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Summary 

Neisseria meningitidis is the major cause of meningitis and sepsis, two kind of 

diseases that can affect children and young adults within a few hours, unless a 

rapid antibiotic therapy is provided. The meningococcal disease dates back to the 

16th century. The first description of the disease caused by this pathogen was 

stated by Viesseux in 1805 as 33 deaths occurred in Geneva, Switzerland [1]. 

It took about seventy years before two Italians (Marchiafava and Celli) in 1884 

identified micrococcal infiltrates within the cerebrospinal fluid [2]. 

The worldwide presence of meningococcal serogroups may vary within regions 

and countries.  

With the coming of antimicrobial agents, like sulphonamides, and with the 

development of an appropriate health care and prevention programme, the fatality 

rate cases has dropped from 14% to 9%, although 11% to 19% of patients 

continued to have post-infection issues such as neurological disorders, hearing or 

limb loss [3]. 

The bacteria can be divided into 13 different serogroups and, among these, up to 

99% of infection is ascribed to the serogroups named A, B, C, 29E, W-135 and Y 

(Fig. 2). All the serogroups have been listed in 20 serotypes on the presence of 

PorB antigen, 10 serotypes on the presence of PorA antigen, and in other 

immunotypes on the presence of other bacterial proteins and on the presence of a 

characteristic lipopolysaccharide called LOS (lipooligosaccharide) [4]. 

The transmission from a carrier to an other person occurs by liquid droplet and the 

natural reservoir of Neisseria meningitidis is the human throat, in particular it 

usually invades the human nasopharynx where it can survive asymptomatically.  
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The reported annual incidence goes from 1 to 5 cases per 100000 inhabitants in 

industrialized countries, while in non developed-countries the incidence goes up 

to 50 cases per 100000 inhabitants. More then 50% of cases occur within children 

below 5 years of age, and the peak regards those under the first year of age. This 

fact is due to the loss of maternal antibodies by the newborn. In non-epidemic 

period, the percentage of healthy carriers range from 10 to 20%, and notably the 

condition of chronic carrier is not so uncommon [5, 6]. Only in a small percentage 

of cases the colonization progresses until the insurgence of the pathogenesis. This 

happens because in the majority of cases specific antibodies or the human 

complement system are able to destroy the pathogens in the blood flow allowing a 

powerful impairment of the dissemination. 

In a small group of population the colonization of the upper respiratory tract is 

followed by a rapid invasion of the epithelial cells, and from there bacteria can 

reach the blood flow and invade the central nervous system (CNS), inducing the 

establishment of an acute inflammatory response. 

How the balance between being an healthy carrier or a infected patient can change 

so rapidly it is still unknown. Some factors that can play a role in this switch 

could be the virulence of the bacterial strain, the responsiveness of the host 

immune system, the mucosal integrity, and some environmental factors [7]. 

Neisserial heparin binding antigen (NHBA) is a surface- exposed lipoprotein from 

Neisseria meningitidis that was originally identified by reverse vaccinology [8].  

NHBA in Nm has a predicted molecular weight of 51 kDa. The protein contains 

an Arg-rich region (-RFRRSARSRRS-) located at position 296–305 that is highly 

conserved among different Nm strains. The protein is specific for Neisseria 
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species, as no homologous proteins were found in non redundant prokaryotic 

databases.  

Full length NHBA can be cleaved by two different proteases in two different 

manners: NalP, a neisserial protein with serine protease activity cleaves the entire 

protein at its C-terminal producing a 22 kDa protein fragment (commonly named 

C2) which starts with Ser293 and hence comprises the highly conserved Arg-rich 

region. The human proteases lactoferrin (hLf) cleaves NHBA immediately 

downstream of the Arg-rich region releasing a shorter fragment of approximately 

21 kDa (commonly named C1) [9] .  

Although it is known that a crucial step in the pathogenesis of bacterial 

meningitidis is the disturbance of cerebral microvascular endothelial function, 

resulting in blood-brain barrier breakdown, the bacterial factor(s) produced by 

Nm responsible for this alteration remains to be established. The integrity of the 

endothelia is controlled by the protein VE-cadherin, mainly localized at cell-to-

cell adherens junctions where it promotes cell adhesion and controls endothelial 

permeability [10]. It has been reported that alteration in the endothelial 

permeability can be ascribed to phosphorylation events induced by soluble factors 

such as VEGF or TGF- β [11] [12].  

Our work demonstrates that the NHBA- derived fragment C2 (but not C1) 

increases the endothelial permeability of HBMEC (human brain microvasculature 

endothelial cells) grown as monolayer onto the membrane of a transwell system. 

Indeed, the exposure of the apical domain of the endothelium to C2 allows the 

passage of the fluorescent tracer BSA-FITC, from the apical side to the basal one, 

early after the treatment. Interestingly, the effect of C2 on the endothelium 

integrity is such to allow the passage of bacteria, E. coli but, notably, also N. 
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meningitidis MC58, from the apical to the basolateral side of the transwell and it 

depends on the production of mitochondrial ROS. Remarkably, we have found 

that the administration of C2 to endothelia results in a ROS-dependent reduction 

of the total VE-cadherin content. This event requires after VE-cadherin 

phosphorylation, the endocytosis and the subsequent degradation of the protein.  

Collectively our data suggest the possibility that C2 might be involved in the 

pathogenesis of meningitis by permitting the passage of bacteria from the blood to 

the meninges. 
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Sommario 

Neisseria meningitidis è uno dei patogeni in grado di causare meningite oltre che 

sepsi in soggetti infettati, due patologie che colpiscono maggiormente bambini e 

adolescenti entro poche ore dal contagio a meno di una tempestiva terapia 

antibiotica. La malattia meningococcica risale al sedicesimo secolo. La prima 

descrizione della malattia causata da questo agente patogeno avvenne ad opera di 

Viesseux nel 1805 come conseguenza di 33 decessi occorsi a Ginevra, Svizzera 

[1]. 

Circa 70 anni dopo, due italiani (Marchiafava e Celli) nel 1884 identificarono per 

la prima volta degli infiltrati meningococcichi nel fluido cerebrospinale [2]. 

La presenza di Neisseria meningitidis nel mondo varia in base a paesi e regioni e 

risulta essere ciclica. Grazie alla scoperta di agenti antimicrobicidi come i 

sulfonamidici e grazie alla diffusione di un adeguato protocollo di prevenzione 

sanitaria i casi di mortalita` dovuti a questo agente patogeno sono rapidamente 

diminuiti dal 14 al 9%. Ciò nonostante una percentuale compresa tra l’11 e il 19% 

dei soggetti ha continuato ad avere problemi post-infezione come disordini 

neurologici, o perdità dell’udito [3]. 

Esistono attualmente 13 sierogruppi e, di questi, il 99% delle infezioni è causato 

dai tipi A, B, C, 29E, W-135 e Y. 

I sierogruppi sono stati a loro volta classificati in 20 sierotipi sulla base della 

presenza dell’antigene proteico PorB, in 10 sierotipi sulla base dell’antigene PorA 

e in altri immunotipi a seconda della loro capacita` di indurre una risposta 

immunitaria nell’ospite grazie alla presenza di altre proteine batteriche del 

patogeno, e per la presenza di un particolare lipopolisaccaride chiamato LOS 

(lipooligosaccaride) [4]. 
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Neisseria meningitidis è in grado di colonizzare l’epitelio della mucosa 

orofaringea, dove vi può sopravvivere in maniera asintomatica per l’ospite. 

La trasmissione inter-individuale avviene attraverso secrezioni dell’apparato 

respiratorio. L’ incidenza annuale risulta essere di 1- 5 casi ogni 100000 abitanti 

nei paesi industrializzati, mentre nei paesi ancora in via di sviluppo questa sale a 

50 casi per 100000 abitanti. Più del 50% dei casi riguarda bambini sotto i 5 anni 

d’età, con un’elevata incidenza per coloro che hanno meno di un anno di vita. 

Questo fatto dipende dall’emivita degli anticorpi materni solitamente in grado di 

proteggere il neonato per circa 3-4 mesi dopo la nascita. In periodi definiti non-

epidemici la percentuale dei portatori sani varia tra il 10 e il 20% della 

popolazione, e per l’appunto la condizione di portatore asintomatico non è poi 

così infrequente [5, 6]. Soltanto in un numero ristretto di casi la colonizzazione 

del batterio progredisce manifestando la patogenesi meningococcica: ciò è per la 

maggior parte dovuto alla presenza di specifici anticorpi, o per l’attività del 

sistema del complemento dell’ospite che è in grado di controllare ed eliminare il 

patogeno impedendone così la sua disseminazione attraverso il flusso sanguigno. 

Tuttavia, in un piccolo gruppo della popolazione, la colonizzazione del tratto 

respiratorio superiore è seguita da una rapida invasione delle cellule epiteliali 

della mucosa, da dove il batterio è in grado di entrare nel torrente ematico, e 

raggiungere il sistema nervoso centrale inducendo una forte risposta 

infiammatoria. 

Quale sia l’evento che perturbi l’equilibrio tra essere portatore asintomatico e 

paziente infetto ancora non è noto. Alcuni fattori sembrano giocare un ruolo 

chiave in questo cambiamento come la virulenza del ceppo batterico, la capacità 
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della risposta immunitaria dell’ospite, l’integrità della mucosa e alcuni fattori 

ambientali [7]. 

La proteina NHBA, Neisserial Heparin Binding Antigen, è una lipoproteina 

esposta sulla superficie del batterio, originariamente identificata attraverso la 

tecnica della “reverse vaccinology” [8]. 

 NHBA in Nm ha un peso molecolare predetto di 51 kDa. La proteina altresì 

contiene una regione ricca in Arginine (-RFRRSARSRRS-) localizzata in 

posizione 296 -305 ed altamente conservata in vari ceppi di Neisseria [9]. Tale 

proteina è altamente conservata in Neisseria e non ha omologie di sequenza con 

nessun’altra proteina registrata nei database procariotici. 

Due diverse proteasi possono tagliare la proteina intera NHBA producendo due 

frammenti differenti: nel primo caso la proteasi batterica NalP taglia la proteina 

intera in posizione C-terminale producendo un frammento di 22 kDa 

(comunemente chiamato C2) che inzia con la Ser293 e quindi comprendendo lo 

stretch di Arginine. Invece, nel secondo caso, la lattoferrina umana (hLf) taglia 

NHBA immediatamente a monte della sequenza di Arginine, producendo un 

frammento più corto di circa 21 kDa (comunemente chiamato C1). Sebbene sia 

risaputo che un passaggio cruciale nella patogenesi mediata da Neisseria 

meningitidis sia l’alterazione della funzione di barriera della microvascolatura 

encefalica, che può dunque risultare in una rottura della barriera emato- encefalica 

stessa, non è ancora chiaro quali siano i fattori rilasciati o prodotti dal batterio in 

grado di indurre un simile effetto. L’integrità dell’endotelio è controllata dalla 

proteina VE-caderina, localizzata sulle giunzioni aderenti che regolano il contatto 

cellula- cellula. Tale proteina promuove e regola dunque la permeabilità 

endoteliale [10]. E’ stato ben documentato che l’alterazione della permeabilità 
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endoteliale può essere dovuta a processi di fosforilazione indotti da fattori solubili 

come VEGF o TGF-β [11] [12].  

