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Abstract

In recent years the power sector has experienced a significant growth of the de-

ployment of renewable energy sources, such as wind and solar power. This brings

new challenges to the optimal operation and management of power systems. The

output of these stochastic sources can only be predicted with limited accuracy, lead-

ing to real-time deviations from their contracted schedule. Therefore, such stochastic

sources need to be operated differently than conventional generation units, such as

gas- or coal-fired plants. The operation of conventional production units may also

be strongly affected by the massive deployment of renewable energy sources as their

growing penetration is leading to a decrease in the market prices and an increase in

the balancing energy need.

The thesis focuses on the optimal participation of power producers in competi-

tive electricity markets with high penetration of renewable energy sources. We pro-

pose to derive the optimal offering strategy of a power producer with a modular

approach. Indeed, we provide a general formulation of the optimal offering strat-

egy, and each "block" (i.e., a set of constraints) of the optimization model can be

replaced depending on the electricity market structure considered or the specific

power production unit.

The thesis analyses three case studies, i.e., the optimal market participation of a

stochastic power producer, a conventional power producer and a group of stochas-

tic and conventional production units. We start from a stochastic power producer

trading in an electricity market. The real-time deviations are settled under two al-

ternative imbalance settlement schemes available in the Italian electricity market.

These schemes add a tolerance band around the quantity of energy contracted in the

day-ahead market. The portion of the imbalance within the band is priced differ-

ently than the part exceeding the band. We conclude that those imbalance pricing

schemes may lead to a market distortion and therefore they may not be a preferable

alternative to conventional schemes (e.g., the dual-price scheme).

Then, the thesis takes the perspective of a conventional power producer. Even

though European day-ahead electricity markets are mostly settled under a uniform

pricing scheme, several balancing markets (e.g., in Germany and Italy) are settled
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under a pay-as-bid pricing scheme. We propose an innovative approach that al-

lows modeling the trading problem under a pay-as-bid pricing scheme as a linear

programming model. Thanks to this novel formulation, we derive the optimization

problem that a conventional power producer would solve to evaluate its optimal

day-ahead market offers while considering the future expected revenues from the

balancing market. The proposed model is tested on a realistic case study against a

sequential offering approach, showing the capability of increasing profits in expec-

tation.

Lastly, we consider the case of a virtual power plant, defined as a cluster of con-

ventional generating units, stochastic power units, and storage systems, which to-

gether act as a single participant in the electricity market. We introduce a novel

structure of the balancing market, which allows an active/passive participation of

the virtual power plant. Indeed, the virtual power plant can decide to be an active

actor (i.e., offering regulating energy) in some trading intervals, and a passive one

(i.e., deviating from the contracted schedule) in the remaining hours. The model is

tested in a realistic case study against alternative benchmark strategies (e.g., active-

only and passive-only participation).
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Chapter 1

Introduction

1.1 Context and Motivation

In recent years, the power sector has experienced major structural changes. On one

side, the liberalization of the electric energy industry has brought to the unbundling

of vertically integrated utilities and has enhanced competitivity through the creation

of electricity markets trading platforms. On the other side, the need of replacing

fossil fuels with environmental-friendly energy sources has led to an increasing de-

ployment of renewable energy production.

Traditionally, a single vertically integrated utility was responsible for the whole

chain, from the generation to the delivery of electricity. The inflexible consumers’

demand was covered by few centralized conventional units, generally fueled by

fossil energy sources, which required to be dispatched well in advance as several

technical limitations constrain their operation. As an example, ramping constraints

limit the capability of varying the power output of a conventional production unit

in a short time span. Accordingly, the typical pattern was to use "slow" (i.e., with

important ramping limitations) and cheap technologies, such as coal-fired units or

nuclear power plants, to cover the base load. Differently, pick loads were covered by

"fast" but expensive technologies, such as gas-fired turbines or diesel units. In this

context, the few uncertainties in the operation of power systems were related to rel-

atively small forecasting errors in the consumers’ energy demand and unpredictable

units’ failures.

The appeal for competition and innovation has motivated a progressive estab-

lishment of electricity markets across the worldwide. The critical feature of the
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process is the separation between activities of generation, transmission, distribu-

tion, and retail while banning the vertical integration among different sectors. Com-

petition is promoted mainly in generation and retail, while the transmission and

distribution sectors are still natural monopolies, due to the prohibitive investment

cost of transmission and distribution lines. The idea is to develop a marketplace

managed by a non-commercial entity that matches the needs of numerous partic-

ipants in both the generation and demand side, providing transparent and non-

discriminatory price signals. However, this competitive environment must consider

several physical aspects that differentiate electricity from other commodities. As an

example, the storage of large quantities of electricity is still not convenient in an eco-

nomic perspective. Consequently, injections and withdrawals of electric energy need

to be matched continuously to ensure a safe and stable operation of the power sys-

tem. The structure of electricity markets was initially tailored for the technical and

economic requirements of conventional production units with non-negligible fuel

costs. The main short-term trading floor, i.e., the day-ahead market stage, is usually

cleared from 12 to 36 hours before the delivery of energy. In this way, conventional

units can schedule their production pattern well in advance of the real-time opera-

tion.

The increasing deployment of renewable energy sources, such as wind and so-

lar power, has brought significant changes in the electricity market context. Indeed,

these sources are non-dispatchable, i.e., their power production is only partially con-

trollable, and stochastic, i.e., their power output can only be predicted with limited

accuracy, which decreases as the time horizon of the forecast increases. This natu-

rally brings a higher level of uncertainty in the optimal management of power sys-

tems as these stochastic units cannot follow the production schedule contracted in

the day-ahead market and they create imbalances in the real-time. From an economic

perspective, these energy sources are usually traded at zero marginal cost, thus low-

ering the average prices while increasing their variability. All the participants in elec-

tricity markets are affected by this revolution. On the one hand, stochastic sources

need to be traded in a market platform not yet restructured to accommodate this

increasing level of uncertainty. In fact, stochastic producers may incur in important

financial penalties for the creation of imbalances, which are inherent in the nature

of their energy source. On the other hand, conventional units may have to adapt

their offering and operating strategy as their profits from the day-ahead market are
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affected by the decrease of the market prices. Moreover, they are generally required

to be more flexible in the real-time to compensate the imbalances created by the

stochastic producers.

In this context, it is important to develop offering and operating strategies for the

different power producers involved. Indeed, the importance of an efficient market

participation of power producers is twofold. From the producer’s point of view, it

results in reaching higher market profits. From the system’s perspective, this may

result in prices that can reflect the operational cost of the system and in having a

sufficient level of flexibility to safely operate it. As an example, a conventional pro-

ducer that does not schedule its power unit in the day-ahead market due to the low

market prices is limited from possible huge profits deriving from offering regulating

energy in the real-time. Hence, this penalizes both the producer, that gains lower

profits, and the system, which has less available flexibility in the real-time.

1.2 Thesis Description and Contributions

The thesis proposes a comprehensive approach to derive the optimal offering strat-

egy of a power producer in a competitive electricity market. The offering strategies

are formulated as mathematical models, i.e., optimization models, that can be used

as decision-making tools for the different power producers to tackle the increasing

level of uncertainty in the electricity market context.

We focus on a price-taker and risk-neutral power producer trading in a short-

term electricity market, composed of a day-ahead and a balancing market. Thanks to

the price-taker assumption, the uncertain market prices can be represented through

marginal distributions or discrete sets of possible scenarios, as we neglect the in-

fluence of the producer’s decisions on the market clearing process. The idea is to

develop these optimal offering strategies with a modular approach. This translates

in deriving a compact formulation of a general offering strategy, where each set of

variables and constraints within the general formulation can be replaced depending

on the electricity market structure considered or the specific production units. As we

assume a risk-neutral producer, the objective function of the general strategy max-

imizes the expectation of the market profit, incorporating the participation in both

the day-ahead and the balancing market, and including the production cost of the

producer. An energy balance imposes that the amount of energy exchanged with the
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electricity market matches the total power production of the producer. Then, three

set of constraints model the trading problem in the different market stages, i.e., the

day-ahead market, the balancing market as an active participant (i.e., a producer

that offers its regulating energy), and the balancing market as a passive participant

(i.e., a producer that deviates from the contracted day-ahead schedule). For the trad-

ing problem, we intend a set of constraints and variables that simulate the market

clearing mechanism, the market pricing scheme, and other additional constraints as-

sociated with the market offers. The general formulation is concluded by two extra

set of constraints related to the specific production unit or cluster of units. The first

yields the expected production cost while the second imposes the feasible operating

region of the units.

Together with the general model of an offering strategy, the thesis provides an

extensive series of formulations aimed at representing the trading problem in the

different market stages. For the day-ahead market, we start considering single price-

quantity offers and a continuous distribution of the uncertain market prices. Then,

we extend the formulation including non-decreasing step-wise offer curves that al-

low the producer to schedule an increasing amount of energy production as the day-

ahead market price realization increases. In both cases, the result is a non-linear

model, where the non-linearities arise from the product of prices and quantities to

compute the producer’s market income. A linear alternative is proposed by mean

of a stochastic-programming approach. The idea is to use the market price scenar-

ios as potential offer prices for the price-taker producer building its optimal offer

curves. Then, we develop the trading problem for an active participant offering in

the balancing market. Similarly to the day-ahead market, we start from single price-

quantity offers, and then we extend it to offer curves. Note that for the balancing

market trading problem we consider both a uniform pricing and a pay-as-bid pric-

ing scheme. The thesis proposes an innovative formulation that allows casting the

trading problem with offer curves under a pay-as-bid pricing scheme as a linear pro-

gramming (LP) program. Conversely, the alternative formulations available within

the literature are non-linear and may limit the possibility of deriving offering strate-

gies including multiple market stages and complex cost functions or operating re-

gions of the units. Finally, we formulate the trading problem in the balancing market

for a passive participant, considering both a single-price and dual-price imbalance

settlement scheme.



1.2. Thesis Description and Contributions 5

Subsequently, we take the perspective of different power producers offering in

the electricity market. We start from a stochastic power producer that includes the

future imbalance revenue from the balancing market while deriving its optimal day-

ahead quantity offer. We adapt the general formulation of the offering strategy to the

characteristics of a stochastic energy source (e.g., we assume that the producer offers

its energy at zero marginal cost in the day-ahead market), deriving its optimal offer-

ing strategy under a single-price and a dual-price imbalance settlement scheme (in

the balancing market). Then, we formulate its optimal trading strategy under two al-

ternative imbalance settlement schemes used in the Italian electricity market. Such

schemes consider tolerance margins, i.e., they introduce a tolerance band around

the quantity of energy contracted in the day-ahead market. For both the pricing

schemes we prove that the market offer that maximizes the producer’s expected

profit is unique. We also investigate how these alternative schemes may influence

the real-time imbalance of a rational stochastic power producer, i.e., a producer seek-

ing at maximizing its expected profit. Note that a formulation of the optimal trading

strategy under those pricing schemes is novel, together with the analysis of their

influence on the real-time imbalance of a rational producer.

Then, we move to a conventional power producer that offers in an electricity

market where the balancing stage is cleared under a pay-as-bid pricing scheme. We

formulate the operating region and the production cost function of the unit as a

mixed-integer and linear (MILP) problem. We derive two alternative offering strate-

gies in the day-ahead market. The first considers the day-ahead market only. Dif-

ferently, the second models the future decisions in the balancing market as recourse

decisions in a stochastic programming setup. The trading problems (for the day-

ahead and the balancing market) are merged with the MILP operating region of the

unit to derive the optimal offering strategy of the conventional power producer. As

mentioned before, the models available in the literature for the trading problem un-

der a pay-as-bid pricing scheme are non-linear. Introducing the feasibility region

of the production unit would result in a mixed-integer non-linear problem, which

may have high computational cost and, generally, does not guarantee the optimality

of the solution. Thanks to our novel linear approach, the result is instead a MILP

two-stage stochastic programming problem with recourse. We show how an accu-

rate modeling of the expected revenues from the balancing market is of increasing
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importance as the penetration of the renewable energy production in the market in-

creases. Indeed, an increasing share of renewable energy generation translates into

lower day-ahead market prices and a rising need for regulating energy. Therefore, it

may happen that a producer that uses a sequential offering strategy (i.e., consider-

ing one market stage at the time) is not going to schedule its unit at the day-ahead

stage due to the low market prices. Then, at the balancing stage, it has few possibil-

ities of offering regulating energy. Differently, by co-optimizing its offering strategy

in the day-ahead and the balancing market, the power producer may be willing to

operate in the day-ahead even when the prices are not convenient (i.e., it is in a neg-

ative position after the day-ahead market clearing). However, by being scheduled

in the day-ahead market, it can offer both upward and downward regulation to the

balancing market and increase its total market profit.

Finally, we take the perspective of a Virtual Power Plant (VPP). A VPP is defined

as a cluster of conventional generating units, stochastic generating units, storage sys-

tems, and flexible loads, which together act as a single participant in the electricity

market. We assume that the balancing market allows an Active-Passive participation

of the VPP. With Active-Passive participation, we mean that the VPP can decide to be

an active actor in some trading periods, and a passive one in the remaining. Indeed,

given the presence of some dispatchable units and storage units, in some hours it

may be able to provide regulating power to the system. Differently, the available

models in the literature only consider a passive-only participation. The innovative

offering model is tested in a realistic case study against alternative benchmark strate-

gies (e.g., passive-only participation), showing the capability of increasing profits in

expectations. We also analyze in which condition the VPP is willing to be active (less

flexibility of operation but more favorable prices) and when passive (more flexibility

but penalized prices). This market setup may be also interesting from the system’s

perspective. Indeed, by allowing this Active-Passive participation the system may

have more regulating energy available for some trading intervals.

1.3 Thesis Structure

The thesis is structured as follows. Chapter 2 presents the main principles and struc-

ture of European Electricity markets, focusing on the short-term trading floors. It
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also introduces a simplified electricity market model, while describing the submis-

sion process and its clearing mechanism. Chapter 3 provides the general formula-

tion of the producer’s offering strategy together with the trading problems in the

different market stages. Chapter 4 proposes a methodology to obtain a discrete set

of trajectories of the stochastic processes, e.g., electricity market prices or wind and

solar power production, to be used within a stochastic programming framework.

Then, Chapters 5, 6, and 7 take the perspective of a stochastic power producer, of a

conventional power producer, and of a VPP, deriving their optimal day-ahead offer-

ing strategy, respectively. The conclusions are drawn in Chapter 8.
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Chapter 2

Electricity Markets

2.1 Introduction

Over the last decades, power systems moved to new frameworks aiming at enhanc-

ing the competition in the sector. Traditionally, a single vertically integrated en-

tity was entitled to manage and control the whole power system. This state-owned

company was in charge of the four main activities, i.e., generation, transmission,

distribution and retail of electric energy. A progressive movement toward the liber-

alization of the power sector pushed several countries to ban the vertical integration

among different areas while promoting competition in the activities of generation

and retail. Differently, a natural monopoly still holds in the transmission sector due

to the prohibitive investment cost of transmission lines. The essential role of operat-

ing and managing the transmission grid is carried out by non-commercial entities,

called Transmission System Operator in Europe and Independent System Operator

in the US.

The deregulation of the electricity supply sector helped to attract new investors

but brought challenges due to the nature of the commodity traded in the competi-

tive market framework. Different from similar commodities, such as natural gas, the

electric energy is not suitable to be stored in large quantities and the long term, at

least from an economic point of view. Hence, the injections and withdrawals of elec-

tricity in the grid need to be continuously matched to ensure a safe operation of the

system. Historically, a vertically integrated company was scheduling the power pro-

duction units (fully controllable conventional units) to follow an inflexible and quite

well predictable electric energy demand. This process is nowadays delegated to a

market structure that needs to ensure the reliability of the system while keeping a
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competitive and transparent trading environment. Additionally, it is usually impos-

sible to distinguish between electric energy generated by different energy sources.

Similarly, it is not possible to track the path of electric energy within the transmission

grid. Consequently, electricity markets are driven by aggregated curves obtained as

the sum of single production units or single loads.

This chapter introduces the reader to the structure of electricity markets and

their timeline. It is organized as follows. Section 2.2 gives a general overview of

the structure of European electricity markets, distinguishing between long-term and

short-term electricity markets. Then, Section 2.3 presents a simplified but realistic

electricity market model. It is used to explain the submission process of the different

participants and the clearing mechanism used to evaluate the accepted offers and to

compute the market price.

2.2 Overview of various markets and their time-line

In electricity markets, two main trading floors can be typically distinguished, de-

pending on the proximity of the trading. Medium/long-term markets (e.g., futures

markets) allow trading on long-term horizons. The participants in the market can

trade both physical and financial products. Examples of financial trading are for-

ward contracts and options. A forward contract is signed between a seller that un-

dertakes to produce a certain amount of energy, and a buyer that is willing consumes

that energy. These usually deal with standard products, e.g., base-load contracts in-

clude all the hours of the contracted time span, while peak-load include only the

hours with high energy demand, e.g., from 8 a.m. to 7 p.m. of working days. A

forward contract can also be coupled with options, which allow the buyer to decide

after the agreement whether to benefit or not of the forward contract.

Closer to the real-time operation, short-term markets (i.e., electricity pools or power

exchanges) allow trading electricity on a daily and hourly horizon. They include sev-

eral trading floors, i.e., day-ahead, intra-day adjustment and balancing markets. The

electricity pool model is, originally, a centralized market, where the producers oper-

ate under a cost recovery mechanism. Indeed, they recover their operating costs

through some fees, which have been approved by the market regulator and are paid

by the participants in the pool. Differently, power exchanges are more open and de-

centralized markets where the producers’ cost recovery is not guaranteed. These
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markets are accessible to every participant that satisfies specific admission require-

ments. The main goal of power exchanges is to ensure a transparent and reliable mar-

ket price formation, generally obtained by matching the aggregated supply and de-

mand curves of the market actors.

Power producers can participate in both futures and short-term markets. Usu-

ally, part of the thermal plants capacity is contracted in medium/long-term con-

tracts, since these ensure fixed revenues for the producers, avoiding the uncertain-

ties of the short-term trading. The remaining capacity is contracted in the short-

term markets. Contrariwise, renewable energy plants, e.g., wind farms and PV solar

plants, are stochastic and can only be predicted with a limited accuracy. Therefore,

they are not suitable for long-term contracts, as it is hard to guarantee a certain level

of production long time ahead of the real-time operation. This chapter (and the

thesis as well) focuses on short-term electricity markets. Section 2.2.1 presents the

day-ahead market trading floor. Sections 2.2.2 and 2.2.3 do the same for the intra-day

and the balancing markets.

2.2.1 Day-ahead market

The day-ahead market hosts transactions for selling and buying electric energy one

day before the delivery day. It is the prominent and more liquid among the different

electricity market floors. Buyers and sellers submit their offers to a Market Oper-

ator, which acts as the central counterpart. A market offer includes a quantity of

energy and the price at which the market participant wants to produce or consume

it. In case of sell/buy offers/bids the price denotes the minimum/maximum price

at which the seller/buyer is willing to provide/consume electricity.

The day-ahead market gate closure occurs the day before the actual delivery

day, usually at noon. It includes 24 separate auctions, one per each hour of the

day, cleared simultaneously but independently (in the European Electricity mar-

kets). After the gate closure, the market operator clears the market and informs each

seller/buyer of their production/consumption schedule. Typically, the US approach

is to include the full representation of the transmission grid within the clearing al-

gorithm, thus leading to a different market price for each node of the network (i.e.,

nodal pricing). Differently, the European approach is to give a poor representation

of the grid by including only the more limiting transmission constraints. Accord-

ingly, it translates in market zones were each dispatch within the zone is assumed
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to be feasible (at least from a transmission point of view) and leads to zonal market

prices, i.e., the same market price for all the participants within the same market

zone.

2.2.2 Intra-day market and continuous trading

The intra-day market is the market for sale/purchase energy during the day of de-

livery. It opens after the day-ahead market gate closure and closes from hours to

minutes before the real-time operation. The intra-day market can be a useful tool

for the market participants which can use this additional floor to adjust their market

position. Indeed, conventional producers may access the intra-day market for fix-

ing an infeasible production schedule, as inter-temporal constraints (e.g., ramping

limits) cannot, usually, be directly included in the day-ahead market offers. On the

other hand, stochastic producers can use this additional trading floor to modify their

market position as their power production forecasts are more accurate closer to the

real-time operation. The trading process in the intra-day market is, usually, contin-

uous. The negotiation mechanism is based on the automatic matching of demand

bids and supply offers, which allows a continuous submission of new offers/bids

during the whole session. Similarly to the day-ahead market, the intra-day market

is managed by the Market Operator.

2.2.3 Balancing market

The balancing market is the last stage for trading electric energy. It plays an essential

role, as production and consumption levels must match during the entire operation

of power systems. Balancing markets are usually single-period markets, i.e., each

trading period has a separate associated session. They allow the possibility to trade,

in addition to electric energy, ancillary services (e.g., voltage control) needed to main-

tain the stability of the power system.

Conventional producers, usually, participate in the balancing market as active

participants. They offer regulating energy, both in upward (i.e., increasing their

power production) and downward (i.e., decreasing their power output) directions.

Differently, stochastic producers access the balancing stage as passive participants.

They use this last trading floor to settle the deviations from their contracted sched-

ule. The System Operator manages the balancing market. It uses the regulating
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offers submitted by the active participants to compensate the system imbalance gen-

erated by the passive participants (both in the supply and demand side).

2.3 Electricity Market Model

This section presents a simplified market model used as a reference for the remain-

ing of the thesis. We consider a two-settlement electricity market framework, which

includes a day-ahead and a balancing stage. The day-ahead market is cleared once

a day, at noon, simultaneously for the 24 hourly trading periods of the following

day. Subsequently, a separate balancing market is cleared for each hourly interval,

one hour before the real-time operation. The intra-day adjustment trading floor is

neglected for the sake of simplicity. The idea is to use a simple market structure,

provided that it maintains the key stages and properties of a real electricity mar-

ket. Indeed, the day-ahead stage is the main trading floor, and it is a reference for

the following stages (i.e., the intra-day adjustment and the balancing ones). Then,

the balancing market is of crucial importance as it allows the System Operator to

schedule the regulation energy needed to compensate the real-time imbalance of the

system and ensure a safe operation. Figure 2.1 shows a schematic representation of

the simplified electricity market structure. Note that the day-ahead market for the

day d1 closes at noon of the day d0 and hosts transaction for the 24 trading intervals

(blue shaded area) of the day d1. Differently, a separate balancing market is cleared

every hour, one hour before the operation. E.g., the balancing market for the interval

k1 (i.e., from midnight to 1 a.m. of the day d1) closes at 11 p.m. of the day d0. Note

that for the balancing market the trading intervals are illustrated with a red and a

green area. It highlights the fact that different producers may access the balancing

stage for various purposes. The green shaded area indicates an active participation

in the balancing stage, i.e., the submission of regulating energy offers to the System

Operator. Differently, other participants may use the balancing market to settle their

deviations from the production schedule contracted in the day-ahead market. A red

shaded are illustrates this passive participation.

Thanks to this simple structure, we can derive producers’ offering strategies that

are general and not customized for a specific electricity market. Indeed, a part of

the optimization problem aimed at obtaining the optimal market offers models the

electricity market rules and mechanism. This piece, called the trading problem, is
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FIGURE 2.1: Schematic representation of the electricity market struc-
ture. The day-ahead (DA) market is cleared at noon, simultaneously
for the 24 hourly interval of the following day. A balancing (BA) mar-
ket is cleared separately per each hourly interval, one hour before the

real-time.

strongly influenced by the electricity market structure. Besides, a trading problem

based on a simplified market can easily be adapted to electricity markets with addi-

tional stages (e.g., the intra-day adjustment stage) or with different size of the trad-

ing intervals (e.g., 15 minutes trading intervals in the balancing market).

Power producers, either conventional (e.g., coal- or gas-fired power unit) or

stochastic (e.g., wind and solar power producers) submit their market offers to the

Market Operator. The ensemble of the sell offers builds the so-called aggregated

supply curve. Stochastic producers are assumed to provide their energy production

at zero marginal cost. As for the sell offers, aggregating the buy bids (i.e., bids for

consuming electricity) the Market Operator obtains the demand curve. The inter-

section between those two curves gives the market clearing price and quantity. In

this simplified model, we consider an inflexible aggregated demand curve, i.e., the

amount of energy consumption does not depend on the market price.

At the balancing stage, we assume that only conventional producers can provide

regulating energy, either for upward or downward regulation (active participation).

Differently, stochastic producers use the balancing stage to settle their deviations

from their day-ahead contracted schedule (passive participation).
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2.3.1 Day-ahead Market Clearing

At noon of the day before the delivery of energy, the Market Operator collects the

producers’ offers for the day-ahead market. LetK be the set of the 24 hourly trading

intervals of the following day and k be the index of the trading intervals, so that

k ∈ K. The Market Operator receives the market offers for the 24 hourly trading

intervals of the following day, simultaneously. Let NO
k be the number of sell offers

submitted by conventional generators for the hourly trading interval k, while let-

ting o be the index for this set of offers. An offer o includes a quantity of energy

Q
DA
ok (MWh) and a price αDA

ok (e/MWh). The price-quantity offer
(
αDA
ok , Q

DA
ok

)
indi-

cates that the power producer is willing to generate the quantity of energy QDA
ok at

k, provided that the day-ahead market price λDA
k (e/MWh) is greater or equal to its

offered price αDA
ok . The Market Operator also receivesNS

k sell offers submitted by the

stochastic producers. Let s be the index for this set of sell offers. The offer s includes

a quantity of energy EDA
sk (MWh) offered at 0 e/MWh. Figure 2.2 shows a schematic

representation of the day-ahead market submission process.

0 0 012 12

DA

day d

(

αDA

ok
, Q

DA

ok

)

E
DA

sk

FIGURE 2.2: Schematic representation of the day-ahead (DA) electric-
ity market submission process. Conventional producers submit price

quantity offers
(
αDA
ok
, Q

DA

ok

)
, while stochastic producers quantity of-

fers E
DA

sk
.

The Market Operator wants to evaluate the optimal dispatch of energy to satisfy

the inflexible energy demand DDA
k (MWh) at each interval k. It solves a separate
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economic dispatch per each hourly interval k, computing the amount of energy qDA
ok

(MWh) scheduled of each offer o and the energy eDA
sk (MWh) contracted of each offer

s. Then, it computes the market clearing price λDA
k at each interval k. The economic

dispatch problem at k is formulated as

Min
{qDA

ok
,eDA

sk }

NO
k∑

o=1

αDA
ok q

DA
ok (2.1a)

s.t.
NO

k∑

o=1

qDA
ok +

NS
k∑

s=1

eDA
sk = DDA

k :
(
λDA
k

)
(2.1b)

0 ≤ qDA
ok ≤ Q

DA
ok , ∀o ∈ {1, ..., NO

k } (2.1c)

0 ≤ eDA
sk ≤ E

DA
sk , ∀s ∈ {1, ..., NS

k } (2.1d)

The objective function (2.1a) minimizes the cost for satisfying the energy demand

DDA
k . Constraint (2.1b) imposes the balance between production (i.e.,

∑NO
k

o=1 q
DA
ok +

∑NS
k

s=1 e
DA
sk ) and consumption (i.e., DDA

k ). Constraint (2.1c) forces qDA
ok to lie in its

feasibility region, i.e., between 0 and Q
DA
ok . Similarly, constraint (2.1d) imposes that

eDA
sk is bounded between 0 and E

DA
sk . Finally, the market price λDA

k is obtained by

computing the sensitivity, i.e., the dual variable, of constraint (2.1b).

Figure 2.3 illustrates the day-ahead market clearing mechanism. The aggregated

supply curve is shown in blue, while the demand curve in black. Note that the sup-

ply curve is built with both the stochastic producers’ offers and the conventional

producers’ ones. As the energy EDA
sk is offered at 0 e/MWh, it appears on the left

side of the curve. Differently, the conventional producers’ offers
(
αDA
ok , Q

DA
ok

)
are

ranked based on a merit order resulting in a step-wise curve. The intersection be-

tween the two curves gives the day-ahead market clearing price λDA
k . Note that an

increase of the stochastic producers’ quantity offers would shift the supply curve

towards right thus resulting in lower values of the market price λDA
k .

2.3.2 Balancing Market Clearing

Close to the real-time operation, the System Operator manages the balancing mar-

ket. The balancing market is used to ensure the continuous matching between in-

jections and withdrawals of electricity in the grid, as it is the last available trading

floor. Stochastic producers are usually not able to fulfill the production schedule
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FIGURE 2.3: Schematic representation of the day-ahead electricity
market clearing mechanism. The intersection between the supply
curve (blue) and the demand curve (black) identifies the market clear-

ing price.

contracted in the day-ahead market and access the balancing stage to settle their de-

viations. This, together with potential forecasting errors in the energy demand, re-

sults in a discrepancy between the scheduled energy generation and consumption.

Conventional generators offer their availability to upward or downward adjust their

power production to compensate the system imbalance.

In this context, we can distinguish between two kinds of balancing market par-

ticipation. The first, called active participation, refers to power producers that offer

their available regulating energy to the System Operator, thus ensuring a more flexi-

ble operation of the power system. The second, called passive participation, refers to

power producers that deviate from their production schedule and contribute to the

whole system imbalance. Conventional units are usually active actors in the balanc-

ing markets, while stochastic producers are passive participants and are prevented

from offering regulating energy.

A conventional producer can submit in the balancing market both upward and

downward regulation offers. An up-regulation offer
(
αUP
ok , Q

UP
ok

)
indicates that the

power producer can produce additionalQUP
ok (MWh) provided that it is remunerated

at a price higher or equal to αUP
ok (e/MWh). Note that usually αUP

ok ≥ λDA
k as the
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marginal cost for producing the energy Q
UP
ok is likely to be higher than the day-

ahead market clearing price λDA
k . Differently, a down-regulation offer

(
αDW
ok , Q

DW
ok

)

expresses that the producer can decrease its power production ofQDW
ok (MWh) when

this energy is priced equally or lower than αDW
ok (e/MWh). As the quantityQDW

ok was

previously contracted in the day-ahead market at price λDA
k , by "buying" back this

amount at αDW
ok the producer would receive a payment of

(
λDA
k − αDW

ok

)
Q

DW
ok . Note

that this payment increases as αDW
ok decreases, which explains the inverted merit

order compared to the up-regulation offers. Moreover, as a rule, αDW
ok ≤ λDA

k since

differently the producer may incur in a negative profit from the sell of downward

regulation.

Let us denote with EDA
sk (MWh) the amount of energy contracted by the stochas-

tic producer s in the day-ahead market, whileEsk (MWh) is the real-time production

of its power unit during the hourly interval k. In the balancing market the stochastic

producer settles a deviation
(
Esk − EDA

sk

)
in order to balance its position. Conse-

quently, the real-time system imbalance δBA
k is obtained as

δBA
k =

(
Dk −DDA

k

)
−

NS
k∑

s=1

(
Esk − EDA

sk

)
, ∀k ∈ K. (2.2)

where Dk (MWh) is the real-time aggregate consumption demand.

The System Operator receives NO
k upward and downward regulation offers, i.e.,

(
αUP
ok , Q

UP
ok

)
and

(
αDW
ok , Q

DW
ok

)
, respectively. In the real-time, it receives the devi-

ations
(
Esk − EDA

sk

)
settled by the stochastic producers and computes the system

imbalance δBA
k . A schematic representation of balancing market submission process

is shown in Figure 2.4. Note that the offers from the conventional units are shown

in green (active participation), while the deviations settled by the stochastic produc-

ers are illustrated in red (passive participation). The System Operator computes the

more convenient (from an economic perspective) re-dispatch of the conventional

units aimed at compensating the system imbalance δBA
k . Let qUP

ok and qDW
ok be the

amount of upward and downward regulating energy scheduled of producer o at
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FIGURE 2.4: Schematic representation of the balancing (BA) market
submission process. Conventional producers submit price-quantity

offers for upward
(
αUP
ok
, Q

UP

ok

)
and downward

(
αDW
ok

, Q
DW

ok

)
regula-

tion, while stochastic producers settle the deviations Esk − EDA
sk

.

time k. The optimization problem solved to evaluate the optimal re-dispatch of con-

ventional generators is

Min
{qUP

ok
,qDW

ok }

NO
k∑

o=1

αUP
ok q

UP
ok −

NO
k∑

o=1

αDW
ok qDW

ok (2.3a)

s.t.
NO

k∑

o=1

(
qUP
ok − qDW

ok

)
=

(
Dk −DDA

k

)
−

NS
k∑

s=1

(
Esk − EDA

sk

)
:
(
λBA
k

)
(2.3b)

0 ≤ qUP
ok ≤ Q

UP
ok , ∀o ∈ {1, ..., NO

k } (2.3c)

0 ≤ qDW
ok ≤ Q

DW
ok , ∀o ∈ {1, ..., NO

k } (2.3d)

The objective function (2.3a) minimizes the balancing cost, evaluated as the sum of

the up-regulation cost (positive) and the down-regulation cost (negative). Constraint

(2.3b) imposes that the system imbalance δBA
k is compensated by the total regulation

energy scheduled (upward or downward). Note that δBA
k is replaced with its formu-

lation provided in Equation 2.2. Constraints (2.3c) and (2.3d) force qUP
ok and qDW

ok to

lie between 0 and Q
UP
ok , and between 0 and Q

DW
ok , respectively. The dual variable of

constraint (2.3b) gives the balancing market clearing price λBA
k .

A graphical interpretation of the balancing market clearing mechanism is shown
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in Figures 2.5 and 2.6. The regulating offers of the conventional generators are

ranked based on their offered price, thus obtain a step-wise supply curve (shown

in green). Differently, the new demand curve (shown in red), is obtained as the

sum of DDA
k and the aggregate deviation of the stochastic producers. In this exam-

ple, we assume that Dk = DDA
k , so the system imbalance δBA

k is only given by the

stochastic producers’ deviation, i.e.,
∑NS

k

s=1

(
Esk − EDA

sk

)
. Figure 2.5 illustrates an ex-

ample when δBA
k > 0 and the System Operator schedules upward adjustments of the

power production of conventional units. This case results in λBA
k ≥ λDA

k . Indeed, as

the total demand to fulfill is greater than the day-ahead one, generators with higher

marginal cost are required to operate. Differently, Figure 2.6 considers an example

when δBA
k < 0 and the System Operator schedules downward adjustments of the

conventional production units. This leads to λBA
k ≤ λDA

k , as the total energy de-

mand is lower than the day-ahead one and the more expensive generators (among

the scheduled ones) are shut down.
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FIGURE 2.5: Schematic representation of the balancing market clear-
ing mechanism when upward regulation is required.
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FIGURE 2.6: Schematic representation of the balancing market clear-
ing mechanism, when downward regulation is needed.
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Chapter 3

A General Model for the Offering

Strategy

3.1 Introduction

A power producer offering in electricity markets bases its strategy on some decision-

making tool, usually in the form of a mathematical optimization problem. The lit-

erature proposes several models aimed at driving the optimal trading strategy of a

specific power producer. As examples, references (Bremnes, 2004; Pinson, Cheval-

lier, and Kariniotakis, 2007; Morales, Conejo, and Pérez-Ruiz, 2010) develop offer-

ing models for a price-taker, i.e., that does not influence the market price, stochas-

tic power producer. Similarly, references (Conejo, Nogales, and Arroyo, 2002; Ni,

Luh, and Rourke, 2004; Maenhoudt and Deconinck, 2014) propose offering mod-

els for a price-taker conventional power producer, while references (Mashhour and

Moghaddas-Tafreshi, 2011a; Mashhour and Moghaddas-Tafreshi, 2011b; Pandžić,

Kuzle, and Capuder, 2013; Pandžić et al., 2013) consider an aggregate of different

technologies (e.g., conventional units, stochastic power units and storages) offering

in the electricity market as a single price-taker participant. Those trading models

can also be extended to include the producer’s price-maker (i.e., that influences the

market price outcome) effect on the market clearing mechanism, for a stochastic

power producer (Zugno et al., 2013; Baringo and Conejo, 2013), a conventional pro-

ducer (Gountis and Bakirtzis, 2004; Bakirtzis et al., 2007) or an aggregate of units

(Kardakos, Simoglou, and Bakirtzis, 2016).

This chapter wants to provide a more general approach to build the offering strat-

egy of a generic power producer. By analyzing the optimization models mentioned

above, we derive a general structure of the offering strategy for optimal electricity
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market participation. It is developed with a modular approach. Accordingly, the

general model is composed of blocks (in the form of sets of constraints) that can be

replaced depending on the specific electricity market structure or regulation and on

the particular production units. Some of these blocks simulate the trading problem

in different market stages. For the trading problem, we intend a set of constraints

and variables that can model the market clearing mechanism (endogenously or ex-

ogenously), the market pricing scheme (uniform or pay-as-bid pricing), and other

additional constraints associated with the market offers (e.g., the non-decreasing

condition of offer curves). Together with the general offering strategy, this chap-

ter provides several formulations for modeling the trading problem in the different

market stages.

The more general approach is to consider the power producer as a price-maker

in the market. The price-maker trading problem can be implemented through a

residual demand model (Baillo et al., 2004) or using a bilevel optimization setup to

include the market clearing mechanism within the optimal offering strategy (Goun-

tis and Bakirtzis, 2004; Bakirtzis et al., 2007). The result is a Mathematical Problem

with Equilibrium Constraints (MPEC), where the optimization problem that simu-

lates the market clearing mechanism is formulated as a set of constraints, obtaining a

single-level optimization problem. In this context, it is essential to mention the work

of Ruiz and Conejo (2009), that shows how to cast an MPEC as a mixed-integer and

linear optimization problem. They reformulate the non-linear producer’s market in-

come (where the non-linearity arises from the product between the market price and

the quantity offer) as a linear one by exploiting the strong duality of the lower level

problem (i.e., the market clearing optimization problem).

Although more general, MPECs may have high computational cost and rely on

strong assumptions on opponents’ behavior. Hence, when the power producer has a

small impact on the market, a price-maker setup may not be the preferable choice. In

this case, it is possible to assume that the power producer is price-taker as it strongly

simplifies the formulation of the trading problem. Indeed, the producer now sees the

market price as a parameter and no more as a variable. Its uncertainty can accord-

ingly be represented by a continuous marginal distribution or through a discrete set

of possible outcomes. When the market is settled under a uniform pricing scheme,

i.e., all the accepted offers are remunerated at the market price (disregarding the
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offered price), the price-taker trading problem can be formulated as linear program-

ming (LP) problem. E.g., Conejo, Carrión, and Morales (2010) show how a price-

taker power producer can derive its optimal offer curves by exploiting a stochastic

programming approach. The idea is to use the discrete set of possible market price

outcomes as the possible offering prices for the price-taker producer. Differently,

if the market is settled under a pay-as-bid pricing scheme, i.e., the accepted offers

are remunerated at the offered price (disregarding the market clearing price), fewer

trading models are available. Indeed, the topic of trading under a pay-as-bid scheme

and price uncertainty has not been extensively addressed in the literature. Ren and

Galiana (2004a) and Ren and Galiana (2004b) present an analysis on optimal offering

under pay-as-bid and uniform pricing schemes. The authors obtain the profit expec-

tation and variance for both pricing schemes while assuming that the market price

follows a uniform distribution. Swider and Weber (2007) propose a methodology

that aims to maximize the profit expectation in a pay-as-bid auction. Other formu-

lations of the trading problem under a pay-as-bid pricing scheme are also proposed

by Swider (2007), Khorasani and Mashhadi (2012) and Sadeh, Mashhadi, and Latifi

(2009). These references show how to model the price-taker trading problem un-

der a pay-as-bid pricing scheme using a non-linear programming (NLP) approach.

