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Abstract

The state-of-the-art approach for the genetic molecular cause research relies on massively
parallel gene sequencing, which represents a challenge both in data handling and variant
prioritization. The univocal assignment of disease pathogenicity to the sequence variants is
often difficult, and requires the integration of different lines of evidence for a
comprehensive interpretation. During my thesis, I contributed to the development of novel
approaches to evaluate rare variant contribution to the clinical phenotype. These methods
were presented and evaluated at the Critical Assessment of Genome Interpretation, ranking
among top programs considering either performance or the number of correct assigned
disease predictions. A similar strategy was employed for identification of disease genes
linked to neurodevelopmental disorders (NDDs) comorbidity. In this case, computational
methods were applied to select the most promising candidate genes for the design of
diagnostic panel, which is currently used for patient screening at Pediatrics Clinic of the
University of Padova. The variants found within the panel genes have been selected
according frequency, pathogenicity prediction and variant segregation analysis within the
family. Furthermore, I took advantage of different computational tools to investigate the
mutated gene function, and used this information to demonstrate the impact of likely
pathogenic variant on clinical phenotype. In several cases, likely pathogenic mutations
mapped to intrinsically disordered regions (IDRs), which lack a fixed three-dimensional
structure. Coherently, several studies demonstrate that mutations in IDRs are often
associated with the pathogenesis of various human diseases. Thus, IDRs classification
could represent a critical step for understanding the impact of possibly disease-causative
variants mapping in these regions. Due to the influence of intrinsically disordered proteins
(IDPs) in diseases, I participated to the manual curation and update of entries in the DisProt
database, the primary repository of disorder-related data on sequence. Interestingly,
increasing evidence from literature highlights the IDPs involvement in neuronal signal
transduction. Among the proteins encoded by diagnostic panel genes, TANC2 especially
emerged as intrinsically disordered protein with a possible role in synaptic signal
transduction. As TANC2 and its protein family function was poorly characterized, I
performed an in silico analysis to characterize the TANC protein activity, and the

implicated biological processes. The functional hypothesis emerged from the



bioinformatics analysis was used to drive further experimental investigations. In vitro
validation of predicted TANC2-CDKLS5 interaction highlighted the relevance of the IDRs
in regulating degradation of CDKLS5, whose mutations are associated with a heterogeneous
set of NDD phenotypes. Furthermore, I demonstrated that TANC2 contributes to
downregulate CDKLS5 expression levels. For this reason, TANC2 protein could represent a
novel therapeutic target to design new drugs for the treatment of CDKLS5 over-expression

associated diseases.



Riassunto

La strategia di elezione per l'identificazione di varianti causative di malattie genetiche
consiste nell’utilizzo di piattaforme di Next Generation Sequencing. Questo tipo di
approccio rappresenta una sfida, sia per quanto riguarda la gestione della mole di dati da
sequenziamento, che per I’interpretazione clinica dei risultati. L’identificazione di varianti
chiaramente implicate nella determinazione della patologia ¢ un processo complesso, che
richiede l'integrazione di diversi tipi di informazione. Durante il mio dottorato, ho
contributo all’implementazione di metodi computazionali per predire la probabilita che un
determinato genotipo sia associato al fenotipo clinico di interesse. Questi metodi sono stati
presentati, e valutati, in occasione del Critical Assessment of Genome Interpretation
(CAG]I), dove si sono posizionati tra i migliori classificati sia per prestazioni che numero
di predizioni corrette. Una strategia analoga ¢ stata applicata all’identificazione di geni
implicati nella comorbidita tra disordini del neurosviluppo. Anche in questo caso, I’utilizzo
di tecniche bioinformatiche si ¢ reso fondamentale per la selezione di geni candidati, che
sono stati poi utilizzati nella progettazione di un pannello genico diagnostico attualmente
in uso presso la Clinica Pediatrica dell’Universita di Padova. Data la gran quantita di dati
prodotti per esperimento, le varianti trovate nei geni inclusi nel pannello sono state filtrate
in base alla frequenza, alla predizione di patogenicita e all'analisi di segregazione all'interno
della famiglia. In alcuni casi, un ulteriore contributo a supporto dell’effettiva patogenicita
della variante ¢ stato dato dall’analisi bioinformatica della proteina mutata.
Frequentemente, la variante candidata provoca alterazioni a livello di regioni
intrinsecamente disordinate (IDR), caratterizzate dall’assenza di una conformazione
tridimensionale stabile. Questo dato ¢ coerente con la piu recente letteratura: diversi studi,
infatti, dimostrano 1’implicazione di mutazioni nelle IDR in diverse patologie umane. La
classificazione delle IDR, quindi, pud rappresentare un primo passo per comprendere
l'impatto di eventuali varianti causative all'interno di queste regioni. Data la rilevanza delle
IDR alivello biologico e clinico, ho partecipato alla curazione manuale e all'aggiornamento
delle voci presenti nel database DisProt, la principale banca dati relativa al disordine nelle
proteine. E interessante notare che, tra i vari processi biologici in cui le IDR sono coinvolte,
queste regioni svolgono un ruolo molto importante nel signaling neuronale. Tra le proteine

codificate dai geni inclusi nel pannello genico, TANC2 si ¢ distinta per essere una proteina



disordinata, probabilmente implicata alla trasduzione del segnale a livello delle sinapsi
neuronali. Dato che la funzione di TANC2 e della rispettiva famiglia proteica risultava
ancora poco chiara, ho eseguito un’analisi in silico delle proteine TANC, grazie alla quale
¢ stato possibile caratterizzare le funzioni e i diversi processi cellulari in cui queste sono
coinvolte. Le ipotesi funzionali emerse dall'analisi bioinformatica sono state utilizzate per
condurre ulteriori indagini sperimentali. In particolare, la validazione in vitro
dell'interazione  TANC2-CDKLS5 ha evidenziato [’estrema importanza di regioni
intrinsecamente disordinate nella regolazione della degradazione di CDKLS5, le cui
mutazioni sono associate con manifestazioni cliniche legate a disordini del neurosviluppo.
Inoltre, gli esperimenti hanno dimostrato che TANC2 contribuisce alla down-regolazione
dei livelli di espressione di CDKLS. Per questo motivo, TANC?2 si candida a rappresentare
un nuovo target terapeutico per lo sviluppo di nuovi composti per il trattamento di

condizioni cliniche associate all’over-espressione di CDKLS.
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1 Introduction

Since the first publication of the human genome sequence, human genetics and genomics
have been significantly improving!. The release of the raw sequence by the Human Genome
Project (HGP) prompted multiple secondary studies, aimed at improving our understanding
in genome architecture and function. According to the initial annotation, there are at least
20,000-25,000 protein-coding genes in human genome'?. Understanding the function of
genes and related encoded proteins is the unavoidable starting point to design effective
diagnostic tools and therapies for genetic pathologies?. Next-generation sequencing (NGS)
has revolutionized medical research and clinical diagnostics in the last decades®. Indeed,
NGS employs powerful massively parallel sequencing, allowing to screen from subsets of
few genes to the full human DNA sequence at once®*. Targeted exon capture before
genomic sequencing, i.e. the whole exome sequencing (WES), covers the analysis of most
of the coding regions, which is less than 2% of the genome. Conversely, whole genome
sequencing (WGS) can inspect also non-coding and regulative regions, allowing the
identification of splicing site variants, enhancers, as well as promoter regions>*. In both
cases, hundreds to millions of genetic variants are detected from a single individual®. Thus,
the most demanding challenge in human genetics currently consists in isolating a (small)
subset of genomic variations that can be proven to be causative for a disease phenotype®>.
There are plentiful online prioritization tools and interpretation sources to address the
variant filtering and interpretation. However, the first common step required is annotation,
by which information about the variant location and effects are added. The variant effect
describes how the variation influences the reference sequence characteristics, and it is
defined by the Sequence Ontology. A common practice is to annotate variants based on the
transcripts with the most severe effects, allowing to identify all potentially causative
variants®. Furthermore, additional information can be added by the annotation tools, such
as data from disease associated mutation databases (e.g. ClinVar, and COSMIC),
population allele frequency, and large scale genome and exome sequencing, such as the
1000 Genome Project and EXAC consortium®. Despite being a mainly automated and
preliminary process, this step is a powerful resource for setting the a priori expectation for
mutation impact on the pathology, allowing the variant prioritization®. Generally, an initial

selection is made considering Sequence Ontology variant classification. The assumption is
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that variants affecting protein-coding regions, €.g. non-synonymous or frameshift single
nucleotide variants (SN'Vs), are more likely to be damaging in respect to synonymous or
intronic variations®. Conventional approaches use conservation and protein structure to
predict the consequence on the protein function from missense changes, and integrate allele
frequency and gene conservation into a prioritization workflow (see Chapter 2 for more
details). Even though generally correct, these methods convey some limitations. Stop-
codon and frameshift SNVs are either ignored at all, or systematically assigned with the
highest damaging score by prediction tools’. Moreover, some classes of genes, e.g. large
genes and paralog gene family members, are more likely to bear “damaging” variants by
chance, either for the amount of nucleotides comprised in the gene, or due to probe mapping
errors’. Of note, not all damaging variants are causal mutations, as they do not necessarily
have an effect on the clinical phenotype®’. For these reasons, variant genotype frequency
in population should be taken into consideration, excluding those variants recurrently found
in healthy individuals, and with a frequency higher than the disease prevalence®’. Further
complications are represented by non-coding and synonymous SNVs, which do not directly
affect encoded protein function. The difficulty in predicting the non-coding variant effects
relies in the insufficient knowledge of regulatory elements in non-coding DNA’.
Conversely, emerging observations are consistent with the concept that synonymous
variants can influence a broad range of molecular mechanisms, such as splicing and miRNA
regulation, though only early achievements have been made in predicting their impact®. In
addition to the SNVs and small insertion/deletions (indels), variants implicated in human
diseases also include structural variants (SVs), such as copy number variations (CNVs),
large deletions and duplication, and balance rearrangements’. Due to their width, their
phenotypic effects are potentially large, but hard to assess, as they can affect gene dosage,
disrupting several genes, and regulatory elements at once®. Moreover, structural variants
are difficult to observe, and WGS is the preferred approach for SV identification, despite
the cost and complexity of results®. A body of literature’ !, however, proves that structural
variant identification to improve our knowledge and comprehension of mechanisms
underlying both Mendelian and complex diseases, and provides useful information needed
to establish a proficient diagnosis®. Exome sequencing is now the most commonly used
tool for genetic disease gene discovery, i.e. the identification of novel disease associated
genes*®!2. Considered for diagnostic purpose, WES is extremely useful and cost effective
when applied to cases remaining undiagnosed from previous multiple single-gene tests®!2,

Indeed, targeted exon sequencing does not require knowledge a priori about patients’
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disease®!?, as it does not focus on a precise subset of genes, making it a better diagnostic
tool for disorders with nonspecific symptoms'2. Despite their contribution to human genetic

h4,6,12

researc , WES/WGS routinely application to medical practice is generally

complicated, both by the cost, the unprecedented scale of data to handle, and challenges in

variant interpretation®!?

. Moreover, these approaches strike a balance between coverage
depth and the large quantity of targeted regions, resulting in a reduced clinical sensitivity
for lower covered regions'?. In cases of diseases with a limited genetic heterogeneity, a
more appropriate tool for efficient molecular diagnosis consists in the targeted re-
sequencing of a selected subset of well-established disease genes, i.e. a gene panel'?. The
gene inclusion criteria consider manifold aspects, ranging from the previously single-tested
genes with a strong disease association, to the novel gene gathering from literature and
specific case reports>!2, Targeted gene re-sequencing generally involves coding regions of
the panel genes, reaching a significantly higher coverage depth in all sequenced regions
compared to WES or WGS'. In clinical practice, gene panel tests are systematically
complemented with Sanger sequencing, either for in low-coverage and missed exons
coverage, or to confirm variants'?. As in other NGS applications, the interpretation outcome
largely depends on the curation of clinical phenotype information, and the strength of
evidence supporting gene association to the disease®’. Indeed, after the preliminary
automated prioritization, the variants interpretation mainly relies on experts review and
human curation according standardized guidelines®. Despite validated by direct sequencing,
genetic data itself does not provide a direct diagnosis, but has a primarily role. Generally,
several types of clinical and genetic tests are combined to maximize the diagnostic yield*!2.
A major challenge is shifting genetic information, i.e. variant prioritization score, into the
main diagnostic tool to drive clinical decisions and patients’ long-term treatment upon
integration with clinical observations *!2. In this context, methodologies investigating the
mutated gene function can be useful in demonstrating the impact of candidate mutations on
clinical phenotype, as well as in identifying the disease related molecular mechanisms *9,
Lots of possibly disease variants map to newly discovered genes, whose role in determining
a clinical phenotype is still under validation'?. A first line of evidence can be obtained by
an extensive analysis in silico, aimed at collecting as much data as possible about protein
structure, function, and interactions'? (see Chapter 2 for details). Structural characterization
is a key step in understanding the role of proteins in cellular processes!'®. Indeed, either
experimentally determined or in silico modeled structures allow the identification of

residues and regions, which are fundamental for protein functioning, e.g. globular
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domains'®. Moreover, functional motifs are also located in unstructured regions, to include
motifs mediating either direct binding or post-translational modifications, and signals for
cellular localization'*!>. Proteins do not work as isolated system. They exert their activity
through interactions with other polypeptides, forming the so called protein-protein
interaction networks!®!”. As causative mutations generally yields perturbation of key
cellular pathways!”!®, the modeling of protein-protein interactions can help to shed light
on molecular mechanisms involved in a specific pathology'é. Secondly, functional
hypothesis emerging from bioinformatics predictions can drive further experimental
validation. Several techniques in vivo can be employed for this purpose, including animal
model systems and, evidence derived from patient’s tissues, though a valuable support can
be provided by cell culture tests or in-vitro assays for protein-protein interaction assessment

as well>*9,

1.1 Contribution of the thesis

The leading thread of my thesis consists in deciphering the molecular causes of genetic
diseases. The project involves both the application of bioinformatics tools for variant
interpretation and protein analysis, and in vitro experiments for hypothesis validation (see
Chapter 2). In the former section of this thesis (Chapters 3-5), I present the application of
computational methods for NGS data analysis. This section includes the publications
related to the Critical Assessment of Genome Interpretation (CAGI) international
experiment and the work aimed to the design of a gene panel for the neurodevelopmental
disorder (NDD) diagnosis. Chapter 6 consists in the publication related to the last DisProt
database release. Chapter 7 summarizes the bioinformatics strategies employed for
functional and structural characterization of TANC protein family. The hypothesis emerged
by the in silico analysis was used to drive further experimental investigations, reported in
Chapter 8. This section is followed by a conclusive part, where I discuss the results of my
PhD research. Hereafter, a summary of each contribution to the different tasks addressed

in my thesis project is reported.

1.1.1 Challenges in genotype-phenotype association in genetic diseases

Despite the increasing employment of NGS technologies in medical practice, the

computational sequence data analysis remains challenging and critical for successful
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interpretation of results®. In this context, Critical Assessment of Genome Interpretation
(CAG]I) international experiment aimed to assess the accuracy of different bioinformatics
tools in predicting the functional impact of genetic variants and their relevance in
determining a clinical phenotype'®, promoting their application in the medical practice.
Chapter 3 is based on the published article: Daneshjou, R., et al. Working towards precision
medicine: predicting phenotypes from exomes in the Critical Assessment of Genome
Interpretation (CAGI) challenges. Human Mutation 38, no. 9 (September 1, 2017): 1182-
1192, doi:10.1002/humu.23280. This Chapter summarizes the results for exome-
sequencing based challenges of the fourth CAGI edition (Crohn's disease, bipolar disorder,
and warfarin dosing). Our group participated to two challenges: the bipolar disorder, and
Crohn’s disease challenges. Both bipolar disorder and Crohn’s diseases are complex
pathologies, for which the interplay among genetic and environmental factors is still
debated. Bipolar Disorder (BD) is a common mood disorder characterized by episodes of
manias and depression with a high component of heritability!®. However, two decades of
research with linkage and association studies failed to identify any susceptibility gene'®.
Crohn’s disease (CD) is a chronic inflammatory bowel disease, caused by the complex
interplay between autoimmune response and environmental factors in genetically
susceptible individuals'. For both the diseases, the challenge was the (blind) identification
of affected patients from a cohort of hundreds of exomes, in which both affected patients
and healthy controls were present. My contribution to the prediction method definition
consisted in integrating genetic information used for variant filtering and prioritization. I
performed an extensive literature review to identify, list and select all genes and genetic
variants associated with either BD or CD traits. For the BD challenge, the variant sets were
selected favoring those mapping to genes involved in nervous system development or
pathways impaired by the pathology, and used to train the neural network implemented for
variant effect prediction. In the case of Crohn’s disease, manually curated lists allowed to
filter patient variants mainly considering known variants from WES studies. A particular
attention was placed on very early onset cases and rare variants (MAF < 5%) probably
affecting the activity and/or expression of disease associated genes or direct interactors of
Crohn’s genes identified by STRING?. In both cases, our methods were statistically more
efficient than random algorithm in assigning the correct phenotype, better discriminating

between genetic and environmental factors.
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Chapter 4 is based on Chandonia, J.-M, et al. Lessons from the CAGI-4 Hopkins clinical
panel challenge. Human Mutation 38, no. 9 (September 1, 2017): 1155-68.
doi:10.1002/humu.23225. This Chapter recapitulates the results of Hopkins clinical panel
challenge from the fourth edition of CAGI. The dataset was provided by the Johns Hopkins’
DNA Diagnostic Laboratory, and it included data from 106 patients, resulting from the
targeted re-sequencing of 83 disease genes. The participants were asked to group the panel
genes into 14 diverse disease classes (e.g. lung disorder, and craniofacial disorders), and to
predict the putative disease-causing genes and variants for each patient basing only on
sequencing data. In this challenge, I curated the Hopkins panel gene assignment to the
clinical phenotypes based on literature. I also contributed to the candidate variant selection,
considering only exonic variants and filtering out common (MAF > 5%) and synonymous
variants. Finally, I participated in the development of a disease-probability scoring scheme,
helping with the variant effects ranking according to the disease inheritance mode and
variant state (e.g. heterozygosity/homozygosity). Our method ranked third according to the
number of correct predicted phenotypes, resulting in one of the state-of-the-art algorithms
for predicting clinical phenotype-genotype association.

In different genetic conditions, disease-associated genes are numerous and, thus, single-
gene testing generally fails to provide an accurate diagnosis?!. This is the case of
Neurodevelopmental disorders, which represent the main thread of my PhD research.
NDDs are common conditions including clinically heterogeneous diseases. Due to the wide
genetic heterogeneity and recurrent overlapping clinical features, single-gene testing for

diagnosis of NDD is especially challenging®'?

. As consequence, high-throughput
methods, such as NGS targeted gene re-sequencing are increasingly employed for NDD
genetic testing?!?2, Chapter 5 collects the computational techniques used for identification
of a subset of genes involved in autism and intellectual disability co-morbidity for the
development of a diagnostic gene-panel. In this project, I worked on the candidate gene list
generation, gathering data from publicly available sources such as disease-specific
databases, exome sequencing studies and meta-analysis publications. During the gene
selection process, I curated the annotation and enrichment analysis of the candidate genes
used for the final panel gene list identification. The so-selected gene panel is currently
employed in clinical screening of individuals affected by intellectual disability (ID) and/or
autism spectrum disorder (ASD) and referred to the Molecular Genetics of

Neurodevelopment Laboratory (Paediatric Department, University of Padova) for genetic

testing. Given the huge amount of NGS data per patient, the following analysis step
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consisted in variant selection. Specifically, I contributed to the filtering and interpretation
of patient genetic variants, integrating predictions with literature, clinical findings and case
specific research data. For the most promising missense variants, I performed an in silico
evaluation of the effects on protein function/structure. Our analyses allow us to assign a
molecular diagnosis to twenty-four of the screened patients, with a diagnostic yield of
16,4%. For twenty-three probands, at least one likely pathogenic (LP) variant has been
detected. The causative role of LP variants is under assessment and will be established

through segregation analysis.

1.1.2 Annotation and classification of intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) are proteins lacking a fixed or ordered three-
dimensional structure, which folding state ranges from fully unstructured to partially
structured. Interestingly, many proteins encoded by genes in ASD/ID panel contain
intrinsically disordered regions (IDRs) that were found mutated in 45,6% (26/57) of
patients bearing at least a possibly causative variant. This is consistent with the evidence in
literature proving the association of mutations in IDRs with numerous human diseases>.
Indeed, despite the lack of stable conformation, IDPs play an important role in regulatory
and signaling processes of the cell, frequently acting as hubs in protein-protein interaction
network?*. Due to the relevance of IDPs in cellular processes and clinical phenotypes,
characterization and classification of IDRs and IDPs should be viewed as a crucial step for
understanding the impact of possibly disease-causative variants mapping within these
regions. For these reasons, our group decided to update and manual curate the entries
forming the DisProt database. DisProt is the primary database of disorder-related data on
sequence- and functional annotations, being primarily focused on IDPs or IDRs with
experimental validation. Chapter 6 is based on the published article: Piovesan, D., et al.
DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 45,
D1123-D1124. In this work, I contribute to the manual curation of 32 DisProt entries,
totaling 101 annotated intrinsically disorder regions. The annotation process involved both
newly added IDPs and entries from the previous release of the database. In both cases, the
first step of analysis consisted of identifying the position of each IDR, either using
MobiDB? predictions or retrieving experimental data reported in literature. Then, each
entry was associated to the PubMed ID related to the experimental evidence, e.g. circular

dichroism or nuclear magnetic resonance, confirming the disordered state and the function
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of the annotated region. The new release, DisProt 7.0, contains more than 800 intrinsically
disordered proteins, entries of the previous one, resulting in the most valuable resource for

a better understanding of the structural disorder.

1.1.3 Molecular mechanisms involved in neurodevelopmental disorders: focus on

TANC2

Due to their structural and functional plasticity, IDPs are highly represented in regulation
and recognition processes, including signal transduction in neurons®®. Indeed, disordered
proteins mediate interactions with their targets with relatively high specificity and low
affinity, which could trigger signaling events and favoring rapid disassociation when
signaling is completed®®. In neurons, these functions are exerted by the scaffold proteins.
Scaffold proteins typically contain IDRs and domains for protein binding, by which
selectively gather specific proteins within signaling pathways, influencing the specificity
and kinetics of signaling interactions?’. The ASD/ID panel comprises known and most
promising candidate disease-associated genes, including post-synaptic scaffold proteins. In
some cases, the scaffold protein function is not fully understood, and in silico analyses
aimed at characterizing of protein structure/function could address this issue. Two
examples are the TANC2 protein, and its paralog TANCI, which I extensively analyzed
taking into advantage of different bioinformatics tools. Chapter 7 is based on Gasparini A.,
Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family Sci
Rep. 2017 Jul 28;7(1):6829. This work had two main purposes: the functional and
structural characterization of TANC protein family and the identification of the TANC
interaction network, aimed to elucidate TANCs influence on neuronal pathways.
Integrating structural and functional elements, this work provides the basis for
interpretation of genetic variants found in TANC encoding genes. Furthermore, our
findings shed light on possibly molecular mechanisms, which would be worth of
experimental validation, such as the assessment of the interactions with key proteins in
regulating synapse function. Chapter 8 describes the experimental techniques employed for
the validation of TANC2 interaction with PP1 and CDKLS5, and the functional significance
of the TANC2-CDKLS5-PP1 interplay (paper in preparation, presenting author). To validate
our hypothesis, I assessed the interaction among endogenous full length proteins, both by
co-localization in different cell lines, and immune-precipitation from rat synaptosomes.

Furthermore, I outlined TANC2, PP1 and CDKLS5 minimal interacting regions through
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yeast two-hybrid system. To assess the functional relationship among regulative TANC2
activity and CDKLS5 protein levels, I evaluated the effects of TANC?2 silencing in SHSYSY
cells. The experiments suggest that TANC2 forms complexes both with CDKL5 and PP1,
and links the phosphatase PP1 to its substrate CDKLS5, allowing its dephosphorylation and
subsequent degradation. Given its role in downregulation of CDKLS5 expression levels, we
propose TANC2 as a new therapeutic target for the treatment of clinical phenotypes
associated to CDKLS5 duplication, though further investigations are required to confirm our

hypothesis.
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2 NGS data analysis and interpretation

Next-generation sequencing (NGS) has revolutionized medical research and clinical
diagnostics in the last decades, allowing to screen from subsets of few genes to the whole
genome at once’. Millions of single nucleotide variants (SNVs) are identified per genome,
resulting in the most common type of genetic differences within population?®. Therefore,
distinguishing diseases causing genetic variants from the thousands of potential candidates
represents the prevailing challenge in human genetics>>?%. In this Chapters, I discuss the
workflow aimed to identification and interpretation of disease causative variants from
sequencing data. Data interpretation is a multidimensional task, which relies on the analysis
of sequence data per se, patient phenotype and literature review, and can be integrated with
functional information inferred by in silico analysis. The first part of this Chapter deals
about the strategies commonly employed for variant/gene prioritization, and publicly
available sources of genetic data used for variant interpretation, whereas the description of
computational methods to predict protein function is provided in the second section. As
disease genes are highly interconnected?®, prediction and validation of protein-protein
interactions can shed light on molecular mechanism involved in disease pathogenesis. The
approaches for protein-protein interaction (PPI) assessment are discussed in the last part of

the Chapter.

2.1 Variant filtering

After obtaining the data from a NGS experiment, the variant filtering aims at detecting
potentially causing disease variants. The process relies on a multistage workflow; whose
first step consists in focusing on those variants mapping to known disease associated genes
or discovered by gene prioritization. Then, different parameters are taken into account for
variant selection, e.g. allele frequency, predicted pathogenicity, a priori knowledge about

the variant and/or the pathology, which will be discussed as following,.
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2.1.1 Gene prioritization

The main goal of gene prioritization is the identification of the most promising disease
related genes (and variants). Gene prioritization largely relies on prior knowledge about
gene association to the disease, and can be applied in different scenarios, either for the
design of targeted re-sequencing panel, or to direct exome/genome sequencing data
analysis®!2. However, the need of prioritization methods is particularly pressing in case of
highly impacting clinical conditions, for which underlying molecular causes remain mostly
uncharacterized®®. Moreover, besides the consequences on patients’ diagnosis,
identification of novel disease genes represents the first step in the understanding of the
protein and molecular pathways involved in genetic disorder, and, thus in developing
targeted therapeutic strategies*S. In silico techniques for prioritization are numerous, and
require two main inputs, i.e. a list of candidate genes to prioritize, and the criteria
considered for gene ranking, typically a list of keywords, or a set of training genes’!,
respectively. The choice of training keywords/ “seed” genes is crucial for prioritization
outcome and selected elements generally have a well-established connection with the
clinical phenotype of interest. It is necessary to assess the relevance of each seed gene to
the disease across different sources, e.g. from a locus based repository or specific research
data. Moreover, the number of seed genes greatly affect the outcome of the gene
prioritization process. A dataset with less than five genes is uninformative, whereas large
gene lists are likely to be too heterogeneous and could produce unreliable results®!'. Another
element greatly influencing the analysis quality is the identification of candidate genes for
prioritization, which is extrapolated from different kind of sources, such as disease specific
databases (e.g. AutismKB?*2, SFARI database™). Prioritized candidate genes can be either
filtered, selecting only a small subset of the most promising genes, or ranked according to
the training list. In the latter case, gene ranking strategies can be further divided in three
categories: text mining, similarity profiling and network analysis. The first step of text
mining workflow includes gathering of keywords/data relevant for the clinical phenotype
from literature. Then, gene terms present in the texts are gathered, and statistically assessed
for strength of extracted information. Data mining from literature represent the most
conservative ranking approach, as it generally identifies only genes with the strongest
evidence of disease association®'. Conversely, similarity-based profiling methods compare
candidate genes to the training set, favoring genes which are similar to known seed genes

according to a particular feature, e.g. the cellular process. These methods are based on the
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assumption that at least one among prioritized genes is enriched for the feature of interest>*.
One example is Endeavour *, which integrates seventy-five different sources (e.g. genomic
data, expression levels, and clinical phenotype) into a comprehensive ranking score,
allowing prediction of novel disease genes**. Endeavour prioritization can be started either
by selecting the species of interest or defining the seed gene list. It allows to choose all data
sources to be used in the prioritization of the candidate loci. The seed gene list is used to
build a feature of interest model according to each source (e.g. gene ontology) by which
the candidate genes are scored and ranked. The individual weights are then integrated in a
global score correlating with the gene association to the phenotype of interest, e.g. a specific
disease trait. Despite their effectiveness, similarity profiling algorithms have been recently
integrated or replaced by network analysis strategies. Network-based methods rely on the
assumption of “guilt by association”, by which genes share molecular and phenotypic
features with their direct interactors®!. Indeed, genes and respective encoded proteins exert
their function by interacting with other molecules, generally meaning that mutations in
disease associated genes yield to perturbations in key cellular pathways, directly affecting
the protein interaction network (PIN)!®. A network is defined by means of nodes (proteins)
and edges (e.g. protein-protein interactions, PPI), where the number of connections linking
nodes reflects its centrality, thus the importance of the gene/protein within the network and
for the clinical condition'®. Genes involved in a same pathology display more interactions
among themselves than what would be expected for a random set of genes, allowing to
identity disease specific clusters'’. The nodes can be retrieved either from experimentally
determined interaction repositories (such as InAct®, Biogrid*®, and STRING?®) or from
large scale proteomics studies. As for other prioritization methods, the network based
algorithms aim at identifying genes (i.e. nodes) relevant to the clinical phenotype or
biological process, and take advantage of prior information, such as gene expression or
presence of known associated causative mutations, to select the best candidates'”!.
Different approaches can be considered in analyzing networks. The so-called linkage
methods consider the direct interactors of disease genes in the network as disease genes
themselves. Conversely, disease module based strategies focus on identifying modules
enriched for disease-associated genes in a given larger network (e.g. tissue specific
interactomes). Other algorithms, such as the network propagation methods, based on
random walker algorithms, that are allowed to diffuse from a node along all the connections
of the network, moving to any neighboring gene with equal probability. In this way, the

most often “visited” nodes are assigned with a high probabilistic weight based on the
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number of connections with known disease genes, which is in turn used for gene ranking'®.
Both linkage and disease modules based techniques are quite effective strategies for gene
discovery, and they are generally validated by demonstrating that selected genes belong to
related pathways, or are expressed in the same cell type'8. This kind of information can be
obtained automatically by gene set enrichment analysis. Enrichment algorithms use
statistical approaches to assess if the selected gene set displays over-represented features
(e.g. gene ontology terms, or clinical phenotype) in respect to random gene-feature

associations, thus helping in discriminating disease genes from background?®’.

2.1.2 Genomic data repositories

Even focusing only on a small subset of candidate genes, the amount of data to handle is
almost huge, with the need of other parameters, by which refining the candidate list, is
evident. An absolutely essential resource for variant interpretation consists of catalogues of
genetic variants among human populations, where allele frequencies for each observed
variant are reported®. Variants can be prioritized by allele frequency, discriminating from
potential causative alterations, assumed to be rare (minor allele frequency < 1%), and
common neutral SNVs. The Database for Short Genetic Variations (dbSNP) is the first
public domain archive of genetic variations. dbSNP contains both known disease associated
variants and non-pathogenic single nucleotide polymorphisms (SNPs), and aimed to
facilitate large-scale association studies®®. However, with the improvement of sequencing
technologies, several databases have been developed by assembling genomes and/or
exomes data, with the main goal to provide a deep catalogue of protein-coding variations
for both population studies, and for the clinical interpretation of variants®. First attempts in
this direction are the 1000 Genomes Project (1000GP), which contains variants resulting
from WGS of 2,504 individuals®®, and the NHLBI Exome Sequencing Project that
comprises exome data of approximately 6,500 patients with heart, lung and blood disorders,
providing a catalogue of extremely rare protein-coding genomic alterations*’. More recent
efforts resulted in the Exome Aggregation Consortium (ExAC), comprising of 60,706
exomes from 6 broad populations and 14 disease cohorts, and the genome Aggregation
Database (gnomAD), which catalogues genetic variants observed in 12,3136 WES and
15,496 WGS of unrelated individuals*'**>. Another important source in candidate
prioritization is represented by variant—phenotype databases, such as ClinVar*, COSMIC*

and the Human Gene Mutation Database (HGMD)*. These databases collect variant
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known to be linked with different pathologies, ranging from rare Mendelian disorders,
common diseases and cancer. The different lines of evidence for disease association are
retrieved from multiple scientific publications, locus specific databases and clinical case
reports*#44_In particular, ClinVar keeps a record of support for each variant interpretation
submission, by which conflicts about the variant clinical significance are kept, allowing a
better understanding of genetic variations in disease pathogenesis*’. Moreover, disease
inheritance pattern and patient’s phenotype should be taken into account for variant
interpretation, providing further evidence of variant causality’. The Online Mendelian
Inheritance in Man (OMIM) repository collects information on all known Mendelian
disorders and over 15,000 genes, focusing on relationships between genes and diseases®’.
Analogously, Human Phenotype Ontology (HPO) represents a standardized and
hierarchical catalogue of phenotype descriptions (symptoms), for which the association to
known disease genes is provided*®. Both HPO and OMIM clinical definitions can be
employed in variant/gene prioritization pipelines to link genomic alterations to patient’s

phenotype, or to discover new gene-disease associations’.

