causal variant predictions by the different groups and their implications for further development of methods to assess variants of unknown significance. Our results suggest that clinically relevant variants may be missed when physicians order small panels targeted on a specific phenotype. We also quantify the false positive rate of DNA-guided analysis in the absence of prior phenotypic indication. 4.2  Introduction DNA sequencing tests are increasingly used in medical practice to confirm or assign clinical diagnoses 4. However, the interpretation and classification of novel sequence variants identified in a patient remains difficult, even for well-studied disorders like cystic fibrosis 139. Improved computational methods may aid in the interpretation of sequence 
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variants and, when used in conjunction with clinical data, could increase the confidence of a diagnosis 140. Until recently, genetic testing was limited to genes associated with a specific clinical phenotype. However, recent technological advances have made it feasible to sequence large gene panels, exomes, and genomes 141–143. As the number of genes sequenced per patient increases, the number of novel, rare, and unclassified variants also increases. Clinical molecular geneticists must determine which variants, if any, are likely to contribute to the patient’s clinical presentation. The current gold standards for assessing a variant’s pathogenicity are segregation of the variant with the clinical phenotype in multiple pedigrees, and functional assays demonstrating a detrimental effect of that specific nucleotide change. In most instances, when a novel genetic variant is identified there is no rapid and reliable method to assess its pathogenicity. Predictive software tools are interrogated, but none are considered strong evidence to assert a novel variant’s pathogenicity 144. The shift towards analyzing large datasets has led to a need for high-throughput methods to aid in variant classification and also for computation tools to help better interrogate the increasing number of variants of uncertain clinical significance. Crowd sourced data analysis challenges such as the 4th Critical Assessment of Genome Interpretation (CAGI-4) have emerged as a framework to compare predictive methods and assess the overall state of particular analysis areas 145. In the CAGI-4 Hopkins Clinical Panel challenge, participants were asked to develop or use existing computational methods to analyze data from a next generation sequencing (NGS) panel in order to match a patient’s genotype to their clinical phenotype in the absence of additional clinical information. The Johns Hopkins DNA Diagnostic Laboratory (henceforth, Hopkins), a CLIA and CAP certified lab that specializes in clinical molecular testing for rare, inherited disorders, provided data for this challenge. The Hopkins lab offers testing for approximately 50 phenotypes and disorders totaling 3,500 tests annually. They offer NGS-based tests targeted for ~20 specific phenotypes. The same NGS capture probe set is used for all panels and only the requested genes are analyzed in each patient. Hopkins provided CAGI-4 organizers with the VCF files for the entire NGS panel for 106 patients with a range of clinical presentations. The genetic disorders associated with variants in the 83 genes on the panel were grouped into 14 ‘disease classes’ which include lung disorders, peroxisomal disorders, aneurysm disorders and craniofacial disorders (Table 4.1, Supp. Table S-4.4). The goal of the challenge was for the participants to match each patient to a disease class based on 
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informatics analysis of the sequence data. A further part of the challenge was to predict the specific gene and variant(s) that is/are the underlying cause of disease. 4.3 Materials and methods 4.3.1 Sequencing, variant calling, and analysis by the Hopkins lab Gene sequences were captured using one of two custom probe sets (Agilent SureSelectXT Target Enrichment Kit) and sequenced by a NGS platform (Illumina MiSeq, 2x100 nt reads). The NGS panels used to test assessed exons and exon-adjacent sequences for 64 or 83 loci (Supp. Table S-4.4, Supp. Table S-4.5). Sequences were aligned to the human reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner (bwa). Sequence variants were called individually for each patient to produce two Variant Call Format (VCF) files, one for single nucleotide variants (SNVs; GATK UnifiedGenotyper, v2.7-4) and one for insertion-deletion variants (InDels; GATK HaplotypeCaller, v2.7-4). De-identified VCF files were provided to the CAGI-4 organizers. Note that the CAGI-4 organizers combined individual VCF files for each patient into a single VCF, resulting in potentially misleading data in the INFO and FILTER fields of the file. The panel of 83 genes was sequenced in 96 of the 106 patients; for the other 10 patients, a partially overlapping list of 64 genes were sequenced (Supp. Table S-4.5). Although the whole NGS panel was sequenced in all patients, only the genes selected on the patient’s test requisition form were analyzed by the lab (n=1-24 genes/patient).  For more information on the specific NGS tests offered by the lab refer to the Hopkins lab website (http://www.hopkinsmedicine.org/dnadiagnostic/tests/).  The Hopkins lab included variants in the genes they analyzed that were classified as Variants of Uncertain Significance (VUS), Likely Pathogenic, and Pathogenic as an answer key. The disease class of each patient was also provided in the answer key and reflects the test selected by the patient’s physician on the test requisition form. The ~20 phenotypes that Hopkins tests for were narrowed down to 14 disease classes in order to simplify the challenge (Supp. Table S-4.1). Some disease classes were not represented by any patients and were included as red herrings (Supp. Figure S-4.9). 
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4.3.2 Challenge format Participants in the Hopkins clinical panel challenge were provided with the two VCF files above, a detailed description of the 14 disease classes given in Table 4.1, a submission template, a submission validation script, and the gene capture regions used in sequencing the patients (in Browser Extensible Data, or BED format). Participants were also instructed that every patient matched exactly one disease class.  Participants were asked to submit predictions of each patient’s disease class based on their gene panel sequences, along with predicted causal variant(s). Each participant was allowed to submit up to six distinct submissions, in which each submission contained predictions for each patient. For each submission, participants were required to predict the probability that the patient has a referring disease in each of the 14 disease classes in the provided list, as well as the predicted causal variant(s) from the gene panel sequence dataset for every disease class with a non-zero probability. Each predicted probability of disease class also included a mandatory standard deviation (SD) field indicating confidence in the prediction, with low SD indicating high confidence, and high SD indicating low confidence.  Table 4.1: A summary of the 14 disease classes in the CAGI-4 Hopkins clinical panel challenge Disease class Description Cystic fibrosis and CF-related disorders Classic cystic fibrosis consists of progressive lung disease, exocrine pancreatic insufficiency, and male infertility. Diffuse lung disease Diffuse lung disease is an umbrella term encompassing multiple lung disease phenotypes. Primary ciliary dyskinesia Primary ciliary dyskinesia is a genetically heterogeneous group of disorders resulting from dysfunction in different parts of the cilia. Peroxisomal beta-oxidation defects The majority of patients with peroxisomal beta-oxidation defects have liver disease, brain malformations, developmental retardation, sensory deficits, and dysmorphic craniofacial features. Rhizomelic chondrodysplasia punctata Symptoms of rhizomelic chondroplasia punctata include proximal shortening of the limbs, cataracts, severe intellectual disability, seizures, and calcific stippling of cartilage. Zellweger spectrum disorders Zellweger spectrum disorders consist of Zellweger syndrome (cerebro-hepato-renal syndrome; most severe phenotype), neonatal adrenoleukodystrophy (intermediate phenotype), and infantile Refsum disease (mildest phenotype). Loeys-Dietz syndrome Loeys-Dietz syndrome is a connective tissue disorder that predisposes individuals to aortic aneurysms. Marfan syndrome Marfan syndrome is an inherited connective tissue disorder that affects the skeletal, ocular, and cardiovascular systems.   Continues   
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Table 4.1 (Continued)   Disease class Description Thoracic aortic aneurysm and dissection Thoracic aortic aneurysm and dissection is a cardiovascular disease characterized by dilation of the aorta, which leads to aortic aneurysms (most commonly in the ascending aorta) and aortic dissection. Ataxia telangiectasia Ataxia-telangiectasia is a disorder of childhood onset progressive cerebellar ataxia and occulocutaneous telangiectasias. Liddle syndrome Liddle syndrome is a rare genetic disorder characterized by early onset high blood pressure (hypertension) and low blood potassium (hypokalemia). Pseudohypoaldosteronism type 1 Pseudohypoaldosteronism type 1 is a salt-wasting disease with onset during infancy. Telomere shortening disorders Telomere shortening disorders represent a spectrum of phenotypes that result from mutations in genes involved in telomere maintenance protein complexes. Treacher Collins and related syndromes Treacher Collins syndrome is a rare disorder affecting craniofacial development.  4.3.3 Assessment Formatting errors in all submissions were corrected to the best of the assessor’s ability, and redundant submissions were removed. Predicted disease classes made in each submission for each patient were assessed against the correct disease class given in the Hopkins answer key, using the metrics described below. The predicted causal variant(s) were also compared to interpretations from the clinical laboratory, but because these are not known with certainty, such predictions cannot be rigorously assessed. In their answer key, Hopkins noted which variants they regarded as Variants of Uncertain Significance (VUS), Likely Pathogenic, and Pathogenic; however, for purposes of matching participants’ predictions to the answer key, all variants noted by Hopkins for each patient were treated equivalently. Assessors first calculated the number of correct predictions of disease class made in each submission. For each patient, the predicted disease class was the one assigned the highest probability among all 14 disease classes. Ties (i.e., cases where multiple disease classes were all assigned the highest probability) were handled as described below. If all 14 probabilities for a patient were equal (e.g., all zeroes), those predictions were not counted in the following three metrics. In other cases, assessors calculated one metric (nCorrect) in which the number of correct predictions was counted, giving ties full credit; another metric (nCorrecttie) was calculated in which N-way ties were given 1/N credit.Finally, assessors calculated a third metric (nCorrectvar) in which they counted the number of predictions for which the disease class 
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was correct (giving ties full credit) AND for which at least one of the variants submitted in the corresponding column for that disease class matched one of the variants noted by Hopkins. Assessors also calculated the following metrics for each submission: avgPCorrect – the average probability assigned by the predictor to the correct disease class. This statistic provides an assessment of predictions that is not dependent on whether the submitter’s highest probability prediction was correct. avgPCorrectnorm– the average probability assigned by the predictor to the correct disease class, after normalizing all probabilities predicted in each submission for each patient to sum to 1.0. (Exception: if all probabilities for a patient were zero, they were not normalized). avgRank – the average rank assigned by the predictor to the correct disease class. Ties were assigned the average rank of each set of tied predictions; e.g., if the two highest probability disease classes had equal rank, both were assigned a rank of 1.5; a 3-way tie for 2nd highest probability would be assigned a rank of 3. Note that because there were 14 disease classes, an all-zero prediction would have an avgRank score of 7.5 (i.e., was scored as a 14-way tie). avgError – the average error in predictions, where the error was measured as the absolute difference between the probability assigned each disease class and zero (if not the correct disease class) or one (if the correct disease class). Like avgPcorrect, avgError assesses predictions independent of their rank, but also includes correct negative predictions. 4.3.4 Prediction Methodology A summary of each group’s prediction methods is given below. Group 57 (Jones): The Jones-UCL group made use of one-class Support Vector Machine (SVM) classifiers to automatically assign disease classes according to the supplied exome data. In a normal machine learning experiment, sufficient positive and negative cases are needed to define a hypersurface which separates the two classes. Standard SVMs attempt to define this hypersurface such that the chance of misclassifying new cases is minimized. In some applications, however, only positive or negative cases are readily available, but not both. One-class SVMs 146 have been proposed for problems where either negative or positive case data is unavailable. In this situation, the SVM attempts to identify outliers from a distribution modeled on the available single class of data, and it is assumed that the 
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outliers belong to the alternative class. In this CAGI challenge, of course, neither negative nor positive training data was readily available. However, the assumption was made that the 1000 Genomes data set 147 could be used as a proxy for negative case data. This is a reasonable assumption if we assume that the diseases in question are relatively rare. To start with, gene variants relating to each disease class were collated using ClinVar 148. Feature sets were generated for each disease class by encoding variant 0/0, 0/1 and 1/1 calls as 0, 1 and 2 respectively, and for each disease-specific feature set, a one class ν-SVM (using a RBF kernel) was trained. The single parameter ν, which controls both the number of support vectors and the misclassification cost, was optimized for each disease class so as to minimize the number of outliers detected in the 1000 Genome training data. Once trained, the SVM was then applied to the test sample data, and the distance to decision boundary was used as a proxy for classification confidence. The most important variant was identified in each case by systematically removing each variant from the feature set and recalculating the confidence scores. Group 58 (Tosatto): The analysis started with a manually curated association between the genes of the panel and the 14 clinical phenotypes of interest based on literature review. Sequencing data was annotated with ANNOVAR 149, considering for each variant the corresponding affected gene, frequency estimated from the 1000 Genomes Project 150 and predicted pathogenicity score from SIFT 151 and PolyPhen2 52. The method to define association between genetic data and phenotypes was based mainly on two phases. For each individual, variations that are less probable to be disease causing were filtered out and a probability to be affected based on the analysis of variants defined. Only coding and splice-site variants which can affect protein function were considered according to the Common Disease-Rare Variant Hypothesis (CDRVH)152. Common (MAF > 5%) and/or synonymous single nucleotide variations (SNVs) were filtered out. Insertion and deletions were excluded as their impact on protein function is difficult to predict compared to SNVs. Only insertions and deletions (indels) affecting the coding part of a gene and predicted to be “damaging” or known to be pathogenic were considered. Heterozygous indels in genes with autosomal recessive inheritance, occurring in GC-rich or repeated regions were filtered out from the disease candidate mutation pool. An empirically derived scoring scheme was implemented to define association between patients and phenotypes, considering both disease inheritance and predicted SNV pathogenicity (Supp. Table S-4.2). Different weights were assigned to different mutation types, i.e. a high score for known variants associated with a specific disease (mainly by literature review) and a lower score for 
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mutations not affecting protein function according to predictor output (i.e. tolerated, benign and unknown). For autosomal dominant (AD) pathologies, only heterozygous variants plus few manually curated homozygous mutations were considered (i.e. the one with the highest probability score). The disease cutoffs were set at different values between submissions, allowing the stringency of the analysis to vary. Both homozygous and compound heterozygous variants were considered for autosomal recessive (AR) conditions. When more than one match per patient occurred, only the most likely was considered (e.g. the one with higher probability score). Different submissions correspond to different sets of weights. In particular, in the first submission, a slightly lower weight was assigned to variants whose effect is more difficult to assess (i.e. compound heterozygous, homozygous variants with uncertain significance, variants affecting different genes coding for subunits of the same complex) with respect to submission 4. Group 59 (Qiagen Bioinformatics): All 106 samples were uploaded to Ingenuity Variant Analysis (QIAGEN- Hereditary Disease Solution) and set up an analysis with all samples to filter low quality (call quality < 20) and common variants (>0.5% MAF in 1000 Genomes 147, NHLBI-EVS (http://evs.gs.washington.edu/EVS/), ExAC 153, and Allele Frequency Community (www.allelefrequencycommunity.org), using the Confidence and Common Variants filters, respectively. The Allele Frequency Community is a QIAGEN hosted allele frequency database, founded by QIAGEN and participating members in 2014. It is a freely accessible “opt-in” community resource designed to facilitate sharing of anonymized, pooled allele frequency statistics among community members. The Predicted Deleterious filter was used to keep only those variants that are previously published and classified Pathogenic or Likely Pathogenic, using ACMG guidelines, DM variants (pathological mutations reported to be disease causing in the original literature report) present in HGMD, along with other loss of function (frameshift, start/stop loss or gain, splice site) and missense variants. Finally, the biological context filter was applied to find variants linked to each one of the 14 categories and patient disease category was predicted based variant-disease connection, using path-to-phenotype evidence. Group 60 (RSS): Gene phenotype associations were mined from the Hopkins diagnostic panels, OMIM 154, and GeneReviews 155. Inheritance mode and penetrance information were extracted from online resources for each gene-phenotype pair. Variants with low quality or high population allele frequencies were filtered out and the functional impact was annotated with Variant Effect Predictor156. To estimate the probability that a variant is damaging to protein function, we integrated multiple prediction methods to score all types 
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of variants, e.g. missense, nonsense, indels and intronic variants. The damaging scores were scaled and normalized to reflect the relative deleteriousness, e.g. frame-shift / nonsense variants would have higher scores than missense variants. We then used the damaging scores to estimate the probability that each individual has a particular phenotype with a probabilistic model, i.e. calculated as the probability that at least one associated gene in the individual causes the phenotype. For a particular gene, the probability the gene causes the phenotype was calculated as the probability that the gene is disrupted (taking into account inheritance mode) multiplied by its penetrance score. The confidence level of the prediction was calculated from the distribution of the estimated probabilities across phenotypes and across individuals. Considering the 14 phenotypes are Mendelian like diseases, if one individual has high prediction scores across phenotypes, it is more likely to be false positive. Thus high confidence was assigned to individuals with high variability across phenotypes. A more detailed description of this group’s prediction methods is included in the Supplementary Information. Group 61 (Moult): The method (implemented in Python) has four modules – Variant annotation, QC (quality check), Variant Prioritization, and Probability scoring for the disease. The modules were executed sequentially. Inputs were the two gVCF files and a gene configuration file containing the genes associated with each disease class and their inheritance pattern. The Varant tool (http://compbio.berkeley.edu/proj/varant) was used to annotate variants with: region of occurrence in the genome, allele frequency from ExAC 153, predicted pathogenicity based on four methods 52,157–159 (for missense), and previously reported disease associations in databases 148,160. Three QC analyses were run: (1) Variant counts (common vs. rare vs. novel & homozygous vs. heterozygous) per sample, (2) Read depth for each gene in each sample was obtained by averaging DP values over all bases in a gene recorded in the gVCF file, and (3) Exons with relatively low or no coverage compared to other exons in a gene. The QC qualified variants per sample were prioritized by first assigning them to one of three classes, ranked by the likelihood that the variant is causative and further grouping the variants in each class by frequency based on its ExAC MAF (group 1 – novel, 2 - very rare (MAF <= 0.005), or 3 – rare (MAF <= 0.01). Class-1 identified variants previously reported in disease databases as pathogenic, Class-2 identified loss of function, splice and missense variants predicted damaging by in-silico prediction tools, and Class-3 identified missense variants (not predicted damaging), UTR, and intronic variants. Variants were further filtered for inheritance model. For each sample, once putative causative variants were found, the process was terminated (e.g. if a suitable 
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variant or variants were found using Class-1, Class-2 and Class-3 were not executed). Finally, a probability score for a sample to have a particular disease was computed based on the type of prioritized variant(s) and inheritance pattern. For the missense variants, the probability model was based on the extent of consensus among the four prediction methods, using a previous HGMD derived calibration. For other variant types, subjective probability rules were used. 4.4 Results 4.4.1 Summary of submissions Five groups submitted predictions (with 4, 2, 2, 2, and 1 distinct prediction per group). An overview of the challenge and results is shown in Figure 4.1. The 106 patients in the challenge can be roughly grouped into two difficulty classes: 1) patients for whom Hopkins noted a potentially causal variant in the answer key (43 patients) and 2) patients for whom Hopkins did not note any variants (63 patients) (Figure 4.1A). At least one CAGI-4 predicting group correctly predicted the disease class for 36 of the 43 patients who had a reported variant (Figure 4.1B). Fewer groups correctly predicted both the disease class and at least one of the variant(s) that Hopkins reported (Figure 4.1C). CAGI-4 predictors were not as accurate at predicting disease classes for the remaining 63 patients for whom Hopkins did not note a variant, although at least one group correctly predicted the disease class for the majority of these patients (Figure 4.1D). The lower prediction accuracy is perhaps unsurprising given the negative test results for these 63 patients.   
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  Figure 4.1: Summary of CAGI-4 Hopkins clinical panel challenge and results. A: One-hundred six patients were included in the study. Hopkins noted at least one variant relevant to the disease class for which the patient was referred in 43 cases, and did not note a variant for the remaining 63 cases. Hopkins noted variants of the following classes: variant of uncertain significance, likely pathogenic, or pathogenic. Clinically, Hopkins would have reported 25/43 as positive and 18/43 as uncertain. B: Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 prediction group predicted the correct disease class in 36 cases, and one patient’s disease class was predicted correctly by all five groups. C: Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 prediction group predicted both the correct disease class and a causal variant noted by Hopkins in 32 cases. D: Sixty-three patients for whom Hopkins did not note a variant were more difficult for CAGI-4 groups to predict: 24were not predicted correctly by any group, and only five patients’ disease class was predicted correctly by three groups (none were predicted correctly by four or more groups)   4.4.2 Numeric assessment summary  Table 4.2 summarizes our numeric assessment metrics for each non-redundant, submitted prediction, for all patients. Table 4.3 shows the same statistics for only the 43 patients for which Hopkins noted at least one potentially causal variant. The best values for each metric in each Table are indicated in bold. Each group’s overall performance is briefly discussed below. Table 4.4 shows a summary of the performance of all predicting groups on each patient. An expanded version of Table 4.4 with additional columns is provided as Supplementary Information (Supp. Table S-4.6). Tables 4.5 and 4.6 summarize the most frequent combinations of groups that predicted the correct disease class for patients (Table 
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4.5 ignores causal variant predictions, while Table 4.6 requires each group to predict one of the variants noted by Hopkins). Group 57 (Jones): Group 57’s primary submission (57.1) scored much higher than their other submissions by our metrics. Their method was less accurate than other groups in cases where Hopkins reported a potential causal variant, but it was more accurate at predicting the correct disease class in cases where Hopkins didn’t report a variant. Group 57’s primary submission was also the most accurate among all submissions at rank-ordering the disease classes. As seen in Table 4.5, Group 57 predicted disease classes correctly for 18 patients that no other group predicted correctly, with seven of these cases in their primary submission. This method was unique in that it did not attempt to mimic a traditional clinical genetics approach. No attempt was made to independently predict the pathogenicity of the ClinVar variants used as features or to correct for linkage disequilibrium, which may explain why the method was able to make correct inferences where no causal variants were reported and why correct inference can arise without reporting the correct variants. A possibility is that some or even a majority of the variants relied on by the classifiers were non-causal variants which simply happen to be in linkage disequilibrium with one or more true causal variants. Thus the occurrence of these variants were sufficient to identify the sample as a genetic outlier, though not indicating true causation. It is possible that by addressing these issues, the method might be further enhanced to make more accurate predictions relating to true causal variants. It would be interesting to test this method on a larger dataset to rule out the possibility that there is some underlying structure in this dataset that the algorithm is detecting. Group 58 (Tosatto): As seen in Table 4.5, most cases that Group 58 predicted correctly were also predicted by at least one other group. However, Group 58 predicted the disease class for one patient (P81) that no other groups predicted; they also assigned 100% probability of the correct disease to that patient, and predicted exactly the same causal variants as noted by Hopkins. Many of the diseases in this challenge result from loss of function variants in a given gene, thus by excluding frameshift variants (out of frame deletions and/or insertions within an exon) Group 58 missed these cases. The genes and molecular mechanisms associated with each of the 14 disease classes were not provided as part of the dataset, which increased the difficulty of the matching exercise (Supp. Table S-4.2). Group 59 (Qiagen): Group 59 had the highest average P values for the correct disease classes, after normalization; they also had some of the best scores in the avgError metric. 
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Group 59 correctly predicted the disease class for five patients that no other groups predicted. Among all the groups, they were the only group for which both P values and SD values were independent and positively correlated with the values they were expected to correlate with (see discussion of P and SD, below). This challenge was well-suited for the Qiagen group, as they specialize in large scale variant interpretation 161.  Table 4.2: Summary of assessment metrics for each non-redundant, submitted prediction, for all patients Group Prediction nCorrect nCorrecttie avgPCorrect avgPCorrectnorm avgRank avgError Jones 57.1 24 24 0.305 0.098 5.32 0.251  57.2 9 9 0.239 0.068 7.66 0.287  57.3 7 7 0.236 0.068 7.78 0.289  57.4 7 6.5 0.426 0.074 7.1 0.42 Tosatto 58.1 23 23 0.178 0.217 6.48 0.105  58.4 26 25 0.223 0.227 6.15 0.107 Qiagen 59.1 32 29.5 0.302 0.278 5.82 0.09  59.2 31 28.5 0.292 0.269 5.88 0.091 RSS 60.1 12 12 0.072 0.102 7.14 0.08  60.2 12 12 0.068 0.094 7.15 0.082 Moult 61.1 38 34.99 0.261 0.265 5.65 0.105  Note: Predictions are numbered according to the group’s (formerly anonymized) group number (57, Jones; 58, Tosatto; 59, Qiagen Bioinformatics; 60, RSS; 61, Moult) and the group’s submission number (1, most confident prediction; other non-redundant predictions are as numbered by the submitters, up to six per group).  Table 4.3: Summary of assessment metrics for each non-redundant, submitted prediction, for the 43 patients for which Hopkins noted at least one potentially causal variant Group Prediction nCorrect nCorrect tie nCorrect var avgPCorrect avgPCorrect norm avgRank avgError Jones 57.1 5 5 2 0.255 0.082 6.53 0.257  57.2 5 5 2 0.325 0.091 6.29 0.274  57.3 2 2 0 0.22 0.063 8.49 0.296  57.4 1 1 0 0.394 0.07 7.5 0.421 Tosatto 58.1 15 15 13 0.32 0.349 5.56 0.087  58.4 17 16 16 0.38 0.339 5.16 0.094 Qiagen 59.1 23 21 19 0.535 0.488 4.24 0.065  59.2 22 20 19 0.512 0.465 4.4 0.066 RSS 60.1 9 9 8 0.149 0.193 6.41 0.073  60.2 9 9 8 0.145 0.181 6.4 0.075 Moult 61.1 26 26 25 0.5 0.512 3.78 0.07 Note: Predictions are numbered as in Table 4.2.  
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Group 60 (RSS: Due to the misleading fields in the combined VCF files (see the Methods section on sequencing and variant calling), Group 60 made only 11 high-confidence (P > 0.6) predictions, of which 9 were correct. Interestingly, four of these nine cases were not predicted correctly by any other group. Because of the small number of high-confidence predictions, Group 60 had the lowest avgError score among all groups, and the best correlation between assigned P values and correct answers (see discussion of P and SD, below). After the challenge closed, Group 60 provided the CAGI organizers with a corrected submission, in which the misleading VCF fields were ignored. In this corrected submission (which arrived late and therefore was not formally assessed), Group 60 correctly predicted 38 disease classes. Additional analysis of Group 60’s corrected submission is provided in the Supplementary Information. Group 60 adeptly used a series of online clinical genetics resources in their analysis pipeline. Group 61 (Moult): Group 61 made more correct predictions of both disease class and Hopkins-annotated variants than any other group. For the 43 cases where Hopkins noted variants, Group 61 did especially well, getting 26 disease classes correct, and predicting the best average rank for the correct disease. In 25 of these cases, Group 61 also predicted at least one causal variant that was noted by Hopkins. Group 61 correctly predicted the disease class for six patients that no other groups predicted correctly, and also predicted at least one of the potentially causal variants noted by Hopkins in four of these six cases. 4.4.3 Accuracy of P and SD values We expected that predictors’ submitted probabilities for each patient and disease should correlate with the correct disease class for each patient, and we also expected that their submitted standard deviations on each prediction should correlate with the error in each prediction (i.e., the absolute difference between the P value and either 1 or 0, for cases where the patient does or does not have the disease, respectively). Overall, predictors did better in the first case, and not as well in the second. Only one group (59; Qiagen) had an independent SD model that correlated positively with error. A detailed discussion of the accuracy of P and SD predictions is provided in the Supplementary Information.       
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Table 4.4: Summary of the performance of all predicting groups on each patient Patient nC nCV Correct groups Correct groups, with variant Correct predictions Correct predictions, with variant P1 4 4 57, 59, 60, 61 57, 59, 60, 61 59.2, 60.1, 60.2, 61.1, 57.1, 57.3, 59.1 59.2, 60.1, 60.2, 61.1, 57.1, 59.1 P2 1 N/A 57 N/A 57.2 N/A P3 0 N/A None N/A None N/A P4 5 3 57, 58, 59, 58, 59, 61 59.2, 58.4, 60.1, 60.2, 61.1, 57.1, 59.2, 58.4, 61.1, 58.1, 59.1       60, 61   58.1, 59.1   P5 2 2 60, 61 60, 61 60.1, 60.2, 61.1 60.1, 60.2, 61.1 P6 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A P7 0 N/A None N/A None N/A P8 1 1 60 60 60.1, 60.2 60.1, 60.2 P9 1 0 57 None 57.4, 57.1 None P10 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A P11 1 1 61 61 61.1 61.1 P12 0 N/A None N/A None N/A P13 3 N/A 57, 58, 60 N/A 57.4, 58.4, 60.1, 60.2, 57.2, 58.1 N/A P14 0 N/A None N/A None N/A P15 0 N/A None N/A None N/A P16 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A P17 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P18 2 N/A 57, 58 N/A 58.4, 57.1, 58.1 N/A P19 1 1 60 60 60.1, 60.2 60.1, 60.2 P20 1 N/A 57 N/A 57.1 N/A P21 1 N/A 57 N/A 57.1 N/A P22 1 N/A 59 N/A 59.2, 59.1 N/A P23 0 0 None None None None P24 4 3 57, 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 57.2, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P25 1 0 57 None 57.2 None P26 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 P27 3 1 58, 59, 61 59 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 59.1 P28 2 N/A 57, 59 N/A 59.2, 57.1, 59.1 N/A P29 1 N/A 57 N/A 57.1 N/A P30 3 2 58, 59, 61 58, 61 58.4, 61.1, 58.1, 59.1 58.4, 61.1, 58.1 P31 1 N/A 57 N/A 57.1 N/A P32 4 3 58, 59, 60, 61 58, 60, 61 59.2, 58.4, 60.1, 60.2, 61.1, 58.1, 59.1 58.4, 60.1, 60.2, 61.1, 58.1 P33 0 N/A   N/A None N/A       (Continues)   
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Table 4.4 (Continued)    Patient nC nCV Correct groups Correct groups, with variant Correct predictions Correct predictions, with variant P34 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P35 0 N/A None N/A None N/A P36 0 0 None None None None P37 0 0 None N/A None N/A P38 3 3 58, 60, 61 58, 60, 61 58.4, 60.1, 60.2, 61.1, 58.1 58.4, 60.1, 60.2, 61.1, 58.1 P39 1 0 59 None 59.2, 59.1 None P40 0 N/A None N/A None N/A P41 0 N/A None N/A None N/A P42 2 1 59, 61 61 59.2, 61.1, 59.1 61.1 P43 2 N/A 57, 61 N/A 61.1, 57.1 N/A P44 1 N/A 59 N/A 59.2, 59.1 N/A P45 1 N/A 57 N/A 57.1 N/A P46 0 N/A None N/A None N/A P47 1 1 61 61 61.1 61.1 P48 0 0 None None None None P49 1 N/A 57 N/A 57.1 N/A P50 0 N/A None N/A None N/A P51 1 N/A 61 N/A 61.1 N/A P52 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 P53 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A P54 1 N/A 57 N/A 57.3 N/A P55 0 0 None None None None P56 2 1 58, 59 59 59.2, 58.1, 59.1 59.2, 59.1 P57 1 1 61 61 61.1 61.1 P58 0 N/A None N/A None N/A P59 0 0 None None None None P60 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 P61 1 N/A 57 N/A 57.4, 57.3 N/A P62 2 N/A 57, 60 N/A 60.1, 60.2, 57.1 N/A P63 3 N/A 57, 59, 61 N/A 59.2, 61.1, 57.1, 59.1 N/A P64 1 1 60 60 60.1, 60.2 60.1, 60.2 P65 3 N/A 58, 60, 61 N/A 58.4, 60.1, 60.2, 61.1 N/A P66 0 N/A None N/A None N/A P67 0 0 None None None None P68 1 N/A 59 N/A 59.2, 59.1 N/A P69 0 0 None None None None P70 0 N/A None N/A None N/A P71 0 N/A None N/A None N/A       (Continues)  
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Table 4.4 (Continued)    Patient nC nCV Correct groups Correct groups, with variant Correct predictions Correct predictions, with variant P72 3 2 57, 59, 61 59, 61 59.2, 61.1, 57.2, 59.1 59.2, 61.1, 59.1 P73 4 3 57, 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 57.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P74 0 N/A None N/A None N/A P75 0 N/A None N/A None N/A P76 0 N/A None N/A None N/A P77 0 N/A None N/A None N/A P78 1 N/A 61 N/A 61.1 N/A P79 0 N/A None N/A None N/A P80 3 3 57, 59, 61 57, 59, 61 59.2, 61.1, 57.1, 57.2, 59.1 59.2, 61.1, 57.1, 57.2, 59.1 P81 1 1 58 58 58.4, 58.1 58.4, 58.1 P82 1 N/A 57 N/A 57.2 N/A P83 1 N/A 57 N/A 57.4, 57.3 N/A P84 4 4 57, 58, 59,61 57, 58, 59, 61 59.2, 58.4, 61.1, 57.2, 58.1, 59.1 59.2, 58.4, 61.1, 57.2, 58.1,59.1 P85 2 N/A 57, 61 N/A 57.4, 61.1 N/A P86 2 N/A 58, 59 N/A 59.2, 58.4, 58.1, 59.1 N/A P87 3 N/A 57, 58, 61 N/A 57.4, 58.4, 61.1, 57.1, 58.1, 57.3 N/A P88 1 N/A 57 N/A 57.1 N/A P89 1 N/A 57 N/A 57.4, 57.1 N/A P90 2 N/A 58, 61 N/A 58.4, 61.1, 58.1 N/A P91 1 N/A 57 N/A 57.2 N/A P92 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 59.1 59.2, 58.4, 61.1, 59.1 P93 1 1 60 60 60.1, 60.2 60.1, 60.2 P94 2 2 59, 61 59, 61 59.2, 61.1, 59.1 59.2, 61.1, 59.1 P95 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P96 1 0 57 None 57.3 None P97 0 N/A None N/A None N/A P98 2 N/A 57, 61 N/A 61.1, 57.1 N/A P99 1 N/A 59 N/A 59.2, 59.1 N/A P100 0 N/A None N/A None N/A P101 2 N/A 57, 61 N/A 61.1, 57.1 N/A P102 1 N/A 57 N/A 57.3 N/A P103 0 N/A None N/A None N/A P104 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P105 3 3 58, 59, 61 58, 59, 61 59.2, 58.4, 61.1, 58.1, 59.1 59.2, 58.4, 61.1, 58.1, 59.1 P106 1 N/A 61 N/A 61.1 N/A 



