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ABBREVIATIONS 
 

         2D Two-dimensional 

     5-IAF 5-(Iodoacetamido)fluorescein 

         Ab  Antibody 

      ACN  Acetonitrile 

       APS  Ammonium persulfate 

       BSA  Bovine serum albumine 

       CCB  Coomassie Colloidal Blue 

        CID  Collision induced dissociation 

      CSCs  Cancer Stem Cells 

     DIGE  Differential in Gel Electrophoresis 

      DOC  Sodium deoxycholate 

    DTNB  3,3’-dithio-bis(6-nitrobenzoic acid) 

       DTT  Dithiothreithol 

    EDTA  Ethylenediaminetetraacetic acid 

      EMT  Epithelial to mesenchymal transition 

       ESI  Electrospray ionization 

        FA  Formic acid 

 G6PDH Glucose-6-phosphate dehydrogenase 

      GSH  Reduced glutathione 

     HPDP N-[6-(Biotinamido)hexyl]-3´-(2´-pyridyldithio)propionamide 

      HRP  Horseradish peroxidase 

      IAA  Iodoacetic acid 

      IAM  Iodoacetamide 

        LC  Liquid chromatography 

       m/z Mass to charge ratio 

        MS  Mass Spectrometry 

  MS/MS  Tandem mass spectrometry 

       MW  Molecular weight 

     NEM  N-ethylmaleimide 

    PAGE  Polyacrylamide electrophoresis 

       PBS  Phosphate buffered saline 

       PEP  Posterior Error Probability 

       PPP  Pentose phosphate pathway 

   Q-TOF  Quarupole – Time of flight 

      RNS  Reactive nitrogen species 

      ROS  Reactive oxygen species 

      RPC  Reverse phase chromatography 

         Rt   Retention time 

      SDS  Sodium dodecyl sulphate 

      TCA  2,2,2-Trichloroacetic acid 

    TCEP  Tris(2-carboxyethyl)phosphine 

 TEMED  Tetramethylethylenediamine 

 TrisHCl  Trishydroxymethylaminomethane hydrochloride 

        Wb  Western blotting 
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1. ABSTRACT 

 

BACKGROUND: The cysteine (Cys) proteome includes 214.000 Cys with thiol 

and other forms. Of these, only a relatively small subset functions in cell 

signalling. Redox-active Cys are more susceptible to oxidation, and their oxidized 

form is more susceptible to reduction. Specific proteomic techniques are required 

to identify these modifications and to study their regulation in different cell 

processes that are collectively known as redox proteomics. Thus, it is of interest to 

be able to identify both the proteins and the cysteine residues affected, and to 

quantify the extent of the modification involved.The quantification of differences 

between two or more physiological states of a biological system is among the 

most challenging technical tasks in proteomics: liquid chromatography coupled to 

mass spectrometry (LC-MS) based quantification methods have gained increasing 

robustness and reliability over the past five years. Many authors still share a view 

of redox signalling in which the fate of the cell is dependent mainly on the 

intensity and duration of pro-oxidant stimulus: here we sustain the involvement of 

an equilibrium encompassing the action of both nucleophiles and electrophiles at 

the same time. 

AIM: The dual aim of my PhD work has been both to develop suitable 

methodology to identify and quantify redox-active proteins in complex samples 

and to apply it to the study of a cellular model of breast cancer (MCF10A) 

engineered to reproduce malignancy. 

METHODS: In order to pursue this aim, I took advantage of an approach 

integrating differential chemical sample labelling (non-isotopic) with Cys reactive 

probes (NEM, IAM, HPDP) and chromatographic purification of redox-sensitive 

proteins, with subsequent LC-MS/MS analysis and computational data handling 

for OpenMS-based label-free quantification. All the steps of this methodology 

have been developed and validated in close collaboration with experts from both 

the biochemistry and bioinformatics field. 

RESULTS: We obtained an efficient cost-effective and isotopes-free 

methodology to characterize the redoxome in complex protein samples. 

Application of our quantification protocol to benchmark dataset leads to 100% 

correct estimates of under/over expression of the protein moiety. Application of 

the methodology to the breast cancer cellular model lead to identification of more 

than 300 proteins and allowed us to group-up unchanged and differentially 

oxidized redox-sensitive proteins in the more malignant cells in respect to their 

less aggressive counterpart. 

CONCLUSION: Despite the commonly accepted association between cancer and 

higher oxidative-stress, this study links higher breast cancer cells malignancy to a 

finely tuned dynamic equilibrium in which selected protein targets are oxidized in 

the context of a more reduced cell environment. Preliminary results point at the 

enzyme G6PDH as a crucial regulator of this redox process. 
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RIASSUNTO 

 

STATO DELL’ARTE: Il proteoma include 214.000 cisteine in forma di gruppi 

tiolici liberi od altra forma. Di queste, solamente un insieme relativamente 

ristretto ha un ruolo nella mediazione di segnali cellulari. Tali cisteine, attive dal 

punto di vista dell’ossido-riduzione, sono più sensibili all’ossidazione e la loro 

forma ossidata è più facilmente riducibile. Sono dunque necessarie specifiche 

tecniche di proteomica, globalmente indicate con il termine proteomica delle 

ossido-riduzioni, per identificare tali modifiche e studiarne la regolazione in 

diversi processi cellulari. Risulta quindi determinante la capacità di identificare 

sia le proteine che i residui coinvolti e di quantificarne il grado di modificazione. 

E proprio la quantificazione delle differenze tra due o più stati di un sistema 

biologico, si colloca tra gli obiettivi tecnicamente più sfidanti della proteomica: 

nel corso degli ultimi cinque anni, tecniche basate sulla spettrometria di massa 

associata a cromatografia in fase liquida hanno progressivamente guadagnato 

affidabilità e robustezza. Molti autori condividono tuttora una visione delle 

ossido-riduzioni nella mediazione del segnale in cui il destino cellulare dipende 

principalmente dall’intensità e dalla durata degli stimoli ossidanti: nel presente 

lavoro si vuole invece sostenere il coinvolgimento di un equilibrio che includa 

l’azione concomitante sia di specie nucleofile sia di specie elettrofile. 

OBIETTIVO: Il duplice obiettivo del mio lavoro di Dottorato è stato sia lo 

sviluppo di una metodologia idonea all’identificazione e quantificazione di 

proteine, attive dal punto di vista delle ossido-riduzioni, in campioni complessi, 

sia l’applicazione di tale metodologia allo studio di un sistema cellulare 

ingegnerizzato di carcinoma mammario (MCF10A) caratterizzato da diversi gradi 

di malignità. 

METODI: Al fine di perseguire tale obiettivo ho tratto vantaggio da un approccio 

che integra la marcatura chimica differenziale (non-isotopica) per mezzo di sonde 

reattive con i residui di cisteina (NEM, IAM, HPDP) e la purificazione 

cromatografica delle proteine attive dal punto di vista ossido-riduttivo, alla 

successiva analisi LC-MS/MS ed elaborazione informatizzata dei dati mediante 

OpenMS per una quantificazione label-free. Tutti i passaggi di tale metodologia 

sono quindi stati messi a punto e validati in stretta collaborazione con esperti 

biochimici e bioinformatici. 

RISULTATI: E’ stato sviluppato un metodo efficiente ed economico, non basato 

sull’utilizzo di marcatori isotopici, per la caratterizzazione delle proteine attive dal 

punto di vista ossido-riduttivo in campioni proteici complessi. L’applicazione del 

protocollo di quantificazione ad un campione test ha dato il 100% di stime 

corrette di sovra/sotto-espressione della miscela proteica. L’applicazione del 

metodo allo studio del modello cellulare di carcinoma mammario ha portato 

all’identificazione di più di 300 proteine ed ha permesso il raggruppamento di 

quelle sensibili dal punto di vista ossido-riduttivo in gruppi non differenziali e 
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sovra- o sotto-ossidate nelle cellule più maligne rispetto alla loro controparte 

meno aggressiva. 

CONCLUSIONI: Nonostante sia comunemente riconosciuta l’associazione tra 

fenomeni neoplastici ed uno stress ossidativo, questo studio collega la maggiore 

malignità di un modello cellulare di carcinoma mammario ad un complesso 

equilibrio ossido-riduttivo. In questo contesto, specifici bersagli proteici sono 

ossidati mentre viene mantenuto un ambiente cellulare complessivamente ridotto. 

Risultati preliminari evidenziano poi l’enzima G6PDH come possibile elemento 

chiave nella regolazione di tale equilibrio. 
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2. INTRODUCTION 

 

2.1 Redox status of proteins 

 

Despite some ostensible formalism clarification of essential definitions, speaking 

of redox proteomics is not just a mere semantic task. Redox status is a term that 

has been used to describe the ratio of the convertible oxidized and reduced forms 

of a specific redox couple and it should not be extended to description of the 

general redox environment of a cell since the latter is a reflection of the state of 

sets of redox couples. Moreover, we should also distinguish a redox pair from a 

redox couple, since the former refers to both oxidizing and reducing species 

involved in a reaction while the latter describes the behaviour of the reducing 

specie and its corresponding oxidized form. 

So a more precise definition of redox status of a redox couple could be intended 

as the half-cell reduction potential of that couple while redox environment of a 

linked set of redox couples (redox pairs) is the summation of the products of the 

reduction potential and reducing capacity of the linked redox couples present. In 

these definitions reducing capacity refers to the concentration of reducing 

equivalents available (strength of the redox buffer). Each protein in the cell could 

be seen as a redox couple on its own and thus described as an electrochemical 

cell. Nernst equation allows us to determine the reduction potential for the half-

cell (Ered)which is the potential when the half reaction takes place at cathode (a 

measure of the tendency of the oxidizing agent to be reduced). 

So given the Nernst equation for the half cell reaction: 

 

          
   

  

  
  

    

   
 

Where: 

Ered = Half-cell reduction potential at the temperature of interest 

    
       Standard reduction potential 

R  = Universal gas costant = 8.314472 J K
-1

 mol
-1

 

T  = Absolute temperature in K 

z  = Number of moles of electrons transferred in the cell half-reaction 

F  = Faraday constant = 9.64853399*10
4
 C mol

-1
 

aRed/Ox = Chemical activity of the reductant/oxidant specie.  

  a = activity coefficient * [Red/Ox] 

      For low concentrations activity coefficient = 1 and  a = [Red/Ox] 

 

Overflying chemical and mathematical details we can then obtain the Nernst 

equation for the one electron process: Ox + e
-
 Red 
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So we can state that each protein is characterized by its own redox status which 

could be described by means of the reduction potential of the redox couple 

considered. Definitely the redox status of a protein is the ratio of its reduced and 

oxidized form. Moreover, the Nernst equation could be used to determine the 

electromotive force between two redox couples (ΔE). Given species being 

oxidized (E1) and species being reduced (E2) we then have: ΔE = E2 – E1. 

If ΔE is zero, there is no electron flow. When ΔE is not zero the sign determines 

the direction of electron flow (the direction of the redox reaction). As an example, 

given a ratio of NADPH/NADP
+
 of 100:1 Reduction potential (Ered) for this 

couple is equal to -374 mV from Nernst equation. This very negative reduction 

potential supports the idea that the NADPH/NADP
+
 couple is a major driving 

force for maintaining the reducing environment in cells and tissues. Moreover, as 

the redox state of couples such as NADPH/NADP
+
change, they can force changes 

in other redox pairs, for example signalling proteins. 

If we go deeper into considering the redox status of a protein we should analyse 

which are the modifications characterizing its reduced or oxidized status. 

Obviously, the targets of such modifications are amino acid (AA) residues and, 

specifically the ones having “redox-reactive” side chain functional group. 

 

2.1.1 Reactivity of Cysteine residues 

 

Regulation of protein function via post-translational modification (PTM) has 

always been a leading area of interest in the struggle to comprehend both normal 

and pathological cellular processes. PTMs study is a growing area of interest 

supported by advances in high throughput proteomics. Intracellular signalling 

mediated by reversible phosphorylation of serine (Ser), threonine (Thr) and 

tyrosine (Tyr) residues of proteins is the best characterized PTM process. More 

recently multiple modifications of arginine (Arg) and lysine (Lys) residues have 

come to the fore. For example, Lys can undergo methylation, acetylation and 

hydroxylation; and can also be covalently cross-linked to different proteins in 

ubiquitination and similar processes, as well as transglutamination [Begg et al., 

2006]. Modifications of Lys mediate diverse processes from epigenetics, to 

protein fate and structural processes. In addition to these two basic residues, 

another residue which undergoes multiple modifications but which has received 

considerably less attention is cysteine (Cys). The diversity of modifications of Cys 

is extensive and crucial to sustainable life in the oxidizing environment of this 

planet [Wouters et al., 2010; Nagahara et al., 2009]. Despite their importance Cys 

modifications are often transitory and refractory to analysis [Riederer, 2009]. 

Interestingly, Cys has one of the shortest sidechains whereas Lys and Arg have 

among the longest, extending up to 6.5 Å (Lys) or 7.5 Å (Arg) from the 

polypeptide backbone [Wouters et al., 2011]. As a result, surface modifications of 
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Arg and Lys are tethered far from the backbone, almost like labels on the protein. 

In contrast, modifications of Cys residues occur closer to the protein surface and 

are often accompanied by conformational changes of the backbone. In addition, 

Cys has the unique ability to form disulfide bonds, enabling some spectacular 

redox-driven conformational changes. Thiols are unable to undergo autoxidation 

in the absence of a catalyst, but several free metal ions markedly increase the rate 

of autoxidation. Other factors, such as temperature, type of buffer, type of 

catalyst, and oxygen concentration, are important. Moreover it has been observed 

that the rate of autoxidation depends on pH, indicating the participation of the 

thiolate species in the reaction [Bindoli et al., 2008]. The oxidation status of sulfur 

in different “reactive sulfur species” [Gregory et al., 2001] that we are going to 

see is summarized in table 2.a 

 

Table 2.a 

Reactive Species Structure 
Oxidation 

status of sulfur 

Electrons required for 

complete reduction to 

thiol status (-2) 

Thyil radical RS• -1 1 

Disulfide RSSR -1 2 

Disulfide-S-monoxide RS(O)SR +1;-1 4 

Disulfide-S-dioxide RS(O)2SR +3;-1 6 

Sulfenic acid RSOH 0 2 

Hydroxyl radical HO• -1 1 

Peroxide ROOR -1 2 

Superoxide O2
-
 -0.5 3 

 

Disulfides 

 

In biochemistry, the most familiar oxidation reaction of thiols involves the well-

known thiols/disulfide redox transition: 

 

   2 R-SH  R-S-S-R + 2e
-
 + 2 H

+
 

 

Disulfides are formed under mild oxidizing conditions and usually do not proceed 

to further oxidation in the cell. However both thiols (1) and disulfides(2) can form 

oxygen derivatives as follow (from Bindoli et al., 2008. Intermediates reported in 
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brackets are unstable) and both pathways are interconnected leading to the 

sulfonic species which are the highest oxidized species of sulphur: 

 

(1) R-SH  [R-SOH]  R-S(O)OH  R-S(O)2OH 

  thiol  sulfenic acid  sulfinic acid   sulfonic acid 

 

(2) R-S-S-R  R-S(O)-S-R  R-S(O)2-S-R  [R-S(O)2-S(O)-R]  

       disulfide   thiosulfinate     thiosulfonate      disulfide trioxide 

 

R-S(O)2-S(O)2-R  R-S(O)2OH 

       disulfone           sulfonic acid 

 

Oxidation of disulfides is generally favoured by anhydrous conditions and finally 

results in the formation of sulfonic acids after scission of the S-S bond. 

Thiolsulfinates are the first members of the disulfide oxidation products and occur 

naturally in biologic systems such as the well-known component of garlic allicin 

(diallyldisulfide monoxides) exhibiting antibacterial and fungicidal properties. 

Thiosulfinates can be easily reduced to the corresponding disulfides by thiols with 

the intermediate formation of sulfenic acid, hence revealing their importance in 

the biologic redox processes. 

Thiosulfonatesare endowed with antimicrobial properties an act as protectants 

against ionizing radiation. Those compounds hydrolize in the presence of waters 

to the corresponding sulfinic acids and disulfides and their reaction with thiols 

leads to sulfinic acid and disulfides. 

Thiyl radical 

 

Thiols can also be oxidized by radiation of different energies such as χ/β/γ-rays 

and UV light. In this case reactions proceed through the formation of a thyil 

radical (3) (thyil radicals can also be formed by transition metal-catalyzed 

oxidation of thiols) which, in addition to dimerization to a disulphide (4), can 

interact with oxygen forming a thioperoxyl radical intermediate (5): 

    (3) R-SH  R-S• + H
+
 + e

-
 

    (4) 2 R-S•  R-S-S-R 

    (5) R-S• + O2 R-SOO• 

Thioperoxyl radicals can interact with the parent thiols, leading to the formation 

of sulfenic acid(6) [Wardman P., 1998] and regeneration of the thyil radical (7): 

   (6) R-S-OO• + R-SH  R-SOH + R-SO• 

   (7) R-S-O• + R-SH  R-SOH + R-S• 
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A well-established reaction of the thyil radical is its interaction with the thiolate 

anion, forming first the strong reductant disulfide radical anion (8), which, in turn, 

forms superoxide anion on reaction with oxygen (9) [Wardman P., 1998]: 

(8) R-S• + R-S
-
 (R-S-S-R)•

-
 

(9) (R-S-S-R)•
-
 + O2 R-S-S-R + O2•

-
 

 

Sulfenic acid 

 

Sulfenic acid (R-SOH) is the first member of sulphur oxy-acids and, although 

unstable and highly reactive, has gained growing interest in biologic systems. 

Because of their instability, sulfenic acids are viewed as reaction intermediates, 

and are difficult to isolate. Sulfenic acids are formed after the reaction of the 

thiolate group with hydrogen peroxide (10) and other hydroperoxydes 

(alkylhydroperoxides and peroxynitrite) or from hydrolysis of S-nitrosothiols (11) 

and after reaction of thiols with thiosulfinates (12): 

   (10) P-S
-
 + H2O2 Protein-SO

-
 + H2O 

   (11) R-SNO + H2O  R-S-OH + HNO 

   (12) R-S(O)-S-R + R’-SH  R-SOH + R-S-S-R’ 

It is noteworthy that the rate of formation of sulfenic acid from many thiolates via 

reaction with hydrogen peroxide is too slow to happen in vivo, and even if it did 

form the presence of millimolar GSH in cells would convert it rapidly to protein-

S-S-G mixed disulfide form (14) [Bindoli et al., 2008]. The same could happen 

also for the sulfenamide subsequently formed from sulfenic acid (15) as in the 

case of PTP1B [Salmeenet al., 2003]. Sulfenic acids can however find stabilizing 

conditions in some proteins, like apolar microenvironment that limits solvent 

accessibility and allows the stability of the –SOH residue by hydrogen bonding. 

Probably the most important factor in stabilizing sulfenic acids in proteins is the 

absence of proximal thiol groups or other nucleophiles. Indeed a thiol group 

would rapidly interact with the sulfenic moiety forming a disulfide (13) [Allison 

WS., 1976]: 

   (13) R-SOH + R-SH  R-S-S-R + H2O 

This reaction is particularly relevant in enzymes involved in redox signalling, as 

the reaction of sulfenic acid residues with glutathione, present in high 

concentrations in cells, leads to the formation of a mixed disulfide (i.e. 

glutathionylation of specific proteins (14): 

   (14) P-SOH + G-SH  P-S-S-G + H2O 
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The formation of mixed disulfides, together with that of sulfenamides(15) 

[Salmeenet al., 2003] prevents over-oxidation of the cysteine residues to sulfinic 

and sulfonic acids: 

   (15) R-SOH + R’-N(H)-R’’  R’-N(R’’)-SR + H2O 

Moreover sulfenic acids can undergo both electrophilic and nucleophilic 

reactions, according to different reaction conditions [Allison WS., 1976]. For 

instance, sulfenic acid are reactive toward nucleophilic reagents such as dimedone 

(5,5’–dimethyl-1,3-cyclohexanedienone) or TNB
-
 (2-nitro-5-thiobenzoate anion) 

derived from the reduction of the thiol reagent DTNB (5,5’-dithiobis(2-

nitrobenzoic acid)). Indeed dimedone and TNB
-
 are used to identify cysteine 

sulfenic acids in proteins. Finally sulfenic acids can easily condense to form a 

thiosulfinate (16) [Bindoli et al., 2008]: 

   (16) 2 R-SOH  R-S-(O)-S-R + H2O 

In this reaction (16) dehydration of sulfenic acids proceeds through the formation 

of a dimer in which the two sulfenic acids are hydrogen-bonded and involves a 

nucleophilic attack exerted by the sulfenic acid sulfur on the sulfur of the second 

sulfenic acid molecule (reaction from Bindoli et al., 2008 to follow): 

 

This reaction is a clear example of both the nucleophilic and electrophilic 

character of these acids. 

Reaction of thiols with hydrogen peroxide 

 

The reaction of protein thiols with hydrogen peroxide is of particular relevance for 

biologic systems. It is know that thiols could be oxidized by hydrogen peroxide in 

the absence of metal catalysis [Bindoli et al., 2008]. Moreover studies on the 

sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase [Little et al., 

1969] demonstrated that peroxide treatment did not involve disulfide formation 

but rather oxidation of protein thiol to a sulfenic acid residue. Moreover the 

reaction was pH dependent, indicating the involvement of a thiolate group acting 

as a nucleophile on hydrogen peroxide (see 10 above) [Bindoli et al., 2008]. The 

peroxide-inactivated enzyme can be reactivated if quickly treated with an excess 

of low molecular weight thiols, but if such treatment is delayed, the inhibition 

becomes irreversible, thus indicating that the sulfenic residue undergoes further 

oxidation to sulfonic acid [Little et al., 1969]. Reaction kinetic of low molecular 

weight thiols with H2O2 falls in the range  of 18-26 M
-1

 s
-1

 and turns out to be of 
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scarce significance in biological context. Similarly proteins containing low pKa 

thiols despite 20 – 30 fold increased rate constant with H2O2, are still far from 

competing against glutathione peroxidases and peroxiredoxins which are orders of 

magnitude more efficient in reducing hydrogen peroxide [Winterbourn et al., 

1999]. This point to the fact that deprotonation of the thiol group alone is not 

sufficient to bring the interaction of hydrogen peroxide in proteins to a level 

comparable to that of thiol or selenium peroxidases. Moreover a study of the 

second-order rate constants of various proteins with hydrogen peroxide [Stone, 

2004] indicates that only peroxidases and the bacterial sensor OxyR exhibit rate 

constants on the order of 10
5
-10

6
 M

-1
 s

-1
 whereas phosphatases and other enzymes 

such as glyceraldehyde-3-phosphate dehydrogenase and papain are in the range of 

10-10
2
 M

-1
 s

-1
. This sustain the idea that, to react rapidly with hydrogen peroxide, 

the low pKa of cysteine is not a sufficient condition, but the thiolate requires a 

proper environment defined by specific amino acid residues able to stabilize the 

transition state intermediate [Tosatto et al., 2008]. 

 

2.1.2 Redox switches 

 

Cysteine is a rarely used amino acid that accounts for about 2% of the amino acids 

in eukaryotic proteins and about 1% in proteins from eubacteria and archaea. As 

reported above thelarge, polarizable sulfur atom in its thiol group is electron-rich 

and highly nucleophilic; hence, cysteines can undergo a broad range of chemical 

reactions.Nevertheless, despite the fact that all cysteines, from a chemical point of 

view, are “reactive”, not all of them could act as redox switches.Here we may look 

at redox switches as specific protein-cysteine-thiols characterized by peculiar 

reactivity which make them target of choice for oxidative modification.As we 

have seen the intrinsic reactivity of protein thiols depends not only on their pKa 

but also on other structural features, such as their accessibility. For example, 

although the –SH of bovine albumin has a much lower pKa [Lewis et al., 1980] 

than glutathione (GSH), it has a relatively low apparent reactivity which probably 

depends on steric hindrance.On the other hand we have also seen that peroxidases 

are reasonable targets acting as both redox signal sensors and transducers: indeed 

peroxidases bear cysteine residueshighly reactive with H2O2.Definitely redox 

signaling often implies a post-translational protein modification of cysteine 

residues and a particular cysteine residue may be differentially modified in 

response to diverse stimuli. Post-translationally modified cysteines are not 

necessarily directly involved in the catalytic activities of enzymes, but may 

function at an allosteric site and, thus, regulate the enzymatic activities or other 

protein functions through structural changes. So a large part of biological 

properties and functions involving protein structure as well as enzyme catalysis 

and redox-signalling pathways depends on the redox properties of the thiol group 

present both in protein and in low-molecular-weight molecules [Bindoli et al., 

2008]. Nevertheless the maintenance of intracellular redox homeostasis was 
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thought to be mainly controlled by the GSH/GSSH ratio. Thus, with GSH and its 

enzymes as the main actors, the contribution of protein –SH groups (PSH) as a 

molecular entity capable of reacting with electrophiles and oxygen-derived 

species was generally considered to be negligible. Anyway this assumption does 

not consider the fact that PSH may play an antioxidant role, as GSH does, and at 

the same time perform more specific regulatory functions [Di Simplicio et al., 

1998]. 