2.1.3 Variant effect prediction

A common approach to cope with variant filtering consists in focusing only on rare non-
synonymous variants (NSVs) to restrict the candidate list, allowing the identification of
few potentially disease causative variants’. Indeed, variants in coding sequences have a
clear potential for altering their phenotype, though only a small fraction of NSVs have a
clear damaging functional effect on protein function’. Numerous computational strategies
have been developed to prioritize variants on the basis of their functional/structural effects
on proteins®. The theoretical basis for interpretation of coding SNVs rely on two main
concepts: 1) changes in protein sequence modify its functioning, and ii1) different residues
contribute to protein function to different levels®®. Key residues with prominent functional
role can be either inferred from evolutionary conservation resulting from the comparison
with orthologous sequences, or identified directly inspecting the protein structure®.
Evolutionary conservation among homologous proteins reflects the effects of negative
selection against harming variants, with residue substitutions being tolerated only in
regions free from functional constraints>®. Thus, the first step of sequence conservation
methods consists in building a multiple sequence alignment (MSA) of homologous

sequences, allowing the identification of regions affected by amino acid replacement
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constraints. The quality of MSA has wide effects on predictions, and restricting the analysis
to orthologous proteins have been demonstrated to increase the method accuracy®®.
Replacement probabilities are empirically derived from MSA, measuring positional
conservation according to probabilistic scoring functions. The multiple sequence
alignments can be derived from PSI-BLAST, as in the case of SIFT>!, or constructed from
specific protein sequence repositories, such as the non-redundant protein sequence database
UniRef100 (Polyphen-232) or SwissProt (Mutation Assessor>®)**. However, the scoring
schemes of the presented tools rely on sequence homology and physic-chemical amino acid
similarities, assuming that variations in orthologous alignment are functionally neutral®>>>.
A SNV could map to specific functional motifs, including active sites, and regions for
cofactor binding, or elements required for interaction with other proteins®®. In most of the
cases this information can be retrieved from protein databases, such as Uniprot**, and
integrated in a machine learning method to improve missense prediction®®, as proposed for
SNAP2%. In other cases, experimentally determined protein structure is available, allowing
the assessment of effect variant on protein stability?®. Despite causing free energy
fluctuation of few kcal/mol, mutations can substantially affect structure stability, e.g.
substituting hydrophobic residues with charged ones in the protein core®®. Stability methods
rely on free energy differences among folded and unfolded protein states (AAG). An amino
acid substitution can shift protein conformational equilibrium either in favor of folded or
unfolded states, and AAG differences among wild-type and mutated protein reflects the
variant impact on protein stability>®. Most stability prediction tools rely on physic-base
potential algorithms, which require the tridimensional structure to calculate the protein
force field from the full atomic description (e.g. FoldX)**°. The information can be
integrated with available experimental and structural knowledge, atomic modeling and fast

side chain packing, to improve method predictive power®*¢!

. As a consequence, these
methods can be very compute-intensive and allow the analysis of few mutations at once.
Other approaches for stability prediction, such as I-Mutant2.0?° and MUpro?!, consists in
machine learning, trained on known protein substitutions with experimentally determined
free energy variations, allowing to run predictions directly on protein sequence®>%. Despite
similar performances, variant effect predictions obtained from distinct tools significantly
differ one from each other™?. In the last years, several meta-predictions method, based on
machine learning approaches, have been proposed, integrating different data sources such

as scores schemes from multiple tools for variant impact assessment?®. The first

implemented meta-predictor was PON-P, which combines conservation with structural
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stability and machine learning methods to statistically derive the final prediction®*.
Numerous other tools were created following this integrative approach due to the high
performance on benchmark sets, including computational methods for non-coding variant
interpretation®?®. These prediction programs range from tools of DNA conservation
assessment, e.g. GERP++%, to unified methods combining experimental data and
biochemical features for variant prioritization, including chromatin methylation state, such
as FitCons®, and presence of transcription factor target sites, e.g. CADD®”. Another
example is SnpEff®®, a multi-platform program that allows variant prioritization, including
splice site variants. Moreover, SnpEff uses different types of annotations, such as
ENSEMBL® functional site prediction, DNA methylation, histone modifications,
chromatin accessibility and small RNA transcripts mapping from NIH Roadmap’®, and
proteomic annotation from Nextpro database’!, to categorize candidate SNVs according

their effect impact, favoring the identification of most significant variants®®.

2.2 Variant effects interpretation

Albeit being extremely informative, SNV filtering represents only the first step in proving
the causality between variants and clinical phenotypes. For some variants, case-control
studies, segregation, and prior literature based knowledge strongly support the direct
association with the disease. More often, the SNVs map to novel disease associated genes
identified by single case reports. These studies mainly rely on genetic and clinical tests, and
rarely provide information about encoded protein. Bioinformatics analysis can address this
issue, allowing to predict gene product function, thus, structural or functional effects of

variants mapping to these genetic regions'?.

2.2.1 Inferring protein function from primary sequence

Intuitively, the first step for in silico protein characterization consists in retrieving the
protein reference sequence of interest. The central protein sequence repository is the
UniProt Knowledgebase (UniProtKB), which combines manually curated datasets
(UniProtKB/Swiss-Prot) and proteins automatically derived from high throughput DNA
sequencing experiments (UniProtKB/TrEMBL)*. UniProtKB provides different
annotations, from protein function, to clinical phenotypes, and many links to other sources,

facilitating the data mining process. Generally, protein functional regions are under
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evolutionary selective constraint and are conserved among homologous proteins across

species (orthologous). Consequently, the multiple alignment (MSA) of an unknown protein

with its orthologous sequences is a powerful strategy to identify function-discriminating

residues.
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Figure 2.2: In silico protein analysis pipeline. Protein functional regions can be predicted by sequence and

structure analysis.

Orthologous sequences can be obtained from specific orthologous protein database, such

as the Orthologous MAtrix (OMA) browser’

2, and used for the MSA. Although the MSA

constructions can be performed by different algorithms depending on the considered
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dataset’®, MSA manual inspection is always recommended. Indeed, alignment can be edited
and refined according prior structural information, avoiding gaps in conserved structural
elements. Manually curated MSA can be used to assess the evolutionary relationships
within a protein family by phylogenic analysis. In spite of the variety of algorithms,
sequence evolution process in small divergent group of sequences is usually evaluated by
maximum likelihood approach, whereas the robustness of the phylogenetic tree
reconstruction is generally assessed with bootstrap resampling’#. Another useful
application of phylogenic analysis is the inter-species protein annotation transfer, according
to the concept that sequence similarity suggests structural and functional similarities’.
However, protein structure, as well as the overall domain architecture, can be directly
inferred from the single protein sequence. Several web servers, e.g. InterPro’¢, provide
functional analysis of proteins, integrating classification into protein families, structural
domain annotation and functional sites predictions from different sources. Assessment of
secondary structure elements represents the first step in characterizing of predicted protein
domains. Among others, PSIPRED’ is a machine learning based method, which uses PSI-
BLAST profiles to calculate secondary structure propensity, and to classify residues
according their alpha-helix (H), extended (E) or beta-strand, and coil (C) propensity.
Besides structural domains, a large portion of both eukaryotic and prokaryotic proteins
contains intrinsically disordered regions. IDRs are characterized by the lack of a fixed
tridimensional structure, low hydrophobicity and a net composition bias for charged
residues’®. Intrinsically disorder is encoded in protein sequence and can be predicted from
amino acid composition’”’. Among the available prediction methods, in-house MobiDB
database® has been recognized as the primary repository of ID annotations, due to
integration of the DisProt database manually curated information, IDR automatically
derived from the Protein Data Bank (PDB) and the consensus computed from several
different ID prediction tools®’. Another in-house tool is FELL’®, a program for latent local
structure prediction. It estimates secondary structure, intrinsic disorder or amphipathicity
propensity from protein primary sequence. Despite unstructured, IDRs play an important
role in cellular processes, mainly thank to the presence of functional interaction modules,
known as short linear motifs (SLiMs)®!. Indeed, SLiMs-mediated interactions have been
proven to be involved in many molecular pathways, such as cell cycle regulation,
proteosomal degradation, and protein complex structure stabilization®'. Moreover, these
short modules are target of post translation modifications (PTMs), allowing the context-

dependent, integrative modulation of protein activity’!. The ELM repository is the most
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important database for the annotation and classification of linear motifs. The database also
present a prediction tool module for identification of motif instances®'. As short and highly
degenerated, detected linear motifs are more likely false positive predictions®?.
Discriminating true matches among all the predicted short linear motifs is a complex task
that should take in consideration: 1) conservation in multiple sequence alignment, ii)
presence of structural elements, iii) experimentally determined interactors®?. All these data
can be gathered and annotated on protein sequence by ProViz (Protein Vizualisation)*tool
web-based visualization program. ProViz main advantage consists in providing a
comprehensive graphical annotation of functional elements, e.g. domain structure, PTM,
short linear motif, known sequence variant, on MSA related to query protein. Integrating
both functional and evolutionary information with ANCHOR®protein binding site
prediction, this tool can be used to predict most likely interactions regions in the query

protein®’.

2.2.2 Identification of structural features relevant for protein function

Structural similarities correlate with function, thus characterizing the three-dimensional
folding of a protein is a key step in understanding its role in cellular processes. The Protein
Data Bank (PDB) represents the hub for collecting experimentally determined structure.
PDB is divided in three main organizations, PDBe (UK), PDB;j (Japan), and RCSB (USA),
whose primary goal consists in maintaining a global and uniform repository of biological
macromolecules. PDB files are lists of structure atomic coordinates, which are determined
by X-ray crystallography, nuclear magnetic resonance (NMR), or cryo-electron microscopy
(cryoEM). The file can contain either single proteins, or proteins forming complexes with
other molecules, such as ligands, nucleic acids or other proteins. Unfortunately, PDB
structures are not always available for the protein of interest, and protein fold should be
determined by structure modeling. Homology modeling methods use protein sequence of
interest for the identification of homologous protein with experimentally determined
structures, which can be used as templates for three-dimensional model construction®*. The
prediction mainly relies on the principle that structures diverge with a lower rate compared
to protein sequences, and homologous proteins can display similar folding even with
divergent sequences®*%. Despite the higher conservation of protein tertiary structure,
templates for homology modeling should share at least 30% sequence identity with query

sequence, as most of protein pairs with lower sequence identity are unrelated®®. The
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template search can be performed using HHpred®®, which compares Hidden Markov Model
profiles (HMMs) from alignment databases, such as Pfam®’ or SMART®. It returns a list
of pairwise alignments between the query sequence and detected distant homologous
protein structures, allowing to select the best one accordingly to sequence identity, or
secondary structure prediction. Then, selected HHpred alignment can be forwarded to
Modeller®® for comparative modeling of the protein/domain of interest®®. Model reliability
is determinant to infer function, and thus, should be assessed. One of the most used quality
model assessment program is the QMEAN web server’®. QMEAN is a composite scoring
function that calculates absolute quality estimates both for the entire model (global score)
and for each residue in the structure (local score)’’. Moreover, model quality can be directly
explored by structure visualization. Pymol is an open-source molecular visualization
software available for different operating systems’'. Its widespread diffusion is due to the
user-friendly interface, and the possibility to easily inspect structures in details, or to
integrate results from other tools, such as Consurf’?> and Bluues®*. ConSurf server identifies
conserved amino acids from multiple sequence alignment and maps them on protein
structures’?. Residues on structure are assigned with different colors according to the
evolutionary conservation rate, ranging from magenta, i.e. most conserved residues, to cyan
for variable amino acids®. Generally buried residues are important for protein folding and,
thus, are more conserved than the exposed ones. However, conserved residues on the
surface may suggest the presence of functional sites, e.g. binding site®®. Together with
conservation, highly charged surfaces can indicate nucleic acid binding sites, or catalytic
regions in proteins®*. Hence, electrostatic potential analysis can be used to infer functional
sites. The Bluues web server computes generalized born radii and surface potential either
from PDB structure, or from user defined model. The software uses this information to
build a PQR file, which can be visualized with Pymol®>. The electrostatic potentials are

represented on the solvent accessible surface, with blue indicating negative amino acids

and red positive charged residues®.

2.3 Variant effects on protein interactions

Protein-protein interactions (PPIs) are essential for the proper functioning of the molecular
mechanisms underlying cellular homeostasis, and events affecting PPIs play a major causal
role in disease pathogenesis!®®. In medical research, the disease PPI network analysis

represents a useful strategy for the identification of new therapeutic targets and treatment-
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responsive biomarkers for diagnostic and prognostic purposes’. Besides the clinical
applicability of PPI studies, PPI information are used to predict the function of a
uncharacterized protein on the evidence of its interactions with other proteins, whose
function is already established”®. Due to recent progresses in proteomics, experimentally
determined PPIs have been impressively increased, mainly thanks to the application of
high-throughput techniques, e.g. yeast two-hybrid (Y2H) screening and mass
spectrometry®®. To organize and process the extensive production of PPI data, several
databases have been developed. BioGRID*¢ (biological general repository for interaction
datasets) contains protein-protein, genetic and chemical interactions, and post-translational
modifications from thirteen different species. The entries are retrieved by an extensive
curation of data from the literature and large-scale experiments. Another PPI database is
IntAct®, which provides both textual and graphical representations of interactions. Other
sources, such as STRING?, rely on integrated networks of PPIs, which assign probabilistic
scores to each interaction based on a variety of sources, such as text mining and
experimental evidence, to identify all possible functional associations. Indeed, PPIs
identified by high-throughput methods generally suffer from high false positive rate, e.g.
unspecific interactions, and they should be considered as a starting point for further
experimental validations®>. Moreover, the specific interaction interfaces are usually not
detected, and require further analysis to be determined. Thus, computational methods are
often employed both to reduce large lists of potential binding partners and for the
identification of the putative binding regions’®. Interactions occur both among different
classes of domains, and between domains and short linear motifs °%%. In both cases, the
PPI specificity is linked to the complementarities between interacting regions, and typically
depends on few highly conserved residues. These residues encode the affinity and
specificity of the binding, and more variable surfaces that selectively contribute to the
interaction’”%8. This means that a domain is expected to interact with a specific counterpart
module, either a folded domain type or a peptide motif class. Thus, information about
interactions can be transferred from a functionally defined protein to the target one based
on similarity’®, as interfaces are generally conserved among homologous proteins, but also
considering interactions complementarities. E.g., a protein contains a conserved SRC
Homology domain 3 (SH3), which specifically recognizes the poly-proline motif PxxP%.
Hence, possible interactors should display an exposed conserved PxxP motif, mapping in
an accessible region of the protein, such as an IDR. These considerations can be used to

filter putative interactors retrieved from large scale experiment data or predicted by
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computational tools (e.g. ELM), allowing to focusing only on the most promising binding
partners. After these preliminary filters, it is clearly important to experimentally validate
selected PPIs by additional low-scale experimental techniques to exclude artifacts®. One
strategy consists in evaluating the cellular colocalization of the proteins involved in the
interaction. Colocalization analysis is based on the hypothesis that interacting molecules
should be placed in the same physical location, and should display an overlapped
intracellular distribution®®. The colocalization experiments can be performed either with
transfected cells, where target macromolecules are over-expressed, or on endogenous
proteins. In both cases, target proteins are labeled with antibodies conjugated with
fluorophores. Fluorophores are chosen so that they emit at different wavelengths, allowing
to monitor their distribution within the cells. When the proteins colocalize, fluorophore
signals are overlapped. Images are recorded by confocal microscopy, and statistically
analyzed to assess correlation among protein distributions'®. Despite supporting the
interaction, colocalization does not discriminate between direct binding and PPIs mediated
by common interaction partner. Thus, a common practice consists in combining
colocalization analysis with other experimental tests for direct-binding assessment, such as
the co-immunoprecipitation (co-IP). In co-IP experiments, the antibodies are used to
capture proteins in native form, bound to other interacting macromolecules. The main
advantage of this approach is that physiological endogenous protein complexes are studied.
However, co-IP cannot recognize the specific regions involved in protein binding”. Yeast
two hybrid system can be used to address this issue. Y2H is one of the most used methods
to screen and confirm PPIs, as it allows the direct identification of PPI between protein
pairs. The Y2H system takes advantage of the modularity of Gal4 transcription factor,
which is formed by two modules: i) DNA binding domain (DBD), and ii) an activation
domain (AD). Both domains are required for the transcription of a reporter gene, e.g. HIS3
gene, which enables the yeast to grow on a selective medium®®*°. Moreover, Y2H can be
used to examine sub-regions of proteins, by which uncover interactions not revealed by
full-length proteins and validate interaction minimal regions; e.g. validate linear motif

mediated interactions!'?’.
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3  Working toward precision medicine:
Predicting phenotypes from exomes in the
Critical Assessment of Genome
Interpretation (CAGI) challenges

This Chapter has been published in “R. Daneshjou, Y. Wang, Y. Bromberg, S. Bovo, P.
Martelli, G. Babbi, P. Di Lena, R. Casadio, M. D. Edwards, D. K. Gifford, D. T. Jones, L.
Sundaram, R. Bhat, X. Li, L. R. Pal, K. Kundu, Y. Yin, J. Moult, Y. Jiang, V. Pejaver, K.
A. Pagel, B. Li, S. Mooney, P. Radivojac, S. Shah, M. Carraro, A. Gasparini, E. Leonardi,
M. Giollo, C. Ferrari, S.C.E. Tosatto, E. Bachar, J. Azaria, Y. Ofran, R. Unger, A. Niroula,
M. Vihinen, B. Chang, M. H. Wang, A. Franke, B. Petersen, M. Pirooznia, P. Zandi, R.
McCombie, J. B. Potash, R. B. Altman, T. Klein, R. Hoskins, S. Repo, S. E. Brenner, A.
Morgan. Hum Mutat. 2017 Jun 21.” For Supplementary Materials, check the online version
of the paper.

3.1 Summary

Precision medicine aims to predict a patient’s disease risk and best therapeutic options by
using that individual’s genetic sequencing data. The Critical Assessment of Genome
Interpretation (CAGI) is a community experiment consisting of genotype-phenotype
prediction challenges; participants build models, undergo assessment, and share key
findings. For CAGI 4, three challenges involved using exome sequencing data: bipolar
disorder, Crohn’s disease, and warfarin dosing. Previous CAGI challenges included prior
versions of the Crohn’s disease challenge. Here, we discuss the range of techniques used
for phenotype prediction and discuss the methods used for assessing predictive models.
Additionally, we outline some of the difficulties associated with making predictions and
evaluating them. The lessons learned from the exome challenges can be applied to both
research and clinical efforts to improve phenotype prediction from genotype. In addition,
these challenges serve as a vehicle for sharing clinical and research exome data in a secure
manner with scientists who have a broad range of expertise, contributing to a collaborative

effort to advance our understanding of genotype-phenotype relationships.
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3.2 Introduction

Precision medicine aims to use a patient’s genomic and clinical data to make predictions
about medically relevant phenotypes such as disease risk or drug efficacy 921, The
Critical Assessment of Genome Interpretation (CAGI) is a community experiment, which
aims to advance methods for phenotype prediction from genotypes through a series of
“challenges” with real data (CAGI, 2011). Exome sequencing data, which captures exons
and nearby flanking regulatory regions, is already being used clinically to solve medical
mysteries with well-defined symptoms '%*. However, in order to advance precision
medicine, clinicians and scientists will need to be able to make inferences about disease
risk or drug efficacy from genetic data. Interpretation of genetic data is one of the major
difficulties in the implementation of precision medicine '%.

CAGI is an example of the Common Task Framework, a phrase coined by Mark Liberman
to describe the approach of using shared training and testing datasets and evaluation metrics
to advance machine learning '°%!7. The Common Task Framework has been called the
'secret sauce' behind the recent successes in machine learning 7. Starting with common
task challenges in the 1980's for machine translation, this approach has led to significant
gains in speech recognition and dialog systems, protein structure prediction, biomedical
natural language processing, autonomous vehicles, and collaborative filtering for consumer
preferences %12, Through this same approach, CAGI aims to push forward the field of
precision medicine.

At CAGI 4 held in 2016, three challenges involved making predictions using exome
sequence data: A Crohn’s disease challenge, a bipolar disorder, and a warfarin dosing
challenge. These challenges represent the spectrum of phenotypes seen in clinical practice.
Bipolar disorder and Crohn’s disease are discrete phenotypes, with the former being a
clinical diagnosis (based on meeting clinical criteria) and the latter a pathological diagnosis
(based on biopsies). Therapeutic warfarin dose, on the other hand, is a continuous
phenotype. The Crohn’s disease challenge has been a part of previous CAGI iterations,
while the warfarin dosing and bipolar disorder challenges debuted during CAGI 4. We will
describe the nature of each challenge in greater detail. The number of groups participating

in each challenge can be found in Table 3.1.
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Table 3.1 The number of predictors and predictions for each CAGI challenge.

Challenge Number of predictors Number of Predictions

Crohn’s  Disecase = Exomes CAGI 2 — 10 groups CAGI 2 - 33 predictions

Challenge CAGI 3 - 14 groups CAGI 3 — 58 (+3 late) predictions
CAGI 4 — 14 groups CAGI 4 — 46 predictions

Bipolar Exomes Challenge CAGI 4 -9 groups CAGI 4 - 29 predictions

Warfarin Exomes Challenge CAGI 4 - 3 groups CAGTI 4- 9 predictions

3.2.1 Crohn’s Disease Challenge

Crohn’s disease is a chronic inflammatory bowel disease marked by transmural
inflammation of the gastrointestinal tract that can occur anywhere from the mouth to the
rectum ''*. Symptoms include pain and debilitating diarrhea, which can lead to malnutrition
13

Monozygotic twin studies have shown a concordance of 40-50%, and genome wide
association studies have identified genetic risk loci '*!!4. Age of onset is typically between
20-40 years old, but early age of onset, such as in early childhood is associated with more
severe disease features ''°.

The 2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all of German ancestry
116 The 2013 (CAGI 3) dataset has 66 exomes (51 cases, 15 controls). Though these
samples were also of German ancestry; cases were selected from pedigrees of German
families with multiple occurrences of Crohn’s disease. As such, some of these cases were
related. For the most part, the samples sequenced as controls were unrelated healthy
individuals; the exceptions to this were the unaffected parents of three cases and the
unaffected twin of one case. The most recent challenge, CAGI 4 in 2016, was to identify
cases from controls in 111 unrelated German ancestry exomes (64 cases, 47 controls). For
CAGI 4, submitting groups were allowed to use the data from the Crohn’s disease CAGI
challenges of 2011 and 2013. In all iterations of the challenge, groups were asked to report
a probability of Crohn’s disease (between 0 to 1) for each individual and a standard
deviation representing their confidence in that prediction. For the most recent Crohn’s
disease evaluation, teams were also asked to predict if age of onset was greater or less than
age 10; an age cutoff selected by CAGI based on the literature ''°. Additional details of the
CAGI 4 challenge can be found under Supplementary Exhibit 3.1.
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3.2.2 Bipolar Disorder Challenge

Bipolar disorder is a mood disorder marked by elevated mood (mania or hypomania) and

depressed mood that disrupts an individual’s ability to function'!’.

In the general
population, the lifetime risk of bipolar disorder is 0.5-1% !'®. However, bipolar disorder
has a high component of heritability, with studies demonstrating a 40-70% monozygotic
twin concordance %, In this CAGI 4 challenge, 1000 exomes of unrelated bipolar disorder
cases and age/ancestry-matched controls of Northern European ancestry were provided.
500 exomes were used as the training set and 500 exomes were for the prediction set '°.
Groups were asked to report a probability of bipolar disorder (between 0 to 1) for each

individual and a standard deviation representing their confidence in that prediction.

Additional information on the challenge can be found under Supplementary Exhibit 3.2.

3.2.3 Warfarin Dosing Challenge

Warfarin is an anticoagulant with over 30 million prescriptions written in 2011 (IMS,
2012). Warfarin remains a clinical staple despite the introduction of novel oral
anticoagulants because of multiple factors — warfarin’s lower cost, longer half-life, and
clinical indications for which novel oral anticoagulants have not yet been approved '%.
However, warfarin is responsible for one third of hospitalizations due to adverse drug
events because of its narrow therapeutic index and high inter-individual dose variability '!.
Both clinical and genetic factors affect the therapeutic dose of warfarin '*2. For this
challenge, participants were provided with exomes of African Americans on tail ends of
the warfarin dose distribution (< 35 mg or > 49 mg) '?*. Clinical covariates were provided
for all exomes. The training set consisted of 50 exomes, and participants submitted dose
predictions with standard deviations on 53 test set exomes. Additional details of the

challenge can be found under Supplementary Exhibit 3.3.

3.3 Methods

3.3.1 Data Distribution

Data was distributed to the participants who consented to the CAGI data use agreement.
Data providers worked with their home institution to ensure adherence with local privacy
regulations and predicting groups agreed not to share the anonymized data. Data was

provided as described above, with genetic variant data shared in the VCF file format.

38



3.3.2 Predicting Phenotypes

Predicting groups were required to return a simple text file with appropriate predicted
values (such as disease status and confidence in prediction) for each sample. They were
also provided with a validation script to check their output formatting. Submitting groups
were asked to submit a methods description for each submission. The prediction results
from selected groups that submitted predictions and methods descriptions were presented
at the CAGI meeting. Additionally, the ground truth data and scoring scripts used to

perform the evaluation were shared with participants.

3.3.3 Data Quality

For the Crohn’s disease and bipolar disorder exome challenges, biases in the data were
assessed using principal component analysis and clustering after pruning for linkage
disequilibrium using plink '?*. For the warfarin challenge, data had previously undergone
QC using ancestry informative markers to confirm self-reported ancestry and identity by
State (IBS) analysis in order to ensure that samples were not related, as previously

described 3.

3.3.4 Assessing Discrete Phenotypes (Crohn’s Disease and Bipolar Disorder)

A simple accuracy of prediction per sample score, such as derivable from setting a threshold
for prediction (such as 0.5), although tantalizing in its simplicity neither supports the goals
of CAGI nor is it representative of a likely clinically relevant scenario for prediction.
Because the genetic datasets from CAGI are drawn from case-control studies, as well as
pedigree studies in families with a strong burden of disease, it does not represent a random
sampling of the population.

Requiring a fixed threshold for evaluation and reporting a basic accuracy score of
prediction in such a dataset would obscure interpretation. Also, using this as a Figure of
merit for ranking encourages participants to optimize their system predictions for the
anticipated case/control distribution instead of focusing on features that selectively
prioritize and rank disease likelihood in the absence of that calibration. The use of Receiver
Operator Characteristics (ROC) curves for genomic test evaluation has been previously
investigated by Wray et, al '>>. The ROC offers many advantages for evaluating a test, and
is often used to characterize clinical tests. The shape of a ROC curve can help differentiate

between highly sensitive tests, which could rule in a possible diagnosis, and highly specific
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tests that could rule out a diagnosis. The prediction of Crohn’s disease status from
sequencing data might be used in either of those situations depending on clinical
presentation, risk factors, or stage of patient evaluation. Additionally, ROC curves allow
easy selection of a classification threshold (based on selecting a position on the curve).
Based on the selected threshold, a positive or negative likelihood ratio can be derived and
applied in standard evidence based techniques of patient diagnosis, which rely on a
Bayesian framework that takes into account the pre-test probabilities and the characteristics
of a given test depending on the threshold chosen for prediction 26, Additionally, we
evaluated the robustness of the prediction accuracy when making predictions on different
subsamples of exomes and assessed the confidence intervals reported by the participants.
To capture confidence intervals on the predictions, multiple samples with replacement were
drawn. Each prediction was then modified by adding a random amount drawn from a
normal distribution with a mean of zero and a standard deviation equivalent to the standard
deviation reported for the original prediction. If no confidence interval was reported for the
original prediction, the standard deviation was taken to be zero. If a prediction for a
particular exome was missing, the prediction score for that sample was set to the mean
reported prediction value in that submission. In order to compare submissions by a single
Figure of merit, the average area under the ROC curves from the bootstrap sampling was
used, accompanied by the bootstrapped confidence interval around that area under the
curve, to estimate the robustness of differences between prediction performances. The
evaluation scripts were provided to all participants. A cross-validated logistic regression
based meta-classifier using lasso regularization was also trained on the submissions as
features for CAGI 4 Crohn’s disease and CAGI 4 bipolar disorder. This step allowed us to
assess whether combining the features selected across the different groups would improve
prediction over a single method. The meta-classifier could perform better than any single

method if the different methods use significantly different predictive features.

3.3.5 Assessing Continuous Phenotypes (Therapeutic Warfarin Dose)

For the warfarin exomes challenge, several metrics of assessment were used. Each
participant provided a predicted therapeutic dose of warfarin for each individual as well as
a standard deviation for that prediction. To look at the amount of variation in dose explained
by the predicted doses, we used linear regression with the linear model function (Im) in the

R statistical package (v 2.15.3). We evaluated each method using the R2 and the sum of
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squared errors. Additionally, we compared each prediction against one of the best
performing warfarin predictive algorithms, the International Warfarin Pharmacogenetic
Consortium (IWPC) algorithm 22, To assess, on average, how many participant-provided
standard deviations the predicted dose was from the actual dose, we used a mean of the
absolute value of the z-score for each prediction, as seen in equation 1. Here, dose actual
is the known therapeutic dose of warfarin for each individual i, while dose predicted is the
therapeutic dose predicted by that group for that individual. SD_predicted is the standard
deviation for each individual’s predicted dose, as provided by the participant’s prediction
method. The number of individuals is n.

Equation 1:

n ,dose_actual; — dose_predicted;
i= | SD_predicted; |
n

To assess the range of each prediction’s standard deviation compared to the predicted dose,
we calculated the mean of the coefficient of variation, which was the mean of the standard
deviation for each prediction divided by the predicted dose, as seen in equation 2. Equation
2:

n SD_predicted;

=l dose_predicted,;
n

We also evaluated the mean absolute value of the z-score multiplied by the mean coefficient
of variation for each method. This value allowed us to assess the mean z-scores with a
penalization for mean z-scores whose values were closer to 0 because of larger standard
deviations. Additionally, we calculated rho and p-values using the spearman rank
correlation between 1) each group’s predicted warfarin doses and the actual therapeutic
doses across individuals and 2) each group’s predicted warfarin doses and the IWPC
predicted doses across individuals. These calculations were made with the spearmanr

command from the stat package in scipy (python v 2.7.5).
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3.4 Results

With each year, CAGI has expanded the number of challenges and participants. Table 1
displays the number of participants and predictions for each CAGI challenge.

3.4.1 Crohn’s Disease Exomes Challenge (CAGI 2-4)

For the 2011 Crohn's disease (CAGI 2) challenge, during the assessment phase, a
substantial batch effect was discovered in the data as a side effect of sample preparation

and sequencing (Figure 3.1).

Clustering Patients Based on Variants
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Figure 3.1: Clustering of patients from the CAGI 2 Crohn’s Disease Challenge. The black and gray bars at
the bottom represent the controls; the red represents the cases. Many of the controls cluster together, likely
due to batch effects. For instance, the controls represented in black were sequenced separately from the gray
controls and the cases.

Overall, the control samples that clustered separately due to this batch effect had overall

fewer variants reported that did not match the reference genome. The participants were not
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aware of this batch effect; their methods were not designed to exploit it. However, this
raises the possibility that techniques that used a very large list of genes were more likely to
correctly identify case samples as coming from individuals with Crohn's disease. Indeed,
many different methods did better than random based on AUC, with a maximum AUC of
0.94, and in general approaches that favored a large list of potentially Crohn’s disease
related genes and gave more weight to rarer variants did the best. A full description of all
methods used by the participants can be found in the supplement under Exhibit 3.1: CAGI
2. Supplemental File 3.1 shows comparative results of the CAGI 2 Crohn’s disease
challenge predictive methods. It is certainly biologically plausible that increased burden of
variation in a large number of Crohn’s disease related genes leads to increased likelihood
of disease; however, it is also possible that there was systematic over reporting of variation
as a batch effect. Therefore, it was important to re-evaluate with more data. In the 2013
CAGI 3, a much greater effort was made to carefully collect and prepare samples in a
completely consistent way. In this case, case samples were collected from German families
with a particularly high burden of Crohn's disease (two or more effected family members),
including a pair of twins discordant for disease, and another pair of twins concordant with
disease. Additional healthy controls were drawn from the unaffected German general
population. During the 2013 CAGI 3, there was once again a substantial difference in
clustering between cases and controls, but in this dataset there was substantially more
homogeneity in the cases. Individuals from different case families clustered much more
closely with other high Crohn’s burden family individuals (Figure 3.2). This prompted two
possible hypotheses. The first is that there might be a hidden founder effect and that these
families with a high burden of disease may all actually be closely related. The second is
that reduced heterogeneity and perhaps increased ancestor consanguinity may contribute to
increased risk of Crohn's disease in these families with a high burden. Either one alone or
a mixture of both possibilities is biologically plausible. In this instantiation of CAGI,
groups that simply did some version of partitioning the test datasets based on hierarchical
clustering did quite well, and the top performing methods had an AUC of 0.87. Once again,
all of these methods were implemented without awareness of the bias in the data. A full
description of all methods used by the participants can be found in the supplement under
Exhibit 3.1: CAGI 3. Supplemental File 3.2 shows comparative results of the CAGI 3

Crohn’s disease challenge.
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Figure 3.2: Clustering of samples for CAGI 3 Crohn’s Disease challenge.

Black represents controls, while red represents cases. This dataset included healthy family members of cases
as well as random controls. Samples with a “ped” designation in the sample name came from a pedigree;

samples that share the same “ped” number came from the same pedigree.