69 

Note: An expanded version of Table 4.4 with additional columns has been provided in Supp. Information (Suppl. Table S4.6). nC, number of groups predicting the disease class correctly, among all submissions from each group (counting ties, except in cases where all 14 disease classes were assigned equal probability; nCV, number of groups predicting both the correct disease class and at least one variant noted by Hopkins; correct groups, a list of groups in which the disease class was predicted correctly in at least one submission (counting ties, except in cases where all 14 disease classes were assigned equal probability).Groups are numbered as in Table 4.2; correct groups, with variant, a list of groups with at least one prediction of the correct disease class, and also at least one variant noted by Hopkins (N/A in this field indicates that Hopkins did not note any variants). Predictions are numbered as in Table 4.2; correct predictions, with variant, same as above, but indicating individual submission numbers that were correct.  4.4.4 Commentary on novel variant predictions One large limitation in the design of this challenge is that only a subset of the sequence data was clinically analyzed in each patient. This allowed for the possibility of false negatives, where true pathogenic variants may have been present in genes that were not analyzed by the lab. Further, Internal Review Board (IRB) restrictions prevented the data provider from acting as an assessor for the challenge or providing detailed feedback on variant predictions in genes that were not clinically analyzed. In addition, specific variants cannot be listed in the following discussion. In the future, advanced planning is needed to ensure that the appropriate consents and approvals are in place to maximize the use of clinical data. Ideally, a dataset should be fully analyzed by a clinical lab and patients should be specifically asked for consent that their data be used for research purposes such as the CAGI challenge. This would allow a more critical analysis of the challenge data, would eliminate the possibility of unwanted incidental findings, and would allow more in-depth discussion of challenge results. Clinical data from human patients makes an interesting challenge set, but data from human subjects involve privacy concerns vastly different from that of laboratory model organisms.  The CAGI-4 Hopkins clinical panel challenge gives us an opportunity to test state-of-the-art genetic analysis pipelines on a subset of the data that would be obtained from complete exome sequencing of patients, and to explore potential advantages and disadvantages of genomics-driven approaches to clinical testing versus the phenotype-driven approach currently employed by Hopkins.      
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 Table 4.5: Frequency with which each combination of groups correctly diagnosed patients.   Table 4.6: Frequency with which each combination of groups correctly diagnosed patients, and also noted a Hopkins variant.  Nr. of patients Groups predicting correct disease class  Nr. of patients Groups predicting correct disease & variant 31 No group predicted correct disease  63 (Hopkins did not note any variants) 18 57 (Note: 7 from 57.1)  11 58, 59, 61 10 58, 59, 61  11 (No group predicted disease and variant correctly) 6 61  4 61 5 59  4 60 4 60  3 59, 61 4 57, 61  2 59 4 57, 59, 61  2 58, 60, 61 3 59, 61  1 60, 61 3 58, 59  1 58, 61 3 57, 58, 59, 61  1 58 3 57, 58  1 57, 59, 61 2 58, 60, 61  1 57, 59, 60, 61 1 60, 61  1 57, 58, 59, 61 1 58, 61   Notes: This Table summarizes the number of times each combination of groups correctly diagnosed patients and predicted at least one variant noted by Hopkins, as shown in the “correct groups with variant” column of Table 4.4 1 58, 59, 60, 61  1 58  1 57, 60  1 57, 59, 60, 61  1 57, 59  1 57, 58, 61  1 57, 58, 60  1 57, 58, 59, 60, 61     Notes: This Table summarizes the number of times each combination of groups correctly diagnosed patients, as shown in the “correct groups” column of Table 4.4.    In some cases, multiple groups reported the same causal variant for a case where Hopkins did not identify a variant. Since Hopkins only analyzed the genes ordered by the physician, it is possible that there were true pathogenic variants identified in the challenge that were not included on the answer key, such cases are elaborated on below. In order to explore the potential complication of false positives in the genomics-driven approach, we also examined cases in which CAGI-4 predictors consistently predicted the wrong disease class along with the same causal variants. Several of these cases are described below: Patient P7 – Groups 57 (submission 4), 58, 59, and 61 all predicted Telomere Shortening Disorders, and the latter 3 groups consistently noted a missense variant in TERT. The 
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patient’s diagnosis was Cystic Fibrosis and CF-Related disorders, and Hopkins did not note any reportable variants and did not analyze the TERT gene. The TERT variant is described in the literature; it leads to telomere shortening and is involved in bone marrow failure. Telomere shortening due to mutations in TERT is known to be involved in pulmonary fibrosis. Clinical presentation of pulmonary fibrosis is very different from cystic fibrosis. This TERT variant is annotated in ClinVar as involved in pulmonary fibrosis, but literature support for this phenotype is unclear. The variant is found in 120 ExAC participants including 2 homozygotes. Patient P36 – Groups 57 (submission 2), 58, 59, and 61 all predicted Liddle syndrome, with the same missense variant in SCNN1G. The patient’s diagnosis was Diffuse Lung Disease. The SCNN1G variant is a known pathogenic variant observed in two independent patients with bronchiectasis. The predictors presumably predicted Liddle syndrome because the same gene is involved in that disorder. This is likely an example of another false positive prediction common to multiple groups. Hopkins did not note a reportable variant for this patient and the SCNN1G gene was not analyzed. Patient P37 – Groups 57 (submission 2), 58, 59, and 61 all predicted Marfan syndrome with the same variant, a missense variant in FBN1. The patient’s diagnosis was Diffuse Lung Disease. FBN1 is involved in Marfan syndrome and in other cardiac phenotypes. A subgroup of Marfan patients develop lung emphysema, which is possibly a reason for the predictions. The missense variant is a known low frequency polymorphism annotated as “benign” in ClinVar, so this is likely a false positive prediction. Hopkins did not note any variants for this patient and did not analyze the FBN1 gene. Patient P14 – Groups 57 (submissions 3 and 4), 58, 59, and 61 all predicted Cystic Fibrosis and CF-Related disorders, along with one to two out of four variants in CFTR. The patient’s diagnosis was Diffuse Lung Disease, and Hopkins did not analyze the CFTR gene. All the predicted CFTR variants have previously been reported. One is a common polymorphism, and unlikely to contribute to disease. Another is intronic, and it is not clear whether it may be involved in splicing. The remaining two CFTR variants were rare missense variants. One missense variant is seen in ExAC 739 times including once in the homozygous state, and there is no information on its pathogenicity reported in the literature or public databases. The second missense variant is seen in ExAC 623 times including once in the homozygous state, and there is conflicting evidence reported in the literature regarding its pathogenicity. The latter two variants appear to be too common to be causal in this case, but as mentioned above, CF studies may be included in ExAC. It would be prudent to study 
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the background frequencies of these two variants in further detail, in order to decide whether they are likely to be causative. 4.5 Discussion Overall, we found that current state of the art computational prediction methods does a reasonable job of predicting clinical phenotype from genotype, even when blinded to clinical diagnoses. At the same time, current genotype-driven prediction methodologies generate false positives and false negatives at a rate unacceptable for clinical use. In cases where the Hopkins lab reported a variant, predictors did relatively well, with at least one group correctly identifying the disease class in 36 of 43 patients (84%), and at least one group identifying the correct disease class and variant in 33 of 43 cases (77%). In cases where the Hopkins lab did not find a reportable variant in the genes they analyzed, at least one group correctly matching the disease class in 39 of 63 patients (62%). In the latter cases, methods based on machine learning (SVM) technology appeared to be most effective at correctly identifying the disease. Interestingly, despite the ability to correctly match genotype to phenotype, the SVM-based method could not correctly identify the pathogenic variant. It is unclear what is happening in cases where groups correctly identify the disease class, but not the causal variant. In retrospect, it would have been prudent to include a list of gene-disease associations as well as modes of inheritance to the predictors to aid in the matching process. Different groups performed better depending on which metric was used; there was no clear “winner” that dominated performance across all metrics. Indeed, every group predicted at least one patient’s disease class correctly that no other group predicted correctly. This result suggests that a “meta-predictor” or a human clinical expert with access to all groups’ results might improve on the performance of each individual group. Currently, clinical genetic testing is almost entirely phenotype-driven: given a clinical diagnosis, laboratories analyze variants in genes known to be relevant to the diagnosed disease. This is partially due to the historic technical limitations on genetic testing, e.g., sequencing costs limited the number of genes for which data could be obtained. The standards for reporting variants to the patient are also currently conservative, in part because common, benign polymorphic variants have caused many false positives in past genetic analyses 162,163. However, as whole-exome and whole-genome sequencing become more economical, the phenotype-driven paradigm may be replaced by a genomics-driven approach, in which all rare, putatively functional variants in a patient’s genome are first 
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identified, then evaluated based on the plausibility that they may be pathogenic. The genomics-driven approach has the potential for higher sensitivity, due to more genes being analyzed, and also has the potential to diagnose diseases not identified by the referring physician. However, the main tradeoff compared to phenotype-driven approaches is a potentially higher false positive rate. Multiple CAGI-4 groups in the Hopkins challenge were in consensus in identifying several possible causative variants that were not identified by the current panel testing paradigm. They also identified several other variants that were likely to be false positives. Distinguishing these two possibilities, and identifying which variants to report to the patient, is a topic that requires further research. The American College of Medical Genetics and Genomics has published guidelines for the interpretation of sequence variants in order to help codify variant assessment 144. However, even when adhering to these guidelines there are still elements of variant interpretation that are subjective and vary between labs 164,165. Given large databases of “control” exomes (i.e., without a known phenotype), researchers could develop statistical models to predict whether particular variants are in fact causative 153. Such models could inform the development of new statistically justified reporting standards based on, for example, particular thresholds on the probability that the prediction of a causal variant is a false positive. This challenge was designed to reflect the range of cases seen in the Hopkins diagnostic lab (Figure 4.1A). This includes a high percentage of cases for which no likely pathogenic variant was identified, despite the patient presenting with a clinical phenotype. Even for clinical exome sequencing, nearly 75% of cases are negative 141,142. Negative cases proved especially challenging to participants, as ‘phenotype not discernable’ was not listed as a matching option. Despite the fact that no pathogenic variants were identified by the Hopkins lab, most groups were able to make a disease prediction and to identify putative pathogenic alleles in these negative cases. Indeed, the reason data from all 83 genes was included in the challenge was to highlight the difficulty in interpreting a large data set of rare variants that are unrelated to the patient’s phenotype. The presence of negative cases in the data set reflects clinical practice and cautions on the over-interpretation of rare variants. Unlike prior prediction challenges, where the activity of an enzyme had been quantitatively measured in the laboratory, there was no definitive answer key for this challenge. The predictors were asked to match sequencing data to a phenotype, and many groups did so by first identifying a causative variant. Only in a minority of cases (~23% in this dataset) could it be said with high confidence that a variant was likely contributing to disease in a patient. When a clinical laboratory reports a variant as Pathogenic, this is often 
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because the variant has previously been reported in patients with the same phenotype or the nucleotide change introduces a premature termination codon in a gene where loss-of-function variants cause disease 144. Thus, with a foundation in clinical genetics and access to online resources one could identify a large proportion of the ‘Pathogenic’ variants in this dataset. However, many of the variants detected in the clinical laboratory are rare missense or synonymous variants that have not previously been reported in the literature; these are almost always classified as variants of uncertain clinical significance. It is for these variants of uncertain significance, that are difficult to interpret and for which there is no answer key, that better assessment tools are needed. A CAGI challenge focused on the interpretation of variants of uncertain clinical significance would be more relevant to current clinical genetics practice. A clinical lab may upgrade a variant’s classification from ‘Uncertain’ to ‘Pathogenic’ based on new clinical information, segregation of a variant within a family, or identification of the variant in multiple unrelated individuals. Many molecular diagnostic labs maintain internal variant databases; such databases could be mined to curate a challenge set of ‘Uncertain’ variants for which there is unpublished data to support pathogenicity. In this proposed challenge, participants would have to correctly identify these ‘Pathogenic’ variants from a set of ‘Uncertain’ variants (for which there was unpublished data that they were NOT likely to contribute to disease). This would more directly test the challengers’ ability to predict pathogenicity without relying on allele frequency or online databases and without requiring knowledge of gene-disease associations. Assessment of the challenge would benefit from having fully vetted data and a clear answer key. This type of challenge, while still lacking a phenotype component, would more accurately mirror the clinical challenge of interpreting rare variants. Obtaining this data set would also invite communication between clinical testing labs (both academic and commercial) and the research community. In this vein, the development of a clinically useful variant assessment tool will require collaboration between clinical geneticists and data scientists. Discussions resulting from the Hopkins Clinical challenge demonstrated that although most participants incorporated genetic principles into their pipelines, they approached variant interpretation in a very different manner than a clinical laboratory. In future challenges, it would be interesting to pair an informatics group with a clinical group as a challenge team, particularly for whole exome sequencing challenges. Ideally, the back-and-forth between clinical and informatics groups would produce a method that could outperform that of either group alone. Diverse collaborations at CAGI could help bridge the communication gap between fields and pave the way for development of better tools. 



  

5 Design of a diagnostic gene-panel for the diagnosis of neurodevelopmental disorders  5.1 Summary Neurodevelopmental disorders (NDDs) are common genetic conditions including clinically heterogeneous phenotypes, such as intellectual disability (ID) and autism spectrum disorder (ASD)166. Due to a wide genetic heterogeneity and recurrent overlapping clinical features, single-gene testing for diagnosis of NDDs is especially challenging21,22. As consequence, high-throughput methods, as NGS targeted gene re-sequencing, are increasingly employed for NDD genetic testing21,22. This part of my project deals with the identification of a subset of genes involved in the ID/ASD co-morbidity to develop a new, cost effective, comprehensive gene panel for NDD diagnosis. Candidate ID and ASD gene lists were generated by gathering data from public databases, exome sequencing and meta-analysis studies. These lists were filtered, selecting only known causative genes from literature, top ranked by gene prioritization, and meeting network parameters. The final panel set resulted in a manually curated gene list (74 genes), used to design the diagnostic gene-panel, which is currently used for clinical screening of affected patients at the Molecular Genetics of Neurodevelopment Laboratory (Paediatric Department, University of Padova).  5.2 Introduction Neurodevelopmental disorders are common highly heritable diseases, including autism spectrum disorder and intellectual disability 166,167. ASD is the most severe manifestation among NDDs, with a high prevalence in population (1%, 3-4% combined with ID)167. Common features shared among ASD patients are the restrictive and stereotypic behaviors, difficulties in reciprocal social interactions and communication. These clinical conditions are mostly associated with psychomotor development delay, intellectual disability, and seizures9,168,169. ID is defined by a below average intellectual function (IQ <70), often associated with limitation in adaptive skills167. ID can arise alone or in paired to other clinical phenotypes, such as craniofacial dimorphisms, neurologic impairment, seizures and behavioral issues167. As consequence, both ASD and ID show a high level of comorbidity, 
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with the 70% of ASD patients presenting mild to severe ID, and at least 10% of ID affected individuals showing also autism features167. This phenomenon is linked to the impairment of closely related molecular mechanisms in both pathologies9,169. Indeed, ASD-ID associated genes converge on common pathways involved in synaptic development, plasticity and signaling in neurons of central nervous system170. Moreover, alterations in genes belonging to shared pathways (e.g. SHANK2, NRXN1, and CNTNAP2) are associated with ASD as well as ID167, while more than 1,000 causative loci were identified so far21. Pathogenic mutations in the known ASD-ID genes are both de novo and germline rare variants, which comprise chromosome abnormalities, copy-number variation (CNV) and single-nucleotide variation (SNV)9. In addition to the high genetic heterogeneity, the causative variants present a very low prevalence in their respective patient populations, posing even more challenges to diagnostic use of DNA testing167. As consequence, high-throughput methods, as targeted gene re-sequencing, are increasingly employed for NDD genetic testing21,22. In this context, next generation sequencing (NGS) analysis of selected gene panels holds many advantages. Firstly, this approach allows of screening dozens of genes with high coverage in a single experiment pairing with a considerably moderate sequencing costs. Secondly, the restricted targeting decreases the incidental finding occurrence, allowing to identify rare variants with large effect sizes in an enriched target space3,171. For these reasons, we worked toward the development of a novel comprehensive, and cost effective, gene panel for ASD-ID diagnosis. The gene panel was applied to identify rare de novo SNVs that may be causative for sporadic and non-syndromic ASD-ID cases.  5.3 Methods  5.3.1 Patient cohort The patients were referred from the clinical geneticists of seventeen Italian public hospitals with a diagnosis of non-specific neurodevelopmental disorder. The enrolled patients have negative high-resolution karyotype or array-CGH, Fragile-X test and metabolic screening. Clinical data were collected with a standardized record describing the clinical and family history, the disease phenotype (i.e. auxological parameters, neurological development, physical features, behavioral profile) and the presence of associated disorders. Data from the neurophysiological profile (i.e. ictal and interictal video-EEG-polygraphy, during sleep and wakefulness, evoked potentials when appropriate) and MRI brain, were also collected. 



