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Glass microstructure

     “Some graduate students and I were  

using the electron microscope to 

examine phase separation in some 

semiconducting glass systems. The date 

was on or about February 14. A unique 

and distinctive structure appeared on 

the screen and was subsequently 

photographed. 

    In case there have been any doubters 

in the world, we feel this conclusively 

proves that ceramics is a field into 

which you can put your heart.” 
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Abstract 
 

The topic of this research work deals with the synthesis, the characterization and the optimization 

of silicate ceramics, realized through the controlled pyrolysis of preceramic polymers filled with 

inorganic fillers.  

According to this synthesis route, preceramic polymers can be used as silica precursors by virtue 

of their conversion from polymers to ceramics by thermal oxidative reactions. Besides the low cost, 

large availability and easy-handling of the preceramic polymers, a further advantage regards the 

fabrication of the final ceramic from the process point of view. In fact, the component can be easily 

shaped by means of the conventional plastic forming techniques, thanks to the polymeric nature of 

the system before cross-linking. These simple shaping techniques even include the realization of 

dense components, by warm/cold pressing, and of highly porous bodies, by direct 3-D printing or by 

foaming of preceramic slurries, before ceramization.  

The incorporation of fillers, that generally can be passive or active, is considered one of the most 

effective strategies to decrease the shrinkage and the formation of macro-defects, that inevitably 

take place throughout the polymer-to-ceramic conversion, allowing the realization of relatively large 

components.  

A novel approach concerning the use of reactive fillers consists, instead, in incorporating fillers as 

oxide precursors, that are intended to fully react with the ceramic residue of the polymeric 

precursors, rather than to compensate the shrinkage. As a result, these reactions between the 

preceramic polymers and the reactive fillers, occurring throughout the pyrolysis, lead to the 

formation of specific crystalline phases, that are generally not directly achievable by the simple 

pyrolysis of a preceramic polymer. Following this methodology, the present Ph.D. thesis has been 

devoted to an organic investigation of the applications that this strategy could offer, starting from 

silicone-based mixtures incorporating reactive fillers. By this route, the advantages connected with 

the presence of a polymeric phase, especially in the shaping step of the processing, can even be 

combined with the advantages related to the whole processing cycle of preceramic polymers, leading 

to the realization of ceramic components at relatively low temperatures (even below 1200 °C) and 

avoiding the conventional methodologies.  

In this research work, the fillers incorporated in the preceramic mixtures have also been exploited 

as foaming agents or liquid phase formers, thus helping respectively the direct shaping in porous 

bodies or the obtainment of glass-ceramic components. However, as already mentioned, the main 

purpose of the fillers, here, is to serve as oxide precursors, in order to synthesize crystalline ceramics 

after pyrolysis of specific compositions, achievable by the reaction occurring between the ceramic 

residue of the polymeric precursor and the oxides coming from the thermal decomposition of 

reactive fillers. The type of fillers can be conveniently selected according to the desired final 

composition; therefore, a wide variety of ceramic systems can be achieved, simply by changing the 

proportions and composition of the starting polymers and fillers. 

The first part of the following chapters will be focused on the realization of peculiar ceramic and 

glass-ceramic formulations, that are well known to have very pronounced biological properties, and 

in their shaping in suitable architectures for biomedical purposes, thus having applicability as 

bioceramics for bone regeneration implants. Besides bioglasses, other bioceramic formulations have 

recently received a growing interest in the field of bone ingrowth, according to their ability to 

stimulate body tissues to repair themselves. The formulations developed in this research work mainly 

belong to the CaO-SiO2 or CaO-MgO-SiO2 oxides systems, but some crystalline phases have also been 

combined to obtain composite formulations, or have been coated with other materials 

(hydroxyapatite) exhibiting the same properties as natural bone from a chemical and structural point 
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of view, to increase their bioactivity even more. In this framework, the developed materials have not 

only been characterized in terms of microstructure, mechanical and physical properties, but their 

biological behaviour has been assessed as well.  

Then, exploiting the concept of multifunctionality characterizing some silicates, besides deep 

analogies in the crystal structure and in the processing route, it has been possible to establish a 

thread running between the above-discussed biosilicates and other silicates with further advanced 

functional applications. In accordance with this logic, the technology has been extended to dielectric, 

photoluminescent and refractory silicates. 
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Riassunto 

 

L’attività di ricerca presentata in questa tesi ha riguardato la sintesi, la caratterizzazione e 

l’ottimizzazione di ceramici silicatici, realizzati a partire dalla pirolisi controllata di polimeri 

preceramici caricati con fillers inorganici. 

Sulla base di tale metodo di sintesi, i polimeri preceramici possono essere utilizzati come 

precursori per l’ottenimento di silice in virtù della loro conversione da polimeri a ceramici tramite 

reazioni termo-ossidative. Oltre al basso costo, alla larga disponibilità e alla semplicità di utilizzo, un 

ulteriore vantaggio riguarda la fabbricazione del ceramico finale dal punto di vista del processo. 

Infatti, il componente può essere formato sfruttando le convenzionali tecniche di formatura per i 

materiali polimerici, grazie alla presenza di una componente polimerica nel sistema, prima di 

imporne la reticolazione. Tali semplici tecniche di formatura includono anche la realizzazione di 

componenti densi, tramite pressatura, o di corpi altamente porosi, tramite stampaggio 3-D diretto o 

schiumaggio delle miscele preceramiche, prima di ceramizzarle. 

L’inserimento di fillers, che generalmente si suddividono in attivi e passivi, è considerata una delle 

più efficaci strategie per ridurre il ritiro dimensionale e la formazione di macrodifetti, che 

inevitabilmente ha luogo durante la conversione da materiale polimerico a ceramico, permettendo la 

realizzazione di componenti relativamente spessi. 

Un approccio più innovativo relativo all’uso di fillers reattivi, invece, riguarda l’introduzione di 

fillers come precursori di ossidi che possano reagire completamente con il residuo ceramico dei 

precursori polimerici, piuttosto che finalizzati a compensare il ritiro dimensionale dei componenti. 

Dalle reazioni tra i precursori polimerici e i fillers reattivi durante la pirolisi, risulta la formazione di 

fasi cristalline specifiche, che generalmente non sono ottenibili in modo diretto dal semplice 

trattamento termico dei precursori polimerici. Seguendo tale processo di sintesi, la presente tesi di 

dottorato ha avuto come obiettivo lo studio delle applicazioni che tale tecnica potrebbe offrire, 

partendo da miscele a base di polimeri siliconici caricati con fillers reattivi. In questo modo, i vantaggi 

derivanti dalla presenza di una componente polimerica, sfruttati soprattutto in fase di formatura, 

possono anche essere combinati con i vantaggi offerti dall’intero ciclo produttivo dei ceramici da 

polimeri preceramici, portando alla realizzazione di componenti ceramici a temperature abbastanza 

basse (entro i 1200 °C) ed evitando i metodi di sintesi più convenzionali. 

Nel presente lavoro di ricerca, i fillers incorporati nelle miscele preceramiche sono anche stati 

sfruttati come agenti schiumanti o formatori di fase liquida, permettendo, rispettivamente, lo 

schiumaggio diretto di componenti altamente porosi in un caso e l’ottenimento di vetro-ceramiche 

nel secondo. Ad ogni modo, come già spiegato, il fine principale dell’uso dei fillers, qui, è stato il loro 

utilizzo come precursori di ossidi, in modo da permettere, dopo ceramizzazione, la sintesi di fasi 

ceramiche cristalline di specifica composizione, direttamente ottenibili dalla reazione tra il residuo 

ceramico dei precursori polimerici e gli ossidi provenienti dalla decomposizione termica dei fillers 

reattivi. La tipologia dei fillers può essere adeguatamente modificata a seconda della composizione 

finale desiderata; di conseguenza, un’enorme varietà di sistemi ceramici può essere realizzata 

semplicemente modificando le proporzioni e la composizione dei polimeri e dei fillers di partenza.  

La prima parte dei capitoli seguenti sarà imperniata sulla realizzazione di particolari ceramici e 

vetro-ceramiche molto conosciuti per le loro pronunciate proprietà biologiche, oltre che sulla loro 

formatura in strutture che risultino adeguate ad applicazioni biomedicali, come gli impianti per 

rigenerazione ossea. Parallelamente ai biovetri, altre formulazioni bioceramiche hanno ricevuto 

recentemente un interesse crescente nel campo biomedicale, in virtù della loro capacità di stimolare 

i tessuti biologici ad auto-ripararsi. Le formulazioni qui sviluppate appartengono prevalentemente ai 

sistemi di ossidi del tipo CaO-SiO2 o CaO-MgO-SiO2, ma alcune fasi cristalline sono anche state 
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combinate tra loro per ottenere formulazioni composite, oppure sono state rivestite con altri 

materiali, come l’idrossiapatite, esibenti proprietà simili a quelle dell’osso naturale, sia sotto il punto 

di vista chimico che strutturale, al fine di incrementarne ulteriormente la bioattività. In questo 

contesto, i materiali sviluppati sono stati caratterizzati non solo dal punto di vista microstrutturale, 

meccanico e fisico, ma è stato studiato anche il loro comportamento sotto il profilo biologico. 

Inoltre, sfruttando il concetto di multifunzionalità che caratterizza alcuni silicati, oltre alle 

profonde analogie in termini di struttura cristallina e di caratteristiche di processo, è stato possibile 

stabilire un filo conduttore tra i biosilicati sopra menzionati e altri silicati con diverse applicazioni 

funzionali avanzate. In quest’ottica, la tecnologia è stata estesa ad altri silicati caratterizzati in 

particolare da proprietà dielettriche, luminescenti e refrattarie. 
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1 Overview of polymer-derived ceramics 

1.1 Introduction 
Polymer-derived ceramics (PDCs), as the name suggests, refers to a synthesis process for the 

fabrication of ceramic materials through the controlled thermolysis of polymeric precursors. This 

methodology has gained substantial interest in the last decades, due to a series of advantages 

related to the use of preceramic polymers, such as the wide variety and availability of precursors, 

their low cost and easy-handling, besides the relatively low synthesis temperatures and the 

possibility to apply the conventional plastic shaping techniques, such as polymer infiltration pyrolysis, 

injection moulding, extrusion, resin transfer moulding. All these favourable aspects make PDCs an 

extremely promising route for the realization of a unique class of materials with extraordinary 

characteristics. 

The first production of non-oxide ceramics from molecular precursors was reported in the early 

1960s by Ainger and Herbert1, Chantrell and Popper2. Ten years later, Verbeek, Winter and 

Mansmann3-5 presented the first practical ceramic transformation of polyorganosilicon compounds 

(polysilazanes, polisiloxanes and polycarbonsilanes), primarily aimed at manufacturing small-

diameter Si3N4/SiC ceramic fibers for high temperature use. Synthesis of SiC ceramic material from 

polycarbosilanes was developed by Fritz and Raabe6 and, almost at the same time, by Yajima7-8. Since 

these first experiments, silicon-based polymers demonstrated to be promising precursors for the 

production of technologically important ceramic components, such as fibers, coatings, composites, 

infiltrated porous media or complex-shaped bulk parts, which cannot be easily obtained using the 

powder technology, that is the traditional method to prepare ceramics and, however, requires the 

addition of sintering additives and significantly constrains technical applications.  

In recent years, the growing interest for PDCs led to further significant improvements of their 

chemistry, synthesis, processing and properties. To be competitive with traditional ceramics, PDCs 

have to be either cheap or their synthesis has to be selective to give the desired product with novel 

composition and exceptional properties. Nowadays, many classes of preceramic polymers are 

available, the most important of which are polysiloxanes, polycarbosilanes and polysilazanes. Many 

efforts have been made not only for the synthesis of classical binary ceramics, such as Si3N4 or SiC, 

but also to produce ternary systems, like SiOC and SiCN. Depending on the degree of complexity of 

the starting polymers, the final ceramic composition can also be further extended. Indeed, the 

incorporation of boron can lead to produce ceramics in the quaternary SiBCN system, or modification 

of polymeric precursors with metallic elements like Al, Ti, Zr can allow the realization of several 

multinary systems, as it has been reported in recent years.  

PDCs in general exhibit enhanced thermo-mechanical properties with respect to creep and 

oxidation, crystallization or phase separation up to 1500 °C, or even up to 2200 °C if the preceramic 

polymer incorporates some amount of boron. Moreover, their synthesis process requires less energy 

consumption, having a relatively low synthesis temperature of 1000-1300 °C, that is of economical 

interest in comparison with conventional ceramic powder processing technology, which requires 

1700-2000 °C to sinter covalent Si3N4- and SiC-based ceramics. Besides the applications as high-

temperature-resistant materials (energy materials, automotive, aerospace, etc.), other key 

engineering fields are suitable for PDCs, including hard materials, chemical engineering, electrical 

engineering, micro/nanoelectronics, demonstrating that the science and technological development 

of PDCs are highly interdisciplinary due to the high flexibility of this methodology. 

In the next sections, the most significant aspects of the PDCs route will be described, with 

particular attention to the chemistry of preceramic polymers, their processing and the properties of 

the final ceramics. 
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1.2 Preceramic polymers chemistry 

1.2.1 General aspects 

Preceramic polymers can be represented by the following oversimplified general formula (Fig. 

1.1), consisting of a Si-based polymeric chain and side functionalities. 

 

 

 

Fig. 1.1 General simplified formula of Si-based preceramic polymers. 

 

The main backbone is constituted by Si atoms bonded to a generic X group, which probably is the 

most important parameter to modify the preceramic compound and which determines the class of 

the final polymer, as summarized in Tab. 1.1: polysilanes with X=Si, polysiloxanes with X=O, 

polycarbosilanes with X=CH2, polysilazanes with X=NH, polyborosilanes with X=BR and 

polysilylcarbodiimides with X=[N=C=N]. 

 

Tab. 1.1 Principal classes of Si-based preceramic polymers, based on the nature of the X group in the polymer backbone. 

X group Polymer class 

Si Polysilanes 

O Polysiloxanes, Polysilsesquixanes 

C Polycarbosilanes 

N Polysilazanes, polysilsesquiazanes 

B Polyborosilanes 

 

 

R1 and R2 substituents, instead, can be changed to modify the thermal and chemical stability, as 

well as the solubility of the polymer, the electronic, optical and rheological properties. These side 

functional groups are generally C-based (e.g. H, aromatic, aliphatic). In particular, the solubility, the 

thermal stability and the viscosity as a function of temperature are important features for the 

processing of the polymers9-10. Moreover, suitable functionalities are necessary to achieve the 

polymer setting through cross-linking reactions before the pyrolysis step, the nature of which is 

strictly related to the nature of the side groups involved (e.g. condensation reactions in the case of –

OH functionalities, addition reactions in the case of –vynil groups). Upon pyrolysis, instead, the 

nature and the quantity of the different side groups are well known to determine the residual C 

content in the final ceramics (if a non-oxidizing atmosphere is used during pyrolysis). 

Combining different X, R1 and R2 groups, a wide range of potential polymer compositions are 

achievable, also considering than more than one X group can be present at the same time inside the 

polymer backbone. For instance, polyborosilazanes are a class of hybrid polymers where both X=B 

and X=N are present in the main chain. Thus, the macroscopic chemical and physical properties of 

PDCs can be varied and adjusted to a huge extent by the design of the molecular precursor9,11-12. A 

more comprehensive description and graphical representation of Si-based preceramic polymers is 

reported in Fig. 1.2, as schematized by Colombo et al.9. As visible, an extremely wide variety of 

preceramic polymers is achievable, although not all of these classes have become equally common 
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and widespread. This is mostly due to the fact that, besides the properties and performances of the 

final ceramics, there is a series of other factors affecting the selection of a preceramic polymer. The 

most important parameter to be considered, especially from an industrial point of view, is the cost of 

the precursors, but even the specific handling that every precursor requires is relevant (it is 

influenced by its chemical durability, thermal stability, toxicity and reactivity towards the atmosphere 

or other substances), since it inevitably influences all the aspects of its processing13. 

 

 

 

Fig. 1.2 Main classes of Si-based preceramic polymers in the Si-O-C-N-B system
9
. 

 

Among all the classes of preceramic polymers, the most studied class of preceramic polymers is 

represented by the polysiloxanes, being inexpensive, non-toxic and having high thermo-chemical 

stability14-15. They are the preferred choice for the realization of silicon oxycarbide glasses with 

interesting thermo-mechanical properties up to approximately 1200 °C. Instead, when higher 

thermal stability is required, polysilazanes and polyboronsilazanes are the best choice (for 

temperatures respectively up to 1400 and 1600 °C), but their higher performances are obviously 

accompanied by increased prices of the precursors, more complex synthesis routes, generally higher 

reactivity towards other substances (moisture and O) and toxicity, thus increasing processing 

complexity and hindering their applicability on an industrial scale. 
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1.2.2 Polysiloxanes 

Polysiloxanes surely represent the most important and widespread class of preceramic polymers, 

due to a number of advantageous features, such as their general low cost (the lowest among all Si-

based polymers), their easy and cheap synthesis route, their thermo-chemical stability, making this 

class of precursors very versatile, easy to handle and processable without particular precautions16-20. 

They are denoted as silicones and they are odourless, colourless, water resistant, chemical resistant, 

stable at high temperatures and electrical insulating. By virtue of all these favourable characteristics, 

they have been involved in all the formulations investigated in the present thesis. 

Millions of modern products rely in some way on silicones for performance and reliability. They 

have many uses in several industrial applications, not only as lubricants, adhesives, sealants, gaskets, 

coolants in transformers, but also as foam-control agents in laundry detergents or protective 

coatings for facades and historical monuments. They are widely used even in hi-tech fields, like in the 

aerospace industry to increase the lifespan of vital components, in the semiconductor industry as 

protective materials, in the railway industry as long-lasting motor insulation and lubricants for 

bearings, or in the electronics and telecommunications industry for the processing of products like 

optical glass fibers, silicon wafers and chips. Moreover, due to their extremely low reactivity and non-

toxicity, they have biomedical applications, like in breast implants, or they can be used in the 

personal care products industry or as food additives. 

Besides the above-mentioned characteristics, other attractive technological properties are the 

low surface tension, the low glass transition temperature, the low hydrophobicity, the high melting 

and boiling points, they are liquid even with high molecular weights, etc. Due to all these interesting 

properties and to the continuous development of this family of precursors, a further growth of the 

polysiloxanes market is expected, as well as the discovery of new applications, beyond the present 

claims as synthetic fabric, high oxygen permeable contact lenses, adhesive foams, waterproof 

membranes, process aids, self lubricants, improved toughness, lithographic applications21. 

 

 

 

Fig. 1.3 General types of polysilsesquioxanes
9
. 
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The general synthesis method for the preparation of polysiloxanes comprises the reaction of 

chloro(organo)silanes with water, but other synthesis routes have also been proposed, such as the 

polycondensation reaction of functionalized linear silanes and ring-opening polymerization of cyclic 

silaethers, leading to hybrid materials combining the properties of polysilanes with those of 

polysiloxanes.  

In non-oxidizing atmosphere, the pyrolysis of polysiloxanes gives the formation of a silicon 

oxycarbide amorphous residue, consisting of both Si-O and Si-C bonds, impossible to be obtained 

with more traditional processing techniques. The presence of both covalent bonds is the basis for all 

the distinguishing properties of PDCs, like enhanced thermal stability and creep, oxidation and 

corrosion resistance. They are black in aspect, due to the residual “free” C present inside the 

material. 

Besides linear and cyclical polymers, another important subclass is represented by 

polysilsesquioxanes, characterized by the general formula –[RSi–O1.5]n– and for having a highly-

branched molecular structure, that can have very different possible configurations, such as random, 

ladder or cage, as reported in Fig. 1.3. Due to their high branching level, this class of polymers is 

often referred to as siliconic resins , they are generally solid at room temperature and they have very 

high ceramic yields upon pyrolysis13.  

Tab. 1.2 reports the main characteristics of the two preceramic polymers used in the present 

research work. 

 

Tab. 1.2 Characteristics of the preceramic polymers used in the experiments
22

. 

Commercial 
name of 

preceramic 
polymer 

Main 
ceramic 
phase 

1000 °C in N2 

Physical 
form  
 Troom 

Tg 
(°C) 

Ceramic 
yield N2/air 

1000 °C 
(wt%) 

Class 
Composition 
1000 °C in N2 

 (at%) 

Silres MK SiOC Powder 35-55 84/84 
Methyl-

polysilsesquioxane 
SiO1.52C0.64 

Silres H62C SiOC Liquid – n.a./58 
Methylphenylvinyl-

hydrogen-polysiloxane 
n.a. 

 

 

1.3 Preceramic polymers processing 

1.3.1 Shaping 

One of the most advantageous aspects of PDC route is that the preceramic precursors have the 

specific characteristic of having polymeric nature at the temperature at which they are shaped into 

components. Therefore, they can be subjected to a large variety of forming methods, some of which 

are reported in Fig. 1.4. All the common and well-known plastic forming technologies can be  applied 

to preceramic polymers: besides the quite standard compaction method by uniaxial, isostatic and 

warm pressing 23 - 25 , other possibilities for the shaping of preceramic polymers may include 

extrusion26-28, injection moulding29-30 or coating of substrates by spraying, dip coating, spin coating or 

chemical vapour deposition (CVD) 31-33. Coupling the PDC route with special forming technologies 

gives the possibility to realize some special components, generally not easy, if not impossible, to 

achieve with powders processing: some representative examples include fiber drawing 34 - 35 , 

infiltration of pre-formed scaffolds for ceramic matrix composites (CMCs) 36 - 38 , ceramic 

joining/bonding 39 - 41 , micro-component production through selective curing of substrates by 



22 
 

lithographic techniques42-44 and easy realization of highly porous bodies by direct foaming or other 

techniques such as negative replica45. 

Having a fully polymeric system allows an easy fabrication of green compacts with no need for 

additional binders, that exhibit a suitable mechanical consistency for further handling and, if 

required, machining (after cross-linking). The possibility of machining before ceramization is a 

remarkable advantage compared to common powder processing routes, since it allows a more 

precise shape control and avoids the problems connected to tool wear and ceramic brittleness46. 

Also, when using preceramic polymers for joining, the precursor effectively binds together the parts 

at low temperature, making handling before treatment much simpler39. The rheological 

characteristics of the precursors can be tailored by modifying their molecular architecture, thus 

allowing for example the fiber spinning47. In fact, preceramic polymers can be liquid or solid: if solid, 

they can also be dissolved in several organic solvents or can be molten at low temperatures (<150 

°C), usually leading to components possessing finer details, in comparison with powder-based 

systems9. 

 

 

 

Fig. 1.4 Shaping technologies for polymer-derived ceramics manufacturing
11

. 

 

 

Concerning the fiber production, ultra-high performance SiC-based ceramic fibers for polymer, 

metal or ceramic matrix composites have been produced in the last decades by Nippon Carbon Co. 

(NICALON™) and by UBE Industries (Tyranno®) starting from polycarbosilanes7,8. Another example 

are the non-oxide Si-C-N fibers, that have been successfully produced at ITCF (Denkendorf) from a 

polycarbosilazane precursor 48 . Polyacrylonitrile (PAN), although not silicon-based, is one last 

significant example of the application of the PDCs route for the industrial realization of ceramic 

components. Since first investigation during World War II by Union Carbide Corporation, it has been 
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used extensively for the realization of high-strength carbon fibers for polymer and ceramic matrix 

composites. Nowadays, the PAN process is the most important production process for carbon 

fibers10. 

As a final remark, it should be pointed out that this approach has important technological 

advantages over the use of other molecular precursors as well, such as sol-gel ones, as preceramic 

polymers do not have any drying problems that hamper the possibility of fabricating bulk 

components, do not need long processing times for gelation and drying, do not require flammable 

solvents, can be processed in the molten state, their solutions are stable in time and, at least for 

cheap, commercially available polysiloxanes, they do not require any specialized handling 

procedures9. 

1.3.2 Cross-linking 

A specific requirement for processing components using preceramic polymers is that, after 

shaping, the part needs to be converted into a thermoset, capable of retaining the shape during 

ceramization. The most common methodology to achieve the setting of the polymeric phase is the 

thermal curing below 250 °C, that can be easily obtained by incorporating suitable functionalities 

(e.g. -H, -OH, -vynil groups) in the polymer structure, thus enabling the cross-linking by addition or 

condensation reactions. Thermal curing temperatures might also be lowered by using catalysts or 

radical initiator, with the further advantage of an increased ceramic yield due to the lowering of 

oligomers evaporation49-50.  

Curing can be achieved using other different strategies, such us UV-radiation (if proper photo-

sensitive groups are present), γ-rays, electron-beams, and the use of reactive substances, gases or 

plasma51-53. Selective laser curing can be also applied, especially when a high degree of morphological 

complexity is required54. 

A release of gaseous by-products (e.g. water or ethanol) could take place during the curing step, 

depending on the curing mechanism. The consequence of this gas release is the generation of 

bubbles that may remain trapped inside the polymeric medium: this phenomenon could either be 

exploited for producing porous bodies by self-foaming processes, or be detrimental if a dense pore-

free ceramic is desired. 

It should be remarked that the extent of cross-linking strongly affects the rheological behaviour of 

a preceramic polymer, therefore it has to be carefully controlled especially when plastic forming 

technologies are used55. Moreover, it has to be noted that, when a preceramic polymer is filled with 

higher amounts of fillers, the curing step might not be necessary, as the solid additives may offer 

sufficient support to the polymeric matrix to retain the shape upon heating, by limiting the flow. In 

fact, the incorporation of fillers usually strongly affects the rheological behaviour of the preceramic 

polymers56. 

As will be more extensively discussed later, polymer cross-linking is also of fundamental 

importance for the obtainment of high ceramic yields upon pyrolysis: effective cross-linking reactions 

lead to highly branched/higher molecular weight polymeric molecules and thus to a lower content of 

oligomers and low molecular weight chains, that could volatilize at higher temperatures, thus 

increasing the final ceramic yield. 

1.3.3 Polymer-to-ceramic conversion 

After shaping and cross-linking, the preceramic part has to be converted into a ceramic. This 

conversion (above 400 °C) leads to a totally inorganic, non-volatile ceramic residue. The most widely 

process is oven pyrolysis57, in which the flowing gas continuously removes the decomposition gases 

from the system and can be carried out in oxidizing or non-oxidizing atmosphere58. However, non-
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thermal processes can also be applied, such as ion irradiation59-60, which might be applied to 

preceramic layers. 

The pyrolysis mechanism involved in the polymer-to-ceramic conversion is generally quite 

complex. The final result is the formation of an inorganic network, as a consequence of a reactions 

sequence, involving structural rearrangements and radical reactions. The process leads to the 

cleavage of chemical bonds (e.g. Si–H, Si–C and C–H), to the release of organic moieties (e.g. methyl, 

phenyl, vynil groups) and elimination of Si-H, Si-OH or Si-NHx groups9,11-12. In the case of polysiloxane 

resins, for example, it has been verified that in the 600–800 °C range methane is the main volatile 

species released, while at higher temperature (600–1100 °C) the release of hydrogen is observed61. 

At temperatures above 400 °C, an open-pore channel network is formed, that, upon further heating 

to 800-100 °C, can diminish (transient porosity)11-12. 

A fundamental parameter to be considered concerning preceramic polymers is their ceramic 

yield, which is defined as the ratio between the mass of the starting polymer and the mass of the 

ceramic residue upon pyrolysis. Typical ceramic yields are in the 70-90 wt% range, although even 

higher have been reported when reactive atmospheres are use62. The polymer-to-ceramic conversion 

terminates at 800-1000 °C and is associated with a weight loss of typically 10-30 %, which has several 

contributions, each having its characteristic temperature range. A simplified representation of the 

weight loss (TG curve) and structural rearrangements of a preceramic polymer (polycarbosilane) 

during heat treatment in inert (Ar) atmosphere is reported in Fig. 1.5, as schematized by Greil12
. 

 

 

 

Fig. 1.5 Typical structural transformation during thermal decomposition of a polycarbonsilane and TG curve
12

. 

 

 

The nature of the polymeric precursors and their chemistry play an essential role in determining 

the final ceramic yield. Therefore, in the last decades, the continuous development of preceramic 

polymers chemistry and processing has been of fundamental importance for increasing the ceramic 

yield, in order to obtain valuable precursors with potential practical applications21. For example, low 
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molecular weight polymers, as well as the presence of oligomers, could dramatically decrease the 

ceramic yield upon pyrolysis, due to volatilization and de-polymerization reactions. A proper cross-

linking step thus acquires a fundamental importance, not only for the obtainment of an infusible 

compact, but also to increase the final ceramic yield. 

 However, there are other factors affecting the ceramic yield of preceramic polymers. First of all, 

the presence of organic side chain groups is crucial in determining both the cross-linking and 

thermolysis chemistry21. Then, higher branching levels have generally a positive influence on the final 

ceramic yield. Another relevant factor is the thermal decomposition occurring during pyrolysis, since 

it represents the step when most of the weight loss is observed, deriving from the cleavage of 

chemical bonds and release of gaseous by-products. Finally, dehydrogenation and carbothermal 

reduction reactions at higher temperatures could give an additional contribution to the global weight 

loss, although these phenomena are generally less significant61.  

The most serious drawback of PDCs is associated with the thermal decomposition and 

rearrangements, that are a distinctive characteristic of the ceramic conversion. In fact, the gases 

release is inevitably accompanied not only by a mass loss, but also by the formation of cracks and 

porosity inside the material and by a more or less pronounced shrinkage, which lead to a 

deterioration of the mechanical properties. Moreover, the density of the material is generally 

observed to increase by a factor of 2-3, passing from the polymeric phase (density ≈ 1 g/cm3) to the 

final ceramic (density ≈ 2.2-2.6 for SiO2, 3-3.2 for SiC and Si3N4)
12. If the material structural changes 

cannot be relaxed by viscous flow or diffusion processes, the internal tensions combined with pores 

and cracks can lead to the destruction of the component integrity, especially in presence of external 

constraints (e.g. coatings). Therefore, crack-free large components are impossible to realize, even 

from preceramic polymers with high ceramic yields, because of the issues in obtaining an easy 

conversion of polymers into dense ceramics. Few exceptions are represented by components 

characterized by dimensions below a few hundred micrometers, like fibers, thin films and foams9. 

In the last 25 years, much concentration has been devoted to the scaling up of ceramic 

components dimensions, in order to widen the applicability of PDCs, especially in the field of 

structural ceramics. To prevent cracking, the thermolysis can be influenced by use of additional 

fillers, as later discussed11-12, and this is the solution which has been so far more widely explored. 

Anyway, other solutions have been proposed, such as the infiltration of scaffolds by a liquid 

polymer63 or the compaction of partially  pre-cured powders64-65. 

When the polymer-to-ceramic conversion is carried to completion, the obtained ceramics are 

typically amorphous up to 1000-1800 °C, mainly depending on the molecular structure and 

composition of the precursors used. This amorphous network is constituted by a mixture of covalent 

bonds, the most important being Si-C, Si-O, Si-N and C-C, but also other bonds may be present with 

atoms like B, Al, Zr, Ti, depending on the composition of the precursor. This amorphous structure, 

that is fundamental in determining the distinguishing properties of PDCs (e.g. thermal stability, 

creep, oxidation and chemical resistance), is distinctive of PDCs and so far has been impossible to be 

obtained through traditional reactive sintering9.  

At elevated temperatures, PDCs usually undergo further structural rearrangements, that can take 

place both during processing or during service, leading to the evolution from the amorphous state to 

the partially crystalline state. The devitrification of the initial amorphous network starts with a 

progressive redistribution of the chemical bonds, causing phase separation and the eventual 

crystallization of different crystalline phases, such as SiC, SiO2, Si3N4, depending again on the nature 

of the precursors, and “free” C (turbostratic or graphitic). In particular, “free” C is defined, with 

respect to stoichiometry, as the amount of C not bonded to Si in ceramic. An equilibrium between 

these phases can be achieved, if sufficient temperatures/times are applied. Moreover, in many cases 
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decompositions and subsequent eventual crystallization are accompanied by the releasing of 

gaseous products, such as CO2, SiO2, NOx and others9.  

Anyway, the nucleation and growth of crystals is a generally undesired phenomenon, since it 

usually degrades most of the beneficial properties of PDCs, that are often connected with the 

retention of their amorphous structure13. As mentioned, the type of covalent bonds present in the 

ceramic are strictly dependent on the type of precursor used. This has a role in determining the 

characteristic maximum service temperature of the final ceramic before the occurrence of the 

devitrification process, usually taking place in the 1000-1800 °C range. SiOC glasses, surely the most 

common type of PDCs, are considered to be stable up to 1200 °C, being resistant to creep, oxidation 

and chemical attack. Above this temperature, their properties begin to deteriorate, due to the phase 

separation/crystallization located around 1300 °C66-67. SiCN amorphous ceramics, instead, are able to 

maintain their properties up to 1400 °C. Concerning oxynitride glasses, the presence of N atoms have 

beneficial effects on the viscosity, micro-hardness, elastic modulus and fracture toughness in 

comparison to pure oxide glasses68. 

Finally, the introduction of further elements, such as B or Al, into the preceramic polymers can 

increase the high-temperature stability, creep and oxidation resistance, which are features directly 

correlated to the nanostructure of the ceramics and some of them can persist even at temperatures 

as high as 1800-2000 °C. For instance, SiBCN glasses can increase their crystallization temperature up 

to above 1800 °C21, making them competitive with more traditional nitrides and carbides. 

A final schematization of the whole processing cycle of preceramic polymers used in the present 

research work is represented in Fig. 1.6. The further mixing step at room temperature regards more 

complex systems, consisting of preceramic polymers filled with oxide precursors as reactive fillers. 

The benefit of this procedure will be examined in detail in §2. 

 

 

 

Fig. 1.6 Schematic representation of the whole preceramic polymers used in this research work. 

 

 

1.4 Properties of polymer-derived ceramics 

1.4.1 Microstructure 

As mentioned above, the class of preceramic polymers selected as a silica source during pyrolysis 

in air, for all the formulations investigated in the present thesis, is represented by silicones, due to a 

series of advantageous features already described in §1.2.2. The chemical composition of the final 
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ceramics is strictly related to the chemistry of the polymeric precursors, as well as to other 

processing factors (temperature and atmosphere) and to the addition of fillers (see §2). 

The pyrolysis of silicones, characterized by a Si-O backbone, carried out in inert atmosphere gives 

the formation of amorphous SixOyCz, in which Si is simultaneously bonded to C and O9,21. The 

presence of “free” C is also observed, the content of which may vary by changes of the organic 

substituents to silicon (e.g. an increase in the phenyl group concentration leads to an increase in the 

C content). The separation of “free” C is responsible for the black colour of SiOC, often referred to as 

“black glass”, and for electrical properties21. Microstructural analysis performed by Raman 

spectroscopy on SiOC glasses demonstrated the presence of absorption bands located at 1360 and 

1600 cm-1, which can be assigned to the D- and G-band characteristic for sp3- and sp2-carbon, 

respectively. 

 

 

 
Fig. 1.7 Proposed model for the nanodomain structures in polymer-derived SiOC

69
. 

 

 

In 2006, Saha et al.69 showed the evidence that SiOC made from the preceramic polymer route 

contains nanodomains that persist up to very high temperatures and they proposed a simple 

geometrical model reported in Fig. 1.7, constructed from three constituents: clusters of SiO2 

tetrahedra, that form the heart of the domain, the surrounding monolayer of mixed bonds of the 

type SiCnO4-n, where “n” gives the fourfold coordination of Si to C and O, and the graphene cage-like 

network that encases the domains. The C bonded to Si is called sp3 or carbidic carbon, while the 

carbon in graphene is sp2 or graphitic carbon. In their work, they explain that it is conceivable that 

these domains evolve from the organic state because of two main reasons: i) the pyrolysis of organic 



28 
 

leaves behind significant amounts of C in the ceramic and ii) the C in essentially insoluble in SiO2. So 

they postulate that, as the SiO2 tetrahedra coarsen during pyrolysis, they reject C to their outer 

surfaces and, when these surfaces form continuous structure of mixed bonds and graphene, the 

coarsening stops and the nanodomains remain stable. Whether such nanodomains are kinetically 

and thermodynamically stable is still an open question, anyway, the presence of nanodomains is one 

of the most intriguing characteristics of PDCs, being responsible for their resistance to crystallization 

even at high temperatures. Reports in literature confirm that SiOC contains nanodomains with 1-5 

nm in size (d’ in  Fig. 1.7) and interdomain boundaries with 300-1000 pm in width (δW in Fig. 1.7). 

These observations are specific for the ceramic conversion in inert atmosphere of polysiloxanes, 

but other classes of preceramic polymers can lead to different ceramic compositions, depending on 

their starting chemistry. A simplified scheme of the thermal decomposition of Si-based polymers in 

inert atmosphere is reported in Fig. 1.8. 

 

 

 
Fig. 1.8 Thermal decomposition of Si-based polymers in inert atmosphere

9
. 

 

 

Conversely, an oxidizing atmosphere leads to the formation of an amorphous SiO2 matrix, 

regardless of the chemistry of the precursors. This is due to the removal of all the C-based moieties 

by oxidation reactions, as well as cleavage of Si-C and Si-N bonds of the main chain (if present, they 

are less stable than Si-O bonds), with intake of further O from the atmosphere. 

A further remark should be made on the pyrolysis temperature, since it plays an important role in 

determining the final microstructure of PDCs. At low temperatures (600-800 °C), immediately after 

the end of the decomposition of the polymeric phase, the microstructure is mainly homogeneous 

and amorphous, formed by amorphous SiO2, if the pyrolysis is led in air, and by a random mixture of 

covalent bonds (Si-O and Si-C in case of polysiloxanes), if the pyrolysis is carried out in inert 

atmosphere. This microstructure is directly derived from the polymeric precursor deprived of all the 

organic moieties that were removed during the decomposition phase. At this stage, the amorphous 

microstructure is characterized by an open-pore channel network. In oxidizing atmosphere, all the C 

content is eliminated, while in inert atmosphere the excessive C, not linked to Si atoms, is present as 

C clusters9.  
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Increased temperatures lead to the devitrification process and in this phase the formation of the 

above-described nanodomains can be ascribed, with the generation of turbostratic C network (see 

again Fig. 1.7). The porosity previously mentioned can diminish, due to viscous flow mechanisms that 

start to be significant. For this reason, porosity is often defined as “transient”13. In this phase, 

although a certain degree of phase separation is achieved, a clear nucleation of crystallites has still to 

be observed9. 

Finally, at higher temperatures, an extensive formation of crystals is exhibited (SiC and SiO2 for 

silicones), which can further increase their size by a further increase of temperature or dwell time13. 

1.4.2 Mechanical properties 

The mechanical properties of SiOC have been investigated at different pyrolysis temperatures, 

although the difficulties arising from the limitation in the fabrication of sufficiently large components. 

Two methods have been used to process small bulk PDC samples: by the pyrolysis of warm-pressed64-

65, partially cross-linked polymer powders, or by casting a sol-gel solution70 or a liquid polymer50 (a 

silicone expressly for SiOC, or a polysilazane for SiCN, reported for comparison). 

Elastic modulus for SiOC falls in the broad range of ≈ 80-155 GPa (≈ 57-113 GPa for SiCN): they are 

well below the values of the crystalline counterparts, because of their much more open structure. 

Densities are in the 1.85-2.35 g/cm3 range for both SiCO and SiCN systems and they are an evidence 

of a rather open structure. Both the elastic modulus and the density generally are found to increase 

with increasing treatment temperature50,70-71.  

Poisson’s ratio is generally low, SiOC exhibiting the lowest reported value for glasses and 

polycrystalline ceramics, only 0.11, and it is explained by the low atomic packing density and high 

cross-linking degree of SiOC (for the SiCN system, it is in the 0.21-0.24 range)72. 

Vickers hardness ranges from ≈ 5 to 9 GPa70,72-73 and increases by increasing i) the pyrolysis 

temperature, ii) the amount of C incorporated; while fracture toughness is in the 0.56-3 MPa·m0.5 

range71,73. 

Creep resistance is surely one of the most remarkable characteristics of PDCs in general: creep is 

very limited up to 1300 °C for SiOC (1550 °C instead for SiCN) and it has been proposed that the 

relaxation occurs via viscous flow involving the O-rich regions9. 

1.4.3 Chemical properties 

As already mentioned for other properties, chemical stability of PDCs is correlated with their 

microstructure: the phase separation observed at high temperatures in fact can negatively affect 

their chemical behaviour. 

The chemical durability of SiOC glasses with different amounts of “free” C has been studied by 

Sorarù et al.67 in highly basic and acidic (HF) conditions: the SiOC network exhibits higher durability 

than the pure silica glass (SiO2) in both basic and acidic media, because of the presence of Si-C bonds. 

