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ABSTRACT 

 

 

Hemispheric lateralisation in the human brain has been a focus of interest in 

different fields of neurosciences since a long time (Galaburda, LeMay, Kemper, & 

Geschwind, 1978; Rubino, 1970).  

One of the most studied and earliest observed lateralised brain functions is 

language.  Reported in the nineteenth by the French physician and anatomist Paul 

Broca (1861) and by the German anatomist and neuropathologist Carl Wernicke 

(1874), language was found to be more impaired following tumours or strokes in the 

left hemisphere. 

In recent years,  a number of studies have employed diffusion tensor imaging (DTI) 

to characterize left hemisphere language-related white matter pathways (Barrick, 

Lawes, Mackay, & Clark, 2007; Bernal & Altman, 2010; Catani et al., 2007; Glasser & 

Rilling, 2008; Hagmann et al., 2006; Parker et al., 2005; Propper et al., 2010; 

Upadhyay, Hallock, Ducros, Kim, & Ronen, 2008; Vernooij et al., 2007). In addition, 

lesion and fMRI studies in healthy subjects have indicated that speech 

comprehension and production are lateralised to the left brain hemisphere (A. U. 

Turken & Dronkers, 2011).   

The main aim of the present doctoral work is to better delineate the relationship 

between anatomical and functional correlates of hemispheric dominance in the 

perisylvian language network. To this purpose a multi-modal neuroimaging 

approach including DTI and fMRI on a population of 23 healthy individuals was 

applied. 
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In the first study, a virtual in vivo interactive dissection of the three subcomponents 

of the arcuate fasciculus was carried out and measures of perisylvian white matter 

integrity were derived from tract-specific dissection. Consistently with previous 

studies (Barrick, et al., 2007; Buchel et al., 2004; Catani, et al., 2007; Powell et al., 

2006), a significant leftward asymmetry in the fractional anysotropy (FA) value of 

the long direct segment of the arcuate fasciculus (AF) has been found. In addition, I 

found another significant leftward lateralisation in the streamlines (SL) of the 

posterior segment and a rightward distribution of the SL index of the anterior 

segment of the AF. Finally, I found no evidence of a significant relationship between 

the leftward lateralisation indeces and any measures of language and verbal 

memory performance in my group. 

In the second study, I implemented functional connectivity analysis to test whether 

leftward lateralisation of connectivity indeces between perisylvian regions can be 

observed in individuals performing a language-related task. The main finding of the 

functional connectivity analysis is a significant rightward lateralisation (left, 0.347 ± 

0.183; right, 0.493 ± 0.228; P = 0.037) in the anterior connection, between the the 

inferior frontal gyrus (IFG) and the inferior parietal lobe (IPG).  

In the third study, I combined DTI and fMRI data to examine whether a significant 

relationship is present between these measures of perisylvian connectivity and it 

significantly differs between hemispheres. The correlation analysis demonstrated 

significant negative relations between the mean FA values in the long segment of the 

AF and the strength of inter-regional coupling between the IFG and the middle 

temporal gyrus (MTG) in the left hemisphere, and between the mean FA values in 

the anterior segment of the AF and the strength of regional coupling between IFG 
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and IPL in the right hemisphere. Finally, there were no significant correlations 

between laterality indices estimated on FA and functional connectivity values. 
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SOMMARIO 

 

 

La lateralizzazione emisferica cerebrale è un grande tema d’interesse nelle 

neuroscienze da molto tempo (Galaburda, et al., 1978; Rubino, 1970) e una delle 

funzioni cerebrali  lateralizzate storicamente e maggiorment studiate è il linguaggio.  

Recentemente, diversi studi hanno utilizzato la tecnica di diffusion tensor imaging 

(DTI) per descrivere i tratti di materia bianca correlati al linguaggio nell’emisfero 

sinistro (Barrick, et al., 2007; Bernal & Altman, 2010; Catani, et al., 2007; Glasser & 

Rilling, 2008; Hagmann, et al., 2006; Parker, et al., 2005; Propper, et al., 2010; 

Upadhyay, et al., 2008; Vernooij, et al., 2007). Inoltre, studi su lesioni e studi fMRI in 

soggetti sani hanno dimostrato che la comprensione e la produzione linguistica sono 

funzioni che pertengono all’emisfero sinistro (A. U. Turken & Dronkers, 2011).   

L’obiettivo del presente lavoro di dottorato consiste nell’approfondire la relazione 

tra correlati anatomici e funzionali della dominanza emisferica nel circuito 

linguistico persilviano. A questo scopo è stato utilizzato un approccio multimodale 

con DTI e fMRI applicate in una popolazione di 23 individue sani. 

Nel primo studio, ho eseguito una dissezione virtuale in vivo dei tre 

sottocomponenti del fascicolo arcuato. In accordo con gli studi precedenti (Barrick, 

et al., 2007; Buchel, et al., 2004; Catani, et al., 2007; Powell, et al., 2006), ho trovato 

una lateralizzazione sinistra significativa nei valori di anisotropia frazionale (FA) del 

segmento diretto del fascicolo arcuato. Inoltre, ho trovato un’altra lateralizzazione 

significativa a sinistra nei valori di streamlines (SL) del segmento  posteriore e una 

lateralizzazione significativa a destra nei valori di SL del segmento anteriore. Infine, 
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non è stata riscontrata alcuna evidenza di una relazione tra gli indici di 

lateralizzazione e le misure di performance linguistica e di memoria verbale. 

Nel secondo studio, ho implementato un’analisi di connettività funzionale per 

testare se la lateralizzazione a sinistra negli inidici di connettività fra le regioni 

perisilviane prese in considerazione si osservasse mentre gli individui eseguivano 

un compito linguistico. Il risultato principale di questo secondo studio è stata una 

lateralizzazione significativa a destra nella connessione anteriore, quindi tra il giro 

frontale inferiore (IFG) e il lobo parietale inferiore (IPL). 

Nel terzo studio, ho combinato i dati DTI e fMRI per verificare se ci fosse una 

relazione significati tra misure di connettività strutturale e funzionale nel circuito 

perisilviano e se differisse tra i due emisferi. L’analisi di correlazione ha dimostrato 

correlazioni negative significative tra valori medi di FA nel segmento diretto del 

fascicolo arcuato e la forza della connettività funzionale tra il IFG e il giro temporale 

medio nell’emisfero sinistro, e tra valori di FA nel segmento anteriore e la 

connettività funzionale tra il IFG e il IPL nell’emisfero destro. Infine, non sono 

emerse correlazioni significative tra gli indici di lateralizzazione calcolati sui valori 

di FA e di connettività funzionale. 
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1. INTRODUCTION 

 

 

Hemispheric lateralisation in the human brain has been a focus of interest in 

different fields of neurosciences since a long time (Galaburda, et al., 1978; Rubino, 

1970).  

Studies on patient and non-patient populations have repeatedly shown that the left 

and right hemispheres (LHem and RHem) can be different in their structures (e.g. 

size, location, and/or shape of different areas) and in their information processing 

faculties (Cabeza & Nyberg, 2000; Gazzaniga, 2000). 

One of the most studied and earliest observed lateralised brain functions is 

language.  Reported in the nineteenth by the French physician and anatomist Paul 

Broca (1861) and by the German anatomist and neuropathologist Carl Wernicke 

(1874), language was found to be more impaired following tumours or strokes in the 

left hemisphere. 

Broca described a postmortem examination of a patient with an area of damage in 

the third frontal convolution of the left hemisphere who showed a deterioration of 

speech production. Subsequently, Wernicke presented a postmortem examination of 

a patient with damage to the left posterior superior temporal cortex who had 

impaired speech comprehension. Wernicke hypothesised the existence of a direct 

connection between the two areas, and that a damage of this hypothesised pathway 

would cause an aphasia, characterised by normal language comprehension and 

fluent speech production but the incapability to repeat what had just been heard. In 

fact, an extended pathway connecting posterior frontal and superior temporal lobes 

had already been reported by the German physiologist Burdach and was later 
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confirmed by the French neurologist Joseph Jules Dejerine (Dejerine, 1985) who 

named the pathway Burdach’s arcuate fasciculus.  Dejerine identified the 

trajectories of major white matter fibre bundles, and these pathways were 

subsequently visualized in three dimensions (Ludwig & Klinger, 1956). The superior 

longitudinal or arcuate fasciculus (SLF), a long association tract connecting frontal, 

parietal, and temporal cortex, was seen to originate in the inferior and middle 

frontal gyri, projecting posteriorly before curving around the insula into the 

temporal lobe. Lesions causing conduction aphasias typically reside in the inferior 

parietal cortex and therefore cause an interruption of these fibers as they pass 

between Broca’s and Wernicke’s area. Functional hemispheric language 

lateralisation has proved to correlate with handedness: 95% of right-handers show 

functional hemispheric language lateralisation in the left hemisphere, while 15% of 

left-handers show functional lateralisation in the right one (Lurito & Dzemidzic, 

2001; Pujol, Deus, Losilla, & Capdevila, 1999). 

In recent years,  a number of studies have employed diffusion tensor tractography to 

characterize left hemisphere language-related white matter pathways (Barrick, et 

al., 2007; Bernal & Altman, 2010; Catani, et al., 2007; Glasser & Rilling, 2008; 

Hagmann, et al., 2006; Parker, et al., 2005; Propper, et al., 2010; Upadhyay, et al., 

2008; Vernooij, et al., 2007). In addition, several lesion and fMRI studies in healthy 

subjects have indicated that speech comprehension and production are lateralised 

to the left brain hemisphere (A. U. Turken & Dronkers, 2011).   

In the present doctoral work I aimed to better delineate the relationship between 

anatomical and functional correlates of hemispheric dominance in the perisylvian 

language network. To this purpose I applied a multi-modal neuroimaging approach 

including DTI and fMRI on a population of 23 healthy individuals. 
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More specifically, in the first study described in Chapter 3, I carried out a virtual in 

vivo interactive dissection of the three subcomponents of the arcuate fasciculus and 

measures of perisylvian white matter integrity were derived from tract-specific 

dissection. In the second study, reported in Chapter 4, I implemented functional 

connectivity analysis to test whether leftward lateralisation of connectivity indexes 

between perisylvian regions can be observed in individuals performing a language-

related task. Finally, in the last study described in Chapter 5, I combined DTI and 

fMRI data to examine whether a significant relationship is present between these 

measures of perisylvian connectivity and it significantly differs between 

hemispheres. 

Important outcomes emerge from this study. First, this study confirms that white 

matter indexes of perisylvian language networks differ between the two 

hemispheres and that, in addition, the pattern of lateralisation is heterogeneous in 

the normal population. Secondly, unlike anatomical measures, functional 

connectivity indeces did not show evidence of an alike leftward asymmetry. Finally, 

the unexpected negative correlation observed between anatomical and functional 

connectivity measures in the left direct segment may reflect the complex nature of 

their relationship and depend specifically on the nature of the fMRI task employed in 

this study. 
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2. METHODS AND MATERIALS 

 

 

2.1 Study sample 

Healthy participants, ages 18 to 35, were recruited over the same period (i.e. about 

15 months) and from the same socio-demographic area through local 

advertisement. Healthy participants had no history of psychiatric disorder and had 

no first degree relatives with a diagnosis of a psychotic illness. 

 

 

2.1.1 Inclusion and exclusion criteria  

Participants met the following criteria: 

 Aged 18 to 35 years old 

 Estimated premorbid IQ greater than 70 

 English as a first language 

 No history of severe head injury or neurological disorder 

 No evidence of substance abuse and dependence disorder according to the 

DSM-V criteria 

 No relevant visual or hearing impairment 

 Contraindication to exposure to a magnetic field (i.e. presence of metal 

implants, old generation tattoos and pregnancy) 
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2.1.2 Recruitment process and informed consent 

Potential participants were introduced to the present study by one of the clinicians 

within each of the NHS teams mentioned above. An information sheet with a 

detailed outline of the purposes and procedures of the study was given to those 

clients showing interest in participating in the research project. Whenever possible, 

a face-to-face meeting was arranged where the study was discussed in further 

detailed and inclusion/exclusion criteria were verified. Alternatively, a telephonic 

screening interview was carried out. All participants were invited to give written 

informed consent and they were informed that they could withdraw from the study 

at any time without providing any explanation. 

 

 

2.1.3 Sample Size  

While the process of power and sample size analysis is relatively straightforward in 

behavioural studies, in neuroimaging studies power calculation is a more 

problematic process. The neuroimaging community has extensively discussed the 

argumentations for and against the application of standard single-outcome power 

analysis to neuroimaging data (Desmond & Glover, 2002; K. J. Friston, Holmes, & 

Worsley, 1999; Mumford & Nichols, 2008). First, in neuroimaging studies the 

outcomes refer to 3D images in which the signal in tens of thousands of voxels is 

spatially and, in the case of fMRI studies, temporally correlated. This means, in turn, 

that the statistical power depends not only on the effect size itself but also on the 

extent of the effect, i.e. the number of voxels for which the null hypothesis is false. 

Second, both the size and the variability of the effect are required in order to 

estimate statistical power for a given sample size. The specification of variance is 
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particularly difficult for group comparisons based on neuroimaging data where the 

variance is determined by a combination of within-subject (first level analysis) and 

between-subject (second level analysis) variance. Moreover, the variance 

parameters are not often reported in neuroimaging studies and the estimated 

covariance structures themselves differ across the different software packages 

available. Most importantly, if the size and the variability of the effect were already 

available with precision, there would be no need for the study to be performed in 

the first instance. There have been few attempts to develop procedures to estimate 

statistical power in fMRI studies, such as efficient first level study design 

specifications, simulations and resampling-based methods; however none of them 

has resulted in a well-established procedure (Desmond & Glover, 2002; Mumford & 

Nichols, 2008).   

A total of 23 healthy participants were recruited. For some subjects, however, 

imaging data from one or more modalities were not included in the statistical 

analysis due to technical difficulties encountered during the collection of imaging 

data (i.e. acquisition artefacts and excessive head movements). Therefore, the 

number of participants varies slightly for different imaging modalities and is 

reported, accordingly, in each experimental chapter of this thesis. 

 

 

2.1.4 Pre-scan clinical interview and neuropsychological assessment 

 All participants were interviewed prior to scanning by the candidate and a 

colleague. The interview covered family and personal psychiatric history, current 

and past medication treatment as well as current and past history of alcohol and 

drug use. The presence and severity of depression, anxiety and stress symptoms 



18 
 

were further characterised by using The Depression Anxiety Stress Scale (Crawford 

& Henry, 2003). The Lateral Preference Inventory (Coren, 1993b) was employed to 

assess participants handedness. The reading subtest from the Wide Range 

Achievement Test-Revised (Reynolds, 1984) was used to evaluate the premorbid 

verbal intelligence. The WRAT-R has proved to be an adequate predictor of 

Wechsler Adult Intelligence Scale-Revised (WAIS-R) IQ scores and, when compared 

to the North American Adult Reading Test (NAART), the WRAT is thought to yield a 

more accurate estimate for lower VIQ ranges (Johnstone, Callahan, Kapila, & 

Bouman, 1996). Finally, the ‘FAS’ letter sequence and animal naming subtests from 

the Controlled Word Association Test were administered to assess phonemic and 

semantic verbal fluency (Loonstra, Tarlow, & Sellers, 2001). 

 

 

2.2 Acquisition of Magnetic Resonance Imaging data 

Structural MRI (sMRI), functional MRI (fMRI) and diffusion tensor imaging (DTI) are 

analytical techniques that make use of the property of nuclear magnetic resonance 

(NMR) to image nuclei of atoms and their properties in the body. NMR represents 

the capability of magnetic nuclei in a magnetic field to absorb and re-emit 

electromagnetic radiation. This phenomenon occurs at a specific resonance 

frequency, which depends on the strength of the magnetic field as well as the 

magnetic properties of the specific isotope of the atoms. Since the resonance 

frequency is directly proportional to the strength of the applied magnetic field, if a 

sample is placed in a non-uniform magnetic field then the resonance frequencies of 

the sample’s nuclei will depend on their location within the magnetic field: this 
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property represents the key NMR feature that neuroimaging techniques exploit in 

order to image brain nuclei of atoms and their properties. 

 

 

2.2.1 Structural MRI 

Protons composing any atomic nucleus have the intrinsic quantum property of spin 

by which they revolve around an axis and produce a magnetic field with a north-

south polarity along the spin axis (i.e. the magnetic vector). In the presence of an 

intrinsic and static magnetic field, individual spins are randomly orientated and bulk 

material has no magnetisation. If a nucleus is exposed to an external magnetic field 

B0, however, the individual magnetic spins will start precessing around the direction 

of the applied magnetic field. In the human body most of the atomic protons are 

found in the hydrogen atoms contained in water. The hydrogen nucleus spins can 

present with two orientations relative to the applied magnetic field B0: (i) the 

parallel orientation associated with a low-energy state and (ii) the anti-parallel 

orientation associated with a high-energy state. Therefore, the net magnetisation of 

the object placed in the applied magnetic field derives from the sum over all the 

hydrogen nuclei in the object. Its representation is based on an orthogonal zxy 

coordinate system with the z-axis encoding the direction of the applied magnetic 

field B0. Since in a resting magnetisation state more spins are in the low- rather than 

in the high-energy state, the sum of each singular magnetic vector will result in a net 

magnetic vector M0.  

When an oscillating radiofrequency electromagnetic field B1 is applied that is 

perpendicular to the main magnetic field B0, the individual spins can be excited and 

shift from a low- to high-energy state. This phenomenon occurs most efficiently in 
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the presence of resonance frequency, thus when the oscillating frequency of the B1 

and the frequency of the protonic spins are equal. As a consequence of applying a 

radiofrequency pulse B1, the protons are brought into coherence and the individual 

magnetic vectors shift to point all in the same direction of the applied magnetic field 

resulting in a new magnetic vector M1 on the xy transverse plane. The transversal 

component of the new magnetic vector M1 induces an electrical current that is 

detected by a coil on the xy plane and determines the formation of an NMR signal. 

However, using a homogenous magnetic field would not yield a tomographic image 

since all protons within the sample will be exposed to the same magnetic field and, 

therefore, the frequency of their emitted signal would be identical. Instead, a non-

uniform magnetic field is applied that allows variations of resonance frequencies of 

spin within the sample.  

After excitation, the spin system will release the absorbed energy and gradually 

return to the initial equilibrium state. This relaxation occurs through two processes:  

1. Spin-lattice or T1 relaxation. Energy is transferred to neighbouring molecules 

in the surrounding structure. T1 relaxation relates to the recovery of the M0 along 

the z axis and its exponential temporal function is described by the T1 time constant. 

Since the nuclei energy is dissipated to molecules of the surrounding structure, heat 

and composition of the environment will affect T1.  

2. Spin-Spin or T2 relaxation. Energy is transferred to the nearby nuclei. T2 

relaxation relates to the disappearance of coherence in the transversal magnetic 

field M1, which occurs at a different rate to the recovery of magnetisation along the z 

axis. No energy is lost in this process but the transfer of energy between protons 

results in a gradual decrease of M1. 



21 
 

The use of different B1 magnetic gradients will induce protons to emit different 

frequency signals depending on their spatial position within the sample. It follows 

that the known value of the applied strength and direction of the magnetic field can 

be used to determine the position from which the signal was emitted. Nevertheless, 

acquiring only frequency measures of the signal would result in its spectrum to be a 

one-dimensional representation of spin density in each slice. Therefore, to produce a 

two-dimensional image requires encoding information on a second axis. For this 

purpose, location-dependent phase is obtained by using a further gradient (spin 

echo), which is a pulse used to dampen the loss of transversal magnetisation. As a 

result, locations are encoded by frequency on the first axis and phase on the second 

axis. Subsequently, the sample is subdivided into volume-elements or voxels by 

using step-wise increases in both gradients and the step size of the gradients 

determines the size of the voxels. Therefore, the final image of multiple frequencies 

provides spatial information, derived from its orthogonal gradients magnetic fields, 

and contrast information, obtained from its relaxation parameters that can be 

visualised and further analysed depending on the specific MRI modality of interest.  