  

Table S5.1 summarizes the clinical data of the patients. A written informed consent was obtained from all the patient’s parents or legal representatives. This study was approved by the Local Ethic Committee of the University-Hospital of Padova 5.3.2 Gene selection For the construction of an efficient and low-cost GP, we selected the most promising ID and/or ASD genes gathering data from public databases (AutismKB http://autismkb.cbi.pku.edu.cn 32, and SFARI https://sfari.org/resources/sfari-gene 33), OMIM, and PubMed. In particular, candidate genes were extracted from the recent exome sequencing and meta-analysis studies (Table S5.2). We collected a list of 972 genes scored according to the recurrence in different sources, and annotated for the clinical phenotype, gene function, subcellular localization and interaction with other known causative genes. Separated lists were generated considering ASD or ID association. Using data from STRING 9.0 (https://string-db.org)20, a disease protein-protein interaction (PPI) network was built starting from 66 high confidence genes (intersection list), shared both by ASD and ID gene lists. The emerging features of the network were assessed by an enrichment analysis with Enrichr webserver37. The intersection list was used as training set for the Endeavour gene prioritization (https://endeavour.esat.kuleuven.be/) 34. Hub direct interactors (STRING score above 0.45) belonging to the top ranking prioritized list, but not included in the intersection, were also included in the most promising candidate genes list. The inclusion conditions are: i) either the gene introduction in the network allows to connect a one or more unconnected nodes (i.e. genes) to the core gene set, ii) or the gene is one of the connected nodes after linker introduction. To this list, we added also the top ranked ID or ASD associated genes only (genes with at least 5 evidences for ID or ASD). The final panel set resulted in a manually curated gene list (74 genes), comprising the selected known causative genes, top ranked by gene prioritization and meeting PPI network parameters.  5.3.3 Gene Panel Sequencing The nucleic acids were extracted from patients’ blood samples using Wizard genomic DNA Promega Kit (Promega Corporation). Multiplex, PCR-based primer panel were designed with Ion AmpliSeq™ Designer (Thermo Fisher Scientific) to amplify all the exons and the flanking regions (10 bp) of the 74 selected genes. The amplicon libraries were prepared 
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with Ion AmpliSeq Library kit v2.0 (Thermo Fisher Scientific) with a barcoding protocol. The template preparation and enrichment were performed with Ion One Touch 2 and Ion One Touch ES System (Thermo Fisher Scientific). The sequencing was performed on the Ion PGM System using the Ion PGM Sequencing Hi-Q Kit, and Ion 316 v2 and Ion 318 v2 BC chips (Thermo Fisher Scientific).  5.3.4 Variant ranking Reads alignment to the human genome reference (hg19/GRCh37) and variant calling were performed with the Ion Torrent Suite Software v5.02 (Thermo Fisher Scientific), whereas SNVs were annotated using wANNOVAR172. Detected variants were ranked for their allelic frequency (AF) in the 146 patients and in control cohorts of 1000G 150, ExaC 173, and ESP6500 174 databases. We excluded those SNVs found in more than two patients of our cohort and with AF higher than expected for the disorder7. SNVs with low frequency were filtered considering the consensus among eight computational methods (SIFT55, Polyphen-252 HDIV and HVAR version, Mutation Taster 175, Mutation Assessor 53, FATHMM176, MetaSVM 177, MetaLR 177, and conservation scores (CADD67, GERP++ 65, PhyloP 178, SiPhy179). The selected SNVs were also evaluated in silico for their impact on splicing and on protein structure and function. The Integrated Genome Viewer (IGV) platform was used to exclude errors in the alignment process around selected SNVs. 5.3.5 In silico analysis of candidate variants The canonical protein sequences were retrieved from UniProt180, and the protein domain predicted by InterProScan181. The orthologous sequences were downloaded from OMA Browser72 and aligned with MAFFT73 to evaluate evolutionary conservation. When available, the crystal structures were retrieved from PDB182. Otherwise, the domain structures templates were searched using HHpred86 and the structure folding predicted with MODELLER 86 (automatic best template selection). The disorder content and the presence of short linear motifs for protein interactions were assessed combining MobiDB 3.025, ELM183 and using the interactive exploration tool ProViz83.  5.3.6 Sanger sequencing validation  The candidate variants were validated by Sanger sequencing. When the DNA samples were available, patient relatives were sequenced to assess familiar segregation. The PCR 



  

products were directly sequenced using the BigDye® Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). The reaction was run in an ABI Prism 3100XL automated sequencer (Applied Biosystems, Foster City, CA, USA) and the results were analyzed with Chromas 2.6.4 software (Technelysium Pty Ltd, Australia). 5.4 Results and discussion 5.4.1 ASD/ID shared genes define a core network, enriched for regulation of membrane excitability and synaptic trafficking The filtering pipeline allowed us to select 66 genes shared by both the ASD and ID gene lists, and confidently linked to the comorbidity between the two pathologies. As mutations in disease associated genes generally yield perturbations in key cellular pathways18, we decided to reconstruct the intersection gene network according to the STRING 9.0 protein interaction annotations (Figure 5.1). A network is defined by means of nodes (proteins encoded by selected genes) and edges (interactions), where the number of connection linking one node to another reflects the centrality, and thus the importance, of the gene/protein within the considered network18. STRING based analysis revealed that genes the intersection list forms a highly interconnected core set of 30 nodes, a small group of DMD-related genes (referred hereafter as “quartet”), and two pairs, i.e. TANC2-KIRREL2 and CC2D1A-DEAF1 (Figure 5.1). The core gene set comprises multiple genes involved in neuronal membrane excitability regulation (e.g. SCN2A184, GRI2B185, and SLC6A1186), which is a crucial factor in synapse formation during neurodevelopment187. Conversely, the “quartet” is characterized by genes related to the muscle functionality, such as DMD and DAG1. The DMD gene encodes for the dystrophin, a protein that interacts with many glycoproteins, e.g. the Dystrophin-Associated Glycoprotein 1 (DAG1). The dystrophin-glycoprotein complex links cytoskeletal components to extracellular matrix, regulating cellular stability188. This mechanisms is prevalently studied in muscle fibers, as mutations in DMD gene are generally associated with the Duchenne muscular dystrophy onset188. However, increasing lines of evidence highlight how mutations in this gene can be related to developmental cognitive and behavioral abnormalities, either in presence or in absence of neuromuscular symptoms189–192. As regard the pairs, the role in ASD-ID comorbity of CC2D1A and DEAF1 mutations is well established193,194, whereas KIRREL3 is mainly 
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associated with intellectual disability195, and the TANC2 involvement in NDDs is mainly inferred from its functions in synapse modulation196,197.     Figure 5.1: Network analysis results for intersection gene list. Graphical representation of connectivity among high confidence intersection list. Interactions are represented with grey lines between nodes/genes (light blue).   In the latter scenario, the integration of the gene ontology terms and phenotypic features could be useful to provide a more general context to the functional consequences of gene/protein alterations16. Thus, the intersection list was used for the enrichment analysis, aimed to better characterize the affected molecular pathway, and the phenotypes resulting by mutations in our genes. Unsurprising, our gene set is enriched in terms related to regulation of synaptic plasticity and neuronal transmission, as well as to post-synaptic localization (Table S5.3). More interestingly, HPO term enrichment shows that our genes are both likely linked to autism typical features, e.g. stereotypic, aggressive and abnormal social behavior, and to intellectual disability167. Moreover, the clinical features, like the tented upper lip vermilion and the deep set eyes, are characteristic of pathologies where autism and intellectual disability are comorbid (e.g. the Pitt-Hopkins syndrome198), further supporting the effectiveness of this gene selection method.   



  

5.4.2 Network expansion  Once the clinical impact of our high confidence gene list was established, we decided to expand the protein network, taking into consideration the previously excluded top ranked ASD and ID genes. These genes were prioritized with Endeavour34. The software integrates many other sources (e.g. gene expression, functional annotation and regulatory information), allowing to rank the genes by a comprehensive score based on the training set, i.e. the intersection list34. A perturbation-response inspired method was employed to determine the inclusion of prioritized genes in the candidate gene panel (GP) list. Briefly, we considered the protein network built on the intersection list and how the introduction of the prioritized gene affects network connectivity. Genes were introduced in the network following the Endeavour ranking order. If the number of connections among intersection genes increased after introduction, both the prioritized gene (linker) and connected gene are added to the final GP list (Figure 5.2).   
  Figure 5.2: Gene introduction approach for intersection network expansion. Genes we introducted according Endeavour prioritization ranking order. The introduction of a new node (gene/protein) does not affect protein connectivity (A), or can increase the number of edges among intersection genes/proteins (B). C) Effects of the introduction of prioritized genes on network connectivity. Notably, after introducing the 234th gene, the number of interactions reaches plateu.   
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Interestingly, we prioritized 906 genes, but after the introduction of the 234th gene, the number of interactions reaches the plateu, indicating that the other genes are not relevant for our disease protein network. This analysis allowed us to add seven genes, two linkers (CREBBP, and CASK), and four connected nodes (MED13L, KIRREL3, ASH1L and MIB1) to the candidate list, which were also mantained in the final GP. Except for the MIB1 encoded protein (an E3 ubiquitin-protein ligase), the linker/connected genes are either scaffold proteins or chromatin modifiers, highlighting the important role of these two protein classes in synapse functioning (Table S5.4).  5.4.3 The ASD/ID gene panel screening results After the network expansion, the candidate encoding regions were manually curated, and the resulting list was used for the diagnostic panel design (Table 5.1). The final ASD/ID gene-panel (GP) contains 29 Fragile X Mental Retardation protein targets, 21 genes encoding postsynaptic proteins (including TANC2 gene) and 16 chromatin modification factors (Tables S5.4)  Gene Chr. band Associated syndrome (Phenotype MIM) Inheritance pattern ADNP 20q13.13 Helsmoortel-Van Der Aa Syndrome AD ANKRD11 16q24.3 Kbg Syndrome AD AP1S2 Xp22.2 _ XL ARFGEF2 20q13.13 Periventricular Heterotopia With Microcephaly, Autosomal Recessive AR ARID1B 6q25.3 Coffin-Siris Syndrome, Mental Retardation, Autosomal Dominant 12 AD/AR ARX Xp21.3 Corpus Callosum, Agenesis Of, With Abnormal Genitalia, Lissencephaly, X-Linked, 2, Mental Retardation, X-Linked, With Or Without Seizures, Arx-Related, Epileptic Encephalopathy, Early Infantile 1, Partington X-Linked Mental Retardation Syndrome XLR ASH1L 1q22   AD ATRX Xq21.1 Alpha-Thalassemia Myelodysplasia Syndrome, Alpha-Thalassemia/Mental Retardation Syndrome, Mental Retardation-Hypotonic Facies Syndrome XLR CASK Xp11.4 Fg Syndrome, Mental Retardation And Microcephaly With Pontine And Cerebellar Hypoplasia XLD CC2D1A 19p13.12 Mental Retardation, Autosomal Recessive 3 AR    (Continues) 



  

Table 5.1 (Continued)   Gene Chr. band Associated syndrome (Phenotype MIM) Inheritance pattern CDKL5 Xp22.13 Epileptic Encephalopathy, Early Infantile, 2; Eiee2  XLD CHD8 14q11.2   AD CNTNAP2 7q35-q36 Pitt-Hopkins-Like Syndrome 1 AD CREBBP 16p13.3 Rubinstein-Taybi Syndrome 1 AD CTNNB1 3p22.1 Mental Retardation, Autosomal Dominant 19 AD DEAF1 11p15.5 Mental Retardation, Autosomal Dominant 24 AD DYRK1A 21q22.13 Mental Retardation, Autosomal Dominant 7 AD EHMT1 9q34.3  Kleefstra Syndrome  AD FMR1 Xq27.3 Fragile X Tremor/Ataxia Syndrome, Fragile X Syndrome , Premature Ovarian Failure 1 XLD FOXG1 14q12 Rett Syndrome AD FOXP1 3p13 Mental Retardation With Language Impairment And With Or Without Autistic Features  AD GABRB3 15q12 _ AD GAD1 2q31.1  Cerebral Palsy, Spastic Quadriplegic AR GATAD2B 1q21.3 Mental Retardation, Autosomal Dominant 18 AD GRIA3 Xq25 Mental Retardation, X-Linked XLR GRIK2 6q16.3 Mental Retardation, Autosomal Recessive 6 AR GRIN2A 16p13.2 Epilepsy, Focal, With Speech Disorder And With Or Without Mental Retardation; Fesd  AD GRIN2B 12p13.1 Mental Retardation, Autosomal Dominant 6, With Or Without Seizures , Epileptic Encephalopathy, Early Infantile AD HDAC4 2q37.3 _ AD IL1RAPL1 Xp21.2-Xp21.3 Mental Retardation, X-Linked 21 XLR IQSEC2 Xp11.22 Mental Retardation, X-Linked 1 XLD KATNAL2 18q21.1 _ AD KDM5C Xp11.22 Mental Retardation, X-Linked, Syndromic, Claes-Jensen Type XLR KIRREL3 11q24.2 Mental Retardation, Autosomal Dominant 4 AD MBD5 2q23.1 Mental Retardation, Autosomal Dominant 1 AD MCPH1 8p23 Microcephaly 1, Primary, Autosomal Recessive AR MECP2 Xq28 Mental Retardation, X-Linked, Syndromic 13, Lubs X-Linked Mental Retardation Syndrome, Encephalopathy, Neonatal Severe, Rett Syndrome XLR MED12 11q24.2 Ohdo Syndrome, X-Linked , Opitz-Kaveggia Syndrome, Lujan-Fryns Syndrome  AD MED13L 12q24.21 Mental Retardation And Distinctive Facial Features With Or Without Cardiac Defects AD     (Continues) 
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Table 5.1 (Continued)   Gene Chr. band Associated syndrome (Phenotype MIM) Inheritance pattern MEF2C 5q14.3 Mental Retardation, Autosomal Dominant 20 AD MIB1 18q11.2 Left Ventricular Noncompaction 7 AD MTF1 1p33 _ AD MYH10 17p13.1 _ XL NLGN3 Xq13.1 _ XL NLGN4X Xp22.32-p22.31 Mental Retardation, Usceptibility To Autism, X-Linked  XL NRXN1 2p16.3 Pitt-Hopkins-Like Syndrome 2 AR NTNG1 1p13.3 _ AD OPHN1 Xq12 Mental Retardation, X-Linked, With Cerebellar Hypoplasia And Distinctive Facial Appearance  XLR PHF21A 11p11.2 _ AD PHF8 Xp11.22 Siderius X-Linked Mental Retardation Syndrome XLR PPP2R5D 6p21.1 Mental Retardation, Autosomal Dominant 35 AD PQBP1 Xp11.23 Renpenning Syndrome 1 XLR PTCHD1 Xp22.11 _ XLR PTEN 10q23.31 Bannayan-Riley-Ruvalcaba Syndrome, Cowden Syndrome 1, Macrocephaly/Autism Syndrome  AD PTPN4 2q14.2 _ AD RAB39B Xq28 _ XLR RAI1 17p11.2 Smith-Magenis Syndrome AD RELN 7q22 Lissencephaly 2, Epilepsy, Familial Temporal Lobe, 1 AD/AR RPS6KA3 Xp22.12 Mental Retardation, X-Linked 19, Coffin-Lowry Syndrome XLD SATB2 2q33.1 Glass Syndrome AD SCN2A 2q24.3 Seizures, Benign Familial Infantile, 3, Epileptic Encephalopathy, Early Infantile, 11 AD SETBP1 18q12.3 Schinzel-Giedion Midface Retraction Syndrome , Mental Retardation, Autosomal Dominant 29 AD SHANK2 11q13.3-q13.4 _ AD SHANK3 22q13.33 Phelan-Mcdermid Syndrome AD SLC6A1 3p25.3 Myoclonic-Atonic Epilepsy AD SLC9A6 Xq26.3 Mental Retardation, X-Linked, Syndromic, Christianson Type XLD SYNGAP1 6p21.32 Mental Retardation, Autosomal Dominant 5 AD TANC2 17q23.2 _ AD TBR1 2q24 _ AD TCF4 18q21.2 Pitt-Hopkins Syndrome AD TRIO 5p15.2 _ AD     (Continues)  



  

Table 5.1 (Continued)   Gene Chr. band Associated syndrome (Phenotype MIM) Inheritance pattern     TUSC3 8p22 Mental Retardation, Autosomal Recessive 7 AR UBE3A 15q11.2 Angelman Syndrome AD WAC 10p12.1-p11.2  Desanto-Shinawi Syndrome AD  Table 5.1: ASD/ID gene panel list. For each gene the chromosome location, the related OMIM syndrome, and inheritance pattern (AD = autosomal dominant, AR = autosomal recessive; XLD = X-linked dominant; XLR = X-linked recessive) are reported.    The panel was employed in clinical screening of 146 individuals referred to the Molecular Genetics of Neurodevelopment Laboratory. An average of 94,8% of the target regions achieved a read depth of 20X and a mean depth of coverage of 263X for each individual. Overall, we detected in forty-seven of the subjects analyzed (47/146) fifty-seven rare single nucleotide variants, not yet identified or with low frequency in public databases. Sixteen of these rare SNVs are likely disrupting variants, since they are predicted to code for truncated proteins (14/57) or to affect transcript splicing (2/57). The other rare SNVs are missense (thirty-nine). Eleven missense variants are classified as possibly causative, since they are predicted to be deleterious by several computational tools, located in conserved positions critical for the protein function and supported by segregation analysis. Among the identified candidate disease-causing variants (Table 5.2), four were X-linked mutations (in CASK, MECP2 and RAB39B), nineteen involve autosomal dominant genes (KATNAL2, ANKRD11, ARID1B, DYRK1A, EHMT1, FOXP1, GRIN2B, SATB2, SETBP1, SHANK3, SLC6A1, SYNGAP1, and TRIO), and five were detected in autosomal recessive genes (CC2D1A, GAD1, GRIK2 and TUSC3). However, we identified the second possible causative mutation, a splice site variant, only in the case of GAD1 gene. In four cases, the pathogenic variants were already described in literature in patients with a phenotype consistent with the clinical conditions of our probands (GRIN2A c.G2087A199, MECP2 c.C502T200, MECP2 c.2194_2198del201 and SATB2 c.C715T202). Familial segregation analysis has been performed in the 47,9 % (70/146) of patients carrying rare SNVs, and in three cases allowed to support the pathogenicity of the variant. The remaining twenty-eight missense SNVs were classified likely pathogenic, as segregation analysis is still ongoing, and thus, cannot support their role in disease pathogenesis (see Table S5.5).  



86 Patient Sex Gene I.P. Variant 
cDNA position AA change Variant segre

gation dbSNP D/T 
602_01 F CASK XLD chrX:4140198

0:G:A c.C2119T p.Q707X 
de novo _ stop codon 

1974_01 M RAB39B XLR chrX:1544901
51:A:C c.T579G p.F193L 

maternal, affected rs782042596 2/9 
1975_01 M KATNAL2 AD chr18:4459592

2:C:T c.C743T p.A248V 
maternal rs140833601 9/9 

984_01 M TRIO AD chr5:14390392
:C:T c.C4111T p.H1371Y 

de novo _ 5/9 
1985_01 M SATB2 AD chr2:2002138

82:G:A c.C715T p.R239X 
de novo rs137853127 stop codon 

2033_01 M ANKRD11 AD chr16:8934597
4:CCTTCGGGG:C c.6968_6975del p.A2323fs 

de novo _ stop codon 
1970_01 F SHANK3 AD chr22:5115983

0:A:TTC c.3548insTTC  p.D1183V
fs5X de novo _ stop 

codon 
2127_01 F ARID1B AD chr6:15752816

5:G:T c.G5851T p.E1951X 
de novo _ stop codon 

2145_01 F MECP2 XLD chrX: 153296
399:C:T c.880C>T Arg294X 

de novo rs61751362 stop codon 
2165_01 M TRIO AD chr5:14394159

:C:T c.C4231T p.R1411X 
maternal, affected _ Stop codon 

2166_01 M EHMT1 AD chr9:14072883
7:G:C c.G3577C p.G1193R 

de novo _ 8/9 
2019_01 M GRIN2B AD chr12:137248

22:C:T c.G2087A p.R696H 
de novo _ 6/9 

2222_01 M DYRK1A AD chr21:3885877
7:G:C c.G525C p.K175N 

de novo _ 5/9 
2230_01 F SHANK3 AD chr22:5115347

6:G:A c.2244+1G>A _ 
de novo _ splicing 

2271_01 M SHANK3 AD chr22:5115971
8:C:T c.C3436T p.R1146X 

de novo _ stop codon 
2243_01 M EHMT1 AD chr9:14065720

9:GA:G c.1585delA p.S529fs 
_ _ stop codon 

1749_01 M SHANK3 AD chr22:5116043
2:GA:G c.4150delA p.E1384Df

s35X _ _ stop 
codon 

2274_01 M SETBP1 AD chr18:4253149
9:AGAGC:- c.2194_2198del p.E734Afs

18X de novo _ stop 
codon 

2233_01 M SYNGAP1 AD chr6:33411228
:C:T c.C2899T p.R967X 

_ _ stop codon 
2347_01 F ANKRD11 AD chr16:8934613

7:A:G c.6812_6813del p.P2271fs 
_ _ stop codon 

2368_01 M SLC6A1 AD chr3:11078549
:G:A c.G1697A p.R566H 

_ rs767142926 8/13 
414_01 F MECP2 XLD chrX:1532967

77:G:A c.502C>T p.R168X 
_ rs61748421 stop codon 

1769_01 M FOXP1 AD chr3:71026867
:A:C c.T1355G p.I452S 

paternal _ 4/9 
1769_01 M CNTNAP2 AD chr7:14682950

2:G:T c.G1249T p.D417Y 
maternal rs147815978 6/9 

2053_01 F GAD1 AR chr2:17167859
4:T:C c.83-3T>C    

maternal rs769951300 splicing 
2053_01 F GAD1 AR chr2:17170211

4:C:T c.C850T p.L284F 
paternal rs780519382 6/9 

 Table 5.2: Likely causative variants detected in our coh
ort. 

Variant annotation scheme: Patient identification code
, patient sex, affected gene, inheritance pattern (I.P.), c

hromosomal position, cDNA and amino acid change, v
ariant segregation analysis 

results, dbSNP code (if available), and the ratio among 
damaging prediction over the total (D/T). Variants alrea

dy reported in literature are in bold.  
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5.4.4 In silico analysis of possible causative variants Further evidence supporting the causality between missense SNVs and clinical phenotype was provided by the evaluation of the variant effects on protein function/structure. In the following section, two examples are reported, i.e. DYRK1A p. K175Q and EHMT1 p. G1193R.   DYRK1A p. K175Q DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) is a protein kinase that plays a key role in neurogenesis, neuronal differentiation and proliferation and synaptic plasticity203. The encoding gene maps to the Down syndrome critical region of chromosome 21, and extra copy of DYRK1A accounts for the majority of Down syndrome clinical phenotype. However, heterozygous single-nucleotide variants resulting in DYRK1A gene haploinsufficiency have been demonstrated to be associated with ID and mental retardation203. DYRK1A p. K175Q substitution was detected in the patient 2222_01, who presented severe ID, microcephaly, absent speech, behavioral and movement abnormalities, and corpus callosum agenesis.     Figure 5.3: DYRK1A missense mutation affect catalytic pocket of kinase domain A) Variants identified in our patient cohort are mapped to the DYRK1A domain architecture (red: possibly causative, green: likely benign). Protein sequence presents regions biased toward polar (serine and threonine) and aromatic (histidine residues). NLS = nuclear localization signal. B) DYRK1A p. Lys175 and neighboring residues are conserved among orthologous sequences. Amino acids are colored by conservation, according to ClustalX color code. C) DYRK1A p. K175N variant and wild type residues are mapped to kinase domain structure (4yu2.pdb, chain A). Residues involved in nucleotide binding are represented in orange, wild-type lysine in red and asparagine in green.  
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  DYRK1A p.K175Q met all our filtering criteria: occurred de novo, was not listed in the SNV databases, e.g. dbSNP 204 and gnomAD173, and was predicted being damaging by five out of nine variant prediction tools (see Table 5.2). Moreover, it maps to the catalytic region of kinase domain (β-2 strand), where the conserved Lys175 faces the nucleotide binding region in catalytic pocket205 (Figure 5.3). The variant causes the substitution of a positively charged residue with an amidic bulkier asparagine. This could affect both the charge distribution and spatial constraints required for nucleotide binding, resulting in the alteration of catalytic pocket, and consequently, in the disruption of DYRK1A kinase activity, which could be connected with disease pathogenesis in our patient.  EHMT1 p. G1193R Euchromatin histone methyltransferase 1 (EHMT1) catalyzes the mono- and dimethylation of histone H3 N-terminal lysine 9 (H3K9me2), which is associated with gene transcription repression, and with learning and memory processes206,207. Heterozygous EHMT1 variants abrogating methyltransferase activity cause Kleefstra syndrome (KS), characterized by the comorbity of autistic-like traits and ID. Moreover, the KS clinical phenotype includes mild to severe developmental delay, hypotonia causing feeding difficulties, speech and motor delay 206. In addition to being classified as damaging from the majority (8/9) of prediction tools (Table 5.2), EHMT1 p. G1193R substitution was detected de novo in a patient (2166_01) with psychomotor delay, mild ID, hypotonia and absent speech. The variant maps to a highly conserved glycine residue in the SET domain (Figure 5.4). The SET domain mediates the transfer of a methyl group from S-adenosyl-L-methionine (SAM) co-factor to the H3K9208. Variants mapping to the SET binding pocket would lead to an alteration of its activity, resulting in changes of H3K9me levels and gene transcription repression. The selected missense SNV leads to the substitution of a small glycine with a large, positively charged arginine in the SET domain (Figure 5.4). Besides the introduction of a bulkier residue, EHMT1 p.G1193R adds a positive charge within the H3K9 binding pocket, whose key interacting residues are prevalently non-polar or negatively-charged, with only two arginine accepted at positions 1214 and 1180208. Thus, the variants may affect the charge distribution and histone binding affinity within the interaction region, triggering variation in methyltransferase activity, and may explain the clinical phenotype in patient 2166_01.  
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  Figure 5.4: EHMT1 missense mutation affect SET domain. Variants identified in our patient cohort are mapped to the EHMT1 domain architecture (red: possibly causative, green: likely benign). Protein sequence presents regions biased toward polar (glutamine and arginine) and a poly-alanine motif. The ankyrin domain (orange) is involved with the histone H3K9me binding. The Pre-SET domain (green) contributes to SET domain stabilization B) EHMT1 p. Lys1193 and neighboring residues are conserved among orthologous sequences. Amino acids are colored by conservation, according ClustalX color code. C) EHMT1 p. G1193R variant (red) and wild type glycine (orange) are mapped to SET domain structure (2igq.pdb, chain A) Residues involved in H3K9 binding and the S-adenosyl-L-methionine molecule are represented in sticks. 5.5 Conclusions In this work, we develop a new and comprehensive gene panel for ASD/ID diagnosis comorbidity. It consists of 74 genes, including the previously single-tested genes, known ASD/ID associated genes and the best candidate genes from network and prioritization analysis. The linkage based network analysis, combined with the gene prioritization, allow us to filter the most promising candidate genes associated with ASD/ID comorbidity, which were added to the final list. Moreover, HPO and G.O. ontologies enrichment analyses provided additional evidence supporting the selected loci involvement in cellular processes and clinical conditions consistent with the ASD/ID comorbidity. The resulting panel was 
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employed in clinical screening of 146 individuals referred to the Molecular Genetics of Neurodevelopment Laboratory (Pediatrics’ Department, University of Padova) for the genetic testing. The GP screening allow us to assign a molecular diagnosis to twenty-four of the screened patients, with a diagnostic yield of 16,4% (24/146). The selected variants met all the filtering criteria, i.e. they are de novo or low frequency SNVs, are classified as damaging by most of the prediction tools and follow the disease phenotype segregation in the family. In some cases, evidence supporting the variant pathogenicity was provided by bioinformatics analysis, by which the effect on related functional region was assessed. In the examples presented here, mutations affect structural domains that are critical for protein activity, e.g. the kinase catalytic domain in DYRK1A and the histone 3 binding pocket in EHMT1 protein, explaining the variant impact on patients’ pathology. Besides diagnosed cases, at least one likely pathogenic variant was detected for additional twenty-three patients (15,7%), and ongoing investigation will assess their role in disease onset. These results confirm the diagnostic value of this targeted gene panel for investigating children affected by ID and ASD, both presenting co-occurring phenotype, as well as for their differential diagnosis.   
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6 DisProt 7.0: a major update of the database of disordered proteins This Chapter has been published in “Piovesan D., Tabaro F., Mičetić I., Necci M., Quaglia F., Oldfield C.J., Aspromonte M.C., Davey N.E., Davidović R., Dosztányi Z., Elofsson A., Gasparini A., Hatos A., Kajava A.V., Kalmar L., Leonardi E., Lazar T., Macedo-Ribeiro S., Macossay-Castillo M., Meszaros A., Minervini G., Murvai N., Pujols J., Roche D.B., Salladini E., Schad E., Schramm A., Szabo B., Tantos A., Tonello F., Tsirigos K.D., Veljković N., Ventura S., Vranken W., Warholm P., Uversky V.N., Dunker A.K., Longhi S., Tompa P., Tosatto S.C.E. Nucleic Acids Res. 2017 Jan 4;45(D1):D219-D227.” 6.1 Summary The Database of Protein Disorder (DisProt, URL: www.disprot.org) has been significantly updated and upgraded since its last major renewal in 2007. The current release holds information on more than 800 entries of IDPs/IDRs, i.e. intrinsically disordered proteins or regions that exist and function without a well-defined three-dimensional structure. We have re-curated previous entries to purge DisProt from conflicting cases, and also upgraded the functional classification scheme to reflect continuous advance in the field in the past 10 years or so. We define IDPs as proteins that are disordered along their entire sequence, i.e. entirely lack structural elements, and IDRs as regions that are at least five consecutive residues without well-defined structure. We base our assessment of disorder strictly on experimental evidence, such as X-ray crystallography and nu-clear magnetic resonance (primary techniques) and a broad range of other experimental approaches (secondary techniques). Confident and ambiguous annotations are highlighted separately. DisProt 7.0 presents classified knowledge regarding the experimental characterization and functional annotations of IDPs/IDRs, and is intended to provide an invaluable resource for the research community for a better understanding structural disorder and for developing better computational tools for studying disordered proteins.  