So their structural environment and pKa value make cysteine redox-sensitive and 

make proteins potentially redox regulated. Most cytoplasmic protein thiols have 

pKa values greater than 8.0, which render the thiol groups predominantly 

protonated and largely non-reactive at intracellular pH [Giles et al., 2001]. Thiol 

groups of redox-sensitive cysteines, on the other hand, have characteristically 

much lower pKa values, ranging from as low as     3.5 in thiols transferase to    5.1-

5.6 in protein tyrosine phosphatases. The low pKa values of redox-sensitive 

cysteines arise primarily from stabilizing charge-charge interactions between the 

thiolate anion and neighbouring positively charged or aromatic side chains. So 

under physiological pH conditions, these thiols are therefore present as 

deprotonated, highly reactive thiolate anions [Brandes et al., 2009]. 

 

 
 

Fig. 2.a Oxidative thiol modifications 

Oxidation of cysteine thiol groups by H2O2 leads to sulfenic acid (R-SOH) formation. Sulfenic 

acids are either stabilized by nearby charges or react with neighboring thiols or proximal nitrogen 

to form disulfide bonds (R’-S-S-R”) or sulfenamide bonds (R’-S-NH-R’), respectively. In the 

presence of high H2O2 concentrations, overoxidation to sulfinic (R-SO2H) or sulfonic acid (R-

SO3H) occurs. Although a few protein-specific sulfinic acid reductases have been identified, 

overoxidation is still considered to be largely irreversible in vivo. Alternatively, reaction of 

thiolate anions (RS-) with oxidized cysteines of other proteins or low molecular weight thiols such 
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as glutathione (GSSG) leads to mixed disulfide bond formation (R’-S-S-R”) or S-glutathionylation 

(R-S-SG), respectively. Overoxidation of disulfide bonds in the presence of strong oxidants can 

cause thiosulfinate (R’-SO-S-R”) or irreversible thiosulfonate (R’-SO2-S-R”) formation. Most 

oxidative thiol modifications are reduced by members of the glutaredoxin (Grx) system and 

thioredoxin (Trx) system (reductants), which draw their reducing power from cellular NADPH. 

Exposure of thiolate anions to reactive nitrogen oxide species causes S-nitrosothiol formation, 

whereas treatment with peroxynitrite yields S-nitrothiol formation. The exact mechanism by which 

individual RNS cause oxidative thiol modifications in vivo is still under investigation. [From 

Brandes et al., 2009] 

 

Thiolate anion are highly susceptible to oxidation by electrophiles and can 

undergo a wide spectrum of oxidative modifications, including: sulfenic (SOH), 

sulfinic (SO2H) and sulfonic (SO3H) acids, disulfide bonds (PSSP) or 

nitrosothiols (SNO). Cysteine sulfenic acids and their deprotonated cysteine-

sulfenates are frequently formed upon reaction of protein thiols with H2O2 and 

represents reactive and versatile oxidation products. As we have seen, sulfenic 

acids are highly reactive and thus often considered metastable intermediates 

undergoing further reactions to form stable modifications, such as disulfides with 

other protein thiols or glutathione (S-glutathionilation) [Fig. 2.a]. Most oxidative 

modifications are fully reversible in vivo and utilize dedicated oxidoreductases, 

such as thioredoxin or glutaredoxin system, to quickly restore the original redox 

state upon the cell’s return to nonstress conditions. It appears that it is the reaction 

rate with these dedicated oxidoreductases that often determines the lifespan of 

oxidized proteins and supports their accumulation even in an overall reducing 

environment [Leichert at al., 2004]. The type and extent of oxidative 

modifications in redox-regulated proteins depends on the type of oxidative pulse, 

its intensity, duration and distance with respect to sensor/transducers. Even small 

changes in the basal level of intracellular electrophiles can cause oxidative 

modifications in proteins that are specifically sensitive to these oxidants: such 

proteins are those bearing so called “redox-switches”. 

So redox signalling does not simply represent non-specific oxidative damage and 

candidate redox-switches cysteines balance diverse redox signalling responses to 

multiple stimuli. The susceptibility of cysteine residues to modification by a 

defined electrophile is dictated by a combination of factors including the pKa of 

the thiol and the local pH of the intracellular compartment: for example, the high 

intra-mitochondrial pH (8.0 – 8.5) may be one reason mitochondrial protein thiols 

are particularly susceptible to modification and play a key role in cell signalling 

[Murphy, 2011]. Other factors are the accessibility of the thiol within protein 

structure and the reactivity of the thiols-modifying agent: a thiol having a pKa of 

7.4 for example will be 50% deprotonated at physiological pH, that is to say it 

will be in its more nucleophilic thiolate form. Thus lower pKa thiols, which are 

more likely to be deprotonated at physiological pH, are favoured in their reaction 

with electrophiles and are more suitable candidates as redox-switches [Higdon et 

al., 2012]. Localization of thiol residues within a protein also seems to be 
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important in dictating their relative susceptibilities to modification: the most 

accessible thiol residue is more likely to be modified than those less accessible 

[Fig. 2.b]. 

 

 
 

Fig. 2.b Factors which determine susceptibility to thiol modification and 

cellular thiol targets 
The local protein environment is a very important determinant of thiol reactivity. For example, an 

inaccessible, high pK a protein thiol would be considered the least prone to modification. 

However, a low pKa accessible thiol would be a highly sensitive target. [From Higdon et al., 2012] 
 

Thus the combination of steric and biochemical factors result in a functional 

hierarchy for the activation of cellular signalling pathways on exposure of cells to 

an electrophile. The first pathways to respond are those which are the closes to the 

site of formation or exposure to the electrophile. The functional consequence of 

these factors is that the “first responders to electrophile exposure” are not 

necessarily the most abundant thiol-containing proteins [Higdon et al., 2012]. 

 

2.1.3 Structural and functional disulfides 

 

Taking protein chemistry into account a disulfide bond is purely the covalent link 

between two sulfur atoms generated by the oxidation of two cysteines residues. 

Such bonds are important for the stabilization of the native structure of proteins 

and determination of their arrangements into wild type or recombinant proteins 

can provide insights into their folds as well as information to guide structural 

determination by NMR or X-ray crystallography. The very first determination of 

the amino acid sequence of Insulin by Sanger (1959) was indeed accompanied by 

investigation of its disulfide arrangement in order to complete the description of 

its primary chemical structure. Also characterization of the disulfides of 

ribonuclease by Spackman et al. (1960) was another informative study into the 

determination of such protein structural element. Summarizing what we have seen 

above (§ 2.1.1) Various pathways can lead to the formation of disulfides:  
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(a) free radical oxidation of the thiol, evolving to disulfide with a proximal 

thiol, trough the formation of the intermediate disulfide anion radical 

[Mottley et al., 2001] 

    R’• + RSH  R’H + RS• 

    RS• + R’’S
-
 (RSSR”) •

- 

    (RSSR”) •
-
 + O2RSSR” + O2•

-
 

(b) Nucleophilic displacement reaction in the presence of a hydrogen peroxide 

producing a sulfenic acid residue [Dickinson et al.,2002]. 

    RSH + H2O2 RSOH + H2O 

   RSOH + R’SH  RSSR’ + H2O2 

(c) Thiol-disulfide exchange reaction [Maiorino et al., 2007] 

    R’SSR” + R”’SH  R’SSR”’ + R”SH 

Mechanism (a) is more likely to be involved as antioxidant mechanism in the 

presence of oxidizing free radicals, while pathways (b) and (c) are relevant for the 

formation and reshuffling of disulfides in proteins respectively. Beside 

mechanisms underlying their formation, as stated at the beginning of this 

paragraph, intra-protein disulfide bonds are classically viewed as part of the 

tertiary structure of the protein and their formation is an important step in protein 

folding. Similarly, many disulfide bonds are important in the quaternary structure 

of proteins (ie – in the formation of homo or hetero multimers). Nevertheless, 

aerobic organisms maintain a reduced state in the cell despite the highly oxidizing 

environment (21% oxygen, at sea level) where they live and we have seen (§ 

2.1.2) that the redox state of protein thiols is then dependent on their cellular 

location [Ghezzi, 2005]. In the cytoplasm, the environment is highly reduced, 

mainly due to the high intracellular concentration of GSH, and the GSH/GSSG 

ratio is 30–100. For this reason cysteine residues of cytoplasmic proteins are 

mainly present as free thiols, both in mammalian cells and bacteria. It is generally 

thought that the only disulfide bonds in the cytoplasm are transient ones formed as 

a part of the oxidation-reduction reactions of enzymes. In contrast, extracellular 

proteins are mainly disulfide proteins, because of the oxidative extracellular 

environment. On the other hand, structural disulfide bonds are formed during the 

folding process in the endoplasmic reticulum as this intracellular compartment is 

different from the cytosol in that it is highly oxidizing, with a GSH/GSSG ratio of 

approx. 1 [Hwang et al., 1992]. Recent studies of redox proteomics have 

challenged the belief that cytosolic proteins only have free cysteines, showing that 

many disulfide bonds are formed in a large number (∼100) of cytoplasmic 

proteins in cardiomyocytes and neuronal cells exposed to oxidants [Brennan et al., 
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2004; Cumming et al., 2004]. Evidence that a substantial amount of glutathione is 

present as mixed disulfide with proteins also points in this direction. However, 

most of these disulfide bonds are different from those important for the structural 

integrity of proteins. These non-structural disulfide bonds differ from structural 

ones in that the former are reversible, and both reduced and oxidized forms of 

these proteins coexist. For a comparison, redox potentials in thiol-disulfide 

oxidoreductases range from -95 mV to -330 mV, whereas structural disulfides 

may have potentials as low as -470 mV. In other words, such structural disulfides 

would never be found as dithiols under normal physiological conditions. 

In his exhaustive review Wouters [Wouters et al., 2010] pointed out at least 14 

different kinds of non-structural disulfides as those contradicting Richardson and 

Thornton rules (RT rules from now on) and called them “forbidden disulfides”. 

Very briefly, Richardson and Thornton pinpointed constraints in protein backbone 

where disulfides between resident cysteine residues could not form if not at the 

cost of strain introduction into protein structure.  

 

 
 

Fig. 2.c Comparison of the folding funnels for (A) a minimally frustrated fold 

(B) A functional protein with two states.  
In a two-state forbidden disulfide switch, the entropic term could be traded off against the 

enthalpic term to produce two states that are not separated by a large Gibb’s free energy (light gray 

in B). The minimally frustrated fold is shown in dark gray in B for comparison. [From Wouters et 

al., 2010] 

 

Thus, in reference to secondary structure, disulfides between cysteine pairs should 

not be found on (a) adjacent β-strands, (b) in a single helix/strand (c) on non 

adjacent strand of the same β-sheet. And in reference to primary structure 

disulfide bonds should not occur (d) between cysteine pairs adjacent in the 
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sequence [Wouters et al., 2010 and references therein]. From a thermodynamic 

point of view forbidden disulfides are defined as a “bi-stable switch” [Wouters et 

al., 2010]: a bi-stable switch is characterized by two states, both of which must 

contain sufficient stored potential energy to help drive the switch into the opposite 

state in response to the appropriate signal. Forbidden disulfides may operate as bi-

stable switches by trading off different terms in the Gibb’s free energy: forming 

the disulfide bond decrease the entropy of the chain, however, for forbidden 

disulfides there is a significant cost in terms of enthalpy to form the bond because 

of the abnormal stereochemistry adopted by the protein chain (Fig. 2.c). Definitely 

disulfides disobeying RT rules are likely candidates to act as redox switches. 

 

2.2 Oxidation rate and reduction rate 

 

Specificity and reversibility of redox signalling 

 

Changes in cellular redox environment can initiate signalling cascades and lead to 

biological consequences, such as proliferation, differentiation, apoptosis etc. This 

phenomenon could be pointed out as redox regulation, a term defined as “a 

reversible post-translational alteration in the properties of a protein, typically the 

activity of an enzyme, as a result of change in its oxidation state”. Authors of this 

definition made a clear distinction between redox regulation and terminal 

oxidation, which they defined as “an irreversible reaction that parks protein for 

degradation” and is implicitly understood to impair protein function. On the other 

hand, the term redox signalling, despite some interchange ability with redox 

regulation, extends the meaning to include entire chains involving cascades of 

redox reactions, eventually leading to changes in gene expression. 

So far we have seen that different kinds of electrophiles in cell, together with 

specific proteins cysteine residues with particular reactivity, have the requisites to 

account for signalling functions. In a very simplified view we could say that every 

signal needs to fulfil at least two requisites: (a) it should be specific (b) it should 

be reversible (c) its action should be limited in time and space. As for the 

specificity it is often conferred by protein-protein interaction or just by limiting 

reactivity of signalling molecules in respect to signalling sensors/transducers. 

Nevertheless, in the case of redox signalling it is not so “easy” to speak of 

specificity, since electrophiles acting as signalling molecules are often 

characterized by high chemical reactivity without specificity for targets to react 

with and, considering for example hydroperoxides, we cannot even invoke 

interaction specificity. Of course among candidate signalling molecules it is 

possible to pinpoint hydrogen peroxide as preferential choice instead of far more 

aggressive species like radicals the reactivity of whom is almost diffusion-rate 

limited. Moreover, we have seen previously that only specific cysteine residues in 

proteins will undergo oxidative switching in response to electrophiles. The 

combination of aforementioned elements can thus confer some degree of 
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specificity even to redox signalling. Furthermore, another possible mechanism of 

specificity is in that proteins bearing redox sensible cysteine residues like 

peroxidases/thioredoxins could act themselves both as sensors and transducers of 

the signal: thus protein-protein interaction also takes its role in redox signalling. 

As for the reversibility of redox signalling: first we already demonstrated that 

cysteine residues acting as redox switches are characterized by reversible 

oxidative modification (see above); second, the cell is constitutively endowed 

with complex enzymatic oxidants scavenging machinery (peroxidases, redoxins, 

reductase system). Despite historical limiting view of such antioxidant defence 

system as a merely instrument to counteract deleterious oxidative damage, the 

whole apparatus could act as a finely tuned switch-off mechanism in the context 

of redox signalling. Finally, limited action in time and space of redox signalling 

could be achieved by both switching off mechanisms and localized production 

inside the cell of signalling molecules. Indeed, as we will see later, different 

localized and specific sources of electrophiles could be found inside the cell. 

 

Dynamic equilibrium: oxidation and reduction rate 

 

One misleading aspect of redox signalling is that, differently from other well-

known signalling pathways like phosphorylation, the transduction of an initiating 

stimulus in redox signalling does not involve targeted action of signal transducers 

upon signal effectors but rather the alteration of the whole redox homeostasis 

inside the cell. Clearly such phenomenon is sufficiently wide spread to make it 

difficult to think at the aforementioned specificity criteria for redox signalling.  

 

Fig. 2.d Schematic 

representation of the main 

contributors to the dynamic 

oxidation/reduction rate 

inside the cell. 

Nucleophiles group includes 

enzymes of the cellular antioxidant 

defense system while reductases are 

able to regenerate such enzymes 

using NADPH reducing equibalents. 

POOH = protein peroxides; LOOH = 

lipid peroxides, NO = nitric oxide; 

GSH = glutathione. 
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Moreover also the enzymatic switch off machinery is distributed inside the cell 

and so it is unlikely to act by turning off oxidative stimulus just locally. Definitely 

rather than thinking of a point-targeted specific modification of signal effectors or 

transducers we should better look at a more general dynamic equilibrium between 

oxidation and reduction rate inside the cell. A simplified view of the main actors 

of such mechanism is reported in Fig. 2.d while a more general view of the 

cellular systems taking part in the regulation of oxidation/reduction rate is 

reported from [Kobayashi et al., 2012] [Fig. 2.e].  

 

 
 

Fig. 2.e Schematic illustration of ROS generation and elimination pathways. 
O2•

-
 is generated mainly through the mitochondrial electron transport chain, and also by membrane 

bound NOX, and quickly converted intoH2O2 by SOD.H2O2 is then neutralized by several 

enzymes and proteins such as CAT, PRX, and GPX in processes coupled to GSH and TRX(SH2) 

oxidation. TRX(S2) and GSSG are reduced by TR and GR, respectively, in an NADPH-dependent 

reaction. Highly reactive OH
•
 is generated fromH2O2, leading to oxidization of macromolecules in 

the cell. [From Kobayashi et al., 2012] 

 

The main concept behind redox equilibrium in the context of redox signalling is 

that we need to take into account the concomitant presence of both electrophiles 

and nucleophiles at the same time inside the cell: that is to say we have the 

simultaneous action of both oxidation and reduction at any time and the balance 

between these two tendencies definitely drives redox signalling. Another 

important aspect, which emerges from the consideration of dynamic 

oxidation/reduction equilibrium, is the possibility to simultaneously set up both 

electrophilic and nucleophilic signalling: in this view thioredoxin system 



 
23 

(nucleophiles) should reverse target thiols oxidized by electrophiles. The balance 

between oxidation and reduction rate is then determined by both thermodynamic 

and kinetic criteria, where kinetic mainly accounts for peroxidases activity on one 

side and thermodynamic constraints determine which thiols will be reversed by 

thioredoxins system and which will not. 

This latter aspect is then finely regulated by the availability of reducing 

equivalents in the form of NADPH which will act on the reduction potential of the 

redox couple Trxreduced/Trxoxidized and in turn on which thiols will be reduced back 

and which will be kept oxidized. The rate-limiting enzyme of the pentose 

phosphate pathway glucose-6-phosphate dehydrogenase could then be viewed as 

the main responsible for NADPH redox status [Fig. 2.f]. 

 

Fig. 2.f Interplay of 

kinetic and 

thermodynamic 

criteria in regulation 

of oxidation/reduction 

rate. 
On the left side there are 

electrophiles (ROOH) with 

very high reduction potential  

pushing toward oxidation of 

protein cysteine-thiols 

characterized by lower 

reduction potential. 

Peroxidases and other 

scavenging systems in turn 

act kinetically by reducing 

electrophiles to ROH. 

Reduced to oxidized 

glutathione ratio 

(GSH/GSSG) on the other 

hand influences peroxidases 

activity. On the other side 

there is the thioredoxin system (TRX) which can reduce back all protein cysteine-thiols having 

higher reduction potential than that of the redox couple TRXred/TRXox. Both glutathione pool 

and thioredoxin reduction potential could be finely tuned acting on intracellular reducing 

equivalents in the form of NADPH. Simplified electron flows are represented by arrows and 

reductases systems (TRXR and GR) have been omitted. 
 

2.2.1 Electrophiles and nucleophiles formation 

 

In the previous section we have considered the rather complex system in which 

redox signalling should be viewed as the result of the interplay of “opposing 

tendencies” inside the cell: electrophiles on one side and nucleophiles on the 

other. Given a quite simplistic overview electrophiles could be defined as oxidants 

while nucleophiles act by favouring reduction rate inside the cell. The main 

reaction involved is nucleophilic substitution. In this section we will briefly 

consider the main sources of both these elements inside the cell. 
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Sources of biologically relevant ROS 

 

According to Kobayashi [Kobayashi et al., 2012] the term Reactive Oxygen 

Species (ROS) could be defined as a collective term for oxygen species that are 

more reactive than free oxygen. Superoxide, hydrogen peroxide, hydroxyl radical, 

and singlet oxygen comprise the main ROS. But broadly speaking, ROS also 

encompasses nitric oxide. Another author [Gupta et al., 2012] distinguishes ROS 

into two main types: the free oxygen radical and the non-radical. While free 

oxygen radical ROS contain one or more unpaired electron in their outer 

molecular orbital, the non-radical ROS lack unpaired electrons but are chemically 

reactive and can be converted to radical ROS. The sources of ROS are both 

extracellular and intracellular. Extracellular ROS con be found as pollutants, 

tobacco smoke, drugs, xenobiotics, or radiation. Inside the cell ROS are produced 

through multiple mechanisms: mitochondria, peroxisomes, endoplasmic reticulum 

and the NADPH oxidase complexes (NOX) in cell membranes [Fig. 2.g].  

 

 
 

Fig. 2.g Major intracellular sources of ROS. 
The main sources are mitochondria, peroxisomes, endoplasmic reticulum, and the NOX complex 

in cell membranes. DUOX = dual oxidase; ERO1 = endoplasmic reticulum oxidoreductin 1; ETC 

= electron transport chain; GPx = glutathione peroxidase; GR = glutathione reductase; GRX-(S)2 

oxidized glutaredoxin; GRX-(SH)2 = reduced glutaredoxin; GSH = glutathione; GSSG = 

glutathione oxidized; H2O2 = hydrogen peroxide; HO• = hydroxyl radical; HOCl = hypochlorous 

acid; MPO = myeloperoxidase; MPTP = mitochondrial permability transition pore; NADP
+
 = 

nicotinamide adenine dinucleotide phosphate oxidized; NADPH = nicotinamide adenine 

dinucleotide phosphate reduced; NO• = nitric oxide; NOX = NADPH oxidase; O2
-
 = superoxide 

radical; ONOO
-
 = peroxynitrite; PDI = protein disulfide isomerase; SOD = superoxide dismutase; 

TRX-(S)2 = oxidized thioredoxin; TRX-(SH)2 = reduced thioredoxin; XO = xanthine oxidase. 

[From Gupta et al., 2012] 
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Mitochondria house the electron transport chain, which transfers to oxygen 

electrons from NADH and succinate during respiratory ATP synthesis. The 

leakage of electrons from the electron transport chain during such process results 

in the reduction of molecular oxygen to superoxide [Murphy, 2009]. The 

mitochondrial permeability transition pore in the outer membrane of mitochondria 

allows leakage of superoxide into the cytoplasm. Superoxide is then dismutated 

into hydrogen peroxide either in the mitochondrial matrix (by Mn-SOD) or in the 

cytosol (by Cu-ZnSOD). H2O2, which is highly diffusible oxygen specie can be 

converted to water by catalase and peroxidases, or, in the presence of transition 

metals, it can be converted to highly reactive hydroxyl radicals. Moreover, 

superoxide can also react with the reactive nitric oxide (NO•) to form 

peroxynitrite (ONOO
-
). Another major source of ROS, in the form of superoxide 

or hydrogen peroxide, are NOX and its dual oxidase relatives (DUOX) [Lambeth, 

2004], which are localized to various cellular membranes. NOX system consists 

of NOX1, NOX2, NOX4, NOX5, p22
phox

, p47
phox

, and the small G protein Rac1. 

ROS are also generated in the endoplasmic reticulum during the process of protein 

folding and disulphide bond formation. The glycoprotein endoplasmic reticulum 

oxidoreductin 1, the protein disulphide isomerase, and NOX4 are the major 

sources of ROS in the endoplasmic reticulum [Gupta et al., 2012]. 

Antioxidant defense mechanisms 

 

Under normoxic conditions, intracellular levels of ROS are kept low to protect 

cells from damage. The formation of reactive oxygen and nitrogen species is 

balanced by the action of both enzymatic and non-enzymatic antioxidants. The 

most efficient enzymatic antioxidants involve superoxide dismutase, catalase and 

glutathione peroxidases. Instead non-enzymatic antioxidants encompass Vitamin 

C, Vitamin E, carotenoids, glutathione, lipoic acid, natural flavonoids, melatonin 

and other compounds [Valko et al., 2006 and references therein]. Moreover 

certain antioxidants are able to regenerate other antioxidants and thus restore their 

original function (antioxidant network). About the antioxidant network Bindoli et 

al. [Bindoli et al., 2008] talk out the concept of “cellular thiol redox state control 

by thioredoxin and glutathione system” which was first introduced to indicate the 

signalling action of the thioredoxin system on the thiol enzyme activity.  

The cellular thiol redox state is controlled by two major systems, the thioredoxin 

and glutathione systems, which are in close communication with hydrogen 

peroxide through peroxiredoxins and glutathione peroxidases, respectively [Fig. 

2.h]. They are present both in the cytosol and mitochondria and, in either systems, 

the reducing equivalents are fed by NADPH. Different pathways of NADP
+
 

reduction are operative in the cytosol and mitochondria. Whereas cytosolic 

NADP
+
 is reduced in the pentose phosphate pathway, in mitochondria, electrons 

are delivered through the various dehydrogenases coupled to the energy-linked 

transhydrogenase that catalyzes the transfer of reducing equivalents from NADH 
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to NADP
+
. Furthermore, the mitochondrial glutamate and isocitrate 

dehydrogenases, in addition to NAD
+
, use NADP

+
 for the oxidation of their 

respective substrates, providing a further source of NADPH. The thioredoxin 

system includes thioredoxin reductases (TrxR) and thioredoxins (Trx), which act 

sequentially in transferring electrons delivered by NADPH. Thioredoxins act as 

electron donors for a number of enzymes, such as ribonucleotide reductase, 

methionine sulfoxidereductase and peroxiredoxins which may be active as 

antioxidants by rapidly regulating the level of hydrogen peroxide [Bindoli et al., 

2008 and references therein]. On the other hand, glutathione is the predominant 

non-protein thiol in cells where it plays essential roles as an enzyme substrate ad a 

protecting agent against xenobiotics and oxidants. 

 

 
 

Fig. 2.h Reduction of hydrogen peroxide mediated by thioredoxin (A) and 

glutathione (B) pathways. 
Electrons are delivered by NADPH maintained reduced by the pentose phosphate pathway in the 

cytosol, and by the respiratory substrates in mitochondria. The proton-translocating 

transhydrogenase transfers electrons from NADH to NADP
+
 to form NADPH. Sulfenic and 

selenenic acid residues appears as key intermediates in the thioredoxin and glutathione pathways, 

respectively [From Bindoli et al., 2008] 

 

Glutathione, maintained in the reduced state by glutathione reductase, is able to 

transfer its reducing equivalents to several enzymes, such as glutathione 

peroxidases (GPx), glutathione transferases (GSTs) and glutaredoxins. Although 

thioredoxin and glutathione systems are apparently similar in their cellular 

functions as they both maintain a reduced environment by using NADPH as 

source of reducing equivalents, a major difference is represented by the cell 
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concentrations of glutathione that are far larger than that of thioredoxin. 