Compared to the available literature, this chapter provides a novel approach that

allows casting the price-taker trading problem in pay-as-bid markets under price

uncertainty as an LP problem. For that purpose, we represent continuous random

variables (i.e., market-clearing prices) as discrete variables. Then, following the idea

of Conejo, Carrión, and Morales (2010), we use the market price scenarios as po-

tential offering prices of the price-taker power producer. It is worth mentioning

that Khorasani and Mashhadi (2012) propose to solve the trading problem in pay-

as-bid markets under price uncertainty with a two-step approach, obtaining the ex-

pected profit as a linear function of the quantity offer. However, this approach is not

applicable in case of problems with inter-temporal constraints or with more complex

cost functions.

The remaining of the chapter is organized as follows. Section 3.2 presents the

general formulation of an offering strategy for a producer trading in a two-settlement

electricity market. Section 3.3 yields a formulation of the trading problem, both for

the day-ahead and the balancing market, for a price-maker power producer. Then,
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Section 3.4 introduces the assumptions of a price-taker and risk-neutral power pro-

ducer.

3.2 General Formulation of an Offering Strategy

We consider a two-settlement electricity market, composed of a day-ahead and a bal-

ancing market. The power producer submits to the day-ahead market the quantity

qDA
k (MWh) that it wants to produce during the hourly interval k. In the remaining

of the chapter, we develop the trading problem for a single hourly interval k. Con-

sequently, we skip the subscript k for the clarity of the notation, e.g., qDA
k → qDA.

Then, at the balancing stage, it can offer to adjust upward its power production of

qUP (MWh) or to decrease it of qDW (MWh). These market offers are related to an

active participation in the balancing stage, i.e., the power producer is offering to the

System Operator its available regulating energy. Differently, a passive participation

allows the producer to create a deviation qBA (MWh) from its day-ahead contracted

schedule qDA. The total amount of energy exchanged with the market platform has

to match the energy production qA (MWh) of the power unit, i.e.,

qDA + qUP − qDW + qBA = qA. (3.1)

Note that Equation (3.1) considers both an active and passive participation in the

balancing market, which is usually not allowed in a real-world electricity market.

Indeed, a power producer cannot simultaneously offer regulating energy while de-

viating from its contracted schedule. However, as we want to provide a general

formulation, we include both of them. A schematic representation of the interface

between the producer and the electricity market is shown in Figure 3.1, where the

question mark represents a generic power producer.

The day-ahead quantity offer qDA yields an income ρDA (e) to the power pro-

ducer, and it is associated with a feasibility region. Consequently, we impose

qDA, ρDA ∈ ΠDA, (3.2)

where ΠDA is a set of constraints associated with the day-ahead market offer. Sim-

ilarly, the balancing market incomes ρUP (e) and ρDW (e) are linked to the upward
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FIGURE 3.1: Illustration of the energy balance between the power
producer and the electricity market, considering a single hourly in-
terval k. The question mark indicates a generic power production

unit.

and the downward regulation offers, i.e., qUP and qDW. Accordingly, we impose

qUP, qDW, ρUP, ρDW ∈ ΠBA
Act, (3.3)

where ΠBA
Act is a set of constraints associated with the balancing market offers. Like-

wise the active participation, also a passive deviation qBA is related to a market in-

come ρBA (e), given by

qBA, ρBA ∈ ΠBA
Pas. (3.4)

These three set of constraints, i.e., ΠDA, ΠBA
Act, and ΠBA

Pas, are a compact representation

of the trading problem in different market stages. Together with these constraints,

the energy production qA has a feasible operating region, generically described by

the set of constraints Ω, i.e.,

qA ∈ Ω, (3.5)

where the set Ω depends on the production unit considered. Then, the cost c (e) for

producing the quantity qA is evaluated by mean of the generic function h(·). This

writes

c = h
(
qA

)
. (3.6)
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The total profit µ (e) of the power producer is computed as the sum of incomes from

the electricity markets minus the production cost c, thus leading to

µ = ρDA + ρUP + ρDW + ρBA − c. (3.7)

The producer is usually solving a stochastic model as several market parameters

are still uncertain at the moment of submitting its market offers. Consequently, the

producer’s profit µ is a random value. We introduce the generic function g(·) trans-

forming a random variable into a deterministic one. As an example, the function g(·)

can be the expectation or the worst case realization of µ. The generic structure of the

offering strategy is formulated as

Max
Γ

g
(
ρDA + ρUP + ρDW + ρBA − c

)
(3.8a)

s.t. qDA + qUP − qDW + qBA = qA, (3.8b)

qDA, ρDA ∈ ΠDA, (3.8c)

qUP, qDW, ρUP, ρDW ∈ ΠBA
Act, (3.8d)

qBA, ρBA ∈ ΠBA
Pas, (3.8e)

c = h
(
qA

)
, (3.8f)

qA ∈ Ω, (3.8g)

where

Γ = {qA, qDA, qUP, qDW, qBA, ρDA, ρUP, ρDW, ρBA, c}. (3.9)

The objective function (3.8a) maximizes a certain function g(·) of the producer’s

profit µ. The energy balance between the power production qA and the total amount

of energy exchanged with the market platform is enforced by constraint (3.8b). Then,

constraints (3.8c) and (3.8d) impose a set of constraints related to the day-ahead and

the balancing market offers. Constraint (3.8e) enforces a set of constraints related

to a passive participation in the balancing market. Then, constraint (3.8f) yields the

cost c for producing the energy qA. Finally, constraint (3.8g) imposes the feasible

operating region of the power production units.
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3.3 General Formulation of the Trading Problem

This section derives the formulation of the trading for a price-maker power pro-

ducer, i.e., a producer that can influence the market price outcome with its deci-

sions. Section 3.3.1 considers the day-ahead market trading problem, while Section

3.3.2 the balancing market one.

3.3.1 Day-Ahead Market Trading Problem

Let us assume that the power producer submits a single price-quantity offer (pDA, qDA)

in the day-ahead market. With the market offer (pDA, qDA) the power producer in-

dicates its willingness to produce qDA, provided that it is remunerated at a price

higher or equal to pDA (e/MWh). Together with the producer’s offer (pDA, qDA),

the Market Operator receives NO +NS opponents’ offers. NO price-quantity offers

are submitted by conventional producers, i.e., {(αDA
o , Q

DA
o ), o = 1, ..., NO}, and NS

quantity offers by the stochastic producers, i.e., {(EDA
s ), s = 1, ..., NS}. The Mar-

ket Operator clears the market and computes the day-ahead market price λDA by

solving the economic dispatch presented in Section 2.3.1, i.e.,

Min
{qDA,qDA

o ,eDA
s }

NO∑

o=1

αDA
o qDA

o + pDAqDA (3.10a)

s.t.
NO∑

o=1

qDA
o + qDA +

NS∑

s=1

eDA
s = DDA :

(
λDA

)
(3.10b)

0 ≤ qDA
o ≤ Q

DA
o , ∀o ∈ {1, ..., NO} (3.10c)

0 ≤ qDA ≤ qDA (3.10d)

0 ≤ eDA
s ≤ E

DA
s , ∀s ∈ {1, ..., NS} (3.10e)

where qDA is the amount of energy that the power producer is contracted to produce

in the day-ahead market. Note that we add the producer’s offer to the economic dis-

patch formulation (2.1) as we assume the the offer (pDA, qDA) influences the market

outcome.

The market revenue ρDA of the producer is computed differently, depending

on the pricing scheme considered. We can distinguish among two main pricing

schemes, i.e., uniform pricing and pay-as-bid pricing. In a uniform pricing scheme,
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all the accepted offers are remunerated at the day-ahead market price λDA, disre-

garding the offered price. Differently, under a pay-as-bid pricing scheme, the ac-

cepted offers are paid at the proposed price pDA. Since the structure of the day-ahead

electricity markets across the European countries has been harmonized and consid-

ers a uniform pricing scheme, we assume that the day-ahead market is settled under

a uniform pricing scheme. Accordingly, the market income ρDA is computed as

ρDA = λDAqDA. (3.11)

A price-maker power producer that submits a single price-quantity offer in the day-

ahead market formulates the set ΠDA of the general model (3.8) as

ρDA = λDA qDA (3.12a)

qDA, λDA = arg{(3.10)} (3.12b)

Q ≤ qDA ≤ Q (3.12c)

Constraint (3.12a) gives the day-ahead market income ρDA under a uniform pricing

scheme. Constraint (3.12b) solves the economic dispatch (3.10) and computes the

accepted quantity qDA and the market price λDA. Finally, constraint (3.12c) limits

the quantity offer qDA between Q and Q. Usually, Q is the unit’s capacity while Q

is 0 MWh for a production unit. However, Q can also be a negative value in case

the power unit can buy (i.e., consume) electricity. An example is an electric stor-

age system, which is producing energy when discharging and consuming it while

charging. Note that the general formulation (3.12) would lead to a bi-level optimiza-

tion problem (3.8), as constraint (3.12b) is an optimization problem itself. We do not

investigate how to formulate an MPEC as a single-level optimization problem, as

the thesis focuses on a price-taker power producer. We refer the interested reader

to (Gountis and Bakirtzis, 2004; Bakirtzis et al., 2007; Ruiz and Conejo, 2009) for an

extensive coverage of the topic.

3.3.2 Balancing Market Trading Problem

At the moment of offering in the balancing market, the power producer knows the

amount of energy qDA contracted in the day-ahead market. We assume that the

producer submits single price-quantity offers in the balancing market, as an active
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participant. It can offer to increase its power production of a quantity qUP at price

pUP or to decrease it of a quantity qDW at price pDW. Let consider that the producer

submits both an up-regulation and a down-regulation offer in the balancing market.

Moreover, as a passive participant, it can deviate of a quantity qBA from its day-

ahead contracted schedule qDA. As mentioned in Section 3.2, a simultaneous active

and passive participation at the balancing stage is not allowed by the System Op-

erator. However, to provide a general formulation of the balancing market trading

problem we include both of them.

The System Operator also receives NO opponents’ offers for upward regulation

{(αUP
o , Q

UP
o ), i = 1, ..., NO}. Similarly, it receives NO downward regulation offers

{(αDW
o , Q

DW
o ), i = 1, ..., NO}. We indicate with δBA the system imbalance (without

the producer’s deviation) that needs to be restored through the balancing market.

The System Operator clears the balancing market by solving the economic dispatch

presented in Section 2.3.2, adapted with the producer’s participation, i.e.,

Min
{qUP

o ,qUP,qDW
o ,qDW}

NO∑

o=1

αUP
o qUP

o + pUPqUP −
NO∑

o=1

αDW
o qDW

o − pDWqDW (3.13a)

s.t.
NO∑

o=1

(
qUP
o − qDW

o

)
+ qUP − qDW = δBA − qBA :

(
λBA

)
(3.13b)

0 ≤ qUP
o ≤ Q

UP
o , o = 1, ..., NO (3.13c)

0 ≤ qUP ≤ qUP, (3.13d)

0 ≤ qDW
o ≤ QDW

o , o = 1, ..., NO (3.13e)

0 ≤ qDW ≤ qDW, (3.13f)

where qUP and qDW are the producer’s quantity of up-regulation and down-regulation

energy scheduled by the System Operator, while λBA is the balancing market clear-

ing price. Note that the producer’s decision variables, i.e., qUP, qDW, and qBA, are not

variables but parameters for the economic dispatch in (3.13), as the System Operator

solves it after having received the producer’s offers and deviation.

The market revenues ρUP and ρDW are computed differently, depending on the

pricing scheme considered. Differently than the day-ahead market, which is mainly

settled under a uniform pricing scheme, several European balancing markets, e.g.,

Italy and Germany (Wang et al., 2015), are settled under a pay-as-bid pricing scheme.
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Accordingly, we provide a formulation of the up- and down-regulation market in-

comes under both the pricing schemes, i.e.,

ρUP =





λBA, qUP if uniform pricing scheme

pUP, qUP if pay-as-bid pricing scheme
(3.14a)

ρDW =





−λBA, qDW if uniform pricing scheme

−pDW, qDW if pay-as-bid pricing scheme
(3.14b)

The income ρBA, linked to a passive participation, is evaluated based on the imbal-

ance settlement scheme considered. Two main imbalance pricing schemes can be

distinguished in the European electricity markets, i.e., the single- and the dual-price

imbalance settlement scheme. Under a single-price imbalance settlement scheme,

imbalances are priced at the balancing market price λBA, disregarding the sign of

the deviation qBA. Differently, under a dual-price imbalance settlement scheme, the

imbalance qBA is priced at the least convenient (for the producer) price between the

balancing market price λBA and the day-ahead one λDA. This leads to

ρBA =





λBAqBA, if single-price scheme

min
(
λBAqBA, λDAqBA

)
, if dual-price scheme

(3.15)

Consequently, a price-maker producer that submits single price-quantity regulation

offers and deviates from its contracted schedule, can formulate the sets ΠBA
Act and

ΠBA
Pas of the general model (3.8) as

ρUP =





λBA, qUP if uniform pricing scheme

pUP, qUP if pay-as-bid pricing scheme
(3.16a)

ρDW =





−λBA, qDW if uniform pricing scheme

−pDW, qDW if pay-as-bid pricing scheme
(3.16b)

ρBA =





λBAqBA, if single-price scheme

min
(
λBAqBA, λDAqBA

)
, if dual-price scheme

(3.16c)

qUP, qDW, λBA = arg{(3.13)} (3.16d)



3.4. Trading Problem for a Price-Taker and Risk-Neutral Producer 33

Constraints (3.16a) and (3.16b) yield the producer’s upward and downward regula-

tion incomes, considering both a uniform and a pay-as-bid pricing schemes. Con-

straint (3.16c) gives the income associated with the uncontracted deviation qBA. Fi-

nally, constraint (3.16d), given the producer’s decisions (qUP, qDW, and qBA), simu-

lates the balancing market clearing process and computes the quantity of up- and

down-regulation energy scheduled, i.e., qUP and qDW, and the market price λBA. As

for the day-ahead market trading problem (3.12), we do not present the method-

ology to reformulate the bi-level structure of (3.16) into a single-level one, as the

thesis focuses on a price-taker producer. We refer the interested reader to (Gountis

and Bakirtzis, 2004; Bakirtzis et al., 2007; Ruiz and Conejo, 2009) for an extensive

coverage of the topic.

3.4 Trading Problem for a Price-Taker and Risk-Neutral Pro-

ducer

This section introduces two fundamental assumptions on the power producer. First,

we consider a risk-neutral power producer. This translates in maximizing the expec-

tation of its future marker profit, disregarding possible huge losses. Consequently,

the objective function (3.8a) of the general offering strategy, can be written as

g
(
ρDA + ρUP + ρDW + ρBA − c

)
= ρ̂DA + ρ̂UP + ρ̂DW + ρ̂BA − ĉ, (3.17)

where the ·̂ symbol indicates the mean expected value, e.g., ρ̂DA = E
[
ρDA

]
. Accord-

ingly, we reformulate the general offering model (3.8) as

Max
Γ

ρ̂DA + ρ̂UP + ρ̂DW + ρ̂BA − ĉ (3.18a)

s.t. qDA + qUP − qDW + qBA = qA, (3.18b)

qDA, ρ̂DA ∈ ΠDA, (3.18c)

qUP, qDW, ρ̂UP, ρ̂DW ∈ ΠBA
Act, (3.18d)

qBA, ρ̂BA ∈ ΠBA
Pas, (3.18e)

ĉ = h
(
qA

)
, (3.18f)

qA ∈ Ω, (3.18g)
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where

Γ = {qA, qDA, qUP, qDW, qBA, ρ̂DA, ρ̂UP, ρ̂DW, ρ̂BA, ĉ}. (3.19)

Then, we consider that the power producer is price-taker in the electricity mar-

ket. It means that the influence of its decisions on the market clearing process of

both the day-ahead and the balancing market is negligible. This assumption is, gen-

erally, acceptable for producers with a small market power. As a consequence, the

day-ahead market clearing problem in (3.10), under the price-taker assumption, can

be simplified as

Min
{qDA

o ,eDA
s }

NO∑

o=1

αDA
o qDA

o (3.20a)

s.t.
NO∑

o=1

qDA
o +

NS∑

s=1

eDA
s = DDA :

(
λDA

)
(3.20b)

0 ≤ qDA
o ≤ Q

DA
o , ∀o ∈ {1, ..., NO} (3.20c)

0 ≤ eDA
s ≤ E

DA
s , ∀s ∈ {1, ..., NS} (3.20d)

The day-ahead market clearing model (3.20) can be solved exogenously to the trad-

ing problem, as λDA is no more influenced by the producer’s offer (pDA, qDA). Hence,

the uncertain market price λDA can be modeled as a random variable following the

density function fDA
λ : R+ 7→ R

+.

Similarly, the price-taker assumption allows to reformulate the balancing market

clearing problem in (3.13) as

Min
{qUP

o ,qDW
o }

NO∑

o=1

αUP
o qUP

o −
NO∑

o=1

αDW
o qDW

o (3.21a)

s.t.
NO∑

o=1

(
qUP
o − qDW

o

)
= δBA :

(
λBA

)
(3.21b)

0 ≤ qUP
o ≤ Q

UP
o , o = 1, ..., NO (3.21c)

0 ≤ qDW
o ≤ QDW

o , o = 1, ..., NO (3.21d)

The balancing market economic dispatch in (3.21) can be solved as well exogenously

to the trading problem. Consequently, for a given realization of the day-ahead mar-

ket price λDA, the balancing market one, i.e., λBA, can be modeled as a random

variable following the density function fBA
λ : R 7→ R

+.
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Instead of representing the uncertain market prices λDA and λBA with contin-

uous distributions, the power producer can use a discrete representation. This is

generally required in a stochastic programming framework. Under such approach,

the continuous distributions of random variables are replaced by discrete distribu-

tions. In our problem, we can indeed represent the uncertain market price λDA using

a set I of possible scenarios {λDA
i , i ∈ I}, where each price scenario λDA

i is associ-

ated with a probability πDA
i of occurrence, such that

∑
i π

DA
i = 1. Similarly, we can

do for the balancing market price λBA. For each day-ahead market scenario i ∈ I , we

represent the uncertain λBA using a set J of scenarios, i.e., {λBA
ij , i ∈ I, j ∈ J}. Each

scenario (ij) is associated with a discrete probability πBA
ij , such that

∑
j π

BA
ij = 1, ∀i.

Figure 3.2 illustrates the difference between a continuous distribution (in blue) and

a discrete one (in green).

λDA (e/MWh)

pdf (fλ)

pmf (π)

FIGURE 3.2: Example of a probability density function (pdf) in blue
vs a probability mass function (pmf) in green

The remaining of the section is organized as follows. Section 3.4.1 develops the

trading problem in the day-ahead market when the producer submits a single price-

quantity offer. Section 3.4.2 extends the formulation by considering non-decreasing

step-wise offer curves. Then, Section 3.4.3 uses a stochastic programming approach

to formulate the day-ahead market trading problem with offer curves as an LP prob-

lem. Section 3.4.4 formulates the trading problem in the balancing market for an

active participant submitting single price-quantities offers. Subsequently, Sections

3.4.5 and 3.4.6 extend the problem to offer curves and to a stochastic programming

framework, respectively. Finally, Section 3.4.7 models the trading problem for a pas-

sive participant in the balancing market while Section 3.4.8 does the same based on
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a stochastic programming approach.

3.4.1 Day-Ahead Market Trading Problem with Single Offers

We consider that the power producer submits a single price-quantity offer (pDA, qDA)

in the day-ahead market and we denote with qDA the quantity accepted by the Mar-

ket Operator. With the price-taker assumption, qDA is no more computed endoge-

nously by the market clearing model as in Equation (3.12b). However, it can be

evaluated as

qDA =





0, if λDA < pDA,

qDA, if λDA ≥ pDA.

(3.22)

Indeed, the accepted quantity qDA is equal to qDA when the offer price pDA is lower

or equal to the day-ahead market price λDA and 0 otherwise. Figure 3.3 shows an il-

lustrative example, where the continuous blue line represents the accepted quantity

qDA as a function of the future realization of the uncertain day-ahead market price

λDA. Therefore, the probability that the Market Operator accepts the market offer

price λDA (e/MWh)

qu
an
ti
ty

q
D
A
(M

W
h
)

(pDA, qDA)

FIGURE 3.3: Example of a single offer (pDA, qDA) in the day-ahead
market.

(pDA, qDA) is given by

P
[
pDA ≤ λDA

]
=

∫ ∞

pDA

fDA
λ (ℓ) dℓ, (3.23)

as it is only accepted when pDA ≤ λDA, in accordance with Equation (3.22). The

variable ℓ in Equation (3.23) is an auxiliary integration variable. A graphical inter-

pretation of the probability of acceptance of the single price-quantity market offer
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is shown in Figure 3.4. Let pDA∗ be the remuneration price provided that the of-

λDA (e/MWh)

f
λ

pDA

pdf fλ

P
[

pDA ≤ λDA
]

FIGURE 3.4: Graphic representation of the probability of acceptance
of the price-quantity offer.

fer (pDA, qDA) is being accepted (i.e., that pDA ≤ λDA) by the Market Operator. Its

expected value can be evaluated as

E
[
pDA∗ | pDA ≤ λDA

]
=

∫∞
pDA ℓ f

DA
λ (ℓ) dℓ

∫∞
pDA fDA

λ (ℓ) dℓ
. (3.24)

Then, the expected market revenue ρ̂DA is given by the product of the offered quan-

tity qDA, the probability of acceptance of the offer, and the expected remuneration

price provided that the offer is being accepted, i.e.,

ρ̂DA = qDA
P
[
λDA ≥ pDA

]
E
[
p∗ | λDA ≥ pDA

]
. (3.25)

Let us rewrite Equation (3.25) by replacing the term P
[
pDA ≤ λDA

]
with Equation

(3.23), and E
[
pDA∗ | pDA ≤ λDA

]
with Equation (3.24). This leads to

ρ̂DA = qDA

∫ ∞

pDA

ℓ fDA
λ (ℓ) dℓ, (3.26)

The set ΠDA in the risk-neutral offering strategy (3.18), can be replaced by the

following set of constraints:

ρ̂DA = qDA

∫ ∞

pDA

ℓ fDA
λ (ℓ) dℓ, (3.27a)

Q ≤ qDA ≤ Q. (3.27b)
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Constraint (3.27a) yields the expected day-ahead market income ρ̂DA, given the sin-

gle price-quantity offer (pDA, qDA). Then, constraint (3.27b) limits the quantity offer

qDA between its minimum and maximum values, i.e., Q and Q.

3.4.2 Day-Ahead Market Trading Problem with Offer Curves

The market offers in a real-world electricity market for the generation-side are, gen-

erally, non-decreasing step-wise functions called offer curves. Such offer curves al-

low the producer to schedule more production as the market price increases. Figure

3.5 illustrates an example of multiple offer curves with three blocks. The continu-

ous red line represents the quantity qDA that would be contracted, depending on the

future realization of the uncertain market price λDA. Such accepted quantity qDA is

price λDA (e/MWh)

qu
an
ti
ty

q
D
A
(M

W
h
)

(pDA1 , qDA1 )

(pDA2 , qDA2 )

(pDA3 , qDA3 )

FIGURE 3.5: Example of a 3 blocks offer curve in the day-ahead mar-
ket.

evaluated as

qDA =





0, if λDA < pDA
1 ,

qDA
1 , if pDA

1 ≤ λDA < pDA
2 ,

qDA
2 , if pDA

2 ≤ λDA < pDA
3 ,

qDA
3 , if pDA

3 ≤ λDA.

(3.28)

The first bock offer (pDA
1 , qDA

1 ) is accepted if the market price λDA is greater or equal

to pDA
1 but lower than pDA

2 . Indeed, if λDA is greater or equal to pDA
2 the second (or

third) block would be contracted. The probability of acceptance of the first block is

computed as

P
[
pDA
1 ≤ λDA < pDA

2

]
=

∫ pDA
2

pDA
1

fDA
λ (ℓ) dℓ, (3.29)
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and similarly for the second block, i.e.,

P
[
pDA
2 ≤ λDA < pDA

3

]
=

∫ pDA
3

pDA
2

fDA
λ (ℓ) dℓ. (3.30)

The third block is, in this example, the last one and it is accepted when λDA is greater

or equal to pDA
3 , without an upper bound as for the first two blocks. In this case, we

replace the upper bound of the integral with ∞, thus obtaining

P
[
pDA
3 ≤ λDA

]
=

∫ ∞

pDA
3

fDA
λ (ℓ) dℓ. (3.31)

Figure 3.6 shows a graphical interpretation of the acceptance probability of the three

blocks as in Equations (3.29), (3.30), and (3.31).

λDA (e/MWh)

f
λ

pDA1 pDA2 pDA3

pdf fλ

P
[

pDA1 ≤ λDA < pDA2
]

P
[

pDA2 ≤ λDA < pDA3
]

P
[

pDA3 ≤ λDA
]

FIGURE 3.6: Graphic representation of the probability of acceptance
of the offer curves composed of three blocks.

Let ρ̂DA
1 , ρ̂DA

2 , and ρ̂DA
3 be the expected revenues associated with the blocks 1, 2,

and 3 composing the offer curve, respectively. They can be computed similarly to

the case of a single market offer in Equation (3.25), i.e.,

ρ̂DA
1 = qDA

1

∫ pDA
2

pDA
1

ℓ fDA
λ (ℓ) dℓ, (3.32a)

ρ̂DA
2 = qDA

2

∫ pDA
3

pDA
2

ℓ fDA
λ (ℓ) dℓ, (3.32b)

ρ̂DA
3 = qDA

3

∫ ∞

pDA
3

ℓ fDA
λ (ℓ) dℓ. (3.32c)

Note that for blocks 1 and 2 we replace the upper bound of the integral (i.e., ∞ for

the single market offer) with their associated upper bound pDA
2 and pDA

3 , respectively.
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Then, the day-ahead market expected income ρ̂DA can be computed as

ρ̂DA = ρ̂DA
1 + ρ̂DA

2 + ρ̂DA
3 . (3.33)

The formulation for the offer curve made of three blocks can be generalized to an

offer curve with B blocks. Let (pDA
b , qDA

b ) be the price-quantity offer block b of the

offer curve. The offer curve needs to be non-decreasing, as it is usually a requirement

of electricity markets. This condition is imposed by the following constraints:

qDA
b+1 ≥ qDA

b , b = 1, ..., B − 1, (3.34a)

pDA
b+1 ≥ pDA

b , b = 1, ..., B − 1. (3.34b)

Then, the expected market revenue of the multiple block offer curve {(pDA
b , qDA

b ), b =

1, ..., B} is given by

ρ̂DA =
B∑

b=1

qDA
b

∫ pDA
b+1

pDA
b

ℓ fDA
λ (ℓ) dℓ, (3.35)

where pDA
B+1, i.e., the upper integral limit of the last offer block of the curve, is equal

to ∞.

When the price-taker producer submits offer curves, the set ΠDA in the risk-

neutral offering strategy (3.18), is replaced by

ρ̂DA =

B∑

b=1

qDA
b

∫ pDA
b+1

pDA
b

ℓ fDA
λ (ℓ) dℓ, (3.36a)

qDA
b+1 ≥ qDA

b , b = 1, ..., B − 1 (3.36b)

pDA
b+1 ≥ pDA

b , b = 1, ..., B − 1 (3.36c)

Q ≤ qDA
b ≤ Q, b = 1, ..., B (3.36d)

Constraint (3.36a) gives the expected day-ahead market income associated with the

offer curve {(pDA
b , qDA

b ), b = 1, ..., B}. Constraints (3.36b) and (3.36c) impose the

non-decreasing condition of the offer curve. Finally, constraint (3.36d) limits the

day-ahead market offers qDA
b between Q and Q.
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3.4.3 Day-Ahead Market Trading Problem via Stochastic Programming

The trading problem (3.36) derived in Section 3.4.2 is formulated as a non-linear

problem. Since the uncertain market clearing price λDA is modeled as a random vari-

able with a continuous distribution function (i.e., fDA
λ ), the probability of acceptance

of each block of the curve needs to integrate the density function fDA
λ over the price

domain. Moreover, to evaluate the expected market income, we need to compute

the product of quantities and prices, thus resulting in a non-linear model. A stochas-

tic programming approach can provide an alternative linear formulation. As men-

tioned in Section 3.4, under such approach, the continuous distribution of random

variables is replaced by a discrete distribution. Indeed, the uncertain market price

λDA is represented by mean of a discrete set I of possible realizations {λDA
i , i ∈ I},

where each scenario i is associated with a probability πDA
i of occurrence, such that

∑
i π

DA
i = 1.

As the possible outcomes of the random variable λDA belongs to the discrete set

I , we consider each price scenario λDA
i as the potential offer price of the price-taker

producer. This simplifies the trading problem, as the offer price of each block of the

curve is now a parameter instead of a variable. Moreover, it seems a natural choice

as any offer price different than λDA
i would have a null probability of occurrence.

For each potential offer price, we evaluate the optimal quantity qDA
i to be offered in

the market, provided that the market price outcome is λDA
i . The result is a collection

of N price-quantity offers, i.e., (λDA
i , qDA

i ) that allows building the offer curve of the

producer. Similarly to the continuous case, we need to enforce that the offer curve is

non-decreasing. The following constraints impose such condition:

qDA
i ≥ qDA

i′ if λDA
i ≥ λDA

i′ , ∀i, i′, (3.37a)

qDA
i = qDA

i′ if λDA
i = λDA

i′ , ∀i, i′, (3.37b)

where i and i′ are both indices of the market price scenarios. Constraint (3.37a) im-

poses the non-decreasing requirement, while constraint (3.37b) the non-anticipativity

one. Indeed, constraint (3.37b) prevents the power producer from offering different

quantities at the same market price. Note that this offer curve {(λDA
i , qDA

i ), i ∈ I} is

still scenario-independent, i.e., it is adapted to the all set I of scenarios, though it is

build based on scenario-dependent price-quantity offers.

Let us initially consider an offer curve composed of three blocks, similar to the
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one shown in Figure 3.5, though adapted to the new discrete formulation. Let λDA
1 ,

λDA
2 , and λDA

3 be the three scenarios of λDA, with πDA
1 , πDA

2 , and πDA
3 their associated

probability, respectively. We assume that this set is in growing order, i.e., λDA
1 ≤

λDA
2 ≤ λDA

3 . An example of such offer curve is shown in Figure 3.7. The probability

price λDA (e/MWh)

qu
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ty
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A
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W
h
)

(λDA
1 , qDA1 )

(λDA
2 , qDA2 )

(λDA
3 , qDA3 )

FIGURE 3.7: Example of a 3 blocks offer curve under a stochastic pro-
gramming approach.

of acceptance of the first block can be computed as

P
[
λDA
1 ≤ λDA < λDA

2

]
= P

[
λDA = λDA

1

]
= πDA

1 . (3.38)

Similarly, the probability of acceptance of the second block is

P
[
λDA
2 ≤ λDA < λDA

3

]
= P

[
λDA = λDA

2

]
= πDA

2 , (3.39)

and the one of the third block is

P
[
λDA
3 ≤ λDA

]
= P

[
λDA = λDA

3

]
= πDA

3 . (3.40)

Then, we evaluate the expected revenue of the 3 blocks composing the offer curve

(i.e., ρ̂DA
1 , ρ̂DA

2 , and ρ̂DA
3 ) as

ρ̂DA
1 = πDA

1 λDA
1 qDA

1 , (3.41a)

ρ̂DA
2 = πDA

2 λDA
2 qDA

2 , (3.41b)

ρ̂DA
3 = πDA

3 λDA
3 qDA

3 . (3.41c)



3.4. Trading Problem for a Price-Taker and Risk-Neutral Producer 43

and the total day-ahead income as

ρ̂DA = ρ̂DA
1 + ρ̂DA

2 + ρ̂DA
3 . (3.42)

Let us now generalize to the case with a set I of market price scenarios. In this

case, the expected revenue ρ̂DA is given by

ρ̂DA =
∑

i

πDA
i λDA

i qDA
i , (3.43)

Accordingly, under a stochastic programming approach, the set ΠDA in (3.18) is re-

placed by

ρ̂DA =
∑

i

πDA
i λDA

i qDA
i (3.44a)

qDA
i ≥ qDA

i′ if λDA
i ≥ λDA

i′ , ∀i, i′, (3.44b)

qDA
i = qDA

i′ if λDA
i = λDA

i′ , ∀i, i′, (3.44c)

Q ≤ qDA
i ≤ Q, ∀i (3.44d)

Constraint (3.44a) yields the expected day-ahead market income of the power pro-

ducer. The non-decreasing and non-anticipativity conditions are imposed by con-

straints (3.44b) and (3.44c), respectively. Lastly, constraint (3.44d) forces the day-

ahead market offers qDA
i between Q and Q.

3.4.4 Balancing Market (Active) Trading Problem with Single Offers

We assume that the power producer submits a single price-quantity offer for both

upward and downward regulation, i.e., (pUP, qUP) and (pDW, qDW), respectively.

This section restricts the balancing market participation to the active one, i.e., the

power producer can offer regulating energy but it can not passively deviate from its

contracted production schedule. In the general formulation of the balancing mar-

ket trading problem, i.e., (3.16), the accepted regulation adjustments qUP and qDW

are endogenously computed within the offering strategy by constraint (3.16d), as

well as the balancing market price λBA. Differently, the price-taker producer, given

the already revealed day-ahead market price λDA, considers the balancing market

price λBA as a random variable with marginal distribution fBA
λ : R 7→ R

+. Then, it
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evaluates the accepted regulation adjustments qUP and qDW as

qUP =





0, if λBA < pUP,

qUP, if λBA ≥ pUP.

(3.45)

qDW =





0, if λBA > pDW,

qDW, if λBA ≤ pDW.

(3.46)

In Equation (3.46) the merit order of qDW is inverse compared to qUP. Indeed, it is

more convenient for the System Operator to schedule down-regulation energy of-

fered at higher price pDW, as it is going to receive a payment of pDW qDW from the

producer. Figure 3.8 shows the accepted quantities qUP and qDW, given the single

offers (pUP, qUP) and (pDW, qDW). In order to show that the down-regulation is ac-

tually a decrease of production, Figure 3.8 illustrates −qDW instead of qDW. Then, in

price λBA (e/MWh)
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)

(pUP, qUP)

(pDW,−qDW)

λDA

qUP

−qDW

FIGURE 3.8: Example of single offers (pUP, qUP) and (pDW, qDW) in
the balancing market.

accordance with Equation (3.45), the probability of acceptance of the up-regulation

offer is evaluated as

P
[
pUP ≤ λBA

]
=

∫ ∞

pUP

fBA
λ (ℓ) dℓ, (3.47)

since (pUP, qUP) is going to be accepted if λBA is greater or equal the up-regulation

offer price pUP. Following Equation (3.46), the acceptance probability of the down-

regulation offer is given by

P
[
pDW ≥ λBA

]
=

∫ pDW

−∞
fBA
λ (ℓ) dℓ. (3.48)
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Indeed, the down-regulation offer (pDW, qDW) is accepted if λBA is lower or equal to

pDW. A graphical interpretation of the probability of acceptance of the price-quantity

offers in the balancing market is shown in Figure (3.9). The acceptance probability

of the up-regulation offer is the blue area, while the one of the down-regulation offer

is the red area. Let pUP∗ be the remuneration price provided that the up-regulation

λBA (e/MWh)

f
B
A

λ

pUPpDW

pdf fBA

λ

P
[

pUP ≤ λBA
]

P
[

pDW ≥ λBA
]

FIGURE 3.9: Graphic representation of the offer probability accep-
tance of the up-regulation offer (blue) and the down-regulation one

(red).

offer is being accepted by the System Operator. Its expected value is computed as

E
[
pUP∗ | λBA ≥ pUP

]
=





∫∞
pUP ℓ f

BA
λ (ℓ) dℓ

∫∞
pUP fBA

λ (ℓ) dℓ
, if uniform pricing,

pUP, if pay-as-bid pricing,

(3.49)

Similarly, being pDW∗ the remuneration price given that the down-regulation offer is

accepted, its expected value is evaluated as

E
[
pDW∗ | λBA ≤ pDW

]
=





∫ pDW

−∞ ℓ fBA
λ (ℓ) dℓ

∫ pDW

−∞ fBA
λ (ℓ) dℓ

, if uniform pricing,

pDW, if pay-as-bid pricing.

(3.50)
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Then, the expected revenues ρ̂UP and ρ̂DW are computed as

ρ̂UP =





qUP
∫∞
pUP ℓ f

BA
λ (ℓ) dℓ, if uniform pricing,

qUP pUP
∫∞
pUP f

BA
λ (ℓ) dℓ, if pay-as-bid pricing,

(3.51a)

ρ̂DW =





−qDW
∫ pDW

−∞ ℓ fBA
λ (ℓ) dℓ, if uniform pricing,

−qDW pDW
∫ pDW

−∞ fBA
λ (ℓ) dℓ, if pay-as-bid pricing,

(3.51b)

The set ΠBA
Act in the risk-neutral offer strategy (3.18), can be replaced by the fol-

lowing set of constraints:

ρ̂UP =





qUP
∫∞
pUP ℓ f

BA
λ (ℓ) dℓ, if uniform pricing,

qUP pUP
∫∞
pUP f

BA
λ (ℓ) dℓ, if pay-as-bid pricing,

(3.52a)

ρ̂DW =





−qDW
∫ pDW

−∞ ℓ fBA
λ (ℓ) dℓ, if uniform pricing,

−qDW pDW
∫ pDW

−∞ fBA
λ (ℓ) dℓ, if pay-as-bid pricing,

(3.52b)

qUP, qDW ≥ 0. (3.52c)

Constraint (3.52a) yields the expected market income from offering up-regulation

energy. Constraint (3.52b) does the same for the down-regulation market income.

Note that (3.52a) and (3.52b) give the formulation for both an uniform and a pay-as-

bid pricing scheme. Finally, constraint (3.52c) imposes that the quantities qUP and

qDW are non-negative.

3.4.5 Balancing Market (Active) Trading Problem with Offer Curves

The possibility of submitting a market offer through non-decreasing step-wise curves

is usually available even in the balancing market. We first develop the balancing

market trading problem with offer curves for a balancing market settled under a

uniform pricing scheme. Subsequently, we assume a pay-as-bid balancing market.