92 

6.2 Introduction Our traditional view of protein structure and function is deeply rooted in the structure–function paradigm which stated that the polypeptide chain of proteins needs to fold into a stable three-dimensional (3D) structure, which is a prerequisite of the functioning of the protein. The extreme explanatory power and success of this model is at-tested by more than hundred thousand high-resolution structures in the Protein Data Bank (PDB) 209 and many Nobel Prizes awarded for describing structures central to understanding important cell-biological phenomena. It has been suggested almost 20 years ago, however, that many proteins or regions of proteins in various proteomes lack such stable 3D structure, and are rather intrinsically disordered under native, physiological-like conditions (thus named IDPs/IDRs, respectively) 210–212. The recognition of this structural phenomenon brought a radical change in the structure–function paradigm, and critically extended the general appreciation of the role of dynamics in protein function. It has been recognized that structural disorder, which is prevalent in all organisms, plays roles primarily in cellular signaling and regulation 213. Because of that, IDPs/IDRs are often implicated in diseases 214 and represent important drug targets 215.  The structural and functional characterization of disordered proteins represents a special challenge, because they exist as an ensemble of rapidly interconverting conformations. Although they cannot be crystallized and thus cannot be directly characterized by X-ray crystallography, there are a variety of techniques that can report on their highly dynamic structural state at low- or even high spatial and temporal resolution 211. The current best structural description of IDPs/IDRs is by structural ensembles, which can be solved by a combination of experimental and computational approaches and are collected into a dedicated structural database, PED 216. Studies of the structure–function relationship of disordered proteins have shown that in certain cases their function arises directly from the disordered state (entropic chains), whereas in many other cases their function emanates from molecular recognition accompanied by induced folding to specific binding partners, such as another protein, RNA or DNA molecule 217,218. In these functions, the sensitivity to regulated remodeling of the disordered structural ensemble is an excellent substrate for protein regulation 219, as exemplified by frequent post-translational modifications and special modes of allosteric regulation 220 involving IDPs/IDRs. 



93 

Due to the prevalence and importance of structural disorder, several dedicated databases covering various aspects of IDPs/IDRs have appeared in the past decade. DisProt is the primary repository of disorder-related data on sequence-and functional annotations, focusing on disordered proteins or regions with experimental verification 221,222. Several other databases are based on predictions of disorder, such as D2P 2, which contains disorder protein predictions by a variety of predictors on 1765 complete proteomes 223, MobiDB, which features three levels of annotations, manually curated, indirect and predicted for all UniProt sequences (over 80 million) 224, and IDEAL, which contains manual annotations of interaction regions undergoing induced folding, sites of post-translational modifications and assignments of structural domains 225. In addition, as already mentioned, PED is the database that gathers structural in-formation on IDPs/IDRs, in the form of structural ensembles 216. The interaction of IDPs/IDRs with their target(s) is most often mediated by short continuous stretches of amino acids such as Molecular Recognition Elements/Features (MoREs/MoRFs) 226 and short/eukaryotic linear motifs (SLiMs/ELMs), which have been collected in the ELM database 227. Less frequently, partner interactions of IDPs/IDRs may also be mediated by intrinsically dis-ordered domains (IDDs), i.e. longer regions that conform to the definition of domains as functional, evolutionary and structural units 228. Although probably still underappreciated, some of these IDDs may be found in the Pfam database of protein families which includes their annotations and underlying multiple sequence alignments 87. DisProt is central to all IDP-related research efforts, because it collects and presents in a structured way the core experimental evidence reported for structural disorder in proteins. To give a new impetus to the field, we have significantly updated and upgraded it with new features. This new release––DisProt 7.0––contains more than 800 entries of IDPs/IDRs. We have also re-defined and extended functional categories laying the basis for a functional ontology of IDPs, now encompassing 7 major classes and 35 sub-classes, all based on published experimental data. 6.2.1 Detection and characterization of IDPs Technical advances in the field of biophysical and structural biology in the last 50 years have provided the scientific community with an arsenal of techniques to tackle the challenging characterization of IDPs/IDRs 212,229. The various methods differ in their extent of sophistication, and hence in their technical demand, as well as in the nature of the 
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information they provide. Nuclear magnetic resonance (NMR) and X-ray crystallography provide site-specific information, whereas other methods provide more qualitative and global information (e.g. far-UV circular dichroism, size-exclusion chromatography; SEC). The rise of the field of protein disorder has greatly benefited from structural biology, because structures deposited in the PDB 209 have been instrumental for the development of disorder predictors, often trained on regions of missing electron density. Developments of multidimensional heteronuclear NMR also enabled the structural characterization of disordered proteins of increasing size 230,231. In particular, heteronuclear single quantum coherence (HSQC) experiments are most commonly used to define protein disorder irrespective of whether residue-specific chemical shifts are available or not, as crowded HSQC spectra, characterized by a poor spread of resonances, are typical of IDPs/IDRs. The same feature of low spread of proton resonances is also apparent in one-dimensional proton-based NMR spectra, which offers the obvious advantage of not requiring isotopic labeling. Following assignment of the spectrum, quantitative estimations of disorder can be obtained through various NMR observables, such as chemical shifts, relaxation rates, residual dipolar couplings and resonance intensities in paramagnetic relaxation enhancement experiments. These data enable probing sequence-specific structural information in IDPs/IDRs. A particular strength of NMR is that it can be increasingly applied under truly in vivo conditions, in live cells 232. Therefore, these two experimental approaches, X-ray crystallography and multidimensional NMR, are considered as the ‘primary techniques’ providing evidence for structural disorder on a per residue basis in DisProt. It should not miss our attention, though, that due to the expenses of isotopic labeling in NMR and the high rate of failure in protein crystallization, it would be unreason-able to only rely on these two approaches to document protein disorder. Therefore, beyond X-ray crystallography and NMR, a plethora of alternative biochemical and bio-physical approaches (termed ‘secondary techniques’) pro-vide orthogonal information on protein disorder in DisProt 212,229. The various approaches are of course not equivalent in terms of reliability, resolution and accuracy and suffer from specific drawbacks and limitations. Structural disorder is often based on far-UV CD spectroscopy, which is overall quite reliable, but does not enable discrimination between ordered and molten globular forms. Near-UV CD, beyond being able to unveil the lack of ordered structure, has the advantage of distinguishing between globular and molten globule forms. Another hallmark of disorder is anomalous sodium dodecyl sulphate-polyacrylamide gel electrophoresis migration, 
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where IDPs have a high apparent molecular mass. IDPs/IDRs also behave anomalously in SEC, light scattering (DLS, MALS), and in small-angle X-ray scattering in that they display hydrodynamic radii (RH) and radii of gyration (Rg) higher than expected, reflecting an extended conformation. Fluorescence spectroscopy is another common method to assess disorder. Intrinsic fluorescence probing the chemical environment of tryptophan residues provides information about their solvent-accessibility, whereas thermal differential scanning fluorimetry––similar to differential scanning calorimetry––can highlight the lack of a cooperative thermal transition and hence absence of ordered structure. Fluorescence resonance energy transfer between external fluorophores can even generate information on distance distributions and help solve the structural ensemble of the IDP 233. Hyper-sensitivity to proteolysis is also commonly used to map out disordered regions of proteins. Recently, native mass spectrometry exploiting nanoelectrospray ionization 234,235 and high-speed atomic force microscopy operating at the single-molecule level 236 have emerged as attractive alternatives to address structural disorder. As a last statement, it is noteworthy that the higher the number of independent experimental lines supporting dis-order, the higher the reliability of the annotation. Further-more, multi-dimensional information may help realize that structural disorder is not a single homogeneous structural state along an order-disorder binary classification coordinate, it rather represents a continuum of states from the fully ordered to the fully disordered. Similarly, many examples of biological relevant disorder in fragments that are missing from the full length protein have been reported. Further-more, numerous functional examples of ‘conditional disorder’, i.e. instances where a disordered region functions by transitions to or from a folded state 237, or when disorder is only observed in a fraction of similar structures 238, lead to ambiguity and clearly points to the need for carrying out complementary experiments. In addition, an extreme case leading to conflicting results is represented by instances where a protein region, predicted to be ordered, is not defined in the electron density in one crystal structure while being ordered in another one (for an example see 239 and DisProt entry DP00133). Do these ambiguous regions represent a new class of disorder that escape detection using the currently available disorder predictors (thus setting the scene for their improvement), or a contrario are they the result of static disorder that arises from experimental conditions or domain wobbling? Combining information from a variety of sources may help clarify these cases and also improve meaningful 



96 

descriptions of IDPs as conformational ensembles 240,241, which may lead to future descriptions of the structure–function relationship of IDPs. 6.2.2 Database structure and implementation Database records. The technology of DisProt has been up-dated and is now based on a document-oriented MongoDB database. Stored documents are of two types, ‘protein’ including general information about the protein and ‘disordered region (DR)’ including evidence of disorder from literature. Protein information is retrieved from UniProt and includes cleavage sites and chain/peptide boundaries for polyproteins and processed proteins. DisProt is sequence-centric and different isoforms correspond to different entries as in the previous version. Cleaved proteins are merged into a single entry as they are products of the same native sequence. DisProt accession numbers now follow a single format and all previous entries with a ‘xxx’ suffix were re-moved. DR records are evidence-centric, i.e. different documents are stored for different experiments even when related to the same region. Forcing a one-to-one paradigm allows to track annotation evidence type and the corresponding literature source unambiguously. DR records also include experimental evidence quality tags for ambiguous annotations. Sometimes experiments are carried out on engineered sequences or fragments which may prove ambiguous to generalize for the entire sequence (AMBSEQ). Moreover, disorder boundaries are occasionally not clear from the literature (AMBLIT) or experiments are performed under extremely non-physiological conditions (AMBEXP). The major improvement from previous versions is the manually cu-rated functional annotation of the regions. Whenever possible, curator-associated functions based on literature evidence are indicated by selecting terms from a new ontology built for describing disorder-related functional modes. If none of the current terms in the new ontology give a proper description of the functional mode, the curator may propose a new term to be added to the ontology. Acceptance of the new term will require approval by the IDP/IDR ontology committee.  



97  Figure 6.1: DisProt sample entry, human p53 protein (DP00086). Several experiments have been carried out to characterize the human p53 protein. DisProt reports literature evidence for IDRs. In particular, 11 different IDR evidences (Region Evidences) have been collected from nine different papers by two different curators. Most of these are related to the N-terminus and come from different types of experiments (Disorder Region Details). Disorder regions and the number of DisProt evidences, separated into confident and ambiguous annotations, can be compared with structural information from the Pfam and MobiDB databases in the Disorder Overview. DisProt also provides function annotation of IDRs by reporting molecular function, transition and partner terms (Functional Annotation). A literature reference is provided for each annotated IDR, linked to the relevant PubMed entry. 
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Annotation pipeline. The new DisProt data have been generated by a community effort through a web server interface accessible upon registration. The same infrastructure can be used both to create and update entries. Curators provide an annotation through a submission form where all fields are validated on the client-side and a sequence viewer allows the comparison of assigned regions with structure information (Pfam domains, MobiDB disorder). Of note, the name of the curator is clearly visible in the entry to allow proper attribution of credit. The pipeline is fully automatic and can be potentially applied to the entire UniProt database. The DisProt public database is a snapshot of the community an-notations. Entry page. The entry page features four different sections (Figure 6.1). A protein information Table gives the protein name, gene, synonyms, identifiers, taxonomy and ‘homologous’ entries inferred from sequence similarity. An interactive feature viewer reports DisProt disorder regions separated into confident and ambiguous annotations, colored brown for intrinsically disordered regions and purple for context-dependent regions. Pfam domains along with PDB and predicted disorder derived from MobiDB are also shown. Below, a detailed feature viewer provides different visualization layers to highlight different functional aspects (ontology terms) and the strength of available disorder evidence. Each position in the sequence is colored according to the number and type of evidence. Last but not least, the full curator-generated list of region evidences is reported on the bottom of the page and can be filtered by selecting an element (region) in the feature viewer. Figure 6.1 shows the current DisProt annotation for the human p53 protein. The combination of DisProt and PDB annotation clearly shows how p53 contains several segments undergoing disorder to order transitions. Evidence for disorder from the literature in the central p53 DNA binding domain, for which many crystal structures are available in the PDB, is ambiguous and highlighted with AMBLIT. Similar conflicts can probably be found in scores of DisProt entries and demonstrate the importance of flagging ambiguous data. Browsing and searching data. Both browsing and searching functionalities are provided in a single solution from the ‘Browse’ page. A sortable, customizable and filterable Table lists all entries by protein. Alternatively, another Table listing all regions is available and accessible through the ‘regions’ button. Complex queries can be simulated applying different filters to different columns. Specific entries can be selected manually and customized views can be generated by adding or removing columns. Filtered and/or selected data can be downloaded both in text and JSON formats. Alternatively, the ‘Search’ 
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page allows the user to search for specific words in a free-text form or to search for DisProt entries similar to a query sequence. Output for either search is a provided in a simplified form. Feedback page. DisProt users are highly encouraged to suggest additional disorder annotations or changes to existing annotations using the ‘Feedback’ page. This contains a drop-down menu guiding the choice of feedback provided (e.g. website experience, novel annotations) and a message field. For feedback related to data entries, the user is asked to provide either the UniProt or DisProt ID and (where possible) a PubMed reference. All messages are reviewed by the curators and integrated in the database as time permits. Web technology. The DisProt server is implemented in Node.js (https://nodejs.org) using the REST (Representational State Transfer) architecture. The data can be accessed through the web interface or programmatically exploiting the RESTful functionality. Please refer to the ‘Help’ section of the website for details on using the DisProt web services. The web interface is built using Angular.js (https://angularjs.org) and Bootstrap (http://getbootstrap.com) frameworks. The feature viewer is implemented on top of the Bio.js library. 6.2.3 Database content: upgrades and updates Entries in DisProt 7.0 came from three major sources: (i) from the previous version of DisProt (where conflicting cases have been re-annotated), (ii) novel cases identified as PDB entries with long regions of missing electron density and (iii) proteins identified by text-mining in PubMed abstracts for keywords ‘intrinsically disordered’, ‘intrinsically unstructured’ and ‘structural disorder’. New proteins selected based on disorder content (estimated based on MobiDB data) were prioritized (if appropriate information was available in SwissProt) to concentrate on well-studied and most interesting cases. New proteins were also selected by curators themselves to exploit their specific previous knowledge. All entries from previous versions were re-annotated to remove inconsistencies. One hundred and ninety-eight previous entries were completely removed and 469 modified. Recurring problems being fixed were wrong organism or isoform assignments, wrong IDR positioning, untracked disorder evidence (e.g. missing explicit literature reference) and weak evidence (e.g. based on very short fragments, please note that the minimal length of an IDR in DisProt 7.0 is 5 residues). Moreover, disorder annotations based on not traceable author/curator statements were discarded. Where 
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necessary, a curator comment now highlights criticisms relative to a given evidence/experiment, e.g. if the experiment has been carried out on an engineered protein. Regions annotated as structured in previous DisProt releases were removed (33 regions). Information related to experiments has been simplified by skipping technical details regarding experimental conditions. However, weak experimental evidence is filtered out by the curator during annotation and tagged with one of three ambiguous labels. Overall, DisProt 7.0 includes 804 entries and 2167 disordered regions, with a total of 92 432 amino acids with clear experimental and functional annotations (Table 6.1), and the length distribution of disordered regions has significantly changed from the last release of DisProt (Figure 6.2).  Table 6.1: DisProt annotation content Method/function Proteins Regions Residues Nuclear magnetic resonance (NMR) 333 592 32 926 X-ray crystallography 326 683 20 742 Circular dichroism (CD) spectroscopy, far-UV 261 352 53 935 Sensitivity to proteolysis 75 95 13 961 Size exclusion/gel filtration chromatography 62 67 12 206 Proton-based NMR 53 69 7723 SDS-PAGE gel, aberrant mobility on 34 34 6326 Other methods 237 273 41 833 Disorder transition 564 1505 151 498 Molecular function 489 1199 106 670 Molecular partner 444 1108 119 665  Distribution of DisProt annotation based on experimental evidence (method) and disorder function (function). As each annotated disorder region corresponds to one piece of experimental evidence, multiple regions can map to the same sequence segment. If a protein is annotated multiple times with the same type of experiment it is counted once. The number of residues is the sum of region lengths.                 
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  Figure 6.2: Distribution of disorder segment lengths. Segment lengths are binned in groups of 10 residues, e.g. the column 10 showing lengths between 10 and 19 residues. The current DisProt release is distinguished by experimental technique (X-ray in green, NMR in blue and other methods in red). The previous DisProt release is shown in a single gray bar as it did not have the experimental technique in a machine-readable format. 6.2.4 New feature: functional classification IDPs/IDRs carry out important functions in the cell. The field has settled on the notion that structural disorder rep-resents a continuum of states from fully folded to fully un-folded (random coil-like), and function may come from any of the states and transitions between them. That is, their function may come directly from the disordered state or from molecular recognition and binding to partner molecule(s). We derive our classification from the logic of the gene ontology classification scheme 242, which is based on three structured ontologies ascribing functional terms to gene products (proteins) in terms of their associated biological processes (BP), cellular components (CC) and molecular functions (MF). Apparently, the CC and BP ontologies do not depend on the disordered status of the protein, they simply reflect the intracellular location of the protein and the BP it participates in, which can be kept without reference for the disordered status 242. The situation is entirely different with MF, which describes the elemental activities of a protein at the molecular level. In this regard, IDPs basically differ from folded proteins, such as enzymes or ligand-binding receptors, because their mode of action and type of function are usually completely different from those of folded proteins. Therefore, we have developed a novel classification 
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scheme that merges and expands previous schemes that suggested thirty 243 and six 217 different categories, to provide classified descriptors for their MFs. Because previous categories 217,243 lacked coherence (for example, they treated structural transitions and interaction partners at the same level), we created a rational scheme that distinguishes these different types of ontologies (cf. Table 6.2 and ref. 211).The three sub-ontologies are as follows: (i) molecular function of disorder (MFUN): describes the type of functional readout of function (such as molecular chaperone); (ii) molecular transition (TRAN) necessary for function (such as disorder-to-order transition); and (iii) molecular partner (PART) that is recognized by the disordered protein (such as protein/RNA/DNA/small molecule). The MFUN ontology is described in detail in Table 1. The TRAN ontology can be further simplified to two IDR states (disorder and transition) to highlight different types of behavior, e.g. in the feature viewer of each DisProt entry.  Table 6.2: Major functional categories of the MFUN ontology of DisProt MFUN code  Generic functional category Functional category MFUN_01 Entropic chain Flexible linker/spacer   Entropic bristle   Entropic clock   Entropic spring   Structural mortar   Self-transport through channel MFUN_02 Molecular recognition: assembler Assembler   Localization (targeting)   Localization (tethering)   Prion (self-assembly, polymerization)   Liquid-liquid phase separation demixing (self-assembly) MFUN_03  Molecular recognition: scavenger Neutralization of toxic molecules  Metal binding/metal sponge   Water storage MFUN_04  Molecular recognition: effector Inhibitor  Disassembler   Activator   cis-regulatory elements (inhibitory modules)   DNA bending   DNA unwinding MFUN_05  Molecular recognition: display site Phosphorylation  Acetylation   Methylation   Glycosylation   Ubiquitination   Fatty acylation (myristolation and palmitoylation)   Limited proteolysis   (Continues) 
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Table 6.2 (Continued)  MFUN code  Generic functional category Functional category MFUN_06  Molecular recognition: chaperone Protein detergent/solvate layer  Space filling   Entropic exclusion   Entropy transfer The functional schemes are an open hierarchy. One goal of sharing information with the community through DisProt is to refine our views of the functional modes of IDPs  6.3 Conclusions and future work We have presented an updated and completely re-worked version of the DisProt database. It now features state-of-the-art database and web technology, enabling programmatic access of interested parties. The content was expanded by defining a standardized set of experimental techniques and a novel functional ontology of disordered segments. Both allow for a richer description of disorder which may be used for further analyses. The other main improvement in DisProt is a complete re-annotation of existing entries to remove inconsistencies and an expansion of ca. 50% over the previous release, which also resulted in a significant shift in the length coverage of disordered regions in the database. This advance was made possible by a distributed annotation effort coordinated by the COST Action NGP-net (URL: ngp-net.bio.unipd.it) involving a dozen different groups and close to 40 annotators. The longer term maintenance of DisProt is provided by the Italian node of the European bioinformatics infrastructure Elixir. In the future we hope that DisProt can be able to provide disorder annotations for UniProt. Finally, we hope that the upgrade of DisProt will encourage the scientific community to deposit experimental evidence for disorder within this unique repository, and that this renewed momentum will lead to an increased awareness of the importance of intrinsic disorder in proteins 
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7 Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family This Chapter has been published in “Gasparini A., Tosatto S.C.E, Murgia A., Leonardi E. Sci Rep. 2017 Jul 28;7(1):6829.” For Supplementary Material, check the online version of the paper. 7.1 Summary The emergence of genes implicated across multiple comorbid neurologic disorders allows to identify shared underlying molecular pathways. Recently, investigation of patients with diverse neurologic disorders found TANC1 and TANC2 as possible candidate disease genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing synaptic spines and excitatory synapse strength, their molecular functions remain unknown. Here, we conducted a comprehensive in silico analysis of the TANC protein family to characterize their molecular role and understand possible neurobiological consequences of their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been modeled. The newly predicted N-terminal ATPase domain may function as a regulated molecular switch for downstream signaling. Several putative conserved protein binding motifs allowed to extend the TANC interaction network. Interestingly, we highlighted connections with different signaling pathways converging to modulate neuronal activity. Beyond a known role for TANC family members in the glutamate receptor pathway, they seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This suggests an important role in neuron projection, extension and differentiation.  7.2 Introduction Neurodevelopmental disorders (NDDs) are common conditions including clinically and genetically heterogeneous diseases, such as intellectual disability (ID), autism spectrum disorder (ASD), and epilepsy244. Advances in next generation sequencing have identified a large number of newly arising disease mutations which disrupt convergent molecular pathways involved in neuronal plasticity and synaptic strength9,22,245–247. In particular, 
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scaffold proteins seem to play a critical role in glutamatergic neurotransmission, organizing different components of glutamate receptor complexes at post-synaptic densities (PSDs) and determining synaptic strength and plasticity248. Among these, the TANC1 and TANC2 genes, encoding for the recently described scaffold proteins, are emerging as candidate genes for NDD249,250. TANC2 gene mutations were found in patients with different clinical conditions, ranging from ID and ASD to schizophrenia245,251,252. A case of de novo inversion encompassing TANC1, causing psychomotor-retardation was also recently reported in the literature253. TANC1 interacts with PSD95, one of the most important and well characterized scaffold proteins, as well as additional postsynaptic proteins including glutamate receptors249,250. The TANC proteins are expressed in the hippocampus and over-expression of either has been shown to increase dendritic spines and excitatory synapse strength in mice, although in vivo assays suggest differences in expression timing and knock-out phenotype. TANC1 reaches the highest levels in the adult brain and its depletion seems to impair spatial memory in mice. TANC2 is higher expressed during the early embryonic stages and seems to be involved in proper fetal development, with knock-outs causing in utero lethality249. Although available experimental evidence suggests an important role for these proteins in neuronal development, little is still known about the pathogenic mechanisms involved249. The TANC1 and TANC2 proteins were named on the basis of their domain architecture, predicted to contain tetratricopeptide (TPR) and ankyrin (ANK) repeats as well as a coiled-coil domain250. Furthermore, a P-loop ATPase domain was first observed at the N-terminus of the rolling pebbles orthologous of TANC proteins by Leipe and colleagues using sequence profile analysis and sequence based structure prediction to define the novel class of STAND (Signal Transducing ATPase with Numerous Domains) NTPase 254. STAND proteins, unlike other NTPases, present a C-terminal helix bundle fused to the NTPase domain thought to transmit conformational changes due to NTP hydrolysis to downstream effector domains254. As an example, the closely related APAF1 protein is activated by the release of cytochrome c, which together with nucleotide binding, induces a conformational change in the P-loop ATPase driving apoptosome assembly255. Even though the nucleotide binding activity of the TANC P-loop domain and its functional role have to be demonstrated, this particular multi-domain architecture suggests at least a mechanistic similarity in molecular functions for TANC protein, combining a regulatory molecular switch with scaffold properties to assembly highly dynamic protein complexes. In this work, we employed a combined bioinformatics strategy, integrating sequence and phylogenetic analysis with in silico modeling of 
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structural domains to better characterize the structure-function relationship of the two TANC proteins. Furthermore, we conducted an in depth computational analysis to identify compositionally biased regions and candidate short linear motifs (SLiMs) in intrinsically disordered regions (IDR) of the proteins, which may provide further interaction surfaces mediating dynamic protein complex assembly. Experimental evidence for protein-protein interactions (PPI) in the literature or from protein-protein interaction (PPI) databases and predicted functional elements have been used to infer novel putative interactors for the two TANC members. Predicted and collected data highlight TANC involvement in orchestrating different neuronal signaling pathways, which may be implicated in the pathogenesis of diverse NDDs. This analysis suggests structural and functional elements that will help the interpretation of newly discovered TANC mutations. It would be worthwhile to follow up experimentally to support the hypothesis of a functional mechanism for TANC as a dynamically regulated scaffold. 7.3 Methods 7.3.1 Sequence feature analysis TANC1 and TANC2 (UniProt accession codes: Q9C0D5 and Q9HCD6, respectively) were downloaded from UniProt180, aligned using the MAFFT multiple sequence alignment software256 and visualized with Jalview257. Secondary structure was predicted using PSIPRED77, whereas domains, repeats and other features were predicted with InterproScan76 COILS258, MARCOIL259 and CCHMM-PROF260 were used to assess previously predicted coiled-coil regions, and TPR modules were predicted with TPRpred 261. A repeat consensus was manually curated with Jalview from the MAFFT alignment. Further periodicities were searched with TRUST262, RADAR263 and Repetita264. Regions outside predicted domains, as well as N- and C-terminal protein sequences, were assessed for intrinsic disorder, presence of compositionally biased regions (i.e., repeating amino acids) and short linear motifs (SLiMs) using MobiDB224 and ELM81. Since SLiMs have a high chance of random occurrence and their prediction often has low specificity, we selected for consideration only those mapping to disordered regions conserved among orthologous. Accessibility and localization in alternatively spliced regions are further evidences supporting the validation of the predicted SLiM183. 
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7.3.2 Known TANC interactors analysis A list of experimentally determined TANC interactors was compiled and manually annotated from the literature and the publicly available databases BioGrid265, IntAct266, and STRING267 (see Table 7.1). Three significant interactions (false positive rate < 0.1) identified in the Cilium were also included268. Each interactor was annotated with its protein domain architecture and biological processes in which it is involved, retrieved from the InterPro76, UniProt180 and KEGG269 databases. Furthermore, PubMed was searched for papers describing the involvement of TANC in neuronal development using selected keywords. Interaction details (i.e. residues, sequence motif and domain) were manually curated from the literature.  7.3.3 TANC interaction prediction TANC interaction predictions were made either for the binding site of known interactions or to infer novel interactors. For each interactor we searched for the putative domain or linear motifs predicted to mediate TANC interaction. We assume that if the known interactor is a class of protein or presents the domain known to bind a predicted TANC linear motif this may be the putative interactor binding site. Collected PPI data and predicted binding sites/domains were used to infer novel putative interactors for the two TANC members. Proteins belonging to the same family usually interact in a similar way with a specific protein domain270. We assumed that when a protein has been found to interact with only one of the two TANC paralogs it is possible to infer it could interact with both paralogs as long as they share a common conserved SLiM predicted to mediate this interaction.  7.3.4 Mutation analysis Pathogenicity of NDD associated variants in TANC proteins was assess using twelve different prediction tools: Align-GVGD271, I-Mutant2.062, MUpro63, MutationAssesor53, MutationTaster175, PhD-SNP272, Polyphen2 273, PROVEAN274, SIFT 55, SNAP2 275 and UMD-Predictor276.  7.3.5 Phylogenetic analysis  The TANC orthologous were downloaded from OMA Browser 277 to reconstruct the phylogeny of the protein family. Eighty-one vertebrate sequences, representative of each 
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infrasubphyla, were retrieved. Taking into account teleost lineage-specific genome duplication278, only one copy of each TANC protein was considered. The analysis comprised also earlier species in which duplication of TANC gene did not occurred: 2 arthropoda sequences (Strigamia maritima and Ixodes scapularis), 32 insect sequences, Trichinella spiralis (Nematoda), Ciona intestinalis (Tunicata). Multiple alignments were computed with ClustalO 279 and manually curated using Jalview. Phylogenetic analysis and visualization were performed with MEGA6280, using Maximum Likelihood based on the JTT model + G (Gamma distributed Sites) with 500 bootstrap replicates.  7.3.6 Homology modeling  The predicted domains were modeled separately in order to build more reliable models. Sequences for TANC1 and TANC2 domains were submitted to the homology detection method HHpred281. Multiple sequence alignment-based template detection was performed with HHblits (local alignment) against pdb70, taking into account also target-template secondary structure similarity (for details see Supplementary Table S7.4). The resulting target-template alignments were manually curated using the repeat consensus map and consensus secondary structure prediction282 in analogy to our previous work94. Two models for each domain were built by homology with Modeller 89 and their model quality was estimated with QMEAN90. The electrostatic surface of each model was calculated with Bluues93 and Consurf283 was used to map conservation for each residue based on OMA orthologous alignment. The structures were finally visualized using Pymol (DeLano Scientific LLC). 7.4 Results  Despite the emerging role of the TANC protein family in neuronal and embryonic development, little is known about their specific functions and molecular mechanisms249. A computational analysis of the TANC proteins starting from primary structure to explore the function of these twin proteins was thus performed. TANC1 and TANC2 are large proteins, of 1,861 and 1,990 residues respectively, sharing 51.9% overall amino acid identity, with similar multi-domain architecture (Table S7.1) resulting from an early duplication event (Supplementary Figure S7.1). InterproScan identifies two domains in both TANC protein sequences, an ankyrin (ANK) and tetratricopeptide repeat (TPR) 
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domain (Figure 7.1). An N-terminal P-loop containing nucleoside triphosphate hydrolase (NTPase) domain is predicted only in TANC2 and a likely a false negative for TANC1. The predicted domains are highly conserved among TANC paralogs. The N- and C-terminal disordered regions are quite variable. Crystal structures are not available for the TANC proteins, nor for any closely related proteins with similar domain architecture. To characterize the protein structure, each domain was modeled separately. The N- and C-terminal disordered regions were analyzed for the presence of a stretch rich in particular amino acid residues or conserved sequences containing predicted linear motifs likely to mediate protein interactions. Known interactors for both TANC proteins were downloaded from BioGrid265, IntAct266, and STRING267. Additional interactors were manually curated from the relevant literature (see Table 7.1). These findings were used to expand and curate a TANC protein interaction network (Table 7.2). While many interactors are in common between both TANC proteins, there are a two sets of proteins with experimental evidence for binding only one protein. In the following, we will describe each TANC region separately in more detail before using the predicted functional and structural elements to infer the possible impact of reported TANC2 missense mutations. 7.4.1 N-terminus  The N- and C- termini are intrinsically disordered and share rather low identity between TANC paralogs, suggesting functional divergence (Figure 7.1 and 7.2). A heterogeneous group of TANC2 sequences, comprising mammals, a bird and fish (O. aries, M. putorius furo, M. domestica, F. albicollis, L. oculatus, O. niloticus) defines the largest group sharing a 54 residue segment with TANC1 but no other TANC2 orthologous. A CK1 phosphorylation site and two SH3 binding motifs map to this sequence. This suggests that the N-terminal sequence was present in TANC1 first, duplicated in TANC2 orthologous and lost in other organisms, possibly to fine-tune the TANC2 interaction network. An alignment of TANC sequences highlights the presence of short conserved sequences, shared across all members, containing putative linear motifs (Figure 7.2). The N-terminus for instance presents two highly conserved motifs both involved in initiation of ubiquitin-dependent degradation and two protein phosphatase 1 (PP1) docking motifs (RVxF), almost identical in all considered sequences can be recognized (Figure 1 and Supplementary Figure S7.2). Shared linear motifs also comprise several post-translational modification sites recognized by different kinases, such as GSK3, MAPK, and NEK2. 
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These “hot spots” map in highly conserved serine-rich regions (SRR) (170-224). The TANC1 isoform Q9C0D5-2 is missing residues 122-227, which contains the conserved PP1 docking motif and SRR, suggesting a regulatory role for these regions (Figure 7.1).  
  Figure 7.1: Sequence analysis of TANC proteins An overview of TANC family domain architecture is here reported. Both TANC proteins are characterized by a putative P-loop NTPase domain (orange), an Ankyrin repeat containing domain (light teal) and a tetratricopeptide repeat region (blue). For each domain, the sequence boundaries and sequence identity between the two proteins are indicated. Conserved linear motifs are represented as follow: PDZ binding sequences (light blue triangles); PP1 docking motif (RVxF) (orange triangles); degrons (DEG_Nend_Nbox_1 and DEG_SCF_TRCP1_1) (deep teal rectangles); 14_3_3 binding sites (LIG_14-3-3_2) (blue triangles); TANC2 Homer binding motif (LIG_EVH1_1) (Purple triangle); LATS1 kinase (light orange triangle); NEK2 phosphorylation motif (MOD_NEK2_1) (Teal triangle). Serine-rich regions are represented with green rectangles (TANC1 residues 170-243 and 1659–1689; TANC2 residues 125-189 and 1775-1865). The TANC1 glutamine-rich region (Poly-Q) region and TANC2 glutamine/proline rich region (polyP) are in light green and yellow respectively. Alternative TANC protein isoforms are reported in grey. The TANC1 isoform Q9C0D5-2 (1755 residues) is missing the region 122-227. The TANC2 isoform Q9HCD6-2 is longer (2000 residues) due to an insertion at position 1225 (I > IGCQTLPSRPR). Q9HCD6-3 (971 residues) is truncated at residue 97 with different substitution in the region from position 944 to 971 (VDHLDKNGQCALVHAALRGHLEVVKFLI > VLAAQLCCFSSLFLYFRCILFLISSVTS). Q9HCD6-4 (1,010 residues) is truncated at residue 1011 with different substitution in the region from position 1006 to 1010 (IVSYL > VRSRQ).  