In CAGI 4, the 111 exomes were derived from a mix of 64 Crohn's disease patients, with a
skew toward early onset of disease, and 47 healthy controls, all taken from individuals of
German descent. With this data, the simple separation of cases and controls based on
genetic variants was not present (Figure 3.3), suggesting the problems with batch effects
and sampling bias were no longer present; the only noticeable structure indicated the
possibility of a few related samples, as seen in the PCA and IBD plots shown in
Supplementary Figure S1 and Supplementary Figure S2. Correspondingly, the peak
performance dropped from previous CAGI iterations down to an AUC of 0.72. However,
given the elimination of biases in the data, this incarnation of the Crohn’s disease challenge
is likely the best reflection of how the prediction methods perform. A meta-classifier
created by the assessment team using all submitted methods for this challenge, as shown in

Supplementary Figure S3.3, had an AUC of 0.78, a small improvement over the top
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method. The distribution of AUCs across methods is shown in Figure 3.4. A full description
of all methods used by the participants can be found in the supplement Exhibit 3.1: CAGI
4. Supplemental File 3.3 shows comparative results of the CAGI 4 Crohn’s disease

challenge.
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Figure 3.3: Clustering of samples for CAGI 3 Crohn’s Disease challenge

The top approach in CAGI 4 used a compiled list of genes and genomic regions associated
with Crohn’s disease from prior studies, used imputation to evaluate risk contribution from
known regions associated with Crohn’s disease but not covered by exome sequencing, and
used the Welcome Trust Case Control Consortium (WTCCC) Crohn’s disease genotyping
array data to train a disease classifier to score relative risk for each sample. Across
participants, numerous methods were used for selecting the covariates, highlighting the

many different approaches to building a Crohn’s disease classifier. Similar to the top
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approach, many groups used variants previously found to be associated in genome-wide
association studies; the NHGRI catalog was a popular choice to identify these associated
variants (Welter, et al., 2014). Other approaches relied on gene lists of associated and
“predicted” Crohn’s disease genes to select variants of interest. To create the “predicted”
list of Crohn’s disease genes, groups used a variety of methods. Examples include using
(1) existing tools such as Phenolyzer, which associates disease terms with genes based on
prior research, expands the gene list by using gene-gene relationships, and then creates a
ranked list of candidate genes and (2) creating gene lists based on GO pathways enriched
with Crohn disease associated variants (3) using natural language processing to identify
genes of interest from Pubmed abstracts'?”!?%, From a gene level, different groups would
then devise different strategies to select variants of interest. For some approaches,
population level frequency data was used to help distinguish variants more likely to be
pathogenic. Other methods relied on pathogenicity prediction tools such as SNAP, PON-
P2, SNPs&GO, and Variant Effect Predictor to inform variant selection and weighting'?-
132 A range of machine learning approaches were used to actually build the classifiers-
naive Bayes, logistic regression, neural nets, and random forests. Additionally, some
groups improved on prior iterations by creating meta-classifiers based on combinations of

prior methods.
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Figure 3.4: CAGI 4 Crohn’s disease challenge distribution of AUCs across all methods.
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3.4.2 Bipolar Disorder Exomes Challenge (CAGI 4)

As noted, a substantial difference between the Crohn’s disease phenotypic prediction
challenge and the bipolar disorder challenge, was that a substantial amount of training data
was provided for the bipolar disorder challenge, with 500 of the 1000 exomes randomly
selected and provided as training data for the challenge. These samples were unrelated, and
analysis steps assessing the relationships between samples can be found in Supplementary
Figures S3.4, S3.5, and S3.6. The top performing group had a method with an AUC of 0.64.
The distribution of AUCs across methods is shown in Figure 3.5. Although many groups
used approaches similar to those used for the Crohn’s disease challenge, the top performing
group (which did not apply this method to Crohn’s disease data), treated the genotype data
as linear features and trained a neural network with 3 hidden layers, with the middle layers
looking at local features in the linear space of the ordered SNPs of the VCF file, tuning for
performance using cross validation on the test data. Importantly, this approach used
essentially no prior knowledge of genetics or the results of prior studies on disease-gene
relationships. Supplemental File 3.4 shows comparative results of the CAGI 4 bipolar
disorder challenge. Overall descriptions of prediction methods are available under Exhibit
3.2: CAGI 4. A meta-classifier created by the assessment team using all submitted methods
for this challenge, as shown in Supplementary Figure S3.7, had an AUC of 0.64, which was

not significantly different from the top method.
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Figure 3.5: CAGI 4 bipolar disorder challenge distribution of AUCs across all methods
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3.4.3 Warfarin Exomes Challenge (CAGI 4)

With the warfarin exomes challenge, similar to the Crohn’s disease challenge, many groups
used a priori data to create a list of covariates used. This included known pharmacokinetic
and pharmacodynamics warfarin genes, genes mentioned in the literature, and also using
tools to find functional neighbors of the known gene set. One prediction method (Group
50, Prediction 1) was ahead of the others when looking across multiple performance metrics
described in the methods section - R2, mean absolute value of z-score, and mean absolute
value of z score multiplied by the coefficient of variation (Figures 3.6A-D, Supplementary
Table S3.1). The R2 of the top prediction method was 0.25, compared to 0.35 for the IWPC
prediction method, one of the best performing predictive algorithms. A visualization of the
predictions compared to the actual dose can be seen in Supplementary Figures S3.8 and
S3.9. Details of all methods can be found under Supplementary Exhibit 3.3: CAGI 4. The
methods submitted for this challenge had several similar features. Every method submitted
took advantage of the fact that the range of doses were published in the paper from which
the data came. Thus, these methods either fit rankings to the dose range or set doses above
or below the known range to the lower or upper limits. Additionally, most methods used
prior information from the literature to help set the initial clinical and genetic covariates to

consider in their models.

3.5 Discussion

The CAGI exome challenges revealed lessons specific to each particular challenge as well

as generalizable principles for future genotype-phenotype prediction challenges.

3.5.1 Crohn's Disease

Overall, there were substantial challenges with bias and population stratification in the
datasets that make evaluation and comparison of techniques for identifying Crohn's Disease
status from exome data difficult. In the latest crop of prediction systems, it may be that
techniques such as using imputation to infer variants in regions not covered by the exome
sequencing and large external microarray SNP chip datasets are key factors in superior
performance. The top AUC varied across the three evaluations, demonstrating the
substantial differences in the data sets. Groups who created meta-classifiers based on

combining previous methods from previous CAGI challenges demonstrated the value of
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applying the Common Task Framework to genetic problems — through iteratively
improving their methods based on prior learning. Importantly, across the three CAGI
evaluations, the average system performance performed better than random, including in
the most recent, CAGI 4, implying that there is some level of useful information in
predicting likelihood of Crohn’s disease from exome data in the population, something

previously not demonstrated.

3.5.2 Bipolar Disorder

Surprisingly, the group that created the best performing prediction in the Bipolar disorder
challenge acknowledged having little background in biomedicine or genetics. This group
approached the problem as purely a data classification challenge. On the one hand this may
be hailed another example of the unreasonable effectiveness of data and the success of
machine learning over human expertise; the quotation "Every time I fire a linguist, the
performance of our speech recognition system goes up," has been attributed to Fred Jelinek
in the 1980's, and something similar may be afoot in genomics, promising an exciting future
as datasets expand and machine learning techniques improve. However, one of the major
challenges is that prediction accuracy with case-control data does not really reflect most
applications we can envision for a phenotypic prediction system. Moreover, while not
detected by any of our quality control methods, it is still possible that the top performing
method picked up on hidden population stratification/biases in the data. Although we were
unable to find evidence of this, a sophisticated machine learning system may be identifying
features which partition the cases and controls but which are not related to biological drivers
of disease risk. Unfortunately, the tools to dissect the deep neural net architecture in the
context of genomic features are currently too primitive to help us deepen our biological
understanding using these results. There has been recent work into advanced techniques to
understand the decisions made by previous black box systems in areas like image
processing and natural language processing; however, similar tools for understanding

genomic prediction systems are less developed !,

3.5.3 Warfarin

Predicting warfarin dose using clinical information and genetics is a difficult problem; one
of the best performing algorithms (IWPC) has an R2 of 0.35 on this data set. Existing

algorithms have poorer performance on diverse populations since most algorithms are
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trained on European descent '?>!23, For this challenge, the winning method had an R2 of
0.25.

The warfarin exomes challenge had several limitations. The sample size was limited, with
only 50 samples for training and 53 for testing. This data was generated at a time when
exome sequencing was more expensive; falling costs may allow an expansion of available
exome data. Additionally, all groups used the known dose range of the cohort when
assigning their predicted doses. Because of the use of this known range, some of these
methods may be tailored particularly to this challenge and not be generalizable to the wider

population.

3.5.4 Overall lessons from CAGI exomes challenge

An advantage of the common task structure is the ability to iterate quickly and learn from
the setbacks of the groups analyzing the data. The exome challenges allowed us to glean
several important lessons that will inform future iterations of CAGI.

The importance of population stratification, batch effects, and hidden biases became
evident early on with CAGI 2 Crohn’s disease challenge (Figure 3.1). In that particular
instance, either population stratification or batch effects created a discernable difference
between cases and controls that was unlikely related to actual disease status. Based on that
finding in CAGI 2, every subsequent CAGI challenge included a pre-analysis of the whole
exome data trying to identify if there were samples that clustered together inappropriately
based on case-control status. Population stratification has long been an issue in genetic
studies. The most obvious issue arises when cases and controls come from distinctly
different ancestral populations — such as comparing Northern European cases against
Chinese controls. However, less obvious stratification can also be an issue — such as
differences in admixture/population substructure or cryptic relatedness '**. Batch effects
can occur at many different steps in the pipeline, for example if samples from the cases and
controls have differences in sample preparation, DNA quality, sequencing coverage, or
genotype calling. Any of the above can result in prediction methods that perform well due
to systemic biases between cases and controls rather than true features that define case-
control status. How these challenge datasets emulate the real world was another important
consideration and was a topic of discussion among the CAGI 4 community.

A majority of the challenges used samples of Northern European ancestry —only the

warfarin dose prediction challenge used samples of African ancestry. In order for the
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methods to be generalizable to real world populations, representation of human diversity is
necessary, particularly since disease risk and pharmacogenetic variants can be population-

135 Moreover, the CAGI exome datasets all came from research studies, which are

specific
often designed to maximize the possibility of picking up a significant signal. One way to
achieve this is through selecting for extreme phenotypes — a strategy employed by both the
Crohn’s disease exome dataset (which selected a subset of cases who had early-onset
Crohn’s disease) and the warfarin prediction exome dataset (selected from individuals
requiring “low” and “high” doses to achieve the therapeutic index)!*®. However, while this
strategy works well for increasing signal strength in research, using such data for building
a classifier may lead to a biased predictor that has difficulty differentiating between the
subtler variations seen in the real world. Having larger datasets and using data generated
for clinical use may help remedy some of these issues in the future. And finally, one of the
most promising lessons from CAGI was on the effectiveness of data. As mentioned before,
for complex tasks, the common task framework has provided a way to have many people
work on a problem and iterate quickly. After a challenge has ended, sharing the evaluation
scripts and the challenge answers allows participants to analyze when their prediction
methods succeed or fail in order to improve further. Additionally, large datasets, even if
imperfect, have also been shown to be a critical part of developing algorithms to tackle a
complicated task '*’. Critical to accumulating large enough datasets is data sharing, and the
open data movement aims to encourage increased biomedical data sharing '*¥. However,
one of the difficulties with genetic data that includes protected health information is sharing
data in a secure manner. CAGI, which includes data encryption and verifies the groups
participating can provide a platform to facilitate sharing such data. As a result of the data
accumulated thus far, CAGI has demonstrated how data can, in certain cases, surmount
prior biological knowledge. For CAGI 4, the Bipolar Disease challenge was the best
example; individuals with no biological background, but a strong background in data
science had the best performance. In particular, this should inspire a more multi-
disciplinary approach to genotype-phenotype prediction and a greater effort to engage those
whose backgrounds are more data-driven rather than biologically-driven.

Overall, the CAGI exome challenges provided an opportunity to begin building the
classifiers required to implement precision medicine. While there is still a long road ahead
for genotype-phenotype prediction, the accumulation of larger datasets and the
participation of more groups with every subsequent CAGI holds promise for continued

improvement.
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4  Lessons from the CAGI-4 Hopkins clinical
panel challenge

This Chapter has been published in “Chandonia J.M, Adhikari A., Carraro M., Chhibber
A., Cutting G.R., Fu Y., Gasparini A., Jones D.T., Kramer A., Kundu K., Lam H.Y K.,
Leonardi E., Moult J., Pal L.R., Searls D.B., Shah S., Sunyaev S., Tosatto S.C.E., Yin Y.,
Buckley B.A. Lessons from the CAGI-4 Hopkins clinical panel challenge. Hum Mutat.
2017 Apr 11.”. For Supplementary Materials, check the online version of the paper.

4.1 Summary

The CAGI-4 Hopkins clinical panel challenge was an attempt to assess state of the art
methods for clinical phenotype prediction from DNA sequence. Participants were provided
with exonic sequences of 83 genes for 106 patients from the Johns Hopkins DNA
Diagnostic Laboratory. Five groups participated in the challenge, predicting both the
probability that each patient had each of fourteen possible classes of disease, as well as one
or more causal variants. In cases where the Hopkins laboratory reported a variant, at least
one predictor correctly identified the disease class in 36 of 43 patients (84%). Even in cases
where the Hopkins laboratory did not find a variant, at least one predictor correctly
identified the class in 39 of 63 patients (62%). Each prediction group correctly diagnosed
at least one patient that was not successfully diagnosed by any other groups. We discuss
the causal variant predictions by the different groups and their implications for further
development of methods to assess variants of unknown significance. Our results suggest
that clinically relevant variants may be missed when physicians order small panels targeted
on a specific phenotype. We also quantify the false positive rate of DNA-guided analysis

in the absence of prior phenotypic indication.

4.2 Introduction

DNA sequencing tests are increasingly used in medical practice to confirm or assign
clinical diagnoses ¢ However, the interpretation and classification of novel sequence
variants identified in a patient remains difficult, even for well-studied disorders like cystic

fibrosis . Improved computational methods may aid in the interpretation of sequence
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variants and, when used in conjunction with clinical data, could increase the confidence of
a diagnosis . Until recently, genetic testing was limited to genes associated with a specific
clinical phenotype. However, recent technological advances have made it feasible to
sequence large gene panels, exomes, and genomes 44, As the number of genes sequenced
per patient increases, the number of novel, rare, and unclassified variants also increases.
Clinical molecular geneticists must determine which variants, if any, are likely to contribute
to the patient’s clinical presentation. The current gold standards for assessing a variant’s
pathogenicity are segregation of the variant with the clinical phenotype in multiple
pedigrees, and functional assays demonstrating a detrimental effect of that specific
nucleotide change. In most instances, when a novel genetic variant is identified there is no
rapid and reliable method to assess its pathogenicity. Predictive software tools are
interrogated, but none are considered strong evidence to assert a novel variant’s
pathogenicity . The shift towards analyzing large datasets has led to a need for high-
throughput methods to aid in variant classification and also for computation tools to help
better interrogate the increasing number of variants of uncertain clinical significance.

Crowd sourced data analysis challenges such as the 4™ Critical Assessment of Genome
Interpretation (CAGI-4) have emerged as a framework to compare predictive methods and
assess the overall state of particular analysis areas '+. In the CAGI-4 Hopkins Clinical Panel
challenge, participants were asked to develop or use existing computational methods to
analyze data from a next generation sequencing (NGS) panel in order to match a patient’s
genotype to their clinical phenotype in the absence of additional clinical information. The
Johns Hopkins DNA Diagnostic Laboratory (henceforth, Hopkins), a CLIA and CAP
certified lab that specializes in clinical molecular testing for rare, inherited disorders,
provided data for this challenge. The Hopkins lab offers testing for approximately 50
phenotypes and disorders totaling 3,500 tests annually. They offer NGS-based tests targeted
for ~20 specific phenotypes. The same NGS capture probe set is used for all panels and
only the requested genes are analyzed in each patient. Hopkins provided CAGI-4 organizers
with the VCF files for the entire NGS panel for 106 patients with a range of clinical
presentations. The genetic disorders associated with variants in the 83 genes on the panel
were grouped into 14 ‘disease classes’ which include lung disorders, peroxisomal disorders,
aneurysm disorders and craniofacial disorders (Table 4.1, Supp. Table S-4.4). The goal of

the challenge was for the participants to match each patient to a disease class based on
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informatics analysis of the sequence data. A further part of the challenge was to predict the

specific gene and variant(s) that is/are the underlying cause of disease.

4.3 Materials and methods

4.3.1 Sequencing, variant calling, and analysis by the Hopkins lab

Gene sequences were captured using one of two custom probe sets (Agilent SureSelectXT
Target Enrichment Kit) and sequenced by a NGS platform (Illumina MiSeq, 2x100 nt
reads). The NGS panels used to test assessed exons and exon-adjacent sequences for 64 or
83 loci (Supp. Table S-4.4, Supp. Table S-4.5). Sequences were aligned to the human
reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner (bwa). Sequence
variants were called individually for each patient to produce two Variant Call Format
(VCEF) files, one for single nucleotide variants (SNVs; GATK UnifiedGenotyper, v2.7-4)
and one for insertion-deletion variants (InDels; GATK HaplotypeCaller, v2.7-4). De-
identified VCF files were provided to the CAGI-4 organizers. Note that the CAGI-4
organizers combined individual VCF files for each patient into a single VCF, resulting in
potentially misleading data in the INFO and FILTER fields of the file. The panel of 83
genes was sequenced in 96 of the 106 patients; for the other 10 patients, a partially
overlapping list of 64 genes were sequenced (Supp. Table S-4.5). Although the whole NGS
panel was sequenced in all patients, only the genes selected on the patient’s test requisition
form were analyzed by the lab (n=1-24 genes/patient).

For more information on the specific NGS tests offered by the lab refer to the Hopkins lab
website (http://www.hopkinsmedicine.org/dnadiagnostic/tests/).

The Hopkins lab included variants in the genes they analyzed that were classified as
Variants of Uncertain Significance (VUS), Likely Pathogenic, and Pathogenic as an answer
key. The disease class of each patient was also provided in the answer key and reflects the
test selected by the patient’s physician on the test requisition form. The ~20 phenotypes
that Hopkins tests for were narrowed down to 14 disease classes in order to simplify the
challenge (Supp. Table S-4.1). Some disease classes were not represented by any patients

and were included as red herrings (Supp. Figure S-4.9).
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4.3.2 Challenge format

Participants in the Hopkins clinical panel challenge were provided with the two VCF files
above, a detailed description of the 14 disease classes given in Table 4.1, a submission
template, a submission validation script, and the gene capture regions used in sequencing
the patients (in Browser Extensible Data, or BED format). Participants were also instructed
that every patient matched exactly one disease class.

Participants were asked to submit predictions of each patient’s disease class based on their
gene panel sequences, along with predicted causal variant(s). Each participant was allowed
to submit up to six distinct submissions, in which each submission contained predictions
for each patient. For each submission, participants were required to predict the probability
that the patient has a referring disease in each of the 14 disease classes in the provided list,
as well as the predicted causal variant(s) from the gene panel sequence dataset for every
disease class with a non-zero probability. Each predicted probability of disease class also
included a mandatory standard deviation (SD) field indicating confidence in the prediction,

with low SD indicating high confidence, and high SD indicating low confidence.

Table 4.1: A summary of the 14 disease classes in the CAGI-4 Hopkins clinical panel challenge

Disease class Description

Cystic fibrosis and CF-
related disorders

Classic cystic fibrosis consists of progressive lung disease, exocrine pancreatic
insufficiency, and male infertility.

Diffuse lung disease is an umbrella term encompassing multiple lung disease
phenotypes.

Primary ciliary dyskinesia is a genetically heterogeneous group of disorders
resulting from dysfunction in different parts of the cilia.

The majority of patients with peroxisomal beta-oxidation defects have liver

Diffuse lung disease

Primary ciliary dyskinesia

Peroxisomal beta- . ; . . .
S disease, brain malformations, developmental retardation, sensory deficits, and

oxidation defects . . .

dysmorphic craniofacial features.
Rhizomelic Symptoms of rhizomelic chondroplasia punctata include proximal shortening
chondrodysplasia of the limbs, cataracts, severe intellectual disability, seizures, and calcific
punctata stippling of cartilage.

Zellweger spectrum disorders consist of Zellweger syndrome (cerebro-hepato-
Zellweger spectrum
disorders renal syndrome; most severe phenotype), neonatal adrenoleukodystrophy

(intermediate phenotype), and infantile Refsum disease (mildest phenotype).

Loeys-Dietz syndrome

Loeys-Dietz syndrome is a connective tissue disorder that predisposes
individuals to aortic aneurysms.

Marfan syndrome

Marfan syndrome is an inherited connective tissue disorder that affects the
skeletal, ocular, and cardiovascular systems.

Continues
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Table 4.1 (Continued)

Disease class

Description

Thoracic aortic aneurysm
and dissection

Thoracic aortic aneurysm and dissection is a cardiovascular disease
characterized by dilation of the aorta, which leads to aortic aneurysms (most
commonly in the ascending aorta) and aortic dissection.

Ataxia telangiectasia

Ataxia-telangiectasia is a disorder of childhood onset progressive cerebellar
ataxia and occulocutaneous telangiectasias.

Liddle syndrome

Liddle syndrome is a rare genetic disorder characterized by early onset high
blood pressure (hypertension) and low blood potassium (hypokalemia).

Pseudohypoaldosteronism

Pseudohypoaldosteronism type 1 is a salt-wasting disease with onset during

type 1 infancy.

Telomere shortening Telomere shortening disorders represent a spectrum of phenotypes that result
disorders from mutations in genes involved in telomere maintenance protein complexes.
Treacher Collins and Treacher Collins syndrome is a rare disorder affecting craniofacial

related syndromes

development.

4.3.3 Assessment

Formatting errors in all submissions were corrected to the best of the assessor’s ability, and
redundant submissions were removed. Predicted disease classes made in each submission
for each patient were assessed against the correct disease class given in the Hopkins answer
key, using the metrics described below. The predicted causal variant(s) were also compared
to interpretations from the clinical laboratory, but because these are not known with
certainty, such predictions cannot be rigorously assessed. In their answer key, Hopkins
noted which variants they regarded as Variants of Uncertain Significance (VUS), Likely
Pathogenic, and Pathogenic; however, for purposes of matching participants’ predictions
to the answer key, all variants noted by Hopkins for each patient were treated equivalently.
Assessors first calculated the number of correct predictions of disease class made in each
submission. For each patient, the predicted disease class was the one assigned the highest
probability among all 14 disease classes. Ties (i.e., cases where multiple disease classes
were all assigned the highest probability) were handled as described below. If all 14
probabilities for a patient were equal (e.g., all zeroes), those predictions were not counted
in the following three metrics.

In other cases, assessors calculated one metric (nCorrect) in which the number of correct
predictions was counted, giving ties full credit; another metric (nCorrectse) was calculated
in which N-way ties were given 1/N credit.Finally, assessors calculated a third metric

(nCorrectyyr) in which they counted the number of predictions for which the disease class

56



was correct (giving ties full credit) AND for which at least one of the variants submitted in
the corresponding column for that disease class matched one of the variants noted by
Hopkins.

Assessors also calculated the following metrics for each submission:

avgPCorrect — the average probability assigned by the predictor to the correct disease class.
This statistic provides an assessment of predictions that is not dependent on whether the
submitter’s highest probability prediction was correct.

avgPCorrect,,m— the average probability assigned by the predictor to the correct disease
class, after normalizing all probabilities predicted in each submission for each patient to
sum to 1.0. (Exception: if all probabilities for a patient were zero, they were not
normalized).

avgRank — the average rank assigned by the predictor to the correct disease class. Ties were
assigned the average rank of each set of tied predictions; e.g., if the two highest probability
disease classes had equal rank, both were assigned a rank of 1.5; a 3-way tie for ond highest
probability would be assigned a rank of 3. Note that because there were 14 disease classes,
an all-zero prediction would have an avgRank score of 7.5 (i.e., was scored as a 14-way
tie).

avgError — the average error in predictions, where the error was measured as the absolute
difference between the probability assigned each disease class and zero (if not the correct
disease class) or one (if the correct disease class). Like avgPcorrect, avgError assesses

predictions independent of their rank, but also includes correct negative predictions.

4.3.4 Prediction Methodology

A summary of each group’s prediction methods is given below.

Group 57 (Jones): The Jones-UCL group made use of one-class Support Vector Machine
(SVM) classifiers to automatically assign disease classes according to the supplied exome
data. In a normal machine learning experiment, sufficient positive and negative cases are
needed to define a hypersurface which separates the two classes. Standard SVMs attempt
to define this hypersurface such that the chance of misclassifying new cases is minimized.
In some applications, however, only positive or negative cases are readily available, but not
both. One-class SVMs '* have been proposed for problems where either negative or
positive case data is unavailable. In this situation, the SVM attempts to identify outliers

from a distribution modeled on the available single class of data, and it is assumed that the

57



outliers belong to the alternative class. In this CAGI challenge, of course, neither negative
nor positive training data was readily available. However, the assumption was made that
the 1000 Genomes data set 4’ could be used as a proxy for negative case data. This is a
reasonable assumption if we assume that the diseases in question are relatively rare. To
start with, gene variants relating to each disease class were collated using ClinVar '8,
Feature sets were generated for each disease class by encoding variant 0/0, 0/1 and 1/1 calls
as 0, 1 and 2 respectively, and for each disease-specific feature set, a one class v-SVM
(using a RBF kernel) was trained. The single parameter v, which controls both the number
of support vectors and the misclassification cost, was optimized for each disease class so
as to minimize the number of outliers detected in the 1000 Genome training data. Once
trained, the SVM was then applied to the test sample data, and the distance to decision
boundary was used as a proxy for classification confidence. The most important variant
was identified in each case by systematically removing each variant from the feature set
and recalculating the confidence scores.

Group 58 (Tosatto): The analysis started with a manually curated association between the
genes of the panel and the 14 clinical phenotypes of interest based on literature review.
Sequencing data was annotated with ANNOVAR ', considering for each variant the
corresponding affected gene, frequency estimated from the 1000 Genomes Project ** and
predicted pathogenicity score from SIFT 3! and PolyPhen2 2. The method to define
association between genetic data and phenotypes was based mainly on two phases. For each
individual, variations that are less probable to be disease causing were filtered out and a
probability to be affected based on the analysis of variants defined. Only coding and splice-
site variants which can affect protein function were considered according to the Common
Disease-Rare Variant Hypothesis (CDRVH)!32. Common (MAF > 5%) and/or synonymous
single nucleotide variations (SNVs) were filtered out. Insertion and deletions were
excluded as their impact on protein function is difficult to predict compared to SN'Vs. Only
insertions and deletions (indels) affecting the coding part of a gene and predicted to be
“damaging” or known to be pathogenic were considered. Heterozygous indels in genes with
autosomal recessive inheritance, occurring in GC-rich or repeated regions were filtered out
from the disease candidate mutation pool. An empirically derived scoring scheme was
implemented to define association between patients and phenotypes, considering both
disease inheritance and predicted SNV pathogenicity (Supp. Table S-4.2). Different
weights were assigned to different mutation types, i.e. a high score for known variants

associated with a specific disease (mainly by literature review) and a lower score for
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mutations not affecting protein function according to predictor output (i.e. tolerated, benign
and unknown). For autosomal dominant (AD) pathologies, only heterozygous variants plus
few manually curated homozygous mutations were considered (i.e. the one with the highest
probability score). The disease cutoffs were set at different values between submissions,
allowing the stringency of the analysis to vary. Both homozygous and compound
heterozygous variants were considered for autosomal recessive (AR) conditions. When
more than one match per patient occurred, only the most likely was considered (e.g. the one
with higher probability score). Different submissions correspond to different sets of
weights. In particular, in the first submission, a slightly lower weight was assigned to
variants whose effect is more difficult to assess (i.e. compound heterozygous, homozygous
variants with uncertain significance, variants affecting different genes coding for subunits
of the same complex) with respect to submission 4.

Group 59 (Qiagen Bioinformatics): All 106 samples were uploaded to Ingenuity Variant
Analysis (QIAGEN- Hereditary Disease Solution) and set up an analysis with all samples
to filter low quality (call quality <20) and common variants (>0.5% MAF in 1000 Genomes
147 NHLBI-EVS (http://evs.gs.washington.edu/EVS/), EXAC '3, and Allele Frequency
Community (www.allelefrequencycommunity.org), using the Confidence and Common
Variants filters, respectively. The Allele Frequency Community is a QIAGEN hosted allele
frequency database, founded by QIAGEN and participating members in 2014. It is a freely
accessible “opt-in” community resource designed to facilitate sharing of anonymized,
pooled allele frequency statistics among community members. The Predicted Deleterious
filter was used to keep only those variants that are previously published and classified
Pathogenic or Likely Pathogenic, using ACMG guidelines, DM variants (pathological
mutations reported to be disease causing in the original literature report) present in HGMD,
along with other loss of function (frameshift, start/stop loss or gain, splice site) and
missense variants. Finally, the biological context filter was applied to find variants linked
to each one of the 14 categories and patient disease category was predicted based variant-
disease connection, using path-to-phenotype evidence.

Group 60 (RSS): Gene phenotype associations were mined from the Hopkins diagnostic
panels, OMIM '** and GeneReviews !'*. Inheritance mode and penetrance information
were extracted from online resources for each gene-phenotype pair. Variants with low
quality or high population allele frequencies were filtered out and the functional impact

156

was annotated with Variant Effect Predictor °°. To estimate the probability that a variant is

damaging to protein function, we integrated multiple prediction methods to score all types
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of variants, e.g. missense, nonsense, indels and intronic variants. The damaging scores were
scaled and normalized to reflect the relative deleteriousness, e.g. frame-shift / nonsense
variants would have higher scores than missense variants. We then used the damaging
scores to estimate the probability that each individual has a particular phenotype with a
probabilistic model, i.e. calculated as the probability that at least one associated gene in the
individual causes the phenotype. For a particular gene, the probability the gene causes the
phenotype was calculated as the probability that the gene is disrupted (taking into account
inheritance mode) multiplied by its penetrance score. The confidence level of the prediction
was calculated from the distribution of the estimated probabilities across phenotypes and
across individuals. Considering the 14 phenotypes are Mendelian like diseases, if one
individual has high prediction scores across phenotypes, it is more likely to be false
positive. Thus high confidence was assigned to individuals with high variability across
phenotypes. A more detailed description of this group’s prediction methods is included in
the Supplementary Information.

Group 61 (Moult): The method (implemented in Python) has four modules — Variant
annotation, QC (quality check), Variant Prioritization, and Probability scoring for the
disease. The modules were executed sequentially. Inputs were the two gVCF files and a
gene configuration file containing the genes associated with each disease class and their
inheritance pattern. The Varant tool (http://compbio.berkeley.edu/proj/varant) was used to
annotate variants with: region of occurrence in the genome, allele frequency from ExAC
153 predicted pathogenicity based on four methods >*!°"~! (for missense), and previously
reported disease associations in databases '*#1%°, Three QC analyses were run: (1) Variant
counts (common vs. rare vs. novel & homozygous vs. heterozygous) per sample, (2) Read
depth for each gene in each sample was obtained by averaging DP values over all bases in
a gene recorded in the gVCEF file, and (3) Exons with relatively low or no coverage
compared to other exons in a gene. The QC qualified variants per sample were prioritized
by first assigning them to one of three classes, ranked by the likelihood that the variant is
causative and further grouping the variants in each class by frequency based on its EXAC
MAF (group 1 —novel, 2 - very rare (MAF <= 0.005), or 3 — rare (MAF <= 0.01). Class-1
identified variants previously reported in disease databases as pathogenic, Class-2
identified loss of function, splice and missense variants predicted damaging by in-silico
prediction tools, and Class-3 identified missense variants (not predicted damaging), UTR,
and intronic variants. Variants were further filtered for inheritance model. For each sample,

once putative causative variants were found, the process was terminated (e.g. if a suitable
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variant or variants were found using Class-1, Class-2 and Class-3 were not executed).
Finally, a probability score for a sample to have a particular disease was computed based
on the type of prioritized variant(s) and inheritance pattern. For the missense variants, the
probability model was based on the extent of consensus among the four prediction methods,
using a previous HGMD derived calibration. For other variant types, subjective probability

rules were used.

4.4 Results

4.4.1 Summary of submissions

Five groups submitted predictions (with 4, 2, 2, 2, and 1 distinct prediction per group). An
overview of the challenge and results is shown in Figure 4.1. The 106 patients in the
challenge can be roughly grouped into two difficulty classes: 1) patients for whom Hopkins
noted a potentially causal variant in the answer key (43 patients) and 2) patients for whom
Hopkins did not note any variants (63 patients) (Figure 4.1A). At least one CAGI-4
predicting group correctly predicted the disease class for 36 of the 43 patients who had a
reported variant (Figure 4.1B). Fewer groups correctly predicted both the disease class and
at least one of the variant(s) that Hopkins reported (Figure 4.1C). CAGI-4 predictors were
not as accurate at predicting disease classes for the remaining 63 patients for whom Hopkins
did not note a variant, although at least one group correctly predicted the disease class for
the majority of these patients (Figure 4.1D). The lower prediction accuracy is perhaps

unsurprising given the negative test results for these 63 patients.
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Figure 4.1: Summary of CAGI-4 Hopkins clinical panel challenge and results.

A: One-hundred six patients were included in the study. Hopkins noted at least one variant relevant to the
disease class for which the patient was referred in 43 cases, and did not note a variant for the remaining 63
cases. Hopkins noted variants of the following classes: variant of uncertain significance, likely pathogenic,
or pathogenic. Clinically, Hopkins would have reported 25/43 as positive and 18/43 as uncertain. B: Among
the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 prediction group predicted the
correct disease class in 36 cases, and one patient’s disease class was predicted correctly by all five groups. C:
Among the 43 patients for whom Hopkins had noted a variant, at least one CAGI-4 prediction group predicted
both the correct disease class and a causal variant noted by Hopkins in 32 cases. D: Sixty-three patients for
whom Hopkins did not note a variant were more difficult for CAGI-4 groups to predict: 24were not predicted
correctly by any group, and only five patients’ disease class was predicted correctly by three groups (none
were predicted correctly by four or more groups)

4.4.2 Numeric assessment summary

Table 4.2 summarizes our numeric assessment metrics for each non-redundant, submitted
prediction, for all patients. Table 4.3 shows the same statistics for only the 43 patients for
which Hopkins noted at least one potentially causal variant. The best values for each metric
in each Table are indicated in bold. Each group’s overall performance is briefly discussed
below. Table 4.4 shows a summary of the performance of all predicting groups on each
patient. An expanded version of Table 4.4 with additional columns is provided as
Supplementary Information (Supp. Table S-4.6). Tables 4.5 and 4.6 summarize the most

frequent combinations of groups that predicted the correct disease class for patients (Table
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4.5 ignores causal variant predictions, while Table 4.6 requires each group to predict one
of the variants noted by Hopkins).

Group 57 (Jones): Group 57’s primary submission (57.1) scored much higher than their
other submissions by our metrics. Their method was less accurate than other groups in cases
where Hopkins reported a potential causal variant, but it was more accurate at predicting
the correct disease class in cases where Hopkins didn’t report a variant. Group 57’s primary
submission was also the most accurate among all submissions at rank-ordering the disease
classes. As seen in Table 4.5, Group 57 predicted disease classes correctly for 18 patients
that no other group predicted correctly, with seven of these cases in their primary
submission. This method was unique in that it did not attempt to mimic a traditional clinical
genetics approach. No attempt was made to independently predict the pathogenicity of the
ClinVar variants used as features or to correct for linkage disequilibrium, which may
explain why the method was able to make correct inferences where no causal variants were
reported and why correct inference can arise without reporting the correct variants. A
possibility is that some or even a majority of the variants relied on by the classifiers were
non-causal variants which simply happen to be in linkage disequilibrium with one or more
true causal variants. Thus the occurrence of these variants were sufficient to identify the
sample as a genetic outlier, though not indicating true causation. It is possible that by
addressing these issues, the method might be further enhanced to make more accurate
predictions relating to true causal variants. It would be interesting to test this method on a
larger dataset to rule out the possibility that there is some underlying structure in this dataset
that the algorithm is detecting.