Il nostro lavoro documenta come, a differenza del frammento C1, il frammento 

C2 prodotto dal taglio della proteina intera NHBA, sia in grado di aumentare la 

permeabilità delle cellule endoteliali HBMEC (human brain microvasculature 

endothelial cells) fatte crescere a monostrato sulla membrana di un sistema di 

transwell. L’esposizione della porzione apicale dell’endotelio polarizzato al 

frammento C2 consente il passaggio di un tracciante fluorescente, BSA-FITC, dal 

lato superiore a quello inferiore del transwell, in tempi rapidi a seguito del 

trattamento. E’ interessante notare che l’effetto di C2 sull’endotelio è tale da 

permettere il passaggio dal lato superiore a quello inferiore del transwell non solo 

di E. coli, usato come modello batterico preliminare, ma anche dello stesso 

Neisseria meningitidis MC58, in maniera ROS dipendente. Degno di nota è il fatto 

che abbiamo osservato che la somministrazione di C2 alle cellule endoteliali 

provoca una riduzione ROS dipendente del contenuto totale di VE-caderina. A 

seguito della sua fosforilazione, infatti, VE-caderina viene endocitata all’interno 

della cellula per poi essere degradata probabilmente attraverso il trasporto di essa 

verso il proteasoma.  

I nostri dati suggeriscono pertanto che C2 sia coinvolto nella patogenesi della 

meningite favorendo il passaggio di Nm attraverso il torrente ematico dell’ospite 

verso le meningi. 
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1. Introduction 

1.1 Neisseria meningitidis 

1.1.1 Features 

Neisseria meningitidisis the major cause of meningitis and sepsis, two kind of 

diseases that can affect children and young adults within some hours, except for 

the availability of a rapid antibiotic therapy. The meningococcal disease dates 

back to the 16th century. The first description of the disease caused by this 

pathogen was mentioned by Viesseux in 1805 as 33 deaths occurred in Geneva, 

Switzerland [1]. 

It took about seventy year before two Italians (Marchiafava and Celli) in 1884 

identified micrococcal infiltrates into the cerebrospinal fluid [2]. Neisseria 

intracellularis was the first name attributed to this bacterium by Anton 

Weichselbaum in 1887 after the identification of meningococcal infiltrates into 

the cerebrospinal fluid (CSF) of six patients who died of meningitis [13]. Around 

the beginning of the former century the morbidity caused by this bacteria was up 

to 70% of cases. The extreme heterogeneous epidemiology of the agent, being 

able to be sporadic as well as very fast in its occurrence of outbreaks and 

epidemics, worsened the situation. Moreover, the worldwide presence of 

meningococcal serogroups is very different between regions and countries, and 

cyclical. With the coming of antimicrobial agents, like sulphonamides, the fatality 

rate cases drop to values from14% to 9% together with appropriate health care and 

prevention programmes even though 11% to 19% of patients continued to have 

post-infection issues such as neurological disorders, hearing or limb loss.  

The genre Neisseria includes two species pathogenic for humans: Neisseria 

meningitidis and Neisseria gonorrhoeae.  
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Fig. 1. Neisseria meningitidis is a Gram-negative diplococcus that is one of the most common 

causes of bacterial meningitis. 

 

Neisseria meningitidis is a capsulated Gram- negative diplococcum with a 

diameter of 0.6-1.0 µm/coccus (Fig. 1). The best condition for its growth requires 

an aerobic microenvironment, with low oxygen concentration, 5% CO2 and a 

temperature of 35° - 37° C. 

The bacterium can be divided into 13 different serogroups, and, among these, up 

to 99% of infection is ascribed to the serogroups named A, B, C, 29E, W-135 and 

Y (Fig. 2). 

All the serogroups are listed in 20 serotypes on the basis of proteic antigen 

(PorB), 10 serotypes for the presence of PorA antigens, and in other immunotypes 

for the capability to mount and drive an immunological response thanks to the 

outer membrane proteins localized on the membrane of the bacterium, and to the 

presence of a particular lipopolysaccharide called LOS (lipooligosaccharide) [4]. 
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Fig. 2. Distribution of the 5 main disease-causing serogroups of meningococcal bacteria differs 

from place to place worldwide. 

 

1.1.2 Virulence Factors 

The presence of a capsule is fundamental for the survival of the bacteria in the 

environment before the colonization of the host mucosa,  and for the 

dissemination of the bacteria into the blood flow and the cerebrospinal fluid. 

A capsule which contains the sialic acid is specific for serogroups B, C, W-135 

and Y.  

The cps genic complex express the fundamental enzymes for the capsule 

biosynthesis. SiaA, siaB, siaC and siaD are the genes involved in this process. 

 

Fig. 3. N-acetylneuraminic acid (Neu5Ac) (present in neuroinvasive bacteria, human tissues, and 

foods). 

 

 The most important feature of the serogroup type B is that the 

polysaccharide mimics the composition of the sialic acid of several eukaryotic 

cells, thus impairing the humoral response of the host (Fig. 3). Moreover, the 
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presence of this polymer protects the bacterium to the action of the C3b 

complement factor. 

 The most important proteins localized within the outer membrane of the 

bacterium are the so-called opacity proteins (Opa and Opc) and the porins (PorA 

and PorB). The first  ones are able to bind the host CD66, in the case of Opa, or 

the heparan-sulfate proteoglycans mainly exposed on host epithelial and 

endothelial cells, in the case of Opc. The family gene opa codifies for these 

proteins. The meningococcal strain has 4- 5 different opa loci [14]. A typical 5’ 

tandem repeat unit [CTCTT]n All of these genes is responsible for the phase 

variation. 

 The phase variation is an efficient tool possessed by bacteria to evade the 

host immune response, and it relies on the random switching of phenotype at 

frequencies that are much higher (sometimes >1%) than classical mutation rates. 

Hence, phase variation contributes to virulence by generating heterogeneity; 

certain environmental or host pressures select those bacteria that express the best 

adapted phenotype. 

Opa proteins are made of 8 transmembrane β-sheets and 4 highly variable loops 

exposed [15].  

 Different N. meningitidis strains could be serologically differentiated by 

Por proteins; both PorA and PorB have been demonstrated to be able to 

translocate from the bacterial outer membrane to the host plasma membrane 

creating high-voltage channels which destabilize the transmembrane potential of 

the host cell, altering many eukaryotic signalling pathways [16]. 

PorA belongs to the class 1 OMPs (outer membrane proteins) that are different 

from the OMPs class 2 and 3 because they have more marked loops which 
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facilitates the bactericidal activity of antibodies directed against them [17]. 

Moreover, they possess highly variable regions VR1, VR2 and VR3. Of these, the 

most important one is the VR2 region responsible for evading the host immune 

system response [18]. It is widely known, in fact, that this variability is largely 

due to insertions, deletions or amino acidic substitutions in the VR2 or VR1 

regions, leading to antigenic variation of the protein. 

On the other hand, the class 2 and 3 OMPs are codified by the porB gene and they 

can be considered as two alleles. Bacteria have only one of these two alleles, but 

the protein of this type they express, is the most abundant on the membrane. 

 Other major components of the outer membrane involved in the virulence 

against the host are pili. These structures allow the bacterial adhesion to the host 

cells and the movement of the cocci along the epithelial surface during the 

colonization process. They are helicoidal structures composed by pilin, a 

polypeptide of 18- 22 kDa synthesized as precursor with a non-conventional 

signal sequence that is subsequently processed by the prepilin 

peptidase/transmetilase PilD owned by bacteria to form the mature form of the 

protein [19]. After the maturation process, other post- trasductional events take 

place, such as phosphorylations and glycosylations [20, 21]. The pilar subunits 

polymerize inserting the hydrophobic tails inside the core of the main cylindrical 

helix to form a coiled- coil structure, whereas the globular hydrophilic heads are 

exposed outside to render the cylindrical surface of the filament [22]. 

The canonical host- pathogen interaction is driven by the pilC protein, a 110KDa 

protein which is bound to the distal tail of the pili, responsible for the adhesion 

process. In Neisseria meningitidis, there are two kinds of pilC, pilC1 and pilC2, 
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which both have adhesion properties even if the pilC1 protein is essential for the 

pili- mediated adhesion [23]. 

Such adhesion process is an important event that induces a rearrangement of the 

cellular cytoskeleton leading to plasma membrane alteration and, as a consequence, to 

the formation of the so- called cortical- plaque, by which the bacterium is able to 

enter the cells. 

 When the colonization of the host mucosa process is established, the 

immune response of the host can be triggered to counteract the infection. One of 

the very first steps in this defence mechanism is the production of IgA within the 

host mucosa. The protective role of IgA is particularly relevant if we consider 

that, in the sub-Saharan zone, the onset of the Neisseria- mediated pathogenesis 

occurs together with the peak of the dry- season. The high concentration of dust, 

due to the lack of heavy rains, could interfere with the local secretion of IgA thus 

avoiding the correct establishment of the immune response.  

Neisseria meningitidis itself can impair this humoral response producing and 

secreting IgA proteases. These proteases includes several endopeptidases that 

directly target and degrade the human IgA. iga genes of different Neisseria strains 

can be subject of phase variation in order to be antigenically not targetable by the 

host response [24].  

In Neisseria gonorrhoeae, IgA proteases, apart from their role in neutralizing the 

immunoglobulins secreted by the host, seem to be required for the degradation of 

LAMP1 (Lysosome Associated Membrane Protein), a protein that regulates the 

lysosomal biogenesis. The degradation of this protein enhances the survival rate 

of the bacteria inside the host epithelial cells [25, 26]. 

 Lypooligosaccharide is one of the major components of the outer 

membrane of Nm. It is composed of the 3-Deoxy-D-manno-oct-2-ulosonic acid 
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bound to the lipid A and to two internal eptoses. For this reason it is named LOS 

(lipooligosaccharide). The N-acetylneuramic acid (NANA) constitutes the 

variable region together with glucose and galactose. LOS is fundamental for the 

prevention of the bactericidal activity of the host serum as well as for the 

epithelial cells and the host phagocytes. The prevention system relies on static 

repulsion due to the high negative charges of sialic acid. It is well documented 

that LOS decreases the activity of the complement system and, afterwards, it 

interferes with the polymorphonuclear cells (PMNs) activation, thus limiting the 

host immune response [27]. This molecule is also fundamental for the survival 

and replication of the bacteria within the blood flow or the CSF, as well as in the 

enviroNment during the aerial transmission of the pathogen. 

 

1.2 Meningococcal disease 

1.2.1 Epidemiology 

The transmission from a carrier to another person occurs by liquid droplet, and the 

natural reservoir of Neisseria meningitidis is the human throat, in particular it is 

able to colonize the human nasopharynx where it can survive asymptomatically. 

The reported annual incidence goes from 1 to 5 cases per 100000 inhabitants in 

industrialized countries, while in non- developed countries the incidence goes up 

to 50 cases per 100,000 inhabitants. More then 50% of cases occur among 

children below the age of 5, and the peak regards those under their first year of 

age. This fact is due to the loss of maternal antibodies by the newborn. In a non-

epidemic period, the percentage of healthy carriers range from 10 to 20%, and 

notably the condition of chronic carrier is not so uncommon [5, 6]. Only in a 

small percentage of cases does the colonization progress until the insurgence of 
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the pathogenesis. This happens because in the majority of cases specific 

antibodies or the human complement system are able to destroy the pathogens in 

the blood flow allowing a powerful impairment of the dissemination.  

Many studies conducted on the insurgence of epidemic events testify how the 

meningococcal disease mostly occurs within a few days after the infection, hence 

when still no specific antibodies have yet been produced.  

 Neisseria meningitidis A strain is known for its epidemic capacity in still 

non developed countries; it is, in fact, very rare in North America and in Europe. 