111  Figure 7.2: Multiple alignment of TANC N- and C- termini. Color code based on ClustalX scheme. Linear motifs identified by ELM analysis are reported: DEG_Nend_Nbox_1: N-terminal motif that initiates protein degradation by binding to the N-box of N-
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recognins; DOC_PP1_RVXF_1: Protein phosphatase 1 catalytic subunit (PP1c) interacting motif; DOC_WW_Pin1_4: IV WW domain interaction motif; MOD_GSK3_1: GSK3 phosphorylation recognition site; MOD_NEK2_1: NEK2 phosphorylation motif; DEG_SCF_TRCP1_1: DSGxxS phospho-dependent degron recognized by F box protein of the SCF-betaTrCP1 complex; LIG_14-3-3_2: 14-3-3-binding motif ; DOC_MAPK_1: MAPK docking motifs; LIG_PDZ_Class_1: PDZ-binding motif; LIG_14-3-3_3: 14-3-3-binding motif ; LIG_EVH1_1: Proline-rich motif binding to signal transduction class I EVH1 domains. A). N-terminus, B). C-terminus.   7.4.2 P-loop containing nucleoside triphosphate hydrolase (NTPase) domain The P-loop NTPase domain contains two sub-domains, the conserved NTPase α/β fold and a regulative region, known as helical third domain of STAND (HETHS). The NTPase domain of both TANC proteins was modeled considering both regions together. A HHpred search selected human apoptotic-protease activating factor 1 (APAF1; PDB code: 1z6t) as the best template, with 12.1% sequence identity for TANC1 and 12.5% for TANC2 (see Supplementary Table S7.1). Despite the presence of insertions between the TANC and template sequences, the conserved secondary structure elements superimpose well, especially in functional motifs on the catalytic core (Walker A, Walker B, and ASCE motifs). The Walker A and Walker B motifs define P-loop NTPase domains and are involved in nucleotide and Mg2+ cations binding respectively. The ASCE (“additional strand, catalytic E”) motif, typically situated between both Walker motifs, determines ATP as preferred substrate (Figure 7.3). Moreover, residues placed in the catalytic pocket form a positively charged surface and are highly conserved in TANC orthologous (Figure 3, Supplementary Figure 7.2). While NTPase signature elements are rather conserved, the HETHS domain is quite variable among STAND family members and seems involved in family-specific regulative functions254. Indeed, since TANCs and APAF1 belong to different STAND NTPase families, their HETHS domains are more divergent in sequence and secondary structure. The 3D model quality evaluation of TANC2 and TANC1 is typical of more remotely homologous structures, with QMEAN scores of 0.421 and 0.391 respectively. However, lower quality regions are located in insertions corresponding to long disordered loops in TANC, while elements defining the catalytic core have low positional variability and higher reliability.     
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  Figure 7.3: Structural analysis of ATPase domain in TANC1. Cartoon of TANC1 ATPase domain model (front part) is colored as following: Walker motifs is in red, ASCE in orange, HETHS domain in green, GxP motif in blue spheres. Electrostatic properties of front surfaces are shown: negative charges in blue and red charges in red. ConSurf analysis of front surfaces, color code from unconserved (cyan) to conserved (purple) residues.  7.4.3 Ankyrin (ANK) repeat domain Ankyrin repeats are a relatively conserved motifs of ca. 33 residues with a consistent pattern of key residues essential for structural integrity (Figure 7.4)284. The structural unit consists of a β-turn followed by two antiparallel α-helices and a loop connecting to the next repeat284. In both TANC proteins, eleven ankyrin (ANK) repeats are predicted by InterProScan. The alignment of ANK repeats reveals that the key conserved positions are overall maintained in both TANC1 and TANC2 (Figure 7.4, Supplementary Figure 7.3). Despite high sequence identity, the TANC1 repeat pattern is more regular, supporting divergent evolution. TANC2 presents longer loops and a peculiar negatively charged loop between the fifth and sixth repeat. Given its length, this loop separates the ANK domain into two regions and could be involved in TANC2 specific functions, as it is highly conserved among other species but not in TANC1 (Figure 7.4). For both TANC1 and TANC2, HHpred selected the human ankyrin-R (PDB code: 1n11_A) crystal structure with 12 ANK repeats as template. Using the same template should allow a more accurate identification of structural differences between both proteins. The HHpred alignments were manually refined using the previously defined ANK repeats to maintain the structural integrity of each repeat. Both models have good quality, with QMEAN scores of 0.787 for TANC1 and 0.737 for TANC2. Each ANK domain is composed of eleven tandem repeats stacked together to form a linear solenoid structure. The linker loops of 
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neighboring repeats are connected in a tail to head order to form a hairpin-like β-sheet usually involved in protein-protein interactions in most ANK proteins 285. Conservation and electrostatic surface analysis highlighted specific features for each TANC protein (Figure 7.4). TANC2 presents higher overall conservation than TANC1, with a negative charge in the concave region compensated by the prevalently positive convex surface (Supplementary Figure S7.3C). TANC1 presents a more significant separation between conserved residues belonging to the convex surface and unconserved positions in the concave region. The electrostatic surface follows the same pattern of TANC2, though more pronounced (Supplementary Figure 7.3). This region could be involved in electrostatic interactions with TANC binding partners.  
  Figure 7.4: Ankyrin repeat overview and TANC1 Ankyrin domain model. A) Consensus sequence of TANC ankyrin modules and related sequence logo. Residues that match the published consensus 284 are reported in upper case. Secondary structure is shown above the alignment: the inner alpha helix (α1) and the outer alpha helix (α2) are connected by a turn-loop (black line). B) Graphic representation of ANK repeats structure in TANC proteins. Conserved positions of ankyrin consensus pattern are reported in the diagram as spheres. Color code refers to consensus logo: hydrophobic amino acids (A, L and V) are in light blue, glycine in orange, threonine and asparagine in green, histidine in teal, glutamate in violet and proline in yellow. Residues matching the published consensus 284 are reported in bold. C) Cartoon 
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of TANC1 AR domain model is colored from N-terminus (blue) to C-terminus (red). Electrostatic properties of turn-loop surfaces and connecting-loop surfaces are shown: negative charges in blue and red charges in red. ConSurf analysis of turn-loop surface and connecting-loop surface, color code from unconserved (cyan) to conserved (purple) residues.  7.4.4 Tetratrico-peptide (TPR)-like repeat domain  Both TANC proteins are predicted to contain three TPR repeats which are extremely conserved among orthologous sequences. TPRs consist of 34 residues, whose consensus is defined by a pattern of small and large amino acids (Figure 7.5). Each module is formed by two antiparallel α helices, forming a superhelical helix-turn-helix fold. TPRs are typically involved in protein-protein interactions and assembly of protein complexes286,287. Despite the high sequence identity of human TANC TPR domains (80,4%), the template search selected different structures for homology modeling: human FK506-binding protein 52 (FKBP52, PDB code: 1P5Q) and B. taurus cyclophilin 40 (CYPD; PDB code: 1ihg) for TANC1 and TANC2 respectively. The HHpred alignments were again manually refined using the previously defined TPR repeat alignment. QMEAN shows a rather high reliability for both models, with scores of 0.749 for TANC1 and 0.732 for TANC2. The TPR models were evaluated for both conservation and electrostatic properties (Figures 7.5, Supplementary Figure 7.4). ConSurf revealed the presence of highly conserved regions in the TPR domains corresponding to the convex surfaces, with prevailing positively charged surfaces in both TANC proteins. On the other hand, the concave part seems to be less conserved, with the exception of negatively charged residues at the C-terminus. A coiled-coil region was previously thought to map downstream from the TPR domains 250. Unlike TPRs, most domain predictors did not recognize any significant coiled coil region in TANC proteins (Supplementary Table 7.2). The presence of coiled-coil structures was assessed using three different tools. In both TANC sequences, all coiled coil predictors recognize a region downstream of the TPR-region with a low reliability score (Supplementary Table 7.2). However, secondary structure and a further manual evaluation of coiled coil motifs do not support this prediction 288. Only one helix could be recognized downstream from the TPR domain for both TANC proteins (Supplementary Table 7.3). To exclude the presence of degenerate repeats in this position, TPR prediction was performed using TPR-pred. The analysis highlighted a low confidence TPR module (P-value> e-03) in TANC1, but not in TANC2. We conclude that the helix is neither a coiled coil nor a TPR repeat, but may represent a C-terminal cap for the TPR domain. Similar C-terminal capping structures 
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consisting of a 22 residue helix stabilizing the TPR fold 286,289 are present in both TANC1 and TANC2. 
  Figure 7.5: TPR repeat overview and TANC2 TPR model. A) Consensus sequence repeat pattern of the TANC TPR domain and related sequence logo. Secondary structure is shown above the alignment: two alpha helices (grey shapes) connected by a loop (black line). Below the alignment, pattern of conserved small/large residues typical of TPR modules is reported: S indicates small residues, L for large residues. Residues that match the consensus are reported in upper case. B) Graphic representation of repeats structure in TANC proteins. Conserved positions of TPR consensus pattern are reported in the diagram (spheres). Residues that match the consensus are reported in bold. Conserved small-large residue pattern is also represented: dark green for large residues and orange for small residues. C) Cartoon of TANC2 TPR domain model is colored from N-terminus (blue) to C-terminus (red). Electrostatic properties of concave and convex surfaces are shown: negative charges in blue and red charges in red. ConSurf analysis of turn-loop surfaces and connecting-loop surfaces, color code from unconserved (cyan) to conserved (purple) residues. 
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7.4.5 C-terminus  In each TANC protein, the C-terminal region is preceded by the TPR C-capping helix and ends with the final PDZ binding motif. The Q9HCD6-3 and Q9HCD6-4 TANC isoforms are missing most of the ANK domain and the C-terminus, with the third - fourth ankyrin repeats and the fifth ankyrin repeat modified, respectively. Only few sequence stretches in the C-terminus have a significant similarity between TANC proteins and their orthologous (Figures 1 and Supplementary Figure 7.2). As expected, ELM recognized the highly conserved PDZ-binding motif in both paralogs, which has been demonstrated to mediate TANC interaction with PSD95 and SCRIB249. A poly-glutamine region followed by a proline stretch and a serine-rich region (SRR) are present in both TANC C-termini. Furthermore, MAPK and WW binding sites are predicted in the C-terminus of all TANC homologs sequences (Figure 7.2). These sites are partially overlapping and located in a region predicted to be phosphorylated by different kinases. Several 14-3-3 binding motifs are also predicted on different positions in the TANC C-termini. The TANC2 C-terminus, but not its paralog, presents an unusual number of 27 conserved tyrosine residues showing a periodicity of ca. 12 residues. The presence of possible repetitive modules was therefore assessed. As expected, no repeat pattern was identified for TANC1, whereas both TRUST and RADAR recognized four repetitive regions in the sequence preceding the SRR. Further manual curation of TANC2 repeats suggests the presence of shorter modules of approximately twelve residues, in which the tyrosine residue represents the main signature. Taken together, these findings confirm the presence of a regular pattern that could organize the C-terminus and have a regulative role in protein function.  7.4.6 TANC network  We manually curated 24 TANC1 and 20 TANC2 interacting proteins. Thirteen TANC1 interactors and five TANC2 interactor were retrieved directly from publications. The remaining interactors have been determined by High-Throughput Screening (HTS) methods and deposited in publicly available PPI databases. The TANC interacting regions have been experimentally determined for only six TANC1 and two TANC2 interactors (see Table 7.1). Three PDZ domain proteins interacting with the C-terminal PDZ binding motif in TANC are considered mutually exclusive. For one known TANC1 and five TANC2 interactors we predicted a putative interacting site. These proteins present a domain or 
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belong to a class of proteins, which may recognize a conserved linear motif mapping in a disordered TANC regions. Exportin-1 and LATS-2 have a predicted binding motif on the structured TANC2 ATPase domain. The motifs are located in a loop that may be exposed upon conformational changes of the domain.  
  Figure 7.6: TANC protein interaction network.  TANC interaction partners identified by low throughput data (solid lines), PPI database evidence (thinner lines or linear motifs prediction. Interactions that are proved only in one paralog, but mediated by binding sites (linear motif or structural domain) that are identical in both proteins are reported as dotted edges. TANC1 interactors only are colored in light blue; TANC2 interactors only in red; while TANC interactors both are in violet. Interactors are represented with different shapes based on specific molecular function: scaffold proteins (rectangles), protein kinases (rhombus); cytoskeleton proteins (hexagons). TANC proteins are connected with different neuronal regulative proteins, belonging to Planar Cell Polarity signaling (teal outline), Hippo pathway (dark red outline) and glutamate signaling (orange outline).   We inferred novel interactors for each TANC member based on known interactors and shared conserved linear motifs of the paralog (see Table 7.2). Three TANC1 interactors may also bind TANC2 through shared linear motifs. The three proteins found to interact with the globular domains of TANC1 (Fodrin, MINK, and TNIK) may also bind TANC2, 
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although surface analysis of the ANK and TPR domains did not highlight a common conserved region. Finally, the N- and C-termini of both TANC proteins contain shared conserved binding motifs for different kinases and WW domain proteins. We hypothesize that these proteins may mediate post-translational TANC modifications.   TANC Interacting protein Experimental evidence Ref. TANC region Name Domain architecture Pathway 1 α-internexin Intermediate filament head, DNA-binding Cytoskeleton organization Co-IP 250 _ 1 CAMKIIα Kinase Glutamate Receptor signaling Co-IP 250 _ 1 CASK Casein Kappa Glutamate Receptor signaling Pull-down assay 250 _ 2 CBY1 Chibby_fam Wnt/Wingless signaling, Cilium assembly SF-TAP/MS 268 _ 2 CDC5L Myb- HTH DNA binding type 1 and 2, Myb/Cef1 domain Spliceosome assembly HTS AC-MS 290 _ 2 CENPQ CENP-Q domain, Coiled coil Nucleosome assembly at the centromere HTS AC-MS 291 _ 2 CEP120* 2 C2, Coiled coil Centrosome organization, Cilium assembly HTS AC-MS 291 _ 1 CEP128 Coiled coil Centrosome organization, Cilium assembly HTS AC-MS 292 _ 1 CNTRL 4 LRR, 4 Coiled coil Centrosome organization, Cilium assembly HTS AC-MS 292 _ 1 FBXW11 F-box, 7 WD repeats Ubiquitin-mediated degradation Co-IP 293 _ 2 FMRP Agenet-like, KH, FXMRP1_C_core, FXMR_C2 Regulation of translation CLIP 294 _ 1 Fodrin 23 Spectrin repeats, SH3,3 EF-hand Cytoskeleton organization Pull-down assay 250 ANK and TPR 1 GKAP 3 Coiled coil Glutamate Receptor signaling Co-IP 250 _ 1 GluR1 TM Glutamate Receptor signaling Co-IP 250 _ 1 GRIP 7 PDZ Glutamate Receptor signaling Pull-down assay 250 _       (Continues) 
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Table 7.1 (Continued)     TANC Interacting protein Experimental evidence Ref. TANC region Name Domain architecture Pathway 1 Homer WH1/EVH1, Coiled coil Glutamate Receptor signaling Pull-down assay 250 _ 2 INPP5E 13 repeats of P-X-X-P, Phosphatase Cilium trafficking SF-TAP/MS 268 _ 2 LATS2 UB associated Kinase,  AGC-kinaseC-terminal Hippo pathway HTS PL-MS 295 _ 2 MAPRE1 CH, EB1_C Microtubule cytoskeleton regulation SF-TAP/MS 268 _ 1 MOV10 P-loop ATPase domain RNA-mediated gene silencing HTS AC-RNA 296 _ 1 MINK Kinase, CNH Rap2-mediated signaling Immunoblotting 297 TPR 1 NINL 4 EF-hand, 4 Coiled coil, KEN- box, D-box Centrosome organization, cilium assembly HTS AC-MS 292 _ 1 NR2B Transmembrane receptor Glutamate Receptor signaling Co-IP 297 _ 2 NR2C2 ZF- C4, NHR ligand binding Nuclear receptor signaling pathways HTS AC-MS 291 _ 1 NXF1 RRM, 4 LLR repeats, NTF2, TAP-C mRNA export from nucleus HTS AC-RNA 296 _ 2 PAK7 CRIB, kinase Planar Cell Polarity pathway HTS AC-MS 298 _ 1 PCM1 Coiled coil, GTPase, molybdopterin domain Centrosome organization, Cilium assembly HTS AC-MS 292 _ 2 PPP1CA Ser/Thr phosphatase Glutamate Receptor signaling, Hippo, Wnt signaling HTS AC-MS 298 _ 2 PPP1CC Ser/Thr phosphatase GluR, Hippo signaling HTS AC-MS 298 _ 1 & 2 PRICKLE1 PET, 3 LIMs Planar Cell Polarity pathway LC-MS/MS 299 _ 1 & 2 PRICKLE2 PET, 3 LIMs Planar Cell Polarity pathway LC-MS/MS 299 _ 1 & 2 PSD-95 3 PDZ, SH3, GK Glutamate Receptor signaling Y2H, Pull-down assay 196 LIG_PDZ_Class_1 1 & 2 SAP97 L27, 3 PDZ, SH3, GK Glutamate Receptor signaling Y2H, Pull-down assay 196 LIG_PDZ_Class_1        (Continues)  
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Table 5.1 (Continued)     TANC Interacting protein Experimental evidence Ref. TANC region Name Domain architecture Pathway 1 SCRIB 16 LRR repeats, 4 PDZ Planar Cell Polarity pathway SPR 300 LIG_PDZ_Class_1 1 SHANK1 6 ANK, SH3, PDZ, SAM Glutamate Receptor signaling Pull-down assay 250 _ 2 SPIRE2 KIND, 3 WH2, ZF Vesicles transport HTS AC-MS 291 _ 1 TNIK Kinase, CNH Rap2-mediated and Wnt signaling Immunoblotting 297 TPR 2 XPO1 Importin_N-term,  10 ARM/HEAT repeat like Nuclear export Pull down 301 _ 2 YWHAB 14-3-3 Glutamate Receptor signaling,  Hippo signaling HTS AC-MS 295 _ 2 ZYX 3 LIM, Zn binding Hippo pathway HTS AC-MS 298 _  Table 7.1: List of TANC interactors. For each interactor, the interacting TANC protein, the detection method and the binding region (experimentally validated) are here listed. Y2H: Yeast two hybrid; Co-IP: Co-immunoprecipitation; SPR: Surface plasmon resonance HTS: High-Throughput System; AC: Affinity Capture; PL: Proximity Label; MS: Mass spectrometry; CLIP: Cross-Linking Immuno-Precipitation SF-TAP/MS: systematic tandem affinity purifications coupled to mass spectrometry. SLiMs are named according to the ELM nomenclature.    TANC Predicted Interactor Method Predicted TANC interacting region Name Domain architecture 1 FBXW11 F-box, 7 WD repeats TANC1 interactor, Conserved SLiM in IDR DEG_SCF_TRCP1 DEG_Nend_Nbox_1 1 YWHAB 14-3-3 TANC2 interactor,  same SLiM in TANC1 LIG_14-3-3_2 1 PPP1CA Ser/Thr phosphatase DOC_PP1_RVXF_1 1 XPO1 Importin_N-term, 10 ARM/HEAT repeat like TRG_NES_CRM1_1 2 YWHAB 14-3-3 TANC2 interactor, Conserved SLiM in IDR LIG_14-3-3_2 LIG_14-3-3_3 2 PPP1CA Ser/Thr phosphatase DOC_PP1_RVXF_1 2 LATS2 UB associated Kinase, AGC-kinase C-terminal MOD_LATS_1 2 NR2C2 ZF- C4, NHR ligand binding LIG_NRBOX  (score 0,3) 2 XPO1 Importin_N-term, 10 ARM/HEAT repeat like TANC2 interactor, Conserved SLiM in  P-loop domain TRG_NES_CRM1_1 2 Homer WH1/EVH1, Coiled coil TANC1 interactor LIG_EVH1_1     (Continues) 