Uniform Pricing Scheme

Figure 3.10 shows an example of offer curves for upward (blue) and downward (red)

regulation in the balancing market, which is considered settled under a uniform

pricing scheme. The probability of acceptance of the first block (pUP
1 , qUP

1 ) of the
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price λBA (e/MWh)
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FIGURE 3.10: Example of a 2 blocks offer curve for both upward
(blue) and downward (red) regulation in the balancing market.

up-regulation offer curve is computed as

P
[
pUP
1 ≤ λBA < pUP

2

]
=

∫ pUP
2

pUP
1

fBA
λ (ℓ) dℓ. (3.53)

Similarly, the one of the second (and last) block (pUP
2 , qUP

2 ) is given by

P
[
pUP
2 ≤ λBA

]
=

∫ ∞

pUP
2

fBA
λ (ℓ) dℓ, (3.54)

Conversely, the down-regulation offer curves are non-increasing if the quantity qDW

is modeled as a positive variable. Note that the downward regulation offer curve

in Figure 3.10 is non-decreasing as it shows −qDW instead of qDW. In this case, the

probability of acceptance of the first block (pDW
1 , qDW

1 ) of the down-regulation offer

curve is computed as

P
[
pDW
1 ≥ λBA > pDW

2

]
=

∫ pDW
1

pDW
2

fBA
λ (ℓ) dℓ, (3.55)

while the one of the second (and last) block (pUP
2 , qUP

2 ) as

P
[
pDW
2 ≥ λBA

]
=

∫ pDW
2

−∞
fBA
λ (ℓ) dℓ. (3.56)

Figure 3.11 shows a graphical interpretation of the acceptance probability of the up-

ward (blue) and downward (red) regulation offer curves illustrated in Figure 3.10.
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pDW1 ≥ λBA > pDW2
]
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pDW2 ≥ λBA
]

FIGURE 3.11: Graphic representation of the probability acceptance
of the two blocks composing the offer curve for upward (blue) and

downward (red) regulation.

Let us now consider an offer curve composed of B blocks, for both up- and

down-regulation. For the up-regulation offer curve, the non-decreasing condition

is enforced by the following constraints:

qUP
b+1 ≥ qUP

b , b = 1, ..., B − 1, (3.57a)

pUP
b+1 ≥ pUP

b , b = 1, ..., B − 1, (3.57b)

while the non-increasing condition of the down-regulation offer curve as

qDW
b+1 ≥ qDW

b , b = 1, ..., B − 1, (3.58a)

pDW
b+1 ≤ pDW

b , b = 1, ..., B − 1. (3.58b)

Then, the expected market income ρ̂UP associated with the up-regulation offer curve

{(pUP
b , qUP

b ), b = 1, ..., B} is given by

ρ̂UP =

B∑

b=1

qUP
b

∫ pUP
b+1

pUP
b

ℓ fBA
λ (ℓ) dℓ, (3.59)

where pUP
B+1, i.e., the upper integral limit of the last block of the curve, is equal to

∞. Similarly, the expected market revenue ρ̂DW of the down-regulation offer curve
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{(pDW
b , qDW

b ), b = 1, ..., B} is evaluated as

ρ̂DW =
B∑

b=1

qDW
b

∫ pDW
b

pDW
b+1

ℓ fBA
λ (ℓ) dℓ, (3.60)

where pDW
B+1, i.e., the lower integral limit of the last block of the curve, is equal to

−∞.

When the price-taker producer submits offer curves in the balancing market (un-

der a uniform pricing scheme), the set ΠBA
Act in the risk-neutral offer strategy (3.18) is

replaced by the following set of constraints:

ρ̂UP =
B∑

b=1

qUP
b

∫ pUP
b+1

pUP
b

ℓ fBA
λ (ℓ) dℓ, (3.61a)

ρ̂DW =
B∑

b=1

qDW
b

∫ pDW
b

pDW
b+1

ℓ fBA
λ (ℓ) dℓ, (3.61b)

qUP
b+1 ≥ qUP

b , b = 1, ..., B − 1, (3.61c)

pUP
b+1 ≥ pUP

b , b = 1, ..., B − 1, (3.61d)

qDW
b+1 ≥ qDW

b , b = 1, ..., B − 1, (3.61e)

pDW
b+1 ≤ pDW

b , b = 1, ..., B − 1, (3.61f)

qUP
b , qDW

b ≥ 0 b = 1, ..., B. (3.61g)

Constraints (3.61a) and (3.61b) compute the expected market incomes ρ̂UP and ρ̂DW

under a uniform pricing scheme. Constraints (3.61c) and (3.61d) enforce the non-

decreasing condition of the up-regulation offer curve. Similarly, constraints (3.61e)

and (3.61f) impose the non-increasing requirement of the down-regulation offer curve.

Finally, constraint (3.61g) imposes that the offer quantities qUP
b and qDW

b are non-

negative.

Pay-as-Bid Pricing Scheme

Figure 3.12 provides an example of offer curves for upward (blue) and downward

(red) regulation in the balancing market, which is considered settled under a pay-

as-bid pricing scheme. To model the pay-as-bid pricing scheme, we introduce the

additional variables oUP
1 and oUP

2 for the up-regulation offer curve, and oDW
1 and

oDW
2 for the down-regulation curve. They represent the additional amount of energy

offered provided that their block offer is being accepted. E.g., the first block of the
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FIGURE 3.12: Example of a 2 blocks offer curve for both upward
(blue) and downward (red) regulation in the balancing market.

up-regulation offer is (pUP
1 , qUP

1 ) and

qUP
1 = oUP

1 . (3.62)

The second block of the offer is (pUP
2 , qUP

2 ) and, if accepted, the producer is con-

tracted to produce qUP
2 . We split this amount between oUP

1 , i.e., the size of the first

block offered at pUP
1 , and oUP

2 , i.e., the additional energy sold at pUP
2 , as those quan-

tities would be priced differently by the System Operator. Consequently, qUP
2 is ob-

tained as

qUP
2 = oUP

1 + oUP
2 , (3.63)

i.e., it is computed as the sum of the sizes of the two blocks. Similarly, for the down-

regulation offer curve {(pDW
1 , qDW

1 ), (pDW
2 , qDW

2 )}, the following equalities hold:

qDW
1 = oDW

1 , (3.64)

qDW
2 = oDW

1 + oDW
2 . (3.65)

Aiming at computing the expected revenues associated with the offer curves, it is

convenient to work with the incremental sizes of the offer blocks, i.e., {(pUP
1 , oUP

1 ), (pUP
2 ,

oUP
2 )} and {(pDW

1 , oDW
1 ), (pDW

2 , oDW
2 )}. The probability of acceptance of the first step

(pUP
1 , oUP

1 ) can be computed as

P
[
pUP
1 ≤ λBA

]
=

∫ ∞

pUP
1

fBA
λ (ℓ) dℓ, (3.66)
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as the quantity oUP
1 is scheduled also when the second block offer (pUP

2 , qUP
2 ) is ac-

cepted. Then, the probability of acceptance of the second step (pUP
2 , oUP

2 ) is given

by

P
[
pUP
2 ≤ λBA

]
=

∫ ∞

pUP
2

fBA
λ (ℓ) dℓ. (3.67)

Similarly, for the down-regulation offer curve, the probability of acceptance of the

first step (pDW
1 , oDW

1 ) is evaluated as

P
[
pDW
1 ≥ λBA

]
=

∫ pDW
1

−∞
fBA
λ (ℓ) dℓ, (3.68)

while the one of the second step (pUP
2 , oUP

2 ) as

P
[
pDW
2 ≥ λBA

]
=

∫ pDW
2

−∞
fBA
λ (ℓ) dℓ, (3.69)

The expected up-regulation income ρ̂UP is accordingly given by

ρ̂UP = oUP
1 pUP

1

∫ ∞

pUP
1

fBA
λ (ℓ) dℓ + oUP

2 pUP
2

∫ ∞

pUP
2

fBA
λ (ℓ) dℓ, (3.70)

while the down-regulation one, i.e., ρ̂DW, by

ρ̂DW = −oDW
1 pDW

1

∫ pDW
1

−∞
fBA
λ (ℓ) dℓ − oDW

2 pDW
2

∫ pDW
2

−∞
fBA
λ (ℓ) dℓ. (3.71)

Then, extending the formulation to offer curves with B blocks, where (pUP
b , oUP

b )

and (pDW
b , oDW

b ) are the steps b of the two offer curves. The quantities qUP
b and qDW

b

are evaluates as

qUP
b =

b∑

b′=1

oUP
b′ , (3.72a)

qDW
b =

b∑

b′=1

oDW
b′ , (3.72b)

where both b and b′ are indices of the block offers. The non-decreasing and non-

increasing requirements of the upward and downward regulation offer curves, are
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enforced through the following constraints:

pUP
b+1 ≥ pUP

b , b = 1, ..., B − 1, (3.73a)

pDW
b+1 ≤ pDW

b , b = 1, ..., B − 1. (3.73b)

In this case, it is necessary to enforce the non-decreasing (or non-increasing) condi-

tion only on the prices, as for the quantities it is inherently enforced in the way qUP
b

and qDW
b are computed, i.e., Equations (3.72a) and (3.72b). The expected revenues

ρ̂UP and ρ̂DW are computed as

ρ̂UP =
B∑

b=1

oUP
b pUP

b

∫ ∞

pUP
b

fBA
λ (ℓ) dℓ, (3.74a)

ρ̂DW = −
B∑

b=1

oDW
b pDW

b

∫ pDW
b

−∞
fBA
λ (ℓ) dℓ, (3.74b)

When the price-taker producer submits offer curves in the balancing market (un-

der a pay-a-bid pricing scheme), the set ΠBA
Act in the risk-neutral offer strategy (3.18)

is formulated

ρ̂UP =
B∑

b=1

oUP
b pUP

b

∫ ∞

pUP
b

fBA
λ (ℓ) dℓ, (3.75a)

ρ̂DW = −
B∑

b=1

oDW
b pDW

b

∫ pDW
b

−∞
fBA
λ (ℓ) dℓ, (3.75b)

qUP
b =

b∑

b′=1

oUP
b′ , b = 1, ..., B (3.75c)

qDW
b =

b∑

b′=1

oDW
b′ , b = 1, ..., B (3.75d)

pUP
b+1 ≥ pUP

b , b = 1, ..., B − 1, (3.75e)

pDW
b+1 ≤ pDW

b , b = 1, ..., B − 1, (3.75f)

oUP
b , oDW

b ≥ 0, b = 1, ..., B (3.75g)

Constraints (3.75a) and (3.75b) yield the expected market incomes ρ̂UP and ρ̂DW

given the up- and down-regulation offer curve in a balancing market settled under

a pay-as-bid pricing scheme. Constraint (3.75c) computes the total up-regulation

quantity qUP
b scheduled when the block offer b is accepted. Similarly, constraint

(3.75d) computes the down-regulation quantity qDW
b contracted when the block offer
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b is accepted. Constraints (3.75e) and (3.75f) enforce the non-decreasing and non-

increasing requirement of the up- and down-regulation offer curves, respectively.

Finally, constraint (3.75g) forces oUP
b and oDW

b to be positive.

3.4.6 Balancing Market (Active) Trading Problem via Stochastic Program-

ming

The trading problems (3.61) and (3.75) derived in Section 3.4.5 are formulated as

a non-linear problem. An alternative linear formulation can be obtained through a

stochastic programming approach. For a given realization i of the day the day-ahead

market price, i.e., λDA
i , the uncertain balancing market price λBA

i is represented using

a discrete set J possible scenarios {λBA
ij , j ∈ J}, where each scenario j is associated

with a probability πBA
ij , such that

∑
j π

BA
ij = 1. We first develop the balancing market

trading problem using a stochastic programming approach for a balancing market

settled under a uniform pricing scheme. Subsequently, we consider a pay-as-bid

balancing market.

Uniform Pricing Scheme

Figure 3.13 shows an example of offer curves for upward (blue) and downward (red)

regulation in a balancing market settled under a uniform pricing scheme. We con-
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FIGURE 3.13: Example of a 2 blocks offer curve for both upward
(blue) and downward (red) regulation in the balancing market (uni-

form pricing scheme).

sider each price scenario λBA
ij as a potential offer price of the price-taker producer, for
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both upward and downward regulation. The result is a collection of price-quantity

offers, i.e., {(λBA
ij , q

UP
ij ), j ∈ J} and {(λBA

ij , q
DW
ij ), j ∈ J}, that allows to build the up-

regulation and down-regulation offer curves to be submitted in the balancing mar-

ket. We impose the non-decreasing requirement of the up-regulation offer curve as

qUP
ij ≥ qUP

ij′ if λBA
ij ≥ λBA

ij′ , ∀j, j′, (3.76a)

qUP
ij = qUP

ij′ if λBA
ij = λBA

ij′ , ∀j, j′, (3.76b)

where j and j′ are both indices of the balancing market price scenarios. Similarly,

the non-increasing condition of the down-regulation curve is enforced by

qDW
ij ≤ qDW

ij′ if λBA
ij ≥ λBA

ij′ , ∀j, j′, (3.77a)

qDW
ij = qDW

ij′ if λBA
ij = λBA

ij′ , ∀j, j′. (3.77b)

Then, we impose that the producer contracts its up-regulation offers when the sys-

tem needs upward regulation. An indicator of the status of the system imbalance is

the market price scenario λBA
ij compared to the day-ahead market price λDA

i (already

revealed at the balancing stage), i.e.,

if λBA
ij > λDA

i up-regulation required when scenario j realizes

if λBA
ij = λDA

i no regulation required when scenario j realizes

if λBA
ij < λDA

i down-regulation required when scenario j realizes

As a consequence, we impose that the variables qUP
ij and qDW

ij are null when the sys-

tem does not require up-regulation and down-regulation, respectively. This writes

qUP
ij = 0 if λBA

ij ≤ λDA
i , ∀j, (3.79a)

qDW
ij = 0 if λBA

ij ≥ λDA
i , ∀j. (3.79b)
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The expected revenues ρ̂UP and ρ̂DW, based on the stochastic programming ap-

proach, are evaluated as

ρ̂UP
i =

∑

j

πBA
ji λBA

ij qUP
ij , (3.80a)

ρ̂DW
i = −

∑

j

πBA
ij λBA

ij qDW
ij , (3.80b)

Accordingly, under a stochastic programming approach, the set ΠBA
Act in (3.18), for

a balancing market settled under a uniform pricing scheme, is given by the following

set of constraints:

ρ̂UP
i =

∑

j

πBA
ji λBA

ij qUP
ij , (3.81a)

ρ̂DW
i = −

∑

j

πBA
ij λBA

ij qDW
ij , (3.81b)

qUP
ij ≥ qUP

ij′ if λBA
ij ≥ λBA

ij′ , ∀j, j′, (3.81c)

qUP
ij = qUP

ij′ if λBA
ij = λBA

ij′ , ∀j, j′, (3.81d)

qDW
ij ≤ qDW

ij′ if λBA
ij ≥ λBA

ij′ , ∀j, j′, (3.81e)

qDW
ij = qDW

ij′ if λBA
ij = λBA

ij′ , ∀j, j′, (3.81f)

qUP
ij = 0 if λBA

ij ≤ λDA
i , ∀j, (3.81g)

qDW
ij = 0 if λBA

ij ≥ λDA
i , ∀j, (3.81h)

qUP
ij , q

DW
ij ≥ 0, ∀j. (3.81i)

Constraints (3.81a) and (3.81b) compute the expected market revenues from offer-

ing up-regulation and down-regulation, respectively. The non-decreasing and non-

anticipativity requirements of the up-regulation offer curve are imposed by con-

straints (3.81c) and (3.81d), while the down-regulation offer curve is forced to be

non-increasing through constraints (3.81e) and (3.81f). Constraint (3.81g) restricts

the offering of up-regulation energy to the scenarios in which it is required. Sim-

ilarly, constraint (3.81h) does for the down-regulation energy. Finally, constraint

(3.81i) forces the market offers qUP
ij and qDW

ij to be non-negative.

Pay-as-Bid Pricing Scheme

Figure 3.14 provides an example of offer curves for upward (blue) and downward

(red) regulation in a balancing market settled under a pay-as-bid pricing scheme.
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We introduce the variables oUP
ij and oDW

ij , representing the additional quantity to be

price λBA (e/MWh)

0
qu
an
ti
ty

(M
W
h
) (pUP1 , qUP1 )

(pUP2 , qUP2 )

(pDW2 ,−qDW2 )

(pDW1 ,−qDW1 )

λDA

oUP1

oUP2

oDW1

oDW2

qUP

−qDW

FIGURE 3.14: Example of a 2 blocks offer curve for both upward
(blue) and downward (red) regulation in the balancing market (pay-

as-bid pricing scheme).

offered at price λBA
ij , for upward and downward regulation, respectively. Given that

the step j of the up-regulation curve is (λBA
ij , o

UP
ij ), the total up-regulation energy

qUP
ij scheduled when scenario (ij) realizes can be computed as

qUP
ij =

∑

j′

MUP
jj′ o

UP
ij′ , ∀j, (3.82)

where j and j′ are both indices of the balancing market price scenarios. The element

(jj′) of the matrix MUP is defined as

MUP
jj′ =





1, λBA
ij ≥ λBA

ij′ ,

0, otherwise.
(3.83)

Similarly, the total down-regulation energy qDW
ij scheduled under scenario j is

qDW
ij =

∑

j′

MDW
jj′ o

DW
ij′ , ∀j, (3.84)

where MDW is defined as

MDW
jj′ =





1, λBA
ij ≤ λBA

ij′ ,

0, otherwise.
(3.85)

Note that the way MUP and MDW are built inherently imposes the non-decreasing
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and non-increasing requirement of the upward and downward regulation curves,

respectively. However, we need to force the variables oUP
j and oDW

j to be null when

the system does not require up-regulation and down-regulation, respectively, i.e.,

oUP
ij′ = 0 if λBA

ij′ ≤ λDA
i , ∀j′, (3.86a)

oDW
ij′ = 0 if λBA

ij′ ≥ λDA
i , ∀j′. (3.86b)

Let ρ̂UP
ij′ be the expected income associated to the step (λBA

ij′ , o
UP
ij′ ). Its probability

of acceptance can be computed as

P
[
λBA
i ≥ λBA

ij′

]
=

∑

j

MUP
jj′ π

BA
ij , (3.87)

while the expectation of the remuneration price pUP∗
j′ , provided that the offer is being

accepted, as

E
[
pUP∗
j′ | λBA

i ≥ λBA
ij′

]
= λBA

ij′ , (3.88)

thus resulting in an expected revenue ρ̂UP
ij′ given by

ρ̂UP
ij′ = oUP

ij′ λ
BA
ij′

∑

j

MUP
jj′ π

BA
ij . (3.89)

The expected revenue ρ̂UP
i of the whole offer curve is computed by summing up the

revenues ρ̂UP
ij′ over the steps of the curve, i.e.,

ρ̂UP
i =

∑

j′

oUP
ij′ λ

BA
ij′

∑

j

MUP
jj′ π

BA
ij . (3.90)

The expected revenue ρ̂UP
i can alternatively be seen as

∑
j ρ̂

UP
ij , being ρ̂UP

ij the rev-

enue when scenario j realizes. This leads to

ρ̂UP
i =

∑

j

πBA
ij

∑

j′

MUP
jj′ o

UP
ij′ λ

BA
ij′ . (3.91)

Note that the formulation in Equation (3.91) is equivalent to (3.90), while the terms

are rearranged in a more practical fashion. Similarly, the expected revenue ρ̂DW
i of

the whole down-regulation offer curve can be computed as

ρ̂DW
i = −

∑

j

πBA
ij

∑

j′

MDW
jj′ oDW

ij′ λBA
ij′ . (3.92)
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Consequently, under a stochastic programming approach, the set ΠBA
Act in (3.18),

for a pay-as-bid balancing market, is formulated as

ρ̂UP
i =

∑

j

πBA
ij

∑

j′

MUP
jj′ o

UP
ij′ λ

BA
ij′ , (3.93a)

ρ̂DW
i = −

∑

j

πBA
ij

∑

j′

MDW
jj′ oDW

ij′ λBA
ij′ , (3.93b)

qUP
ij =

∑

j′

MUP
jj′ o

UP
ij′ , ∀j, (3.93c)

qDW
ij =

∑

j′

MDW
jj′ o

DW
ij′ , ∀j, (3.93d)

oUP
ij′ = 0 if λBA

ij′ ≤ λDA
i , ∀j′, (3.93e)

oDW
ij′ = 0 if λBA

ij′ ≥ λDA
i , ∀j′, (3.93f)

oUP
ij′ , o

DW
ij′ ≥ 0, ∀j′. (3.93g)

Constraints (3.93a) and (3.93b) yield expected market revenue from offering up-

regulation and down-regulation, respectively. Constraints (3.93c) and (3.93d) eval-

uate the total amount of energy qUP
ij and qDW

ij scheduled provided that the block

offer j is being accepted. Constraint (3.93e) restricts the offering of up-regulation

energy to the scenarios in which it is required. Similarly, constraint (3.93f) does for

the down-regulation energy. Finally, constraint (3.93g) forces oUP
ij′ and oDW

ij′ to be

non-negative.

3.4.7 Balancing Market (Passive) Trading Problem

A passive participant in the balancing market deviates of a quantity qBA from its

day-ahead contracted schedule qDA. Being a price-taker in the market, it models

the balancing market price λBA as a random variable with marginal distribution

fBA
λ : R 7→ R

+, given the (already revealed) day-ahead market price λDA. As men-

tioned in Section 3.3.2 two main imbalance settlement schemes can be distinguished,

i.e., the single-price and the dual-price imbalance settlement scheme.

Single-Price Imbalance Settlement Scheme

Under a single-price imbalance settlement scheme, the deviation qBA is priced at

the balancing market price λBA, disregarding the mutual sign of the producer’s and

system’s imbalance. It follows that the expected revenue ρ̂BA of the passive producer
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is given by

ρ̂BA = λ̂BA qBA, (3.94)

where the term λ̂BA is computed as

λ̂BA =

∫ ∞

−∞
ℓfBA
λ (ℓ)dℓ. (3.95)

Consequently, the set ΠBA
Pas for a price-taker and risk-neutral passive participant

in a single-price balancing market can be formulated as

ρ̂BA = λ̂BA qBA (3.96)

Constraint (3.96) gives the the expected balancing market income ρ̂BA linked to the

deviation qBA.

Dual-Price Imbalance Settlement Scheme

Differently, when a dual-price imbalance settlement scheme is used to price the de-

viations of the passive producers, qBA is priced differently, depending on the mutual

sign of the producer’s and system’s imbalance. Let us introduce the artificial prices

λ(+) and λ(−). The first, i.e., λ(+), represents the remuneration price of positive devi-

ations, i.e., when qBA > 0. The second, i.e., λ(−), is used to price negative deviations,

i.e., when qBA < 0. They are computed, starting from λDA and λBA, as

λ(+) =





λDA, if λBA > λDA

λBA, otherwise
(3.97a)

λ(−) =





λDA, if λBA < λDA

λBA, otherwise
(3.97b)

Note that a positive qBA is priced at λ(+), i.e., at the lower between λDA and λBA.

Indeed, as it is an additional quantity of energy that the passive producer is gener-

ating, it is remunerated at the less convenient price. Contrariwise, a negative qBA is

priced at λ(−), i.e., at the higher between λDA and λBA. Indeed, a negative qBA is a

quantity that the producer is "buying" back from the market, and λ(−) is the less con-

venient price for "buying" back this quantity. Accordingly, the producer’s expected
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profit ρ̂BA is evaluated as

ρ̂BA =





λ̂(+)qBA, if qBA > 0

λ̂(−)qBA, otherwise
(3.98)

where the expected market prices λ̂(+) and λ̂(−), according to Equations (3.97a) and

(3.97b), are given by

λ̂(+) =

∫ λDA

−∞
ℓfBA
λ (ℓ)dℓ+ λDA

∫ ∞

λDA

fBA
λ (ℓ)dℓ (3.99a)

λ̂(−) = λDA

∫ λDA

−∞
fBA
λ (ℓ)dℓ+

∫ ∞

λDA

ℓfBA
λ (ℓ)dℓ (3.99b)

The set ΠBA
Pas for a price-taker and risk-neutral passive participant in a dual-price

balancing market is formulated as

ρ̂BA =





λ̂(+)qBA, if qBA > 0

λ̂(−)qBA, otherwise
(3.100)

Constraint (3.100) yields the expected balancing market income ρ̂BA associated with

the deviation qBA.

3.4.8 Balancing Market (Passive) Trading Problem via Stochastic Program-

ming

Under a stochastic programming approach we represent the uncertain market price

λBA
i , for a given day-ahead market price realization λDA

i , by mean of a set J of pos-

sible scenarios {λBA
ij , j ∈ J}, where each price scenario j is associated with a proba-

bility πBA
ij (

∑
j π

BA
ij = 1).

Single-Price Imbalance Settlement Scheme

Under a single-price imbalance settlement scheme, the expected producer’s market

income ρ̂BA
i linked with the deviation qBA

i is given by

ρ̂BA
i =

∑

j

πBA
ij λBA

ij q
BA
i , (3.101)
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as λ̂BA
i =

∑
j π

BA
ij λBA

ij . This leads to the following formulation of the set ΠBA
Pas:

ρ̂BA
i =

∑

j

πBA
ij λBA

ij q
BA
i . (3.102)

Constraint (3.102) yields the the expected balancing market income ρ̂BA
i related to a

deviation qBA
i from the day-ahead schedule.

Dual-Price Imbalance Settlement Scheme

Differently, for the dual-price imbalance settlement scheme, it is convenient to split

the deviation qBA
i into its positive and negative part, i.e., q(+)

i and q(−)
i , respectively.

Accordingly, we impose

qBA
i = q

(+)
i − q

(−)
i , (3.103)

while enforcing q
(+)
i ≥ 0 and q

(−)
i ≥ 0. Consequently, we compute separately the

expected revenue for the creation of a positive and negative deviation, i.e., ρ̂(+)
i and

ρ̂
(−)
i , given by

ρ̂
(+)
i =

∑

j

πBA
ij λ

(+)
ij q

(+)
i (3.104a)

ρ̂
(−)
i = −

∑

j

πBA
ij λ

(−)
ij q

(−)
i (3.104b)

where λ(+)
ij = min

(
λBA
ij , λ

DA
i

)
and λ

(−)
ij = max

(
λBA
ij , λ

DA
i

)
, according to their def-

inition in Equations (3.97a) and (3.97b). Then, the expected profit ρ̂BA
i is obtained

as

ρ̂BA
i = ρ̂

(+)
i + ρ̂

(−)
i (3.105)

This leads a formulation of the set ΠBA
Pas which is

ρ̂BA
i =

∑

j

πBA
ij

(
λ
(+)
ij q

(+)
i − λ

(−)
ij q

(−)
i

)
, (3.106a)

qBA
i = q

(+)
i − q

(−)
i , (3.106b)

q
(+)
i , q

(−)
i ≥ 0. (3.106c)

Constraint (3.106a) evaluates the the expected balancing market income ρ̂BA
i , given

by the sum of the the incomes associated to a positive and a negative deviation.

Constraint (3.106b) imposes the balance between qBA
i and its positive and negative



62 Chapter 3. A General Model for the Offering Strategy

parts q(+)
i and q(−)

i . Finally, constraint (3.106c) forces q(+)
i and q(−)

i to be positive.



63

Chapter 4

Uncertainty Characterization

4.1 Introduction

This chapter presents a methodology to generate a discrete set of scenarios to be used

by a power producer building its offering strategy under a stochastic programming

approach. Section 4.2 introduces to the concept of probabilistic forecasts of wind and

solar power generation. Differently than point forecasts, the probabilistic ones give

a full representation of the marginal distribution of the random variable of inter-

est (e.g., wind power production) for each look-ahead time interval. Then, Section

4.3 presents a fundamental market model aimed at producing realistic day-ahead

and balancing market price forecasts. Section 4.4 shows a methodology to gener-

ate trajectories of a random process (e.g., market prices or renewable energy power

production) while respecting the correlation among different lead times. Finally,

Section 4.5 shows a technique to reduce the set of generated scenarios to a limited

amount of representative ones while keeping most of the information embedded in

the generated set.

4.2 Wind & Solar Power Forecasts

Stochastic energy sources, such as wind and solar power, cannot be controlled but

only predicted with limited accuracy. Such forecasts are crucial for a stochastic pro-

ducer making informed decisions when offering in an electricity market. As pre-

sented in Chapter 2, the main trading floor, i.e., the day-ahead market, is cleared

from 12 to 36 hours before the real-time operation. Having accurate information on

the future power production may have a significant impact on the profit of a power

producer, which may be penalized for deviations from its day-ahead position.
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Let t be the time when the prediction is made, and k be the lead time between

t and the real-time production of the stochastic source. Let Et+k be the measured

power production of the stochastic source during the hourly interval t + k. This

power production is considered as the realization of the random variable Ẽt+k. A

simple forecast of Et+k is a point (or deterministic) forecast. We denote it as Êt+k|t.

The point forecast Êt+k|t can be considered as the conditional expectation (i.e., the

mean expected value) of the random variable Ẽt+k. A point forecast is relatively

easy to handle as it summarizes the randomness into a single statistic, i.e., the mean

expected value. However, also additional information other than the center of the

distribution of Ẽt+k (e.g., its variance) may be required for some analysis.

A complete way of providing forecasts of Et+k are the so-called probabilistic

forecasts. They can be obtained from meteorological ensembles (Nielsen et al., 2006),

based of physical considerations (Lange and Focken, 2006) or from one of the several

statistical models (Bremnes, 2006; Gneiting et al., 2006; Juban, Siebert, and Karinio-

takis, 2007; Møller, Nielsen, and Madsen, 2008) available within the literature. Com-

pared to point forecasts, probabilistic aim at providing a complete information of

the random variable Ẽt+k, instead of the simple mean value. Probabilistic forecasts

may take different forms, e.g., quantile, interval or density forecasts. However, the

basic format is the quantile forecasts, as the interval or the density forecasts can be

expressed as a combination of at least two quantile forecasts. Let us denote with ft+k

the probability density function of the random variable Ẽt+k, defined as

P[a ≤ Ẽt+k ≤ b] =

∫ b

a

ft+k(ℓ) dℓ, (4.1)

where ℓ in an auxiliary integration variable. With P[a ≤ Ẽt+k ≤ b] we intend the

probability that the realization of Ẽt+k will lie between a and b. Then, we introduce

the cumulative distribution function Ft+k, relative to ft+k. It is defined as

Ft+k(b) =

∫ b

−∞
ft+k(ℓ) dℓ = P[Ẽt+k ≤ b] (4.2)

Given that Ft+k is strictly increasing by definition, the quantile ξ(α)t+k of proportion

α ∈ [0, 1] is given by

P

[
Ẽt+k ≤ ξ

(α)
t+k

]
= α, (4.3)
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or alternatively

ξ
(α)
t+k = F−1

t+k(α). (4.4)

Let f̂t+k|t and ξ̂(α)
t+k|t be the estimate of ft+k and ξ(α)t+k at time t, respectively. A generic

nonparametric forecast f̂t+k|t of the probability density function of Ẽt+k can be rep-

resented through a set of n quantile forecasts, i.e.,

f̂t+k|t = {ξ
(αi)
t+k | 0 ≤ α1 ≤ ... ≤ αi ≤ ... ≤ αn ≤ 1}. (4.5)

These types of probabilistic forecasts are referred as predictive distributions. Figure

4.1 shows an example of a set of probabilistic forecasts that provide the prediction

of the wind power production for the following 24 hourly intervals. The blue areas

indicate the prediction intervals of increasing nominal coverage rate. E.g., the 10%

prediction interval is given by the two quantiles ξ(0.45)t+k and ξ(0.55)t+k , as

P

[
ξ
(0.45)
t+k ≤ Ẽt+k ≤ ξ

(0.55)
t+k

]
= 0.10. (4.6)

Similarly, Figure 4.2 illustrates an example of a set of probabilistic forecasts of the

solar power production for the following 24 hourly intervals.
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FIGURE 4.1: Example of probabilistic forecast of wind power produc-
tion with a look ahead of 24 hours. The nominal coverage rates of the
prediction intervals (blue areas) are 10, 30, 50, 70, and 90%. The mean

expected value is shown in red.
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FIGURE 4.2: Example of probabilistic forecast of solar power produc-
tion with a look ahead of 24 hours. The nominal coverage rates of the
prediction intervals (blue areas) are 25, 50, 75, and 95%. The mean

expected value is shown in red.

4.3 Electricity Market Price Forecasts

A price-taker power producer building its offering strategy is interested in predict-

ing the outcome of the future and uncertain market price. In this case, it is essential

to have probabilistic forecasts instead of deterministic ones, mainly when the pro-

ducer is willing to submit an offer curve, as seen in Chapter 3. However, instead of

using real market price forecasts, this section presents a fundamental market model

used to generate realistic forecasts for the market prices in both the day-ahead and

balancing market stages. For fundamental model, we intend a simplified market

model which respects the essential characteristics and mechanisms of a real electric-

ity market. The proposed model is designed to be used as a tool to generate realistic

market price forecasts to test the effectiveness of an offering strategy, but not to pre-

dict real market prices. Section 4.3.1 presents the electricity market framework and

the assumptions of the fundamental model, which is subsequently described in Sec-

tion 4.3.2.

4.3.1 Market Framework and Assumptions

We consider a two-settlement electricity market framework as the one presented in

Section 2.3. The day-ahead market is cleared once a day, at noon, simultaneously

for the whole 24 hourly trading periods of the following day. Then, a balancing
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market is cleared separately per each hourly interval, one hour before the real-time

operation. We neglect the intra-day trading floor for the sake of simplicity.

We use a fundamental market model to generate realistic market price scenarios.

In the fundamental market model, we assume that the only stochastic generation

is wind power generation. We use a dataset of wind power forecasts for a wind

farm located in Denmark. The wind power forecasts are re-scaled and assumed

representative of the aggregated wind power production in the market area. At the

day-ahead stage, we assume that the demand curve is linear, known, and different

per each hourly interval. Conversely, the supply curve of conventional producers is

quadratic and uncertain. To model this uncertainty, we consider the coefficient of the

second-degree term (i.e., γk) as a random variable with known marginal distribution.

The methodology for fitting such distribution is beyond the scope of the thesis. The

coefficient of the first-degree term is also considered known to simplify the process

of scenario generation. Then, we assume that the stochastic generation is offered in

the day-ahead market at its mean forecast and zero marginal cost. At the balancing

stage, the supply curve is considered known but different from the day-ahead one.

Indeed, the participants in the balancing market may not offer their marginal cost,

since they may have to internalize the expected revenues into their market offers

(e.g., under pay-as-bid pricing scheme). Therefore, we fix a negative price floor λ0

and impose γBA
k = ηγk (η > 1), where γBA

k is referred to the supply curve in the

balancing market. Several factors may cause the real-time power imbalance in the

system, e.g., errors in load and wind forecasts. For the sake of simplicity, we consider

the wind stochasticity as the only source of uncertainty at the balancing stage. This

simplifies the scenario generation process for the balancing market prices.

4.3.2 Market Model

The demand curve of the day-ahead market at hourly interval k is modeled as

pDA,d
k = αk + δeDA,d

k , (4.7)

where eDA,d
k is the amount of energy demand at price pDA,d

k . The parameters αk and

δ control the shape of the demand curve. For the same interval k, the supply curve
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is

pDA,s
k =





0, if eDA,s
k ≤WDA

k

β
(
eDA,s
k −WDA

k

)
+ γk

(
eDA,s
k −WDA

k

)2
, otherwise

(4.8)

where pDA,s
k is the price for scheduling the quantity eDA,s

k , and WDA
k is the amount

of wind power production offered in the day-ahead market. The first segment of

the supply curve, i.e., eDA,s
k ∈

[
0,WDA

k

]
, is generated by the market offers of the

wind power producers, which are assumed to offer their energy at zero marginal

cost. Then, the second segment of the curve, i.e., eDA,s
k > WDA

k represents the supply

curve of conventional generators. The shape of this supply curve is controlled by

β and γk. The quantity of wind energy WDA
k offered in the day-ahead market is

computed as

WDA
k = E [wk]W, (4.9)

where wk is the normalized value (wk ∈ [0, 1]) of wind power production, and W

is the total installed wind capacity. The uncertain parameter γk follows a Normal

distribution, i.e.,

γk ∼ N
(
µγ , σ

2
γ

)
, (4.10)

where µγ and σ2γ are the mean value and variance of γk, respectively. Given the

supply and demand curves, the market clearing price λDA
k and quantity eDA

k are

obtained as the intersection of the two curves. Figure 4.3 shows an example of the

clearing mechanism of the day-ahead market model.

Then, in the balancing market, the supply curve at time interval k is defined as

pBA,s
k =





λ0, if eBA,s
k ≤ e0k

βBA
k

(
eBA,s
k − e0k

)
+ γBA

k

(
eBA,s
k − e0k

)2
+ λ0, otherwise

(4.11)

where the variables pBA,s
k and eBA,s

k are the price and quantity of the balancing market

supply curve, respectively. The quantity e0k is the amount of energy offered at price

λ0. The term eBA,s
k is the difference between eDA

k and the imbalance generated by the

stochastic generation, i.e.,

eBA,s
k = eDA

k −
(
wkW −WDA

k

)
. (4.12)
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FIGURE 4.3: Example of the day-ahead market clearing model. The
supply curve is shown in blue, while the demand curve in red. The
intersection of the two curves identifies the market clearing price λDA

and the market clearing quantity eDA.

The term γBA
k is equal to ηγk and it is considered known. The parameters βBA

k and

e0k are evaluated by imposing that pBA,s
k = λDA

k when eBA,s
k = eDA

k . This ensures that

the day-ahead and the balancing market prices coincide when no balancing power

is required. Figure 4.4 illustrates how the balancing market supply curve (continu-

ous blue line) is derived from the day-ahead market one (dashed blue line). Then,

Figures 4.5 and 4.6 show the balancing market clearing mechanism in case of a neg-

ative and positive real-time imbalance, respectively. Note that the demand curve is

inflexible as the system operator has to contract the exact amount of energy to com-

pensate the deviation of the stochastic production. When the real-time production

of the wind generators is lower than the amount contracted in the day-ahead mar-

ket (see Figure 4.5), the System Operator schedules more production from the con-

ventional generators. The result is λBA ≥ λDA. Differently, when the wind power

production is higher than the contracted one (see Figure 4.6), it generates a positive

real-time imbalance in the system. This is compensated by scheduling a downward

adjustment of conventional generators, resulting in λBA ≤ λDA.

Given this fundamental market model, it is possible to generate probabilistic

forecasts of the market prices. E.g., the day-ahead market price λDA
k uncertainty

is given by the uncertainty of the the supply curve (γk ∼ N
(
µγ , σ

2
γ

)
). Figure 4.7

illustrates an example of probabilistic forecasts of λDA
k generated with the proposed
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FIGURE 4.4: Example of the balancing (BA) market supply (continu-
ous blue line), derived from the day-ahead (DA) one (dashed blue
line). Note that the balancing market supply curve still passes in(
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)
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FIGURE 4.5: Example of the balancing clearing model, when the wind
power production in the real-time ((wW ) is lower than WDA. In this
case the system operator schedules more energy from the conven-

tional generators. Here, λBA ≥ λDA.
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FIGURE 4.6: Example of the balancing market clearing model, when
the wind power production in the real-time ((wW ) is higher than
WDA. In this case the system operator reduces the energy scheduled

by conventional generators. Here, λBA ≤ λDA.
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FIGURE 4.7: Example of probabilistic forecast of the day-ahead mar-
ket price with a look ahead of 24 hours. The nominal coverage rates
of the prediction intervals (blue areas) are 25, 50, 75, and 95%. The

mean expected value is shown in red.