The most lethal epidemic spreading is localized in Africa and, in particular, in the 

so-called meningitis- belt, from Ethiopia to Senegal (Fig. 4). 

 

 

 

 

 

 

 

 

 

Fig. 4. The African meningitis belt. Source: Control of epidemic meningococcal disease, WHO 

practical guidelines, World Health Organization, 1998, 2nd edition, WHO/EMC/BAC/98.3. 

 

In developed countries, instead, the most common strain is Neisseria meningitidis 

type C, found in Spain, Italy, Greece, Canada and UK. 

 Nevertheless, Neisseria meningitidis strain B is the most important cause 

of  endemic meningitis in developed countries, and it is responsible for 30- 40% 

of cases in North America and for the most of 80% in Europe. 

The majority of Neisseria meningitidis strain B infections show a high seasonal 

incidence, with its peak during the winter, affecting mostly children below the 
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first year of age. In high contrast to epidemic events that characterize the 

serogroups A and C, those caused by Nm type B are known for their slow onset, 

as well as for their long duration, which can persist for over 10 years. This 

epidemic has already affected in past years Latin Americas, Norway and since 

1991 New Zealand, countries in which the epidemic showed a 10 time greater 

incidence than the “normal” ones, prevalently in the Pacific Islands and among 

the Maori population [28, 29]. 

 Since 1990, in the U.S. a high incidence of cases has been identified for 

what concerns the Y strain of Nm; this pathogenesis has been associated to 

patients with a defiance in the complement system functionality, aged-persons, 

and afro- American people. 

Globally, Neisseria meningitidis affects 1.2 million people per year and, in 

particular, 3000 cases are reported in the U.S and 7000 in Europe, where the 

bacterium causes the majority of bacterial meningitis among toddlers and 

children. Despite several steps forward in prevention, diagnosis, and health-care 

programmes for the disease associated to Nm, the fatality remains at high levels, 

like 5-15%, and in about 30-50% of survived persons, permanent neurological 

disorders are reported [30]. 

 

1.2.2 Clinical manifestations 

Despite the high pathogenicity, N. meningitidis is a human common commensal, 

found in 10% of adults in the nasopharyngeal mucosa (Fig. 5).  
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Fig. 5. Neisseria meningitidis may be acquired through the inhalation of respiratory droplets. The 

organism establishes intimate contact with non-ciliated mucosal epithelial cells of the upper 

respiratory tract, where it may enter the cells. N. meningitidis can cross the epithelium either 

directly following damage to the monolayer integrity or through phagocytes in a ‘Trojan horse’ 

manner. In susceptible individuals, once inside the blood, N. meningitidis may survive, multiply 

rapidly and disseminate throughout the body and the brain. Meningococcal passage across the 

brain vascular endothelium (or the epithelium of the choroid plexus) may then occur, resulting in 

infection of the meningis and the cerebrospinal fluid. Source: Nature Reviews Microbiology 7, 

274-286 (April 2009). 

 

In a small group of the population, the colonization of the upper respiratory tract 

is followed by a rapid invasion of the epithelial cells, and from this site bacteria 

can reach the blood flow and invade the central nervous system (CNS), inducing 

the establishment of an acute inflammatory response. 

Children and infants are the main target of the pathogen, while only 10-20% of 

adults develop immunodeficiency correlated with the pathogenesis. 

It is a matter of fact that some hyper virulent strains can cross the nasopharyngeal 

mucosa disseminating in the blood flow leading to meningococcemia. How the 

balance between being an healthy carrier or a infected patient can change so 

rapidly is still unknown. Some candidate factors that could play a role in this 

switch are the virulence of the bacterial strain, the responsiveness of the host 

immune system, mucosal integrity, and other environmental factors [7]. 
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The host immune system responds to a Neisseria infection by both innate and 

adaptive immunity. Moreover the rate and efficacy of the host immune response 

could depend on the age of the patient, as well as on the virulence of the strain, as 

already previously discussed. 

     Fig. 6. Mechanism of possible brain  invasion by  

     Neisseria meningitidis. Source: Qiagen web  page,     

                                                                         https://www.qiagen.com/geneglobe/pathwayview.asp 

                                                                         x ?pathwayID=50 

 

 

 
 

 

 

If bacteria are able to reach the flow, the disease associated to Nm infections are 

FMS (fatal meningococcal sepsis) and meningococcal meningitis (Fig. 6). The 

first one is characterized by the insurgence, in a very short time (6-12 hours), of 

high fever, lack of consciousness, and disseminated rush that depends on the 

intravascular coagulation and thrombotic events in small vessels. This could lead 

to a micro vascular failure that can damage host tissues (Waterhouse-Friderichsen 

syndrome) until necrosis of the limbs occurs. In this case amputation is required 

[31, 32]. 

At these stages, LOS can have a fundamental role in inducing a shock syndrome 

much more severe than its vascular concentration. This kind of infection leads to 

the release of lytic proteins or inflammatory cytokines that, instead of being useful 

for the clearance of the pathogen, worsen the situation by highly damaging the 

already compromised tissues with bleeding events and, in up to 80% of cases, 
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result in the death of the host. The majority of patients die after 24 hours of 

insurgence of the primary symptoms. 

 Meningitis is led by high fever, headache, photophobia, altered state of 

consciousness, nape and neck stiffness. The purulent infection of the meningis 

occurs when, for some still unknown reasons, the bacteria from the blood flow 

cross the blood brain barrier (BBB) reaching this tissue where the most important 

humoral and cellular immune response systems cannot access. In this scenario the 

bacterium can freely proliferate leading to a critical inflammation of the CNS. The 

fatality rate is not so high, but in 8-20% of patients there could be permanent 

neurological disorders, like mental retardation, spasticity and loss of sensitivity. 

Despite the availability of antibiotics, the mortality rate remains between 5-10% 

in industrialized countries, but it can double in developing countries, and for these 

reasons it is extremely important to have a quick early diagnosis and an effective 

highly-specific antimicrobial therapy. 

 

1.2.3 Vaccines 

Over the last century, many vaccines have been found and developed to 

counteract Neisserial infection, with various results.  

In many cases, diseases are vaccine-preventable; the first vaccine against 

serogroups A and C, was around since the 1960s [33]. 

 A quadrivalent purified polysaccharide vaccine against serogroups A, C, 

W-135 and Y was licensed in the U.S. in 1981 [34]. Except for type A, this 

vaccine was poorly immunogenic in children below 2 years of age. Another 

negative aspect of this vaccine was the short-lived immunity, mainly because it 

was raised against capsular polysaccharides, known to be T-cell independent 
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antigens, and then, unable to elicit a long term humoral response. Repeated 

administrations (every 3-5 years) were then required; moreover these repeated 

immunizations could induce antibody hypo- responsiveness because of 

mechanisms of tolerance instauration. 

 From that time on, efforts to develop vaccines to circumvent the limitation 

of capsular vaccines were carried on, until the introduction of conjugate vaccine 

against type C strain in UK in 1999 in response to an epidemic event. This 

vaccine, administered at 2, 3 and 4 months of age, was protective up to the first 

year of age, but not extended beyond the year [35]. In year 2000 a new tetravalent 

vaccine (Menveo, or MCV4) conjugated to diphtheria toxoid was licensed in U.S. 

for people between 2 and 55 years of age. This vaccine is now recommended for 

all those people that travel in Neisseria endemic areas (like the meningitis belt), 

military recruits or immunocompromised subjects. But, again, the 

immunogenicity of this vaccine for infants is extremely low. A second generation 

vaccine conjugated with a mutant diphtheria toxoid was recently licensed by 

Novartis in U.S.  

 Moreover, another combined vaccine with H. influenzae type B and 

meningococcal C and Y capsules, each conjugated to tetanus toxoid, is 

undergoing clinical trials [36]. 

There is still no licensed polysaccharide based vaccine against Neisseria 

serogroup type B because of the low immunogenicity of the type B strain capsule, 

mimicking sialic residues of mammalian cells and tissues. Of course, alternative 

strategies have been investigated. 

 A polysaccharide-tetanus toxoid conjugate was developed, substituting the 

sialic acid of type B strain with an N-propyonil group, to avoid self tolerance. 
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Despite being highly immunogenic, no bactericidal activity was found in mice. 

Moreover the concern that auto- reactive antibodies could be formed against the 

remaining portion of polysialic acid residues was high. However, Granoff et al. 

have shown that antibodies raised against epitopes of this vaccine components do 

not cross- react with human sialic residues, thus extending the case for further 

considerations for the use of this vaccine strategy [37]. 

 OMV (outer membrane vesicle) based vaccines were generated from 

culture supernatants of Neisseria by detergent extraction of these vesicles. These 

kind of vaccines were delivered to different countries such as Chile, Brazil, Cuba, 

Norway, and most importantly New Zealand to counteract a huge epidemic. The 

main issue for these preparations is that the majority of antibodies are directed 

against the protein PorA, which is highly variable among different meningococcal 

strains. It is then evident that these vaccines give protection against only a 

particular strain, but the induction of any antigenic shift in PorA or mutations in 

porA gene would render the vaccine ineffective. A possible idea to take into 

consideration, is the production of OMVs vaccines based on several PorA variants 

to confer wide protection from different circulating type B strains. 

 In the year 2000 the discovery of the “Reverse Vaccinology” technique 

may have overturned the common lines of thought for the development of 

vaccines. By genome sequencing it has been possible to identify novel potential 

surface exposed protein antigens in Neisseria meningitidis B [38, 39]. 

Among all the protein candidates, 350 were expressed in E. coli, purified and used 

to immunize mice. The collected sera allowed the identification of those surface 

exposed proteins that were highly conserved among several strains, and that were 

able to induce a bactericidal antibody response. Five promising antigens, NadA 
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(Neisseria adhesion A), fHbp (factor H binding protein), NHBA (Neisserial 

Heparin Binding Antigen), GNA2091 and GNA1030 (Genome-derived Neisseria 

Antigen) were identified, characterized and combined with OMVs to create a 

meningococcus recombinant vaccine, called 4MenB. Immunized mice showed 

bactericidal antibodies directed against a panel  of selected serogroup B strains 

[40-42] 

4MenB vaccine, at the end of November 2012, received a positive opinion from 

the Committee for Medicinal Products for Human Use (CHMP) of the European 

Medicines Agency (EMA) for the use in individuals from 2 months of age and 

older. 

Functional characterization of MenB antigens has been described for NadA, fhbp 

and NHBA. Neisseria adhesin A(NadA) is a pathogenicity factor involved in host 

cell adhesion and invasion and is reported to be present in less than 50% of 

isolated strains tested; it has a low level of representation among carriage isolates 

and up to 100% coverage in some hyper virulent lineages [43]. fHBP is a 

virulence factor that specifically binds to the human complement-regulating 

protein factor H, thereby enhancing serum resistance [44, 45]. So far, all isolates 

have been shown to harbour an fHbp allele, and the antigen falls into one of three 

major variant groups: variant 1 and variants 2 and 3 [46]. 

All isolates possess an nhba allele. The protein binds heparin in vitro through an 

Arg-rich region and this property correlates with increased survival of the un- 

encapsulated bacterium in human serum [9]. 

The investigation of the role in pathogenesis of the NHBA cleaved fragments will 

be subject of my thesis. 
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1.3 NHBA 

1.3.1 Features 

Neisserial heparin binding antigen (NHBA) is a surface-exposed lipoprotein from 

Neisseria meningitidis that was originally identified by reverse vaccinology [8]. 

 All isolates possess an nhba allele. The protein binds heparin in vitro 

through an Arg-rich region and this property correlates with increased survival of 

the un- encapsulated bacterium in human serum.  