 

 

2.2.2 Diffusion Tensor Imaging  

DTI is a MRI technique that exploits the property, known as random walks (Brown, 

1828), of water molecules undergoing diffusion in living tissue to obtain information 

about brain white matter integrity and connections. More specifically, each water 

molecule stays in a particular place for a fixed time T before to move, randomly, to a 

new location within the space. Although it is not possible to accurately predict the 

pathway that each molecule can take, it is known that the squared displacement of 
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molecules from their starting point over a time t is directly proportional to the 

observation time (Einstein, 1905). Therefore, the squared displacement can be 

predicted by using the self-diffusion coefficient specific to water molecules 

undergoing diffusion at body temperature. In diffusion MRI, the mean displacement 

of water molecules is measured within each voxel in the brain where the presence of 

cell membranes and macromolecules hinder their random walk pathway. As a 

consequence, the mean displacement from a starting point in a fixed period of 

observation is reduced compared to their mean displacement in 'free' water and is 

referred to as apparent diffusion coefficient (ADC). The average ADC in tissue is 

about 4 time smaller than in free water. 

In order to sensitise the MR signal to diffusion, a diffusion weighted (DW) sequence 

is required that impose a specific phase to a molecule that is dependent on its main 

displacement (Stejskal & Tanner, 1965). Under the diffusion process, several 

displacements are encoded and this leads to a spread distribution of related phases. 

The diffusion process yields a distribution of different displacements and, therefore, 

to a spread of displacement-dependent phases. In turn, this spread of phases results 

in a loss of signal coherence and a reduction in signal amplitude (i.e. dark areas are 

observed in the MR image). In other words, the greater the diffusion, the greater the 

loss of signal and the darker the final image. The DW sequence employed in the 

present study is reported in details in chapter 3, section 3.2.4 

In the human brain white matter the diffusion coefficient appears to be directionally 

dependent, that is it depends on the direction of the applied diffusion-encoding 

gradient (Chenevert, Brunberg, & Pipe, 1990; Doran et al., 1990). The diffusion 

tensor is a complex model that characterises Gaussian diffusion in which the 

displacements per unit time are not the same in all directions. It corresponds to a 3 
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by 3 symmetric matrix of numbers in which the diagonal elements represent 

diffusivities along the three orthogonal axes (Jones, 2008). The tensor is derived by 

collecting several samples of the DW signal and is estimated from these signals using 

a multivariate regression (Beaulieu & Allen, 1994). Diffusion is described as 

isotropic when the DW intensity is the same for each diffusion-encoding gradient 

applied along the three orthogonal axes in a brain region, while is referred to as 

anisotropic when the DW intensity varies across the three axes diffusion (Jones, 

2008). Thus, if there is strong attenuation of diffusion signal for a specific direction 

(e.g. left-right orientation) one can infer that diffusion is relatively unhindered along 

this direction. Conversely, if the signal attenuation is minimal, and so the mean 

displacement, one can infer that something is hindering the diffusion of water 

molecules along these orthogonal axes. By using the direction-specific information is 

therefore possible to infer the presence of an ordered structure which as a 

predominant orientation. To date, the most commonly used anisotropy index is 

fractional anisotropy (FA) that measures the fraction of tensor that can be assigned 

to anisotropic diffusion. FA measures are appropriately normalised and take values 

from 0, when diffusion is isotropic, to 1 when diffusion is constrained along one axis 

only (Basser & Pierpaoli, 1996). 

 

 

2.2.3 Functional MRI  

fMRI is a non-invasive analytical technique that can be used to infer neural activity, 

related to mental operations during the performance of a specific task, by assessing 

changes in local blood oxygenation. Regional increases in neuronal activity are 

associated with increases in blood flow that sustain changes in local oxygen 
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consumption. More specifically, the net oxygenation (i.e. the ratio of oxygenated to 

deoxygenated haemoglobin) of the blood in a neuronally activated brain region is 

increased (Ogawa et al., 1993). The blood oxygen level-dependent (BOLD) contrast 

(Ogawa, Lee, Kay, & Tank, 1990) reflects metabolic activity in the brain tissues and 

relates to the magnetic susceptibility of brain tissue, oxyhaemoglobin and 

deoxyhaemoglobin (Pauling & Coryell, 1936). While oxyhaemoglobin is weakly 

diamagnetic and, therefore, has a trivial effect on the surrounding magnetic field, 

deoxygenated haemoglobin features paramagnetic properties and is able to 

introduce a lack of homogeneity into the neighbouring magnetic field. Therefore, an 

increase in deoxyhaemoglobin concentrations acts as an endogenous paramagnetic 

MRI contrast yielding a reduction of image intensity. The function that describes the 

theoretical relationship between neuronal firing and BOLD signal is referred to as 

the haemodynamic response, which can be characterised by three sequential phases 

(Buxton, Wong, & Frank, 1998; Vanzetta & Grinvald, 2001). First, a moderate 

reduction of image intensity occurs that is due to an initial period of oxygen 

consumption. Subsequently, the signal presents a large intensity increase due to 

regional excess of oxygenated blood. Finally, a reduction of signal intensity is 

associated with a decreasing supply of oxygenated blood, which leads to the initial 

equilibrium state. Therefore the BOLD signal reflects a complex interaction between 

cerebral blood flow, cerebral blood volume and oxygenation. Physiologically 

validated models suggest that the mechanism initiating vasodilatatory and 

oxygenation changes may be driven by neuronal-glial interactions following a 

neurotrasmitter release (Buxton, et al., 1998; Magistretti & Pellerin, 1999). 

Moreover, microelectrode studies in animals report that changes in BOLD signal is 

associated with pre-synaptic activity and reflects input and intra-cortical processing 
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in the mapped brain area as opposed to output and post-synaptic transmission 

(Goense & Logothetis, 2008; Viswanathan & Freeman, 2007). This evidence seems to 

support the notion that the inferred neuronal activity is driven primarily by 

synaptic, rather than spiking, activity. fMRI can provide accurate localisation of 

neuronal activity since changes in arteriolar blood flow are spatially matched to the 

sites of increased neuronal activity (Logothetis & Pfeuffer, 2004). Compared to sMRI 

acquisition, collection of fMRI data requires a different pulse sequence that is 

sensitive to functionally determined changes in signal intensity. The most frequently 

used acquisition sequence is a combination of gradient echo sequences and echo-

planar imaging (EPI). This combination allows very rapid data acquisition and 

provides multislice images of the whole brain with a slice thickness of a few 

millimetres. The fMRI acquisition sequence used in the present study is reported in 

details in chapter 4, section 4.3.2. 

 

 

2.2.3.1 fMRI experimental design 

In fMRI a functionally specific neurovascular response is obtained by manipulating 

the subject’s experience or behaviour through the application of an appropriate 

experimental design. At present, two classes of experimental design are commonly 

used: block and event-related. 

Blocked Design. When this design is applied, participants are asked to perform a 

mental task of interest alternated with one or more other tasks of no interest; in the 

simplest form, the activation (A) condition of interest is alternated with a baseline 

(B) condition. Each condition represents an epoch during which several stimuli are 

presented sequentially to the participant with an inter-stimulus interval (ISI) that 
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varies depending on the specific experimental paradigm. The alternation between 

activation and baseline condition can be repeated several times over the experiment 

length. The different task conditions are usually matched in all respects with the 

exclusion of those specifically related to the cognitive process of interest. The basic 

assumption in block experimental design is known as cognitive subtraction (K. J. 

Friston, Holmes, Poline, Price, & Frith, 1996). According to this assumption, only 

those brain areas that are specifically involved in a certain cognitive process will 

show increased MRI signal intensity during that condition. In contrast, brain regions 

responsible for aspects of the task that are also present in the baseline condition, 

such as visual and motor processes, will be activated identically across the two 

conditions and will not present with a periodic signal change as the two conditions 

are alternated. Therefore, block designs can be applied with the aim of detecting the 

steady state brain activation during each task condition as well as identifying where 

in the brain a specific task condition induces different levels of activation. Block 

experimental designs have the advantage of generating robust signal changes but do 

not allow the investigation of response to a specific stimulus. This experimental 

design was employed in the present study; information about the specific 

experimental paradigm and design can be found in chapter 4, section 4.3.1. 

Event-related design. In this type of experimental design, individual trials related to 

different task conditions are presented sequentially, in a random order and with 

longer ISIs compare to those used in block designs. Since they allow investigation of 

response to a specific stimulus, event-related designs can be employed whit the aim 

to measure the brain activity that is time-locked to each individual trial and, as for 

the block design, to detect where in the brain different trial types exert different 

level of activation (Dale, 1999; Zarahn, Aguirre, & D'Esposito, 1997). In addition, this 
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type of experimental design is better suited to experimental conditions where 

specific trial types are assigned post-hoc on the basis of the subject’s previous 

responses. However, event-related designs have the disadvantage of generating 

intensity signal changes that are weaker compared to those generated by block 

designs. 

 

 

2.3 Analysis of MRI data 

2.3.1 Univariate analysis of structural and functional MRI data 

A number of packages are available for the analysis of structural and functional 

imaging data. Statistical parametric mapping (SPM) is, amongst all, the most 

common analytical approach and was employed in this thesis as implemented in 

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running under MATLAB 7.4 

(MatWorks, Natick, MA, USA). This approach entails the definition of spatially 

extended statistical processes to test hypotheses about regionally structural or 

functional specific effects (K. J. Friston et al., 1995); these processes are referred to 

as statistical parametric maps (SPMs). SPMs are voxel-based image processes in 

which voxel values are, under the null hypothesis, distributed according to a known 

probability density function, typically the Student’s t or F distributions. Thus each 

voxel in the brain is first analysed using a standard univariate statistical test and 

these statistical parameters are then assembled into the SPM image. The 

probabilistic behaviour of Gaussian fields (Worsley et al., 1996) is used to interpret 

SPMs as spatially extended statistical processes and Gaussian random fields (GRF) 

model both the univariate probabilistic characteristics of a SPM as well as any non-

stationary covariance structure.  

http://www.fil.ion.ucl.ac.uk/spm
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Pre-processing. Prior to statistical analysis original images need to be pre-processed 

in order to make imaging data suitable for parametric approaches and therefore 

ensure the validity of subsequent parametric statistical tests. Pre-processing 

procedures varies between analysis of structural and functional imaging data; for 

the present study, detailed descriptions of the pre-processing procedures applied to 

structural and functional MRI data are described in chapter 3 (section 3.2.4) and 

chapter 4 (section 4.3.4) respectively.  

Statistical Analysis. Following the initial pre-processing, differences in regional grey 

matter volume (in sMRI) and BOLD signal (in fMRI) are estimated in a voxel-specific 

fashion using a variant of the General Linear Model (GLM). The GLM attempts to 

explain the sMRI or the fMRI signal in terms of the weighted sum of a number of 

variables of interest corresponding to the hypothesised effects. A set of regressors is 

used to encode the variables of interest and multiple linear regression is used to 

estimate the parameter estimates for these regressors at each voxel, together with 

an error term that reflects variability in the observed time series that cannot be 

accounted for by the hypothesised effects. After model estimation, standard 

parametric statistics (t-test and F-test) are applied to the size of the parameter 

estimates relative to the error term in order to test hypotheses about differences 

between effects of interest and the results are reported in SPMs. Therefore, an SPM 

represents a large distributed collection of t or F values that is typically displayed as 

a three-dimensional rendering onto cortical surface anatomy or as a two-

dimensional overlay onto individual slices of a T1-weighted anatomical image. 

Since at this stage many voxel-wise tests are computed, as each image volumes can 

contain over 100,000 separate observations (voxels), a statistical threshold must be 

chosen that determines the lower bound of statistical values to display in the SPM. 
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The definition of a significance threshold represents a particular issue for 

neuroimaging data. In fact, it is likely that grey matter as well as regional activation 

in neighbouring voxels will be highly correlated and thus a correction for multiple 

comparisons with a classical Bonferroni approach will be inappropriate. The 

Gaussian GRF theory is used to solve this multiple comparison problem and to 

derive an alternative approach to standard Bonferroni correction. A random field is 

a list of random numbers whose values are mapped onto a space of n dimensions 

and spatially correlated so that adjacent values do not differ as much as values that 

are further apart. This theoretical framework, thus, provides a more appropriate 

method for correcting p values for the search volume of a SPM (K. J. Friston, et al., 

1996; Worsley, et al., 1996). The risk of error that one is prepared to accept is called 

the Family-Wise Error (FWE) rate and represents the likelihood that a family of 

voxels values, as opposed to a single voxel value, could have arisen by chance. A 

threshold of p<0.05, FWE corrected, is conventionally used.  

 

 

2.3.2 Diffusion Tensor Imaging analysis 

In ordered tissue structures, robust and readily interpreted fibre orientation can be 

derived by using the information within the diffusion tensor and, more specifically, 

from the principal eigenvector associated with the largest eigenvalue (Pierpaoli, 

Jezzard, Basser, Barnett, & Di Chiro, 1996). The components of the orientation of the 

fibre are then represented using different primary colours to create a colour 

encoded fibre orientation map. According to the direction scheme proposed by 

Pajevi and Pierpaoli (1999), fibres that are predominantly oriented left-right are 

shown in red, anterior-posterior fibres are shown in green and superior-inferior 
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fibres are shown in blue. It follows that colour fibre orientation maps provide more 

information than anisotropy maps alone. 

 

 

2.3.2.1 White matter bundles tractography 

The purpose of fibre tracking is to derive the three-dimensional trajectories of 

anisotropic structures in tissue by assembling together discrete voxel-based 

estimates of the underlying continuous orientation field (Basser, Pajevic, Pierpaoli, 

Duda, & Aldroubi, 2000; Mori & van Zijl, 2002). Tractography approaches are usually 

classified into two types: deterministic and probabilistic.  

Deterministic tractography. The basic assumption in deterministic tractography is 

that the principal eigenvector is parallel to the underlying dominant fibre 

orientation in each voxel and tangent to the space curve described by the white 

matter tract (Basser et al. 2000). Therefore, it is possible to infer the evolution of the 

space curve by propagating a single pathway bi-directionally from a 'seedpoint' and 

moving in a direction that is parallel with the principal eigenvector. Since it is 

assumed that the underlying tensor field is continuous, sub-voxels estimates of the 

tensor are required in this approach and obtained either by interpolation of the raw 

DW images or by interpolation of the tensor elements (Conturo et al., 1999; Mori & 

Barker, 1999). In deterministic tractography, two arbitrary thresholds are usually 

employed to constrain tract dissections. First, in order to differentiate white matter 

from grey matter, tracking is terminated if the front of the tract enters a site where 

the anisotropy is below a fixed value. Second, an angular threshold is applied that 

specifies the maximum angle that the path can describe between one step and the 

next, which prevent reconstruction of 'unfeasible' pathway turns. To date, however, 
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there is no general consensus as to the value of this angular threshold (Jones, 2008). 

When using deterministic tracking packages, the user selects more than one 

seedpoint from which to start tracking and also a region of interest (ROI) that, based 

on anatomical knowledge, intersects the fasciculus of interest. It follows that a 

successful tract reconstruction is dependent on the skill and neuroanatomical 

knowledge of the user. Nevertheless, deterministic tractography has proven to 

produce anatomically faithful reconstructions of white matter bundles (Catani, 

Howard, Pajevic, & Jones, 2002; Mori & van Zijl, 2002) 

Probabilistic tractography. In this approach, a large number of pathways are 

propagated from a selected seedpoint, as opposed to a single trajectory as is 

performed in deterministic approaches. At each stage of the process that delineate 

the path, the direction in which to step next is drawn from a distribution of possible 

orientations. This process results in a set of multiple pathways passing through the 

seedpoint and a percentage of pathways, launched from the seedpoint, that pass 

through each voxel in the set. Since, unlike deterministic approaches, probabilistic 

tracking algorithm do not depend on the principal eigenvector, they typically do not 

employed an anisotropy threshold for termination of tracking (Behrens, Rohr, & 

Stiehl, 2003; Parker, Haroon, & Wheeler-Kingshott, 2003) Different probabilistic 

approaches can be used that differ between each other in the mechanism by which 

the inherent distribution of fibre orientations is drawn (Jones, 2008). Nevertheless, 

they all result in a map that attempts to quantify, for each seedpoint, how confident 

one can be that a pathway can be found between each voxel and that specific 

seedpoint. These maps represent the likelihood of a connection through the data 

given the samples of the data and are, therefore, strongly dependent on the quality 

of the data. 
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In the present study, a deterministic approach was used to perform a virtual in vivo 

interactive dissection (Catani, et al., 2002) of the main white matter bundles of 

interest. This approach was chosen as it provides tract-specific measurements, such 

as fractional anisotropy, mean diffusivity and volume, allowing the quantification of 

microstructural integrity of specific white matter tracts and their subcomponents. 

The pre-processing and tractography procedures are described in details in chapter 

3,  3.2.4 and 3.2.5 respectively. 

 

2.4 Inter-regional interactions  

In addition to regional task-dependent activity, the analysis of fMRI data can also 

provide information about inter-regional interactions (functional integration) and 

how they vary according to behavioural or physiological states (Buchel & Friston, 

1997). When characterising and assessing functional integration in the brain, a 

fundamental distinction is that between functional and effective connectivity (K J 

Friston, 1994).  

 

2.4.1. Functional connectivity and correlation analysis 

Functional connectivity refers to a covariance between time-dependent activity in 

different brain areas regardless of any specific directional effects or whether an 

anatomical connection exists that links those areas. Thus, it solely represents a 

statistical dependency among measurements of spatially remote neurophysiological 

events. In its simplest form, functional connectivity between two regions can be 
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assessed by using Pearson’s correlation analysis. Typically, a standard fMRI analysis 

is initially performed to identify regions that show task-related activity (if regions of 

interest, ROIs, are not selected on the basis of a clear a-priori hypothesis) and to 

determine the stereotactic coordinates corresponding to subject-specific local 

maxima within a selected region. Subsequently, subject-specific time-series are 

extracted from the coordinates of each ROI and Pearson’s correlation analysis is 

applied to assess the relationship between time-series. Brain ROIs selection and 

extraction of time-series procedures for the functional connectivity analysis, 

performed as a part of the present doctoral project, are described in detailed in 

chapter 4, section 4.2.7. 
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3. INVESTIGATING LATERALISATION IN THE LANGUAGE NETWORK: A DTI 

STUDY 

 

 

 

3.1 Introduction 

In recent years,  a number of studies have employed diffusion tensor tractography to 

characterize left hemisphere language-related white matter pathways (Barrick, et 

al., 2007; Bernal & Altman, 2010; Catani, et al., 2007; Glasser & Rilling, 2008; 

Hagmann, et al., 2006; Parker, et al., 2005; Propper, et al., 2010; Upadhyay, et al., 

2008; Vernooij, et al., 2007). This technique, known as diffusion tensor tractography, 

is a non-invasive method for examination of white matter architecture and 

therefore, the underlying connectivity of the brain. 

Buchel et al. (2004) were among the first to investigate white matter asymmetry in 

the human brain through the means of diffusion tensor MRI.  They examined 2 

independent groups of subjects with DTI. The first sample comprised 15 right-

handed healthy subjects, while the second comprised 28 healthy subjects, including 

21 who were right-handed and 9 who were left-handed. The results, obtained by 

using voxel-based statistics on fractional anisotropy (FA) maps derived from DTI, 

showed a leftward asymmetry in the arcuate fasciculus and an additional effect of 

handedness, with a significant larger FA in the precentral gyrus controlateral to the 

dominant hand.  

Also (Nucifora, Verma, Melhem, Gur, & Gur, 2005) reported a robust leftward 

asymmetry in the relative fibre density (the ratio of the number of the arcuate tracts 
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to the total number of fibre tracts genterated in the arcuate ROI) of the arcuate 

fasciculus of 27 right-handed healthy volunteers who were assessed with DT-MRI. 