4.4 Scenario Generation

Given the probabilistic forecasts described in Sections 4.2 and 4.3, the power pro-

ducer is interested in sampling possible trajectories of the random processes (e.g.,
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wind or solar power production, and market prices). When offering in the day-

ahead market, the power producer has to submit the market offers for the 24 hourly

trading intervals of the following day, simultaneously. Therefore, we want to in-

clude in our scenarios the interdependence structure of the forecast errors among

different time intervals. However, probabilistic forecasts are provided as a set of

estimated density functions {f̂t+k|t | k = 1, ...,K}, without any inter-temporal cor-

relations among them. Several scenario generation algorithms can be found in the

literature, while we consider the methodology presented by Pinson et al. (2009) and

Pinson and Girard (2012). The key idea is to exploit a fundamental property of prob-

abilistic forecasts, i.e., that prediction errors can be transformed into Gaussian errors

through a suitable transformation. Then, an appropriate interdependence structure

can be represented by a single covariance matrix.

The goal is to sample a set of NI possible trajectories of the random process

{Ẽt+k, k = 1, ...,K}, where

Ẽt+k ∼ f̂t+k|t, k = 1, ...,K. (4.13)

However, in this format, the random process is hard to handle as the estimated den-

sity function f̂t+k|t is different for each lead time k. First, we operate a change of

variable from Ẽt+k to Ỹk, defined as

Ỹk = F̂t+k|t

(
Ẽt+k

)
, k = 1, ...,K. (4.14)

A nice property of Ỹk is that it is uniformly distributed between 0 and 1, i.e., Ỹk ∼

U [0, 1], k = 1, ...,K. Then, we apply a second transformation and define the random

variable X̃k as

X̃k = Φ−1
(
Ỹk

)
, k = 1, ...,K, (4.15)

where Φ−1 is the probit function. The new random variable X̃k follows a Gaussian

distribution with zero mean and unitary standard deviation, i.e., X̃k ∼ N (0, 1), k =

1, ...,K. Now, we want to sample possible trajectories of the random process X̃ =

{X̃k, k = 1, ...,K}, which is assumed to follow a multivariate Gaussian distribution,

i.e.,

X̃ ∼ N (µ0,Σ), (4.16)
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where µ0 is a vector of zeros and Σ is the covariance matrix. The matrix Σ sum-

marizes the information about the variance-covariance among the random variables

X̃t+k, k = 1, ...,K. Such covariance matrix Σ could be recursively estimated by

past forecasts and observations (Pinson et al., 2009), if available. For our purpose

we use a simplified version of Σ, assuming that we do not have historical data to

estimate it. A proposal is given by Pinson and Girard (2012), which suggest to use

an exponential covariance function to model Σ, i.e.,

Σk1,k2 = cov
(
X̃k1 , X̃k2

)
= exp

(
−
|k1 − k2|

v

)
, 1 ≤ k1, k2 ≤ K, (4.17)

where the parameter v controls the correlation among different lead times. As an

example, Pinson and Girard (2012) indicate to use v = 7 for on-shore wind power

forecasts.

Now, we can describe the scenario generation algorithm. Starting from {f̂t+k|t | k =

1, ...,K} we want to generate a set of NI possible trajectories of the random process

{Ẽt+k, k = 1, ...,K}.

• We randomly sampleNI realizations of the random variable X̃
(
X̃ ∼ N (µ0,Σ)

)
.

Let X̃(i) be the ith of the NI realizations.

• We apply the inverse probit function Φ to perform a change of variable from X̃

to Ỹ, i.e.,

Ỹ
(i)
k = Φ

(
X̃

(i)
k

)
, ∀i, k. (4.18)

• We apply an additional change of variable, from Ỹ to Ẽ, i.e., the random vari-

able of interest. To do so, we use the set of cumulative distribution functions

{F̂t+k|t | k = 1, ...,K} that can be fit starting from the quantile probabilistic

forecasts available. This leads to

Ẽ
(i)
t+k|t = F̂−1

t+k|t

(
Ỹ

(i)
k

)
, ∀i, k. (4.19)

This algorithm allows generating a set of NI trajectories of the random process of

interest when a set of predictive distributions (one per lead time) is available. Such

set of scenarios is now suitable to be used as input to decision-making tools based

on stochastic programming, where continuous random variables or processes are
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approximated (and linearized) by making them into a discrete set of possible real-

izations, each of one is associated with a probability of occurrence.

Figure 4.8 shows an example of 100 trajectories of wind power production, given

the probability forecasts shown in Figure 4.1.
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FIGURE 4.8: Example of 100 time trajectories of wind power produc-
tion, with a look ahead of 24 hours.

4.5 Scenario Reduction

Section 4.4 presented a methodology to generate statistically correlated trajectories

of stochastic processes, such as wind power production and electricity market prices.

The size of the discrete set of scenarios necessary to accurately represent the contin-

uous random variables or stochastic processes is usually large, which may render

the stochastic programming problem intractable. Therefore, this section presents a

technique to reduce the number of scenarios while maintaining the stochastic infor-

mation enclosed in such scenarios.

Several scenario reduction techniques are available within the literature. This

section presents a forward selection algorithm (Growe-Kuska, Heitsch, and Romisch,

2003). Let {Ẽ(i), i ∈ I} be a set of NI scenarios of the stochastic process {Ẽt+k, k =

1, ...,K}, where Ẽ(i) = {Ẽ
(i)
t+k, k = 1, ...,K}. Each scenario i of the set I is associated

with a discrete probability πi of occurrence, such that
∑

i∈I πi = 1. Note that if

the NI scenarios are generated with the technique presented in Section 4.4, then
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πi = 1/NI , ∀i ∈ I . We define the cost function c(·) as

c(i, i′) = ‖Ẽ(i) − Ẽ(i′)‖, ∀i, i′ ∈ I. (4.20)

The goal is to perform an iterative selection of theNS (NS ≤ NI ) more representative

scenarios. The algorithm can be described as follows:

• Let IS be the set of the selected scenarios, while IO is the set of the non selected

ones. At the beginning of the process (i.e., n = 0) they are defined as I [0]S = ∅

and I [0]O = I . Then, compute the cost function c(i, i′) per each pair of i, i′ ∈ I .

• Compute the starting scenario i1 to be included in IS . It is given by

i1 = arg

{
min
i′∈I

∑

i∈I

πi c(i, i
′)

}
. (4.21)

The scenario i1 can be seen as the average scenario of the set I . Then, we

impose I [1]S = {i1} and I [1]O = I \ {i1}.

• For n = 2, ..., NS , compute

in = arg





min
i′∈I

[n−1]
O

∑

i∈I
[n−1]
O

\{i′}

πi min
i′′∈I

[n−1]
S

∪ {i}

c(i, i′′)




. (4.22)

Impose I [n]S = I
[n−1]
S ∪ {in} and I [n]O = I

[n−1]
O \ {in}.

The result of the scenario reduction algorithm are the sets I∗S and I∗O of the selected

and non selected scenarios, respectively. Note that I∗S ∪ I∗O = I . Now, we want

to properly distribute the probabilities of the non-selected scenario to the selected

ones. For each selected scenario i ∈ I∗S , let Γi be the set of the non-selected scenarios

i′ ∈ I∗O for which i is the closest selected scenario, according to the cost function c. It

is evaluated as

Γi =

{
i′ ∈ I∗O | i = arg min

i′′∈I∗
S

c(i′, i′′)

}
, ∀i ∈ I∗S . (4.23)

Then, the updated probabilities π∗i of the selected scenarios can be computed as

π∗i = πi +
∑

i′∈Γi

πi′ , ∀i ∈ I∗S . (4.24)
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A more extensive description of the forward selection algorithm is presented by Growe-

Kuska, Heitsch, and Romisch (2003) and Morales et al. (2009).

Figure 4.8 shows an example of 100 scenarios of wind power production (gray)

reduced to the 15 more representative ones (blue). The 100 trajectories are the ones

shown previously in Figure 4.8.
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FIGURE 4.9: Example of 100 time trajectories (gray) of wind power
production reduced to the 15 significant ones (blue).
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Chapter 5

Trading of Renewable Energy

Sources

5.1 Introduction

The deployment of renewable energy sources has constantly increased over the last

decade. Many of these renewable energy sources, such as wind and solar power,

have a stochastic nature. Their power production can only be predicted with a lim-

ited accuracy, which degrades as the time horizon of the forecast increases. Initially,

stochastic energy sources were supported through feed-in tariffs to facilitate their

deployment. By receiving a fixed price for the energy generated, stochastic power

producers were exempt from their balancing responsibility. As their penetration has

continuously increased, these producers are asked to participate in the electricity

market under similar rules as conventional generators. It translates to being finan-

cially responsible for the creation of real-time imbalances. This, together with uncer-

tain market prices, yield to uncertain market profits. Renewable energy producers

can tackle this high level of uncertainty by exploiting the information enclosed in

their forecasts.

The problem of participation of renewable energy producers in electricity mar-

kets has received an increasing interest over the last years. One of the first work on

this topic is that of Bathurst, Weatherill, and Strbac (2002). The authors show how,

through risk-analysis, expected profits can be increased by exploiting the informa-

tion of a point forecast model of wind power production. Subsequently, several al-

ternative participation models were proposed, highlighting the value of probabilistic

forecasts in increasing the expected wind power producer’s profit. Assuming a sim-

plified market setup, i.e., no intra-day market, reference (Bremnes, 2004) shows that
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the optimal market quantity to be submitted in the day-ahead market is a quantile

of the power production forecasts. Then, Pinson, Chevallier, and Kariniotakis (2007)

give analytical expressions for the optimal day-ahead quantity to contract in the mar-

ket, based on probabilistic forecasts. The authors focus on the utility function of the

wind power producer, considering both profit maximization and risk management.

An extensive analysis on the topic is the one of Bitar et al. (2012). The authors high-

light the link between the accuracy of the probabilistic wind power forecasts and the

expected producer’s profit. The intra-day trading floor is introduced by Morales,

Conejo, and Pérez-Ruiz, 2010 within a stochastic programming framework, as well

as a risk-aversion trough the conditional value at risk. Finally, some authors (Zugno

et al., 2013; Baringo and Conejo, 2013) relax the price-taker assumption by comput-

ing market prices endogenously in the trading problem.

The optimal offering strategy of a stochastic producer is strongly influenced by

the imbalance settlement scheme used to price the real-time deviations from the day-

ahead contracted schedule. Naturally, a rational stochastic producer is only seeking

at maximizing its profit while deriving its optimal market offers. However, the ag-

gregate of the stochastic producers’ imbalance needs to be compensated by schedul-

ing upward or downward adjustments from conventional generators at the balanc-

ing stage. Therefore, different imbalance settlement schemes may lead to a differ-

ent balancing cost for the System Operator. Some works (Vandezande et al., 2010;

Batlle, Pérez-Arriaga, and Zambrano-Barragán, 2012; Chaves-Ávila, Hakvoort, and

Ramos, 2014) compare the effectiveness of different pricing and support schemes for

renewable energy generation. They highlight the importance of an accurate market

signal in encouraging stochastic producers to reduce their real-time imbalance. In

this context, Bueno-Lorenzo, Moreno, and Usaola (2013) propose a new imbalance

settlement scheme that may promote the participation in the intra-day market stage.

Other works (Winkler et al., 2016; Batalla-Bejerano and Trujillo-Baute, 2016) motivate

further research in this field, highlighting the impact of renewable energy sources on

the balancing cost of the system. The definition of an optimal imbalance settlement

structure is a complicated issue. On one side, stochastic producers should not be

excessively penalized for their real-time imbalances, as they are inherent in their

nature and high penalties may discourage new investments in renewable energy

generation. On the other side, stochastic producers should be pushed in improving

their forecasting skills and reduce their real-time imbalances.
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With the purpose of mitigating the imbalance responsibility of stochastic pro-

ducers, some electricity markets, e.g., Belgium (De Vos and Driesen, 2009) and Italy

(Giannitrapani et al., 2013), introduced imbalance settlement schemes with tolerance

margins. Under such pricing schemes, the stochastic producer is penalized differ-

ently if its imbalance exceeds a specified tolerance band, which is proportional to the

market quantity offer. Some works (De Vos, Driesen, and Belmans, 2011; Chaves-

Ávila, Hakvoort, and Ramos, 2014) suggest that the tolerance margins may lead to

possible market distortions, and therefore are not beneficial from a system perspec-

tive. However, these conclusions are drawn after numerical simulations, without

analytically proving why those tolerance margins may distort the market offers. On

this topic, it is interesting the work of Giannitrapani et al. (2013), which investigates

how a wind power producer can maximize its expected profits when bidding in a

soft penalized market (i.e., with tolerance margins). They prove the uniqueness of

the optimal solution, under the price-taker producer assumption and no intra-day

trading. Nevertheless, the work focuses on maximizing the expected producer’s

profit of the producer, without analyzing eventual market distortions.

The Italian Electricity Market presents two alternative imbalance settlement schemes

within the market structure. Different than the single- and the dual-price imbalance

settlement scheme seen in Section 3.3.2, they consider tolerance margins. The res-

olution of Italian Regulatory Authority for Electricity Gas and Water, 2014 presents

the imbalance settlement schemes in the Italian electricity market. One, denoted in

the chapter as band-dual, includes a tolerance band proportional to the energy quan-

tity contracted in the day-ahead market. Imbalances within the tolerance band are

priced at the day-ahead market price, while the amount of the imbalance that ex-

ceeds the band is priced at the less convenient between the day-ahead market price

and balancing market price (i.e., as the dual-price settlement scheme). The relative

width of the band is different per each renewable energy source, e.g., 45% and 25%

for wind and solar power, respectively. Subsequently, the resolution of Italian Regu-

latory Authority for Electricity Gas and Water, 2016 introduces an additional imbal-

ance settlement scheme, called single-dual pricing scheme. Similarly to the band-dual

pricing scheme, a dual-pricing is used for the amount of the imbalance that exceeds

the tolerance band. Differently, the imbalances within the band are priced at the bal-

ancing market price (i.e., as the single-price settlement scheme). This scheme is ini-

tially tested on units different than renewable energy ones (e.g., consumption units).
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However, it may be extended to renewable energy producers in the next years.

This chapter shows how a stochastic producer, starting from the general model of

Chapter 3, can derive its optimal offering strategy. Moreover, we extend the analysis

by considering the optimal offering strategies under the band-dual and the single-

dual imbalance pricing scheme of the Italian electricity market. We show that the

market quantity that maximizes the producer’s expected profit is unique and we

provide a formulation to evaluate such optimal quantity. To our best knowledge, the

formulation of the optimal offering strategy under the single-dual imbalance settle-

ment scheme is not available in the literature. Then, we investigate how this optimal

market quantity influences the expected real-time imbalance of the stochastic power

producer, distinguishing between imbalances that are expected to "help" the system

(i.e., they reduce the imbalance of the system) from the ones that are expected to

"hurt" the system (i.e., they increase the imbalance of the system). A detailed analy-

sis on the expected real-time imbalances of a stochastic producer under the band-dual

and the single-dual imbalance pricing scheme in novel in the field. This brings infor-

mation about possible market distortions introduced by the tolerance band of the

band-dual and the single-dual imbalance pricing scheme.

The remaining of the chapter is organized as follows. Section 5.2 introduces the

electricity market framework and the assumptions needed to derive the analytical

formulation of the optimal market offers. Section 5.3 presents the optimal offering

models under conventional imbalance settlement schemes, i.e., the single- and the

dual-price settlement scheme. Section 5.4 derives optimal offering strategies for the

band-dual and single-dual imbalance pricing schemes. Moreover, it shows how to link

the optimal offering strategy to the expected real-time imbalance of the stochastic

producer. A summary of the chapter is given in Section 5.5.

5.2 Electricity Market Framework and Assumptions

We consider an electricity market similar to the one presented in Section 2.3. Such

market includes a day-ahead and a balancing stage, while the intra-day adjustment

market is neglected for the sake of simplicity. The day-ahead market closes at noon

of the day before energy delivery and hosts transaction the whole 24 hourly intervals

of the following day. Then, closer to the real-time operation, a separate balancing
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market is cleared for each hourly interval. Stochastic producers access the balanc-

ing market to contract their deviations from the day-ahead market schedule. These

imbalances are priced differently depending on the imbalance settlement scheme

adopted. The most common imbalance settlement schemes are the single-price and

the dual-price scheme, as discussed in Section 3.3.2. A schematic representation of

electricity market submission process is shown in Figure 5.1.
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FIGURE 5.1: Schematic representation of the electricity market frame-
work. The stochastic producer submits the quantity offer qDA in the
day-ahead (DA) market, while settling its deviation qBA in the bal-

ancing (BA) market.

This chapter takes the perspective of a renewable energy producer that has to

contract its position in the day-ahead market. The producer is assumed to be price-

taker in both the day-ahead and the balancing market. Let λDA
k and λBA

k be the day-

ahead and the balancing market price of the hourly interval k. Under the price-taker

assumption, the day-ahead market price λDA
k is considered as a random variable

following the density function fDA
λk

: R+ 7→ R
+. Then, let φBA

k be the differential

price between the balancing and the day-ahead market price, i.e.,

φBA
k = λBA

k − λDA
k . (5.1)

Given that the producer is considered a price-taker also in the balancing market, φBA
k

is modeled as a random variable of marginal distribution fBA
φk

: R 7→ R
+. We also
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assume that the producer is risk-neutral and that it offers its energy production at

zero marginal cost. It is provided with probabilistic forecasts of the future power

production Ek of the stochastic source (e.g., wind power), i.e., the producer knows

the marginal distribution fEk
: R+ 7→ R

+ of Ek at interval k.

This chapter uses a wind power producer as an example. However, the proposed

models are all valid for the trading of stochastic energy sources different than wind,

e.g., solar power. We assume that the random variableEk follows a Beta distribution

(Morales et al., 2014; Liu, 2011) of mean expected value µEk
and variance σ2Ek

. We

consider that σ2Ek
and µEk

are linked together by

σ2Ek
= 4 µνEk

(
1− µνEk

)
σ2, (5.2)

where ν and σ2 are parameters that control the correlation between µEk
and σ2Ek

.

Thanks to that, the marginal distribution fEk
(·) is uniquely defined by knowing its

mean expected value µEk
. Consequently, with f(ℓ, µEk

) we intend the probability

that the level of production ℓ realizes, given that the mean expected value of Ek is

µEk
. Lastly, we assume that µEk

follows as well a Beta distribution Ek, i.e.,

µEk
∼ Beta(αµ, βµ), (5.3)

and we denote with fµ(·) the probability density function of µEk
.

5.3 Optimal Day-ahead Offering Strategy

This section derives the optimal offering strategy that a stochastic power producer

may use to obtain its best day-ahead market offer. Starting from the general price-

taker and risk-neutral offering strategy shown in Section 3.4, Section 5.3.1 adapts it

to the characteristics of the wind power producer. Then, Section 5.3.2 and 5.3.3 focus

on the single- and the dual-price settlement scheme, respectively.

5.3.1 Problem Formulation

At the day-ahead stage, the stochastic producer submits its market offers for the

whole 24 trading hours of the following day. To derive its optimal offering strat-

egy, we start from the general formulation (3.18) for the price-taker and risk-neutral

producer, extended to account the 24 trading intervals, i.e.,
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Max
Γ

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k + ρ̂BA

k − ĉk (5.4a)

s.t. qDA
k + qUP

k − qDW
k + qBA

k = qAk , ∀k, (5.4b)

qDA
k , ρ̂DA

k ∈ ΠDA, ∀k, (5.4c)

qUP
k , qDW

k , ρ̂UP
k , ρ̂DW

k ∈ ΠBA
Act, ∀k, (5.4d)

qBA
k , ρ̂BA

k ∈ ΠBA
Pas, ∀k, (5.4e)

ĉk = h
(
qAk

)
, ∀k, (5.4f)

qAk ∈ Ω, ∀k, (5.4g)

where

Γ = {qAk , q
DA
k , qUP

k , qDW
k , qBA

k , ρ̂DA
k , ρ̂UP

k , ρ̂DW
k , ρ̂BA

k , ĉk}. (5.5)

First, we remove all the variables and constraints associated with an active partic-

ipation in the balancing market. To that purpose, we eliminate the variables ρ̂UP
k and

ρ̂DW
k from the objective function (5.4a) and qUP

k and qDW
k from constraint (5.4b), and

we remove constraint (5.4d). Similarly, as we assume that the wind power producer

has a production cost of 0 e/MWh, we eliminate constraint (5.4f) and we remove

the variable ĉk from the objective function (5.4a). Then, the set Ω of constraint (5.4g),

describing the feasible region of the production unit, can be replaced by

qAk = Ek, ∀k, (5.6)

and we reformulate constraint (5.4b) by replacing qAk with its formulation in (5.6),

i.e.,

qBA
k = Ek − qDA

k (5.7)

Finally, we replace the set ΠDA of constraint (5.4c) with the formulation provided

in Equations (3.27), which considers the submission of single price-quantity offers

(pDA
k , qDA

k ) in the day-ahead market. Note that we assume to offer the quantity qDA
k

at pDA
k = 0 e/MWh, thus leading to the following formulation of constraint (5.4c):

ρ̂DA
k = qDA

k

∫ ∞

0
ℓ fDA

λk
(ℓ) dℓ = λ̂DA

k qDA
k , (5.8a)

Q ≤ qDA ≤ Q. (5.8b)
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where Q = 0 and Q = E (i.e., the capacity of the wind farm). Accordingly, the

general offering strategy tailored to the wind power producer is

Max
Γ

∑

k

λ̂DA
k qDA

k + ρ̂BA
k (5.9a)

s.t. qBA
k = Ek − qDA

k , ∀k, (5.9b)

qBA
k , ρ̂BA

k ∈ ΠBA
Pas, ∀k, (5.9c)

0 ≤ qDA
k ≤ E, ∀k, (5.9d)

where

Γ = {qDA
k , qBA

k , ρ̂BA
k }. (5.10)

The formulation in (5.9) can be decomposed in 24 optimization problems, as there

are no inter-temporal constraints linking the decision variables of different trading

intervals. Consequently, we solve the offering strategy for a single hourly interval

k, without loss of generality. For the clarity of the notation, in the remaining of the

chapter we skip the subscript k. Finally, we need to reformulate the set ΠBA
Pas in con-

straint (5.9c), which is conditional to the imbalance settlement scheme considered.

Therefore, we develop a different offering model for the single- and the dual-price

imbalance settlement scheme.

5.3.2 Optimal Offering under a Single-Price Settlement Scheme

Under a single-price imbalance settlement scheme, the deviation qBA is priced at the

balancing market price λBA, disregarding the sign of the imbalance. We replace the

set ΠBA
Pas in constraint (5.9c) with its formulation in Equation (3.96), i.e.,

ρ̂BA = λ̂BA qBA, (5.11)

and we reformulate the objective function (5.9a) as follows:

µ̂ = E

[
λ̂DAqDA + λ̂BA

(
E − qDA

)]
, (5.12)

where qBA is replaced by E − qDA, according to the equality constraint (5.9b). By

rearranging the terms in (5.12) we obtain

µ̂ = E

[
λ̂DAE + φ̂BA

(
E − qDA

)]
. (5.13)
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The first term in Equation (5.13) is the product between the day-ahead market price

and the future value of wind power production. It represents the market profit in

case the producer would submit the quantity qDA = E in the day-ahead market.

Besides, as it is the product of two parameters, it can be removed from the objective

function. The second term, i.e., φ̂BA
(
E − qDA

)
, is the income due to the creation of

the real-time imbalance. We denote it with L. Note that also φ̂BAE is the product of

two parameters, and can be removed from the objective function.

Therefore, the optimal offering strategy under a single-price imbalance settle-

ment scheme is

Max
qDA

− φ̂BAqDA (5.14a)

s.t. 0 ≤ qDA ≤ E (5.14b)

The optimization problem (5.14) has a trivial solution, i.e.,

• if φ̂BA > 0, the optimal day-ahead market offer qDA∗ is equal to 0,

• if φ̂BA < 0, the optimal day-ahead market offer qDA∗ is equal to the unit’s

capacity E,

• if φ̂BA = 0, each market offer qDA ∈ [0, E] brings the same expected revenue.

Under a single-price imbalance settlement scheme, the producer is willing to offer

0 or the full capacity E, depending on the expectation of φBA, i.e., if it is expecting

a balancing market price higher or lower than the day-ahead one. Note that the

forecasts of the future power production E do not influence the optimal solution

of (5.14). Indeed, the power producer bases its decision on the expectation of the

difference between the balancing market price and the day-ahead market one.

5.3.3 Optimal Offering under a Dual-price Settlement Scheme

Under a dual-price imbalance settlement scheme, the deviation qBA is priced differ-

ently, depending on the mutual sign of the producer’s and system’s imbalance. For

this pricing scheme, we replace the set ΠBA
Pas in constraint (5.9c) with its formulation
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in Equation (3.100), i.e.,

ρ̂BA =





λ̂(+)qBA, if qBA > 0,

λ̂(−)qBA, otherwise.
(5.15)

Similarly to Section 5.3.2, we replace qBA with E − qDA and we reformulate the ob-

jective function (5.9a) as

µ̂ = E

[
λ̂DAE + L

]
, (5.16)

where

L =





(
λ̂(+) − λ̂DA

) (
E − qDA

)
if E ≥ qDA,

(
λ̂(−) − λ̂DA

) (
E − qDA

)
otherwise.

(5.17)

Let us now introduce the artificial penalties φ(+) and φ(+), defined as λ̂(+)− λ̂DA and

λ̂(−) − λ̂DA, respectively. They are computed as

φ(+) =





φBA, if φBA ≤ 0

0, otherwise
(5.18)

φ(−) =





φBA, if φBA ≥ 0

0, otherwise
(5.19)

From the producer’s perspective, φ(+) is the penalty for the creation of a positive

imbalance, and φ(−) is the penalty for the creation of a negative imbalance. The of-

fering strategy of the wind power producer under a dual-price imbalance settlement

scheme can consequently be formulated as

Max
qDA

E[L] (5.20a)

s.t. L =





φ̂(+)
(
E − qDA

)
if E ≥ qDA,

φ̂(−)
(
E − qDA

)
otherwise.

(5.20b)

0 ≤ qDA ≤ E. (5.20c)

Hence, the aim of the wind power producer is to maximize the expectation of L,

while imposing that 0 ≤ qDA ≤ E. The expected values of the imbalance penal-

ties φ(+) and φ(−), according to their definition in Equations (5.18) and (5.19), are
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computed as

φ̂(+) =

∫ 0

−∞
ℓfBA
φ (ℓ)dℓ, (5.21)

φ̂(−) =

∫ ∞

0
ℓfBA
φ (ℓ)dℓ. (5.22)

In the remaining of the chapter, we assume that φ̂(+) < 0 and φ̂(−) > 0, which is a

condition usually respected in real electricity markets. It translates to not being sure

of the sign of future differential price φBA. Moreover, differently, the optimization

problem in (5.20) becomes trivial. Additionally, from here to the remaining of the

chapter, the formulation is developed in per unit (p.u.), e.g.,E → 1 p.u. The expected

imbalance revenue L̂ is evaluated as

L̂ = φ̂(−)

∫ qDA

0

(
ℓ− qDA

)
fE(ℓ) dℓ+ φ̂(+)

∫ 1

qDA

(
ℓ− qDA

)
fE(ℓ) dℓ

= φ̂(−)

(∫ qDA

0
ℓ fE(ℓ) dℓ− qDAFE

(
qDA

)
)
+

φ̂(+)

(∫ 1

qDA
ℓ fE(ℓ) dℓ− qDA

(
1− FE

(
qDA

)))
,

(5.23)

In order to prove that the optimization problem (5.20) has a unique solution for

qDA ∈ [0, 1], we demonstrate that its second derivative with respect to qDA is always

negative. The first derivative L̂′ is given by

L̂′ = φ̂(−)
(
qDAfE(q

DA)− FE(q
DA)− qDAfE(q

DA)
)
+

φ̂(+)
(
−qDAfE(q

DA)−
(
1− FE(q

DA)
)
+ qDAfE(q

DA)
)

= − φ̂(−)FE(q
DA)− φ̂(+)

(
1− FE(q

DA)
)
.

(5.24)

Then, its second derivative L̂′′ is

L̂′′ = −φ̂(−)fE(q
DA) + φ̂(+)fE(q

DA). (5.25)

Since φ̂(−) > 0 and φ̂(+) < 0, it can be inferred that L̂′′ < 0 for qDA ∈ [0, 1]. Hence,

we prove that the value of qDA that maximizes L is unique. Then, the values of the

first derivative L̂′ at the limits, i.e., in 0 and in 1 p.u., are the followings:

L̂′ =





−φ̂(+) ≥ 0 if qDA = 0,

−φ̂(−) ≤ 0 if qDA = 1.

(5.26)



88 Chapter 5. Trading of Renewable Energy Sources

It implies that the optimal solution qDA∗ lies between 0 and 1 p.u. Such optimal

solution can be obtain by imposing L̂′ = 0, thus leading to

FE(q
DA∗) =

−φ̂(+)

−φ̂(+) + φ̂(−)
=

|φ̂(+)|

|φ̂(+)|+ φ̂(−)
, (5.27)

and consequently,

qDA∗ = F−1
E

(
|φ̂(+)|

|φ̂(+)|+ φ̂(−)

)
. (5.28)

The optimal solution qDA∗ is a quantile of the cumulative distribution function of the

wind power production E. The nominal level of this optimal quantile only depends

on the expectation of the imbalance penalties. In particular, if φ̂(−) > |φ̂(+)| the

producer wants to underestimate its future power production, as it is expected to be

more penalized for the creation of negative imbalances. Conversely, if φ̂(−) < |φ̂(+)| it

overestimates the future production as positive imbalances are expected to be more

penalized than the negative ones. Finally, if φ̂(−) = |φ̂(+)| it offers the median of the

distribution of E, as it is expected to be equally penalized for positive and negative

imbalances. For a broader analysis on this topic, we refer the interested reader to the

work of Bitar et al. (2012).

5.4 Alternative Imbalance Settlement Schemes with Toler-

ance Band

This section considers two alternative imbalance settlement schemes introduced in

the Italian electricity market structure, i.e., the band-dual and the single-dual imbal-

ance settlement scheme. These schemes introduce a tolerance band anchored to the

day-ahead market quantity offer qDA. The part of the imbalance that lies within

the band is priced differently than the part outside the band. The band-dual and the

single-dual imbalance settlement scheme are presented in Section 5.4.1. Subsequently,

Sections 5.4.2 and 5.4.3 derive the optimal offering strategy under the band-dual and

the single-dual scheme, respectively. Finally, Section 5.4.4 links the optimal offering

strategy with the expected real-time imbalances of the wind power producer.
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5.4.1 Band-dual & Single-dual Imbalance Settlement Schemes

Two different imbalance settlement schemes are considered in the Italian regulation,

and both of them introduce a tolerance band of width 2τqDA around the level of

energy scheduled in the day-ahead market. The part of the imbalance that exceeds

such band is priced under a dual-price settlement scheme, for both the settlement

schemes. However, in the band-dual scheme, the portion of the imbalance within the

band is priced at the day-ahead market price. Differently, in the single-dual scheme,

the balancing market price is used to price the part of the imbalance within the band.

Let τ = 1 + τ and τ = 1 − τ be the upper and lower relative margins of the band,

respectively. Consequently, the balancing market revenue associated with the real-

time deviation qBA under the band-dual settlement scheme, i.e., ρBD, is evaluated as

ρBD =





λ(+)
(
E − τ qDA

)
+ λDA

(
τ qDA − qDA

)
, if E ≥ τ qDA,

λ(−)
(
E − τqDA

)
+ λDA

(
τ qDA − qDA

)
, if E ≤ τ qDA,

λDA
(
E − qDA

)
, otherwise.

(5.29)

Indeed, when the imbalance E − qDA lies within the tolerance band
[
τ qDA, τ qDA

]
, it

is priced at λDA. Differently, when it exceeds the band (e.g., when E > τ qDA), the

portion of the imbalance within the band (τ qDA − qDA) is priced at λDA, while the

exceeding part (E − τ qDA) under a dual-price settlement scheme (i.e., λ(+) in this

example). Conversely, under the single-dual scheme, the balancing market revenue,

denoted with ρSD, is given by

ρSD =





λ(+)
(
E − τ qDA

)
+ λBA

(
τ qDA − qDA

)
, if E ≥ τ qDA,

λ(−)
(
E − τqDA

)
+ λBA

(
τ qDA − qDA

)
, if E ≤ τ qDA,

λBA
(
E − qDA

)
, otherwise,

(5.30)

as in this case the portion of the imbalance E − qDA that falls outside the tolerance

band
[
τ qDA, τ qDA

]
is priced as λBA.

Similar to Section 5.3.3, we want to formulate the optimal offering strategy by
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rearranging the profit formulation and removing the profit in case of perfect infor-

mation, i.e., λDAE. This leads to

Max
qDA

E[L] (5.31a)

s.t. 0 ≤ qDA ≤ 1, (5.31b)

where the imbalance revenue under a band-dual settlement scheme, denoted as LBD,

is evaluated as

LBD =





φ(+)
(
E − τ qDA

)
, if E ≥ τqDA,

φ(−)
(
E − τ qDA

)
, if E ≤ τqDA,

0, otherwise.

(5.32)

Differently, under the single-dual pricing scheme, the imbalance revenue LSD is com-

puted as

LSD =





φ(+)
(
E − τ qDA

)
+ φBA

(
τ qDA − qDA

)
, if E ≥ τqDA,

φ(−)
(
E − τqDA

)
+ φBA

(
τqDA − qDA

)
, if E ≤ τqDA,

φBA
(
E − qDA

)
, otherwise.

(5.33)

Given the expected values of the imbalance penalties, i.e., φ̂(+), φ̂(−), and φ̂BA, and

for a fixed value of qDA, the power producer can compute the expected imbalance

revenue L̂ as function of the future wind power production E. Figure 5.2 shows the

expected imbalance revenue as function ofE for three different imbalance settlement

schemes, i.e., the dual-price (red), the band-dual (blue), and the single-dual (green)

scheme. It is worth mentioning that the value of L in both the dual-price and band-

dual scheme is always lower or equal to 0. Therefore, it decreases the total profit of

the producer. Conversely, under the single-dual scheme the term L can be positive

and increase the profit of the producer.

5.4.2 Optimal Offering under a Band-dual Settlement Scheme

This section derives the optimal offering strategy under the band-dual imbalance set-

tlement scheme. We will proceed similarly to what we did for the dual-price im-

balance settlement scheme in Section 5.3.3. First, we prove the uniqueness of the

solution by showing that
(
L̂BD

)′′
< 0 for qDA ∈ [0, 1]. The expected imbalance
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FIGURE 5.2: Example of the expected imbalance cost as function of
the real-time wind power production E for different imbalance set-

tlement schemes.

revenue L̂BD can be computed, following Equation (5.32), as

L̂BD = φ̂(−)

∫ τ qDA

0

(
ℓ− τ qDA

)
fE(ℓ) dℓ+ φ̂(+)

∫ 1

τ qDA

(
ℓ− τ qDA

)
fE(ℓ) dℓ

= φ̂(−)

(∫ τ qDA

0
ℓ fE(ℓ) dℓ− τ qDAFE(τ q

DA)

)
+

φ̂(+)

(∫ 1

τ qDA
ℓ fE(ℓ) dℓ− τ qDA

(
1− FE(τ q

DA)
))

.

(5.34)

Then, the first derivative
(
L̂BD

)′
with respect to qDA is given by

(
L̂BD

)′
= φ̂(−)

(
τ2 qDAfE(τ q

DA)− τFE(τ q
DA)− τ2 qDAfE(τ q

DA)
)
+

φ̂(+)
(
−τ2 qDAfE(τ q

DA)− τ
(
1− FE(τ q

DA)
)
+ τ2 qDAfE(τ q

DA)
)

= − φ̂(−) τFE(τ q
DA)− φ̂(+) τ

(
1− FE(τ q

DA)
)
,

(5.35)

and its second derivative
(
L̂BD

)′′
by

(
L̂BD

)′′
= −φ̂(−) τ2fE(τ q

DA) + φ̂(+) τ2fE(τ q
DA). (5.36)
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Since φ̂(−) > 0 and φ̂(+) < 0, it follows that
(
L̂BD

)′′
< 0, i.e., the objective function

L̂BD to be maximized is concave. Then, we prove that the optimal solution lies in

[0, 1] as the following border conditions hold:

(
L̂BD

)′
=





−τ φ̂(+) ≥ 0 if qDA = 0

−τ φ̂(−) ≤ 0 if qDA = 1

(5.37)

In this case, we can even restrict this region to [0, 1/τ ]. Indeed, when qDA = 1/τ , the

upper limit of the unpenalized band of width 2τ qDA is the unit’s capacity, i.e., 1 p.u.

Offering at qDA > 1/τ would result in "losing" the part of the unpenalized band that

exceeds the unit’s capacity. This can be proved by showing that

(
L̂BD

)′
= −τ φ̂(−)FE

(τ
τ

)
≤ 0 if qDA =

1

τ
. (5.38)

The optimal solution qDA∗ ∈ [0, 1/τ ] is obtained by imposing
(
L̂BD

)′
= 0. This leads

to

− φ̂(−)τFE(τ q
DA∗)− φ̂(+)τ

(
1− FE(τ q

DA∗)
)
= 0. (5.39)

By solving the non-linear Equation (5.39) the wind power producer evaluates its

optimal quantity offer qDA∗ to be submitted in the day-ahead market.

5.4.3 Optimal Offering under a Single-Dual Settlement Scheme

This section derives the optimal offering strategy under the single-dual imbalance

settlement scheme. First, we prove that the market quantity that maximizes the

producer’s imbalance revenue is unique. To do so, we show that
(
L̂SD

)′′
< 0 for

qDA ∈ [0, 1]. The expected imbalance revenue L̂SD can be evaluated, in accordance

with Equation (5.33), as
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L̂SD = φ̂(−)

∫ τ qDA

0

(
ℓ− τ qDA

)
fE(ℓ) dℓ+ φ̂(+)

∫ 1

τ qDA

(
ℓ− τ qDA

)
fE(ℓ) dℓ+

φ̂BA

(∫ τ qDA

0

(
τ qDA − qDA

)
fE(ℓ) dℓ+

∫ τ qDA

τ qDA

(
ℓ− qDA

)
fE(ℓ) dℓ+

∫ 1

τ qDA

(
τ qDA − qDA

)
fE(ℓ) dℓ

)

= L̂BD + φ̂BA
(
τ qDA − qDA

)
FE(τ q

DA) + φ̂BA
(
τ qDA − qDA

) (
1− FE(τ q

DA)
)
+

φ̂BA

(∫ τ qDA

τ qDA
ℓ fE(ℓ) dℓ− qDA

(
FE(τ q

DA)− FE(τ q
DA)

)
)

= L̂BD + φ̂BA

(
τ qDAFE(τ q

DA)− τ qDAFE(τ q
DA) +

(
τ qDA − qDA

)
+

∫ τ qDA

τ qDA
ℓ fE(ℓ) dℓ

)

(5.40)

Its first derivative
(
L̂SD

)′
with respect to qDA is computed as

(
L̂SD

)′
=

(
L̂BD

)′
+ φ̂BA

(
τFE(τ q

DA) + τ2 qDAfE(τ q
DA)− τ FE(τ q

DA)−

τ2 qDAfE(τ q
DA) + τ − 1 + τ2 qDAfE(τ q

DA)− τ2 qDAfE(τ q
DA)

)

=
(
L̂BD

)′
+ φ̂BA

(
− 1 + τ − τ FE(τ q

DA) + τ FE(τ q
DA)

)
(5.41)

Then, we replace the term
(
L̂BD

)′
in Equation (5.41) with the formulation provided

in Equation (5.35). Moreover, according to the definition of φ̂(+) and φ̂(−) in Equa-

tions (5.21) and (5.22), the following equality holds:

φ̂BA = φ̂(+) + φ̂(−). (5.42)

This leads to

(
L̂SD

)′
= − φ̂(−)τFE(τ q

DA)− φ̂(+)τ
(
1− FE(τ q

DA)
)
− φ̂BA+

(
φ̂(−) + φ̂(+)

) (
τ − τ FE(τ q

DA) + τ FE(τ q
DA)

)

= − φ̂BA + φ̂(−) τ
(
1− FE(τ q

DA)
)
+ φ̂(+) τFE(τ q

DA)

(5.43)
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The second derivative
(
L̂SD

)′′
can be evaluated as

(
L̂SD

)′′
= −φ̂(−) τ2fE(τ q

DA) + φ̂(+) τ2fE(τ q
DA). (5.44)

Also under the single-dual settlement scheme, the objective function (i.e., the imbal-

ance revenue) is concave, thus proving the uniqueness of the optimal solution qDA∗.