Nevertheless, the two systems operate independently, fulfilling different roles 

within the cell [Trotter et al., 2003]. 

 

2.2.2 Nrf2-Keap1 feedback loop 

 

Upon exposure of cells to oxidative stress or chemopreventive compounds, Nrf2 

translocates to the nucleus, forms a heterodimer with its obligatory partner Maf, 

and binds to the antioxidant response element (ARE) sequence to activate 

transcription of several different genes. The Nrf2 downstream genes reported by 

Lau et al [Lau et al., 2008] can be grouped into several categories, including (1) 

intracellular redox-balancing proteins: glutamate cysteine ligase (GCL), 

glutathione peroxidase (GPx), thioredoxin (Trx), thioredoxin reductase (TrxR), 

peroxiredoxin (Prx), and heme oxygenase-1 (HMOX-1) (2) phase II detoxifying 

enzymes: glutathione-S-transferase (GST), NADPH quinone oxidoreductase-1 

(NQO1), and UDP-glucuronosyltransferase (UGT), and (3) transporters: 

multidrug resistance-associated protein (MRP).  

 

 
 

Fig. 2.i Schematic model of Nrf2 regulation by Keap1. 
Keap1 is a key regulator of the Nrf2 signaling pathway and serves as a molecular switch to turn on 

and off the Nrf2-mediated antioxidant response. (I) The switch is in off position: under basal 

conditions, Keap1, functioning as an E3 ubiquitin ligase, constantly targets Nrf2 for ubiquitination 

and degradation. As a consequence, there are minimal levels of Nrf2. (II) The switch is turned on: 

oxidative stress or chemopreventive compounds inhibit activity of the Keap1-Cul3-Rbx1 E3 

ubiquitin ligase, resulting in increased levels of Nrf2 and activation of its downstream target genes. 
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(III) The switch is turned off again: Upon recovery of cellular redox homeostasis, Keap1 travels 

into the nucleus to remove Nrf2 from the ARE. The Nrf2- Keap1 complex is then transported out 

of the nucleus by the nuclear export sequence (NES) in Keap1. In the cytosol, the Nrf2-Keap1 

complex associates with the Cul3-Rbx1 core ubiquitin machinery, leading to degradation of Nrf2. 

For clarity, the constitutive cytoplasmic-nuclear shuttling of Nrf2, Keap1, and the complex is 

omitted. [From Lau et al., 2008] 

 

The primary function of intracellular redox-balancing proteins is to maintain 

cellular glutathione and Trx levels and reduce levels of reactive oxygen species. 

Phase II enzymes function in two aspects: (I) metabolize xenobiotics into less 

toxic forms, or (II) catalyse conjugation reactions to increase the solubility of 

xenobiotics, thereby, facilitating their elimination. Lastly, the main function of 

transporters is to control uptake and efflux of endogenous substances and 

xenobiotics. The majority of genes downstream of Nrf2 contain an ARE sequence 

in their promoter. The activity of Nrf2 is negatively regulated by Kelch-like ECH-

associated protein 1 (Keap1). It has been proposed that Keap1 acts as a molecular 

switch that is able to turn the Nrf2 signalling pathway on or off according to 

intracellular redox conditions. Serving as a molecular switch, Keap1 possesses 

dual functions: it is able to (I) “sense” changes in the redox homeostasis and (II) 

turn the Nrf2-mediated response on or off. Keap1 is rich in cysteine residues (27 

cysteine residues in human Keap1), which encodes the sensor mechanism. Under 

basal conditions, when redox homeostasis is maintained in cells, the molecular 

switch of Keap1 is in an “off” position. This is achieved through constant Keap1-

mediated degradation of Nrf2 by the ubiquitin-mediated proteasomal degradation 

system. Lau et al. propose a model of Keap1 functions in switching on/off the 

Nrf2 signaling pathway (Fig. 2.i). Under basal conditions, Keap1 switches the 

Nrf2 signalling pathway off and mantains low basal levels of Nrf2 by constantly 

targeting Nrf2 for ubiquitin-mediated protein degradation. When Keap1 senses an 

alteration in the redox balance, the cysteine residues in Keap1 are modified, 

resulting in a conformational change of the E3 ubiquitin ligase to a configuration 

not conducive for Nrf2 ubiquitination. Consequently, Nrf2 accumulates under 

oxidative conditions, which allows free Nrf2 to translocate to the nucleus and 

transcriptionally activate downstream genes by binding to the ARE sequences and 

switching the Nrf2 signalling pathway on. Upon recovery of the redox balance, 

Keap1 travels into the nucleus, where it causes dissociation of Nrf2 from the ARE 

sequence. Subsequently, Keap1 escorts Nrf2 out of the nucleus to the cytoplasmic 

Cul3-dependent E3 ubiquitin ligase machinery for degradation. Thus, a low level 

of Nrf2 is re-established, turning the Nrf2 signalling pathway off [Lau et al., 

2008]. 

 

Nrf2 in cancer prevention and promotion: dual roles of Nrf2 

 

In their work Lau et al. summarizes half a century of reports on the concept of 

chemoprevention through the use of dietary compounds or synthetic chemicals 

able to decrease or related to decrease of the incidence of cancer. Moreover, as 
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many of the compounds possessing chemopreventive activities are 

phytochemicals, many well studied chemopreventive compounds have been 

identified as Nrf2 inducers. Examples of potent Nrf2 inducers from plants include 

sulforaphane (cruciferous vegetables), curcumin (a widely used spice), 

epigallocatechin-3-gallate (EGCG) (green tea), resveratrol (grapes), caffeic acid 

phenethyl ester (conifer trees), wasabi (Japanese horseradish), cafestol and 

kahweol (coffee), cinnamonyl-based compounds (cinnamon), zerumbone (ginger), 

garlic organosulfur compounds (garlic), lycopene (tomato), carnosol (rosemany), 

and avicins (Bentham plant) [Lau et al., 2008 and references therein]. Definitely it 

has been reported that these compounds exert their chemopreventive activity by 

inducing the Nrf2-dependent adaptive response, including phase II detoxifying 

enzymes, antioxidants, and transporters that protect cells from carcinogenic 

insults. 

Nevertheless, during the last years literature on Nrf2 has revealed new data 

supporting a “dark” side of Nrf2 since it seems that this transcription factor 

protects not only normal cells from malignant transformation, but could also 

promote the survival of cancer cells. The first evidence indicating the involvement 

of Nrf2 in cancer promotion came from the finding that Nrf2 and GSTP1 were up-

regulated during development of hepatocellular carcinoma [Ikeda et al., 2004]. 

Many Keap1 mutations or loss of heterozygosity in the Keap1 locus have also 

been identified in lung cancer cell lines or cancer tissues. In both cases the result 

was inactivation of Keap1 or its reduced expression which consequently 

upregulated Nrf2 protein level and transactivation of its downstream genes, thus 

supporting a positive role of Nrf2 in tumorigenesis [Singh et al., 2006]. Another 

study from Kim et al. indicates that Nrf2 may be responsible for chemoresistence 

too. Indeed elevated expression of Nrf2 and its downstream genes, such as 

HMOX-1, Trx, Prx and GCL, have been associated to acquired resistance to 

tamoxifen in the breast cancer MCF-7 derived tamoxifen resistance cell line [Kim 

et al., 2008]. Moreover knockdown of Nrf2 with Nrf2-siRNA reversed tamoxifen 

resistance of this cell line. Investigating the molecular mechanism of acquired 

resistance to tamoxifen, many Nrf2 downstream genes have been shown to 

contribute to the observed Nrf2-dependent chemoresistance: those genes have the 

ability to function as antioxidants and detoxifying enzymes. Finally in vitro 

studies show that overexpression of Nrf2 can lead to the increased expression of 

several intracellular redox-balancing proteins, phase II detoxifying enzymes, and 

transporters, which can provide cancer cells with a growth advantage and cause 

resistance to chemotherapy. 

 

2.3 Events related to malignancy are redox regulated 

 

Because oxidants electrophiles influence the redox status, they can cause either 

cell proliferation or growth arrest and cell death [Valko et al., 2006]. According to 

numerous authors there are two main interpretations of the physiological role of 
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ROS in several aspects of intracellular signalling: while high concentrations of 

ROS cause cell death, the effects of ROS on cell proliferation occurred 

exclusively at low or transient concentrations of electrophiles. In fact low 

concentrations of superoxide radical and hydrogen peroxide stimulate 

proliferation and enhanced survival in a wide variety of cell types. On the other 

hand, excessive ROS production resulting in an overload of the thiol redox system 

causes the progressive inactivation of the anti-oxidant thiols containing proteins 

such that redox homeostasis becomes compromised. This represents and extreme 

situation, but according to Ralph et. al [Ralph et al., 2010] for H2O2 to serve as a 

signal by oxidative modifications to signalling proteins, by necessity it follows 

that ROS levels must be raised above a certain threshold steady-state level 

whereby the anti-oxidant cellular enzymes that otherwise counteract this build up 

become inhibited. Such a view is known as the “floodgate hypothesis”. 

Nevertheless redox signalling scenario is more complex as demonstrated by 

accumulating evidence over the past years from both in vitro and in vivo studies 

which indicated a role for ROS as a signalling mediator of angiogenesis and 

metastasis [Ushio-Fukai 2008/2010]. ROS has been shown to mediate these 

effects through induction of transcription factors and genes involved in 

angiogenesis and metastasis, two interrelated processes that represent the final, 

most devastating stage of malignancy. However, the role of ROS in modulating 

tumour cell metastasis and angiogenesis has seemed paradoxical: high ROS levels 

suppress tumour angiogenesis and metastasis by destroying cancer cells, whereas 

sub-optimal concentrations assist cancer cells in metastasizing. Also a variety of 

cytokines and growth factors that bind to receptors of different classes, such as 

receptor tyrosine kinases (RTKs), have been reported to generate ROS in 

nonphagocytic cells. The information is then transmitted via the activation of 

mitogen-activated protein kinases (MAPKs) signalling pathways. ROS production 

as a result of activated growth factor receptor signalling includes epidermal 

growth factor (EGF) receptor, platelet-derived growth factor (PDGF) receptor, 

vascular endothelial growth factor (VEGF) receptor, cytokine receptors (TNF-α 

and IFN-γ), and interleukin receptors (IL-1β) [Valko et al., 2006 and references 

therein]. It is generally accepted that ROS generated by these ligand/receptor-

initiated pathways can mediate important cellular functions such as proliferation 

and programmed cell death. Moreover, abnormalities in growth factor receptor 

functioning are closely associated with the development of many cancers. 

It turns out that events related to malignancy are redox regulated in many ways: 

from malignant transformation onset, to cancer cells survival/proliferation and 

metastasis and even to cell death by apoptosis necrosis, or autophagy. Indeed 

localization, timing, chemical identity, and intensity of electrophilic pulse will 

determine different effects. Mechanisms underlying such regulation are still 

almost unknown and we would like to summarize here the reached consensus: 

while malignancy onset is probably favoured by severe oxidative unbalance 

leading to spread damage to various cellular structures (DNA, lipids, proteins), 
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tumour cells survival, metastasising processes and acquisition of chemoresistence 

are instead the result of a more finely tuned dynamic equilibrium between 

coexisting pro-oxidant (electrophiles) and anti-oxidant (nucleophiles) stimuli. 

This is why ROS seem to play a “dual role” for cancer, since they can prompt 

survival as well as death signalling pathways in cancer cells. 

 

2.3.1 Oxidation 

 

DNA and lipids 

 

Pro-oxidant stimuli (electrophiles, see § 2.2.1) can affect various target 

biomolecules such as DNA, lipids or proteins. It has been estimated that one 

human cell is exposed to approximately 1.5*10
5
 oxidative hits a day from 

hydroxyl radicals and other such reactive species. Permanent modification of 

genetic material resulting from this “oxidative damage” represents the first step 

involved in mutagenesis, carcinogenesis and ageing. Carcinogenesis is associated 

with arrest or induction of transcription, induction of signal transduction 

pathways, replication errors and genomic instability, all of which can be caused 

by DNA damage. The hydroxyl radical is able to add to double bonds of DNA 

bases at a second-order rate constant in the range of 3-10*10
9
 M

-1
 s

-1
 and it 

abstracts an H-atom from the methyl group of thymine and each of the five carbon 

atoms of 2’ deoxyribose at a rate constant of approximately 2*10
9
 M

-1
 s

-1
 [Valko 

et al., 2006 and references therein]. An example of oxidative damage of DNA is 

the formation of 8-hydroxyguanine (8-OH-G) the presence of which has first been 

reported in urine by Shigenaga et al. [Shigenaga et al., 1989]. Tobacco smoking, a 

carcinogenic source of ROS, increases the oxidative DNA damage rate by 35-

50%, as estimated from the urinary excretion of 8-OH-G, and the level of 8-OH-G 

in leukocytes by 25-50% [Valko et al., 2006]. In addition to the extensive studies 

devoted to the role of oxidative nuclear DNA damage in neoplasia, evidence 

exists about the involvement of the mitochondrial oxidative DNA damage in the 

carcinogenesis. The mitochondrial genome in human cells is small (16596 base 

pairs (bp)) compared to the nuclear DNA although every mitochondrion contains 

between 2 and 20 copies of mitochondrial DNA (mtDNA) and the copy number 

of mitochondrial genomes per cell ranges from several hundreds to more than 

10000 depending on the cell type (typically around 1000 mitochondria per cell). 

Moreover different mtDNA content has been reported in cancer cells and the 

relationship of mtDNA copy number to oxidative stress and changes in ROS 

production taking place during the onset of malignancy has been outlined by 

Ralph and co-workers [Ralph et al., 2010]. Indeed it was proposed that mtDNA 

copy number was increased by a feedback mechanism that compensated for any 

defects in those mitochondria with mutated mtDNA and defective respiratory 

systems. Moreover the age-associated increased production of O2
-
 and H2O2 in 

cells was one of the factors involved in this regulation process. In conclusion, as 
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observed with oxidative genomic DNA modification, oxidative damage and the 

induction of mutation in mtDNA may participate at multiple stages of the process 

of carcinogenesis, involving mitochondria-derived ROS and induction of 

mutations in mitochondrial genes. 

It is know that metal-induced generation of oxygen radicals results in the attack of 

not only DNA in the cell nucleus, but also other cellular components involving 

polyunsaturated fatty acid residues of phospholipids which are extremely sensitive 

to oxidation [Valko et al., 2006 and references therein]. Several experimental 

models of iron overload in vivo, confirmed increased polyunsaturated fatty acids 

(PUFA) oxidation of hepatic mitochondria, as well as lysosomal fragility. The 

deleterious process of the peroxidation of lipids is also very important in 

arteriosclerosis, cancer and inflammation. The overall process of lipid 

peroxidation consists of three stages; initiation, propagation and termination. It’s 

full discussion is outside the topics of this thesis and here it is sufficient to say that 

among final products of the peroxidation process there are aldehydes among 

which the most relevant is 4-hydroxy-2-nonenal (HNE). Malondialdehyde (MDA) 

is mutagenic in bacterial and mammalian cells and carcinogenic in rats. 

Hydroxynonenal is weakly mutagenic but appears to be the major toxic product of 

lipid peroxidation. In addition, HNE has powerful effects on signal transduction 

pathways, which in turn have a major effect on the phenotypic characteristics of 

cells. 

 

Proteins 

 

Mechanisms involved in the oxidation of proteins by ROS were elucidated by 

studies in which amino acids, simple peptides and proteins were exposed to 

ionising radiations under conditions where hydroxyl radicals or a mixture of 

hydroxyl/superoxide radicals are formed. The results of these studies 

demonstrated that reaction with hydroxyl radicals lead to abstraction of a 

hydrogen atom from the protein polypeptide backbone to form a carbon-centred 

radical, which under aerobic conditions reacts readily with dioxygen to form 

peroxyl radicals. The peroxyl radicals are then converted to the alkyl peroxides by 

reactions with the protonated form of superoxide HO2•. In the absence of 

radiation, proteins are resistant to damage by H2O2 and by other simple oxidants 

unless transition metals are present. Indeed it is believed that the iron(II) binds 

both to high and low-affinity metal-binding sites on the protein. The Fe(II)-protein 

complex reacts with H2O2 via the Fenton reaction to yield an active oxygen 

species at the site. While it has been proposed by many authors that the hydroxyl 

radical represents the major species responsible for the oxidation of proteins, clear 

experimental evidence is still missing. 

Besides radicals initiated reactions and transition metals “assisted” oxidative 

damage of proteins we have seen above that there are many proteins bearing so-

called redox switches: such redox sensible cysteine-residue thiols should be 
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considered the preferred target for reversible oxidative modifications underlying 

redox signalling. The ability to “sense” even humble variations in electrophilic 

tone and to readily react with mild-oxidizing non-specific molecules like H2O2 

made such proteins ideal players as signal sensors, transducers and effectors as 

well. Indeed low concentrations of hydrogen peroxide can regulate cytosolic 

calcium concentration, protein phosphorylation and transcription factors 

activation leading to different cell fates (survival, proliferation, death). 

 

Non receptor tyrosine kinases (PTKs): Src 

 

Several non-receptor protein kinases belonging to the Src family (src kinases) and 

Janus kinase (JAK) are also activated by ROS [Esposito et al., 2003]. For example 

H2O2 and O2
-
• induce tyrosine phosphorylation of several PTKs in different cell 

types, including fibroblasts, T and B lymphocytes, macrophages and myeloid 

cells. Activated Src binds to cell membranes by myristilation and initiates MAPK, 

NF-κB and phosphoinositide 3-kinase (PI3K) signalling pathways [Valko et al., 

2006]. Moreover is has been demonstrated [Zhang et al., 2012] that Src could be 

activated by cigarette smokes extracts in human non-small cell lung carcinoma 

cell line (H358) by redox modification. Activated Src (increased Tyr418 

phosphorylation) initiates in turn the epithelial-mesenchymal transition, a well 

characterized process implicated in the pathogenesis of lung fibrosis and cancer 

matastasis. 

 

Rat Sarcoma genes product (Ras) and the Raf/MEK/ERK pathway 

 

Ras gene products are membrane-bound G proteins whose main function is to 

regulate cell growth and oppose apoptotic effects. Ras is activated by ROS as well 

as by UV radiation (which is also know to start ROS production through radical 

formation), by metals and mitogenic stimuli [Valko et al., 2006]. Inactive Ras 

could be induced to exchange GDP for GTP undergoing a conformational change 

and becoming active. The GTP bound active Ras can then recruit Raf to cell 

membrane. Activated Raf could in turn regulate Mitogen-activated protein 

kinase/ERK kinase (MEK1) activation via phosphorylation of its S residue on 

catalytic domain. The main target of MEK is then extracellular-signal-regulated 

kinases (ERK) the activity of which is positively regulated by MEK mediated 

phosphorylation. Activated ERK could directly phosphorylate many transcription 

factors including c-Jun and c-Myc. Moreover, through an indirect mechanism, 

ERK can lead to activation of the nuclear factor immunoglobulin κ chain 

anhancer-B cell (Nf-κB) transcription factor. From a wider point of view the 

Ras/Raf/MEK/ERK pathway is responsible for coupling signals from cell surface 

to transcription factors and can definitely lead to an anti-apoptotic response via 

phosphorylation of the anti-apoptotic protein McL-1 and the pro-apoptotic protein 

Bim which becomes ubiquitinated and targeted to proteasome. However 
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phosphorylation of Bim by another MAPK, c-jun-NH2-terminal kinase (JNK) can 

instead result in apoptosis due to stimulation of the pro-apoptotic protein Bax:Bax 

interaction. Thus ROS can influence Ras/Raf/MEK/ERK pathway in many ways, 

one we have seen is the activation of Ras, but ROS could as well activate 

receptors like EGFR and PDGF receptor by a ligand independent mechanism 

[McCubrey et al., 2009]. On the same way ROS seems to activate the JNK 

pathway through the apoptosis signal related kinase 1 (ASK1): reduced 

thioredoxin binds to the N-terminal of ASK1 inhibiting its activity, upon oxidative 

stress thioredoxin becomes oxidized and disassociates from ASK1 which in turn 

oligomerize, auto-phosphorylate, and become activated [Saitoh et al., 1998]. 

 

PI3K/AKT pathway and protein tyrosine phosphatases: PTP1B and PTEN 

 

The family of phosphoinositide 3'-kinases (PI3K) consists of several structurally 

related enzymes catalyzing the phosphorylation of inositol phospholipids in the 

3’-position, thus generating phosphatidylinositol-3’-phosphate (PIP), 

phosphatidylinositol-3’,4’-bisphosphate (PIP2) and phosphatidylinositol-3’,4’,5’-

trisphosphate (PIP3) [Foster et al., 2003]. The classical (class Ia) PI3K is made of 

heterodimers consisting of a catalytical (p110) and a regulatory (p85 or p55) 

subunit, that are typically activated via receptor tyrosine kinases (RTK) after 

stimulation of cells with growth factors. Generation of 3’-phospoinositides results 

in recruitment of the 3’-phosphoinositide-dependent kinases (PDK1 and the 

putative PDK2) to the cell membrane and consecutive activation of the serine-

/threonine kinase Akt(protein kinase B, PKB) by phosphorylation at Thr308 and 

Ser473. Akt can be regarded as a master switch of the cell integrating incoming 

signals on cell growth, apoptosis and metabolism. For example, activation of Akt 

results in a direct phosphorylation and consecutive inhibition of the pro-apoptotic 

factor Bad [Franke et al., 1997]. The anti-apoptotic effects of Akt may also be 

mediated via activation of the transcription factor NF-κB by an interaction of Akt 

with IκB kinase (IKK). Activation of this kinase by Akt stimulates degradation of 

IκBα, a potent repressor of NF-κB [Romashkova et al., 1999]. Moreover PI3K-

dependent inactivation of FoxO1, a member of the FoxO-family of Akt directly 

targeted transcription factors, results in cell cycle progression. An important 

antagonist of PI3K is phosphatase and tensin homolog deleted on chromosome 10 

(PTEN), a lipid phosphatase that cleaves off the 3’-phosphate from PIP, PIP2 and 

PIP3, thereby inactivating the lipid products of PI3K [Barthel et al., 2007]. The 

PI3K/Akt cascade is modulated also by the PTP-ases like phosphatasePTP1B, 

which is able to reverse receptor tyrosine kinases tyr-phosphorylation thereby 

avoiding PI3K activation. From a wider point of view, PI3K/Akt pathway 

definitely leads to cell proliferation and prevention of apoptosis and is regulated 

positively by Ras (see above) and negatively by PTEN and PTP1B [Chang et al., 

2003; Gao et al., 2009]. 
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Protein tyrosine phosphatases are probably the best-characterised direct target of 

ROS. It has been shown that inhibition of PTPs by ROS may directly trigger 

PTKs and we have seen that PTPs and PTKs act in conjunction to control cell 

cycle and signal transduction by regulating levels of protein tyrosine 

phosphorylation in response to cellular signals. The effects of ROS occur through 

targeting the cysteine residues of the active sites of tyrosine phosphatases as 

demonstrated by Barrett [Barrett et al., 1999]. Protein tyrosine phosphatase 1B 

(PTP1B) Cys215 has indeed been demonstrated to form both sulfenic acid 

derivative and mixed disulfide with glutathione. Active site Cys215 residue 

glutathionilation (by treatment with diamide and reduced glutathione or with only 

glutathione disulfide) inactivates PTP1B while dithiothreitol or glutaredoxin (a 

glutathione-specific dethiolase enzyme thioltransferase) are able to recover 

phosphatase activity. It is then clear how ROS could interconnect at various level 

both Raf/MEK/ERK pathway and PI3K/AKT pathway leading to different cell 

fate like proliferation or cell death. 