Another study employed diffusion-weighted MRI to examine the auditory-language 

pathways in the human brain of 11 right-handed subjects (Parker, et al., 2005). 

Based on the results of studies on primates that showed a ventral pathway - 

projecting anteriorly from the primary auditory cortex to prefrontal areas along the 

superior temporal gyrus – and a dorsal route - connecting these areas posteriorly via 

the inferior parietal lobe (Kaas & Hackett, 1999; Romanski et al., 1999), the authors 

examined the possibility of a similar pattern of connectivity in the human brain.  The 

results showed a connection  between Wernicke’s and Broca’s area via arcuate 

fasciculus in both hemispheres, and a second ventral pathway between these 

auditory-language centres, the existence of which has been proposed as a result of 

nonhuman primate studies (Hickok & Poeppel, 2000; Rauschecker, 1998). The 

volume occupied by the identified connective pathways in the left hemisphere was 

greater than in the right, implying larger anatomical connectivity. The ventral 

pathway was exclusively found in the left hemisphere, which is in keeping with 

functional neuroimaging results reporting only left hemisphere activation for 

processing intelligible speech (Romanski, et al., 1999; Scott, Blank, Rosen, & Wise, 

2000). 

Another DT-MRI tractography study (Hagmann, et al., 2006) showed that right-

handed men are more lateralised than women. The axonal connectivity between 

Wernicke’s and Broca’s areas and their right hemisphere homologues was 

investigated in 32 subjects (16 men, 8 RH and 8 LH; and 16 women, 8 LH and 8 RH). 

Each ROI was selected on functional activation maps from the study population. 

Stronger connections between Wernicke’s and Broca’s areas compared to their 
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homologues in the right hemisphere were found in men. Also the study evidenced 

that women and left-handed men have equally strong intrahemispheric connections 

in both hemispheres, but women have a higher density of interhemispheric 

connections. 

The leftward asymmetry of white matter organisation associated with language 

function was also found by (Barrick, et al., 2007) through the means of diffusion 

weighted-MRI applied to 30 right-handed healty volunteers (15 males). Specifically, 

the results showed a significant leftward lateralisation of the pathway connecting 

the posterior temporal lobe through the posterior segment of the arcuate fasciculus 

to the supramarginal and angular gyri. Also, 2 significant leftwardly asymmetric 

temporofrontal pathways were evidenced connecting the posterior temporal lobe to 

the frontal lobes. The first passed along the long segment of the arcuate fasciculus to 

the precentral gyrus and pars opercularis, whereas the second was a medial 

pathway through the external capsule to the pars triangularis and pars opercularis. 

In another study (Glasser & Rilling, 2008) DTI deterministic tractography was 

employed to define the hypothesised leftward asymmetry in the arcuate fasciculus 

with respect to both anatomy and function, and also combine our findings with a 

recent model of brain language processing to explain 6 aphasia syndromes. The 

arcuate fasciculus of 20 right-handed males was divided into 2 segments with 

different hypothesized functions, one terminating in the posterior superior temporal 

gyrus (STG) which computes phonologic processing and another, terminating in the 

middle temporal gyrus (MTG), which treats lexical and semantic information. 

Tractography results were evaluated in comparison with peak activation 

coordinates from prior functional neuroimaging studies of phonology, lexical-

semantic and prosodic processing to give accepted functions to these pathways. STG 
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terminations were strongly left lateralised and overlapped with phonological 

activations in the left but not the right hemisphere, advocating for the hypothesis 

that exclusively the left hemisphere phonological cortex is directly connected with 

the frontal cortex via the arcuate fasciculus. A leftward asymmetry was found also 

for MTG terminations, overlapping with left lateralised lexical-semantic activations. 

Smaller right hemisphere MTG terminations overlapped with right lateralised 

prosodic activations. 

In contrast with all the previous studies, the results obtained by (Bernal & Altman, 

2010) showed that the main anterior endpoint of the superior longitudinal 

fasciculus was situated in the precentral gyrus (premotor/motor area) and not in 

the Broca’s area of the left hemisphere. The investigation focused on the 

connectivity of the superior longitudinal fasciculus using DTI tractography on 12 

right-handed healthy volunteers, aiming to determine whether the arcuate 

fasciculus, or any of the fibres in the superior longitudinal fasciculus, terminates in 

the Broca’s area. This finding would explain the lack of correlation between 

lateralisation of the superior longitudinal fasciculus and language areas reported by 

some studies. 

 

In the present we study aimed to examine the cerebral lateralisation of the arcuate 

fasciculus organisation imaged by mapping water diffusion characteristics from 

diffusion-weighted MRI. In particular, I investigated language-related asymmetry in 

the left hemisphere reported in the previous studies using the model of language 

network proposed by (Catani, Jones, & ffytche, 2005), which is the main aspect of 

novelty of this study. The model includes a direct phonetic pathway (via the 

arcuate), between Wernicke’s and Broca’s areas acting in automatic, fast word 
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repetition, and an indirect semantic pathway (via 2 segments that connected the 

inferior parietal lobe to both the temporal and frontal lobes), where a stage of verbal 

comprehension and semantic/phonological transcoding intervenes between verbal 

input and articulatory output. The existence of two pathways with such functions is 

supported by evidence from patients with aphasic syndromes (Boatman et al., 2000; 

Damasio & Geschwind, 1984; Schiff, Alexander, Naeser, & Galaburda, 1983). 

We aimed to explore also the possible lateralisation and involvement of other tracts 

in language, such as the cingulate bundle and the uncinate fasciculus for which there 

is already some evidence that it might play a role, even though not crucial (Duffau, 

Gatignol, Moritz-Gasser, & Mandonnet, 2009; Galantucci et al., 2011; Papagno, 2011). 

In addition we correlated the lateralisation index of the reconstructed arcuate 

fasciculus and the performances in the California Verbal Learning Test (CVLT; total 

words recall) since significant positive correlation was found by (Catani, et al., 

2007). 

 

The following hypotheses were tested: 

 

1) A leftward hemispheric asymmetry would be found in the arcuate fasciculus, 

predominantly in the long direct segment connecting frontal and temporal regions. 

2) A positive correlation would be found between the lateralisation index of the 

arcuate fasciculus and the performances in the CVLT. 

3) For completeness and for comparison, we also investigated the lateralisation 

distribution of other to white matter tracts - the cingulate bundle and the uncinate 

fasciculus – for which there is evidence that they might play a role, although not 

crucial, in the language network.  
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3.2 Methods 

3.2.1 Participants 

Participants were 23 healthy individuals without any current or previous evidence 

of psychiatric disorders recruited through advertisement from the local South 

London community (see chapter 2, section 2.1 to 2.1.4, for a detailed description of 

the demographic characteristics of the subjects and the inclusion/exclusion criteria) 

 

 

3.2.2 Language skills measures  

The participants were assessed were assessed with a battery of neuropsychological 

tests tapping language and verbal memory skills. Phonetic and semantic fluency was 

tested by using the FAS and animal-fruit naming tests (Delis-Kaplan, executive 

function). Word repetition from the aphasia battery was used to measure word 

repetition skills. The California Verbal Learning Test-II (CVLT-II; Delis et al., 1988; 

Pearson Assessment) was administered to assess individual’s verbal learning and 

memory abilities. Along with recognition and recall scores, measures of encoding 

strategies, learning rates and error types were obtained. The CVLT includes five 

learning trials of a 16-word list. The list is read aloud by the examiner, and the 

examinee is instructed to freely recall as many words as possible, in any order. Each 

of the 16 words belongs to one of four categories of ‘‘shopping list’’ items (i.e., fruits, 

herbs and spices, articles of clothing and of tools). The idea underlying the CVLT is 

that lists of words are easier to remember if they are broken down by using a 

strategy of grouping them into semantic categories. After the first trial, the same 16-

word list is reread aloud by the examiner, and the examinee is asked to recall again 

as many words as possible. The same procedure is used for the remaining three 
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trials. The CVLT assesses encoding and retrieval of a list of auditorily presented 

words. Because each word in the list can be categorized in one of the four ‘‘shopping 

list’’ groups and can therefore be clustered together with other semantically 

associated words, the CVLT is considered a test that does not examine verbal 

memory in itself, but rather some level of interaction between verbal memory and 

conceptual ability (Lezak, Howieson, & Loring, 2004).  

 

 

3.2.3 Image Acquisition 

Imaging data were acquired on a 3.0 tesla GE Signa Exite system (Milwaukee) at the 

Centre for Neuroimaging Sciences. The imaging protocol is summarised in the 

following table: 

 

Image sequence DTI 

Slice locations 60 

Images for location -- 

Slice Thickness/Gap 2.4/0.2 

TE 104.5 

TR 14.364 

Matrix 128x128 

 

 

 

 

3.2.4 DTI data processing and statistical analysis 

The analysis of DTI data was carried out in collaboration with the NATBRAINLAB 

group (http://www.natbrainlab.com/). . The diffusion tensor in each voxel was 

estimated using non-linear regression and a continuous description of the tensor 

http://www.natbrainlab.com/
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field was obtained using the B-spline basis field approach (Jones & Basser, 2004; 

Pajevic, Aldroubi, & Basser, 2002). A tracking process, using a 4th-order Runge-

Kutta streamline propagation method (Basser, et al., 2000), was initiated from our 

regions of interest (ROIs). Additional Boolean logic  operations (i.e. AND, NOT) was 

used to obtain a clean ‘virtual dissection’ (Catani, et al., 2005) of the arcuate 

fasciculus (long segment connecting Broca’s and Wernickes’ regions; indirect 

posterior segment connecting Wernicke’s and   Geschwind’s territories and indirect 

anterior segment connecting Geschwind’s and Broca’s territories), the corpus 

callosum, the cingulum and the uncinate fasciculus. Once the tracts were dissected, 

measurements of number streamlines (tract volume), fractional anisotropy (FA) and 

mean diffusivity were obtained for each stramline and an average computed for 

each segment. A repeated measurement analysis was performed with hemisphere, 

segment, and group as factors. 

 

 

3.2.5 Dissection of white matter tracts 

The virtual dissection of white matter tracts of interest has been done in this study 

according to the diffusion tensor imaging tractography atlas for virtual in vivo 

dissections (Catani & Thiebaut de Schotten, 2008). This approach, which consists in 

defining the ROIs manually, may overcome some of the problems raised by the 

alternative strategy of the automatic application of normalised cortical or 

subcortical masks to single brain data sets, for example its proneness to generate 

artefactual reconstructions of tracts as a result of high uncertainty of the fibre 

orientation in the cortical voxels or surrounding white matter (Jones, 2003, 2008). 

On the other hand, the method of defining the ROIs manually embodies a different 



43 
 

limitation, that is it requires a priori knowledge of the white matter pathways 

anatomy to identify their course and delineate ROIs on DTI images.  

(Catani & Thiebaut de Schotten, 2008) created a 3D tractography atlas of the 

associative, commissural and projection tracts in a Montreal Neurological Institute 

standardized system of coordinates (MNI space).     In the present work the atlas was 

used as anatomical reference in the virtual dissecting of the following white matter 

pathways, as they are reported in the atlas (Catani & Thiebaut de Schotten, 2008).  

 

 

3.2.5.1 Arcuate fasciculus (see Figure 1). 

Identification on the color maps: The fronto-parietal portion of the arcuate 

fasciculus encompasses a group of fibres with antero-posterior direction (green) 

running lateral to the projection fibres of the corona radiata (blue) (MNI 39 to 33). 

At the temporo-parietal junction the arcuate fibers arch around the lateral fissure 

and continue downwards into the stem of the temporal lobe (blue, MNI 31). The 

most lateral component of the arcuate fasciculus can be easily identified as red 

fibres approaching the perisylvian cortex (MNI 39 to 31). 

Delineation of the ROI on the FA maps (Fig. 11): A single ROI (A) on approximately 

five slices (MNI 39 to 31) is used for the dissection of the arcuate fasciculus. A large 

half moon shaped region is defined on the most dorsal part of the arcuate (MNI 39), 

usually one or two slices above the body of the corpus callosum. The lowest region is 

defined around the posterior temporal stem (MNI 31). The medial border of the 

region is easy to identify in the FA maps as a black line between the arcuate and the 

corona radiate (MNI 39 to 33) (this line should not be included in the ROI). 
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The lateral border of the ROI passes through the bottom part of the frontal, parietal 

and temporal sulci. The precentral sulcus demarcates the anterior border of the ROI 

(MNI 39 to 33), the intraparietal sulcus its posterior border (MNI 39 to 35). 

 

 

 

Figure 3.1. The direct pathway (long segment shown in red) runs medially and corresponds to 
classical descriptions of the arcuate fasciculus. The indirect pathway runs laterally and is 
composed of an anterior segment (green) connecting the inferior parietal cortex (Geschwind’s 
territory) and Broca’s territory and a posterior segment (yellow) connecting Geschwind’s and 
Wernicke’s territories. 
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3.2.5.2 Cingulate bundle (see Figure2) 

Identification on the color maps: The most dorsal fibers of the cingulum have an 

antero-posterior course and are easy to identify as green fibers medial to the red 

fibers of the corpus callosum (MNI 43 to 39). When the left and right halves of the 

corpus callosum join at the midsagittal line, the cingulum separates into an anterior 

frontal and a posterior parieto-occipital branch (MNI 37 to 29). The two branches of 

the cingulum continue to run close to the corpus callosum, turning from green to 

blue as they arch around the genu, anteriorly (MNI 27 to 1), and the lenium, 

posteriorly (MNI 27 to 11). The posterior branchcontinues downwards into the 

parahippocampal gyrus to terminate in the anterior part of the medial temporal 

lobe. 

Delineation of the ROI on the FA maps: A single ROI (Ci) on approximately 30 axial 

slices is used to dissect the cingulum. A single cigar-shaped region is defined on the 

top three slices (MNI 43 to 39). When the cingulum separates into two branches an 

anterior (MNI 37 to 1) and posterior (MNI 37 to L13) region is defined on each slice. 

It is important to remember that the majority of the fibers of the cingulum are short 

U-shaped fibers connecting adjacent gyri. The use of a two-ROIs approach excludes 

the majority of these short fibers from the analysis. For this reason the use of one-

ROI approach, which includes all fibers of the cingulum is recommended.  
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Figure 3.2. The anterior segment of the cingolum (dark blue) and the posterior one (light blue). 

  
 

 

 

3.2.5.3 Uncinate fasciculus 

Identification on the color maps: The temporal fibers of the uncinate fasciculus (red–

blue) are medial and anterior to the green fibers of the inferior longitudinal 

fasciculus (MNI L19 to L11). As the uncinate fasciculus enters the external capsule 
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(MNI L9), its fibers arch forward (turning from red–blue into green) and mix with 

the fibers of the inferior fronto-occipital fasciculus.  

Delineation of the ROIs on the FA maps: A two-ROIs approach is used to dissect the 

uncinate fasciculus. The first ROI (temporal, T) is defined in the anterior temporal 

lobe (MNI L15 to L19), as described for the inferior longitudinal fasciculus. A second 

ROI (external/extreme capsule, E) is defined around the white matter of the anterior 

floor of the external/extreme capsule, usually on five axial slices (MNI 1 to L7). The 

insula defines the lateral border of the ROI, the lenticular nucleus its medial border. 

 

 

Figure 3.3: Uncinate fasciculus. 
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3.2.6 Estimation of Lateralisation Index 

At the termination of tracking, the number of reconstructed pathways and the 

fractional anisotropy, which quantifies the directionality of diffusion on a scale from 

zero (when diffusion is totally random) to one (when water molecules are able to 

diffuse along one direction only), was sampled at regular (0.5- mm) intervals along 

the tract and the means computed. For each reconstructed segment, a lateralisation 

index (LI) was calculated according to the following formula (N., number): 

 

(                  )   (                   )

[(                  )   (                 )]
 

 

 

Positive values of the index indicate a greater number of streamlines in the left 

direct segment compared with the right. Values around the zero indicate a similar 

number of streamlines between left and right. Similarly, a lateralisation index was 

calculated for the fractional anisotropy and streamlines values of each segment. 
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3.3 Statistical analyses 

Statistical analyses were conducted using SPSS version 16.0 (SPSS inc. Chicago, 

Illinois, USA). 

Subjects were clustered into three groups on the basis of the left-right distribution 

of the reconstructed pathways of the direct segment using a k-means cluster 

analysis. Whilst Χ2 (or Fisher’s exact test) was utilized to assess the distribution of 

the lateralisation index across the participants and between genders, one-sample t 

test (test value _ 0) was used to assess the lateralisation of the index of the fractional 

anisotropy and of the streamlines values, and two-way ANOVA for between-genders 

differences. 

Also, correlation analysis was performed between the lateralisation index of the 

direct segment (streamlines) and the neuropsychological performances. Moreover, 

correlation analysis was performed between tract-specific measurements of 

fractional anisotropy and neuropsychological performances and ANOVA was used to 

account for gender differences in neuropsychological performances.  

 

 

3.4 Results 

Using the method described above, we first obtained DT-MRI scans of 24 healthy 

volunteers (N = 23, 11 females) and then we visualized by DT-MRI tractography the 

different pathways both in the left and right hemisphere. The subjects had been in 

education for a conspicuous number of years (see Table 3.1). 

All participants were right-handed, as assessed using the Lateral Preference 

Inventory (Coren, 1993a). 
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Table 3.1. Demographic and clinical variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1 Lateralisation index 

A lateralisation index (LI) was calculated by counting the streamlines within the 

long segment of the arcuate fasciculus for each hemisphere. To facilitate a visual 

representation of the heterogeneous distribution, a k-means cluster analysis was 

performed to broadly classify the data sets into three groups. This procedure makes 

no assumptions about underlying differences between individuals but attempts to 

objectively identify relatively homogeneous groups of cases. The cluster analysis 

evidenced that 60.9% (14/23) of the subjects showed a leftward asymmetry but 

with some representation of the right direct segment in the reconstructed tract; thus 

they had a bilateral but leftward asymmetric distribution (Group 1, left bilateral).  

Only 17.4% of the subjects (4/23) had a similar left-right distribution; thus they had 

symmetrical distribution (Group 2, symmetrical bilateral). Another 21.7%of the 

subjects (5/23) showed a strong left lateralisation of the direct segment (Group 3, 

Group (N = 23) 
Age (years) 24.22 (4.274) 
N Male/Female 12/11 
Years of Education 15.1304 
IQ 108.8261 (10.13837) 
CVLT_Immediate Free Recall 1_5 56.6522 (10.89874) 

CVLT_Delayed Free Recall_Short Delay 
.3913 (.81124) 

CVLT_Delayed Free Recall_Long Delay 
.2826 (.73587) 
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left strong). In the majority of the subject of the strong left group (3/5) it was not 

possible to reconstruct a continuous trajectory of the corresponding long direct 

segment connecting Broca’s and Wernicke’s areas in the left hemisphere. The right 

hemisphere corresponding segments of the posterior segment of the arcuate 

fasciculus were present in all the subjects, while the anterior segment in the left 

hemisphere was absent in two subjects, one for each of the two groups with leftward 

and symmetric distribution.  

Similarly, a lateralisation index was calculated for the fractional anisotropy and 

streamlines values of each segment. 

One-sample t test (test value = 0) used to assess the lateralisation of the index of the 

fractional anisotropy and of the streamlines values evidences several significant 

interhemispheric differences in all the 3 dissected tracts (Tables 3.2 to 3.5). In the 

case of the arcuate fasciculus, the FA values of the long direct segment (left, 0.521 ± 

0.022; right, 0.499 ± 0.024; P = 0.000) showed a significant difference, witht the FA 

value in the left hemisphere greater than the one in the right. Significant leftward 

interhemispheric differences in the arcuate were also found in the number of 

streamlines of the posterior segment (left, 120.87 ± 75.875; right, 108.52 ± 41.257; P 

= 0.000). In contrast, the streamlines of the anterior indirect segment evidenced a 

significant rightward asymmetry (left, 0.496 ± 0.257; right, 0.510 ± 0.305; P = 

0.004).  