Moreover, amorphous siloxane-derived SiOC exhibits better properties than the sol-gel derived one. 

It was also observed that the chemical durability starts to decrease at temperatures higher than 1200 

°C, due to the phase separation into SiO2-based, SiC and C regions, since the SiO2 species can easily 

be extracted. 

The oxidation resistance is another important parameter that has been widely studied, since PDCs 

have been initially developed for high-temperature applications in oxidizing environments. For PDCs 

belonging to the SiOC, SiCN, SiC and SiBCN systems, a parabolic oxidation rate has been observed in 

several studies, showing the formation of a dense and continuous oxide layer, without cracks or 

bubbles74-77. Moreover, oxidation kinetic seems to increase with an increase of “free” C9. 
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1.4.4 Electromagnetic properties 

Depending on the polymeric precursor, composition, pyrolysis temperature and atmosphere, the 

room temperature electrical conductivity of PDCs can vary up to 15 orders of magnitude, typically in 

the range 10-10-10-8 to 1 (Ω·cm)-1. Generally, for pyrolysis temperatures below 600 °C, PDCs can be 

better described as insulators, while, for amorphous PDCs obtained at pyrolysis temperatures above 

800 °C, the conductivity increases with the temperature at which it is measured, showing a typical 

semiconducting behaviour9.  

Metallic-like (electron) conduction as high as 0.2-1 (Ω·cm)-1 has been found in 

polysilsesquioxanes-derived SiOC, pyrolyzed at temperatures above 1400 °C, when a percolation 

network of “free” C is formed. For high-C SiOC, such as that obtained from a phenyl-containing 

polysiloxane, the development of a continuous C network occurs at a lower temperature (1100 °C)78. 

A similar trend of the electrical conductivity with the pyrolysis temperature is found for SiCN. 

The conductivity of PDCs can also be modified by addition of filler particles to the preceramic 

matrix, such as MoSi2
78, C nanotubes79 or graphene layers, due to the formation of percolation.   

A rather new finding is the ultrahigh piezoresistivity, i.e. the change of the electrical resistivity due 

to an applied stress, shown by amorphous PDCs80. Piezoresistivity has also been found in SiOC 

ceramic derived from a commercial methyl-containing polysiloxane pyrolyzed at 1400 °C81. 

The tunable electrical properties, high piezoresistivity, together with the micro fabrication 

capability and excellent high-temperature thermal and mechanical properties, make the polymer-

derived SiCN and SiOC excellent candidate materials for high-temperature sensors and ceramic 

MEMS for high temperature/corrosive-environment application82, micro glow plugs83
 and electrode 

materials for Li-ion batteries84. 

Concerning the magnetic properties, they can be imparted to PDCs by the simple introduction of 

fillers exhibiting magnetic properties. For instance, ceramic foams of SiOC have been magnetically 

functionalized from a preceramic polymer containing Fe3Si85. Another option is represented by the 

incorporation of α-iron or Fe3O4. A more elegant approach to produce PDCs with magnetic 

functionalities comprises the incorporation of the metallic iron atoms in the backbone of the polymer 

precursor, by a chemical modification with organometallic compounds, such as ferrocene86. 

1.4.5 Optical properties 

Optical properties of PDCs are scarcely exploited if treated in inert atmosphere, because they are 

black: the reason for their colour has been generally ascribed to the presence, in the ceramic 

structure, of sp2 C atoms, which form graphene layers that are responsible for the absorption of 

visible light, thus hindering the capability of PDCs for the production of optical devices. 

A careful control of the chemical composition of the starting precursors, however, can lead to 

transparent SiOC glasses, as demonstrated by Sorarù et al.87. The most transparent SiOC glasses 

exhibit an optical absorption edge at 500-550 nm, and a broad luminescence band around 500 nm, 

attributable to the presence of sp2 C clusters. The concentration of these clusters seems high enough 

to give an intense luminescence, but at the same time sufficiently low to allow a good transparency 

of the resulting glass. 

Finally, SiOC glasses doped with Eu or Er have also been proposed88. Eu3+-based luminescence was 

observed up to 400 °C. At higher pyrolysis temperatures, a broad blue emission band, centred at 450 

nm, was formed due to in situ reduction of Eu3+ into Eu2+.  

Other examples regard the in situ formation of Si nanocrystals89, producing a typical luminescence 

in the 600-800 nm range, or C and Au ion irradiation90 of preceramic polymers. 
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2 Preceramic polymers containing fillers 

2.1 Introduction 
The polymer-to-ceramic conversion is a crucial phase of the whole processing of preceramic 

polymers, carried out above 400 °C in a selected atmosphere (e.g. inert/reactive, oxidizing/non-

oxidizing) and consisting, as already discussed in §1.3.3, in a series of reactions/rearrangements that 

progressively eliminate all the organic groups of the starting precursor and generate a ceramic 

component. It has also been highlighted that it is usually accompanied by gas release, (isotropic) 

volume shrinkage (10-30 %, linear), weight loss (not lower than 15 %) and formation of porosity.  

The main issue, which makes the direct conversion of a preceramic component to a dense 

ceramic virtually unachievable (unless its dimension is typically below a few hundred micrometers, as 

in the case of foams, fibers and coatings), is the generation of large defects, such as cracks and pores, 

that inevitably lead to the destruction of the whole component or to the deterioration of the 

mechanical properties, besides lower densities than expected. These defects arise from the fact that, 

during the pyrolysis, all the tensions related to the shrinkage, to the release of gaseous products and 

to the structural rearrangements cannot be relaxed by viscous flow or other mechanisms. Anyway, it 

should be also mentioned that some porosity could be eliminated at higher temperatures, often 

referred to as “transient” porosity. 

As a direct consequence, a lot of effort has been put in the last years into developing novel 

methods to eliminate, or at least limit, the material shrinkage and the generation of cracks. In this 

context, a valid option can be represented by the direct pyrolysis of specifically-made scaffolds 

infiltrated by a liquid preceramic polymer63; otherwise the warm-pressing of partially cross-linked 

polymer powders64,65. Above all, the introduction of fillers has been so far the main strategy 

followed, enabling the fabrication of bulk components of size restricted only by the dimension of the 

pyrolysis furnace9. 

Fillers to be added before shaping can serve multiple purposes and have several effects. Their 

insertion in preceramic polymers demonstrated to be extremely effective in limiting the global 

shrinkage, maintaining at the same time all the advantages connected to the presence of a polymeric 

phase, above all, the easy shaping possibilities. They do not only reduce the shrinkage and the 

generation of defects, but they can also be used to obtain a composite material, to achieve higher 

densities or to tailor mechanical/electrical/magnetic properties. They can be of various nature 

(polymeric, metallic, ceramic), shape (equiaxed particles, elongate grains, whiskers, platelets, 

nanotubes, chopped/long/nano- fibers) and dimension (from nanoparticles to fibers of several 

centimetres). A further important distinction should be drawn between “passive” and “active” fillers, 

that will be more extensively discussed in §2.2 and §2.3: passive fillers do not react at all, at any 

stage, with the preceramic matrix, the ceramic residue or the heating atmosphere (SiC or Si3N4 

powders), while active fillers can react mainly with the gaseous products, but also with the ceramic 

residue or the heating gas, generating carbides, nitrides, oxides (metallic/intermetallic fillers)9. 

The content of fillers introduced is another variable, in fact they can be added in small amount or 

they can even constitute the majority of the volume of the final part, and therefore in this case the 

polymeric precursor merely acts as a binder, allowing the achievement of high densities9. Anyway, 

the introduction of fillers modifies the final properties of the ceramic component, which becomes, in 

practice, a composite material constituted by a phase derived from the pyrolysis of the preceramic 

polymer and one or more secondary phases related to the incorporation of fillers. 
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2.2 Passive fillers 
The incorporation of passive fillers is the most simple solution to effectively reduce the shrinkage 

and the defect generation arising from the polymer-to-ceramic conversion. They do not undergo any 

transformation or evolution during the pyrolysis and do not react with the ceramic residue, nor with 

the gaseous products released during the conversion into ceramic or with the heating gas. They 

remain totally inert during the whole processing of the preceramic polymer, as the name suggests, 

and they mainly serve the purpose of reducing the percentage of the whole transforming mass 

during the pyrolysis, thus diminishing the total weight loss, the shrinkage of the component and the 

presence of macrodefects, as well as the purpose of favouring the escape of gaseous species by the 

creation of an easier means of escape. Typical examples of passive fillers are SiC or Si3N4 powders, 

but Al2O3, B4C and BN powders have been used as well11. Fig. 2.1 reports a schematic representation 

of passive fillers action13. 

 

 

Fig. 2.1 Reduction of shrinkage of a PDC bulk component by the addition of a passive filler
13

. 

 

Concerning the amount of fillers to be incorporated, the added filler can even be predominant 

over the amount of polymer. In this case, the polymer act as a low-loss binder allowing the 

achievement of higher densities in the final ceramic, if compared to analogous parts produced using 

conventional binders, that are completely eliminated after green shaping. The advantageous effects 

of using preceramic polymers as binders are greatest for powders with the lowest packing densities 

(ultrafine powders), while a less pronounced effect is obtained with coarser powders11. Preceramic 

polymers can also be used as sintering additives for enhanced pressureless or pressure-aided 

sintering (e.g. hot-pressing, hot isostatic pressing, spark plasma sintering) of advances ceramics, such 

as Si3N4
91 or ZrB2

92. The intergranular phase provided by preceramic polymers, besides acting as a 

sintering aid during sintering and densification, could also offer enhanced creep resistance at high 

temperature, due to its higher viscosity (if compared to the intergranular glassy phase that is usually 

generated when more traditional sintering aids are used, e.g. Y2O3). In addition, they can provide an 

improved corrosion resistance and higher mechanical properties13. These features are always 
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connected with the characteristic amorphous network of PDCs, which is constituted by a mixture of 

Si–O, Si–C, Si–N and other covalent bonds (depending on the nature of the starting precursor).  

A further remark concerns the use of preceramic polymers as reactive binders for metallic 

powders, in fact the preceramic polymer can afford useful properties to the metal components, such 

as increased wear or corrosion resistance93. Functional fillers such as MoSi2
78, although still 

classifiable as “passive”, can impart new specific functional properties to the final ceramic, such as 

electrical conductivity or magnetic properties. In these cases, the content of filler introduced is 

crucial: as an example, electrical conductivity does not depend linearly on the percentage of 

electrically conductive filler introduced, but is subjected to an abrupt increase only when a critical 

concentration of filler is exceeded (Fig. 2.2 right). This critical value is often referred to as the 

”percolation threshold” and coincides with the transition from dispersed/isolated particles to an 

interconnected particles network. Similar results could also be obtained by introducing C nanotubes, 

graphene sheets or C nanofibers, to impart electrical conductivity and/or to enhance mechanical 

properties79. 

By use of fillers, the resulting mechanical properties of the final ceramics can be tailored and 

improved. As an example, toughness could be effectively enhanced even at very low (<10 vol%) filler 

concentrations, thanks to crack-tip bridging phenomena. Generally, the mechanical properties 

increase with increasing fillers volume fraction up to about 40–50 vol%, followed by a pronounced 

decrease at higher filler fractions, due to enhanced porosity formation11 (Fig. 2.2 left). 

 

 

Fig. 2.2 Effect of filler loading on the mechanical properties (left) and field properties (electrical conductivity) of PDCs
11

. 

 

 

Finally, the coefficient of thermal expansion (CTE) of ceramic components can be tailored, with 

many advantages especially in the field of coatings (e.g. on metals) or for sealing applications9. The 

CTE of the filler phase is of fundamental importance, because it contributes in determining the global 

CTE of the final composite. However, it should be highlighted that a high CTE mismatch between the 

ceramic residue and the filler phase could cause the formation of micro-cracks, that could negatively 

affect the final mechanical properties. 

One last remark should be done concerning the economic point of view: the introduction of 

passive fillers may also represent a way of lowering the global cost of the final ceramic product. 
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2.3 Active fillers 
The distinction between “active” and “passive” fillers was introduced in the early 90s, as a result 

of the investigations of Prof. Peter Greil and co-workers. Specific fillers, above all (but non only) 

metallics and intermetallic compounds, have been termed “active”, as they react either with the 

ceramic matrix, the thermolysis gaseous products and the heating gas during the polymer-to-ceramic 

conversion, generating carbides, nitrides, oxides or silicides. A large volume of work has been 

devoted to the implementation of this method to fabricate near-net-shape components from the 

conversion of preceramic polymers into bulk ceramic components with extremely limited (or event 

absent) global shrinkage. This is achievable thanks to the incorporation of metallic fillers, by virtue of 

the formation of metallic compounds by reaction of metallic fillers with gaseous species from the 

polymer decomposition, or alternatively with the furnace atmosphere. The formation of these 

compounds occurs with a volume expansion up to 50 %vol, thus compensating the polymer 

shrinkage9. Fig. 2.3 offers a schematic representation of active fillers action. 

 

 

Fig. 2.3 Linear dimensional change of polysiloxane/40 vol% boron mixture  
pyrolyzed at 1480 °C in N2, as a function of filler reaction time

94
. 

 

 

Especially when working with active fillers, the choice of polymers/fillers combinations could not 

be done arbitrarily, but must be based on thermodynamic stability criteria, filler expansion 

characteristics and reaction kinetic limitation (e.g. temperature dependent formation and 

elimination of transient open porosity, which govern material transport and the reaction process of 

filler particles)12. Linear dimensional changes of less than 0.1 % could be obtained with time-

temperature controlled pyrolysis of the material, which allow a high precision manufacturing of 

complex shape components11. The resulting material is thus generated by the combination of the 

preceramic polymer, the active filler introduced, the gaseous by-products deriving from the 

decomposition of the preceramic polymer and the treatment atmosphere. As an example, if CrSi2 is 

used as an active filler, at sufficiently high temperatures (around 750 °C) can react with C from the 

ceramic residue of the preceramic polymer (to give the formation of Cr3C2) and with the N2 of the 

atmosphere (to give the formation of Si3N4). In this case, while the formation of carbides is observed 

also in Ar atmosphere, the formation of Si3N4 is strictly connected with the N2 pressure in the furnace 

atmosphere. Moreover, the microstructure of the open-pores network (deriving from the pyrolysis of 

the preceramic polymer) is fundamental as well in determining the reaction of the fillers. For this 
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reason, it is generally better to consider the ”effective” N2 pressure in the open pore channel 

network, which depends on the nitrogen pressure and the porosity microstructure13. 

Still concerning the incorporation of metallic fillers, transition metal carbides can form, such as 

NbC, Mo2C or WC, always depending on the polymer precursors/fillers combinations, greatly 

improving the hardness of the final ceramics. Graphite powder can be even added to siloxanes to 

exploit its carbothermal reduction reactions with the silica-based matrix, leading to the formation of 

SiC9. 

Oxides fillers can be both active or inert, depending on the heating atmosphere, firing 

temperature and their dimension. For instance, processing in inert atmosphere can lead to the 

formation of metallic particles, or silicides, carbides and nitrides, because of reduction reactions with 

the C present in the preceramic precursor. Another example is given by Al2O3 powders incorporated 

to obtain oxide ceramics to be processed in air: if micro-sized α-Al2O3 is incorporated in a 

polysiloxane, it remains unreacted up to 1400 °C, then the transformation into mullite starts at 1500 

°C; however, if a nano-sized γ-Al2O3 powder is used, the reaction with the siloxane-derived silica 

matrix occurs at temperatures as low as 1250 °C, leading to a single phase ceramic at 1350 °C95. 

Polymeric fillers can also be added to preceramic polymers. They totally decompose during the 

pyrolysis and therefore act as sacrificial fillers, leading to the formation of porosity, whose size and 

amount depend on the characteristics of the filler itself. This approach is particularly interesting to 

create a large volume of porosity: in fact, expandable polymeric microbeads can be combined with 

siloxanes, then the mixture can be heated at temperatures below 150 °C, so that the microbeads 

undergo a four- to eightfold volume expansion within the molten silicone resin matrix96.  

A fundamental parameter in determining the effectiveness of the active fillers is time. This is due 

to the fact that the total time required for a complete conversion of a filler particle must consider the 

diffusion of gaseous reactants through the open porosity surrounding the particle, the time of 

penetration and diffusion of the reactants through the reaction product layer on the particle surface 

and finally the time of reaction with the unreacted core at the interface. Based on these 

considerations and on other thermodynamics parameters, numeric models have been obtained12, 

from which some general trends could be derived. For example, with decreasing particle size, filler 

reaction time is reduced so that, within a given reaction time, a higher fraction of smaller filler 

particles is transformed compared to larger particles, and, hence, reduction of overall shrinkage is 

higher. A similar tendency should result if the concentration of gaseous reactants increases, as it is 

the case at higher ”effective” N2 pressures in the pore channel network. With increasing N2 pressure, 

diffusional transport in the porous compact is faster because of a reduction in mean free path length 

of the gaseous molecules, thus increasing the chemical driving force for filler reaction, and reducing 

the total shrinkage. 

Finally, it should also be kept in mind that, since the active fillers react with gaseous by-products 

deriving from the decomposition of the polymeric phase, the final ceramic yield of the preceramic 

polymer is then higher than when no active fillers are present9. 

Although the use of active-filler-controlled pyrolysis of preceramic polymers has proven to be 

extremely effective in reducing the total amount of porosity in the final ceramics, with consequent 

improved mechanical properties, it must be said that this technique requires an extremely accurate 

control of all the pyrolysis conditions, as well as the characteristics of the raw materials. Although 

theoretical models have been derived for an a priori selection of processing conditions and fillers 

characteristics, small variations in particle environment, particle distribution and particle physical 

properties could finally result in significant variations in kinetic variables. For this reason, a trial and 

error procedure is still generally required to optimize the final properties of the material. 
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2.4 Final considerations 
In this chapter, the incorporation of active/passive fillers has been described as the most 

successful strategy to reduce shrinkage, weight loss and formation of defects in the PDCs, leading to 

the formation of a sort of composite material, comprising the ceramic residue from the polymer and 

one or more phases due to the fillers. Anyway, besides active and passive fillers, a third option can be 

considered and has been exploited in the present thesis. 

A distinction has been drawn between passive and active fillers. It has been explained that the use 

of passive fillers is surely the most simple strategy, consisting in the “dilution” of the total 

transforming mass during the pyrolysis, by the combination of the polymeric phase with an inert 

phase which does not evolve, at any pyrolysis stage. Besides being effective in reducing the 

shrinkage, this strategy can also impart additional features like electrical conductivity or other 

properties. Passive fillers can be added in large amount and no special precautions are required. 

The second and more interesting option is represented by the addition of active filler (especially 

metallic and intermetallic), that have an active role in compensating the shrinkage of the preceramic 

polymer, expanding by reaction with the ceramic residue, the gaseous by-products or the furnace 

atmosphere. In this case, an extremely accurate control of the processing conditions (pyrolysis 

temperature, time and atmosphere) is required, as well as much concentration must be devoted to 

the selection of the precursors/fillers combination and to the choice of the filler amount, in order to 

obtain the final desired characteristics in the ceramic product. Again, a number of properties can be 

effectively tailored and improved using different types of active fillers. 

 

A novel approach, besides these two strategies, consists in incorporating fillers that are intended 

to fully react only with the ceramic residue of the polymeric precursors, in order to obtain the 

formation of specific crystalline phases, that are generally not directly achievable by the simple 

pyrolysis of a preceramic polymer, rather than to compensate the shrinkage.  

In the light of this third possibility, the present Ph.D. thesis has been devoted to an organic 

investigation of the applications that this strategy could offer, starting from silicone-based mixtures 

incorporating reactive fillers. By this route, the advantages connected with the presence of a 

polymeric phase, especially in the shaping step of the processing, can even be combined with the 

advantages related to the whole processing cycle of preceramic polymers, leading to the realization 

of ceramic components at relatively low temperatures (even below 1200 °C) and avoiding the 

conventional methodologies. The fillers incorporated in the preceramic mixtures can also be 

exploited as foaming agents or liquid phase formers, thus helping respectively the direct shaping in 

porous bodies or the obtainment of glass-ceramic components. However, the main purpose of the 

fillers, in this thesis, is to serve as oxide precursors, in order to synthesize crystalline ceramics after 

pyrolysis of specific compositions, achievable by the reaction occurring between the ceramic residue 

of the polymeric precursors and the oxides deriving from the thermal decomposition of reactive 

fillers. The type of fillers can be conveniently selected according to the desired final composition; 

therefore, a wide variety of ceramic systems can be achieved, simply by changing the proportions 

and composition of the starting polymers and fillers. 

The first part of the following chapters is focused on the realization of peculiar ceramic and glass-

ceramic formulations, that are well known to have very pronounced biological properties, thus 

having applicability in the biomedical fields as bioceramics for bone regeneration implants. In the 

second part, instead, there will be a technology transfer to other silicate formulations specifically 

designed for other functional applications.  
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3 Bioglasses 

3.1 Introduction 
Bioglasses, like all bioactive materials, stimulate a biological response from the body at the 

interface with the material, i.e. they are able to bond with living tissues, thanks to the formation of a 

hydroxyapatite-like layer on their surface when they are in contact with body fluids. In particular, 

45S5 (45 wt% SiO2, 26.4 wt% CaO, 26.4 wt% Na2O, 6 wt% P2O5) and 58S (58.2 wt% SiO2, 32.6 wt% 

CaO, 9.2 wt% P2O5) compositions are “Class A” bioactive materials, so they are not simply 

osteoconductive (they stimulate bone growth along the surface of the bioactive material) and 

capable of bonding to hard tissue, but they are also osteoproductive (they stimulate the growth of 

new bone on the material away from the interface with bone) and capable of bonding to soft tissue. 

In addition, these two compositions of bioglass are bioresorbable, that is they dissolve in contact 

with body fluids and their dissolution products are not toxic1,2. 

 

 
Fig. 3.1 Compositional dependence (wt%) of bone bonding and  

soft tissue bonding of bioactive glasses and glass-ceramics
2
. 

 

Fig. 3.1 shows the compositional diagram for bone-bonding referring to Na2O-CaO-P2O5-SiO2 

glasses, with a constant 6 wt% of P2O5. Compositions in the middle (region A) form a bond with bone 

and in the region S form a bond with soft tissues, such as 45S5 Bioglass. Silica glasses in region B 

(such as windows, bottles, microscope slide glasses) behave as nearly inert materials, with  a very low 

reactivity) and elicit a fibrous capsule at the implant-tissue interface. Glasses within region C are 

resorbable and disappear within 10-30 days of implantation because of their too high reactivity. 

Glasses in region D are not technically practical and therefore have not been tested as implants3. 

The mechanism at the basis of the bone bonding ability exhibited by bioglass consists of a rapid 

sequence of chemical reactions occurring at the surface of the implant when inserted into living 

tissues, involving chemical degradation with release of ions such as Na, Si, Ca, and causing the 

conversion of the surface into a carbonated-substituted hydroxyapatite-like layer1-5.  

There are 11 stages in process of complete bonding of bioactive glass to bone, five of which are 

chemical and six are the biological response4.  

1. Rapid exchange of Na+ and Ca2+ of glass with H+ or H3O
+ from the solution, with subsequent 

hydrolysis of the silica groups, creation of silanol (Si-OH) and increase of pH. 
2. The increase in the hydroxyl concentration of the solution leads to an attack on the silica glass 

network, causing dissolution of silica in the form of silicic acid Si(OH)4 into the solution and the 
continued formation of Si-OH groups. 
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3. Condensation and repolymerization of an amorphous  SiO2-rich layer (1-2 μm thick) on the 
surface of the glass depleted in Na+ and Ca2+. 

4. Further dissolution of the glass, coupled with migration of Ca2+ and PO4
3- ions from the glass to 

the surface through the  SiO2-rich layer, forming an amorphous calcium phosphate layer on top 
of the SiO2-rich layer. 

5. Crystallization of the amorphous calcium phosphate film as an hydroxyapatite (HCA) layer, by 
incorporation of OH- and  CO3

2- from the solution. 
6. Adsorption and desorption of biological growth factors in the HCA layers to activate 

differentiation of stem cells (it continues throughout the process). 
7. Action of macrophages to remove debris from the site allowing cells to occupy the space. 
8. Attachment of stem cells on the bioactive surface. 
9. Differentiation of stem cells to form bone growing cells, such as osteoblasts. 
10. Generation of extra cellular matrix by the osteoblasts to form bone. 
11. Crystallization of inorganic calcium phosphate matrix to enclose bone cells in a living composite 

structure. 
 

For bone, interfacial bonding occurs because of the biological equivalence of the inorganic portion 

of bones and the HCA layer on the bioactive implant. While for soft tissues, the collagen fibrils are 

chemisorbed on the porous SiO2 film via electrostatic, ionic, hydrogen bonding, and the HCA is 

precipitated and crystallized on the collagen fibrils and glass surfaces4.  

It should be remarked that the accumulation of dissolution products is strictly related to the 

composition and the pH of the solution and this can be detrimental to cells. For this reason, it is 

necessary to be able to control the solubility (dissolution rate) of the material. This can also allow to 

obtain bioactive implants with different life: for example, a HCA coating on orthopaedic metals needs 

to have a long life, while a high solubility implant is required if designed to aid bone formation, such 

as bioglasses. Therefore, a fundamental understanding of factors affecting the dissolution on 

bioactive glasses and bioreactivity is required to develop new materials for in situ tissue regeneration 

and tissue engineering4. In summary, they are:  

- the dissolution medium (initial pH, ionic concentration, temperature); 
- the geometry of the material (surface area to solution volume ratio); 
- the structure of the glass (network connectivity and crystallization); 
- the composition of the glass (silica content). 
 

The controlled release of ionic dissolution products from bioactive glasses also provides some 

stimulation of cell genes towards a path of regeneration and self-repair, allowing the use of bioglass 

scaffolds in tissue engineering applications, aimed at regenerating diseased or damaged tissues, 

rather than simply in artificial prosthesis6,7. Glass solubility increases as network connectivity is 

reduced, while crystallization inhibits the ion exchange, so that it is recognized that bioactive 

properties are enhanced by an amorphous structure4.  

At present, the commercial use of bioactive glasses is mainly restricted to melt-derived 

components, such as powder, granules or small monoliths. 45S5 Bioglass is used in the clinic as a 

treatment for periodontal disease (Perioglas), as a bone filling material (Novabone) and as an 

additive in mineralizing toothpastes (Novamin). Bioglass implants have also been used to replace 

damaged middle ear bones, restoring hearing to thounsands of patients. Complex shapes, such as 

three-dimensional scaffolds, may be obtained by viscous flow sintering; however, it must be noted 

that, since sintering is accompanied by partial crystallization, the bioactivity is somewhat degraded, 

as discussed above.  

Revised formulations (e.g. 13-93 bioglass, with a more complex chemical formulation) lead to 

limited crystallization, but compare negatively in terms of bioactivity with 45S5 and 58S. In this 
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sense, in vitro cell culture showed no marked difference in the proliferation and differentiated 

function of osteoblastic cells between dense disks of 45S5 and 13-93; however 13-93 degrades and 

converts to an HA-like material more slowly than 45S5 glass4. Non-crystallized porous scaffolds may 

be actually obtained by a different strategy, i.e. by application of the sol-gel technique, but they have 

not yet been approved for clinical use1. Furthermore, sol-gel techniques are difficult to scale-up in the 

industrial system for several reasons, such as the high cost of the raw materials, the use of large 

amounts of flammable solvents, the associated drying problems, the complexity and the long 

duration of the process8,9. 

The research work presented in this chapter, published in 2014 by Fiocco et al.10, aims at 

exploring a novel route to produce highly amorphous bioceramic foams, resembling the 

compositions of 45S5 and 58S bioglasses, as an alternative to both conventional melting techniques 

(with subsequent sintering) and sol-gel. The adopted formulations, containing more than one oxide 

(in addition to silica) and not corresponding to the stoichiometry of any crystalline silicate phase, 

were reputed to favor the amorphous state, as observed for common glass compositions. 

Although partially successful (only foams of 58S composition were not highly crystalline), the 

approach here reported is reputed to be significant, due to its simplicity, its limited processing 

temperature (not exceeding 1000 °C), the microstructural homogeneity of selected samples and the 

promising results of the preliminary in vitro tests. 

 

3.2 Experimental 

3.2.1 Preparation of samples 

Several combinations of silicone resins and fillers were tested in order to obtain the final 

composition of 45S5 and 58S bioactive glasses. Two commercial silicones, solid (Silres® H44, Wacker-

Chemie GmbH, München, Germany) and liquid (Silres® H62C, Wacker-Chemie, and PDMS PS340.5, 

United Chemical Technologies, Inc., PA), were used as silica precursors, while the other oxides were 

introduced in the form of micro- and nano-sized fillers. Micro-sized fillers (reagent grade chemicals, 

all from Sigma Aldrich Ltd, Gillingham, UK, average diameter estimated using microscopy as not 

exceeding 10 μm) comprised calcium carbonate (CaCO3), sodium carbonate (Na2CO3) and sodium 

phosphate dibasic heptahydrate (Na2HPO4∙7H2O, later referred to as NaP7H). Nano-sized fillers 

consisted of calcium carbonate (average diameter of d50=90 nm, specific surface of 20 m2/g, 

PlasmaChem GmbH, Berlin, Germany) and as synthesized tri-calcium phosphate (Ca3(PO4)2) precursor 

(later referred to as TCP-p). The latter was synthesized according to a previously presented 

procedure, and it was used in form of agglomerates with a maximum diameter of about 10 μm, as 

determined by microscopy11.  

The calculations of the required quantity of precursors were made on the basis of the desired final 

composition, the ceramic yield of the precursors and the stoichiometry of the employed fillers. 

Silicones and fillers were mixed with or without solvents. In the former case, the silicones were first 

dissolved in isopropyl alcohol, then fillers were added under magnetic stirring, and the mixture was 

ultrasonicated for 10 min. A thick paste was obtained after evaporation of the solvent (at 60 °C, 

overnight). In the latter case, the mixing procedure changed depending on the nature of the 

polymer: solid H44 was manually mixed with the fillers, by pestle and mortar, whereas liquid H62C 

incorporated the fillers under magnetic stirring, helped by the addition of low-viscosity 

polydimethylsiloxane (PDMS). Pastes were obtained without any drying step. For most formulations, 

dicarbamoylhydrazine (DCH, Alfa Aesar GmbH, Germany) powder was added to act as a foaming 
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agent (2.5 wt% related to the overall ceramic residue), as it decomposes at around 250 °C releasing a 

large volume of gas. 

The silicone-based mixtures, in form of both powders and pastes, were poured in small aluminum 

containers and subjected to a low temperature treatment, at 250-300 °C, aimed at both cross-linking 

the polymers (occurring through the functionalities present in the polymer structure, such as –OH or 

vinyl groups) and foaming, thanks to the release of gaseous products from the decomposition of 

some of the fillers or of DCH.  

Samples from all formulations were fired at 1000 °C for 1 h in air, with a heating rate of 2 °C/min; 

in some cases the samples were heated with a rate of 5 °C/min and subjected to an intermediate 

holding stage at 550 °C for 4 h, aimed at optimizing the gas evolution and the polymer-to-ceramic 

transformation. 

3.2.2 Characterization of samples 

The resulting ceramic components were characterized by optical stereomicroscopy, scanning 

electron microscopy (JEOL, JSM-6300F), X-ray diffraction (Bruker AXS D8 Advance, Germany). The 

Match! software package (crystal Impact GbR, Bonn, Germany) was used for phase identification, 

supported by data from PDF-2 database (ICDD-International Centre for Diffraction Data, Newton 

Square, PA, USA).  

The bulk density was obtained by considering the mass to volume ratio for 3 to 6 selected ceramic 

blocks with dimensions of 9 mm × 9 mm × 8 mm, while the total porosity was computed by 

considering the true density measured by gas picnometry (AccuPyc 1330, Micromeritics, Norcross, 

GA). The same blocks were subjected to compression testing at room temperature, operating with a 

cross-head speed of 1 mm/min. At least 5 samples were tested for each formulation.  

The biocompatibility and bioactivity of samples C, D1 and D2 were assessed by in vitro tests 

through immersion in a Simulated Body Fluid (SBF) solution, according to the procedure proposed by 

Kokubo et al.12. Each sample was immersed in 25 ml of SBF in flasks, which were then placed in a 

controlled environmental chamber at a constant temperature of 37 °C. The solution was refreshed 

three times a week (after 2, 4, 7, 9, 11 days) to reproduce dynamic conditions. The pH variation 

induced by the samples was also monitored. The scaffolds were extracted from the SBF solution after 

given times of 1, 3, 7 and 14 days. Once removed from the incubation medium, all samples were 

gently rinsed using distilled water, and finally left to dry at room temperature for 24 h.  

SEM (Quanta 2000; FEI, Eindhoven, the Netherlands) analyses were performed on the samples 

after in vitro studies. The SEM was operated in low-vacuum mode with a pressure of 0.53 Torr. In 

addition, a local chemical analysis was carried out by X-ray Energy Dispersion Spectroscopy (Inca; 

Oxford Instruments, Buckinghamshire, U.K.). Raman spectroscopy was performed by means of a 

Jobin-Yvon Raman Microscope spectrometer (Horiba Jobin-Yvon, Edison, NJ).  

The biological tests were performed thanks to a collaboration with Prof. V. Cannillo’s group 

(University of Modena and Reggio Emilia, Italy). 

 

3.3 Results 

3.3.1 Characterization of scaffolds 

The formulations aimed at obtaining materials with the composition of 45S5 and 58S bioglasses 

are summarized in Tab. 3.1. All formulations led to highly foamed bodies, as illustrated by Fig. 3.2. 

The relatively dense surface of the samples derives from the contact of the slurries with the Al 

container into which they were poured. 
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Sample A allows to observe the effect of fillers, such as NaP7H, which accomplish two distinct 

functions. Besides yielding oxides (Na2O, P2O5), the filler features a remarkable water release 

(corresponding to 50 wt% of the starting compound, in accordance with its stoichiometry) 

associated to dehydration occurring in the temperature range 150 °C to 350 °C (as inferred from DTA 

analysis), leading to the observed significant foaming. In fact, bubbles generated by water release, 

upon dehydration of NaP7H, were retained within the body by the setting of the H62C polymer 

(occurring rapidly above 250 °C) 8. However, foaming in sample A was not associated to the 

production of the desired amorphous phase; on the contrary, as testified by Fig. 3.3, a glass-ceramic 

formed, featuring the presence of sodium-calcium silicate phases (Na2CaSiO4, PDF#731726, referred 

to as N2CS; Na2Ca2Si2O7, PDF#100016, referred to as NCS) and tri-calcium phosphate (Ca3(PO4)2, 

PDF#290359, referred to as TCP). Although interesting (N2CS is bioactive)13, sample A was not further 

investigated, since the basic goal of the present research was the achievement of mainly amorphous 

scaffolds. 

 
Tab. 3.1 Summary of formulations for ceramics based on the 45S5 and 58S compositions 

(n.a.= data not available due to excessively weak samples) 

Sample Silica 
precursor 

Fillers Foaming 
agent 

Bulk density  
(g/cm

3
) 

Distinctive features 

A  
(45S5) 

H62C m-CaCO3 

Na2CO3 
NaP7H 

None 0.54 ± 0.03 - Solvent added (isopropyl alcohol) 
- Foaming at 300 °C 
- Intermediate stage at 550 °C 
- Highly crystallized ceramic 

B1 
(45S5) 

H62C 20% 
PDMS 80% 

m-CaCO3 

Na2CO3 
NaP7H 

DCH  
(2.5 wt.%) 
 

n.a. - No solvent added 
- Foaming at 280 °C 
- Highly crystallized ceramic product 
- Undesirable crystal phases 

B2 
(45S5) 

H62C 20% 
PDMS 80% 

TCP-p 

m-CaCO3 

Na2SO4 

DCH  
(2.5 wt.%) 

n.a. - No solvent added 
- Foaming at 280 °C 
- Highly crystallized ceramic product 
- Undesirable crystal phases 

C  
(58S) 

H44 TCP-p 

m-CaCO3 

DCH  
(2.5 wt.%) 

0.60 ± 0.06 - No solvent added 
- Dry powder mixing 
- Foaming at 270 °C 

D1 
(58S) 

H62C 80% 
PDMS 20% 

TCP-p 

m-CaCO3 

DCH  
(2.5 wt.%) 

0.57 ± 0.11 - No solvent added 
- Foaming at 270 °C 

D2  
(58S) 

H62C 80% 
PDMS 20% 

TCP-p 

n-CaCO3 
DCH  
(2.5 wt.%) 

1.48 ± 0.07 - No solvent added 
- Foaming at 270 °C 

 

 

Accordingly, the alternative formulations for ceramics based on 45S5 were essentially aimed at 

obtaining more amorphous materials and simplifying the process. Low viscosity suspensions were 

achieved by mixing H62C with PDMS, without the addition of isopropyl alcohol. This choice, if 

advantageous in avoiding the drying step, involved some additional problems in the selection of 

fillers. As an example, NaP7H and Na2CO3 led to large agglomerates, resulting in poorly 

homogeneous dispersions (no subsequent ceramization of these samples was therefore carried out). 

The poor homogeneity was attributed to the interaction of the fillers with the chemical structure of 

PDMS. As reported in Tab.1, alternative fillers, such as sodium sulphate and TCP-p, were found to 

lead to more homogeneous dispersions and therefore they were considered for further processing 

(sample B2). 
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Fig. 3.2 Porous glass ceramics based on the 45S5 composition: a) sample A (low magnification);  

b) sample B1 (low magnification); c) sample B2 (low magnification); d) sample B2 (high magnification). 

 

 
Fig. 3.3 Diffraction patterns of selected ceramics based on 45S5 composition. 

Fig. 3.2b-c testify the foaming of samples from the new formulations (B1 and B2). In this case, a 

significant contribution to porosity was given, in addition to that of the foaming agent (DCH present 

in a low amount), by the same nature of PDMS. In fact, this silicone has a low ceramic yield, i.e. it is 
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known to transform into silica with a remarkable gas release occurring in the 300 to 500 °C range. In 

fact, considering its ceramic yield of only 23 %, nearly 4/5 of the starting weight of the polymer is lost 

as gaseous species, while H62C and H44 possess ceramic yields of 58 % and 84 %, respectively8.  

Fig. 3.2c-d clearly show that the porosity in sample B2 is uniformly distributed and well 

interconnected, as required for bioceramic scaffolds. The favorable morphology, however, contrasts 

again with the phase assemblage. The diffraction pattern in Fig. 3.3 show the formation of a 

potentially bioactive phase, i.e. calcium silicate oxide (Ca3SiO5, PDF#840594, referred to as C3S)14 

together with undesirable phases, such as unreacted sodium sulphate (of not proven 

biocompatibility; Na2SO4, PDF#781883, referred to as N2S), unreacted CaO (not suitable for medical 

use; PDF#750264, referred to as CaO) and cristobalite (that could be responsible for the microcracks 

observed in the sample; SiO2, PDF#760940, referred to as Cr)15. 

 

 
Fig. 3.4 Microstructural details of ceramic samples based on composition 58S:  

a,b) sample C; c) sample D1; d) sample D2. 

 
Tab. 3.2 Properties and distribution of crystal phases in glass ceramic materials of 58S composition. 

Sample C D1 D2 

Properties 

Bulk density (g/cm
3
) 0.60 ± 0.06 0.57 ± 0.11 1.48 ± 0.07 

True density (g/cm
3
) 2.88 ± 0.01 2.62 ± 0.01 2.19 ± 0.02 

Porosity (vol%) 79 78 33 

Crushing strength (MPa) 0.57 ± 0.35 0.28 ± 0.20 6.82 ± 0.68 

Crystallinity (wt%) 50 30 43 

Distribution of crystal phases (semi-quantitative) 

para-wollastonite (wt%) 25 12 19 

C2S (wt%) 5 2 2 

TCP (wt%) 20 16 20 

 

 

The problems found with Na-containing fillers forced us to consider the composition 58S, 

featuring only CaO, SiO2 and P2O5, as reported in Tab. 3.1. Also in this case, the foaming was 

substantial, as illustrated by Fig. 3.4 and Tab. 3.2. In sample C, the pore diameter was estimated to be 
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between 500 µm and 2 mm, according to the analysis of optical microscope images (see Fig. 3.4a; 

many interconnections are clearly visible). Scanning electron microscopy (Fig. 3.4b) revealed also the 

presence of finer pores, with a diameter below 2 µm. Sample D1, on the other hand, exhibited pores 

with diameter between 100 µm and 1 mm (Fig. 3.4c). Both types of ceramic foams feature a nearly 

identical amount of total porosity (80 %), with at least a significant fraction of pores with a 

dimension in the optimal range for scaffolds for tissue engineering (100-300 µm) 16,17. The high 

porosity reflects in a quite poor crushing strength, well below 1 MPa (see Tab. 3.2), which is known 

to be a threshold limit for scaffolds operating in vivo. However, lower strength values could be 

accepted in case the scaffolds should be used for tissue regeneration ex vivo (in this case only the 

mechanical properties of the final tissue-engineered implant are critical)1,5,18-20. 