Group 58 (Tosatto): As seen in Table 4.5, most cases that Group 58 predicted correctly
were also predicted by at least one other group. However, Group 58 predicted the disease
class for one patient (P81) that no other groups predicted; they also assigned 100%
probability of the correct disease to that patient, and predicted exactly the same causal
variants as noted by Hopkins. Many of the diseases in this challenge result from loss of
function variants in a given gene, thus by excluding frameshift variants (out of frame
deletions and/or insertions within an exon) Group 58 missed these cases. The genes and
molecular mechanisms associated with each of the 14 disease classes were not provided as
part of the dataset, which increased the difficulty of the matching exercise (Supp. Table S-
4.2).

Group 59 (Qiagen): Group 59 had the highest average P values for the correct disease

classes, after normalization; they also had some of the best scores in the avgError metric.
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Group 59 correctly predicted the disease class for five patients that no other groups
predicted. Among all the groups, they were the only group for which both P values and SD
values were independent and positively correlated with the values they were expected to
correlate with (see discussion of P and SD, below). This challenge was well-suited for the

Qiagen group, as they specialize in large scale variant interpretation 6!,

Table 4.2: Summary of assessment metrics for each non-redundant, submitted prediction, for all patients

Group Prediction nCorrect nCorrectie avgPCorrect avgPCorrectiorm  avgRank avgError

Jones  57.1 24 24 0.305 0.098 532 0251
572 9 9 0.239 0.068 766 0287
573 7 7 0.236 0.068 778 0.289
57.4 7 6.5 0.426 0.074 7.1 0.42
Iosa“ 58.1 23 23 0.178 0.217 648  0.105
58.4 26 25 0.223 0.227 615  0.107
Qiagen 9.1 3 295 0.302 0.278 582 0.09
592 31 28.5 0.292 0.269 588 0.091
RSS  60.1 12 12 0.072 0.102 714 0.08
60.2 12 12 0.068 0.094 715 0.082
Moult  61.1 38 34.99 0.261 0.265 565 0.105

Note: Predictions are numbered according to the group’s (formerly anonymized) group number (57, Jones;
58, Tosatto; 59, Qiagen Bioinformatics; 60, RSS; 61, Moult) and the group’s submission number (1, most
confident prediction; other non-redundant predictions are as numbered by the submitters, up to six per

group).

Table 4.3: Summary of assessment metrics for each non-redundant, submitted prediction, for the 43 patients for which
Hopkins noted at least one potentially causal variant

Group Prediction nCorrect nCorrect . nCorrect vor avgPCorrect avgPCorrect avgRank  avgError
Jones 57.1 5 5 2 0.255 0.082 6.53 0.257
57.2 5 5 2 0.325 0.091 6.29 0.274
57.3 2 2 0 0.22 0.063 8.49 0.296
57.4 1 1 0 0.394 0.07 7.5 0.421
Tosatto  58.1 15 15 13 0.32 0.349 5.56 0.087
58.4 17 16 16 0.38 0.339 5.16 0.094
Qiagen  59.1 23 21 19 0.535 0.488 4.24 0.065
59.2 22 20 19 0.512 0.465 4.4 0.066
RSS 60.1 9 9 8 0.149 0.193 6.41 0.073
60.2 9 9 8 0.145 0.181 6.4 0.075
Moult 61.1 26 26 25 0.5 0.512 3.78 0.07

Note: Predictions are numbered as in Table 4.2.
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Group 60 (RSS: Due to the misleading fields in the combined VCF files (see the Methods
section on sequencing and variant calling), Group 60 made only 11 high-confidence (P >
0.6) predictions, of which 9 were correct. Interestingly, four of these nine cases were not
predicted correctly by any other group. Because of the small number of high-confidence
predictions, Group 60 had the lowest avgError score among all groups, and the best
correlation between assigned P values and correct answers (see discussion of P and SD,
below). After the challenge closed, Group 60 provided the CAGI organizers with a
corrected submission, in which the misleading VCF fields were ignored. In this corrected
submission (which arrived late and therefore was not formally assessed), Group 60
correctly predicted 38 disease classes. Additional analysis of Group 60’s corrected
submission is provided in the Supplementary Information. Group 60 adeptly used a series
of online clinical genetics resources in their analysis pipeline.

Group 61 (Moult): Group 61 made more correct predictions of both disease class and
Hopkins-annotated variants than any other group. For the 43 cases where Hopkins noted
variants, Group 61 did especially well, getting 26 disease classes correct, and predicting
the best average rank for the correct disease. In 25 of these cases, Group 61 also predicted
at least one causal variant that was noted by Hopkins. Group 61 correctly predicted the
disease class for six patients that no other groups predicted correctly, and also predicted at

least one of the potentially causal variants noted by Hopkins in four of these six cases.

4.4.3 Accuracy of P and SD values

We expected that predictors’ submitted probabilities for each patient and disease should
correlate with the correct disease class for each patient, and we also expected that their
submitted standard deviations on each prediction should correlate with the error in each
prediction (i.e., the absolute difference between the P value and either 1 or 0, for cases
where the patient does or does not have the disease, respectively). Overall, predictors did
better in the first case, and not as well in the second. Only one group (59; Qiagen) had an
independent SD model that correlated positively with error. A detailed discussion of the

accuracy of P and SD predictions is provided in the Supplementary Information.
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Table 4.4: Summary of the performance of all predicting groups on each patient

Correct .
. Correct . _ Correct predictions,
Patient | nC nCV groups, with | Correct predictions . .
groups ant with variant
varian

Pl 4 4 57,59, 60, 61| 57. 59, 60, 61 59.2, 60.1, 60.2, 61.1, 57.1,|59.2,60.1, 60.2, 61.1,

57.3,59.1 57.1,59.1
P2 1 N/A |57 N/A 57.2 N/A
P3 0 N/A | None N/A None N/A
P4 5 3 57, 58, 59, 58, 59, 61 23?: 58.4, 60.1, 60.2, 61.1, 23?, 58.4,61.1, 58.1,

60, 61 58.1,59.1

P5 2 2 60, 61 60, 61 60.1,60.2, 61.1 60.1,60.2, 61.1
P6 3 N/A | 57,59, 61 N/A 59.2,61.1, 57.1, 59.1 N/A
P7 0 N/A | None N/A None N/A
P8 1 1 60 60 60.1, 60.2 60.1, 60.2
P9 1 0 57 None 57.4,57.1 None
P10 2 N/A | 57,58 N/A 58.4,57.1,58.1 N/A
P11 1 1 61 61 61.1 61.1
P12 0 N/A | None N/A None N/A
P13 3 N/A |57, 58, 60 N/A 2;‘1" 58.4, 60.1, 602, 572, N/A
P14 0 N/A | None N/A None N/A
P15 0 N/A | None N/A None N/A
P16 2 N/A | 57,58 N/A 58.4,57.1,58.1 N/A
P17 3 3 58, 59, 61 58, 59, 61 59.2,584,61.1,58.1, 59.1 ggi’ 58.4,61.1,58.1,
P18 2 N/A | 57,58 N/A 58.4,57.1,58.1 N/A
P19 1 1 60 60 60.1, 60.2 60.1, 60.2
P20 1 N/A |57 N/A 57.1 N/A
P21 1 N/A |57 N/A 57.1 N/A
P22 1 N/A |59 N/A 59.2,59.1 N/A
P23 0 0 None None None None
P4 4 3 57.58.59. 61 | 58. 59, 61 ggi, 58.4, 61.1, 57.2, 58.1, ggi, 58.4,61.1,58.1,
P25 1 0 57 None 57.2 None
P26 3 3 58,59, 61 58,59, 61 59.2,584,61.1,59.1 59.2,584,61.1,59.1
P27 3 1 58, 59, 61 59 59.2,58.4,61.1,58.1,59.1 59.2,59.1
P28 2 N/A | 57,59 N/A 59.2,57.1,59.1 N/A
P29 1 N/A |57 N/A 57.1 N/A
P30 3 2 58,59, 61 58, 61 58.4,61.1, 58.1, 59.1 58.4,61.1, 58.1
P31 1 N/A |57 N/A 57.1 N/A

59.2, 58.4, 60.1, 60.2, 61.1,|58.4,60.1,60.2, 61.1,
P32 4 3 58,59, 60, 61 | 58, 60, 61 58.1,59.1 531
P33 0 N/A N/A None N/A

(Continues)
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Table 4.4 (Continued)

. Correct Correct . _ Correct predictions,
Patient [nC | nCV groups, with | Correct predictions . .
groups variant with variant
P34 3 3 58, 59, 61 58, 59, 61 59.2,58.4,61.1,58.1,59.1 zgf’ 58.4, 61.1, 58.1,
P35 0 N/A | None N/A None N/A
P36 0 0 None None None None
P37 0 None N/A None N/A
P38 3 3 58, 60, 61 58, 60, 61 58.4,60.1,60.2,61.1, 58.1 22?’ 60.1, 602, 611,
P39 1 0 59 None 59.2,59.1 None
P40 0 N/A | None N/A None N/A
P41 0 N/A | None N/A None N/A
P42 2 1 59, 61 61 59.2,61.1, 59.1 61.1
P43 2 N/A |57, 61 N/A 61.1,57.1 N/A
P44 1 N/A |59 N/A 59.2,59.1 N/A
P45 1 N/A |57 N/A 57.1 N/A
P46 0 N/A | None N/A None N/A
P47 1 1 61 61 61.1 61.1
P48 0 0 None None None None
P49 1 N/A |57 N/A 571 N/A
P50 0 N/A | None N/A None N/A
P51 1 N/A |61 N/A 61.1 N/A
P52 3 3 58, 59, 61 58, 59, 61 59.2,58.4,61.1,59.1 59.2,58.4,61.1,59.1
P53 2 N/A |58, 59 N/A 59.2,58.4, 58.1, 59.1 N/A
P54 1 N/A | 57 N/A 57.3 N/A
P55 0 0 None None None None
P56 2 1 58,59 59 59.2,58.1, 59.1 59.2,59.1
P57 1 1 61 61 61.1 61.1
P58 0 N/A | None N/A None N/A
P59 0 0 None None None None
P60 2 2 59, 61 59, 61 59.2,61.1,59.1 59.2,61.1,59.1
P61 1 N/A |57 N/A 574,573 N/A
P62 2 N/A | 57, 60 N/A 60.1, 60.2, 57.1 N/A
P63 3 N/A |57, 59, 61 N/A 59.2,61.1,57.1,59.1 N/A
P64 1 1 60 60 60.1, 60.2 60.1, 60.2
P65 3 N/A | 58, 60, 61 N/A 58.4,60.1,60.2,61.1 N/A
P66 0 N/A | None N/A None N/A
P67 0 0 None None None None
P68 1 N/A |59 N/A 59.2,59.1 N/A
P69 0 0 None None None None
P70 0 N/A | None N/A None N/A
P71 0 N/A | None N/A None N/A
(Continues)
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Table 4.4 (Continued)

Patient | nC nCV Correct C9mect gr S, Correct predictions C9mect .predlctlons,
groups with variant with variant
P72 3 2 57,59, 61 59, 61 59.2,61.1,57.2,59.1 59.2,61.1,59.1
59.2, 584, 61.1, 57.1,|59.2, 584, 61.1,
P73 4 3 57, 58,59, 61 |58, 59, 61 58.1,59.1 58.1,59.1
P74 0 N/A | None N/A None N/A
P75 0 N/A | None N/A None N/A
P76 0 N/A | None N/A None N/A
P77 0 N/A | None N/A None N/A
P78 1 N/A | 61 N/A 61.1 N/A
P79 0 N/A | None N/A None N/A
59.2, 61.1, 57.1, 57.2,|59.2, 61.1, 57.1,
P80 3 3 57,59, 61 57,59, 61 50,1 572.59.1
P81 1 1 58 58 58.4,58.1 58.4,58.1
P82 1 N/A | 57 N/A 57.2 N/A
P83 1 N/A | 57 N/A 57.4,57.3 N/A
59.2, 584, 61.1, 57.2,|59.2, 584, 61.1,
P84 4 4 57,58,59,61 |57,58,59,61 58.1,59.1 57.2.58.1,59.1
P85 N/A |57, 61 N/A 57.4,61.1 N/A
P86 N/A | 58, 59 N/A 59.2,58.4,58.1,59.1 N/A
57.4, 584, 61.1, 57.1,
P87 3 N/A |57, 58, 61 N/A 58.1,57.3 N/A
P88 1 N/A | 57 N/A 57.1 N/A
P89 1 N/A | 57 N/A 57.4,57.1 N/A
P90 2 N/A | 58, 61 N/A 58.4,61.1,58.1 N/A
Po1 1 N/A | 57 N/A 57.2 N/A
P92 3 3 58, 59, 61 58,59, 61 59.2,58.4,61.1,59.1 zgf’ >8.4, 6Ll
P93 1 1 60 60 60.1, 60.2 60.1, 60.2
P94 2 2 59, 61 59, 61 59.2,61.1,59.1 59.2,61.1,59.1
59.2, 584, 61.1, 58.1,|59.2, 584, 61.1,
P95 3 3 58, 59, 61 58, 59, 61 591 58.1, 5.1
P96 1 0 57 None 57.3 None
P97 0 N/A | None N/A None N/A
P98 2 N/A |57, 61 N/A 61.1,57.1 N/A
P99 1 N/A | 59 N/A 59.2,59.1 N/A
P100 |0 N/A | None N/A None N/A
P101 |2 N/A |57, 61 N/A 61.1,57.1 N/A
P102 1 N/A | 57 N/A 57.3 N/A
P103 |0 N/A | None N/A None N/A
59.2, 58.4, 61.1, 58.1,|59.2, 584, 61.1,
P104 |3 3 58, 59, 61 58, 59, 61 591 58.1, 5.1
59.2, 584, 61.1, 58.1,|59.2, 584, 61.1,
P105 |3 3 58, 59, 61 58, 59, 61 591 58.1, 5.1
P106 |1 N/A | 61 N/A 61.1 N/A
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Note: An expanded version of Table 4.4 with additional columns has been provided in Supp. Information
(Suppl. Table S4.6). nC, number of groups predicting the disease class correctly, among all submissions from
each group (counting ties, except in cases where all 14 disease classes were assigned equal probability; nCV,
number of groups predicting both the correct disease class and at least one variant noted by Hopkins; correct
groups, a list of groups in which the disease class was predicted correctly in at least one submission (counting
ties, except in cases where all 14 disease classes were assigned equal probability).Groups are numbered as in
Table 4.2; correct groups, with variant, a list of groups with at least one prediction of the correct disease class,
and also at least one variant noted by Hopkins (N/A in this field indicates that Hopkins did not note any
variants). Predictions are numbered as in Table 4.2; correct predictions, with variant, same as above, but
indicating individual submission numbers that were correct.

4.4.4 Commentary on novel variant predictions

One large limitation in the design of this challenge is that only a subset of the sequence
data was clinically analyzed in each patient. This allowed for the possibility of false
negatives, where true pathogenic variants may have been present in genes that were not
analyzed by the lab. Further, Internal Review Board (IRB) restrictions prevented the data
provider from acting as an assessor for the challenge or providing detailed feedback on
variant predictions in genes that were not clinically analyzed. In addition, specific variants
cannot be listed in the following discussion. In the future, advanced planning is needed to
ensure that the appropriate consents and approvals are in place to maximize the use of
clinical data. Ideally, a dataset should be fully analyzed by a clinical lab and patients should
be specifically asked for consent that their data be used for research purposes such as the
CAGI challenge. This would allow a more critical analysis of the challenge data, would
eliminate the possibility of unwanted incidental findings, and would allow more in-depth
discussion of challenge results. Clinical data from human patients makes an interesting
challenge set, but data from human subjects involve privacy concerns vastly different from
that of laboratory model organisms.

The CAGI-4 Hopkins clinical panel challenge gives us an opportunity to test state-of-the-
art genetic analysis pipelines on a subset of the data that would be obtained from complete
exome sequencing of patients, and to explore potential advantages and disadvantages of
genomics-driven approaches to clinical testing versus the phenotype-driven approach

currently employed by Hopkins.
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Table 4.5: Frequency with which each
combination of groups correctly diagnosed
patients.

Table 4.6: Frequency with which each combination of
groups correctly diagnosed patients, and also noted a
Hopkins variant.

Nr. of Groups predicting correct Nr. of Groups predicting correct disease &

patients disease class patients variant

31 No group predicted correct disease 63 (Hopkins did not note any variants)

18 57 (Note: 7 from 57.1) 11 58, 59, 61

10 58, 59, 61 1 (No group predicted disease and variant
correctly)

6 61 4 61

5 59 4 60

4 60 3 59, 61

4 57, 61 2 59

4 57, 59, 61 2 58, 60, 61

3 59, 61 1 60, 61

3 58,59 1 58,61

3 57, 58, 59, 61 1 58

3 57,58 1 57, 59, 61

2 58, 60, 61 1 57,59, 60, 61

1 60, 61 1 57, 58,59, 61

1 58, 61

1 58,59, 60, 61 Notes: This Table summarizes the number of times

1 58 each combination of groups correctly diagnosed

1 57, 60 patients and predicted at least one variant noted by

1 57, 59, 60, 61 Hopkins, as shown in the “correct groups with variant”

1 57,59 column of Table 4.4

1 57, 58, 61

1 57, 58, 60

1 57, 58, 59, 60, 61

Notes: This Table summarizes the number of times
each combination of groups correctly diagnosed
patients, as shown in the “correct groups” column
of Table 4.4.

In some cases, multiple groups reported the same causal variant for a case where Hopkins

did not identify a variant. Since Hopkins only analyzed the genes ordered by the physician,

it is possible that there were true pathogenic variants identified in the challenge that were

not included on the answer key, such cases are elaborated on below. In order to explore the

potential complication of false positives in the genomics-driven approach, we also

examined cases in which CAGI-4 predictors consistently predicted the wrong disease class

along with the same causal variants. Several of these cases are described below:

Patient P7 — Groups 57 (submission 4), 58, 59, and 61 all predicted Telomere Shortening

Disorders, and the latter 3 groups consistently noted a missense variant in 7ERT. The
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patient’s diagnosis was Cystic Fibrosis and CF-Related disorders, and Hopkins did not note
any reportable variants and did not analyze the TERT gene. The TERT variant is described
in the literature; it leads to telomere shortening and is involved in bone marrow failure.
Telomere shortening due to mutations in 7ERT is known to be involved in pulmonary
fibrosis. Clinical presentation of pulmonary fibrosis is very different from cystic fibrosis.
This TERT variant is annotated in ClinVar as involved in pulmonary fibrosis, but literature
support for this phenotype is unclear. The variant is found in 120 ExAC participants
including 2 homozygotes.

Patient P36 — Groups 57 (submission 2), 58, 59, and 61 all predicted Liddle syndrome, with
the same missense variant in SCNNIG. The patient’s diagnosis was Diffuse Lung Disease.
The SCNNIG variant is a known pathogenic variant observed in two independent patients
with bronchiectasis. The predictors presumably predicted Liddle syndrome because the
same gene is involved in that disorder. This is likely an example of another false positive
prediction common to multiple groups. Hopkins did not note a reportable variant for this
patient and the SCNNIG gene was not analyzed.

Patient P37 — Groups 57 (submission 2), 58, 59, and 61 all predicted Marfan syndrome with
the same variant, a missense variant in FBNI. The patient’s diagnosis was Diffuse Lung
Disease. FBNI is involved in Marfan syndrome and in other cardiac phenotypes. A
subgroup of Marfan patients develop lung emphysema, which is possibly a reason for the
predictions. The missense variant is a known low frequency polymorphism annotated as
“benign” in ClinVar, so this is likely a false positive prediction. Hopkins did not note any
variants for this patient and did not analyze the FBN1 gene.

Patient P14 — Groups 57 (submissions 3 and 4), 58, 59, and 61 all predicted Cystic Fibrosis
and CF-Related disorders, along with one to two out of four variants in CFTR. The patient’s
diagnosis was Diffuse Lung Disease, and Hopkins did not analyze the CFTR gene. All the
predicted CFTR variants have previously been reported. One is a common polymorphism,
and unlikely to contribute to disease. Another is intronic, and it is not clear whether it may
be involved in splicing. The remaining two CFTR variants were rare missense variants.
One missense variant is seen in EXAC 739 times including once in the homozygous state,
and there is no information on its pathogenicity reported in the literature or public
databases. The second missense variant is seen in EXAC 623 times including once in the
homozygous state, and there is conflicting evidence reported in the literature regarding its
pathogenicity. The latter two variants appear to be too common to be causal in this case,

but as mentioned above, CF studies may be included in ExAC. It would be prudent to study
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the background frequencies of these two variants in further detail, in order to decide

whether they are likely to be causative.

4.5 Discussion

Overall, we found that current state of the art computational prediction methods does a
reasonable job of predicting clinical phenotype from genotype, even when blinded to
clinical diagnoses. At the same time, current genotype-driven prediction methodologies
generate false positives and false negatives at a rate unacceptable for clinical use. In cases
where the Hopkins lab reported a variant, predictors did relatively well, with at least one
group correctly identifying the disease class in 36 of 43 patients (84%), and at least one
group identifying the correct disease class and variant in 33 of 43 cases (77%). In cases
where the Hopkins lab did not find a reportable variant in the genes they analyzed, at least
one group correctly matching the disease class in 39 of 63 patients (62%). In the latter
cases, methods based on machine learning (SVM) technology appeared to be most effective
at correctly identifying the disease. Interestingly, despite the ability to correctly match
genotype to phenotype, the SVM-based method could not correctly identify the pathogenic
variant. It is unclear what is happening in cases where groups correctly identify the disease
class, but not the causal variant. In retrospect, it would have been prudent to include a list
of gene-disease associations as well as modes of inheritance to the predictors to aid in the
matching process. Different groups performed better depending on which metric was used;
there was no clear “winner” that dominated performance across all metrics. Indeed, every
group predicted at least one patient’s disease class correctly that no other group predicted
correctly. This result suggests that a “meta-predictor” or a human clinical expert with access
to all groups’ results might improve on the performance of each individual group.
Currently, clinical genetic testing is almost entirely phenotype-driven: given a clinical
diagnosis, laboratories analyze variants in genes known to be relevant to the diagnosed
disease. This is partially due to the historic technical limitations on genetic testing, e.g.,
sequencing costs limited the number of genes for which data could be obtained. The
standards for reporting variants to the patient are also currently conservative, in part
because common, benign polymorphic variants have caused many false positives in past
genetic analyses 919 However, as whole-exome and whole-genome sequencing become
more economical, the phenotype-driven paradigm may be replaced by a genomics-driven

approach, in which all rare, putatively functional variants in a patient’s genome are first
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identified, then evaluated based on the plausibility that they may be pathogenic. The
genomics-driven approach has the potential for higher sensitivity, due to more genes being
analyzed, and also has the potential to diagnose diseases not identified by the referring
physician. However, the main tradeoff compared to phenotype-driven approaches is a
potentially higher false positive rate. Multiple CAGI-4 groups in the Hopkins challenge
were in consensus in identifying several possible causative variants that were not identified
by the current panel testing paradigm. They also identified several other variants that were
likely to be false positives. Distinguishing these two possibilities, and identifying which
variants to report to the patient, is a topic that requires further research. The American
College of Medical Genetics and Genomics has published guidelines for the interpretation
of sequence variants in order to help codify variant assessment '**. However, even when
adhering to these guidelines there are still elements of variant interpretation that are
subjective and vary between labs '*+16°_ Given large databases of “control” exomes (i.e.,
without a known phenotype), researchers could develop statistical models to predict

133 Such models could inform the

whether particular variants are in fact causative
development of new statistically justified reporting standards based on, for example,
particular thresholds on the probability that the prediction of a causal variant is a false
positive. This challenge was designed to reflect the range of cases seen in the Hopkins
diagnostic lab (Figure 4.1A). This includes a high percentage of cases for which no likely
pathogenic variant was identified, despite the patient presenting with a clinical phenotype.
Even for clinical exome sequencing, nearly 75% of cases are negative 1142, Negative cases
proved especially challenging to participants, as ‘phenotype not discernable’ was not listed
as a matching option. Despite the fact that no pathogenic variants were identified by the
Hopkins lab, most groups were able to make a disease prediction and to identify putative
pathogenic alleles in these negative cases. Indeed, the reason data from all 83 genes was
included in the challenge was to highlight the difficulty in interpreting a large data set of
rare variants that are unrelated to the patient’s phenotype. The presence of negative cases
in the data set reflects clinical practice and cautions on the over-interpretation of rare
variants. Unlike prior prediction challenges, where the activity of an enzyme had been
quantitatively measured in the laboratory, there was no definitive answer key for this
challenge. The predictors were asked to match sequencing data to a phenotype, and many
groups did so by first identifying a causative variant. Only in a minority of cases (~23% in
this dataset) could it be said with high confidence that a variant was likely contributing to

disease in a patient. When a clinical laboratory reports a variant as Pathogenic, this is often
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because the variant has previously been reported in patients with the same phenotype or the
nucleotide change introduces a premature termination codon in a gene where loss-of-
function variants cause disease '**. Thus, with a foundation in clinical genetics and access
to online resources one could identify a large proportion of the ‘Pathogenic’ variants in this
dataset. However, many of the variants detected in the clinical laboratory are rare missense
or synonymous variants that have not previously been reported in the literature; these are
almost always classified as variants of uncertain clinical significance. It is for these variants
of uncertain significance, that are difficult to interpret and for which there is no answer key,
that better assessment tools are needed. A CAGI challenge focused on the interpretation of
variants of uncertain clinical significance would be more relevant to current clinical
genetics practice. A clinical lab may upgrade a variant’s classification from ‘Uncertain’ to
‘Pathogenic’ based on new clinical information, segregation of a variant within a family,
or identification of the variant in multiple unrelated individuals. Many molecular diagnostic
labs maintain internal variant databases; such databases could be mined to curate a
challenge set of ‘Uncertain’ variants for which there is unpublished data to support
pathogenicity. In this proposed challenge, participants would have to correctly identify
these ‘Pathogenic’ variants from a set of ‘Uncertain’ variants (for which there was
unpublished data that they were NOT likely to contribute to disease). This would more
directly test the challengers’ ability to predict pathogenicity without relying on allele
frequency or online databases and without requiring knowledge of gene-disease
associations. Assessment of the challenge would benefit from having fully vetted data and
a clear answer key. This type of challenge, while still lacking a phenotype component,
would more accurately mirror the clinical challenge of interpreting rare variants. Obtaining
this data set would also invite communication between clinical testing labs (both academic
and commercial) and the research community. In this vein, the development of a clinically
useful variant assessment tool will require collaboration between clinical geneticists and
data scientists. Discussions resulting from the Hopkins Clinical challenge demonstrated
that although most participants incorporated genetic principles into their pipelines, they
approached variant interpretation in a very different manner than a clinical laboratory. In
future challenges, it would be interesting to pair an informatics group with a clinical group
as a challenge team, particularly for whole exome sequencing challenges. Ideally, the back-
and-forth between clinical and informatics groups would produce a method that could
outperform that of either group alone. Diverse collaborations at CAGI could help bridge

the communication gap between fields and pave the way for development of better tools.
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S  Design of a diagnostic gene-panel for the
diagnosis of neurodevelopmental disorders

5.1 Summary

Neurodevelopmental disorders (NDDs) are common genetic conditions including clinically
heterogeneous phenotypes, such as intellectual disability (ID) and autism spectrum disorder
(ASD)!%. Due to a wide genetic heterogeneity and recurrent overlapping clinical features,
single-gene testing for diagnosis of NDDs is especially challenging?'??. As consequence,
high-throughput methods, as NGS targeted gene re-sequencing, are increasingly employed
for NDD genetic testing?!*2. This part of my project deals with the identification of a subset
of genes involved in the ID/ASD co-morbidity to develop a new, cost effective,
comprehensive gene panel for NDD diagnosis. Candidate ID and ASD gene lists were
generated by gathering data from public databases, exome sequencing and meta-analysis
studies. These lists were filtered, selecting only known causative genes from literature, top
ranked by gene prioritization, and meeting network parameters. The final panel set resulted
in a manually curated gene list (74 genes), used to design the diagnostic gene-panel, which
is currently used for clinical screening of affected patients at the Molecular Genetics of

Neurodevelopment Laboratory (Paediatric Department, University of Padova).

5.2 Introduction

Neurodevelopmental disorders are common highly heritable diseases, including autism
spectrum disorder and intellectual disability %67, ASD is the most severe manifestation
among NDDs, with a high prevalence in population (1%, 3-4% combined with ID)!¢7,
Common features shared among ASD patients are the restrictive and stereotypic behaviors,
difficulties in reciprocal social interactions and communication. These clinical conditions
are mostly associated with psychomotor development delay, intellectual disability, and
seizures” %819 D is defined by a below average intellectual function (IQ <70), often
associated with limitation in adaptive skills'®’. ID can arise alone or in paired to other
clinical phenotypes, such as craniofacial dimorphisms, neurologic impairment, seizures and

behavioral issues'®’. As consequence, both ASD and ID show a high level of comorbidity,



with the 70% of ASD patients presenting mild to severe ID, and at least 10% of ID affected
individuals showing also autism features'¢’. This phenomenon is linked to the impairment
of closely related molecular mechanisms in both pathologies”!®. Indeed, ASD-ID
associated genes converge on common pathways involved in synaptic development,

170 Moreover, alterations in

plasticity and signaling in neurons of central nervous system
genes belonging to shared pathways (e.g. SHANK2, NRXN1, and CNTNAP?2) are associated
with ASD as well as ID'7, while more than 1,000 causative loci were identified so far®'.
Pathogenic mutations in the known ASD-ID genes are both de novo and germline rare
variants, which comprise chromosome abnormalities, copy-number variation (CNV) and
single-nucleotide variation (SNV)’. In addition to the high genetic heterogeneity, the
causative variants present a very low prevalence in their respective patient populations,

posing even more challenges to diagnostic use of DNA testing'®’

. As consequence, high-
throughput methods, as targeted gene re-sequencing, are increasingly employed for NDD
genetic testing?'??. In this context, next generation sequencing (NGS) analysis of selected
gene panels holds many advantages. Firstly, this approach allows of screening dozens of
genes with high coverage in a single experiment pairing with a considerably moderate
sequencing costs. Secondly, the restricted targeting decreases the incidental finding
occurrence, allowing to identify rare variants with large effect sizes in an enriched target
space®!”!. For these reasons, we worked toward the development of a novel comprehensive,

and cost effective, gene panel for ASD-ID diagnosis. The gene panel was applied to identify

rare de novo SNVs that may be causative for sporadic and non-syndromic ASD-ID cases.

5.3 Methods

5.3.1 Patient cohort

The patients were referred from the clinical geneticists of seventeen Italian public hospitals
with a diagnosis of non-specific neurodevelopmental disorder. The enrolled patients have
negative high-resolution karyotype or array-CGH, Fragile-X test and metabolic screening.
Clinical data were collected with a standardized record describing the clinical and family
history, the disease phenotype (i.e. auxological parameters, neurological development,
physical features, behavioral profile) and the presence of associated disorders. Data from
the neurophysiological profile (i.e. ictal and interictal video-EEG-polygraphy, during sleep

and wakefulness, evoked potentials when appropriate) and MRI brain, were also collected.
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Table S5.1 summarizes the clinical data of the patients. A written informed consent was
obtained from all the patient’s parents or legal representatives. This study was approved by

the Local Ethic Committee of the University-Hospital of Padova

5.3.2 Gene selection

For the construction of an efficient and low-cost GP, we selected the most promising ID
and/or ASD genes gathering data from public databases (AutismKB

32 and SFARI https:/sfari.org/resources/sfari-gene >%),

http://autismkb.cbi.pku.edu.cn
OMIM, and PubMed. In particular, candidate genes were extracted from the recent exome
sequencing and meta-analysis studies (Table S5.2). We collected a list of 972 genes scored
according to the recurrence in different sources, and annotated for the clinical phenotype,
gene function, subcellular localization and interaction with other known causative genes.
Separated lists were generated considering ASD or ID association. Using data from
STRING 9.0 (https:/string-db.org)?’, a disease protein-protein interaction (PPI) network
was built starting from 66 high confidence genes (intersection list), shared both by ASD
and ID gene lists. The emerging features of the network were assessed by an enrichment
analysis with Enrichr webserver’’. The intersection list was used as training set for the
Endeavour gene prioritization (https://endeavour.esat.kuleuven.be/) **. Hub direct
interactors (STRING score above 0.45) belonging to the top ranking prioritized list, but not
included in the intersection, were also included in the most promising candidate genes list.
The inclusion conditions are: i) either the gene introduction in the network allows to
connect a one or more unconnected nodes (i.e. genes) to the core gene set, ii) or the gene is
one of the connected nodes after linker introduction. To this list, we added also the top
ranked ID or ASD associated genes only (genes with at least 5 evidences for ID or ASD).
The final panel set resulted in a manually curated gene list (74 genes), comprising the
selected known causative genes, top ranked by gene prioritization and meeting PPI network

parameters.

5.3.3 Gene Panel Sequencing

The nucleic acids were extracted from patients’ blood samples using Wizard genomic DNA
Promega Kit (Promega Corporation). Multiplex, PCR-based primer panel were designed
with Ion AmpliSeq™ Designer (Thermo Fisher Scientific) to amplify all the exons and the
flanking regions (10 bp) of the 74 selected genes. The amplicon libraries were prepared



with Ton AmpliSeq Library kit v2.0 (Thermo Fisher Scientific) with a barcoding protocol.
The template preparation and enrichment were performed with Ion One Touch 2 and Ion
One Touch ES System (Thermo Fisher Scientific). The sequencing was performed on the
Ion PGM System using the lon PGM Sequencing Hi-Q Kit, and Ion 316 v2 and Ion 318 v2
BC chips (Thermo Fisher Scientific).