Regarding the cingulate bundle, a significant leftward lateralisation was found both 

in the dorsal and in the ventral segments. The former showed an interhemispheric 

significant difference in the FA value (left, 0.502 ± 0.026; right, 0.477 ± 0.020; P = 

0.000), while the latter in the SL value, although to a lesser degree (left, 200.08 ± 

35.121; right, 190.30 ± 35.762; P = 0.023). Finally, a significant rightward 
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lateralisation was found in the FA of the uncinate fasciculus (left, 0.457 ± 0.023; 

right, 0.478 ± 0.023; P = 0.000). 
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Table 3.1.  Mean and standard deviation of fractional anisotropy and streamlines of arcuate fasciculus, 

cingulate bundle and uncinate fasciculus 

Tract Segment FA mean (DS) SL mean (DS) 

  Left Right Left Right 

Arcuate 

fasciculus 

anterior .49685 

(.02575) 

.51077 

(.03050) 

91.70 

(68.855) 

149.52 

(83.328) 

long .52197 

(.02243) 

.49958 

(.02498) 

162.48 

(73.158) 

79.13 

(59.846) 

posterior .47013 

(.02794) 

.47711 

(.02241) 

120.87 

(75.875) 

108.52 

(41.257) 

Cingulate 

bundle 

dorsal .50223 

(.02646) 

.47779 

(.02018) 

417.04 

(105.11) 

366.04 

(75.750) 

 
ventral .43764 

(.01778) 

.43568 

(.01856) 

200.08 

(35.121) 

190.30 

(35.762) 

Uncinate 

fasciculus 

 .45700 

(.02306) 

.478642 

(.02489) 

117.65 

(52.787) 

139.78 

(58.113) 

 

 

Table 2.3. One sample t test assessing the lateralisation of the index of the fractional anisotropy and 
streamlines values in the three segments of the arcuate fasciculus. 

Arcuate 

Fasciculus 

Test Value = 0 

N t df 
Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

LI FA Anterior 
21 -1.765 20 .093 -.00697 -.0152 .0013 

LI FA Long 
20 5.459 19 <.001 .01299 .0080 .0180 

LI FA Post 
23 -1.231 22 .231 -.00383 -.0103 .0026 

LI SL Anterior 
23 -3.200 22 .004 -.14705 -.2424 -.0517 

LI SL Long 
23 .260 22 .797 .00810 -.0564 .0726 

LI SL Post 
23 6.591 22 <.001 .22323 .1530 .2935 
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Table 3.3. One sample t test assessing the lateralisation of the index of the fractional anisotropy and 
streamlines values in the two segments of the cingulated bundle. 

Cingulate 

Bundle 

Test Value = 0 

N t df 
Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

LI FA Dorsal 23 
7.505 22 .000 .01235 .0089 .0158 

LI FA Ventral 23 
.657 22 .518 .00114 -.0025 .0047 

LI SL Dorsal 23 
1.310 22 .204 .01245 -.0073 .0322 

LI SL Ventral 23 
2.435 22 .023 .03050 .0045 .0565 

 

 

 

 

 

Table 3.4. One sample t test assessing the lateralisation of the index of the fractional anisotropy and 
streamlines values in the uncinate fasciculus. 

Uncinate 

Fasciculus 

Test Value = 0 

N t df 
Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

LI FA Uncinate 23 
-4.134 22 .000 -.01153 -.0173 -.0057 

LI SL Uncinate 23 
-1.827 22 .081 -.04894 -.1045 .0066 
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3.4.2 Gender differences in the lateralisation pattern. 

Fischer exact test was performed to assess the distribution of the lateralisation 

index between the two genders. The analysis did not show any significant difference 

(Table 3.6). 

 

Table 3.5. Expected and actual distribution of the lateralisation index across the subjects and between 
genders.  X2 Tests (or Fischer’s exact test). 

Clusters 
Gender 

M F Total 

Left bilateral 

Count 
4 3 7 

Expected 

Count 3.9 3.2 7.0 

Symmetrical 

bilateral 

Count 
5 5 10 

Expected 

Count 5.5 4.5 10.0 

Left strong 

Count 
2 1 3 

Expected 

Count 1.7 1.4 3.0 

X2   Tests 
   

Value Df 
Asymp. Sig. 

(2-sided) 

Pearson Chi-Square 

Likelihood Ratio 

Linear-by-Linear 

Association 

N of Valid Cases 

.279a 2 .870 

.283 2 .868 

.017 1 .897 

   

20   

 

 

Segments Males Females P values 

FA Anterior 

indirect 

-.0055 (0.2947) -.0083 (.01653) .727 
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FA Posterior 

indirect 

-.0036 (.01771) -.0040 (.01205) .952 

FA Long direct .0137 (.00974) .0121 (.01220) .752 

SL Long direct .2121 (.16522) .2354 (16641) .739 
 

 

 

3.4.3 LI and behavioural correlates 

Correlation analysis was carried out between the lateralisation index of the direct 

segment (streamlines) and the neuropsychological performances. Moreover, 

correlation analysis was carried out between tract-specific measurements of 

fractional anisotropy and neuropsychological performance. No significant 

correlations (p>0.05) were found between the neuropsychological performances at 

both the CVLT and verbal fluency (phonetic and semantic), and the tracts 

measurements of LI, FA or SL. 

 

 

3.5 Discussion 

Previous studies illustrated a direct correspondence between the anatomy of white 

matter pathways dissected with DT-MRI tractography and obtained from post-

mortem studies (Catani, et al., 2002; Wakana et al., 2007). 

Consistently with previous studies, the main finding of the present study is a 

significant leftward asymmetry in the FA value of the long direct segment of the 

arcuate fasciculus. Greater FA values in the arcuate fasciculus compared with the 

corresponding white matter tract in the right hemisphere have been reported 

previous in several studies (Barrick, et al., 2007; Buchel, et al., 2004; Catani, et al., 

2007; Powell, et al., 2006). In addition, we found another significant leftward 
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lateralisation in the SL of the posterior segment and a rightward distribution of the 

SL index of the anterior segment of the arcuate fasciculus. To our knowledge only 

Catani (Catani, et al., 2007) studied the lateralisation of the arcuate fasciculus as 

dissected into the long direct pathway and the two indirect pathways, anterior and 

posterior. In contrast with the present results, they found a leftward distribution 

both of the FA value of the anterior and the posterior segments.  

In addition, I found no evidence of a significant relationship between the leftward 

lateralisation indexes and any measures of language and verbal memory 

performance in my group. Although counterintuitive, this seems to be in line with 

the findings of previous DTI (Catani, et al., 2007), showing that the degree of 

leftward lateralisation of perisylvian pathways might not be correlated with 

measures of language processing skills, while a more symmetrical FA values might 

favour the retrieval of verbal material.  

One possibility is that the linguistic tasks we have employed might not be specific to 

any single anatomical structure. For instance, verbal fluency seems to be associated 

with lesions of anatomical connection between lateral to medial frontal cortex and 

the head of caudate, a network that is not comprised in the perisylvian circuitry. 

We also investigated the lateralisation distribution of FA and SL values of other 

pathways for completeness, in order to compare the hemispheric organisation of the 

arcuate fasciculus with the organisation of other white matter tracts. 

The cingulate bundle showed a significant leftward asymmetry. More specifically, we 

found a significant leftward distribution of the FA index in the dorsal segment and a 

significant asymmetry going in the same direction in the number of streamlines in 

the ventral segment. Although not many studies investigated the lateralisation of the 

cingulate bundle white matter fibres in healthy subjects, our result of a greater FA in 
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dorsal segment for the left hemisphere are consistent with all the previous findings 

(de Groot et al., 2009; Gong et al., 2005; Malykhin, Concha, Seres, Beaulieu, & 

Coupland, 2008).  

In addition, we found a significant rightward distribution of FA values in the 

uncinate fasciculus which is consistent with the results reported by all the previous 

studies that explored this white matter pathway in healthy subjects (Malykhin, et al., 

2008; Yasmin et al., 2009) . 

Taken together, these results replicate the previous findings and indicate that the 

leftward lateralisation is not exclusive of the arcuate fasciculus, but other tracts like 

the cingulate bundle may show the same hemispheric asymmetry. 

Unlike some of the previous studies (Kang, Herron, & Woods, 2011; Y. Liu et al., 

2011), we did not find any significant difference in the lateralisation of the arcuate 

between the two genders. This result may be due to the small sample, which did not 

allow an examination of gender differences with high statistical power. 

At present, DT-MRI tractography is the only non-invasive method that allows the 

large pathways of human brain white matter in vivo (Le Bihan, 2003). Nonetheless, 

it is important to remember that DT-MRI measures the diffusion of water molecules 

and that the computed tractography lines are only interpreted as fibre tracts. As a 

consequence, there is a statistical uncertainty in the tract results. DT-MRI provides 

only indirect measurements of tissue; hence there is no certain correspondence 

between tractography indices and underlying biological factor.  
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4. INVESTIGATING LATERALISATION IN THE LANGUAGE NETWORK: A FUNCTIONAL 

CONNECTIVITY STUDY  

 

 

4.1 Introduction 

A fundamental characteristic of human brain organisation is the existence of 

functional and structural asymmetries between the hemispheres (Geschwin.N & 

Levitsky, 1968; Geschwind & Galaburda, 1985). Cerebral asymmetry is observed 

early in the human brain. The normal infant brain is already asymmetrically 

organised during the first months of life (Dehaene & Dehaene-Lambertz, 2009). The 

exact determinants of this process of lateralisation remain mostly unknown, but the 

centrality of cerebral and behavioural asymmetries converges on a possible human 

laterality gene. A leading hypothesis in this regard suggests that a dominant allele 

known as the ‘right-shift’ factor is responsible for establishing left cerebral 

asymmetry by disrupting the development of language related abilities of the right 

hemisphere during childhood (Annett, 2002). 

Studies on patient and non-patient populations have repeatedly shown that the left 

and right hemispheres (LHem and RHem) can be different in their structures (e.g. 

size, location, and/or shape of different areas) and in their information processing 

faculties (Cabeza & Nyberg, 2000; Gazzaniga, 2000). 

One of the most studied and earliest observed lateralised brain functions is 

language.   

Superior temporal (Wernicke’s area) and inferior frontal (Broca’s area) areas in the 

left hemisphere have been classically associated with language comprehension and 

production. 
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However, lesion (Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004) and 

functional magnetic resonance imaging (fMRI) studies (Price, 2010) have identified 

additional temporal, parietal and prefrontal regions, supporting the involvement of a 

more extended language network (M. M. Mesulam, 1990; A. U. Turken & Dronkers, 

2011). This network seems to be organised around a central axis of at least two 

interconnected heteromodal epicenters (Wernicke’s and Broca’s  areas) (M. 

Mesulam, 2005) and abnormalities in its flexible parallel architecture might help 

explain various clinical manifestations in language disorders (aphasia) (Catani, et al., 

2005). Wernicke’s area (Brodmann areas, BAs, 22, 39 and 40) is traditionally 

associated with language comprehension and its damage results in Wernicke’s 

aphasia (receptive or fluent aphasia). Broca’s area (posterior inferior frontal gyrus; 

BA 45 and 44) is traditionally associated with language production, and its damage 

results in Broca’s aphasia (expressive or non-fluent or agrammatic aphasia). 

Lesion and fMRI studies in healthy subjects have indicated that speech 

comprehension and production are lateralised to the left brain hemisphere (A. U. 

Turken & Dronkers, 2011).   

In the most recent study, using a large resting-state functional connectivity and 

lesion studies from 970 healthy subjects and seed regions in Broca’s and Wernicke’s, 

Tomasi & Volkow (2012) reported that Analysis of laterality patterns revealed a 

leftward  lateralisation for the long-range connectivity in Broca’s area and in 

posterior Wernicke’s (angular gyrus), which is consistent with previous resting state 

functional connectivity studies (H. Liu, Stufflebeam, Sepulcre, Hedden, & Buckner, 

2009) and supports lateralisation of language to the left hemisphere. However, the 

authors also documented an unexpected rightward lateralisation of the anterior 

Wernicke’s region for long-range connectivity that suggests a predominant 
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involvement of the right hemisphere in language comprehension processed through 

the supramarginal gyrus . Resting state functional connectivity MRI can reveal the 

cortical connectivity among language-network regions by evaluating correlations of 

spontaneous BOLD signal-intensity fluctuations (Biswal, Yetkin, Haughton, & Hyde, 

1995; Fox et al., 2005).  

However, there are no functional connectivity MRI studies that directly investigate 

language lateralisation in healthy subjects. The majority of them focused either on a 

specific population of patients (schizophrenic, epileptic, etc.)(Bleich-Cohen et al., 

2012) or on a specific aspect of language (reading, comprehension, production, 

phonology, semantics, etc.) (Seghier & Price, 2010; van Atteveldt, Roebroeck, & 

Goebel, 2009; Xiang, Fonteijn, Norris, & Hagoort, 2010). Nevertheless, healthy 

subjects have been used as control in order to draw conclusions in studies on a 

specific disorder (Bleich-Cohen, et al., 2012; Pravata et al., 2011). This is the first 

study to investigate front-temporal connectivity in healthy patients using the 

Hayling Sentence Completion Test. 

 

The following hypotheses were tested: 

 

1) A leftward hemispheric asymmetry would be found in the blood oxygenation 

level-dependent response across all conditions. 

2) All the correlations between paired ROIs would be significantly different 

from zero and they would be all positive. 

3) A leftward hemispheric asymmetry would be found in the lateralisation index 

calculated on the correlation values of the paired ROIs in the functional 

connectivity analysi 
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4.2 Methods 

4.2.1 Participants 

Twenty-three healthy male (n=12) and female (n=11) without any current or 

previous evidence of psychiatric disorders recruited through advertisement from 

the local South London community. All but one subject were right-handed, while 

English was the first and native language of all the participants in this study. The 

acquisition period for this study lasted about 15 months. See Chapter 2 for a detailed 

description of the demographic characteristics of the subjects and the 

inclusion/exclusion criteria. 

However, after pre-processing of the fMRI images one of the male volunteers was 

removed on the basis of excessive head movements (i.e. head translation parameters 

> 10 mm and head rotations parameters > 1 degree) inside the scanner, leaving 

scans from 22 healthy controls for the subsequent analysis. The additional exclusion 

criteria for the healthy controls are reported in detail in Chapter 2, section 2.1. See 

Table 1 for the demographic characteristics of this sample.  

 

 

4.2.2 Functional MRI task design 

In this study subject performed a modified version of the Hayling Sentence 

Completion Task (HSCT) that was initially described by Burgess and Shallice (1996). 

The HSCT allows the examination of verbal initiation and suppression skills while 

maintaining changes in the characteristics of the two component of the task to the 

minimum. Subjects are presented with sentence stems in which the last word is 

omitted. In one condition, referred here as response Initiation, the subject has to 

complete the sentence with a word which is semantically related with the context of 
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the sentence. In another condition, referred here as response Suppression, the 

subject has to provide a word which is not semantically related to the sentence stem 

and does not make sense in its context. Therefore, in this condition the most obvious 

response must be inhibited. Previous behavioural studies showed that both patients 

with frontal lesions and chronic psychotic patients perform the HSCT task poorly 

(Burgess & Shallice, 1996; Nathaniel-James & Frith, 1996). More recently, Nathaniel-

James and colleagues (2002) devised a second version of the HSCT in which activity 

associated with selection between different correct words could be distinguished 

from activity associated with suppression of a prepotent response. This was 

achieved by varying the contextual constraint of the sentences from high to low. The 

contextual constraint of a sentence can be quantified in terms of close probability 

(CP), which represents the probability that a particular word will be used to 

complete the sentence. It follows that the lower the CP of a sentence the larger the 

number of potential correct words that become available (Nathaniel-James & Frith, 

2002).   

The version used in the present research is a modification of the HSCT that was 

implemented in order to adapt the task to a fMRI experiment (Allen et al., 2008).  

Eighty sentences were selected from those provided by Arcuri and colleagues 

(2001) and Bloom and Fischler (1980). Sentences were chosen on the basis of 

having a high probability of one completion (high-constraint sentences: CP > 0.9) or 

a low probability of one particular response (low-constraint sentences: CP < 0.3). 

Sentence stems consisted of five, six or seven words and were assigned to either a 

response Initiation condition, in which participants were required to provide a 

congruent response (i.e., ‘He posted the letter without a STAMP’), or a response 

Suppression condition, in which participants had to complete the sentence with an 
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incongruent condition (i.e., ‘The boy went to an expensive SHOE’). In addition, the 

experimental paradigm comprised of a control condition, referred here as 

Repetition, in which participants were presented with the word “REST” and were 

instructed to read it overtly. The sentences assigned to each congruency condition 

were matched for word length (equal number of 5, 6 and 7 words) and constraint 

(equal number of high and low CP sentences). The experimental design consisted, 

therefore, of a 2-by-2 factorial structure, with congruency (Initiation and 

Suppression) and constraint (high CP and low CP) as factors.  

 

 

4.2.3 fMRI procedure 

The 40 sentence stems assigned to each congruency condition were arranged into 

blocks, which contained five sentence stems each. The two conditions (i.e. Initiation 

and Suppression) were presented in two separate acquisition sessions. Within each 

condition, the level of constraint was alternated between each block in an 

ABABABAB design.  To control for the effects of inter-subject reading speed, each 

word was presented visually in the MRI scanner one at a time at an interval of 

500ms. The words appeared form right to left and all words in the sentence stem 

remained on the screen together for a further 500ms after the last word of the stem 

had appeared. Subsequently, a question mark appeared which cued participants to 

articulate their verbal response. The question mark remained for a further 4 sec in 

which time a response was made before the first word of the next stem was 

presented. Therefore, each block of 5 sentences lasted for 40 sec with a total inter-

stimulus interval of 8 sec between the presentations of each sentence stem. The 

experimental conditions were contrasted with a control condition consisting of a 
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cross that was presented for 4 sec and was followed by the word “REST”, which 

participants had to articulate overtly, for a further 4 sec. As for the sentences, the 

control trails were arranged into blocks which contained 5 trails each and lasted 40 

sec. Therefore, within each session an experimental block (E) was alternated with a 

control block (C) in an ECECECECECECECE design for a total of 8 experimental 

blocks and 7 control blocks per session.   

Participants were trained before scanning with sentence stems different to the ones 

included in the fMRI task. None of the participants reported difficulties in reading 

any sentence stem in the allotted presentation time. Once inside the scanner, 

subjects were asked to listen to a standardised instruction communication before 

the response Initiation phase and again before the response Suppression phase of 

the task.  

An audio software (Cool Edit Synthtrilium) for the analysis of error rates and 

response times was used to record the participants’ overt verbal responses. The 

latency between the presentations of the question mark and the onset of the 

participants’ verbal response was measured by using a software-based voice trigger. 

During the acquisition of dummy volumes before each of the two functional runs, the 

average power spectrum of the scanner noise was computed and set as a noise 

profile. This profile was then applied to digitally filter the microphone input signal 

by using a non-linear subtraction method and band-pass filtering of the highest 

amplitude frequencies. Consequently, the root mean square (RMS) value of 8-msec 

epochs of the differential of the filtered signal was then calculated. Speech onset was 

determined when the RMS value exceeded a preset threshold set at just above 

scanner noise with no voice component. 
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4.2.4 fMRI Data Acquisition 

Images were acquired on a 3.0T GE Signa system (GE Medical Systems, Milwaukee) 

using a TR of 2 seconds, flip angle of 70, TE of 30 ms, slice thickness of  3mm, 

interslice gap of 0.3mm and  field of view 240 mm. A total of 600 image volumes 

were acquired for each subject in two runs (300 Initiation and 300 Suppression), 

each run acquisition lasting 10 minutes. For each subject, 38 axial slices parallel to 

the AC-PC line were acquired with an image matrix of 64×64 (Read×Phase) 

providing whole-brain coverage.  