 

 
Fig. 3.5 Diffraction patterns of selected glass ceramics based on the 58S composition. 

 

Differently from the other cases, sample D2 (Fig. 3.4d) was produced starting from nano-sized 

CaCO3. This choice derived from the observation, based on very recent experiences, that nano-sized 

fillers usually enable a superior chemical homogeneity in the component after ceramic conversion8. It 

may be noted that the porosity was not uniform and practically comprised only large voids, probably 

due to air bubbles trapped upon mixing (the total porosity did not exceed 35 %): the entrapment was 

likely favored by the fact that nano-sized particles considerably increased the viscosity of the 

suspension, limiting the possibility of achieving a significant foaming and leading to a poor 

homogenization of the slurry.  

The last samples were found to be less crystalline than the previous ones. In fact, the diffraction 

patterns, as shown in Fig. 3.5, contain an amorphous halo, located in the region typical of silicate 

glasses (i.e. ~21°), especially for samples D1 and D2, below the main crystal peaks. The crystal phases 
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consisted of calcium silicates (para-wollastonite CaSiO3, PDF#760925, referred to as p-w; Ca2SiO4, 

PDF#860401, referred to as C2S,) and TCP (PDF#290359). Interestingly, there was no difference in the 

crystalline phases present: this means that the choice of the silica precursors (H44 or H62C-PDMS) 

and the granulometry of the CaCO3 (nano- or micro-sized) had no influence on the type of crystalline 

phases formed. On the other hand, differences were observed in terms of the overall crystallinity and 

distribution of phases, as reported in Tab. 3.2. According to the semi-quantitative analysis provided 

by the Match! program package, para-wollastonite was dominant in sample C (25 wt% of the crystal 

phase), whereas TCP was the main phase in samples D1 and D2 (respectively 16 wt% and 20 wt% of 

crystal phase). C2S was present in an amount of ~5 wt% in sample C; ~2 wt% in samples D1 and D2.  

3.3.2 Bioactivity tests 

The bioactive behavior of samples C, D1 and D2 was investigated by means of immersion tests in 

SBF, which claims to mimic the acellular human blood plasma. In particular, since the bone bonding 

ability of a biomaterial, also termed osseointegration,21 is associated with the formation of an apatite 

layer on its surface, the ability to bond to bone can be preliminarily assessed by monitoring the 

formation of such apatite layer in vitro in SBF. In the present research activity, it was observed that, 

for all samples, the deposition of an apatite layer promptly began after 1 day in SBF, as shown in Fig. 

3.6a for scaffold C, where white globular precipitates with the typical apatite morphology can be 

observed on the surface. This fact is further confirmed by the results of the EDS analysis performed 

on the globular precipitates which were substantially larger after 3 days (see in Fig. 3.6c the data for 

sample D2). The EDS spectrum revealed the presence of Na, O, Ca, Si, P, Cl; in particular, apart from 

local fluctuations, the Ca/P ratio was about 1.67, which is similar to that of stoichiometric apatite22. 

Analogous results were obtained for samples C and D1 (data not reported for the sake of brevity). 

The presence of Cl can be ascribed to chloride compounds precipitated from SBF, as widely reported 

in the literature,23 while Si is due to a silica gel formed underneath the apatite precipitates24. The 

dissolution of the sample in SBF resulted in the formation of highly corroded areas and surface 

roughness (Fig. Fig. 3.6b), which are expected to favour cell adhesion, proliferation, differentiation 

and detachment strength,25 thus promoting an adequate osseointegration of the material. 

 

 
Fig. 3.6 Formation of an apatite layer on the surface of samples C, D1 and D2  

after immersion in SBF for different lengths of time: a) sample C - 1 day; b) sample D2 – 3 days;  

c) sample D2 - results of the EDS analysis performed on the spot indicated in (b); d) D2 samples – 7 days;  

e) sample D2 – 7 days; f) sample D2 – results of the EDS analysis performed on the spot indicated in (e). 
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After 7 days in SBF, the surface of the samples was completely covered by apatite (Fig. 3.6d) and, 

at the same time, it appeared to be further altered by the SBF action. In particular, the internal pore 

structure of the samples was also coated with apatite precipitates. The EDS analysis carried out on 

the precipitates covering the surface of sample D2 after 7 days in SBF (Fig. 3.6e-f) suggests the 

presence of a particularly thick apatite layer covering the silica gel, since the spectrum shows a lower 

Si amount with respect to the analysis performed after 3 days in SBF (Fig. 3.6c). A prolonged soaking 

in SBF (14 days, data not reported for the sake of brevity) led to further apatite deposition. The 

cauliflower-like precipitates progressively grew and completely covered the surface of the scaffold 

struts (Fig. 3.6e). 

Thanks to the particularly high intensity of the Raman peaks associated to P–O vibration modes, 

the development of an apatite film on the surface of samples could be confirmed by Raman 

spectroscopy. The Raman spectra acquired on the spherical precipitates covering the samples after 7 

days in SBF are shown in Fig. 3.7. Vibration bands characteristic of apatite were observed at about 

430 cm-1 (ν2PO4
3-), 590 cm-1 (ν4PO4

3-), 960 cm-1 (ν1PO4
3-, the most intense band) and 1005 cm-1 (ν3PO4

3-

).26,27 Raman spectroscopy is particularly important for the analysis of the apatite deposited in vitro 

because it emphasizes the C–O vibrations, since the in vitro grown apatite is usually carbonated28. In 

this respect, it is possible to observe a peak located at about 1070 cm-1 in the spectra reported in Fig. 

3.7, which can be ascribed to the stretching of carbonate groups, thus confirming that the apatite 

film on samples C, D1 and D2 is carbonated. 

 

 

 
Fig. 3.7 Raman spectra acquired on samples C, D1 and D2 immersed in SBF for 7 days.  

The main peaks of apatite are indicated by arrows. 

 

The obtained samples were particularly interesting also in terms of the pH variation induced in 

the SBF, as shown in Fig. 3.8. This issue is extremely important for the biocompatibility of glasses, 

glass-ceramics, and bioceramic coatings in general. In fact, when these systems are soaked in 
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physiological fluids, the rate and amount of ion release can engender an excessive rise in the pH level 

or abrupt changes in pH, which are incompatible with life. Moreover, it has been reported in 

literature that the pH value influences the protein adsorption on the surfaces of biomaterials29, 

which is a fundamental step among the biological reactions taking place at the interface between 

biological environment and medical implant. For example, Chen et al. reported high pH values 

(between 8.5 and 9) for 45S5 Bioglass® scaffolds soaked in SBF and observed that the attachment 

and stability of collagen on these systems was reduced.30 A dramatic increase in pH (between 9 and 

9.5) during the first days of exposure to SBF for 45S5 Bioglass® samples was also reported by Bellucci 

et al., who observed that the pH value of the SBF stabilized near to physiological values only after 

three weeks of immersion31. A rapid pH increase was also observed for the treatment of 45S5 

Bioglass® in DMEM tissue culture medium (pH~9 after 24 h) and in phosphate-buttered saline 

solution (pH~11) 32,33. In this regard, stable pH values close to 7.8 can be considered optimal for 

osteoblast adhesion and proliferation34 and many investigations have been reported in literature in 

order to develop new compositions tailored to avoid too high pH levels in SBF35,36. Fig. 3.8 shows the 

pH trend as a function of the immersion time in SBF for samples C, D1 and D2. All samples induced 

lower pH values compared to those commonly reported for 45S5 Bioglass®-derived glass ceramics. 

This fact is attributable to a slower ion leaching in our samples. In particular, D1 and D2 samples 

appear particularly promising, since the pH stabilizes near to physiological values already after a few 

hours.  

 

 
Fig. 3.8 pH variation induced by samples in SBF, refreshing the solution every 48 h. 

The simulated body fluid (SBF) proposed by Kokubo et al. is an acellular solution and, as such, it is 

not able to simulate the real complexity of a biological environment, which also includes proteins, 

cells, etc.12,37. Therefore, SBF tests mainly offer an insight into the inorganic reactions which are 
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expected to occur after the material is implanted into the human body, whereas the assessment of 

the biological response of cells needs further experimental trials, such as cytotoxicity tests38. 

Nevertheless the immersion of a new material in SBF is extremely useful to estimate its attitude to 

stimulate the formation of a surface layer of hydroxyapatite, which is similar to the mineral 

component of bone37. Even if it is known from the literature that the apatite-forming ability in-vitro 

does not always imply the bone-bonding ability in vivo39, it is interesting to observe that all the 

scaffolds tested in SBF were able to support the development of a surface layer of hydroxyapatite. 

Moreover it is worth noting that samples C, D1 and D2 were produced without the addition of 

solvents and were processed to obtain a silicate amorphous matrix with some crystalline phases 

(calcium silicates, tri-calcium phosphate, Fig. 3.5) that are by no means dangerous to the human 

body40-42. Moreover no anomalous compounds (possibly deriving from the materials themselves or 

from unwanted reactions between the scaffolds and the liquid medium) were detected by SEM, X-

EDS analysis and micro-Raman spectroscopy. In addition, the pH of the SBF never exceeded the value 

of 8.5 (Fig. 3.8), which represents an interesting result, since, as already mentioned, the reaction 

mechanisms of bioactive glasses (also sintered ones) usually induce very basic pH conditions, 

potentially harmful for cells33-40. For these reasons, the new scaffolds are suitable candidates for 

tissue engineering applications and further investigations on the cytotoxicity and other biological 

performance will be the target of future work. 

 

3.4 Conclusions 
Mixtures of silicones and fillers enabled to produce highly porous glass ceramic products, using a 

simple processing procedure. The synthesis cycle was composed of only two steps: foaming at 200-

300°C followed by heating at 1000°C. Despite all, completely amorphous microstructures were not 

enabled by this methodology, so it should be remarked that the obtained samples were not 

“glasses”, but only resembled some bioglass compositions in terms of oxide amounts. 

All samples of nominal composition corresponding to that of 45S5 bioglass were highly crystalline 

and led to difficulties concerning the selection of a suitable sodium oxide precursor. For a selected 

combination of silicones and fillers (formulation A) the homogeneity of foaming was accompanied by 

the formation of potentially bioactive phases. 

Concerning silicone/fillers mixtures of nominal composition corresponding to that of 58S bioactive 

glass, they yielded partially amorphous components. It was observed that porosity and mechanical 

properties could be adjusted by modifying the starting precursors (micro- or nano-sized powders and 

silicones). Samples with 58S composition exhibited a quite low compressive strength, but they 

effectively promoted the development of a surface layer of hydroxyapatite when immersed in a 

simulated body fluid (SBF). The reactions occurring between the scaffolds and the soaking medium 

did not cause large changes of the pH, as frequently observed for conventional bioglass-derived 

materials and scaffolds. This is advantageous, since basic values of the pH or abrupt changes are 

known to be dangerous for cells. 

A further important observation is related to the multifunctionality of some fillers. In particular, if 

we look at sodium phosphate dibasic heptahydrate, it had a double role: on the one hand, it was 

used as a precursor for P2O5 and Na2O; on the other hand, its thermal decomposition reaction was 

exploited for its foaming capacity, thanks to the water release occurring.  
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4 Ca-Mg silicates 

4.1 Introduction 
Nowadays, tissue engineering is a well-established alternative approach to the conventional use 

of permanent implants, with the purpose of allowing not only repair but also  regeneration and 

remodelling of damaged or diseased tissues1. In tissue engineering and regenerative medicine, 

synthetic or natural porous scaffolds mimicking the extracellular matrix can be directly implanted 

into a defect to guide and stimulate the formation of native tissue in situ. Alternatively, they can be 

seeded with appropriate cells extracted from the patient (see an example in Fig. 4.1, realized at the 

Faculty of Dentistry, University of Oslo, Norway, in 2014), or be enriched with specific biochemical 

substances with the aim to promote the cellular recruitment, proliferation and/or differentiation. 

The scaffolds are used as templates for tissue growth and should be resorbed by dissolving at 

controlled rates and concentrations as the new tissue forms2,3.  

 

 
Fig. 4.1 Example

4
 of artificial scaffold, containing bone progenitor cells from a patient, to remodel a mandible damaged 

by cancer, accident or infection. Realized in 2014 at the Faculty of Dentistry, University of Oslo, Norway. 

 

Concerning bone regeneration, the scaffolds should ideally not only provide a passive structural 

support for cells with well defined mechanical and physical properties (in terms of compressive 

strength, porosity, pores interconnectivity), but they should stimulate osteoblastic cell proliferation 

and differentiation as well, thus favourably affecting the growth of new born tissue5. 

In the last decades, significant attention has been given to Ca-silicates, due to their excellent 

bioactivity and biodegradability. Silicon has a well established role in the bioactivity mechanism 

proposed by Hench6,7,8, in the osteoblast proliferation9 and bone mineralization10. Calcium is known 

to act in regulating osteogenisis 11 , 12 , positively affecting the osteoblasts proliferation and 

differentiation13,14. In particular, bioceramics with the composition of wollastonite have been widely 

investigated, due to the ability of this formulation to bond with living bone through the formation of 

an apatite interface layer both in vitro and in vivo15,16. The main drawbacks, however, are the low 

mechanical strength of porous bodies and the high degradation rate, which may lead to high pH 

values with detrimental effects on cells17. Wu et al. reported that a wollastonite scaffold of 80 % 

porosity exhibited a crushing strength of only 300 kPa17. 
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Therefore, ion modifications of Ca-silicates have been proposed with the aim of tailoring both 

mechanical and biomedical properties. In this framework, the CaO-MgO-SiO2 system has been 

receiving a growing interest in the field of bioactive materials. Zhai et al. have recently reported that 

this family of bioceramics possess a unique dual osteogenic/angiogenic stimulatory ability18. Many 

studies have examined the role of Mg, which is a trace element in the body, including bone and 

extracellular matrix. It was found that it has an important influence on osteoblasts adhesion19, 

differentiation and proliferation20, on mineralization of tissues and on mineral metabolism21,22. 

Further effects of the incorporation of Mg specifically in Ca-silicates involve the reduced degradation 

rate, as well as the improved mechanical properties. These positive consequences might be due to 

the higher complexity of the crystal structure after Mg incorporation: in particular, Mg-O bonds are 

stronger than Ca-O bonds23,24.  

In the present chapter, two Ca-Mg silicates will be shown: one, akermanite (Ca2MgSi2O7), as the 

the only crystal phase; the other, diopside (CaMgSi2O6), coupled with wollastonite (CaSiO3). Both 

akermanite and diopside are known to possess good bioactivity and great potential as bone tissue 

engineering materials25,26. The present study also explored the cellular response of MC3T3 osteoblast 

precursor cells to the two Ca-Mg-rich glass-ceramics. Cytotoxicity was tested in accordance to the 

ISO 10993 standard guidelines. Cell attachment, viability and osteogenic differentiation were also 

assessed. These investigations will be submitted soon for publication. 

Part of this work was carried out at Imperial College London under the supervision of Prof. J. R. 

Jones, during a 1-month student exchange program in 2015. 

 

4.2 Experimental 

4.2.1 Preparation of samples 

A commercially available silicone resin (Sikres® H62C, Wacker Chemie GmbH, Munich, Germany), 

liquid at room temperature, was considered as a silica precursor, with a yield of 58 wt%27. CaO and 

MgO precursors consisted of CaCO3 (Industrie Bitossi, Vinci, Italy) and Mg(OH)2 (Industrie Bitossi, 

Vinci, Italy) in the form of microparticles (< 10 μm). Borax (sodium borate decahydrate 

microparticles, Na2B4O7 ∙10H2O, Normapur Prolabo, France) was used as an additional foaming agent. 

All the other chemicals and reagents were purchased from Invitrogen/ Life Technologies Ltd. (Paisley, 

UK) and Sigma-Aldrich (Gillingham, UK). 

The molar balance among the most important constituents (silicone:CaO precursor:MgO 

precursor) followed the stoichiometric SiO2:CaO:MgO molar proportions of akermanite (i.e. 

CaO:MgO:SiO2=2:1:2), or of a 50 mol% wollastonite-50% diopside mixture (i.e. CaO:MgO:SiO2=2:1:3). 

Samples will be referred to as “Ak” and “WD” respectively. 

H62C was first dissolved in isopropanol (10 g in 13 ml) and then mixed with micro-sized fillers, 

including sodium borate, in the as-received, hydrated form (the quantity of salt was 3 wt% of the 

theoretical ceramic yield of the other components). Stable and homogeneous dispersions in 

isopropanol were obtained by magnetic stirring and ultrasonication, then were left to dry overnight 

at 60 °C. After first drying, the mixtures were in the form of thick pastes, later manually transferred 

into cylindrical Al molds and then subjected to a heat treatment for foaming at 350 °C in air for 30 

min. Cylindrical samples, 10 mm in diameter and 10 mm in height, were obtained from the foams. 

After polishing of the top surfaces, by means of abrasive paper, the samples were thermally treated 

at 1100 °C in air for 1 hour at a heating rate of 2 °C/min. 
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4.2.2 Characterization of samples 

The bulk density (ρb) of the foams was determined using a caliper and a digital balance. The 

skeletal density (ρs) was measured on foams, using a He gas pycnometer (Micromeritics AccuPyc 

1330, Norcross, GA). The percentage of open porosity (%P) was then calculated using the following 

equation: %P=1-(ρb/ρs). 

Mercury intrusion porosimetry (PoreMaster 33, Quantachrome UK) was used to determine the 

pore interconnect size distribution. As the technique was destructive, it cannot be used to follow the 

change in pore sizes of the same scaffold as a function of sintering temperature.  

Optical stereomicroscopy (AxioCam ERc 5s Microscope Camera, Carl Zeiss Microscopy, 

Thornwood, New York, US) on foams and scanning electron microscopy (JSM 6010 L, JEOL USA; LEO 

GEMINI 1525 FESEM, LEO electron microscopy, Thornwood, New York, USA) on chromium-coated 

specimens were used to examine the morphological and textural features of the samples.  

The phase identification was performed by means of X-ray diffraction (Bruker AXS D8 Advance, 

Bruker, Germany; CuKα radiation, 0.15418 nm, 40 kV–40 mA, 2θ = 10°–70°, step size = 0.05°, 2 s 

counting time), supported by data from PDF-2 database (ICDD-International Centre for Diffraction 

Data, Newtown Square, PA) and Match! programme package (Crystal Impact GbR, Bonn, Germany). 

The compressive strength of foams was measured at room temperature, using an Instron 1121 

UTM (Instron Danvers, MA), equipped with a 10 kN load cell, with a crosshead speed of 1 mm/min. 

The mean value of 5 to 10 samples was used for each data point. 

4.2.3 Bioactivity test  

Foams with weight of 37.5 mg were immersed in 25 ml of simulated body fluid (SBF) at 37 °C and 

120 rpm for 1, 2, 4, 8, 24, 72, 168, 336, 504 h. At each time point, the pH was measured and samples 

of 1 ml of the medium were taken and refreshed. After dilution with 9 ml of 2M HNO3, the reacted 

medium was analyzed by inductive coupled plasma (ICP) spectroscopy (Thermo Scientific ICP 

Spectrometer, Model iCAP 6300 Series Duo, Thermo Fisher Scientific,Waltham, MA, USA) for Si, Ca, 

Mg, P concentration in solution. All the experiments were done in triplicate. 

At the end of the test, the foams were washed in distilled water, dried and analysed by  

attenuated reflectance  Fourier transform infrared spectroscopy (ATR-FTIR, Thermo Scientific Nicolet 

iS10) at room temperature, to monitor the growth of the hydroxycarbonate apatite  layer, using a 

wavenumber resolution of 4 cm-1 for 32 scans from 4000 to 600 cm-1. 

4.2.4 ISO 10993 tests for in vitro cytotoxicity  

Potential cytotoxicity effects of Ak and WD samples were assessed in accordance to ISO 10993-5 

and ISO 10993-12. Briefly, dissolution products released by the samples (0.2 g/ml in α-MEM at 37°C) 

over a 72-hour period were prepared. Medical grade polyethylene (PE) was used as non-cytotoxic 

negative control and polyurethane (PU) containing 0.1% (w/w) zinc diethyldithiocarbamate (ZDEC) 

was used as toxic positive control. The dissolution products were filter sterilised and dilution series 

(25%, 50%, 75% and 100%) were prepared and supplemented with 10% (v/v) FCS prior to use.  

Cell viability was assessed by a calorimetric cell metabolic activity assay based on the conversion 

of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into formazan. MC3T3-E1 cells 

were seeded on 96-well plates at 1×104 cells per well and left to grow in basal α-MEM for 24 hours 

prior to incubation in (1) fresh basal α-MEM, (2) the ceramic dissolution products or (3) controls for 

further 24 hours. Used culture media was removed and replaced with serum free MTT solution (1 

mg/ml in α-MEM). Following an incubation period of 2 hours, the MTT solution was removed and 

each well was filled with 100 μl isopropanol and shaken briefly to dissolve the formazan derivatives. 

The optical density was measured spectrophotometrically at 570 nm using a microplate reader 

(SpectraMax M5). 
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4.2.5 Cell culture test 

For cell attachment, proliferation and osteogenic differentiation studies, foams were cut to 37.5 

mg of weight (the size was approximately 5×5×5 mm3) and sterilised with 70% ethanol prior to 

washing in PBS.  

Upon confluence, MC3T3 cells were harvested and suspended in basal media at a concentration 

of 1×106 cells in 25 ml. 25 ml of cell suspension was added to each sterile 50 ml Falcon tube 

containing one foam 3-D scaffold. The tubes were placed in an incubator (humidified atmosphere at 

37 °C, 5% CO2 and 21% O2) for 2 hours with gentle agitation every 30 minutes to allow diffused cell 

adhesion. The solution was then replaced with osteogenic media (basal α-MEM supplemented with 

100 μM ascorbate-2-phosphate, 10 nM dexamethasone and 10 mM of β-glycerophosphate). Cell-

seeded foams were cultured in humidified atmosphere at 37 °C, 5% CO2 and 21% O2 for up to 21 days 

with media changes every 3-4 days. 1 ml of culture medium was collected prior to each media 

change for ICP analysis of Si, Ca, Mg and P concentrations. For gene expression analysis, cells were 

also seeded on Mg-free wollastonite-hydroxyapatite samples (CaO:SiO2=1.6), developed and 

discussed in a previous study28, for comparison. 

Viability of MC3T3 cells cultured on the 3-D foams at day 1, 3, 7 and 14 was determined by 

colorimetric WST-1 proliferation assay. At each time point, three cell-seeded foams were collected 

and each submerged in 5 ml of WST-1 reagent (1:10 dilution in α-MEM, Roche Diagnostic, West 

Sussex, UK). 100 μl was aspirated in triplicate from each sample following 2 hours incubation and, 

the optical density was measured spectrophotometrically at 440 nm using a SpectraMax M5 

microplate reader.  

Cell-seeded foams were fixed with 4% paraformaldehyde (PFA) and used for 

immunohistochemical analysis of cell attachment and osteogenic differentiation. After 

permeabilisation with buffered 0.5% Triton X-100 in PBS (300 mM sucrose, 50 mM NaCl, 3 mM 

MgCl2, 20 mM Hepes and pH 7.2) and blocking with 10 mg/ml BSA in PBS, samples were incubated 

with relevant primary antisera (diluted appropriately using 10 mg/ml BSA in PBS) at 4 °C overnight. 

This was followed by hour-long incubation with Alexa Fluor® 488-conjugated secondary antibody.  

The anti-Vimentin antibody (rabbit polyclonal, IgG, Abcam, Cambridge, UK), anti-Collagen Type I 

antibody (rabbit polyclonal, IgG, Abcam, Cambridge, UK), anti-Osteopontin antibody (rabbit 

polyclonal, IgG, Merck Millipore, Watford, UK) and anti-Osteocalcin antibody (rabbit polyclonal, IgG, 

Merck Millipore, Watford, UK) were used at dilutions of 1:500, 1:1000, 1:500 and 1:50 respectively. 

Alexa Fluor® 488-conjugated secondary antibody (goat anti-rabbit, IgG, Abcam, Cambridge, UK) was 

used at a dilution of 1:1000. 

For analysis of cell attachment, F-actin was labelled using CytoPainter F-actin staining kit (Abcam, 

Cambridge, UK) following the manufacture’s instruction. Briefly, Alexa Fluor® 568-conjugated 

phalloidin (1:1000 dilution in labelling buffer) was added simultaneously with the secondary antibody 

during the incubation period. All samples were counter-stained with DAPI (0.1 μg ml-1 in PBS).  

The samples were imaged under confocal microscopy (Leica SP5 MP laser scanning confocal 

microscope and software, Leica Microsystems, Wetzlar, Germany). The same samples were then 

dehydrated using an ascending series of ethanol and hexamethyldisilazane (HDMS) prior to sputter 

coating with gold and observation under scanning electron microscopy (JSM 6010 L, JEOL USA). 

At day 21, two cell-seeded Ak or WD constructs were pooled and lysed for extraction of total RNA 

using Qiagen RNeasy kit (Qiagen, Manchester, UK) following manufacturer’s instructions. The RNA 

samples were treated with DNase-1 reagent and reverse-transcribed using the SuperScript® VILOTM 

cDNA synthesis kit (Invitrogen, UK). SYBR green based qPCR assays were carried out using the 

QuantStudio™ 6 Flex system (Thermo Fisher, UK) for the analysis of osteogenic gene expression, 

including Runx2. The relative transcript levels of genes of interest were analysed using the 
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comparative CT method (ΔΔCT method). Bar graphs were plotted and statistical analysis was 

performed at the level of ΔCT.  

Cytotoxicity and cell culture studies were performed by Dr. S. Li (Imperial College London). 

4.2.6 Direct 3-D printing 

Regarding exclusively wollastonite-diopside composition, it was also directly 3-D printed by 

means of a PowerWASP orienting extruder (Massa Lombarda, Italy), expressly equipped with a 

syringe to print preceramic inks consisting of silicone pastes incorporating fillers (see Fig. 4.2a). All 

the printing operations were done in collaboration with Mr. Hamada Elsayed (University of Padova). 

The formulation was modified in terms of raw materials, replacing liquid silicone with a solid 

polymethylsiloxane (SILRES® MK, Wacker-Chemie GmbH, München, Germany), known to have a silica 

yield of 84 wt% after thermal decomposition in air. The required amount of silica (18 wt% of the final 

ceramic) was obtained from two contributions, that is 10 wt% from nano-sized silica (fumed silica, 

Aerosil R106, Evonik Germany) and 90 wt% from the above silicone, in order to positively modify the 

rheological properties of the slurry. No borax was added. 

Fumed silica powders were wet mixed with MK in isopropanol (8 ml for 16 g of silica precursors) 

by means of a ball mill (60 min at 100 rpm, Pulverisette 7 planetary planetary ball mill, Fritsch, Idar-

Oberstein, Germany). CaCO3 and Mg(OH)2 micro-sized powders (<10 μm, Industrie Bitossi, Italy)  

were subsequently incorporated into the polymer and again mixed (4 h at 400 rpm), to obtain a 

perfectly homogenous suspension with very fine fillers and no trace of powder aggregates. The 

achievement of such properties was extremely necessary for the direct ink writing, due to the need 

to avoid clogging throughout the printing step and to have continuity in the fluid flow through the 

nozzle.  

 

 
Fig. 4.2 Photographs of a) the 3-D printer equipped with syringe for silicone-based ink; b) detail of the  

printing process carried out in oil bath; c) overview of a 3-D printed scaffold with orientation of the axes. 

 

The syringe of the printer feeding system was filled with the preceramic paste and scaffolds 

were later printed with conical nozzle (with a diameter of 0.41 mm, Nordson EFD, Westlake, Ohio) 

immersed in vegetal oil, thus preventing the premature drying of the solvent, that would have 

affected the viscosity of the ink (see Fig. 4.2b). Following the CAD file, scaffolds were in the form of 

prisms (see Fig. 4.2c) with dimensions 15 mm x 5 mm x 5 mm, as resulting from the overlapping of 

cylindrical rod, periodically arranged along x and y axes. The rods were in a stacking density of 11 

rods/cm on the x-y plane and the distance between the longitudinal axes of adjacent rods was of 1 

mm. The spacing between adjacent rods along the z axis was set at 350 μm. 
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After removal from the oil, printed scaffolds were cross-linked at 350 °C, with a heating rate of 

0.5 °C/min and dwelling time of 1 h, prior to ceramization at 1100 °C (same heating rate and dwelling 

time as the cross-linking treatment) in air and nitrogen. 

An example of a partial long bone replacement with a 3-D printed scaffold, found in literature, is 

given in Fig. 4.3. The implant was realized at the New Zealand Institute of Specialist Veterinary 

Surgeons and was received by a 8-year-older canine patient in 2013, in New Zealand29. 

 

 

Fig. 4.3 Example
29

 of a partial long bone replacement with a 3-D printed scaffold, realized at the  

New Zealand Institute of Specialist Veterinary Surgeons and received by a canine patient, in 2013. 

 

4.3 Results  

4.3.1 Characterization of scaffolds 

Fig. 4.4a,b show that the ceramized samples of both formulations exhibited extensive porosity. 

Pores were derived from the water release occurred throughout the thermal decomposition of 

Mg(OH)2 and borax. The simultaneous cross-linking of the polymer, which took place in the same 

temperature range as the dehydration of the fillers (T<350°C), allowed the porous shape to be 

maintained, without any viscous collapse. The foamed structure was maintained even after the 

subsequent ceramization at 1100 °C, implying the conversion of the silicone into silica and reaction 

with CaO and MgO, from the fillers. 

It can be seen that the pore shape and size were more uniform in WD samples (Fig. 4.4b,d) in 

comparison to Ak ones (Fig. 4.4a,c). The pores in WD samples demonstrated near perfect spherical 

shape with diameters between 700 μm and 1 mm, which can be estimated from the image at higher 

magnification (Fig. 4.4c). In contrast, pores in Ak samples demonstrated a more random shape and 

had diameters of around 1 mm (Fig. 4.4d). One likely reason is represented by same composition of 

silicone-based mixtures. In fact, the overall molar balance for Ak samples was CaO:MgO:SiO2=2:1:2, 

whereas WD samples had an overall molar balance of CaO:MgO:SiO2=2:1:3. The higher content of 

silica in WD samples resulted in a higher silicone/fillers ratio and a consequently lower viscosity of 

pastes upon the foaming step. 

The results from Hg intrusion porosimetry allowed a comparison between foams of different 

composition (Fig. 4.4e) in terms of the diameter of interconnections of adjacent pores. It is well 

known that an ideal scaffold should combine bioactive properties with a favourable structure, 

consisting of uniform pores with well-defined interconnections; in particular, interconnections with 

diameter exceeding 100 μm allow effective tissue ingrowth and eventually vascularisation, which is 

required for complete regeneration of bone30. The diameters of interconnections of Ak and WD 
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samples are different (Dmode of 181 μm for Ak and 160 μm for WD foams, respectively), but both 

above the above-mentioned threshold. 

 

 

 
Fig. 4.4 a-b) Stereomicroscopy of the ceramized foam scaffolds; c-d) higher magnification;  

e) interconnect size distribution obtained by Hg porosimetry. 

 

Fig. 4.5 confirmed the feasibility of Ca-Mg silicates by exploiting reactions between the ceramic 

residue from oxidative decomposition of H62C and the fillers. The upper pattern, for the Ak 

formulation, features the distinctive peaks of the desired phase (Ca2MgSi2O7 - PDF#87-0046) with 

only minor peaks attributable to traces of monticellite (CaMgSiO4 – PDF#84-1319). The lower 

pattern, again, testifies the obtainment of the desired phases (CaSiO3 – PDF#75-1396, and CaMgSi2O6 

– PDF#72-1497), with minor traces of akermanite. The presence of impurities was not considered as 

an issue, considering the reported bioactivity even of the “extra” monticellite crystal phase31.  

Mechanical and physical properties of the scaffolds are summarized in Tab. 4.1. Both Ak and WD 

scaffolds exhibited similar values of bulk and skeleton densities (ρbulk and ρskeleton respectively). The 

average open porosities (Popen) for Ak and WD samples were 82 % and 83 % respectively. The average 

compressive strength (σcomp) for Ak samples was 1.0 ± 0.2 MPa in comparison to 1.8 ± 0.3 MPa for 

WD. These values are superior compared to those reported in literature for analogous foams. For 
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instance, Wu et al. have reported studies on akermanite-, diopside- and wollastonite-based foams 

with a compressive strength not exceeding 0.8 MPa, for a porosity of 81-82 %17,24,25. 

 

 
Fig. 4.5 XRD patterns of Ak and WD foam scaffolds.  

 

Tab. 4.1 Physical and mechanical properties of Ak and WD samples. 

 ρbulk 

(g cm-3) 
ρskeleton 

(g cm-3) 
Popen 

(%) 
σcomp 

(MPa) 

Ak 0.51 ± 0.06 3.08 ± 0.01 82 1.0 ± 0.2 

WD 0.53 ± 0.04 3.28 ± 0.02 83 1.8 ± 0.3 

 

4.3.2 Bioactivity test 

Fig. 4.6 shows the dissolution profiles for the foam scaffolds, as functions of time, generated using 

both compositions. The dissolution profiles are the ionic concentrations in SBF as a function of 

contact time. They were determined by ICP for silicon (Si), calcium (Ca) and magnesium (Mg), i.e. the 

ions released by the scaffolds, as well as phosphorous (P), which was contained in SBF and involved 

in the formation of hydroxycarbonate apatite (HCA) on the samples. A control of pure SBF with no 

foams immersed was also included in the ICP analysis. The error bars are standard deviations 

calculated from triplicates. 

SBF did not contain Si ions (Fig. 4.6a) and, following immersion of Ak samples, the Si 

concentration increased to 62 µg ml-1 over the first 24 h. From 24 h to 72 h, the concentration of Si 

species increased to 92 µg ml-1, but with a slower rate of Si release, as the solution neared saturation. 

The amount of Si found in SBF was maintained at approximately 90 µg ml-1 from day 3 to day 7, 

followed by decrease to 70 µg ml-1. Following the dissolution profile of WD samples, the Si 
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concentration increased to 92 µg ml-1 over the first 72 h at an almost linear rate of release and then 

followed the same trend as Ak samples. 

The Ca content of the control SBF was constant at approximately 90 μg ml-1 (Fig. 4.6b). Concerning 

the release profile of Ca2+ ions from the Ak foams, the concentration of Ca in SBF reached 255 μg ml-1 

after 7 days and then was maintained constant up to day 21. The concentration of Ca released from 

WD samples in SBF reached approximately 190 μg ml-1  after 3 days, followed by a slow increase to 

200 μg ml-1  from day 3 to 14. It should be remarked that the formulation for Ak samples was slighly 

richer in Ca compared to that of WD samples and this could explain the higher amount of Ca ions 

released by Ak samples (all the samples immersed in SBF at the same weight to volume ratio). The Ca 

concentration for WD, however, slightly decreased as the soaking time increased from 14 days to 21 

days, reaching 180 μg ml-1. This was likely caused by calcium phosphate deposition on the scaffold 

surface, even if weak, after 14 days of immersion.  

The Ca release profiles of these two Ca-Mg silicates were also compared with those of the Mg-

free wollastonite-hydroxyapatite bioceramics (WA) that we developed and discussed in a previous 

work28. WD samples exhibited a more controlled degradation, especially when comparing them with 

our previous WA scaffolds derived from a higher CaO/SiO2 ratio.  

 

 
Fig. 4.6 Dissolutions profiles as a function of time for Ak and WD foams after soaking in SBF for 21 days. a) Si; b) Ca; c) 

Mg; d) P. Control is SBF without any samples immersed. [Results are presented as mean ± SD, n=3 per each time point]. 

 

Fig. 4.6c illustrates the release of Mg in SBF from Ak and WD samples. The control SBF showed 

levels of Mg between 32 and 38 μg ml-1 up to 21 days. After immersion of Ak samples in SBF for 24 h, 

the Mg species increased to 86 μg ml-1. From 24 h to 14 days, the concentration of Mg ions kept 

increasing to 103 μg ml-1 at a slower rate of release and maintained at approximately 100 μg ml-1 to 

21 days. The release of Mg was much lower for WD samples. Mg concentration in SBF reached 50 μg 
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ml-1 after the first 24 h, then decreased and maintained at approximately 45 μg ml-1 to 14 days. There 

was a decrease to 40 μg ml-1 from 14 to 21 days. Similar to Ca release, the slow release of Mg in WD 

could be due to the smaller amount of Mg included in the formulation of WD compared to Ak 

formulation. 

Both compositions did not contain P, so that there was no release of P species from the foams 

(Fig. 4.6d). The control SBF, however, showed levels of P between 32 and 28 μg ml-1 up to 21 days 

immersion. Following the immersion of both Ak and WD samples, there was a noticeable decrease in 

concentration of P species in SBF. The P concentration rapidly decreased to 7 μg ml-1 after 72 h for Ak 

and reached 0.5 μg ml-1 by day 14. The P concentration in SBF containing WD samples decreased to 

12 μg ml-1 after 72 h and reached 0.5 μg ml-1 by day 7. The formation of a HCA layer on the surface of 

both scaffolds, as evidenced by FTIR spectra (Fig. 4.7a), was likely the reason for decreased P 

concentration in SBF. 

The dissolution of the foams caused the pH of the medium to increase. Values were comprised 

between 7.4 and 8.2 for Ak samples and from 7.4 to 7.9 for WD samples. 

 

 
Fig. 4.7 FTIR and XRD spectra of Ak and WD foam scaffolds before and after soaking in SBF for 21 days. 

 

FTIR spectroscopy was used to determine the growth of the HCA layer on the samples after 

soaking in SBF. Fig. 4.7 compares FTIR (panel “a”) and XRD (panel “b”) spectra of Ak and WD samples 

immersed in SBF for 21 days as well as unreacted samples. The FTIR spectrum of the unreacted Ak 

samples exhibited vibrational bands in the same positions as reported in literature for akermanite, 

that means 1009, 972, 928, 906, 852, 683, 638, 586, 475 cm-1 32.  After soaking in SBF for 3 weeks, the 

XRD spectra suggested the conversion of most of the akermanite into monticellite, which has the 

same Ca/Si molar ratio compared to akermanite, but lower Ca/Mg and Si/Mg molar ratio. This was 

confirmed by the FTIR spectrum, showing only a few of the akermanite vibrational bands mentioned 
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above and, instead, some at 942, 829 and 519 cm-1, which can be attributed to monticellite33. A band 

at 896 cm-1 was likely due to wollastonite34, as its presence was also confirmed by the XRD phase 

identification.   

The FTIR spectrum of WD samples before soaking in SBF showed a vibrational band at 460 cm-1 

which can be attributed to Si-O bending35. In addition, vibrational bands at 960, 896, 564, 509, 470 

cm-1, which are known from literature to be related to wollastonite34, and at 1066, 960, 858, 673, 635 

cm-1 due to diopside36. This phase assemblage is confirmed by the XRD pattern, showing mainly 

wollastonite. After soaking in SBF for 3 weeks, the XRD pattern of WD showed that the wollastonite 

was fully converted into diopside. Further evidence was given by the FTIR spectrum: indeed, the 

vibrational bands that were previously attributed to the presence of wollastonite were not present, 

maintaining only the vibrational bands related to diopside.  

Concerning the growth of hydroxycarbonate apatite over the 21-day immersion in SBF, the FTIR 

spectra of both Ak and WD samples after soaking in SBF showed vibrational bands at 567 and 603 

cm-1, corresponding to the P-O υ4 bending vibrations, and at 1050 cm-1, corresponding to the P-O υ3 

stretching vibrations. Vibrational bands were observed as well for carbonate ions at approximately 

1400-1500 cm-1, corresponding to the carbonate υ3 stretching vibrational mode, and, only for WD 

samples, at 870 cm-1, corresponding to υ2. All of them can be associated with the presence of 

crystalline hydroxycarbonate apatite37.  

It should be highlighted that hydroxycarbonate apatite formation on bioactive implants 

demonstrates superior bioactive response in comparison to non-carbonated hydroxyapatite38. This is 

due to the similarity in chemical and structural composition between hydroxycarbonate apatite and  

mineral phase in bone, which is responsible for interfacial bonding with tissues6. 