 

2.3.2 Reduction 

 

As seen above (see § 2.3) the role of oxidation/reduction rate on intracellular 

signalling is performed by both unspecific signals (e.g. – electrophiles) and 

specific signal transducers/effectors bearing redox switches (e.g. – phosphatases, 

kinases, transcription factors). Thus the concomitant action of cellular scavenging 

systems (e.g. – nucleophile tone: peroxidases, glutathione, reductase) and 

electrophile tone (e.g. – mitochondrial electron transport chain (ETC) and NOX 

superoxide production) defines an equilibrium in which both pro-oxidant and anti-

oxidant signals coexist. Indeed in addition to their role in promoting cellular 

proliferation or inhibiting apoptosis (see above Raf/MEK/ERK and PI3K/AKT 

pathways) ROS have many functions also in tumour cell death and negative 

transcription factors regulation [Gupta et al., 2012]. One of the chief 

characteristics of cancer cells is their inherent capacity to survive and it has been 

demonstrated that ROS have effects on apoptosis [Ozben, 2007]. Apoptosis is a 

tightly controlled form of cell death and can be initiated by death receptors 

(extrinsic pathway) or through mitochondria (intrinsic pathways). ROS control 

both extrinsic and intrinsic pathway. In the extrinsic pathway ROS are generated 

by Fas ligand as an upstream event for Fas activation. In turn, ROS are required 

for Fas phosphorylation, which is a signal for subsequent recruitment of Fas-

associated protein with death domain and caspase 8 and for apoptosis induction 

[Denning et al., 1992]. In contrast the intrinsic pathway of apoptosis is 

characterized by the opening of the permeability transition pore complex on the 

mitochondrial membrane, which results in cytochrome c release, apoptosome 

formation, and caspase activation. ROS function to open the pore by both 

activating pore-destabilizing proteins (Bcl-2 associated X protein, Bcl-2 

homologous antagonist/killer) and inhibiting pore-stabilizing proteins (Bcl-2 and 
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Bcl-xL) [Martindale et al., 2002]. In his review on the “dual role of ROS for 

cancer” Gupta also quote many sources of examples of apoptosis induction by 

exogenous administration of H2O2 in lymphoma cells, bladder cancer cells, 

hepatoma cells, leukemia cells, osteosarcoma, breast and lung cancer cells [Gupta 

et al., 2012 and references therein]. Numerous agents have been shown to induce 

ROS and apoptosis in various cancer types. The most common signalling 

molecules modulated by ROS in these cell models are kinases, pro-inflammatory 

transcription factors such as NF-κB, caspases, cell survival proteins, pro-apoptotic 

proteins, and phosphatases like the already mentioned PTEN. Many authors still 

share the floodgate-like hypothesis (see above) by virtue of which the 

survival/proliferation/death fate of the cell is dependent mainly on the intensity 

and duration of pro-oxidant stimulus: here we would like to sustain the possibility 

of a dynamic equilibrium in the context of which specific targets could be kept 

oxidized while maintaining an overall nucleophile tone thus conferring to the cell 

both advantages of pro-survival signals and death-escape signals. As an example, 

the transcription factor activator protein-1 (AP-1) is induced by treatment of cells 

with H2O2, but its activity is directly regulated by redox in the opposite manner. 

Indeed, the activity of AP-1 has been revealed to be regulated through the 

conserved cysteine residues that are located in the DNA-binding domain of each 

of its two dimer subunits (oncongene products Jun/Fos or Jun/Jun): modification 

of these residues by a sulphydryl modifying agent, such as N-ethylmaleimide 

(NEM) or diamide, reduce its activity, whereas treatment with reductants, such as 

dithiothreitol (DTT), enhance DNA binding. Similarly the DNA-binding activity 

of NF-κB, which induces immune response, stress response, cell growth and cell 

survival gene expression, is inactivated by treatment with NEM and diamide 

while DTT and β-mercaptoethanol enhance its DNA binding. Finally it has been 

discovered that also the tumour suppressor gene p53 receives more complicated 

redox regulation through many cysteine residues: indeed also in this case 

treatment with diamide or NEM disrupts wild-type p53 conformation and inhibits 

its DNA-binding activity [Kamata et al., 1999 and references therein]. 

ROS mediated activation of Src has also been associated to activation of EGFR 

via ligand-independent phosphorylation. Redox-dependent activation of EGFR in 

turn activates both extracellular signal-regulated protein kinase and Akt 

downstream signalling pathwas, culminating in degradation of the pro-apoptotic 

protein Bim. These results highlighted a fundamental role of ROS in ensuring 

protection from the apoptotic process induced by the loss of integrin-mediated 

cell-extra cellular matrix (ECM) contact. Proper attachment to the ECM is 

essential for cell survival and such ECM-contact induced apoptotic process has 

been called anoikis [Giannoni et al., 2008]. 
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2.3.3 Localization 

 

GSH/GSSG redox potential in cellular compartments 

 

We have already seen (§ 2.2.1) two main intracellular sources of pro-oxidant 

species: mitochondrial ETC and membrane NOX. On the other hand the 

compartimentalization of peroxide-metabolizing systems within peroxisomes has 

long been recognized to provide a means to utilize hydrogen peroxide as a 

metabolic reagent while at the same time protect redox-sensitive cell components 

in other cell compartments from oxidative damage. Moreover unique redox 

characteristics have evolved with each of the major compartments in mammalian 

cells. Mitochondria are the most redox-active compartment of mammalian cells, 

accounting for more than 90% of electron transfer to O2 as the terminal electron 

acceptor and ROS such as O2
-
• and its dismutation product H2O2 are derived from 

several sources in mitochondria. Indeed complexes I and III within the ETC are 

the main sites of electron transfer to O2 to produce O2
-
•. In addition to the electron 

transport chain, mitochondrial ROS may also be generated by pyruvate, α-

ketoglutarate dehydrogenase, glycerol-3-phosphate dehydrogenase, and 

monoamine oxidase. The redox potential of mitochondrial GSH/GSSG, is about -

280 mV. This value is more reduced than cytoplasmic values (-200 mV) 

indicating that the mitochondrial GSH/GSSG redox status is more reduced than 

total cellular GSH/GSSH [Go et al., 2008 and references therein]. The 

GSH/GSSG redox potential in mitochondria is in turn dependent upon 

concentrations of GSH and GSSG. Thus because mitochondrial GSH is not 

synthesized in mitochondria, it must rely on synthesis in the cytoplasm and 

subsequent transport into mitochondria. Finally, in apoptosis, oxidation of 

mitochondrial GSH/GSSG stimulates cytochrome c release, and GSH depletion 

resulted in increased ROS which was generated from complex III, suggesting a 

role for GSH in controlling mitochondrial ROS generation. We have seen so far 

that ROS serve as messengers in cell signalling but also cause oxidative damage 

to macromolecules, including DNA damage. Sequestration of DNA within nuclei 

protects the genome from reactive chemicals generated in other parts of the cells; 

however H2O2 and organic hydroperoxides, can diffuse across membranes, thus 

posing a potential damage from normal signalling events. Nevertheless, similar to 

other organelles, nuclei also contain two major antioxidant systems dependent 

upon GSH and Trx1. Data reported by Go et al. [Go et al., 2008] show that the 

GSH/GSSG redox potential is likely to be more reduced in nuclei than in 

cytoplasm and that protein S-glutathionylation is independently controlled in the 

cytoplasmic and nuclear compartment. As for the redox status of cytoplasm it has 

been measured using cytosolic Trx1 and GSH/GSSG. The total cellular 

GSH/GSSG couple largely represents the cytoplasmic GSH/GSSG pool, even if 

some misleading contribution from more negative organelles has been already 

reported. Nevertheless the standard redox potential E
θ
red for the active site 



 
38 

dithiol/disulfide couple of Trx1 was estimated to be -230 mV [Watson et al., 

2003]. Using this value and measuring the percentage reduction with a redox 

western blot [Watson et al., 2003], cellular Trx1 has a Ered of -280 mV. Moreover, 

in a study on the increase of ROS which accompanies EGF binding to its receptor, 

it has been shown [Halvey et al., 2005] that nuclear Trx1, mitochondrial Trx2, and 

cellular GSH did not show any significant oxidation following EGF stimulation 

while cytoplasmic Trx1 was oxidized. These findings demonstrated that 

physiologic stimulation at the plasma membrane can cause the oxidation of 

specific redox couples in the cytoplasm without affecting other subcellular 

compartments. Thus as far we could generalize mitochondria as a compartment 

utilizing oxidations for energy conversion, and the endoplasmic reticulum (ER) in 

different cell types is specialized with different oxidative functions. In addition to 

these more specialized oxidative functions, the ER has a more general oxidative 

function to introduce structural disulfides in protein folding for membranal and 

exported proteins: central redox proteins for these functions include the 

endoplasmic reticulum oxidase-1 (Ero-1) and protein disulfideisomerase (PDI). 

The GSH/GSSG ratio in the ER varies between 3/1 and 1/1 and is considerably 

more oxidized tha cytoplasmic GSH/GSSG ratio (30/1 to 100/1). Based upon 

these values the ER redox potential has been estimated to be -189 mV, which is 

relatively oxidizing compared to other cellular compartments. Indeed a significant 

amount of GSH in the ER was detected as protein mixed disulfides, and regulates 

the activity of redox-active thiol containing proteins [Cuozzo et al., 1999]. 

 

Redox regulation of cell migration and adhesion 

 

In a recent work Hurd and co-workers pointed out another interesting aspect of 

redox driven cell-signalling: the regulation of migrating cell movement and non-

migrating cell matrix and cell-cell interactions. Movement and migration are 

crucial during organism developmental phases but they also play important roles 

in pathological processes such as cancer metastatization. Indeed, developmental 

migratory programs can be inappropriately reactivated in metastatic cancer. In 

both cases gradients of attractive and repulsive cues are used to direct cell 

migration. Those extracellular signals are first received by receptors on the 

surface of migrating cells, and intracellular transduction of such signal direct 

migration by changing cellular cytoskeletal and adhesive properties for example. 

It has been reported that H2O2 could be used to relay signals from activated cell 

surface receptors to direct changes necessary for cell movement thus 

“intrinsically” promoting movement [Hurd et al., 2012].Upon binding of growth 

factors and chemoattractants to cell surface receptors, NOXs produce superoxide 

or hydrogen peroxide in the extracellular or luminal space, and for ROS to 

transduce signals they must first be internalized into the cytoplasm of the cell. 

Once inside the cell, NOX generated hydrogen peroxide can act as a redox signal 

by reversibly modifying the activity of specific proteins, as we have seen above 
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often by oxidizing responsive thiols on cysteine residues. Moreover if proteins 

such as Prx are used to relay redox signals from NOX to target proteins, 

specificity can be obtained through protein-protein interactions between the 

relaying protein and its target. But given the abundance of enzymes such as Prx, 

which is able to terminate the signal as well, H2O2 accumulation turns out to be a 

critical issue. Evidences suggest that localized inactivation of antioxidant 

enzymes, such as Prx1, allows for transient accumulation of hydrogen peroxide 

around membranes, where signalling components are concentrated [Woo et al., 

2010]. Indeed, treatment of different cell types with ROS degrading enzymes is 

able to suppress their migration towards growth factors and chemoattractants. 

Definitely, due to their diffusibility, their short-lived nature, and the abundance of 

ROS-degrading enzymes, localized production of ROS by NOXs is probably 

necessary for efficient signal transduction. 

 

Fig. 2.l The 

mechanism by which 

ROS are generated 

and act within 

endothelial-derived 

cells to promote 

migration.  
During cell migration, 

NOX2, p47
phox

 and 

probably other NADPH 

oxidase subunits are 

targeted to the leading edge 

of the cell, where they 

generate superoxide in a 

Rac1- and PAK1-

dependent manner. 

Superoxide is produced 

into the extracellular or 

luminal space, where it is 

converted to hydrogen 

peroxide by SOD and 

enters into the cytoplasm of 

the cell. Intracellular 

hydrogen peroxide then 

oxidizes proteins such as 

PTPs (possibly directly or 

through other thiol 

proteins) to promote 

migration. [From Hurd et 

al., 2012] 

 

Thus it is clear that localized inactivation of cellular signal-switch off mechanisms 

is required in order to allow pro-oxidant molecules to act in redox signalling. 

Nevertheless localized production of hydrogen peroxide seems to be another 

mechanism to transduce signals only in specific cellular compartments. Indeed in 

vivo studies have suggested that NOX2 derived ROS also play an important role 
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in cell migration during the formation of new blood vessels after tissue ischemia 

[Hurd et al., 2012] and in vitro studies show that production of ROS in migrating 

endothelial-derived cells is probably spatially and functionally coordinated at the 

leading edge to promote directional cell migration (fig. 2.l). On the other hand, 

PTPs negatively regulate cell migration by dephosphorylating and inactivating 

proteins that promote migration. We have seen that PTPs have an active-site 

cysteine with suitable characteristics to act as a redox switch (H2O2 oxidation-

dependent reversible enzyme inhibition), but it is also known that PTPs reaction 

rate with hydrogen peroxide makes it unlikely that these enzymes can compete for 

H2O2 in vivo. So both co-localization of PTPs with NOXs and indirect PTPs 

oxidation via another thiol protein such as Prx, might facilitate PTP oxidative 

inactivation, thus favouring migration.  

Moreover, in addition to their role in regulating migration in migrating-cells, ROS 

seem able also to mediate changes in non-migrating cells. This is the case of those 

cells which permits motile cells to bind and penetrate tissues, like vascular 

mammalian endothelial cells and leukocyte shuttling between the bloodstream and 

interstitial tissues. ROS were first suggested to play a role in this process when it 

was noted that treatment of endothelial cell cultures with moderate to high 

(100μM to 5mM) concentrations of hydrogen peroxide induced cell surface 

expression of the adhesion molecule 1 (ICAM-1) and P-selectin and increased the 

binding of polymorphonuclear leukocytes (PMNs) to endothelial cells [Patel et al., 

1991]. It was also demonstrated that various cytokines (TNF-α, TNF.related 

activation-induced cytokine TRANCE and visfatin) increase cell surface 

expression of adhesion molecules through a transient increase in ROS levels in 

endothelial cells. Furthermore, inhibition of NOX attenuated this increase in ROS 

levels, thus sustaining the hypothesis of NOX-mediated redox signalling 

transduction. The mechanism of adhesion molecule promotion by ROS is not yet 

clear, but some authors reported in Hurd [Hurd et al., 2012] proposed that this 

could be achieved through activation of the transcription factor NF-κB. Finally, in 

addition to influencing cell-cell adhesion through adherens junctions, Hurd reports 

a role for ROS also in cell-matrix interactions. Indeed ROS seem to affect cell-cell 

and cell-matrix adhesion by altering the cell surface expression of integrins and 

cell adhesion molecules such as vascular cell adhesion molecule 1 (VCAM-1), 

and decreasing adherens junction components. 

 

2.4 Methodological approach: traditional and innovative methods 

for disulfide bonds assessment 

 

Referring to the steps traditionally involved in disulfide bonds determination they 

are: (1) fragmentation of the non-reduced protein of interest into disulfide-linked 

peptides with cleavages between all half-cystine residues, if possible, and under 

conditions that avoid rearrangement (interchange) of disulfide bonds; (2) 

separation of disulfide-linked peptides from one another; (3) 
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location/identification of disulfide-linked peptides in various separated fractions; 

(4) fragmentation of the disulfide linked peptides at the disulfide bond; and (5) 

isolation and characterization of the half-cystinyl products of the disulfide 

cleavage reaction. These early studies also provided insights into the experimental 

conditions required for disulfide bond determination. Indeed, it was observed that 

disulfide bond rearrangement could be promoted by strong acids, by the presence 

of thiols at neutral pH, and by thiols produced by hydrolytic cleavage of disulfide 

bonds at neutral and alkaline pH (Disulfide interchange was in fact noted under 

the conditions of enzymatic cleavage at slightly alkaline pH) [Gorman et al. 2002 

and references therein]. Consequently, chemical and enzymatic protein cleavage 

methods like dilute acids and/or cyanogen bromide or pepsin are preferred. 

Moreover also downstream analytical technologies that require disulfide-linked 

fragments to be isolated for defining linkages (e.g. - amino acid analysis or 

Edman degradation) are highly dependent on purification strategies. As reviewed 

by Gorman et al. cation-exchange HPLC has been used to isolate disulfide-linked 

peptides due to the greater retention on cation-exchange media than single-chain 

peptides due to relative differences in cationic properties of these classes of 

peptides at acidic pH. Another elegant method for identification of disulfide-

linked peptides and isolation of the component half-cystinyl peptides for analysis 

involved diagonal peptide mapping by paper electrophoresis. This technique 

involved: (1) cleavage of the non-reduced protein with pepsin; (2) separation of 

the disulfide-linked peptides by one dimension of paper electrophoresis at acid 

pH; (3) exposure of the original electrophoretogram to performic acid vapor; and 

(4) a second dimension of separation by paper electrophoresis at right angles to 

the initial direction of separation. Performic acid cleaves disulfide bonds, and 

converts the half-cystine residues into highly negatively charged cysteic acids (ie 

– sulphonic acid RSO3H). Thus, peptides not affected by performic acid migrated 

in a diagonal fashion after the combined electrophoretic steps, and peptides with 

disulfides prior to performic acid oxidation migrated off the diagonal. Peptides 

that were paired by inter-chain disulfide linkages prior to oxidative cleavage 

migrated with a vertical orientation to each other.All approaches mentioned so far 

are quite complex and time consuming anyway and today they are progressively 

substituted by modern mass spectrometry (MS) based technology. The potential 

for MS to facilitate the determination of disulfide bond linkages in proteins was 

realized with the advent of reliable methods for ionization of peptides and proteins 

(fast atom bombardment FAB, laser desorption ionization LDI, electrospray 

ionization ESI) together with the development of instruments suitable for analysis 

of relatively small quantities of proteins and peptides with good resolution ad 

accuracy in a reasonable mass range. With respect to traditional methods, in case 

of MS approach to disulfide bonds identification separation and analysis are done 

simultaneously in the mass spectrometer. When a protein potentially containing 

one (or more) disulfide bonds is in its oxidized form, proteolysis produces either 

single fragments containing the disulfide as intra-chain linkage or multiple 
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fragments still linked to each other by the disulfide bond. In both cases a new 

peptide with a mass 2 a.m.u. (atomic mass units) lower than the mass of either the 

reduces peptide or the sum of two peptides suggests an identification that could be 

validated by MS/MS (tandem mass spectrometry) sequencing [Mauri et al. 2010]. 

Of course the issue of disulfide reshuffling during sample preparation, i.e. 

especially during proteolytic digestion is still pressing and this is really true if we 

consider trypsin as the most specific and standardized endoprotease used in 

proteomics, both because of the reproducibility of its digestion pattern (arginine 

and lysine residues are commonly always present in a reasonable amount in 

almost any protein) and because of the advantage got from ionization of peptides 

containing basic residues at their carboxyl-terminal ends. Indeed trypsin works 

best at alkaline pH, where dissociated cys-thiols (thiolates) could account for 

disulfide reshuffling by means of a nucleophilic attack of thiolate on disulfide. 

 

2.4.1 Disulfide proteome of complex samples 

 

Thus, given interest in the identification of proteins with redox-active cysteines, in 

the past decade proteomic approaches that aimed at large-scale identification of 

proteins with modified cysteines have provided tools for unraveling new redox-

regulated processes. Such studies have often been pointed out as searches for the 

“redoxome” or more restrictively “disulfide proteome”. The term disulfide 

proteome might be used in the strict sense as a set of proteins containing disulfide 

bonds. However, it is often understood implicitly that the disulfide subproteome 

of interest consists of those proteins containing disulfides, which are susceptible 

to reduction by oxido-reductases (so not the structural ones). Otherwise disulfide 

proteomes have also been widely defined as sets of proteins that contain cysteines, 

which exhibit any kind of change in their redox state or “reactive cysteine 

proteome”.The reactive nature of cysteine thiols is an experimental challenge 

when determining the oxidation status of cysteines in proteins. Indeed in samples 

from tissues or cell cultures, post-lysis thiol-disulfide exchange between proteins 

may lead to misinterpretation of data and, if molecular oxygen is present in the 

buffers together with transition metals, oxidation of thiols may also occur during 

isolation. Hence, one of the critical steps when working in redox biochemistry is 

to trap the thiol-disulfide status in the sample. This is usually achieved by either 

acidification followed by alkylation or by direct alkylation of free thiols both 

during cell lysis and immediately after. Generally speaking, different approaches 

share the common principle of “differential thiols probing”, namely after the first 

trapping with a first labeling reagent, oxidized thiols (e.g. disulfides not reacted 

with the probe) are subsequently reduced and then blocked by a second labeling 

reagent. Of course the two probes should be different and somehow 

distinguishable from each other: some often used compounds are N-

ethylmaleimide (NEM), iodoacetamide (IAM), iodoacetic acid (IA) possibly 

joined to reagents allowing for fluorescence, radioactivity, or differential mass 
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tags detection (fluorophores or isotopes). On the other hand di-thiothreitol (DTT), 

β-Mercaptoethanol or Tris-Carboxy-ethyl-phosphine (TCEP) are often used as 

reducing agents. Probes with some specificity for Cys-SOH exist too, like 

dimedone or even bi-functional probes potentially able to react with both Cys 

involved in a disulfide, like dibromomaleimides. Probes could also be divided 

summarily into reversible tags or irreversible tags and could even be joined to 

functional groups like biotin molecule allowing for affinity enrichment or fishing 

of protein thiols of interest. Other known techniques aimed at the enrichment in 

proteins containing reactive cysteine thiols are the activated thiols sepharose 

(ATS) or Trx affinity chromatography. As for detection methods, the two main 

fields we would like to consider here are the gel based non-reducing/reducing 

diagonal electrophoresis and 2D-redox-DIGE (two dimensional redox differential 

gel electrophoresis) and the mass spectrometry (MS)-based detection of proteins 

with reactive disulfides. The latter approach is greatly affected by difficulties in 

analyzing disulfide peptides by tandem mass spectrometry (MS/MS) especially 

when complex samples are to be analyzed. Strong development of software tools 

might then facilitate the interpretation of MS/MS spectra of disulfide linked 

peptides. On the other hand, if we consider MS based method in the more 

comprehensive context of differential labeling approach, it is possible to outline 

labeling methodologies like cleavable isotope coded affinity tagging (cICAT) in 

its forward and reverse approach and also the so called oxidative ICAT (oxICAT). 
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3. MATHERIALS AND METHODS 

 

3.1 Cell cultures 

 

Ras-transformed MCF10A-T1k cells (hereafter named M2) - an isogenic 

derivative of the human mammary MCF10A cell line – were kindly provided as a 

model of tumor progression from Prof. Stefano Piccolo’s laboratory. Precisely M2 

cells overexpressing a constitutive active point mutant of the Hippo transducer 

TAZ, TAZ(S89A) were provided as “case sample” (hereafter M2T) while M2 

cells were used as “control sample” in this study. Thorough experimental 

evidence already attested a role for TAZ in endowing M2 cells with CSCs like 

properties and particularly demonstrated TAZ relationship with EMT (Piccolo et. 

al., 2011). Both M2 and M2T cells were incubated at 37 °C in moisture added air-

CO2 (95 – 5 %) blend into DMEM/F12 medium (Gibco) freshly supplemented 

with:  5 % heat inactivated horse serum (Gibco), 2 mM glutamine (Gibco), 10 

ug/mL Insulin (I9278 SIGMA), 20 nGr/mL rH-EGF (AF-100-15, Peprotech), 8.5 

nGr/mL Cholera toxin (C8052, SIGMA), 500 nGr/mL hydrocortisone (H0369, 

SIGMA), 100 U/mL penicillin and 100 ug/mL stremptomycin. Cells were 

cultured on 75 cm
2
 flasks and spread at 1:4 to 1:6 ratio when reaching sub-

confluence. 

Two days before each experiment cells were seeded at a density of 30 – 35,000 

cells/cm
2
 into 15 mL of complete culture medium without antibiotics. One day 

before each experiment medium was freshly renewed and the day of each 

experiment cells were harvested by trypsinization and counted. On average 7 – 8 * 

10
6
 cells/flask were gathered with > 98 % vitality at trypan blue assay (T8154, 

SIGMA). Culture medium was further maintained at 37 °C for 3 – 5 more days to 

assess absence of contaminations. 

 

3.2 Sub-cellular fraction enrichment 

 

For each experiment about 15*10
6
 cells for both M2 and M2T cell lines were 

disrupted on ice by Dounce homogenization in 1 ml of 0.1 M PBS pH 7.4, 0.25M 

sucrose, 1 mM EDTA and protease inhibitor cocktail (0.1 mg/mL 

Phenylmethylsulfonyl fluoride PMSF, 0.7 mg/mL pepsatin, 0.5 mg/mL 

leupeptin). Homogenates were centrifuged 10’ at 1000*gat 4°C in order to 

separate particulate fraction containing nuclei and cell debris (pellet I). Isolated 

supernatant was then further centrifuged 60’ at 105,000*g at 4°Cto separate 

cytosol from other cellular organelles (pellet II). Supernatant from this latter 

centrifugation step has been provided freshly for each experiment. 
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3.2.1 Protein assay 

 

Protein content was measured according to Lowry as modified by Bensadoun et 

al., (Bensadoun et al., 1976) taking advantage of previous TCA precipitation. 

Each sample to be measured was first diluted to 3 mL final volume with water. A 

minimal volume of diluted DOC detergent was then added to a final concentration 

of 0.02% (w/v) followed by 1 mL of diluted TCA to a final concentration of 

6.25%. Sample was left to incubate 10’ at ambient temperature before spinning it 

down at 3800*g 30’ at 4°C. Supernatant containing soluble contaminants was then 

discarded carefully. A solution of Na2CO3 2% (w/v), NaOH 0.1 N and a solution 

of CuSO4 0.5% (w/v), KNaTartrate 1% (w/v) were mixed together to a ratio of 

50:1 prior to use and each precipitated sample pellet was dissolved into 1 mL of 

the resulting solution and incubated for 30’ at ambient temperature in the dark. 

After incubation 0.1 mL of freshly 1:1 water diluted Folin’s reagent (SIGMA) 

was added to each sample and left to incubate for another 30’ at ambient 

temperature in the dark. At the end of incubation each sample absorbance was 

recorded at 750 nM with a Multiskan microplate reader (ThermScientific). 

Sample concentrationwas then calculated with reference to a standard curve 

ranging from 3 to 30 ug of BSA prepared in the same way of protein samples to 

be measured. 