Then, we investigate if such optimal solution lies in the feasibility region [0, 1]. To

do so, we check the sign of the first derivative at the borders. For the lower bound,

i.e., qDA = 0, we obtain

(
L̂SD

)′
= −φ̂(+) + φ̂(−) (τ − 1) ≥ 0 if qDA = 0. (5.45)

Consequently, the optimal solution qDA∗ is greater or equal to 0. Conversely, for the

upper bound, i.e., qDA = 1, the value of the first derivative
(
L̂SD

)′
is

(
L̂SD

)′
= −φ̂(−) − φ̂(+) (τ + 1) if qDA = 1. (5.46)

In this case,
(
L̂SD

)′
≤ 0 if and only if φ̂(−) ≥ −φ̂(+) (τ + 1). So, if φ̂(−) ≥ −φ̂(+) (τ + 1)

the optimal solution qDA∗ lies in [0, 1]. Differently, if φ̂(−) < −φ̂(+) (τ + 1), the opti-

mal solution qDA∗ is greater than 1 p.u. However, the feasibility region [0, 1] can be

artificially imposed, thus obtaining the optimal market offer qDA∗ as

qDA∗ =





qDA |
(
L̂SD

)′
= 0, if φ̂(−) ≥ −φ̂(+) (τ + 1)

1, otherwise
(5.47)

The idea is to check if the solution lies or not in [0, 1]. If this is true, we solve the

following equation to compute the optimal market offer qDA∗:

− φ̂BA + φ̂(−) τ
(
1− FE(τ q

DA∗)
)
+ φ̂(+) τ FE(τ q

DA∗) = 0. (5.48)

Differently, we impose qDA∗ = 1 p.u.

5.4.4 Effect on the Expected Imbalances

Decisions on the quantities offered in the day-ahead market do not only affect the

imbalance revenues of the wind producers. Indeed, as the deviation qBA is obtained
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from the difference of the real-time production E and the day-ahead market offer

qDA, the producers’ real-time imbalances are influenced by their day-ahead offer-

ing strategy. Decisions that are optimal for the producers, who are only seeking in

maximizing their profit, may not be optimal from a system perspective. Given the

optimal quantity qDA∗ contracted in the day-ahead market, we can indeed evaluate

the deviation that the stochastic power producer is expecting to create in the real-

time. Let us denote with ∆̂ the expected size of the real-time imbalance and with ψ̂

the ratio between the expected imbalance penalties, i.e.,

ψ̂ =
φ̂(−)

|φ̂(+)|
. (5.49)

Moreover, we introduce the function θ(τ, ψ̂, µE) which gives the optimal day-ahead

market offer qDA∗, depending on the imbalance settlement scheme considered. For

given τ , ψ̂ and µE , the expected size of the real-time imbalance ∆̂ can be computed

as

∆̂
∣∣
τ,ψ̂,µE

=

∫ 1

0

∣∣ ℓ− θ(τ, ψ̂, µE)
∣∣ f(ℓ, µE) dℓ. (5.50)

where f(ℓ, µE) has been defined in Section 5.2, together with the probability density

function of µE , i.e., fµ. Given the probability distribution of µE , we evaluate ∆̂ for

given values of τ and ψ̂ as

∆̂
∣∣
τ,ψ̂

=

∫ 1

0

∫ 1

0

∣∣ ℓ− θ(τ, ψ̂, y)
∣∣ f(ℓ, y) fµ(y) dℓ dy. (5.51)

where y is an additional integration variable. The value of ∆̂ for different values

of the tolerance margin τ and different imbalance settlement schemes can be a use-

ful indicator to evaluate the effect of the tolerance band on the real-time imbalances

of the producers. However, Equation (5.51) computes the expected size of the pro-

ducer’s imbalance, disregarding its sign. Besides, it does not distinguish imbalances

that may "help" in restoring the system’s imbalance from imbalances that may con-

tribute to increasing it. Indeed, a market structure that pushes stochastic producers

in having higher expected sizes of their imbalances but more likely to be in opposite

sign with the system’s one, may be acceptable from a system perspective. Therefore,

it is interesting to distinguish between imbalances that are expected to reduce or to

increase the imbalance of the system. To do so, we initially evaluate the expected

size of the positive and the negative imbalance, i.e., ∆̂(+) and ∆̂(−), respectively. For
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given τ and ψ̂, they are computed as

∆̂(+)
∣∣
τ,ψ̂

=

∫ 1

0

∫ 1

θ(τ,ψ̂,y)

(
ℓ− θ(τ, ψ̂, y)

)
f(ℓ, y) fµ(y) dℓ dy, (5.52)

∆̂(−)
∣∣
τ,ψ̂

=

∫ 1

0

∫ θ(τ,ψ̂,y)

0

(
θ(τ, ψ̂, y)− ℓ

)
f(ℓ, y) fµ(y) dℓ dy. (5.53)

Then, let ∆̂(↑) and ∆̂(↓) be the sizes of imbalances that are expected to "help" and

"hurt" the system, respectively. Helping the system means that the producer’s devi-

ation is of opposite sign to the system’s one, thus reducing it. Differently, a deviation

that is expected to hurt the system has the same sign of the system’s imbalance and

consequently increases it. To evaluate such expected imbalances we need additional

information regarding the probability of the system to require upward or downward

regulation. This information is partly enclosed in the expected imbalance penalties

φ̂(+) and φ̂(−). Indeed, the penalty φ̂(+) can be evaluated as the product of the proba-

bility of the system to be in up-regulation (i.e., π̂(+)), and the expected penalty given

that the system is in up-regulation (i.e., φ̂(+|+)). The imbalance penalty φ̂(−) is esti-

mated similarly. This writes

φ̂(+) = π̂(+) φ̂(+|+) (5.54)

φ̂(−) = π̂(−) φ̂(−|−) (5.55)

Therefore, if we assume that φ̂(+|+) = −φ̂(−|−), asymmetries in the imbalance penal-

ties can be directly linked to asymmetries in the system’s probability to require up-

ward or downward regulation. For instance, if φ̂(−) = 10 e/MWh and φ̂(+) = −20

e/MWh (i.e., ψ̂ = 0.5 ), the probability π̂(−) and π̂(+) would be 33.3% and 66.7%,

respectively. The expected values ∆̂(↑) and ∆̂(↓) are computed as

∆̂(↑) = π̂(−)∆̂(+) + π̂(+)∆̂(−), (5.56)

∆̂(↓) = π̂(+)∆̂(+) + π̂(−)∆̂(−). (5.57)

5.5 Analysis

This section presents the results of the optimal offering strategy for different toler-

ance margin τ and the associated expected real-time imbalances. All the results are

provided in p.u. The parameters defining the wind forecast model, i.e., Equations
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(5.2) and (5.3), are shown in Table 5.1. Figure 5.3a illustrates the probability density

function of µE and Figure 5.3b the value of σ2E as function of µE .

TABLE 5.1: Parameters of wind power forecasts

αµ βµ σ2 ν

1.22 3.86 0.05 0.8
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µE ∼ Beta(αµ, βµ)

(A) Illustration of the probability distribution
of µE .
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E) σ
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(B) Illustration of the correlation between σ2
E

and µE , controlled by the parameter ν.

FIGURE 5.3: Images related to the wind forecast modeling.

The remaining of the section is organized as follows. Section 5.5.1 provides an

analysis of the optimal offering strategies under the band-dual and the single-dual im-

balance pricing scheme. These optimal market quantities are linked to the expected

real-time imbalance of the price-taker producer in Section 5.5.2.

5.5.1 Analysis of the Optimal Offering Strategies

Section 5.3.3 presented the optimization problem that the wind power producer

would solve for deriving its best day-ahead market offer when the balancing stage is

settled under a dual-pricing scheme. We showed that the optimal quantity qDA∗ is a

quantile of the probability distribution of the future power production E. Moreover,

we showed that the nominal level of such optimal quantile only depends on the ex-

pected imbalance penalties φ̂(+) and φ̂(−). Figure 5.4 illustrates the nominal level of

the optimal quantile, i.e., FE
(
qDA∗

)
, as function of µE , for values of the imbalance

penalty ratio ψ̂ of 0.5, 1, and 2, respectively. The case without tolerance band (i.e.,

τ = 0) is represented with red squares. In accordance with Equation (5.27), FE
(
qDA∗

)

is constant for µE ∈ [0, 1], since its optimal value is uniquely determined by the
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penalty ratio ψ̂. Differently, when a tolerance band of width 2τqDA is introduced

within the penalty scheme, FE
(
qDA∗

)
is influenced by the shape of the probability

density function fE . The optimal values of FE
(
qDA∗

)
under the band-dual settlement

scheme are shown in Figure 5.4 with blue dots, from light blue for τ = 0.1 to dark

blue for τ = 0.5. Notice that the tolerance band incentives the power producer to

overestimate its future power production, for low values of µE , compared to the

case with τ = 0. Indeed, since the width of the tolerance band is proportional to

qDA, it is convenient to overestimate the power production in order to gain a wider

tolerance band. Conversely, as µE gets closer to 1 p.u., the optimal trading strategy

suggests to underestimate the power production, compared to the dual-price set-

tlement scheme. Indeed, we showed that, under the band-dual settlement scheme,

the optimal solution qDA∗ lies in the interval [0, 1/τ ], since when qDA∗ = 1/τ the up-

per limit of the band τ qDA∗ is 1 p.u. (i.e., the capacity of the unit) and there is no

advantage in offering higher values of qDA∗.
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FIGURE 5.4: Nominal level of the optimal quantile, i.e., FE

(
qDA∗

)
, as

function of µE . We consider a band-dual scheme for different values
of τ and ψ̂.

Figure 5.5 shows the difference between the optimal market quantity qDA∗ and

the expected value µE as function of µE , for values of the imbalance penalty ratio ψ̂

of 0.5, 1, and 2, respectively. The case of τ = 0 is illustrated with red squares, while

the cases with tolerance band (i.e., τ > 0) are shown with blue dots, darker as the
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value of τ increases. The figure shows how the producer is over/underestimating

its future power production in terms of quantity. Positive values in the ordinate

indicate that the producer is willing to offer more than the expected value µE in the

day-ahead market. Conversely, negative values show that the optimal day-ahead

market offer qDA∗ is lower than µE . Also in Figure 5.5 we can notice that the tolerance

band pushes the stochastic producer to increase its market offer qDA∗ when µE → 0

p.u. and to decrease it when µE → 1 p.u.
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FIGURE 5.5: Difference between the optimal market quantity qDA∗

and the expected value µE , as function of µE . We consider a band-

dual scheme for different values of τ and of ψ̂.

Now, we consider the single-dual imbalance settlement scheme. Figure 5.6 shows

the difference between the optimal market quantity qDA∗ and the expected value µE ,

as function of µE , for values of the imbalance penalty ratio ψ̂ of 0.5, 1, and 2, re-

spectively. The red squares represent the case with τ = 0, while the blue dots the

cases with the tolerance band, from light blue for τ = 0.1 to dark blue for τ = 0.5.

When ψ̂ = 1, i.e., φ̂(−) = |φ̂(+)|, the expected value of φBA is 0. In such condition,

the single-dual and the dual-band schemes are equivalent and bring the same optimal

solution qDA∗. Conversely, when ψ̂ = 0.5, i.e., |φ̂(+)| = 2φ̂(−), the expected value of

φBA is negative. In a single-price settlement scheme, the power producer would of-

fer the full capacity in the market (see Section 5.3.2), since it is expected to receive an

extra-profit for the creation of a negative imbalance (i.e., when E ≤ qDA). Under the
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single-dual scheme its offering strategy is more conservative as outside the band the

deviations are priced under a dual-price settlement scheme. However, the power

producer is encouraged to overestimate its future power production for increasing

the width of the tolerance band and for being more likely to create a negative im-

balance. The optimal quantity offer is indeed often the full capacity, i.e., qDA∗ = 1

p.u., even if it means to "lose" half of the width of the tolerance band. It is still more

convenient to be sure to create a negative imbalance, even at the price of "losing" a

portion of the tolerance band. When ψ̂ = 2, i.e., when φ̂(−) = 2|φ̂(+)|, the expected

value of φBA is positive. The power producer would offer 0 p.u. in a single-price

settlement scheme since it is expected to receive an extra-profit for the creation of a

positive imbalance. Nevertheless, under the single-dual scheme, offering at qDA = 0

p.u. would result in shrinking the tolerance band to 0 and losing the extra-profit of

the single-price scheme. On one side, the producer is encouraged to underestimate

its production for being more likely to create a positive imbalance. On the other

side, it wants to increase its market offer to gain a wider tolerance band. These two

conflicting interests prevent the power producer from offering at qDA∗ = 0 p.u. as

suggested in a single-price settlement scheme.
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FIGURE 5.6: Difference between the optimal market quantity qDA∗

and the expected value µE , as function of µE . We consider a single-

dual scheme for different values of τ and of ψ̂.
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Similar conclusions can be drawn by analyzing Figure 5.7, which shows the nom-

inal level of the optimal quantile, i.e., FE
(
qDA∗

)
, as function of µEk

, for values of the

imbalance penalty ratio ψ̂ of 0.5, 1, and 2, respectively.
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FIGURE 5.7: Nominal level of the optimal quantile, i.e., FE

(
qDA∗

)
as

function of µE . We consider a single-dual scheme for different values
of τ and of ψ̂.

5.5.2 Analysis on the Expected Imbalances

This section analyses how the results of the optimal trading strategies shown in Sec-

tion 5.5.1 affect the expected real-time imbalances of the stochastic producers. Fig-

ure 5.8 shows the value of ∆̂, defined in Equation (5.51), under the band-dual settle-

ment scheme as function of τ , for values of the imbalance penalty ratio ψ̂ of 0.5, 1,

and 2, respectively. Similarly, Figure 5.9 does for the single-dual settlement scheme.

When ψ̂ = 0.5, the expected imbalance ∆̂ increases as the relative width of the toler-

ance band increases, for both the imbalance settlement schemes. For instance, under

the band-dual settlement scheme ∆̂ is 5.8% higher for τ = 0.2 and 15.8% higher for

τ = 0.5 with respect to a dual-price imbalance settlement scheme (i.e., τ = 0). This

increment is strongly emphasized when considering a single-dual settlement scheme.

Indeed, for such settlement scheme ∆̂ is 317.3% higher for τ = 0.5 with respect to

τ = 0. This huge growth is mainly due to strong a overestimation of the future

power production when ψ̂ < 0. When ψ̂ = 1, ∆̂ increases as τ grows, in the same
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manner for both the settlement schemes. As mentioned in Section 5.5.1, when ψ̂ = 1,

the two settlement schemes can be considered equivalent. The expected value of ∆

grows of 3.9% and of 9.95% compared to τ = 0, for τ equal to 0.3 and 0.5, respec-

tively. Conversely, when ψ̂ = 2, ∆̂ is lower when τ > 0, for both band-dual and

single-dual settlement schemes. Under the band-dual settlement scheme, ∆̂ decreases

of 7.6% for τ = 0.3 and 6.3% for τ = 0.5, compared to τ = 0.
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FIGURE 5.8: Expected value of the imbalance ∆̂ as function of τ ,
for different values of the ψ̂ and considering a band-dual settlement

scheme.
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FIGURE 5.9: Expected value of the imbalance ∆̂ as function of τ ,
for different values of the ψ̂ and considering a single-dual settlement

scheme.

As mentioned in Section 5.4.4, we are also interested in understanding if the
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imbalance ∆̂ is expected to help in restoring the whole system imbalance or to con-

tribute to it. First, we distinguish between imbalances of different sign, i.e., ∆̂(+) and

∆̂(−), evaluated with Equations (5.52) and (5.53), respectively. Figure 5.10 shows the

expected values ∆̂(+) and ∆̂(−), for the dual-band settlement scheme, as function of

τ . Similarly, Figure 5.11 does for the single-dual settlement scheme.
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FIGURE 5.10: Expected value of the positive imbalance ∆̂(+) and the
negative imbalance ∆̂(−) as function of τ , for different values of the ψ̂

and considering a band-dual settlement scheme.

Then, the size of the imbalances that are expected to "help" the system, i.e., ∆̂(↑),

and to "hurt" the system, i.e., ∆̂(↓), are computed with Equations (5.56) and (5.57),

respectively. Figure 5.12 shows the values of ∆̂(↑) and ∆̂(↓) as function of τ , for

different values of the ψ̂, for the dual-band settlement scheme. Figure 5.13 does the

same for the single-dual settlement scheme. The expected imbalance ∆̂(↑) for ψ̂ = 0.5

increases of 26% for the band-dual scheme and of 420% for the single-dual when τ =

0.5 compared to the case with τ = 0. Conversely, for ψ̂ = 0.5 and for τ = 0.5, ∆̂(↓)

grows of 4% for the band-dual scheme and of 200% for the single-dual, with respect to

τ = 0. It is interesting to compare Figures 5.8 and 5.9 with Figures 5.12 and 5.13.

As a matter of fact, we mentioned that when ψ̂ = 0.5, the expected imbalance ∆̂

increases as τ grows, for both the imbalance schemes. From Figures 5.12 and 5.13 it

can be noticed that both ∆̂(↑) and ∆̂(↓) increase with τ , even if ∆̂(↑) shows a higher

grow rate. Moving to the case of ψ̂ = 2, we highlighted before that ∆̂ first decreases

up to τ = 0.3, while start growing for τ greater than 0.3. However, analyzing Figures
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FIGURE 5.11: Expected value of the positive imbalance ∆̂(+) and the
negative imbalance ∆̂(−) as function of τ , for different values of the ψ̂

and considering a single-dual settlement scheme.
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FIGURE 5.12: Expected value of the helping imbalance ∆̂(↑) and the
hurting imbalance ∆̂(↓) as function of τ , for different values of the ψ̂

and considering a band-dual settlement scheme.
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FIGURE 5.13: Expected value of the helping imbalance ∆̂(↑) and the
hurting imbalance ∆̂(↓) as function of τ , for different values of the ψ̂

and considering a single-dual settlement scheme.

5.12 and 5.13 it can be noticed that ∆̂(↑) decreases as τ increases, while ∆̂(↓) increases

with τ . Thus, the slight decrease of the expected imbalance up to τ = 0.3 is due to

a decrease of the expected beneficial imbalance and a lower increase of the harmful

imbalance, for both the imbalance settlement schemes.

5.6 Summary

This chapter takes the perspective of a price-taker and risk-neutral stochastic power

producer offering in a two-settlement electricity market. Starting from the general

offering strategy of Section 3.4 we tailor it to the characteristics of the stochastic pro-

ducer. We show how, under a single-price imbalance settlement scheme, the quan-

tity offered by the power producer in the day-ahead market is only influenced by the

expectation on the balancing market penalties, while the power production forecasts

do not influence its optimal decision. Indeed, the producer decides to offer 0 or the

full capacity depending on the market price forecasts. Differently, we prove that un-

der a dual-price imbalance settlement scheme the optimal market offer is a quantile

of the cumulative distribution function of the future renewable energy production.

The nominal level of such optimal quantile is influenced by the expected balancing

market penalties. This translates in overestimating the future power production if
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it is expected to be more penalized for the creation of a positive imbalance, while to

underestimate it if the penalty for the creation of a negative imbalance is higher than

the positive one, in expectation.

The chapter also investigates the effects of imbalance settlement schemes with

tolerance margins on the optimal offering strategy of the stochastic producers. We

prove that also under the band-dual and the single-dual imbalance settlement scheme

the market quantity offer that maximizes the producer’s expected profit is unique.

Then, we analyze the effects of the tolerance margins from a system perspective. We

formulate the expected real-time imbalance of a stochastic producer seeking at max-

imizing its expected market profit, for both the band-dual and the single-dual scheme.

We also differentiate between imbalances that are expecting to "hurt" or to "help" in

restoring the system’s imbalance.

Through parametrized curves, we show the effect of the tolerance margins on

the optimal amount of energy to be contracted in the day-ahead market for the two

schemes. We demonstrate that under the single-dual scheme the power producer is

encouraged to strongly overestimate its power production when it is expecting a

balancing market price lower than the day-ahead one. Then, we also show that the

tolerance margins within the penalty scheme may generate larger real-time imbal-

ances for the stochastic producers, mainly for the single-dual scheme.

As a result of this analysis, the imbalance pricing scheme introduced in the Italian

electricity market to mitigate the balancing responsibility of the stochastic producers

may not be optimal from a system perspective. Our analysis suggests that they may

bring more significant real-time imbalances of the stochastic producer and, suppos-

edly, a higher balancing cost for the system. It is worth mentioning that this analysis

is based on a price-taker producer who is not supposed to influence the whole sys-

tem imbalance with its deviation. However, a producer may offer as a price-taker

producer while affecting the system imbalance.
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Chapter 6

Trading of Conventional

Generators

6.1 Introduction

This chapter takes the perspective of a conventional power producer. Differently

than stochastic producers, conventional ones have control of the power output of

their production units. However, the operation of a conventional production unit

(e.g., coal- or gas-fired power plant) is constrained by technical limitations, e.g.,

ramping constraints. Those ramping restrictions, which constraint the capability

of the unit to vary its power production over time, are of particular interest in the

context of optimal participation in the electricity market. Indeed, in Chapter 2 we

show that market participants submit a separate offer curve per each trading in-

terval. Therefore, such intertemporal constraints cannot be explicitly included in

the market offers. The power producer has to internalize them in its offering strat-

egy, together with non-convex costs, such as start-up and shut-down costs. Tradi-

tionally, this was not a prominent issue, as "slow" technologies (e.g., coal-fired or

nuclear power plant), which are the more constrained ones in their operation, had

marginal costs below the day-ahead market price and were operated to cover the

base loads. Differently, the pick-loads were covered by "fast" technologies (e.g., gas-

fired or diesel units), which flexibility almost allows to neglect intertemporal con-

straints when considering hourly trading intervals. However, in recent years the

power sector has experienced a significant increase in the deployment of renewable

energy sources, such as wind and solar power. These sources are usually traded

at zero marginal cost and their growing penetration is leading to a decrease of the

prices in the day-ahead market (Sensfuss, Ragwitz, and Genoese, 2008; Clò, Cataldi,
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and Zoppoli, 2015). Moreover, they can only be predicted with a limited accuracy,

thus leading to real-time imbalances and increasing the need for balancing energy.

These changes may affect the strategy of the conventional producers in both the day-

ahead and the balancing market. E.g., a "slow" production unit may not be able to

solely rely on the revenues of the day-ahead market, due to the decrease of its prices,

but may have to be more strategic and considering possible additional profits from

selling regulating power in the balancing market.

The optimal offering strategy and self-scheduling of conventional thermal units

have already been widely studied in the literature. Arroyo and Conejo (2000) ad-

dress the optimal response of a thermal generator to a given set of electricity market

prices in terms of both energy and reserve. A MILP problem is developed con-

sidering a non-convex cost function, as well as its start-up costs, ramp rates and

minimum-up and -down constraints. The same authors (Arroyo and Conejo, 2004)

propose a detailed formulation to model start-up and shut-down characteristics of

a thermal generator. Other works, such as (Conejo et al., 2004; Jabr, 2005), include

risk measures while optimizing the self-scheduling problem of thermal units. Refer-

ences (Arroyo and Conejo, 2000; Arroyo and Conejo, 2004; Conejo et al., 2004; Jabr,

2005) demonstrate that a detailed modeling of the generator feasibility region and its

production cost function may be essential for deriving its optimal self-scheduling.

Indeed, the inter-temporal constraints (e.g., ramping constraints) and non-convex

costs (e.g., start-up and shut-down costs) may affect the optimal solution. In this

context, the pioneering paper (Conejo, Nogales, and Arroyo, 2002) presents an offer-

ing strategy for a price-taker producer under price uncertainty. It develops a set of

rules that aim to translate the results of a self-scheduling problem into market offers.

Ni, Luh, and Rourke (2004) present an algorithm for offering and self-scheduling

of a unit including risk management. Maenhoudt and Deconinck (2014) derive an

offering strategy for a price-taker power producer that aims to maximize profit ex-

pectation while hedging against possible infeasible schedules. Other works relax

the price-taker assumption and develop tools for strategic offering considering the

impact of power producer’s decisions on market prices. This can be done through a

residual demand model (Baillo et al., 2004) or a bilevel optimization setup (Gountis

and Bakirtzis, 2004; Bakirtzis et al., 2007).

By analyzing the optimization models mentioned above, we can identify two dif-

ferent sets of variables and constraints. The first set defines the feasibility region and
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the cost function of the production unit. For instance, references (Arroyo and Conejo,

2000; Arroyo and Conejo, 2004) show how to successfully model it as a MILP prob-

lem. The second set simulates the trading problem, i.e., how the power producer

participates in the market (e.g., through non-decreasing step-wise offering curves),

while considering the market clearing mechanism (endogenously or exogenously)

and the pricing scheme (e.g., uniform or pay-as-bid). The trading problem can be

modeled using a LP approach (Conejo, Carrión, and Morales, 2010), under price-

taker assumptions and uniform pricing scheme. However, even though European

day-ahead electricity markets are mostly settled under a uniform pricing scheme,

several balancing markets, e.g., in Germany and Italy (Wang et al., 2015), are settled

under a pay-as-bid pricing scheme.

The topic of trading under a pay-as-bid scheme and price uncertainty has not

been extensively addressed in the literature. References (Ren and Galiana, 2004a;

Ren and Galiana, 2004b; Swider and Weber, 2007; Swider, 2007; Khorasani and

Mashhadi, 2012; Sadeh, Mashhadi, and Latifi, 2009) show how to model the trading

problem under a pay-as-bid pricing scheme using a non-linear programming (NLP)

approach. However, they do not consider an accurate modeling of production unit’s

operational constraints. Introducing the feasibility region would result in a MINLP

model, which may have high computational cost and, generally, do not guarantee

the optimality of the solution. Differently, Chapter 3 provides a novel approach that

allows casting the optimal price-taker trading problem in pay-as-bid markets under

price uncertainty as an LP problem. For that purpose, continuous random variables

(i.e., the market-clearing prices) are represented as discrete variables. We refer the

interested reader to Chapter 3 for a more extensive literature review on the topic of

trading in pay-as-bid electricity markets.

We use the proposed LP approach to build a multi-stage stochastic programming

problem with recourse. This efficient decision-making tool could be used by a price-

taker conventional producer to derive its best day-ahead market offer curves. In line

with current practice in several European electricity markets, we consider a two-

settlement market framework, in which the day-ahead market is cleared based on a

uniform pricing scheme, while a pay-as-bid pricing scheme is used in the balancing

stage. The market prices in both stages are given but uncertain. This uncertainty

is properly characterized by generating a set of foreseen scenarios. The resulting

model is a stochastic MILP problem, where non-convexities (i.e., binary variables)
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arise from the unit commitment constraints. To the best of our knowledge, this

kind of stochastic MILP optimization model for obtaining the offering strategy of

a price-taker thermal producer in a two-settlement electricity market with a pay-

as-bid pricing scheme in the balancing stage is not available in the literature. It is

worth mentioning that Bakirtzis et al. (2007) provide a formulation for obtaining

optimal offering curves in markets settled under a pay-as-bid pricing scheme for

a price-maker producer. However, market problems with equilibrium constraints

may have high computational cost and rely on strong assumptions on opponents’

behavior. Hence, when the production unit has a negligible impact on the market, a

price-maker setup may not be the preferable choice.

The remaining of the chapter is organized as follows. Section 6.2 introduces the

electricity market framework and a set of assumptions used to formulate the offering

strategies. Section 6.3 shows a general MILP formulation to represent the feasible

operating region and the non-convex cost function of the thermal unit. Section 6.4

presents two offering strategies to be used by a conventional power producer to

derive its optimal day-ahead offer curves. A case study is presented in Section 6.5,

while Section 6.6 summarizes the contents of the chapter.

6.2 Electricity Market Framework and Assumptions

We consider a single conventional producer that trades in a two-settlement electric-

ity market framework, similar to the one introduced in Section 2.3. The day-ahead

market is cleared once a day, at noon, simultaneously for the whole 24 hourly trad-

ing intervals of the following day. Generators are remunerated under a uniform

pricing scheme in the day-ahead market. Then, a balancing market is cleared sep-

arately per each hourly interval, one hour before the real-time operation. The pro-

vision of balancing energy is remunerated under a pay-as-bid pricing scheme. Both

the day-ahead and balancing market give the possibility to submit non-decreasing

offer curves. The intra-day trading floor is neglected for the sake of simplicity. A

schematic representation of the electricity market submission process is illustrated

in Figure 6.1.

The power producer is assumed to be price-taker in both the day-ahead and the

balancing market. Hence, the market prices within the offering strategy problem of
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FIGURE 6.1: Schematic representation of the electricity market frame-
work. The conventional producer submits the quantity offer qDA

in the day-ahead (DA) market, while submitting upward qUP and
downward qDW regulation offers in the balancing (BA) market.

the producer are exogenous, but still uncertain. We model those uncertainties us-

ing a set of scenarios. Uncertainty characterization is a critical input to stochastic

optimization. The quality of the solution of a stochastic optimization model is in-

deed strongly influenced by the quality of the scenarios provided as input. Given

that the purpose is to analyze and test an optimization model, we exploit the funda-

mental model presented in Section 4.3 for generating market prices, instead of using

real market data. This fundamental model generates a set of electricity market price

forecasts, which is required as an input to our proposed offering strategy.

The scenario generation and reduction algorithm in Chapter 4 provides a set of

day-ahead market price trajectories {λDA
ik : ∀i ∈ I, ∀k ∈ K}, being i the index of

the day-ahead market price scenarios and k the index of the time intervals. Each

scenario i is associated with a probability πDA
i of occurrence. Then, for each possible

day-ahead realization i, it provides a set of balancing market price trajectories {λBA
ijk :

∀i ∈ I, ∀j ∈ J, ∀k ∈ K}, being j the index of the balancing market price scenarios.

The scenario (ij) has a probability πDA
i πBA

ij of occurrence.
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6.3 Thermal Unit Model

This section derives an approximate model of the feasibility region and the cost func-

tion of a conventional production unit (e.g., coal- or gas-fired power plant) through

a MILP formulation. The operation of conventional production units is constrained

by several technical limitations. It is important to properly model them through a set

of constraints to replace constraint (3.18e) (i.e., the set Ω) and constraint (3.18f) (i.e.,

the function h(·)) of the general offering strategy formulation (3.18) in Section 3.4. It

is also important to evaluate an appropriate trade-off between the complexity and

accuracy of such model. On the one hand, a too accurate model may be too complex,

thus leading to an intractable optimization problem when merged with the offering

strategy. On the other hand, a too simple model may not be able to represent the

fundamental characteristics of the production unit. This problem has already been

widely explored within the literature (Arroyo and Conejo, 2000; Arroyo and Conejo,

2004). They show how a MILP formulation can approximate such feasible region

with an acceptable level of accuracy.

6.3.1 Feasible Operating Region of the Unit

This section provides a formulation to represent the feasible region of a thermal unit,

used to replace constrain (3.18e) in the general offering strategy (3.18), i.e.,

qAk ∈ Ω, ∀k, (6.1)

where qAk is the total amount of energy generated by the power producer. Let dk

(MWh) be the quantity of energy produced in the real-time by the thermal unit.

Since we consider a single production unit, we impose

qAk = dk, ∀k, (6.2)

In case the power producer manages a set H of units, where dhk is the power output

of unit h at time k, it would impose qAk =
∑

h dhk. Consequently, even if this chapter

considers a single production unit, it is easily adaptable to multiple production units.

Let us define withD andD the minimum power output and the capacity of the unit,

respectively. This means that when the unit is on, its production dk has to lie between

D (MWh) andD (MWh), i.e., dk ∈ [D,D]. Differently, when the unit is not operating,
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its power output is 0, i.e., dk = 0. The result is a non convex operating region, as the

power production dk can either be 0 or in [D,D]. Let uk be the binary variable, i.e.,

uk ∈ {0, 1}, representing the commitment status of the production unit. A value of

uk equal to 0 means that the unit is not operating. Differently, uk is equal to 1 when

the unit is on. Accordingly, the operating region of dk can be formulated as

ukD ≤ dk ≤ ukD, ∀k. (6.3)

Notice that when uk is 0, i.e., the unit is off, constraint (6.3) becomes 0 ≤ dk ≤ 0,

which is equivalent to impose dk = 0. Then, if uk = 1, i.e., the unit is on, constraint

(6.3) is equivalent to D ≤ dk ≤ D. Figure 6.2 shows an illustrative representation of

the feasibility region imposed by constraint (6.3), which is shown in red.

uk = 0 uk = 1

0 D D

dk (MWh)

FIGURE 6.2: Graphic representation of the non-convex feasibility con-
straint (6.3).

Then, thermal units also have inter-temporal limitations. Indeed, they have

ramping constraints, which limit the capability of the unit to change its power pro-

duction over short time intervals. Let RUP (MW/h) be the upward ramping limit

of the unit. As an example, if RUP = 10 MW/h and the unit is producing 20 MW,

in one hour it can increase its power production up to 30 MW and 40 MW in two

hours, and so on. However, as we only consider hourly intervals, we define RUP as

the maximum upward variation of energy production in one hour, i.e., in MWh. The

upward ramping limitation of dk is expressed as

dk − d(k−1) ≤ RUP, ∀k ∈ K − {k1}, (6.4a)

dk1 − d0 ≤ RUP, (6.4b)

where d0 is the initial production level, while k1 is the first hourly interval of K.

Similarly, we define RDW (MWh) as the maximum downward variation in one hour.

E.g., ifRDW = 5 MWh and d(k−1) = 30 MWh, then dk cannot be lower than 25 MWh.



114 Chapter 6. Trading of Conventional Generators

The downward ramping limitation of dk can be imposed as

d(k−1) − dk ≤ RDW, ∀k ∈ K − {k1}, (6.5a)

d0 − dk1 ≤ RDW, (6.5b)

A graphic representation of the ramping limits of a conventional unit is given in

Figure 6.3. Indeed, if the amount of production d(k−1) at k − 1 is known, then dk is

limited between d(k−1) +RUP and d(k−1) −RDW.

k − 1 k

time

p
o
w
er

d(k−1)

d(k−1) +R
UP

d(k−1) −R
DW

dk

FIGURE 6.3: Illustration of upward and downward limitations of the
conventional unit.

Consequently, the set Ω representing the feasible region of the unit can be re-

placed by

qAk = dk, ∀k, (6.6a)

ukD ≤ dk ≤ ukD, ∀k, (6.6b)

dk − d(k−1) ≤ RUP, ∀k, (6.6c)

d(k−1) − dk ≤ RDW, ∀k. (6.6d)

uk ∈ {0, 1}, ∀k. (6.6e)

Constraint (6.6a) imposes the balance between qAk and dk. Constraint (6.6b) forces dk

to operate in its feasible region, i.e., between D and D when on, and to be equal to

0 when off. Constraints (6.6c) and (6.6d) impose the ramp up and down limitations

of the production unit. Finally, constraint (6.6e) imposes that uk is binary. Notice

thatconstraints (6.6c) and (6.6d) are a compact formulation of the ramping limits.

Indeed, they require the initial production level d0 of the unit.
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It is worth mentioning that (6.6) is simplified feasibility region, which usually

includes additional constraints, e.g., the minimum up- and down-time of the unit.

We refer the interested reader to references (Arroyo and Conejo, 2000; Arroyo and

Conejo, 2004) for a more detailed representation of such feasible operating region.

6.3.2 Cost Function of the Thermal Unit

This section deals with the cost function of a thermal unit. We derive a formulation

to replace constrain (3.18f) in the general offering strategy formulation (3.18), i.e.,

ĉk = h
(
qAk

)
, ∀k (6.7)

where qAk = dk. We initially consider that such cost only depends on the actual

amount of energy production dk. Such curve can usually be approximated with a

quadratic cost curve, i.e.,

h(dk) = E + F dk +G (dk)
2 , ∀k ∈ K, (6.8)

where the parameters E , F , and G, control the shape of the curve. The formulation

of h(dk) in Equation (6.8) is quadratic, meanwhile we would like a MILP model of the

unit. To obtain an alternative linear formulation of Equation (6.8) we use a piecewise

linear interpolation. This approximation can be applied only if the marginal cost

h′(dk) is non decreasing. The marginal cost is the cost for selling an additional unit

of energy, while from a mathematical point of view, it is evaluated as the derivative

of h(dk) with respect to dk. Therefore, h′(dk) can be computed as

h′(dk) = F + 2Gdk, ∀k ∈ K. (6.9)

It is straightforward to prove that h′(dk) is non decreasing, for dk ∈
[
D,D

]
, if G ≥ 0.

Such condition is usually verified for real cost curves. The idea of the piecewise lin-

ear approximation is subdividing the interval
[
D,D

]
into NS intervals and consid-

ering a constant marginal cost within each block. We define with s the index identi-

fying a production block, while S is the set of those blocks. We introduce xsk (MWh)

as the amount of energy produced with the block s. Then, being Cs (e/MWh) the

marginal cost of the block s and C0 (e) the production cost at the minimum output
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level of the unit, the cost function h(dk) can be approximated as

h(dk) = C0uk +
∑

s

Csxsk, ∀k (6.10a)

dk = Duk +
∑

s

xsk, ∀k (6.10b)

0 ≤ xsk ≤ Xs, ∀s, ∀k (6.10c)

where Xs (MWh) is the size of the production block s. When the objective function

is to minimize the production cost (or to maximize the profit) the formulation (6.10)

provides a successful approximation to the quadratic cost function in Equation (6.8).

Figure 6.4 illustrates an example of piecewise linear approximation of a quadratic

cost curve. The quadratic curve is shown in blue, while its piecewise linear approx-

imation with four production blocks in red. Then, the marginal cost function of the

two curves is illustrated in Figure 6.5. Note that, as mentioned before, the marginal

cost is constant over each of the four production blocks. Finally, we also show the

average production cost of the real cost curve (blue) and the piecewise linear ap-

proximation (in red) in Figure 6.6.
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FIGURE 6.4: Example of a quadratic cost function (blue) and its piece-
wise linear approximation (red) with 4 production blocks.