4.3.3 Cytotoxicity 

The biocompatibility and ability of a biomaterial to support cell attachment and growth are 

important criteria for biological applications. In the present study, an MTT metabolic activity assay 

was performed in accordance to ISO 10993 (Biological evaluation of medical devices) to assess the 

potential cytotoxic effects of both Ak and WD materials. The ISO guidance stated that if the viability 

of cells is reduced to < 70 % of blank (i.e. non-cytotoxic controls), the test material will be deemed to 

have a cytotoxic potential. In addition, in a valid test, the 50 % dilution of the test sample should 

result in at least the same or a higher viability in comparison to the 100 % extract. As shown in Fig. 

4.8, both Ak and WD demonstrated excellent biocompatibility with negligible reduction in metabolic 

activity.  

 
Fig. 4.8 In vitro cytotoxicity analysis by MTT metabolic activity assay performed in accordance to ISO 10993 standards.  
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4.3.4 Cell culture study 

Following seeding into the foam scaffolds of Ak and WD, WST-1 cell proliferation assay was used 

as a quantitative measure to monitor viability of cells on the scaffold for up to 14 days. The optical 

density of WST-1 solution, incubated with cell-seeded constructs for 2 hours at each time point, 

indicated excellent gradual cell growth and on-going cell survival (Fig. 4.9). There was no significant 

difference in optical density (i.e. cell viability) between the 2 materials at each time point. We have 

also previously demonstrated that Mg-free wollastonite-hydroxyapatite was non-cytotoxic and thus, 

the excellent biocompatibility of polymer-derived silicate ceramics28.  

 

 
Fig. 4.9 WST-1 assay of MC3T3 cell seeded Ak and WD scaffolds, cultured for up to 15 days.  

 

Furthermore, the results from cell attachment of the foams of Ak and WD materials was 

examined by immunohistochemical staining for up to 21 days. The expression of 2 of the major 

cytoskeletal constituents Vimentin (green stain), intermediate filament proteins, and F-actin (red 

stain), microfilaments, was evident in MC3T3 cells on both Ak and WD foam scaffolds (Fig. 4.10). 

More cell spreading can be observed on WD foams in comparison to Ak foams. Since cells are able to 

detect the mechanical properties of the adhesion substrate and subsequently regulate the integrin 

biding, focal adhesion assembly and cytoskeleton accordingly39,40, the advanced cell spreading on WD 

foams was likely due to the superior mechanical property reported above in Tab. 1. It has been 

reported that when collagen was adsorbed or covalently bound on glass or hard polyacrylamide gel 

(PAG), cultured cells were more spread with streak-like focal adhesion site and rich in actin 

cytoskeleton. On the contrary, when soft PAG was used, the cells remained spherical without signs of 

spreading or adhesion apparatus and, subsequently underwent apoptosis41.  

The attachment of the cells to the scaffolds, the cell morphology and the formation of cell matrix 

were investigated by SEM imaging at different time points (Fig. 4.11). Fig. 4.11a-b make a comparison 

between Ak and WD samples after 7 days of cell culture. On the surface of both the formulations, the 

cells exhibited elongated filopodia, which serve as pioneers in protrusion and are used by the cells to 

probe the microenvironment and to promote their motility42. Besides, the cells seemed to have 

colonized the pores of the scaffolds. 

Fig. 4.11c-d show the proliferation of the cells after 21 days of cell culture on the scaffolds Ak and 

WD respectively. In either case, the cells appeared to have formed mineralized bone nodules, in the 

form of white globular precipitates. In details, WD samples (Fig. 4.11d) seemed to have more 

mineralized bone nodules formed by the cells than Ak samples (Fig. 4.11c).  
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Fig. 4.10 Representative images of immunohistochemical staining of the cytoskeleton of MC3T3 cells cultured  

on Ak and WD foam scaffolds for up to 21 days. Stack images of cells expressing Vimentin (green fluorescence),  

F-actin (red fluorescence) and DAPI nuclei counter stain (blue fluorescence). Scale bar = 100 μm. 

 

 

Fig. 4.11 SEM micrographs at different time points of the MC3T3 cells cultures on the scaffolds. 

 

The EDS spectra reported in Fig. 4.12 were taken for both the sample formulations on the 

apparent mineralized bone nodules formed by the cells and on the scaffold surface adjacent to the 

cell groups, after coating the samples with chromium. All of them were normalized on the peak of Si 
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at 1.74 keV with the aim of highlighting the differences in Ca/Si and Ca/P ratios (even though the 

content of Si in the bone nodules and in the adjacent surfaces are expected to be much different).  

The spectra showed that Ca and P were present on the cellular deposits for both the samples Ak 

and WD, confirming that mineralization occurred; while the spectra taken on the scaffold surfaces 

adjacent to the cell groups showed that P and Ca contents were much lower when compared with Si 

content. It should be remarked that a very weak peak attributable to Na was detected. Na could be 

ascribed both to the borax fillers and the media used for the cell culture test. 

 

 

Fig. 4.12 spectra of the scaffold surface adjacent to the cells and  

of the apparent bone nodules formed by the cells on Ak and WD foams. 

 

 

Concerning the growth of the cellular deposits mentioned above, SEM images of the samples 

seeded with cells after 21 days of cell culture were compared with those taken on the controls, that 

were the same Ak and WD samples immersed in the same culture medium, but not seeded with cells. 

The controls did not exhibit the formation of surface precipitates, that implies that the calcium 

phosphates observed on the seeded samples were not simply due to the reaction of the Ca ions 

released by the samples with the P provided by the culture medium, but they might be attributed to 

cellular osteogenic activities occurring throughout the cell culture test. 

4.3.5 Osteogenic differentiation 

For analysis of osteogenic differentiation and matrix formation, day-21 MC3T3 cell seeded Ak and 

WD constructs were first immunostained with antibodies against phenotypic osteogenic proteins 

(Fig. 4.13). The formation of bone-like matrix was evident. Osteoblastic activity was confirmed by the 

expression of Collagen Type I, a commonly used extracellular marker for early bone matrix formation. 

The expression of Collagen Type I appeared particularly robust and well organised on WD foam 

scaffolds. In turn, more robust expression of Osteopontin, an extracellular protein that regulate 

matrix mineralisation, as well as Osteocalcin, a late marker for bone formation and matrix 

mineralisation, was observed in WD foam scaffolds in comparison to Ak ones.  

We have previously demonstrated promising osteogenic differentiation of MC3T3 cells on Mg-

free wollastonite-hydroxyapatite (WA) foam scaffolds28. Real-time qPCR gene expression analysis was 
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used in the present study as a quantitative measure to demonstrate the positive effects of Mg that 

were incorporated in the newly developed Ak and WD foams (Fig. 4.14).  

 

 

 
Fig. 4.13 Immunohistochemical examination (day-21) of MC3T3 seeded Ak and WD explants.  

Collagen Type I, Osteopotin and Osteocalcin (green fluorescence), nuclei (blue fluorescence). Scale bar  = 100 μm. 

 

 

 

 
Fig. 4.14 Analysis of expression of Runx2, Col1a1, Osteopotin and Osteocalcin transcripts  

in day-21 MC3T3 cells cultured on Ak and WD scaffolds using real-time qPCR.  

* p<0.05 compared to Mg-free WA. + p<0.05 compared to both Ak and Mg-free WA. 
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Levels of Runx2, a key osteoblast differentiation transcription factor, were significantly higher in 

Ca-Mg silicate ceramics Ak and WD. The level of Runx2 detected in day-21 WD constructs appeared 

higher than Ak constructs, though this observation cannot be statistically proven. Interestingly, the 

transcription level of the three Runx target genes, Col1a1, Osteopontin and Osteocalcin, were all 

significantly higher in day-21 WD constructs compared to both Mg-free WA and Ak.  

These observations confirmed the stimulatory effect of Mg in osteogenesis. In fact, previous 

studies have also demonstrated that Mg is a promising agent in skeletal tissue engineering 

applications due to its ability to stimulate new bone formation19. Mg was suggested to interact with 

integrins of osteoblasts that are responsibe for cell adhesion and stability19,43. The importance of Mg 

in bone metabolism was underlined by studies that demonstrated Mg depletion can result in 

impaired bone growth, increased bone resorption and loss in trabecular bone volume in animal 

models21,44,45.  

In addition to Mg, Ca2+ and soluble silica were also released by the bioactive Ca-Mg silicate 

ceramics. The stimulatory and dose-dependent osteogenic effects of these ionic products have been 

well-documented in a number of studies46,47,48,49.  

Although ICP analysis confirmed Ak foams released higher levels of Ca and Mg, the release of Si 

was significantly lower in comparison to WD foams. Si is a known essential element for metabolic 

processes associated with the formation and calcification of bone tissue. High Si contents have been 

detected in early stages of bone matrix calcification50 and, aqueous Si has been shown to induce the 

precipitation of hydroxyapatite, the inorganic mineral phase that contributes to 70% of human bone 

mass51. Presence of Si in the form of orthosilicate acid has been shown to stimulate osteoblastic 

differentiation of human osteoblast cells and Collagen Type I formation52. Further, dietary Si intake 

has been shown to increase the bone mineral density in both men and premenopausal women53,54.  

Therefore, it is likely that the collective effects of Ca, Mg as well as Si released from WD foams 

played a significant role in the enhanced osteogenic differentiation and matrix formation observed in 

the present study. Further, the more controlled dissolution and consistent pore distribution in WD 

samples may also have contributed to the superior osteogenesis.  

4.3.6 Direct 3-D printing 

Regarding exclusively WD composition, the formulation was also 3-D printed by direct ink writing.  

Mechanical properties of the samples are reported in Tab. 4.2 (courtesy of Mr. Hamada Elsayed, 

University of Padova). Reticulated WD scaffolds exhibited a remarkable compressive strength, 

ranging from 3.8 to 5.3 MPa, depending on the pyrolysis atmosphere, for a total porosity between 65 

and 75 %. 

 

Tab. 4.2 Compressive strength and open porosity of ceramized 3-D printed WD scaffolds.  

Treatment 
σcomp 

(MPa) 
Popen 
(%) 

Air 5.3 ± 0.3 65 

N2 3.8 ± 0.4 75 

 

 

As visible in Fig. 4.15 (courtesy of Mr. Hamada Elsayed, University of Padova), the obtained 

reticulated structures exhibited, after ceramization, the absence of macroscopic cracks. Moreover, it 

should be noted that the material was not dense, but extensively porous, as demonstrated by the 

high magnification detail of a rod surface (Fig. 4.15d). 
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Fig. 4.15 Ceramized 3-D printed WD scaffolds: a) top view, b) cross-section,  

c) detail of a rod cross-section, d) high magnification detail of a rod surface. 

 

4.4 Conclusions  
Ca-Mg-rich glass-ceramics (based on akermanite and wollastonite-diopside) were successfully 

synthesized and shaped into highly porous foams, starting from silicone-based mixtures 

incorporating powdered oxide fillers.  

Some fillers provided an extensive foaming, at 350 °C, simply by water release in the polymer 

before its ceramic conversion; this conversion was completed at 1100 °C, with the formation of the 

desired phases. 

After ceramization, the foams exhibited an open porosity of 80 %, with interconnections of 160-

180 µm and a compressive strength of 1-2 MPa. 

Throughout a 21-day SBF dissolution test in SBF, the obtained glass-ceramics demonstrated 

suitable dissolution rates, pH and ionic concentrations. A cytotoxicity analysis, performed in 

accordance to ISO10993 standards, confirmed an excellent biocompatibility. MC3T3-E1 cells cultured 

on the foams demonstrated enhanced osteogenic differentiation and matrix formation in 

comparison to Mg-free counterparts.  

The addition of Mg seemed to further enhance the bioactivity and the potential for bone 

regeneration applications of Ca-silicate materials. 

Wollastonite-diopside formulation was also shaped by direct 3-D printing, obtaining crack-free 

reticulated structures.  

Lastly, vascularisation is an important criterion for successful clinical translation of scaffold-based 

bone tissue engineering therapy. To assess the ability of the Ca-Mg silicate ceramic scaffolds to 

support vascular network formation, future studies will focus on the use of more clinically relevant 

cell population such as multipotent stem cells and, assess the survival and integration with host 

tissues in vivo in animal models.   
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5 Ca-Mg silicates: engineering of the glass phase 

5.1 Incorporation of a glass filler 

5.1.1 Introduction 

As discussed in §4, Ca-silicates1-2 and Ca-Mg3-6  silicates have recently received a growing interest 

for their bioactivity properties, according to their ability to stimulate body tissues to repair 

themselves. Silicone/fillers mixtures were found to be suitable for obtaining these peculiar bioactive 

formulations, but also for facilitating the shaping of the ceramic components in the form of highly 

porous bodies, which are extremely useful especially in the field of scaffolds for bone regeneration7-8. 

While a high phase purity is usually achievable in binary systems derived from preceramic 

polymers, such as Ca-silicates, ternary systems, like CaO-MgO-SiO2, generally imply some difficulties, 

due to the potential formation of undesired binary compounds (e.g. calcium silicates mixed with 

magnesium silicates, mixed silicates with unreacted oxides)  instead of ternary compounds, as 

expected from the balance among components9-10. 

 

 

Fig. 5.1 Scheme for the obtainment of wollastonite-diopside ceramics according to conventional  

crystallization of a Ca/Mg-rich glass  and to the reaction between silicones and fillers.  

 

The solution may come from additional fillers, providing some liquid phase upon firing, and thus 

promoting the ionic interdiffusion: as an example, it is already known11 that a borate liquid phase 

may effectively provide a “mineralizing effect”, i.e. the catalysis of ionic interdiffusion. Taking into 

account this effect, hydrated sodium borate (borax, Na2O∙2B2O3∙10H2O), has already been shown as 

particularly significant for akermanite (2CaO∙MgO∙2SiO2, or Ca2MgSi2O7) ceramic foams. Besides 

providing a borate liquid phase, favorable, as explained, to the obtainment of the expected silicate, 

borax was used as a foaming agent for the silicone/resin mixtures, due to the water release 

associated with its dehydration reaction, occurring at only 350 °C (well below the ceramic 

transformation of silicone resins) 12 . For these reasons, borax could be seen actually as a 

multifunctional filler, playing a double role in the synthesis and shaping of silicates. 

It must be noted that Mg(OH)2, used as MgO precursor for Ca-Mg silicates, can also contribute to 

the foaming, but its impact is much lower than that of borax, which gave an extensive and uniform 

foaming of the liquid polymer20. The subsequent cross-linking of the polymer stabilized the porosity, 

even maintained after the conversion of the polymer into amorphous silica and the formation of 
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silicates. Concerning the borate liquid phase, after cooling at room temperature, it remained as a 

glass phase. The resulting product (crystalline silicate+glass phase) is nominally identical to that from 

glasses undergoing some crystallization, i.e. glass-ceramics (parent glasses “ceramized” into silicate 

crystals mixed with residual glass phase). 

The present chapter will evidence the similarities in the CaO-MgO-SiO2 system, in terms of 

resulting phase assemblage, between products from conventional crystallization of a Ca/Mg-rich 

glass and from silicone/fillers mixtures, as illustrated by the scheme in Fig. 5.1, where. it is illustrated 

that these two technologies do not exclude each other, for the development of crack-free, highly 

porous diopside-wollastonite glass-ceramics. In particular, we will refer to the coupling of 

wollastonite and diopside (CaO·MgO·2SiO2, CaMgSi2O6), already proved to be a highly attractive in 

terms of bioactivity and biocompatibility in recently developed ceramics 13 found in literature and 

also synthesized from preceramic polymers and discussed in §4. The results were published in 2015 

by Fiocco et al.14. 

 

5.1.2 Experimental 

5.1.2.1 Samples preparation 

Two commercially available silicones, H62C and MK (Wacker-Chemie GmbH, Munich, Germany) 

were considered as silica precursors, with a yield of 58 and 84 wt%, respectively9. CaO and MgO 

precursors were CaCO3 (Sigma Aldrich, Gillingham, UK) and Mg(OH)2 (Industrie Bitossi, Vinci, Italy) 

respectively, with particle size diameter under 10 m. Sodium borate (Na2O∙2B2O3∙10H2O, Sigma 

Aldrich, Gillingham, UK) was used as mineralizing agent12. Finally, a powdered Ca/Mg rich silicate 

glass with a particle size <60 m (mean diameter ~5 μm), later referred to as G20CaII glass, was used 

in various amounts. The chemical composition of G20CaII glass is reported in Tab. 5.1. 

 

Tab. 5.1 Chemical composition of G20CaII glass (%mol). 

SiO2 CaO MgO Na2O Li2O 

55.3 22.0 12.0 9.0 1.7 

 

 

Viscous flow analysis of the glass was performed using a hot stage microscope (HSM) (Misura 

HSM ODHT – Expert system solutions) at a constant rate of 30 °C/min. The sample was initially cold 

pressed to cylindrical shape of 3 mm in both height and diameter from the glass powder. The 

temperature was measured with a Pt/Rh thermocouple placed under and in contact with the alumina 

support. The HSM projected the image of the sample through a quartz window and images of the 

sample were captured by a video camera every 2 °C. The temperatures corresponding to the 

characteristic viscosity points following Scholze’s definition15,16 ( in dPa or Poise) were obtained 

from captured images taken in the following sequence: first shrinkage (log =9.1), maximum 

shrinkage (log =7.8), softening (log =6.3), half ball (log =4.1) and flow point (log =3.4). 

The effective compatibility between silicone resins and G20CaII glass, in terms of phase 

assemblage of the developed ceramics, was tested before the processing of foams. This compatibility 

was tested starting from pellets obtained by uniaxial pressing. Monolithic pellets were prepared 

using Mg(OH)2 and CaCO3 micro-particles, mixed with MK, anhydrous borax (the same salt cited 

above, after preliminary dehydration at 350 °C, for 4 hours) and G20CaII glass (in an amount varying 

from 0 to 67 wt% of the theoretical ceramic yield of the other components). MK polymer was chosen 

instead of H62C for preliminary tests, for the easier processing (MK is solid, whereas H62C is liquid)9.  
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MK was dissolved in isopropanol (15 ml for 10 g of final ceramic) and then mixed with micro-sized 

fillers, including sodium borate (1.6 wt% of the theoretical ceramic yield of the other components). 

The mixing was performed under magnetic stirring, followed by sonication for 10 min, which allowed 

to obtain stable and homogeneous dispersions. The mixtures were poured into large glass containers 

and dried at 80 °C overnight. 

After drying, the silicone-based mixtures were in form of solid fragments, later converted into fine 

powders by ball milling at 350 rpm for 30 minutes. The powders were cold-pressed in a cylindrical 

steel die applying a pressure of 20 MPa for 1 min, without using any additive. Specimens of 0.5 g, 

having 16.6 mm in diameter and approximately 1.7 mm in thickness, were obtained. For comparison 

purposes, pellets of glass-free formulation were also prepared. 

Concerning the preparation of foams, H62C was first dissolved in isopropanol (15 ml for 10 g of 

final ceramic) and then mixed with micro-sized fillers, including sodium borate, in the as-received, 

hydrated form (in order to provide the same amounts of Na2O and B2O3 used with MK, the quantity 

of salt was 3 wt% of the theoretical ceramic yield of the other components). Stable and 

homogeneous dispersions in isopropanol were obtained using the same conditions applied for the 

MK-based mixtures, and left to dry overnight at 60 °C. After first drying, the mixtures were in the 

form of thick pastes, later manually transferred into cylindrical Al molds and then subjected to a heat 

treatment for foaming at 350 °C in air for 30 min. Cylindrical samples, 10 mm in diameter and 7-8 

mm in height, were obtained from the foams. The top surfaces were polished with abrasive paper.  

To investigate another processing route, the procedure described above was repeated for a 

second series of foams, including G20CaII glass powder (16.5 and 33 wt% of the theoretical ceramic 

yield of the other components) as further filler. 

All the samples (monolithic or cellular, after removal from Al molds) were fired at 1100 °C for 1h, 

using a heating rate of 1 °C/min.  

5.1.2.2 Characterization of samples 

Microstructural characterizations were performed by optical stereomicroscopy and scanning 

electron microscopy (FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with energy 

dispersive spectroscopy (EDS). 

The crystalline phases were identified by means of X-ray diffraction on powdered samples (XRD; 

Bruker AXS D8 Advance, Bruker, Germany), supported by data from PDF-2 database (ICDD-

International Centre for Diffraction Data, Newtown Square, PA) and Match! program package (Crystal 

Impact GbR, Bonn, Germany). 

The bulk density of foams was determined geometrically and by weighing using a digital balance. 

The true density of the various samples was measured by means of a gas pycnometer (Micromeritics 

AccuPyc 1330, Norcross, GA), operating with He gas on finely milled samples.  

The crushing strength of foams was measured at room temperature, by means of an Instron 1121 

UTM (Instron Danvers, MA) operating with a cross-head speed of 1 mm/min. Each data point 

represents the average value of 5 to 10 individual tests. 

 

5.1.3 Results 

5.1.3.1 Phase evolution 

A first remark concerns the starting composition. With the main aim of obtaining ceramics with 

both wollastonite and diopside, operating with preceramic polymers and fillers, we adjusted the 

formulation adopted for akermanite ceramics, turning it from CaO:MgO:SiO2=2:1:2 (by mol.) to 
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CaO:MgO:SiO2=2:1:3. Such balance effectively corresponds to a diopside/wollastonite molar ratio 

equal to 1, as follows: 2 CaO + MgO + 3 SiO2  CaO∙SiO2 + CaO∙MgO∙2SiO2. 

The different oxides were provided by the same precursors used for akermanite porous ceramics 

with the highest phase purity, i.e. Ca carbonate, Mg hydroxide and H62C polymer. Borax was used, 

again, as both mineralizing and foaming agent12. 

With regard to preliminary tests of compatibility between polymer/fillers mixtures and G20CaII 

glass, relatively dense pellets were used. H62C was replaced by MK (the overall amount of polymer, 

owing to the higher silica yield of MK, compared to H62C, was obviously adjusted, in order to 

maintain the CaO:MgO:SiO2 balance) and borax was used after dehydration (keeping the ratios 

between B2O3 and other oxides unchanged).  

Fig. 5.2 (upper pattern, “a”) clearly shows wollastonite (PDF#75-1396) and diopside (PDF#75-

1092) effectively formed from H62C and oxide precursors, in condition of high phase purity, with the 

exception of weak traces of akermanite (PDF#87-0046). The same figure (upper pattern, “b”), the 

crystalline phases developed after the heat treatment of the samples, are the same for both silica 

precursor used, i.e. MK and H62C. 

 

 
Fig. 5.2 Comparison of polymer-derived wollastonite-diopside ceramics  

obtained by using different silicones: a) H62C; b) MK.  

The introduction of G20CaII glass particles as secondary filler, in substantial amounts (one or two 

thirds of the mass of ceramic product), as testified by Fig. 5.3, had a quite particular effect. We can 

see that the glass-free formulation had an evolution, with increasing firing temperature, from 900 to 

1100 °C. At low temperature we can note that the two expected phases were accompanied by 

akermanite and silica (in form of cristobalite, PDF#76-0940); while akermanite remained as slight 

contamination at 1100 °C, crystalline silica practically disappeared, probably due to the progressive 

incorporation of silica, from the polymer, in the structure of the desired silicates. Contrary to the 

polymer-based formulation, G20CaII glass crystallized leading to very well-defined wollastonite and 

diopside peaks even at 900 °C; an increase in temperature, from 900 to 1100 °C had the only effect of 

reducing secondary phases, in form of other silicates: olivine (Mg2SiO4, PDF#87-2042), calcium 

silicate (Ca2SiO4, PDF#83-0463) and monticellite (CaMgSiO4, PDF#87-2042). 
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Fig. 5.3 X-ray diffraction patterns of wollastonite-diopside ceramics fired at different temperatures. 

 

Interestingly, “intermediate” formulations, i.e. comprising both polymer and glass, were more 

similar to the glass-free formulation, in terms of phase assemblage. Intense wollastonite and 

diopside peaks were accompanied only by minor traces of Ca/Mg silicates, such as akermanite and 

monticellite. Finally, the main goal is that, independently from the formulation, except for minor 

traces of akermanite, all the formulations practically yielded the same phase assemblage, at 1100 °C. 

The glass evidently had the expected effect of promoting the ionic interdiffusion. 

5.1.3.2 Development of foams 

Fig. 5.4 presents the foams obtained from silicone/fillers mixtures. In particular, Fig. 5.4a shows 

that the first heat treatment at 350 °C led to very homogeneous rigid polymeric foams, owing to the 

release of water from both Mg hydroxide and hydrated borax, in good analogy with what happened 

for the formulation yielding akermanite; the stiffness of the foams is due to the crosslinking of H62C, 

when heated above 200 °C12. However, even if the homogeneity was maintained after ceramization 

at 1100 °C, as illustrated by Fig. 5.4b, the ceramic foams exhibited many microcracks (not found in 

previous akermanite foams), as visible from the SEM image in Fig. 5.4c.  

The microcracks in wollastonite-diopside ceramic foams were likely caused by stresses, arising in 

the material, due to the volume changes associated to the crystallization of silicates (the 

crystallization implies an increase of density, and a decrease of volume, due to the regular packing of 

ions), within a rigid matrix (polymer-derived silica and fillers). Some stress relaxation was actually 

expected from the borate glass phase originating from borax; the quantity of additive was evidently 

too low to accommodate the volume changes. An increase of borax amount was not considered, 

owing to the risks of compromising the homogeneity of foams (an enhanced water release could 

determine some coarsening of the cellular structure). It was evident, however, that the enhancement 

of viscous flow could lead to crack-free samples. 

In order to have some additional liquid phase, during ceramization at 1100 °C, we considered the 

addition of G20CaII glass powder, designed to yield wollastonite-diopside glass-ceramics by sinter-
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crystallization. Fig. 5.5 presents the linear shrinkage of G20CaII glass powder as a function of 

temperature, obtained from a hot stage microscopy. In this analysis some fixed points of viscosity 

can be determined. It can be seen that sintering starts at 645 °C (Tsint, corresponding to the first 1 % 

in linear shrinkage) and the temperature of sintering saturation (Tsat) is close to 760 °C for the 

G20CaII. In this temperature range, the glass particles sinter by viscous flow and this process is 

hindered by the superficial crystallization of the particles17. Above 930 °C, melting of the crystals 

starts, and therefore, the material begins to flow again. The softening point is around 1000 °C and 

the half ball point is around 1100 °C. The firing temperature of the foams correspond to the half ball 

point of the G20CaII glass, which shows log=4.1 at this temperature. This indicates that G20CaII 

glass powder can supply additional liquid phase to ceramization process of the foams and increase 

the viscous flow at 1100 °C. With this in mind, an alternative route to obtain crack-free foam samples 

was proposed using G20CaII powders.  

 

 

 
Fig. 5.4 Microstructural details of polymer-derived wollastonite-diopside foams: a) foam before ceramization;  

b) foam after ceramization; c) high magnification detail of cellular structure after ceramization. 

 

 
Fig. 5.5 Linear shrinkage as a function of temperature during the HSM measurement  

and images of the sample at 1050 °C and 1098 °C. 

 

The success of the glass addition, in terms of confirmation of the phase assemblage, using MK, 

stimulated further investigations with H62C, with the manufacturing of a second series of foams 
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(considering borax in hydrated form). Fig. 5.6 shows that the limited glass addition (16.5 % and 33 %, 

each value corresponding to one half of the amounts used with MK) still did not determine any 

practical change in the phase assemblage, after firing at 1100 °C.  

 

 
Fig. 5.6 X-ray diffraction patterns of wollastonite-diopside ceramic foams from H62C-based formulations. 

 

Tab. 5.2 Physical and mechanical properties of foams with different amount of glass powders. 

Foam formulation 
ρb 

(g/cm
3
) 

Popen  

(%) 

σcomp  

(MPa) 

H62C + fillers, 0 wt% glass 0.73 ± 0.02 77 1.8 ± 0.3 

H62C + fillers, 16.5  wt% glass 0.75 ± 0.03 75 2.3 ± 0.2 

H62C + fillers, 33 wt% glass 0.78 ± 0.04 72 6.1 ± 0.4 

 

 

As shown in Tab. 5.2, the addition of GCa20II glass particles to H62C based formulations results in 

a slight increase of bulk density (ρb) of ceramic foams, with the concurrent slight decrease of open 

porosity (Popen). However, the crushing strength (σcomp) increase significantly from 1.8 ± 0.3 MPa up to 

6.1 ± 0.4 MPa, comparing the formulations containing 0 wt% of glass and 33 wt% of glass. 

As previously discussed, the significant increment in crushing strength with glass addition is likely 

due to the enhancement of the viscous flow during ceramization. Fig. 5.7 clearly shows that 

microcracks, presented in the foams from glass-free formulation, were not visible at all in the glass-

modified foams. The enhancement of viscous flow likely provided an adequate relaxation of stresses 

arising from crystallization-induced volume changes.   

The optimized foams, from H62C and fillers (including glass) are going to be subjected to 

validation, in terms of biocompatibility and bioactivity. The phase assemblage, comprising silicates of 

well-documented biocompatibility and bioactivity, is obviously favorable. Further efforts will be 
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probably dedicated to a progressive refinement of the matching between silicone/filler mixtures and 

G20CaII glass, also in terms of residual glass phase, e.g. replacing borax with sodium silicate. The 

replacement of borax, however, will not be trivial, owing to its double role (mineralizing and foaming 

agent).  

 

 
Fig. 5.7 Stereomicroscopy images of ceramic foams from H62C-based formulations: 

a) glass-free formulation; b) 16.5 wt% glass; c) 33 wt% glass. 

 

The “miscibility” of glass and silicone/oxide fillers, i.e. the possibility to develop wollastonite-

diopside glass-ceramic materials, with the same phase assemblage (at 1100 °C), regardless of the 

proportion of glass particles, opens the way, in any case, for a number of possible experiments. We 

could consider the glass as an additional mineralizing agent, in a “low glass approach” (glass used in 

low amounts), like in the presented case, as well as silicone/fillers as binders for glass powders, in a 

“high glass approach” (glass used in high amounts, with silicone acting both as binder, at low 

temperature, and a crystallization promoter, by interaction with fillers, at high temperature). The 

latter hypothesis has been actually already exploited, for the development of 3-D scaffolds from 

indirect printing of bioglass powders, crystallizing into apatite and wollastonite, bound with MK 

silicone and fillers, in turn yielding calcium-zinc and zinc silicates18. The present findings may be seen 

as an advance, for the matching of crystal phases developed by different approaches. 

 

5.1.4 Conclusions 

This study showed that wollastonite-diopside ceramics can be obtained, in condition of high 

phase purity, starting from mixtures of silicone polymers and active fillers, which were later 

converted into a ceramic materials upon thermal treatment in oxidative atmosphere. 

Operating with H62C polymer, extensive foaming could be obtained before ceramic conversion, 

by simple release of water from the fillers, at low temperature. 

The two main phases started to develop at 900 °C; however, if a higher phase purity is desired, 

the firing temperature should be increased up to 1100 °C; at this temperature, the ceramic product is 

independent from the type of silicone resin used as silica precursor. 

The ceramic product of silicone/fillers was practically identical to that from crystallization of 

Ca/Mg-rich silicate glass (G20CaII glass) and did not change when operating with silicone/fillers/glass 

mixtures, independently from the amount of glass. 

H62C-based foams were significantly improved, in terms of structural integrity and compressive 

strength, by using G20CaII glass as additional filler, providing an enhanced viscous flow upon firing, 

with no change to the developed crystal phases. 
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5.2 Modification of the foaming agent 

5.2.1 Introduction 

As discussed in §4, Ca-silicates and Ca-Mg silicates have recently received a growing interest for 

their bioactivity properties, according to their ability to stimulate body tissues to repair themselves. 

Silicone/fillers mixtures were found to be particularly suitable for obtaining these peculiar bioactive 

formulations, but also for facilitating the shaping of the ceramic components in the form of highly 

porous bodies, which are extremely useful especially in the field of scaffolds for bone regeneration. 

While a high phase purity is usually achievable in binary systems derived from preceramic 

polymers, such as Ca-silicates, ternary systems generally imply some difficulties, due to the potential 

formation of undesired binary compounds instead of the expected ternary compounds. As described 

in §5.1, the problem may be solved by providing a liquid phase upon firing, that could promote the 

ionic interdiffusion, operating with specific fillers19. A fundamental example is that of hydrated 

sodium borate, also known as borax (Na2B4O7·10H2O), included in the formulations for akermanite 

(Ca2MgSi2O7)
20 and wollastonite-diopside ceramics14. The additive formed a borate liquid phase upon 

firing and helped the crystallization of the desired phases. The borate liquid phase, after cooling at 

room temperature, remained as a glass phase, so that the resulting product could be seen as a sort 

of “polymer-derived glass-ceramic”. Borax could be seen actually as a multifunctional filler, since its 

use in a liquid silicone could be exploited also for an extensive and uniform foaming, due to the 

water release associated with the dehydration reaction, occurring at only 350 °C. The cross-linking of 

the polymer stabilized the porosity, even maintained after the conversion of the polymer into 

amorphous silica and the formation of silicates. It must be noted that Mg(OH)2, used as MgO 

precursor for Ca-Mg silicates, may contribute to the foaming, but its impact is much lower than that 

of borax20.  

 

 
Fig. 5.8 Scheme for the obtainment of wollastonite-diopside “polymer-derived glass-ceramic” foams,  

according to the dual role of hydrated sodium phosphate filler (Na-Ph hydrate). 

 

Being the addition of borax significant for the obtainment of glass-ceramic samples with a specific 

phase assemblage and with a homogeneous cellular structure, the same approach was used for the 

synthesis of akermanite and wollastonite-diopside shown in §4, but in that study the amount of 

borax was lowered from 5 to 3 wt%. This allowed a more controlled foaming step, leading to smaller 

and more ordered porosity in the scaffolds. A further reason for lowering the boron content was to 
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avoid cytotoxicity phenomena. This choice was successful, in fact cell studies effectively confirmed 

the biocompatibility of the developed materials.  

However, the effect of boron on the biocompatibility is still controversial. Several studies reported 

in literature highlighted a concern associated with borate bioactive glasses21,22, due to the potential 

toxicity of boron released in the solution as borate ions (BO3)
3-. As an example, the well-known 

borate bioglass 13-93B3 was found to be toxic to murine MLO-A5 osteogenic cells in vitro, above a 

boron threshold concentration of 0.65 mmol in the cell culture medium, while it supported the 

proliferation and growth of the cells below that concentration23. However, the same scaffolds did not 

show toxicity to cells in vivo and supported new tissue infiltration when implanted in rats24,25,26,27. 

Other boron containing glasses are reported to be biocompatible and bioactive28,29. 

Here, a further development concerning highly porous wollastonite-diopside “polymer-derived 

glass-ceramics” is discussed, based on the replacement of borax with sodium phosphate dibasic 

heptahydrate (Na2HPO4∙7H2O), aimed at avoiding the above-described difficulties arising from the 

presence of boron. The selected filler, like borax, is multifunctional, i.e. it contributes to both 

foaming and forming a liquid phase upon firing, as illustrated by Fig. 5.8. The results obtained were 

published in 2015 by Fiocco et al. 30. 

Like in the previously developed wollastonite-diopside ceramics14, discussed in §5.1, the addition 

of a further filler, in form of powders of a glass crystallizing into wollastonite and diopside, will be 

discussed in order to optimize the integrity of samples. In fact, the ceramization step does not modify 

the macro-porosity formed in the low temperature foaming step, but it implies the formation of 

micro-cracks, caused by internal stresses. The glass addition is essentially conceived to reduce the 

cracks, enhancing the stress relaxation operated by the liquid phase, upon firing, with no impact on 

foaming and phase development.  

Although preliminary, the results of a 5-day cell culture tests, on phosphate-modified 

wollastonite-diopside ceramics, indicated a good biocompatibility, independently from the glass 

addition. 

 

5.2.2 Experimental 

5.2.2.1 Preparation of samples 

Two commercially available silicones, H62C and MK (Wacker-Chemie GmbH, Munich, Germany) 

were considered as silica precursors, with a yield of 58 and 84 wt%, respectively9. CaO and MgO 

precursors consisted of CaCO3 (Sigma Aldrich, Gillingham, UK) and Mg(OH)2 (Industrie Bitossi, Vinci, 

Italy) respectively, in form of powders with diameter below 10 m. The amounts of silicones and 

precursors for CaO and MgO were calibrated in order to match the CaO-MgO-SiO2 molar proportion 

of 2-1-3, corresponding to an equimolar mixture of wollastonite (CaSiO3, or CaO·SiO2, CaO-MgO-SiO2 

molar proportion of 1-0-1) and diopside (CaMgSi2O6, or CaO·MgO·2SiO2, CaO-MgO-SiO2 molar 

proportion of 1-1-2). Sodium phosphate dibasic heptahydrate (Na2HPO4∙7H2O, Sigma Aldrich, 

Gillingham, UK) was used as additional filler. Finally, a powdered Ca/Mg rich silicate glass with a 

particle size < 60 m (mean diameter ~ 5 μm), later referred as G20CaII glass14, was added.  

 

Tab. 5.3 Chemical composition of G20CaII glass. 

SiO2 CaO MgO Na2O Li2O 

55.3 22.0 12.0 9.0 1.7 
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The chemical composition of G20CaII glass is reported in Tab. 5.3. The molar proportions between 

CaO, MgO and SiO2 roughly correspond to those of the desired mixture of wollastonite and diopside, 

with alkali oxides used as fluxes. The use of Li2O, in addition to Na2O, is in agreement with recent 

findings concerning the positive effect of this oxide added in formulations of bioglasses, previously 

involving only sodium oxide31,32. 

Concerning the preparation of foams, H62C was first dissolved in isopropanol (10 ml for 10 g of 

final ceramic) and then mixed with micro-sized fillers, including sodium phosphate, in the as-

received, hydrated form (the quantity of salt was 10 wt.% of the theoretical ceramic yield of the 

other components, corresponding to 5 wt.% of anhydrous salt). Selected samples included also 

powders of G20CaII glass (10 wt.% of the theoretical ceramic yield of the other components). The 

mixing was performed under magnetic stirring, followed by sonication for 10 minutes, which allowed 

to obtain stable and homogeneous dispersions. The mixtures were poured into large glass containers 

and dried at 60 °C overnight. 

After first drying, the mixtures were in the form of thick pastes, later manually transferred into 

cylindrical Al moulds and then subjected to a foaming treatment at 350 °C in air for 30 minutes. 

Cylindrical samples, 10 mm in diameter and 7-8 mm in height, were obtained from the foams. The 

top surfaces were polished with abrasive paper. The samples (after removal from Al moulds) were 

fired at 1100 °C for 1 hour, using a heating rate of 2 °/min. 

Monolithic pellets were prepared using MK mixed with Mg(OH)2 and CaCO3 micro-particles, 

anhydrous sodium phosphate (the same salt cited above, after preliminary dehydration at 450 °C, 

with a heating rate of 5 °/min, for 1 hour) and G20CaII glass. MK was dissolved in isopropanol (10 ml 

for 10 g of final ceramic) and then mixed with the fillers. Stable and homogeneous dispersions in 

isopropanol were obtained using the same conditions applied for the H62C-based mixtures, and left 

to dry overnight at 60 °C. 

After drying, the silicone-based mixtures were in the form of solid fragments, later converted into 

fine powders by ball milling at 350 rpm for 30 minutes. The powders were cold-pressed in a 

cylindrical steel die applying a pressure of 20 MPa for 1 minute, without using any additive. 

Specimens of 0.5 g, 16.6 mm in diameter and approximately 1.7 mm in thickness, were obtained. For 

comparison purposes, pellets of glass-free formulation were also prepared. The cold-pressed samples 

were fired at 1100 °C for 1 hour, using a heating rate of 2 °/min. 

5.2.2.2 Characterization of samples 

Microstructural characterizations were performed by optical stereomicroscopy (AxioCam ERc 5s 

Microscope Camera, Carl Zeiss Microscopy, Thornwood, NY, USA) and scanning electron microscopy 

(FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with energy dispersive spectroscopy 

(EDS). 

The crystalline phases were identified by means of X-ray diffraction on powdered samples (XRD; 

Bruker AXS D8 Advance, Bruker, Germany—CuKα radiation, 0.15418 nm, 40 kV–40 mA, 2θ = 15°–70°, 

step size = 0.05°, 2 s counting time), supported by data from the PDF-2 database (Powder Diffraction 

File, ICDD-International Center for Diffraction Data, Newtown Square, PA, USA) and the Match! 

program package (Crystal Impact GbR, Bonn, Germany). 

The bulk density of the foams was determined from the weight-to-volume ratio, using a caliper 

and a digital balance. The true density of the samples was measured by means of a gas pycnometer 

(Micromeritics AccuPyc 1330, Norcross, GA, USA), operating with He gas on finely-milled samples. 

The crushing strength of foams was measured at room temperature, by means of an Instron 1121 

UTM (Instron Danvers, MA, USA) operating with a cross-head speed of 1 mm/min. Each data 

pointrepresents the average value of 5–10 individual tests. 
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5.2.2.3 Cell culture  

For cell culture studies, samples were cut to 10 mm x 10 mm x 5 mm and fixed to 48-well plates. 