 

3.2.2 DTNB assay 

 

DTNB 10 mM solution was prepared freshly into TrisHCl 0.1 M, EDTA 1 mM 

pH 8.3 and diluted to DTNB 140 M into TrisHCl 50 mM, NaCl 150 mM pH 7.5. 

Up to 200 L of sample volume or sample buffer as blank were added to each 1 

mL aliquot of diluted DTNB solution. This aromatic disulfide reacts with aliphatic 

thiol groups to form a mixed disulfide of the protein and one mole of 2-nitro-5-

thiobenzoate per mole of protein sulfhydryl group. DTNB has little if any 

absorbance, but when it reacts with thiol groups under mild alkaline conditions, 

the 2-nitro-5-thiobenzoate anion gives an intense yellow color at 412 nm. Whole 

soluble reduced thiols were read almost immediately, since they readily react with 

DTNB, while protein thiols detection needs preventive incubation at room 

temperature for 30’. Samples were kept into quartz cuvette for measurement. Scan 

mode acquisition with the DU70 Spectrophotometer (Beckman Coulter) was then 

performed between 380 and 480 nm, at 300 nm/min scan rate. Calibration was 

done against H2O2 and blank absorbance was registered as background. Sample 

absorbance values at λ = 412 nm were used to calculate thiols concentration given 

the molar extinction coefficient 13.6 mM
-1

 cm
-1

 at 412 nm. Finally thiol groups 

concentration per milligrams of protein were calculated dividing such values by 

protein content. 
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3.3 Differential “redox” labelling 

 

A methodological constraint to fulfil the aim of this project is to identify and 

quantify proteins which could be possibly distinguished with respect to their thiols 

oxidation status among different samples to compare. In order to achieve such 

goal we combined a differential labelling protocol to extract proteins of interest 

from the sample and mass spectrometry analysis joined to informatics data 

handling to identify and quantify those proteins (fig. 3.a). 

All subsequent protocol steps were carried out at the same time for both M2 and 

M2T samples.  

 

Alkylation of free thiols 

 

First, 1mM NEM was added during cell lysis and then fraction enrichment to 

avoid unwanted thiol oxidation. 180 to 200 ugr of proteins from cytosol fraction 

were then subjected to buffer exchange against 0.1 M sodium-phosphate pH 8.0 1 

mM EDTA on NAP-5 columns (GE Healthcare) to remove unreacted NEM. 

 

Reduction of oxidized thiols 

 

Eluted samples were reduced with 1mM DTT (SIGMA) for 1h at ambient 

temperature. This is intended to release reversibly oxidized protein thiol groups 

for subsequent reaction with HPDP probe. Again excess DTT was removed by 

means of buffer exchange on NAP-10 columns (GE Healthcare) against the same 

buffer. 

 

HPDP Labelling  

 

Eluted sampleswere then treated with EZ-Link HPDP-Biotin probe (Thermo 

Scientific) at ambient temperature for 1h.1:1 protein thiol groups to probe ratio 

was calculated from DTNB data on protein thiol and reaction was carried out at 

pH 8. Moreover, reaction of EZ-Link HPDP-Biotin probe with protein free thiols 

was monitored as reported (§ 3.3.1). Unreacted EZ-Link HPDP-Biotin was 

removed from the sample by means of another step of buffer exchange on PD-10 

column against PBS pH 7.0.  

 

Enrichment of labelled proteins 

 

Labeled proteins were then “fished out” on homemade affinity Neutravidin 

columns: 125 ugr of High Capacity NeutrAvidinAgarose Resin (Thermo 

Scientific) were first packed and washed extensively with PBS EDTA 1mM pH 

7.4 into empty Micro Bio-Spin Columns (2 cm working bed height, 0.8 mL bed 

volume, BioRad). Whole sample was then loaded into the column by adding 
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subsequently 200 L aliquots and letting each of them flown through the column 

by gravity. Flow through was recovered and loaded again for two more times. 

Bounded sample was instead washed three times with binding buffer (PBS EDTA 

1 mM pH 7.4) and three times with TrisHCl 0.1 M EDTA 1 mM pH 8.3. Elution 

was achieved by reducing back disulfides between EZ-Link Biotin-HPDP and 

protein thiols with the same buffer containing DTT 5 mM. This was intended to 

avoid harsh conditions normally required to disrupt biotin-neutr/avidin interaction 

and allowed the obtainment of suitable conditions for subsequent MS analysis. 

Elution time was critical to achieve good experimental reproducibility and five 

elution steps with 1 mL of elution buffer were performed letting the elution buffer 

to incubate with resin exactly 2’ at ambient temperature each time before 

collecting the sample by gravity. 

 

Alkylation of formerly oxidized thiols 

 

Eluted samples contained reduced thiols at pH 8.3 and further alkylation was 

needed to avoid disulphide reshuffling and/or random oxidation. Therefore 

samples were incubated 1h at ambient temperature with 1 mM IAM and excess 

reactant was blocked by adding DTT to the reaction at a final concentration of 2 

mM. 

 

 
 

Fig. 3.a Differential labelling approach 

Schematic representation in figure summarizes the main steps of the methodology developed in 

this work: (1) first samples are “treated” that, in the case of the M2 and M2T breast cancer cellular 

model, indicates different cell strains engineered in order to express a constitutive active mutant of 

TAZ; (2) right during cell lysis accessible thiol-groups are blocked with NEM to avoid unwanted 
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oxidation which would otherwise compromise results interpretation; (3) thiol-groups which were 

oxidized in the starting sample, and so which did not reacted with NEM, are reduced with DTT 

and let free to react for further labelling; (4) formerly oxidized thiol-groups are then marked with 

HPDP which contains a biotin function allowing us to affinity purify tagged (i.e. redox-sensitive) 

proteins on neutravidin resins (5); given the use of reducing agents for elution from neutravidin the 

next step is to block newly-reduced thiol-groups with IAM (6). Finally, samples enriched with 

redox-sensitive proteins fished out of starting samples, are digested in order to proceed with MS 

analysis and label free quantification. 

 

3.3.1 HPDP assay 

 

The reaction of Biotin-HPDP to sulfhydryl groups results in displacement of a 

pyridine-2-thione group, the concentration of which may be determined by 

measuring the absorbance at 343 nm. 60 and 180 ugr of proteins, corresponding 

respectively to 8 and 24 uM thiols, were incubated with 10 and 30 uM EZ-Link-

Biotin-HPDP in sodium phosphate 0.1 M pH 8.0 for up to 1h at ambient 

temperature. Reaction was followed on a DU70 Spectrophotometer (Beckman 

Coulter) reading absorbance at 343 nm to confirm reaction extent. 

 

3.3.2 Electrophoresis 

 

Samples were analyzed also by means of SDS-PAGE and Wb. For SDS-PAGE 

samples were diluted into suitable quantity of sample buffer (62.5 mMTrisHCl pH 

6.8, 2.5% SDS, 10% glycerol, 0.004% pyronin in H2O mQ) and 

reduced/denaturated by heating to 95% for 5’ with 1 M β-mercapto-ethanol  

before run. Gels were casted at a final acrylamide concentration of T = 3.9% (w/v) 

for the stacking gel and T = 14% (w/v) for the separating gel using suitable 

amounts of APS (Sigma) and TEMED (Sigma) as catalyst for polymerization. 

SDS-PAGE Molecular Weight Standars (BioRad) in sample buffer was used as 

molecular weight marker. Separation was performed at constant current and 

running buffer was prepared freshly each time (25 mM TrisHCl pH 8.6, 0.19 M 

glycine, 0.01% SDS in H2O mQ). Occasionally also 12% Bis-TrisCriterion XT 

pre-cast gels (BioRad) were used  with XT MOPS running buffer and Precision 

Plus Protein Standard Unstained (BioRad) as MW marker. Gels were stained 

overnight with colloidal coomassie (1 mM Coomassie Brilliant Blue G-250, 34% 

(v/v) methanol, 1.3 M ammonium sulphate, 3% (v/v)phosphoric acid in H2O mQ) 

and destained with H2O mQ water. 

 

3.3.3 Western blotting 

 

In order to evaluate oxidation status and quantity of G6PDH protein in M2 and 

M2T samples we performed Wb analysis on 20 ugr of total protein previously 

separated by SDS-PAGE (see above) with and without the addition of reducing 
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agent. Gel-separated samples were electro-transferred on nitrocellulose membrane 

at 180 mA constant current overnight into blotting buffer (25 mM ethanolamine, 

25 mM glycine and 20% v/v methanol pH 9.5) and the success of transfer was 

verified by Ponceau red staining (0.2% (w/v) in 3% (v/v) TCA aqueous solution). 

Immunological detection was then performed using rabbit polyclonal antibody 

against human G6PD (sc-67165, Santa Cruz Biotechnology) and mouse 

monoclonal antibody against human GAPDH for loading control (mAbcam 9484) 

as primary antibodies and HRP-conjugated anti-rabbit and anti-mouse secondary 

antibodies for detection. Detection was done with freshly prepared luminol 

solution (1.1 mM luminol, 1 mM 4-iodophenol, 0.12% BSA, 1.4 M H2O2, 0.025 

mMTris-HCl pH 9.25) and densitometric analysis of immunoblots was obtained 

by the Image Station 440 (KODAK). All washes were done with PBS 0.1% 

Tween-20, saturation with PBS, 0.1% Tween-20, 0.9% NaCl and 3% BSA and 

antibodies were diluted with PBS, 1% BSA. 

 

3.4 Sample preparation for MS analysis 

 

In order to identify proteins present into enriched fractions from § 3.4, samples 

must be digested and analysed by MS. To remove excess DTT and IAM each 

sample was concentrated by means of TCA precipitation: each sample was first 

diluted to 3 mL final volume with water. A minimal volume of diluted DOC 

detergent was then added to a final concentration of 0.02% (w/v) followed by 1 

mL of TCA to a final concentration of 8 %. Sample was left to incubate 10’ at 

ambient temperature before spinning it down at 3800*g 30’ at 4°C. Supernatant 

containing soluble contaminants was then discarded carefully and pellet was 

washed with 1 mL of cold ethanol by vortex and spinning at 3800*g 20’ at 4°C. 

Again supernatant was discarded and each precipitated sample pellet was 

dissolved into 100 L of NH4HCO3 40 mM ACN 10% containing 10 nGrTrypsin 

Gold Mass Spectrometry Grade (SIGMA). Digestion was performed overnight 

into a 37 °C water bath and arrested by adding formic acid (FA - SIGMA) 

lowering pH to 3 – 4. Trypsinized samples were then dried by vacuum 

centrifugation and re-suspended into 20 L of FA 0.1% milliQ grade water 

solution prior to analysis. 

 

3.5 Q-TOF analysis 

 

Each peptide mixture from M2 and M2T samples was analysed in triplicate. 

Specifically: 6 L of sample per technical replica were injected and each time 

samples runs followed this order: M2replica1_M2Treplica1; 

M2replica2_M2Treplica2; M2replica3_M2Treplica3. Samples were resolved by 

means of reversed-phase chromatography on a nano-fluidic HPLC-Chip apparatus 

coupled with a quadrupole ion trap and time of flight mass spectrometer, using the 
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6520 Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, 

CA, USA) equipped with MassHunter Workstation Software Qualitative Analysis 

B.02.00 as graphical interface for data handling. A 1200 Rapid Resolution system 

(Agilent Technologies, Santa Clara, CA, USA) containing a binary pump and 

degasser and a well-plate autosampler with thermostat were associated to the 

HPLC-Chip interface directly connected to a nanoESI ionization source thus 

providing a rugged technology suitable for sample identification analysis. Loaded 

samples were enriched on a 160 nL enrichment column and separated with an 

acetonitrile gradient (50% ACN in 60’, 80% ACN in 80’ and re-equilibration to 

6% ACN in 120’) on a 75 µm x 150 mm separation column packed with Zorbax 

300SB-C18 5 µm material at a flow rate of 0.36 uL/min. Source parameters were: 

gas temperature 325 °C and drying gas 5 L/min while voltage values for 

fragmentor, skimmer and octapole were respectively 175 V, 65 V and 750 V. 

Counts threshold for storage were 200 for MS data and 5 for MS/MS data or 

0.01% relative to base peak intensity in both cases. MS data were acquired in the 

range between 350 and 2400 m/z and MS/MS data were acquired in the range 

between 59 and 3000 m/z. Scan rate was 4 spectra/second for MS and 3 

spectra/second (2378 transient spectrum) for MS/MS (3213 transient spectrum). 

Data dependent MS/MS analysis were then carried on the 3th most intense peaks 

from each MS scan using collision induced dissociation fragmentation (3.6 V/100 

Da with – 4.8 V offset). Only precursors above 1000 counts or ≥ 0.01% with 

reference to base peak intensity were used for fragmentation with an isolation 

width of 4 Da. Dynamic exclusion for MS/MS analysis (exclusion after 2 spectra 

and release after 0.5’) was applied in order to enhance sequencing of less 

abundant species too. The use of dynamic exclusion during MS/MS data 

acquisition was made possible since we adopted a label free quantification 

method relying on MS/MS data only for species identification, while actual 

abundance values were obtained from MS feature. 

 

3.6 G6PDH enzymatic activity measurement 

 

Assays were performed at ambient temperature. Sample was diluted into reaction 

mixture: 0.1 M TrisHCl pH 7.4, 0.15 M KCl, 5 mM EDTA, 0.1% (v/v) Triton X-

100 and 1.25mM glucose-6-phosphate disodium salt according to Scott (Scott, 

1971). The reaction was initiated by the addition of 0.25mM NADP and was 

followed at 340 nm for 23 min with a DU70 Spectrophotometer (Beckman). 

Activities are reported in nmol of NADPH formed per min per mgr of proteins 

using extinction coefficient for NADPHλ340 = 6.22 M
-1

 cm
-1

. 

For inhibition experiments, M2 and M2T samples devoid of NEM were pre-

treated with 1mM DTT in a minimal volume of 0.1 M sodium-phosphate pH 8.0, 

1 mM EDTA. Activity was then measured with or without removing DTT by 

means of buffer exchange. In order to block reduced protein thiol-groups, samples 
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were also treated with 1mM NEM right after 1mM DTT reduction and activity 

was measured after removal of both DTT and NEM by means of buffer exchange. 

 

3.7 Data analysis 

 

Two of the main applications of mass spectrometry are today identification and 

quantitation of compounds. Although a variety of software tools exists for those 

tasks, they are often monolithic and difficult to adapt to rapidly evolving demand. 

Since many different quantitation protocols exist, it is desirable to have smaller 

algorithmic components that can be readily combined into more complex 

workflows or tools. OpenMS, a free software package (available under the Lesser 

GNU Public License LGPL from the project website at http://www.openms.de) 

aims at providing exactly this functionality and is therefore more flexible than 

almost all current commercial tools and most of the openly available libraries. I 

took advantage of the essential collaboration of computer engineer Dr. Marco 

Falda in order to improve and finely tune OpenMS to perform desired analysis on 

our data. Briefly speaking, OpenMS tools have been designed following a bottom-

up philosophy: from the code library, to the command line tools, to a high level 

visual block workflow. Each layer simplify the management, but also restricts the 

flexibility, since it constraints the user to follow “a priori” well defined 

behaviours. We then decided to work at the intermediate level represented by the 

command line tools, since the most abstract level had some inconveniences; for 

instance, they do not cache intermediate results nor provide any sort of flow 

distribution and concurrency. Computational Proteomics tasks require complex 

and long operations, such as identifying sequences or characterizing features in 

terms of wavelets. For this reason the workflow has been designed distributed 

over a cluster of computers supervised using a so-called “job manager”, namely 

the Sun Grid Engine 6.2u5 (SGE). The caching of the results and the concurrency 

of independent tasks has been obtained using the SCons build system. Scons has 

been preferred over more traditional tools like make or CMake for its ease of 

customization. It can be programmed in the Python programming language and all 

the repertoire of this language, such as functions, list comprehensions and 

dynamic types are readily available. It has also a built-in scheduler able to queue 

the jobs concurrently. These jobs are distributed among the cluster workstations 

by delegating them to the SGE. The cluster is composed by 3 Dell™ 

PowerEdge™ R410 workstations equipped with 4 Intel® Xeon® quad-core CPUs 

at 2.3GHz and 32 GB RAM; the storage unit is an Dell™ EqualLogic™ PS4000. 

Refer to Fig. 4.f for an overview of the reported analytical workflow. 
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3.7.1 Input data 

 

Input data required by OpenMS are mzML files, a specific kind of XML files 

(others are mzData or mzXML). Nevertheless raw data from Agilent Accurate 

Mass Q-TOF LC/MS 6520 are stored by default into a multi-folder format (.d) 

which can be processed by proprietary software Agilent Mass Hunter Qualitative 

Analysis only (we used version B.02.00 Build 2.0.197.0) and exported into 

.mzData file format. In order to best keep unbiased and unfiltered raw data to be 

processed byOpenMS, raw data from each experiment have been exported into 

corresponding .mzData file format without applying any filter at this level beside 

the required deisotopic function (peptides model) at centroid level. No further 

baseline subtraction or spectra smoothing have been applied before going ahead 

with analysis workflow. 

 

3.7.2 Identification 

 

Input mzML files are first processed by three different search engines: X!Tandem, 

OMSSA and Mascot. We used a licensed in house server version of Mascot (ver. 

2.3) on the cluster which has been implemented with Mascot search engine, while 

X!Tandem and OMSSA referred to their own executables installed on the same 

cluster. All search engines have been used with reference to SwissProt database 

dated February 2012, taxonomically limited to Homo sapiens and enriched with 

both potential contaminant proteins from the common Repository of Adventitious 

Protein “cRAP” (www.thegpm.org/crap/index.html) and decoy proteins obtained 

by inverting all the former sequences. Decoy proteins are used to distinguish 

random sequence matches and compute false discovery rate (FDR) values. 

Different identification scores from search engines are equalized and merged by 

means of their posterior error probability (PEP) value, computed from FDR value 

(Kӓll et al., 2008). So resulting matches (identifications) are gathered and merged 

through the IDMerger and ConsensusIDblocks and before being passed to FDR 

block peptides are also assigned to matched proteins and flagged as belonging to 

the decoy database or not (depending on the fact that they match or don’t match to 

reversed proteins in decoy database) by the PeptideIndexer block. The parameters 

we set for each analysis stepare shown below (please refer to http://ftp.mi.fu-

berlin.de/OpenMS/doc-1.9-official/html/TOPP_documentation.html for a complete description): 

 

MascotAdapterOnline: 

 database = SwissProt_H_Decoy 

 enzyme = none 

 instrument = ESI-QUAD-TOF 

 missed_cleavages = 0 

 precursor_mass_tolerance = 5 

http://ftp.mi.fu-berlin.de/OpenMS/doc-1.9-official/html/TOPP_documentation.html
http://ftp.mi.fu-berlin.de/OpenMS/doc-1.9-official/html/TOPP_documentation.html
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 precursor_error_units = ppm 

 fragment_mass_tolerance = 0.05 

 fragment_error_units = Da 

 charges = 2,3,4 

 taxonomy = Homo sapiens 

 fixed_modifications = [] 

 variable_modifications = [Carbamidomethyl (C), Nethylmleimide (C)] 

 mass_type = monoisotopic 

 number_of_hits = 0 (i.e. auto) 

 skip_spectrum_charges = FALSE 

 

OMSSAAdapter: 

 database = SwissProt_HUMAN_decoy_crap_2012_02.fasta (together with 

the corresponding psq generated through command makeblastdb) 

 precursor_mass_tolerance = 5 

 precursor_mass_tolerance_unit_ppm = TRUE 

 fragment_mass_tolerance = 0.05 

 min_precursor_charge = 2 

 max_precursor_charge = 4 

 fixed_modification = [] 

 variable_modification = [Carbamidomethyl (C), Nethylmleimide (C)] 

 v = 1 

 e = 17 

 hl = 1 

 he = 1 

 

X!TandemAdapter: 

 database = SwissProt_HUMAN_decoy_crap_2012_02.fasta 

 missed_cleavage = 1 

 precursor_mass_tolerance = 5 

 precursor_error_units = ppm 

 fragment_mass_tolerance = 0.05 

 min_precursor_charge = 2 

 max_precursor_charge = 4 

 fixed_modifications = [] 

 variable_modifications = [Carbamidomethyl (C), Nethylmleimide (C)] 

 minimum_fragment_mz = 150 

 cleavage_site = [X]|[X] 

 max_valid_expect = 0.1 

 no_refinement = FALSE 

 no_semi_cleavage = FALSE 
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IDPosteriorErrorProbability: 

 split_charge = TRUE 

 top_hits_only = TRUE 

 ignore_bad_data = TRUE 

 

ConsensusID: 

 rt_delta = 0.1 

 mz_delta = 5 

 min_lenght = 6 

 use_all_hits = FALSE 

 algorithm = PEP_Matrix 

 

PeptideIndexer: 

 decoy_string = _rev 

 write_protein_sequence = TRUE 

 keep_unreferenced_proteins = FALSE 

 allow_unmatched = TRUE 

 aaa_max = 4 

 

FalseDiscoveryRate: 

 proteins_only = FALSE 

 peptides_only = FALSE 

 

3.7.3 Quantification 

 

Once that identification maps have been obtained as couples of coordinates <<mz, 

Rt>, peptide>, such identifications can be correlated to the so called features 

through the IDMapper block. A feature is a group of spectra generated from a 

peptide and recognised by the FeatureFinderCentroided block among the complex 

three dimensional raw data map which is characterized by the whole mz, RT and 

intensity values from an entire LC-MS experiment (such data are given in input 

with the mzML file quoted above §3.7.1). At this point M2 and M2T samples are 

coupled together combining them into all nine possible ways and features are 

joined between them obtaining nine consensus maps. Features correctly mapped 

to identified peptides (by IDMapper) are finally quantified by means of the 

ProteinQuantifier block. The parameters we set for each analysis step are shown 

below (please refer to http://ftp.mi.fu-berlin.de/OpenMS/doc-1.9-

official/html/TOPP_documentation.html for a complete description): 

 

FeatureFinderCentroided: 

 intensity:bins = 10 

http://ftp.mi.fu-berlin.de/OpenMS/doc-1.9-official/html/TOPP_documentation.html
http://ftp.mi.fu-berlin.de/OpenMS/doc-1.9-official/html/TOPP_documentation.html
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 mass_trace:mz_tolerance = 0.02 

 isotopic_pattern:mz_tolerance = 0.04 

 isotopic_pattern:charge_low = 2 

 algorithm = left at default values 

 

IDMapper: 

 rt_tolerance = 15 

 mz_tolerance = 10 

 mz_measure = ppm 

 mz_reference = precursor 

 ignore_charge = FALSE 

 use_centroid_rt = FALSE 

 use_centroid_mz = TRUE 

 

FeatureLinkerUnlabeledQT: 

 use_identifications = TRUE 

 ignore_charge = FALSE 

 

ProteinQuantifier: 

 top = 3 

 average = MEDIAN 

 include_all =TRUE 

 filter_charge = FALSE 

 normalize = FALSE 

 fix_peptides = FALSE 

 

3.7.4 Results filtering and score ranking 

 

The last component of the OpensMS analytical workflow, ProteinQuantifier, 

ultimately produces two data tables containing respectively quantified peptides 

values and values of proteins quantified starting from such peptides. Two Python 

scripts allow gathering of both proteins and peptides among all the combinations 

of experimental technical repetitions while another Python script create simple to 

handle Excel sheets containing peptides and proteins identified during each step 

of the analysis. In order to obtain reliable quantitative data strengthened by six 

biological replica, we called for cut off criteria driving us in the classification of 

non-differential, more oxidized and less oxidized proteins/reduced (with reference 

to M2T to M2 ratio): so given theM2T/M2ratio threshold of  ≤ 0.6 for reduced  ≥ 

1.4 for oxidized groups (i.e. at least 40% relative difference), we made the 

following categorisation: 

 

Over oxidized: ≥ 1.4 for ≥ 3 experiments AND ≤ 0.6 for ≤ 2 experiments 
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Reduced: ≤ 0.6 for ≥ 3 experiments AND ≥ 1.4 for ≤ 2 experiments 

 

Non differential: ≥ 0.6 AND ≤ 1.4 for ≥ 3 experiments AND ≤ 0.6 for ≤ 2 

experiments AND ≥ 1.4 for ≤ 2 experiments 

 

All those quantified proteins not belonging to any of the former groups have then 

been classified as too variable to be characterized as oxidized/reduced in M2T 

over M2 samples. This could be due of course to the fact that such proteins are not 

abundant enough or too variables due to intrinsic biological variability to be 

reproducibly classified. Moreover results obtained this way have been further on 

ranked depending on both the number of experiments in which they have been 

observed and the number of identified peptides matching the protein: globally 

those parameters have been integrated into the so called f-measure. F-measure has 

been calculated this way for each protein in the former groups: 

 

Given: mean of identified peptides/max identified peptides = P 

Given: n. ° of experiments confirming identification/max n. ° of experiments = B 

We calculated harmonic mean of ratios as:  

 

       

     
 

 

Such harmonic mean has then been corrected with a factorXto compensate for the 

different numerosity of experiments and identified peptides: 

 

       

     
   

 

Where X is equal to: 

given: max n.° of experiments / 2 = H 

 B>H AND P = 1  X = 2 

 B>H AND P> 1   X = 4 

   B>H - 1  AND P = 1  X = 3 

 B> 1 AND P> 3   X = 2 
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4. RESULTS 
 

4.1 Development of label free methodology to characterize and 

differentially quantify oxidatively modified proteins in complex 

sample 

 

The aim of this project was to identify both the proteins and the cysteine residues 

differentially oxidized in the samples and also to quantify the difference. We then 

sought to develop a methodology allowing us both to label reversibly modified 

residues and to purify proteins containing them in order to analyse a sample 

devoid of “background” (unlabelled) proteins. Critical steps are reported. 