Now, we introduce other costs, non-proportional to dk, that contribute to the

total production cost of the unit. An example is the start-up cost. To model it, we

introduce the binary variable yk, representing the start-up status of the unit during

the interval k. yk = 1 if the unit is turned on during the interval k, and 0 otherwise.
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FIGURE 6.5: Marginal cost function of the cost curves in Figure 6.4.
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FIGURE 6.6: Average cost function of the cost curves in Figure 6.4.
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The value of yk can be evaluated by imposing

uk − u(k−1) ≤ yk, ∀k ∈ K − {k1}, (6.11a)

uk1 − u0 ≤ y(k1), (6.11b)

where u0 is the initial commitment status of the unit. Note that the term uk−u(k−1) is

equal to 1 if and only if uk = 1 and u(k−1) = 0, which represents a start-up situation

associated with a cost CUP (e). In this case, yk is forced to be equal to 1. For the

other 3 combinations, uk − u(k−1) is equal to either 0 or -1, thus allowing yk to be 0.

Similarly, we can include the shut-down cost. The binary variable zk represents

the shut-down status of the unit during the interval k, while CDW (e) is the cost for

turning off the unit. The shut-down cost can be evaluated as CDWzk, while the value

of zk can be computed by imposing

u(k−1) − uk ≤ zk, ∀k ∈ K − {k1}, (6.12a)

u0 − uk1 ≤ z(k1), (6.12b)

The term u(k−1) − uk is equal to 1 if and only if uk = 0 and u(k−1) = 1, which repre-

sents a shut-down situation at k. Combining all those costs in a unique formulation

results in the following set of constraints, which can be used to replace h
(
qAk

)
in the

offering strategy:

ĉk = E[ck] , ∀k, (6.13a)

ck = C0uk +
∑

s

Csxsk + CUPyk + CDWzk, ∀k, (6.13b)

dk = Duk +
∑

s

xsk, ∀k, (6.13c)

0 ≤ xsk ≤ Xs, ∀s, ∀k, (6.13d)

uk − u(k−1) ≤ yk, ∀k, (6.13e)

u(k−1) − uk ≤ zk, ∀k, (6.13f)

yk, zk ∈ {0, 1}, ∀k. (6.13g)

Constraint (6.13b) yields the total production cost ck of the unit. Constraints (6.13c)

and (6.13d) are auxiliary constraints to the piecewise linear formulation of the quadratic
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cost function. Constraints (6.13e) and (6.13f) compute the start-up (yk) and shut-

down (zk) status of the unit. Finally, constraint (6.13g) imposes yk and zk to be binary

variables.

6.4 Optimal Offering Strategy

This section formulates the offering strategy that the power producer may use to

derive its best day-ahead market offers. We start from the generic formulation for the

price-taker and risk-neutral producer in Equations (3.18), extended to the 24 trading

intervals. First, we remove the variables and constraints associated with a passive

participation in the balancing market. Indeed, we eliminate constraint (3.18e) and

we remove the variables ρ̂BA
k and qBA

k from the objective function (3.18a) and from

constraint (3.18b), respectively. Finally, we replace qAk with dk, in accordance with

Equation (6.2). This leads to

Max
Γ

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k − ĉk (6.14a)

s.t. qDA
k + qUP

k − qDW
k = dk, ∀k, (6.14b)

qDA
k , ρ̂DA

k ∈ ΠDA, ∀k, (6.14c)

qUP
k , qDW

k , ρ̂UP
k , ρ̂DW

k ∈ ΠBA
Act, ∀k, (6.14d)

ĉk = h(dk) , ∀k, (6.14e)

dk ∈ Ω, ∀k, (6.14f)

where

Γ = {dk, q
DA
k , qUP

k , qDW
k , ρ̂DA

k , ρ̂UP
k , ρ̂DW

k , ĉk}. (6.15)

Section 6.4.1 presents a sequential offering strategy. It describes the case in which

the producer is only considering the day-ahead stage while offering in the day-ahead

market, without considering eventual profits from the balancing stage. Differently,

Section 6.4.2 presents a co-optimized offering strategy, where the conventional pro-

ducer co-optimizes the offering strategy in the day-ahead and the balancing market.

6.4.1 Sequential Offering Strategy

Under the sequential offering strategy, the power producer only considers the day-

ahead stage while deriving its optimal offer curves. To that purpose, it is provided
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with a set I of day-ahead market price scenarios {λDA
ik : ∀i ∈ I, ∀k ∈ K}. As the

producer does not consider the future revenues from the balancing stage, we remove

from the offering model (6.14) the variables and constraints associated with the bal-

ancing market. Indeed, we eliminate constraint (6.14d) and we remove variables qUP
k

and qDW
k from constraint (6.14b). Moreover, we eliminate ρ̂UP

k and ρ̂DW
k from the ob-

jective function (6.14a). Figure 6.7 illustrates the stochastic programming framework

of the sequential offering strategy, where qDA
k is modeled as a fist-stage decision. Fi-

qDA

λDA
i

λDA
i

first
stage

decisions

uncertainty
disclosure

FIGURE 6.7: Schematic illustration of the stochastic programming
framework of the sequential offering strategy.

nally, we introduce the subscript i in accordance with the stochastic programming

approach, i.e, dk → dik and qDA
k → qDA

ik . Note that qDA
ik is made scenario dependent

for building the offer curve (see Section 3.4.3). This leads to

Max
Γseq

∑

k

ρ̂DA
k − ĉk (6.16a)

s.t. qDA
ik = dik, ∀k, ∀i (6.16b)

qDA
ik , ρ̂

DA
k ∈ ΠDA, ∀k, ∀i (6.16c)

ĉk = h(dik) , ∀k, (6.16d)

dik ∈ Ω, ∀k, (6.16e)

where

Γseq = {dik, q
DA
ik , ρ̂

DA
k , ĉk}. (6.17)

The objective function (6.16a) maximizes the expected profit of the producer for sell-

ing energy in the day-ahead market. Constraint (6.16b) balances the total energy

exchanged with the market, i.e., qDA
ik , with the production dik. Constraint (6.16c) is
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a set of constraints associated with the day-ahead market offer curves. Constraint

(6.16d) computes the production cost of the power unit. Finally, constraint (6.16e)

forces the unit to operate in its feasible region.

Linear Formulation of ΠDA

The set ΠDA in (6.16) is a set of constraints related to the day-ahead market offer

curves. The formulation of ΠDA is presented in Equations (3.44) in Section 3.4.3. Its

formulation, adapted to the conventional producer (i.e., Q = 0 and Q = D ) and

extended to the set K of the trading intervals is

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (6.18a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, i′, ∀k (6.18b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i, i′, ∀k (6.18c)

0 ≤ qDA
ik ≤ D, ∀i, ∀k (6.18d)

Constraint (6.18a) yields the expected day-ahead market income of the power pro-

ducer. Constraints (6.18b) and (6.18c) impose the non-decreasing and non-anticipativity

conditions, respectively. Lastly, constraint (6.18d) forces the day-ahead market offers

qDA
ik to lie between 0 and the unit’s capacity D.

Linear Formulation of the Cost Function

Constraint (6.16d) yielding the production cost, can be replaced with the formula-

tion provided in Section 6.3.2, i.e., Equations (6.13). Its formulation, adapted to the
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stochastic programming framework, is the following:

ĉk =
∑

i

πDA
i cik, ∀k, (6.19a)

cik = C0uik +
∑

s

Csxisk + CUPyik + CDWzik, ∀i, ∀k, (6.19b)

dik = Duik +
∑

s

xisk, ∀i, ∀k, (6.19c)

0 ≤ xisk ≤ Xs, ∀i, ∀s, ∀k, (6.19d)

uik − ui(k−1) ≤ yik, ∀i, ∀k, (6.19e)

ui(k−1) − uik ≤ zik, ∀i, ∀k, (6.19f)

yik, zik ∈ {0, 1}, ∀i, ∀k. (6.19g)

Constraint (6.19a) computes the expected total cost ĉk per each interval k. Constraint

(6.19b) yields the total production cost cik of the unit when scenario i realizes at k.

Constraints (6.19c) and (6.19d) are auxiliary constraints to the piecewise linear for-

mulation of the quadratic cost function. Constraints (6.19e) and (6.19f) compute the

start-up (yik) and shut-down (zik) status of the unit. Finally, constraint (6.19g) im-

poses yik and zik to be binary variables.

Linear Formulation of Ω

The set Ω in constraint (6.16e) imposes the feasible operation of the unit. We replace

it with the set of constraints (6.6) presented in Section 6.3.1, though adapted to the

stochastic programming formulation. This writes:

uikD ≤ dik ≤ uikD, ∀i, ∀k, (6.20a)

dik − di(k−1) ≤ RUP, ∀i, ∀k, (6.20b)

di(k−1) − dik ≤ RDW, ∀i, ∀k, (6.20c)

uik ∈ {0, 1}, ∀i, ∀k. (6.20d)

Constraint (6.20a) forces dik to operate between D and D when on-line, and to be

equal to 0 when off-line. Constraints (6.20b) and (6.20c) enforce the ramp up and

down limitations of the production unit. Finally, constraint (6.20d) imposes that uik

is binary.
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6.4.2 Co-optimized Offering Strategy

This section considers a co-optimized offering strategy for building the day-ahead

and the balancing marker offer curves. Consequently, the power producer is pro-

vided, together with the set I of day-ahead market price scenarios {λDA
ik : ∀i ∈

I, ∀k ∈ K}, with a set J of balancing market price scenarios per each day-ahead

possible realization i, i.e., {λBA
ijk : ∀i ∈ I, ∀j ∈ J, ∀k ∈ K}. Of course, at the moment

of offering in the day-ahead market, it does not have to submit the balancing market

offers, but only the day-ahead ones. However, it includes the balancing market deci-

sions within its optimization problem as recourse variables. The result is a two-stage

stochastic optimization problem, where the producer simultaneously maximizes the

profit from the two market stages, in the sense that it endogenously determines its

future balancing actions while deriving its optimal day-ahead offers. Accordingly,

we model the day-ahead production level qDA
k as a first-stage decision, and the up-

ward and the downward production adjustment, i.e., qUP
ik and qDW

ik , as second-stage

decisions. Figure 6.7 illustrates the stochastic programming framework of the co-

optimized offering strategy.

qDA

λDA
i qUP

i
, qDW

i

λBA
ij

λBA
ij

λDA
i qUP

i
, qDW

i

λBA
ij

λBA
ij

first
stage

second
stage

decisions

uncertainty
disclosure

FIGURE 6.8: Schematic illustration of the stochastic programming
framework of the co-optimized offering strategy.

Then, we make the day-ahead production variable qDA
k scenario-dependent (i.e.,

qDA
k → qDA

ik ) to model the offer curve, as seen in Section 3.4.3. Similarly, the real-time

adjustments qUP
ik and qDW

ik are made scenario-dependent (i.e., qUP
ik → qUP

ijk and qDW
ik →

qDW
ijk ) for obtaining the offer curves in the balancing stage, as seen in Section 3.4.4.
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Finally, we also adapt the operational variables to the stochastic programming setup,

e.g., dk → dijk. The offering strategy in (6.14) is accordingly adapted as follows:

Max
Γcoop

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k − ĉk (6.21a)

s.t. qDA
ik + qUP

ijk − qDW
ijk = dijk, ∀i, ∀j, ∀k, (6.21b)

qDA
ik , ρ̂

DA
k ∈ ΠDA, ∀i, ∀k, (6.21c)

qUP
ijk , q

DW
ijk , ρ̂

UP
k , ρ̂DW

k ∈ ΠBA
Act, ∀i, ∀j, ∀k, (6.21d)

ĉk = h(dijk) , ∀k, (6.21e)

dijk ∈ Ω, ∀i, ∀j, ∀k, (6.21f)

where

Γcoop = {dijk, q
DA
ik , q

UP
ijk , q

DW
ijk , ρ̂

DA
k , ρ̂UP

k , ρ̂DW
k , ĉk}. (6.22)

The objective function (6.21a) maximizes the expected producer’s profit, mod-

eling the participation in both the day-ahead and the balancing market. Constraint

(6.21b) imposes the balance between the total energy exchanged with the market, i.e.,

qDA
ik +qUP

ijk−q
DW
ijk , and the energy production of the power unit dijk. Constraint (6.21c)

is a set of constraints associated with the day-ahead market offer curves, while con-

straint (6.21d) a set related to the balancing market offer curves. Constraint (6.21e)

yields the expected production cost of the power unit, while constraint (6.21f) forces

the power unit to operate in its feasible region Ω.

Linear Formulation of ΠDA

The set ΠDA is a set of constraints associated with the day-ahead market offer curves,

which is presented in Equations (3.44), i.e.,

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (6.23a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, i′, ∀k (6.23b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i, i′, ∀k (6.23c)

0 ≤ qDA
ik ≤ D, ∀i, ∀k (6.23d)
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Constraint (6.23a) computes the expectation of the day-ahead market income. Con-

straints (6.23b) and (6.23c) impose the non-decreasing and non-anticipativity con-

ditions of the offer curves, respectively. Finally, constraint (6.23d) bounds the day-

ahead market offer qDA
ik between 0 and D.

Linear Formulation of ΠBA
Act

The set ΠBA
Act in (6.21) is a set of constraints associated with the balancing market

offer curves. The formulation for a price-taker and risk-neutral producer submitting

offer curves in a pay-as-bid balancing market via stochastic programming is shown

in Equations (3.93), Section 3.4.6. Adapting it to the present stochastic programming

framework leads to:

ρ̂UP
k =

∑

ij

πDA
i πBA

ij

∑

j′

MUP
ijj′ o

UP
ij′k λ

BA
ij′k, ∀k, (6.24a)

ρ̂DW
k = −

∑

ij

πDA
i πBA

ij

∑

j′

MDW
ijj′ o

DW
ij′k λ

BA
ij′k, ∀k, (6.24b)

qUP
ijk =

∑

j′

MUP
ijj′o

UP
ij′k, ∀i, ∀j, ∀k, (6.24c)

qDW
ijk =

∑

j′

MDW
ijj′ o

DW
ij′k , ∀i, ∀j, ∀k, (6.24d)

oUP
ij′k = 0 if λBA

ij′k ≤ λDA
ik , ∀i, ∀j′, ∀k, (6.24e)

oDW
ij′k = 0 if λBA

ij′k ≥ λDA
ik , ∀i, ∀j′, ∀k, (6.24f)

oUP
ij′k, o

DW
ij′k ≥ 0, ∀i, ∀j′, ∀k. (6.24g)

where the matrices MUP and MDW are defined as:

MUP
ijj′ =





1, λBA
ij ≥ λBA

ij′

0, otherwise.
(6.25)

MDW
ijj′ =





1, λBA
ij ≤ λBA

ij′

0, otherwise.
(6.26)

Constraints (6.24a) and (6.24b) compute the expected market revenues from sub-

mitting up-regulation and down-regulation offer curves in a pay-as-bid balancing

market, respectively. Constraints (6.24c) and (6.24d) yield the total amount of en-

ergy qUP
ij and qDW

ij scheduled provided that scenario (ij) realizes at k. Constraint
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(6.24e) restricts the offering of up-regulation energy to the scenarios in which it is

required. Similarly, constraint (6.24f) does for the down-regulation offers. Finally,

constraint (6.24g) forces oUP
ij′ and oDW

ij′ to be non-negative.

Linear Formulation of the Cost Function

Constraint (6.21e) is replaced with the formulation provided in Section 6.3.2, i.e.,

ĉk =
∑

ij

πDA
i πBA

ij cijk, ∀k, (6.27a)

cijk = C0uijk +
∑

s

Csxijsk + CUPyijk + CDWzijk, ∀i, ∀j, ∀k, (6.27b)

dijk = Duijk +
∑

s

xijsk, ∀i, ∀j, ∀k, (6.27c)

0 ≤ xijsk ≤ Xs, ∀i, ∀j, ∀s, ∀k, (6.27d)

uijk − uij(k−1) ≤ yijk, ∀i, ∀j, ∀k, (6.27e)

uij(k−1) − uijk ≤ zijk, ∀i, ∀j, ∀k, (6.27f)

yijk, zijk ∈ {0, 1}, ∀i, ∀j, ∀k. (6.27g)

Constraint (6.27a) yields the expected total cost ĉk per each interval k. Constraint

(6.27b) evaluates the total production cost cijk of the unit when scenario (ij) occurs

at k. Constraints (6.27c) and (6.27d) are auxiliary constraints to the piecewise linear

formulation of the quadratic cost function. Constraints (6.27e) and (6.27f) compute

the start-up (yijk) and shut-down (zijk) status of the unit. Finally, constraint (6.27g)

imposes yijk and zijk to be binary variables.

Linear Formulation of Ω

The set Ω in constraint (6.21f) forces the power unit to operate in its feasible region.

We replace it with the set of constraints (6.6) presented in Section 6.3.1. Its formula-

tion adapted to the actual stochastic programming framework leads to

uijkD ≤ dijk ≤ uijkD, ∀i, ∀j, ∀k, (6.28a)

dijk − di(k−1) ≤ RUP, ∀i, ∀j, ∀k, (6.28b)

di(k−1) − dijk ≤ RDW, ∀i, ∀j, ∀k, (6.28c)

uijk ∈ {0, 1}, ∀i, ∀j, ∀k. (6.28d)
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Constraint (6.28a) forces dijk to operate between D and D when on-line, and to be

equal to 0 when off-line. Constraints (6.28b) and (6.28c) limits the ramp up and

down of the production unit. Finally, constraint (6.28d) imposes that uijk is a binary

variable.

6.5 Case Study

We test the two offering models (6.16) and (6.21) in a realistic case study. We gen-

erate market price scenarios according to the methodology presented in Chapter 4.

The input parameters of the fundamental market model of Section 4.3 are shown in

Tables 6.1 and 6.2. First, we generate 300 scenarios for λDA
ik and we select the 20 most

representative ones. Then, for each scenario λDA
ik , we generate 300 scenarios of λBA

ijk

and keep the 20 most representative ones. This procedure results in a scenario tree

with 400 branches.

TABLE 6.1: Parameters of the market price generation model

δ β µγ σ2γ λ0

(e/MWh2) (e/MWh2) (e/MWh3) (e/MWh3) (e/MWh)

-6.67×10−3 1×10−4 2×10−8 3×10−9 -20

TABLE 6.2: Values of parameter αk

k 1 2 3 4 5 6 7 8
αk (e/MWh) 322 312 315 317 340 349 353 369

k 9 10 11 12 13 14 15 16
αk (e/MWh) 394 424 444 445 440 429 437 458

k 17 18 19 20 21 22 23 24
αk (e/MWh) 446 423 408 383 373 346 331 332

We consider a thermal unit of capacity D = 120 MWh and a minimum produc-

tion level of D = 40 MWh. Ramping limits are 40 MWh for both RUP and RDW. The

quadratic cost function is approximated by a piecewise linear function of four gen-

eration blocks of equal size, i.e. Xs = 20 MWh ∀s. Table 6.3 shows the marginal cost

Cs of each block, the cost C0, the start-up cost CUP and the shut-down cost CDW. The

optimization model is implemented using GUROBI in PYTHON environment.
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TABLE 6.3: Parameters of the cost function

C0 Cs1 Cs2 Cs3 Cs4 CUP CDW

(e) (e/MWh) (e/MWh) (e/MWh) (e/MWh) (e) (e)

2860 23.5 31.5 45.6 72.3 800 100

We compare the two-stage co-optimization model with a sequential offering ap-

proach. As the sequential offering model only considers the day-ahead market of-

fers, the results of the two models can not be compared. However, we use the co-

optimized model to estimate the future balancing revenues when offering in the

day-ahead with the sequential one. Given the optimal day-ahead offers Q̃DA∗
ik ob-

tained with the sequential model (6.16), we solve the co-optimized model (6.21) by

replacing constraint (6.21c) with

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (6.29a)

qDA
ik = Q̃DA∗

ik , ∀i, ∀k. (6.29b)

This translates in imposing that the day-ahead offer curves are the ones obtained

with the sequential approach. By solving such model, we evaluate the total ex-

pected profit (day-ahead and balancing) when offering in the day-ahead market

with a sequential approach. The remaining of the section is organized as follows.

Sections 6.5.1, 6.5.2, and 6.5.3, analyze the optimal offering strategies (i.e., sequen-

tial and co-optimized) of the conventional power producer in an electricity market

where the installed renewable energy capacity is 10, 20, and 30 GW, respectively. Fi-

nally, Section 6.5.4 compares the producer’s profit based on the sequential and the

co-optimized approach for increasing values of the installed wind capacity in the

electricity market model.

6.5.1 Simulation with 10 GW of installed wind

Figure 6.9 illustrates the 20 selected trajectories λDA
ik when the installed wind power

W in the market model is 10 GW. Similarly Figure 6.10 does for the 20 scenarios λBA
ijk,

for a given realization λDA
k . These scenarios are used to derive the optimal day-ahead

market offer curves.

As an example, Table 6.4 shows the result of the day-ahead production variables

qDA
ik for k = 7 obtained with the co-optimized and the sequential approach. Note that
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FIGURE 6.9: Day-ahead market price scenarios for W = 10 GW in the
market model.
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FIGURE 6.10: Balancing market price scenarios forW = 10 GW in the
market model, for a given realization of λDA

k
(red).
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{λDA
i7 , i ∈ I}, is the set of the day-ahead price scenarios, and each member of this set

is viewed as a potential price offer. The results of Table 6.4 can be summarized, for

TABLE 6.4: Optimal values of qDA
i7 for the sequential and the co-

optimized approach (W = 10 GW).

i
λDA
i7 qDA

i7 i
λDA
i7 qDA

i7

(e/MWh) (MWh) (e/MWh) (MWh)
coop seq coop seq

1 47.6 120 120 11 39.2 40 80
2 35.6 0 40 12 48.0 120 120
3 48.7 120 120 13 48.2 120 120
4 49.2 120 120 14 46.9 120 120
5 42.8 80 120 15 56.8 120 120
6 40.1 40 120 16 48.2 120 120
7 52.1 120 120 17 45.4 120 120
8 48.5 120 120 18 44.4 120 120
9 55.8 1120 120 19 47.9 120 120

10 46.5 120 120 20 50.6 120 120

the sequential approach, as

q
DA,seq
7 =





0, if λDA
7 < 35.6,

40, if 35.6 ≤ λDA
7 < 39.2,

80, if 39.2 ≤ λDA
7 < 40.1,

120, if λDA
7 ≥ 40.1,

(6.30)

while for the co-optimized offering strategy as

q
DA,coop
7 =





0, if λDA
7 < 39.2,

40, if 39.2 ≤ λDA
7 < 42.8,

80, if 42.8 ≤ λDA
7 < 44.4,

120, if λDA
7 ≥ 44.4.

(6.31)

Notice that qDA
7 is expressed in MWh and λDA

7 in e/MWh.

Following (6.30), a scenario-independent offer curve, using the sequential ap-

proach, can be built using three price-quantity offer points, i.e., (e35.6/MWh, 40

MWh), (e39.2/MWh, 80 MWh) and (e40.1/MWh, 120 MWh). Similarly, using the

co-optimized approach, the day-ahead offer curve is created using three price-quantity

offer points, i.e., (e39.2/MWh, 40 MWh), (e42.8/MWh, 80 MWh) and (e44.4/MWh,
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120 MWh).

Figure 6.12 illustrates the two offer curves, the co-optimized curve in blue and

the sequential one in red. Note that, based on the sequential approach, the producer

is not willing to produce if λDA
7 ≤ 35.6, while it wants to produce at full capacity

if λDA
7 ≥ 40.1. Differently, under the co-optimized strategy, the producer desires to

produce 40 MWh if 39.2 ≤ λDA
7 < 42.8. For the same price interval, the sequential

approach suggests operating at 80 MWh or even 120 MWh.
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FIGURE 6.11: Illustration of the day-ahead market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 10 GW).

For k = 7, we also compute the balancing market offer curves. When the day-

ahead market price λDA
7 realization is e42.1/MWh, the offer curves in the balancing

market under the co-optimized approach are

q
BA,coop
7 =





0, if λBA
7 < 48.1

40, if λBA
7 ≥ 48.1,

(6.32)

Based on the co-optimized approach, the producer schedules to produce 80 MWh in

the day-ahead market, following Equation (6.31). Then, it offers to increase its pro-

duction of additional 40 MWh, provided that λBA
7 ≥ 48.1. Differently, the sequential

approach schedules 120 MWh for the same day-ahead market realization. In this

case, the producer does not offer any regulating energy in the balancing market.
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Figure 6.12 illustrates the offer curves submitted in the balancing market.
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FIGURE 6.12: Illustration of the balancing market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 10 GW).

6.5.2 Simulation with 20 GW of installed wind

Figure 6.13 shows the 20 scenarios of λDA
ik when W is set to 20 GW. Then, Figure 6.14

shows to 20 scenarios λBA
ijk, for a given realization λDA

k .
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FIGURE 6.13: Day-ahead market price scenarios for W = 20 GW in
the market model.

Table 6.5 reports the optimal value of the day-ahead production variables qDA
ik at

k = 7 obtained from both the co-optimized and the sequential approach. For the two



6.5. Case Study 133

4 8 12 16 20 24
k (h)

0

20

40

60

80

100
(e

/M
W
h
)

λ
DA

λ
BA scenarios

FIGURE 6.14: Balancing market price scenarios forW = 20 GW in the
market model, for a given realization of λDA

k
(red).

TABLE 6.5: Optimal values of qDA
i7 for the sequential and the co-

optimized approach (W = 20 GW).

i
λDA
i7 qDA

i7 i
λDA
i7 qDA

i7

(e/MWh) (MWh) (e/MWh) (MWh)
coop seq coop seq

1 44.1 80 40 11 36.3 0 0
2 33.0 0 0 12 44.4 80 40
3 45.1 80 40 13 44.6 80 40
4 45.6 80 40 14 43.4 80 40
5 39.7 40 40 15 52.7 120 120
6 37.1 0 0 16 44.7 80 40
7 48.2 80 80 17 42.0 80 40
8 44.9 80 40 18 41.1 40 40
9 51.7 120 120 19 44.3 80 40

10 43.0 80 40 20 46.9 80 40
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approaches, the results of Table 6.5 are summarized in Equations (6.33) (sequential)

and (6.34) (co-optimized) below:

q
DA,seq
7 =





0, if λDA
7 < 39.7

40, if 39.7 ≤ λDA
7 < 48.2

80, if 48.2 ≤ λDA
7 < 51.7

120, if λDA
7 ≥ 51.7,

(6.33)

q
DA,coop
7 =





0, if λDA
7 < 39.7

40, if 39.7 ≤ λDA
7 < 42.0

80, if 42.0 ≤ λDA
7 < 51.7

120, if λDA
7 ≥ 51.7,

(6.34)

where qDA
7 is expressed in MWh and λDA

7 in e/MWh. Following Equation (6.33),

the day-ahead offer curve, using the sequential approach, is built with three price-

quantity offer points, i.e., (e39.7/MWh, 40 MWh), (e48.2/MWh, 80 MWh) and

(e51.7/MWh, 120 MWh). Similarly, using the co-optimized approach, the day-

ahead offer curve is identified by three price-quantity offer points, i.e., (e39.7/MWh,

40 MWh), (e42.0/MWh, 80 MWh) and (e51.7/MWh, 120 MWh). A graphic repre-

sentation of the offer curves is given in Figure 6.15, where the co-optimized approach

is shown in blue and the sequential one in red. Note that, in both cases, the producer

is not willing to produce if λDA
7 ≤ 39.7 while desires to operate at its full capacity if

λDA
7 ≥ 51.7. However, when 42.0 ≤ λDA

7 ≤ 48.2, the co-optimized approach suggests

to produce 80 MWh, while the sequential approach does 40 MWh only.

For the same time interval, i.e., k = 7, we also derive the possible offer curves

in the balancing market, for a given day-ahead market realization. E.g., provided

that the realized day-ahead market price λDA
7 is e44.1/MWh, the offer curve in the

balancing market under the sequential approach is

q
BA,seq
7 =





0, if λBA
7 < 56.0

40, if 56.0 ≤ λBA
7 < 58.7

120, if λBA
7 ≥ 58.7,

(6.35)
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FIGURE 6.15: Illustration of the day-ahead market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 20 GW).

while based on the co-optimized one is

q
BA,coop
7 =





−40, if λBA
7 ≤ 35.6

0, if 35.6 < λBA
7 < 55.7

40, if λBA
7 ≥ 55.7,

(6.36)

Figure 6.16 illustrates the offer curves in the balancing market for the sequential

(red) and the co-optimized approach (blue). Based on the co-optimized strategy,

the producer schedules to produce 80 MWh (in the day-ahead market) and then

reduces its production level to 40 MWh if λBA
7 ≤ 35.6, or increases it to 120 MWh

in case λBA
7 ≥ 55.7, in the balancing market. Unlike the co-optimized approach, the

sequential one schedules 40 MWh in the day-ahead market and then offers for up-

regulation only in the balancing market. For instance, its production increases of 40

MWh if λBA
7 ≥ 56.0 while the increase is even more (80 MWh) in case λBA

7 ≥ 58.7.

6.5.3 Simulation with 30 GW of installed wind

Figure 6.17 shows the 20 scenarios of λDA
ik for W of 30 GW. Then, Figure 6.18 shows

to 20 scenarios λBA
ijk, for a given realization λDA

k . Those scenarios are provided as

input to the offering models to derive the optimal day-ahead market offers.
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FIGURE 6.16: Illustration of the balancing market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 20 GW).
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FIGURE 6.17: Day-ahead market price scenarios for W = 30 GW in
the market model.
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FIGURE 6.18: Balancing market price scenarios forW = 30 GW in the
market model, for a given realization of λDA

k
(red).

Table 6.6 reports the optimal value of the day-ahead production variables qDA
ik for

k = 7 obtained with both the co-optimized and the sequential approach. Based on

TABLE 6.6: Optimal values of qDA
i7 for the sequential and the co-

optimized approach (W = 30 GW).

i
λDA
i7 qDA

i7 i
λDA
i7 qDA

i7

(e/MWh) (MWh) (e/MWh) (MWh)
coop seq coop seq

1 40.6 80 0 11 33.5 0 0
2 30.4 0 0 12 41.0 80 0
3 41.6 80 0 13 41.2 80 0
4 42.0 80 0 14 40.1 80 0
5 36.6 40 0 15 48.6 80 0
6 34.2 0 0 16 41.2 80 0
7 44.5 80 0 17 38.8 40 0
8 41.5 80 0 18 38.0 40 0
9 47.7 80 0 19 40.9 80 0

10 39.7 40 0 20 43.4 80 0

the co-optimized approach, the results of Table 6.6 are summarized as

q
DA,coop
7 =





0, if λDA
7 < 36.6

40, if 36.6 ≤ λDA
7 < 40.1

80, if λDA
7 ≥ 40.1,

(6.37)

where qDA
7 is expressed in MWh and λDA

7 in e/MWh. Following (6.37), the day-

ahead offer curve is built with two price-quantity offer points, i.e., (e36.6/MWh, 40
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MWh) and (e40.1/MWh, 80 MWh). Differently, using the sequential approach, the

producer does not submit any offer in the day-ahead market. Figure 6.15 shows a

graphic representation of the offer curve of the co-optimized approach (blue). The

producer, based on the co-optimized approach, is not willing to produce if λDA
7 ≤

36.6 while desires to operate at 80 MWh if λDA
7 ≥ 40.1.
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FIGURE 6.19: Illustration of the day-ahead market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 30 GW).

For the same time interval, i.e., k = 7, we also derive the offer curves in the

balancing market, for a given day-ahead market outcome. When the realized day-

ahead market price λDA
7 is e40.7/MWh, the offer curve in the balancing market un-

der the sequential approach is

q
BA,seq
7 =





0, if λBA
7 < 62.7

40, if 62.7 ≤ λBA
7 < 76.4

80, if λBA
7 ≥ 76.4,

(6.38)
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while under the co-optimized one is

q
BA,coop
7 =





−80, if λBA
7 ≤ 28.5

−40, if 28.5 < λBA
7 ≤ 32.6

0, if 32.6 < λBA
7 < 58.0

40, if λBA
7 ≥ 58.0.

(6.39)

Based on the sequential approach, the producer is not scheduled to produce in the

day-ahead market. Then, it is willing to produce 40 MWh if λBA
7 ≥ 62.6, and 80

MWh if λBA
7 ≥ 76.4. Of course, it cannot offer down-regulation as it is not scheduled

to operate in the day-ahead market. Differently, under the co-optimized approach,

the producer operates at 80 MWh after the day-ahead market clearing. Then, it offers

to adjust its production of additional 40 MWh upward (i.e., to produce 120 MWh)

if λBA
7 ≥ 58.0. In this case, the producer can offer down-regulation energy in the

balancing market. Indeed, it decreases its production to 40 MWh if λBA
7 ≤ 32.6, and

to 0 MWh if λBA
7 ≤ 28.5. Figure 6.20 illustrates the offer curves in the balancing

market for the two approaches.

10 30 50 70 90
price (e/MWh)

-120

-80

-40

0

40

80

120

qu
an
ti
ty

(M
W
h
)

λ
DA

co-optim

sequential

FIGURE 6.20: Illustration of the balancing market offer curves ob-
tained with the sequential (red) and the co-optimized (blue) ap-

proach, for the time interval k = 7 (W = 30 GW).
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6.5.4 Comparative Analysis

This section compares the expected profits obtained by the sequential and the co-

optimized offering strategy. The expected producer’s profit gained based on the two

alternative approaches under different conditions is shown in Table 6.7. In the case

with W = 10 GW, the expected profit loss of the sequential approach is around 2%.

The power producer obtains a lower expected profit in the day-ahead market while

earning more in the balancing stage, such that its total expected profit (including

both markets) increases as well. This behavior is more observable in the simulations

with higher values of installed wind capacity. For instance, the loss of profit is 22%

and 91% in cases in which W is equal to 20 and 30 GW, respectively. The last case

(W=30 GW) gives more insight: based on the sequential approach, the producer

does not participate in the day-ahead market and earns a low profit in the balancing

stage only. In contrast, the producer gains a significant profit in the co-optimized

approach, though it loses money in the day-ahead stage. In fact, it takes such a

losing position in the day-ahead market to be able to produce profitable regulation

services at the balancing stage.

TABLE 6.7: Expected profit of the producer

W Approach Profit in DA Profit in BA Total profit
(GW) (103e) (103e) (103e)

10
co-optimized 16.82 3.25 20.09

sequential 18.08 1.59 19.68

20
co-optimized 4.45 8.27 12.27

sequential 7.68 2.27 9.95

30
co-optimized -8.45 18.44 9.99

sequential 0.00 0.87 0.87

Figures 6.21 illustrates the results of Table 6.7, where the sequential approach is

shown in red and the co-optimized one in blue. Note how the difference between the

expected profits grows as the share of renewable energy generation increases. The

figure clarifies the strategy of the co-optimized approach of accepting producing in

the day-ahead market even if the prices are below the marginal cost of the producer.

This leads the producer in a profitable position for offering regulating energy in the

balancing market and compensate the losses in the day-ahead market. Differently,

based on the sequential approach, the producer does not include the future balanc-

ing market revenue in its objective function and accordingly does not schedule the

unit if the day-ahead market prices are lower than its marginal cost.
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FIGURE 6.21: Day-ahead market, balancing market, and total ex-
pected profits of the co-optimized and the sequential approach.
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6.6 Summary

This chapter takes the perspective of a price-taker and risk-neutral conventional

power producer offering in a two-settlement electricity market having the balancing

market settled under a pay-as-bid pricing scheme. First, we present a MILP formu-

lation to approximate the non-convex feasible region and the non-convex cost func-

tion of the production unit. Then, we adapt the general offering strategy proposed

in Section 3.4 to the case of the conventional producer. We develop two alternative

offering strategies. The first is a sequential offering model, where the producer only

looks at the upcoming trading floor when offering in the electricity market, without

considering the following stages. The second co-optimizes the producer’s offers in

the day-ahead and the balancing market, these as recourse decisions as they do not

need to be taken at the day-ahead stage. In this context, it is essential the LP formu-

lation for the trading problem in pay-as-bid electricity market presented in Section

3.4.6. Indeed, this innovative formulation allows building the two-stage stochas-

tic programming problem (co-optimized approach) as a MILP problem, where the

non-linearities (i.e., the binary variables) arise from the operating region of the unit.

Differently, using the NLP models available in the literature would have resulted in

a MINLP problem, which may have high computational cost and, usually, does not

ensure the optimality of the solution obtained.

We test the two offering approaches in a case study, using the electricity mar-

ket model of Section 4.3 to generate the day-ahead and the balancing market price

scenarios. Thanks to the fundamental market model, we simulate the effect of an

increasing penetration of renewable energy generation on the day-ahead and the

balancing market prices. Accordingly, we test the two approaches for 10, 20, and

30 GW of renewable generation capacity installed in the market model, analyzing

both the optimal offer curves and the expected profits obtained with the two offer-

ing strategies. We show that for a low penetration of renewable energy generation,

the difference between the two approaches is minimal. Indeed, the high prices in

the day-ahead market lead the producer’s to schedule most of its capacity in the

day-ahead stage while having few possibilities of offering in the balancing stage.

Differently, in the case with 30 GW of renewable energy generation installed, the

day-ahead market prices are below the marginal cost of the producer which would

not schedule its unit in the day-ahead market based on a sequential offering strategy.



6.6. Summary 143

Subsequently, even if the prices are profitable at the balancing stage (due to potential

significant imbalances in the real-time), the producer is not in the position of offering

regulating energy efficiently. Differently, co-optimizing the offering strategy in the

two market stages, the producer decides to operate in the day-ahead market even if

the prices are below its marginal cost. However, it knows that it will be in a conve-

nient position for the balancing market where the large imbalances of the stochastic

generation may lead to very lucrative prices. Co-optimizing its offering strategy, the

producer can, at least partially, compensate the decrease of profit in the day-ahead

market due to the increasing share of renewable energy generation in the electricity

market.

The proposed test case shows that a co-optimized approach (where our innova-

tive LP trading problem formulation is essential) may be increasingly important as

the penetration of renewable capacity in the electricity market increases. Differently,

the power producer would not schedule its unit in the day-ahead market due to the

low market prices. However, this affects the producer, which incur in lower mar-

ket profits, as well as the System Operator who has less available flexibility in the

balancing stage.
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Chapter 7

Trading of Virtual Power Plants

7.1 Introduction

This chapter considers the optimal offering strategy a Virtual Power Plant (VPP). A

VPP is defined as a cluster of combined generating units (either stochastic or control-

lable), storage systems and flexible loads (Morales et al., 2013), which together act as

a single participant in the electricity market. The key idea is to exploit the character-

istics of the different technologies within the cluster and being more competitive in

the electricity market. E.g., the real-time deviations of a stochastic production unit,

such as wind and solar power unit, could be handled internally to a VPP thanks to

the flexibility of other controllable technologies, such as an electric storage system

or a conventional generation unit.

The optimal offering strategy of a renewable energy source has already been

widely studied in the literature. Pinson, Chevallier, and Kariniotakis (2007) derive

the optimal day-ahead market offer that maximizes the expected profit of a price-

taker wind power producer provided with probabilistic forecasts of its future power

production. They show that the optimal day-ahead market offer is a quantile of the

probability distribution of the wind power production of the unit. Then, Morales,

Conejo, and Pérez-Ruiz (2010) attach a similar problem through a stochastic pro-

gramming approach. They consider an electricity market that includes a day-ahead,

an intra-day, and a balancing market. They formulate the optimal offering strategy

as a LP problem, while accurately modeling the future decisions of the producer in

the intra-day and the balancing market within the optimization problem as recourse

decisions. These studies model the stochastic producer as a passive actor in the bal-

ancing market. Indeed, it accesses the balancing stage for compensating its real-time

deviations from the day-ahead contracted schedule. We refer the interested reader
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to Chapter 5 for a more extensive literature review on the topic of optimal trading of

renewable energy generation.