The use of overt verbal responses in the absence of a clustered or compressed fMRI 

acquisition could potentially raise concerns regarding movement artifacts due to 

response articulation (Barch et al., 1999). These potential concerns were addressed 

by: (i) defining the primary comparisons between conditions that both 

(Initiation/Suppression and Repetition) implied overt verbal responses, and (ii) 

performing the statistical analyses on pooled group data rather than individual 

participant data (Allen, et al., 2008). Moreover, this version of the HSCT has been 

previously used in the absence of a cluster acquisition and movement artifatcs due 

to articulation were not observed (Allen, et al., 2008; Allen et al., 2010). In the 

present acquisition, only one healthy control showed significantly greater head 

translations and rotations parameters (see Healthy Controls section above) and was 

therefore removed from the subsequent analyses.  

 

 

4.2.5 Behavioural Analysis 

In the Initiation condition errors occurred when participants gave no response or a 

response that did not make sense in the context of the preceding sentence stem. In 
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the Suppression condition errors occurred when participants gave no response or a 

response that completed the preceding sentence stem in a sensible way. The validity 

of each completion in the Suppression condition was defined in accordance with the 

Hayling and Brixton Test section 5 (Thames Valley Test Company Ltd, 1997). When 

there was uncertainty as to the appropriateness of a response a consensus decision 

was made between two investigators. A repeated measure ANOVA with congruency 

and constraint as within-subject factors (version 19.0, IBM Comp. & SPSS Inc., 2010) 

to analyse mean errors proportions and reaction times. 

 

 

4.2.6 Functional MRI data analysis 

Pre-processing and statistical analysis of functional data were performed in SPM8 

software (http//www.fil.ion.ucl.ac.uk/spm), running in Matlab 10 (Matworks 

Inc.Sherbon, MA, USA).  

Pre-processing. For each subject, a limited number of image volumes were randomly 

selected for visual inspection of potential image artifacts. 

After visual inspection, the first image of the Suppression run was realigned to the 

first image of the Initiation run; then all image volumes from each run were 

realigned to the first image of the corresponding run and resliced with sync 

interpolation. The realigned images were spatially normalised to a standard MNI-

305 template (K. J. Friston, Frith, Frackowiak, & Turner, 1995) using nonlinear-basis 

functions. As a final step, the normalised functional images were convolved by a 

6mm full width at half maximum (FWHM) isotropic Gaussian kernel in order to 

compensate for residual variability in functional anatomy after spatial normalisation 

as well as to permit application of Gaussian random field theory-based procedures 
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for adjusted statistical inference. More details on the pre-processing can be found in 

Chapter 2, section 2.3. 

Statistical Parametric Mapping. A standard voxel-wise statistical analysis of regional 

responses, implemented in accordance to the General Linear Model (GLM) statistical 

framework, was performed in order to identify regional activations in subject 

independently. To remove low-frequency drifts, the data were high-pass filtered 

using a set of cosine basis functions with a cut-off period of 128s. The two sessions 

(Initiation and Suppression) were modelled separately to control for session-

specific confounding effects on the regional activations. For the Initiation session, 

the following experimental conditions were modelled: Initiation (High CP), Initiation 

(Low CP), Reading, Repetition, Fixation; for the Suppression session, the following 

experimental conditions were modelled: Suppression (High CP), Suppression (Low 

CP), Reading, Repetition, Fixation. The above conditions were modelled in an event-

related fashion by convolving the onset times (e.g. the onset of the question mark 

prompting a verbal response) with a canonical haemodynamic response function. In 

addition, in both sessions error responses were modelled as a separate regressor, 

which was included in the GLM as a covariate of no interest. Serial correlations 

among scans were modelled using an AR(1) model, enabling maximum likelihood 

estimates of the whitened data. The parameter estimates were calculated for all 

brain voxels using the GLM and contrasts were computed for each condition of 

interest (i.e. High Initiation vs. Repetition; Low Initiation vs. Repetition; High 

Suppression vs. Repetition; Low Suppression vs. Repetition). The subject-specific 

contrast images were then entered into a second-level random effects analysis to 

make inferences at group level. In order to reduce the confounding effects of inter-

subject variability and better investigate the effect of group-by-task interactions, a 
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repeated-measure ANOVA was implemented in SPM8 by defining a 22 flexible 

factorial design. This design allows the modelling of inter-subject variability by 

specifying each subject as a separate factor (see Glasher & Gitelman flexible factorial 

design tutorial, http//www.fil.ion.ucl.ac.uk/spm). However, flexible factorial designs 

can also potentially overestimate the extent and significance of main effects of 

condition and group (McLaren et al., 2011). Therefore, in addition to the flexible 

factorial design mentioned above, a standard 22 factorial ANOVA was used to 

characterise the main effect of congruency, constraint. For both analyses, statistical 

inferences were made at a whole-brain corrected voxel level (p<0.05, FEW 

corrected, cluster extent threshold = 5).  

 

 

Table 4.6. Mean and standard deviation for Proportion of Errors and Reaction Times during 

the HSCT 

Condition Mean Proportion of Errors Mean Reaction Times 

Initiation High CP .021(.044) 764.33(223.71) 

Initiation Low CP .120(.086) 1145.35(471.39) 

Suppression High CP .0837(.104) 1251.03(568.06) 

Suppression Low CP .161(0.115) 1317.66(659.42) 

 

 

 

 

4.2.6 Functional Connectivity Analysis 

In neuroimaging, functional integration between brain areas can be characterised in 

terms of functional connectivity, which refers to correlation over time between 

activity in spatially remote brain areas, or effective connectivity, which refers to the 

influence that the activity in one region exerts over another (Friston 1994). 
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In the present exploratory study, there were no specific a-priori hypotheses as to the 

directionality (i.e forward versus backward) of the inter-regional interactions and 

the impact of the experimental condition on the relationship between structural and 

functional connectivity within the perisylvian network. Thus an exploratory 

correlation analysis based on Pearson’s correlation coefficient was preferred to a 

more hypothesis-driven analytical approach (e.g. Dynamic Causal Modelling). 

 

 

4.2.7 Regions of interest (ROIs) identification 

For the purpose of this study, language related lateralisation was examined in a 

network of regions of interest (ROIs) including: the inferior frontal gyrus [IFG, mean 

coordinates (x, y, z): –58, 18, 32 (left); (x, y, z): 58, 18, 32 (right)], which represents 

the Broca's area on the left; the middle temporal gyrus [MTG, mean coordinates (x, y, 

z): –58, -30, -12 (left); (x, y, z): 58, -30, -12 (right)], which represents the Wernicke’s 

area on the left; and the inferior parietal lobule [IPL, mean coordinates (x, y, z): –47, 

-59, 40 (left); (x, y, z): 47, -59, 40 (right)], which represents the Geschwind’s area. 

These three areas were used as seed regions the same used to divide the arcuate 

fasciculus in three segments in the DTI study (chapter 3). 

Time-series were therefore extracted from three ROIs: the left inferior frontal gyrus 

(LIFG), the middle temporal gyrus (LMTG) and the left inferior parietal lobule 

(Figure 1). These regions have been previously implicated in studies investigating 

language and semantic processing (Price, 2000b, 2010) and represent the 

perysilvian network of regions connected through the AF (Catani, et al., 2005). In 

order to ensure comparability across subjects, the extraction of time series had to 

meet a combination of anatomical and functional criteria. Functionally, the principal 
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eigenvariates were extracted to summarise regional responses in 12 mm spheres 

centred on the ROIs included in the study.  To account for individual differences, the 

location of these regions was based upon the local maxima of the subject-specific 

statistical parametric maps, defined as the nearest (within 10 mm) of the group 

maxima. The mean coordinates for the LIFG and LMTG were derived from activation 

maps obtained with the standard SPM analysis of the HSCT data.  The mean 

coordinates for the LIPL were derived from previous studies which provided 

evidence of LIPL involvement in semantic processing (Price, 2010). Anatomically, 

the search for each subject-specific local maximum was constrained within the same 

correspondent cortical area, as defined by the PickAtlas toolbox (Maldjian, Laurienti, 

Kraft, & Burdette, 2003b). There were no regions that conformed to these criteria in 

one subject, which was therefore excluded from this study. 
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Figure 4.1. ROIs for the extraction of Time Series 

 

 

 

4.3 Statistical analysis 

Statistical analyses were conducted using SPSS version 16.0 (SPSS inc. Chicago, 

Illinois, USA).  

Pearson’s correlation analysis was then performed for each subject between the 

three ROIs within each hemisphere (LIFG_LMTG, LIFG_LIPL, LMTG_LIPL, 

RIFG_RMTG, RIFG_RIPL, RMTG_RIPL).  Each correlation gives a measure of the 

connectivity between two areas that are connected by a specific segment of the 

arcuate fasciculus, as examined in the chapter 3. We assumed that the inferior 

frontal gyrus (IFG), that corresponds to Broca’s area, was connected to the middle 

temporal gyrus, that corresponds to Wernicke’s area, through the long direct 
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segment of the arcuate fasciculus. So we referred to the IFG-MTG correlation as the 

long segment. Similarly, we assumed that the IFG was connected to the inferior 

parietal lobule (IPL), that corresponds to Geschwind’s area, through the anterior 

indirect segment of the arcuate fasciculus. So we referred to the IFG-IPL correlation 

as the anterior segment. In the end, we assumed that the MTG was connected to the 

IPL through the posterior indirect segment of the arcuate fasciculus. So we referred 

to the MTG-IPL correlation as the posterior segment. A one sample t Test (test 

value_O) was then performed on the obtained Pearson product-moment 

correlation coefficients (r) for each “tract” (LIFG_LMTG, LIFG_LIPL, etc.). The same 

coefficients were subsequently used to calculate the Lateralisation index for each 

“tract” and each subject. 

For example: 

 

(  )        
(          )   (          )

[(          )   (          )]  
 

 

Accordingly, negative value of the LI stands for right lateralisation while positive 

numbers yielded lateralisation to the left in each subject.  

One-sample t test (test value _ 0) was used to assess the lateralisation of each “tract”. 
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4.4. Results 

4.4.1 Functional MRI 

Overal Task Activation 

Increased blood oxygenation level-dependent response across all conditions 

(response Initiation, response Suppression, High- and Low-constraint conditions) 

compared to Repetition was observed in the left superior frontal gyrus (SFG), the 

left inferior frontal gyrus (IFG), the left middle temporal gyrus (MTG) and the left 

thalamus (Figure 4.2; Table 4.1). When the Initiation condition was individually 

contrasted against Repetition, additional clusters were detected in the left SFG, left 

Insula and left MTG (Figure 4.3, Table 4.1). Similarly, when Suppression condition 

was separately contrasted against Repetition, three major clusters were found in the 

left SFG, left MFG and in the left insula (Figure 4.4, Table 4.1). Finally, when 

Suppression was contrasted against Initiation, clusters were detected in the right 

Superior Parietal Lobe, in the right MTG and in the left Cuneus (Figure 4.5, Table 4.1) 
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Figura 4.2. Statistical parametric maps showing Initiation & Suppression > Repetition. For visualisation 
purposes, activations are reported at a whole brian voxel-level uncorrected for multiple comparisons 
(P<0.001). 

 

 

Figura 4.3. Statistical parametric maps showing Initiation > Repetition. For visualisation purposes, 
activations are reported at a whole brian voxel-level uncorrected for multiple comparisons (P<0.001). 
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Figura 4.4. Statistical parametric maps showing Suppression > Repetition. For visualisation purposes, 
activations are reported at a whole brian voxel-level uncorrected for multiple comparisons (P<0.001). 

 

 

 

 

Figura 4.5. Statistical parametric maps showing Suppression > Initiation. For visualisation purposes, 
activations are reported at a whole brian voxel-level uncorrected for multiple comparisons (P<0.001). 
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Region x y z BA Cluste

r size 

Z score 

Initiation & Suppression>Repetition       

L Medial Superior frontal gyrus -40 22 -6 45 2125 6.66 

L Inferior frontal gyrus -60 -40 0 21 518 4.80 

L Middle temporal gyrus -58 -50 22 40 14 3.60 

L Medial Superior frontal gyrus -40 22 -6 45 2125 6.66 

       

Initiation > Repetition       

L Superior frontal gyrus - SMA -2 12 60 6 545 6.78 

L Insula -40 22 -6  539 6.02 

L Middle temporal gyrus -58 -40 2 22 124 5.45 

       

Suppression > Repetition       

L Superior frontal gyrus - SMA -2 12 64 6 687 6.56 

L Insula -40 22 -6  141 5.81 

L Middle temporal gyrus -50 18 30         69 5.05 

       

Suppression > Initiation       

R Superior parietal lobe 8 -70 48  433 4.57 

R Middle temporal gyrus 42 30 40  43 3.93 

R Middle temporal gyrus 28 56 28 10 28 3.89 

L Cuneus -8 -80 32 19 39 3.85 

R Middle temporal gyrus 32 12 64  140 3.82 

Table 4.1. Coordinates and Z-scores (voxel-level P<0.05, FWE corrected) for cerebral areas activated 
during Initiation and Suppression relative to Repetition, and Suppression against Initiaton. 

 

 

 

4.4.2 Functional Connectivity 

One-sample t test (test value = 0), performed on the coefficients of the correlation 

between the ROI (Table 2), evidenced that all the correlations between paired ROIs 



78 
 

are significantly different from zero and they are all positive. This result supports 

the hypothesis that there is a strong functional integration within the investigated 

brain network.  

 

 

Test Value = 0 

N t Df 
Sig. (2-

tailed) 

Mean 

Difference 

(Std. 

Deviation) 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

LIFG_LIPL 22 8.676 20 p<.001 
.3472 

(.1833) 
.2637555 .4307207 

LIFG_LMTG 22 13.460 20 p<.001 
.5231 

(.1781) 
.4420681 .6042176 

LMTG_LIPL 22 9.924 20 p<.001 
.4200 

(.1939) 
.3317949 .5083956 

RIFG_RIPL 22 9.897 20 p<.001 
.4936 

(.2285) 
.3896222 .5977112 

RIFG_RMTG 22 8.186 20 p<.001 
.4592 

(.2571) 
.3422489 .5763225 

RMTG_RIPL 22 8.841 20 p<.001 
.3409 

(.1767) 
.2604692 .4213403 

Table  4.2. One sample t test assessing that the ROIs coefficients of correlation were significantly 
different from zero. 

 

One-sample t test (test value = 0) was also used to assess the lateralisation index of 

the in all the 3 investigated tracts (Table 4). The results evidenced that only the 

anterior connection, between the Broca’s and Geschwind’s areas, showed a 

significant rightward lateralisation (left, 0.347 ± 0.183; right, 0.493 ± 0.228; P = 

0.037). 
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Tract r mean (DS) 

 Left Right 

IFG-IPL .347 (.183) .493 (.228) 

IFG-MTG .523 (.178) .459 (.257) 

MTG-IPL .420 (.193) .340 (.176) 

Table  4.3. Mean and standard deviation of Person’s r in the three connections in both hemispheres. 

 

 

 

 

Test Value = 0 

 

95% Confidence 

Interval of the 

Difference 

N t df 
Sig. (2-

tailed) 

Mean (Std. 

Deviation) 
Upper Upper 

LI_ant 22 -2.232 20 .037 
-.09043 

(.18569) 
-.1750 -.0059 

LI_long 22 1.052 20 .305 
.64621 

(2.81363) 
-.6345 1.9270 

LI_post 22 .705 20 .489 
.03252 

(.21142) 
-.0637 .1288 

Table 4.4. One sample t test assessing the lateralisation of the index of the correlation coefficient in the 
three tracts. 

 

 

 

4.5 Discussion 

The HSCT is known to robustly activate left hemisphere frontal and temporal 

regions. For example, Nathaniel-James (1996) found that when compared with a 

control reading task, the HSCT is associated with activation in 3 areas, the left frontal 

Opercolum, the left inferior frontal gyrus and the right anterior cingulate. In addition 

and more recently, Allen (2008) found that the BOLD response across all conditions 
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compared to rest was associated with activation in the left superior frontal gyrus, 

the LMTG, the left ventrolateral inferior frontal gyrus, the left dorsolateral MFG, the 

left cuneus, and the bilateral superior temporal pole. Consistently with all the 

previous studies, for sentence completion versus rest, in the present work we found  

activation in areas commonly associated with self-generated word production tasks, 

i.e. dorsolateral and medial prefrontal areas and superior/middle temporal gyrus 

(Frith et al., 1995; Lawrie et al., 2002; Nathaniel-James, Fletcher, & Frith, 1997). 

However, whether specific patterns of functional connectivity are associated with 

the regional activation observed during this task has yet to be elucidated since, to 

the best of my knowledge, no previous studies have addressed this issue.  

In this study I employed a Pearson’s correlation analysis to characterise functional 

connectivity within the perysilvian network and this analytical approach does not 

allow one to estimate the functional correlation coefficient specific to each task 

condition (i.e.  response Initiation, response Suppression, High- and Low-constraint 

conditions compared to Repetition). Therefore it is difficult to differentiate the 

modulation effects of functional connectivity on the basis of the two different 

performance components. . A more appropriate approach would have been the 

analysis of effective connectivity of response initiation and suppression which have 

different neuroanatomical substrates, there is a problem with interpreting 

performance on complex executive tasks that incorporate both of these components 

when it is not possible to separate them in the analysis. 

The main finding of the fc analysis is a significant rightward lateralisation (left, 0.347 

± 0.183; right, 0.493 ± 0.228; P = 0.037) in the anterior connection, between the the 

IFG and the IPL. The functional connectivity analysis revealed an increase in the 

strength of inter-regional coupling between the RIFG and RIPL. 
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In order to comprehend complex, natural language the right hemisphere might play 

an decisive role (Jung-Beeman, 2005). Hayling Sentence Completion Task requires 

semantic integration (Kircher, Brammer, Andreu, Williams, & McGuire, 2001) and 

there is evidence that semantic integration elicits functional MRI signal  

predominantly in the right-hemisphere (St George, Kutas, Martinez, & Sereno, 1999), 

and patients with and intact left hemisphere but with a damage in the left 

hemisphere may miss the main sense of a story – although they do not appear 

aphasic (Beeman et al., 1994). 

In addition, the right hemisphere is thought to play a greater role than the left 

hemisphere when people are asked to find and produce the “best ending” to a 

sentence (Kircher, et al., 2001). Therefore, the rightward increased functional 

connectivity observed in the present study might depend on cross-condition 

demands of the HSCT. 

The HSCT implies also “semantic selection”, that is defined as the interactive process 

by which competing activated concepts are sorted out through the inhibition of 

competing concepts while selecting one concept for action, including response 

production. There is evidence that semantic selection depends on the IFG bilaterally 

(Barch, et al., 1999; Kan & Thompson-Schill, 2004; Miller & Cohen, 2001). 

Also Seger (2000) demonstrated that the right IFG is more strongly active than the 

left homologue when subjects are asked to produce an unusual use of nouns, which 

might be a process required also in the response Suppression condition of the 

Hayling, in which participants had to complete the sentence with an incongruent 

word. 
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To conclude, it is difficult to draw a firm conclusion based on previous studies since, 

as I already mentioned, functional connectivity in association with regional 

activation observed during this task has not been addressed yet.  
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5. FUNCTIONAL AND STRUCTURAL CONNECTIVITY LATERALISATION WITHIN 

THE PERISYLVIAN LANGUAGE NETWORK: A COMBININED FMRI AND DTI 

STUDY 

 

 

5.1 Introduction 

Obtaining a deeper understanding of structure-function relations in the human brain 

is an important goal of neuroscience.  