 

4.1.1 Differential redox labelling 
 

For our project we choose to rely neither on isotope labelling techniques nor on 

electrophoretic fractionation which could be troublesome with respect to 

reproducibility. So we choose to use simple alkylating agents like NEM and IAM 

to mark reduced and oxidized cysteines in the sample and the biotinilated HPDP 

probe for affinity purifying modified proteins. So main steps are: 

(1) Trapping of native redox state of the thiol proteome to avoid artifactual 

modification during protein isolation and labelling (with NEM). 

(2) Reduction of the reversibly oxidized cysteine residues in the sample 

(with DTT) 

(3) Labelling of formerly oxidized cysteine residues (with biotin-HPDP) 

(4) Affinity purification of modified proteins (with Neutravidin) 

(5) Elution of affinity purified proteins (with DTT) 

(6) Labelling of formerly modified cysteine residues (with IAM)  

 

4.1.1.1 Trapping of the native redox state of thiols 

 

Given that many cysteine residues are relatively labile since thiols are prone to 

artifactual modification during protein isolation we needed to trap thiols in their 

native state as soon as we started to process M2 and M2T cell samples. DTNB 

assay on residual protein free thiols demonstrated the need for at least 1:2 

[SH]:NEM ratio and incubation time of no less than 90’ Fig. 4.a. Thus we 

managed to use 2x[SH] NEM already into the buffer used for cell lysis and 

cytosolic fraction enrichment. 
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Fig. 4.a 

We checked protein free 

thiols with DTNB assay 

after incubation with 

NEM aimed at trapping 

free thiols in native 

sample. [SH]:[NEM] 

ratio of 1:2 was 

demonstrated to be 

enough to reach the goal. 

 

 

 

 

 

 

4.1.1.2 Reduction of oxidized thiols 

 

We aimed at identifying and quantifying proteins containing reversible oxidative 

modifications. Of course the number and typology of reversible oxidative 

modifications which could occur inside the cell is remarkable and not all of them 

could be addressed by a single methodology at the same time. So we decided to 

focus on cysteine reversible oxidation products like low redox potential - solvent 

accessible intra/inter-protein disulfides, sulfenic acid groups, glutathionilation and 

cysteinilation products as they have been recognized as possible forms of redox 

modifications entailed in signal transduction inside the cell. DTT is a common 

reducing agent suitable for reducing back all the above mentioned oxidation 

products and we demonstrated that 60’ incubation at ambient temperature with 1 

mM DTT is enough to free our target thiol groups on proteins Fig. 4.b. 

 

 

Fig. 4.b 

7.5 ugr of cytosolic proteins were 

reduced with 1 mM DTT at pH 8 for 

up to 4h. Samples were checked after 

SDS-PAGE separation with CCB 

staining (A) and reduced thiols were 

revealed by labelling with 5-IAF and 

detecting at 518 nm (B). 
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4.1.1.3 Labelling reaction 

 

Proteins containing thiols reduced at § 4.1.1.2 were our target and thus we wanted 

to isolate them out of the whole protein sample. Instead of using isotope labelling 

approaches to mark reduced cysteine-residues and quantify those proteins together 

with all the others (representing potential troublesome background) we sought an 

affinity purification approach by means of the labelling reagent biotin-HPDP. The 

biotin function on this probe allowed fishing marked proteins on neutravidin resin 

while the pyridine-2-thione leaving group allowed reversible disulphide binding 

of the probe to target thiol groups in the sample. Thus the pyridine-2-thione group 

displaced by HPDP reaction with free thiol groups was quantified by measuring 

its absorbance at 343 nm. In preliminary experiments 280 ugr of proteins, 

corresponding to roughly 30 uM [SH] were incubated with 40 uM HPDP at Tamb 

for 1h, final reaction volume 1 mL. Given molar extinction coefficient for 

pyridine-2-thione at 343 nm = 8.08*10
3
 M

-1
 cm

-1
 and Δ(A60 - A0)λ343 = 0.24 

measured for the reaction, we estimated biotinylation of about 29.37 nmol/mL 

[SH] therefore nearly completion. We also evaluated HPDP labelling of NEM 

treated/untreated M2 and M2T samples Fig. 4.c. 

 

 
 

Fig. 4.c Monitoring of HPHP labelling reaction 

60 ugr of total proteins of M2 (A) and M2T (B) samples were incubated with 10 uM HPDP for 10 

minutes (horizontal axe) and reaction was followed monitoring absorbance at 343 nm (vertical 

axe). We confirmed remarkable difference between +/- NEM samples in both M2 and M2T 

samples, confirming the efficacy of the trapping of natively reduced thiols (§4.2.1.1). It is 

noteworthy also the higher protein thiols labelled into M2T with respect to M2 cell line as will be 

confirmed also by DTNB assay hereafter.  

 

4.1.1.4 Critical aspects of elution 

 

We assembled Neutravidin columns suitable for the affinity purification of HPDP-

labelled samples. Among different parameters pertaining to binding and washing 

steps the most important step which was tuned in order to obtain good 

A B 

- NEM - NEM 

+ NEM + NEM 
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reproducibility was the elution step. Specifically we wanted to obtain affinity 

purified sample suitable for subsequent MS analysis without introducing 

artifactual quantitative modifications between samples to be compared. Thus we 

choose to elute proteins by reducing back HPDP-protein disulfides rather than by 

breaking biotin-neutravidin bound. Accurate incubation time and extensive 

elution steps at pH 8.0 were critical in order to obtain reproducibly enriched 

samples Fig. 4.d. Thus elution was performed with five sequential steps and rigid 

incubation time for each experiment. 

 

Fig. 4.d 

180 uGr of proteins were eluted from 250 uL 

of neutravidin resin with 8 aliquots of 1 mL 

of 0.1 M Na2HPO4 / NaH2PO4 1 mM EDTA 

5 mM DTT pH 8.3. Each time the sample 

was incubated for 2’ with elution buffer 

before collecting it by gravity. 

 

 

 

 

 

 

4.1.2 Quantification of extracted proteins 

 

After developing aforementioned methodology to enrich samples to be compared 

with reversibly oxidatively modified proteins we faced another challenge that was 

both to identify and quantify our targets. Indeed the choice to use a label free 

quantification approach forced us to develop also suitable analytical and 

computational methodology in order to shed light on overwhelming data quantity. 

Instead of relying on more diffused and hardware burdensome 2D-LC-ESI/MS 

coupled to spectral counting approach we managed to apply dynamic exclusion 

lists and reiterated runs in order to resolve and identify peptides. This implied 

focusing on MS profile for quantification issues and on MS/MS data for 

identification. 

 

4.1.2.1 Ion abundance linearity 

 

First of all we checked the linearity of ion abundance signals on ESI-Q-TOF MS 

with respect to the quantity of sample injected. We used a standard 

carboxymethylated tryptic digest of BSA as reference and calculated the area 

under ten of the most abundant peaks detected to evaluate linearity from 5 up to 

100 fmol of protein Tab. 4.a and Fig. 4.e. For each analysis peptides were 

resolved by means of RPC as described. Good linear correlation between peaks 

Std    1mL    2mL   3mL   4mL   5mL     6mL   7mL   8mL 
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area and sample injected support the reliability of the MS profile quantification 

approach reported hereafter. 

 

Fig. 4.e Linear regression plot for observed peptides 
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Tab. 4.a Intensities are reported as peaks integration area 

 

5 10 20 50 100 reg. coeff.

381.576 3137 44876 145689 179997 475411 0.956

395.239 130732 293483 562201 1325979 2266845 0.992

443.712 26329 56938 117438 271292 424358 0.979

461.7477 120714 238528 354387 983791 2023372 0.998

464.2504 16851 84178 150706 447619 647709 0.959

501.796 60713 132563 242626 497663 1111577 0.994

507.813 2737 13932 28412 86788 139944 0.981

582.319 19388 169967 332614 652934 2189001 0.96

653.3617 5669 93390 172697 456795 1162787 0.99

722.8167 26564 63753 106679 317231 625577 0.998

fmoles of sample injected (6 uL total volume)
O

b
se

rv
e

d
 m

/z

 

4.1.2.2 Workflow development: from identification to quantification 
 

As stated above the target of our analysis was to identify and quantify proteins in 

our enriched samples using MS. Therefore we needed to step from experimental 

input data consisting of MS and MS/MS peaks with their m/z, Rtand intensity 

coordinates to desired output which was a list of the most representative proteins 

in the biological sample. In order to do so we selected OpenMS among open 

source tools because of its flexibility and efficiency: our workflow was then built 

up at command line level with the help of Dr. Marco Falda who managed also to 

implement flow distribution over a cluster of computers as well as the caching of 

results and concurrency of independent tasks. Thus given an experimental 

framework encompassing multiple experiments performed over time (biological 

replicates) the workflow we developed encapsulated (1) identification of peptides 

(2) mapping of peptides to features and linking of features among samples (3) 

quantification Fig. 4.f.Part (B) of the workflow described in fig. 4.f joins together 

information obtained from both identification (A) and feature finding fig. 4.g. 

A feature is the signal caused by a chemical entity detected in an HPLC-MS 

experiment (peptide in the present study) and finding a feature means to group 

spectra related to such chemical entity (characterized by m/z, Rtand intensity 

values) and model them in order to define m/z and Rt constraints for each peptide 

found in a raw data map. This is achieved by the feature finder block which is 

integrated into the third part of the workflow: quantitation (fig. 4.h). In order to 

obtain reproducible quantification we needed to define also raw data exporting 

criteria. Since the lack of standardization among proprietary data formats we 

choose not to apply any filter at the exported raw data: the only operation 

preliminary to workflow processing was to extract centroid instead of profile data 

for raw maps. Therefore feature finding relied on interpretation of isotopic and 

multi-charged pattern of centroid data. 
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Fig. 4.g Feature relative quantification is based on both MS and MS/MS data 
Mapping and linking block of the workflow (fig. 4.f B) joins information from both identification 

(derived from MS/MS data) and feature finding (derived from MS data) 

 

 

 

Fig. 4.h Quantification branch of the workflow 
Quantitation block find features to give as input to the merging block (B). From mapped and 

linked features the quantitation block finally extracts and quantifies peptides and proteins relying 

on features intensity. 

 

4.1.2.3 Workflow validation 

 

The aim to identify and quantify redox active proteins implies that we built 

aforementioned data analysis workflow in the context of an explorative 

experiment. Therefore we did not take advantage of any “fixed point” in our 

samples for validation. Instead we performed two empirical checks of the 

correctness of this methodology by considering both the quality of the consensus 

features identified (see below) and the application of the entire workflow on a 

simple benchmark experiment. After Feature Finder identified features in each of 

the samples to be compared, features were mapped (i.e. identified by means of 

MS/MS data association) and linked among M2 and M2T sample: the result of 

feature linking is the so called consensus feature map. So consensus features are 

those features contextualized in the linked map and possibly used for subsequent 

quantification. We then evaluated the distance in terms of m/z and Rt values of 

Featurefinding 

Identification 

 

B 
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identified consensus features with respect to the constituent mapped features Fig. 

4.i. 

 

Fig. 4.i Consensus feature alignment 
Rt distance in seconds (left) and m/z distance in mTh (right) of consensus feature with respect to 

constituent mapped features are grouped into categories and plotted against the number of events 

(consensus feature) into each category. Hyperbolic trend of both plots confirm that mapped 

features are well aligned and that their distance with respect to consensus features used for 

quantification in terms of Rt and m/z is between 5 sec and 0.014 Da. 

 

In order to evaluate the reliability of our quantification workflow it was also 

applied to a benchmark dataset obtained from a mixture of 13 proteins in known 

quantity. Similarly to our experimental framework benchmark dataset 

encompassed multiple biological and technical replicates: 3 pairs of samples to 

compare (biological replicates) and each of them was measured 3 times (technical 

replicates). We managed to correctly evaluate the under/over expression of 13/13 

benchmark proteins and for 5/13 real values were within estimated interquartile 

distance. We also identified 6 “false positives” comprising Trypsin which was 

present indeed. Results of benchmark dataset analysis are reported into Fig. 4.l. 

 

4.1.2.4 Decision-making criteria 
 

The final output of OpenMS workflow provides quantitation ratios for peptides 

and proteins in the sample based on features intensity. Further processing was 

then required to compute the median values among technical replicates for each 

biological replicate and to compute median among biological replicates as well. 

Finally we needed to align such ratios and count them applying a criterion to filter 

the proteins. The last step was then to rank obtained results. 

First of all we checked instrumental variability by comparing measured peptide 

intensity ratios among technical replicates Fig. 4.m. Based on estimated 

instrumental variability we then choose to set threshold for under/over represented 

proteins at ± 40%. Based on such threshold we were able to reliably quantify out 

of 331 identified proteins: 17 proteins over expressed into M2T over M2 samples 

and 29 under expressed proteins with respect to the same ratio. Other 45 proteins 

resulted otherwise not differential between M2T over M2 sample.  
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Fig. 4.l Analysis of benchmark dataset 
The boxplot reports actual and measured quantitative ratios for proteins in the benchmark dataset. 

Horizontal lines represent the threshold of under/over expression (we considered at least ± 50% 

variation) and the boxes represent the interquartile estimates for the proteins. Red dots are the true 

quantities which lie often within measured values boxes. 13/13 proteins boxes obtained with our 

analytical workflow are good estimate of real under/over expression. Protein mix has been 

obtained from the work of Jaffe et al. [Jaffe et al., 2006] and is made of two samples (α andβ) 

containing different quantities of the same proteins. Values estimated by our analytical workflow 

(boxes in the plot) are given as β:α ratios. Proteins and respective α:β ratio are: BPT1_BOVIN = 

100:5; RNAS1_BOVIN = 100:100; MYG_HORSE = 100:100; LACB_BOVIN = 50:1; 

CASA2_BOVIN = 100:10; CASA1_BOVIN = 100:10; CAH2_BOVIN = 100:100; 

OVAL_CHICK = 5:10; FIBB_BOVIN = 25:25; ALBU_BOVIN = 10:200; TRFE_HUMAN = 

2.5:5; BGAL_ECOLI = 1:10. We also correctly identified trypsin used for sample digestion, which 

correctly resulted non-differential among the two samples. 

 

Nevertheless once we obtained aforementioned lists of proteins we needed to rank 

them too in order to evaluate the robustness of each result. We then choose to rely 

on the number of peptides used to identify a protein and on the percentage of 

biological replicates in which the protein was correctly identified. To combine 

those two criteria we adopted the harmonic mean function (from now on called “f-

measure”) modified with a “step” parameter as reported at § 3.7.4. This was 

intended to award proteins identified with more than 2 peptides or reproducibly 

identified in more than half of the biological replicates. Modification of f-measure 

scoring of the results reported hereafter is plotted for clarity in Fig. 4.n 
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Fig. 4.m Peptides intensity ratios among technical replicates 
Scatter plot reports correspondence of measured intensity ratio of identified peptides between 

couples of technical replicates. Tech 1 vs Tech 2 = dark blue, Tech 2 vs Tech 3 = blue, Tech 2 vs 

Tech 2 = light blue. Green line indicates ratio = 1 that is to say no instrumental variability at all 

while red lines represents +/- 40% with respect to measured ratio among technical couples. 

Between 86 and 90 % of measured peptides lie inside the two red lines and so we choose to set an 

arbitrary threshold for differentially expressed proteins of at least +/- 40% variability. 

Data reported here were obtained from a single biological replicate and are exemplificative of the 

whole experiment. 

 

4.2 Differences in M2 and M2T redoxome 
 

We fished out of M2T and M2 sample proteins containing reversibly oxidatively 

modified cysteines and we identified and quantified them. We also determined 

M2T/M2 quantity ratio for each of those proteins. In this context the term “over-

expressed” means that a protein was found as more oxidized into M2T with 

respect to M2 sample. On the other hand “under-expressed” means that a protein 

was more reduced into M2T with respect to M2 sample. Of course “non-

differential” means that we found the same quantity for a specific protein in both 

samples to be compared. Remaining identified proteins were instead classified as 

neither under/over-expressed nor non-differential because we detected such 

variability among biological replicates that we couldn’t give reasonable estimate 

for their abundance ratio. Identifying and quantifying are indeed actually different 

tasks to achieve. Nevertheless by this approach we were able to stress some 

reproducible differences of the oxidation status of relevant proteins into MCF10A 
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M2T and M2 cell lines. Such differences are also sustained by experimental data 

on free thiol concentration on both cell lines. 

 

 

 
 

Fig. 4.n Criteria for ranking differentially oxidized protein lists 
Surface plot reports trend of a canonical harmonic function (A) and of our modified f-measure (B). 

Steps are intended to award proteins identified with more than 2 peptides or identified 

reproducibly into more than 50% of the biological replicates. 

 

4.2.1 Differential protein list 
 

Hereafter are reported tables containing identified and quantified proteins Tab. 

4.b/c/d. All “ratio” values are given as means of absolute intensity ratio for each 

protein over all the considered biological replicates. 
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Tab. 4.b Proteins more oxidized into M2T over M2 sample 

Description Ratio f-measure 

Mucin-16 1.8 4.1 

Glucose-6-phosphate 1-dehydrogenase 15.2 2.2 

S-adenosylmethionine synthase isoform type-2 1.8 0.1 

Serine/threonine-protein kinase LMTK3 25.0 0.1 

Hemicentin-2 1.8 0.1 

Trophinin 1.6 0.1 

Uncharacterizedprotein KIAA1109 4.8 0.1 

Dyneinheavychain7, axonemal 3.0 0.1 

Chondroitinsulfateproteoglycan4 1.6 0.1 

Short transient receptorpotential channel 6 1.7 0.1 

Usherin 27.4 0.1 

Fibroussheath-interactingprotein2 27.4 0.1 

Unconventionalmyosin-XV 27.4 0.1 

Short transient receptor potential channel 6 27.4 0.1 

PHD finger protein3 4.0 0.1 

Spermatogenesis-associatedprotein25 5.5 0.1 

NudC domain-containingprotein2 27.4 0.1 

 

Tab. 4.c Proteins more reduced into M2T over M2 sample 

Description Ratio f-measure 

Glutathione S-transferase P 0.5 4.3 

Peroxiredoxin-1 0.5 4.3 

Transcriptionintermediaryfactor 1-beta 0.5 4.2 

Heat shock cognate 71 kDa protein 0.6 4.2 

GTP-binding nuclear protein Ran 0.5 4.2 

Heat shock protein 75 kDa, mitochondrial 0.5 4.1 

Probable E3 ubiquitin-proteinligase C12orf51 0.1 4.1 

Thioredoxin 0.1 0.1 

Low-density lipoprotein receptor-related protein 2 0.5 0.1 

Mucin-19 0.3 0.1 

Prolow-density lipoprotein receptor-related protein 1 0.5 0.1 

E3 ubiquitin-proteinligase HERC2 0.2 0.1 

Proteinbassoon 0.1 0.1 

Mucin-17 0.3 0.1 

Tubulin beta-4B chain 0.5 0.1 

ProbableXaa-Pro aminopeptidase3 0.5 0.1 

Protein FAM75D1 0.4 0.1 

Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 0.4 0.1 

Vinculin 0.1 0.1 

Probablemethyltransferase TARBP1 0.1 0.1 

E3 ubiquitin-proteinligase SHPRH 0.1 0.1 

Kinesin-likeprotein KIF16B 0.1 0.1 
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Erythroid membrane-associatedprotein 0.1 0.1 

Vacuolar protein sorting-associated protein 16 homolog 0.1 0.1 

Dyneinheavychain17, axonemal 0.1 0.1 

Protein PRRC2C 0.1 0.1 

F-box/LRR-repeat protein 12 0.4 0.1 

AMP deaminase2 0.1 0.1 

von Willebrand factor A domain-containing protein 5B2 0.1 0.1 

 

Tab. 4.d Proteins with unchanged oxidative status into M2T over M2 sample 

Description Ratio f-measure 

Keratin, type II cytoskeletal1 1.1 4.6 

Pyruvate kinase isozymes M1/M2 0.9 4.6 

Filamin-B 1.1 4.4 

Alpha-enolase 0.9 4.4 

Oleoyl-[acyl-carrier-protein] hydrolase 0.8 4.4 

Filamin-A 1.3 4.3 

Glyceraldehyde-3-phosphatedehydrogenase 1.1 4.3 

Trypsin 0.8 4.3 

T-complex protein 1 subunit theta 0.7 4.3 

TransitionalendoplasmicreticulumATPase 1.4 4.2 

Heat shock protein HSP 90-alpha 1.0 4.2 

T-complexprotein1subuniteta 1.0 4.2 

Keratin, type II cytoskeletal5 0.9 4.2 

LIM and SH3 domain protein 1 0.9 4.2 

Formyltetrahydrofolatesynthetase 0.8 4.2 

T-complexprotein1subunit zeta 0.8 4.2 

Heat shock protein HSP 90-beta 0.7 4.2 

Peroxiredoxin-2 0.7 4.2 

Protein arginine N-methyltransferase 1 0.9 4.1 

40S ribosomalprotein S12 0.8 4.1 

Hornerin 0.8 4.1 

Glycogenphosphorylase, brain form 0.7 4.1 

Phosphoribosylglycinamideformyltransferase 0.7 4.1 

Elongationfactor2 0.6 4.0 

Cellular nucleic acid-binding protein 1.1 3.2 

Glucose-6-phosphateisomerase 1.1 3.2 

T-complexprotein1subunit delta 1.0 3.2 

Cofilin-1 0.8 3.2 

Stress-induced-phosphoprotein 1 0.8 3.2 

Elongationfactor 1-gamma 0.8 3.2 

40S ribosomalprotein S3 0.8 3.2 

T-complex protein 1 subunit alpha 0.6 3.0 

Profilin-1 0.6 3.0 

Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial 1.2 0.1 

Ryanodinereceptor3 1.1 0.1 
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T-complex protein 1 subunit beta 1.0 0.1 

Nucleophosmin 1.0 0.1 

Voltage-dependent L-type calcium channel subunit alpha-1C 0.9 0.1 

Isocitratedehydrogenase [NADP] cytoplasmic 0.9 0.1 

Toll-likereceptor9 0.9 0.1 

FH1/FH2 domain-containing protein 1 0.9 0.1 

Proliferatingcellnuclearantigen 0.8 0.1 

Carbonylreductase [NADPH] 1 0.8 0.1 

26S proteaseregulatorysubunit4 0.8 0.1 

Cysteine and glycine-rich protein 1 0.7 0.1 

 

4.2.2 Differential proteins characterization 
 

Given the limited number of differentially oxidized proteins we identified it has 

been impossible to apply significant function enrichment analysis. So we 

manually retrieved function information from the Uniprot protein-databank for 

each protein: this way we were able to cluster some of them into functional 

groups. Among redox sensitive unchanged proteins Transitional endoplasmic 

reticulum ATPase (valosin containing protein, VCP), Heat shock protein HSP 90-

alpha, Stress-induced-phosphoprotein 1, Heat shock protein HSP 90-beta, Heat 

shock cognate 71 kDa and six subunits of the T-complex protein 1 belong to the 

unfolded-protein response branch of the Nrf2/Keap1 pathway, while Glucose-6-

phosphate isomerase, Glyceraldheyde-3-phosphate dehydrogenase, Isocitrate 

dehydrogenase [NADP cytoplasmic], Alpha-nolase and Pyruvate kinase isozymes 

M1/M2 share their role into cellular energy metabolism (both glycolysis and 

citric-acid cycle). Among proteins more reduced into M2T in respect to M2 cells 

we then have: Peroxiredoxin-1, Glutathione S-transferase P and Thioredoxin 

which belong to the antioxidant response branch of the same Nrf2/Keap1 

pathway; while GTP-binding nuclear protein Ran, Tubulin beta-4B chain, 

Vinculin, Kinesin-like protein KIF16B, Vacuolar protein sorting-associated 

protein 1 and Dynein heavy chain 17 axonemal protein share a common role as 

components of the cytoskeleton and movement proteins. Another group of 

proteins more reduced into M2T in respect to M2 cells is that encompassing three 

members of the ubiquitinilation complex: F-box/LRR-repeat protein 12, E3 

ubiquitin-protein ligase SHPRH and the probable E3 ubiquitin-protein ligase 

HECTD4. Finally, among proteins identified as more oxidized into the more 

malignant M2T cells in respect to their M2 counterpart, we were able to group up 

Usherin, Mucin-16, Chondroitin sulphate proteoglycan, Hemicentin and 

Trophinin as proteins involved at various levels into cellular adhesion and extra-

cellular matrix (ECM) interaction. Particular interest was attracted by the pentose 

phosphate pathway rate limiting enzyme glucose-6-phosphate dehydrogenase, the 

main source of reducing equivalents in the form of NADPH (see after herein). 
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4.2.3 “Totally reduced” controls 
 

Since our approach is aimed at the quantification of oxidatively modified proteins 

in the samples to be compared (M2 and M2T), the methodology we developed 

relies on the enrichment of those proteins bearing EZ-Link HPDP biotin label that 

is to say proteins bearing cysteine-residues with reversibly oxidized thiol groups 

in the original sample.  