 

Fig. 7. Mechanism of cleavage of full length NHBA. The hLf cleaves the full length protein 

downstream an Arg- rich region (red box motif in the picture) mediating the release of a fragment 

called C1. The NalP protease cleaves NHBA protein mediating the release of a longer fragment 

called C2, which comprises the Arg-stretch. In both cases the N- fragment remains anchored to 

the bacterial surface.  

 

Furthermore, two proteases, the meningococcal NalP and human lactoferrin (hLf), 

cleave the protein upstream and downstream from the Arg-rich region, 

respectively (Fig. 7). Moreover, anti-NHBA antibody elicited deposition of 

human C3b on the bacterial surface and passively protected infant rats against 

meningococcal bacteraemia after challenge with Nm strains [47]. NHBA was thus 

considered a promising candidate for prevention of meningococcal disease.  

NalP NHBA 

hLf  

C2 C1 

NalP NHBA 

hLf  
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 The predicted molecular weight of NHBA is 50,553 Da. The protein has a 

signal peptide with a typical lipobox motif (-LXXC-) and in the Nm MC58 strain 

it has an Arg-rich region (-RFRRSARSRRS-) located at position 296–305, highly 

conserved among different Nm strains [9]. The protein is specific for Neisseria 

species, as no homologous proteins can be found in non- redundant prokaryotic 

databases.  

Arg and Lys residues are present in the heparin-binding sites of different proteins 

[48], where they are able to interact with negatively charged residues of 

proteoglycans. By affinity chromatography with heparin as ligand it was 

demonstrated that the full length protein bounds to heparin [9, 49]. To define the 

role of the Arg-rich region in the interaction, a deletion mutant of the Arg-rich 

region and another mutant wherein all Arg residues were substituted with a Gly 

were generated. Neither of these mutants were able to bound heparin confirming 

the fundamental role of the Arg- stretch for the binding. 

Moreover, western blot analysis performed on outer membrane proteins (OMPs) 

showed the presence of two NHBA -specific bands in strain MC58, which were 

absent in the mutant strain (MC∆2132). The first band, relative to the full leght 

NHBA, had a molecular weight of approximately 60 kDa, and a second band at 

approximately 22 kDa was identified in the supernatant, suggesting the processing 

of the protein and the release of a fragment. Purification and N-terminal 

sequencing of the 22-kDa protein fragment showed that this fragment started with 

Ser293 and hence corresponded to the C-terminal region of NHBA. 

A panel of different meningococcal strains were tested to screen the specificity of 

this band pattern. Western blot analysis revealed that NHBA was expressed by all 

strains tested. However, the protein was cleaved and the C-fragment released in 
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the supernatant in only five of 20 strains tested, which belongs to the hyper- 

virulent clonal complex 32. The presence of the NalP protease, a phase variable 

auto- transporter protein with serine protease activity, was considered to be a 

strong candidate for the processing of NHBA because NalP has been shown to 

process many other surface exposed Nm proteins [50, 51]. 

A NalP deletion mutant was generated in strain MC58 to test NHBA expression 

and processing by immunoblotting of OMP and supernatants. In the NalP- deleted 

strain, a higher amount of the NHBA full-length protein was detected, whereas the 

N- and C-fragments were not detectable. The point that NHBA could be 

processed in only some Nm strains, might correlate with the finding that the nalP 

gene is prone to phase variation. Together with this evidence, it was also 

demonstrated that human lactoferrin (hLf), could recognize and cleave NHBA[52, 

53]. Full length NHBA was incubated with hLf purified from human milk and by 

western blot analysis it has been showed that NHBA was cleaved into two 

fragments of approximately 43 kDa (N1) and approximately 21 kDa (C1). The 21-

kDa fragment was subjected to N-terminal sequence analysis. The sequence 

analysis from the 21 kDa fragment obtained (245-SLPAEMPL-252) showed that 

the cleavage mediated by hLf occurs immediately downstream of the Arg-rich 

region. Other experiments performed by Esposito and colleagues demonstrated 

that the recombinant C-his fragment containing the Arg-rich region is also a target 

of hLf and suggests that hLf can act on the full-length NHBA as well as on the 

secreted C fragment [49]. 

Moreover in that manuscript, his-tagged forms of the N-terminal and the C-

terminal regions generated by the NalP protease and by the hLf cleavage  were 

used to evaluate their ability to bind heparin. Only the fragment containing the 
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Arg-rich region was able to bind heparin, confirming the key role of the region in 

this interaction [9, 49, 54]. 

 

1.4 VE-cadherin and the regulation of endothelial 

permeability 

1.4.1 Features 

The endothelium is located on the inner side of all vessel types and is constituted 

by a monolayer of endothelial cells [55, 56].  

Interendothelial junctions contain complex junctional structures, namely adherens 

junctions (AJ), tight junctions (TJ) and gap junctions (GJ), playing pivotal roles in 

tissue integrity, barrier function and cell–cell communication, respectively (Fig. 

8).  

 

 

 

 

 

 

 

 

Fig. 8. Transmembrane adhesive proteins at endothelial junctions. At tight junctions, adhesion is 

mediated by claudins, occludin, members of the junctional adhesion molecule (JAM) family and 

endothelial cell selective adhesion molecule (ESAM). At adherens junctions, adhesion is mostly 

promoted by vascular endothelial cadherin (VE-cadherin), which, through its extracellular 

domain, is associated with vascular endothelial protein tyrosine phosphatase (VE-PTP). Source: 

Dejana E,Nat Rev Mol Cell Biol. 2004  

 

The endothelium constitutes a barrier for the vascular system by controlling and 

regulating permeability properties between the blood and the underlying tissues.  
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 As well established, endothelial permeability is mediated by the so-called 

transcellular and paracellular pathways by which, solutes and cells can pass 

through (transcellular) or between (paracellular) endothelial cells [10]. 

Transcellular passage occurs via specialized pore-like fenestrae that can control 

cellular permeability to water and solutes, or via a complex system of transport 

vesicles [57-61]. The paracellular pathway, by contrast, is mediated by the tightly 

regulated and coordinated opening and closure of endothelial cell-cell junctions. 

This is of particular importance to maintain endothelial integrity and to prevent 

exposure of the subendothelial matrix of blood vessels [62-64]. Many soluble 

factors can increase permeability, such as histamine, thrombin and vascular 

endothelial growth factors (VEGFs). The process is reversible, then not 

necessarily affecting endothelial-cell viability or functional responses for long 

periods [11, 65, 66].  

 The junctional structures located at the endothelial intercellular cleft are 

similar to the epithelial ones with some exceptions: their organization is more 

variable and, in general AJ, TJ and GJ are often intermingled and form a complex 

zonular system with variations in depth and thickness [67-72].  

 AJs are formed by members of the cadherin family of adhesion proteins. 

Two types of cadherins are the main components localized on the apical domain 

of endothelial cells: a cell-type-specific cadherin (VE-cadherin) and neuronal 

cadherin (N- Cadherin), which is also present in other cell types such as neural 

cells and smooth muscle cells [73]. Other non-cell-type-specific cadherins can be 

variably expressed in different types of endothelial cells [74].  
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 VE-cadherin is the major determinant of endothelial cell and the regulation 

of its activity or its presence is essential to control the permeability of the blood 

vessels [64].  

Cadherins are defined by the typical extracellular cadherin domains (EC-domain) 

and mediate adhesion via homophilic, Ca2+- dependent interactions. 

 

Fig. 9. Functional modifications of endothelial AJs (A) Under resting conditions, VE-cadherin 

clusters at junctions in zipper-like structures; p120, β- catenin (βcat) and plakoglobin (plako) bind 

directly to VE-cadherin, whereas α- catenin (αcat) binds indirectly through its association with β-

catenin or plakoglobin. (B) Phosphorylation (P) of tyrosine residues of VE-cadherin, β- catenin, 

plakoglobin and p120 reduces AJ strength. The VE-cadherin complex might become partially 

disorganized without any evidence of cell retraction. Phosphorylation of VE-cadherin at Ser665 

has also been reported. This process is thought to mediate VE-cadherin internalization and 

increase vascular permeability. Source: E. Dejana, et al. (2008). J Cell Sci, 2115–2122. 

 

Optimal adhesive function of cadherins requires association of their C terminus 

with cytoplasmic proteins: the catenins (Fig. 9). Cadherins bind directly to β- 

catenin (alternatively to plakoglobin) and to p120. β- catenin and plakoglobin can 

bind to α- catenin, an actin binding protein. For many years, it has been generally 

accepted that linkage of the cadherins via the catenins to the actin cytoskeleton is 

the mechanism by which catenins strengthen cadherin-mediated adhesion. The 

lack of catenin association with cadherin is commonly accepted as a destabilizing 

event for the endothelial integrity. Various intracellular signalling molecules, as 
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well as phosphorylation of tyrosine and serine residues of catenins or cadherins, 

have been reported to play a role in cadherin regulation.  

 Several studies focus on the effect of agents that increase vascular 

permeability on the organization of endothelial cell-cell junctions [66, 75-79]. 

Some agents, such as histamine or thrombin, act very rapidly, and the effect is 

quickly reversible once they are removed. By contrast, inflammatory cytokines 

increase vascular permeability if the effect is sustained up to 24 and 48 hours. 

Thus, it is clear that the mechanism of action might vary depending on the 

factor(s) released or produced to modify the endothelial permeability. However, in 

many reported cases, the junctional weakness did not reflect morphological 

alteration of endothelial monolayers; for instance, the internalization of VE-

cadherin or the phosphorylation of AJ proteins reduces junctional strength without 

necessarily opening intercellular gaps [65, 76].  

 

1.4.2 Tyrosine phosphorylation of AJ components 

Endothelial permeability can be modulated in several molecular mechanisms; for 

instance, the phosphorylation, cleavage and internalization of VE-cadherin are all 

thought to affect endothelial permeability (Fig. 10). It has been reported that the 

tyrosine phosphorylation of VE-cadherin and other components of AJs is 

associated with weak junctions and impaired barrier function. Agents such as 

histamine, tumour necrosis factor-α (TNFα), platelet-activating factor (PAF) and 

VEGF induce tyrosine phosphorylation of VE-cadherin and its binding partners β-

catenin, plakoglobin and p120[65, 80].  

 The mechanism of VE-cadherin phosphorylation has not yet been fully 

clarified. In some manuscripts it is declared that tyrosine kinase Src is probably 
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implicated, being directly associated with VE –Cadherin. Moreover, VEGF-

induced phosphorylation of VE-cadherin is inhibited in Src-deficient mice or in 

wild-type mice treated with Src inhibitors [66]. In addition to Src, other kinases 

are thought to associate with the VE-cadherin–β- catenin complex and to 

modulate endothelial permeability [81].  

 

Fig. 10. Phosphorylation of VE-cadherin. The sites of tyrosine (Y) and serine (S) phosphorylation 

are shown. The interaction of VE-cadherin with individual proteins can be positively (CSK, β-

arrestin-2) or negatively (p120, β-catenin) regulated by its phosphorylation at specific amino acid 

residues. Source: E. Dejana, et al. (2008). J Cell Sci, 2115–2122. 