The entire well plates where then sterilized. Human fibroblasts were seeded at a density of 4x105 

cells/piece in cDMEM, which consisted of Dulbecco’s Modified Eagle Medium (DMEM) (Lonza S.r.l., 

Milano, Italy), supplemented with 10 vol% Fetal Bovine Serum (FBS) (Bidachem S.p.A., Milano, Italy) 

and 1 vol%  Penicillin/Streptomycin (P/S) (EuroClone, Milano, Italy). The 3-D cultures were incubated 

at 37 °C and 5% CO2 for 7 days, with media changes every 2 days.  

Cell proliferation rate was evaluated after 3 and 7 days from seeding with the MTT 

(methylthiazolyl-tetrazolium) based proliferation assay, performed according to the method of 

Denizot and Lang with minor modifications33. Briefly, samples were incubated for 3 h at 37 °C in 1 mL 

of 0.5 mg/ml MTT solution prepared in Phosphate Buffered Saline (PBS) (Euroclone). After removal of 

the MTT solution by pipette, 0.5 ml of 10% DMSO in isopropanol was added to extract the formazan 

in the samples for 30 min at 37 °C. For each sample, absorbance values at 570 nm were recorded in 

duplicate on 200 μl aliquots deposited in microwell plates using a multilabel plate reader (Victor 3, 

Perkin Elmer, Milano, Italy). 

LDH activity was measured using the Lactate Dehydrogenase Activity Assay Kit (Sigma Aldrich, St. 

Louis, MO, USA) according to the manufacturer's instructions. All conditions were tested in duplicate. 

The culture medium was reserved to determine extracellular LDH. The intracellular LDH was 

estimated after cells lysis with the assay buffer contained in the kit. All sampled were incubated with 

a supplied reaction mixture, resulting in a product whose absorbance was measured at 450 nm using 

Victor 3 multilabel plate reader. 

For SEM imaging, fibroblasts  grown on samples for 3 and 7 days were fixed in 2.5% glutaraldehyde in 

0.1 M cacodylate buffer for 1 h, then progressively dehydrated in ethanol. Control and treated Ti 

discs without cells were also examined.  

T-tests were used to determine significant differences (p<0.05). Repeatability was calculated as 

the standard deviation of the difference between measurements. All testing was performed in SPSS 

16.0 software (SPSS Inc., Chicago, Illinois, USA) (license of the University of Padua, Italy). 

Biological characterization was carried out thanks to a collaboration with Prof. B. Zavan 

(University of Padova). 

 

5.2.3 Results 

5.2.3.1 Foaming and development of foams  

Fig. 5.9 testifies the very homogeneous foaming achieved, according to the approach described in 

Fig. 5.8. Many interconnections between adjacent pores were visible from both top and side views, 

as a proof of open porosity. The morphology of the newly obtained foams is comparable to that of 

previous wollastonite-diopside polymer-derived ceramics foamed by decomposition of borax, 

although the amount of foaming additive had to be drastically revised. The effect of 10 wt% hydrated 

Na-phosphate, in other words, roughly corresponded to that one of 3 wt% borax (samples with lower 

content of phosphate salt, exhibiting a much less abundant and uniform foaming, are not discussed 

here for the sake of brevity) in previous experiments (§4 and §5.1).  

Like borax, the phosphate salt did not contribute to the formation of any crystal phase. In 

particular, Fig. 5.10 (upper pattern) shows that the expected silicate phases, i.e. wollastonite 

(PDF#42-0547) and diopside (PDF#86-0932), effectively formed at 1100 °C from H62C silicone and 

oxide precursors, with only minor traces of akermanite (PDF#83-1815) and merwinite (Ca3MgSi2O8 - 

PDF#74-0382). 
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Fig. 5.9 Morphology of the foams (top and side views): a) Glass-free formulation;  

b) Glass-modified formulation (10 wt% glass). 

 

 
Fig. 5.10 X-Ray diffraction pattern of polymer-derived glass-ceramic samples (foams from H62C, pellets from MK): 

a) glass-free formulations; b) glass-modified formulations. 

 

Tab. 5.4 Physical and mechanical properties of polymer-derived wollastonite-diopside foams.  

(* data from Fiocco et al.
14

 and presented in §5.1). 

Foam formulation 
Bulk density 

(g/cm
3
) 

Open Porosity 
(%) 

Crushing strength 
(MPa) 

H62C + fillers [borax]* 0.73 ± 0.02* 77.0* 1.8 ± 0.3* 
H62C + fillers [Na-phosphate] 0.70 ± 0.02 76.5  1.4 ± 0.1 
H62C + fillers + 10 wt% glass 
[Na-phosphate] 

0.63 ± 0.10 79.4 3.1 ± 0.7 



 90    
 

The similarity with the previous wollastonite-diopside foams, developed with borax, was further 

confirmed by the physical and mechanical data reported in Tab. 5.4. Bulk density, open porosity and 

crushing strength were practically identical. The crushing strength (approximately 1.5 MPa), in 

particular, was quite low, considering the high crystallinity inferable from the diffraction pattern (the 

absence of “amorphous halo” suggested a limited amount of glass phase, mostly attributable to 

sodium phosphate). 

 

 

 
Fig. 5.11 Higher magnification details of the foams:   

a-c) Glass-free formulation; d-f) Glass-modifed formulation (10 wt% glass) 

 

As illustrated by Fig. 5.11, the foamed samples from glass-free formulation exhibited a large 

number of microcracks, that could be due the development of internal stresses upon ceramization. 

These stresses could be attributed to multiple factors, such as gas release from the polymer-to-

ceramic conversion of silicones, decomposition of calcium carbonate (used as CaO precursor) and 

volume changes associated with the crystallization of silicates, visible as small granules in Fig. 5.11c. 

Despite a slightly less homogeneously distributed macro-porosity and mean diameter Fig. 5.9b, 

with respect to the samples from glass-free formulation (Fig. 5.9a), foams developed with G20CaII 

glass as additional filler exhibited an improvement in the structural integrity (Fig. 5.11d-f). The 

viscous flow, due to the softening of glass particles, likely overlapped with that of the liquid phase 

offered by sodium phosphate, and caused some stress relaxation. The formation of elongated 

crystals, shown in Fig. 5.11f, might be seen as a proof of enhanced flow. The crystals can be 

practically attributed only to wollastonite and diopside, considering the upper pattern of Fig.1b, 
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showing only very small traces of dicalcium silicate (C2S, Ca2SiO4 or 2CaO·SiO2, PDF#86-0399) in 

addition to well-defined peaks of the desired phases.  

As reported in Tab. 5.4, both bulk density and open porosity were not affected by the glass 

addition. However, the glass addition was more effective, owing to the reduction of cracks, in the 

improvement of the mechanical strength, which increased from 1.4 ± 0.1 (for foams without glass) 

up to 3.1 ± 0.7 (for foams added with the 10 wt% of glass). 

5.2.3.2 Impacts of preceramic polymer and glass on phase development 

Cell culture tests are generally easier to be performed with flat samples, instead of foamed 

samples. For the specific purpose of preparing disc samples, H62C was replaced by MK. The solid 

silicone allowed an easy shaping of pellets by cold pressing of powdered silicone-fillers mixtures. The 

amount of MK was obviously calibrated, keeping the reference CaO-MgO-SiO2 molar proportion, 

considering the different yield of silica, compared to H62C; since no foaming was expected, sodium 

phosphate was used in anhydrous form. 

The lower pattern of Fig. 5.10a clearly shows that the change in the preceramic polymer had no 

practical impact on the phase development, except for the formation of traces of magnesium 

phosphate (Mg3P2O8 – PDF#75-1491). This phosphate phase, together with akermanite and 

merwinite, completely disappeared in a MK-based formulation comprising G20CaII glass particles, as 

shown in the lower pattern of Fig. 5.10b. The “purifying” effect of the glass additive (an enhanced 

content of liquid phase promotes the interdiffusion) found for H62C was confirmed in the system 

based on MK. 

 

Tab. 5.5 Wollastonite-diopside weight balances according to the semi-quantitative 

 X-ray diffraction analysis provided by the Match! program package. 

 Formulations 
Wollastonite 

(wt%) 
Diopside 

(wt%) 

Theoretical CaO·SiO2 + CaO·MgO·2SiO2 35 65 

1 H62C + fillers 56 44 

2 H62C + fillers + 10 wt% glass 40 60 

3 MK + fillers 49 51 

4 MK + fillers + 10 wt% glass 42 58 

 

 

An additional discussion, concerning the phase development, can be done on the basis of semi-

quantitative analysis provided by the Match! (Crystal Impact GbR, Bonn, Germany) program package, 

already employed for phase identification. Considering wollastonite and diopside, as a first 

approximation, as the only crystal phases, the program package can predict several weight ratios, 

reported in Tab. 5.5, corresponding to the best matching between experimental and theoretical 

diffraction patterns, depending on the formulation. In an ideal ceramic with wollastonite and 

diopside in equivalent molar amount (molar ratio equal to 1), the theoretical wollastonite/diopside 

weight balance would be equal to 35/65; from Tab. 5.5 we can easily note that the best agreement 

with the theoretical weight balance was provided by glass-modified formulation, based on both H62C 

and MK polymers. 

As previously mentioned, the G20CaII glass proved to crystallize, alone, in wollastonite and 

diopside14. Considering the chemical composition (Tab. 5.3), we estimated a certain weight balance 

between crystalline and amorphous phase, in the hypothesis of CaO included only in wollastonite 

and diopside, in equivalent molar content, as reported in Tab. 5.6. Repeating the same calculation, 

on the basis of the weight balances reported in Tab. 5.5, for polymer-based mixtures (Tab. 5.6, again) 
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we can note that: i) the amount of glass phase, in glass-free formulation, is only slightly above that 

expected from the sodium phosphate additive (5 wt%); ii) the addition of glass did not “dilute” the 

crystallization, wollastonite and diopside being formed not only by polymer-filler reactions, but also 

by glass devitrification. 

 

Tab. 5.6 Semi-quantitative analysis of the weight balance between crystalline and amorphous phases. 

 Formulations 
Crystalline phase 

(wt%) 
Amorphous phase 

(wt%) 

0 Pure G20CaII 66 34 

1 H62C + fillers 88 12 

2 H62C + fillers + 10 wt% glass 98 2 

3 MK + fillers 92 8 

4 MK + fillers + 10 wt% glass 96 4 

 

 

The calculations in Tab. 5.6 are only indicative (a more precise phase quantification, based on 

specific software packages, is in progress), but we can certainly say that silicone/fillers mixtures and 

G20CaII glass have an intrinsic, very significant “compatibility”; one system had a great potential in 

supporting the other. Going back to foams from H62C, the increase of liquid phase formed upon 

firing could be achieved by simple increase of the amount of sodium phosphate additive, but with 

risks of coarsening and/or viscous collapse of the cellular structure, upon firing, due to the dilution of 

the fraction leading to wollastonite and diopside. G20CaII glass represented a valid alternative, 

offering a “transient liquid phase”, mostly transformed in the desired crystal phases. The tests with 

MK, despite providing pellets for cell tests, are promising for the application of shaping techniques 

based on this specific polymer (foaming by release of CO2, embedded upon supercritical CO2-assisted 

extrusion34) or on MK/H62C mixtures (scaffolds from fused deposition of silicone-based pastes35). 

5.2.3.3  In vitro biological characterization  

As previously stated, a preliminary biological study, i.e. the MTT assay, was performed on MK-

derived pellets. The graph in Fig. 5.12 shows that an increase in cell viability was observed passing 

from day 3 to day 7 for both the formulations (i.e. glass-free and glass-modified), implying that the 

fibroblast survived at day 3 might have duplicated and proliferated up to day 7. Interestingly, the 

incorporation of glass seemed to make the pellets generally even more biocompatible.  

 

 

 
Fig. 5.12 MTT assay: a) pellets, 3-7 days; b) foams, 3-7 days.   

* indicates significant difference (p<0.05); ** (p<0.01); *** (p<0.001). 
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The successful tests on pellets stimulated the application of MTT assay on H62C-derived foams, 

having a morphological organization closer to that of natural bones. As summarized in Fig. 5.12b, at 

day 3, cell viability looked higher in the glass-modified foams, as already seen in Fig. 5.12a, while at 

day 7, cells on the glass-free foams were more proliferated. From this observation, the addition of 

glass in the formulation of the foams did not lead to a clear improvement in cell viability at day 7, but 

only contributed to increase the biocompatibility at day 3. Comparing the behaviour of cells seeded 

on pellets and on foams, with regard to glass-free formulation, the foams allowed a more extensive 

cell viability; concerning the glass-modified formulation, the foams showed an improvement in 

viability only at day 3. 

In order to overcome the controversial results of the MTT assay obtained for pellets and foams, 

LDH activity assay was also performed on the cells. Fig. 5.13a shows the intracellular LDH activity of 

the cells seeded on pellets: the graph proves that cells were able to produce metabolites, with 

improved results after 7 days from seeding. As reported in Fig. 5.13b, extracellular LDH activity was 

also measured on the culture medium: the graph confirms that metabolites were secreted by the 

same cells.  

Even though the results of intracellular and extracellular LDH activity assays were not perfectly in 

agreement with each other, it can be observed that the incorporation of glass, which was effective in 

improving the mechanical behaviour of the foams and the phase assemblage, was not detrimental to 

cell survival and proliferation. 

 

 

Fig. 5.13 LDH activity assay. (a) Intracellular LDH activity, foams, 3-7 days. (b) Extracellular LDH activity, foams, 3-7 days.  

* indicates significant difference (p<0.05); ** (p<0.01); *** (p<0.001). 

 

 

SEM images of the foams, shown in Fig. 5.14, were taken after 3 and 7 days from fibroblast 

seeding. After 3 days (Fig. 5.14a, Fig. 5.14b), fibroblasts were found to be alive and spread on the 

surface of the samples, of both glass-free and glass-modified formulations; in particular they had a 

more elongated profile when seeding on glass-modified foams (Fig. 5.14b). After 7 days, cells had 

colonized the surface of the foams, still demonstrating elongated profiles, as shown in Fig. 5.14c and 

Fig. 5.14d for glass-modified samples. Moreover, the formation of hydroxyapatite precipitates 

(nodules in Fig. 5.14c,d) was observed, giving a further evidence of biocompatibility of the material. 
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Fig. 5.14 SEM images after cell culture on foams: a) glass-free formulation – 3 days;  

b) glass-modified formulation – 3 days; c,d) glass-modified formulation – 7 days. 

 

5.2.4 Conclusions 

This study confirmed that wollastonite-diopside ceramics can be fabricated by firing mixtures 

based on preceramic polymers, in form of silicone resins (acting as silica sources), mixed with 

powdered metal oxide precursors. The use of preceramic polymers allowed the samples to be easily 

shaped both in form of pellets and foams.  

Concerning the foaming step, hydrated sodium phosphate was found to be an efficient foaming 

agent, thanks to its thermal decomposition reaction, releasing water. The subsequent ceramic 

conversion of the foamed materials implied the transformation of the silicone foam into a glass-

ceramic foam, incorporating silicate crystals embedded in glass phase provided by the same 

phosphate additive.  

The liquid phase developed upon firing, due to the hydrated sodium phosphate, can be increased 

by introduction of a glass filler; the positive impact on the structural integrity of samples is not 

accompanied by any change in the phase assemblage, operating with a glass crystallizing itself in 

wollastonite and diopside. 

A further observation concerns the fact that the choice of silicone polymers with different nature 

and chemistry (liquid H62C, solid MK) does not affect the ceramic product in terms of main phase 

assemblage.  

With regard to the biological characterization of the materials, both dense and foamed 

wollastonite-diopside ceramic samples showed positive results in terms of cell viability, according to 

the MTT assay and LDH activity tests; the incorporation of glass in the formulations proved to be not 

detrimental to cell survival and proliferation. Although the addition of glass in the formulation was 

not crucial for viability at day 7, it was definitively effective in improving the biocompatibility of the 

samples throughout the cell culture period up to day 3.  
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6 Ca-Mg silicates: developments 

6.1 Carbon-containing nanocomposites 

6.1.1 Introduction 

As already discussed, a fundamental advantage concerning the use of preceramic polymers is the 

possibility of combining synthesis and shaping of ceramics in a very easy and flexible way, thanks to 

the polymeric nature of the silicone precursors: components can be shaped by conventional plastic-

forming techniques, such as spinning, blowing, warm/cold pressing, injection molding, extrusion, and 

later converted into ceramics by treatments above 800 °C1-2. 

The experiences included in the present thesis mainly refer to the introduction of fillers within 

solutions of silicone resins, based on solvents such as acetone or isopropyl alcohol, that need to be 

removed by drying before further processing (direct foaming by incorporation of hydrated fillers, 

cold/warm pressing, 3-D printing). Therefore, this approach has a limit, although definitely successful 

in terms of results: if it is simple at a laboratory scale, it is at the same time quite complicated from 

an industrial point of view, due to the risk in handling solvents and to the costs of the correct 

disposal of such hazardous substances. 

A good way to make industrial applications of preceramic polymers feasible might be the 

extrusion of preceramic mixtures starting from a solid silicon (the same polymer already mentioned 

for preparing pellets or 3-D printable mixtures) mixed with powdered micro-sized inorganic fillers. In 

this case, no solvent would be used for dissolving polymers, but the homogeneity of the mixture 

would be provided mechanically by the extrusion process, due to the rotation of the screw inside the 

barrel. The heating during operation would enable the polymer to melt, being perfectly extrudable at 

the die. An enhanced mixing might be favoured by the incorporation in the molten mass of 

supercritical CO2 (sc-CO2) as a processing additive (see Fig. 6.13). 

 

 

Fig. 6.1 Representation
3
 of the extrusion process assisted by sc-CO2.

 
 

 

In the present chapter, it will be shown that this processing technique is suitable for obtaining 

preceramic extrudates incorporating sc-CO2, which can be later reprocessed in order to fabricate 

porous components. The selected composition for this processing route was again wollastonite-

diopside, added with borax aimed at acting as a mineralizing filler, as already explained in §4 and 

§5.1. Extruded and reprocessed samples were later ceramized following different thermal treatment, 

both in air and nitrogen (N2), and their biological properties were assessed by preliminary in vitro 

tests with fibroblasts. The results obtained will be submitted soon for publication. 
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A fundamental consequence of the treatment in inert atmosphere was the availability of a carbon 

phase; in fact, SiOC is known to be consisting of an “over-bridged” silica glass, including some Si-C 

bonds in the siloxanic network, mixed with turbostratic carbon nano-sheets
4

, evolving into 

silica/SiC/C composite for treatments above 1200 °C. The formation of a carbon phase might be an 

interesting strategy for biomedical applications, given the recent developments concerning 

bioceramics incorporating carbon structures, from external sources. Xie et al.
 5

 have reported 

graphene-reinforced Ca-silicate coatings as a novel solution for load-bearing implants, owing to 

improvements in both wear resistance and cytocompatibility. A similar experience, on diopside, has 

been reported by Mehrali et al.
 6

, who developed a diopside-reduced graphene oxide composite with 

promising results for biomedical applications. Carbon nanotubes have also been used (up to 4 wt%), 

by Shuai et al.
7
, as a reinforcement for diopside bone scaffolds, again with positive results on 

mechanical properties and cellular response after seeding. The present study, unlike the previous 

ones, represents, to our knowledge, the first example of formation of carbon phase directly in situ.  

6.1.1.1 Supercritical CO2 in extrusion processes 

A supercritical fluid (SCF) is a substance that exists above its critical temperature and pressure 

(Fig. 6.2)8. It has properties intermediate between those of gases and liquids9. Thanks to this benefit 

of increased density, a SCF has the ability to dissolve, diffuse and carry materials.  

 

 
Fig. 6.2 Phase diagram

8
 of CO2. 

 

 

In particular, sc-CO2 is non-toxic, environmentally friendly, chemically inert, non-flammable and 

its critical conditions are easily reached (Tc=31 °C, Pc=7.38 MPa). Sc-CO2 is often used as an additive 

in polymer processing, especially in extrusion process (Fig. 6.1)10. Its special combination of gas-like 

viscosity and liquid-like density makes it an excellent solvent or plasticizer. These reasons explain 

why sc-CO2 is used in polymer processing in pharmaceutical and food industries as it is clean, 

efficient and environmentally friendly11-14. 

The diminution of viscosity will result in the limitation of mechanical stresses and a decrease in 

operating temperatures, so that introducing sc-CO2 allows the processing of molecules which would 

be too fragile to withstand the mechanical stresses and the operating temperatures of a standard 

extrusion process. It can also allow handling molecules having a limited thermal stability. Moreover, 

its dissolution in the polymer under pressure will be accompanied by large volume expansion during 

the return to atmospheric pressure (at the die), so that sc-CO2 can be also used as a foaming agent. It 

is therefore possible to control pore generation and growth by controlling the operating conditions15. 
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6.1.2 Experimental 

6.1.2.1 Extrusion and secondary processing 

A commercial silicone resin (Silres  MK, Wacker-Chemie GmbH, Munchen, Germany) was used to 

provide the polymeric matrix into which embed CaCO3 and Mg(OH)2 powders (<10 μm, Industrie 

Bitossi, Vinci, Italy ). The balance among these constituents (silicones/MgO precursor/CaO precursor) 

followed the stoichiometric CaO/MgO/SiO2 molar proportions of 2/1/3, corresponding to an 

equimolar mixture of wollastonite (CaSiO3 or CaO·SiO2, CaO-MgO-SiO2 molar proportion of 1/0/1) 

and diopside (CaMgSi2O6 or CaO·MgO·2SiO2, CaO-MgO-SiO2 molar proportion of 1/1/2). The effective 

weight balance of polymer and fillers was calculated assuming MK to be completely transformed into 

silica, like in the case of treatments in air (CaCO3/Mg(OH)2/MK=0.93/0.27/1). Sodium borate 

(Na2O∙2B2O3∙10H2O, Sigma Aldrich, Gillingham, UK) was used as mineralizing agent16 in an amount of 

3 wt% of the theoretical ceramic yield of the various components.  

The precursors were first homogenized by means of a shaker-mixer (Turbula T2F, WAB, 

Switzerland), then inserted in a twin-screw extruder (24 mm screw diameter, length/diameter ratio 

equal to 40:1, Thermo Prism Ltd, Stone, United Kingdom) rotating at 250 rpm and operating at 75 °C 

at the die. The extrusion process was assisted by supercritical carbon dioxide (sc-CO2), kept at a 

pressure of 8.3 MPa and a temperature of 35 °C. The sc-CO2 was injected into the barrel of the 

extruder at a rate of 10 ml min-1.  

Extrusion led to almost round fragments (diameter of about 30 mm), later subjected to secondary 

processing. After grinding the extrudates by means of a ball mill (60 min at 450 rpm, Pulverisette 7 

planetary ball mill, Fritsch, Idar-Oberstein, Germany), the powders were sieved to a dimension below 

300 μm, gently hand pressed in Al moulds and then heat treated, thus causing both viscous flow 

sintering and foaming, at 350 °C in air for 30 min, with a heating rate of 5 °C/min. At this 

temperature, not only the remelting of the polymer was enabled, but also the release of the CO2 

previously entrapped in the material by extrusion and the release of water vapour from borax due to 

its thermal decomposition. At the same time, the polymeric component cross-linked, thus 

maintaining the porous structure given by the gas release. The obtained foams were 10 mm in 

diameter and 7-8 mm in height. After removal from the Al moulds, they were polished with abrasive 

paper and finally fired in nitrogen (N2) at 1100 °C for 1 h, using a heating rate of 2 °C/min. Samples 

will be referred to as “W-D”.  

The extrusions were performed at SCF Processing Ltd. (Drogheda, Ireland) during a 3-month 

student exchange in 2013. 

 

6.1.2.2 Characterization of samples 

Microstructural characterizations were performed by optical stereomicroscopy and scanning 

electron microscopy (FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with energy 

dispersive spectroscopy (EDS). The crystalline phases were identified by means of X-ray diffraction on 

powdered samples (XRD; Bruker AXS D8 Advance, Bruker, Germany), supported by data from PDF-2 

database (ICDD-International Centre for Diffraction Data, Newtown Square, PA) and Match! program 

package (Crystal Impact GbR, Bonn, Germany). Quantitative phase analysis (QPA), based on the 

Rietveld method17, was performed by Dr. Michele Secco (University of Padova) using TOPAS software 

(Bruker AXS, version 4.1, Karlsruhe, Germany), starting from XRD patterns collected on glass-ceramic 

powders, after mixing with zincite powders, operating as internal standard. The contents of 

crystalline and amorphous phases were determined using the combined Rietveld–RIR method18. 

Micro-Raman spectroscopy was carried out in collaboration with Prof. D. Pedron (Department of 

Chemical Sciences, University of Padova), using a homemade micro-Raman system, based on a single 
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320 mm focal length imaging spectrograph (Triax-320 Horiba Jobin  Yvon), equipped with a 

holographic 1800 gr/mm grating and a liquid nitrogen cooled CCD detector. The excitation source 

was a Spectra Physics Ar+ ion laser (Stabilite 2017) operating at 514.5 nm, an appropriate edge filter 

was used to reduce the stray-light level. An optical microscope (Olympus BX 40) equipped with a 20x 

objective optically coupled to the spectrograph was used to record the Raman spectra in micro 

configuration. The laser power on sample was 8 mW and the spectral interval was 1.5-2  cm-1. 

The bulk density (ρb) of the foams was determined using a caliper and a digital balance. The 

skeletal density (ρs) was measured on foams, using a He gas pycnometer (Micromeritics AccuPyc 

1330, Norcross, GA).The percentage of open porosity (% P) was then calculated using the following 

equation: % P=1-(ρb/ρs). 

The crushing strength of foams was measured at room temperature, by means of an Instron 1121 

UTM (Instron Danvers, MA) operating with a cross-head speed of 1 mm/min. Each data point 

represents the average value of 5 to 10 individual tests. 

6.1.2.3 Cell culture study 

For cell culture studies, samples were cut to 10 mm x 10 mm x 5 mm and fixed to 48-well plates. 

The entire well plates where then sterilized. Human fibroblasts were seeded at a density of 4x105 

cells/piece in cDMEM, which consisted of Dulbecco’s Modified Eagle Medium (DMEM) (Lonza S.r.l., 

Milano, Italy), supplemented with 10 vol% Fetal Bovine Serum (FBS) (Bidachem S.p.A., Milano, Italy) 

and 1 vol%  Penicillin/Streptomycin (P/S) (EuroClone, Milano, Italy). The 3-D cultures were incubated 

at 37 °C and 5% CO2 for 7 days, with media changes every 2 days.  

For SEM imaging, fibroblasts  grown on samples for 3 and 7 days were fixed in 2.5% 

glutaraldehyde in 0.1 M cacodylate buffer for 1 h, then progressively dehydrated in ethanol. Control 

and treated Ti discs without cells were also examined.  

Biological characterizations were performed thanks to a collaboration with Prof. B. Zavan 

(University of Padova). 

 

6.1.3 Results 

The morphology of the W-D foams is shown in Fig. 6.3. The porosity was finely distributed and the 

size of the pores was quite homogenous. Besides the contribution of borax and Mg hydroxide in the 

foaming step, due to water release during the foaming treatment at 350 °C, the controlled pore size 

distribution was mostly due to the release of the CO2, which was homogeneously dissolved within 

the polymeric chains through the scCO2-assisted extrusion (it should be noted that very 

homogeneous foams were obtained, by scCO2-assisted extrusion, even operating with CaCO3, unable 

to provide any gas release at 350 °C, as the only filler19). In fact, the simultaneous presence of many 

sources of gas increased the number of gas evolution sites, thus allowing a well distributed porosity, 

which was even maintained after ceramization in N2 at 1100 °C, as shown by Fig. 6.3b. 

Fig. 6.4 reports a comparison between W-D samples subjected to exactly the same process, 

except for the ceramization atmosphere, N2 for the foam in Fig. 6.4a, air for the one in Fig. 6.4b. It 

can be observed that the W-D sample treated in nitrogen is less micro-cracked than the one fired in 

air. The ceramization in air implies the complete removal of carbon, present in the starting silicone 

chains, in the form of gaseous products, with generally negative effects on the integrity of samples. 

In particular, the cracking may be favored by the oxidation of the Si-CH3 groups in the silicone, 

starting above 350 °C20, which is known for its strong exothermic effect21,22. When the ceramization 

is carried out in inert atmosphere, such as in N2, carbon bonded to silicon in the silicon-based organic 

oligomers is partially retained, owing to the higher resistance of the silicon–carbon bonds, in non-
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oxidizing environment, compared to C–H bonds4. Up to 1200 °C, Si, C and O may coexist in a 

condition of great homogeneity23, with nano-sized amorphous silica clusters encased within an 

interdomain wall constituted from mixed Si-C and Si-O bonds and from a network of graphitic 

carbon21. 

 

 
Fig. 6.3 Morphology of W-D samples: a) after foaming; b) after ceramization in N2. 

 

 
Fig. 6.4 SEM micrographs of W-D foams ceramized in a) N2; b) air. 

 

Tab. 6.1 Summary of physical and mechanical properties of W-D foams ceramized in N2 

(σc=compressive strength; ρbulk=bulk density; ρskeleton=skeleton density; ρtrue=true density; Popen=open porosity). 

 

 

 

 

 

The efficiency of the ceramization in N2 atmosphere in reducing the number of cracks in the W-D 

samples is confirmed by the value of the compressive strength reported in Tab. 6.1, which exceeds 

20 MPa. Compared to the case of samples fired in air, the compressive strength value is more than 4 

times higher. The values obtained after the ceramization in N2 are in agreement with the 

compressive strength of diopside scaffolds fabricated by selective laser sintering (SLS) and reinforced 

with graphene nanoplatelets, by Cijun et al.24. 

The strength enhancement (in the comparison with W-D samples fired in air) could be due also to 

the microstructure: as shown by Fig. 6.4a, there are interconnecting channels (with a diameter 

Firing Atmosphere 
ρbulk 

(g/cm
3
) 

ρskeleton 
(g/cm

3
) 

Popen 
(%) 

σcomp 
(MPa) 

N2 0.92 ± 0.09 2.61 ± 0.01 65 22.7 ± 4.2 

Air  0.71 ± 0.04 3.06 ± 0.01 77 3.9 ± 0.3 
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exceeding 100 μm, which is considered the minimum value for cell penetration and 

vascularization)25, but also quite dense load-bearing cell walls. In other words, unlike in Ashby’s ideal 

open-celled structure
26

, the solid phase is not distributed only on cell edges in both types of samples. 

In the sample fired in air, the walls reasonably gave a limited contribution to the strength owing to 

the multitude of micro-pores, visible as small dots in the cell walls in Fig. 6.4b. The presence of 

denser walls, for the firing in N2, justifies the lower amount of open porosity (65%), inferred from gas 

pycnometry, compared to the amount detected for the firing in air (77%), as an effect of gasses 

passing through both macro-pores and micro-pores, at cell walls.  

 

 
Fig. 6.5 Microporosity in W-D foams ceramized in N2: a) detail of cell strut; b-c) cell wall. 

As reported in Fig. 6.5, not only the cell walls are scattered with very small pores (≈1-2 μm), but 

also the struts are completely porous (Fig. 6.5a), showing a rather spongy microstructure, as visible 

at higher magnification in Fig. 6.5b. The micro-porosity is known to facilitates cell attachment and 

osteoinduction27,28. The high magnification detail of Fig. 6.5c illustrates the formation of groups of 

nano-crystals (with dimension in the order of 500 nm) mixed with relatively smooth glassy zones.  

 

 
Fig. 6.6 X-Ray diffraction pattern of extruded samples after reprocessing at 350 °C and ceramization at 1100 °C in N2.  

As reported in Fig. 6.6, X-ray diffraction on a powdered sample demonstrated that W-D samples 

are characterized by the desired phase assemblage, comprising wollastonite (CaSiO3 - PDF#42-0550) 

and diopside (CaMgSi2O6 – PDF#68-0932). Weak traces of akermanite (Ca2MgSi2O7 - PDF#83-1815), 
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forsterite (Mg2SiO4 – PDF#85-1346) and cristobalite (SiO2 - PDF#85-0460 - PDF#76-0939) were also 

detected. The results of a quantitative phase analysis, obtained by with Rietveld method, is 

summarized in Tab. 6.2. Ideally, the wollastonite/diopside weight ratio (W/D) would be 0.54 in a 

theoretical ceramic with 50 mol% wollastonite and 50% diopside, while the obtained samples have 

W/D=0.91. The lack in diopside can be explained on the basis of the fact that MgO was not totally 

involved in the reaction leading to diopside, but partially contributed to the formation of akermanite 

and forsterite as well. This analysis also allowed a quantification of the amorphous phase, that 

exceeded the 35 wt%. 

 

Tab. 6.2 Distribution of crystalline and amorphous phases from quantitative phase analysis  

of the foams ceramized in N2 at 1100 °C, obtained by Rietveld method. 

Crystalline and amorphous phases (wt%)  

Wollastonite 
[CaSiO3] 

Diopside 
[CaMgSi2O6] 

Akermanite 
[Ca2MgSi2O7] 

Forsterite 
[Mg2SiO4] 

Cristobalite 
[SiO2] 

Amorphous 
Phase 

W/D 

24.6 27.1 6.3 5.3 0.9 35.8 0.91 

 

It has been demonstrated in previous studies by Scheffler et al.
29

 that, throughout the pyrolysis in 

inert atmosphere, MK produces a Si-O-C ceramic residue with atomic proportions as follows: 

Si3O4.56C1.92, or alternatively 2.3SiO2·0.7SiC·1.2C. In contrast, in the present case, Si-C bond was not 

detected by micro-Raman or XPS, meaning that the multi-cationic system here investigated resulted 

in an unedited thermal conversion of the silicone. This was probably responsible, as well, for a higher 

amount of oxygen incorporated in the final ceramic product, in order to form more SiO2 in the 

amorphous phase, compared to the above discussed proportions suggested by Scheffler et al. In fact, 

the formation of more SiO2 was necessary to compensate the total absence of SiC. Otherwise, a 

partial evaporation of Si may have occurred. 

 

 
Fig. 6.7 Results of micro-Raman analysis on W-D foams ceramized in N2, after treatment in HF. 

More interestingly, graphitic carbon was detected in the final ceramic material by micro-Raman 

analysis, due to the presence of a pair of peaks at 1340 and 1590 cm-1, assignable to the carbon D 

and G bands, respectively30-31. The micro-Raman spectrum (Fig. 6.7) was taken after immersion of a 

selected sample in HF for 4 weeks, to provide a selective corrosion with regard to silicates and better 

expose graphitic carbon and eventually SiC to the analysis. The presence of carbon is not unusual in 

bioceramics. In fact, many studies can be found in literature on the use of carbon nanotubes6. or 

graphene4,5 as a reinforcement to be incorporated into materials for medical applications, aimed at 
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enhancing the mechanical properties of the implants, without affecting the biocompatibility of the 

composite material. The reinforcement mechanism in ceramics consists in inhibiting the crack 

propagation through the matrix, that is achievable by different methods, such as deflecting crack 

tips, forming bridges across crack faces, absorbing energy during pull-out, and causing a 

redistribution of stresses in regions adjacent to crack tips32. For this reason, the retention of  

graphitic carbon in the W-D might be a further reinforcing factor  in the final W-D glass-ceramics and 

the process proposed in this study could be exploited to fabricate C-reinforced biosilicates, without 

the need of incorporating carbon from an external source.  

A very preliminary 7-day cell culture test in vitro was also carried out on W-D foams after 

ceramization in N2, to have an indication of the behaviour of cells, interacting with this sort of 

composite material. As displayed in the SEM images reported in Fig. 6.8, cells seemed to have 

colonized the whole surface and the pore cavities, showing elongated profiles after 3 days (Fig. 6.8a) 

and forming more compact layer of cells after 7 days (Fig. 6.8b). Although more detailed biological 

tests are still missing to have a comprehensive overview of the applicability of these W-D foams 

treated in N2 as biomedical materials, these early results are definitely encouraging. 

 

 
Fig. 6.8 SEM micrographs taken on W-D foams ceramized in N2, undergoing cell culture study: a) day 3; b) day 7. 

 

6.1.4 Conclusions 

Wollastonite-diopside glass-ceramic foams were obtained from a solid silicone, incorporating 

inorganic micro-sized oxide precursors. The homogeneity of the powder mixture was enhanced by 

supercritical CO2-assisted extrusion, which, furthermore, served as a method to dissolve CO2 inside 

the polymeric chains. 

A subsequent processing on extrudates, mainly consisting in grinding them and treating the 

powders at 350 °C, resulted in an extensive foaming. This was due to the combination of the foaming 

ability of the water vapour, released by hydrated fillers, and of the evaporation of CO2, previously 

dissolved. 

The ceramization in N2 led to a rather unedited result in terms of final composition, obtaining, 

besides the desired crystalline phases, 36 wt% of amorphous, a total lack of SiC and the presence of 

graphitic carbon. A further consequence was the obtainment of crack-free foams, with compressive 

strength exceeding 20 MPa. 

This method to retain graphitic carbon from the ceramic conversion of a preceramic polymer in N2 

might be exploited to fabricate C-reinforced biosilicates, with non-degraded biological properties.  
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6.2 Melilite solid solutions 

6.2.1 Introduction 

Akermanite (CaMgSi2O7), already mentioned in §4, is a silicate belonging to “melilites”, a family of 

sorosilicates, the general formula of which is A2T1(T2)2O7. Their structure was determined in 1930 by 

Warren33 and can be described as consisting of T22O7 dimers (T2=Si, Al, etc.) connected via T1 cations 

(Mg, Zn, etc.) in tetrahedra to form a sheet-like arrangement. These sheets are linked together by 

large cations A (Ca, Sr, Ba, etc.) occupying octahedral sites33-35, as shown in Fig. 6.938. 

Several silicates can be ascribed to this structure, as reported in Tab. 6.3 (Gehlenite will be further 

investigated in §13). By virtue of the profound analogies in their crystalline structures, solid solutions 

between different crystalline phases might be realized. 

 

 
Fig. 6.9 The crystal structure of melilites

38
: a) plane (001); b) plane (010). 

 

Tab. 6.3 Examples of silicates belonging to melilites. 

 A T1 T2 T2  

Akermanite Ca2 Mg Si Si O7 

Hardystonite Ca2 Zn Si Si O7 

Okayamalite Ca2 B B Si O7 

Gehlenite Ca2 Al Al Si O7 

 

 

An example of solid solution between akermanite and okayamalite might be realized following a 

molar balance akermanite:okayamalite of 0.75:0.25. The theoretical result is schematically 

represented by the following formula:  

71.750.50.752722722 OSiBMgCa   SiOB0.25·Ca + OMgSi0.75·Ca                       (Eq. 6.1) 

The same approach can be applied to a solid solution between hardystonite:okayamalite, as 

follows, replacing Mg with Zn atoms:  

71.750.50.752722722 OSiBZnCa   SiOB0.25·Ca + OZnSi0.75·Ca                         (Eq. 6.2) 
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6.2.2 Experimental 

6.2.2.1 Preparation of samples 

Solid solutions between hardystonite and okayamalite were shaped into reticulated scaffolds by 

means of a PowerWASP orienting extruder (Massa Lombarda, Italy), expressly equipped with a 

syringe to print the preceramic ink, consisting of silicone pastes incorporating fillers. The syringe of 

the feeding system was filled with the preceramic paste and scaffolds were later printed with conical 

nozzle (with a diameter of 0.41 mm, Nordson EFD, Westlake, Ohio) immersed in vegetal oil, thus 

preventing the premature drying of the solvent, that would have affected the viscosity of the ink. The 

configuration of the printing system and the final result have been reported in Fig. 4.2 in §4.2.6. 

The starting materials for the realization of the printable silicone-based mixture were a solid 

silicon (MK, Wacker-Chemie GmbH, München, Germany), nano-sized fumed SiO2 (Aerosil R106, 

Evonik Germany), CaCO3 (Industrie Bitossi, Vinci, Italy), nano-sized ZnO (Sigma–Aldrich Ltd., 

Gillingham, UK) and colemanite (CaB3O4(OH)3·H2O), which was dehydrated at 420 °C for 2 hours. 

Fumed silica nano-sized powders were wet mixed with MK in isopropanol (11 ml for 17 g of silica 

precursors) by means of a ball mill (60 min at 100 rpm, Pulverisette 7 planetary planetary ball mill, 

Fritsch, Idar-Oberstein, Germany). CaCO3 micro-sized powders, ZnO nano-sized powders and 

colemanite were subsequently incorporated into the polymer and again mixed (4 h at 400 rpm), to 

obtain a perfectly homogenous suspension with very fine fillers and no trace of powder aggregates. 