 

 

Tab. 4.esssssss 

Proteins ratio 

into M2T over 

M2 sample for 

the extracted 

oxidized protein 

form (Standard 

approach) and 

for the total 

protein content 

(Fully reduced 

control). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sp|P11413|G6PD_HUMAN 15,2 1,9

sp|Q8WXI7|MUC16_HUMAN 1,8 0,6

sp|P31153|METK2_HUMAN 1,8 2,8

sp|Q8NDA2|HMCN2_HUMAN 1,8 0,9

sp|P21333|FLNA_HUMAN 1,3 1,7

sp|O75369|FLNB_HUMAN 1,1 0,7

sp|P04406|G3P_HUMAN 1,1 1,2

sp|P07900|HS90A_HUMAN 1,0 0,8

sp|P06748|NPM_HUMAN 1,0 0,9

sp|P06733|ENOA_HUMAN 0,9 1,7

sp|P14618|KPYM_HUMAN 0,9 1,4

sp|P49327|FAS_HUMAN 0,8 1,2

sp|P23528|COF1_HUMAN 0,8 0,9

sp|P62191|PRS4_HUMAN 0,8 0,8

sp|P11586|C1TC_HUMAN 0,8 1,3

sp|P31948|STIP1_HUMAN 0,8 1,0

sp|P26641|EF1G_HUMAN 0,8 0,8

sp|P40227|TCPZ_HUMAN 0,8 0,7

sp|P23396|RS3_HUMAN 0,8 0,6

sp|P11216|PYGB_HUMAN 0,7 0,6

sp|P22102|PUR2_HUMAN 0,7 0,8

sp|P08238|HS90B_HUMAN 0,7 0,7

sp|P32119|PRDX2_HUMAN 0,7 0,6

sp|P50990|TCPQ_HUMAN 0,7 0,9

sp|P11142|HSP7C_HUMAN 0,6 0,9

sp|P17987|TCPA_HUMAN 0,6 0,4

sp|P13639|EF2_HUMAN 0,6 0,8

sp|Q06830|PRDX1_HUMAN 0,5 0,9

sp|P62826|RAN_HUMAN 0,5 0,9

sp|Q13263|TIF1B_HUMAN 0,5 1,1

sp|P09211|GSTP1_HUMAN 0,5 0,6

sp|P68371|TBB4B_HUMAN 0,5 2,0

sp|P10599|THIO_HUMAN 0,1 0,8

Protein
Standard 

approach ratio

Fully reduced 

control ratio
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Thus, in order to extent the quantification approach to both the initially reduced 

and oxidized forms of specific proteins in both samples (M2 and M2T), for three 

biological replicates we tried parallel experiments in which both samples have not 

been treated with NEM (i.e. no free thiol blocking), but, directly reduced and 

labelled with EZ-Link HPDP biotin. This approach was aimed at quantifying 

ideally all the accessible-cysteine-containing proteins in the sample in order to 

give some information on total protein quantity for those proteins already being 

quantified in respect to their redox status. 

It has not been possible to obtain information for all of the proteins reported at § 

4.2.1, mainly because in the “totally reduced” controls the sample contains much 

more proteins than in the standard approach so that protein-protein interactions 

may have partially altered sample behaviour during purification and because data 

in this case are gathered from only three biological replicates in respect to the full 

six experiments set of the standard approach. Anyway preliminary results from 

this approach are reported in Tab. 4.e. 

 

4.2.4 Mapping of specific modifications 
 

The issue of quantifying oxidized proteins in a complex sample and to precisely 

map the amino-acidic residues involved into such modification are usually two 

different tasks and different approaches are required to pursue them. Indeed 

mapping of specific modifications along protein sequence requires a complex and 

not computer-assisted analysis of thousands of mass data from MS/MS spectra: 

moreover such analysis often requires highly purified and abundant sample in 

order to get better results. Nevertheless, in our experimental approach, the use of 

different labels in sequence made us able to distinguish cysteine-residue thiols 

which were in the reduced or oxidized status in the original sample: thus by 

considering Cys residue monoisotopic mass (103.00919) and possible delta-mass 

for this residue from NEM-adduct (+125.047679) or IAM-adduct (+57.021464) 

we could highlight formerly reduced or oxidized Cysteine residues in identified 

proteins. Of course the “ideal” situation would require considering the possible 

concomitant presence of other modifications on different residues along Cys-

containing identified peptides, like Methionine or Proline oxidation, NEM 

hydrolysis products, and many others. But it is not so feasible to simultaneously 

search thousands of fragmentation mass data in a combinatorial manner for 

multiple modifications since this would both incredibly raise the computational 

load and lower the statistical significance of matched values. Thus we choose to 

limit the number of considered modifications to those introduced by us 

(NEM/IAM) plus the known and frequent oxidation of methionine (reference to 

www.unimod.org: accession #108, #4 and #35 specificity definition 8). Moreover 

we pursued an approach in which a complex sample has been digested without 

pre-emptive denaturation, thus it is understandable that we could not reach 

extensive modification coverage for all of the identified proteins. 

http://www.unimod.org/
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Mapped modifications for the enzyme glucose-6-phosphate dehydrogenase are 

reported as an example in Tab. 4.f. We also identified oxidized cysteine-residues 

(C22114 and C22117) in the big protein Mucin-16 and mapped them next to the small 

intracellular domain spanning from residue 22118 to residue 22152: the 

intracellular domain enclose also the C-terminus of MUC16 which is known to be 

phosphorylated in order to induce proteolytic cleavage and liberation of the 

extracellular domain. Many reversible oxidations have also been mapped to the 

extracellular domain of the protein Usherin: C572 C574 C576 C694 C696 C708 C715 C717 

C726 C729 C844 C847 C849 C1050. Usherin is known to contain many laminin EGF-

like domains in this region, required for interaction with collagen IV and 

fibronectin (information have been retrieved from protein database Uniprot a 

twww.uniprot.org). 

 

Tab. 4.f Sequence of glucose-6-phosphate dehydrogenase is reported in (A): peptides identified 

by MS/MS are reported in red and two peptides containing cysteine-residues with thiol group 

oxidized in M2T sample are highlighted in yellow. Table with all identified peptides, retention 

time (Rt) in seconds, mass to charge ratio (m/z) and charges (z) characteristics is reported in (B). 

 

(A) 

 
 

(B) 

Peptide Rt m/z Z 

LQFHDVAGDIFHQQC(Carbamidomethyl)K 1994,52 486,488 4 

LKLEDFFAR 2294,46 380,211 3 

KPGMFFNPEESELDLTYGNR 2286,24 782,036 3 

GYLDDPTVPR 1602,36 566,787 2 

DNIAC(Carbamidomethyl)VILTFK 2679,6 647,344 2 

LFYLALPPTVYEAVTK 2977,02 913,012 2 

DGLLPENTFIVGYAR 2412,9 832,939 2 

(Acetyl)AEQVALSR 1697,82 458,246 2 

GGYFDEFGIIR 2467,8 637,316 2 

LPDAYER 1223,4 432,217 2 

VQPNEAVYTK 1440,6 574,8 2 

GPTEADELMK 1421,88 545,76 2 

LSNHISSLFR 1869,42 391,884 3 

EMVQNLMVLR 2273,88 616,828 2 

MAEQVALSRT QVCGILREEL FQGDAFHQSD THIFIIMGAS GDLAKKKIYP TIWWLFRDGL 

LPENTFIVGY ARSRLTVADI RKQSEPFFKA TPEEKLKLED FFARNSYVAG QYDDAASYQR 

LNSHMNALHL GSQANRLFYL ALPPTVYEAV TKNIHESCMS QIGWNRIIVE KPFGRDLQSS 

DRLSNHISSL FREDQIYRID HYLGKEMVQN LMVLRFANRI FGPIWNRDNI ACVILTFKEP 

FGTEGRGGYF DEFGIIRDVM QNHLLQMLCL VAMEKPASTN SDDVRDEKVK VLKCISEVQA 

NNVVLGQYVG NPDGEGEATK GYLDDPTVPR GSTTATFAAV VLYVENERWD GVPFILRCGK 

ALNERKAEVR LQFHDVAGDI FHQQCKRNEL VIRVQPNEAV YTKMMTKKPG MFFNPEESEL 

DLTYGNRYKN VKLPDAYERL ILDVFCGSQM HFVRSDELRE AWRIFTPLLH QIELEKPKPI 

PYIYGSRGPT EADELMKRVG FQYEGTYKWV NPHKL 
   

http://www.uniprot.org/


 
75 

IIVEKPFGR 1559,04 529,823 2 

QSEPFFK 1595,7 441,722 2 

KRNELVIRVQPN 2654,58 367,222 4 

LNSHMNALHLGSQANR 1436,28 441,476 4 

 

4.3 Redox environment of M2 and M2T cell lines 

 

Beside the quantification of differentially modified proteins we also measured the 

global redox environment of M2 and M2T sample: DTNB assay on total lysate 

samples allow to measure total SH content, that is to say free thiol-groups from 

both proteins and soluble molecules like glutathione. Reduced thiol content has 

been measured on six independent samples set obtaining 212.38 ± 9.38 nmol 

[SH]/mGr [proteins] and 232.21 ± 10.21 nmol [SH]/mGr [proteins] respectively 

for M2 and M2T total thiol content. Similarly we obtained 106.56 ± 13.78 nmol 

[SH]/mGr [proteins] and 138.42 ± 13.41 nmol [SH]/mGr [proteins] respectively 

for M2 and M2T protein-thiol content. Those data describe a redox environment 

slightly more reduced into the more malignant M2T cell line in respect to M2 

counterpart (Fig. 4.o). 

 

4.4 G6PDH activity 
 

After identification of glucose-6-phosphate dehydrogenase between the group of 

proteins more oxidized into M2T over M2 cells and given its known role as main 

intracellular source of reducing equivalents in the form of NADPH, we evaluated 

its enzymatic activity in our samples (Fig. 4.p). Mean specific activity for M2 is 

126.13 ± 23.79 and M2T mean specific activity is 352.27 ± 83.13. So a near three-

fold difference is appreciable in favour of the more malignant cells. Anyway 

specific activity doesn’t tells us if the enzyme is more active or just more 

expressed into M2T cells, but looking at both “totally reduced controls” (§ 4.2.3) 

and western blot results hereafter (§ 4.4.2) it is reasonable to consider that there is 

a contribution to the higher activity from both oxidized status and enzyme 

abundance. 

 

4.4.1 G6PDH activity is affected by redox status 
 

Since we found a ratio (M2T/M2) for oxidized G6PDH highly favourable to M2T 

cells and a corresponding higher activity in the same cells, we tested the effect of 

reduction on enzymatic activity (Fig. 4.q): at a concentration of 1mM DTT is able 

to reduce G6PDH specific activity to nearly 50-60% of the original activity in 

both M2 and M2T samples. 

Moreover, to evaluate if this inhibitory effect was due to reversible reduction of 

protein thiol groups switching from oxidized to reduced status, we reduced the 

enzyme with 1mM DTT and then removed the reducing agent before measuring 



 
76 

activity: G6PDH activity was restored to nearly 65-70% of its original value. So it 

turns out that keeping G6PDH reduced lower its activity more than reducing the 

enzyme and leaving it without reducing agent (less than 3 minutes). This could 

means that involved thiol groups are quite reactive and re-oxidize very fast, so 

good candidates as redox switches (Fig. 4.r). 

Finally, given the above hypothesis, we also reduced the enzyme and blocked it 

with 1mM NEM right after reduction. Measured activity in this case drop to as 

low as 25-30% of original activity, despite DTT and NEM removal from the 

sample. Clearly this is suggestive of the fact that preventing the re-oxidation of 

specific cysteine residues in G6PDH decreases enzymatic activity (Fig. 4.r). 

 

 

 
 

Fig. 4.o Soluble and protein free thiol content of M2T and M2 cells 
Histograms summarizing measured total (protein + soluble): upper plot and protein: lower plot, 

thiol content of cellular lysates from M2 and M2T samples. Observed difference is more marked 

looking at the protein-thiol content and even if not so big it stress a slightly more reduced 

intracellular environment for the more malignant M2T cell line. 
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Fig. 4.p G6PDH enzymatic activity 
Histograms summarize four independent measurements of G6PDH activity performed as reported 

in material and methods. It is noticeable a near three-fold greater specific activity of the enzyme in 

the more malignant M2T cells. M2 mean specific activity = 126.13 ± 23.79 nmol/min/mGr; M2T 

mean specific activity = 352.27 ± 83.13 nmol/min/mGr. 

 

 
 

Fig. 4.q G6PDH enzymatic activity: decrease with DTT 
Inhibitory effect of DTT on G6PDH activity. The effect of reduction is immediate, starting at 100 

μM DTT and the maximum effect is reached at 1 mM DTT. At this concentration activity is 

reduced to 55% and 67% of original activity respectively in M2 and M2T samples. 
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Fig. 4.r G6PDH enzymatic activity: decrease with DTT and NEM 
Histograms summarize the effects of inhibition with 1mM DTT on G6PDH activity. All specific 

activities have beennormalized to their own starting activity as percent values (M2 = 87.43 

nmol/min/mGr proteins and M2T = 285.70 nmol/min/mGr proteins). In “DTT 1mM removed” the 

reducing agent has been removed immediately before measuring activity giving 74% and 65% 

residual activity respectively for M2 and M2T. In “DTT 1mM left” the sample has been kept 

reduced throughout the test, giving 42% and 54% residual activity for M2 and M2T samples 

respectively. Finally, in “DTT 1mM NEM 1mM” samples have been blocked with NEM right 

after reduction with DTT and after removal of residual DTT and NEM activity assay demonstrated 

as low as 33% and 28% residual activity for M2 and M2T samples respectively. 

 

4.4.2 G6PDH reduced and oxidized forms 
 

Given the observations on the different degree of oxidized G6PDH between M2T 

and M2 samples and the effect of reduction and reduction/alkylation on enzymatic 

activity, we then evaluated the presence of different forms of the enzyme by 

means of western blot in reducing and non-reducing conditions (Fig. 4.s).  

 

 
 

Fig. 4.s G6PDH oxidized/reduced isoforms 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%
105%

control DTT 1mM
removed

DTT 1mM left DTT 1mM
NEM 1mM

Residual activity % 

Specific activity % M2

Specific activity % M2T

Anti-G6PDH 

+red. 

M2 M2T 

 

-red. 

M2 M2T 

 
reduction 

Anti-GAPDH 



 
79 

20 μg of total proteins from M2 and M2T cells lysates have been separated at constant current into 

4 – 12 % SDS-PAGE and electro-blotted overnight at constant current. G6PDH rabbit polyclonal 

antibody has been used as primary antibody and anti-rabbit IgG horse-radish peroxidase 

conjugated secondary antibody has been used for detection with luminol. Same procedure was 

followed for the loading-control by using anti-GAPDH primary antibody. It is noticeable how 

reduction determine the collapse of lower MW G6PDH band observable into the left box (- red) 

into only one upper MW band (+ red, right box) for both M2 and M2T sample. This is suggestive 

of the presence of different oxidation-status forms of the enzyme in those cells. Moreover G6PDH 

band intensity analysis in +red (right box) revealed a ratio of about 1:1.6 for M2:M2T samples, 

thus confirming the data obtained for “totally reduced” controls (see text). Also GAPDH bands 

ratio (≈ 1) here confirms data from both differential redox approach (M2T/M2 = 1.1) and “totally 

reduced” controls (M2T/M2 = 1.2) for the same enzyme (see Tab. 4.d G3P) 

 

Preliminary results point at the presence of at least two different forms of the 

enzyme, presumably distinguished by the oxidation status of redox-active thiol-

disulfide cysteine-residues. Nevertheless it has not yet been possible to separately 

analyse the two forms by MS, which we are going to do soon. 

 

4.5 Nrf2 pathway gene expression data 
 

Finally, preliminary gene expression results from Prof.Cordenonsi laboratory, 

confirmed us that genes under the control of Nrf2 are mostly insensible to TAZ. 

Instead Nrf2 gene itself (NFE2L2) is down-regulated into M2T cells (Tab 4.g). 

Since it is known that Nrf2/Keap1 pathway could have a role in cancer survival 

and chemoresistance [Lau et al., 2004; Kim et al., 2008], further experiments are 

needed to specifically evaluate the activation status of this pathway in this cellular 

model of breast cancer. 

 

Tab. 4.g – Table of preliminary gene-expression results from Prof.Cordenonsi laboratory: Nrf2 

regulated genes are mostly insensible (black) to regulation by TAZ. Up (red) and down (blue) 

regulated genes are instead quite spread among both antioxidant and detoxification branches of the 

pathway. So it is not yet clear whether Nrf2 pathway is activated or not into M2T (active-TAZ 

expressing) cells, but NFE2L2 gene itself (bright yellow), which is the one coding for the Nrf2 

protein, appears to be down-regulated into M2T cells. All genes are obtained through NCBI Gene 

bank (http://www.ncbi.nlm.nih.gov/gene). 

 

Nrf2 controlledgenes 

TAZ up-regulated TAZ down-regulated TAZ insensible 

AOX1 NFE2L2 ABCC1 

ATF4 CAT AKR1B1 

DNAJB1 FKBP5 AKR7A2 

GSR GPX2 CBR1 

GSTK1 HMOX1 CCT7 

  NQO1 CLPP 

    EPHX1 

    ERP29 

    FMO1 

    FOLH1 
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    FOLH1B 

    FTH1 

    FTL 

    GCLC 

    HERPUD1 

    HIP2 

    HSP90AA1 

    HSPB8 

    HSPB8 

    PPIB 

    PPIG 

    PRDX1 

    PTPLAD1 

    SCARB1 

    SH2B1 

    SLC35A2 

    SOD1 

    SQSTM1 

    STIP1 

    TXN 

    TXNRD1 

    UBB 

    USP14 
    VCP 
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5. DISCUSSION 

 

5.1 Redox proteomics: a technical challenge 

 

Modification of cysteine residues has emerged as a significant mechanism for 

alteration of the structure and function of many proteins: indeed a broad range of 

reactions that occur to the protein cysteine thiol groups plays key signalling roles 

in a range of physiological and pathological processes (see chapter 1 for some 

examples). Additionally, some of these cysteine modifications are reversible 

through thioredoxin and glutathione systems [Bindoli et al., 2008]. Reversible 

thiol modifications include glutathionylation, mixed disulfide formation with low 

molecular weight thiols, sulfenic acid formation, S-nitrosation/nitrosylation, S-

acylation, sulfenylamide formation and the generation of intra/inter-protein 

disulfides [Chouchani et al., 2011 and references therein]. Moreover, proteins 

affected by such modifications in a signalling context are reasonably only a small 

fraction of the whole cellular proteome, thus rising concentration dynamic-range 

issues. 

During the last decade technological development bolstered the efforts in the field 

of redox proteomics, that is to say, in the search for reliable methods to identify 

both the proteins and residues affected by redox modifications, to determine the 

nature of the modification to the cysteine residue and to quantify the extent of the 

modification during redox signalling. 

 

5.1.1 General strategies to screen for protein thiol modifications 

 

Many thiol modifications on cysteine residues are relatively labile and thiols 

themselves are prone to artifactual modification during protein isolation and 

handling. Therefore and essential prerequisite for reliable screening for protein 

thiol modifications in biological samples is the efficient trapping of the native 

redox status of the thiol proteome. There are three general approaches used for the 

labelling of cysteine residues for proteomic studies (Fig. 5.a). 

 

Loss of selective labelling due to thiol modification 

 

Protein thiols are alkylated with a thiol specific probe that contains a reporting 

group that enables the labelled thiols to be detected: the loss of this signal is 

assessed as an indication of protein thiol modification. Control labelled protein 

samples can be separated by electrophoresis, or derived peptides are separated by 

LC-MS, and compared with related samples prepared under stressed or oxidant 

conditions: probe signal loss between conditions is indicative of both reversibly 

and irreversibly modified protein thiols [Couchani et al., 2011]. This is a simple 

but limited strategy relying on measuring signal loss, instead of signal increase 



 
82 

over baseline and a significant limitation to the sensitivity of this approach came 

from the fact that most intracellular protein thiols are maintained in a reduced 

status by glutathione and thioredoxin systems. Nevertheless, this method can be 

adapted to detect only irreversible protein thiol modifications by the treatment of 

samples with a thiol-reductant before labelling: in this case any signal loss would 

be attributable to irreversibly oxidized thiols. 

 

 
 

Fig. 5.a General strategies to screen for protein thiol modifications 
General strategies for the identification of redox active cysteine residues. (a) The proteome can be 

assessed from the entire cell, or a particular subcellular fraction enriched before cysteine labeling. 

Alternatively, organelle-targeted compounds can be used to elicit an organelle specific effect. (b) 

Three general strategies are employed for the labeling of redox active cysteines (orange protein 

thiol): (Top) Unmodified cysteine residues are labeled with a detectable probe (red probe) while 

modified cysteines are not labeled. The decrease of labeling indicates the extent of modification. 

(Middle) To label reversibly modified cysteine residues, all unmodified cysteines are first blocked 

by reaction with a thiol reagent such as NEM. Then reversibly modified cysteines are selectively 

reduced and labeled with a detectable probe (red probe). (Bottom) To label a particular type of 

cysteine modification, such as a sulfenic acid, a chemoselective probe that reacts only with the 

modified cysteine is used (red probe). (c) Subsequent separation and identification of the proteins 

containing selectively labeled cysteine residues. (Top) LC/MS or LC/MS/MS methods to separate 

and identify labeled peptides. (Middle) Gel-based separation of proteins, often followed by LC/MS 

or LC/MS/MS methods to separate and identify labeled peptides. (Bottom) Methods to detect a 

chemo-specific probe. [From Chouchani et al., 2011] 

 

Selective reduction of reversible protein thiol modifications 

 

By this strategy, all unmodified thiols are derivatized with a thiol reagent such as 

NEM. This is followed by the selective reduction and labelling of all reversibly 

modified cysteine residues with a thiol probe: all redox-sensitive cysteine residues 

will be labelled and screened for, regardless of the nature of the reversible 

modification. Anyway, given the considerable interest in differentiating between 

different types of reversible cysteine modifications, some variations of this 

approach have been developed over time: the main differences in redox-

modifications “selection” rely on the reduction step, right after blocking of 

natively unmodified thiols. As an example, the strategy for identification of S-

nitrosated protein thiols involves the selective reduction of protein S-nitrosothiols 
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using either ascorbate or the combination of ascorbate and copper (II). Hogg 

group has demonstrated that the selective reduction of S-nitrosated proteins is best 

accomplished using a combination of ascorbate at low concentrations and copper 

(II) [Kettenhofen et al., 2008]. Vicinal dithiols, which are likely to for intra-

protein disulfides because of their proximity, can be identified on the basis of a 

selective labelling and reduction strategy based on the use of the dithiol-specific 

reagent phenylarsine oxide (PAO) and NEM for differential blocking, followed by 

reduction by means of the PAO-specific reducing agent 2,3-

dimercaptopropanesulfonic acid (DMPS) and final labelling with another 

alkylating probe. Similarly Lind et al. [Lind et al., 2002] used a mutant 

glutaredoxin from E. coli to selectively reduce glutathionylated proteins. 

 

Selective reaction of particular protein thiol modifications 

 

Although aforementioned methods make use of specific reduction of the cysteine 

modification of interest, others employ probes that react specifically with a 

particular modification thereby circumventing the requirement for reduction step. 

A number of examples are available for the identification of sulfenic acids using 

chemo-selective probes based on derivatives of 5,5-dimethyl-1,3-cyclohexadione 

(dimedone): conjugation of this sulfenic acid-specific probe to different reporter 

groups (fluorophores or biotin) has then allowed for proteomic screens of these 

conjugates. Moreover, Leonard et al. developed a membrane permeable propyl 

azide derivative of dimedone capable of labelling sulfenic acids in cells while 

allowing for downstream selective coupling with an alkyne or phosphine bioting 

tag [Leonard et al., 2009]. Finally, an alternative strategy for the identification of 

glutathionylated proteins is based on metabolic labelling.Indeed Fratelliet al. 

metabolically labelled the glutathione pool of T-cellsusing [35S]-cysteine [Fratelli 

et al., 2002]. Additional treatment with the protein synthesis inhibitor 

cycloheximide allowed for labelled cysteine to be incorporated into the 

glutathione pool. Then [35S]-glutathionylated proteins were separatedby two-

dimensional electrophoresis and assessed by radio-fluorography. Nevertheless, by 

this approach proteins glutathionylated before labelling cannot be detected 

[Couchani et al., 2011]. 

 

5.1.2 The “biotin-switch” method 

 

The method implemented in this work descends from a variant of the 

aforementioned selective reduction of reversible protein thiol modifications. In 

particular we refer to the so called “biotin switch method”. This approach 

basically relies on the selective reduction of DTT-reducible protein thiols 

following blocking of unmodified thiols with NEM. Labelling of reduced thiols is 

then achieved by means of HDPD-biotin probe, allowing for affinity purification 

of derivatized proteins. Adequate description of such methodology could be found 
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in the works on the yeast Saccharomyces cerevisiaeredoxome by McDonagh et al. 

and LeMoan et al. [McDonagh et al., 2010; McDonagh et al., 2009, Le Moan et 

al., 2005] (Fig. 5.b). 