 

 Several publications report on correlations between changes in the stability 

of VE-cadherin adhesion and changes in the tyrosine phosphorylation of the VE-

cadherin catenin complex. It has been suggested that tyrosine phosphorylation of 

VE-cadherin itself might affect VE-cadherin functions. Based on permeability 

studies of transfected CHO cells, expressing point mutated forms of VE-cadherin 

with tyrosine residues replaced by either glutamate or phenylalanine, tyrosine 

residues 731 and 658 were suggested to participate in the regulation of the 

adhesive function of VE-cadherin [82].  
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 VEGF was found to enhance the permeability of HUVEC monolayers and 

to increase tyrosine phosphorylation of VE-cadherin, β-catenin, and plakoglobin 

[76]. Intravenous injection of mice with VEGF was reported to lead within 2 to 5 

minutes to the dissociation of a pre-existing complex of the VEGF-receptor 2 with 

VE-cadherin and β- catenin, as well as Src- dependent tyrosine phosphorylation of 

VE-cadherin and β- catenin [83].  

This complex is most likely important for the regulation of VE-cadherin mediated 

adhesion [84-86]. An alternative mechanism for the down regulation was 

proposed for VE-cadherin function during VEGF-induced permeability. This 

process could be based on the phosphorylation of serine 665 in the cytoplasmic 

tail of VE-cadherin, leading to endocytosis [87]. 

 VE-cadherin seems to be internalized through a process regulated by a 

clathrin-dependent endocytosis [88]. Interestingly, the binding of p120 to VE-

cadherin prevents its internalization, introducing the concept that p120 might act 

as a plasma-membrane-retention signal.  

 VE-cadherin is an important determinant of the barrier function of the 

vascular endothelium. From the knowledge of how the expression and function of 

this protein are regulated, it should be possible to design specific agents that can 

increase or decrease vascular permeability. Further work is required, however, to 

address important issues such as the relationship between the transcellular and 

paracellular permeability pathways and their specific biological roles in different 

regions of the vascular tree.  
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2. Materials and Methods 

2.1 Reagents 

Phosphate-buffered saline (PBS), D-MEM High Glucose and Foetal bovine serum 

(FBS) were purchased from Euroclone (Siziano, IT). Gentamicin and Hepes were 

purchased from Gibco (Scotland ,UK). Endothelial cells growth supplement 

(ECGS), BSA-FITC, Red Ponceau, tetramethylbenzidine (TMB) and TMB Stop 

Solution (0.16 M sulphuric acid), MEM non essential aminoacids, MEM vitamins, 

BSA, gelatine type B, N-acetylcysteine (NAC) , DTT and Tween-20 were 

obtained from Sigma-Aldrich (St Louis, MO). 5ml His Trap HPcolumn, 

Nitrocellulose membrane, X-ray film and ECL (enhanced chemiluminescence 

system) were purchased from GE Healthcare (Buckinghamshire, UK). BCA 

protein assay reagent was purchased from Pierce (Rockford, IL). Mitosox Red, α-

mouse Alexa Fluor 488 and α-rabbit Alexa Fluor 594, 4-12% and 10% SDS-

PAGE gels, LDS 4X sample buffer, NuPAGE antioxidant, NuPAGE MES 20X 

Running Buffer, NuPAGE 20x Transfer Buffer were obtained from Invitrogen 

(San Diego, CA). VEGF was obtained from Immunological Sciences (Rome, 

Italy). Mitochondria Isolation kit and QiAMP mini-prep Kit were purchased from 

Qiagen (Hilden, Germany). SU6656 was purchased from Merck-Millipore 

(Darmstadt, Germany). Goat polyclonal and monoclonal anti-total VE-cadherin 

antibodies and agarose-coupled Protein G were from Santa Cruz Biotechnology 

(Santa Cruz, CA). Rabbit polyclonal antibody against EEA1 was from Abcam 

(Cambridge, UK) and monoclonal antibody against phosphotyrosine (clone G410) 

was obtained from Upstate Biotechonolgy. Monoclonal anti complex II antibody 

was purchased form Mitoscience (Eugene, OR). 8-well chambers slide, NU-serum 
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IV and monoclonal anti-beta catenin was obtained from BD Bioscences (Franklin 

Lakes, NJ). 

2.2 Bacterial strains and cell culture 

Escherichia coli strain DH5α and Neisseria meningitidis strain MC58 were used 

in trans-endothelial migration assays. Neisseria meningitidis strain was a 

serogroup B isolate (United Kingdom 1983) of the ST-32 complex characterized 

as serotype B:15:P1.7,16. Simian virus 40 large T antigen-transformed human 

brain microvascular endothelial cells (HBMEC) were kindly provided by Novartis 

Vaccines and Diagnostics s.r.l (Siena, Italy) and were cultured in T75 flasks, in 

FBS/NU-serum IV-supplemented DMEM high glucose plus non-essential 

aminoacids and vitamins, to a confluent monolayer. For in vitro permeability 

assays, cells were split and seeded on gelatine-coated Trans-well cell culture 

chambers (polycarbonate filters, 0.3 µm or 3 µm pore size; Corning Costar 

Corporation, Cambridge, MA, USA) at a density of 7 × 104 cells per well. Cells 

were grown for 5 days before performing permeability assays. 

VEC+ endothelial cells derived from murine embryonic stem cells with 

homozygous null mutation of the VE-cadherin gene and overexpressing wild-type 

human VE-cadherin [89, 90] were kindly provided by E. Dejana (IFOM, Milan, 

Italy). Cells were maintained in culture in T75 flasks in FBS-supplemented 

DMEM high glucose plus heparin and ECGS. 

Mouse embryonic fibroblast (MEFs) were maintained in culture in T75 flasks in 

FBS-supplemented DMEM high glucose. 
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2.3 Construction of plasmids 

For the expression of all the recombinant proteins considered in this study, the 

specific DNA fragments were amplified by PCR from N. meningitidis MC58 

genomic DNA and cloned into the pET-21b+ expression vector (Invitrogen), as 

detailed in Serruto et al., 2010. Briefly, to obtain a recombinant full-length protein 

rGNA2132MC58-his, the nmb2132 gene was amplified from the MC58 genome 

using the oligonucleotides 2132-dG-FOR and 2132-REV, digested with NdeI and 

XhoI restriction enzymes and cloned into the NdeI/XhoI sites of the pET-21b+ 

vector, generating pET-GNA2132-MC58-his. The constructs for the expression of 

C-terminal domains of GNA2132 were prepared by ligating PCR products, 

digested with NdeI and XhoI restriction enzymes, into the pET21b+ expression 

vector. For pETGNA2132-C2-his (recombinant C2-terminal region, aa 293–488), 

the PCR fragment was obtained using the 2132-C–FOR and 2132–REV primers. 

Finally, for pET-GNA2132-C1-his (recombinant C1-terminal region, aa 307–

488), the PCR fragment was obtained using the 2132-C1–FOR and 2132–REV 

primers.  

2.4 Transformation of competent Escherichia coli 

E. coli BL21(DE3) chemically competent cells which have been kept on -80°C 

storage were thawed on ice. 100-200 ng of plasmid DNA were added to the 

competent cells and the transformation mix was kept on ice for 30 min. Cells were 

heat-shocked for 30- 40 sec at 42°C and the cooled on ice for 2-3 min. The cells 

were incubated for 45 min at 37°C in 500 µl of Luria-Bertani (LB) broth (10 g/l 

Bacto Tryptone, 5 g/l Bacto yeast extract, 10 g/l NaCl) in agitation. The mix was 

plated on LB agar plates which contained the antibiotics ampicillin and 
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chloramphenicol that select for transformants. The plates were incubated 

overnight at 37°C. Bacterial colonies were colony-PCR analyzed. 

2.5 Plasmid DNA isolation from bacteria (Miniprep) 

E. Coli cells carrying the plasmid of interest were incubated overnight at 37°C at 

constant shaking (200-220 rpm) in 5 ml of LB broth supplemented with the 

appropriate antibiotic (chloramphenicol 20 µg/ml). The cells were harvested by 

centrifugation at 13,000 x g (microcentrifuge Biofuge, Haeraeus) for 3 min, and 

the plasmid DNA was isolated using the QIAprep Spin miniprep kit (Qiagen) 

following the manufacturer’s instruction. Briefly, cellular pellet was resuspended 

in 250 µl of buffer P1 (Qiagen), then were added 250 µl of buffer P2 (Qiagen) and 

the suspension was gently inverted 2-3 times; 350 µl of neutralizing buffer N3 

(Qiagen) were added, the suspension was gently inverted and centrifuged 10 min 

at 13,000 x g. Supernatants were applied in the Qiaprep spin column and 

centrifuged 1 minute at 13,000 x g; the column was washed two times by adding 

750 µl of buffer PE (Qiagen) and centrifuged 1 min at 13,000 x g. The purified 

plasmid DNA was eluted from the column with 50 µl of sterile water. The 

concentration and quality of the purified DNA was measured with a UV 

spectrophotometer at OD 260-280. 

 

2.6 NHBA, C1 and C2 expression and purification 

E. coli transformation was carried out according to standard protocols. 

Escherichia coli strain BL21(DE3)-pLysS containing the expression vectors were 

grown overnight at 37°C in 500 ml of LB medium supplemented with ampicillin 

(20 µg/ml) to an OD600 of 0.6. NHBA, C1 and C2 expression was induced by 1 
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mM IPTG. After 3 h, bacteria were pelletted by centrifugation at 8000g for 10 

min and resuspended in 10 ml of lysis buffer (50 mM Na-Phosphate (pH 8.0), 

300mM NaCl, 20 mM Imidazole, plus protease inhibitors). After 5 sonication 

passages, for 1 min at 20 mA amplitude, debris were removed by centrifugation at 

32000g for 30 min at 4°C. Supernatant was filtered through a 0.2 µm syringe filter 

and the proteins were eluted from affinity chromatography His Trap HP column 

by applying 150mM imidazole. Purity of the proteins was checked by 

SDS/PAGE. Protein was concentrated using the ultrafiltration system Centricon® 

(Millipore) and the content was quantified using the BCA assay.  

2.7 Permeability assays 

HBMECs were seeded onto 2% gelatin-coated Transwell filters (0.3 µm pore size) 

at the density of 7 × 104 cells per well in a 24-well plate. Cells were used 5 days 

after seeding onto filters. The formation of intact monolayer on the insert was 

evaluated by adding FITC-BSA (1 mg/ml) to the upper chamber and measuring 

after 5 min the amount of labeled BSA passed into the lower chamber by a 

Fluostar microplate reader (SLT Labinstruments). Transwells were used only 

when the intensity of fluorescence in the lower chamber was negligible.  

Permeability assays were performed after administrating, in the lower or upper 

chamber, the following stimuli: 5 µM C1, 5 µM C2 or NHBA or 1 µM bradikinin 

(BK). When required, cells were exposed to 1mM N-acetylcysteine (NAC) 30 

min before adding the stimuli. FITC-BSA fluorescence was evaluated in the lower 

chamber at various time intervals. Calibration curves were set up measuring the 

fluorescence intensity of increasing concentrations of FITC-BSA.  
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2.8 Evaluation of E. coli crossing through the endothelium 

HBMECs were seeded onto 2% gelatin-coated Transwell filters (3 µm pore size) 

at the density of 7 × 104 cells per well in a 24-well plate. Cells were used 5 days 

after seeding onto filters. Each Transwell was checked for the formation of intact 

monolayer by adding FITC-BSA to the upper chamber, as described above. E. coli 

strain DH5α , together with the stimuli, 5 µM C2 or C1 or NHBA or 1 µM BK, 

was added to the upper chamber (106 bacteria/well, MOI: 15). When required, 

cells were exposed to 1mM NAC 30 min before adding the stimuli. After 1 and 2 

h-incubation, bacteria-containing medium from the lower chamber was collected 

and plated onto LB agar plate at 37°C. After 18 h, colony-forming units (CFU) 

were counted. 