5.3.4 Variant ranking

Reads alignment to the human genome reference (hgl9/GRCh37) and variant calling were
performed with the Ion Torrent Suite Software v5.02 (Thermo Fisher Scientific), whereas
SNVs were annotated using WANNOVAR!72, Detected variants were ranked for their
allelic frequency (AF) in the 146 patients and in control cohorts of 1000G '*°, ExaC 73,
and ESP6500 '7* databases. We excluded those SNVs found in more than two patients of
our cohort and with AF higher than expected for the disorder’. SNVs with low frequency
were filtered considering the consensus among eight computational methods (SIFT?,
Polyphen-22> HDIV and HVAR version, Mutation Taster !>, Mutation Assessor >,
FATHMM!”6, MetaSVM !77, MetaLR 77, and conservation scores (CADD®’, GERP++ %,
PhyloP 78 SiPhy'”). The selected SNVs were also evaluated in silico for their impact on
splicing and on protein structure and function. The Integrated Genome Viewer (IGV)

platform was used to exclude errors in the alignment process around selected SNVs.

5.3.5 Insilico analysis of candidate variants

The canonical protein sequences were retrieved from UniProt!®?

, and the protein domain
predicted by InterProScan'®!. The orthologous sequences were downloaded from OMA
Browser’?> and aligned with MAFFT” to evaluate evolutionary conservation. When
available, the crystal structures were retrieved from PDB!®2. Otherwise, the domain
structures templates were searched using HHpred®® and the structure folding predicted with
MODELLER *@ (automatic best template selection). The disorder content and the presence
of short linear motifs for protein interactions were assessed combining MobiDB 3.0%,

ELM!'®3 and using the interactive exploration tool ProViz®.

5.3.6 Sanger sequencing validation

The candidate variants were validated by Sanger sequencing. When the DNA samples were

available, patient relatives were sequenced to assess familiar segregation. The PCR
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products were directly sequenced using the BigDye® Terminator version 3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA, USA). The reaction was run in an
ABI Prism 3100XL automated sequencer (Applied Biosystems, Foster City, CA, USA) and
the results were analyzed with Chromas 2.6.4 software (Technelysium Pty Ltd, Australia).

5.4 Results and discussion

5.4.1 ASD/ID shared genes define a core network, enriched for regulation of

membrane excitability and synaptic trafficking

The filtering pipeline allowed us to select 66 genes shared by both the ASD and ID gene
lists, and confidently linked to the comorbidity between the two pathologies. As mutations
in disease associated genes generally yield perturbations in key cellular pathways!®, we
decided to reconstruct the intersection gene network according to the STRING 9.0 protein
interaction annotations (Figure 5.1). A network is defined by means of nodes (proteins
encoded by selected genes) and edges (interactions), where the number of connection
linking one node to another reflects the centrality, and thus the importance, of the
gene/protein within the considered network'8. STRING based analysis revealed that genes
the intersection list forms a highly interconnected core set of 30 nodes, a small group of
DMD-related genes (referred hereafter as “quartet”), and two pairs, i.e. TANC2-KIRREL?
and CC2D1A-DEAF1 (Figure 5.1). The core gene set comprises multiple genes involved
in neuronal membrane excitability regulation (e.g. SCN24'%4, GRI2B'®, and SLC6A41'%%),
which is a crucial factor in synapse formation during neurodevelopment'®’. Conversely, the
“quartet” is characterized by genes related to the muscle functionality, such as DMD and
DAGI. The DMD gene encodes for the dystrophin, a protein that interacts with many
glycoproteins, e.g. the Dystrophin-Associated Glycoprotein 1 (DAG1). The dystrophin-
glycoprotein complex links cytoskeletal components to extracellular matrix, regulating
cellular stability'®®. This mechanisms is prevalently studied in muscle fibers, as mutations
in DMD gene are generally associated with the Duchenne muscular dystrophy onset!®,
However, increasing lines of evidence highlight how mutations in this gene can be related
to developmental cognitive and behavioral abnormalities, either in presence or in absence
of neuromuscular symptoms'®192. As regard the pairs, the role in ASD-ID comorbity of

CC2DI1A and DEAFI mutations is well established!”*!'*, whereas KIRREL3 is mainly



associated with intellectual disability'®®, and the TANC2 involvement in NDDs is mainly

inferred from its functions in synapse modulation'*%1?’.
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Figure 5.1: Network analysis results for intersection gene list.
Graphical representation of connectivity among high confidence intersection list. Interactions are represented
with grey lines between nodes/genes (light blue).

In the latter scenario, the integration of the gene ontology terms and phenotypic features
could be useful to provide a more general context to the functional consequences of
gene/protein alterations'®. Thus, the intersection list was used for the enrichment analysis,
aimed to better characterize the affected molecular pathway, and the phenotypes resulting
by mutations in our genes. Unsurprising, our gene set is enriched in terms related to
regulation of synaptic plasticity and neuronal transmission, as well as to post-synaptic
localization (Table S5.3). More interestingly, HPO term enrichment shows that our genes
are both likely linked to autism typical features, e.g. stereotypic, aggressive and abnormal

167 Moreover, the clinical features, like the

social behavior, and to intellectual disability
tented upper lip vermilion and the deep set eyes, are characteristic of pathologies where
autism and intellectual disability are comorbid (e.g. the Pitt-Hopkins syndrome'®®), further

supporting the effectiveness of this gene selection method.

80



5.4.2 Network expansion

Once the clinical impact of our high confidence gene list was established, we decided to
expand the protein network, taking into consideration the previously excluded top ranked
ASD and ID genes. These genes were prioritized with Endeavour®*. The software integrates
many other sources (e.g. gene expression, functional annotation and regulatory
information), allowing to rank the genes by a comprehensive score based on the training

set, i.e. the intersection list**

. A perturbation-response inspired method was employed to
determine the inclusion of prioritized genes in the candidate gene panel (GP) list. Briefly,
we considered the protein network built on the intersection list and how the introduction of
the prioritized gene affects network connectivity. Genes were introduced in the network
following the Endeavour ranking order. If the number of connections among intersection

genes increased after introduction, both the prioritized gene (linker) and connected gene

are added to the final GP list (Figure 5.2).
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Figure 5.2: Gene introduction approach for intersection network expansion.

Genes we introducted according Endeavour prioritization ranking order. The introduction of a new node
(gene/protein) does not affect protein connectivity (A), or can increase the number of edges among
intersection genes/proteins (B). C) Effects of the introduction of prioritized genes on network connectivity.
Notably, after introducing the 234" gene, the number of interactions reaches plateu.



Interestingly, we prioritized 906 genes, but after the introduction of the 234™ gene, the
number of interactions reaches the plateu, indicating that the other genes are not relevant
for our disease protein network. This analysis allowed us to add seven genes, two linkers
(CREBBP, and CASK), and four connected nodes (MEDI13L, KIRREL3, ASHIL and MIB1)
to the candidate list, which were also mantained in the final GP. Except for the MIBI
encoded protein (an E3 ubiquitin-protein ligase), the linker/connected genes are either
scaffold proteins or chromatin modifiers, highlighting the important role of these two

protein classes in synapse functioning (Table S5.4).

5.4.3 The ASD/ID gene panel screening results

After the network expansion, the candidate encoding regions were manually curated, and
the resulting list was used for the diagnostic panel design (Table 5.1). The final ASD/ID
gene-panel (GP) contains 29 Fragile X Mental Retardation protein targets, 21 genes
encoding postsynaptic proteins (including TANC2 gene) and 16 chromatin modification
factors (Tables S5.4)

]

5
Gene Chr. band Associated syndrome (Phenotype MIM) = g

L =

EE
ADNP 20q13.13 Helsmoortel-Van Der Aa Syndrome AD
ANKRDI11 | 16q24.3 Kbg Syndrome AD
AP1S2 Xp22.2 _ XL
ARFGEF2 | 20q13.13 Perlvel?trlcular Heterotopia With Microcephaly, Autosomal AR

Recessive

ARIDIB 64253 Coffin-Siris Syndrome, Mental Retardation, Autosomal AD/AR

Dominant 12

Corpus Callosum, Agenesis Of, With Abnormal Genitalia,
Lissencephaly, X-Linked, 2, Mental Retardation, X-Linked,
ARX Xp21.3 With Or Without Seizures, Arx-Related, Epileptic | XLR
Encephalopathy, Early Infantile 1, Partington X-Linked
Mental Retardation Syndrome

ASHIL 1922 AD

Alpha-Thalassemia Myelodysplasia Syndrome, Alpha-
ATRX Xqg21.1 Thalassemia/Mental Retardation = Syndrome, Mental | XLR
Retardation-Hypotonic Facies Syndrome

Fg Syndrome, Mental Retardation And Microcephaly With

ASK Xpll.4 XLD
CAS P Pontine And Cerebellar Hypoplasia
CC2D1A 19p13.12 Mental Retardation, Autosomal Recessive 3 AR
(Continues)
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Table 5.1 (Continued)
3
s
Gene Chr. band Associated syndrome (Phenotype MIM) z g
P =
EE
CDKLS5 Xp22.13 Epileptic Encephalopathy, Early Infantile, 2; Eiee2 XLD
CHD8 14ql1.2 AD
CNTNAP2 | 7q35-q36 Pitt-Hopkins-Like Syndrome 1 AD
CREBBP 16p13.3 Rubinstein-Taybi Syndrome 1 AD
CTNNBI 3p22.1 Mental Retardation, Autosomal Dominant 19 AD
DEAF1 11p15.5 Mental Retardation, Autosomal Dominant 24 AD
DYRKIA | 21g22.13 Mental Retardation, Autosomal Dominant 7 AD
EHMT1 9q34.3 Kleefstra Syndrome AD
FMRI1 Xq27.3 Fragile X Trem(.)r/Ata.ma Syndrome, Fragile X Syndrome , XLD
Premature Ovarian Failure 1
FOXG1 14q12 Rett Syndrome AD
FOXP1 3p13 Mente'll Retardat.lo'n With Language Impairment And With AD
Or Without Autistic Features
GABRB3 15q12 _ AD
GADI1 2q31.1 Cerebral Palsy, Spastic Quadriplegic AR
GATAD2B | 1g21.3 Mental Retardation, Autosomal Dominant 18 AD
GRIA3 Xq25 Mental Retardation, X-Linked XLR
GRIK2 6q16.3 Mental Retardation, Autosomal Recessive 6 AR
Epilepsy, Focal, With Speech Disorder And With Or
GRIN2A 16p13.2 Without Mental Retardation; Fesd AD
Mental Retardation, Autosomal Dominant 6, With Or
GRIN2B 12p13.1 Without Seizures , Epileptic Encephalopathy, Early Infantile AD
HDAC4 2q37.3 _ AD
ILIRAPL1 | Xp21.2-Xp21.3 | Mental Retardation, X-Linked 21 XLR
IQSEC2 Xpl1.22 Mental Retardation, X-Linked 1 XLD
KATNAL2 | 18q21.1 _ AD
KDMSC Xp11.22 Mental Retardation, X-Linked, Syndromic, Claes-Jensen XLR
Type
KIRREL3 11924.2 Mental Retardation, Autosomal Dominant 4 AD
MBD5 2q23.1 Mental Retardation, Autosomal Dominant 1 AD
MCPHI1 8p23 Microcephaly 1, Primary, Autosomal Recessive AR
Mental Retardation, X-Linked, Syndromic 13, Lubs X-
MECP2 Xq28 Linked Mental Retardation Syndrome, Encephalopathy, | XLR
Neonatal Severe, Rett Syndrome
MED12 11q24.2 Oh'do Syndrome, X-Linked , Opitz-Kaveggia Syndrome, AD
Lujan-Fryns Syndrome
MED13L 122421 Mental Retardation And Distinctive Facial Features With Or AD

Without Cardiac Defects

(Continues)




Table 5.1 (Continued)

5]

-
Gene Chr. band Associated syndrome (Phenotype MIM) g é;

E =¥
MEF2C 5ql4.3 Mental Retardation, Autosomal Dominant 20 AD
MIB1 18ql1.2 Left Ventricular Noncompaction 7 AD
MTF1 1p33 _ AD
MYHI10 17p13.1 _ XL
NLGN3 Xql3.1 _ XL
NLGN4X Xp22.32-p22.31 | Mental Retardation, Usceptibility To Autism, X-Linked XL
NRXNI 2pl6.3 Pitt-Hopkins-Like Syndrome 2 AR
NTNGI 1p13.3 _ AD
oM N, el i Gl by
PHF21A 11p11.2 _ AD
PHFS Xpll.22 Siderius X-Linked Mental Retardation Syndrome XLR
PPP2R5D | 6p21.1 Mental Retardation, Autosomal Dominant 35 AD
PQBP1 Xpl1.23 Renpenning Syndrome 1 XLR
PTCHDI Xp22.11 _ XLR
e Pl el S Covin St
PTPN4 2q14.2 _ AD
RAB39B Xq28 _ XLR
RAIl 17p11.2 Smith-Magenis Syndrome AD
RELN 7q22 Lissencephaly 2, Epilepsy, Familial Temporal Lobe, 1 AD/AR
RPS6KA3 | Xp22.12 Mental Retardation, X-Linked 19, Coffin-Lowry Syndrome | XLD
SATB2 2qg33.1 Glass Syndrome AD
et sy Sl Vil i Snions Merl |,
SHANK?2 11q13.3-q13.4 _ AD
SHANK3 22q13.33 Phelan-Mcdermid Syndrome AD
SLC6A1 3p25.3 Myoclonic-Atonic Epilepsy AD
SLC9AG Xq26.3 ?;Izal Retardation, X-Linked, Syndromic, Christianson XLD
SYNGAPI | 6p21.32 Mental Retardation, Autosomal Dominant 5 AD
TANC2 17q23.2 _ AD
TBR1 2q24 _ AD
TCF4 18q21.2 Pitt-Hopkins Syndrome AD
TRIO S5pl5.2 _ AD

(Continues)
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Table 5.1 (Continued)

5]

9

=
Gene Chr. band Associated syndrome (Phenotype MIM) .*::; g

o

)

il
TUSC3 8p22 Mental Retardation, Autosomal Recessive 7 AR
UBE3A 15q11.2 Angelman Syndrome AD
WAC 10p12.1-p11.2 Desanto-Shinawi Syndrome AD

Table 5.1: ASD/ID gene panel list.

For each gene the chromosome location, the related OMIM syndrome, and inheritance pattern (AD =
autosomal dominant, AR = autosomal recessive; XLD = X-linked dominant; XLR = X-linked recessive) are
reported.

The panel was employed in clinical screening of 146 individuals referred to the Molecular
Genetics of Neurodevelopment Laboratory. An average of 94,8% of the target regions
achieved a read depth of 20X and a mean depth of coverage of 263X for each individual.
Overall, we detected in forty-seven of the subjects analyzed (47/146) fifty-seven rare single
nucleotide variants, not yet identified or with low frequency in public databases. Sixteen of
these rare SNV are likely disrupting variants, since they are predicted to code for truncated
proteins (14/57) or to affect transcript splicing (2/57). The other rare SNVs are missense
(thirty-nine). Eleven missense variants are classified as possibly causative, since they are
predicted to be deleterious by several computational tools, located in conserved positions
critical for the protein function and supported by segregation analysis. Among the identified
candidate disease-causing variants (Table 5.2), four were X-linked mutations (in CASK,
MECP2 and RAB39B), nineteen involve autosomal dominant genes (KATNALZ,
ANKRDI11, ARIDIB, DYRKI1A, EHMTI, FOXPI, GRIN2B, SATB2, SETBP1, SHANK3,
SLC6A1, SYNGAPI, and TRIO), and five were detected in autosomal recessive genes
(CC2DI1A, GADI, GRIK2 and TUSC3). However, we identified the second possible
causative mutation, a splice site variant, only in the case of GADI gene. In four cases, the
pathogenic variants were already described in literature in patients with a phenotype
consistent with the clinical conditions of our probands (GRIN24 ¢.G2087A'°, MECP?2
c.C502T?%, MECP2 ¢.2194 2198del®®! and SATB2 c¢.C715T?%?). Familial segregation
analysis has been performed in the 47,9 % (70/146) of patients carrying rare SNVs, and in
three cases allowed to support the pathogenicity of the variant. The remaining twenty-eight
missense SNVs were classified likely pathogenic, as segregation analysis is still ongoing,

and thus, cannot support their role in disease pathogenesis (see Table S5.5).
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5.4.4 Insilico analysis of possible causative variants

Further evidence supporting the causality between missense SNVs and clinical phenotype
was provided by the evaluation of the variant effects on protein function/structure. In the
following section, two examples are reported, i.e. DYRKIA p. K175Q and EHMTI p.
G1193R.

DYRKI1A p. K175Q

DYRKIA (dual specificity tyrosine-phosphorylation-regulated kinase 1A) is a protein
kinase that plays a key role in neurogenesis, neuronal differentiation and proliferation and
synaptic plasticity’®. The encoding gene maps to the Down syndrome critical region of
chromosome 21, and extra copy of DYRK A accounts for the majority of Down syndrome
clinical phenotype. However, heterozygous single-nucleotide variants resulting in DYRK 1A
gene haploinsufficiency have been demonstrated to be associated with ID and mental
retardation’”>. DYRKI1A p. K175Q substitution was detected in the patient 2222 01, who
presented severe ID, microcephaly, absent speech, behavioral and movement

abnormalities, and corpus callosum agenesis.

/f, 4vu2.pdb
v
NLS % Y R Poly-His Catalytic
b 599-602
17134 ('f to7eio pocket
~—— B Kinasedomain § BB R
159-479 Poly-Ser SIT repeat
509-515 656-671
&
& &
"g\ \Z&Q
L Q
B K175
H.sapiens ~ \WMD IDS L 1GKGSFGAVVKAYDRVEQEWVA
P.troglodytes \WMD 1DSL 1 GKGSFGQVVKAYDRVEQEWVA |
M.musculus WMD) 1DSL 1 GKGSFGQVVKAYDRVEQEWVA |
Renorvegicus  \WMD 1DSL I GKGSFGQVVKAYDRVEQEWVA |
G.gallus WMD) 1DSL | GKGSFGQVVKAYDRVEQEWVA |
D.rerio WMD) 1DSL | GKGSFGQVVKAYDRAEQEWVA |

D.melanogaster | AF ILEVIG] FGAV IRALBHKTNTHVAI

Figure 5.3: DYRK1A missense mutation affect catalytic pocket of kinase domain

A) Variants identified in our patient cohort are mapped to the DYRK 1A domain architecture (red: possibly
causative, green: likely benign). Protein sequence presents regions biased toward polar (serine and threonine)
and aromatic (histidine residues). NLS = nuclear localization signal. B) DYRK1A p. Lys175 and neighboring
residues are conserved among orthologous sequences. Amino acids are colored by conservation, according
to ClustalX color code. C) DYRKI1A p. K175N variant and wild type residues are mapped to kinase domain
structure (4yu2.pdb, chain A). Residues involved in nucleotide binding are represented in orange, wild-type
lysine in red and asparagine in green.
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DYRKIA p.K175Q met all our filtering criteria: occurred de novo, was not listed in the
SNV databases, e.g. dbSNP 2** and gnomAD'”*, and was predicted being damaging by five
out of nine variant prediction tools (see Table 5.2). Moreover, it maps to the catalytic region
of kinase domain (-2 strand), where the conserved Lys175 faces the nucleotide binding
region in catalytic pocket®® (Figure 5.3). The variant causes the substitution of a positively
charged residue with an amidic bulkier asparagine. This could affect both the charge
distribution and spatial constraints required for nucleotide binding, resulting in the
alteration of catalytic pocket, and consequently, in the disruption of DYRKIA kinase

activity, which could be connected with disease pathogenesis in our patient.

EHMTI p. G1193R

Euchromatin histone methyltransferase 1 (EHMT]1) catalyzes the mono- and dimethylation
of histone H3 N-terminal lysine 9 (H3K9me2), which is associated with gene transcription
repression, and with learning and memory processes**2%’. Heterozygous EHMT] variants
abrogating methyltransferase activity cause Kleefstra syndrome (KS), characterized by the
comorbity of autistic-like traits and ID. Moreover, the KS clinical phenotype includes mild
to severe developmental delay, hypotonia causing feeding difficulties, speech and motor
delay 2°. In addition to being classified as damaging from the majority (8/9) of prediction
tools (Table 5.2), EHMT1 p. G1193R substitution was detected de novo in a patient
(2166 _01) with psychomotor delay, mild ID, hypotonia and absent speech. The variant
maps to a highly conserved glycine residue in the SET domain (Figure 5.4). The SET
domain mediates the transfer of a methyl group from S-adenosyl-L-methionine (SAM) co-
factor to the H3K9?*®. Variants mapping to the SET binding pocket would lead to an
alteration of its activity, resulting in changes of H3K9me levels and gene transcription
repression. The selected missense SNV leads to the substitution of a small glycine with a
large, positively charged arginine in the SET domain (Figure 5.4). Besides the introduction
of a bulkier residue, EHMT1 p.G1193R adds a positive charge within the H3K9 binding
pocket, whose key interacting residues are prevalently non-polar or negatively-charged,
with only two arginine accepted at positions 1214 and 1180%%. Thus, the variants may affect
the charge distribution and histone binding affinity within the interaction region, triggering
variation in methyltransferase activity, and may explain the clinical phenotype in patient

2166 01.
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EHMT1 (1298 AA)

q 24
Poly-Gln 2IGQ.pdb
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H.sapiens NKDGEVYE | BARFNGNVSRF | PNLVPVRVF
P.troglodytes NKDGEVYC | DARF VSRF | PNLVPVRVF
M.musculus NKDGEVYC | DARF VSRF | PNLVPVRVF
R.norvegicus NKDGEVYC | DARF VSRF | PNLVPVRVF
G.gallus NKDGEVYC | DARF | SRF | PNL I PVRVF / -
Xtropicalis NKDREVYC | DARF | SRF | PNLLPVRVF AN G1193R
D.rerio SKVGDMYCVDARF | SRF | PNLLPCRVF i
D.melanogaster NG- - - -HC | BANY VTRFF CEPNVLPVRVF

Figure 5.4: EHMT]1 missense mutation affect SET domain.

Variants identified in our patient cohort are mapped to the EHMT1 domain architecture (red: possibly
causative, green: likely benign). Protein sequence presents regions biased toward polar (glutamine and
arginine) and a poly-alanine motif. The ankyrin domain (orange) is involved with the histone H3K9me
binding. The Pre-SET domain (green) contributes to SET domain stabilization B) EHMT]1 p. Lys1193 and
neighboring residues are conserved among orthologous sequences. Amino acids are colored by conservation,
according ClustalX color code. C) EHMT1 p. G1193R variant (red) and wild type glycine (orange) are
mapped to SET domain structure (2igq.pdb, chain A) Residues involved in H3K9 binding and the S-adenosyl-
L-methionine molecule are represented in sticks.

5.5 Conclusions

In this work, we develop a new and comprehensive gene panel for ASD/ID diagnosis
comorbidity. It consists of 74 genes, including the previously single-tested genes, known
ASD/ID associated genes and the best candidate genes from network and prioritization
analysis. The linkage based network analysis, combined with the gene prioritization, allow
us to filter the most promising candidate genes associated with ASD/ID comorbidity, which
were added to the final list. Moreover, HPO and G.O. ontologies enrichment analyses
provided additional evidence supporting the selected loci involvement in cellular processes

and clinical conditions consistent with the ASD/ID comorbidity. The resulting panel was
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employed in clinical screening of 146 individuals referred to the Molecular Genetics of
Neurodevelopment Laboratory (Pediatrics’ Department, University of Padova) for the
genetic testing. The GP screening allow us to assign a molecular diagnosis to twenty-four
of the screened patients, with a diagnostic yield of 16,4% (24/146). The selected variants
met all the filtering criteria, i.e. they are de novo or low frequency SNVs, are classified as
damaging by most of the prediction tools and follow the disease phenotype segregation in
the family. In some cases, evidence supporting the variant pathogenicity was provided by
bioinformatics analysis, by which the effect on related functional region was assessed. In
the examples presented here, mutations affect structural domains that are critical for protein
activity, e.g. the kinase catalytic domain in DYRK1A and the histone 3 binding pocket in
EHMT1 protein, explaining the variant impact on patients’ pathology. Besides diagnosed
cases, at least one likely pathogenic variant was detected for additional twenty-three
patients (15,7%), and ongoing investigation will assess their role in disease onset. These
results confirm the diagnostic value of this targeted gene panel for investigating children
affected by ID and ASD, both presenting co-occurring phenotype, as well as for their

differential diagnosis.
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6 DisProt 7.0: a major update of the database
of disordered proteins

This Chapter has been published in “Piovesan D., Tabaro F., Miceti¢ 1., Necci M., Quaglia
F., Oldfield C.J., Aspromonte M.C., Davey N.E., Davidovi¢ R., Dosztanyi Z., Elofsson A.,
Gasparini A., Hatos A., Kajava A.V., Kalmar L., Leonardi E., Lazar T., Macedo-Ribeiro
S., Macossay-Castillo M., Meszaros A., Minervini G., Murvai N., Pujols J., Roche D.B.,
Salladini E., Schad E., Schramm A., Szabo B., Tantos A., Tonello F., Tsirigos K.D.,
Veljkovi¢ N., Ventura S., Vranken W., Warholm P., Uversky V.N., Dunker A.K., Longhi
S., Tompa P., Tosatto S.C.E. Nucleic Acids Res. 2017 Jan 4;45(D1):D219-D227.”

6.1 Summary

The Database of Protein Disorder (DisProt, URL: www.disprot.org) has been significantly
updated and upgraded since its last major renewal in 2007. The current release holds
information on more than 800 entries of IDPs/IDRs, i.e. intrinsically disordered proteins or
regions that exist and function without a well-defined three-dimensional structure. We have
re-curated previous entries to purge DisProt from conflicting cases, and also upgraded the
functional classification scheme to reflect continuous advance in the field in the past 10
years or so. We define IDPs as proteins that are disordered along their entire sequence, i.e.
entirely lack structural elements, and IDRs as regions that are at least five consecutive
residues without well-defined structure. We base our assessment of disorder strictly on
experimental evidence, such as X-ray crystallography and nu-clear magnetic resonance
(primary techniques) and a broad range of other experimental approaches (secondary
techniques). Confident and ambiguous annotations are highlighted separately. DisProt 7.0
presents classified knowledge regarding the experimental characterization and functional
annotations of IDPs/IDRs, and is intended to provide an invaluable resource for the
research community for a better understanding structural disorder and for developing better

computational tools for studying disordered proteins.
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6.2 Introduction

Our traditional view of protein structure and function is deeply rooted in the structure—
function paradigm which stated that the polypeptide chain of proteins needs to fold into a
stable three-dimensional (3D) structure, which is a prerequisite of the functioning of the
protein. The extreme explanatory power and success of this model is at-tested by more than

hundred thousand high-resolution structures in the Protein Data Bank (PDB) 2%

and many
Nobel Prizes awarded for describing structures central to understanding important cell-
biological phenomena. It has been suggested almost 20 years ago, however, that many
proteins or regions of proteins in various proteomes lack such stable 3D structure, and are
rather intrinsically disordered under native, physiological-like conditions (thus named
IDPs/IDRs, respectively) 2212, The recognition of this structural phenomenon brought a
radical change in the structure—function paradigm, and critically extended the general
appreciation of the role of dynamics in protein function. It has been recognized that
structural disorder, which is prevalent in all organisms, plays roles primarily in cellular
signaling and regulation 2!*. Because of that, IDPs/IDRs are often implicated in diseases 2'*
and represent important drug targets 2'°.

The structural and functional characterization of disordered proteins represents a special
challenge, because they exist as an ensemble of rapidly interconverting conformations.
Although they cannot be crystallized and thus cannot be directly characterized by X-ray
crystallography, there are a variety of techniques that can report on their highly dynamic
structural state at low- or even high spatial and temporal resolution ?!!. The current best
structural description of IDPs/IDRs is by structural ensembles, which can be solved by a
combination of experimental and computational approaches and are collected into a
dedicated structural database, PED 2'°.

Studies of the structure—function relationship of disordered proteins have shown that in
certain cases their function arises directly from the disordered state (entropic chains),
whereas in many other cases their function emanates from molecular recognition
accompanied by induced folding to specific binding partners, such as another protein, RNA
or DNA molecule 2'72!8, In these functions, the sensitivity to regulated remodeling of the
disordered structural ensemble is an excellent substrate for protein regulation 2'°, as

exemplified by frequent post-translational modifications and special modes of allosteric

regulation 2?° involving IDPs/IDRs.

92



Due to the prevalence and importance of structural disorder, several dedicated databases
covering various aspects of IDPs/IDRs have appeared in the past decade. DisProt is the
primary repository of disorder-related data on sequence-and functional annotations,
focusing on disordered proteins or regions with experimental verification 2*!*?2, Several
other databases are based on predictions of disorder, such as D2P 2, which contains disorder
protein predictions by a variety of predictors on 1765 complete proteomes >**, MobiDB,
which features three levels of annotations, manually curated, indirect and predicted for all
UniProt sequences (over 80 million) 2?4, and IDEAL, which contains manual annotations
of interaction regions undergoing induced folding, sites of post-translational modifications
and assignments of structural domains *?°. In addition, as already mentioned, PED is the
database that gathers structural in-formation on IDPs/IDRs, in the form of structural
ensembles 2!®. The interaction of IDPs/IDRs with their target(s) is most often mediated by
short continuous stretches of amino acids such as Molecular Recognition
Elements/Features (MoREs/MoRFs) ?2° and short/eukaryotic linear motifs (SLiMs/ELMs),
which have been collected in the ELM database 2?’. Less frequently, partner interactions of
IDPs/IDRs may also be mediated by intrinsically dis-ordered domains (IDDs), i.e. longer
regions that conform to the definition of domains as functional, evolutionary and structural
units 228, Although probably still underappreciated, some of these IDDs may be found in
the Pfam database of protein families which includes their annotations and underlying
multiple sequence alignments 87,

DisProt is central to all IDP-related research efforts, because it collects and presents in a
structured way the core experimental evidence reported for structural disorder in proteins.
To give a new impetus to the field, we have significantly updated and upgraded it with new
features. This new release—DisProt 7.0—contains more than 800 entries of IDPs/IDRs.
We have also re-defined and extended functional categories laying the basis for a functional
ontology of IDPs, now encompassing 7 major classes and 35 sub-classes, all based on

published experimental data.

6.2.1 Detection and characterization of IDPs

Technical advances in the field of biophysical and structural biology in the last 50 years
have provided the scientific community with an arsenal of techniques to tackle the
challenging characterization of IDPs/IDRs 2!22%°, The various methods differ in their extent

of sophistication, and hence in their technical demand, as well as in the nature of the
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information they provide. Nuclear magnetic resonance (NMR) and X-ray crystallography
provide site-specific information, whereas other methods provide more qualitative and
global information (e.g. far-UV circular dichroism, size-exclusion chromatography; SEC).
The rise of the field of protein disorder has greatly benefited from structural biology,
because structures deposited in the PDB 2% have been instrumental for the development of
disorder predictors, often trained on regions of missing electron density. Developments of
multidimensional heteronuclear NMR also enabled the structural characterization of
disordered proteins of increasing size %!, In particular, heteronuclear single quantum
coherence (HSQC) experiments are most commonly used to define protein disorder
irrespective of whether residue-specific chemical shifts are available or not, as crowded
HSQC spectra, characterized by a poor spread of resonances, are typical of IDPs/IDRs. The
same feature of low spread of proton resonances is also apparent in one-dimensional
proton-based NMR spectra, which offers the obvious advantage of not requiring isotopic
labeling. Following assignment of the spectrum, quantitative estimations of disorder can be
obtained through various NMR observables, such as chemical shifts, relaxation rates,
residual dipolar couplings and resonance intensities in paramagnetic relaxation
enhancement experiments. These data enable probing sequence-specific structural
information in IDPs/IDRs. A particular strength of NMR is that it can be increasingly
applied under truly in vivo conditions, in live cells *2. Therefore, these two experimental
approaches, X-ray crystallography and multidimensional NMR, are considered as the
‘primary techniques’ providing evidence for structural disorder on a per residue basis in
DisProt.

It should not miss our attention, though, that due to the expenses of isotopic labeling in
NMR and the high rate of failure in protein crystallization, it would be unreason-able to
only rely on these two approaches to document protein disorder. Therefore, beyond X-ray
crystallography and NMR, a plethora of alternative biochemical and bio-physical
approaches (termed ‘secondary techniques’) pro-vide orthogonal information on protein
disorder in DisProt 2'#??°, The various approaches are of course not equivalent in terms of
reliability, resolution and accuracy and suffer from specific drawbacks and limitations.
Structural disorder is often based on far-UV CD spectroscopy, which is overall quite
reliable, but does not enable discrimination between ordered and molten globular forms.
Near-UV CD, beyond being able to unveil the lack of ordered structure, has the advantage
of distinguishing between globular and molten globule forms. Another hallmark of disorder

is anomalous sodium dodecyl sulphate-polyacrylamide gel electrophoresis migration,
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where IDPs have a high apparent molecular mass. IDPs/IDRs also behave anomalously in
SEC, light scattering (DLS, MALS), and in small-angle X-ray scattering in that they display
hydrodynamic radii (RH) and radii of gyration (Rg) higher than expected, reflecting an
extended conformation.

Fluorescence spectroscopy is another common method to assess disorder. Intrinsic
fluorescence probing the chemical environment of tryptophan residues provides
information about their solvent-accessibility, whereas thermal differential scanning
fluorimetry—similar to differential scanning calorimetry—can highlight the lack of a
cooperative thermal transition and hence absence of ordered structure. Fluorescence
resonance energy transfer between external fluorophores can even generate information on

distance distributions and help solve the structural ensemble of the IDP 23

. Hyper-
sensitivity to proteolysis is also commonly used to map out disordered regions of proteins.
Recently, native mass spectrometry exploiting nanoelectrospray ionization 43> and high-
speed atomic force microscopy operating at the single-molecule level 2*® have emerged as
attractive alternatives to address structural disorder.

As alast statement, it is noteworthy that the higher the number of independent experimental
lines supporting dis-order, the higher the reliability of the annotation. Further-more, multi-
dimensional information may help realize that structural disorder is not a single
homogeneous structural state along an order-disorder binary classification coordinate, it
rather represents a continuum of states from the fully ordered to the fully disordered.
Similarly, many examples of biological relevant disorder in fragments that are missing from
the full length protein have been reported. Further-more, numerous functional examples of
‘conditional disorder’, i.e. instances where a disordered region functions by transitions to

7

or from a folded state 2, or when disorder is only observed in a fraction of similar

structures %

, lead to ambiguity and clearly points to the need for carrying out
complementary experiments. In addition, an extreme case leading to conflicting results is
represented by instances where a protein region, predicted to be ordered, is not defined in
the electron density in one crystal structure while being ordered in another one (for an
example see 2*° and DisProt entry DP00133). Do these ambiguous regions represent a new
class of disorder that escape detection using the currently available disorder predictors (thus
setting the scene for their improvement), or a contrario are they the result of static disorder

that arises from experimental conditions or domain wobbling? Combining information

from a variety of sources may help clarify these cases and also improve meaningful
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descriptions of IDPs as conformational ensembles , which may lead to future

descriptions of the structure—function relationship of IDPs.