The achievement of such properties was extremely necessary for the direct ink writing, due to the 

need to avoid clogging throughout the printing step and to have continuity in the fluid flow through 

the nozzle.   

Following the CAD file, scaffolds were in the form of prisms with dimensions of 15 mm x 5 mm x 5 

mm, as resulting from the overlapping of cylindrical rods, periodically arranged along x and y axes. 

The rods were in a stacking density of 11 rods/cm on the x-y plane and the distance between the 

longitudinal axes of adjacent rods was of 1 mm. The spacing between adjacent rods along the z axis 

was set at 350 μm for samples. 

After removal from the oil, printed scaffolds were cross-linked at 350 °C, with a heating rate of 0.5 

°C/min and dwelling time of 1 h, prior to ceramization at 950 °C. 

All the experiments were done in collaboration with Mr. Mirko Sinico and Mr. Hamada Elsayed 

(University of Padova). 

6.2.2.2 Characterization of samples 

Microstructural characterizations were performed by scanning electron microscopy (FEI Quanta 

200 ESEM, Eindhoven, The Netherlands). The crystalline phases were identified by means of X-ray 

diffraction on powdered samples (XRD; Bruker AXS D8 Advance, Bruker, Germany), supported by 

data from PDF-2 database (ICDD-International Centre for Diffraction Data, Newtown Square, PA) and 

Match! program package (Crystal Impact GbR, Bonn, Germany). Quantitative phase analysis (QPA), 

based on the Rietveld method36, was performed by Dr. Michele Secco (University of Padova), using 

TOPAS software (Bruker AXS, version 4.1, Karlsruhe, Germany), starting from XRD patterns collected 

on glass-ceramic powders, after mixing with zincite powders, operating as internal standard. The 

contents of crystalline and amorphous phases were determined using the combined Rietveld–RIR 

method37. 

 

6.2.3 Results 

The theoretical result shown in Eq.6.2 was dismissed and, concerning the solid solution between 

hardystonite and okayamalite, the resulting material was a biphasic silicate comprising hardystonite 
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(Ca2ZnSi2O7) and wollastonite (CaSiO3), surrounded by a glass phase consisting of CaB2O4, as 

represented by the following reaction: 

423722722722 O0.25·CaB + 0.25·CaSiO + OZnSi0.75·Ca   SiOB0.25·Ca + OZnSi0.75·Ca       (Eq. 6.3) 

According with this reaction, the mass ratio between hardystonite and wollastonite in the final 

ceramic would be equal to 8, while quantitative X-ray diffraction analysis based on Rietveld method 

demonstrated a mass ratio of 10 (hardystonite 90 wt%, wollastonite 9 wt% and quartz 1wt%), which 

is illustrative of a predominance of hardystonite. This might be probably due to a partial 

incorporation of B atoms in the lattice of hardystonite, which is also suggested by the slight shift of 

the hardystonite peaks (pattern b) in comparison with the reference pattern (pattern c) of 

hardystonite (PDF#72-1603), as displayed in Fig. 6.10. It should be remarked that the shift is not 

constant for each peak, proving a deformation of the lattice due to the incorporation of B atoms and 

excluding a lack of precision in powders preparation prior to the analysis. Moreover, in Fig. 6.10 the 

pattern of a solid solution following a molar balance hardystonite:okayamalite of 0.5:0.5 is reported 

(pattern a). As visibile, the shift becomes even more pronounced for higher amounts of okayamalite. 

A similar shift was observed by Veròn38 regarding solid solutions between gehlenite (Ca2Al2SiO7) 

and okayamalite, due to the modification of the reticular parameters  of the gehlenite lattice because 

of the substitution of Al atoms with B atoms. 

 

 

 
Fig. 6.10 X-ray diffraction pattern of hardystonite-okayamalite:  

a) 0.5:0.5 mol, b) 0.75:0.25 mol, c) hardystonite reference pattern.  
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Fig. 6.11 shows SEM images of hardystonite-okayamalite scaffolds following a molar balance of 

0.75:0.25, in the form of 3-D printed scaffolds, after ceramization. As visible, the formulation did not 

exhibit viscous collapse and perfectly maintained the reticulated structure after ceramization (Fig. 

6.11a-b). Moreover, a good mutual interfusion between adjacent layers of rods was observed (Fig. 

6.11c), as well as an extensively porous morphology of the rods (Fig. 6.11d). Even though the 

scaffolds were found to suffer cracking, the result seemed to be improved in comparison with 

analogous samples in pure hardystonite previously developed by Mr. Hamada Elsayed (University of 

Padova). This might be due to a positive effect on the viscosity of the silicone-based mixture during 

the printing step and to the formation of liquid phase (glass phase after cooling) which could help to 

relax, by viscous flow or by enhancing the diffusion phenomena, the tensions related to the 

conversion to ceramic Further improvements of the rods morphology and the mechanical 

characterization of the samples are still in progress. 

 

 
Fig. 6.11 SEM micrographs of ceramized hardystonite-okayamalite: 

a) top view,  b) side view, c) detail of a rod cross-section, d) higher magnification of cross-section. 

  

6.2.4 Conclusions 

A biphasic ceramic comprising hardystonite and wollastonite was fabricated starting from a molar 

balance of 0.75:0.25 between two melilites: a Ca-Zn melilite named hardystonite and a Ca-B melilite 

named okayamalite, respectively. This phase assemblage was surrounded by a Ca-borate glass phase. 

The partial substitution of Zn with B atoms was suggested by the X-ray diffraction patterns, 

implying the potential formation of a solid solution between the two melilites. 

The formulation was 3-D printed by direct ink-writing and the so-obtained reticulated structures 

exhibited an improved morphology in comparison with analogous scaffolds made of pure 

hardystonite.  

The presence of cracks was slightly reduced thanks to an improved rheological behaviour of the 

silicone-based mixtures incorporating colemanite (as a CaO and B2O3 precursor) and to an enhanced 

stress relaxation provided by the formation of a liquid phase, later solidified in a glass phase, by 

viscous flow and diffusion.  
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7 Novel wollastonite-apatite composite 

7.1 Introduction 
Wollastonite-apatite glass-ceramics are widely recognized as highly efficient biomaterials1-3. The 

usual approach for their synthesis is based on conventional vitrification followed by controlled 

crystallization, with two main disadvantages: a complex thermal treatment is normally required and 

the apatite phase corresponds more specifically to fluorapatite, rather than to natural apatite4-6. 

An alternative and more recent route for the fabrication of A-W ceramics is offered by preceramic 

polymers. This strategy involves the use of a silicone resin as silica source, filled with active and 

passive fillers. Calcium carbonate, as active filler, decomposes to CaO, in turn reacting with the silica 

derived from the oxidative decomposition of silicones; hydroxyapatite powders remain practically 

inert (passive), but contribute positively to both structural integrity and biocompatibility of the final 

ceramic7. The approach based on preceramic polymers not only allows for highly phase pure 

ceramics, despite low processing temperatures, but has the fundamental advantage of combining 

synthesis and shaping.  

CaCO3 is not only a valid CaO precursor for polymer-derived wollastonite, but also can be 

considered by itself as the major phase in biomaterials, in form of foams and microspheres, in turn 

referring to various polymorphs (calcite, aragonite, vaterite)8-10. Calcite-based ceramics can be 

transformed into carbonate apatite ceramics by a phosphatization treatment, i.e. by immersion in a 

Na2HPO4 aqueous solution. Carbonate apatite is actually more similar to natural apatite1 favoring 

integration with bone, but several problems still remain. First, obtaining calcite-based materials is 

quite complicated, considering the low decomposition temperature (e.g. foams are obtained by 

infiltration of PU foams with calcium hydroxide, later subjected to carbonation)8,9; second, the 

mechanical properties of these particular ceramics are quite low (e.g. the compressive strength of 

foams is in the order of kPa)8. Stronger materials can be obtained only using very specific firing 

conditions (e.g. CO2 atmosphere)11. 

Here, the aim was to fabricate a material with the mechanical properties of porous wollastonite, 

to improve on the mechanical strength of previous foam-like 3-D scaffolds, while maintaining 

bioactivity and interconnected pore network for cell and tissue ingrowth. The route chosen was to 

develop a composite material through polymer-derived-ceramic methodology for synthesizing and 

shaping the scaffolds and a novel phosphatization treatment for developing an hydroxyapatite 

coating, prior to ceramization.  

Part of this work was carried out at Imperial College London under the supervision of Prof. J. R. 

Jones, during a 6-months student exchange program in 2014. The results were submitted for 

publication in 2015 by Fiocco et al. 

 

7.2 Experimental 

7.2.1 Preparation of foams 

A commercially available liquid silicone, H62C (Wacker-Chemie GmbH, Munich, Germany), was 

used as silica source. The polymer was first dissolved in isopropanol (10 g in 15 ml) and then mixed 

with the fillers, which consisted of micro-sized powders. CaO was provided by CaCO3, in form of 

microparticles (<10 μm, Industrie Bitossi, Vinci, Italy). Dicarbamoylhydrazine (DCH, Alfa Aesar GmbH, 

Germany) was added to act as the foaming agent (2 wt% in overall ceramic residue), being subjected 

to decomposition at approximately 250 °C. 
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All the other chemicals and reagents were purchased from Invitrogen/ Life Technologies Ltd. 

(Paisley, UK) and Sigma-Aldrich (Gillingham, UK). 

Concerning the foam synthesis, the balance between the two main constituents (CaO 

precursor:silicon) was fixed at the stoichiometric CaO:SiO2 molar ratio equal to 0.8 and 1.6 (the 

specific ratio for wollastonite is CaO:SiO2=1). The mixing was performed by magnetic stirring and 

ultrasonication for one hour in total, which resulted in stable and homogeneous dispersions. The 

preceramic mixture was later cast in large glass containers and left to dry overnight at 60 °C. 

After drying, the H62C-based mixtures were in the form of pastes, fluid enough to be poured into 

cylindrical Al moulds, where they were subjected to a foaming treatment at 350 °C in air (samples 

were placed directly in oven, for 30 min). Cylindrical foam samples (approximately 15 mm in 

diameter and 30 mm in height) were obtained upon foaming. Smaller samples (10 mm diameter and 

10 mm height) were cut from bigger ones and manually polished with abrasive paper. 

The foams were thermally treated at 700 °C for 1 h, using a heating rate of 5 °C/min. The 

ceramized samples were later immersed in a 1 mol/L Na2HPO4 phosphatizing solution at 60 °C for 14 

days, in order to have some of the outer CaCO3 phosphatized8,9. Finally, the samples were subjected 

to a reactive ceramization up to 900 °C for 1 h, using a heating rate of 1 °C/min.  

7.2.2 Characterization of foams 

The bulk density of the foams was determined using a caliper and a digital balance. The skeletal 

density was measured on foams, using a He gas pycnometer (Micromeritics AccuPyc 1330, Norcross, 

GA).The percentage of porosity was then calculated using the following equation: %P=1-(ρb/ρs); 

where ρb was the bulk density and ρs was the skeletal density. 

Mercury intrusion porosimetry (PoreMaster 33, Quantachrome UK) was used to determine the 

pore interconnect size distribution.  

Optical stereomicroscopy (AxioCam ERc 5s Microscope Camera, Carl Zeiss Microscopy, 

Thornwood, New York, US) on foams and scanning electron microscopy (JSM 6010 L, JEOL USA; LEO 

GEMINI 1525 FESEM, LEO electron microscopy, Thornwood, New York, USA) on gold-coated 

specimens were used to examine the morphological and textural features of the samples.  

The phase identification was performed by means of X-ray diffraction (XRD; Bruker AXS D8 

Advance, Bruker, Germany – CuKα radiation, 0.15418 nm, 40 kV-40 mA, 2θ=15-70°, step size=0.05°, 

2s counting time), supported by data from PDF-2 database (ICDD-International Centre for Diffraction 

Data, Newtown Square, PA) and Match! programme package (Crystal Impact GbR, Bonn, Germany). 

The compressive strength of foams was measured at room temperature, using an Instron 1121 

UTM (Instron Danvers, MA), equipped with a 10 kN load cell, with a crosshead speed of 1 mm/min. 

The mean value of five to ten samples was used for each data point.  

7.2.3 Bioactivity test 

Foams with weight of 37.5 mg were immersed in 25 ml of simulated body fluid (SBF) at 37 °C and 

120 rpm for 1, 2, 4, 8, 24, 72, 168, 336, 504 h12. At each time point, the pH was measured and 

samples of 1 ml of the medium were taken and refreshed. After dilution with 9 ml of 2M HNO3, the 

reacted medium was analyzed by inductive coupled plasma (ICP) spectroscopy for Si, Ca, P 

concentration in solution. All the experiments were done in triplicate. 

At the end of the test, the foams were washed in distilled water, dried and analyzed by 

attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR) at room temperature, to 

monitor the growth of the HCA layer, using a wavenumber resolution of 4 cm-1 for 32 scans from 

4000 to 600 cm-1. Samples were also imaged under scanning electron microscopy (SEM). 
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7.2.4 Cell culture test 

MC3T3 osteoblast precursor cells were culture expanded to confluence in monolayer cultures in 

basal media (α-MEM supplemented with 10% (v/v) FCS, 100 unit/ml penicillin, 100 µg/ml 

streptomycin). Cultures were maintained in humidified atmosphere at 37 °C, 5% CO2 and 21% O2.  

Foams were cut to 37.5 mg of weight (the size was approximately 5×5×5 mm3) and sterilised with 

70% EtoH, then washed with PBS and then plain α-MEM. MC3T3 cells were harvested at confluence 

from monolayer cultures and suspended in basal media at a concentration of 1×106 cells in 25 ml. 25 

ml of cell suspension was added to each sterile 50 ml Falcon tube containing one foam 3-D scaffold. 

The tubes were placed in an incubator (humidified atmosphere at 37 °C, 5% CO2 and 21% O2) for 2 h 

with gentle agitation every 30 minutes to allow diffused cell adhesion. The solution was then 

replaced with osteogenic media (basal α-MEM supplemented with 100 μM ascorbate-2-phosphate, 

10 nM dexamethasone and 10 mM of β-glycerophosphate). Cell-seeded foams were cultured in 

humidified atmosphere at 37 °C, 5% CO2 and 21% O2 for 21 days with media changes every 3-4 days. 

1 ml of culture medium was collected prior to each media change for ICP analysis of Si, Ca and P 

concentrations for dissolution study in cell culture medium. 

Cell viability of MC3T3 cells cultured in the 3-D foams was determined by colorimetric WST-1 

assay, which is based on the cleavage of the water-soluble tetrazolium salt WST-1 to formazan by 

mitochondrial dehydrogenases in metabolically active cells. Three day-3 cell-seeded foams were 

collected and each submerged in 5 ml of WST-1 reagent (1:10 dilution in α-MEM, Roche Diagnostic, 

West Sussex, UK). 100 μl was aspirated in triplicate from each sample following 2 and 4 hours 

incubation and, the optical density was measured spectrophotometrically at 440 nm using a 

SpectraMax M5 microplate reader. The mean optical densities values (n=3) of the solution were 

calculated at 2 and 4 hours time points and compared using Mann-Whitney U test with b Bonferroni 

correction. Cells were deemed viable if an increase in optical density of the solution was observed. 

Cell-seeded foams were fixed with 4% (w/v) paraformaldehyde (PFA) and used for 

immunohistochemical analysis of cell attachment (day-3 samples) and osteogenic differentiation 

(day-21 samples). After permeabilisation with buffered 0.5% (v/v) Triton X-100 in PBS (300 mM 

sucrose, 50 mM NaCl, 3 mM MgCl2, 20 mM Hepes and pH 7.2) and blocking with 10 mg/ml BSA in 

PBS, samples were incubated with relevant primary antisera (diluted appropriately using 10 mg/ml 

BSA in PBS) at 4 °C overnight. This was followed by hour-long incubation with Alexa Fluor® 488-

conjugated secondary antibody. Negative controls (omission of the primary antisera) were 

performed in all immunohistochemistry procedures. No staining was observed in the samples used as 

negative controls. 

The anti-Vimentin antibody (rabbit polyclonal, IgG, Abcam, Cambridge, UK), anti-Collagen Type I 

antibody (rabbit polyclonal, IgG, Abcam, Cambridge, UK), anti-Osteopontin antibody (rabbit 

polyclonal, IgG, Merck Millipore, Watford, UK) and anti-Osteocalcin antibody (rabbit polyclonal, IgG, 

Merck Millipore, Watford, UK) were used at dilutions of 1:500, 1:1000, 1:500 and 1:50 respectively. 

Alexa Fluor® 488-conjugated secondary antibody (goat anti-rabbit, IgG, Abcam, Cambridge, UK) was 

used at a dilution of 1:1000. 

F-actin was labelled using CytoPainter F-actin staining kit (Abcam, Cambridge, UK) following the 

manufacture’s instruction. Briefly, Alexa Fluor® 568-conjugated phalloidin (1:1000 dilution in 

labelling buffer) was added simultaneously with the secondary antibody during the incubation 

period. All samples were counter-stained with DAPI (0.1 μg ml-1 in PBS).  

The samples were imaged under confocal microscopy. The same samples were then dehydrated 

using an ascending series of ethanol and hexamethyldisilazane (HDMS) prior to sputter coating with 

gold and observation under scanning electron microscopy. 

Cell culture studies were performed by Dr. S. Li (Imperial College London). 
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7.3 Results 

7.3.1 Characterization of samples 

The molar ratio of CaO:SiO2 was at first kept lower than that used for previous investigations on 

polymer-derived bioceramics based on wollastonite8,13-14, in order to achieve dispersions with higher 

homogeneity and lower viscosity. Fig. 7.1a shows that the molar ratio of CaO:SiO2=0.8 samples (F1) 

led to foams with very uniform pore size (mean diameter of 500 μm) and good interconnectivity (well 

defined openings are visible between adjacent cells). The porosity was provided by the thermal 

decomposition of the hydrazine additive below 350 °C. At this temperature, the cross-linking of the 

same polymer hindered any viscous collapse of the pore structure, which was finally stabilized by the 

ceramization at 700 °C. The samples from the mixture corresponding to a higher CaO:SiO2 molar ratio 

(CaO:SiO2=1.6 samples, F2) were much less uniform (Fig. 7.1b). For bone tissue engineering 

applications, the porosity, pore size and pore interconnectivity are critical parameters: in general, 

interconnected pores with a mean diameter of 100 μm or greater and open porosity higher than 50% 

are considered to be the minimum requirements to allow cell penetration, tissue ingrowth and 

eventually vascularisation15. The graph in Fig. 7.1c shows that the obtained foams had modal 

interconnect diameters of 161 μm (F1) and 135 μm (F2), matching the above mentioned constraints: 

for both formulations, most of the interconnected pores had diameters greater than 100 μm, as 

required for cell penetration and vascularisation. 

 

 

Fig. 7.1 Stereomicroscopy of scaffolds after phosphatization and pyrolysis at 900 °C in air  

of F1 (a) and F2 (b) samples, with details of interconnect size distribution (c). 

  

Fig. 7.2 shows the phase evolution upon the three processing steps by XRD. After the first non-

reactive ceramization at 700 °C, as expected, calcium carbonate did not decompose (CaCO3 - PDF 86-

2334) and the selected thermal treatment only caused the formation of an amorphous silica-rich 

matrix derived from the thermal decomposition of the preceramic polymer, for both formulations 
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(see Fig. 7.2a and Fig. 7.2b). After phosphatization, calcium carbonate was partially transformed, 

again for both formulations. Weak peaks, in positions consistent with those of hydroxycarbonate 

apatite (HCA - PDF#04-0697), were visible, while the calcite peaks decreased in intensity. The 

weakness of the apatite peaks is reasonable, owing to the probable confinement of transformation 

at the calcite particle present at the surface of cell walls. The high width-to-height ratio of the apatite 

peaks, in addition, is reasonably due to the limited crystal size. 

After the reactive ceramization at 900 °C, the weak peaks attributed to apatite content did not 

change, while calcium carbonate underwent complete decomposition and reacted with the 

surrounding silica-rich matrix, with formation of mixed calcium silicates (β-wollastonite, β-CaSiO3 - 

PDF#420547; di-calcium silicate, β-Ca2SiO4 - PDF#83-0460) for both the formulations. Anyway, the 

balance between the two phases was different, with more peaks related to β-CaSiO3 in F1 samples 

(Fig. 7.2a) and more related to β-Ca2SiO4 in F2 samples (Fig. 7.2b). Some cristobalite (SiO2 - PDF#76-

0936) traces were also visible in the two spectra at 900 °C, but the samples from CaO-poor 

formulation (Fig. 7.2a) showed a higher content.  

 

  
Fig. 7.2 XRD patterns of F1 (a) and F2 (b) scaffolds. 

 

Further evidence of transformation of calcite into apatite as a consequence of the 

phosphatization treatment, is provided by a SEM micrograph reported in Fig. 7.3a (taken on a F1 

sample that subjected to the complete 3-step treatment), which emphasized the formation of 

flower-like precipitates, a common morphology for hydroxyapatite. The EDS spectrum on the 

precipitates is reported in Fig. 7.3b and exhibited high P and Ca contents. The peak corresponding to 

Na was reasonably due to the presence of Na+ ions in the phosphatizing solution, while the peaks 

associated with Au were the effect of the gold-sputter coating carried out before SEM imaging.  
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Fig. 7.3 SEM Micrograph of F1 foam scaffolds after the complete synthesis cycle (a) 

with EDS spectrum on the apatite formed on the scaffold surface (b). 

 

Tab. 7.1 Physical and mechanical properties of foams at different steps of the synthesis cycle. 

Foam formulation 
ρbulk 

(g/cm
3
) 

ρskeletal 

(g/cm
3
) 

Popen 

(%) 
σcomp 

(MPa) 

CaO:SiO2=0.8 [F1] 
700 °C 

0.34 ± 0.09 2.54 ± 0.01 87 1.6 ± 0.2 

CaO:SiO2=0.8  
700 °C + Phosph. 

0.37 ± 0.07 2.31 ± 0.02 84 3.6 ± 0.8 

CaO:SiO2=0.8  
700 °C + Phosph. + 900 °C 

0.27 ± 0.02 2.85 ± 0.07 91 2.9 ± 0.5 

CaO:SiO2=1.6 [F2] 
700 °C 

0.68 ± 0.06 2.96 ± 0.05 64 1.5 ± 0.7 

CaO:SiO2=1.6  
700 °C + Phosph.  

0.80 ± 0.04 2.52 ± 0.01 68 1.0 ± 0.7 

CaO:SiO2=1.6  
700 °C + Phosph. + 900 °C 

0.96 ± 0.06 2.68 ± 0.01 77 1.6 ± 0.2 

 

 

Tab. 7.1 summarises the mechanical and physical properties of the foams after each step of the 

treatment process, including the compressive strength σcomp, the ρbulk density, the ρskeletal and the 

open porosity Popen. 

The differences in homogeneity, already observed with Fig. 7.1, had a significant impact on 

mechanical properties. F1 samples exhibited a compressive strength of 2.9 ± 0.5 MPa, despite the 

high porosity  of 90 %. The compressive strength for F2 samples did not exceed 1.6 MPa, even if their 

porosity was lower at 77%. This compares to 2.4 MPa for sol-gel bioactive glass foams (porosity of 82 

%, modal interconnect diameter of 98 µm)16 and 1.9 MPa for melt-derived bioactive gel-cast foams 

(79 % porosity, modal interconnect size of 144 µm)17.  
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7.3.2 Bioactivity test 

The behaviour of the foam scaffolds in SBF was investigated in order to monitor the surface 

reactions of the material, the dissolution profiles and the pH change as a function of time. Fig. 7.4 

shows the elemental concentrations (from ICP) of calcium (Fig. 7.4a), silicon (Fig. 7.4b) and 

phosphorous (Fig. 7.4c) in SBF, as a function of immersion time for the scaffolds, with a control of 

pure SBF. The error bars are standard deviations from the mean calculated from triplicate results. 

The pH change as a function of time is shown in Fig. 7.4d. Soluble silica and calcium ions were 

released from the scaffolds and phosphate deposited on the scaffolds over time. 

SBF contains approximately 80 μg ml-1 of calcium ions. The calcium content of the control SBF was 

constant concentration at around 72 μg ml-1. Concerning the release profile of Ca2+ ions  from the 

foams (Fig. 7.4a), the concentration of Ca in SBF increased and reached plateau at saturation 

concentration of 249 μg ml-1 after 7 days. The Ca concentrations, however, decreased slightly as the 

soaking time increased from 7 days to 21 days, reaching 225 μg ml-1 after 21 days. This was likely 

caused by calcium phosphate deposition on the scaffold surface after 7 days immersion.  

SBF does not contain Si, as proven by the control (Fig. 7.4b). After immersion of F1 samples in SBF 

for 24 h, the Si species increased to 57 μg ml-1. From 24 h to 72 h, the concentration of Si species 

increased to 72 μg ml-1, but with a slower rate of Si release, as the solution neared saturation. From 

72 h to 21 days, the amount of Si found in SBF was maintained at approximately 70 μg ml-1.  

With respect to phosphorous (Fig. 7.4c), SBF contains around 30 μg ml-1. The control SBF showed 

levels of P between 28 and 24 μg ml-1 up to 21 days immersion. In contrast, when foams were 

immersed in SBF, the P concentration rapidly decreased to 2 μg ml-1 after 72 h. Phosphorous was 

expected to be released by foams due to the phosphatising step of the synthesis cycle. The formation 

of a HCA layer on the scaffolds surface, as shown by FTIR spectra (Fig. 7.5), was likely the reason for 

decreased P concentration in SBF (coupled with the decrease in Ca content). 

 

 

 
Fig. 7.4 Dissolution profiles (a: Ca; b: Si; c: P) and pH (d) as a function of time for foams after soaking  

in SBF for 21 days [results are presented as mean ± SD, n=3 per each time point]. 
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The dissolution of the foams caused the pH of the medium to increase from 7.42 to 7.75 over 1 

week, as shown in Fig. 7.4d. Then it increased to 7.85 between 1 week and 3 weeks. 

For F2 samples, the trend of Ca, P, Si content of the SBF as a function of time was similar, but with 

some differences in the μg ml-1 levels and in the dissolution rate. The amount of Ca species released 

was higher, reaching 320 μg ml-1 after 2 weeks (see Fig. 7.4a). The release rate for Si species was 

slower in comparison to the previous material and the rate was almost linear from 72 h to 3 weeks, 

finally reaching 75 μg ml-1 (Fig. 7.4b). The precipitation rate of P species was also slower, however P 

was mostly removed by 2 weeks (Fig. 7.4c). The pH trend was similar to that for F1 samples. The 

highest value of 8 was reached after 2 weeks, after which the pH decreased to 7.95 between 2 weeks 

and 3 weeks. The initial rapid dissolution did not appear detrimental, since the pH fluctuation was 

within the buffering capability of culture medium.  

Fig. 7.5 compares FTIR (Fig. 7.5a) spectra and XRD (Fig. 7.5b) patterns of the samples before and 

after 3 week immersion in SBF. For unreacted samples of both formulations, the FTIR spectra 

contained vibration bands at 510, 900 and 1010 cm-1 which can be reasonably associated with 

wollastonite (CaSiO3).
18 The same peaks were not detected in the FTIR spectra for the samples after 

soaking in SBF, meaning that wollastonite was progressively subjected to decomposition in SBF, in 

agreement with the calcium release (Fig. 7.5). This is also confirmed by the XRD patterns (Fig. 7.5b), 

which showed silica, HAp, HCA, Ca2SiO4 peaks for the samples after soaking in SBF (Ca2SiO4 only for 

F2 samples), but no wollastonite.  

 

 

 
Fig. 7.5 FTIR and XRD spectra of ceramic foams before and after soaking in SBF for 21 days. 
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For ceramics of both compositions, the FTIR spectra contained vibrational bands at 567 and 603 

cm-1, corresponding to the P-O υ4 bending vibrations, and at 1040 cm-1, corresponding to the P-O υ3 

stretching vibrations. Vibrational bands were also observed for carbonate ions at 1400-1600 cm-1, 

corresponding to the carbonate υ3 vibrational mode, and at 873 cm-1, corresponding to υ2. All of 

them can be associated with the presence of crystalline HCA19-21, which can also be correlated with 

the peaks in the XRD patterns. 

Si-O absorption bands were observed in the FTIR spectra at 1080, corresponding to the stretching 

vibrations, and at and 800 and 460 cm-1, corresponding to the bending vibrations16,22. In particular, 

the peak at 800 cm-1 is present before and after soaking for F1 samples, but only after soaking for F2 

samples, while the peak at 460 cm-1 and at 1080 cm-1 increased in intensity for both the formulations 

after soaking. All these peaks are probably related to the presence of silica: in fact, considering the 

XRD patterns, SiO2 is present in all the samples and, in particular, the intensity of its peaks is even 

higher after soaking, but it is notably lower for F2 unreacted samples. 

These results are likely in agreement with Siriphannon et al.20: the mechanism of HAp formation 

on CaSiO3 was hypothesized to involve its initiation from a rapidly-formed silica-rich interlayer, 

followed by the formation of an amorphous calcium phosphate layer resembling HAp, by reaction of 

Ca2+ with PO4
3- and OH- ions from the SBF solution. After the prolonged soaking, the amorphous layer 

grows and crystallizes to HAp20 with partial incorporation of CO3
2-. 

7.3.3 Cell culture study 

After 3 days and 21 days of cell culture, the attachment of the cells to the scaffolds surface, the 

cell morphology and the formation of cell matrix were investigated by SEM imaging. After 3 days (Fig. 

7.6a) the cells spread across the 3-D surface, formed a compact layer and colonized the pores, 

following the architecture of the pores, whereas after 21 days (Fig. 7.6b) the cells appeared to have 

formed mineralized bone nodules, in the form of white globular precipitates.  

The CaO-rich samples (F2) seemed to enhance the cellular response, compared to F1 samples . 

After 3 days, the cells were spread across the surface and the interconnections demonstrating 

elongated profiles, as shown in Fig. 7.6d, even if they did not form compact layers of cells as in Fig. 

7.6a. However, after 21 days of culture (Fig. 7.6e) they seemed to have more mineralized bone 

nodules. One explanation for this discrepancy in the cell morphology could be the higher content of 

calcium.  

The EDS spectra in Fig. 7.6c (F1) and Fig. 7.6f (F2) were taken on the apparent bone nodules 

formed by the cells and on the scaffold surface adjacent to the cell groups (samples were previously 

coated with gold). The spectra on the cellular deposits show that calcium and phosphorous were 

present, confirming that mineralization occurred; the spectra on the scaffold surfaces adjacent to the 

cell groups shows that phosphorous and calcium content was much lower when compared with 

silicon. 

Following 3 days of culture, WST-1 cell proliferation assay was used as a quantitative indication of 

total cell viability. The assay demonstrated a significant increase (p<0.05) in mean absorbance (i.e. 

optical density) for WST-1 solution mixed with both cell-seeded F1 and F2 constructs from 2 to 4 

hours of incubation, suggesting excellent ongoing cell survival and growth (Fig. 7.7). Excessive 

mitochondrial Ca2+ uptake and accumulation can result in a switch from a useful physiological 

regulatory mechanism to a potentially harmful pathological pathway23. In this study, there was no 

significant difference in optical densities observed between the two material compositions at either 

the 2 or 4 h time point of the assay. Doubling the Ca2+ ions in F2 foams, therefore, did not raise 

concerns regarding the cellular toxicity. One possible explanation is the likely precipitation of calcium 

in the form of calcium phosphates, limiting the Ca2+ ions in cell culture media.  
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Fig. 7.6 SEM micrographs of MC3T3 cells following culture on the scaffolds with details of EDS spectra  

on surfaces adjacent to the cells and on apparent bone nodules: a-c) F1; d-f) F2. 

 

 
Fig. 7.7 Total cell viability of day-3 cell-seeded constructs determined by WST-1 assay  

[values expressed as mean ± SD, n=3 in each group]. 
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Cell adhesion on a scaffold is essential for the development of anchorage-dependent cells in 

tissue engineering applications. HCA is chemically similar to the mineral component of bones in 

mammals and, its innate capacity to adsorb serum proteins plays a vital role in providing the matrix 

for cell attachment and the subsequent cellular events24. The formation of HCA on the surface of the 

3-D foam scaffolds allowed excellent cell attachment. As shown in Fig. 7.8, the expression of the 

vimentin and actin cytoskeletal proteins was evident in MC3T3 cells seeded on both F1 and F2 foams 

following 3 days of culture. The expression of these cytoskeletal proteins was previously shown in 

osteoblasts cultured on matrix protein (e.g. Collagen Type I) coated glass coverslips25.  It should be 

noted, however, that the organisation of the actin cytoskeleton appeared to be more advanced with 

extensive vimentin throughout the cytoplasm on cell-seeded F2 constructs.  

For analysis of osteogenic differentiation, day-21 cell-seeded constructs were immunostained 

with antibodies against phenotypic osteogenic proteins (Fig. 7.8). The osteoblastic activity of both 

cell-seeded F1 and F2 constructs was evidently supported by the positive immunolocalisation of 

Collagen Type I, a commonly used extracellular matrix marker for early bone matrix deposition. 

Interestingly, the Collagen Type I appeared more organised in F2 constructs. Similarly, robust 

expression of Osteopontin, an early marker of osteogenic differentiation, was observed in F2 

constructs in comparison to F1 constructs. The expression of late osteogenic marker Osteocalcin by 

MC3T3 cells on F1 foams was negligible. In contrast, the expression of Osteocalcin was noticeably 

upregulated in F2 constructs by day 21. The upregulated expression of Osteocalcin can be partially 

related to the enhanced deposition of Collagen Type I on F2 samples. The events of osteogenesis 

take place in the presence of a collagenous matrix26. The binding of MC3T3 cells to this collagenous 

matrix is mediated by α2β1 integrin, the binding of which at the cell membrane induces the 

expression mitogen-activated protein kinases (MAPK). It has been shown that the phosphorylation of 

these MAPK activates Alkaline Phosphatase and Runx2, which in turn promote the downstream 

expression of Osteocalcin26.  

The observation from immunohistochemical analyses suggests a material preference to MC3T3 

osteoblast precursor cells for F2 foams as a substratum during osteogenic differentiation in vitro. The 

dissolution products of the bioactive foams likely had a significant impact on osteogenic 

differentiation of MC3T3 cells. In the complex field of biomaterials design, in fact, the simple 

inclusion of an ion generally induces important changes in gene expression, metabolic pathways and 

the membrane composition of osteoprogenitor cells27. The enhanced osteogenic response of MC3T3 

cells in the presence of F2 foams can be partly explained due to the increase Ca2+ concentration in 

culture media. The role of Ca2+ in osteoblast activity is well established. While moderate Ca2+ 

concentration (2-4 mM) was suitable for proliferation and survival of osteoblasts, higher Ca2+ 

concentration (6-8 mM) can favour osteogenic differentiation and matrix mineralisation in both 

monolayer and 3-D cultures of murine primary osteoblasts28. Extracellular calcium receptors were 

reported to be involved in the mechanism in which MC3T3 respond to Ca2+ in media29,30. 

Studies have also reported that silicon deficiency in chicks and rats led to defective bone and 

cartilage tissue, both of which were restored with the addition of soluble Si to their diet31-32. Si 

therefore also play an important role in skeletal tissue development. Indeed, soluble silica has been 

shown to stimulate Collagen Type I production and Alkaline Phosphatase activity by human 

osteoblast cells at a concentration of 10-20 mmol33.  

Numerous studies have reported on the osteogenic effects of bioactive silicate glasses and their 

dissolution products, which release both Ca2+ and soluble silica. Xynos et al. demonstrated that genes 

that play a role in metabolism, proliferation and cell-cell and cell-matrix interaction were significantly 

up-regulated when human osteoblastic cells were cultured in bioactive glass dissolution products34-36. 

The effect of bioactive glass dissolution products on osteogenic differentiation has been found to be 
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dose-dependent, with the highest gene expression observed at about 20 µg ml–1 of soluble silica, 

accompanied by 60–90 µg ml–1 of calcium ions37.  A similar response was observed for human foetal 

osteoblasts, with 15–20 µg ml–1 of soluble silica promoting highest metabolic activity, with 

expression of the core-binding factor alpha 1 (Cbfa1) and enhanced formation of mineralised bone 

nodules38. The concentrations of Ca (~300 μg ml-1) and Si (~70 μg ml-1) released by the wollastonite-

apatite were notably higher in comparison to conventional bioactive glass used in the 

aforementioned previously published studies. A direct comparison between the effects of 

wollastonite-apatite and bioactive glass on osteogenesis will therefore need to be investigated in 

future studies. 

 

 

 
Fig. 7.8 a-b) Expression of vimentin and actin cytoskeletal proteins by MC3T3 cells in F1  

and F2 samples following 3 days of cell culture; c-h) Immunohistochemical examination. 

 

7.3.4 Direct 3-D printing 

A preceramic mixture of the same composition as the foams was directly 3-D printed using a 

robotic deposition device (Robocad 3.0, 3-D Inks, Stillwater, OK). The diameter of the printing nozzles 

controlling the diameter of the scaffold rods was 250 μm (EFD precision tips, EFD, East Providence, 

RI). The width between rods and the layer height were fixed at 560 and 190 μm, respectively. As 

printed, the geometry of the scaffolds was 10x10x2 mm. 

Concerning the viscosity of the preceramic ink, a substitution of the polymer was required:  liquid 

H62C was replaced with solid MK, which was dissolved in isopropyl alcohol and mixed with CaCO3 

powders. Before being printable, the ink was left overnight to dry at room temperature. The amount 

of MK was calculated according to the different silica yield (84 wt%) compared to H62C (58 wt%). 

After printing, the 3-D structures were subjected to the same treatment cycle as the foams: 

- non reactive ceramization at 700 °C, only providing the polymer-to-ceramic conversion (Fig. 
7.9a,b,c); 

- phospatization by immersion for 14 days at 60 °C in 1 mol/L Na2HPO4, to convert the outer shell of 
CaCO3 in hydroxyapatite (Fig. 7.9d); 

- reactive ceramization at 900 °C, promoting the formation of wollastonite and maintaining 
hydroxyapatite. 
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The images presented in Fig. 7.9a,b were taken after ceramization at 700 °C and testify that no 

viscous collapse of the polymer took place after printing, so that the 3-D structure and the shape of 

the rods were maintained quite regular even after ceramization. SEM micrographs at a higher 

magnification reported in Fig. 7.9b show that actually the ceramization treatment at 700 °C produced 

a lot of cracks in the rods, probably because of the gas release occurring during the thermal 

treatment, but it was not completely clarified if it was caused by the decomposition of the polymer 

or of the CaCO3 filler.  

 

 

 
Fig. 7.9 Images of 3-D printed scaffolds – top view: a,b) stereomicroscopy after ceramization at 700 °C,  

c) SEM micrograph after ceramization at 700 °C, d) SEM micrograph after ceramization at 700°C and phosphatization. 

 

 

This might be investigated by changing the CaO/SiO2 ratio and comparing the extent of the 

cracking among samples with different composition. By this way, a preferable precursors ratio might 

be selected to minimise the cracking. Alternatively, the amount of material subjected to 

decomposition with gas release might be reduced by incorporating in the preceramic mixture of 

some powdered pre-ceramized wollastonite (still derived from preceramic polymers). Ultimately, a 

further option might be the addition of a glass filler to promote the viscous flow during heating, thus 

helping the crack relaxation and, possibly, the crack filling. 

Fig. 7.10 presents the phase evolution upon the three processing steps by XRD. After the first 

ceramization at 700 °C, even if at this temperature no reaction between Si and Ca was expected, the 

XRD pattern showed the presence of some silica (PDF#82-1567 – PDF#76-0940) and of a silicate 

(CaSi3O5 – PDF#73-0599 – PDF#75-1400), besides CaCO3 in form of calcite (PDF#86-0714) and vaterite 

(PDF#33-0268). This means that the SiO2 formed by the conversion of the preceramic polymer 
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started to crystallise and react with Ca. This might depend on the different reactivity of the 

preceramic polymer used for the ink. After phosphatization, the formation of Hap (PDF#86-0740 – 

PDF#76-0694 – PDF#73-0294) was observed, thanks to the exposure of CaCO3 to P ions of the 

phosphatizing solutions. With the last step, the scaffolds were ceramized at 900 °C, in order to 

convert CaCO3 into CaSiO3 (PDF#84-0655) by reaction with SiO2, maintaining the Hap coating. 

 

 

  
Fig. 7.10 XRD patterns of samples at different steps of the synthesis cycle. 

 

 

Tab. 7.2 Summary of physical and mechanical properties of 3-D printed scaffolds  

at different steps of the synthesis cycle. 