122 

Table 7.2 (Continued)   TANC Predicted Interactor Method Predicted TANC interacting region Name Domain architecture 2 SAP97 L27, 3 PDZ, SH3, GK TANC1 interactor,  same SLiM in TANC2  LIG_PDZ_Class1 2 SCRIB 16 LRR repeats, 4 PDZ LIG_PDZ_Class1 2 FBXW11 F-box, 7 WD repeats DEG_SCF_TRCP1 DEG_Nend_Nbox_1 2 Fodrin 23 Spectrin repeats, SH3, 3 EF-hand TANC1 interactor,  same domain in TANC2 ANK and TPR 2 MINK Kinase, CNH  TPR 2 TNIK Kinase, CNH  TPR 1 CDK Kinase Conserved SLiM in IDR MOD_CDK_1 1&2 G- Actin? Actin domain LIG_Actin_WH2_2 1&2 Cyclins Cyclin, N-terminal DOC_CYCLIN_1 1&2 MAPK Kinase DOC_MAPK_gen_1 1&2 WW domain-containing proteins WW domain DOC_WW_Pin1_4 1&2 Atg8 protein family Autophagy LIG_LIR_Gen_1 1&2 CK1 Kinase MOD_CK1_1 1&2 GSK3 Kinase MOD_GSK3_1 1&2 NEK2 Kinase MOD_NEK2_1  Table 7.2.: Predictions for TANC interactors. SLiM: Short Linear motif; IDR: Intrinsically disordered region.  7.4.7 Missense mutation analysis Three TANC2 missense mutations have been reported in three unrelated patients with different neuropsychiatric phenotypes245,252,302. The two variants p.Arg760Cys and p.Ala794Val map on the ATPase regulative domain. The former has been found de novo in a pediatric patient presenting intellectual disability302. The p. Arg760Cys variant maps on a buried loop facing the ASCE strand within the ATPase regulative domain in catalytic pocket. The substitution of a charged arginine residue with a cysteine may have some effect on the catalytic pocket, where charged residues coordinate Mg2+ ions and binding of ATP molecules. The p.Ala794Val was inherited from the father in a patient with schizophrenia245. It affects a buried residue in the ninth helix of the regulative region that could affecting folding due to steric clashes. Both mutations are predicted as pathogenic by most prediction tools (11/12 for R760C and 12/12 for A794A, details in Supplementary Table 7.4) and likely affect regulative domain stability and ATPase activity. A third 
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inherited mutation mapping to the C-terminal tail (p.His1689Arg) was found in a patient with autism spectrum disorder252. Although it maps within a conserved region, the Histidine to Arginine substitution is only predicted to be damaging by six of twelve tested methods (Supplementary Table S7.7). 7.5 Discussion Recently, evidence from mouse models and human patients suggested the TANC proteins as candidates for NDD. Despite different expression profiles in the brain, TANC1 and TANC2 have both been shown to positively regulate dendritic spines and excitatory synapses249 . The TANC family has been described as PSD95 partners found to localize and interact with several postsynaptic proteins250. Here, we report an in depth in silico analysis of the TANC family structure and function to gain insights on their molecular function as well as to elucidate the role of these proteins in NDDs. The P-loop domain model suggests that the TANC proteins may have an ATPase activity since all functional elements are conserved, although the regulative domain differs from other proteins of this class and its role has to be demonstrated. Modeling the repeat domains allowed identifying conserved PPI interfaces for both ANK and TPR domains, with different electrostatic charges possibly involved in protein binding. Despite previously reported predictions, sequence and structural analysis of the TPR domain allowed to exclude the presence of coiled-coil region in TANC, as the mispredicted region corresponds to a stabilizing C-capping element of the TPR domain. Along the N and C- terminal disordered regions of TANC we predicted several conserved SLiMs supporting interactions from high-throughput experiments known to have false positives (Table 7.2, Figure 7.6). The prediction of putative interacting regions, besides inferring novel interactors, allowed to define some proteins as mutually exclusive interactors. PSD95 and SCRIB interact with the TANC PDZ linear motif anchoring TANC proteins to the glutamate receptor or in PCP signaling249,250,300,303,304. Although most short motif patterns have a high chance of random occurrence and their prediction may have low specificity, we used stringent criteria 82 to select putative protein binding sites. To be considered, a binding site has to be conserved among orthologous, or shared among paralogs, and mapping to a disordered region. Alternatively, spliced regions are also favorable factor of being a true binding site. Moreover, the putative motif is supported if its binding proteins known TANCs interactors or involved in the same biological processes82. We expanded the functional network of 



124 

TANC proteins, integrating prediction and high throughput data, and inferring protein partners based on information of one of the two TANC family member (see Figure 7.6). We found that the TANC N-termini present several conserved linear motifs, which may be involved in a broader range of cell regulation, including phosphodegrons and phosphatase docking motifs. These motifs could be the target of two TANC interactors identified by high-throughput screening, protein phosphatase 1 (PP1) and FBXW11. The latter is a component of the SCF E3 ubiquitin-protein ligase complex implicated in recognition of phosphorylated proteins targeted for degradation305. PP1 is one of the three phosphatases expressed in neurons regulating NMDAR-dependent Long Term Depression (LTD) during development306.n Another mechanism involved in functional TANC regulation is suggested by the findings that RNAs of both TANCs are targets of the MOV10 RNA helicase and the Fragile X mental retardation protein (FMRP)307,308. Recently, MOV10 was found to be a functional partner of FMRP308. MOV10 promotes miRNA-mediated translational suppression of its target RNAs, while FMRP regulates synaptic strength at glutamatergic synapses by controlling translation of specific RNAs. TANC regulation may also occur through post-translational modifications (PTM) sites we have predicted. Different kinases, such as CAMKII, MINK TNIK, PAK7, LATS2, have been identified as TANC interactors and PTM sites have been frequently shown to conditionally switch motif-mediated interactions81 triggering different signaling pathways. Predicted and collected PPI data allowed us to position TANC proteins in several biological processes, other than post-synaptic density proteins, such as the planar cell polarity pathway299,309, Wnt signaling and Cilium assembly. We also found for TANC1 and TANC2 specific connections with Rap2-mediated and Hippo signaling295, respectively, that may explain different roles of TANC1 and TANC2 in brain function. However, all of these pathways contribute in different ways to correct neuronal development and maintenance 297,299,300,304. The TANC proteins thus appear to be regulated at several levels from synthesis to degradation, while being involved in pathways controlling neural development and maintenance. It is likely that alterations of these proteins may affect different processes, thus explaining the broader range of disease phenotypes associated with TANC variants. The performed analysis allowed us to discover structural and functional elements that will help the interpretation of newly discovered TANC gene variants. It would be worth following them up experimentally to support a mechanistic model for TANC function as a dynamically regulated scaffold.  
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8 Unraveling TANC2-CDKL5-PP1 interactions: intrinsically disordered regions mediating novel pathways in neurodevelopment 8.1 Summary  This Chapter summarizes the experimental approaches used in validating TANC2 interactions with PP1 and CDKL5, and the functional significance of the TANC2-CDKL5-PP1 interplay. The interaction among endogenous full length proteins was assessed both by co-localization analysis in primary hippocampal cultures from E18 rats and neuroblastoma cell line, and immunoprecipitation from rat synaptosomes. Binary interactions between TANC2, PP1 and CDKL5 sub-clones were validated by yeast two-hybrid assays. TANC2 silencing was performed in SHSY5Y cells to assess the functional relationship among regulative TANC2 activity and CDKL5 protein levels. Our findings suggest that TANC2 not only is able to form a complex with either CDKL5 or PP1, but it also functions as a scaffold linking the phosphatase PP1 to its substrate CDKL5, allowing the dephosphorylation and subsequent kinase degradation.  8.2 Introduction Neurodevelopmental disorders (NDDs) are common conditions including clinically heterogeneous diseases, such as intellectual disability (ID) and autism spectrum disorders (ASD). In most cases, NDDs are genetically determined and, up to now, several hundreds of causative loci have been already identified166. CDKL5 disorder is caused by mutations on the CDKL5 gene, resulting in early onset seizures and severe neurodevelopmental impairment310. Although biological functions of CDKL5 remain largely unknown, its role in synapse development and neuronal plasticity has been established demonstrating that it regulates neuronal morphogenesis via Rac1 signaling 310. The CDKL5 ensures excitatory synapse stability by reinforcing the NLG1-PSD95 association at the postsynaptic compartment311 and its synaptic localization is regulated through its direct interaction with a palmitoylated form of PSD-95 312. It was demonstrated that upon NMDAR stimulation, 
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CDKL5 is dephosphorylated by PP1, causing its proteasome-dependent degradation in mature neurons313. This step appeared to be relevant for an activity-dependent signaling cascade, regulating synapse composition, shape and strength. However, the mechanism targeting PP1 activity towards CDKL5 is still debated 313. We speculated TANC2 could mediate CDKL5 degradation, and different lines of evidence contributing to the formulation of this hypothesis. TANC2 is recently emerging as a candidate gene for neurodevelopmental disorders (NDDs), as TANC2 mutations have been associated with several forms of NDDs, including autism and intellectual disability197, both characteristics shared with CDKL5 disorder310. TANC2 and CDKL5 are post-synaptic proteins known to interact with PSD-95, which is required for their proper localization at post-synaptic densities (PSDs) and for their association with additional postsynaptic proteins, including the glutamate receptors196,311. Although TANC2 function in brain cells remains unclear, this scaffold protein is proposed to play a critical role in organizing different components of glutamate receptor complexes at PSD and determining synaptic strength and plasticity196. CDKL5 presents two isoforms, i.e. CDKL5-1 (1,033 AA) and CDKL5-2 (960 AA). CDKL5-2 is the most abundant isoform both in fetal and adult brain, where it is constitutively expressed314. Contrarily to the isoform 2, CDKL5-1 displays differences in expression profiles over time, with higher levels in fetal brain than in adult one314. Like CDKL5-1, TANC2 is highly expressed during the early embryonic stages, where it is thought to be involved in proper fetal development, with knock-out causing lethality in utero196. In an our previous investigation197, we found TANC2 to harbor several conserved linear motifs, including phosphatase docking motifs. These motifs could be the target of interactors identified by high-throughput screening, such as the protein phosphatase 1 (PP1). PP1 dephosphorylates hundreds of key biological targets and its activity is controlled by hundreds of regulative proteins directing its specificity315. Thus, we hypothesize that the TANC2 scaffold protein could mediate and regulate PP1 function on CDKL5. Therefore, this work aims to fully validate PP1/TANC2/CDKL5 interactions taking advantage of different in vitro techniques, and to better understand the role of TANC2 in PP1-mediated CDKL5 degradation.      
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8.3 Materials and methods  8.3.1 SHSY5Y and primary hippocampal neurons cultures Human neuroblastoma SH-SY5Y cells were plated on laminin-coated (1 μg/cm2, Sigma) coverslips in 24-well plate at a density of 5×104 cells/mm2. Cells were maintained in Dulbecco Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2mM of glutamine and antibiotics (penicillin, 100 U/ml; streptomycin, 100 μg/ml), in a humidified incubator with an atmosphere of 95% air and 5% CO2, at 37°C for six days. Primary cultures of hippocampal neurons were prepared316 from the isolated hippocampi of E18 rat embryos purchased from BrainBits®. Briefly, hippocampi were dissociated with trypsin 0,06% at 37 °C for 15minutes, washed in Ca2+- and Mg2+-free Hank’s balanced salt solution (HBSS; Gibco®) containing 10% FBS to block trypsin enzymatic activity, and homogenated in Neurobasal medium supplemented with 1% B27 supplement, 25 μM glutamate, 0.5 mM glutamine, and 50 μg/ml gentamycin. Dissociated cells were filtered with a 100 μm cell strainer to obtain a uniform single cell suspension. Isolated cells were plated on poly-d-lysine-coated coverslips (0.1 mg/ml, Sigma) in 24-well plate at a density of 1.52×105 cells/mm2 and maintained in normal growth conditions (atmosphere of 95% air and 5% CO2, at 37°C) for 15 days. After seven days, half of the culture medium was replaced with fresh medium without glutamate. 8.3.2 Immunofluorescence protocol  Immunofluorescence of SH-SY5Y cells was performed after an incubation time of 72 hours with differentiation medium (IGF-1 50 nM, 2 mM of glutamine and antibiotics). The cells were fixed with 3.7% formaldehyde (v/v) for 20 minutes and permeabilized for 5 minutes with 0.1% Triton X-100 in PBS (v/v). Washes were performed using 1% gelatin/PBS 1X (w/v) to block nonspecific antibody-binding sites. Immunostaining was performed incubating the coverslips with the primary antibodies in PBS, 90 minutes at 37°C. After three washes with 1% gelatin/PBS and other three with PBS 1X, coverslips were incubated with the secondary antibodies, for 30 minutes at room temperature. Hippocampal neurons (15 DIV) were fixed with 4% paraformaldehyde/sucrose in PBS and permeabilized with 0.3 % Triton X-100 in PBS for 5 min. The cells were then incubated in PBS/10 % BSA for one hour at room temperature. Immunostaining was performed incubating the coverslips with the primary antibodies in PBS/3 % BSA, two hours at room temperature. Each sample 
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was washed six times with PBS and was incubated with the secondary antibodies, for one hour at room temperature. In both cases, the coverslips were mounted with Dako fluorescence mounting medium. Primary antibodies: goat anti-TANC2 S16 (1:20, Santa Cruz Biotechnology), rabbit anti-CDKL5 A304-172 (1:20, Bethyl) and rabbit anti-PP1 A300-904 (1:20, Bethyl). Secondary antibodies: donkey anti-goat IgG conjugated with Alexa Flour 555 (1:50, Invitrogen) and donkey anti-rabbit IgG conjugated with Alexa Flour 647 (1:50, Invitrogen). All antibody dilutions for immunostaining experiments were done in PBS 1X.  8.3.3 Colocalization analysis Imaging of immunostained samples was performed with Leica SP5 confocal microscope, using a 63× oil objective (1,024x1,024 resolutions, 200Hz, z-stack step ≥ 0.5 µm, PA 1AU). Confocal image z-stacks were analyzed using the ImageJ2/Fiji colocalization plugin Coloc2 (https://imagej.net/Coloc_2). Pixel intensity correlation was calculated by the automated Manders’ method317 with a point spread function of 1 and 10 shuffling iterations for the Costes’ significance test100.  8.3.4 Rat cortex synaptosome preparation  Purified synaptosomes were prepared according to the Nicholls method318. In brief, brains from 3 months old male rats were homogenized in lysis buffer (4mM HEPES-Na, 0.32 M Sucrose, pH 7.3) with 12 strokes in a glass homogenizer on ice. Homogenate was centrifuged using AvantiJ-centrifuge at 5,000 r.p.m for 3 minutes with JA25.50 rotors at 4°C. Then, supernatant was centrifuged at 1,1000 r.p.m for 12 minutes at 4°C. The pellet was resuspended in 3 ml of lysis buffer taking care to not perturb the mitochondrial button, and diluted to 1:2 factor with a HEPES-buffered solution (140 mM NaCl, 5 mM KCl, 20 mM HEPES-Na pH 7.4, 5mM NaHCO3, 1 mM MgCl2, 1.2m M Na2HPO4 and 10 mM Glucose). The resuspension was divided in 2 ml tubes, centrifuged at 4°C for 10 seconds, and resuspended in HEPES-buffered solution with a volume up to 1.5 ml. The obtained synaptosomes were lysated in the lysis buffer (40mM Tris-HCl pH 8, 150 mM NaCl, 50mM Na-Citrate, 5mM CHAPS, 1X PIC) and used for co-immunoprecipitation experiments.  
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8.3.5 TANC2-CDKL5 co-immunoprecipitation experiments Endogenous TANC2/CDKL5 complexes were immunoprecipitated from rat synaptosomes using rabbit anti-TANC2 A303-023A antibody (Bethyl). The antibody (2µg in 200 µl TBS/0.05% Tween-20) was incubated 1 h at 4°C in agitation (500 rpm) with 5 µl of Protein a Magnetic Beads (Pierce ThermoFisher). Then, after three TBS-T 0.05% washes, lysates were incubated with conjugated resin for 1 h at low temperature (4°- 6°C), washed three times with 200 μl of the lysis buffer (see above), and eluted with NuPAGE LDS Sample Buffer 4X (ThermoFisher). The eluted samples were added of 100 mM DTT and incubated for 10’ at 70°C in agitation (500 rpm). Afterwards, samples were analyzed by immunoblotting with rabbit anti-CDKL5 A304-172A antibody (Bethyl). IrDye 800 anti-rabbit (LI-COR) was used as secondary antibody at 1:10000 dilutions in BSA 5%/TBST (TBS-Tween20) 0.1%. To confirm the results, the experiments were replicated using 2 µg rabbit anti-CDKL5 antibody for immunoprecipitation and anti-TANC2 A303-023A antibody for immunoblotting.  8.3.6 Plasmids, oligonucleotides, site directed mutagenesis  Assessment of TANC2-PP1 and TANC2-CDKL5 interactions was performed using the yeast two-hybrid system, as described previously in Minervini et al. 2017319. In brief, pcDNA3.1-derived plasmids (GenScript) carrying the full-length synthetic cDNA of TANC2 (NM_025185), CDKL5 (NM_001037343) and PP1 (GenEZ™ORF clone OHu17166) were used as templates to transfer different coding regions in yeast vectors pGADT7 and pGBKT7, provided by Clontech. The DNA fragments were amplified by PCR (primer sequences in Supplementary Tables 8.1 and 8.2), and cloned in the final plasmids, near di EcoRI restriction site, using the In-Fusion® HD Cloning Kit (Clontech) standard protocol. When possible, shorter overlapping fragments of both CDKL5 and TANC2 C-terminal region (1,228-1,990) were obtained using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies), following the supplier's instructions. All recombinant plasmids express TANC2, CDKL5 or PP1 fragments fused with either the DNA binding domain (DBD, pGBKT7-derived plasmids), or the activation domain (AD, pGADT7-derived plasmids) of the Gal4 transcription factor. 
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8.3.7 Yeast-two-hybrid (Y2H) experiments Minimal interaction sub-regions between TANC2, CDKL5, PP1 were investigated through yeast two-hybrid assay, by the Matchmaker® Gold Two Hybrid system (ClonTech).The co-transformation Y190 reporter yeast strain was performed following the one-step transformation protocol 320. Generally, multiple transformations (2-3) were performed, from which two or more independent colonies were tested, using 10-fold dilutions on solid medium. Positive interactions were identified by growth on His− Leu− Trp− 30 mM and 60 mM 3-Amino-1,2,4-Triazol (3AT) plates. To assess the interaction strength of tested combinations, a positive control strain, containing both Gal4 AD-SV40 large T-antigen and Gal4 DBD-murine p53 (fragment 72–390), and a negative control, corresponding to Y190 co-transformed with empty pGADT7 and pGBKT7, were employed. Yeast stain growth was monitored for 3 and 6 days at 30°C. 8.3.8 Sequence feature analysis and known CDKL5 interactors analysis CDKL5 isoforms (UniProt accession code: O76039-1, O76039-2) were downloaded from UniProt180, and aligned with orthologous sequences retrieved from OMA Browser277 (forty five sequences, accession date: 15/08/17). The C-terminal protein sequences were assessed for intrinsic disorder, presence of compositionally biased regions (i.e., repeating amino acids) and short linear motifs (SLiMs) using FELLS78 and ELM81, whereas secondary structure was predicted using PSIPRED77. Since SLiMs can be highly degenerated, and many putative SLiMs could be false positives, we selected only those mapping to ANCHOR321 predicted binding sites in conserved disordered regions (perfect match in at least twenty three out of forty five sequences used for the multiple alignment). A list of experimentally determined CDKL5 interactors was gathered from the literature and the publicly available databases BioGrid36, and IntAct35 (see Table 8.2). For each binding partner, the interaction details from the literature (i.e. involved sequence motifs, domains, and regions) and the involved biological processes from the InterPro76, UniProt180 and KEGG269 databases were annotated 8.3.9 TANC2 silencing TANC2 silencing was performed in SHSY5Y cells, using the FlexiTube siRNA premix system (QIAGEN). In brief, shortly before transfection, cells were seeded in a 24-well plate at a concentration of 0.8 x 105/well, in 0.6 ml of in supplemented DMEM (see above), and 
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briefly incubated in normal growth condition (5% CO2, at 37°C). Two different FlexiTube siRNA sequences were tested, Hs_TANC2_1 (SI03131639) and Hs_DKFZP564D166_3 (SI00367003), both targeting TANC2 NM_025185 transcripts. The All Stars Negative Control siRNA (QIAGEN) was used as negative transfection control. 25 nM of each FlexiTube premix, which contains both transfection reagents and the siRNAs, was added drop-wise to the cells. Cells were harvested 72h after transfection, using a lysis buffer (50 mM Tris-HCl pH7.5, 150mM NaCl, 10% glycerol 1mM EDTA 0,5% NP-40). TANC2 and CDKL5 expression levels were assessed on cell lysates by immunoblotting against the two proteins. The samples were diluted with Leamli sample buffer 5X (60 mM Tris–HCl pH 6.8, 10% glycerol, 2% SDS, 0.001 % bromophenol blue, and 5% β-mercaptoethanol) and 100 mM DTT. Protein samples were separated by SDS‐PAGE in 10 % polyacrylamide gels and transferred to nitrocellulose membranes. Membranes were blocked in 5 % milk in TBS-T 0.1%, and incubated with primary antibodies overnight at 4°C. Finally, the membranes were washed and exposed to alkaline phosphatase‐conjugated secondary antibodies. To quantify sample band intensities, β-actin was used as internal normalization standard. Significance of difference in protein levels using Microcal Origin 8.0 (Malvern Instruments, Worcestershire, United Kingdom) by Welch’s t test, with p-value < 0.05 considered statistically significant. Data were graphed using Microsoft Excel and expressed as mean ± S.E.M. Primary antibodies: rabbit anti-CDKL5 A304-172A antibody (1:3,000, Bethyl), rabbit anti-TANC2 A303-023A antibody (1: 3,000 Bethyl), mouse anti-β-actin antibody A5441 (1: 1,000, Sigma) Secondary antibodies: goat anti-rabbit IgG (whole molecule) – peroxidase A6154 antibody (1: 10,000 Sigma), rabbit anti-mouse IgG (whole molecule) – peroxidase A9044 antibody (1: 10,000 Sigma). All antibody dilutions for western blot experiments were done in BSA 1%/TBS-T 0,1%.           
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8.4 Results 8.4.1 TANC2 colocalizes with CDKL5 and PP1, and CDKL5-TANC2 interaction is confirmed by co-IP in rat synaptosome  TANC2-CDKL5 and TANC2-PP1 interactions between endogenous proteins was tested by double-labeled immunofluorescence in different cell types. Colocalization analysis revealed that there is a high degree of spatial correlation between TANC2 and PP1, both in primary hippocampal neurons (Pearson’s correlation coefficient (PCC) = 0.44 ± 0.03; n > 10 cells from 4 different coverslips), and SHSY5Y neuroblastoma cells (PCC = 0.49 ± 0.04; n > 20 from 6 different coverslips; Figure 8.1), confirming the predicted interaction between the two proteins. The same was observed for TANC2-CDKL5 immunostained samples, with PCC = 0.59 ± 0.04 in hippocampal neurons (n > 10 in 6 different coverslips) and PCC = 0.47 ± 0.03 in SHSY5Y cells (n > 20 from 5 different coverslips), suggesting that CDKL5 and TANC2 could be interaction partners. In addition, to evaluate colocalization, we performed with Coloc2 plugin, which returns an intensity correlation quotient (ICQ), ranging from -0.5 (perfect anti-correlation) and 0.5 (perfect colocalization)322. In our samples, the ICQ values confirm the colocalization of TANC2 with PP1 and with CDKL5 (TANC2-PP1: ICQ = 0.33 ± 0.01 and 0.35 ± 0.02 in primary and neuroblastoma cells respectively; TANC2-CDKL5: ICQ = 0.36 ± 0.02 in hippocampal neurons and 0.32 ± 0.03 in SHSY5Y cells). However, we noticed that TANC2 localization slightly differs from CDKL5 and PP1 distributions within cells. Indeed, PP1 and CDKL5 signals are more homogeneous in the cytoplasm, whereas TANC2 is more concentrated in dendrites and at membrane level, in accordance with TANC2 being a scaffold protein (Figure 8.1). To confirm CDKL5-TANC2 interaction in conditions near physiological environment, co-immunoprecipitation of the two proteins was performed using rat hippocampal synaptosomes. The experiments confirm that CDKL5-TANC2 complex can be detected in ex vivo preparations. Indeed, TANC2 can be detected in the sample immunoprecipitated using an antibody against kinase domain of CDKL5, as well as CDKL5 can be detected in the sample immunoprecipitated using the αTANC2-antibody (Figure 8.1).   