2.9 Evaluation of N. meningitidis crossing through the endothelium 

Monolayers of HBMEC, prepared as above, were infected for 4 hours with 10 × 

106 bacteria/well, strain MC58 (MOI: 30). Infections were carried out in the 

presence of NHBA or one of the two recombinant fragments (C1; C2). After 30 

min, 1 h, 2 h, 3 h and 4 h the medium of the lower chamber was collected and 

plated on Mueller Hinton Medium (MHM) plates for further colony counting.  

2.10 Mitochondria isolation 

HBMECs were seeded onto T75 flasks and, once confluent, were exposed to 5 

µM C1 or C2 for 5, 15 and 30 min. Cells were collected, washed in ice-cold PBS 

and processed by Qiagen Mitochondria Isolation Kit. Protein content of isolated 

fractions, corresponding to mitochondria, cytosol and microsomal fraction, was 

determined by BCA assay. 10 µg of each fraction were loaded on SDS-PAGE 4-

12% and analyzed by western blot. 
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2.11 SDS-PAGE (PolyAcrilamide Gel Electrophoresis) 

Cell extracts as well as isolated fraction or immunoprecipitated samples were 

diluted in Loading buffer which was prepared as follows: 

• 1X NuPAGE® LDS Sample Buffer 

• DTT 50 mM 

The volume of each sample was brought to 15 µl. The samples were denaturated 

at 99 °C for 10 min. Samples were loaded on SDS 4-12% or 10% precast 

polyacrylamide gels. The electrophoresis was run in 1X MES Running buffer 

containing the antioxidant at 110 mA and 200 V constant for 45 min. 

2.12 Western Blot 

After electrophoretic run, proteins were transferred from gel to nitrocellulose 

membranes. The gel and the membrane were equilibrated in Transfer Buffer. The 

Transfer Buffer was prepared as follows: 

• 20X NuPAGE® Transfer buffer 

• 10X NuPAGE® Antioxidant 

• 10% Methanol 

The volume was brought to 1 l with distilled water. 

The transfer was obtained by applying a current of 170 mA and 30 V constant for 

1 h. To evaluate the efficiency of the transfer, proteins were stained with Red 

Ponceau 1X. The staining was easily reversed by washing with distilled water. 

Once the proteins were transferred on nitrocellulose membranes, the membranes 

were saturated with Blocking Buffer (5% no fat milk powder solubilizated in PBS 

with 0.2% TWEEN-20, or 5% BSA powder solubilizated in TBS with 0.1% 

TWEEN-20 ) for 1 h at room temperature, and then incubated overnight with the 

primary antibody of interest at 4°C. The membranes were then washed 3 times 
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with PBS with 0.2% TWEEN-20 (or TBS with 0.1% TWEEN-20) at room 

temperature and incubated with secondary antibody-HRP Conjugate, for 1 h at 

room temperature. Immunoreaction was revealed by ECL PRIME and followed 

by exposure to X- ray film. 

2.13 Immunoprecipitation 

Murine endothelial cells overexpressing wild-type human VE-cadherin were 

grown in T25 flask. Cell layers were serum-starved for 3 days before the 

application of stimuli. 5 µM C2 or 10 ng/ml VEGF were added for 15, 30 and 45 

minutes. When required, cells were pre-incubated for 30 min with1 mM NAC. 

Cells, detached by scraping, were collected, washed in ice-cold PBS and lysed in 

RIPA buffer, supplemented with protease and phosphatase inhibitors. Lysates 

were centrifuged at 12000 g for 20 min at 4°C. Supernatants were collected and 

their protein content determined by BCA assay. 500 µg cell extract for each 

sample was immunoprecipitated with 2 µg goat polyclonal anti-VE-cadherin 

conjugated to 20 µl protein G agarose. The immunoprecipitates finally recovered 

were run in SDS-PAGE (10% polyacrylamide) for blot with anti-phosphotyrosine 

antibody.  

The total content of VE-cadherin was assayed using a goat polyclonal antibody 

anti-total VE cadherin and the total content of beta-catenin was revealed by a 

specific monoclonal antibody. Western blots were developed with HRP-

conjugated anti-IgG followed by ECL. 

2.14 Measurement of changes in mitochondrial ROS production in HBMECs  

HBMECs were grown on 24 mm diameter glass dishes till confluence; medium 

was removed and replaced with HBSS buffer plus Ca2+ and Mg2+, 10 mM 
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Glucose and 4 mM Hepes. Cells were incubated for 30 min with 1 µM Mitosox 

Red before starting the live imaging recording of fluorescence (10 sec intervals), 

at 580 Nm, by Olympus IX81 microscope. Stimuli added were 5 µM C1 or C2; 

when required, cells were pre-treated 30 min with 1 mM NAC. 

Mitochondrial H2O2 generation in confluent HBMECs was also evaluated in cells 

transfected with 2 µg mitochondria-targeted HyPer-Mito (Evrogen, 

www.evrogen.com), which is a fully genetically encoded fluorescent sensor 

capable for highly specific detection of mitochondrial H2O2 [91]. Following the 

application of stimuli (5 µM C1 or C2), in HBSS buffer plus Ca2+ and Mg2+, 10 

mM glucose, 4 mM Hepes, fluorescence emission at 530 Nm was recorded (10 

sec intervals) by Olympus IX81 microscope following excitation at 430 Nm and 

480 Nm. When required, cells were pre-treated 30 min with 1 mM NAC.  

2.15 Immunofluorescence 

Murine endothelial cells overexpressing wild-type human VE-cadherin seeded 

(0.5 × 104/ml) on 8 wells chamber slides (BD Biosciences) were pre- treated with 

100 µM chloroquine before to be exposed to C2 fragment or pre-treated for 30 

min with NAC before the addiction of C2 fragment. After 45 min, cells were fixed 

with 3.7% formaldehyde in PBS for 30 min, permeabilized with 0.01% Nonidet 

P40 for 20 min at RT and blocked with PBS 0.5% BSA. VE-cadherin was stained 

with a monoclonal anti-VE-cadherin followed by an ALEXA 488-conjugated 

anti-mouse secondary antibody. EEA1 was stained with a polyclonal anti-EEA1 

antibody followed by a ALEXA 594-conjugated anti-rabbit secondary antibody. 

Cells were visualized with a 63× oil immersion objective on a laser-scanning 

confocal microscope and images were acquired using a LAS-AF software (Leica 

TCS-SP5, Leica Microsystems, Wetzlar, Germany). Images were then processed 
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using ImageJ software (Research Services Branch, National Institute of Mental 

Health, Bethesda, MD, USA). Mander’s coefficient for colocalization analysis 

was calculated using Mander’s coefficient plug-in of ImageJ. The quantification 

by Mander’s colocalization coefficient was performed in a blinded manner. 

2.16 Cell-based ELISA for VE-cadherin expression 

Cell-based ELISA was performed as previously reported with minor 

modifications [12]. Briefly, murine endothelial cells overexpressing wild-type 

human VE-cadherin were seeded onto 96-well plates precoated with 2% gelatin. 

Three days after all cells reached confluence and formed a contact-inhibited 

monolayer, cells were treated with 5 µM C2 or 10 ng/ml VEGF for 45 min or 3 

hours. When required cells were pre-treated for 30 min with 1 mM NAC or 280 

Nm SU6656. Cells were fixed with 3.7% formaldehyde for 10 min at RT and 

incubated with blocking buffer (PBS with 10% FBS) for 60 min at 37°C. After 

washing with 0.1% Triton X-100  in PBS, cells were incubated with a goat 

polyclonal antibody against VE-cadherin (1:500) overnight at 4°C. After washing 

with PBS, a secondary HRP-conjugated antibody was added and incubated for 1 h 

at room temperature. After washing again, TMB solution was added, incubated 

for 15 min followed by the stop solution for 5 min. The optical density of each 

well was read at 450 nm using a plate reader (Tecan, Infinite 200 pro, Salzburg, 

Austria). Results were expressed as % of the control group (cells exposed to 

vehicle). 

2.17 Statistical analysis 

Statistical significance was calculated by unpaired Student’s t-test. Data, reported 

as the mean ± S.D., were considered significant if p-values ≤ 0.05.  
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Results 

3.1 C2 fragment increases brain microvasculature 

endothelial permeability  

Once Neisseria meningitidis crosses human epithelial cell, can spread within the 

vasculature, and from there it can escapes towards the host tissue in a mechanism 

still not fully understood [92]. To verify whether the two fragments, C1 and C2, 

produced upon the cleavage of the full length protein NHBA, are involved in the 

alteration of endothelial permeability to allow the passage of bacteria, or of some 

bacterial factors, from one side to the other of a vessel, we seeded human brain 

microvasculature endothelial cells (HBMEC) onto a polycarbonate membrane of a 

transwell system. This system is composed by two chambers: the apical one is 

separated from the basolateral one by a filter. On the latter the cells were seeded 

and left to grow until they became confluent. Immediately before the experiment 

the tracer FITC- BSA was added in the apical chambers together with NHBA, C1, 

C2 or bradikine (BK), as positive control, and the passage of the tracer in the 

lower chambers was monitored at different time points. Our results, depicted in 

Figure 11 A, revealed that, similarly to BK, C2 fragment induced an increase of 

endothelial permeability already after 15 min, an effect that become stronger after 

30 min and even more after 45 min. Notably, neither the C1 fragment nor the full-

length protein NHBA were able to produce a similar effect. Moreover, the 

alteration of the monolayer integrity occurred only if C2 fragment was 

administrated to the apical side of endothelia, whereas nothing occurred if the 

exposure of the endothelium to the fragment was carried-on at the baso-lateral 

side (data not shown). 
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Figure 11. C2 fragment induces the leakage of HBMECs-formed endothelia. A) HBMECs, grown 

as monolayer onto the membrane of a Transwell system, were stimulated with 5 µM C2, C1 

NHBA, or left untreated (vehicle). 1 µM Bradikinin (BK) was used as positive control. The passage 

of BSA the lower chamber at various time intervals was evaluated. B) HBMECs grown as 

monolayer onto the membrane of a Transwell system, were exposed to 106  E. coli bacteria in the 

presence of C2, C1 or NHBA (5 µM). 1 µM BK was used as positive control. At the indicated time 

points, medium of the lower chamber was collected and plated onto agar plates. After 18 h colony-

forming units (CFU) were counted. Values are expressed as means ± SD of duplicate 

determinations of four separate experiments. *, p< 0.05; **, p < 0.01; ***, p < 0.001 vs vehicle. 
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Looking at the in vivo situation, this evidence suggests that C2 has to be within 

the vasculature to exert its perturbing activity on the endothelium. 

Next, we moved to evaluate whether the increased permeability induced by C2 

could allow the passage of bacteria; to address this possibility, we repeated the 

previous experiment applying, instead of the tracer BSA-FITC, E. coli as bacterial 

model. 106 E. coli were added to the upper chamber of a transwell apparatus 

together with the single fragments or the full length protein; after 1 or 2 h, the 

entire medium of the lower chamber was collected and plated on LB agar plates to 

permit the bacteria to multiply. After 18 h, colony-forming units (CFU) were 

counted. Figure 11 B shows that the extent of endothelia permeabilization induced 

by C2 allowed the passage of bacteria, in a time dependent manner. According to 

the results of the previous experiment, neither C1 nor NHBA application resulted 

in any appreciable bacteria movement. Remarkably, as for the passage of the 

tracer, bacteria did not cross endothelium in case C2 was applied at the baso-

lateral side of the endothelium (data not shown), thus confirming the previous 

evidence that the fragment has to be present into the vascular lumen of a vessel to 

trigger the alteration event.  