6.2.2 Database structure and implementation

Database records. The technology of DisProt has been up-dated and is now based on a
document-oriented MongoDB database. Stored documents are of two types, ‘protein’
including general information about the protein and ‘disordered region (DR)’ including
evidence of disorder from literature. Protein information is retrieved from UniProt and
includes cleavage sites and chain/peptide boundaries for polyproteins and processed
proteins. DisProt is sequence-centric and different isoforms correspond to different entries
as in the previous version. Cleaved proteins are merged into a single entry as they are
products of the same native sequence. DisProt accession numbers now follow a single
format and all previous entries with a ‘xxx’ suffix were re-moved. DR records are evidence-
centric, i.e. different documents are stored for different experiments even when related to
the same region. Forcing a one-to-one paradigm allows to track annotation evidence type
and the corresponding literature source unambiguously. DR records also include
experimental evidence quality tags for ambiguous annotations. Sometimes experiments are
carried out on engineered sequences or fragments which may prove ambiguous to
generalize for the entire sequence (AMBSEQ). Moreover, disorder boundaries are
occasionally not clear from the literature (AMBLIT) or experiments are performed under
extremely non-physiological conditions (AMBEXP). The major improvement from
previous versions is the manually cu-rated functional annotation of the regions. Whenever
possible, curator-associated functions based on literature evidence are indicated by
selecting terms from a new ontology built for describing disorder-related functional modes.
If none of the current terms in the new ontology give a proper description of the functional
mode, the curator may propose a new term to be added to the ontology. Acceptance of the

new term will require approval by the IDP/IDR ontology committee.
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Figure 6.1: DisProt sample entry, human p53 protein (DP00086).

Several experiments have been carried out to characterize the human p53 protein. DisProt reports literature
evidence for IDRs. In particular, 11 different IDR evidences (Region Evidences) have been collected from
nine different papers by two different curators. Most of these are related to the N-terminus and come from
different types of experiments (Disorder Region Details). Disorder regions and the number of DisProt
evidences, separated into confident and ambiguous annotations, can be compared with structural information
from the Pfam and MobiDB databases in the Disorder Overview. DisProt also provides function annotation
of IDRs by reporting molecular function, transition and partner terms (Functional Annotation). A literature
reference is provided for each annotated IDR, linked to the relevant PubMed entry.
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Annotation pipeline. The new DisProt data have been generated by a community effort
through a web server interface accessible upon registration. The same infrastructure can be
used both to create and update entries. Curators provide an annotation through a submission
form where all fields are validated on the client-side and a sequence viewer allows the
comparison of assigned regions with structure information (Pfam domains, MobiDB
disorder). Of note, the name of the curator is clearly visible in the entry to allow proper
attribution of credit. The pipeline is fully automatic and can be potentially applied to the
entire UniProt database. The DisProt public database is a snapshot of the community an-
notations.

Entry page. The entry page features four different sections (Figure 6.1). A protein
information Table gives the protein name, gene, synonyms, identifiers, taxonomy and
‘homologous’ entries inferred from sequence similarity. An interactive feature viewer
reports DisProt disorder regions separated into confident and ambiguous annotations,
colored brown for intrinsically disordered regions and purple for context-dependent
regions. Pfam domains along with PDB and predicted disorder derived from MobiDB are
also shown. Below, a detailed feature viewer provides different visualization layers to
highlight different functional aspects (ontology terms) and the strength of available disorder
evidence. Each position in the sequence is colored according to the number and type of
evidence. Last but not least, the full curator-generated list of region evidences is reported
on the bottom of the page and can be filtered by selecting an element (region) in the feature
viewer. Figure 6.1 shows the current DisProt annotation for the human p53 protein. The
combination of DisProt and PDB annotation clearly shows how p53 contains several
segments undergoing disorder to order transitions. Evidence for disorder from the literature
in the central p53 DNA binding domain, for which many crystal structures are available in
the PDB, is ambiguous and highlighted with AMBLIT. Similar conflicts can probably be
found in scores of DisProt entries and demonstrate the importance of flagging ambiguous
data.

Browsing and searching data. Both browsing and searching functionalities are provided
in a single solution from the ‘Browse’ page. A sortable, customizable and filterable Table
lists all entries by protein. Alternatively, another Table listing all regions is available and
accessible through the ‘regions’ button. Complex queries can be simulated applying
different filters to different columns. Specific entries can be selected manually and
customized views can be generated by adding or removing columns. Filtered and/or

selected data can be downloaded both in text and JSON formats. Alternatively, the ‘Search’
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page allows the user to search for specific words in a free-text form or to search for DisProt
entries similar to a query sequence. Output for either search is a provided in a simplified
form.

Feedback page. DisProt users are highly encouraged to suggest additional disorder
annotations or changes to existing annotations using the ‘Feedback’ page. This contains a
drop-down menu guiding the choice of feedback provided (e.g. website experience, novel
annotations) and a message field. For feedback related to data entries, the user is asked to
provide either the UniProt or DisProt ID and (where possible) a PubMed reference. All
messages are reviewed by the curators and integrated in the database as time permits.

Web technology. The DisProt server is implemented in Node.js (https://nodejs.org) using
the REST (Representational State Transfer) architecture. The data can be accessed through
the web interface or programmatically exploiting the RESTful functionality. Please refer
to the ‘Help’ section of the website for details on using the DisProt web services. The web
interface is  built using Angularjs (https://angularjs.org) and  Bootstrap
(http://getbootstrap.com) frameworks. The feature viewer is implemented on top of the

Bio.js library.

6.2.3 Database content: upgrades and updates

Entries in DisProt 7.0 came from three major sources: (i) from the previous version of
DisProt (where conflicting cases have been re-annotated), (i1) novel cases identified as PDB
entries with long regions of missing electron density and (iii) proteins identified by text-
mining in PubMed abstracts for keywords ‘intrinsically disordered’, ‘intrinsically
unstructured’ and ‘structural disorder’. New proteins selected based on disorder content
(estimated based on MobiDB data) were prioritized (if appropriate information was
available in SwissProt) to concentrate on well-studied and most interesting cases. New
proteins were also selected by curators themselves to exploit their specific previous
knowledge. All entries from previous versions were re-annotated to remove
inconsistencies. One hundred and ninety-eight previous entries were completely removed
and 469 modified. Recurring problems being fixed were wrong organism or isoform
assignments, wrong IDR positioning, untracked disorder evidence (e.g. missing explicit
literature reference) and weak evidence (e.g. based on very short fragments, please note
that the minimal length of an IDR in DisProt 7.0 is 5 residues). Moreover, disorder

annotations based on not traceable author/curator statements were discarded. Where
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necessary, a curator comment now highlights criticisms relative to a given
evidence/experiment, e.g. if the experiment has been carried out on an engineered protein.
Regions annotated as structured in previous DisProt releases were removed (33 regions).
Information related to experiments has been simplified by skipping technical details
regarding experimental conditions. However, weak experimental evidence is filtered out
by the curator during annotation and tagged with one of three ambiguous labels. Overall,
DisProt 7.0 includes 804 entries and 2167 disordered regions, with a total of 92 432 amino
acids with clear experimental and functional annotations (Table 6.1), and the length
distribution of disordered regions has significantly changed from the last release of DisProt

(Figure 6.2).

Table 6.1: DisProt annotation content

Method/function Proteins Regions Residues
Nuclear magnetic resonance (NMR) 333 592 32926
X-ray crystallography 326 683 20 742
Circular dichroism (CD) spectroscopy, far-UV 261 352 53935
Sensitivity to proteolysis 75 95 13 961
Size exclusion/gel filtration chromatography 62 67 12 206
Proton-based NMR 53 69 7723
SDS-PAGE gel, aberrant mobility on 34 34 6326
Other methods 237 273 41 833
Disorder transition 564 1505 151 498
Molecular function 489 1199 106 670
Molecular partner 444 1108 119 665

Distribution of DisProt annotation based on experimental evidence (method) and disorder function (function).
As each annotated disorder region corresponds to one piece of experimental evidence, multiple regions can
map to the same sequence segment. If a protein is annotated multiple times with the same type of experiment
it is counted once. The number of residues is the sum of region lengths.
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Figure 6.2: Distribution of disorder segment lengths.

Segment lengths are binned in groups of 10 residues, e.g. the column 10 showing lengths between 10 and 19
residues. The current DisProt release is distinguished by experimental technique (X-ray in green, NMR in
blue and other methods in red). The previous DisProt release is shown in a single gray bar as it did not have
the experimental technique in a machine-readable format.

6.2.4 New feature: functional classification

IDPs/IDRs carry out important functions in the cell. The field has settled on the notion that
structural disorder rep-resents a continuum of states from fully folded to fully un-folded
(random coil-like), and function may come from any of the states and transitions between
them. That is, their function may come directly from the disordered state or from molecular
recognition and binding to partner molecule(s). We derive our classification from the logic
of the gene ontology classification scheme 2, which is based on three structured ontologies
ascribing functional terms to gene products (proteins) in terms of their associated biological
processes (BP), cellular components (CC) and molecular functions (MF). Apparently, the
CC and BP ontologies do not depend on the disordered status of the protein, they simply
reflect the intracellular location of the protein and the BP it participates in, which can be
kept without reference for the disordered status >*?. The situation is entirely different with
MF, which describes the elemental activities of a protein at the molecular level. In this
regard, IDPs basically differ from folded proteins, such as enzymes or ligand-binding
receptors, because their mode of action and type of function are usually completely

different from those of folded proteins. Therefore, we have developed a novel classification
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scheme that merges and expands previous schemes that suggested thirty ?** and six 27

different categories, to provide classified descriptors for their MFs. Because previous
categories >!7** lacked coherence (for example, they treated structural transitions and
interaction partners at the same level), we created a rational scheme that distinguishes these
different types of ontologies (cf. Table 6.2 and ref. 2!!).The three sub-ontologies are as
follows: (i) molecular function of disorder (MFUN): describes the type of functional
readout of function (such as molecular chaperone); (ii) molecular transition (TRAN)
necessary for function (such as disorder-to-order transition); and (iii) molecular partner
(PART) that is recognized by the disordered protein (such as protein/RNA/DNA/small
molecule). The MFUN ontology is described in detail in Table 1. The TRAN ontology can
be further simplified to two IDR states (disorder and transition) to highlight different types

of behavior, e.g. in the feature viewer of each DisProt entry.

Table 6.2: Major functional categories of the MFUN ontology of DisProt

MFUN code Generic functional category Functional category

MFUN 01 Entropic chain Flexible linker/spacer
Entropic bristle
Entropic clock
Entropic spring
Structural mortar

Self-transport through channel
MFUN 02 Molecular recognition: assembler ~ Assembler
Localization (targeting)
Localization (tethering)
Prion (self-assembly, polymerization)
Liquid-liquid phase separation
demixing (self-assembly)
MFUN 03 Molecular recognition: scavenger  Neutralization of toxic molecules
Metal binding/metal sponge
Water storage
MFUN_04 Molecular recognition: effector Inhibitor
Disassembler
Activator
cis-regulatory elements (inhibitory modules)
DNA bending
DNA unwinding
MFUN_05 Molecular recognition: display site Phosphorylation
Acetylation
Methylation
Glycosylation
Ubiquitination
Fatty acylation (myristolation and
palmitoylation)
Limited proteolysis

(Continues)
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Table 6.2 (Continued)

MFUN code Generic functional category Functional category
MFUN_06 Molecular recognition: chaperone  Protein detergent/solvate layer
Space filling

Entropic exclusion
Entropy transfer

The functional schemes are an open hierarchy. One goal of sharing information with the community
through DisProt is to refine our views of the functional modes of IDPs

6.3 Conclusions and future work

We have presented an updated and completely re-worked version of the DisProt database.
It now features state-of-the-art database and web technology, enabling programmatic
access of interested parties. The content was expanded by defining a standardized set of
experimental techniques and a novel functional ontology of disordered segments. Both
allow for a richer description of disorder which may be used for further analyses. The other
main improvement in DisProt is a complete re-annotation of existing entries to remove
inconsistencies and an expansion of ca. 50% over the previous release, which also resulted
in a significant shift in the length coverage of disordered regions in the database. This
advance was made possible by a distributed annotation effort coordinated by the COST
Action NGP-net (URL: ngp-net.bio.unipd.it) involving a dozen different groups and close
to 40 annotators. The longer term maintenance of DisProt is provided by the Italian node
of the European bioinformatics infrastructure Elixir. In the future we hope that DisProt can
be able to provide disorder annotations for UniProt.

Finally, we hope that the upgrade of DisProt will encourage the scientific community to
deposit experimental evidence for disorder within this unique repository, and that this
renewed momentum will lead to an increased awareness of the importance of intrinsic

disorder in proteins
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7  Dynamic scaffolds for neuronal signaling: in
silico analysis of the TANC protein family

This Chapter has been published in “Gasparini A., Tosatto S.C.E, Murgia A., Leonardi E.
Sci Rep. 2017 Jul 28;7(1):6829.” For Supplementary Material, check the online version of
the paper.

7.1 Summary

The emergence of genes implicated across multiple comorbid neurologic disorders allows
to identify shared underlying molecular pathways. Recently, investigation of patients with
diverse neurologic disorders found TANC1 and TANC?2 as possible candidate disease
genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing
synaptic spines and excitatory synapse strength, their molecular functions remain unknown.
Here, we conducted a comprehensive in silico analysis of the TANC protein family to
characterize their molecular role and understand possible neurobiological consequences of
their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been
modeled. The newly predicted N-terminal ATPase domain may function as a regulated
molecular switch for downstream signaling. Several putative conserved protein binding
motifs allowed to extend the TANC interaction network. Interestingly, we highlighted
connections with different signaling pathways converging to modulate neuronal activity.
Beyond a known role for TANC family members in the glutamate receptor pathway, they
seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This

suggests an important role in neuron projection, extension and differentiation.

7.2 Introduction

Neurodevelopmental disorders (NDDs) are common conditions including clinically and
genetically heterogeneous diseases, such as intellectual disability (ID), autism spectrum

disorder (ASD), and epilepsy***

. Advances in next generation sequencing have identified a
large number of newly arising disease mutations which disrupt convergent molecular

pathways involved in neuronal plasticity and synaptic strength®*>2*-247_ In particular,
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scaffold proteins seem to play a critical role in glutamatergic neurotransmission, organizing
different components of glutamate receptor complexes at post-synaptic densities (PSDs)
and determining synaptic strength and plasticity>**. Among these, the TANC1 and TANC2
genes, encoding for the recently described scaffold proteins, are emerging as candidate
genes for NDD?#-%°, TANC2 gene mutations were found in patients with different clinical
conditions, ranging from ID and ASD to schizophrenia’*2°12, A case of de novo
inversion encompassing TANCI, causing psychomotor-retardation was also recently
reported in the literature?*. TANC1 interacts with PSD95, one of the most important and
well characterized scaffold proteins, as well as additional postsynaptic proteins including
glutamate receptors?*>>>°. The TANC proteins are expressed in the hippocampus and over-
expression of either has been shown to increase dendritic spines and excitatory synapse
strength in mice, although in vivo assays suggest differences in expression timing and
knock-out phenotype. TANCI reaches the highest levels in the adult brain and its depletion
seems to impair spatial memory in mice. TANC2 is higher expressed during the early
embryonic stages and seems to be involved in proper fetal development, with knock-outs
causing in utero lethality>®. Although available experimental evidence suggests an
important role for these proteins in neuronal development, little is still known about the
pathogenic mechanisms involved**’. The TANC1 and TANC2 proteins were named on the
basis of their domain architecture, predicted to contain tetratricopeptide (TPR) and ankyrin
(ANK) repeats as well as a coiled-coil domain*’. Furthermore, a P-loop ATPase domain
was first observed at the N-terminus of the rolling pebbles orthologous of TANC proteins
by Leipe and colleagues using sequence profile analysis and sequence based structure
prediction to define the novel class of STAND (Signal Transducing ATPase with
Numerous Domains) NTPase 2. STAND proteins, unlike other NTPases, present a C-
terminal helix bundle fused to the NTPase domain thought to transmit conformational
changes due to NTP hydrolysis to downstream effector domains®>*. As an example, the
closely related APAF1 protein is activated by the release of cytochrome ¢, which together
with nucleotide binding, induces a conformational change in the P-loop ATPase driving
apoptosome assembly?*>. Even though the nucleotide binding activity of the TANC P-loop
domain and its functional role have to be demonstrated, this particular multi-domain
architecture suggests at least a mechanistic similarity in molecular functions for TANC
protein, combining a regulatory molecular switch with scaffold properties to assembly
highly dynamic protein complexes. In this work, we employed a combined bioinformatics

strategy, integrating sequence and phylogenetic analysis with in silico modeling of
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structural domains to better characterize the structure-function relationship of the two
TANC proteins. Furthermore, we conducted an in depth computational analysis to identify
compositionally biased regions and candidate short linear motifs (SLiMs) in intrinsically
disordered regions (IDR) of the proteins, which may provide further interaction surfaces
mediating dynamic protein complex assembly. Experimental evidence for protein-protein
interactions (PPI) in the literature or from protein-protein interaction (PPI) databases and
predicted functional elements have been used to infer novel putative interactors for the two
TANC members. Predicted and collected data highlight TANC involvement in
orchestrating different neuronal signaling pathways, which may be implicated in the
pathogenesis of diverse NDDs. This analysis suggests structural and functional elements
that will help the interpretation of newly discovered TANC mutations. It would be
worthwhile to follow up experimentally to support the hypothesis of a functional

mechanism for TANC as a dynamically regulated scaffold.

7.3 Methods

7.3.1 Sequence feature analysis

TANCI and TANC2 (UniProt accession codes: Q9CODS5 and QIHCDG6, respectively) were

tlSO

downloaded from UniProt'®", aligned using the MAFFT multiple sequence alignment

¢ and visualized with Jalview?’. Secondary structure was predicted using

software?
PSIPRED”’, whereas domains, repeats and other features were predicted with
InterproScan’® COILS?®, MARCOIL?»® and CCHMM-PROF?*®® were used to assess
previously predicted coiled-coil regions, and TPR modules were predicted with TPRpred
261 4 repeat consensus was manually curated with Jalview from the MAFFT alignment.
Further periodicities were searched with TRUST?%2, RADAR?®* and Repetita®®*. Regions
outside predicted domains, as well as N- and C-terminal protein sequences, were assessed
for intrinsic disorder, presence of compositionally biased regions (i.e., repeating amino
acids) and short linear motifs (SLiMs) using MobiDB?** and ELM®!. Since SLiMs have a
high chance of random occurrence and their prediction often has low specificity, we
selected for consideration only those mapping to disordered regions conserved among

orthologous. Accessibility and localization in alternatively spliced regions are further

evidences supporting the validation of the predicted SLiM'®3.
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7.3.2 Known TANC interactors analysis

A list of experimentally determined TANC interactors was compiled and manually
annotated from the literature and the publicly available databases BioGrid?6*, IntAct?¢, and
STRING?%7 (see Table 7.1). Three significant interactions (false positive rate < 0.1)
identified in the Cilium were also included®®®. Each interactor was annotated with its
protein domain architecture and biological processes in which it is involved, retrieved from
the InterPro’®, UniProt'®® and KEGG?%° databases. Furthermore, PubMed was searched for
papers describing the involvement of TANC in neuronal development using selected
keywords. Interaction details (i.e. residues, sequence motif and domain) were manually

curated from the literature.

7.3.3 TANC interaction prediction

TANC interaction predictions were made either for the binding site of known interactions
or to infer novel interactors. For each interactor we searched for the putative domain or
linear motifs predicted to mediate TANC interaction. We assume that if the known
interactor is a class of protein or presents the domain known to bind a predicted TANC
linear motif this may be the putative interactor binding site. Collected PPI data and
predicted binding sites/domains were used to infer novel putative interactors for the two
TANC members. Proteins belonging to the same family usually interact in a similar way

270 We assumed that when a protein has been found to

with a specific protein domain
interact with only one of the two TANC paralogs it is possible to infer it could interact with
both paralogs as long as they share a common conserved SLiM predicted to mediate this

interaction.

7.3.4 Mutation analysis

Pathogenicity of NDD associated variants in TANC proteins was assess using twelve
different prediction tools: Align-GVGD?”!, I-Mutant2.0%?, MUpro®, MutationAssesor™>,
MutationTaster'”>, PhD-SNP?’2, Polyphen2 27}, PROVEAN?"* SIFT 3, SNAP2 7 and
UMD-Predictor?’®,

7.3.5 Phylogenetic analysis

The TANC orthologous were downloaded from OMA Browser 2’7 to reconstruct the

phylogeny of the protein family. Eighty-one vertebrate sequences, representative of each
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infrasubphyla, were retrieved. Taking into account teleost lineage-specific genome
duplication®’®, only one copy of each TANC protein was considered. The analysis
comprised also earlier species in which duplication of TANC gene did not occurred: 2
arthropoda sequences (Strigamia maritima and Ixodes scapularis), 32 insect sequences,
Trichinella spiralis (Nematoda), Ciona intestinalis (Tunicata). Multiple alignments were
computed with ClustalO 2”° and manually curated using Jalview. Phylogenetic analysis and

6280

visualization were performed with MEGA6-", using Maximum Likelihood based on the

JTT model + G (Gamma distributed Sites) with 500 bootstrap replicates.

7.3.6 Homology modeling

The predicted domains were modeled separately in order to build more reliable models.
Sequences for TANC1 and TANC2 domains were submitted to the homology detection
method HHpred?*!. Multiple sequence alignment-based template detection was performed
with HHblits (local alignment) against pdb70, taking into account also target-template
secondary structure similarity (for details see Supplementary Table S7.4). The resulting
target-template alignments were manually curated using the repeat consensus map and
consensus secondary structure prediction?®? in analogy to our previous work”*. Two models
for each domain were built by homology with Modeller 3 and their model quality was
estimated with QMEAN®’. The electrostatic surface of each model was calculated with
Bluues®® and Consurf®®® was used to map conservation for each residue based on OMA
orthologous alignment. The structures were finally visualized using Pymol (DeLano

Scientific LLC).

7.4 Results

Despite the emerging role of the TANC protein family in neuronal and embryonic
development, little is known about their specific functions and molecular mechanisms?*.
A computational analysis of the TANC proteins starting from primary structure to explore
the function of these twin proteins was thus performed. TANC1 and TANC2 are large
proteins, of 1,861 and 1,990 residues respectively, sharing 51.9% overall amino acid
identity, with similar multi-domain architecture (Table S7.1) resulting from an early
duplication event (Supplementary Figure S7.1). InterproScan identifies two domains in

both TANC protein sequences, an ankyrin (ANK) and tetratricopeptide repeat (TPR)
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domain (Figure 7.1). An N-terminal P-loop containing nucleoside triphosphate hydrolase
(NTPase) domain is predicted only in TANC2 and a likely a false negative for TANCI.
The predicted domains are highly conserved among TANC paralogs. The N- and C-
terminal disordered regions are quite variable. Crystal structures are not available for the
TANC proteins, nor for any closely related proteins with similar domain architecture. To
characterize the protein structure, each domain was modeled separately. The N- and C-
terminal disordered regions were analyzed for the presence of a stretch rich in particular
amino acid residues or conserved sequences containing predicted linear motifs likely to
mediate protein interactions. Known interactors for both TANC proteins were downloaded
from BioGrid*®, IntAct?®®, and STRING?®7. Additional interactors were manually curated
from the relevant literature (see Table 7.1). These findings were used to expand and curate
a TANC protein interaction network (Table 7.2). While many interactors are in common
between both TANC proteins, there are a two sets of proteins with experimental evidence
for binding only one protein. In the following, we will describe each TANC region
separately in more detail before using the predicted functional and structural elements to

infer the possible impact of reported TANC?2 missense mutations.

7.4.1 N-terminus

The N- and C- termini are intrinsically disordered and share rather low identity between
TANC paralogs, suggesting functional divergence (Figure 7.1 and 7.2). A heterogeneous
group of TANC2 sequences, comprising mammals, a bird and fish (O. aries, M. putorius
furo, M. domestica, F. albicollis, L. oculatus, O. niloticus) defines the largest group sharing
a 54 residue segment with TANCI1 but no other TANC2 orthologous. A CKI
phosphorylation site and two SH3 binding motifs map to this sequence. This suggests that
the N-terminal sequence was present in TANCI1 first, duplicated in TANC2 orthologous
and lost in other organisms, possibly to fine-tune the TANC2 interaction network. An
alignment of TANC sequences highlights the presence of short conserved sequences,
shared across all members, containing putative linear motifs (Figure 7.2). The N-terminus
for instance presents two highly conserved motifs both involved in initiation of ubiquitin-
dependent degradation and two protein phosphatase 1 (PP1) docking motifs (RVxF),
almost identical in all considered sequences can be recognized (Figure 1 and
Supplementary Figure S7.2). Shared linear motifs also comprise several post-translational

modification sites recognized by different kinases, such as GSK3, MAPK, and NEK2.
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These “hot spots” map in highly conserved serine-rich regions (SRR) (170-224). The
TANCI isoform Q9CO0DS5-2 is missing residues 122-227, which contains the conserved
PP1 docking motif and SRR, suggesting a regulatory role for these regions (Figure 7.1).

Deletion of 122-227
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Figure 7.1: Sequence analysis of TANC proteins

An overview of TANC family domain architecture is here reported. Both TANC proteins are characterized
by a putative P-loop NTPase domain (orange), an Ankyrin repeat containing domain (light teal) and a
tetratricopeptide repeat region (blue). For each domain, the sequence boundaries and sequence identity
between the two proteins are indicated. Conserved linear motifs are represented as follow: PDZ binding
sequences (light blue triangles); PP1 docking motif (RVxF) (orange triangles); degrons (DEG Nend Nbox 1
and DEG_SCF_TRCP1 1) (deep teal rectangles); 14 3 3 binding sites (LIG_14-3-3 2) (blue triangles);
TANC2 Homer binding motif (LIG_EVHI1 1) (Purple triangle); LATS1 kinase (light orange triangle); NEK2
phosphorylation motif (MOD NEK2 1) (Teal triangle). Serine-rich regions are represented with green
rectangles (TANCI1 residues 170-243 and 1659-1689; TANC2 residues 125-189 and 1775-1865). The
TANCI glutamine-rich region (Poly-Q) region and TANC2 glutamine/proline rich region (polyP) are in light
green and yellow respectively. Alternative TANC protein isoforms are reported in grey. The TANCI isoform
Q9COD5-2 (1755 residues) is missing the region 122-227. The TANC2 isoform Q9HCD6-2 is longer (2000
residues) due to an insertion at position 1225 (I > IGCQTLPSRPR). QOHCD6-3 (971 residues) is truncated
at residue 97 with different substitution in the region from position 944 to 971
(VDHLDKNGQCALVHAALRGHLEVVKFLI > VLAAQLCCFSSLFLYFRCILFLISSVTS). Q9HCD6-4
(1,010 residues) is truncated at residue 1011 with different substitution in the region from position 1006 to
1010 (IVSYL > VRSRQ).
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Figure 7.2: Multiple alignment of TANC N- and C- termini.

Color code based on ClustalX scheme. Linear motifs identified by ELM analysis are reported:
DEG Nend Nbox_1: N-terminal motif that initiates protein degradation by binding to the N-box of N-
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recognins; DOC PP1 RVXF 1: Protein phosphatase 1 catalytic subunit (PPlc) interacting motif;
DOC WW_Pinl 4: 1V WW domain interaction motif; MOD GSK3 1: GSK3 phosphorylation recognition
site; MOD NEK2 1: NEK2 phosphorylation motif; DEG_SCF _TRCP1 1: DSGxxS phospho-dependent
degron recognized by F box protein of the SCF-betaTrCP1 complex; LIG 14-3-3 2: 14-3-3-binding motif ;
DOC MAPK 1: MAPK docking motifs; LIG PDZ Class 1: PDZ-binding motif; LIG 14-3-3 3: 14-3-3-
binding motif ; LIG_EVHI1 1: Proline-rich motif binding to signal transduction class I EVH1 domains. A).
N-terminus, B). C-terminus.

7.4.2 P-loop containing nucleoside triphosphate hydrolase (NTPase) domain

The P-loop NTPase domain contains two sub-domains, the conserved NTPase o/f fold and
a regulative region, known as helical third domain of STAND (HETHS). The NTPase
domain of both TANC proteins was modeled considering both regions together. A HHpred
search selected human apoptotic-protease activating factor 1 (APAF1; PDB code: 1z6t) as
the best template, with 12.1% sequence identity for TANC1 and 12.5% for TANC?2 (see
Supplementary Table S7.1). Despite the presence of insertions between the TANC and
template sequences, the conserved secondary structure elements superimpose well,
especially in functional motifs on the catalytic core (Walker A, Walker B, and ASCE
motifs). The Walker A and Walker B motifs define P-loop NTPase domains and are
involved in nucleotide and Mg?" cations binding respectively. The ASCE (“additional
strand, catalytic E”’) motif, typically situated between both Walker motifs, determines ATP
as preferred substrate (Figure 7.3). Moreover, residues placed in the catalytic pocket form
a positively charged surface and are highly conserved in TANC orthologous (Figure 3,
Supplementary Figure 7.2). While NTPase signature elements are rather conserved, the
HETHS domain is quite variable among STAND family members and seems involved in
family-specific regulative functions®**. Indeed, since TANCs and APAF1 belong to
different STAND NTPase families, their HETHS domains are more divergent in sequence
and secondary structure. The 3D model quality evaluation of TANC2 and TANCI is typical
of more remotely homologous structures, with QMEAN scores of 0.421 and 0.391
respectively. However, lower quality regions are located in insertions corresponding to long
disordered loops in TANC, while elements defining the catalytic core have low positional

variability and higher reliability.
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Negative Positive Variable Conserved

Figure 7.3: Structural analysis of ATPase domain in TANCI.

Cartoon of TANC1 ATPase domain model (front part) is colored as following: Walker motifs is in red, ASCE
in orange, HETHS domain in green, GxP motif in blue spheres. Electrostatic properties of front surfaces are
shown: negative charges in blue and red charges in red. ConSurf analysis of front surfaces, color code from
unconserved (cyan) to conserved (purple) residues.

7.4.3 Ankyrin (ANK) repeat domain

Ankyrin repeats are a relatively conserved motifs of ca. 33 residues with a consistent pattern
of key residues essential for structural integrity (Figure 7.4)*%%. The structural unit consists
of a B-turn followed by two antiparallel o-helices and a loop connecting to the next
repeat?®*. In both TANC proteins, eleven ankyrin (ANK) repeats are predicted by
InterProScan. The alignment of ANK repeats reveals that the key conserved positions are
overall maintained in both TANC1 and TANC2 (Figure 7.4, Supplementary Figure 7.3).
Despite high sequence identity, the TANCI1 repeat pattern is more regular, supporting
divergent evolution. TANC?2 presents longer loops and a peculiar negatively charged loop
between the fifth and sixth repeat. Given its length, this loop separates the ANK domain
into two regions and could be involved in TANC2 specific functions, as it is highly
conserved among other species but not in TANC1 (Figure 7.4).

For both TANC1 and TANC2, HHpred selected the human ankyrin-R (PDB code: Inl1_A)
crystal structure with 12 ANK repeats as template. Using the same template should allow
a more accurate identification of structural differences between both proteins. The HHpred
alignments were manually refined using the previously defined ANK repeats to maintain
the structural integrity of each repeat. Both models have good quality, with QMEAN scores
of 0.787 for TANCI and 0.737 for TANC2. Each ANK domain is composed of eleven

tandem repeats stacked together to form a linear solenoid structure. The linker loops of

113



neighboring repeats are connected in a tail to head order to form a hairpin-like B-sheet
usually involved in protein-protein interactions in most ANK proteins 2%, Conservation
and electrostatic surface analysis highlighted specific features for each TANC protein
(Figure 7.4). TANC2 presents higher overall conservation than TANCI1, with a negative
charge in the concave region compensated by the prevalently positive convex surface
(Supplementary Figure S7.3C). TANCI presents a more significant separation between
conserved residues belonging to the convex surface and unconserved positions in the
concave region. The electrostatic surface follows the same pattern of TANC2, though more
pronounced (Supplementary Figure 7.3). This region could be involved in electrostatic

interactions with TANC binding partners.
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Figure 7.4: Ankyrin repeat overview and TANC1 Ankyrin domain model.
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A) Consensus sequence of TANC ankyrin modules and related sequence logo. Residues that match the
published consensus % are reported in upper case. Secondary structure is shown above the alignment: the
inner alpha helix (al) and the outer alpha helix (02) are connected by a turn-loop (black line). B) Graphic
representation of ANK repeats structure in TANC proteins. Conserved positions of ankyrin consensus pattern
are reported in the diagram as spheres. Color code refers to consensus logo: hydrophobic amino acids (A, L
and V) are in light blue, glycine in orange, threonine and asparagine in green, histidine in teal, glutamate in
violet and proline in yellow. Residues matching the published consensus 2% are reported in bold. C) Cartoon
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of TANCI1 AR domain model is colored from N-terminus (blue) to C-terminus (red). Electrostatic properties
of turn-loop surfaces and connecting-loop surfaces are shown: negative charges in blue and red charges in
red. ConSurf analysis of turn-loop surface and connecting-loop surface, color code from unconserved (cyan)
to conserved (purple) residues.