Sample type 
ρbulk 

(g/cm
3
) 

σcomp 
(MPa) 

Specific σcomp 
(MPa·cm

3
/g) 

700 °C 0.58 ± 0.09 0.78 ± 0.15 1.35 

700 °C + Ph  0.69 ± 0.12 0.84 ± 0.24 1.22 

700 °C + Ph + 900°C 0.60 ± 0.06 0.93 ± 0.26 1.56 

 

 

 

The mechanical behaviour of the 3-D structures was evaluated by mechanical tests in 

compression mode. The compressive strength (σcomp) was measured at room temperature, as the 

mean value of four samples and it is summarized Tab. 7.2. Values were between 780 and 930 kPa, 

but considering the bulk density of the scaffolds (ρbulk), the specific compressive strength was 

calculated to be between 1.35 and 1.56 MPa. The weakness is reasonably due to the extensive 
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cracking suffered by the samples during the ceramization treatment; therefore, the improvement of 

the mechanical properties go hand in hand with the minimization of defects, which might be 

achieved by following the strategies above explained. This is confirmed by the trend of σcomp, which 

slightly increased moving from the samples just ceramized at 700 °C to the samples also 

phosphatised (Tab. 7.2). In fact, it is remarkable that the phosphatization step was somehow very 

helpful in filling and coating the cracks, as clearly visible in Fig. 7.9d, thus enabling a sort of 

recovering of the structural integrity, even if only partially. 

 

7.4 Conclusions 
In this study, highly porous wollastonite-apatite composite ceramics were synthesized and shaped 

from preceramic polymers filled with calcium oxide precursor. This demonstrated the possibility to 

obtain high phase purity components, having a strong control over the final composition of the 

material just playing on the amount of precursors.  

The idea of combining these two crystal phases was born as a solution to the issue concerning the 

mechanical weakness hydroxyapatite. Therefore, the new material was thought to couple the strong 

bioactivity of an outer shell of hydroxyapatite with a mechanically stronger open foamed 

wollastonite core. The resulting component might be used for bone tissue ingrowth applications. 

A novel method was chosen to develop the hydroxyapatite coating on the wollastonite-based 

scaffolds. Pre-ceramized foams made of SiO2 and CaCO3 were immersed in a controlled 

phosphatizing solution, specifically prepared in order to provide P5+ and H+ ions for the reaction with 

Ca2+ from the samples surface. Then the phosphatized foams were thermally treated to at 900 °C to 

enable the formation of wollastonite from the reaction between SiO2 and CaCO3.  

Concerning the pore structure and mechanical properties, the samples fulfilled the requirements 

for being promising scaffolds for bone tissue engineering applications, exhibiting a compressive 

strength around 3 MPa, a porosity of 90 % and a modal interconnect pore diameter of approximately 

130-160 μm. 

The obtained foams (in particular those with enhanced calcium content) demonstrated excellent 

bioactivity, biocompatibility, as well as osteogenic potential when MC3T3 cells were cultured on the 

scaffolds in vitro. 

Concerning the direct 3-D printing, it can be concluded that a silicone-based mixture incorporating 

fillers is printable, but the process needs to be further improved in order to solve the issue related to 

the cracking of the rods. Moreover, the viscosity and, more generally, the rheological behaviour of 

the preceramic ink should be better analysed and corrected, in order to optimize the morphology of 

the scaffolds and increase their height.  
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8 Silica-bonded apatite ceramics 

8.1 Introduction 
Natural bone, like any other connective tissue, consists of an extracellular matrix (ECM) and cells. 

Among the various specific types of cells, osteoblasts, osteoclasts, stomal fibroblasts, adipocytes, 

endothelial and hematopoietic cells are present. The ECM is here specifically mineralized, so it is 

made of 35% organic and 65% minerals. The organic matrix is proteic, being composed of mainly 

collagen-1 and fibronectin. Concerning the inorganic fraction, the most abundant mineral is 

hydroxyapatite (Ca10(PO4)6(OH)2), a calcium phosphate that is found within and between the length 

of collagen fibers, where it is needed to resist bending and compression1. Hence, hydroxyapatite 

ceramics have been successfully implemented in clinical applications for bone repairing, by virtue of 

excellent osteconductive properties. 

Even if the inorganic phase of bone has been idealized as hydroxyapatite (HAp), studies on 

biological apatites demonstrated that the bone mineral contains 4-8 % of carbonate in its apatitic 

structure2, thus the inorganic component of bone should be referred to as carbonate apatite (HCA), 

in which CO3
2- ion substitutes PO4

3- or OH- ion. It has also been demonstrated that there is a strong 

relationship between carbonate substitution in apatitic structures and solubility of apatite in weak 

acid conditions (the environment produced by osteoclasts to dissolve the bone minerals has a pH of 

about 3-5)3. Specifically, the solubility of apatite increases with the increase in carbonate content of 

apatite, so, while HAp cannot be totally resorbed by osteoclasts, HCA has a high solubility and it can 

be completely replaced by new natural bone, through the remodelling cycle of the bone tissue4. 

Therefore, HCA would be a preferable choice as a bone substitute biomaterial than pure HAp. 

The issue concerning the synthesis of dense HCA deals with its lack of thermal stability at the high 

temperatures that are required for the sintering process, due to the decomposition of the material 

and the subsequent release of CO2
5,6. However, a dense structure is not the best candidate for 

replacing bone, whereas a HCA scaffold would better mimic the typical morphology of cancellous 

bone when shaped in an interconnected porous structure, thus promoting rapid cell penetration and 

revascularization. 

Sunouchi et al.4 reported a novel method to obtain solid and hollow HCA microsphere, which 

could be packed giving a 3-D interconnected porous structure. Calcite (CaCO3), calcium hydroxide 

(Ca(OH)2) and sodium chloride (NaCl) cores were covered with a further layer of Ca(OH)2 and then 

treated with CO2 for two weeks to obtain the conversion to CaCO3 by carbonation. The obtained 

spheres were later phosphatised in a Na2HPO4 solution for two weeks, successfully converting CaCO3 

into HCA by dissolution-precipitation reactions. Maruta et al.7 applied the same approach to convert 

CaCO3 foams into HCA foams. In this case, cellular materials were obtained by negative replica, using 

polyurethane (PU) sponges as templates and dipping them in a slurry consisting of Ca(OH)2 dispersed 

in distilled water. After drying the slurry and burning out the PU substrate, the foams were converted 

to CaCO3 (again by carbonation) and later phosphatised (by immersion in the same Na2HPO4 

solution). 

A similar approach was already followed in § 7 to convert calcite into apatite8, demonstrating the 

possibility of fabricating wollastonite-apatite foams from direct foaming of a slurry consisting in a 

liquid preceramic polymer mixed with fillers. After synthesising calcite foams, they were first 

phosphatised to obtain a partial CaCO3-to-Ap conversion and later ceramized at 1100 °C to allow the 

reaction between the remaining calcite and silica left from the silicone-to-ceramic conversion, thus 

obtaining wollastonite-apatite composite foams. 

In the present study, which was submitted for publication in 2015 by Fiocco et al., an easy method 

is proposed to fabricate silica-bonded apatite porous structure by negative replica, starting from PLA 
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3-D printed sacrificial templates. Here, the goal was to obtain a high conversion of calcite into 

apatite. Liquid preceramic polymers mixed with powdered CaCO3 fillers were used as a slurry to 

infiltrate PLA foams and they were cross-linked at room temperature prior to burning out the PLA. 

After ceramization at 600 °C, particularly low compared to the temperatures adopted for other 

silicone-derived ceramics9, the ceramic scaffolds were phosphatised by immersion in a Na2HPO4 bath, 

following the same procedure as Sunouchi et al.4 and Maruta et al.7. The CaCO3-to-Ap conversion was 

even more successful when CaCO3 was replaced with a biological one, derived from eggshell waste, 

due to its natural impurities facilitating the interdiffusion phenomena. 

 

8.2 Experimental 

8.2.1 Preparation of samples 

Two commercial liquid silicones, RTV90700 (Siliconi Padova, Italy) and RTV960 (Angeloni, Italy) 

constituted the reference materials for the silica binder. The two bi-component polymers feature a 

silica yield of 72.5 % and 58 wt%, respectively, and can cross-link at room temperature, by a 

polyaddition mechanism, when mixed with their specific cross-linking agents. RTV90700 and RTV960 

were used to obtain 67 and 33 wt% of the total silica content, respectively, so that the polymers 

were used in the weight ratio of RTV90700/RTV960=1.6. Two different types of micro-sized calcite 

(CaCO3) were used: i) commercial calcite (<10 μm, Industrie Bitossi, Vinci, Italy - later referred to as 

“BIT”); ii) calcite from eggshell waste, after a heating cycle up to 450 °C, for 4 hours, with a heating 

rate of 5 °/min 17 μm, - later referred to as “ESW”). The CaCO3/SiO2 weight ratio was kept constant 

at 70/30.  

The egg shells were obtained from Lecoque Eggs (Tongeren, Belgium). The resulting BET of the 

ESW powder was 4-6 m2/g. The inorganic fractions consisted of 98 wt% CaCO3, with traces of MgCO3. 

From TGA measurements, it was deducted that 2 – 5 wt% of organic material was still present from 

the egg shell membrane. 

RTV90700 and RTV960 were homogeneously mixed by mechanical stirring, then the CaCO3 

powders were incorporated. Only for the filler derived from eggshell waste, a small amount of 

solvent (isopropyl alcohol) was added (1 ml for 10 g of final ceramic), because the viscosity of the 

slurry tended to increase rapidly as the powders were incorporated. At last, the curing agents for the 

two polymers were added and the resulting mixtures were further subjected to mechanical stirring, 

in order to obtain homogeneous pastes.  

Before the occurrence of curing reactions, silicone/calcite slurries were used to infiltrate, by 

immersion, 3-D printed reticulated polylactic acid (PLA) scaffolds, in turn obtained by means of a 

Power WASP orienting extruder (Massa Lombarda, Italy). The PLA scaffolds were placed at the 

bottom of a plastic container and left immersed in the slurries for 12 h, until the silicone/calcite 

pastes became rubbery. At this stage, the excess paste was removed from the PLA scaffold by means 

of a cutter.  

The infiltrated PLA scaffolds were thermally treated at 350 °C, with a heating rate of 0.5 °C/min, 

for 1 hour. This step led to the decomposition of PLA, obtaining reticulated structures (replicas) made 

of cross-linked silicones and CaCO3. The replicas were later subjected to a ceramization treatment at 

600 °C, with a heating rate of 2 °C/min, for 2 hours, in order to transform the silicones into 

amorphous silica SiO2, while maintaining CaCO3 unreacted. 

After ceramization, the scaffolds were subjected to a phosphatization treatment by immersion in 

a 1 mol/L Na2HPO4 solution at 60 °C for 14 days, resulting in silica-bonded apatite ceramics. 
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8.2.2 Characterization of samples 

Micro-structural characterizations were performed by optical stereomicroscopy (AxioCam ERc 5s 

Microscope Camera, Carl Zeiss Microscopy, Thornwood, New York, US), scanning electron 

microscopy (FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with EDS and X-ray 

diffraction (XRD; Bruker AXS D8 Advance, Bruker, Germany - CuKα radiation, 0.15418 nm, 40 kV-40 

mA, 2θ=15-70°, step size=0.05°, 2s counting time). The Match! software package (Crystal Impact 

GbR, Bonn, Germany) was used for phase identification, supported by data from PDF-2 database 

(ICDD-International Centre for Diffraction Data, Newtown Square, PA, USA) and Crystallography 

Open Database (COD) database. 

The bulk density (ρb) of the foams was determined using a caliper and a digital balance. The 

skeletal density (ρs) was measured on foams, using a He gas pycnometer (Micromeritics AccuPyc 

1330, Norcross, GA). The percentage of porosity was then calculated using the following equation: 

%P=1-(ρb/ρs). 

Samples were analyzed by attenuated reflectance Fourier transform infrared spectroscopy (ATR-

FTIR, Thermo Scientiic Nicolet iS10) at room temperature, to monitor the growth of the 

hydroxycarbonate apatite layer, using a wavenumber resolution of 4 cm-1 for 32 scans from 4000 to 

600 cm-1. Selected scaffold structures were subjected to mechanical characterization in compression 

mode at room temperature, using an Instron 1121 UTM (Instron Danvers, MA, USA) with a cross-

head speed of 1 mm/min, on samples in the as-ceramized form and after phosphatization. Each data 

point is presented as the mean value of five to ten samples 

All the experiments were performed in collaboration with Ms. Isabella Pezzetta (University of 

Padova). 

 

8.3 Results 
Fig. 8.1 reports the micrographs obtained by optical stereomicroscopy of the samples BIT (Fig. 

8.1a,b) and ESW Fig. 8.1c,d). As previously mentioned, the ceramic scaffolds were replicas of the 

original PLA scaffolds, so that the accuracy of the shape was directly related to the quality of the 

original PLA structure. The geometrical defects which can be observed in Fig. 8.1 are mostly due to 

some irregularities in the 3-D printed PLA sacrificial scaffolds. Concerning the small holes randomly 

distributed across the filaments, they might be due to the incorporation of some air during the 

infiltration of PLA with the preceramic slurry, considering that the preceramic mixture had the 

viscosity of a paste.  

The presence of a geometrically distributed open porosity, left by the PLA by thermal 

volatilization, was clearly visible in three dimensions for both samples. At the same time, the thermal 

decomposition of PLA had, as a negative consequence, the formation of some cracks: in fact, this 

step was responsible for local increase in pressure inside the material, because of the formation of 

gases and their migration from the core to the external layers. The difference in coloration was due 

to the type of CaCO3 employed for fabricating the samples (samples from natural CaCO3 were 

darker). 

In Fig. 8.2, the X-ray diffraction patterns of the two types of samples, BIT (Fig. 8.2a) and ESW (Fig. 

8.2b), are presented. Concerning the spectra before phosphatization, which are reported in the 

lower part of the two panels, both BIT and ESW samples featured the presence of unreacted calcite 

(CaCO3  - PDF#72-1650) after the ceramization at 600 °C, accompanied by weak trace of cristobalite 

(PDF#75-0923), attributable to colloidal silica present in the starting polymers10.  

The upper patterns, instead, show the evolution of the material due to the phosphatization 

treatment. As desired, it can be observed that the immersion in the phosphatising solution caused a 
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significant conversion of CaCO3 into apatite (Ap – PDF#86-0740 – COD#96-900-3553), thanks to the 

exposure of the samples to the P ions provided by the solution. This is evident from two 

observations: first, apatite peaks are well visible in the upper patterns; second, the intensity of the 

CaCO3 main peak, at 2θ≈30 °, had a substantial decrease, even more significant for the ESW samples 

(panel b, upper pattern).  

 

 

 
Fig. 8.1 Stereomicroscopy images of samples ceramized at 600 °C:  

a) BIT (top view), b) BIT (side view), c) ESW (top view), d) ESW (side view). 

 

 
Fig. 8.2 X-ray diffraction patterns of ceramized samples before (lower patterns) 

and after (upper patterns) phosphatization: a) BIT samples; b) ESW samples. 

 

From our analysis, the peaks of apatitic phase actually consisted of two different contributions, as 

reported in detail in Fig. 8.3. Focusing on the CaCO3 peak at 2θ=29.5°, the spectra of BIT and ESW 

samples were perfectly aligned; on the contrary, the apatite peaks differ and do not exactly match 

with the previously cited reference pattern of apatite, in the form of hydroxyapatite (HAp). For both 

experimental patterns, the main peaks are placed between those of HAp and carbonate apatite 
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(HCA). The apatite obtained by phosphatisation could be seen, as a consequence, as a kind of solid 

solution with an intermediate composition between those of the hydroxyapatite and carbonate-

substituted apatite references. 

A comment should be made about the extent of the CaCO3-to-Ap conversion. From XRD patterns, 

as previously observed, the decrease in intensity of the calcite peaks, which is directly correlated 

with the decrease in the amount of calcite, looked more pronounced for ESW samples, the ones 

derived from natural CaCO3. This can be explained, as a first step, with a different reactivity of the 

two types of CaCO3, but a further contribution might be given by the different purity. Indeed, 

interdiffusion phenomena, which are responsible for the ionic migration, are well known to be 

simplified in solid solutions rather than in pure phases and natural CaCO3 is characterized by having 

trace elements in its composition, such as Mg11. Hence, it can be assumed that the conversion to Ap 

was facilitated in ESW samples. 

 

 

 
Fig. 8.3 Detail of X-ray diffraction patterns of ceramized BIT and ESW samples 

in comparison with reference patterns of HAp and HCA.  

 

Tab. 8.1 summarizes the results of physical and mechanical characterizations performed on the 

two types of samples, as ceramized at 600 °C and even phosphatised. The difference in bulk density 

(ρbulk) between BIT and ESW samples is reasonably due to the different flow of silicone-based pastes 

infiltration, considering the different size of commercial calcite and ESW: in particular, in our opinion, 



 134    
 

finer ESW particles could lead to more viscous pastes, so that they could not pack very well, but form 

a sort of solid network. A similar behaviour was already discussed in literature and confirmed by 

recent experiments with colloidal silica12-13. An extensive rheological characterization would be 

needed to clarify this point, but it is beyond the aims of the present work. 

 

Tab. 8.1 Summary of physical and mechanical properties of  

ceramized samples BIT and ESW, before and after phosphatization. 

Type of sample 
ρbulk 

(g/cm
3
) 

ρskeleton 
(g/cm

3
) 

Popen 
(%) 

σcomp 
(MPa) 

BIT 1.08 ± 0.13 2.51 ± 0.02 57 13.0 ± 2.1 

BIT + Ph. 1.11 ± 0.03 2.56 ± 0.02 57 15.9 ± 2.4 

ESW 0.78 ± 0.03 2.49 ± 0.01 69 15.2 ± 2.7 

ESW + Ph. 0.92 ± 0.08 2.54 ± 0.01 64 16.7 ± 4.7 

 

Interestingly, the compressive strength (σcomp) was not degraded by the transformation of CaCO3, 

occurring during the 2-week immersion in the phosphatising bath. In fact, BIT samples passed from 

approximately 13 to 16 MPa and ESW samples from 15 to 17 MPa with the phosphatisation. The 

differences, however, are not significant, considering the relatively large values of the standard 

deviations, in turn due to defects in the scaffolds geometry (intrinsically derived from the method 

applied, as already discussed). In their comparative study, Monchau et al.14 reported a compressive 

strength from 10 to 16 MPa for HAp and β-TCP macroporous materials, with total pore volume of 70 

%, whereas they showed a significantly lower compressive strength for calcite, from 4 to 9 MPa. BIT 

and ESW samples are perfectly in line with the values found in literature and with the compressive 

strength of natural trabecular bones, which is reported to be in the range 2-12 MPa15. 

 

 
Fig. 8.4 Scheme of extensive phosphatization. 

 

Concerning the porosity data, the values were between 57 and 69%, particularly high considering 

the voids in the reticulated structures, as illustrated by Fig. 8.1. This means that the samples were 

very permeable: besides the desired open spaces between the filaments of the scaffolds, which are a 

specific feature of the selected shape, and the cracks due to the thermal volatilization of PLA, the 

struts were probably characterized themselves by a very extended system of micro-sized, 

interconnected pores. This secondary porosity might be also responsible for the massive conversion 
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of CaCO3 into Ap, which not only concerned the surface, with the formation of an Ap coating, but 

managed to reach more internal layers, with conversion to Ap of deeper CaCO3 agglomerates. Fig. 8.4 

reports a scheme of hypothetical mechanism. 

 

 
Fig. 8.5 SEM micrographs of BIT sample after ceramization and phospatization: a) Ap layer on micro-porous calcite, b) 

higher magnification detail,d) EDS spectrum taken on silica-bonded calcite, e) EDS spectrum of the surface. 

 

The mechanism illustrated can also be deduced from the SEM micrographs shown in Fig. 8.5, 

where an extensive cracking of the Ap surface layer is visible: due to the micro-sized porosity of the 

struts, P ions were able to reach the internal layers of silica-bonded calcite, causing the nucleation 

and volumetric expansion of Ap in the inner core of the material and thus causing the cracking (Fig. 

8.5a-b) of the layers above. The same comments can be done for both types of samples, but for the 

sake of brevity only BIT sample is represented.  

Fig. 8.5 presents the EDS spectra taken on the SiO2-bonded calcite (Fig. 8.5c) and on the Ap 

coating (Fig. 8.5d). In the spectrum of Ap layer (Fig. 8.5d), the peak of P is visible, confirming the 

phosphatization. The presence of a weak peak related to Na was possibly due to the exposure to the 

phosphatising solution, prepared starting from a sodium phosphate salt. 

Fig. 8.6 reports the FTIR spectra of BIT (panel a) and ESW (panel b) samples, which were taken to 

analyze the material evolution undergone by the scaffolds with the phosphatization. Peaks at 1425 

(CO3
2- asymmetric stretching), 870 (CO3

2-
 out-of-plane bending) and 710 (CO3

2- in-plane bending) cm-1 

are related to calcite16 and are all visible in the two spectra before phosphatization (lower patterns). 

After phosphatization (upper patterns), the two peaks at 1425 and 870 cm-1 were still present, but 

they showed a significant decrease in intensity. All the other peaks in the lower patterns are 

attributable to silica17-18, in particular 1080 (Si-O stretching), 800 and 460 (Si-O bending) cm-1  and 

they are maintained in the upper patterns after phosphatization. The formation of Ap was confirmed 

by the presence of phosphate vibrational bands19-21 at 1040 (P-O stretching), 567 and 603 (P-O 

bending) cm-1, as visible in both the upper patterns. 
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Fig. 8.6 FTIR spectra of ceramized BIT (a) and ESW (b) samples before and after phosphatization. 

 

All the FTIR observations are in agreement with the expected CaCO3-to-Ap conversion, taking 

place during the phosphatization treatment, but the spectra cannot shed light on the presence of 

HCA. In fact, while in the unphosphatized samples the peaks are definitely due to CaCO3, in the 

phosphatized ones CO3
2- vibrational bands can obviously been associated with the presence of both 

CaCO3 and HCA and the two contributions cannot be distinguished. 

 

8.4 Conclusions 
Silica-bonded apatite was successfully fabricated by negative replica, starting from preceramic 

polymers incorporating powdered calcite.  

The selection and application of a mixture of two commercial liquid silicones gave the desired 

rheological properties to the slurry, making it suitable to be used for impregnation of sacrificial PLA 

scaffolds, obtained by direct 3-D printing.  

A treatment at a very low temperature (600 °C), compared to those used for many silicone-based 

ceramics, caused the transformation of polymers into silica, maintaining CaCO3 unreacted. The 

resulting material was a kind of silica-bonded calcite. 

CaCO3 was later converted into apatite, by immersion of ceramized samples in a phosphatising 

bath, providing the reaction of CaCO3 with the P ions. The conversion reached massively the core of 

the filaments, thanks to the high permeability of the material itself, due to the highly porous 

structure of the silica-bonded calcite. 

The decomposition of calcite was maximized replacing mineral calcite with biological material 

(eggshell waste). 

Defects in the geometry of the final scaffolds were directly related to quality of the sacrificial PLA 

templates; however, both silica-bonded calcite and silica-bonded apatite samples exhibited an 

excellent compressive strength, well exceeding 10 MPa.  

Further investigations will be undoubtedly dedicated to biological tests, to assess the actual 

biocompatibility of the material and to explain if the use of biological CaCO3 can positively affect it.  
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9 Silica-bonded calcite ceramics 

9.1 Introduction 
Calcium carbonate (CaCO3) is a well-established material for implantation purposes, due to its 

high biocompatibility and bioactivity. Marine corals (99% CaCO3, aragonite polymorph – 1% organic) 

have been used as bone graft substitutes since the 80s and 90s1-4, owing to the distinctive three-

dimensional macro-porous framework, naturally mimicking cancellous bone and promoting cell 

penetration and vascular invasion4. From experimental and clinical data, they feature excellent 

vascularisation, resorbability, biocompatibility and osteoconductivity, so that they can be seen as an 

interesting alternative to bone grafts1,2.  It has been also proven that the bone forming response of 

calcium carbonate is comparable to that of hydroxyapatite3 (HAp) and that it is able to present rapid 

carbonated apatite formation4. 

Nowadays, implants of natural origin (such as coral) are no longer accepted in orthopaedics, due 

to serious drawbacks, such as supply difficulties, biological variability, risks of viral or bacterial 

contamination 5 . Therefore, synthetic ceramic biomaterials, chemically and morphologically 

mimicking natural bone tissue, have received a growing interest in the last years. Several studies 

have been proposed on synthetic CaCO3 and its polymorphs (calcite, aragonite, vaterite)5-10. 

Monchau et al.5 compared the biological properties of synthetic CaCO3
 with those of hydroxyapatite 

and tricalcium phosphate (β-TCP), commonly used as substitutes or filling materials in bone surgery, 

and demonstrated that synthetic CaCO3 can be shaped into a bone substitute scaffold by slip-casting. 

The obtained material is non-cytotoxic and facilitates cell proliferation. Similar results were achieved 

by Lemos and Ferreira7, who fabricated macroporous CaCO3 by starch consolidation and assessed its 

accentuated bioactivity. Porous CaCO3 microparticles were also used by Sukhorukov et al.10 as a 

template for encapsulation of bioactive compounds, exploiting the complete biodegradability of 

CaCO3. Moreover, Fujita et al.9 performed in vivo tests in rabbit tibiae to assess the CaCO3 bone 

bonding ability, showing an adequate strength of bonding. So, CaCO3 is an interesting alternative not 

only to natural coralline aragonite, but also to calcium phosphate ceramics in general. 

Further experiences are reported in literature about the synthesis of porous calcite microspheres. 

For instance, hollow CaCO3 microspheres have been produced starting from water-soluble NaCl 

cores, covered with Ca(OH)2 by granulation11. The external shell was later converted from Ca(OH)2 to 

CaCO3 by carbonation through a stream of CO2 saturated with water vapour, whereas the cores were 

solubilised. Otherwise, hierarchically porous CaCO3 microspheres have been fabricated by a 

precipitation reaction of CaCO3 in the presence of polystyrene-alt-maleic acid (PSMA) as a crystal 

modifier, starting from a solution of Na2CO3 and CaCl2
12. 

Considering that cancellous bone has a fully interconnected porous structure, a good bone 

substitute needs a specific morphology, besides a suitable composition. Therefore, porous materials 

are of course preferable. Calcite foams have already been fabricated by replica, starting from 

polyurethane (PU) templates dipped into a slurry of Ca(OH)2 and distilled water13. Once infiltrated, 

the foams have been thermally treated to burn out PU and they have been subsequently exposed to 

a CO2 atmosphere to get the carbonation of Ca(OH)2 in CaCO3. Though effective, this method could 

be simplified using a slurry directly containing calcite, instead of starting with a calcite precursor and 

then converting it into calcite; anyway, the authors reported to have failed using a calcite slurry, 

because the foams could not keep their structure after sintering. 

In the present study, a technologically advanced method is proposed to fabricate calcite scaffolds 

with highly ordered open porosity. In particular, we refer to the robocasting of a preceramic paste. 

This technique relies on direct-writing a continuous ink filament in a layer-by-layer build sequence. 

The 3-D printable ink was obtained from a solid preceramic polymer (giving SiO2 in an amount of 35 
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wt% of the final ceramic), dissolved in isopropanol and mixed with powdered CaCO3 (65 wt%). The 

polymer-derived-ceramic approach easily allowed the realization of a material which can be 

considered as a sort of “silica-bonded calcite”, in the sense that CaCO3 is bound by amorphous silica, 

originated by the thermo-oxidative decomposition of the polymer14 at a particularly low temperature 

(600 °C). At the same time, this synthesis methodology was successfully coupled with the most 

revolutionary building technique developed in the last years, i.e. the direct 3-D printing. Scaffolds 

showed a good mechanical behaviour in compression mode and an extensive open porosity, besides 

extremely pronounced biological properties, being able to stimulate the cells proliferation when 

cultured with bone marrow stromal cells for 2 weeks. The results will be submitted soon for 

publication. 

 

9.2 Experimental 

9.2.1 Preparation of scaffolds 

A commercial polymethylsiloxane, SILRES® MK (Wacker-Chemie GmbH, München, Germany), 

known to have a silica yield of 84 wt% after thermal decomposition in air15, was used for the 

fabrication of the preceramic ink. The required amount of silica (35 wt% of the final ceramic) was 

obtained from two contributions, that is 10 wt% from nano-sized silica (fumed silica, Aerosil R106, 

Evonik Germany) and 90 wt% from the above silicone, in order to positively modify the rheological 

properties of the slurry16,17. All the 3-D printing operations were carried out in collaboration with Mr. 

Hamada Elsayed (University of Padova). 

Fumed silica powders were wet mixed with MK in isopropanol (8 ml for 16 g of silica precursors) 

by means of a ball mill (60 min at 100 rpm, Pulverisette 7 planetary planetary ball mill, Fritsch, Idar-

Oberstein, Germany). CaCO3 micro-sized powders (<10 μm, Industrie Bitossi, Italy) were 

subsequently incorporated into the polymer and again mixed (4 h at 400 rpm), to obtain a perfectly 

homogenous suspension with very fine fillers and no trace of powder aggregates. The achievement 

of such properties was strictly necessary for the direct ink writing, due to the need to avoid clogging 

throughout the printing step and to have continuity in the fluid flow through the nozzle.  

A Power WASP orienting extruder (Massa Lombarda, Italy), expressly equipped with a syringe to 

print silicones pastes incorporating fillers, was used to print the preceramic ink. The syringe of the 

feeding system was filled with the preceramic paste and scaffolds were later printed with conical 

nozzle (with a diameter of 0.41 mm, Nordson EFD, Westlake, Ohio) immersed in vegetal oil, thus 

preventing the premature drying of the solvent, that would have affected the viscosity of the ink. The 

configuration of the printing system and the final result have been reported in Fig. 4.2 in §4.2.6. 

Following the CAD file, scaffolds were in the form of prisms with dimensions 15 mm x 5 mm x 5 

mm, as resulting from the overlapping of cylindrical rod, periodically arranged along x and y axes. The 

rods were in a stacking density of 11 rod/cm on the x-y plane, and the distance between the 

longitudinal axes of adjacent rods was of 1 mm. Two different designs were considered for the 

scaffolds, with a distinction regarding the spacing between adjacent rods along the z axis: the spacing 

was set at 350 μm for samples later referred to as “t-1” design and 300 μm for “t-2” design. 

After removal from the oil, printed scaffolds were cross-linked at 350 °C, with a heating rate of 0.5 

°C/min and dwelling time of 1 h, prior to ceramization at 600 °C (same heating rate and dwelling time 

as the cross-linking treatment). This relatively low temperature was selected with the aim of getting 

the thermo-oxidative decomposition of silicone into amorphous silica14, without affecting the 

stability of calcite. 
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9.2.2 Characterization of scaffolds 

Micro-structural characterizations were performed by optical stereomicroscopy (AxioCam ERc 5s 

Microscope Camera, Carl Zeiss Microscopy, Thornwood, New York, US), scanning electron 

microscopy (FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with EDS and X-ray 

diffraction (XRD; Bruker AXS D8 Advance, Bruker, Germany - CuKα radiation, 0.15418 nm, 40 kV-40 

mA, 2θ=20-70 °, step size=0.05 °, 2s counting time). The Match! software package (Crystal Impact 

GbR, Bonn, Germany) was used for phase identification, supported by data from PDF-2 database 

(ICDD-International Centre for Diffraction Data, Newtown Square, PA, USA). 

The bulk density (ρb) of the foams was determined using a caliper and a digital balance. The 

skeletal density (ρs) was measured on foams, using a He gas pycnometer (Micromeritics AccuPyc 

1330, Norcross, GA), while the true density (ρt) of the material was measured on very finely ground 

powders of scaffolds. The percentage of porosity (%P) was then calculated using the following 

equation: %P=1-(ρb/ρs).  

Selected scaffold structures were subjected to mechanical characterization in compression mode 

at room temperature, using an Instron 1121 UTM (Instron Danvers, MA, USA) with a cross-head 

speed of 1 mm/min. Each data point is presented as the mean value of five to ten samples.  

9.2.3 Biological tests 

Scaffolds of 100 mg were immersed in 25 ml of simulated body fluid (SBF) and maintained in a 

controlled environmental chamber at at 37 °C. The solution was refreshed every 2 days and the pH of 

the SBF was measured to monitor the pH variation induced by the samples. All the experiments were 

done in triplicate.  

After 1, 3, 7 and 14 days, the samples were removed from the solution, immediately rinsed with 

distilled water and then dried at room temperature for 24 hours, before being characterized by SEM 

imaging (Quanta 2000; FEI Co., Eindhoven, the Netherlands). In addition, a local chemical analysis 

was carried out by X-ray Energy Dispersion Spectroscopy (Inca; Oxford Instruments, 

Buckinghamshire, U.K.). The chemical nature of the precipitated HCA was also investigated by means 

of Micro-Raman spectroscopy (Horiba Jobin-Yvon, Villeneuve d'Ascq, France). A 632.8 nm diode laser 

with an output power of 20 mW without any filter was employed. The laser was focused on the 

scaffolds’ surface by means of 50x and 100x objectives.  

Samples of around 200 mg were also seeded with bone marrow stromal cells for 14 days and 

cultivated in α-MEM supplemented with 50 mg/ml ascorbic acid, 100 nM dexamethasone and 10 

mM b-glycerophosphate for osteogenic stimulation. Cells were suspended in basal media at a 

concentration of 100.000 cells/ml before being seeded. 

The biological tests were performed thanks to a collaboration with Prof. V. Cannillo’s group 

(University of Modena and Reggio Emilia, Italy) and with Prof. A. Boccaccini’s group (University of 

Erlangen-Nuremberg, Germany). 

 

9.3 Results 

9.3.1 Characterization of scaffolds 

The morphological structure of 3-D printed samples was highly regular, as visible in Fig. 9.1. The 

open porosity was geometrically ordered and interconnected in all 3 dimensions (Fig. 9.1a-c). 

Although the diameter of the nozzle was of 410 μm, the rods were approximately 450 μm in 

diameter as printed. This was obviously due to the radial expansion of the extrudate occurring when 

the material leaves the nozzle, caused by the abrupt drop of temperature and pressure. Anyway, 
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after ceramization, the diameter of the rods decreased to approximately 400 μm, due to the 

shrinkage which usually accompanies the polymer-to-ceramic conversion of preceramic polymers14.  

 

 

 
Fig. 9.1 Morphology of 3-D printed scaffolds after ceramization:  a) t-1 top view; b) t-1 side view; 

 c) t-2 side view; d) high magnification detail of a rod fracture surface. 

 

For t-1 and t-2 designs, the overall morphology was identical, except for the spacing along the z 

axis (Fig. 9.1b-c). As previously mentioned, the spaces between adjacent rods were of 350 μm along 

the z axis for t-1 design and 300 μm for t-2 design. The reduction of the space along the z axes 

resulted in a higher mutual interfusion between adjacent layers of rods in t-2 samples, with an 

increase in the contact area at the joints. Furthermore, in t-2 samples the rods were affected by 

structural sagging, in comparison to perfectly linear rod deposition observed for t-1 samples (Fig. 

9.1b-c). 

The final spacing between adjacent rods on the x-y plane was of approximately 500 μm. This pore 

size fits well with the requirements for a scaffold for bone tissue engineering. Hulbert et al.18, in fact, 

recommended a minimum pore diameter of 100 μm in their early work, but more recent studies 

have shown better osteogenesis for implants with pores greater than 300 μm19-21.  

 

 
Fig. 9.2 SEM images of t-1 scaffolds after ceramization: a) top view, b) higher magnification detail. 
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The higher magnification detail in Fig. 9.1d reveals that the cross-section of the rods did not 

contain defects; on the contrary, some microcracks were present on the surface of rods, as shown by 

Fig. 9.2a-b, for both designs. The cracks might be reasonably correlated with both the shrinkage of 

the material and the release of gaseous products throughout the thermo-oxidative decomposition of 

the silicone, while converting into a ceramic material. Crack generation is typically observed 

especially in dense polymer-derived-ceramic components, since the elimination of gases can cause 

local pressure accumulation phenomena14. 

 

Tab. 9.1 Summary of physical and mechanical properties of printed scaffolds after ceramization.  

Type of  

geometry 

ρbulk 

(g/cm
3
) 

ρskeleton 

(g/cm
3
) 

ρtrue 

(g/cm
3
) 

Popen 

(%) 

σcomp 

(MPa) 

t-1 0.93 ± 0.04 2.56 ± 0.01 2.57 ± 0.01 64 2.9 ± 0.7 

t-2 1.07 ± 0.02 2.43 ± 0.04 2.57 ± 0.01 56 5.5 ± 0.3 

 

 

 
Fig. 9.3 X-ray diffraction patterns of printed scaffolds, after ceramization at 600 °C. 

 

The fact that the cracks were not visible in the cross-section, but only on the surface, suggests 

that the mechanical properties of the printed scaffolds could not be considerably degraded. This is 

confirmed by Tab. 9.1, where it is reported a compressive strength (σcomp) of about 2.9 ± 0.7 MPa for 

t-1 samples and 5.5 ± 0.3 MPa for t-2 ones. These values are in line with the compressive strength of 

natural trabecular bone, which is reported to be in the 2-12 MPa22 range. In particular, for t-2 

samples, the standard deviation is quite low, as a proof of high sample reproducibility and more 

reliable values. The increase in σcomp for t-2 samples compared to t-1 might be explained by several 

factors. First, it could be correlated with the decrease in open porosity (Popen), which was calculated 
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to be 64 % for t-1 and 56 % for t-2. Then, as already highlighted, rods in t-2 samples had a higher 

contact area at the joints, due to a higher mutual interfusion between adjacent layers of rods. Finally, 

the reduced voids in the cross-section could limit buckling phenomena. A summary of density and 

porosity values is also presented in Tab. 9.1. The similarity between skeleton and true density (ρskeleton 

and ρtrue respectively) is an indicator of a total lack of closed porosity. 

The X-ray diffraction patterns presented in Fig. 9.3 demonstrate that the thermal treatment at 

600 °C of silicone mixed with powdered CaCO3 was effective in maintaining calcite unreacted, while 

the polymer transformed into silica. In fact, a perfect overlapping between the experimental and the 

reference pattern of calcite (CaCO3 – PDF#85-0849) can be observed, and no other peak appears. 

Silica (SiO2), resulting from the polymer-to-ceramic conversion of silicone, is obviously not visible 

in the pattern, due to its amorphous nature14. As a final remark on the microstructure, Fig. 9.4 

demonstrates that both calcium (Ca) and silicon (Si) concentration were practically uniform along the 

cross-section of rods, so that the calcite filler can be considered to be homogeneously distributed. 

 

 
Fig. 9.4 Semi-quantitative SEM-EDS: Ca and Si concentration profiles along the line in a rod cross-section.  

 

9.3.2 Bioactivity tests 

One of the main features of bioactive materials is the ability to form an hydroxyapatite-like layer 

on their surfaces when in contact with physiological fluids in vivo or with simulated body fluids (SBF) 

in vitro, i.e. an acellular solution with inorganic ion concentrations similar to those of the human 

extracellular fluid. This hydroxyapatite layer appears to be associated with bioactivity and it is 

considered as responsible for the bonding of bioactive ceramics to the host bone. Thereby, the in 

vitro bioactivity, is considered as a fundamental prerequisite for an in vivo biointegration of the 

implant. However, such tests should be considered with great caution. In fact in vitro assays are too 

simple to simulate the real physiological context, which is intrinsically dynamic and includes vitamins, 

proteins and in particular growth factors, lipids, cells and so forth; so, SBF tests are rather intended 

to offer a relatively cheap and easy tool to mimic the inorganic reactions which are expected to take 

place after the implantation of the material. For these reasons, although the apatite formation in SBF 

is usually considered as an important prerequisite for the subsequent in vivo osseointegration, 

however the assessment of  the biological responsiveness needs further experimental steps, such as 

cytotoxicity and genotoxicity assays23. 

After 7 days in SBF it was possible to locally identify, on the samples surface, several globular 

precipitates with the typical HAp morphology. The precipitation of a HAp film can be easily confirmed 

by means of Raman spectroscopy, due to the high intensity of the Raman peaks related to P–O 

vibration modes, when apatite nucleation begins. Moreover, since the C–O vibrational modes, which 
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are associate to a carbonate group, are expected to be very active in Raman spectroscopy, it is 

possible to study in greater detail the nature of the in vitro grown HA, which is usually carbonated. 

Raman spectra were acquired on samples immersed in SBF for different times are reported in Fig. 

9.5a. The spectra seemed to evolve with increasing soaking times and become similar to that of HAp, 

apart from local fluctuations.  