Similarly, several optimal offering strategies for a conventional power genera-

tor are available in the literature. References (Arroyo and Conejo, 2000; Arroyo and

Conejo, 2004; Conejo et al., 2004; Jabr, 2005) show how the feasibility region of a

conventional production unit, e.g., coal- or gas-fired power unit, can be successfully

modeled through a MILP formulation. Then, the trading problem in an electric-

ity market settled under a uniform pricing scheme can be cast as an LP problem

(Conejo, Carrión, and Morales, 2010), under the assumption of a price-taker pro-

ducer. Differently than a stochastic producer, a conventional one is modeled as an

active participant in the balancing market. Indeed, it accesses the balancing stage to

offer its available regulating energy to the System Operator. We refer the interested

reader to Chapter 6 for a broader coverage of this topic.

The optimal market participation of a VPP is less investigated in the literature.

Ruiz, Cobelo, and Oyarzabal (2009) present an optimization algorithm to manage

an aggregate of controllable loads, based on a direct load control. References (Mash-

hour and Moghaddas-Tafreshi, 2011a; Mashhour and Moghaddas-Tafreshi, 2011b)

consider the bidding problem of a VPP in a joint electricity market for energy and

reserve. In a deterministic environment, the authors provide a MINLP problem,

solved by a genetic algorithm. Morales et al. (2013) analyze different combinations

of generating units, flexible loads and storage systems while showing a general mod-

eling approach of VPPs. Peik-Herfeh, Seifi, and Sheikh-El-Eslami (2013) formulate

a price-based unit commitment aimed at obtaining the optimal day-ahead market

offering of a VPP. They use a point estimate method to represent the uncertainty

in the market prices and the generation sources. Differently, Pandžić, Kuzle, and

Capuder (2013) analyze the optimal self-scheduling of a VPP, considering a weekly

time horizon. They include long-term bilateral contracts and technical constraints

of the units while deriving the optimal dispatch as a MILP stochastic optimization

problem. Reference (Pandžić et al., 2013) proposes a decision-making tool for the

optimal offering of a VPP under price and production uncertainty. The authors de-

velop a two-stage stochastic offering model that aims at maximizing the expectation

of the profit using a MILP approach. Other works, e.g., (Kardakos, Simoglou, and

Bakirtzis, 2016), include the electricity market clearing process within the offering
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model, resulting in a bi-level stochastic optimization model. By doing that, the au-

thors can endogenously model the effect of the VPP decisions on the market price

formation.

The offering models for a VPP participating in an electricity market mentioned

above, consider the VPP as a passive actor in the balancing market. They assume that

the VPP uses the balancing stage to compensate the deviations from the day-ahead

schedule that it can not handle within the cluster. However, the VPP, being a mix

of stochastic and controllable technologies, may have some flexibility to offer in the

balancing market in some trading intervals while needing to deviate from its sched-

ule in other intervals. State-of-art electricity markets, usually, allow the offering of

regulating energy in the balancing market only to production units that can always

(except for unpredictable unit’s failure) guarantee to respect their day-ahead sched-

ule and being able to offer additional regulating energy to the System Operator. In

this context, a VPP that includes stochastic generation units can hardly fulfill such

requirements. This chapter introduces an innovative balancing market regulation

that allows a more flexible participation of the VPP, denoted as Active/Passive partic-

ipation. Indeed, the VPP can actively offer its flexibility in some trading intervals,

while passively deviate in the remaining ones. However, in the trading intervals in

which the VPP is an active participant, it cannot create uncontracted imbalances.

We consider two VPPs, composed of a stochastic generation unit, a conventional

production unit, and an electric energy storage system. The first includes a wind

farm and the second a PV solar unit. We formulate the optimal offering model of

a VPP participating in an electricity market where the balancing stage allows an

Active/Passive participation. A multi-stage stochastic optimization problem with re-

course is formulated as a MILP problem. We analyze when the VPP may prefer to

be an active participant and when a passive one. Active participation means more

convenient prices in the balancing market, as well as a more constrained operation

of the units. Indeed, the VPP needs to handle the wind (or solar) power fluctuations

internally and cannot settle them in the balancing market. Differently, a passive par-

ticipation translates into penalized balancing market prices but more flexibility of

operation, as the VPP can deviate from its day-ahead production schedule. We com-

pare the proposed Passive/Active participation strategy against a passive-only (i.e.,

Passive) and an active-only (i.e., Active) strategy. We investigate the increment in the
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expected VPP profit adopting the Passive/Active, with respect to the Active and Pas-

sive ones, for increasing values of the stochastic generation unit (either wind or PV

solar) capacity.

The remaining of the chapter is organized as follows. Section 7.2 introduces the

electricity market framework and the assumptions needed to formulate the offer-

ing model. Section 7.3 presents the structure of the VPP and formulates the feasible

operating region of the different units in the cluster. Then, Section 7.4 derives the

offering models that the VPP can decide to use while trading in the day-ahead mar-

ket. Section 7.5 presents a case study, while Section 7.6 concludes the chapter with a

summary.

7.2 Electricity Market Framework and Assumptions

We take the perspective a VPP offering in a two-settlement electricity market, similar

to the one presented in Section 2.3. The day-ahead market is cleared once a day, at

noon, simultaneously for the whole 24 hourly trading periods of the following day.

The day-ahead market is settled under a uniform pricing scheme. Then, a balancing

market is cleared separately per each hourly interval, one hour before the real-time

operation. The provision of balancing energy is remunerated under a uniform pric-

ing scheme. Both the day-ahead and balancing market give the possibility to submit

non-decreasing offer curves. Then, deviations from the day-ahead schedule are set-

tled in the balancing market under a dual-price imbalance settlement scheme. The

VPP can offer its regulating energy as an active actor in the balancing market for

some trading intervals, while "passively" deviating in remaining ones. However, in

the intervals in which it decides to operate "actively," it cannot deviate from its pro-

duction schedule. The intra-day trading floor is neglected for the sake of simplicity.

Figure 7.1 shows a schematic representation of the electricity market submission

process.

The power producer is assumed to be price-taker in both day-ahead and the

balancing market. Hence, the market prices within the offering strategy of that pro-

ducer are exogenous and uncertain. A set of scenarios models those uncertainties.

The fundamental market model presented in Section 4.3 generates the market price

scenarios, instead of using real market data.
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FIGURE 7.1: Schematic representation of the electricity market frame-
work. The VPP submits the quantity offer qDA in the day-ahead (DA)
market, while actively submitting regulation offers (qUP, qDW) or pas-
sively deviating from its day-ahead schedule (q(+), q(−)) in the bal-

ancing (BA) market.

The scenario generation and reduction algorithm of Chapter 4 gives a a set of

day-ahead market price trajectories {λDA
ik : ∀i ∈ I, ∀k ∈ K}, where i is the index

of the day-ahead market price scenarios and k the index of the time intervals. Each

scenario i is associated with a probability πDA
i of occurrence. Then, for each possi-

ble day-ahead realization i, it generates a set of balancing market price trajectories

{λBA
ijk : ∀i ∈ I, ∀j ∈ J, ∀k ∈ K}, where j is the index of the balancing market price

scenarios. The scenario (ij) occurs with a probability πDA
i πBA

ij . Finally, the VPP has

a set W of forecasts of the power production of the stochastic source (either solar or

wind) {Eωk : ∀ω ∈W, ∀k ∈ K}. Each scenario ω realizes with a probability πEω .

7.3 Virtual Power Plant model

This section presents the approach for modeling the feasible operating region and

the production cost function of the VPP. Section 7.3.1 presents the structure of the

VPP. Section 7.3.2 models the feasible operating region of the VPP. It replaces con-

straint (3.18e) (i.e., the set Ω) in the general offering strategy formulation (3.18) in

Section 3.4. Finally, Section 7.3.3 provides a mathematical formulation of the cost
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function of the VPP. Such formulation substitutes constraint (3.18f) (i.e., the function

h(·)) in the general offering strategy (3.18).

7.3.1 Virtual Power Plant description

The VPP is composed of a conventional production unit, a stochastic power unit,

and an electric energy storage. Let dk (MWh) be the power production of the con-

ventional unit, while Ek (MWh) is the power output of the stochastic energy source

at k. Then, we denote with p(↑)k (MWh) and p(↓)k (MWh) the charging and discharging

power of the electric energy storage. Accordingly, the total power production qAk of

the VPP is given by

qAk = dk + p
(↓)
k − p

(↑)
k + Ek, ∀k. (7.1)

Notice that the term p
(↑)
k in Equation (7.1) is negative, since when the electric storage

is charging it consumes electricity. We consider two alternative VPP structures. The

first includes a wind turbine as the stochastic energy source. Figure 7.2 shows a

schematic representation of the VPP. In the second the wind turbine is replaced by

a PV solar unit. Figure 7.3 gives a representation of the composition of the second

structure of the VPP.
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FIGURE 7.2: Schematic representation of the VPP1. It includes a wind
farm, a conventional unit, and an electric storage.
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FIGURE 7.3: Schematic representation of the VPP2. It includes a PV
solar unit, a conventional unit, and an electric storage.

7.3.2 Feasible Operating Region

The aim of this section is to obtain a set of constraints to replace constraint (3.18e) in

the general offering strategy formulation (3.18), i.e.,

qAk ∈ Ω, ∀k, (7.2)

The VPP is composed of three production units, i.e., a conventional unit, a stochas-

tic energy source, and an electric storage. The uncertain power production Ek of the

stochastic energy source is represented using a set W of scenarios. Consequently,

it is seen as an input parameter and not as a variable. Differently, the conventional

and storage units (dispatchable units) have a feasible region associated with their

operational variables dk, p(↑)k and p(↓)k .

Storage Unit

Let denote with lk the level of the energy stored in the battery at k. The energy

balance within the storage is imposed as

lk = l(k−1) + ηp
(↑)
k −

1

η
p
(↓)
k , ∀k, (7.3)
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where η ∈ [0, 1] is the charging/discharging efficiency of the storage unit. Note that

Equation (7.3) needs the initial level L0 of the storage to be implemented. Then,

additional constraints model the feasible operation of the battery. Indeed, the level

lk of the storage has to lie between its minimum L (MWh) and maximum L (MWh)

level. This leads to

L ≤ lk ≤ L, ∀k, (7.4)

Also the charging/discharging powers are limited by their maximum capacity, de-

noted as P (↑) (MWh) and P (↓) (MWh), respectively. This writes

0 ≤ p
(↑)
k ≤ P

(↑)
, ∀k, (7.5)

0 ≤ p
(↑)
k ≤ P

(↓)
, ∀k, (7.6)

Note that P (↑) and P
(↓) are expressed in MWh as we consider hourly intervals.

Lastly, we impose the level of the storage in the last interval of the time horizon

considered, i.e.,

lK = Lk, (7.7)

where Lk is expressed in MWh.

Conventional Unit

The feasible operating region of the conventional unit can be modeled using the

following set of constraints:

ukD ≤ dk ≤ ukD, ∀k, (7.8a)

dk − d(k−1) ≤ RUP, ∀k, (7.8b)

d(k−1) − dk ≤ RDW, ∀k, (7.8c)

uk ∈ {0, 1}, ∀k, (7.8d)

where D (MWh) and D (MWh) are the minimum and the maximum power output

of the unit, respectively. RUP (MWh) and RDW (MWh) are the upward and down-

ward ramping limits of the unit, while uk is the commitment (binary) status of the

unit. Note thatD,D,RUP, andRDW are all expressed in MWh as we consider hourly

intervals. Constraint (7.8a) forces dk to lie betweenD andD when the unit is on-line,

i.e., when uk = 1. Constraints (7.8b) and (7.8c) impose the ramping limitations, in

upward and downward direction, respectively. Finally, constraint (7.8d) imposes
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that uk is a binary variable.

Formulation of Ω

The set Ω representing the feasible region of the VPP can be replaced by

qAk = dk + p
(↓)
k − p

(↑)
k + Ek, ∀k, (7.9a)

lk = l(k−1) + ηp
(↑)
k −

1

η
p
(↓)
k , ∀k, (7.9b)

L ≤ lk ≤ L, ∀k, (7.9c)

0 ≤ p
(↑)
k ≤ P

(↑)
, ∀k, (7.9d)

0 ≤ p
(↓)
k ≤ P

(↓)
, ∀k, (7.9e)

ukD ≤ dk ≤ ukD, ∀k, (7.9f)

dk − d(k−1) ≤ RUP, ∀k, (7.9g)

d(k−1) − dk ≤ RDW, ∀k, (7.9h)

uk ∈ {0, 1}, ∀k, (7.9i)

Constraint (7.9a) imposes the energy balance between the total energy produced

by the VPP, i.e., qAk , and the sum of the power injection of each component of the

cluster. Constraints from (7.9b) to (7.9e) are associated with the storage unit, while

constraints from (7.9f) to (7.9i) with the conventional production unit.

7.3.3 Production Cost Function

This section gives a formulation to compute the production cost function of the VPP.

We derive a formulation aimed at replacing constrain (3.18f) in the general offering

strategy formulation (3.18), i.e.,

ĉk = h
(
qAk

)
, ∀k (7.10)

The stochastic energy source, i.e., wind or solar power, is assumed to produce en-

ergy at zero marginal cost. Similarly, the battery does not have a production cost

associated with its charging and discharging power. Therefore, the production cost

of the VPP is solely linked to the conventional unit power production dk. In this case,

we consider a linear cost function, neglecting non-convex costs such as start-up and
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shut-down costs. Accordingly, the cost ck for producing the energy dk at interval k

can be evaluated as

ck = C0uk + Cdk, ∀k, (7.11)

where C0 (e) and C (e/MWh) control the cost function. Finally, Equation (7.10) can

be reformulated as

ĉk = E[ck] ∀k, (7.12a)

ck = C0uk + Cdk, ∀k, (7.12b)

7.4 Optimal Offering Strategy

This section derives different offering strategies that the VPP may use to obtain its

best day-ahead market offers. We start from the generic formulation for the price-

taker and risk-neutral producer in Equations (3.18), extended to the 24 trading inter-

vals. We replace qAk with its formulation in Equation (7.1), thus leading to

Max
Γ

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k + ρ̂BA

k − ĉk (7.13a)

s.t. qDA
k + qUP

k − qDW
k + q

(+)
k − q

(−)
k = dk + p

(↓)
k − p

(↑)
k + Ek, ∀k, (7.13b)

qDA
k , ρ̂DA

k ∈ ΠDA, ∀k, (7.13c)

qUP
k , qDW

k , ρ̂UP
k , ρ̂DW

k ∈ ΠBA
Act, ∀k, (7.13d)

q
(+)
k , q

(−)
k , ρ̂BA

k ∈ ΠBA
Pas, ∀k, (7.13e)

ĉ = h(dk) , ∀k, (7.13f)

dk, p
(↓)
k , p

(↑)
k ∈ Ω, ∀k, (7.13g)

where

Γ = {dk, p
(↓)
k , p

(↑)
k , qDA

k , qUP
k , qDW

k , q
(+)
k , q

(−)
k , ρ̂DA

k , ρ̂UP
k , ρ̂DW

k , ρ̂BA
k , ĉk}. (7.14)

Section 7.4.1 presents a Passive offering strategy, i.e., when the VPP passively de-

viates from its schedule in the balancing market. Then, Section 7.4.2 formulates an

Active offering strategy, i.e., when the producer actively offers the available regulat-

ing energy in the balancing market. Finally, Section 7.4.3 presents a Active/Passive
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strategy, where the VPP is allowed to actively offer regulating energy in some trad-

ing intervals and passively deviate from its schedule in the remaining ones.

7.4.1 Passive-only Offering Strategy

This section considers the VPP as a passive actor in the balancing market. Accord-

ingly, we remove from model (7.13) the variables and constraints associated with an

active participation. We eliminate constraint (7.13d), we remove the variables qUP
k

and qDW
k from constraint (7.13b), and we remove ρ̂UP

k and ρ̂DW
k from the objective

function (7.13a). The day-ahead market offers qDA
k are modeled as first stage deci-

sions, while the real time deviations q(+)
k and q(−)

k as recourse decisions. Accordingly,

we make them scenario-dependent, i.e., q(+)
k → q

(+)
iωk and q(−)

k → q
(−)
iωk . Note that they

are independent from the scenario j, as their value is fixed before that the balanc-

ing market prices are revealed. Figure 6.7 illustrates the stochastic programming

framework of the Passive offering strategy. Besides, we render scenario-dependent

qDA

λDA
i

Eω q
(+)
iω

, q
(−)
iω

λBA
ij

λBA
ij

Eω q
(+)
iω

, q
(−)
iω

λBA
ij

λBA
ij

λDA
i

Eω q
(+)
iω

, q
(−)
iω

λBA
ij

λBA
ij

Eω q
(+)
iω

, q
(−)
iω

λBA
ij

λBA
ij

first
stage

second
stage

decisions

uncertainty
disclosure

FIGURE 7.4: Schematic illustration of the stochastic programming
framework of the Passive offering strategy.

the operational variables of the VPP, e.g., dk → diωk. Finally, we make the day-ahead

market offer scenario-dependent to derive the offer curves, i.e., qDA
k → qDA

ik . This
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leads to the following formulation:

Max
ΓPas

∑

k

ρ̂DA
k + ρ̂BA

k − ĉk (7.15a)

s.t. qDA
ik + q

(+)
iωk − q

(−)
iωk = diωk + p

(↓)
iωk − p

(↑)
iωk + Eωk, ∀i, ∀ω, ∀k (7.15b)

qDA
ik , ρ̂

DA
k ∈ ΠDA, ∀i, ∀k (7.15c)

q
(+)
iωk , q

(−)
iωk , ρ̂

BA
k ∈ ΠBA

Pas, ∀i, ∀ω, ∀k (7.15d)

ĉ = h(diωk) , ∀k (7.15e)

diωk, p
(↓)
iωk, p

(↑)
iωk ∈ Ω. ∀i, ∀ω, ∀k (7.15f)

where

ΓPas = {diωk, p
(↓)
iωk, p

(↑)
iωk, q

DA
ik , q

(+)
iωk , q

(−)
iωk , ρ̂

DA
k , ρ̂BA

k , ĉk}. (7.16)

The objective function (7.15a) maximizes the producer’s expected profit, including

both the day-ahead market revenue and the one linked to a passive balancing mar-

ket participation. Constraint (7.15b) imposes the energy balance between the en-

ergy produced by the VPP and the energy exchanged with the electricity market.

Constraint (7.15c) is a set of constraints associated with the day-ahead market offer

curves. Similarly, constraint (7.32e) is a set of constraints related to the passive par-

ticipation in the balancing market. Constraint (7.15e) yields the expected production

cost of the VPP, while constraint (7.15f) imposes the feasible operating region of the

VPP.

Linear Formulation of ΠDA

The set ΠDA in Equation (7.15c) is a set of constraints associated with the day-ahead

market offer curves. The formulation of the set ΠDA is presented in Equations (3.44)

in Section 3.4.3. Its formulation is adapted to the VPP, i.e.,

Q = −P
(↑)
, (7.17)

Q = D + E + P
(↓)
, (7.18)
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where E (MW) is the capacity of the stochastic energy source. This leads to

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (7.19a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, i′, ∀k (7.19b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i, i′, ∀k (7.19c)

− P
(↑)

≤ qDA
ik ≤ D + E + P

(↓)
, ∀i, ∀k (7.19d)

Constraint (7.25a) yields the expected day-ahead market income of the power pro-

ducer. Constraints (7.25b) and (7.25c) impose the non-decreasing and non-anticipativity

conditions of the offer curves, respectively. Finally, constraint (7.25d) limits the day-

ahead market offers qDA
ik .

Linear Formulation of ΠBA
Pas

The set ΠBA
Pas in Equation (7.32e) is a set of constraint associated with the passive par-

ticipation in the balancing market. Section 3.4.8 provides a formulation of ΠBA
Pas for

a price-taker and risk-neutral producer participating in a balancing market settled

under a dual-price imbalance settlement scheme, i.e., Equations (3.106). Adapting it

the VPP leads to

ρ̂BA
k =

∑

ijω

πDA
i πBA

ij πEω

(
λ
(+)
ij q

(+)
ijω − λ

(−)
ij q

(−)
ijω

)
, ∀k (7.20a)

q
(+)
ijω , q

(−)
ijω ≥ 0, ∀i, ∀j, ∀ω. (7.20b)

where λ(+)
ij = min

(
λDA
i , λBA

ij

)
and λ

(−)
ij = max

(
λDA
i , λBA

ij

)
. Constraint (7.20a) yields

the expected balancing market income ρ̂BA
k , while constraint (7.20b) forces q(+)

ijω and

q
(−)
ijω to be non negative.

Linear Formulation of the Cost Function

The formulation of the cost function presented in Section 7.3.3 is used to replace

constraint (7.15e), i.e.,

ĉk =
∑

iω

πDA
i πEωciωk, ∀k, (7.21a)

ciωk = C0uiωk + Cdiωk, ∀i, ∀ω, ∀k, (7.21b)
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Linear Formulation of Ω

The formulation of the Ω shown in Section 7.3.2. Readjusting it according to the

stochastic programming framework, constraint (7.15f) ca be replaced by

liωk = liω(k−1) + ηp
(↑)
iωk −

1

η
p
(↓)
iωk, ∀i, ∀ω, ∀k, (7.22a)

L ≤ liωk ≤ L, ∀i, ∀ω, ∀k, (7.22b)

0 ≤ p
(↑)
iωk ≤ P

(↑)
, ∀i, ∀ω, ∀k, (7.22c)

0 ≤ p
(↓)
iωk ≤ P

(↓)
, ∀i, ∀ω, ∀k, (7.22d)

uiωkD ≤ diωk ≤ uiωkD, ∀i, ∀ω, ∀k, (7.22e)

diωk − diω(k−1) ≤ RUP, ∀i, ∀ω, ∀k, (7.22f)

diω(k−1) − diωk ≤ RDW, ∀i, ∀ω, ∀k, (7.22g)

uiωk ∈ {0, 1}, ∀i, ∀ω, ∀k. (7.22h)

7.4.2 Active-only Offering Strategy

This section considers the VPP as an active participant in the balancing market. Con-

sequently, we remove from model (7.13) the variables and constraints associated

with a passive behavior. Indeed, we eliminate constraint (7.13e), we remove the vari-

ables q(+)
k and q(−)

k from the energy balance in constraint (7.13b), and we remove ρ̂BA
k

from the objective function (7.13a). The day-ahead market offers qDA
k are modeled as

first stage decisions, while the upward and downward regulation adjustments qUP
k

and qDW
k as recourse decisions. Accordingly, they are made dependent to the day-

ahead market realization, i.e., qUP
k → qUP

ik and qDW
k → qDW

ik . Figure 6.7 illustrates the

stochastic programming framework of the Active offering strategy. Then, we make

the day-ahead market offers scenario-dependent in order to obtain non-decreasing

offering curves, i.e., qDA
k → qDA

ik . We do the same for the balancing market offers,

i.e., qUP
ik → qUP

ijk and qDW
ik → qDW

ijk . Additionally, we render scenario-dependent the

operational variables of the VPP, e.g., dk → dijωk. This leads to the following offering
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FIGURE 7.5: Schematic illustration of the stochastic programming
framework of the Active offering strategy.

strategy:

Max
ΓAct

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k − ĉk (7.23a)

s.t. qDA
ik + qUP

ijk − qDW
ijk = dijωk + p

(↓)
ijωk − p

(↑)
ijωk + Eωk, ∀k, (7.23b)

qDA
ik , ρ̂

DA
k ∈ ΠDA, ∀k, (7.23c)

qUP
ijk , q

DW
ijk , ρ̂

UP
k , ρ̂DW

k ∈ ΠBA
Act, ∀k, (7.23d)

ĉ = h(dijωk) , ∀k, (7.23e)

dijωk, p
(↓)
ijωk, p

(↑)
ijωk ∈ Ω, ∀k, (7.23f)

where

ΓAct = {dijωk, p
(↓)
ijωk, p

(↑)
ijωk, q

DA
ik , q

UP
ijk , q

DW
ijk , ρ̂

DA
k , ρ̂UP

k , ρ̂DW
k , ĉk}. (7.24)

The objective function maximizes the expected producer’s profit, including the rev-

enues from both the day-ahead and the balancing market. Constraint (7.23b) im-

poses the energy balance between the energy production of the VPP and the amount

of energy exchanged with the electricity market platform. Constraints (7.23c) and

(7.23d) are two set of constraints associated with the day-ahead and balancing mar-

ket offer curves, respectively. Finally, constraint (7.23e) yields the expected produc-

tion cost of the VPP, while constraint (7.23f) imposes the feasible operating region of

the units composing the VPP. Notice that the Active offering strategy may be infea-

sible. It occurs when the VPP cannot compensate the imbalances of the stochastic

energy source with the dispatchable units.
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Linear Formulation of ΠDA

The set ΠDA in Equation (7.15c) is the same one seen in Section 7.4.1, i.e.,

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (7.25a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, i′, ∀k (7.25b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i, i′, ∀k (7.25c)

− P
(↑)

≤ qDA
ik ≤ D + E + P

(↓)
, ∀i, ∀k (7.25d)

Linear Formulation of ΠBA
Act

The set ΠBA
Act imposing a set of constraints associated with the balancing market of-

fer curves is presented in Section 3.4.6. As the balancing market is settled under a

uniform pricing scheme, we use the formulation in Equations (3.81). Adapting it the

stochastic framework leads to:

ρ̂UP
k =

∑

ij

πDA
i πBA

ji λBA
ijk q

UP
ijk , ∀k, (7.26a)

ρ̂DW
k = −

∑

ij

πDA
i πBA

ij λBA
ijk q

DW
ijk , ∀k, (7.26b)

qUP
ijk ≥ qUP

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.26c)

qUP
ijk = qUP

ij′k if λBA
ijk = λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.26d)

qDW
ijk ≤ qDW

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.26e)

qDW
ijk = qDW

ij′k if λBA
ijk = λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.26f)

qUP
ijk = 0 if λBA

ijk ≤ λDA
ik , ∀i, ∀j, ∀k, (7.26g)

qDW
ijk = 0 if λBA

ijk ≥ λDA
ik , ∀i, ∀j, ∀k, (7.26h)

qUP
ijk , q

DW
ijk ≥ 0, ∀i, ∀j, ∀k. (7.26i)

Constraints (7.26a) and (7.26b) yield the expected revenue from submitting offer

curves in the balancing market for up- and down-regulation, respectively. Con-

straints (7.26c) and (7.26e) impose the non-decreasing and non-increasing require-

ments of the up- and down-regulation offer curves, respectively. Constraints (7.26d)
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and (7.26f) enforce the non-anticipativity condition of the offer curves, while con-

straints (7.26g) and (7.26h) prevent from offering of up- and down-regulation energy

when not required by the system. Finally, constraint (7.26i) sets qUP
ijk and qDW

ijk as non-

negative variables.

Linear Formulation of the Cost Function

The formulation of the cost function presented in Section 7.3.3 replaces constraint

(7.15e), i.e.,

ĉk =
∑

ijω

πDA
i πBA

ij πEωcijωk, ∀k, (7.27a)

cijωk = C0uijωk + Cdijωk, ∀i, ∀j, ∀ω, ∀k, (7.27b)

Linear Formulation of Ω

The formulation of Ω given in Section 7.3.2 substitutes constraint (7.15f) as

lijωk = lijω(k−1) + ηp
(↑)
ijωk −

1

η
p
(↓)
ijωk, ∀i, ∀j, ∀ω, ∀k, (7.28a)

L ≤ lijωk ≤ L, ∀i, ∀j, ∀ω, ∀k, (7.28b)

0 ≤ p
(↑)
ijωk ≤ P

(↑)
, ∀i, ∀j, ∀ω, ∀k, (7.28c)

0 ≤ p
(↓)
ijωk ≤ P

(↓)
, ∀i, ∀j, ∀ω, ∀k, (7.28d)

uijωkD ≤ dijωk ≤ uijωkD, ∀i, ∀j, ∀ω, ∀k, (7.28e)

dijωk − dijω(k−1) ≤ RUP, ∀i, ∀j, ∀ω, ∀k, (7.28f)

dijω(k−1) − dijωk ≤ RDW, ∀i, ∀j, ∀ω, ∀k, (7.28g)

uijωk ∈ {0, 1}, ∀i, ∀j, ∀ω, ∀k. (7.28h)

7.4.3 Active-Passive Offering Strategy

This section considers the novel Active/Passive participation in the balancing market.

This offering strategy is a trade-off between the Passive strategy shown in Section

7.4.1 and the Active one of Section 7.4.2. The day-ahead market offers qDA
k are mod-

eled as first stage decisions, while the upward and downward regulation adjust-

ments qUP
k and qDW

k and the real-time deviations q(+)
k and q(−)

k as recourse decisions.
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Accordingly, the regulation adjustments are made dependent on the day-ahead sce-

narios, i.e., qUP
k → qUP

ik and qDW
k → qDW

ik , while the real time deviations dependent

on the scenario (iω), as their value is conditional to the realization of the stochastic

energy source production, i.e., q(+)
k → q

(+)
iωk and q

(−)
k → q

(−)
iωk . Figure 6.7 illustrates

the stochastic programming framework of the Active/Passive offering strategy. Then,

qDA
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i
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Eω q
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Eω q
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FIGURE 7.6: Schematic illustration of the stochastic programming
framework of the Active/Passive offering strategy.

we make the day-ahead market offers scenario-dependent to obtain offer curves,

i.e., qDA
k → qDA

ik . We do the same for the balancing market regulation offers, i.e.,

qUP
ik → qUP

ijk and qDW
ik → qDW

ijk . Additionally, we prevent the VPP from operating ac-

tively and passively simultaneously in the same trading interval k. Accordingly, for

each k, we impose

(
qUP
ijk + qDW

ijk

)
⊥

(
q
(+)
iωk + q

(−)
iωk

)
, ∀i, ∀j, ∀ω. (7.29)

Equation (7.29) imposes that, at k, if qUP
ijk and qDW

ijk are greater than 0, then q(+)
iωk and

q
(−)
iωk are forced to be null. This translates in being active at k. Conversely, if q(+)

iωk

and q
(−)
iωk are greater than 0, then qUP

ijk and qDW
ijk are constrained to be null. Indeed,

the VPP is a passive participant for that interval. However, the formulation (7.29)

is not suitable to be implemented in conventional optimization solver as GAMS or

GUROBI. To reformulate it, we use the so-called big-M approach, generally used for

complementarity constraints as Equation (7.29). To do so, we introduce the binary

variable ǫik ∈ {0, 1}, and the parameter M . Then, the complementarity between the
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active and the passive participation is imposed by

qUP
ijk + qDW

ijk ≤ ǫikM, ∀i, ∀j, ∀ω, ∀k,

q
(+)
iωk + q

(−)
iωk ≤ (1− ǫik)M, ∀i, ∀j, ∀ω, ∀k,

ǫik ∈ {0, 1}, ∀k.

Note that if ǫik = 1, then qUP
ijk + qDW

ijk ≤ M and q(+)
iωk + q

(−)
iωk ≤ 0, i.e., the VPP is active

at k, provided that scenario i realizes. Conversely, if ǫik = 0, then qUP
ijk +q

DW
ijk ≤ 0 and

q
(+)
iωk+q

(−)
iωk ≤M , i.e., the VPP is passive at k. An appropriate choice ofM is important

as a small value of M may impose an undesired bound to the balancing market

decisions. Differently, a too high value of M may lead to approximation errors in

the optimization solver. In this case, qUP
ijk , q

DW
ijk , q

(+)
iωk , q

(−)
iωk are naturally bounded by

the VPP capacity. Indeed, we set

M = E +D + P
(↑)

+ P
(↓) (7.31)

The Active/Passive offering strategy is formulated as

Max
ΓActPas

∑

k

ρ̂DA
k + ρ̂UP

k + ρ̂DW
k + ρ̂BA

k − ĉk (7.32a)

s.t. qDA
ik + qUP

ijk − qDW
ijk + q

(+)
iωk − q

(−)
iωk = dijωk + p

(↓)
ijωk − p

(↑)
ijωk + Eωk, ∀k,

(7.32b)

qDA
ik , ρ̂

DA
k ∈ ΠDA, ∀k, (7.32c)

qUP
ijk , q

DW
ijk , ρ̂

UP
k , ρ̂DW

k ∈ ΠBA
ActPass, ∀k, (7.32d)

q
(+)
iωk , q

(−)
iωk , ρ̂

BA
k ∈ ΠBA

Pas, ∀i, ∀ω, ∀k (7.32e)

ĉ = h(dijωk) , ∀k, (7.32f)

dijωk, p
(↓)
ijωk, p

(↑)
ijωk ∈ Ω, ∀k, (7.32g)

qUP
ijk + qDW

ijk ≤ ǫikM, ∀i, ∀j, ∀ω, ∀k, (7.32h)

q
(+)
iωk + q

(−)
iωk ≤ (1− ǫik)M, ∀i, ∀j, ∀ω, ∀k, (7.32i)

ǫik ∈ {0, 1}, ∀i, ∀k. (7.32j)
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where

ΓActPas = {dijωk, p
(↓)
ijωk, p

(↑)
ijωk, q

DA
ik , q

UP
ijk , q

DW
ijk , q

(+)
iωk , q

(−)
iωk , ǫik, ρ̂

DA
k , ρ̂UP

k , ρ̂DW
k , ρ̂BA

k , ĉk}.

(7.33)

The objective function (7.32a) maximizes the producer’s expected profit, including

both an active and a passive balancing market participation. The energy balance

between the VPP power production and the amount of energy exchanged with the

market is enforced by constraint (7.32b). Constraints (7.23c) and (7.23d) are two set

of constraints associated with the day-ahead and balancing market offer curves, re-

spectively. Similarly, constraint (7.32e) is a set of constraints related to the passive

participation in the balancing market. Constraint (7.32f) yields the expected produc-

tion cost of the VPP, while constraint (7.32g) imposes the feasible operating region of

the VPP. Finally, constraints (7.32h), (7.32i) and (7.32j) impose the complementarity

between the active and passive participation in the balancing market.

Linear Formulation of ΠDA

The set ΠDA in Equation (7.15c) is the same of Section 7.4.1, i.e.,

ρ̂DA
k =

∑

i

πDA
i λDA

ik qDA
ik , ∀k, (7.34a)

qDA
ik ≥ qDA

i′k if λDA
ik ≥ λDA

i′k , ∀i, i′, ∀k (7.34b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i, i′, ∀k (7.34c)

− P
(↑)

≤ qDA
ik ≤ D + E + P

(↓)
, ∀i, ∀k (7.34d)

Linear Formulation of ΠBA
Act
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The set ΠBA
Act is the same of the Active offering strategy in Section 7.4.2, i.e.,

ρ̂UP
k =

∑

ij

πDA
i πBA

ji λBA
ijk q

UP
ijk , ∀k, (7.35a)

ρ̂DW
k = −

∑

ij

πDA
i πBA

ij λBA
ijk q

DW
ijk , ∀k, (7.35b)

qUP
ijk ≥ qUP

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.35c)

qUP
ijk = qUP

ij′k if λBA
ijk = λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.35d)

qDW
ijk ≤ qDW

ij′k if λBA
ijk ≥ λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.35e)

qDW
ijk = qDW

ij′k if λBA
ijk = λBA

ij′k, ∀i, ∀j, ∀j′, ∀k (7.35f)

qUP
ijk = 0 if λBA

ijk ≤ λDA
ik , ∀i, ∀j, ∀k, (7.35g)

qDW
ijk = 0 if λBA

ijk ≥ λDA
ik , ∀i, ∀j, ∀k, (7.35h)

qUP
ijk , q

DW
ijk ≥ 0, ∀i, ∀j, ∀k. (7.35i)

Linear Formulation of ΠBA
Pas

The set ΠBA
Pas is the same of the Passive offering strategy in Section 7.4.1, i.e.,

ρ̂BA
k =

∑

ijω

πDA
i πBA

ij πEω

(
λ
(+)
ij q

(+)
ijω − λ

(−)
ij q

(−)
ijω

)
, ∀k (7.36a)

q
(+)
ijω , q

(−)
ijω ≥ 0, ∀i, ∀j, ∀ω. (7.36b)

Linear Formulation of the Cost Function

The formulation of the cost function presented in Section 7.3.3 replaces constraint

(7.15e), i.e.,

ĉk =
∑

ijω

πDA
i πBA

ij πEωcijωk, ∀k, (7.37a)

cijωk = C0uijωk + Cdijωk, ∀i, ∀j, ∀ω, ∀k, (7.37b)

Linear Formulation of Ω
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The formulation of the Ω Section 7.3.2 substitutes constraint (7.15f), i.e.,

lijωk = lijω(k−1) + ηp
(↑)
ijωk −

1

η
p
(↓)
ijωk, ∀i, ∀j, ∀ω, ∀k, (7.38a)

L ≤ lijωk ≤ L, ∀i, ∀j, ∀ω, ∀k, (7.38b)

0 ≤ p
(↑)
ijωk ≤ P

(↑)
, ∀i, ∀j, ∀ω, ∀k, (7.38c)

0 ≤ p
(↓)
ijωk ≤ P

(↓)
, ∀i, ∀j, ∀ω, ∀k, (7.38d)

uijωkD ≤ dijωk ≤ uijωkD, ∀i, ∀j, ∀ω, ∀k, (7.38e)

dijωk − dijω(k−1) ≤ RUP, ∀i, ∀j, ∀ω, ∀k, (7.38f)

dijω(k−1) − dijωk ≤ RDW, ∀i, ∀j, ∀ω, ∀k, (7.38g)

uijωk ∈ {0, 1}, ∀i, ∀j, ∀ω, ∀k. (7.38h)

7.5 Case Study

This section presents a case study to test the offering models of Section 7.4. The

scenarios to be used as input to the stochastic offering models are generated follow-

ing the methodology presented in Chapter 4. Tables 7.1 and 7.2 show the parameters

used to characterize the fundamental market model of Section 4.3. First, we generate

300 scenarios for λDA
ik and we select the 10 most representative ones. Then, for each

scenario λDA
ik , we generate 300 scenarios of λBA

ijk and keep the 6 most representative

ones.

TABLE 7.1: Parameters of the market price generation model

δ β µγ σ2γ λ0

(e/MWh2) (e/MWh2) (e/MWh3) (e/MWh3) (e/MWh)

-6.67×10−3 1×10−4 2×10−8 3×10−9 -20

TABLE 7.2: Values of parameter αk

k 1 2 3 4 5 6 7 8
αk (e/MWh) 322 312 315 317 340 349 353 369

k 9 10 11 12 13 14 15 16
αk (e/MWh) 394 424 444 445 440 429 437 458

k 17 18 19 20 21 22 23 24
αk (e/MWh) 446 423 408 383 373 346 331 332
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The data of the conventional production unit are shown in Table 7.3. Similarly,

the characteristics of the storage unit are presented in Table 7.4. The optimization

models are implemented using GUROBI in PYTHON environment.