Structural connectivity measured by the means of DTI has been found to correlate 

with functional ability across several networks in the brain (Glenn et al., 2007; A. 

Turken et al., 2008; van Eimeren, Niogi, McCandliss, Holloway, & Ansari, 2008).  In 

addition to structural connectivity, MRI can be used to obtain a measure of 

functional relationships between brain regions using blood oxygen level dependent 

functional MRI (fMRI). In fact, the measurement of functional coupling between 

brain regions using correlations in low frequency fMRI BOLD oscillations reveals 

functional connectivity between these regions.  

So far there have been only a small number of studies that have related these 

diverse modalities or tried to correlate functional and structural connectivities. In 

fact, they provide measurements of quite different characteristics of the brain 

therefore it is still unclear to what degree they may be related. 

Aiming to examine this relationship, some studies have independently examined DTI 

and fMRI data acquired in the same session (Riecker et al., 2007; Seghier et al., 2004) 

trying to characterize both structural connectivity using DTI and location of fMRI 

activity in healthy and pathological conditions. The combination of DTI and fMRI 
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measurements into a single analysis may give unique information not available with 

either single modality. Conventionally the functional information is used to guide the 

fiber-tracking by defining functional regions (Dougherty, Ben-Shachar, Bammer, 

Brewer, & Wandell, 2005; Guye et al., 2003; Johansen-Berg et al., 2005).  Although 

these studies have investigated both fMRI and DTI measures of activity to analyze a 

single network, only a few reports were found that openly related fMRI functional 

connectivity and DTI derived structural connectivity in a single network. In one 

research these measurements were restricted to two adjacent gyri in the frontal 

lobe with results showing that the relationship between these two modalities is 

complex (Koch, Norris, & Hund-Georgiadis, 2002). High functional connectivity was 

found between regions with low structural connectivity, possibly due to fibers not 

contained within the imaging slice or indirect structural connections; but low 

functional connectivity was not found between regions with high structural 

connectivity. In a second study involving patients with multiple sclerosis, structural 

connectivity measured as FA was found to be positively correlated with functional 

connectivity only when the controls and patients were combined (Lowe et al., 2008).  

Skudlarski et al. (2008) looked at functional vs. anatomic connectivity across the 

whole brain and in anatomically defined regions and found good overall spatial 

overlap between the two types of connectivity maps. They also found that 

congruency between the individual measures is increased when the individual 

measures themselves are increased. 

(Vernooij, et al., 2007) were the first to combine fMRI and DTI to investigate the 

lateralisation of the arcuate fasciculus and the functional hemispheric language 

lateralisation. They performed functional magnetic resonance imaging fMRI and 

DTI on 20 healthy volunteers, including 13 left-handers. Although functional 
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hemispheric language lateralisation was right-sided in five left-handed individuals, 

the results showed an overall significant leftward asymmetry in the arcuate 

fasciculus, regardless of handedness or functional language lateralisation. 

Furthermore, in right-handers, the degree of structural asymmetry was found to be 

correlated with the degree of functional lateralisation. The authors concluded that 

white matter asymmetry in the arcuate fasciculus does not seem to reflect functional 

hemispheric language lateralisation, as had been suggested previously (Lurito & 

Dzemidzic, 2001; Pujol, et al., 1999), but they suggest that the previously reported 

white matter asymmetry might be explained by a structural asymmetry in the 

arcuate fasciculus.  

Using DTI for arcuate fasciculus identification, in conjunction with fMRI for 

determination of functional language lateralisation, another study (Propper, et al., 

2010) investigated the relationship between language lateralisation and arcuate 

fasciculus asymmetry, being the first to examine this relationship as a function of 

both direction and degree of hand preference using DTI tractography on 9 male and 

17 females with different degrees of handedness. An effect of degree of handedness 

was found on arcuate fasciculus structure, such that consistently-handed 

individuals, irrespective of the direction of hand preference, demonstrated the most 

lateralised arcuate fasciculus, with larger left versus right arcuate, as measured by 

DTI. Functional language lateralisation in Wernicke's area, assessed with fMRI, was 

correlated to arcuate fasciculus volume exclusively in consistent-left-handers, and 

only in people who were not right hemisphere lateralised for language. 

Another study (Powell, et al., 2006) combined fMRI and diffusion-weighted imaging 

(DWI) with tractography and employed only right-handed subjects (N=10) to 

investigate language-related regions in inferior frontal and superior temporal 
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regions. A probabilistic tractography technique was then employed to delineate the 

connections of these functionally defined regions. The findings showed connections 

between Broca’s and Wernicke’s areas along the superior longitudinal fasciculus 

bilaterally but more extensive frontotemporal connectivity on the left than the right. 

In addition both tract volumes and mean fractional anisotropy (FA) were 

significantly higher on the left than the right. The results displayed also a correlation 

between measures of structure and function, with subjects with more lateralised 

fMRI activation having a greater lateralised mean FA of their connections. These 

structural asymmetries are consistent with the lateralisation of language function. 

In this study, our goal was to explore the relationship between structural and 

functional data. Specifically, DTI structural connectivity indices were compared to 

fMRI functional connectivity indices between regions activated in a series of 

language tasks in the left frontal (premotor and Broca’s area) and the left parietal 

temporal region (Wernicke’s area) in a population of right-handed, healthy controls. 

We hypothesize that this analysis will more directly elucidate any linear 

relationships existing between MRI structural and functional connectivity between 

functionally activated regions across a network. 

 

 

5.2 Methods 

5.2.1 Participants 

Healthy controls. Twenty-two healthy male (n=11) and female (n=11) were 

recruited by advertisement from the same local community as the ARMS and FEP 

groups. However, after pre-processing of the fMRI images one of the male volunteers 
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was removed on the basis of excessive head movements inside the scanner, leaving 

scans from 22 healthy controls for the subsequent analysis.  

 Healthy 

controls 

(n = 22) 

Age (years) 24.36 (4.3) 

Gender 11M:11F 

WRAT estimated 

premorbid IQ 

108.95 (9.6) 

Years of 

education 

15.59 (2.7)  

Antipsychotic  2M:19N 

Symptoms  

PANSS total NA 

PANSS positive NA 

PANSS negative NA 

PANSS 

hallucination 

NA 

PANSS delusions NA 

  

Table 5.7. Mean and standard deviation of demographic, neuropsychological 
and clinical characteristics of the three groups. 

 

 

5.2.2 fMRI task design and data acquisition 

The fMRI paradigm and the fMRI data acquisition procedure are described in detail 

in Chapter 4, methods section 4.2.  

DTI data acquisition procedure and details are reported in Chapter 3, methods 

section 3.2.4. 
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5.2.3 fMRI and DTI data analysis 

Activation maps were calculated for each subject and used to localise the 

functionally activated language regions of interest across groups. The preprocessing 

and standard statistical parametric mapping (SPM) analysis of fMRI data are 

reported in details in chapter 4, methods section 4.2.4. DTI tractography and virtual 

dissection of the AF were used to derive mean FA values for the anterior, long and 

posterior segments of the AF. Details of DTI data preprocessing, tractography and 

virtual dissection procedure for the arcuate fasciculus and FA statistical analysis are 

described in Chapter 3, methods section 3.2.5. 

 

 

5.2.4 Functional connectivity analysis  

In the present exploratory study, there were no specific a-priori hypotheses as to the 

directionality (i.e forward versus backward) of the inter-regional interactions and 

the impact of the experimental condition on the relationship between structural and 

functional connectivity within the perisylvian network. Thus an exploratory 

correlation analysis based on Pearson’s correlation coefficient was preferred to a 

more hypothesis-driven analytical approach (e.g. Dynamic Causal Modelling). 

Regions of interest (ROIs) identification. For the purpose of this study, time-series 

were extracted from three ROIs: the left inferior frontal gyrus (LIFG), the middle 

temporal gyrus (LMTG) and the left inferior parietal lobule. These regions have been 

previously implicated in studies investigating language and semantic processing 

(Price, 2000a, 2010) and represent the perysilvian network of regions connected 
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through the AF (Catani, et al., 2005). In order to ensure comparability across 

subjects, the extraction of time series had to meet a combination of anatomical and 

functional criteria (Stephan et al., 2007). Functionally, the principal eigenvariates 

were extracted to summarise regional responses in 12 mm spheres centred on the 

ROIs included in the study.  To account for individual differences, the location of 

these regions was based upon the local maxima of the subject-specific statistical 

parametric maps, defined as the nearest (within 10 mm) of the group maxima. The 

mean coordinates for the LIFG and LMTG were derived from activation maps 

obtained with the standard SPM analysis of the HSC task data. In healthy controls, 

the group maximum in LMTG was [-58, -40, 2] and in the LIFG was [-40, 22, -6]. The 

mean coordinates for the LIPL were derived from previous studies which provided 

evidence of LIPL involvement in semantic processing (Price, 2010) and were defined 

as [-47, -59, 40]. Anatomically, the search for each subject-specific local maximum 

was constrained within the same correspondent cortical area, as defined by the 

PickAtlas toolbox (Maldjian, Laurienti, Kraft, & Burdette, 2003a). There were no 

regions that conformed to these criteria in one subject, who was therefore excluded 

from this study. Figure 7.1a shows the PLN and the functional connections 

investigated in this study. 

fMRI inter-regional Pearson’s correlation analysis. In this study I aimed to explore the 

relationship between mean FA values along the three segments of the AF and inter-

regional functional coupling between perisylvian brain regions connected through 

this white matter bundle. For each subject, a Pearson’s correlation coefficient was 

calculated between LIFG and LMTG, LMTG and LIPL and LIFG and LIPL using the 

time-series extracted from each ROI. Age was entered in each analysis as a covariate 

of no interest in order to remove the confounding effects of this variable. 
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5.2.5 Correlation analysis 

To assess the relationship between functional and structural connectivity within the 

PLN, an exploratory correlation analysis was performed between the strength of 

inter-regional coupling between each pair of regions and the mean FA value of the 

specific segment of the AF connecting these regions. More specifically, Pearson’s 

correlation coefficients were computed between functional and structural 

connectivity measures of: (i) LIFG-LIPL and left anterior segment of the AF, (ii) LIFG-

LMTG and left long segment of the AF, and (iii) LMTG-LIPL and left posterior 

segment of the AF. Age might be differentially associated with structural and 

functional connectivity measures. For instance, there is evidence that normal aging 

is associated with reduced strength of anatomical connections but with either 

reduced and increased strength of functional connections (Schlee, Leirer, Kolassa, 

Weisz, & Elbert, 2012; Stevens, Skudlarski, Pearlson, & Calhoun, 2009). Therefore, 

an additional partial correlation analysis was performed in which age was defined as 

variable of no interest to control for the potential confounding effects of this 

variable. Results are reported for each correlation analysis. Given the exploratory 

nature of these correlation analyses, statistical significance was set at p = 0.05 (two-

tailed). 

Subsequently, Pearson’s correlation coefficients were converted in Z scores by 

applying a Fischer’s transformation and two independent tests were computed to 

compare left and right Z scores in the anterior and long segment of the arcuate 

fasciculus. 
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5.3. Results 

5.3.1 fMRI data and standard SPM analysis 

Results of the standard SPM analysis are reported in detail in Chapter 4, section 

4.3.2. In brief, increased BOLD response across all task conditions compared to 

Repetition was observed in a fronto-temporal network of regions including the left 

SFG, the ventro-lateral IFG and lateral MTG bilaterally. (Figure 4.1 to 4.5, Chapter 4).  

 

 

5.3.2 Functional connectivity analysis within the perisylvian language network 

A positive correlation was observed between regional time-series in the LIFG and 

LIPL, LMTG and LIFG, and LMTG and LIPL  (Table 4.2, Chapter 4).  

 

 

5.3.3 Relationship between functional and structural connectivity  

The linear correlation analysis between the DTI-derived structural connectivity and 

the fMRI-derived functional connectivity within the language network of interest 

yielded two statistically significant relationships within the group (Table 5.2 to 5.3). 

More specifically, subject-specific mean FA values in the left long segment of the AF 

were negatively correlated with subject-specific correlation coefficients between 

time-series in the LMTG and LIFG (R = -0.452, p = 0.006). In addition, subject-specific 

mean FA values in the right anterior segment of the AF were negatively correlated 

with subject-specific correlation coefficients between time-series in the RIFG and 

RIPL (R = -0.561, p =0.008). 



92 
 

Moreover, when Fischer’s transformation was applied to the correlation coefficients 

and the long and anterior segments were contrasted by the hemispheres specific Z-

scores no significance difference was detected between left and right correlation 

coefficients. 

No significant correlation between the Lateralisation Index of the FA values in the 

three segments of the AF and the Lateralisation Index of functional connectivity 

between the brain regions they are thought to connect were observed (Table 5.4). 

 

 

 

Functional connectivity 

LIFG_LIPL 

(anterior) 
LIFG_LMTG (long) LMTG_LIPL (post) 

R p r p r p 

Fractional 

anisotropy 

L 

anterior 
-.119 .628 -.452 .052 .010 .969 

L long -.248 .279 -.452 .006 .-468 .033 

L post -.178 .439 -.372 .096 -.109 .637 

Table 5.8. Correlation analysis between the DTI-derived structural connectivity and the fMRI-
derived functional connectivity within the language network in the left hemisphere 

 

 

 

 

 

Functional connectivity 

RIFG_RIPL 

(anterior) 

RIFG_RMTG 

(long) 

RMTG_RIPL 

(post) 

R p r p r p 

Fractional 

anisotropy 

R 

anterior 
-.561 .008 -.214 .352 -.609 .003 

R long -.432 .057 -.192 .418 -.347 .134 
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R post -.050 .829 .038 .871 .158 .494 

Table 5.9. Correlation analysis between the DTI-derived structural connectivity and the fMRI-
derived functional connectivity within the language network in the left hemisphere 

 

 

 

 

LI FC 

IFG_IPL (anterior) IFG_MTG (long) MTG_IPL (post) 

r p r p r p 

LI FA 

anterior -.063 .797 -.002 .992 -.183 452 

long .020 .993 -.323 .165 -.140 .021 

post -.456 .038 .310 .171 -.316 .162 

Table 5.3. Correlation between the Lateralisation Index of the FA values in the three segments 
of the AF and the Lateralisation Index of functional connectivity between the ROI 

 

 

 

5.4 Discussion 

The present study combined fMRI and DTI analyses to explore functional and 

structural connectivity and their relationship within the left perisylvian language 

network and its homologue in the right hemisphere. The structural connectivity 

analysis revealed significant leftward asymmetry in the FA values of the long direct 

segment of the arcuate fasciculus. The functional connectivity analysis revealed that 

all the correlations between paired ROIs were significantly different from zero and 

they were all positive. In addition, the lateralisation index calculated from functional 

connectivity values in all the 3 investigated tracts revealed a rightward lateralisation 

in the anterior connection, between Broca’s and Geschwind’s areas. Furthermore, 

the correlation analysis demonstrated significant negative relations between the 

mean FA values in the long segment of the AF and the strength of inter-regional 
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coupling between the IFG and the MTG in the left hemisphere, and between the 

mean FA values in the anterior segment of the AF and the strength of regional 

coupling between IFG and IPL in the right hemisphere. Finally, there were no 

significant correlations between laterality indices estimated on FA and functional 

connectivity values. 

To my knowledge the present study is the first report of an inverse correlation 

between FA, and fcMRI cc. values. 

The counterintuitive negative correlation between FA values in the left long segment 

of the AF and the subject-specific correlation coefficients between time-series in the 

LMTG and LIFG detected in the fronto-temporal language pathway may reflect the 

complex nature of their relationship and depend specifically on the nature of the 

fMRI task employed in this study. For instance, no significant correlation was found 

in a previous study that investigated the relationship between functional and 

structural connectivity between Broca’s and Wernicke’s area and used resting-state 

fMRI data for the functional connectivity (Morgan, Mishra, Newton, Gore, & Ding, 

2009). 

While FA measures can be affected by several microstructural aspects such as 

myelination, axonal diameter, axon density and relative orientation of axons within 

the fibre bundle (Papadakis et al., 1999), it is unclear to what degree white matter 

FA changes are related to brain inter-regional coupling. At present, the exact 

relationship between variation of microstructural aspects in a specific white matter 

tract and alterations in functional integration between the regions connected 

through the same tract is not well established and, therefore, conclusions need to be 

drawn cautiously and are necessary tentative and speculative. Given that FA 

measures can be affected by several microstructural aspects of fibre bundles, it is 
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possible to speculate that low FA values in a specific white matter tract reflect a less 

efficient interaction between the two brain areas connected through the tract . If 

that was the case, it might be possible that when this structural “impairment” is 

present a compensatory reorganisation of functional connectivity in the two brain 

regions occurs. Moreover, such functional compensation could implicate the 

involvement of other brain regions or connections which would drive the activity in 

the former ones and that were not included in the functional connectivity analysis, 

such as inter-hemispheric connections. 

The review of diffusion tractography and functional mapping together highlights the 

possibility that future strategies for understanding interactions between regions of 

the human brain will benefit from integrating anatomically informed models of 

functional interactions. 
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6. CONCLUSIONS 

 

 

6.1 Summary of main results 

The main aim of the present doctoral work was to better delineate the relationship 

between anatomical and functional correlates of hemispheric dominance in the 

perisylvian language network. To this purpose I applied a multi-modal 

neuroimaging approach including DTI and fMRI on a population of 23 healthy 

individuals. 

A virtual in vivo interactive dissection of the three subcomponents of the arcuate 

fasciculus was carried out and measures of perisylvian white matter integrity were 

derived from tract-specific dissection. Consistently with previous studies, the main 

finding of the present study is a significant leftward asymmetry in the FA value of 

the long direct segment of the arcuate fasciculus. Greater FA values in the arcuate 

fasciculus compared with the corresponding white matter tract in the right 

hemisphere have been reported previous in several studies (Barrick, et al., 2007; 

Buchel, et al., 2004; Catani, et al., 2007; Powell, et al., 2006). In addition, we found 

another significant leftward lateralisation in the SL of the posterior segment and a 

rightward distribution of the SL index of the anterior segment of the arcuate 

fasciculus. In addition, I found no evidence of a significant relationship between the 

leftward lateralisation indexes and any measures of language and verbal memory 

performance in my group. 

Subsequently, I implemented functional connectivity analysis to test whether 

leftward lateralisation of connectivity indexes between perisylvian regions can be 

observed in individuals performing a language-related task. The main finding of the 
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fc analysis is a significant rightward lateralisation (left, 0.347 ± 0.183; right, 0.493 ± 

0.228; P = 0.037) in the anterior connection, between the the IFG and the IPL. The 

functional connectivity analysis revealed an increase in the strength of inter-

regional coupling between the RIFG and RIPL. 

Finally, I combined DTI and fMRI data to examine whether a significant relationship 

is present between these measures of perisylvian connectivity and it significantly 

differs between hemispheres. 

The correlation analysis demonstrated significant negative relations between the 

mean FA values in the long segment of the AF and the strength of inter-regional 

coupling between the IFG and the MTG in the left hemisphere, and between the 

mean FA values in the anterior segment of the AF and the strength of regional 

coupling between IFG and IPL in the right hemisphere. Finally, there were no 

significant correlations between laterality indices estimated on FA and functional 

connectivity values. 

 

 

6.2 Implications for neurobiological models of perisylvian connectivity 

correlates of the hemispheric dominance for language 

Three important findings emerge from this study. First, this study confirms that 

white matter indexes of perisylvian language networks differ between the two 

hemispheres and that, in addition, the pattern of lateralisation is heterogeneous in 

the normal population. The overall prevalence of leftward distribution of the direct 

segment of the arcuate fasciculus (78.3%) is higher than the prevalence of bilateral 

symmetrical (21.7%) or rightward (0%) distribution in our right-handed sample. 

Considering that the prevalence of left functional “dominance” for language is 90% 
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(Toga & Thompson, 2003), leftward lateralisation of the long segment may 

represent a crucial anatomical correlate for language lateralisation. 