7.4.4 Tetratrico-peptide (TPR)-like repeat domain

Both TANC proteins are predicted to contain three TPR repeats which are extremely
conserved among orthologous sequences. TPRs consist of 34 residues, whose consensus is
defined by a pattern of small and large amino acids (Figure 7.5). Each module is formed
by two antiparallel a helices, forming a superhelical helix-turn-helix fold. TPRs are
typically involved in protein-protein interactions and assembly of protein complexes®*®-287,
Despite the high sequence identity of human TANC TPR domains (80,4%), the template
search selected different structures for homology modeling: human FK506-binding protein
52 (FKBP52, PDB code: 1P5Q) and B. taurus cyclophilin 40 (CYPD; PDB code: 1ihg) for
TANCI1 and TANC?2 respectively. The HHpred alignments were again manually refined
using the previously defined TPR repeat alignment. QMEAN shows a rather high reliability
for both models, with scores of 0.749 for TANCI1 and 0.732 for TANC2. The TPR models
were evaluated for both conservation and electrostatic properties (Figures 7.5,
Supplementary Figure 7.4). ConSurf revealed the presence of highly conserved regions in
the TPR domains corresponding to the convex surfaces, with prevailing positively charged
surfaces in both TANC proteins. On the other hand, the concave part seems to be less
conserved, with the exception of negatively charged residues at the C-terminus. A coiled-
coil region was previously thought to map downstream from the TPR domains 2>°. Unlike
TPRs, most domain predictors did not recognize any significant coiled coil region in TANC
proteins (Supplementary Table 7.2). The presence of coiled-coil structures was assessed
using three different tools. In both TANC sequences, all coiled coil predictors recognize a
region downstream of the TPR-region with a low reliability score (Supplementary Table
7.2). However, secondary structure and a further manual evaluation of coiled coil motifs
do not support this prediction 288, Only one helix could be recognized downstream from the
TPR domain for both TANC proteins (Supplementary Table 7.3). To exclude the presence
of degenerate repeats in this position, TPR prediction was performed using TPR-pred. The
analysis highlighted a low confidence TPR module (P-value> e-03) in TANCI, but not in
TANC2. We conclude that the helix is neither a coiled coil nor a TPR repeat, but may

represent a C-terminal cap for the TPR domain. Similar C-terminal capping structures
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consisting of a 22 residue helix stabilizing the TPR fold 2%¢?% are present in both TANC1
and TANC2.
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Figure 7.5: TPR repeat overview and TANC2 TPR model.

A) Consensus sequence repeat pattern of the TANC TPR domain and related sequence logo. Secondary
structure is shown above the alignment: two alpha helices (grey shapes) connected by a loop (black line).
Below the alignment, pattern of conserved small/large residues typical of TPR modules is reported: S
indicates small residues, L for large residues. Residues that match the consensus are reported in upper case.
B) Graphic representation of repeats structure in TANC proteins. Conserved positions of TPR consensus
pattern are reported in the diagram (spheres). Residues that match the consensus are reported in bold.
Conserved small-large residue pattern is also represented: dark green for large residues and orange for small
residues. C) Cartoon of TANC2 TPR domain model is colored from N-terminus (blue) to C-terminus (red).
Electrostatic properties of concave and convex surfaces are shown: negative charges in blue and red charges
in red. ConSurf analysis of turn-loop surfaces and connecting-loop surfaces, color code from unconserved
(cyan) to conserved (purple) residues.
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7.4.5 C-terminus

In each TANC protein, the C-terminal region is preceded by the TPR C-capping helix and
ends with the final PDZ binding motif. The QOHCD6-3 and Q9HCD6-4 TANC isoforms
are missing most of the ANK domain and the C-terminus, with the third - fourth ankyrin
repeats and the fifth ankyrin repeat modified, respectively. Only few sequence stretches in
the C-terminus have a significant similarity between TANC proteins and their orthologous
(Figures 1 and Supplementary Figure 7.2). As expected, ELM recognized the highly
conserved PDZ-binding motif in both paralogs, which has been demonstrated to mediate
TANC interaction with PSD95 and SCRIB?*. A poly-glutamine region followed by a
proline stretch and a serine-rich region (SRR) are present in both TANC C-termini.
Furthermore, MAPK and WW binding sites are predicted in the C-terminus of all TANC
homologs sequences (Figure 7.2). These sites are partially overlapping and located in a
region predicted to be phosphorylated by different kinases. Several 14-3-3 binding motifs
are also predicted on different positions in the TANC C-termini.

The TANC2 C-terminus, but not its paralog, presents an unusual number of 27 conserved
tyrosine residues showing a periodicity of ca. 12 residues. The presence of possible
repetitive modules was therefore assessed. As expected, no repeat pattern was identified
for TANCI1, whereas both TRUST and RADAR recognized four repetitive regions in the
sequence preceding the SRR. Further manual curation of TANC2 repeats suggests the
presence of shorter modules of approximately twelve residues, in which the tyrosine residue
represents the main signature. Taken together, these findings confirm the presence of a
regular pattern that could organize the C-terminus and have a regulative role in protein

function.

7.4.6 TANC network

We manually curated 24 TANCI1 and 20 TANC?2 interacting proteins. Thirteen TANCI1
interactors and five TANC2 interactor were retrieved directly from publications. The
remaining interactors have been determined by High-Throughput Screening (HTS)
methods and deposited in publicly available PPI databases. The TANC interacting regions
have been experimentally determined for only six TANCI and two TANC2 interactors (see
Table 7.1). Three PDZ domain proteins interacting with the C-terminal PDZ binding motif
in TANC are considered mutually exclusive. For one known TANCI and five TANC2

interactors we predicted a putative interacting site. These proteins present a domain or
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belong to a class of proteins, which may recognize a conserved linear motif mapping in a
disordered TANC regions. Exportin-1 and LATS-2 have a predicted binding motif on the
structured TANC2 ATPase domain. The motifs are located in a loop that may be exposed

upon conformational changes of the domain.
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Figure 7.6: TANC protein interaction network.

TANC interaction partners identified by low throughput data (solid lines), PPI database evidence (thinner
lines or linear motifs prediction. Interactions that are proved only in one paralog, but mediated by binding
sites (linear motif or structural domain) that are identical in both proteins are reported as dotted edges. TANC1
interactors only are colored in light blue; TANC?2 interactors only in red; while TANC interactors both are in
violet. Interactors are represented with different shapes based on specific molecular function: scaffold
proteins (rectangles), protein kinases (rhombus); cytoskeleton proteins (hexagons). TANC proteins are
connected with different neuronal regulative proteins, belonging to Planar Cell Polarity signaling (teal
outline), Hippo pathway (dark red outline) and glutamate signaling (orange outline).

We inferred novel interactors for each TANC member based on known interactors and
shared conserved linear motifs of the paralog (see Table 7.2). Three TANCI interactors
may also bind TANC2 through shared linear motifs. The three proteins found to interact
with the globular domains of TANC1 (Fodrin, MINK, and TNIK) may also bind TANC2,
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although surface analysis of the ANK and TPR domains did not highlight a common

conserved region. Finally, the N- and C-termini of both TANC proteins contain shared

conserved binding motifs for different kinases and WW domain proteins. We hypothesize

that these proteins may mediate post-translational TANC modifications.
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2 DC5L HTS AC-M 290
€DE3 2, Myb/Cefl assembly S AC-MS -
domain
ENP- in, |Nucl 1
) CENPQ C N Q fiomaln, ucleosome assembly HTS AC.MS |21
Coiled coil at the centromere -
Centrosome
2 CEP120* |2 C2, Coiled coil |organization, Cilium |HTS AC-MS |*°! B
assembly
Centrosome
1 CEP128 Coiled coil organization, Cilium |HTS AC-MS  |*? B
assembly
. Centrosome
1 CNTRL jOLﬂRR’ 4 Coiled | oanization, Cilium |HTS AC-MS 22 |
assembly
| FBXWI1 F-box, 7 WD Ublqultll}—medlated Co-IP 203
repeats degradation -
Agenet-like, KH, .
Regulat f
2 FMRP FXMRP1 _C_core, ter:I;ﬁf;‘ © CLIP 4|
FXMR_C2
23 Spectrin
kelet Pull-
| Fodrin repeats, SH3,3 cht;’; Zﬁoiln a;lsa down 2% |ANK and TPR
EF-hand ganz v
Tut te R t
1 GKAP |3 Coiledcoil | iutamate Receptor o, 1p 250
signaling -
1 GuRI  |TM Glutamate Receptor |, 1p 250
signaling -
| GRIP 7 PDZ erlutar'nate Receptor |Pull-down 250
signaling assay -
(Continues)
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Table 7.1 (Continued)

Interacting protein Exverimental
TANC — P Ref. ' TANC region
Name . Pathway evidence
architecture
WHI1/EVH]I, Glutamate Receptor |Pull-down 250
1 Homer . . . .
Coiled coil signaling assay -
13 repeats of P-X-| . . . 268
2 INPPSE X-P, Phosphatase Cilium trafficking SF-TAP/MS _
UB associated
Kinase
2 LATS2 ’ Hi th HTS PL-M 295
5 AGC-kinaseC- | PPo Patvay S PL-MS -
terminal
Microtubule
2 MAPRE1 |CH,EB1_C cytoskeleton SF-TAP/MS |26} _
regulation
| MOV10 P-loop ATPase RNA-@edlated gEN€ | g AC-RNA |296
domain silencing -
Rap2-mediat
1 MINK  Kinase, CONH | opz-mediated Immunoblotting” | TPR
signaling
4 EF-hand, 4 Centrosome
1 NINL Coiled coil, KEN- |organization, cilium |HTS AC-MS  |*? B
box, D-box assembly
| NR2B Transmembrane qlutamate Receptor Co-IP 297
receptor signaling -
2 NR2c2 (A0 C4 NHR - Ruclearreceptor —pypg o yyg oo
ligand binding signaling pathways -
RRM, 4 LLR
’ RNA rt fr
1 NXFI repeats, NTF2, | © 7 SPO O TS ACRNA 6 |
TAP-C ucleus
2 PAK?7 CRIB, kinase | anar Cell Polarity /pypg s ooms o8
pathway -
Coiled coil,
Centrosome
GTPase, - . 202
1 PCM1 . organization, Cilium [HTS AC-MS
molybdopterin -
. assembly
domain
Glutamate Receptor
Th
2 pppiCA  oeTThr signaling, HTS AC-MS %
phosphatase ; . . -
Hippo, Wnt signaling
2 pppicc |0 THr GluR, Hippo HTS AC-MS 2%
phosphatase signaling -
Pl 11 Polari
1&2 |[PRICKLEI |PET, 3 LIMs anar Cell Polarity 1 o \igims 29
pathway -
Pl 11 Polari
1&2 |PRICKLE2 |PET, 3 LIMs anar Cell Polarity 1 o \isims 29
pathway -
1&2 [PSD-95  |3PDZ SH3,GK | rwamateReceptor W2H, Pull- i 1116 ppyz Class 1
signaling down assay - - -
1&2 |SAP97 127, 3 PDZ, SH3, erlutar'nate Receptor |Y2H, Pull- 196 LIG PDZ Class 1
GK signaling down assay - - -

(Continues)
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Table 5.

1 (Continued)

Interacting protein Exverimental
TANC — P Ref. ' TANC region
Name . Pathway evidence
architecture
16 LRR ts, 4 |P1 Cell Polari
I SCRIB repeats, & [Planar Cell Polanity Igpp W |LIG_PDZ Class_I
PDZ pathway - - -
| SHANK1 6 ANK, SH3, (jxlutar.nate Receptor  |Pull-down 250
PDZ, SAM signaling assay -
2 SPIRE2 KIND, 3 WH2, ZF|Vesicles transport HTS AC-MS |#! B
. Rap2-mediated and .
1 TNIK Kinase, CNH ap-mediated al Immunoblotting |*’ TPR
Wnt signaling
Importin_N-term,
2 XPO1 10  ARM/HEAT |Nuclear export Pull down 301 B
repeat like
Glutamate  Receptor
2 YWHAB |14-3-3 signaling, HTS AC-MS | » B
Hippo signaling
2 ZYX 3 LIM, Zn binding|Hippo pathway HTS AC-MS  |**8 B

Table 7.1: List of TANC interactors.

For each interactor, the interacting TANC protein, the detection method and the binding region
(experimentally validated) are here listed. Y2H: Yeast two hybrid; Co-IP: Co-immunoprecipitation; SPR:
Surface plasmon resonance HTS: High-Throughput System; AC: Affinity Capture; PL: Proximity Label; MS:
Mass spectrometry; CLIP: Cross-Linking Immuno-Precipitation SF-TAP/MS: systematic tandem affinity
purifications coupled to mass spectrometry. SLiMs are named according to the ELM nomenclature.

Predicted Interactor i
TANC Method -Predlcte-d ‘ TANC
Name Domain architecture interacting region
TANCI interactor
; DEG_SCF_TRCP1
1 FBXWI11 | F- D t LiM i -7
W box, 7 WD repeats Conserved SLiM in DEG Nend Nbox 1
IDR - - -
1 YWHAB | 14-3-3 LIG 14-3-3 2
1 PPPICA | Ser/Thr phosphatase TANC?2 interactor, DOC PP1 RVXF 1
Importin_N-term, 10 | same SLiM in TANCI
1 XPO1 — TRG_NES CRMI1 1
© ARM/HEAT repeat like G_NES_C -
LIG 14-3-3 2
2 YWHAB | 14-3-3 LIG 1433 3
2 PPPICA Ser/Thr phosphatase TANC?2 interactor, DOC _PP1 RVXF 1
UB associated Kinase, | Conserved SLiM in
2 LATS2 AGC-kinase C-terminal | IDR MOD_LATS_I
) NR2C2 ZF— ' C4, NHR ligand LIG_NRBOX
binding (score 0,3)
Importin_ N-term 10 TANC?2 interactor,
2 XPOl1 ARM /HE_ AT repeat like Conserved SPIM in TRG NES CRMI 1
P-loop domain
2 Homer WHI1/EVHI, Coiled coil | TANCI interactor LIG_EVHI 1
(Continues)
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Table 7.2 (Continued)

TANC | Predicted Interactor Method Predicted TANC
Name Domain architecture interacting region

2 SAP97 L27,3 PDZ, SH3, GK . LIG _PDZ Classl

TANCI interactor, = =
2 SCRIB 16 LRR repeats, 4 PDZ same SLiM in TANC2 LIG(;P;)CZ_Clas(il 1
DE F_TRCP
2 FBXWI11 | F-box, 7 WD repeats DEG_Nend Nbox 1
. TANCI interactor,
2 Fodrin ?E?:I-)ﬁ::(lin repeats, SH3, same domain in ANK and TPR
TANC2

2 MINK Kinase, CNH TPR

2 TNIK Kinase, CNH TPR

1 CDK Kinase MOD CDK 1

1&2 G- Actin? | Actin domain LIG_Actin WH2 2

1&2 Cyclins Cyclin, N-terminal DOC CYCLIN 1

1&2 MAPK Kinase DOC MAPK gen 1
WwW
domain- . .

1&2 containing WW domain Conserved SLiM in DOC_WW_Pinl_4
proteins IDR
Atg8

1&2 protein Autophagy LIG LIR Gen 1
family

1&2 CK1 Kinase MOD CKI1 1

1&2 GSK3 Kinase MOD GSK3 1

1&2 NEK2 Kinase MOD NEK2 1

Table 7.2.: Predictions for TANC interactors. SLiM: Short Linear motif; IDR: Intrinsically disordered
region.

7.4.7 Missense mutation analysis

Three TANC2 missense mutations have been reported in three unrelated patients with

different neuropsychiatric phenotypes?*-2°2302,

The two variants p.Arg760Cys and
p-Ala794Val map on the ATPase regulative domain. The former has been found de novo
in a pediatric patient presenting intellectual disability>*?. The p. Arg760Cys variant maps
on a buried loop facing the ASCE strand within the ATPase regulative domain in catalytic
pocket. The substitution of a charged arginine residue with a cysteine may have some effect
on the catalytic pocket, where charged residues coordinate Mg?* ions and binding of ATP
molecules. The p.Ala794Val was inherited from the father in a patient with
schizophrenia®®. It affects a buried residue in the ninth helix of the regulative region that
could affecting folding due to steric clashes. Both mutations are predicted as pathogenic by

most prediction tools (11/12 for R760C and 12/12 for A794A, details in Supplementary
Table 7.4) and likely affect regulative domain stability and ATPase activity. A third
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inherited mutation mapping to the C-terminal tail (p.His1689Arg) was found in a patient

with autism spectrum disorder®>?

. Although it maps within a conserved region, the Histidine
to Arginine substitution is only predicted to be damaging by six of twelve tested methods

(Supplementary Table S7.7).

7.5 Discussion

Recently, evidence from mouse models and human patients suggested the TANC proteins
as candidates for NDD. Despite different expression profiles in the brain, TANCI and
TANC2 have both been shown to positively regulate dendritic spines and excitatory
synapses** . The TANC family has been described as PSD95 partners found to localize
and interact with several postsynaptic proteins?*°. Here, we report an in depth in silico
analysis of the TANC family structure and function to gain insights on their molecular
function as well as to elucidate the role of these proteins in NDDs. The P-loop domain
model suggests that the TANC proteins may have an ATPase activity since all functional
elements are conserved, although the regulative domain differs from other proteins of this
class and its role has to be demonstrated. Modeling the repeat domains allowed identifying
conserved PPI interfaces for both ANK and TPR domains, with different electrostatic
charges possibly involved in protein binding. Despite previously reported predictions,
sequence and structural analysis of the TPR domain allowed to exclude the presence of
coiled-coil region in TANC, as the mispredicted region corresponds to a stabilizing C-
capping element of the TPR domain. Along the N and C- terminal disordered regions of
TANC we predicted several conserved SLiMs supporting interactions from high-
throughput experiments known to have false positives (Table 7.2, Figure 7.6). The
prediction of putative interacting regions, besides inferring novel interactors, allowed to
define some proteins as mutually exclusive interactors. PSD95 and SCRIB interact with
the TANC PDZ linear motif anchoring TANC proteins to the glutamate receptor or in PCP
signaling?4%-230-300.303.304 " AJthough most short motif patterns have a high chance of random
occurrence and their prediction may have low specificity, we used stringent criteria * to
select putative protein binding sites. To be considered, a binding site has to be conserved
among orthologous, or shared among paralogs, and mapping to a disordered region.
Alternatively, spliced regions are also favorable factor of being a true binding site.
Moreover, the putative motif is supported if its binding proteins known TANCs interactors

or involved in the same biological processes®>. We expanded the functional network of
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TANC proteins, integrating prediction and high throughput data, and inferring protein
partners based on information of one of the two TANC family member (see Figure 7.6).
We found that the TANC N-termini present several conserved linear motifs, which may be
involved in a broader range of cell regulation, including phosphodegrons and phosphatase
docking motifs. These motifs could be the target of two TANC interactors identified by
high-throughput screening, protein phosphatase 1 (PP1) and FBXWI11. The latter is a
component of the SCF E3 ubiquitin-protein ligase complex implicated in recognition of
phosphorylated proteins targeted for degradation®. PP1 is one of the three phosphatases
expressed in neurons regulating NMDAR-dependent Long Term Depression (LTD) during
development’%°
suggested by the findings that RNAs of both TANCs are targets of the MOV10 RNA
helicase and the Fragile X mental retardation protein (FMRP)**7% Recently, MOV 10 was

found to be a functional partner of FMRP?*®. MOV10 promotes miRNA-mediated

.n Another mechanism involved in functional TANC regulation is

translational suppression of its target RNAs, while FMRP regulates synaptic strength at
glutamatergic synapses by controlling translation of specific RNAs. TANC regulation may
also occur through post-translational modifications (PTM) sites we have predicted.
Different kinases, such as CAMKII, MINK TNIK, PAK7, LATS2, have been identified as
TANC interactors and PTM sites have been frequently shown to conditionally switch
motif-mediated interactions®! triggering different signaling pathways. Predicted and
collected PPI data allowed us to position TANC proteins in several biological processes,
other than post-synaptic density proteins, such as the planar cell polarity pathway?***%,
Wnt signaling and Cilium assembly. We also found for TANC1 and TANC2 specific
connections with Rap2-mediated and Hippo signaling®, respectively, that may explain
different roles of TANC1 and TANC2 in brain function. However, all of these pathways
contribute in different ways to correct neuronal development and maintenance 2%7-29%-300.304,
The TANC proteins thus appear to be regulated at several levels from synthesis to
degradation, while being involved in pathways controlling neural development and
maintenance. It is likely that alterations of these proteins may affect different processes,
thus explaining the broader range of disease phenotypes associated with TANC variants.
The performed analysis allowed us to discover structural and functional elements that will
help the interpretation of newly discovered TANC gene variants. It would be worth

following them up experimentally to support a mechanistic model for TANC function as a

dynamically regulated scaffold.
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8 Unraveling TANC2-CDKLS5-PP1
interactions: intrinsically disordered regions
mediating novel pathways in
neurodevelopment

8.1 Summary

This Chapter summarizes the experimental approaches used in validating TANC2
interactions with PP1 and CDKLS5, and the functional significance of the TANC2-CDKLS5-
PP1 interplay. The interaction among endogenous full length proteins was assessed both
by co-localization analysis in primary hippocampal cultures from EI8 rats and
neuroblastoma cell line, and immunoprecipitation from rat synaptosomes. Binary
interactions between TANC2, PP1 and CDKL5 sub-clones were validated by yeast two-
hybrid assays. TANC2 silencing was performed in SHSYSY cells to assess the functional
relationship among regulative TANC2 activity and CDKLS5 protein levels. Our findings
suggest that TANC2 not only is able to form a complex with either CDKLS5 or PP1, but it
also functions as a scaffold linking the phosphatase PP1 to its substrate CDKLS, allowing

the dephosphorylation and subsequent kinase degradation.

8.2 Introduction

Neurodevelopmental disorders (NDDs) are common conditions including clinically
heterogeneous diseases, such as intellectual disability (ID) and autism spectrum disorders
(ASD). In most cases, NDDs are genetically determined and, up to now, several hundreds
of causative loci have been already identified'*®. CDKLS5 disorder is caused by mutations
on the CDKLS5 gene, resulting in early onset seizures and severe neurodevelopmental
impairment’!?. Although biological functions of CDKL5 remain largely unknown, its role
in synapse development and neuronal plasticity has been established demonstrating that it
regulates neuronal morphogenesis via Racl signaling *'°. The CDKLS5 ensures excitatory
synapse stability by reinforcing the NLGI1-PSD95 association at the postsynaptic
compartment®!! and its synaptic localization is regulated through its direct interaction with

a palmitoylated form of PSD-95 32, It was demonstrated that upon NMDAR stimulation,
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CDKLS is dephosphorylated by PP1, causing its proteasome-dependent degradation in
mature neurons’'>. This step appeared to be relevant for an activity-dependent signaling
cascade, regulating synapse composition, shape and strength. However, the mechanism
targeting PP1 activity towards CDKLS5 is still debated *!*. We speculated TANC2 could
mediate CDKLS5 degradation, and different lines of evidence contributing to the
formulation of this hypothesis. TANC2 is recently emerging as a candidate gene for
neurodevelopmental disorders (NDDs), as TANC2 mutations have been associated with
several forms of NDDs, including autism and intellectual disability'®’, both characteristics
shared with CDKLS5 disorder®'. TANC2 and CDKLS5 are post-synaptic proteins known to
interact with PSD-95, which is required for their proper localization at post-synaptic
densities (PSDs) and for their association with additional postsynaptic proteins, including
the glutamate receptors'*®>!!. Although TANC2 function in brain cells remains unclear,
this scaffold protein is proposed to play a critical role in organizing different components
of glutamate receptor complexes at PSD and determining synaptic strength and
plasticity'®. CDKLS5 presents two isoforms, i.e. CDKL5-1 (1,033 AA) and CDKL5-2 (960
AA). CDKL5-2 is the most abundant isoform both in fetal and adult brain, where it is
constitutively expressed’!*. Contrarily to the isoform 2, CDKL5-1 displays differences in
expression profiles over time, with higher levels in fetal brain than in adult one®!*. Like
CDKLS5-1, TANC2 is highly expressed during the early embryonic stages, where it is
thought to be involved in proper fetal development, with knock-out causing lethality in
utero'®. In an our previous investigation'®’, we found TANC2 to harbor several conserved
linear motifs, including phosphatase docking motifs. These motifs could be the target of
interactors identified by high-throughput screening, such as the protein phosphatase 1
(PP1). PP1 dephosphorylates hundreds of key biological targets and its activity is controlled
by hundreds of regulative proteins directing its specificity®'>. Thus, we hypothesize that the
TANC?2 scaffold protein could mediate and regulate PP1 function on CDKLS5. Therefore,
this work aims to fully validate PP1/TANC2/CDKLS5 interactions taking advantage of
different in vitro techniques, and to better understand the role of TANC2 in PP1-mediated
CDKLS5 degradation.
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8.3 Materials and methods

8.3.1 SHSYSY and primary hippocampal neurons cultures

Human neuroblastoma SH-SYSY cells were plated on laminin-coated (1 pg/cm?, Sigma)
coverslips in 24-well plate at a density of 5x10* cells/mm?. Cells were maintained in
Dulbecco Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 2mM of glutamine and antibiotics (penicillin, 100 U/ml;
streptomycin, 100 pg/ml), in a humidified incubator with an atmosphere of 95% air and 5%
COa, at 37°C for six days. Primary cultures of hippocampal neurons were prepared’'® from
the isolated hippocampi of EI8 rat embryos purchased from BrainBits®. Briefly,
hippocampi were dissociated with trypsin 0,06% at 37 °C for 15minutes, washed in Ca®*-
and Mg?*-free Hank’s balanced salt solution (HBSS; Gibco®) containing 10% FBS to
block trypsin enzymatic activity, and homogenated in Neurobasal medium supplemented
with 1% B27 supplement, 25 uM glutamate, 0.5 mM glutamine, and 50 pg/ml gentamycin.
Dissociated cells were filtered with a 100 um cell strainer to obtain a uniform single cell
suspension. Isolated cells were plated on poly-d-lysine-coated coverslips (0.1 mg/ml,
Sigma) in 24-well plate at a density of 1.52x10° cells/mm? and maintained in normal
growth conditions (atmosphere of 95% air and 5% CO-, at 37°C) for 15 days. After seven

days, half of the culture medium was replaced with fresh medium without glutamate.

8.3.2 Immunofluorescence protocol

Immunofluorescence of SH-SYSY cells was performed after an incubation time of 72 hours
with differentiation medium (IGF-1 50 nM, 2 mM of glutamine and antibiotics). The cells
were fixed with 3.7% formaldehyde (v/v) for 20 minutes and permeabilized for 5 minutes
with 0.1% Triton X-100 in PBS (v/v). Washes were performed using 1% gelatin/PBS 1X
(w/v) to block nonspecific antibody-binding sites. Immunostaining was performed
incubating the coverslips with the primary antibodies in PBS, 90 minutes at 37°C. After
three washes with 1% gelatin/PBS and other three with PBS 1X, coverslips were incubated
with the secondary antibodies, for 30 minutes at room temperature. Hippocampal neurons
(15 DIV) were fixed with 4% paraformaldehyde/sucrose in PBS and permeabilized with
0.3 % Triton X-100 in PBS for 5 min. The cells were then incubated in PBS/10 % BSA for
one hour at room temperature. Immunostaining was performed incubating the coverslips

with the primary antibodies in PBS/3 % BSA, two hours at room temperature. Each sample
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was washed six times with PBS and was incubated with the secondary antibodies, for one
hour at room temperature. In both cases, the coverslips were mounted with Dako
fluorescence mounting medium. Primary antibodies: goat anti-TANC2 S16 (1:20, Santa
Cruz Biotechnology), rabbit anti-CDKL5 A304-172 (1:20, Bethyl) and rabbit anti-PP1
A300-904 (1:20, Bethyl). Secondary antibodies: donkey anti-goat IgG conjugated with
Alexa Flour 555 (1:50, Invitrogen) and donkey anti-rabbit IgG conjugated with Alexa Flour
647 (1:50, Invitrogen). All antibody dilutions for immunostaining experiments were done

in PBS 1X.

8.3.3 Colocalization analysis

Imaging of immunostained samples was performed with Leica SP5 confocal microscope,
using a 63x oil objective (1,024x1,024 resolutions, 200Hz, z-stack step > 0.5 um, PA 1AU).
Confocal image z-stacks were analyzed using the Imagel2/Fiji colocalization plugin
Coloc2 (https://imagej.net/Coloc_2). Pixel intensity correlation was calculated by the
automated Manders’ method®!” with a point spread function of 1 and 10 shuffling iterations

for the Costes’ significance test'%.

8.3.4 Rat cortex synaptosome preparation

Purified synaptosomes were prepared according to the Nicholls method?!®. In brief, brains
from 3 months old male rats were homogenized in lysis buffer (4mM HEPES-Na, 0.32 M
Sucrose, pH 7.3) with 12 strokes in a glass homogenizer on ice. Homogenate was
centrifuged using AvantiJ-centrifuge at 5,000 r.p.m for 3 minutes with JA25.50 rotors at
4°C. Then, supernatant was centrifuged at 1,1000 r.p.m for 12 minutes at 4°C. The pellet
was resuspended in 3 ml of lysis buffer taking care to not perturb the mitochondrial button,
and diluted to 1:2 factor with a HEPES-buffered solution (140 mM NaCl, 5 mM KCI, 20
mM HEPES-Na pH 7.4, SmM NaHCO3;, 1| mM MgCl,, 1.2m M Na2HPO4 and 10 mM
Glucose). The resuspension was divided in 2 ml tubes, centrifuged at 4°C for 10 seconds,
and resuspended in HEPES-buffered solution with a volume up to 1.5 ml. The obtained
synaptosomes were lysated in the lysis buffer (40mM Tris-HCI pH 8, 150 mM NaCl, 50mM
Na-Citrate, SmM CHAPS, 1X PIC) and used for co-immunoprecipitation experiments.
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8.3.5 TANC2-CDKLS co-immunoprecipitation experiments

Endogenous TANC2/CDKLS5 complexes were immunoprecipitated from rat synaptosomes
using rabbit anti-TANC2 A303-023A antibody (Bethyl). The antibody (2ug in 200 ul
TBS/0.05% Tween-20) was incubated 1 h at 4°C in agitation (500 rpm) with 5 pl of Protein
a Magnetic Beads (Pierce ThermoFisher). Then, after three TBS-T 0.05% washes, lysates
were incubated with conjugated resin for 1 h at low temperature (4°- 6°C), washed three
times with 200 pl of the lysis buffer (see above), and eluted with NuPAGE LDS Sample
Buffer 4X (ThermoFisher). The eluted samples were added of 100 mM DTT and incubated
for 10> at 70°C in agitation (500 rpm). Afterwards, samples were analyzed by
immunoblotting with rabbit anti-CDKL5 A304-172A antibody (Bethyl). [rDye 800 anti-
rabbit (LI-COR) was used as secondary antibody at 1:10000 dilutions in BSA 5%/TBST
(TBS-Tween20) 0.1%. To confirm the results, the experiments were replicated using 2 ug
rabbit anti-CDKLS5 antibody for immunoprecipitation and anti-TANC2 A303-023A

antibody for immunoblotting.

8.3.6 Plasmids, oligonucleotides, site directed mutagenesis

Assessment of TANC2-PP1 and TANC2-CDKLS5 interactions was performed using the
yeast two-hybrid system, as described previously in Minervini et al. 20173'. In brief,
pcDNA3.1-derived plasmids (GenScript) carrying the full-length synthetic ¢cDNA of
TANC2 (NM_025185), CDKLS5 (NM _001037343) and PPl (GenEZ™ORF clone
OHul7166) were used as templates to transfer different coding regions in yeast vectors
pGADT7 and pGBKT7, provided by Clontech. The DNA fragments were amplified by
PCR (primer sequences in Supplementary Tables 8.1 and 8.2), and cloned in the final
plasmids, near di EcoRI restriction site, using the In-Fusion® HD Cloning Kit (Clontech)
standard protocol. When possible, shorter overlapping fragments of both CDKL5 and
TANC2 C-terminal region (1,228-1,990) were obtained using QuikChange II XL Site-
Directed Mutagenesis Kit (Agilent Technologies), following the supplier's instructions. All
recombinant plasmids express TANC2, CDKLS5 or PP1 fragments fused with either the
DNA binding domain (DBD, pGBKT7-derived plasmids), or the activation domain (AD,
pGADT7-derived plasmids) of the Gal4 transcription factor.
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8.3.7 Yeast-two-hybrid (Y2H) experiments

Minimal interaction sub-regions between TANC2, CDKLS, PP1 were investigated through
yeast two-hybrid assay, by the Matchmaker® Gold Two Hybrid system (ClonTech).The
co-transformation Y190 reporter yeast strain was performed following the one-step
transformation protocol 3*°. Generally, multiple transformations (2-3) were performed,
from which two or more independent colonies were tested, using 10-fold dilutions on solid
medium. Positive interactions were identified by growth on His— Leu— Trp— 30 mM and
60 mM 3-Amino-1,2,4-Triazol (3AT) plates. To assess the interaction strength of tested
combinations, a positive control strain, containing both Gal4 AD-SV40 large T-antigen and
Gal4 DBD-murine p53 (fragment 72—390), and a negative control, corresponding to Y190
co-transformed with empty pGADT7 and pGBKT7, were employed. Yeast stain growth

was monitored for 3 and 6 days at 30°C.

8.3.8 Sequence feature analysis and known CDKLS interactors analysis

CDKLS isoforms (UniProt accession code: O76039-1, O76039-2) were downloaded from
UniProt'®, and aligned with orthologous sequences retrieved from OMA Browser?”” (forty
five sequences, accession date: 15/08/17). The C-terminal protein sequences were assessed
for intrinsic disorder, presence of compositionally biased regions (i.e., repeating amino
acids) and short linear motifs (SLiMs) using FELLS’® and ELM®!, whereas secondary
structure was predicted using PSIPRED”’. Since SLiMs can be highly degenerated, and
many putative SLiMs could be false positives, we selected only those mapping to
ANCHOR??! predicted binding sites in conserved disordered regions (perfect match in at
least twenty three out of forty five sequences used for the multiple alignment). A list of
experimentally determined CDKLS interactors was gathered from the literature and the
publicly available databases BioGrid*®, and IntAct® (see Table 8.2). For each binding
partner, the interaction details from the literature (i.e. involved sequence motifs, domains,
and regions) and the involved biological processes from the InterPro’®, UniProt!®® and

KEGG?%° databases were annotated

8.3.9 TANC2 silencing

TANC?2 silencing was performed in SHSYSY cells, using the FlexiTube siRNA premix
system (QIAGEN). In brief, shortly before transfection, cells were seeded in a 24-well plate

at a concentration of 0.8 x 10°/well, in 0.6 ml of in supplemented DMEM (see above), and
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briefly incubated in normal growth condition (5% CO2, at 37°C). Two different FlexiTube
siRNA sequences were tested, Hs TANC2 1 (S103131639) and Hs DKFZP564D166 3
(S100367003), both targeting TANC2 NM 025185 transcripts. The All Stars Negative
Control siRNA (QIAGEN) was used as negative transfection control. 25 nM of each
FlexiTube premix, which contains both transfection reagents and the siRNAs, was added
drop-wise to the cells. Cells were harvested 72h after transfection, using a lysis buffer (50
mM Tris-HCI pH7.5, 150mM NacCl, 10% glycerol ImM EDTA 0,5% NP-40). TANC2 and
CDKLS expression levels were assessed on cell lysates by immunoblotting against the two
proteins. The samples were diluted with Leamli sample buffer 5X (60 mM Tris—HCI pH
6.8, 10% glycerol, 2% SDS, 0.001 % bromophenol blue, and 5% B-mercaptoethanol) and
100 mM DTT. Protein samples were separated by SDS-PAGE in 10 % polyacrylamide gels
and transferred to nitrocellulose membranes. Membranes were blocked in 5 % milk in TBS-
T 0.1%, and incubated with primary antibodies overnight at 4°C. Finally, the membranes
were washed and exposed to alkaline phosphatase-conjugated secondary antibodies. To
quantify sample band intensities, -actin was used as internal normalization standard.
Significance of difference in protein levels using Microcal Origin 8.0 (Malvern
Instruments, Worcestershire, United Kingdom) by Welch’s ¢ test, with p-value < 0.05
considered statistically significant. Data were graphed using Microsoft Excel and expressed
as mean + S.E.M.