133   Figure 8.1: Validation of PP1-TANC2 and CDKL5-TANC2 interactions. A) Representative images of endogenous TANC2, CDKL5 and PP1 immunostaining in primary hippocampal neurons. B) Representative images of endogenous TANC2, CDKL5 and PP1 immunostaining in SHSY5Y cells. C) Validation of TANC2-CDKL5 interaction assessing immunoprecipitation of endogenous complexes from rat synaptosome extracts. 
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8.4.2 In yeast, TANC2 interacts with PP1 through the its N-terminus, whereas CDKL5 interaction is mediated by TANC2 C-terminus The characterization of TANC2-PP1 and TANC2-CDKL5 interacting sub-regions was performed using the yeast two hybrid system. TANC2 sequence was divided in different sub-clones (Table 8.1), which were tested separately against PP1 and CDKL5-1 full length proteins.   TANC2 Region Position Domains TANC2.I 1-845 N-terminus TANC2.II 1-845 N-terminus + ATPase domain TANC2.III 1-1,227 N-terminus + ATPase domain + ANK domain TANC2.IV 341-1,227 ATPase domain + ANK domain TANC2.V 846-1,227 ANK domain TANC2.VI 1228-1,990 TPR domain + C-terminus TANC2.VII 1,228-1,358 TPR domain (C-terminal cap not included) TANC2.VIII 1,244-1,542 full TPR domain + PolyP region TANC2.IX 1,538-1,628 C-terminus TANC2.X 1,623-1,990 C-terminus CDKL5 Region Position Domains CDKL5.I 1-1,030 full-length protein CDKL5.II 1-300 kinase domain only CDKL5.III 301-615 C-terminal tail (first part) CDKL5.IV 587-1,030 C-terminal tail (second part) CDKL5.IVA 587-740 _ CDKL5.IVB 731-802 Poly-Lys region CDKL5.IVC 796-1,030 _ PP1 Region Position Domains PP1 1-330 full-length protein  Table 8.1: CDKL5, PP1 and TANC2 regions investigated through Y2H assay. First column: name of TANC2/CDKL5 clones; second column: clone mapping on protein sequence. A brief description of the relevant structural features for each clone is reported in third column.   At first, our attention was focused on PP1-TANC2 interaction. TANC2 was found to interact with PP1 by high-throughput mass spectrometry298, although the interacting peptide was not indicated. Two highly conserved RVxF docking motifs map to TANC2 N-terminus, making this region a good candidate for interaction with the phosphatase. As expected, only the clones containing the N-terminal tail (TANC2.I = 1-340, TANC2.II = 
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1-845, TANC2.III = 1-1,227) were able to directly interact with PP1, resulting in yeast growth (Figure 8.2). No other TANC2 domain is necessary to PP1-TANC2 interaction (Figure S8.1).      Figure 8.2: Yeast two-hybrid dissection for interaction between TANC2 and PP1. Co-transformation of Y190 reporter yeast strain was performed, allowing the validation of PP1/TANC2 interactions. A): graphic representation of tested TANC2 subclones (orange triangles = PP1 docking motif) and PP1 structure (pdb code 3EGG); B): Serial dilutions of yeast cells were spotted on both permissive (left) and selective (right) media, and incubated for six days at 30 °C. C+ and C− are positive and negative controls. The image is representative of two independent experiments, each with three different clones analyzed. Clone autoactivation was evaluated co-transforming the tested subclones with an p. GBKT7 empty vector (indicated with ø).  As regard CDKL5-TANC2 interaction, it was detected between TANC2.VI clone (1228-1990), containing both TPR domain and C-terminus, and the full-length kinase sequence (CDKL5.I) (Figure 8.3, Figure S8.2). To further outline the sub-regions involved in TANC2-CDKL5 interaction, TANC2.VI and CDKL5 plasmids were mutagenized, obtaining shorter overlapping fragments (Table 8.1). CDKL5 binds the C-terminus of TANC2 (TANC2.X = 1623-1990) via its C-terminal tail (CDKL5.IV = 587-1030). Indeed, when only kinase domain was tested (CDKL5.II =1-300), the growth assay results were negative (Figures S8.3, S8.5). Interestingly, the TANC2-CDKL5 interaction seems to be mediated by a bipartite region, involving CDKL5. IV. A (587-740) and CDKL5.IV.C (796-1030), but not CDKL5.IV.B (731-802) (Figures 8.3, Figures S8.3, S8.4 and S8.5). Of note, the region excluded from the interaction is CDKL5.IV.B (731-802), containing the Poly-lysine segment, predicted as nuclear import signal (see below)323. 
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  Figure 8.3: Fine mapping of TANC2-CDKL5 interaction with Y2H system. A): graphic representation of tested TANC2 and CDKL5 subclones; B): Drop-test results for the interaction of TANC2.X and different CDKL5 subclone (CDKL5.II, CDKL5.III, and CDKL5.IV) on permissive and selective media. Results of TANC2.X interaction with CDKL5.IV.A and CDKL5.IV.C are reported in C) and D) respectively. C+ and C− are positive and negative controls. The image is representative of two independent experiments, each with three different clones analyzed. Clone autoactivation was evaluated co-transforming the tested subclones with an appropriate empty vector (indicated with ø).  8.4.3 CDKL5 sequence analysis: C-terminus mediated protein interactions  CDKL5 presents an N-terminal serine/threonine kinase domain (1-297), homologous to the MAP kinases and cyclin-dependent kinases 324,325. Aside from the kinase domain, CDKL5 is characterized by a long C-terminus, known to negatively regulate its catalytic activity and to mediate proper sub-cellular localization 324,326. Despite this important role in protein function regulation, the CDKL5 C-terminal tail is still largely uncharacterized324,325. Thus, we performed a comprehensive sequence analysis of CDKL5 C-terminus aimed to the identification of conserved short linear motifs (SLiMs) likely to mediate protein interactions. Furthermore, we searched for literature and protein-protein interaction databases to collect information about known or candidate CDKL5 interactors. We 
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manually curated twenty-seven CDKL5 interacting proteins, eight interactors from publications, and nineteen identified by high-throughput screening in publicly available protein-protein interactions (PPI) databases. Low-throughput experimental evidence for CDKL5 interactors revealed the region 550-850 binds different interaction partners, including MECP2 327 and DNMT1B 328, and PSD-95 312. This region is characterized by the presence of a Poly-lysine stretch (784 – 789), which ELM predicted to be enriched in nuclear localization signals (NLS). The assessment of candidate disordered binding regions with ANCHOR 321 highlighted the presence of several putative protein interaction sites (see Supplementary Table S8.3) that were employed during selection of candidate protein binding motifs. One example is the conserved APC/C-binding destruction motif (DEG_APCC_KENBOX2, 697-701), which map to an ANCHOR predicted binding site and may support the interaction with APC/C and likely regulating CDKL5 protein stability. Interesting, we predicted many other conserved motifs mapping to the C-terminus predicted interaction sites, which may regulate CDKL5 expression levels, either favoring its ubiquitin-dependent proteosomal degradation (DEG_Nend_UBRbox_1 and DEG_SPOP_SBC_1) or USP7-mediated de-ubiquitination (DOC_USP7_MATH_2 and DOC_USP7_UBL2_3), highlighting the relevance of CDKL5 availability regulation. For three of the interactors retrieved from databases, we predicted the putative interacting sites (see Figure 8.4, and Table 8.2). CDKL5 was found to interact with three SH3-domain containing proteins, ABL1 and FYN kinases, and GRB2 protein (see Figure 8.4, and Table 8.2). These interactions may recognize the SH3-domain binding motif mapping to the most distal part of the CDKL5 tail, which is specific for CDKL5 isoform1 (Figure 8.4, and Table 8.2) and is present only in Hominidea family (Figure 8.4, Figure S8.6). CDKL5-1 is expressed in the brain prevalently during foetal stages 314, and SH3-binding motif mediated interactions link the kinase to different pathways regulating cell proliferation, axon guidance and neuron projections329–331, which are essential for synaptic plasticity and brain development332.   



138 Interactor Biological process 
Experimental evidence  Ref CDKL5 regio

n  CDKL5-interactor region  
ABL1 Axon guidance, neuron projection exten

sion Peptide array 
333  *LIG_SH3_2  *SH3 dom

ain 
CDH1 Cell adhesion, synapse assembly 

PL-MS  334  _ _ 
DHX16 mRNA processing, mRNA splicing 

HTS AC-MS 335  _ _ 
DHX38 mRNA processing, mRNA splicing 

HTS AC-MS 335  _ _ 
DNMT1 Chromatin regulator, nervous system de

velopment GST pull-down 
328  650–850 1-290 

DYRK1A Synaptic plasticity 
IF/coIP 326  # Ser308  1-497 (kinase domain) 

FYN Neuron death regulation, Wnt /PCP pat
hway regulation Peptide array 

333  *LIG_SH3_2  *SH3 dom
ain  

GPALPP1 Chaperon 
HTS AC-MS 298  _ _ 

GRB2 Cell proliferation, axon guidance 
Peptide array 333  *LIG_SH3_2  *SH3 dom

ain  
GTF2F1 Transcription regulation 

HTS AC-MS 298  _ _ 
HDAC4 Chromatin regulator, nervous system de

velopment CoIP 
336  299-1030 _ 

HDGFRP2 Cell proliferation 
HTS AC-MS 298  _ _ 

HDGFRP3 Cell proliferation, neuron projection ex
tension, MT polymerization  HTS AC-MS 

335  _ _ 
IQGAP1  Neuron projection extension 

Y2H, IF/coIP 337  299-1,030 CHD dom
ain, 160-260 

KLHL20 Protein transport, Ubl conjugation path
way HTS AC-MS 

298  _ _ 
MACF1 Wnt signaling pathway 

HTS AC-MS 298  _ _ 
MECP2 Transcription regulation, neuron matura

tion  GST pull-down 
327  450–550, 551–650  202–486 

MGMT DNA damage repair 
HTS AC-MS 338  _ _ 

NGL-1 Neuron projection extension 
IF/coIP 311  _ 550-556 

PRKG2 Glutamate Receptor signaling, synaptic
 plasticity HTS AC-MS 

339  _ _ 
PSD-95 Glutamate Receptor signaling 

Pull-down assay, IF 312  671–834  1–64 
RABL6 Cell proliferation 

HTS AC-MS 298  _ _ 
SAR1B Protein transport 

HTS AC-MS 298  _ _ 
SERPINB8 Protease inhibitor  

HTS AC-MS 298  _ _ 
Shootin1 Neuron projection morphogenesis and e

xtension  Y2H, IF/coIP 
325  299-1,030 53-290 

SKIV2L mRNA processing 
Y2H screening 340  _ _ 

UBAP2 positive regulation of gene expression 
HTS AC-MS 298  _ _ 

Table 8.2: CDKL5 known and predicted interactors. F
or each interactor, the biological process, the detection

 method and the binding regions, both experimentally 
validated 

(in bold) and predicted from SLiMs analysis (labeled 
with *), are here listed. Linear motifs are named acco

rding to the ELM database nomenclature. # = CDKL5
 Ser308, 

phosphorylated by DYRK1A.Y2H: Yeast two hybrid; C
o-IP: Coimmunoprecipitation; HTS: High-Throughput 

System; AC: Affinity Capture; PL: Proximity Label; M
S: Mass 

spectrometry.  
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 Figure 8.4: CDKL5 sequence analysis. Linear motifs are named according to the ELM database nomenclature.  8.4.4 TANC2 downregulation leads to an increase of CDKL5 levels Our hypothesis relies on the assumption that TANC2 could modulate CDKL5 degradation, binding and targeting PP1 activity to the kinase. Accordingly, TANC2 down-regulation should correspond to an increasing in CDKL5 protein levels. After 72h incubation with siRNAs, TANC2 and CDKL5 were quantified by Western Blot. Welch’s t test analysis revealed that only Hs_TANC2_1 siRNA significantly decreases the expression of the scaffold-protein (p-value = 0.03997, n = 7, statistical significance threshold: p-value < 0.05), though the halving of TANC2 level mean can be observed also in samples incubated with Hs_DKFZP564D166_3 (Figure 8.5B). On the contrary, in both tested conditions, a significant increase in CDKL5 availability (p-value = 0.01071 and p-value = 0.03329 for Hs_TANC2_1 and Hs_DKFZP564D166_3, respectively) was observed (Figure 8.5C), suggesting a role of TANC2 in CDKL5 degradation, which is reported to be mediated by PP1313.     
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  Figure 8.5: TANC2 silencing affect CDKL5 protein levels. A) Representative western blot of cell lysates previously treated with: Hs_TANC2_1 (first three lanes), Hs_DKFZP564D1663 (from the forth to the sixth lanes), and negative control siRNA (last three lanes). B) Statistical analysis (Welch’s t test) of TANC2 downregulation (statistical significance threshold: p-value < 0.05, n.s. = not significant). C) Statistical analysis (Welch’s t test) of CDKL5 upregulation (statistical significance threshold: p-value < 0.05). D) TANC2-CDKL5-PP1 working model: when TANC2 is downregulated, a significant fraction of CDKL5 escapes PP1-dephosphorylation and subsequent degradation, resulting in an increasing of kinase availability. 8.5 Discussion In this study, we demonstrated that TANC2 is able to interact with PP1 and CDKL5, possibly contributing to the kinase degradation. Both interactions with CDKL5 and PP1 involve intrinsically disordered regions (IDRs), characterized by the presence of different SLIMs and PTM sites26. IDRs are generally implicated in transient and potentially promiscuous interactions, and different mechanisms aim to avoid non-specific protein interactions, including on-site synthesis26. Proteins translated in situ are generally present in low concentration, their abundance rapidly increases after stimuli (e.g. extrasynaptic glutamate signaling) and display distinct phosphorylation dynamics26. In mature neurons, CDKL5 is upregulated in response to NMDAR-mediated membrane depolarization due to the localized activation of protein synthesis in the dendritic spines313. After a brief protein expression increasing, the kinase returns to basal levels as result of PP1-mediated dephosphorylation and consequent proteasome-dependent degradation313.This suggests that both CDKL5 protein availability and phosphorylation levels need to be tightly regulated for the proper signaling of the synaptic plasticity313. The performed experiments 
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allowed us to identify part of the mechanism by which PP1 activity is targeted toward CDKL5, yielding its proteosomal degradation, though a more complex regulation mechanism is suggested by the presence of degrons and deubiquitinase target sites. We demonstrated that TANC2 scaffold downregulation causes an increasing in CDKL5 protein levels, supporting TANC2 involvement in influencing glutamatergic neuron signaling, by the modulation of synaptic plasticity196. We found that the interaction among the two post-synaptic proteins involves TANC2 C-terminus (1623-1990) and a bipartite motif of the kinase carboxyl-tail, which includes the known binding site of MECP2, DNMT1B and PSD95 and the specific region of the longer CDKL5-1 isoform (a.a. 904-1,030), which could increase CDKL5 binding affinity toward TANC2. Indeed, this latter region was previously suggested to contribute in regulating CDKL5 protein stability, as the longer CDKL5 isoform, detected in fetal brain313, seems to be more actively degraded via proteasome pathway compared to CDKL5-2341. Splicing isoforms generally involve IDRs, resulting in tissue specific sets of short linear motifs and post-translational sites, allowing the recruitment of a same biological activity to different molecular contexts26. The fine tuning of CDKL5-1 function in fetal brains may affect synaptic plasticity and could require specific interactions, e.g. with TANC2 protein. Interestingly, Like CDKL5-1, the highest levels of TANC2 protein are present in embryonic stages, with a maximum in E18 in mouse196. Given its potential role in the regulation of CDKL5 protein levels, alteration of TANC2 activity would result in the over-expression of the post-synaptic kinase. The consequence of increased amount of CDKL5 on clinical phenotype is still poorly understood, and only few cases of CDKL5 duplications are available in literature342. Szafranski and colleagues 342 reported familial cases with short duplications (<1Mb) in CDKL5. Unlike patients with CDKL5 deletions, patients with CDKL5 duplications presented autistic traits, hyperactivity, development and language impairment, but not epilepsy. Authors suggested that the clinical phenotype could be linked to perturbation of synaptic plasticity, learning and neuron excitability342,343. Indeed, CDKL5 controls postsynaptic localization of GluN2B-containing NMDAR receptors, influencing their activity343. CDKL5 knock-out is characterized by an over-accumulation of the receptor subunits, resulting in enhancement of glutamatergic synaptic transmission and causing an increased seizure susceptibility343. Thus, it is conceivable that CDKL5 over-expression may down-regulate glutamate receptor subunit targeting to the PSD and, consequently, NMDAR activity. Interestingly, it has been demonstrated that GluN1 mutations, another subunit of NMDAR, reduce the channel trafficking to the synaptic membrane, and are 
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associated with non-syndromic intellectual disability without seizures344. This may suggest that deficits linked to these mutations could be more likely linked to deficit in NMDAR targeting rather than the alteration of receptor activity344, which could be consistent with CDKL5 up-regulation, but also with clinical phenotypes associated with TANC2 malfunctioning345. Here, we found that the TANC2 scaffold protein could contribute to the regulation of postsynaptic CDKL5 availability, although further investigations are required for a better understanding of TANC2-PP1 complex activity. These include the identification of other synaptic substrates, which might contribute to CDKL5 expression levels. Additional validation of the proposed pathway could suggest TANC2 as a putative target of pharmacological interventions in CDKL5 duplication disorders.   
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9 Conclusions In the last years, the next generation sequencing has been established as the state-of-the-art strategy for causative mutation discovery. NGS data handling and interpretation are still challenging for the vast majority of genetic studies7. The disease causality assignment of sequence variants often consists in a demanding process, requiring the integration of different sources for a comprehensive analysis2. An extensive part of my thesis deals about development of novel instruments for causative variants detection. On parallel, the identification of the molecular basis explaining the insurgence of different genetic diseases is also presented. The methods that our group developed during the first part of my Ph.D. have been assessed during my participation to the Critical Assessment of Genome Interpretation (CAGI). Our group was requested to implement different methods aimed at defining disease probability starting either from exome- or gene-targeted re-sequencing-derived data. These methods were employed for data interpretation in a board range of clinical conditions, from complex diseases, such as bipolar disorder and Crohn’s Disease, to Mendelian disorders. Predictions were blinded to the clinical diagnosis, meaning that the analysis could not be driven by prior information about patients 19,346. Our methods allowed to mostly assign a correct phenotype for each sequenced individual, correctly predicting the clinical phenotype-genotype associations. The prioritization of candidate disease-associated genes has played a critical role in variant selection, due to the huge number of genes and variants potentially involved in these pathologies. This specific strategy has been successfully used to identify the genes involved in the autism disease (ASD) and intellectual disability (ID) comorbidity, and to develop a diagnostic gene-panel aimed to assess their co-morbidity. Indeed, both ASD and ID are characterized by a highly genetic heterogeneity as well as overlapping clinical features, making single-gene testing insufficient for an accurate disease diagnosis21. The relevance of ASD/ID clinical diagnosis is almost clear, as it allows to shed light on molecular mechanism underlying the clinical phenotype, and has important implications for disease management and treatment. We considered several parameters for the candidate variant selection, including the pathogenicity prediction, frequency in publicly available database and segregation analysis. Through the ASD/ID panel screening, we assigned a clear molecular diagnosis to twenty-four of the tested patients (16,4%), with at least one likely pathogenic variant being detected 
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for additional twenty-three probands, highlighting the diagnostic value of a such developed AD/ID panel. Further evidence supporting causality between the likely pathogenic variations and the clinical phenotypes was provided by means of evaluation of variants effects on protein function/structure. Indeed, I performed a comprehensive analysis of selected ASD/ID -associated proteins to decipher variant pathogenicity, e.g. DYRK1A and EHMT1 proteins. The in silico analysis of the mutated proteins reveals that the 45,6% of the likely pathogenic variants to map in intrinsically disordered regions (IDRs). Consistently, an increasing number of studies shows that mutations in IDRs are associated with different pathologies, as they are often involved in protein function regulation24,26. Considered the important role played by intrinsically disordered protein in human diseases insurgence, I participated the update of DisProt, the most relevant database of protein disorder. I personally contributed to the manual curation of several proteins and dozens of intrinsically disorder regions. The annotation process involved the identification of IDR position and the association to the Pubmed ID related to supporting publications. The new release, DisProt 7.0, contains more hundreds of IDRs, eight-fold data respect to the earlier version, resulting in the most valuable resource for a better understanding of the structural disorder. Besides being extremely widespread, the intrinsically disorder proteins are essential components of regulative molecular pathways, including neuronal signaling26. In neurons, cellular signaling is tightly regulated by scaffold proteins, which play an important role in coordinating alternate signal paths, e.g. targeting glutamate receptors and their interactors to synaptic memenbrane170. Scaffolds are characterized by different modules, such as structural domain for protein-protein binding as well as short linear motif in IDRs27. Among the post-synaptic proteins encoded by the ASD/ID panel genes, TANC2 emerged for being a really promising scaffold protein with extended IDRs. Like other neuronal scaffold proteins, TANC2 seems to regulate neurotransmission and synaptic plasticity, although its function is still poorly understood. For all these reasons, I conducted an extensive in silico investigation of TANC2. The analysis was focused on its structural and functional characterization, including its close human paralog TANC1. Furthermore, the TANC family was also investigated at the pathway level, performing an interaction network characterization to elucidate TANCs collective role on neuronal pathways. This work provides the basis for interpretation of genetic variants found in TANC encoding genes197. Functional hypotheses emerged from bioinformatics study were experimentally validated. As molecular context is essential to understand macromolecules activity, I employed different experimental techniques to validate TANC2 predicted interactions with PP1 and 
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CDKL5 and the functional significance of the TANC2-CDKL5-PP1 interplay, as well. The results suggest that the expression of splice isoforms may play a significant role in modulating CDKL5-1 activity. Splicing isoforms generally involve IDRs, resulting in tissue specific sets of short linear motifs and post-translational sites, mediating isoform specific PPIs that occurs in a determined time window26, such as interaction with TANC2. Indeed, we proved that TANC2 forms complexes with both CDKL5 isoform 1 and PP1 by means of its IDRs, and TANC2 downregulation corresponds to an increase of CDKL5 protein levels. Thus, TANC2 possibly links the phosphatase PP1 to its substrate CDKL5, allowing its dephosphorylation and subsequent degradation. It was demonstrated that this step is particularly critical for proper neuronal development313, as increased levels of CDKL5 are associated with neurobehavioral and neurodevelopment features, e.g. ID and ASD traits342. These findings support the hypothesis that imbalance in CDKL5 levels affects neuronal function342, suggesting TANC2 as a new putative pharmacological target for clinical conditions related to CDKL5 overexpression. Collectively, this study adds important elements to extend our understanding of the CDKL5 disorders. In particular, the roles that we propose for the IDRs contained in TANC2 and CDKL5 look promising. On the other side, this study clearly shows that the correct interpretation of next generation sequencing derived data is almost ready to be a routinely task in basic research, as well as a powerful tool for disease-variant association study. Indeed, determining the association between genetic variants and diseases is an interdisciplinary task, which cannot be limited to the identification of causative variants, but it should also provide the causality between variant, protein function alteration and disease. 
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 Patients (n=146) Gender  Female 59 Male 87 Age (at diagnosis, years) Mean 10y Familial History  Sporadic 117 Familial (sib-pair) 29 ID severity  Mild/Borderline 33 Moderate 35 Severe 32 Psychomotor delay 115 Comorbidity  ASD 71 Behavioral abnormality 90 Epilepsy 53 Hypotonia 28 Ataxia 10 Microcephaly 19 Macrocephaly 8 Hyperactivity 28 Stereotypy 30 Learning disability 2 Language  Delay 72 Absent 33 Specific Language Impairment 8 Dimorphisms  Palate anomaly 7 Dentition anomaly 4 Malar Hypoplasia 2 Skeletal abnormalities  Digital anomaly 10 Clubbed toes 3 Abnormality of other organs  Suspected RETT 41 EEG anomaly 55 MRI anomaly 36  Supplementary Table S5.1: Description of the cohort of 146 individuals enrolled for the study of ID/ASD comorbidity.   



184 Reference for known ASD/ID associated genes Phenotype Source  ASD Cukier et al. 2014347  Table S3: ASD candidate genes (only those with
 at least 2 references and Betancur348  list)  

ASD Neale et al. 2012349  Table S5: ASD genes  ASD Pinto et al. 20149  Table S6A: ASD genes  ID Neale et al. 2012349  Table S6: ID genes  ID Pinto et al. 20149  Table S6C: ID genes  Reference for candidate ASD/ID genes from whole e
xome/panel sequencing  

Phenotype Source  ASD O’Roak et al. 2011350  Table 2: Summary of confirmed de novo event
s  

ASD O’Roak et al. 2011350  Table 1: Top de novo ASD risk contributing m
utations  

ASD Sanders et al. 2012351  Table 2: loss of function in probands  ASD Iossifov et al. 2012252  Table 3: Likely disrupting mutations in affected
 children  

ASD Neale et al. 2012349  Table S1: All validated de novo events and a
nnotations (no synonymous variants)  

ASD Jiang et al. 2013352  Table 1: Summary ASD genes found with mut
ations in this study  

ASD Cukier et al. 2014347  Supporting Table 5: Genes with Damaging, V
alidated Variants in More Than One Family  

ASD An et al. 2014168  Supplementary Table 3: The list of de novo variants ide
ntified in 48 ASD cases (only frameshift, nonsynonymo

us, stop 
gain)  ASD Toma et al. 2014353  Table 2: Gene disrupting rare variants shared

 by affected sibs in each multiplex family  
ID Rauch et al. 2014354  Table 3: Missense, nonsense, frameshift, and splice site

 de-novo variants in genes associated with intellectual d
isability 

in each patient–parent trio  ID Rauch et al. 2014354  Table 4: Probable disease-causing de-novo va
riants in each patient–parent trio  

ID de Ligt et al. 2012345  Table 2: Genes Affected by De Novo Mutatio
ns Associated with Intellectual Disability 

ID Vissers et al. 2010355  Table 2: Overview of all de novo variants identified b
y exome sequencing in ten individuals with unexplaine

d mental 
retardation  ID Hamdman et al. 2014356  Table 2: Top risk DNMs identified in this study ID Redin et al. 2014357  Table 2: List of all causative/possibly causati

ve mutations identified in our cohort  
ID Agha et al 2014358  Tables 2-4: Homozygous and compound heterozygo

us variants validation using Sanger sequencing and
 in silico 

prediction  Supplementary Table S5.2: list of the references cons
idered for initial ASD/ID gene gathering 
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BIOLOGICAL PROCESS P-value Regulation of synaptic transmission (GO:0050804) 0,0000063 Regulation of membrane potential (GO:0042391) 0,0000143 Regulation of excitatory postsynaptic membrane potential (GO:0060079) 0,00000403 Behavior (GO:0007610) 0,000107 Learning (GO:0007612) 0,0000362 Regulation of synaptic plasticity (GO:0048167) 0,0000494 Cognition (GO:0050890) 0,000472 CELLULAR COMPONENT P-value Postsynaptic membrane (GO:0045211) 0,00000147 Synaptic membrane (GO:0097060) 0,000004518 Synapse (GO:0045202) 0,000007111 Dystrophin-associated glycoprotein complex (GO:0016010)* 0,00006884 Dendrite (GO:0030425) 0,00005336 Neuronal postsynaptic density (GO:0097481)* 0,00008008 Synapse part (GO:0044456) 0,0002044 Neuron spine (GO:0044309)* 0,0002779 MOLECULAR FUNCTION P-value Ionotropic glutamate receptor activity (GO:0004970)* 0,0001031 Extracellular-glutamate-gated ion channel activity (GO:0005234)* 0,00008931 Metal ion transmembrane transporter activity (GO:0046873) 0,000006874 Glutamate receptor activity (GO:0008066)* 0,0002654 Chromatin binding (GO:0003682) 0,00006805 Substrate-specific channel activity (GO:0022838) 0,0003147 Passive transmembrane transporter activity (GO:0022803) 0,0004382 HUMAN PHENOTYPE ONTOLOGY P-value Autism (HP:0000717) 0,000000259 Tented upper lip vermilion (HP:0010804) 0,000537 Stereotypic behavior (HP:0000733) 0,000738 Aggressive behavior (HP:0000718) 0,000366 Intellectual disability, severe (HP:0010864) 0,000744 Abnormal social behavior (HP:0012433) 0,000004266 Impaired social interactions (HP:0000735) 0,000004266 Deeply set eye (HP:0000490) 0,0000082  Supplementary Table S5.3: Functional enrichment of the intersection network. The enrichment analysis was performed with Enricher webserver37 and it is based on Gene Ontology (GO) classes, and Human Phenotype Ontology (HPO). The p-value indicates the probability that the GO term, or HPO phenotype is assigned by chance to the selected subset of genes.  