To better investigate whether the observed leftward asymmetry of white matter FA 

value in the long direct segment of the arcuate fasciculus represents a potential 

anatomical substrate of language lateralisation, I carried out a number of correlation 

analyses between this measure and measures of language processing abilities, which 

showed no evidence of such significant associations. This is in line with evidence 

from previous DTI studies reporting similar findings (Catani, et al., 2007). A possible 

explanation for the lack of significant correlation is that the language tasks I used in 

the current work do not depend exclusively on a specific anatomical connection but 

rely on a more extended network including extra-perisylvian regions. An alternative 

possibility is that performances on language-related cognitive tasks do not rely 

solely on measure of integrity of anatomical connection within the perisylvian 

network. 

Secondly, unlike anatomical measures, functional connectivity indeces did not show 

evidence of an alike leftward asymmetry. Indeed, the strength of functional 

connections was increased between perisylvian regions in both the left and right 

hemisphere during the execution of the HSCT task and a significant rightward 

increase of functional connectivity was observed only in the anterior segment of the 

arcuate fasciculus. This observation seems to suggest that functional connectivity 

measures might not represent a stable index of hemispheric dominance for language 

processing when derived by applying complex linguistic tasks implying the 

interaction of several language-related processes such as verbal recall, semantic 

selection and response inhibition. Interestingly, this appears to provide evidence in 
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support of the recent notion that the right hemisphere might also play an important 

role in language processing. 

Finally, the unexpected negative correlation observed between anatomical and 

functional connectivity measures in the left direct segment may reflect the complex 

nature of their relationship and depend specifically on the nature of the fMRI task 

employed in this study. For example, no significant correlation was found in a 

previous study that investigated the relationship between functional and structural 

connectivity between Broca’s and Wernicke’s areas and used resting-state fMRI data 

for the functional connectivity (Morgan, et al., 2009).  Although beyond the purpose 

of this work, a possible explanation for the negative direction of this relationship 

might imply that when a structural “deficiency” is present a compensatory 

reorganisation of functional connectivity occurs between the two regions connected 

by the specific subcomponents of the arcuate fasciculus. However, I found no 

evidence of asymmetrical distribution of the correlation coefficients between the 

two hemispheres. This observation supports the notion, mentioned above, that 

whilst structural connectivity measures within the perisylvian network seem to be a 

consistent correlate of hemispheric dominance for language processing, those 

measures obtained by applying complex cognitive linguistic tasks might not 

represent an accurate neuro-correlate of the same hemispheric dominance. 

 

 

6.3 Strenghts and limitations 

The major strength of the present doctoral work is that it employed a multimodal 

imaging approach to investigate structural and function lateralisation. Compared  to 

single modality studies, this approach allows one to derive structural connectivity 
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and inter-regional coupling measures within the same sample of participants. 

Moreover, it permits to examine the relationships of measures derived from 

different modalities. Finally, since neuroimaging measures were acquired within the 

same acquisition session the potential confounds associated with the time elapsing 

between two acquisition sessions were avoided and a more reliable integration of 

data across multiple imaging modalities was enabled. 

In addition, in this doctoral work, I employed a virtual in vivo interactive dissection 

of specific white matter bundles thought to connect frontal and temporal brain 

regions. Unlike DTI methods that employ VBM or ROI approaches that do not 

precisely identify the white matter tracts and fail to provide quantitative 

measurements of tract-specific white matter, by using the virtual in vivo interactive 

tractography I was able to derive specific quantitative measurements of 

microstructural integrity of the arcuate fasciculus and its subcomponents. 

However, it might be argued that the main limitation of the present doctoral work is 

the small number of participants included. Nevertheless, a recent analysis of effect 

size in classical inference has demonstrated that in order to optimize the sensitive to 

large effect while minimizing the risk of detecting trivial effects, the optimum 

sample size for a study is 16 (K. Friston, 2012). 

 

 

6.4 Future directions 

Although previous neuroimaging studies have – so far – provided a rich body of 

evidence for structural and functional correlates of hemispheric dominance for 

language, structural and functional connectivity correlates of the same dominance 

has been poorly investigated and mostly in independent sample. In addition, the 
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relationship between language-related anatomical and functional connectivity 

measures has yet to be elucidated. Therefore, in the future this specific aspect 

should be investigated by implementing multi-modal imaging approaches and a 

systematic fashion.  

A possible future extension of the present doctoral work would be to apply the same 

methodological approach to the study of neurological and psychiatric conditions 

implicating language processing impairments. For instance, chronic schizophrenia 

presents with psychotic symptoms, such as auditory verbal hallucinations and 

speech disorganization, which are thought to reflect underlying cognitive and 

language processing deficits, especially in language production and semantic 

processing (Frith, 1995). Early studies of language lateralisation in patients with 

chronic schizophrenia have suggested that schizophrenia symptoms might reflect a 

disturbance of the mechanism by which the hemisphere dominance of language 

processing is generated and maintained in schizophrenia (Crow, 1997; Crow et al., 

1989). 

 

  



103 
 

REFERENCES 

 

 

Allen, P., Mechelli, A., Stephan, K. E., Day, F., Dalton, J., Williams, S., & McGuire, P. K. (2008). 
Fronto-temporal interactions during overt verbal initiation and suppression. J Cogn 
Neurosci, 20(9), 1656-1669. doi: 10.1162/jocn.2008.20107 

Allen, P., Stephan, K. E., Mechelli, A., Day, F., Ward, N., Dalton, J., . . . McGuire, P. (2010). 
Cingulate activity and fronto-temporal connectivity in people with prodromal signs 
of psychosis. Neuroimage, 49(1), 947-955. doi: S1053-8119(09)00938-0 [pii] 

10.1016/j.neuroimage.2009.08.038 
Annett, M. (2002). Non-right-handedness and schizophrenia. [Comment 

Letter]. Br J Psychiatry, 181, 349-350.  
Barch, D. M., Sabb, F. W., Carter, C. S., Braver, T. S., Noll, D. C., & Cohen, J. D. (1999). Overt 

verbal responding during fMRI scanning: empirical investigations of problems and 
potential solutions. Neuroimage, 10(6), 642-657. doi: 10.1006/nimg.1999.0500 

S1053-8119(99)90500-1 [pii] 
Barrick, T. R., Lawes, I. N., Mackay, C. E., & Clark, C. A. (2007). White matter pathway 

asymmetry underlies functional lateralization. [Research Support, Non-U.S. Gov't]. 
Cereb Cortex, 17(3), 591-598. doi: 10.1093/cercor/bhk004 

Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber 
tractography using DT-MRI data. Magn Reson Med, 44(4), 625-632. doi: 
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O [pii] 

Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues 
elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B, 111(3), 209-219.  

Beaulieu, C., & Allen, P. S. (1994). Determinants of anisotropic water diffusion in nerves. 
Magn Reson Med, 31(4), 394-400.  

Beeman, M., Friedman, R. B., Grafman, J., Perez, E., Diamond, S., & Lindsay, M. B. (1994). 
Summation Priming and Coarse Semantic Coding in the Right-Hemisphere. Journal of 
Cognitive Neuroscience, 6(1), 26-45.  

Behrens, T., Rohr, K., & Stiehl, H. S. (2003). Robust segmentation of tubular structures in 3-D 
medical images by parametric object detection and tracking. IEEE Trans Syst Man 
Cybern B Cybern, 33(4), 554-561. doi: 10.1109/TSMCB.2003.814305 

Bernal, B., & Altman, N. (2010). The connectivity of the superior longitudinal fasciculus: a 
tractography DTI study. Magnetic Resonance Imaging, 28(2), 217-225. doi: DOI 
10.1016/j.mri.2009.07.008 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the 
motor cortex of resting human brain using echo-planar MRI. [Research Support, U.S. 
Gov't, P.H.S.]. Magn Reson Med, 34(4), 537-541.  

Bleich-Cohen, M., Sharon, H., Weizman, R., Poyurovsky, M., Faragian, S., & Hendler, T. (2012). 
Diminished language lateralization in schizophrenia corresponds to impaired inter-
hemispheric functional connectivity. Schizophr Res, 134(2-3), 131-136. doi: 
10.1016/j.schres.2011.10.011 

Boatman, D., Gordon, B., Hart, J., Selnes, O., Miglioretti, D., & Lenz, F. (2000). Transcortical 
sensory aphasia: revisited and revised. Brain, 123, 1634-1642.  

Broca, P. (1861). Remarques sur le siège de la faculté du language articulé, suivies d'une 
observation d'aphémie (perte de la parole). . Bull. Soc. Anthropol., 6, 330-357.  

Brown, R. (1828). A brief account of microscopical observations made in the months of June, 
July and August 1827 on the particles contained in the pollen of plants; and on the 



104 
 

general existence of active molecules in organic and inorganic bodies. . Philosophical 
Magazine, 4.  

Buchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by 
attention: cortical interactions evaluated with structural equation modelling and 
fMRI. Cereb Cortex, 7(8), 768-778.  

Buchel, C., Raedler, T., Sommer, M., Sach, M., Weiller, C., & Koch, M. A. (2004). White matter 
asymmetry in the human brain: a diffusion tensor MRI study. [Comparative Study 

Research Support, Non-U.S. Gov't]. Cereb Cortex, 14(9), 945-951. doi: 
10.1093/cercor/bhh055 

Burgess, P. W., & Shallice, T. (1996). Response suppression, initiation and strategy use 
following frontal lobe lesions. Neuropsychologia, 34(4), 263-272. doi: 0028-
3932(95)00104-2 [pii] 

Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation 
changes during brain activation: the balloon model. Magn Reson Med, 39(6), 855-
864.  

Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and 
fMRI studies. [Review]. J Cogn Neurosci, 12(1), 1-47.  

Catani, M., Allin, M. P., Husain, M., Pugliese, L., Mesulam, M. M., Murray, R. M., & Jones, D. K. 
(2007). Symmetries in human brain language pathways correlate with verbal recall. 
[Research Support, Non-U.S. Gov't]. Proc Natl Acad Sci U S A, 104(43), 17163-17168. 
doi: 10.1073/pnas.0702116104 

Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive 
dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 77-94. 
doi: S1053811902911365 [pii] 

Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human 
brain. Ann Neurol, 57(1), 8-16. doi: 10.1002/ana.20319 

Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas 
for virtual in vivo dissections. [Research Support, Non-U.S. Gov't]. Cortex, 44(8), 
1105-1132. doi: 10.1016/j.cortex.2008.05.004 

Chenevert, T. L., Brunberg, J. A., & Pipe, J. G. (1990). Anisotropic diffusion in human white 
matter: demonstration with MR techniques in vivo. Radiology, 177(2), 401-405.  

Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., . . . Raichle, M. E. 
(1999). Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad 
Sci U S A, 96(18), 10422-10427.  

Coren, S. (1993a). The Lateral Preference Inventory for Measurement of Handedness, 
Footedness, Eyedness, and Earedness - Norms for Young-Adults. Bulletin of the 
Psychonomic Society, 31(1), 1-3.  

Coren, S. (1993b). Measurement of handedness via self-report: the relationship between 
brief and extended inventories. Percept Mot Skills, 76(3 Pt 1), 1035-1042.  

Crawford, J. R., & Henry, J. D. (2003). The Depression Anxiety Stress Scales (DASS): 
normative data and latent structure in a large non-clinical sample. Br J Clin Psychol, 
42(Pt 2), 111-131. doi: 10.1348/014466503321903544 

Crow, T. J. (1997). Schizophrenia as failure of hemispheric dominance for language. Trends 
in Neurosciences, 20(8), 339-343.  

Crow, T. J., Ball, J., Bloom, S. R., Brown, R., Bruton, C. J., Colter, N., . . . Roberts, G. W. (1989). 
Schizophrenia as an Anomaly of Development of Cerebral Asymmetry - a 
Postmortem Study and a Proposal Concerning the Genetic-Basis of the Disease. 
Archives of General Psychiatry, 46(12), 1145-1150.  

Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Hum Brain Mapp, 
8(2-3), 109-114. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-
HBM7>3.0.CO;2-W [pii] 

Damasio, A. R., & Geschwind, N. (1984). The Neural Basis of Language. Annual Review of 
Neuroscience, 7, 127-147.  



105 
 

de Groot, M., Vernooij, M. W., Klein, S., Leemans, A., de Boer, R., van der Lugt, A., . . . Niessen, 
W. J. (2009). Iterative Co-linearity Filtering and Parameterization of Fiber Tracts in 
the Entire Cingulum. Medical Image Computing and Computer-Assisted Intervention - 
Miccai 2009, Pt I, Proceedings, 5761, 853-860.  

Dehaene, S., & Dehaene-Lambertz, G. (2009). [Cognitive neuro-imaging : phylogenesis and 
ontogenesis]. Bull Acad Natl Med, 193(4), 883-889.  

Dejerine, J. (1985). Anatomie des Centre Nerveux. Rueff et Cie, Paris. 
Delis, D. C., Freeland, J., Kramer, J. H., & Kaplan, E. (1988). Integrating clinical assessment 

with cognitive neuroscience: construct validation of the California Verbal Learning 
Test. J Consult Clin Psychol, 56(1), 123-130.  

Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) 
neuroimaging studies: statistical power analyses. J Neurosci Methods, 118(2), 115-
128. doi: S0165027002001218 [pii] 

Doran, M., Hajnal, J. V., Van Bruggen, N., King, M. D., Young, I. R., & Bydder, G. M. (1990). 
Normal and abnormal white matter tracts shown by MR imaging using directional 
diffusion weighted sequences. J Comput Assist Tomogr, 14(6), 865-873.  

Dougherty, R. F., Ben-Shachar, M., Bammer, R., Brewer, A. A., & Wandell, B. A. (2005). 
Functional organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci U 
S A, 102(20), 7350-7355. doi: 0500003102 [pii] 

10.1073/pnas.0500003102 
Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion 

analysis of the brain areas involved in language comprehension. [Research Support, 
U.S. Gov't, Non-P.H.S. 

Research Support, U.S. Gov't, P.H.S. 

Review]. Cognition, 92(1-2), 145-177. doi: 10.1016/j.cognition.2003.11.002 
Duffau, H., Gatignol, P., Moritz-Gasser, S., & Mandonnet, E. (2009). Is the left uncinate 

fasciculus essential for language? Journal of Neurology, 256(3), 382-389. doi: DOI 
10.1007/s00415-009-0053-9 

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). 
The human brain is intrinsically organized into dynamic, anticorrelated functional 
networks. Proc Natl Acad Sci U S A, 102(27), 9673-9678. doi: DOI 
10.1073/pnas.0504136102 

Friston, K. (2012). Ten ironic rules for non-statistical reviewers. Neuroimage, 61(4), 1300-
1310. doi: 10.1016/j.neuroimage.2012.04.018 

S1053-8119(12)00399-0 [pii] 
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging. Human Brain 

Mapping, 2, 56-78.  
Friston, K. J., Frith, C. D., Frackowiak, R. S., & Turner, R. (1995). Characterizing dynamic brain 

responses with fMRI: a multivariate approach. Neuroimage, 2(2), 166-172. doi: 
S1053811985710191 [pii] 

Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting activations in 
PET and fMRI: levels of inference and power. Neuroimage, 4(3 Pt 1), 223-235. doi: 
S1053-8119(96)90074-9 [pii] 

10.1006/nimg.1996.0074 
Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., & 

Turner, R. (1995). Analysis of fMRI time-series revisited. [Research Support, Non-
U.S. Gov't]. Neuroimage, 2(1), 45-53. doi: 10.1006/nimg.1995.1007 

Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? 
Neuroimage, 10(1), 1-5. doi: 10.1006/nimg.1999.0439 



106 
 

S1053-8119(99)90439-1 [pii] 
Frith, C. D. (1995). The cognitive abnormalities underlying the symptomatology and the 

disability of patients with schizophrenia. International Clinical Psychopharmacology, 
10, 87-98. doi: Doi 10.1097/00004850-199509003-00012 

Frith, C. D., Friston, K. J., Herold, S., Silbersweig, D., Fletcher, P., Cahill, C., . . . Liddle, P. F. 
(1995). Regional brain activity in chronic schizophrenic patients during the 
performance of a verbal fluency task. Br J Psychiatry, 167(3), 343-349.  

Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetrics in 
the brain. [Research Support, U.S. Gov't, Non-P.H.S. 

Research Support, U.S. Gov't, P.H.S. 

Review]. Science, 199(4331), 852-856.  
Galantucci, S., Tartaglia, M. C., Wilson, S. M., Henry, M. L., Filippi, M., Agosta, F., . . . Gorno-

Tempini, M. L. (2011). White matter damage in primary progressive aphasias: a 
diffusion tensor tractography study. Brain, 134, 3011-3029. doi: Doi 
10.1093/Brain/Awr099 

Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does 
the corpus callosum enable the human condition? [Research Support, Non-U.S. Gov't 

Research Support, U.S. Gov't, P.H.S. 

Review]. Brain, 123 ( Pt 7), 1293-1326.  
Geschwin.N, & Levitsky, W. (1968). Human Brain - Left-Right Asymmetries in Temporal 

Speech Region. Science, 161(3837), 186-&.  
Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, 

associations, and pathology: I. A hypothesis and a program for research. [Research 
Support, Non-U.S. Gov't 

Research Support, U.S. Gov't, Non-P.H.S. 

Research Support, U.S. Gov't, P.H.S.]. Arch Neurol, 42(5), 428-459.  
Glasser, M. F., & Rilling, J. K. (2008). DTI Tractography of the Human Brain's Language 

Pathways. Cerebral Cortex, 18(11), 2471-2482. doi: DOI 10.1093/cercor/bhn011 
Glenn, O. A., Ludeman, N. A., Berman, J. I., Wu, Y. W., Lu, Y., Bartha, A. I., . . . Henry, R. G. 

(2007). Diffusion tensor MR imaging tractography of the pyramidal tracts correlates 
with clinical motor function in children with congenital hemiparesis. AJNR Am J 
Neuroradiol, 28(9), 1796-1802. doi: ajnr.A0676 [pii] 

10.3174/ajnr.A0676 
Goense, J. B., & Logothetis, N. K. (2008). Neurophysiology of the BOLD fMRI signal in awake 

monkeys. Curr Biol, 18(9), 631-640. doi: S0960-9822(08)00442-9 [pii] 

10.1016/j.cub.2008.03.054 
Gong, G. L., Jiang, T. Z., Zhu, C. Z., Zang, Y. F., Wang, F., Xie, S., . . . Gu, X. M. (2005). Asymmetry 

analysis of cingulum based on scale-invariant parameterization by diffusion tensor 
imaging. Human Brain Mapping, 24(2), 92-98. doi: Doi 10.1002/Hbm.20072 

Guye, M., Parker, G. J., Symms, M., Boulby, P., Wheeler-Kingshott, C. A., Salek-Haddadi, A., . . . 
Duncan, J. S. (2003). Combined functional MRI and tractography to demonstrate the 
connectivity of the human primary motor cortex in vivo. Neuroimage, 19(4), 1349-
1360. doi: S1053811903001654 [pii] 

Hagmann, P., Cammoun, L., Martuzzi, R., Maeder, P., Clarke, S., Thiran, J. P., & Meuli, R. 
(2006). Hand preference and sex shape the architecture of language networks. 
[Comparative Study 



107 
 

Research Support, Non-U.S. Gov't]. Human Brain Mapping, 27(10), 828-835. doi: 
10.1002/hbm.20224 

Hickok, G., & Poeppel, I. D. (2000). Towards a functional neuroanatomy of speech 
perception. J Cogn Neurosci, 45-45.  