Primary antibodies: rabbit anti-CDKLS5 A304-172A antibody (1:3,000, Bethyl), rabbit anti-
TANC2 A303-023A antibody (1: 3,000 Bethyl), mouse anti-B-actin antibody A5441 (1:
1,000, Sigma) Secondary antibodies: goat anti-rabbit IgG (whole molecule) — peroxidase
A6154 antibody (1: 10,000 Sigma), rabbit anti-mouse IgG (whole molecule) — peroxidase
A9044 antibody (1: 10,000 Sigma). All antibody dilutions for western blot experiments
were done in BSA 1%/TBS-T 0,1%.
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8.4 Results

8.4.1 TANC?2 colocalizes with CDKLS5 and PP1, and CDKLS5-TANC?2 interaction is

confirmed by co-IP in rat synaptosome

TANC2-CDKLS5 and TANC2-PP1 interactions between endogenous proteins was tested by
double-labeled immunofluorescence in different cell types. Colocalization analysis
revealed that there is a high degree of spatial correlation between TANC2 and PP1, both in
primary hippocampal neurons (Pearson’s correlation coefficient (PCC) = 0.44 + 0.03; n >
10 cells from 4 different coverslips), and SHSYS5Y neuroblastoma cells (PCC = 0.49 +
0.04; n > 20 from 6 different coverslips; Figure 8.1), confirming the predicted interaction
between the two proteins. The same was observed for TANC2-CDKLS5 immunostained
samples, with PCC = 0.59 + 0.04 in hippocampal neurons (z > 10 in 6 different coverslips)
and PCC = 0.47 £ 0.03 in SHSYSY cells (» > 20 from 5 different coverslips), suggesting
that CDKL5 and TANC2 could be interaction partners. In addition, to evaluate
colocalization, we performed with Coloc2 plugin, which returns an intensity correlation
quotient (ICQ), ranging from -0.5 (perfect anti-correlation) and 0.5 (perfect
colocalization)*?2. In our samples, the ICQ values confirm the colocalization of TANC2
with PP1 and with CDKLS5 (TANC2-PP1: ICQ = 0.33 = 0.01 and 0.35 + 0.02 in primary
and neuroblastoma cells respectively; TANC2-CDKLS5: ICQ = 0.36 + 0.02 in hippocampal
neurons and 0.32 + 0.03 in SHSYS5Y cells). However, we noticed that TANC2 localization
slightly differs from CDKLS5 and PP1 distributions within cells. Indeed, PP1 and CDKLS5
signals are more homogeneous in the cytoplasm, whereas TANC2 is more concentrated in
dendrites and at membrane level, in accordance with TANC2 being a scaffold protein
(Figure 8.1). To confirm CDKL5-TANC?2 interaction in conditions near physiological
environment, co-immunoprecipitation of the two proteins was performed using rat
hippocampal synaptosomes. The experiments confirm that CDKL5-TANC2 complex can
be detected in ex vivo preparations. Indeed, TANC2 can be detected in the sample
immunoprecipitated using an antibody against kinase domain of CDKLS5, as well as
CDKLS can be detected in the sample immunoprecipitated using the a TANC2-antibody
(Figure 8.1).
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Figure 8.1: Validation of PP1-TANC2 and CDKL5-TANC?2 interactions. A) Representative images of
endogenous TANC2, CDKLS5 and PP1 immunostaining in primary hippocampal neurons. B) Representative
images of endogenous TANC2, CDKLS5 and PP1 immunostaining in SHSYS5Y cells. C) Validation of
TANC2-CDKLS5 interaction assessing immunoprecipitation of endogenous complexes from rat synaptosome

extracts.
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8.4.2 In yeast, TANC2 interacts with PP1 through the its N-terminus, whereas
CDKLS interaction is mediated by TANC2 C-terminus

The characterization of TANC2-PP1 and TANC2-CDKLS interacting sub-regions was
performed using the yeast two hybrid system. TANC2 sequence was divided in different
sub-clones (Table 8.1), which were tested separately against PP1 and CDKL5-1 full length

proteins.
TANC2
Region Position Domains
TANC2.1 1-845 N-terminus
TANC2.11 1-845 N-terminus + ATPase domain
TANC2.III 1-1.227 N-ter@inus + ATPase domain + ANK
domain
TANC2.1V 341-1,227 ATPase domain + ANK domain
TANC2.V 846-1,227 ANK domain
TANC2.VI 1228-1,990 TPR domain + C-terminus
TANC2.VII 1,228-1,358 TPR domain (C-terminal cap not included)
TANC2.VIII 1,244-1,542 full TPR domain + PolyP region
TANC2.1IX 1,538-1,628 C-terminus
TANC2.X 1,623-1,990 C-terminus
CDKLS5
Region Position Domains
CDKLS5.1 1-1,030 full-length protein
CDKL5.IT 1-300 kinase domain only
CDKLS5.111 301-615 C-terminal tail (first part)
CDKLS5.1V 587-1,030 C-terminal tail (second part)
CDKLS5.IVA 587-740 _
CDKL5.1VB 731-802 Poly-Lys region
CDKLS5.1VC 796-1,030
PP1
Region Position Domains
PP1 1-330 full-length protein

Table 8.1: CDKLS, PP1 and TANC?2 regions investigated through Y2H assay.
First column: name of TANC2/CDKLS5 clones; second column: clone mapping on protein sequence. A brief
description of the relevant structural features for each clone is reported in third column.

At first, our attention was focused on PP1-TANC2 interaction. TANC2 was found to

interact with PP1 by high-throughput mass spectrometry?*®

, although the interacting
peptide was not indicated. Two highly conserved RVxF docking motifs map to TANC2 N-
terminus, making this region a good candidate for interaction with the phosphatase. As

expected, only the clones containing the N-terminal tail (TANC2.I = 1-340, TANC2.II =
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1-845, TANC2.III = 1-1,227) were able to directly interact with PP1, resulting in yeast
growth (Figure 8.2). No other TANC2 domain is necessary to PP1-TANC2 interaction
(Figure S8.1).

A B

1:1 1:10 1:100 11 1:10 1:100

TANC2 PP1 full length
(330 AA)

DOC_PP1_RVXF_1

* *
P-loop
‘ g ‘ ATPase

1 (1-1227)

Ankyrin domain

PP

Il (1-845)

i (1-340) ' Q

Permissive Selective

Figure 8.2: Yeast two-hybrid dissection for interaction between TANC2 and PP1.

Co-transformation of Y190 reporter yeast strain was performed, allowing the validation of PP1/TANC2
interactions. A): graphic representation of tested TANC2 subclones (orange triangles = PP1 docking motif)
and PP1 structure (pdb code 3EGG); B): Serial dilutions of yeast cells were spotted on both permissive (left)
and selective (right) media, and incubated for six days at 30 °C. C+ and C— are positive and negative controls.
The image is representative of two independent experiments, each with three different clones analyzed. Clone
autoactivation was evaluated co-transforming the tested subclones with an p. GBKT7 empty vector (indicated
with ).

As regard CDKL5-TANC?2 interaction, it was detected between TANC2.VI clone (1228-
1990), containing both TPR domain and C-terminus, and the full-length kinase sequence
(CDKL5.I) (Figure 8.3, Figure S8.2). To further outline the sub-regions involved in
TANC2-CDKLS5 interaction, TANC2.VI and CDKLS5 plasmids were mutagenized,
obtaining shorter overlapping fragments (Table 8.1). CDKLS binds the C-terminus of
TANC2 (TANC2.X = 1623-1990) via its C-terminal tail (CDKLS5.IV = 587-1030). Indeed,
when only kinase domain was tested (CDKLS5.11 =1-300), the growth assay results were
negative (Figures S8.3, S8.5). Interestingly, the TANC2-CDKLS5 interaction seems to be
mediated by a bipartite region, involving CDKLS5. IV. A (587-740) and CDKLS5.IV.C (796-
1030), but not CDKL5.1V.B (731-802) (Figures 8.3, Figures S8.3, S8.4 and S8.5). Of note,
the region excluded from the interaction is CDKL5.IV.B (731-802), containing the Poly-

lysine segment, predicted as nuclear import signal (see below)*?>.
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Figure 8.3: Fine mapping of TANC2-CDKLYS interaction with Y2H system.

A): graphic representation of tested TANC2 and CDKLS5 subclones; B): Drop-test results for the interaction
of TANC2.X and different CDKLS5 subclone (CDKLS5.1I, CDKLS5.I1I, and CDKL5.IV) on permissive and
selective media. Results of TANC2.X interaction with CDKL5.IV.A and CDKL5.1V.C are reported in C)
and D) respectively. C+ and C— are positive and negative controls. The image is representative of two
independent experiments, each with three different clones analyzed. Clone autoactivation was evaluated co-
transforming the tested subclones with an appropriate empty vector (indicated with @).

8.4.3 CDKLS sequence analysis: C-terminus mediated protein interactions

CDKLS5 presents an N-terminal serine/threonine kinase domain (1-297), homologous to the
MAP kinases and cyclin-dependent kinases 324*%, Aside from the kinase domain, CDKL5
is characterized by a long C-terminus, known to negatively regulate its catalytic activity
and to mediate proper sub-cellular localization 32*32°, Despite this important role in protein
function regulation, the CDKL5 C-terminal tail is still largely uncharacterized*?**?. Thus,
we performed a comprehensive sequence analysis of CDKL5 C-terminus aimed to the
identification of conserved short linear motifs (SLiMs) likely to mediate protein
interactions. Furthermore, we searched for literature and protein-protein interaction

databases to collect information about known or candidate CDKLS5 interactors. We
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manually curated twenty-seven CDKLS interacting proteins, eight interactors from
publications, and nineteen identified by high-throughput screening in publicly available
protein-protein interactions (PPI) databases. Low-throughput experimental evidence for
CDKLS interactors revealed the region 550-850 binds different interaction partners,
including MECP2 *?7 and DNMTIB *? and PSD-95 *'2. This region is characterized by
the presence of a Poly-lysine stretch (784 — 789), which ELM predicted to be enriched in
nuclear localization signals (NLS). The assessment of candidate disordered binding regions
with ANCHOR 32! highlighted the presence of several putative protein interaction sites (see
Supplementary Table S8.3) that were employed during selection of candidate protein
binding motifs. One example is the conserved APC/C-binding destruction motif
(DEG_APCC _KENBOX2, 697-701), which map to an ANCHOR predicted binding site
and may support the interaction with APC/C and likely regulating CDKLS5 protein stability.
Interesting, we predicted many other conserved motifs mapping to the C-terminus predicted
interaction sites, which may regulate CDKLS5 expression levels, either favoring its
ubiquitin-dependent ~ proteosomal  degradation = (DEG _Nend UBRbox 1  and
DEG_SPOP _SBC 1) or USP7-mediated de-ubiquitination (DOC_USP7 MATH 2 and
DOC USP7 UBL2 3), highlighting the relevance of CDKLS5 availability regulation. For
three of the interactors retrieved from databases, we predicted the putative interacting sites
(see Figure 8.4, and Table 8.2). CDKLS5 was found to interact with three SH3-domain
containing proteins, ABL1 and FYN kinases, and GRB2 protein (see Figure 8.4, and Table
8.2). These interactions may recognize the SH3-domain binding motif mapping to the most
distal part of the CDKLS5 tail, which is specific for CDKLS5 isoform1 (Figure 8.4, and Table
8.2) and is present only in Hominidea family (Figure 8.4, Figure S8.6). CDKL5-1 is
expressed in the brain prevalently during foetal stages *'%, and SH3-binding motif mediated
interactions link the kinase to different pathways regulating cell proliferation, axon

329-331

guidance and neuron projections , which are essential for synaptic plasticity and brain

development?>?,
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INTERACTION WITH DNMT1,
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Figure 8.4: CDKL5 sequence analysis. Linear motifs are named according to the ELM database
nomenclature.

8.4.4 TANC2 downregulation leads to an increase of CDKLS levels

Our hypothesis relies on the assumption that TANC2 could modulate CDKLS5 degradation,
binding and targeting PP1 activity to the kinase. Accordingly, TANC2 down-regulation
should correspond to an increasing in CDKLS5 protein levels. After 72h incubation with
siRNAs, TANC2 and CDKL5 were quantified by Western Blot. Welch’s ¢ test analysis
revealed that only Hs TANC2 1 siRNA significantly decreases the expression of the
scaffold-protein (p-value = 0.03997, n = 7, statistical significance threshold: p-value <
0.05), though the halving of TANC?2 level mean can be observed also in samples incubated
with Hs DKFZP564D166 3 (Figure 8.5B). On the contrary, in both tested conditions, a
significant increase in CDKLS5 availability (p-value = 0.01071 and p-value = 0.03329 for
Hs TANC2 1 and Hs DKFZP564D166 3, respectively) was observed (Figure 8.5C),
suggesting a role of TANC2 in CDKLS5 degradation, which is reported to be mediated by
PP1313,
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Figure 8.5: TANC2 silencing affect CDKLS5 protein levels.

A) Representative western blot of cell lysates previously treated with: Hs TANC2 1 (first three lanes),
Hs DKFZP564D1663 (from the forth to the sixth lanes), and negative control siRNA (last three lanes). B)
Statistical analysis (Welch’s t test) of TANC2 downregulation (statistical significance threshold: p-value <
0.05, n.s. = not significant). C) Statistical analysis (Welch’s t test) of CDKLS5 upregulation (statistical
significance threshold: p-value < 0.05). D) TANC2-CDKLS5-PP1 working model: when TANC2 is
downregulated, a significant fraction of CDKL5 escapes PP 1-dephosphorylation and subsequent degradation,
resulting in an increasing of kinase availability.

8.5 Discussion

In this study, we demonstrated that TANC2 is able to interact with PP1 and CDKLS5,
possibly contributing to the kinase degradation. Both interactions with CDKLS5 and PP1
involve intrinsically disordered regions (IDRs), characterized by the presence of different
SLIMs and PTM sites®. IDRs are generally implicated in transient and potentially
promiscuous interactions, and different mechanisms aim to avoid non-specific protein
interactions, including on-site synthesis?®. Proteins translated in situ are generally present
in low concentration, their abundance rapidly increases after stimuli (e.g. extrasynaptic
glutamate signaling) and display distinct phosphorylation dynamics?. In mature neurons,
CDKLS5 is upregulated in response to NMDAR-mediated membrane depolarization due to
the localized activation of protein synthesis in the dendritic spines*!®. After a brief protein
expression increasing, the kinase returns to basal levels as result of PPIl-mediated
dephosphorylation and consequent proteasome-dependent degradation®!3.This suggests
that both CDKLS5 protein availability and phosphorylation levels need to be tightly
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regulated for the proper signaling of the synaptic plasticity’ °. The performed experiments
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allowed us to identify part of the mechanism by which PP1 activity is targeted toward
CDKLS5, yielding its proteosomal degradation, though a more complex regulation
mechanism is suggested by the presence of degrons and deubiquitinase target sites. We
demonstrated that TANC2 scaffold downregulation causes an increasing in CDKLS protein
levels, supporting TANC2 involvement in influencing glutamatergic neuron signaling, by

196 We found that the interaction among the two post-

the modulation of synaptic plasticity
synaptic proteins involves TANC2 C-terminus (1623-1990) and a bipartite motif of the
kinase carboxyl-tail, which includes the known binding site of MECP2, DNMT1B and
PSD95 and the specific region of the longer CDKL5-1 isoform (a.a. 904-1,030), which
could increase CDKLS5 binding affinity toward TANC2. Indeed, this latter region was
previously suggested to contribute in regulating CDKLS protein stability, as the longer
CDKLS5 isoform, detected in fetal brain’!®, seems to be more actively degraded via
proteasome pathway compared to CDKL5-23*!. Splicing isoforms generally involve IDRs,
resulting in tissue specific sets of short linear motifs and post-translational sites, allowing
the recruitment of a same biological activity to different molecular contexts®®. The fine
tuning of CDKL5-1 function in fetal brains may affect synaptic plasticity and could require
specific interactions, e.g. with TANC2 protein. Interestingly, Like CDKL5-1, the highest
levels of TANC2 protein are present in embryonic stages, with a maximum in E18 in
mouse'?®. Given its potential role in the regulation of CDKLS5 protein levels, alteration of
TANC2 activity would result in the over-expression of the post-synaptic kinase. The
consequence of increased amount of CDKLS5 on clinical phenotype is still poorly
understood, and only few cases of CDKL5 duplications are available in literature®*?,
Szafranski and colleagues >*? reported familial cases with short duplications (<IMb) in
CDKL5. Unlike patients with CDKLS5 deletions, patients with CDKLS5 duplications
presented autistic traits, hyperactivity, development and language impairment, but not
epilepsy. Authors suggested that the clinical phenotype could be linked to perturbation of
synaptic plasticity, learning and neuron excitability’®**3%. Indeed, CDKL5 controls
postsynaptic localization of GluN2B-containing NMDAR receptors, influencing their
activity®. CDKLS5 knock-out is characterized by an over-accumulation of the receptor
subunits, resulting in enhancement of glutamatergic synaptic transmission and causing an
increased seizure susceptibility®*’. Thus, it is conceivable that CDKL5 over-expression
may down-regulate glutamate receptor subunit targeting to the PSD and, consequently,

NMDAR activity. Interestingly, it has been demonstrated that GluN1 mutations, another

subunit of NMDAR, reduce the channel trafficking to the synaptic membrane, and are
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associated with non-syndromic intellectual disability without seizures®**. This may suggest
that deficits linked to these mutations could be more likely linked to deficit in NMDAR
targeting rather than the alteration of receptor activity’**, which could be consistent with
CDKLS up-regulation, but also with clinical phenotypes associated with TANC2
malfunctioning®®. Here, we found that the TANC2 scaffold protein could contribute to the
regulation of postsynaptic CDKLS5 availability, although further investigations are required
for a better understanding of TANC2-PP1 complex activity. These include the
identification of other synaptic substrates, which might contribute to CDKLS5 expression
levels. Additional validation of the proposed pathway could suggest TANC?2 as a putative

target of pharmacological interventions in CDKLS5 duplication disorders.
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9 Conclusions

In the last years, the next generation sequencing has been established as the state-of-the-art
strategy for causative mutation discovery. NGS data handling and interpretation are still
challenging for the vast majority of genetic studies’. The disease causality assignment of
sequence variants often consists in a demanding process, requiring the integration of
different sources for a comprehensive analysis®. An extensive part of my thesis deals about
development of novel instruments for causative variants detection. On parallel, the
identification of the molecular basis explaining the insurgence of different genetic diseases
is also presented. The methods that our group developed during the first part of my Ph.D.
have been assessed during my participation to the Critical Assessment of Genome
Interpretation (CAGI). Our group was requested to implement different methods aimed at
defining disease probability starting either from exome- or gene-targeted re-sequencing-
derived data. These methods were employed for data interpretation in a board range of
clinical conditions, from complex diseases, such as bipolar disorder and Crohn’s Disease,
to Mendelian disorders. Predictions were blinded to the clinical diagnosis, meaning that the
analysis could not be driven by prior information about patients '***¢. Our methods allowed
to mostly assign a correct phenotype for each sequenced individual, correctly predicting
the clinical phenotype-genotype associations. The prioritization of candidate disease-
associated genes has played a critical role in variant selection, due to the huge number of
genes and variants potentially involved in these pathologies. This specific strategy has been
successfully used to identify the genes involved in the autism disease (ASD) and
intellectual disability (ID) comorbidity, and to develop a diagnostic gene-panel aimed to
assess their co-morbidity. Indeed, both ASD and ID are characterized by a highly genetic
heterogeneity as well as overlapping clinical features, making single-gene testing
insufficient for an accurate disease diagnosis®!. The relevance of ASD/ID clinical diagnosis
is almost clear, as it allows to shed light on molecular mechanism underlying the clinical
phenotype, and has important implications for disease management and treatment. We
considered several parameters for the candidate variant selection, including the
pathogenicity prediction, frequency in publicly available database and segregation analysis.
Through the ASD/ID panel screening, we assigned a clear molecular diagnosis to twenty-

four of the tested patients (16,4%), with at least one likely pathogenic variant being detected
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for additional twenty-three probands, highlighting the diagnostic value of a such developed
AD/ID panel. Further evidence supporting causality between the likely pathogenic
variations and the clinical phenotypes was provided by means of evaluation of variants
effects on protein function/structure. Indeed, I performed a comprehensive analysis of
selected ASD/ID -associated proteins to decipher variant pathogenicity, e.g. DYRKI1A and
EHMT]1 proteins. The in silico analysis of the mutated proteins reveals that the 45,6% of
the likely pathogenic variants to map in intrinsically disordered regions (IDRs).
Consistently, an increasing number of studies shows that mutations in IDRs are associated
with different pathologies, as they are often involved in protein function regulation®*2%.
Considered the important role played by intrinsically disordered protein in human diseases
insurgence, | participated the update of DisProt, the most relevant database of protein
disorder. I personally contributed to the manual curation of several proteins and dozens of
intrinsically disorder regions. The annotation process involved the identification of IDR
position and the association to the Pubmed ID related to supporting publications. The new
release, DisProt 7.0, contains more hundreds of IDRs, eight-fold data respect to the earlier
version, resulting in the most valuable resource for a better understanding of the structural
disorder. Besides being extremely widespread, the intrinsically disorder proteins are
essential components of regulative molecular pathways, including neuronal signaling®S. In
neurons, cellular signaling is tightly regulated by scaffold proteins, which play an important
role in coordinating alternate signal paths, e.g. targeting glutamate receptors and their
interactors to synaptic memenbrane'’’. Scaffolds are characterized by different modules,
such as structural domain for protein-protein binding as well as short linear motif in IDRs?’.
Among the post-synaptic proteins encoded by the ASD/ID panel genes, TANC2 emerged
for being a really promising scaffold protein with extended IDRs. Like other neuronal
scaffold proteins, TANC2 seems to regulate neurotransmission and synaptic plasticity,
although its function is still poorly understood. For all these reasons, I conducted an
extensive in silico investigation of TANC2. The analysis was focused on its structural and
functional characterization, including its close human paralog TANCI1. Furthermore, the
TANC family was also investigated at the pathway level, performing an interaction network
characterization to elucidate TANCs collective role on neuronal pathways. This work
provides the basis for interpretation of genetic variants found in TANC encoding genes'"’.
Functional hypotheses emerged from bioinformatics study were experimentally validated.
As molecular context is essential to understand macromolecules activity, I employed

different experimental techniques to validate TANC2 predicted interactions with PP1 and
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CDKLS5 and the functional significance of the TANC2-CDKL5-PP1 interplay, as well. The
results suggest that the expression of splice isoforms may play a significant role in
modulating CDKLS5-1 activity. Splicing isoforms generally involve IDRs, resulting in
tissue specific sets of short linear motifs and post-translational sites, mediating isoform
specific PPIs that occurs in a determined time window?®, such as interaction with TANC?2.
Indeed, we proved that TANC2 forms complexes with both CDKLS5 isoform 1 and PP1 by
means of its IDRs, and TANC2 downregulation corresponds to an increase of CDKL5
protein levels. Thus, TANC2 possibly links the phosphatase PP1 to its substrate CDKLS,
allowing its dephosphorylation and subsequent degradation. It was demonstrated that this

t*13, as increased levels of

step is particularly critical for proper neuronal developmen
CDKLS5 are associated with neurobehavioral and neurodevelopment features, e.g. ID and
ASD traits®*. These findings support the hypothesis that imbalance in CDKLS5 levels
affects neuronal function**?, suggesting TANC2 as a new putative pharmacological target
for clinical conditions related to CDKLS5 overexpression. Collectively, this study adds
important elements to extend our understanding of the CDKLS5 disorders. In particular, the
roles that we propose for the IDRs contained in TANC2 and CDKLS5 look promising. On
the other side, this study clearly shows that the correct interpretation of next generation
sequencing derived data is almost ready to be a routinely task in basic research, as well as
a powerful tool for disease-variant association study. Indeed, determining the association
between genetic variants and diseases is an interdisciplinary task, which cannot be limited

to the identification of causative variants, but it should also provide the causality between

variant, protein function alteration and disease.
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The supplementary Figures and Tables of unpublished data are listed in the following section.
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Patients (n=146)
Gender
Female 59
Male 87
Age (at diagnosis, years) Mean 10y
Familial History
Sporadic 117
Familial (sib-pair) 29
ID severity
Mild/Borderline 33
Moderate 35
Severe 32
Psychomotor delay 115
Comorbidity
ASD 71
Behavioral abnormality 90
Epilepsy 53
Hypotonia 28
Ataxia 10
Microcephaly 19
Macrocephaly 8
Hyperactivity 28
Stereotypy 30
Learning disability 2
Language
Delay 72
Absent 33
Specific Language Impairment | 8
Dimorphisms
Palate anomaly 7
Dentition anomaly 4
Malar Hypoplasia 2
Skeletal abnormalities
Digital anomaly 10
Clubbed toes 3
Abnormality of other organs
Suspected RETT 41
EEG anomaly 55
MRI anomaly 36

Supplementary Table S5.1: Description of the cohort of 146 individuals enrolled for the study of ID/ASD comorbidity.
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BIOLOGICAL PROCESS P-value
Regulation of synaptic transmission (GO:0050804) 0,0000063
Regulation of membrane potential (GO:0042391) 0,0000143
Regulation of excitatory postsynaptic membrane potential

(GO:0060079) 0,00000403
Behavior (GO:0007610) 0,000107
Learning (GO:0007612) 0,0000362
Regulation of synaptic plasticity (GO:0048167) 0,0000494
Cognition (GO:0050890) 0,000472
CELLULAR COMPONENT P-value
Postsynaptic membrane (GO:0045211) 0,00000147
Synaptic membrane (GO:0097060) 0,000004518
Synapse (GO:0045202) 0,000007111
Dystrophin-associated glycoprotein complex (GO:0016010)* 0,00006884
Dendrite (GO:0030425) 0,00005336
Neuronal postsynaptic density (GO:0097481)* 0,00008008
Synapse part (GO:0044456) 0,0002044
Neuron spine (GO:0044309)* 0,0002779
MOLECULAR FUNCTION P-value
Ionotropic glutamate receptor activity (GO:0004970)* 0,0001031
Extracellular-glutamate-gated ion channel activity (GO:0005234)* | 0,00008931
Metal ion transmembrane transporter activity (GO:0046873) 0,000006874
Glutamate receptor activity (GO:0008066)* 0,0002654
Chromatin binding (GO:0003682) 0,00006805
Substrate-specific channel activity (GO:0022838) 0,0003147
Passive transmembrane transporter activity (GO:0022803) 0,0004382
HUMAN PHENOTYPE ONTOLOGY P-value
Autism (HP:0000717) 0,000000259
Tented upper lip vermilion (HP:0010804) 0,000537
Stereotypic behavior (HP:0000733) 0,000738
Aggressive behavior (HP:0000718) 0,000366
Intellectual disability, severe (HP:0010864) 0,000744
Abnormal social behavior (HP:0012433) 0,000004266
Impaired social interactions (HP:0000735) 0,000004266
Deeply set eye (HP:0000490) 0,0000082

Supplementary Table S5.3: Functional enrichment of the intersection network.

The enrichment analysis was performed with Enricher webserver’” and it is based on Gene Ontology (GO) classes, and Human
Phenotype Ontology (HPO). The p-value indicates the probability that the GO term, or HPO phenotype is assigned by chance
to the selected subset of genes.
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Region Cloning in pGBKT?7 vector
TANC2 |VII TANC-TPR-KT7-F: 5’-catggaggccgaattcTTGAGCAAGCTGATGGAAGAG
(1228-1358) | TANC-TPR-KT7-R: 5’-ggatccecgggaattgTTAGTTGTTGGGACACAGCTTGATG

VIII del301-747: 5'-ggccectcagtatcggtaacaattcccgggg
(1244-1542) | del301-747-antisense: 5'-ccccgggaattgttaccgatactgagggee

IX TANC-polyQP-KT7-F: 5’-catggaggccgaattct AGAGGCCCTCAGTATCGGG
(1538-1628) | TANC-polyQP-KT7-R: 5’-ggatccccgggaattgTTAGATGACGGTGCTTGAATGG

X del20-399: 5'-catggaggccgaattctcaagecaccgteatee
(1623-1990) | del20-399-antisense: 5'-ggatgacggtgcttgagaattcggectecatg

Cloning in pGADT7 vector

CDKL5 |11 CDKL5-GAD-F: 5’-ggaggccagtgaattc ATGAAGATTCCTAACATTGG
(1-300) CDKL5-GAD-R: 5’-cacccgggtggaattgTTACTGGGTTTGAAATGTAGGG
I GAD-CDKLS5-central F: 5’-ggaggccagtgaattc AGACTTCTGGATCGTTCTCC

(301-615) GAD-CDKLS5-central R: 5’-cacccgggtggaattgTTACACATACATAGAATGCCTATG

v GAD-CDKLS5- A2-F: 5°- ggaggccagtgaattcCATTCCCATTCACTGTCTGC
(587-1030) GAD-CDKLS5- A2-R: 5°- cacccgggtggaattgTCACTTGCCCGTCAGTGCCGC

IV.A GAD-CDKLS5-central F: 5’-ggaggccagtgaattc AGACTTCTGGATCGTTCTCC
(587-740) GAD-CDKL5-C1_R: 5’-cacccgggtggaattgTCACTCTGATGGTAGAGAAGAAAC

IV.B GAD-CDKL5-C2_F:5’- ggaggccagtgaattc AATGTGTCAACTAGAGTTTC
(731-802) GAD-CDKLS5-C2_R: 5’-cacccgggtggaattgTCAGGATTTCTGCAACGTCAGAAG

v.C GAD-CDKL5-C3_F:5’-ggaggccagtgaattcTCCGACAGCCCTGATCTTC
(796-1030) CDKLS5-FULL-GAD-R: 5’-cacccgggtggaattgTCACTTGCCCGTCAGTGCCGC
IV.A GAD-CDKLS5-central F: 5’-ggaggccagtgaattc AGACTTCTGGATCGTTCTCC

(587-740) GAD-CDKL5-C1_R: 5’-cacccgggtggaattgTCACTCTGATGGTAGAGAAGAAAC

Supplementary Table S8.2: primer sequences used for mutagenesis/fine mapping of regions interacting in CDKL5/ TANC2
complex. In bold, primers used with QuikChange I XL Site-Directed Mutagenesis Kit (Agilent). They allow to produce
deleted mutants independently from the vector in which the fragment of interest is. Other primers (not in bold) were used for
In-fusion cloning.

192



Predicted Interacting region From To Length CDKLS5 subclone
1 331 337 7 CDKLS5.1II

2 344 386 43 CDKLS5.1I

3 397 423 27 CDKLS5.1IT

4 431 458 28 CDKLS5.III

5 464 478 15 CDKLS5.1IT

6 480 526 47 CDKLS5.1IT

7 539 546 8 CDKLS5.1II

8 566 604 39 CDKL5.1V.A
9 609 649 41 CDKLS5.1V.A
10 656 666 11 CDKL5.1V.A
11 670 690 21 CDKL5.1V.A
12 699 721 23 CDKLS5.1V.A
13 727 741 15 CDKL5.IV.B
14 753 760 8 CDKL5.1V.B
15 771 788 18 CDKL5.1V.B
16 798 811 14 CDKL5.1V.C
17 826 851 26 CDKL5.1V.C
18 856 889 34 CDKL5.IV.C
19 896 909 14 CDKL5.IV.C
20 921 939 19 CDKL5.IV.C
21 995 1003 9 CDKL5.IV.C

Supplementary Table S8.3: predicted disordered binding regions by ANCHOR. In italic: predicted binding regions mapping
to experimentally validated interaction sites.
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Supplementary Figure S8.1: TANC2/PP1 combinations assessed with Y2H system. A) replicates of interactions reported in
the main text (Figure 1). B) Drop test of TANC2.III and TANC2.IV with PP1 (negative results).
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Supplementary Figure S8.2: TANC2/CDKLS5 combinations assessed with Y2H system. Interactions between CDKLS5.1 and
TANC2.I, TANC2.1I, TANC2.III, and TANC2.IV (negative results).
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Supplementary Figure S8.3: TANC2/CDKLS5 combinations assessed with Y2H system. A) replicates of interactions
between TANC2 fragments and CDKLS5.1 presented in the main text. B) Drop test between CDKLS5.I1T and CDKL5.IIT and
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Supplementary Figure S8.4: TANC2.IX does not interact with CDKLS5 in Y2H system. Drop test between CDKL5.1 and

CDKLS5.IV and TANC2.IX (negative results).
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Supplementary Figure S8.5: TANC2.X interacts with CDKL5.IV.A and CDKL5.IV.C. Replicate of the drop test in the main
text. On the left of the panel, autoactivation test for CDKL5.IV.A and CDKLS5.IV.C subclones.
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Supplementary Figure S8.6: CDKLS5 isoform 1 C-terminus similarity in Hominidae subfamily.
A) Multiple sequence alignment of CDKL5 orthologous C-terminal sequences (from residue 904 of CDKIS5 isoform 1).
LIG_SH3 2= SH3 domain binding site B) Hominoidea superfamily tree.
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