 

 
 

Fig. 5.b Schematic representation of the “biotin-switch” method 
Figure is adapted from McDonagh et al. [McDonagh et al., 2011] and summarize the main steps of 

the biotin-switch method for redox proteome analysis. The crucial difference in respect our 

method rely on both the affinity chromatography performed on peptides rather than on intact 

proteins and on the denaturing conditions adopted through the whole procedure. 

 

5.2 Innovative procedure for redox proteomics 

 

In respect to other mentioned “fractional-reduction” / differential-labelling 

methods reported, our approach shares with the biotin-switch method the 

advantage of affinity-purification of modified-proteins of interest. Indeed, LC-MS 

analysis of complex samples would otherwise contain a significant background 

from non-cysteine and unlabelled cysteine containing proteins. Moreover the 

chemical labelling adopted here is undoubtedly cost-effective in respect to 

isotope-based labelling methods. 
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So the main differences in respect to “traditional” biotin-switch method reside in 

(1) differential labelling of the proteins is performed in non-denaturing conditions 

and (2) affinity purification by means of HPDP-biotin/Neutravidin interaction is 

done on intact proteins and not on peptides (i.e. tryptic digestion is performed 

after sample purification) (3) HPDP-labelled thiols are labelled after reductive-

elution from neutravidin by means of IAM. Basically the use of non-denaturing 

conditions should allow for specific reduction of solvent accessible oxidized 

thiols: indeed it is commonly accepted that whether a modification takes place 

depends on a number of factors including the local environment of the cysteine 

residue, it proximity to the relevant reactive species, its pKa, subcellular 

localization and solvent exposure [Chouchani et al., 2011 and references therein]. 

Moreover, the choice to purify modified thiols-containing proteins rather than 

redox-modified peptides is intended to allow further application of MS and 

MS/MS analysis in order to identify and quantify the extent of modification across 

samples to be compared. Instead the chromatographically less burdensome 

approach of redox “peptidome” [McDonagh et al., 2011] analysis is not 

compatible with our choice to implement further label-free computational 

analysis. Finally, the “double-labelling” step HDPD-IAM on redox-modified 

thiols proven valuable in order both to avoid further thiols artifactual (re)oxidation 

and to precisely map modified (IAM-labelled) and unmodified (NEM-labelled) 

thiols by MS/MS. 

 

Unmodified thiols blocking 

 

The status of protein thiols, as well as that of other redox pairs involved in their 

equilibrium, may be very different in distinct cellular compartments. Thus it is 

important to block the thiols status to try to detect the actual status of specific 

protein thiols, avoiding reactions that could affect them during extraction, either 

those due to the cross-contamination of different compartments or those involving 

oxidation due to sample handling (metal catalysed oxidation, contact with ambient 

air). One way of “freezing” the original status of thiols is by using TCA during the 

extraction to precipitate the protein samples [Izquierdo-Álvarez et al., 2011], 

alternatively, the blocking reagent can be added to the lysis buffer. This latter is 

the way we choose in reason of the required characterization of modified protein-

thiols: indeed NEM-modified thiols (+125.047679) can be distinguished from 

IAM modified (+57.021464) (see above). Among the possible blocking agents, 

NEM is more efficient than IAM or IAA because it completely blocks free thiols 

at a lower concentration, in less time and is effective at pH values lower than 8 

[Rogers et al., 2006]. Since we performed the lysis of our samples in pH 7.4 

buffer, blocking of native-unmodified thiols with a [SH]:[NEM] ratio of 2 for 90’ 

proved to be valuable to protect solvent-accessible free thiols in the sample. 

Moreover lower pH value and shorter reaction times helped in avoiding NEM 

reaction with lysine residues. Finally, analysis of NEM-blocked and HPDP treated 
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samples without pre-emptive DTT reduction shown low false-positive and 

confirmed effective blocking step (data not shown). 

 

Selective reduction 

 

When indirect or double labelling is performed, oxidised thiols are reduced to free 

thiols before the second labelling step (with HPDP). Generally two groups of 

chemical reagents are used for this: reduced thiols, especially DTT, the reaction of 

which is thermodynamically favoured by the formation of its cyclic intra-

molecular disulfide bond; and trialkylphosphines (TCEP). Since the presence of 

both of them in the labelling process impairs the attachment of the second probe 

to the thiols groups released, we need to remove the reducing agent before 

performing the labelling reaction with HPDP. This is why we preferred DTT 

instead of TCEP, despite higher reducing power and broader pH range-action: 

indeed we assessed the efficacy of reagent removal through desalting columns and 

TCEP demonstrated to be harder to remove, compromising HPDP further 

labelling. Thus we optimized DTT concentration by evaluating (by fluorescent-

labelling of reduced thiols) the minimal amount (data not shown) and time 

required to fully reduce NEM-unreacted protein-thiols in the sample. DTT 

removal by means of buffer exchange was then confirmed with DTNB assay. 

 

Affinity purification 

 

Given the need for subsequent relative-quantification analysis by MS on extracted 

proteins, we choose to perform neutravidin-biotin HPDP affinity purification on 

intact proteins rather than on peptides (see above). Moreover we kept non-

denaturing conditions throughout the reductive-elution step and subsequent IAM 

labelling so to avoid misleading reduction and labelling of potentially buried 

oxidised-thiols, which are not expected to be subject to functional redox 

switching. Thus elution volumes and time have been carefully evaluated to 

minimize samples variability: 5 mL along 10’ proved sufficient to collect 

specifically bound proteins. Moreover further analysis confirmed that all proteins 

identified by this approach bear at least one cysteine residue in their sequence 

(even though not always the exact IAM-modified cys-containing peptide has been 

detected by MS/MS analysis – see after herein). 

 

5.2.1 Label-free approach: computational analysis 

 

It is nowadays clear the compelling need in the life sciences for studying of 

biological entities at the system level. In turn this requires analytical tools capable 

of identifying the component parts of the system and of measuring their responses 

to a changing environment. To this aim many classical proteomics quantification 

methods utilizing dyes, fluorophores, or radioactivity have provided very good 
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sensitivity, linearity and dynamic range, but they suffer from two important 

shortcomings: first, they require high-resolution protein separation typically 

provided by 2D gels, which limits their applicability to abundant and soluble 

proteins; and second, they do not reveal the identity of the underlying protein 

[Bantscheff et al., 2007]. Both of these problems are overcome by modern LC-

MS/MS techniques and three main methods have been made available to perform 

quantitative LC-MS analysis: (1) quantification by spectral counting, (2) 

quantification via differential stable isotopic labelling, and (3) quantification by 

using the ion current in label-free measurements. 

An obvious reason for choosing label-free approach over isotopic labelling is its 

cost-effectiveness. Among label-free quantification strategies, two widely used 

and fundamentally different approaches can be outlined: (a) measuring and 

comparing the mass spectrometric signal intensity of peptide precursor  ions 

belonging to a particular protein and (b) counting and comparing the number of 

fragment spectra identifying peptides of a given protein. We will name the former 

“features quantification” and the latter “spectral counting”. In-depth analysis of 

both methodologies is beyond the topic of this discussion and exhaustive reviews 

can be found in Bantscheff and Mueller [Bantscheff et al., 2007, Mueller et al., 

2008]. 

 

The choice of the features quantification approach 

 

Briefly, the spectral counting approach is based on the empirical observation that 

the more of a particular protein is present in a sample, the more MS/MS spectra 

are collected for peptides of that protein. Thus, in contrast to quantification by 

peptide ion intensities, spectral counting benefits from extensive MS/MS data 

acquisition across the chromatographic time scale both for protein identification 

as well as protein quantification. Nevertheless, this represents also an intrinsic 

limit for this methodology, since the only peptides which will be quantified are 

the ones selected for fragmentation. Even at the scan rate of 3 spectra/second for 

MS/MS we adopted, and given the removal of noisy non-cys containing proteins 

from the sample prior to digestion (see above), spectral counting approach would 

result in poor sampling for accurate quantification. Indeed, such methodology is 

often coupled to hardware-burdensome 2D-LC pre-emptive to injection into the 

mass spectrometer. Moreover, to improve sampling (fragmentation) of lower 

abundant peptides, we took advantage of MS/MS dynamic exclusion after 2 

spectra for 30’’, thus increasing the number of peptides and proteins identified. 

Nevertheless dynamic exclusion violates in principle the random sampling 

approach required for spectral counting and its impact on quantification is still 

controversial. Indeed some authors state it is detrimental for accurate 

quantification [Old et al., 2005] while other show that it can be generally useful 

[Zhang et al., 2006, Zhang et al., 2009]. Our feature quantification approach does 

not suffer from the application of dynamic exclusion. In our approach peptide 
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signals are detected at the MS level and distinguished from chemical noise 

through their characteristic isotopic pattern. These patterns are then tracked across 

the retention time dimension and used to reconstruct a chromatographic elution 

profile of the peptide mass. It is worth to note that in this case the signal area 

integration within the mass spectrum utilize the sum of the areasof all the 

isotopomers of a peptide. This methodology despite being harder to implement 

computationally, is more sensitive and accurate in respect to the use of just the 

mono-isotopic peak area. The total ion current of the peptide mass, from now on 

called featureis then integrated and used as a quantitative measurement of the 

original peptide concentration. The extracted features are then mapped across 

multiple LC-MS measurements using their coordinates on the m/z and Rt 

dimension. All the workflow has been set-up to a good configurability and 

automation level based on OpenMS open source tools as reported in chapter 3, 

and we are looking forward to implement user-friendly graphical interface for 

larger usability too. 

 

Reproducibility and relative-quantification criteria 

 

Basically, the approach outlined here relies on reproducible LC separation of 

peptides across samples to be compared and gathering of high resolution MS data 

in order to generate (m/z;Rt;intensity) three dimensional raw maps from which 

features are extracted, aligned and quantified. Good accuracy of the steps involved 

is demonstrated in Fig. 4.i, giving < 5 seconds and < 0.014 Da differences among 

pairwise aligned features across samples to be compared. Multiple search engine 

of MS/MS data against a protein database enriched with commonly known 

crap/contaminant proteins and decoy strings is then used to obtain identification 

data (peptide-spectrum matches PSM) for peptides in the sample. False discovery 

rate and in turn posterior error probability are calculated for each result and used 

to filter unreliable matches. Peptide identification information are then merged to 

features intensities (relative-quantitative information) and multiple peptides (three 

most intense) are used to compute the relative-quantification of a protein in M2T 

over M2 pairwise comparison. Moreover we took advantage of three technical 

replicates for each biological replicate and multiply cross-aligned each M2T and 

M2 run in order to strengthen our data: only peptides reproducibly identified in 

both or in just one (i.e. presence/absence criteria) of the two samples have been 

used for quantification. Thus we were able to quantify about 27% of the identified 

proteins: indeed to identify and quantify a protein is a more complex task to 

achieve compared to identification only. Despite the fact that missing features (i.e. 

peptides missing in the quantification process) is a commonly known issue to face 

with in this kind of approach, we evaluated different missing features-imputation 

approaches (data not shown) and concluded that this would instead raise the 

number of false positives. Finally the good linearity of peak-area based 

quantification for a standard protein digest from 5 to 100 fmoles has been 
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demonstrated (Fig. 4.e) and good reproducibility of peptides relative-

quantification between pairwise samples across technical replicates was 

demonstrated in the range of ± 40% variability (Fig. 4.m). Finally, we put an 

effort against reduction of systematic and non-systematic variations between 

experiments by raising the number of biological replicates to five, while it is not 

uncommon that publications reporting results of proteomic experiments using 

quantitative MS base conclusions on measurements generated in one or two 

experiments [Bantscheff et al., 2007]. Higher number of replicates also helped us 

to relatively-quantify lower abundant peptides: since variation of change 

determination is a function of signal intensity [Bantscheff et al., 2007], we 

managed to avoid harsh signal-intensity threshold and rather strengthened 

measured relative-differences by virtue of their reproducibility. Paragraph 3.7.4 

describes the criteria adopted through the procedure, which are in principle simply 

based on averaging of ratios to aggregate multiple measurements (indeed a 

criterion extensively applied and accepted in literature [Saito et al., 2007]). We 

also did not introduced inter-samples intensity normalization at the computational 

level: indeed after evaluation of different normalization approaches (not reported 

here) we managed to obtain 100% correct under/over-expression estimates on a 

benchmark sample (Fig. 4.l) without any data normalization. Moreover we took 

care of rigorous pre-digestion protein-quantity normalization between samples to 

be compared. 

 

5.2.2 Limits and improvements of the approach 

 

One of the consciously assumed limitations of this approach is that it cannot 

distinguish between the specific kinds of reversible oxidation borne by the 

selected cysteine residues: it could be a disulfide, rather than a glutathionylation, 

oxidation to sulfenic acid or sulfhydration. Operatively speaking, we catch by this 

methodology all those modification which can be reverted by DTT treatment. 

Nevertheless this method could be in principle easily adapted to the study of more 

or more specific oxidative modification like S-nitrosilation, by means of a 

different reduction step: for example including a pre-treatment with ascorbate and 

copper (see above). 

Another assumed limit of the procedure we developed is that it does not allow 

direct evaluation of the oxidized/reduced ratio for a given protein intra-samples. 

This is due to the fact that affinity purification of oxidatively-modified cys-

containing proteins hampers quantitative evaluation of the total protein content for 

given specie, which is instead prerogative of more classical MS-based quantitative 

approaches. Briefly, in a single experiment we are able to state if there is more of 

the oxidized form of a protein “x” in M2T sample in respect to M2 sample, but we 

cannot gather information on the total content of protein “x” in each of those 

samples. Nevertheless this information could be retrieved by different ways. First 

we developed the so called “totally reduced” control samples (§ 4.2.3) which 
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allow us to extract all of a specific cys-containing protein from the sample by 

simply avoiding the first blocking of available thiols with NEM: this provides 

information on the total protein “x” content independently from its oxidation 

status. Preliminary western blot (wb) data confirmed the results of this approach 

for glucose-6-phosphate dehydrogenase (see results), glyceraldehyde 3-phosphate 

dehydrogenase (see results) and peroxiredoxin-1 (not shown). Definitely 

information on the quantity for proteins of interest could be obtained as well by 

means of classical immunological approaches, thus validating results obtained by 

the methodology described here. 

 

5.3 G6PDH as putative master regulator of redox equilibrium 

 

We applied the methodology described above to the study of a cellular model of 

breast cancer derived from the breast cancer epithelial cell line MCF10A. 

Particularly M2 and M2T cells have been provided us by Prof. S. Piccolo 

laboratory and reproduce different grades of aggressiveness and malignancy of the 

tumour. Indeed M2T cells are engineered to express a constitutive active mutant 

of the transcription co-activator TAZ and reproduce higher grade malignancy and 

bear higher metastasizing potential in respect to their M2 counterpart. From our 

analysis 17 proteins were more oxidized into M2T cells, while 29 were more 

reduced in the same cell line in respect to M2 counterpart. Moreover we were able 

to quantify also other 45 redox sensitive proteins with unchanged oxidative status 

between the two samples. Numerous proteins known to be transcriptionally 

regulated by Nrf2 (see results) were mapped among both oxidatively unchanged 

and more reduced protein groups: specifically members of the unfolded protein 

response were unchanged while members of the antioxidant response were more 

reduced. On the other hand, among more oxidized proteins Hemicentin, 

Trophinin, Mucin-16, Usherin, and chondroitin sulphate proteoglycan share at 

different levels their function into cell adhesion and interaction with the ECM. We 

also mapped numerous oxidatively-modified cysteine-residues along those 

proteins sequence, both into cytoplasmic phosphorylative-regulatory domain 

(Mucin-16) and into EGF-like domain for the interaction with collagen (Usherin). 

Another interesting protein that we found to be more oxidized into more 

malignant cells was the enzyme glucose 6-phosphate dehydrogenase. 

 

5.3.1 Cancer metabolism and ECM detachment 

 

The initial recognition that cancer cells exhibit atypical metabolic characteristics 

can be traced to the work of Otto Warburg over the first half of the twentieth 

century [Koppenol et al., 2011]. Indeed, in the presence of oxygen, cells from 

most normal tissues use glucose through glycolysis producing pyruvate, and this 

is in turn mostly oxidized as Acetyl-CoA in mitochondria through the respiratory 

chain. On the other hand, in anaerobic conditions, normal tissues reduce pyruvate 
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from glycolysis to lactate, driving it away from mitochondrial oxidative 

phosphorylation. Then, in contrast to normal cells, rapidly proliferating ascites 

tumours metabolize pyruvate to lactate even in the presence of oxygen, despite the 

fact that this is energetically less “convenient” for the cell with respect to 

mitochondrial oxidation (almost 18-fold less ATP net production). It is still quite 

controversial if such metabolic switch is driven by impaired mitochondrial 

function in tumour cells, since it has been demonstrated that this organelle is still 

viable and functional even in cancer cells [de Oliveira et al., 2012]. Indeed 

neoplastic cells fermentative metabolism of glucose in the presence of oxygen has 

been proposed to serve more predominantly toward supporting biomass 

accumulation and redox maintenance in proliferating cells rather than to energetic 

functions [Cantor et al., 2012]. In this view glycolysis is interconnected with other 

metabolic pathways for synthesis of cellular building blocks: for example 

fructose-6-phosphate and glyceraldehyde-3-phosphate may be shunted into the 

non-oxidative arm of the pentose phosphate pathway (PPP) to generate ribose-5-

phosphate (precursor in nucleotide biosynthesis). Alternatively glucose-6-

phosphate can feed into the oxidative arm of the PPP to generate both ribose-5-

phospahte and NADPH, which contributes to the cellular defence against 

oxidative stress. Oxidative stress is the rather generic term often used to describe 

an unbalance in cellular redox-homeostasis toward more oxidizing conditions. 

Even the role of this redox unbalance is not completely understood in reference to 

tumour etiology and progression: while oxidative DNA damage (see introduction 

too) could be culprit of the onset of genetic changes leading to neoplastic 

transformation, it seems that tumour cells need to raise some sort of defences 

against such oxidative stress in order to survive. Hence we can find a role for PPP 

activation in cancer. Nevertheless, focusing on the metabolic switch hallmark of 

tumour cells, it has been reported that also tumours developed in hypoxic 

environments have high glycolytic activity: in this case hypoxia can induce 

glycolysis and repress mitochondrial respiration to reduce oxygen consumption 

through hypoxia-inducible factor 1 (HIF-1). Moreover in hypoxic conditions 

mitochondria are reported to increase the production of superoxide (i.e. to favour 

mentioned oxidative stress) [Enns et al., 2012]. 

Tumour cells metabolic switch to aerobic glycolysis is also associated to 

increased glucose uptake. In relationship to this aspect, it has been demonstrated 

that ECM detachment could lead to anoikis (i.e. programmed cell death arising 

from loss of contact with the ECM) precisely via decreased glucose uptake 

[Schafer et al., 2009]. Indeed a model of ECM detachment developed with 

MCF10A cells demonstrated that breast cancer cells lacking ECM contact are 

selectively induced to anoikis [Fung et al., 2008] and Erb2 overexpression could 

confer anoikis-resistance by restoring glucose uptake through EGF receptor 

stabilization and PI3K activation [Kim et al., 2012]. In the mechanism proposed 

by Kim et al. anoikis resistance is basically obtained through the re-establishment 

of ATP production via restored glucose-uptake: in the proposed context this 
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involves the aerobic glycolytic pathway activated in tumour cells. Moreover, the 

same author demonstrates that anoikis resistance could be achieved also through 

antioxidant treatments of MCF10A cells in the above-mentioned model from 

Fung et al.: in this case resistance is obtained through re-establishment of ATP 

production via activation of the fatty acid oxidation, which is inhibited by high 

oxidant levels. Nevertheless, joining these data with the observations from de 

Oliveira and Cantor on mitochondrial activity in tumour cells (i.e. mitochondria 

are still the major source of intracellular ATP even in cancer cells), and the 

antioxidant function of the PPP shunted glucose-6-phosphate, it seems reasonable 

that the re-established glucose uptake could drive anoikis resistance through 

augmented NADPH production via oxidative PPP. 

 

5.3.2 G6PDH redox regulation 

 

Given a possible role for PPP in conferring resistance to anoikis in ECM detached 

tumour cells, it remains unclear the way by which this pathway could be 

activated. Mitsuishi et al. propose the direct activation of G6PD (the rate limiting 

enzyme of the PPP) by Nrf2 through the well conserved antioxidant response 

element (ARE) on its gene [Mitsuishi et al., 2012]. As already seen Nrf2 

constitutive activation has indeed been associated with many tumours. But in our 

model NFE2L2 gene (i.e. Nrf2 gene) is even apparently down-regulated in M2T 

in respect to M2 cells. As NFE2L2 is regulated itself by the same Nrf2, it seems 

unlikely that this pathway is activated in our model. Moreover peroxiredoxin-1 

western blotting showed that also this protein, known to be ARE regulated by 

Nrf2, is expressed at the same level in both M2T and M2 cells. Nevertheless we 

confirmed a globally even if slightly, more reduced status for M2T cells in respect 

to their M2 counterpart and we highlighted as well a pronounced unbalance 

toward a more oxidized status for the G6PD protein in the more malignant 

cells.The presence of different conformers of this enzyme is sustained also by 

reducing and non–reducing western blotting. However it cannot be stated at this 

point which are the causes for maintained G6PD oxidized status in M2T cells, but 

our experiments on the effect of redox status on this enzyme activity demonstrated 

that G6PD activity decrease in reducing conditions and that it re-oxidize itself 

quite rapidly (DTT removal, see results). Moreover, reduction and alkylation 

(with NEM) of G6PD further reduced its activity, thus showing that there is 

probably a less-active form of this enzyme lacking some required oxidation. 

Redox regulation of G6PD in organisms different from this human cell line has 

been extensively reported in the past [Udvardy et al., 1984, Gleason et al., 1996, 

Au et al., 2000, Née et al., 2009] and all agree on the reduction of activity 

consequent to enzyme reduction by DTT and thioredoxin. Finally, preliminary 

results from expression analysis don’t detect any G6PD augmented transcription 

and western blotting, together with totally reduced controls confirmed nearly a 

twofold difference in protein quantity: probably the augmented activity of G6PD 
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in M2T cells could be ascribed to both its quantity and redox regulation. In a 

recent work from Halim et al., it has been demonstrated that prolonged H2O2 

treatment (up to 10M for 14 days) is able to rescue anoikis in non-small cell lung 

cancer and melanoma cells via over-expression of caveolin-1 [Halim et al., 2012]: 

even if not directly correlated with our observations, this study sustain once again 

a role for endogenous or exogenous produced electrophiles in conferring tumour 

cells an advantage toward survival, thus enriching the concept of “oxidative 

stress” mentioned above. Finally, another interesting observation arise from a less 

recent work on erythrocyte model system, where Scott et al. demonstrated that 

only G6PD-produced NADPH is able to decrease the oxidant sensitivity of those 

cells and not GSH [Scott et al., 1991], by correlating haemoglobin oxidant 

sensitivity to NADPH,but not to GSH. This is intriguing since it is known that 

Nrf2 pathway activation lead to increased GSH synthesis, while G6PD activation 

lead to increased NADPH synthesis, which is likely to be an interesting 

hypothesis in our model. 

Finally, as for the outlined adhesion and ECM interaction molecules we found 

more oxidized into M2T cells, little could be said without further research. It is 

known indeed that oxidants could have a role into the induction of expression of 

adhesion molecules in mammalian vascular endothelial cells [Hurd et al., 2012] 

and that oxidants production to this aim could be localized by virtue of receptor 

mediated stimulation of membrane-NOX. Nevertheless there is no clear clue on 

the direct involvement of adhesion molecules oxidation into ECM-interaction 

processes. On the other hand, invasive cells could travel through various ECMs to 

extravasate, intravasate, and colonize target organs, but there is no unifying 

hypothesis to explain the mechanism used by cancer cells to cross these barriers 

[Díaz et al., 2012]. 

 

5.4 Concluding remarks 

 

The work described here encompasses both the setting up of a complex analytical 

workflow and its application to the study of a cellular model. Thus, we were able 

to identify redox-sensible proteins which are differentially oxidized between M2T 

and M2 cells. M2T cells represent a more malignant breast cancer cellular model 

with higher metastasizing potential in respect to its M2 counterpart. M2T cells 

were demonstrated to contain more free thiols than M2 cells and so to be globally 

more reduced. Nevertheless, we identified proteins both more reduced and more 

oxidized into M2T cells, thus demonstrating a rather complex redox scenario in 

those cells. Particularly, among proteins more oxidized into M2T cells, we could 

identify proteins involved into ECM interaction and cell-adhesion processes and 

the PPP enzyme G6PD. While we are still looking to elucidate the significance of 

the formers, this latter enzyme is known to be a key player in redox homeostasis. 

Its oxidative activation together with increased expression could be culprit of 
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tumour cell response to ECM detachment induced oxidative stress, thus 

conferring aggressive cells survival advantage. 

This work definitely lead to the generation of this hypothesis starting from the 

very development of a methodology and identified further research targets 

through a wider “omic” approach. Deeper studies on G6PD kinetic and redox-

regulation and characterization of NADPH levels together with elucidation of 

Nrf2-pathway activation in this model, will provide further insights to the study. 
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proteomics techniques to the study of Cisplatin resistance in cellular models and 

to the analysis of red blood cell membrane proteins. These works, not belonging 
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p.416-428, 2011) with the title “New insights into Neuroblastoma Cisplatin 

Resistance: A comparative proteomic and meta-mining investigation” and in the 
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