Johansen-Berg, H., Behrens, T. E., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., & 
Matthews, P. M. (2005). Functional-anatomical validation and individual variation of 
diffusion tractography-based segmentation of the human thalamus. Cereb Cortex, 
15(1), 31-39. doi: 10.1093/cercor/bhh105 

bhh105 [pii] 
Johnstone, B., Callahan, C. D., Kapila, C. J., & Bouman, D. E. (1996). The comparability of the 

WRAT-R reading test and NAART as estimates of premorbid intelligence in 
neurologically impaired patients. Arch Clin Neuropsychol, 11(6), 513-519. doi: 0887-
6177(96)82330-4 [pii] 

Jones, D. K. (2003). Determining and visualizing uncertainty in estimates of fiber orientation 
from diffusion tensor MRI. [Research Support, Non-U.S. Gov't]. Magn Reson Med, 
49(1), 7-12. doi: 10.1002/mrm.10331 

Jones, D. K. (2008). Studying connections in the living human brain with diffusion MRI. 
Cortex, 44(8), 936-952. doi: S0010-9452(08)00110-X [pii] 

10.1016/j.cortex.2008.05.002 
Jones, D. K., & Basser, P. J. (2004). "Squashing peanuts and smashing pumpkins": how noise 

distorts diffusion-weighted MR data. Magn Reson Med, 52(5), 979-993. doi: 
10.1002/mrm.20283 

Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. 
Trends Cogn Sci, 9(11), 512-518. doi: S1364-6613(05)00271-8 [pii] 

10.1016/j.tics.2005.09.009 
Kaas, J. H., & Hackett, T. A. (1999). 'What' and 'where' processing in auditory cortex. Nature 

Neuroscience, 2(12), 1045-1047.  
Kan, I. P., & Thompson-Schill, S. L. (2004). Selection from perceptual and conceptual 

representations. Cogn Affect Behav Neurosci, 4(4), 466-482.  
Kang, X. J., Herron, T. J., & Woods, D. L. (2011). Regional variation, hemispheric asymmetries 

and gender differences in pericortical white matter. Neuroimage, 56(4), 2011-2023. 
doi: DOI 10.1016/j.neuroimage.2011.03.016 

Kircher, T. T. J., Brammer, M., Andreu, N. T., Williams, S. C. R., & McGuire, P. K. (2001). 
Engagement of right temporal cortex during processing of linguistic context. 
Neuropsychologia, 39(8), 798-809.  

Koch, M. A., Norris, D. G., & Hund-Georgiadis, M. (2002). An investigation of functional and 
anatomical connectivity using magnetic resonance imaging. Neuroimage, 16(1), 241-
250. doi: 10.1006/nimg.2001.1052 

S1053811901910523 [pii] 
Lawrie, S. M., Buechel, C., Whalley, H. C., Frith, C. D., Friston, K. J., & Johnstone, E. C. (2002). 

Reduced frontotemporal functional connectivity in schizophrenia associated with 
auditory hallucinations. Biol Psychiatry, 51(12), 1008-1011. doi: 
S0006322302013161 [pii] 

Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. 
Nat Rev Neurosci., 4(6), 469-480.  

Lezak, M. D., Howieson, D. B., & Loring, D. B. (2004). Neuropsychological Assessment. Oxford. 
Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from 

intrinsic activity that asymmetry of the human brain is controlled by multiple 
factors. [Research Support, N.I.H., Extramural 



108 
 

Research Support, Non-U.S. Gov't]. Proc Natl Acad Sci U S A, 106(48), 20499-20503. doi: 
10.1073/pnas.0908073106 

Liu, Y., Metens, T., Absil, J., De Maertelaer, V., Baleriaux, D., David, P., . . . Aeby, A. (2011). 
Gender Differences in Language and Motor-Related Fibers in a Population of Healthy 
Preterm Neonates at Term-Equivalent Age: A Diffusion Tensor and Probabilistic 
Tractography Study. American Journal of Neuroradiology, 32(11), 2011-2016. doi: 
Doi 10.3174/Ajnr.A2690 

Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. 
Magn Reson Imaging, 22(10), 1517-1531. doi: S0730-725X(04)00301-7 [pii] 

10.1016/j.mri.2004.10.018 
Loonstra, A. S., Tarlow, A. R., & Sellers, A. H. (2001). COWAT metanorms across age, 

education, and gender. Appl Neuropsychol, 8(3), 161-166. doi: 
10.1207/S15324826AN0803_5 

Lowe, M. J., Beall, E. B., Sakaie, K. E., Koenig, K. A., Stone, L., Marrie, R. A., & Phillips, M. D. 
(2008). Resting state sensorimotor functional connectivity in multiple sclerosis 
inversely correlates with transcallosal motor pathway transverse diffusivity. Hum 
Brain Mapp, 29(7), 818-827. doi: 10.1002/hbm.20576 

Ludwig, E., & Klinger, J. (1956). Atlas Cerebri Humani. Karger, Basel. 
Lurito, J. T., & Dzemidzic, M. (2001). Determination of cerebral hemisphere language 

dominance with functional magnetic resonance imaging. [Review]. Neuroimaging 
Clin N Am, 11(2), 355-363, x.  

Magistretti, P. J., & Pellerin, L. (1999). Cellular mechanisms of brain energy metabolism and 
their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci, 
354(1387), 1155-1163. doi: 10.1098/rstb.1999.0471 

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003a). An automated method for 
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. 
Neuroimage, 19(3), 1233-1239. doi: S1053811903001691 [pii] 

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003b). An automated method for 
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. 
Neuroimage, 19(3), 1233-1239. doi: Doi 10.1016/S1053-8119(03)00169-1 

Malykhin, N., Concha, L., Seres, P., Beaulieu, C., & Coupland, N. J. (2008). Diffusion tensor 
imaging tractography and reliability analysis for limbic and paralimbic white matter 
tracts. Psychiatry Research-Neuroimaging, 164(2), 132-142. doi: DOI 
10.1016/j.pscychresns.2007.11.007 

Mesulam, M. (2005). Imaging connectivity in the human cerebral cortex: the next frontier? 
[Comment 

Editorial]. Ann Neurol, 57(1), 5-7. doi: 10.1002/ana.20368 
Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for 

attention, language, and memory. [Research Support, Non-U.S. Gov't 

Review]. Ann Neurol, 28(5), 597-613. doi: 10.1002/ana.410280502 
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu 

Rev Neurosci, 24, 167-202. doi: 10.1146/annurev.neuro.24.1.167 

24/1/167 [pii] 
Morgan, V. L., Mishra, A., Newton, A. T., Gore, J. C., & Ding, Z. (2009). Integrating functional 

and diffusion magnetic resonance imaging for analysis of structure-function 
relationship in the human language network. PLoS One, 4(8), e6660. doi: 
10.1371/journal.pone.0006660 

Mori, S., & Barker, P. B. (1999). Diffusion magnetic resonance imaging: its principle and 
applications. Anat Rec, 257(3), 102-109. doi: 10.1002/(SICI)1097-
0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6 [pii] 



109 
 

Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies - a technical review. 
NMR Biomed, 15(7-8), 468-480. doi: 10.1002/nbm.781 

Mumford, J. A., & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting 
for arbitrary design and temporal autocorrelation. Neuroimage, 39(1), 261-268. doi: 
S1053-8119(07)00710-0 [pii] 

10.1016/j.neuroimage.2007.07.061 
Nathaniel-James, D. A., Fletcher, P., & Frith, C. D. (1997). The functional anatomy of verbal 

initiation and suppression using the Hayling Test. Neuropsychologia, 35(4), 559-566. 
doi: S0028-3932(96)00104-2 [pii] 

Nathaniel-James, D. A., & Frith, C. D. (1996). Confabulation in schizophrenia: evidence of a 
new form? Psychol Med, 26(2), 391-399.  

Nathaniel-James, D. A., & Frith, C. D. (2002). The role of the dorsolateral prefrontal cortex: 
evidence from the effects of contextual constraint in a sentence completion task. 
Neuroimage, 16(4), 1094-1102. doi: S1053811902911675 [pii] 

Nucifora, P. G., Verma, R., Melhem, E. R., Gur, R. E., & Gur, R. C. (2005). Leftward asymmetry 
in relative fiber density of the arcuate fasciculus. [Comparative Study 

Research Support, N.I.H., Extramural 

Research Support, Non-U.S. Gov't 

Research Support, U.S. Gov't, P.H.S.]. Neuroreport, 16(8), 791-794.  
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging 

with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 87(24), 
9868-9872.  

Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. 
(1993). Functional brain mapping by blood oxygenation level-dependent contrast 
magnetic resonance imaging. A comparison of signal characteristics with a 
biophysical model. Biophys J, 64(3), 803-812. doi: S0006-3495(93)81441-3 [pii] 

10.1016/S0006-3495(93)81441-3 
Pajevic, S., Aldroubi, A., & Basser, P. J. (2002). A continuous tensor field approximation of 

discrete DT-MRI data for extracting microstructural and architectural features of 
tissue. J Magn Reson, 154(1), 85-100. doi: 10.1006/jmre.2001.2452 

Pajevic, S., & Pierpaoli, C. (1999). Color schemes to represent the orientation of anisotropic 
tissues from diffusion tensor data: application to white matter fiber tract mapping in 
the human brain. Magn Reson Med, 42(3), 526-540. doi: 10.1002/(SICI)1522-
2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J [pii] 

Papadakis, N. G., Xing, D., Houston, G. C., Smith, J. M., Smith, M. I., James, M. F., . . . Carpenter, 
T. A. (1999). A study of rotationally invariant and symmetric indices of diffusion 
anisotropy. Magn Reson Imaging, 17(6), 881-892. doi: S0730-725X(99)00029-6 [pii] 

Papagno, C. (2011). Naming and the Role of the Uncinate Fasciculus in Language Function. 
Current Neurology and Neuroscience Reports, 11(6), 553-559. doi: DOI 
10.1007/s11910-011-0219-6 

Parker, G. J., Haroon, H. A., & Wheeler-Kingshott, C. A. (2003). A framework for a streamline-
based probabilistic index of connectivity (PICo) using a structural interpretation of 
MRI diffusion measurements. J Magn Reson Imaging, 18(2), 242-254. doi: 
10.1002/jmri.10350 

Parker, G. J., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A., Ciccarelli, O., & Lambon 
Ralph, M. A. (2005). Lateralization of ventral and dorsal auditory-language pathways 
in the human brain. [Clinical Trial 

Research Support, Non-U.S. Gov't]. Neuroimage, 24(3), 656-666. doi: 
10.1016/j.neuroimage.2004.08.047 



110 
 

Pauling, L., & Coryell, C. D. (1936). The Magnetic Properties and Structure of Hemoglobin, 
Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A, 22(4), 210-
216.  

Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996). Diffusion tensor MR 
imaging of the human brain. Radiology, 201(3), 637-648.  

Powell, H. W. R., Parker, G. J. M., Alexander, D. C., Symms, M. R., Boulby, P. A., Wheeler-
Kingshott, C. A. M., . . . Duncan, J. S. (2006). Hemispheric asymmetries in language-
related pathways: A combined functional MPI and tractography study. Neuroimage, 
32(1), 388-399. doi: DOI 10.1016/j.neuroimage.2006.03.011 

Pravata, E., Sestieri, C., Mantini, D., Briganti, C., Colicchio, G., Marra, C., . . . Caulo, M. (2011). 
Functional connectivity MR imaging of the language network in patients with drug-
resistant epilepsy. AJNR Am J Neuroradiol, 32(3), 532-540. doi: 10.3174/ajnr.A2311 

Price, C. J. (2000a). The anatomy of language: contributions from functional neuroimaging. J 
Anat, 197 Pt 3, 335-359.  

Price, C. J. (2000b). The anatomy of language: contributions from functional neuroimaging. 
[Research Support, Non-U.S. Gov't 

Review]. Journal of Anatomy, 197 Pt 3, 335-359.  
Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. 

Ann N Y Acad Sci, 1191, 62-88. doi: NYAS5444 [pii] 

10.1111/j.1749-6632.2010.05444.x 
Propper, R. E., O'Donnell, L. J., Whalen, S., Tie, Y. M., Norton, I. H., Suarez, R. O., . . . Golby, A. J. 

(2010). A combined fMRI and DTI examination of functional language lateralization 
and arcuate fasciculus structure: Effects of degree versus direction of hand 
preference. Brain and Cognition, 73(2), 85-92. doi: DOI 10.1016/j.bandc.2010.03.004 

Pujol, J., Deus, J., Losilla, J. M., & Capdevila, A. (1999). Cerebral lateralization of language in 
normal left-handed people studied by functional MRI. Neurology, 52(5), 1038-1043.  

Rauschecker, J. P. (1998). Cortical processing of complex sounds. Curr Opin Neurobiol, 8(4), 
516-521.  

Reynolds, C. R. (1984). Wide Range Achievement Test (WRAT-R), 1984 Edition. Journal of 
Counseling & Development, 64(8), 540-541.  

Riecker, A., Ackermann, H., Schmitz, B., Kassubek, J., Herrnberger, B., & Steinbrink, C. (2007). 
Bilateral language function in callosal agenesis: an fMRI and DTI study. J Neurol, 
254(4), 528-530. doi: 10.1007/s00415-006-0152-9 

Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. 
(1999). Dual streams of auditory afferents target multiple domains in the primate 
prefrontal cortex. Nature Neuroscience, 2(12), 1131-1136.  

Rubino, C. A. (1970). Hemispheric lateralization of visual perception. Cortex, 6(1), 102-120.  
Schiff, H. B., Alexander, M. P., Naeser, M. A., & Galaburda, A. M. (1983). Aphemia - Clinical-

Anatomic Correlations. Arch Neurol, 40(12), 720-727.  
Schlee, W., Leirer, V., Kolassa, I. T., Weisz, N., & Elbert, T. (2012). Age-related changes in 

neural functional connectivity and its behavioral relevance. BMC Neurosci, 13, 16. 
doi: 1471-2202-13-16 [pii] 

10.1186/1471-2202-13-16 
Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. S. (2000). Identification of a pathway for 

intelligible speech in the left temporal lobe. Brain, 123, 2400-2406.  
Seger, C. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2000). Functional magnetic 

resonance imaging evidence for right-hemisphere involvement in processing 
unusual semantic relationships. Neuropsychology, 14(3), 361-369. doi: Doi 
10.1037//0894-4105.14.3.361 



111 
 

Seghier, M. L., Lazeyras, F., Zimine, S., Maier, S. E., Hanquinet, S., Delavelle, J., . . . Huppi, P. S. 
(2004). Combination of event-related fMRI and diffusion tensor imaging in an infant 
with perinatal stroke. Neuroimage, 21(1), 463-472. doi: S1053811903005640 [pii] 

Seghier, M. L., & Price, C. J. (2010). Reading Aloud Boosts Connectivity through the Putamen. 
Cerebral Cortex, 20(3), 570-582. doi: DOI 10.1093/cercor/bhp123 

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., & Pearlson, G. 
(2008). Measuring brain connectivity: diffusion tensor imaging validates resting 
state temporal correlations. Neuroimage, 43(3), 554-561. doi: 
10.1016/j.neuroimage.2008.07.063 

S1053-8119(08)00891-4 [pii] 
St George, M., Kutas, M., Martinez, A., & Sereno, M. I. (1999). Semantic integration in reading: 

engagement of the right hemisphere during discourse processing. Brain, 122 ( Pt 7), 
1317-1325.  

Stejskal, E. O., & Tanner, J. E. (1965). Spin diffusion measurements: spin echoes in the 
presence of a time-dependent field gradient. . Journal of Chemical Physics, 42, 288-
292.  

Stephan, K. E., Harrison, L. M., Kiebel, S. J., David, O., Penny, W. D., & Friston, K. J. (2007). 
Dynamic causal models of neural system dynamics:current state and future 
extensions. J Biosci, 32(1), 129-144.  

Stevens, M. C., Skudlarski, P., Pearlson, G. D., & Calhoun, V. D. (2009). Age-related cognitive 
gains are mediated by the effects of white matter development on brain network 
integration. Neuroimage, 48(4), 738-746. doi: S1053-8119(09)00706-X [pii] 

10.1016/j.neuroimage.2009.06.065 
Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews 

Neuroscience, 4(1), 37-48. doi: Doi 10.1038/Nrn1009 
Tomasi, D., & Volkow, N. D. (2012). Resting functional connectivity of language networks: 

characterization and reproducibility. Mol Psychiatry. doi: 10.1038/mp.2011.177 
Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. 

(2008). Cognitive processing speed and the structure of white matter pathways: 
convergent evidence from normal variation and lesion studies. Neuroimage, 42(2), 
1032-1044. doi: 10.1016/j.neuroimage.2008.03.057 

S1053-8119(08)00286-3 [pii] 
Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language 

comprehension network: converging evidence from lesion and connectivity 
analyses. Front Syst Neurosci, 5, 1. doi: 10.3389/fnsys.2011.00001 

Upadhyay, J., Hallock, K., Ducros, M., Kim, D. S., & Ronen, I. (2008). Diffusion tensor 
spectroscopy and imaging of the arcuate fasciculus. [Research Support, N.I.H., 
Extramural]. Neuroimage, 39(1), 1-9. doi: 10.1016/j.neuroimage.2007.08.046 

van Atteveldt, N., Roebroeck, A., & Goebel, R. (2009). Interaction of speech and script in 
human auditory cortex: Insights from neuro-imaging and effective connectivity. 
Hearing Research, 258(1-2), 152-164. doi: DOI 10.1016/j.heares.2009.05.007 

van Eimeren, L., Niogi, S. N., McCandliss, B. D., Holloway, I. D., & Ansari, D. (2008). White 
matter microstructures underlying mathematical abilities in children. Neuroreport, 
19(11), 1117-1121. doi: 10.1097/WNR.0b013e328307f5c1 

00001756-200807160-00007 [pii] 
Vanzetta, I., & Grinvald, A. (2001). Evidence and lack of evidence for the initial dip in the 

anesthetized rat: implications for human functional brain imaging. Neuroimage, 13(6 
Pt 1), 959-967. doi: 10.1006/nimg.2001.0843 

S1053-8119(01)90843-2 [pii] 



112 
 

Vernooij, M. W., Smits, M., Wielopolski, P. A., Houston, G. C., Krestin, G. P., & van der Lugt, A. 
(2007). Fiber density asymmetry of the arcuate fasciculus in relation to functional 
hemispheric language lateralization in both right- and left-handed healthy subjects: 
a combined fMRI and DTI study. Neuroimage, 35(3), 1064-1076. doi: 
10.1016/j.neuroimage.2006.12.041 

Viswanathan, A., & Freeman, R. D. (2007). Neurometabolic coupling in cerebral cortex 
reflects synaptic more than spiking activity. Nat Neurosci, 10(10), 1308-1312. doi: 
nn1977 [pii] 

10.1038/nn1977 
Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., . . . Mori, S. 

(2007). Reproducibility of quantitative tractography methods applied to cerebral 
white matter. Neuroimage, 36(3), 630-644. doi: DOI 
10.1016/j.neuroimage.2007.02.049 

Wernicke, C. (1874). Der aphasische symptomenkomplex: eine psychologische Studie auf 
anayomischer Basis  

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A 
unified statistical approach for determining significant signals in images of cerebral 
activation. Hum Brain Mapp, 4(1), 58-73. doi: 10.1002/(SICI)1097-
0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O 

Xiang, H. D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional 
connectivity pattern in the perisylvian language networks. [Research Support, Non-
U.S. Gov't]. Cereb Cortex, 20(3), 549-560. doi: 10.1093/cercor/bhp119 

Yasmin, H., Aoki, S., Abe, O., Nakata, Y., Hayashi, N., Masutani, Y., . . . Ohtomo, K. (2009). Tract-
specific analysis of white matter pathways in healthy subjects: a pilot study using 
diffusion tensor MRI. Neuroradiology, 51(12), 831-840. doi: DOI 10.1007/s00234-
009-0580-1 

Zarahn, E., Aguirre, G., & D'Esposito, M. (1997). A trial-based experimental design for fMRI. 
Neuroimage, 6(2), 122-138. doi: S1053-8119(97)90279-2 [pii] 

10.1006/nimg.1997.0279 

 

 