 

3.2 C2 localizes within mitochondria 

In order to address how C2 elicited endothelia perturbation, we moved to 

investigate its subcellular localization within host endothelial cells. As first, we 

took advantage of informatic softwares capable to predict a possible localization 

of a peptide within cells. Among them, we used MitoProt software 

(http://ihg.gsf.de/ihg/mitoprot.html), which defines whether an N-terminal protein 

region contains a mitochondrial targeting sequence. The software attributes a 



 49 

score value ranging from 1 to 0, depending on whether the sequence analyzed is 

more or less compatible to a mitochondria localization. In case of C2, MitoProt 

scored a value of 0.7152 which strongly suggested a mitochondrial localization. In 

accordance with the prediction, the N-terminal domain of C2 is enriched in basic 

residues (arginine), that usually confer to a protein the ability of targeting 

mitochondria [93]. On the contrary, for NHBA and C1 MitoProt gave a score of 

0.205 and 0.0199 respectively.  

In order to verify whether the bioinformatic prediction was exact, we incubated 

HBMECs with C2, before proceeding with the isolation of mitochondrial, 

microsomal and cytosolic fractions, at different time points. The protein content 

of all the fractions was analyzed by western blot for evaluating the presence of C2 

and possibly defining its intracellular trafficking. Figure 12 shows that, after 5 

min, C2 was detectable both in microsomes and in the cytosol, while, 15 min after 

its administration, a quote of C2 accumulated in mitochondria. After 45 min, C2 

was entirely confined in the latter organelle. These observations, which confirm 

the bioinformatic prediction, suggest that C2 probably in virtue of the arginine-

rich domain behaves as a trojan peptide. Notably, independently from the 

subcellular localization, C2 always maintained the N-terminal domain, as 

demonstrated by the fact that the protein was revealed by a policlonal antibody 

raised specifically against the arginine-rich peptide. 

Trojan peptides are cell-permeable peptides able to translocate into cells without 

deleterious effects and polycationic homopolymers, such as short oligomers of 

arginine, effectively enter cells [94-96]. 

To further support the specific localization of C2 within mitochondria, the same 

subcellular fractionation and analysis was carried on HBMECs exposed to C1; in 
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this case, not only the peptide did not show any accumulation in mitochondria, but 

it was undetectable also in the other two fractions (Figure 12). This result, which 

probably reflects a week ability of C1 to interact with the cells, confirms once 

again the crucial role of the arginine domain of C2 for its biological activity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. C2 fragment accumulates in mitochondria. HBMECs, grown to confluence in a T75 

flask, were exposed to 5 µM C2 or C1. After 5, 15 and 45 min mitochondrial (Mt), microsomal 

(Mf) and cytosolic (C) fractions were isolated and processed for Western blot analysis. A mouse 

polyclonal anti-NHBA antibody was used to reveal both C1 and C2 peptides. The latter was also 

revealed by a polyclonal antibody specific for the arginine-rich domain. Monoclonal antibodies 

anti-COXII, anti-calnexin and anti-GAPDH were used to check the purity of each fraction. HRP-

conjugated secondary antibodies were used before developing in chemiluminescence. 

 

3.3 Mitochondrial ROS production 

It is established that the integrity of endothelial permeability can be perturbed by 

ROS [11]. This has been demonstrated to occur for example when endothelia are 

exposed to VEGF, which, in fact, induces ROS production [11]. Although the 

relationship between ROS and endothelial permeability remains to be precisely 
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defined, it is known that an event of phosporylation of VE-caherin and β-catenin, 

both proteins of the adherence junctions, follows the production of ROS. 

On the basis of the localization of C2 in mitochondria, we moved to verify 

whether the increased endothelial permeability caused by the fragment could 

follow ROS production within the organelle: indeed, the mitochondrial electron 

transport chain has been recognized as one of the major cellular generators of 

reactive oxygen species, which include superoxide, hydrogen peroxide and the 

hydroxyl free radical [97-99]. Moreover, the production of ROS can be further 

enhanced by toxins, such as rotenone, that inhibit complex I and antimycin A that 

inhibits complex III [100, 101].  

Microscopic imaging applied to HBMECs, loaded with the fluoroprobe MitoSOX 

Red [102], that permits quantitative detection of mitochondrial superoxide 

production, demonstrated significant increase in mitochondrial fluorescence 

intensity in the cells, following the administration of C2, but not of C1 (Figure 

14A). Notably, ROS started to increase after 3 min, a  time interval that is 

apparently in contrast to the fact that C2 was undetectable in mitochondria 5 min 

after its administration (Figure 12). However, considering the sensitivity 

limitation of the western blot technique, we cannot exclude that a small amount of 

C2, sufficient to promote the initial ROS production, reached mitochondria in the 

first minutes. As expected, pre-treatment of the cells with the ROS scavenger N-

acetylcysteine (NAC) fully prevented the C2-induced fluorescence increase, 

confirming that it was due to an increase in ROS generation (Figure 13 B).  
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Figure 13. C2 induces mitochondrial ROS formation in HBMECs. A) HBMECs, grown as 

monolayer, were loaded with 1 µM MitoSOX Red, just before live-imaging recording. At the 

indicated time point (arrow) cells were exposed to 5 µM C1, C2, or saline (vehicle) as negative 

control. B) Cells were pre-treated or not with 1 mM NAC before being exposed to C2 as in A). 

Cells were excited by laser at 514 nm and fluorescence emitted was recorder at 560 nm every 10 

sec for 30 min. Data are expressed as fold change in  mean fluorescence intensity compared to 

cells exposed to saline (vehicle). N= 3 for each condition.C) HBMECs, grown as monolayer, were 

transfected with the Hyper-dMito vector. After 24 h of expression, cells were exposed to 5 µM C1, 

C2, or saline (vehicle). D) Cells were pre-treated or not with 1 mM NAC before being exposed to 

C2 as in C). Fluorescence intensities were recorded every 10 sec for 1 h. Normalized fluorescence 

ratio changes (430/480 nm) was calculated as measure of H2O2 production. N= 3 for each 

condition. 

 

Mitochondrial H2O2 generation in confluent HBMECs was also evaluated in cells 

transfected with mitochondria-targeted HyPer-dMito, which is a fully genetically 

encoded fluorescent sensor capable for highly specific detection of mitochondrial 

H2O2 [91]. In the presence of a basal level of ROS, the probe has two excitation 

peaks at 430 nm and 480 nm and one emission peak at 516 nm. Upon ROS 
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induction, the excitation peak at 430 nm decreases proportionally to the increase 

of the peak at 480 nm, allowing ratiometric measurement.  

As shown in Figure 13 C, cell exposure to C2 fragment was characterized by a 

decrease of the ratio between the two excitation peaks, while on the contrary, it 

remained constant following C1 administration as well as in case of vehicle-

exposed cells. 

As before, pre-incubation of HBMECs with NAC prevented H2O2 induction: 

accordingly, the ratio remained constant (Figure 13 D).  

 

3.4 Reactive oxygen species are fundamental in the 

alteration of the integrity of endothelial monolayers 

induced by C2 

Next we moved to verify whether ROS induced by C2 were involved in the 

alteration of endothelial integrity; to this aim we repeated the experiments with 

HBMECs seeded on transwells and we evaluated both the passage of BSA and 

that of bacteria, but in presence or absence of NAC.  

Results shown in Figure 14 A and 14 B reveal that at any time point considered, 

ROS scavenger significantly reduced the accumulation of BSA and bacteria in the 

lower chamber of the apparatus: both return to levels similar to C1 which, as 

before, did not affect endothelial permeability and remained insensitive to the 

presence of NAC. 
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Figure 14. ROS-induced by C2 are essential for the alteration of endothelial permeability. 

HBMECs, seeded onto the membrane of a Transwell system, were exposed to 5 µM C2 or C1 

fragment together with BSA-FITC, A) or E. coli, B). When required, HBMECs were pre-treated 

with 1 mM NAC for 30 min. The accumulation of BSA and bacteria in the lower chamber was 

performed as detailed in Figure 1. Values are expressed as means ± SD of duplicate 

determinations of four separate experiments. *, p< 0.05; **, p < 0.01 vs C2 + NAC. 

 

Collectively, these data support the conclusion that perturbation of endothelial 

cells due to C2 requires intracellular accumulation of ROS; the latter are mainly 

produced within mitochondria where C2, after entering the cells probably directly 

through the plasma membrane, localizes. 
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3.5 C2 inducesVE-cadherin phosphorylation in a ROS-

dependent manner 

It has been reported that VEGF leads to the generation of ROS which, in turn, 

elevates the tyrosine phosphorylation of VE-cadherin, ultimately regulating 

adherence junction integrity [63]. Phosphorylation of VE-cadherin and of its 

partners β-catenin, plakoglobin and p120 is linked to the alteration of endothelial 

permeability in case of other mediators than VEGF, such as such as histamine, 

tumour necrosis factor-α (TNFα) and platelet-activating factor (PAF) [65, 80, 103, 

104]. 

We sought to determine if the C2-induced increase in microvascular permeability 

was also associated to some change in the tyrosine phosphorylation of VE-

caderin. To this aim, we used endothelial cells derived from murine embryonic 

stem cells with homozygous null mutation of the VE-cadherin gene and 

overexpressing wild-type human VE-cadherin [90]. Cells were serum-starved for 

72 h, in order to abolish the basal phosphorylation rate that commonly occurs in 

cells as part of the turnover that involves senescent or partially damaged proteins 

[105], before being exposed to C2. After VE-cadherin immunoprecipitation the 

phosphorylation state of the protein tyrosines was evaluated by Western blot. 

Fig. 15 A shows that, already after 15 min of treatment, VE-cadherin was highly 

phosphorylated in cells exposed to C2 fragment, and the phosphorylation level 

increased further up to 30 min, before decreasing at 45 min. 

To determine if ROS were required for C2-induced VE-cadherin phosphorylation, 

HBMECs were pre-treated with NAC before exposing the cells to C2 and 

evaluating the level of VE-cadherin phoshorylation. C2 was no longer able to 
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cause phosphorylation of VE-cadherin after treatment with NAC (Figure 15 B), 

suggesting that ROS are required for the phosphorylation of the protein. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. C2 induces VE-cadherin phosphorylation. A) Murine endothelial cells overexpressing 

wild-type human VE-cadherin were grown to confluence before being serum-starved for 72 h and 

exposed to 5 µM C2. After 15, 30 and 45 min cells were harvested and processed for 

immunoprecipitation with a polyclonal antibody anti-VE-cadherin. Phosphorylation state of the 

protein was determined in western blot by developing with anti-phosphotyrosine antibody. Total 

VE-cadherin was used as loading control. NT, not-treated cells: cells exposed to saline.  B) Cells 

were pre-treated with NAC for 30 min (left panel) or with the Src kinase inhibitor SU6656 for 2 h 

(right panel), before the administration of C2. 

 

Notably, pre-treatment of cells with the Src kinase inhibitor SU6656 also fully 

prevented the phosphorylation of VE-cadherin (Figure 15 B), as already reported 

for VEGF that, similarly to C2, increases endothelial permeability [66].  
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3.6 C2 decreases VE-cadherin intracellular content  

It has been recently reported for TGF-β, another cytokine that increases 

paracellular permeability of endothelia, that its effect results from a change in the 

total cell content of VE-cadherin [12]. 