TABLE 7.3: Parameters of the conventional generation unit

D D RUP RDW C0 C
(MWh) (MWh) (MWh) (MWh) (e) (e/MWh)

0 70 30 30 0 45

TABLE 7.4: Parameters of the electric storage unit

L L P
(↑)

P
(↓)

η
(MWh) (MWh) (MWh) (MWh)

0 80 30 30 0.90

7.5.1 VPP with wind farm

Figure 7.7 illustrates the 10 selected trajectories λDA
ik . Similarly, Figure 7.8 does for

the 6 scenarios λBA
ijk, for a given realization λDA

k . Note that the balancing market

shows high uncertainty up to 10 a.m. and from 4 p.m. to midnight. Differently, the

hourly intervals between 10 a.m. and 4 p.m. show less uncertainty in the balancing

market price. Together with the market price scenarios, we generate trajectories of
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FIGURE 7.7: Day-ahead market price scenarios.

the power production of the wind farm. We randomly sample 300 scenarios and we

reduce to the 5 more significant ones. Figure 7.9 shows the 5 selected trajectories for

the wind power production, in p.u. The result is a scenario tree with 300 branches

(10× 6× 5).
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FIGURE 7.9: Wind power production trajectories, in p.u.



7.5. Case Study 169

We initially consider a wind farm of capacity E of 50 MW. With the Active strat-

egy the VPP offers its regulating energy in the balancing market, but it is not al-

lowed to deviate from its production schedule. Differently, with the Passive strategy,

the VPP deviates from its day-ahead contracted schedule, but it is prevented from

offering regulating power at the balancing stage. Finally, the Active/Passive strategy

is a combination of the Active and Passive ones. Indeed, the VPP can offer regulat-

ing energy for some trading intervals and passively deviate in the remaining ones.

The complementarity between the active/passive choice is imposed by the binary

variable ǫik. If ǫik = 1, the VPP is predicting to act as an active participant at the

balancing stage during the interval k, provided that the day-ahead scenario i real-

izes. For the same scenario, if ǫik = 0, the VPP is considering to behave passively

and deviate from its contracted schedule. Being ǫ∗ik its optimal solution, we com-

pute the probability that the VPP will be an active participant during the interval k

as
∑

i π
DA
i ǫ∗ik. Similarly, the probability of being passive is

∑
i π

DA
i (1 − ǫ∗ik). Those

probabilities are illustrated in Figure 7.10, the active one in green and the passive

one in red.
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FIGURE 7.10: Probability that the VPP is going to be active (blue) and
passive (red).

From midnight to 10 a.m., the VPP will decide to be either active or passive based

on the day-ahead market scenario realization. Indeed, in this time horizon, the bal-

ancing market price (see Figure 7.8) is quite uncertain, i.e., it is hard to guess if the

system is going to require upward or downward regulation. This makes a passive
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approach riskier, due to the possibility of incurring in penalties when the producer’s

deviation and the system imbalance have the same sign. However, even if uncertain,

the spread between the balancing price scenarios and the day-ahead realization is

narrow (both in upward and downward regulation), thus resulting in a small penal-

ization when occurs and, consequently, low profits from actively selling regulating

energy. For the same trading intervals, the uncertainty in the wind power produc-

tion is limited (see Figure 7.9) as likely occurs a low wind production. This would

benefit an active approach as the flexibility of the storage and the conventional unit

could be used to offer regulating energy and not to compensate the wind power

fluctuations, which are likely to be small. This trade-off is clear in Figure 7.10, as the

VPP decides to be active or passive depending on the amount of energy scheduled

in the day-ahead market. Then, from 10 a.m. to 4 p.m. the VPP decides that it is

going to passively deviate from its day-ahead schedule, disregarding the day-ahead

market scenario realization. In this interval, the uncertainty in the balancing market

prices is limited as the realizations are likely to be close to the day-ahead market

price. This, together with an uncertain wind power production, makes a passive

approach more attractive in this time horizon. Finally, from 6 p.m. to midnight the

VPP is almost sure to sell regulating energy in the balancing market. This translates

in internally handling the wind power production fluctuations, which is extremely

uncertain in this time interval. Indeed, it can vary from around 20% to almost 80%

of the wind farm capacity. However, the balancing market prices are going to be

"far" from the day-ahead market ones with high probability. Accordingly, passive

deviations from the day-ahead schedule may incur in high penalties, while the sell

of regulating energy can be very profitable.

Table 7.5 shows the optimal day-ahead quantity offers qDA
ik for the hourly inter-

val k = 6 of the three offering strategy (i.e., Active/Passive, Active, and Passive). With
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TABLE 7.5: Optimal values of qDA
i6 for the three offering strategy (i.e.,

Active/Passive, Active, and Passive). The capacity of wind farm E is 50
MW).

i
λDA
i6 qDA

i6

(e/MWh) (MWh)
Active/Passive Active Passive

1 36.7 8.0 2.0 2.5
2 35.4 2.0 2.0 2.0
3 41.8 13.0 5.8 12.4
4 39.3 8.0 2.0 2.5
5 35.6 2.0 2.0 2.0
6 36.1 2.0 2.0 2.0
7 35.0 2.0 2.0 2.0
8 41.5 12.4 2.0 12.4
9 33.5 2.0 2.0 2.0

10 40.3 12.4 2.0 12.4

these results, the VPP builds its day-ahead offer curve. For the Active/Passive ap-

proach, they the amount of energy qDA,Act/Pas
6 scheduled by the offer curve is

qDA,Act/Pas
6 =





0, if λDA
6 < 33.5

2.0, if 33.5 ≤ λDA
6 < 36.7

8.0, if 36.7 ≤ λDA
6 < 40.3

12.4, if 40.3 ≤ λDA
6 < 41.8

13.0, if λDA
6 ≥ 41.8,

(7.39)

and its associated offer curve is built with four price-quantity offer points, i.e., (e33.5/MWh,

2.0 MWh), (e36.7/MWh, 8.0 MWh), (e40.3/MWh, 12.4 MWh), and (e41.8/MWh,

13.0 MWh). Differently, for the Active strategy the quantity qDA,Act
6 is given by

qDA,
6 =





0, if λDA
6 < 33.5

2.0, if 33.5 ≤ λDA
6 < 41.8

5.8, if λDA
6 ≥ 41.8,

(7.40)
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and the related offer curve is made by the two offer points (e33.5/MWh, 2.0 MWh),

and (e5.8/MWh, 5.8 MWh). Finally, for the Passive strategy qDA,Pas
6 is evaluated as

qDA,Pas
6 =





0, if λDA
6 < 33.5

2.0, if 33.5 ≤ λDA
6 < 36.7

2.5, if 36.7 ≤ λDA
6 < 40.3

12.4, if λDA
6 ≥ 40.3,

(7.41)

and its offer curve is generated by the price-quantity points (e33.5/MWh, 2.0 MWh),

(e36.7/MWh, 2.5 MWh), and (e40.3/MWh, 12.4 MWh).

A graphic representation of the offer curves of the three strategy is shown in Fig-

ure 7.11. Under all the three approaches the VPP is willing to produce 2.0 MWh pro-
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FIGURE 7.11: Illustration of the offer curves of the three strategies,
i.e., Active/Passive (blue), Active (green), and Passive (red), for the

hourly interval k = 6.

vided that λDA
6 ≥ 33.5. Then, if λDA

6 ≥ 36.7 the Active/Passive and Passive strategies

schedule additional 6.0 MWh and 0.5 MWh, respectively. Differently, the Active strat-

egy increases its production from 2.0 to 5.8 MWh only if λDA
6 ≥ 41.8. For the same

price interval (i.e., λDA
6 ≥ 41.8) the Active/Passive approach schedules 13.0 MWh

and the Passive one 12.4 MWh. The Active strategy contracts a lower quantity in the

day-ahead compared to the Passive one. In this way, it can subsequently submits

upward regulation offers in the balancing stage. Consequently, in the Active/Passive
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strategy the VPP will be an active participant if the amount of energy scheduled

in the day-ahead market is low, and a passive one otherwise. Table 7.6 shows the

optimal day-ahead quantity offers qDA
ik for the hourly interval k = 15 of the three

offering strategy (i.e., Active/Passive, Active, and Passive). Under the Passive/Active

TABLE 7.6: Optimal values of qDA
i15 for the three offering strategy (i.e.,

Active/Passive, Active, and Passive). The capacity of wind farm E is 50
MW).

i
λDA
i15 qDA

i15

(e/MWh) (MWh)
Active/Passive Active Passive

1 67.4 97.9 105.4 112.4
2 58.2 91.1 92.1 91.1
3 68.5 97.9 105.4 112.4
4 65.3 97.9 105.4 106.5
5 75.1 121.1 105.4 121.1
6 61.5 91.1 92.1 106.5
7 62.9 91.1 92.1 106.5
8 65.9 97.9 105.4 106.5
9 63.7 91.1 92.1 106.5

10 80.3 121.1 105.4 121.1

strategy, the VPP builds its day-ahead offer curves with three price-quantity offer

points, i.e., (e58.2/MWh, 91.1 MWh), (e65.2/MWh, 97.9 MWh), and (e75.1/MWh,

121.1 MWh). Therefore, it schedules the following amount of energy qDA,Act/Pas
15 :

qDA,Act/Pas
15 =





0, if λDA
15 < 58.2

91.1, if 58.2 ≤ λDA
15 < 65.3

97.9, if 65.3 ≤ λDA
15 < 75.1

121.1, if λDA
15 ≥ 75.1.

(7.42)

Differently, the Active strategy offer curve is built with two offer points, i.e., (e58.2/MWh,

92.1 MWh), and (e65.3/MWh, 105.4 MWh). Accordingly, the quantity qDA,Act
15 is

given by

qDA,Act
15 =





0, if λDA
15 < 58.2

92.1, if 58.2 ≤ λDA
15 < 65.3

105.4, if λDA
15 ≥ 65.3.

(7.43)

Finally, for the Passive strategy offer curve is composed by (e58.2/MWh, 91.1 MWh),

(e61.5/MWh, 106.5 MWh), (e67.4/MWh, 112.4 MWh), and (e75.1/MWh, 121.1
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MWh) and its related qDA,Pas
15 is

qDA,Pas
15 =





0, if λDA
15 < 58.2

91.1, if 58.2 ≤ λDA
15 < 61.5

106.5, if 61.5 ≤ λDA
15 < 67.4

112.4, if 67.4 ≤ λDA
15 < 75.1

121.1, if λDA
15 ≥ 75.1.

(7.44)

A graphic representation of the offer curves for the three strategy is shown in

Figure 7.12. The VPP is willing to produce 91.1 MWh (Active/Passive and Active) or
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FIGURE 7.12: Illustration of the offer curves of the three strategies,
i.e., Active/Passive (blue), Active (green), and Passive (red), for the

hourly interval k = 15.

92.1 MWh (Active) provided that λDA
15 ≥ 33.5. Then, if λDA

15 ≥ 65.3 the Active/Passive

and the Active approach contract additional 6.8 MWh and 13.3 MWh, respectively.

Differently, the Active approach increases its production to 106.5 MWh if λDA
15 ≥ 67.4.

Finally, if λDA
15 ≥ 75.1 the Active/Passive and the Passive approach further increase the

production level to 121.1 MWh. From Figures 7.11 and 7.12 we note that the Active

approach is less "reactive" to the day-ahead market price compared to the alternative

strategies and it is not willing to schedule an additional quantity for high values of

the day-ahead market price. Indeed, the position of the VPP after the day-ahead

market affects the capability of the VPP of internally compensate the wind power
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fluctuations. Therefore, its position is more constrained and driven by feasibility

limitations compared to the alternative strategies.

We tested and compared the expected profit of the three offering models, for

increasing values of the wind farm capacity E, i.e., 10, 30, 50, 70, and 90 MW. The

results are shown in Table 7.7. It can be noticed that the Active/Passive strategy is

always able to increase the expected profit of the VPP.

TABLE 7.7: Expected profit for the three offering strategy (i.e., Ac-
tive/Passive, Active, and Passive), for different values of the capacity of

wind farm E.

E Expected profit µ̂
(MW) (103 e)

Active/Passive Active Passive

10 18.16 18.06 16.81
30 22.89 22.48 21.69
50 27.59 26.85 26.57
70 32.35 31.16 31.45
90 37.07 35.44 36.32

Then, Figure 7.13 illustrates the increase in the expected profit obtained using the

Active/Passive strategy compared to the Active and the Passive one. Figure 7.14 does

the same in percentage terms. When E = 10 MW, the increase of profit is of 0.6 %
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FIGURE 7.13: Difference between the profit with the Active/Passive
strategy and the profit with the alternative ones (i.e., Active and Pas-

sive), for values of E of 10, 30, 50, 70, and 90 MW.

with the respect to the Active strategy and of 8.1 % to the Passive one. Hence, when
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FIGURE 7.14: Percentage difference between the profit with the Ac-
tive/Passive strategy and the profit with the alternative ones (i.e., Ac-

tive and Passive), for values of E of 10, 30, 50, 70, and 90 MW.

the capacity is small, the VPP can internally handle most of the wind power devi-

ations and offers its regulating energy into the balancing market. Accordingly, the

increase in profit compared to the Active strategy is limited. For the same reason, the

Active/Passive strategy strongly outperforms the Passive one, as the last one can not

exploit the balancing stage for additional profits. This trend progressively changes

as the wind farm capacity E increases. As E grows, the VPP is more likely to set-

tle deviations in the balancing stage and has less flexibility to offer in the balancing

market as it is partly allocated for balancing the wind power fluctuations. Indeed,

when E = 90 MW the increase in profit of 4.6 % compared to the Active strategy and

of 2.1 % to the Passive one.

7.5.2 VPP with PV solar

This section considers the VPP composed of a conventional generation unit, the elec-

tric storage, and a PV solar unit. Figure 7.15 shows the 10 selected trajectories of the

day-ahead market price λDA
ik . Similarly, Figure 7.16 illustrates the 6 scenarios of the

balancing market price λBA
ijk, for a given day-ahead realization λDA

k . Together with

the market price scenarios, we generate trajectories of the power production of the

wind unit. We randomly sample 300 scenarios and we reduce to the 5 more sig-

nificant ones. Figure 7.17 shows the 5 selected trajectories for the PV solar power

production, in p.u. The result is a scenario tree with 300 branches (10× 6× 5).
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FIGURE 7.15: Day-ahead market price scenarios.
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FIGURE 7.17: PV solar power production trajectories, in per unit.
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The capacity E of the PV solar unit is initially set to 50 MW. We run the three op-

timal offering strategies, i.e., Active/Passive, Active and Passive. In the Active/Passive

approach, the complementarity between the active and passive participation is en-

forced by mean of the binary variable ǫik (i.e., through the so-called Big-M approach).

Being ǫ∗i,k its optimal solution, the probability of the VPP to actively offer in the mar-

ket at k is evaluated as
∑

i π
DA
i ǫ∗ik. Consequently, its probability of being a passive

participant as
∑

i π
DA
i (1− ǫ∗ik).
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FIGURE 7.18: Probability that the VPP is going to be active (green)
and passive (red) in the balancing market.

Those probabilities, for the 24 hourly trading intervals, are shown in Figure 7.18.

The probability of being active is plotted in green, while the one of being passive in

red. From midnight to 6 a.m. and from 8 p.m. to midnight, the VPP decides that it is

going to participate in the balancing market by actively offering its available regu-

lating energy to the System Operator. Indeed, in these time intervals, the production

of the PV solar unit is certain (see Figure 7.17). These intervals correspond to the

time before the sunrise (i.e., from midnight to 6 a.m.) and after the sunset (i.e., from

8 p.m. to midnight), where the VPP is certain that its PV power production is going

to be null. Differently, from 10 a.m. to 5 p.m. the VPP is almost sure that it is going to

passively deviate from its contracted schedule to compensate the fluctuations of the

PV solar unit. In this time horizon, the PV power production is very uncertain (e.g.,

at 2 p.m. it can vary from 20% to 70% of the unit capacity) and it is more convenient

for the VPP to settle deviations in the balancing market. Finally, from 6 a.m. to 9 a.m.

the VPP will decide to be active or passive depending on the day-ahead market price
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realization. Indeed, based on the amount of energy contracted in the day-ahead, it

would decide which of the two approaches is more profitable. In this time interval,

the uncertainty of the PV solar production is limited, as those are the first hours af-

ter the sunrise. This would suggest that an active participation may be preferable

as the VPP would easily handle the PV fluctuations within the cluster. However, in

this time horizon, the possibility of gaining extra profits from the balancing market

is low as the balancing market price scenarios are very close to the day-ahead one

(see Figure 7.16). Differently, from 6 p.m. to 8 p.m., the active participation is more

attractive since the balancing market price scenarios give the opportunity for extra

profits.

Table 7.8 shows the optimal day-ahead quantity offers qDA
ik for the hourly interval

k = 5 of the three offering strategy (i.e., Active/Passive, Active, and Passive). With

these results the VPP derives the offer curves submitted in the day-ahead market.

TABLE 7.8: Optimal values of qDA
i5 for the three offering strategy (i.e.,

Active/Passive, Active, and Passive). The capacity of PV solar unit E is
50 MW).

i
λDA
i5 qDA

i5

(e/MWh) (MWh)
Active/Passive Active Passive

1 45.3 0.0 0.0 40.0
2 43.5 0.0 0.0 40.0
3 48.0 40.0 40.0 70.0
4 48.4 40.0 40.0 70.0
5 46.8 40.0 40.0 40.0
6 42.6 0.0 0.0 0.0
7 45.6 0.0 0.0 40.0
8 46.7 40.0 40.0 40.0
9 45.7 0.0 0.0 40.0

10 36.4 -14.4 -14.4 0.0

Under the Active/Passive approach the quantity qDA,Act/Pas
5 scheduled as function

of the realization of λDA
5 is

qDA,Act/Pas
5 =





−14.4, if λDA
5 ≤ 36.4

0.0, if 36.4 < λDA
5 < 46.7

40.0, if λDA
5 ≥ 46.7,

(7.45)

and its associated offer curve is built with two price-quantity offer points, i.e., (e36.4/MWh,

-14.4 MWh) and (e46.7/MWh, 40.0 MWh). Note that (e36.4/MWh, -14.4 MWh) is
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a buy and not a sell offer. The amount of energy qDA,Act
5 contracted with the Active

strategy is equivalent to qDA,Act/Pas
5 in Equation (7.45), according to Table 7.8. Finally,

the quantity qDA,Pas
5 scheduled by the Passive strategy is given by

qDA,Pas
5 =





0.0, if λDA
5 < 43.5

40.0, if 43.5 ≤ λDA
5 < 48.0

70.0, if λDA
5 ≥ 48.0,

(7.46)

while the two offer points (e43.5/MWh, 40.0 MWh) and (e48.0/MWh, 70.0 MWh)

build the associated offer curve.

Figure 7.19 provides a graphical interpretation of the offer curves derived by the

three strategy. The Active/Passive approach is shown in blue, while the Active and

the Passive one in green and red, respectively. The VPP, under the Active/Passive and
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FIGURE 7.19: Illustration of the offer curves of the three strategies,
i.e., Active/Passive (blue), Active (green), and Passive (red), for the

hourly interval k = 5.

the Active strategy, is willing to consume (buy) 14.4 MWh provided that λDA
5 ≤ 36.4.

This energy is used to charge the electric storage unit. Then, with these strategies,

the VPP schedules to produce 40.0 MWh when λDA
5 ≥ 46.7 and it does not produce if

36.4 < λDA
5 < 46.7. The offer curves derived with these two strategies are equivalent

in accordance with the results shown in Figure 7.18. Indeed, the VPP decides to

be an active participant from midnight to 6 a.m.. Differently, the Passive strategy
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suggests to schedule 40.0 MWh when λDA
5 ≥ 43.5 and to increase the production of

additional 30.0 MWh if λDA
5 ≥ 48.0.

Table 7.9 presents the optimal day-ahead quantity offers qDA
ik for the hourly in-

terval k = 17 of the three offering strategy (i.e., Active/Passive, Active, and Passive).

With these results the VPP builds the offer curves to be submitted in the day-ahead

market.

TABLE 7.9: Optimal values of qDA
i17 for the three offering strategy (i.e.,

Active/Passive, Active, and Passive). The capacity of PV solar unit E is
50 MW).

i
λDA
i17 qDA

i17

(e/MWh) (MWh)
Active/Passive Active Passive

1 68.6 116.1 98.9 116.1
2 57.7 90.0 70.8 90.0
3 72.1 116.1 98.9 116.1
4 55.8 90.0 70.8 90.0
5 70.0 116.1 98.9 116.1
6 60.6 90.0 70.8 90.0
7 67.6 116.1 98.9 116.1
8 67.1 90.0 70.8 90.0
9 69.4 116.1 98.9 116.1

10 67.3 116.1 98.9 116.1

The Active/Passive approach schedules an amount of energy qDA,Act/Pas
17 , depend-

ing on the realization of λDA
17 of

qDA,Act/Pas
17 =





0.0, if λDA
17 ≤ 55.8

90.0, if 55.8 < λDA
17 < 67.3

116.1, if λDA
17 ≥ 67.3.

(7.47)

The offer curve composed of two price-quantity offer points, i.e., (e55.8/MWh, 90.0

MWh) and (e67.3/MWh, 116.1 MWh), summarizes Equation 7.47. Then, the amount

of energy qDA,Act
17 contracted with the Active strategy is

qDA,Pas
17 =





0.0, if λDA
17 ≤ 55.8

70.8, if 55.8 < λDA
17 < 67.3

98.9, if λDA
17 ≥ 67.3.

(7.48)

and its associated offer curve is built with two price-quantity offer points, i.e., (e55.8/MWh,
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70.8 MWh) and (e67.3/MWh, 98.9 MWh). Finally, the offer curve obtained with the

Passive strategy is equivalent to the one obtained with the Active/Passive approach,

according the results in Table 7.9.

Figure 7.20 gives a graphical representation of the offer curves obtained with the

three strategies. The Active/Passive approach is shown in blue, while the Active and

the Passive ones in green and red, respectively.
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FIGURE 7.20: Illustration of the offer curves of the three strategies,
i.e., Active/Passive (blue), Active (green), and Passive (red), for the

hourly interval k = 17.

Based on the Active/Passive and the Passive strategy, schedules to produce 90.0

MWh when that λDA
17 ≤ 55.8. Differently, the Active approach decides to operate

at 70.8 MWh when λDA
17 ≤ 55.8. Then, the Active/Passive and the Passive strategy

increase the power production of additional 26.1 MWh, and the Active one of 28.1

MWh, provided that λDA
17 ≤ 67.3. The offer curves obtained with the Active/Passive

and the Passive approach are equivalent in accordance with the results shown in

Figure 7.18. Indeed, the VPP decides to be a passive participant in this time period,

disregarding the day-ahead market price realization.

We test the three offering, for increasing values of the wind farm capacity E,

i.e., 10, 30, 50, 70, and 90 MW. The results are shown in Table 7.10. Note that the

Active/Passive strategy is always able to increase the expected profit of the VPP.

Then, Figure 7.21 illustrates the increase in the expected profit obtained using the

Active/Passive strategy compared to the Active and the Passive one. Figure 7.22 does
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TABLE 7.10: Expected profit for the three offering strategy (i.e., Ac-
tive/Passive, Active, and Passive), for different values of the capacity E

of the PV solar unit.

E Expected profit µ̂
(MW) (103 e)

Active/Passive Active Passive

10 18.59 18.27 17.54
30 22.19 21.28 21.15
50 25.79 24.24 24.76
70 29.39 27.17 28.36
90 32.98 30.08 31.97

the same in percentage terms. When the PV solar unit in the VPP is of capacity
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FIGURE 7.21: Difference between the profit with the Active/Passive
strategy and the profit with the alternative ones (i.e., Active and Pas-

sive), for values of E of 10, 30, 50, 70, and 90 MW.

E of 10 MW, the expected profit of the Active/Passive and the Active approach are

similar. Indeed, as the capacity of the PV unit is small, the VPP can easily handle the

PV solar fluctuations internally and offer the remaining flexibility in the balancing

market. The increase of profit due to the innovative Active/Passive approach is of

1.7% with respect to the Active strategy and of 6.0 % compared to the Passive one.

As the capacity of the unit increases, the Passive strategy gets more competitive than

the Active one, as it can exploit the flexibility of operation and contracts a more prof-

itable position in the day-ahead market. Differently, asE grows, the Active approach

is increasingly constrained in its operation. First, it has less flexibility to offer in the

balancing stage as it needs to allocate it to balance the PV unit fluctuations. Second,
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FIGURE 7.22: Percentage difference between the profit with the Ac-
tive/Passive strategy and the profit with the alternative ones (i.e., Ac-

tive and Passive), for values of E of 10, 30, 50, 70, and 90 MW.

the day-ahead position is more constrained by the feasibility of operation and not

driven by the market prices.

7.6 Summary

This chapter takes the perspective of a VPP offering in a two-settlement electricity

market where the balancing stage allows an Active/Passive participation of the VPP.

Indeed, the VPP can decide to actively offer its regulating energy in some trading

intervals while passively deviate from its schedule in the remaining ones. We start

defining the structure of the VPP, which is composed of a conventional production

unit, an electric energy storage, and a renewable energy generation unit (either a

wind farm or a PV solar unit). We present a MILP approach to represent the feasible

operating region and the cost function of the VPP. Then, the general price-taker and

risk-neutral offering strategy formulation of Section 3.4 is adapted to the VPP. We

consider three alternative offering strategies that the VPP may choose:

• An Active strategy, under which the VPP can only be an active participant in

the balancing stage but can not deviate from its schedule.

• A Passive strategy, based on a solely passive participation in the balancing mar-

ket.
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• An Active/Passive strategy where the VPP can decide whether to be active or

passive in each trading interval.

We run a case study for the two VPP configurations, i.e., one with a wind farm and

the other with a PV solar unit. We show that the VPP has advantages by adopting

the Active/Passive approach. Indeed, it can decide to be Active in the hourly inter-

vals with a limited uncertainty in the renewable energy production and profitable

balancing market price scenarios. Differently, a Passive approach is more attractive

in the intervals where the balancing market price scenarios are "close" to the day-

ahead price realization, and the future real-time production of the stochastic sources

shows a high level of uncertainty. We test the three approaches for increasing values

of the renewable energy unit capacity. When the stochastic unit capacity is small,

the Active and the Active/Passive strategy bring comparable expected profits. Indeed,

the VPP can easily handle the wind or solar power fluctuations internally and of-

fer the remaining capacity in the balancing market. Differently, a Passive approach

is not profitable as the wind and solar real-time deviations are easy to compensate

within the VPP and there is no need of deviating in the real-time. Increasing the

installed capacity of the stochastic source, the Passive strategy becomes more attrac-

tive as it allows a more flexible operation of the VPP. Differently, under the Active

approach, the offering strategy is driven by ensuring a feasible operation since the

deviations need to be handled internally. This translates into being less focused on

maximizing the profit and more on guaranteeing a feasible solution. In this context,

the Active/Passive gives the possibility to always reach higher expected profits as it

can choose when it is more profitable to be active and when to be passive. This novel

participation strategy can be also interesting from a system perspective. Indeed, the

actual structure of electricity markets only allows a Passive participation of a VPP

including stochastic energy sources. With the proposed Active/Passive participation

the System Operator may have more flexible regulating energy to schedule in the

real-time.

The case study proposed in the thesis uses a limited number of scenarios and a

poor representation of the conventional production unit. Indeed, the complementar-

ity between the active and passive participation in Active/Passive strategy strongly

increases the computational time to solve the stochastic optimization model. Ac-

cordingly, we limit the size of the model to solve it in around 30 minutes. The exten-

sion to a more realistic case study (e.g., with 1000 scenarios) may require developing
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a heuristic algorithm able to guess a solution to be used as starting point for the

MILP solver. Differently, the computational time to solve the model may restrict its

applicability. Moreover, the inclusion of the intra-day trading floor may bring an ad-

ditional flexibility of operation to the Active/Passive strategy. Indeed, the VPP could

choose between the active and the passive participation closer to the real-time, when

more accurate forecasts are available.
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Chapter 8

Conclusion

This chapter concludes the thesis. Section 8.1 provides a summary of the work while

Section 8.2 gives some perspective for further research.

8.1 Summary

The thesis presents a comprehensive methodology to derive optimal offering and

operating strategies in electricity markets. Differently than most of the optimization

models available in the literature, which is tailored to a specific market structure or a

particular technology, the thesis proposes to build the optimal offering strategy of a

power producer with a modular approach. Indeed, we give the general formulation

of an offering strategy, which includes set of constraints associated with the trading

problem in the different market stages and with the feasible operating region and the

cost function of the power production unit. These sets of constraints are included

as "blocks" in the general offering strategy. The power producer can replace them

according to the electricity market structure considered or the specific production

unit.

Together with the general offering strategy, the thesis provides several formula-

tions of the trading problem for a price-taker and risk-neutral power producer in the

different market stages. For the day-ahead market trading problem, we start from

single price-quantity offers, and we extend it to non-decreasing offer curves. More-

over, we show how a stochastic programming approach can be used to formulate the

day-ahead market trading problem with offer curves as an LP model. We proceed

similarly for the trading problem in the balancing market of an active participant

that submits regulating offers to the System Operator. For the balancing market, we
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consider both a uniform and a pay-as-bid pricing scheme as some European elec-

tricity markets (e.g., in Italy and in Germany) are settled under a pay-as-bid pricing

scheme. In this context, an LP formulation for the trading problem in a pay-as-bid

balancing market under price uncertainty is novel in the literature, and it is a con-

tribution. Finally, we formulate the trading problem in the balancing market for a

passive participant that deviates from its contracted schedule. We consider a single-

and a dual-price imbalance settlement scheme.

Starting from the general formulation of the offering strategy, we take the per-

spective of different power producers, showing how they can build their offering

strategy from the general one. Initially, we consider a power producer that manages

a stochastic energy source, e.g., wind or solar power. We give an analytical formu-

lation of the quantity offer that maximizes the expected profit of the power pro-

ducer, for both the single- and the dual-price imbalance settlement scheme. Then,

we extend the analysis to two alternative settlement schemes of the Italian electricity

market. Such schemes, introduce a tolerance band that differentiates the penaliza-

tion of the portion of the imbalance within the band from the part that exceeds it.

We compute the optimal quantity offer maximizing its expected profit under those

alternative settlement schemes. Moreover, the thesis links the optimal market quan-

tity submitted in the day-ahead market with the expected real-time imbalance of the

producer, differentiating "helpful" imbalances (i.e., that reduce the system’s imbal-

ance) from "harmful" imbalances (i.e., that increase the system’s imbalance). We con-

clude that the imbalance settlement schemes with tolerance margins introduced by

the Italian electricity market may distort the optimal offering strategy of the power

producer. E.g., the tolerance band pushes the power producer to overestimate its

day-ahead market offer when the expected power production is low, compared to

a dual-price settlement scheme. Indeed, the market participant gains a wider tol-

erance band, which is proportional to the day-ahead quantity offer. This market

distortion leads to more significant imbalances of the stochastic producer in the real-

time (in expectation), which may lead to a higher balancing cost for the system.

Then, we take the perspective of a conventional power producer offering in a

two-settlement electricity market having the balancing market settled under a pay-

as-bid pricing scheme. We tailor the general offering strategy on the characteris-

tics of the conventional production unit. To our best knowledge, a MILP two-stage
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stochastic programming program for offering in an electricity market with a pay-as-

bid scheme at the balancing stage is not available in the literature. Indeed, we exploit

the novel LP formulation for the trading problem in pay-as-bid electricity markets to

cast the optimization problem with a MILP formulation, where the binary variables

are associated with the feasible operating region of the thermal unit. We test the

innovative offering model in a realistic case study against a sequential offering strat-

egy, which does not consider the balancing market when deriving the day-ahead

market offers. Oppositely, the two-stage stochastic offering model includes the fu-

ture decisions in the balancing market as recourse variables, thus co-optimizing the

trading in the two market stages. We show that a co-optimized strategy may be in-

creasingly important as the penetration of renewable energy generation in the elec-

tricity market increases. Indeed, lower market prices in the day-ahead may lead a

conventional producer that uses a sequential approach not to operate its production

unit in the day-ahead market (if the prices are lower than its marginal cost). How-

ever, it translates into few profits in the balancing market, e.g., it can not submit

down-regulation offers. Differently, based on a co-optimized approach the producer

may accept to produce in the day-ahead market in a "losing" position. Then, in the

balancing market, it can submit both up- and down-regulation offers and gain high

total profits.

Finally, we consider the optimal market participation of a VPP, i.e., a cluster of

conventional production units, renewable energy generation, and energy storages.

We propose an innovative Active/Passive offering strategy, assuming that the VPP

can offer regulating energy in the balancing market in some trading intervals and

passively deviate in the remaining ones. Differently, the offering models in the liter-

ature solely consider the VPP as a passive actor in the balancing stage. We formulate

the offering strategy as a three-stage stochastic programming problem with recourse

while imposing the complementarity between the active and the passive participa-

tion in the balancing market. We test the proposed model in a case study against an

Active (i.e., active-only participation) and a Passive (i.e., passive-only participation)

approach. We formulate those alternative models as a two-stage stochastic program-

ming problem with recourse. We analyze when the VPP may be interested in being

an active actor and when a passive one. Indeed, as an active participant, the VPP has

more favorable prices at the balancing stage while it is more constrained in the oper-

ation of the units as it needs to compensate the fluctuations of the stochastic energy
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source internally. Differently, as a passive actor, the VPP has penalized prices in the

balancing market, but its operation is flexible, and it can deviate from the day-ahead

contracted schedule. This innovative Active/Passive participation is interesting for

both the VPP, that increases its expected profit, and the System Operator, that may

have more regulating power available in the balancing market.

8.2 Perspectives for future research

Based on the methods and results provided in the thesis, continuing research in

this field is significant for ensuring a practical application of the presented models.

First, an extension of the work including a price-maker power producer and risk-

analysis would complete the work, as the thesis focuses on a price-taker and risk-

neutral power producer. Second, several alternative case studies can be generated

starting from the general formulation of the offering strategy. E.g., the proposed

co-optimized offering model in electricity markets having a pay-as-bid balancing

market could be tested on production units different than the conventional ones.

E.g., an efficient balancing market participation is significant for flexible production

units as electric storages. Consequently, an assessment of the effectiveness of the

proposed co-optimized offering strategy applied to an energy storage unit may be

of interest. Third, it may be interesting to use different uncertainty characterization

techniques to model the stochastic processes involved in the decision-making pro-

cess. E.g., linear-decision rules or interval optimization may extend the applicability

of the proposed offering models. Finally, an extension to the consumption side may

be timely. The rising amount of prosumers (i.e., a consumer/producer of electric

energy) may, indeed, lead to a re-organization of electricity markets towards more

consumer-centric structures.
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Appendix A

Stochastic Programming

A.1 Introduction

This Appendix presents the basic concepts of mathematical optimization and stochas-

tic programming, which are used and referred several times within the thesis. We

refer the interested reader to CITE for a more extensive and detailed coverage of the

topic.

A.2 Mathematical Optimization

The general form of a linear optimization problem is the following:

Max
x

c⊤x (A.1a)

s.t. Ax = b, (A.1b)

Dx ≤ f , (A.1c)

where x is the vector of decision variables. The matrices A and D and the vectors c,

b, and f are input parameters of the problem. Any vector x′ that satisfy constraints

(A.1b) and (A.1c) is a feasible solution of the optimization problem (A.1). The deci-

sion vector x∗ that maximizes the objective function (A.1a) is called optimal solution,

i.e., c⊤x∗ ≥ c⊤x′, for all the feasible solutions x′. In case the parameters A, D, c, b,

and f are perfectly known, the optimal solution x∗ can be obtain with a solution

algorithm for linear problems, e..g, the simplex method.
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A.3 Stochastic Programming

A.4 Single-Stage Stochastic Programming

When the input parameters of problem (A.1) are conditional to the realization σω of

a random parameter σ, we can write Aω = A(σω), Dω = D(σω), ..., cω = c(σω).

When the decision vector x has to be decide before the realization of the uncertain

parameter σ, the optimization problem (A.1) is called stochastic linear program. A

feasible solution x′ has now to satisfy (A.1b) and (A.1c) for each possible realization

of σ. In addition, the objective function (A.1a) becomes an uncertain variable itself

as cω is conditional upon the realization σω.

It is necessary to recast the optimization problem in a form so that it can be solved

by a solution algorithm for linear programming problems. Under a stochastic pro-

gramming approach, the continuous random parameter σ is approximated though

a discrete set Ω of possible scenarios, i.e., σ ∈ {σω, ∀ω ∈ Ω}, where each scenario ω

has an associated probability πω of occurrence such that
∑

ω πω = 1. Finally, we need

transform a random variable (i.e., the objective function) into a deterministic one. A

typical approach is to use the expectation, i.e., E
[
c⊤ωx

]
=

∑
ω πωc

⊤
ωx. However, other

rankings are valid, e.g., the worst case realization is a valid alternative when consid-

ering a risk-averse approach. Accordingly, a single-stage stochastic programming

problem can be formulated as follows:

Max
x

∑

ω

πωc
⊤
ωx (A.2a)

s.t. Aωx = bω, ∀ω, (A.2b)

Dωx ≤ fω, ∀ω. (A.2c)

Note that the way (A.2) is formulated forces the decision vector x to be independent

from the the scenario realization ω.

A.5 Two-Stage Stochastic Programming

The idea of Section A.4 can be extended to model multi-stage decision problems

under uncertainty. Indeed, we can model the sequence of events and decisions by

distinguishing between two types of decisions:
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• Here-and-now or first-stage decisions need to be taken before the realization of

the uncertainty, and we denote them with x.

• Wait-and-see or second-stage decisions can be fixed after the uncertainty real-

ization, and we denote them with y(ω) to highlight the dependency from the

realization ω.

A mathematical formulation of a two-stage stochastic linear programming problem

with recourse is the following:

Max
x

c⊤x+ E[Q(x, ω)] (A.3a)

s.t. Ax = b, (A.3b)

where

Q(x, ω) =

{
Max
yω

q⊤
ω y(ω) (A.4a)

s.t. Tωx+Wωy(ω) = hω

}
, ∀ω ∈ Ω. (A.4b)

The objective function (A.3a) maximizes the sum of the first-stage cost, i.e., c⊤x and

the expectation of the recourse cost, i.e., [Q(x, ω)]. The subproblem (A.4) is to be

solved after the uncertainty realization and it is accordingly named recourse problem.

Alternatively, problem (A.3) can be expressed using stochastic programming in a

more compact formulation, i.e.,

Max
x,yω

c⊤x+
∑

ω

πωq
⊤
ω yω (A.5a)

s.t. Ax = b, (A.5b)

Tωx+Wωyω = hω, ∀ω. (A.5c)

The same idea can be used to model multistage (i.e., more than two) problems with

recourse. In this case it is important to impose the non-anticipativity constraints

aimed at ensuring that the decision sequence is respected. E.g., in case of a three-

stage problem with recourse, a first stage decision x will independent from both the

second-stage uncertainty realization ω1 and the third-stage one ω2. Differently, a

second stage decision yω1 will be dependent on ω1 but independent to ω2. Finally, a

third stage decision zω1ω2 can be chosen after the realization of both ω1 and ω2.
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