186 Gene Chr. band I.P. Associated t
raits 

FMR Targets PSD proteins Chromatin Modifiers 

ADNP 20q13.13 AD OCD, ASD, 
Stereotypy, ADHD, ID, Seizures, Muscular hypotonia,

 DD , Language impairment yes _ _ 
ANKRD11 16q24.3 AD Microcephal

y, ID, DD 
yes _ _ 

AP1S2 Xp22.2 XL Macrocepha
ly, Aplasia/Hypoplasia of the cerebellum, Poor speech, 

Muscular hypotonia, ID, Aggressive 
behavior, DD, ASD, High palate. 

_ _ _ 
ARFGEF2 20q13.13 AR Microcephal

y, Progressive microcephaly, ASD, ID, Seizures, Musc
ular hypotonia, DD, Hypoplasia of 

the corpus callosum 
_ yes _ 

ARID1B 6q25.3 AD/AR Microcephal
y, Hearing impairment, Aggressive behavior, ASD

, ID, Seizures, Partial agenesis 
/Hypoplasia of the corpus callosum, Severe expressive 

language delay, DD, Muscular hypotonia. yes _ yes 
ARX Xp21.3 XLR Microcephal

y, Seizures, DD, Agenesis of corpus callosum, Neonata
l hypotonia, ID, Seizures, Muscular 

hypotonia, Spasticity, Agenesis of corpus callosum, L
earning disability, Lissencephaly, DD, Delayed 

speech and language development, EEG abnormality. 
_ _ _ 

ASH1L 1q22 AD _ 
yes _ yes 

ATRX Xq21.1 XLR  Microcepha
ly, Sensorineural hearing impairment, ID, Seizures, 

Spasticity, DD, ADHD, Seizures, 
Muscular hypotonia 

_ _ yes 
CASK Xp11.4 XLD Sensorineura

l hearing impairment, ID, Seizures, DD, Muscular hyp
otonia, Microcephaly, Progressive 

microcephaly, Spasticity, Absent speech 
_ yes _ 

CC2D1A 19p13.12 AR ADHD, ADH
D, DD, Incomprehensible speech, Juvenile onset, ID. 

_ yes _ 
CDKL5 Xp22.13 XLD Progressive 

microcephaly, Stereotypy, ASD, Muscular hypoton
ia, DD, Myoclonus, Generalized 

myoclonic seizures, ID, profound, DD, Infantile spasm
s, Epileptic encephalopathy. yes yes _ 

CHD8 14q11.2 AD _ 
yes _ yes 

CNTNAP2 7q35-q36 AD Impaired soc
ial interactions, ADHD, ID, Seizures, DD, Progressive 

language deterioration,  _ yes _ 
CREBBP 16p13.3 AD Microcephal

y, Hearing impairment, ASD, Stereotypy, Delayed s
peech and language development, 

ADHD, ID, Seizures, Muscular hypotonia, Agenesis of
 corpus callosum, EEG abnormality yes _ yes 

CTNNB1 3p22.1 AD Microcephal
y, ID, Muscular hypotonia, DD, Hypoplasia of the cor

pus callosum, Neurological speech 
impairment 

yes yes _ 
DEAF1 11p15.5 AD Aggressive b

ehavior, Mood swings, ASD, Sacral dimple, ID, DD 
_ _ _ 

DYRK1A 21q22.13 AD Microcephal
y, ASD, ID, Cerebral cortical atrophy, Febrile seizures,

 Severe DD _ _ _ 
EHMT1 9q34.3 AD Brachycepha

lic, Microcephaly, Hearing impairment, , Aggressive be
havior, OCD, Stereotypy, Delayed 

speech and language development, ID, Seizures, Muscu
lar hypotonia yes _ yes 

    
 (Continues)   
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Table S5.4 (Continued)   

   
Gene Chr. band I.P. Associated t

raits 

FMR Targets PSD proteins Chromatin Modifiers 

FMR1 Xq27.3 XLD Depression, 
Dementia, Disinhibition, Anxiety, Dysarthria, Memo

ry impairment, Diffuse cerebral 
atrophy, OCD, Macrocephaly, ASD, ADHD,ASD, Seiz

ures, ID. yes _ yes 
FOXG1 14q12 AD Progressive 

microcephaly, ASD, Seizures, Spasticity, Neonatal hy
potonia, Hypoplasia of the corpus 

callosum, Apraxia, EEG abnormality, ID. 
_ _ _ 

FOXP1 3p13 AD  Macrocepha
ly, Aggressive behavior, Stereotypy, Delayed speech a

nd language development, ADHD, 
ID, DD 

_ _ _ 
GABRB3 15q12 AD  ID, Genera

lized tonic seizures, Atonic seizures, Atypical abse
nce seizures, Personality disorder, 

Aggressive behavior, ADHD, Encephalopathy, Mental 
deterioration, Generalized tonic-clonic seizures, 

Myoclonus, ASD, EEG with focal sharp slow waves, F
alls. yes _ _ 

GAD1 2q31.1 AR Microcephal
y, ID, Seizures, DD, Infantile onset, Cerebral palsy 

_ _ _ 
GATAD2B 1q21.3 AD Inappropriat

e laughter, DD, Neonatal hypotonia, Language impairm
ent, ID _ _ yes

 
GRIA3 Xq25 XLR Brachycepha

ly, Macrocephaly, ASD, Aggressive behavior, ID, Se
izures, Myoclonus, Distal muscle 

weakness, ID. 
_ yes _ 

GRIK2 6q16.3 AR  ID, Seizures
, DD, Dystonia, Myoclonus, Infantile onset 

_ _ _ 
GRIN2A 16p13.2 AD Delayed spe

ech and language development, ID, Seizures, DD, Dy
sphasia, Aphasia, Attention deficit 

ADHD disorder, Agnosia, Speech apraxia, EEG with c
entrotemporal focal spike waves yes yes _ 

GRIN2B 12p13.1 AD Behavioral a
bnormality, ID, EEG abnormality, Seizures, Muscula

r hypotonia, DD, Absent speech, 
Epileptic encephalopathy 

yes yes _ 
HDAC4 2q37.3 AD ID, Seizures

, Muscular hypotonia, DD, Microcephaly. 
yes _ yes 

IL1RAPL1 Xp21.2--p21.3 XLR ASD, ADHD
, Seizures, ID. 

_ yes _ 
IQSEC2 Xp11.22 XLD  ID 

yes yes _ 
KATNAL2 18q21.1 AD _ 

_ _ _ 
KDM5C Xp11.22 XLR High palate,

 Microcephaly, Macrocephaly, Facial hypotonia, Agg
ressive behavior, Low frustration 

tolerance, Seizures, ID 
yes _ yes 

KIRREL3 11q24.2 AD  ID 
_ yes _ 

MBD5 2q23.1 AD Microcephal
y, Aggressive behavior, ADHD, ID, Ataxia, ,Febrile se

izures, Language impairment, DD yes _ _ 
MCPH1 8p23 AR Microcephal

y, ID, Seizures, Small cerebral cortex, Increased
 rate of premature chromosome 

condensation, Short stature 
yes _ _ 

    
 (Continues)  



188 Table S5.4 (Continued)   
   

Gene Chr. band I.P. Associated t
raits 

FMR Targets PSD proteins Chromatin Modifiers 

MECP2 Xq28 XLR Microcephal
y, Facial hypotonia, Delayed speech and language deve

lopment, Seizures, Ataxia, ID, DD, 
EEG abnormality, Brachycephaly, Microcephaly, 

Macrocephaly, ASD, Muscular hypotonia, 
Progressive microcephaly, Encephalopathy, Myoclonu

s, EEG abnormality, Congenital onset, ID,ASD. yes _ yes 
MED12 11q24.2 AD Hearing imp

airment, ID, DD, Seizures, Motor delay, Neonatal hypo
tonia, Partial agenesis of the corpus 

callosum, Macrocephaly, ADHD ASD, Aggressive be
havior, OCD, Impaired social interactions, Low 

frustration tolerance, ADHD,  
yes _ _ 

MED13L 12q24.21 AD ASD, Ataxia
, Dysarthria, DD, Motor delay, ID 

yes _ _ 
MEF2C 5q14.3 AD ASD, Seizur

es, Muscular hypotonia, Motor delay, ID, Epileptic enc
ephalopathy yes _ _ 

MIB1 18q11.2 AD _ 
yes _ _ 

MTF1 1p33 AD _ 
yes _ _ 

MYH10 17p13.1 XL _ 
yes yes _ 

NLGN3 Xq13.1 XL _ 
yes _ _ 

NLGN4X Xp22.32- p22.31 XL ASD, Stereotypy, Delayed speech and langua
ge development, , ID, Seizures, Lack of peer relationshi

ps, 
EEG abnormality 

_ yes _ 
NRXN1 2p16.3 AR Muscular hy

potonia, ID, Epileptic encephalopathy 
yes yes _ 

NTNG1 1p13.3 AD   
_ _ _ 

OPHN1 Xq12 XLR Macrocepha
ly, Delayed speech and language development, ADHD

, ID, Seizures, Muscular hypotonia, 
Spasticity, DD, Cerebellar hypoplasia, 

yes _ _ 
PHF21A 11p11.2 AD Seizures, DD

, Brachycephaly 
_ _ yes 

PHF8 Xp11.22 XLR  ID 
yes _ yes 

PPP2R5D 6p21.1 AD Macrocepha
ly, ID, Seizures, DD, Generalized hypotonia. 

_ yes _ 
PQBP1 Xp11.23 XLR Brachycepha

ly, Microcephaly, Hearing impairment, Anxiety, ID, Se
izures, Spasticity. _ _ _ 

PTCHD1 Xp22.11 XLR  ID 
_ _ _ 

PTEN 10q23.31 AD Macrocepha
ly, Delayed speech and language development, ID, S

eizures, Muscular hypotonia, hick 
corpus callosum, Hypoplasia of the maxilla, Hearing im

pairment, Progressive macrocephaly, ASD, DD. yes _ _ 
PTPN4 2q14.2 AD _ 

_ _ _ 
RAB39B Xq28 XLR Macrocepha

ly, ID, Seizures, Neurological speech impairment. 
yes _ _ 

RAI1 17p11.2 AD Brachycepha
ly, Hearing impairment, Stereotypy, Self-mutilation

, Delayed speech and language 
development, ADHD, ID, Seizures, DD, Generalized h

ypotonia, EEG abnormality, Sleep disturbance, 
Impaired pain sensation. 

yes _ yes 
    

 (Continues)  
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 Table S5.4 (Continued)   

   
Gene Chr band I.P. Associated t

raits 

FMR Targets PSD proteins Chromatin Modifiers 

RELN 7q22 AD/AR Microcephal
y, Type I Lissencephaly, Thick cerebral cortex, Gener

alized tonic-clonic seizures with 
focal onset, Auditory auras 

yes _ _ 
RPS6KA3 Xp22.12 XLD Delayed spe

ech and language development, ID, Muscular hypoto
nia, Motor delay, Sensorineural 

hearing impairment 
_ _ _ 

SATB2 2q33.1 AD Microcephal
y, Malar Aggressive behavior, Delayed speech and 

language development, ADHD, 
Arachnodactyly, ID, Seizures, DD, Happy demeanor. 

_ _ yes 
SCN2A 2q24.3 AD Generalized 

tonic-clonic seizures with focal onset, Focal seizures, D
ialeptic seizures, Focal seizures, 

afebrile, DD, Epileptic encephalopathy 
yes _ _ 

SETBP1 18q12.3 AD ID, Seizures
, Hypoplasia of the corpus callosum, DD, Brachycepha

ly, Dental crowding, Motor delay, 
Absent speech, ADHD. 

_ _ _ 
SHANK2 11q13.3-q13.4 AD _ 

yes yes _ 
SHANK3 22q13.33 AD Microcephal

y, Macrocephaly, Dolichocephaly, Hearing impairme
nt, ,ASD, Aggressive behavior, 

Delayed speech and language development, ASD, Seiz
ures, DD, Motor delay, Hypotonia, ID. yes yes _ 

SLC6A1 3p25.3 AD Ataxia, Trem
or, Absence seizures, Scoliosis 

yes _ _ 
SLC9A6 Xq26.3 XLD Muscular hy

potonia, DD, Absent speech, ID, Photosensitive tonic-c
lonic seizures, happy demeanor. yes _ _ 

SYNGAP1 6p21.32 AD Microcephal
y, ASD, ID, Seizures, Muscular hypotonia, DD, M

otor delay, EEG abnormality, 
Developmental regression, Language impairment, Epil

eptic encephalopathy yes yes _ 
TANC2 17q23.2 AD _ 

yes yes _ 
TBR1 2q24 AD DD, Small fa

ce, ASD, ID, Seizures, Hand clenching, Growth delay, 
Neonatal hypotonia,  _ _ _ 

TCF4 18q21.2 AD Microcephal
y, Aggressive behavior, Seizures, Muscular hypotoni

a, Motor delay, Encephalopathy, 
Absent speech, Hypoplasia of the corpus callosum, ID 

yes _ _ 
TRIO 5p15.2 AD _ 

yes yes _ 
TUSC3 8p22 AR  ID 

_ _ _ 
UBE3A 15q11.2 AD ADHD, Seiz

ures, Muscular hypotonia, DD, Motor delay, Absent spe
ech, EEG abnormality, Postnatal 

microcephaly, ID. 
yes _ _ 

WAC 10p12.1-p11.2 AD  Hearing imp
airment, Seizures, DD.  

_ _ yes 
 Table S5.4: ASD/ID gene panel list. For each gene 

the chromosome location, the inheritance pattern (I.P
.), and the related HPO phenotype are reported. ID =

 
intellectual disability, ASD = autism spectrum disorder

s, DD= developmental delay, OCD = obsessive-compu
lsive disorder, ADHD = Attention-Deficit/Hyperactivit

y 
Disorder. Genes are classified as FMR (Fragile X ment

al retardation protein 1) targets, post-synaptic proteins, 
or chromatin modifiers according to different studies359–

361 .  



190  Supplementary Table S5.5: Likely pathogenic (LP) 
variants detected in our cohort. Variant annotation s

cheme: SNV class (LC/LP), Patient identification code
, 

patients’ sex, affected gene, inheritance pattern (I.P), cD
NA and amino acid change of the variant, dbSNP code 

(if available), and the ratio among damaging prediction
 

over the total (D/T).   Patient Sex Gene I.P. 
Variant cDNA position AA

 change dbSNP D/T 
2344_01 M ASH1L AD 

chr1:155450025:T:C c.A2636G p.Q
879R _ 3/9 

2272_01 M PTEN AD 
chr10:89690828:G:A c.G235A p.A

79T rs202004587 5/9 
2007_01 M SHANK2 AD 

chr11:70644598:G:A c.C1727T p.P
576Q _ 8/9 

0243_01 F GRIN2B AD 
chr12:13720096:C:G c.G2461C p.V

821L _ 5/9 
2278_01 M GRIN2B AD 

chr12:13761626:T:G c.A1921C p.I6
41L _ 6/9 

2141_01 M CHD8 AD 
chr14:21876977:G:A c.C2372T p.P

791L rs372717272 9/9 
1749_01 M CHD8 AD 

chr14:21897467:G:A c.C871T p.L
291F rs192989929 8/9 

2039_01 M CREBBP AD 
chr16:3788561:C:T c.G4393A p.G

1465R _ 9/9 
1635_01 M CREBBP AD 

chr16:3900813:C:T c.G283A p.V
95M rs756802946 7/9 

1730_01 F ANKRD11 AD 
chr16:89348493:C:G c.G4457C p.R

1486P _ 5/12 
2264_01 M ANKRD11 AD 

chr16:89349967:T:C c.A2983G p.K
995E _ 4/9 

2374_01 F MYH10 AD 
chr17:8393828:C:T c.G4621A p.V

1541M rs200997387 6/13 
2360_01 F MBD5 AD 

chr2:149226891:C:T c.C1379T p.S
460L _ 7/12 

2360_01 F MBD5 AD 
chr2:149226984:G:C c.G1472C p.R

491T _ 6/12 
2340_01 M SCN2A AD 

chr2:166165900:C:T c.C644T p.A
215V rs149024364 6/9 

0270_01 F HDAC4 AD 
chr2:239990233:C:T c.G2806A p.V

936M rs757439665 6/9 
0270_01 F ARID1B AD 

chr6:157454311:G:A c.G2482A p.G
828S rs150249745 5/9 

2387_01 M ARID1B AD 
chr6:157522326:C:T c.C4559T p.T

1520I _ 8/12 
2241_01 M RELN AR, AD

 chr7:103130201:C:T c.G9751A 
p.E3251K rs376520049   

2251_01 F RELN AR, AD
 chr7:103214555:C:G c.G4495C 

p.D1499H rs200428576 6/9 
2374_01 F CNTNAP2 AD 

chr7:148080864:C:T c.C3599T p.S
1200L rs778312206 9/13 

1543_01 M CNTNAP2  AD 
chr7:148112649:A:C c.A3937C p.N

1313H _ 7/12 
2140_01 M GRIA3 XLR 

chrX:122460015:G:A c.G647A p.R
216Q rs753214982   

196_01 M CASK XLD 
chrX:41448842:A:G c.T1159C p.Y

387H _ 4/9 
2344_01 M PHF8 XLR 

chrX:53964467:A:G c.T2794C p.C
932R rs782094119 1/9 

1730_01 F OPHN1 XLR 
chrX:67273488:C:T c.G2323A p.V

775M _ 7/13 
2276_01 M ATRX XLR 

chrX:76909661:T:C c.A4244G p.N
1415S _ 7/9 

2022_01 M ATRX XLR 
chrX:76939451:T:C c.A1297G p.K

433E _ 5/9 
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 Region Cloning in pGBKT7 vector 

Cloning in pGADT7 vector 
TANC2 I TANCA-KT7-F: 5’-catggaggccga

attcATGTTTCGGAATAGTCTCAAG TANC
A-GAD-F:5’-ggaggccagtgaattcATGTTTCGGAATAG

TCTCAAG 
 (1-340) TANC-NT-KT7-R: 5’-ggatccccgg

gaattgTTACACTGACTCTGTAGTGATCG TANC-NT-GAD-R:5'- cacccgggtggaattgTTACACTGACTCTGTAGTGATCG
 

   
 

 II TANCA-KT7-F: 5’-catggaggccga
attcATGTTTCGGAATAGTCTCAAG _* 

 (1-845) TANCA-KT7-R:5’-ggatccccggga
attgTTAAGTCTGCTGTCGGTTTAG _* 

   
 

 III TANCA-KT7-F: 5’-catggaggccga
attcATGTTTCGGAATAGTCTCAAG TANC

A-GAD-F:5’-ggaggccagtgaattcATGTTTCGGAATAG
TCTCAAG 

 (1-1227) TANCB-KT7-R:5-ggatccccgggaa
ttgTTATGGACCTATCTTGGCTCC TANC

B-GAD-R:5’-cacccgggtggaattgTTATGGACCTATCTT
GGCTCC 

   
 

 IV TANCC-KT7-F:5’-catggaggccgaa
ttcTTTGTTGGCCGAGATTGGG TANCC

-GAD-F:5’-ggaggccagtgaattcTTTGTTGGCCGAGATT
GGG 

 (341-1227) TANCB-KT7-R:5-ggatccccgggaa
ttgTTATGGACCTATCTTGGCTCC TANC

B-GAD-R:5’-cacccgggtggaattgTTATGGACCTATCTT
GGCTCC 

   
 

 V TANCD-KT7-F: 5’-catggaggccga
attcGAAGGTCTTTCCATGGCAC _* 

 (846-1227) TANCB-KT7-R:5-ggatccccgggaa
ttgTTATGGACCTATCTTGGCTCC _* 

   
 

 VI TANC-TPR-KT7-F: 5’-catggaggc
cgaattcTTGAGCAAGCTGATGGAAGAG TANC-TPR-GAD-F: 

5’-
ggaggccagtgaattcTTGAGCAAGCTGATGGAAGAG 

 (1228- 1990) TANC-CT-KT7-R: 5’-ggatccccgggaattgTTAA
ACATTAGACTCCACGAAC TANC-CT-GAD-R: 

5’-
cacccgggtggaattgTTAAACATTAGACTCCACGAAC 

   
 

CDKL5 I CDKL5-KT7-F: 5’-catggaggccga
attcATGAAGATTCCTAACATTGG CDKL

5-GAD-F: 5’-ggaggccagtgaattcATGAAGATTCCTAA
CATTGG 

 (full length) CDKL5-FULL-KT7-R: 5’-ggatccccgggaattgT
CACTTGCCCGTCAGTGCCGC CDKL5-FULL-GAD-R: 

5’-
cacccgggtggaattgTCACTTGCCCGTCAGTGCCGC 

   
 

PP1 full length  _* 
PP1-GAD-F: 5’-ggaggccagtgaattcATGTCCGACAGCG

AGAAGC 
  _* 

PP1-GAD-R: 5’-cacccgggtggaattgCTATTTCTTGGCT
TTGGCGG 

 Supplementary Table S8.1: primer sequences used fo
r cloning PP1 and TANC2 regions: In first place, TANC

2-PP1 interaction was assessed with TANC2 subclones
 

in p.GBKT7 vector, and PP1 in p.GADT7. However, in
 this conformation, the experiments presented a high rat

e of autoactivation, that was eliminated shifting TANC2
 

in p.GADT7 and PP1 in p.GBKT7. * plasmid switch pe
rformed with standard subcloning protocol with EcoRI

-HF/BamHI-HF 
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 Region Cloning in pGBKT7 vector TANC2 VII TANC-TPR-KT7-F: 5’-catggaggccgaattcTTGAGCAAGCTGATGGAAGAG  (1228-1358) TANC-TPR-KT7-R: 5’-ggatccccgggaattgTTAGTTGTTGGGACACAGCTTGATG     VIII del301-747: 5'-ggccctcagtatcggtaacaattcccgggg  (1244-1542) del301-747-antisense: 5'-ccccgggaattgttaccgatactgagggcc     IX TANC-polyQP-KT7-F: 5’-catggaggccgaattcAGAGGCCCTCAGTATCGGG  (1538-1628) TANC-polyQP-KT7-R: 5’-ggatccccgggaattgTTAGATGACGGTGCTTGAATGG     X del20-399: 5'-catggaggccgaattctcaagcaccgtcatcc  (1623-1990) del20-399-antisense: 5'-ggatgacggtgcttgagaattcggcctccatg      Cloning in pGADT7 vector CDKL5 II CDKL5-GAD-F: 5’-ggaggccagtgaattcATGAAGATTCCTAACATTGG  (1-300) CDKL5-GAD-R: 5’-cacccgggtggaattgTTACTGGGTTTGAAATGTAGGG     III GAD-CDKL5-central_F: 5’-ggaggccagtgaattcAGACTTCTGGATCGTTCTCC  (301-615) GAD-CDKL5-central_R: 5’-cacccgggtggaattgTTACACATACATAGAATGCCTATG     IV GAD-CDKL5- Δ2-F: 5’- ggaggccagtgaattcCATTCCCATTCACTGTCTGC  (587-1030) GAD-CDKL5- Δ2-R: 5’- cacccgggtggaattgTCACTTGCCCGTCAGTGCCGC     IV.A  GAD-CDKL5-central_F: 5’-ggaggccagtgaattcAGACTTCTGGATCGTTCTCC  (587-740) GAD-CDKL5-C1_R: 5’-cacccgggtggaattgTCACTCTGATGGTAGAGAAGAAAC     IV.B GAD-CDKL5-C2_F:5’- ggaggccagtgaattcAATGTGTCAACTAGAGTTTC  (731-802) GAD-CDKL5-C2_R: 5’-cacccgggtggaattgTCAGGATTTCTGCAACGTCAGAAG     IV.C GAD-CDKL5-C3_F:5’-ggaggccagtgaattcTCCGACAGCCCTGATCTTC  (796-1030) CDKL5-FULL-GAD-R: 5’-cacccgggtggaattgTCACTTGCCCGTCAGTGCCGC  IV.A  GAD-CDKL5-central_F: 5’-ggaggccagtgaattcAGACTTCTGGATCGTTCTCC  (587-740) GAD-CDKL5-C1_R: 5’-cacccgggtggaattgTCACTCTGATGGTAGAGAAGAAAC  Supplementary Table S8.2: primer sequences used for mutagenesis/fine mapping of regions interacting in CDKL5/ TANC2 complex. In bold, primers used with QuikChange II XL Site-Directed Mutagenesis Kit (Agilent). They allow to produce deleted mutants independently from the vector in which the fragment of interest is. Other primers (not in bold) were used for In-fusion cloning.          
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 Predicted Interacting region  From To Length CDKL5 subclone  1 331 337 7 CDKL5.III 2 344 386 43 CDKL5.III 3 397 423 27 CDKL5.III 4 431 458 28 CDKL5.III 5 464 478 15 CDKL5.III 6 480 526 47 CDKL5.III 7 539 546 8 CDKL5.III 8 566 604 39 CDKL5.IV.A 9 609 649 41 CDKL5.IV.A 10 656 666 11 CDKL5.IV.A 11 670 690 21 CDKL5.IV.A 12 699 721 23 CDKL5.IV.A 13 727 741 15 CDKL5.IV.B 14 753 760 8 CDKL5.IV.B 15 771 788 18 CDKL5.IV.B 16 798 811 14 CDKL5.IV.C 17 826 851 26 CDKL5.IV.C 18 856 889 34 CDKL5.IV.C 19 896 909 14 CDKL5.IV.C 20 921 939 19 CDKL5.IV.C 21 995 1003 9 CDKL5.IV.C  Supplementary Table S8.3: predicted disordered binding regions by ANCHOR. In italic: predicted binding regions mapping to experimentally validated interaction sites.  



194   Supplementary Figure S8.1: TANC2/PP1 combinations assessed with Y2H system. A) replicates of interactions reported in the main text (Figure 1). B) Drop test of TANC2.III and TANC2.IV with PP1 (negative results).   
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  Supplementary Figure S8.2: TANC2/CDKL5 combinations assessed with Y2H system. Interactions between CDKL5.I and TANC2.I, TANC2.II, TANC2.III, and TANC2.IV (negative results).  



196   Supplementary Figure S8.3: TANC2/CDKL5 combinations assessed with Y2H system. A) replicates of interactions between TANC2 fragments and CDKL5.I presented in the main text. B) Drop test between CDKL5.III and CDKL5.III and TANC2 C-terminus subclones (replicate, and autoactivation tests on the left of the panel). 
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  Supplementary Figure S8.4: TANC2.IX does not interact with CDKL5 in Y2H system. Drop test between CDKL5.I and CDKL5.IV and TANC2.IX (negative results).  
  Supplementary Figure S8.5: TANC2.X interacts with CDKL5.IV.A and CDKL5.IV.C. Replicate of the drop test in the main text. On the left of the panel, autoactivation test for CDKL5.IV.A and CDKL5.IV.C subclones.  



198   Supplementary Figure S8.6: CDKL5 isoform 1 C-terminus similarity in Hominidae subfamily. A) Multiple sequence alignment of CDKL5 orthologous C-terminal sequences (from residue 904 of CDKl5 isoform 1). LIG_SH3_2= SH3 domain binding site B) Hominoidea superfamily tree.  