In a cell-based ELISA on post-confluent murine endothelial cells overexpressing 

wild-type human VE-cadherin, we found that exposure to C2 for 45 min resulted 

in reduced levels of VE-cadherin, of about 20%, that were maintained similar at 3 

h. Instead, NAC pre-treatment almost fully prevented the C2-induced protein 

disappearance (Figure 16 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. C2 lowers cellular VE-cadherin content. Murine endothelial cells overexpressing wild-

type human VE-cadherin were grown to confluence before being exposed to 5 µM C2. After 45 min 

and 3 h a cell-based ELISA was performed for evaluating the total cell content of VE-cadherin. 

Where indicated, cells were pre-treated with 1 mM NAC for 30 min, A) or with SU6656 for 3 h, B). 
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Values are expressed as mean percentage (± SD) of the absorbance readings at 450 nm in groups 

exposed to saline (vehicle). *,  p < 0.05; ** ,  p <0.01, for C2 vs vehicle and for C2 vs C2 + NAC.  

 

As we demonstrated that C2 induced phosphorylation of VE-cadherin and that the 

latter was abolished when Src kinase was inhibited, we wondered whether the 

phosphorylation of the junctional protein was required for reducing its cellular 

content in cells exposed to the fragment. To determine this, we pre-treated cells 

with SU6656; as shown in Figure 16 B, the blockage of Src significantly 

prevented the reduction of VE-cadherin. 

Collectively, our data suggest that C2 leads to the generation of ROS which, in 

turn, elevates the tyrosine phosphorylation of the junctional protein VE-cadherin; 

the latter event, probably mediated at least in part, by Src kinase, culminates in the 

reduction of the VE-cadherin cell content. 

 

3.7 C2 promotes VE-cadherin endocytosis  

VE-cadherin endocytosis is part of a normal regulatory mechanism that 

endothelial cells utilize to control the adhesive properties of the plasma 

membrane. The internalized VE-cadherin is processed through the endosome-

lysosome pathway and requires an active proteasome system for its degradation 

[106].  

Based on the reduction of VE-cadherin content in cells exposed to C2, we 

addressed whether this resulted from the internalization of the junctional protein.  

To this aim we performed an immunofluorescence analysis on the cells 

overexpressing human VE-cadherin that were pre-treated with cloroquine before 

the exposure to C2: this drug prevents the fusion of endosomes and lysosomes, 
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therefore it permits to visualize endocytosed proteins, avoiding their final 

degradation.  

Figure 17 shows that in cells exposed to saline (vehicle), VE-cadherin was mainly 

concentrated at the plasma membrane, with only a small proportion of protein 

localized within endocytic compartments, reflecting the basal cellular turnover 

process. 
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Figure 17. C2 induces VE-cadherin internalization. A) Murine endothelial cells overexpressing 

wild-type human VE-cadherin were grown to confluence. Cells were pre-treated for 2 h with 100 

µM chloroquine and, when required, with 1 mM NAC for 30 min. Cells were exposed to 5 µM C2 

fragment for 45 min, before being fixed and permeabilized. VE-cadherin was labelled with a 

monoclonal anti-VE-cadherin antibody while early endosomes were labelled with polyclonal anti-

EEA1 antibody. A secondary anti-mouse Alexa488-conjugated antibody and an anti-rabbit Alexa 

594-conjugated antibody were used. Confocal images were acquired using LEICA microscope 

with a 63X oil immersion objective. Images were merged using ImageJ software. B) Mean ± S.D. 

(n = 3, 10 cells per independent experiment) of colocalization data from A). ***, p <0.001, for C2 

vs vehicle and for C2 vs C2 + NAC. 

 

Interestingly, in C2-exposed cells there was a significant redistribution of VE-

cadherin, which was massively present within endosomes and only in a minimal 

amount at the plasma membrane as suggested by its co-localization with the 

endosomal specific marker EEA1. On the contrary, in NAC pre-treated cells VE-

cadherin distribution was comparable to that of control cells, supporting the result 

showed above on the role of ROS in the C2-induced decrease of cellular VE-

cadherin content. 

A quantitative analysis of the re-distribution of VE-cadherin within endosomes, 

was performed using the Mander’s co- localization index. According to the 

immunofluorescence analysis the Mander’s index revealed that the co-localization 

of VE-cadherin and early endosomes was significantly higher compared to saline-

treated cells and NAC plus C2 treated-cells (Fig. 17 B). 

 

3.8 C2 allows Neisseria meningitidis MC58 endothelial 

crossing 

To verify whether the enhanced endothelial permeability induced by the rC2 

could affect the N.meningitidis translocation capacity, we infected the HBMEC 

intact monolayer with Mc58 [41, 107], a virulent and well-charaterized 
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encapsulated serogroup B strain, in the presence or absence of the rC1, rC2 or 

rNHBA. The recombinant proteins were maintained during all the infection 

experiment while the medium in the lower chamber was collected every 30 

minutes and further plated for colony counting. As shown in Figure 18, Mc58 was 

able to significantly cross the cellular monolayer in 4 hours while in control cell 

medium. 

 

 

 

 

 

 

 

 

 

Figure 18. C2 improves N. meningitidis translocation through the endothelium. HBMECs, grown 

as monolayer onto the membrane of a Transwell system, were apically infected with N. 

meningitidis strain MC58 (MOI of 30). At the indicated time points, medium of the lower chamber 

was collected and plated onto agar plates. After 18 h colony-forming units (CFU) were counted. 

Graph shows mean values ± S.D. of one representative experiment done in triplicates. 

When the rC2 was present in the apical medium, Mc58 needed only one hour to 

reach the same level of crossing rate while at the 4th hour of infection the 

bacterium shown 4 fold incremented crossing rate. When the infection was 

conducted in the presence of the other recombinant proteins we did not notice any 

significant variation. Additionally we tested the Mc58 KO mutant for NHBA 

(Mc58∆NHBA) in a separate experiment (data not shown). The mutant strain 

showed very similar results when compared with the wild type Mc58. When the 

rC2 or the rNHBA were incubated with the Mc58∆NHBA strain we did not 
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observe any significant difference. These results show that MenB do not require 

NHBA for moving across the endothelium and furthermore the contribution of the 

C2 fragment to the bacterial crossing does not depend on the presence of the 

membrane exposed full-length antigen. 
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Discussion 

 

Neisseria meningitidis (Nm) is an encapsulated, Gram negative bacterium that 

colonizes the nasopharynx of 8-20% of healthy individuals. Occasionally, the 

bacterium, from its natural niche in the nasopharyngeal mucosa of healthy 

patients, crosses the epithelium and enters the bloodstream where it multiplies and 

causes a form of sepsis characterized by an impressive endothelial disruption 

responsible for the disseminated intravascular coagulation (DIC). From the blood, 

the bacterium can cross the blood-brain barrier and cause meningitis. 

Meningococcal sepsis is a devastating disease and, despite the availability of 

effective antibiotics, it can kill children and young adults within hours. Vaccines 

containing purified polysaccharide antigens are available against four of the five 

pathogenic serogroups. The capsular polysaccharide of Meningoccus serotype B 

(MenB) is widely expressed in humans, thus rendering the strategy adopted for 

the other strains not suitable for MenB. The obstacle was overcome by a new 

approach, adopted by Novartis Vaccines in the year 2000 and named reverse 

vaccinology. Such a bio-informatic method, combined with molecular biology 

and biochemical techniques, led to the discovery of several new conserved 

antigens of MenB potentially interesting as vaccine candidates. 

 Among these antigens, there was Neisserial Heparin Binding Antigen 

(NHBA elsewhere called GNA2132). NHBA stimulates the production of 

antibodies able to confer protection in humans and covering a wide spectrum of 

the MenB strains [108]. NHBA is a surface exposed protein characterized by an 

arginine-rich domain, responsible for the binding to heparin and heparansulfate 

[9]. NHBA can be cleaved upstream or downstream of the arginine-rich region by 
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bacterial or host proteases. When NHBA is cleaved by the surface exposed 

Neisseria peptidase NalP, it generates a fragment, called C2 that maintains the 

arginine-rich domain; alternatively, NHBA can be cleaved by the human 

lactoferrin, generating the fragment named C1, in which the arginine-rich domain 

is absent [9]. Since C2 fragment conserves the domain responsible for the binding 

to heparin [9, 49], it is plausible that this fragment might interact with secreted or 

cell-associated proteoglycans in order to exert its own biological role; if this was 

the case, lactoferrin would have a protective role for the host. 

 Till now, nothing was known about the biological role of these two 

different fragments in the pathogenesis of Neisseria-associated diseases.  

The present study was aimed to verify whether C1 and/or C2 were involved in the 

escape of Nm from the blood lumen towards peripheral tissues including 

meninges. 

 To this end, we examined the ability of the fragments to increase the 

endothelial permeability, by an in vitro assay applied to human brain 

microvasculature endothelial cells grown as monolayer. We demonstrated that the 

C2 fragment, provided by the arginine-rich domain, but not C1, increases 

endothelial permeability in such a way to permit not only the movement of 

soluble factors across endothelia, but also that of Nm. Notably, the effect exerted 

by C2 requires its contact with the luminal side of the endothelium: accordingly, 

its application at a baso-lateral side of endothelium does not culminate in any 

alteration. 

 The effect of C2 on endothelial permeability relies on the induction of 

mitochondrial ROS production; indeed, pre-treatment of cells with the ROS 

scavenger, N-acetylcysteine (NAC), prevents the effect of C2. The involvement of 
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ROS in altering endothelial barrier is established: for example, the angiogenic 

factor VEGF actually promotes an increase of endothelial permeability via the 

induction of oxygen radicals’ production [11]. 

 Although it remains to be established the molecular mechanism by which 

ROS affect endothelial integrity, it has been demonstrated that the 

phosphorylation of VE-cadherin, a glycoprotein of the adherence junctions, 

follows and requires the production of oxygen radicals and results in an enhanced 

endothelial leakage [9, 10, 62, 64, 109]. According to this evidence, we found that 

also C2 fragment promotes VE-cadherin phosphorylation and the latter requires 

ROS and the activity of Src-kinase. Moreover, we demonstrated that, upon C2-

induced VE-Cadherin phosphorylation, the glycoprotein is internalized via 

endocytic route and degraded. Accordingly, a complete redistribution of the 

junctional protein is observed in cells exposed to C2 fragment, with the protein 

confined within endosomes; internalization of VE-cadherin is fully prevented in 

the presence of the ROS scavenger NAC. 

Collectively our data suggest the possibility that C2 might be involved in the 

pathogenesis of meningitis by permitting the passage of bacteria from the blood to 

the meninges and we hypothesize that the following scenario may occur: Nm 

colonizes human nasopharyngeal mucosa; for some reasons, that nowadays 

remain obscure, bacteria spread in the blood. In virtue of the entire NHBA 

protein, Neisseria would establish a close contact with the luminal membrane of 

the endothelium. The subsequent activity of the bacterial protease Nalp on NHBA 

would result in the release of C2, which could reach a high concentration in the 

areas where endothelial cells and bacteria are in closed proximity. C2, in turn, by 

causing the alteration of endothelial integrity, would help the bacteria in escaping 
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from the blood towards the brain. Once here, bacteria, together with a strong 

inflammatory process, would lead to the fatal outcome. 

Another intriguing consideration emerges from our data: C2 fragment is the solely 

portion of NHBA with a biological activity functional to the spreading of 

Neisseria; C1 fragment, released from NHBA by lactoferrin and identical to C2 

but lacking the N-terminal arginine-rich domain, does not exert the same activity. 

Therefore, it is possible to speculate that lactoferrin, abundant in all the mucosa 

secretions, may represent a host defence mechanism to prevent the generation of 

the virulent factor. 
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