 

 
Fig. 9.5 Raman spectra of samples immersed in SBF for different times,  

in comparison with HAp powders taken as a reference (upper pattern). 

 

The strong peak at 950 cm-1 corresponds to the symmetric stretching of the (PO4)
3- groups of HAp, 

as well as the two peaks at about 430 cm-1 and 590 cm-1, which can be ascribed to the ν2 (bend, 

asymmetric stretch) and ν4 (bend, asymmetric stretch) modes of the (PO4)
3- groups of HAp24,25. These 

peaks (arrows in Fig. 9.5b) were found to become stronger for increasing times of immersion, 

confirming the precipitation of an increased amount of HAp with time.  

Concerning the intense sharp Raman band at about 1085 cm-1, it can be assigned to the ν1 (CO3)
2- 

symmetric stretching vibration. Obviously, this cannot be a selective indication of the presence of 

carbonate apatite (HCA), in fact carbonate groups could belong to both CaCO3 and HCA. Other 

relatively strong Raman bands at about 713 cm-1 and 280 cm-1 can be assigned to calcite as well26-27. 

The produced scaffolds look rather promising in terms of pH variation induced in SBF. In this 

sense, the pH value was  between 7.4 and 7.6 throughout the process, thus indicating a slow ion 

leaching. Values between 7.4 and 8 can be considered optimal for osteoblast adhesion and 

proliferation. 

9.3.3 Cell culture test 

After 14 days of cell culture, the attachment of the cells to the scaffolds, the cell morphology and 

the formation of cell matrix were investigated by SEM imaging. The images are reported in Fig. 

9.6a,b,c. Cells spread across the surface of the struts, exhibiting elongated profiles, and colonized the 

3-D architecture of the scaffolds. Cells were also found to form Ca-phosphates precipitates, 

confirming that mineralization occurred. 
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The same conclusions can be drawn from the fluorescence staining reported in Fig. 9.6d, showing 

the homogeneous cell growth on the samples. 

 

 
Fig. 9.6 SEM micrographs of MC3T3 cells following culture on the scaffolds for 14 days: a) detail of a strut; b-c) higher 

magnification; d) live/dead fluorescence staining (red=cytoskeleton, blue=nuclei; green=mineralization). 

 

9.4 Conclusions 
Silica-bonded calcite has been successfully fabricated by direct 3D printing of silicone/calcite 

pastes. The printed scaffolds were cross-linked prior to ceramization, resulting in ceramic 

components made of calcite surrounded by binding phase of amorphous silica.  

The decomposition of calcite was prevented by the adoption of a temperature of polymer-to-

ceramic conversion far lower than usual for silicone-derived ceramics.  

The samples exhibited a highly ordered and interconnected porosity of 56-64 % and a good 

mechanical behaviour, with a compressive strength of 2.9-5.5 MPa, in good agreements with the 

requirements of porosity and mechanical strength for scaffold to be used in actual tissue engineering 

experiments. 

Concerning the biological properties, the printed samples were subjected to dissolution study in 

SBF and cell culture study with bone marrow stromal cells. They showed good bioactivity and very 

pronounced ability to stimulate cell adhesion and proliferation on the scaffolds surface. 

In the light of these encouraging results, 3D printed silica-bonded calcite samples derived from 

preceramic polymers and fillers are expected to be suitable candidates for bone tissue engineering 

applications. 

 Further biological analyses will certainly be performed to assess if the scaffolds can also stimulate 

cell differentiation and gene expression. 
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Introduction 
 

The deep knowledge and expertise gained in the silicone/fillers systems could also be applied for 

synthesizing further silicate formulations for different applications, in the lights of the following 

observations: 

- multifunctionality of silicates; 

- analogies in the crystalline structure; 

- analogies in synthesis process; 

- multifunctionality of fillers. 

First, one of the most peculiar characteristics of specific silicates, such as forsterite (Mg2SiO4) or 

hardystonite (Ca2ZnSi2O7), is that they are multifunctional. In fact, besides pronounced biological 

properties which make them suitable as biomaterials, as reported in literature1,2, they also exhibit 

other properties. In particular, forsterite is known to be a dielectric material, whereas hardystonite 

may be used as a phosphor (bluish-violet emission).  

The biocompatibility of a polymer-derived forsterite coating on hydroxyapatite foams was 

assessed in 2012 (in the framework of “Progetto Vigoni”) with preliminary investigations, but the 

tests did not succeed, possibly due to the presence of residual MgO agglomerates in the material, 

negatively affecting the pH when immersing forsterite in Millipore water. For this reason, biomedical 

applications of polymer-derived forsterite were abandoned in favour of its dielectric applications. In 

this case, MgO residual phase was suppressed by means of the incorporation of TiO2: when using 

micro-sized TiO2, it reacted with MgO giving Mg-titanates; when using nano-sized TiO2, it reacted 

with pure forsterite, which transformed into a forsterite solid solution with Ti4+ replacing Si4+ ions.  

Forsterite and its above-mentioned modifications showed interesting dielectric properties 3 , 

especially in terms of low dielectric losses, and they will be shown in §10.  

A second connection between the applications of silicates in bone replacing and in other fields is 

offered by the analogy in the crystalline structure of silicates belonging to the same family. For 

instance, akermanite (Ca2MgSi2O7), hardystonite and gehlenite (Ca2Al(AiSi)O7) are all classified as 

melilites, which are sorosilicates. Melilites are not only good biosilicates, as in the case of akermanite 

and hardystonite, but they also are interesting host matrices for rare-earth ions (RE). 

Their general formula is X2T1(T2)2O7, possessing a structure that can be described as consisting of 

T22O7 dimers (T2=Si, Al, etc.) connected via T1 cations (Mg, Zn, etc.) in tetrahedra to form a sheet-like 

arrangement4. These sheets are linked together by large cations X (Ca, Sr, Ba, etc.) occupying 

octahedral sites, as already explained in §6.2.  

RE have been widely studied due to the distinctive optical properties of the materials in which 

they are inserted as dopants (in fact the size of RE ions is similar to that of alkali earth metals). On 

the one hand, akermanite and hardystonite might be doped with bivalent phosphor activators, such 

as Eu2+, which are difficult to achieve by reduction of Eu3+ upon high temperature synthesis 

processes. On the other hand, trivalent ions could be hosted in their crystalline structure, but the 

charge variation induced would be compensated by the creation of vacancies, with a dramatic 

decrease of luminescence, because of the non-radiative nature of the transitions to a vacancy. 

Instead, we can refer to a “compensable system”, such as the crystal structure of gehlenite. 

Gehlenite (Ca2Al(AiSi)O7) has a stechiometry of T2 sites of 50 % Al – 50 % Si, being Al ions 

accommodated in all the T1 sites and in half of the T2 sites. Therefore, gehlenite can easily 

incorporate trivalent ions when partially replacing Si4+ with Al3+ ions, thus adopting a formulation 
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allowing charge compensation (Ca2-2xEu2x(Al1+2xSi1-2x)O7 with x=0.07)5. Eu-doped polymer-derived 

gehlenite ceramics6 exhibiting strong optical properties will be shown in §13. 

A third aspect which can connect silicates for different applications is the analogy in the synthesis 

process, which enable the transfer of the approach for the synthesis of biosilicates to other 

formulations. For instance, it has been shown in §5.1 that sodium borate (Na2B4O7·10H2O) can be 

incorporated in the silicone-based mixtures in low amount as a foaming agent, but also as a 

mineralizing filler. In fact, it provides a borate liquid phase upon firing, thus promoting the ionic 

interdiffusion and facilitating the formation of the desired silicate phases, and then, after cooling at 

room temperature, it remains as a glass phase. By this way, the crystal phases are surrounded by an 

intergranular glass matrix, resulting in a glass-ceramic product. 

The same approach has been used for synthesizing a Eu-doped polymer-derived glass-ceramic 

with luminescent properties7, incorporating a B2O3 precursor (boric acid) in a higher amount than in 

the previous experiences. In this case, B2O3 was not intended to represent simply a flux, but it was 

specifically designed to react with lanthanum oxide (La2O3), thus forming one of the host crystalline 

phases for Eu ions, besides its participation in the surrounding glass matrix. These results will be 

discussed in depth in §12.  

Finally, the same fillers already discussed in the previous section can still be used by virtue of their 

multifunctionality, such as magnesium hydroxide (Mg(OH)2), sodium phosphate dibasic heptahydrate 

(Na2HPO4∙7H2O), sodium borate (Na2B4O7·10H2O). They have been extensively shown to be helpful in 

the fillers/silicones mixtures as foaming agents, thanks to their water release upon heating, and as 

oxide precursors. This feature has also been exploited for the synthesis of porous cordierite 

(Mg2Al4Si5O18), starting from silicone-based mixtures incorporating alumina (Al2O3) and Mg(OH)2. 

Cordierite is an appreciated silicate in the field of catalytic converters and particulate filters for diesel 

engines and, in general, for components subjected to severe thermal gradients. Polymer-derived 

cordierite ceramics8 have shown mechanical and physical properties in good agreement with those 

reported in literature and will be discussed in §11. 
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10 Forsterite ceramics 

10.1 Introduction 
The present chapter aims at exploring the production of forsterite, Mg2SiO4 (or 2MgO∙SiO2), from 

preceramic polymers incorporating MgO nanoparticles. This silicate is particularly appreciated for 

submillimetric-wave applications (telecommunication and radar systems, from ultra-high speed LAN 

to car anti-collision devices, dielectric resonators and filters), due to its low dielectric losses when 

operating with high-frequency electromagnetic waves1-3. 

The technology of “oxide-filled silicones” is intended for many applications, both structural (e.g. 

refractory components, thermal barrier coatings)4,5 and functional (bioactive scaffolds, inorganic 

phosphors)5,6. Except for mullite, well-known to be an excellent substrate material in high-

performance packaging applications7, no specific investigation has been so far dedicated to silicate 

dielectrics produced by this approach. Dielectric applications, however, can benefit from the 

distinctive advantage of preceramic polymers, that is the possibility to shape components in the 

polymeric form using plastic forming technologies, such as warm pressing, extrusion, injection 

molding, foaming, machining, fused deposition and 3-D printing, before ceramic conversion4. 

According to this approach, nano-sized particles act as active fillers, directly reacting with the 

amorphous silica, deriving from the oxidative decomposition of the silicone resins. The contribution 

of micro-sized particles is less straightforward, since they are much less reactive. It should be noted, 

however, that also passive (i.e. not reactive) fillers could be useful because they dilute the 

preceramic polymer, as secondary unreactive phases, and consequently decrease the amount of gas 

evolved and the associated shrinkage that generates during the polymer-to-ceramic transformation, 

in turn favoring the manufacturing of samples free from macroscopic cracks4.  

Forsterite possesses a poor solid-state sinterability2, in analogy with mullite, but with 

additional difficulties associated to the possible presence of impurities, such as unreacted MgO 

and Mg-silicates with different MgO/SiO2 molar ratio, e.g. polymorphic variants of enstatite 

(MgSiO3, or MgO∙SiO2), known to affect negatively both sinterability and dielectric losses 3. The 

control of impurities, in forsterite ceramics, relies basically on the adoption of non-stoichiometric  

formulations, e.g. associated to MgO/SiO2 molar ratios higher than 2, or on the introduction of 

further components, such as TiO2, leading to forsterite solid solutions (Ti4+ ions replacing Si4+ 

ions, according to the general formula Mg2Si1-xTixO4)3,8. Titania, when not incorporated in 

forsterite or in further compounds (Mg-titanates),8 is useful also for modifying the dielectric 

properties of forsterite-based ceramics, with forsterite/rutile composites typically exhibiting an 

improved temperature coefficient of resonant frequency (τ f)
1.  

The multiform impact of TiO2 on forsterite ceramics was considered as a great challenge for 

the polymer-based approach, with micro-sized powders (passive) introduced as secondary phase 

or with nano-sized powders (reactive) added to form solid solutions. 

Although densification of forsterite-based ceramics was not optimized in this work, mainly due to 

the very low temperatures adopted (not exceeding 1100 °C), the polymer-based approach was 

effective in controlling the phase development and leading to materials with very promising 

dielectric properties. 

The results of this investigation were published in 2014 by Bernardo et al.9. 
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10.2 Experimental 

10.2.1 Preparation of samples 

A commercially available solid silicone resin, Silres MK (Wacker-Chemie GmbH, Munich, 

Germany), was used as silica source. The polymer was first dissolved in isopropanol and then mixed 

with MgO nanoparticles (Inframat Advanced Materials, Manchester, CT, USA, 30 nm). The weight 

balance among constituents followed the stoichiometric SiO2/MgO molar proportions of forsterite 

(i.e. SiO2/MgO=1/2), considering the ceramic yield of MK (84 %, i.e. 84 g of silica are obtained from 

100 g of polymer after heating in air to high temperature)6. Selected additional formulations were 

moreover tested, comprising also a different liquid preceramic polymer, Silres H62C (Wacker-

Chemie GmbH, Munich, Germany) and secondary fillers. The second polymer was used to replace 

50% of the total silica content deriving from the MK polymer (considering the lower ceramic yield of 

H62C, equal to 0.58, the two polymers were used in the weight ratio of H62C/MK=0.84/0.58=1.45). 

The secondary fillers consisted of TiO2, in form of both micro- and nano- sized particles (m-TiO2, 0.8 

µm mean particle size, Industrie Bitossi, Vinci, Italy, and n-TiO2, 13 nm mean particle size, VP P90, 

Evonik Industries AG, respectively). Isopropanol was used as solvent/dispersant, in an amount of  20 

ml for for 10 g of starting materials. 

The mixing was performed under magnetic stirring, followed by sonication for 10 min, which 

allowed to obtain stable and homogeneous dispersions, later cast in large glass containers and left to 

dry overnight at 80 °C in air. The mixtures comprising the H62C silicone were additionally heated also 

at 250 °C for 30 min, in order to favour the cross-linking of the polymer, in analogy with previous 

experiences10. The resulting silicone/filler composites were then manually ground into fine powders 

by pestle and mortar, subsequently cold-pressed in a cylindrical steel die (40 MPa for 2 min), without 

using any binder. Disc specimens with a diameter of 20 mm and thickness of approximately 1 mm 

were obtained and heat treated at 800-1100 °C for 1-3 h, with a heating rate of 2 °C/min. 

10.2.2 Characterization of samples 

The bulk density of the discs was determined by means of the Archimedes’ method, using water 

as the buoyancy medium.  

Microstructural characterizations were performed by scanning electron microscopy (FEI Quanta 

200 ESEM, Eindhoven, The Netherlands) equipped with EDS and by X-ray diffraction (Bruker AXS D8 

Advance, Karlsruhe, Germany), supported by data from PDF-2 database (ICDD-International Centre 

for Diffraction Data, Newtown Square, PA) and Match! program package (Crystal Impact GbR, Bonn, 

Germany). 

Dielectric spectra of selected samples were obtained by Prof. V. Di Noto’s group (Department of 

Chemical Sciences, University of Padova). Spectra were collected from 0.01 to 107 Hz using an Alpha-

A analyser (Novocontrol Technologies GmbH, Hundsangen, Germany) and from 103 Hz to 21010 Hz 

with a E5071C network analyser and a high temperature coaxial probe coupled with an electronic 

calibration module (ECal) (Agilent Technologies Inc., Santa Clara CA, USA) as described elsewhere11.   

 

10.3 Results 
Fig. 10.1 illustrates the phase evolution of MK/nano-MgO mixtures. We can observe that, 

operating with a constant holding time of 1h (Fig. 10.1a), the mixtures were particularly reactive: the 

desired phase (Mg2SiO4, PDF#87-0061) is well recognizable at 900°C, with traces already visible even 

for firing at a lower temperature (800 °C), i.e. just above the temperatures at which silicones finish 

undergoing the thermal polymer-to-ceramic conversion (for clarity, the symbols for forsterite are 

reported only on the patterns of samples fired at 800 °C and 1100 °C). 800 °C can be actually 
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considered as the onset of forsterite formation, on the basis of Fig. 10.1b: indeed, the intensity of 

forsterite peaks, weak for 1 h, had a dramatic increase for 3 h at the same temperature. Fig. 10.1c 

reports the data for a sample optimized in terms of phase purity: the diffraction peaks are well 

aligned to those of the reference forsterite pattern, except for minor traces attributed to unreacted 

MgO (periclase, PDF#87-0653) and enstatite (MgSiO3, PDF#19-0768). 

 

 

 
Fig. 10.1  Phase evolution of ceramics from MK/nano-sized MgO mixtures fired at different temperatures:                                                                                              

a) 1 h holding time, b) 3 h holding time, c) phase identification for the sample with optimized phase purity (3 h - 1100 °C). 

 

Fig. 10.2a provides a further evidence of the presence of un-reacted MgO, as a function of both 

firing temperature and holding time. The most significant decreases in intensity of the main 

diffraction peak (expressed in total counts), a rough index of the quantity of MgO, occurred passing 

from 800 to 900 °C, for a holding time of 1 h, i.e. at the onset of forsterite formation. The intensity 

was always decreasing, with increasing temperature and time, as a proof of the progressive, but not 

complete, dissolution of MgO. A possible explanation could be the same observed high reactivity of 

constituents. Forsterite, formed at low temperature, likely delayed further dissolution due to the 

characteristic poor interdiffusion of silicates12. This poor interdiffusion could also be the cause of the 

presence of a minor enstatite contamination, deriving from local fluctuations of the MgO/SiO2 ratio.  

The density of MK-derived forsterite ceramics had a quite peculiar evolution, as shown in Fig. 

10.2b. For a holding time of 1 h, the density was almost stationary, up to 1000 °C, then exhibited a 

significant increase.  For longer thermal treatments, there is an almost linear increase of density, 

with increasing temperature. The large data scatter does not allow the application of any reasonable 

model; we can only observe that the maximum values are far below the theoretical density of 

forsterite (3.2 g/cm3)13. 
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Fig. 10.2 Evolution of the intensity of the main diffraction peak for MgO (a) and of the bulk density (b),  
for silicone/nano-sized MgO mixtures, with increasing firing temperature and different holding time. 

 

Fig. 10.3 provides some microstructural details about the ceramic sample exhibiting the highest 

phase purity, i.e. that fired at 1100 °C, for 3 h. We can observe, in Fig. 10.3a, a number of 

macrocracks around dense fragments, that could justify the large scatter of density data (evaluated 

by means of the Archimedes’ method, i.e. by immersion in water, that could penetrate in the cracks). 

The higher magnification view, Fig. 10.3b, shows that the fragments were not actually dense, but 

contained a lot of submicron pores (dark dots); forsterite crystals (lighter zones) were sub-

micrometric as well. The cracks could be due, in our opinion, to the intensive crystallization occurring 

already at low temperature; since no viscous flow could be provided by the ceramic residue of 

silicone oxidation (pure amorphous silica), the volumetric changes associated to both ceramic 

conversion and forsterite crystallization could not be accommodated, with the development of 

internal stresses and residual porosity.  

 

 

 
Fig. 10.3  Microstructural details (fracture surfaces) of a ceramic sample from MK polymer (firing at 1100 °C, for 3h). 

 

The cracking of forsterite monoliths and the presence of some residual undesirable phases, such 

as MgO and enstatite, led us to produce a second generation of samples (see Tab. 10.1), derived 

from MK mixed with H62C and also with additional fillers. As pointed out for recently presented 

polymer-derived cordierite ceramics10, several factors may justify the increase of compactness 

obtained when substituting part of MK by H62C; they include the reduction of the gas release during 

polymer cross-linking, due to different cross-linking reactions occurring in the two polymers; the 
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application of a cross-linking step (30 min at 250 °C) before powder compaction, which involves a 

certain degree of shrinkage that is consequently absent in the subsequent pyrolysis; the different 

molecular structure of the polymeric precursors, which could generate a silica matrix with different 

features, e.g. network connectivity and number of defects, and thus with a different ability to relax 

structural rearrangements and eliminate gases during the pyrolysis step, without local pressure 

accumulation phenomena. 

 

Tab. 10.1 Summary of formulations for refined forsterite-based ceramics (fired at 1100 °C, for 3h). 

Samples 
Components Density  

(g/cm
3
) MK H62C n-MgO m-TiO2 n-TiO2 

Pure forsterite, polymer mix (F) x x x   2.76 ± 0.03 

Composite (FT) x x x x[25 wt%]  2.93 ± 0.03 

Forsterite solid solution (FSS) x x x  x 2.78 ± 0.03 

 

 

Un-cracked samples were indeed obtained from mixtures in which 50% of the silica was provided 

by the oxidation of each polymer, MK and H62C. However, as shown by the diffraction pattern in Fig. 

10.4 (lower spectrum), this improvement had a major drawback in the enhanced intensity of the 

peaks of unwanted phases, such as periclase and enstatite. The presence of MgO is quite surprising, 

since H62C, known for its linear polymer chains14, was expected to provide relatively shorter siloxanic 

fragments upon thermal decomposition, compared to MK, possessing a much more complicated 

network structure15. Such shorter fragments were thought to react easily with nano-sized MgO, 

favoring its dissolution, contrary to what experimentally found. A possible explanation could be the 

possible formation of MgO-defective forsterite instead of stoichiometric forsterite, at low 

temperature. 

Periclase was eliminated by the introduction of m-TiO2 used, as in the highly efficient dielectrics 

presented by Ohsato et al.1, in an amount of 25 wt% (referred to the weight of the ceramic product). 

Micro-sized titania, as testified by Fig. 10.4 (central spectrum), was not actually an inert filler. In fact, 

we could detect the presence of rutile (PDF#21-1276), i.e. pure titania (m-TiO2 was in the anatase 

form, known to transform into rutile upon heating), as well as Mg-titanates, due to the reaction 

between fillers. The main titanate phase corresponded to a Mg-Ti spinel (MgTi2O5, PDF#82-1125), 

with MgTiO3 (PDF#79-0831) in minor traces. Enstatite was still present, reasonably favored by the 

decrease of the MgO/SiO2 ratio associated with the MgO-TiO2 interaction. Some microstructural 

details concerning this forsterite/titania composite (FT sample) are shown in Fig. 10.5. In analogy 

with the sample without TiO2 (not shown for the sake of brevity), there was no evidence of macro-

cracks (see Fig. 10.5). As shown by the high magnification detail of a polished surface (Fig. 10.5b), 

there are some micropores (black spots) – consistent with a still limited density value (2.93 g/cm3)  – 

surrounded by a multitude of micro-crystals. The lighter dots are associated to concentrations of Ti 

(the heaviest element, associated to a light color in backscattered imaging), in rutile and titanate 

crystals. The darkest areas, on the contrary, were found to be rich in Mg (from EDS analysis). This 

particular distribution is thought to be developed upon drying of polymer suspensions: a 

precipitation of heavier filler particles (titania micro-filler) could occur, leading to the formation of 

silicone powders in which the filler content is not homogeneous. A similar problem occurred with 

wollastonite ceramics, when developed from MK and micro-sized CaCO3
4, and it has been recently 

solved by adopting melt mixing, i.e. mixing MK and fillers in a polymer extruder, assisted by 

supercritical carbon dioxide16. This refined mixing strategy will then be applied also to forsterite 

ceramics in future investigations.  
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Fig. 10.4  X-ray diffraction patterns of refined polymer-derived forsterite-based ceramics (fired at 1100°C, for 3 h). 

 

A further development was associated to the use of nano-sized titania (n- TiO2) in order to form 

a forsterite solid solution, with TiO2 partially replacing SiO2 (10% mol., expressed by the formula 

Mg2Si0.9Ti0.1O4). Contrary to the addition of m-TiO2, the addition was obviously accompanied by 

changes in the MgO/SiO2 molar ratio (from MgO/SiO2=2 to MgO/(SiO2+TiO2)=2). In Fig. 10.4 (upper 

spectrum, sample FSS) the peaks associated to forsterite are accompanied only by weak traces of 

rutile (PDF#87-0710), from unreacted titania, and MgTiO3. Both undesirable phases, enstatite and 

periclase, were not detected.  

The improvements in the phase assemblage were accompanied by a high microstructural 

homogeneity,  as shown in Fig. 10.5c (polished surface); the porosity, still of about 15% (see Tab. 

10.1), is evidently distributed on a sub-micrometric scale. The fine distribution of crystals and pores is 

further confirmed by Fig. 10.5d (granules, attributable to forsterite crystals, well below 1 μm). 

Forsterite (σEP=8.610-11 S/cm) exhibited a slightly lower conductivity than the composite 

materials (σEP=2.810-10and 1.510-10 S/cm are for FT and FSS respectively). However, the here 

investigated ceramics had relatively low ε r values (εr,forsterite=4.6, εr,FT=5.6 and εr,FSS=6.2). Other 

relevant fit parameters can be found in Tab. 10.2. 
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Fig. 10.5 Microstructural details of refined polymer-derived forsterite-based ceramics:                                                

a,b) FT composite; c,d) F solid solution. 

 

 

Tab. 10.2 Parameters derived from fitting of BDS data (measured at 20 C). 

σEP 

(S/cm) 

τ 

(s) 
εr 

Q·f 

(GHz) at  10 GHz 

Forsterite (F) 8.610-11 5.710-3 4.6 330000 

Composite (FT) 2.810-10 2.610-3 5.6 79000 

Forsterite ss (FSS) 1.510-10 5.610-4 6.2 145000 

 

 

 

 
Fig. 10.6 Machining of a composite block, resulting  

from warm pressing of a MK/MgO/TiO2 mixture 
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Materials that are used in millimeter-wave applications are generally characterized by high 

values of Q·f and low values of εr
1,17. The quality factor Q is the inverse of the dielectric loss tanδ 

and is typically reported as the product Q·f in GHz. Previously published work on forsterite has 

shown values of Q·f=270000 and εr=6.8.1 In this work, even lower values of εr and higher values 

of Q·f were found for the forsterite (F) sample. The composite material exhibited properties that 

were less favourable than those of the forsterite sample, but were comparable to previously 

published values1.  

The present results are still somewhat preliminary, but the proposed approach has a great 

potential for the fabrication of dielectric components. Fig. 10.6, as an example, shows the easy 

machining of a composite (silicone/MgO/TiO2) block (warm pressed at 250 °C): the presence of fillers 

helps in reducing the crack propagation during machining and in limiting the surface damage. 

Improvements in the densification are expected from treatments at higher temperatures (e.g. 

above 1200 °C), in analogy to the sintering treatments presented in the literature. It should be noted, 

however, that the densest forsterite ceramics were not prepared by a single step treatment, like the 

one applied here, but by a double step treatment (calcination and sintering) 2-8,18-20. The relative 

density of our samples, at 1100°C (85%), compares favorably with the value reported by Ni et al.18 (at 

1450 °C, for 3 h), starting from pre-calcined (at 1200 °C) sol-gel derived forsterite powders.  

 

10.4 Conclusions 
Commercial silicone resins containing nano-sized MgO fillers were easily converted into forsterite 

ceramics, upon heat treatment in air at relatively low temperature (starting from 800 °C). A 

combination of silicones was found to favour the structural integrity of the polymer-derived ceramic 

components, in analogy with other previously investigated silicate and alumino-silicate systems. 

The presence of secondary undesired phases, such as MgO (from unreacted filler particles) and 

enstatite, could be controlled by introducing TiO2 in form of both micro- and nano-sized particles.  

TiO2 micro-particles did not actually behave as passive fillers, in fact MgO/TiO2 interactions led to 

the formation of Mg-titanates. The addition of TiO2 micro-particles, though effective in suppressing 

the MgO contamination, had no practical effect on the formation of enstatite. The distribution of 

micro-particles remains an open issue: a more intensive mixing is probably required to limit the 

observed local fluctuations in the concentration of TiO2 and MgO. 

TiO2 nano-particles were effective as secondary active filler; in particular, pure forsterite, from 

silicone/MgO interaction, transformed into a forsterite solid solution, with Ti4+ ions replacing Si4+ 

ions. 

Despite residual (sub micrometric) porosity (15 %, after firing at 1100 °C), selected polymer-

derived forsterite ceramics exhibited interesting dielectric properties, especially in terms of low 

dielectric losses. 

A final remark concerns the multifunctionality of forsterite ceramics. Applications in biomaterials, 

in fact, have been recently proposed, besides in dielectrics, for both forsterite monoliths18,20 and 

coatings (on hydroxyapatite ceramics) 21,22, due to the observed biocompatibility and bioactivity of 

this specific Mg-silicate.  
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11 Cordierite ceramics 

11.1 Introduction 
Porous ceramics based on cordierite (2MgO∙2Al2O3∙5SiO2 or Mg2Al4Si5O18) are particularly 

appreciated in the field of catalytic converters and particulate filters for diesel engines1-3 and, in 

general, for components subjected to severe thermal gradients (for a maximum temperature 

generally not exceeding 1250 °C)4. This is due to the characteristic combination of properties, such as 

low CTE (coefficient of thermal expansion, equal to ~1.5∙10-6 /K), good thermal stability, corrosion 

resistance and generally low price. 

In the present work, cordierite ceramics are fabricated starting from silicone resins, filled with 

oxide particles. According to this approach, the fillers directly react with the product of oxidative 

decomposition of the resins, consisting of amorphous silica, possessing a particularly defective 

network and consequently prone to very favorable reaction kinetics5. A previous paper6 has already 

been dedicated to cordierite ceramics, from silicones combined with MgO and γ-Al2O3, in form of 

nano-sized particles. Cordierite is feasible in conditions of high microstructural homogeneity and 

phase purity, comparable to those provided by the sol-gel route7,8, and the distinctive possibility of 

shaping in the polymeric state, for preceramic polymers, can be exploited for the development of 

particularly strong and homogeneous foams. However, nano-sized particles and the methods for 

obtaining a uniform porosity remain as open issues, in the view of large scale industrial applications. 

In particular, toxicological effects associated with human exposure to nanoparticles are still unknown 
9,10 and the formation of pores by burn-out of sacrificial polymeric beads, as proposed by Parcianello 

et al.6, poses some difficulties in terms of costs and control of gaseous emissions. 

The present investigation, published by Fiocco and Bernardo in 201511, is based on a revision of 

the approach of silicone resins filled with oxide particles: firstly, high purity and relatively low 

processing temperature are maintained, despite the use of micro-sized fillers; secondly, the 

fabrication of highly porous components relies on the use of a “double role” filler, both reacting with 

polymer-derived silica to yield the desired crystalline phase and acting as foaming agent. More 

precisely, as observed in the development of akermanite (2CaO∙MgO∙2SiO2) porous ceramics, the 

double role is provided by magnesium hydroxide (Mg(OH)2), decomposing, with release of water 

vapour, at very low temperature (300-350 °C). Since the release occurs in a silicone below the 

temperature of ceramic conversion (> 500 °C), i.e. in a viscous mass, the developed (harmless) gas 

may lead to an extensive foaming, with no need for additives; the residue (MgO) is obviously 

incorporated in cordierite. 

The commercially available silicone polymers are actually quite numerous; a protocol for the 

development of cordierite-based porous ceramics, based on a specific silicone, could have a limited 

impact. We will show, on the contrary, that the “double role” filler approach may be applied to 

silicone of different nature. The key constraint of the availability of a viscous mass, upon 

decomposition of Mg(OH)2, will be fulfilled operating with different mixing strategies, operating with 

liquid or solid silicones. 

 

11.2 Experimental 

11.2.1 Preparation of samples 

Two commercially available silicones, Silres MK and Silres H62C (Wacker-Chemie GmbH, 

Munich, Germany) were used as silica sources. MK is a solid methyl polysilsesquioxane resin with a 

84 wt% SiO2 yield after pyrolysis in air12. It is characterized by the presence of OH functional groups 
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inside its chemical structure, which allow the cross-linking mechanism to occur by condensation. 

H62C instead is a highly viscous liquid polysiloxane resin with a 58 wt% silica yield12, which can cross-

link without the release of gaseous products, thanks to the presence of vinyl groups.  

As MgO and Al2O3 precursors, we considered Mg(OH)2 microparticles (< 10 μm, Industrie Bitossi, 

Vinci, Italy) and transition Al2O3 microparticles (Puralox UF 5/230, < 11 μm, Sasol,  Brunsbüttel, 

Germany). The balance among the most important constituents (silicones/MgO precursor/Al2O3 

precursor) followed the stoichiometric MgO/Al2O3/SiO2 molar proportions of cordierite (i.e. 

MgO/Al2O3/SiO2 =2/2/5 by mol.). Considering the different silica yields, the amount of polymer, with 

the same amount of fillers, obviously changed (Mg(OH)2/Al2O3/H62C=0.23/0.39/1 and 

Mg(OH)2/Al2O3/MK=0.32/0.57/1 by weight). 

Foams from liquid polymer were prepared by dissolving H62C in isopropanol (15 ml for 10 g of 

final ceramic) and adding the fillers under magnetic stirring. Further sonication for 10 minutes 

provided a stable and homogeneous dispersion. The mixture was subsequently poured into a large 

glass container and dried at 60 °C overnight. After drying, the preceramic mixture was in form of a 

thick paste, which was manually transferred into cylindrical Al molds and thermally treated at 300 °C 

for 30 minutes. Cylindrical samples, 10 mm in diameter and 20 mm in height, were obtained by 

polishing the foams with abrasive paper. 

Foams from solid polymer were obtained by mixing MK with Al2O3, Mg(OH)2 microparticles and 

paraffin (13 wt% of the total preceramic formulation). The components were first homogenized by 

means of a shaker-mixer (Turbula T2F, WAB, Switzerland), then inserted in a twin-screw co-rotating 

extruder (Prism TSE 24 HC, 24 mm screw diameter, length/diameter ratio equal to 40:1, Thermo 

Prism Ltd, Stone, United  Kingdom) operating at 75 °C at the die. The extrudates, which were in form 

of cylindrical fragments, were later subjected to secondary processing, including manual grinding, 

sieving to a dimension below 300 μm, pouring in Al molds and thermal treating at 300 °C for 30 

minutes. Extrusions were performed at SCF Processing Ltd. (Drogheda, Ireland) during a 3-month 

student exchange in 2013. 

All the foams obtained from both liquid and solid silicone resins have been subjected to 

ceramization  at 1350  °C for 3 hours, with a heating rate of 10 °/min.  

11.2.2 Characterization of samples 

The bulk density (ρb) of the foams was determined from the weight-to-volume ratio, using a 

caliper and a digital balance. The skeletal density (ρs) was measured on foams, using a He gas 

pycnometer (Micromeritics AccuPyc 1330, Norcross, GA). The percentage of open porosity was then 

calculated using the following equation: % Open Porosity = 1 - (ρb /ρs); where ρb was the bulk density 

and ρs was the skeletal density. 

Microstructural characterizations were performed by optical stereomicroscopy (AxioCam ERc 5s 

Microscope Camera, Carl Zeiss Microscopy, Thornwood, New York, US) and scanning electron 

microscopy (FEI Quanta 200 ESEM, Eindhoven, The Netherlands) equipped with EDS. 

The crystalline phases were identified by means of X-ray diffraction on powdered samples (XRD; 

Bruker AXS D8 Advance, Bruker, Germany), supported by data from PDF-2 database (ICDD-

International Centre for Diffraction Data, Newtown Square, PA) and Match! program package (Crystal 

Impact GbR, Bonn, Germany). 

The crushing strength of foams was measured at room temperature, by means of an Instron 1121 

UTM (Instron Danvers, MA) operating with a cross-head speed of 1 mm/min. Each data point 

represents the average value of 5 to 10 individual tests. 
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11.3 Results 

11.3.1 Pure cordierite 

The ability of Mg(OH)2 to act as a foaming agent by releasing water vapour is shown in Fig. 11.1. 

Using both the solid and the liquid silicones as a polymeric matrix for the shaping and as source of 

silica in the final composition, a highly porous structure was achieved by foaming at 300 °C for 30 

minutes, even though the foams obtained from liquid H62C exhibited a more pronounced 

homogeneity in the distribution and mean diameter of the pores. The mean diameter can be 

estimated from Fig. 11.1a-b between 500 μm and 1 mm for both the samples.  

Concerning the use of MK for the extrusions, the foaming on secondary heating is an evidence 

that the relatively rapid thermal cycle operated by extrusion did not cause its cross-linking. Anyway, 

samples were found to exhibit some cracks, as shown in Fig. 11.1b. 

 

 
Fig. 11.1 Microstructural details of cordierite foams after ceramization at 1350 °C: a) from H62C; b) from MK. 

 

 
Fig. 11.2 Qualitative X-ray diffraction patterns of cordierite after ceramization at 1350 °C:  
a) foams from H62C; b) foams from MK; c) dense sample from MK; d) reference pattern. 
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In Fig. 11.2 the XRD patterns for both the samples (a-b) are reported and compared with the 

pattern exhibited by dense cordierite (c), obtained from MK by Parcianello et al.6, and with a 

reference pattern for pure cordierite (d). All the samples, which were thermally treated at 1350 °C 

with a heating rate of 10 °/min, are characterized by high phase purity, with not even weak traces of 

secondary crystalline phases. This result also shows that the substitution of MK with H62C and the 

use of different mixing processes did not affect the crystal phase assemblage and purity of the final 

ceramic product. 

Tab. 11.1 summarizes the physical and mechanical properties of the foams. As previously noticed 

for the morphology of the foams, there is again a strong similarity between the samples derived from 

H62C and MK, but data for compressive strength highlighted a significant difference in terms of 

reproducibility of the samples. Concerning the samples derived from MK, the variability in 

compressive strength is probably due to the previously observed cracks. In any case, the strength-to-

density ratio compares favourably with that of commercial cordierite foams. It should be noticed that 

cellular cordierite with open porosity (Popen) around 80 % and a mean bulk density (ρbulk) of 

approximately 0.5 g/cm3 possesses a compressive strength (σcomp) of 1.3 MPa and a strength-to-

density ratio of 2.6 MPa∙cm3/g, which perfectly matches the data summarized in Tab. 11.113. 

 

Tab. 11.1 Summary of physical and mechanical properties of ceramized cordierite foams.  

Sample 
ρbulk 

(g/cm
3
) 

ρskeleton 
(g/cm

3
) 

Popen 
(%) 

σcomp 
(MPa) 

Specific σcomp 
(MPa·cm

3
/g) 

Foams from H62C 0.91 ± 0.01 2.56 ± 0.01 64 2.3 ± 0.2 2.6 

Foams from MK 0.93 ± 0.04 2.54 ± 0.01 64 2.3 ± 0.8 2.4 

 

 

 
Fig. 11.3 High magnification details of cordierite foams from MK after ceramization at 1350 °C. 

 

SEM imaging was performed on the samples derived from extruded MK, to have a clearer 

overview of the crack development inside the samples. Fig. 11.3 testifies not only the presence of 

cracks (a), but also a very homogenously distributed microporosity inside the struts of the open cells 

(b-c), likely originated by the paraffin additive. The negative impact of macrocracks is somewhat 

compensated by the microporosity, offering an improved stress distribution upon loading14. 

The cracks could be ascribed to the peculiar nature of MK. As reported by Parcianello et al.6, 

cordierite MK-based monoliths were not crack-free; a substantial improvement was offered by the 

partial replacement of MK, as silica source, with H62C. As the authors assumed, this could be due to 

the same molecular structure of the second polymer: since H62C does not include the release of 

gaseous products in the cross-linking reactions, the formation of cracks is minimized. In addition, the 

different chemical characteristics of the two silicones could reasonably lead to different features in 
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the polymer-derived silica matrix, such as the network connectivity or the number of defects, thus 

giving a different ability in the relaxation of internal stresses arising from the volumetrical changes 

which occur during the pyrolysis. The crack-free samples from H62C may be seen as a confirmation.  

Future investigation will be likely dedicated to the use of MK/H62C mixtures also for extrusion. A 

further improvement could be due to the application of super-critical CO2-assisted extrusion, that 

would allow the elimination of paraffin, used as a plasticizer. The release of CO2 dissolved in the 

polymer has a great potential for enhancing the microporosity and reducing the stresses arising from 

ceramization, as previously shown for wollastonite foams15. 

11.3.2 B-substituted polymer-derived cordierite ceramics 

B-substituted polymer-derived cordierite ceramics were synthesized by replacing Al3+ with B3+, 

using boric acid (B(OH)3) as a boron source. The experiments were done by Mr. Lucas S.M. Kodaira 

(University of São Paulo, Brazil). 

Boric acid loses all its water and transforms into boron oxide (B2O3) above 150 °C, thus being 

exploitable as a foaming agent for silicone-based mixture, as well as Mg(OH)2. Then, if crystalline, it 

has a melting point of 450 °C, while, if amorphous, it does not have a specific melting temperature, 

but starts to soften at 325 °C and becomes fluid at 500 °C16. Therefore, boric acid was added with the 

aim of forming a liquid phase upon heat treatment, enhancing the diffusion and promoting the 

crystallization of cordierite.  

Moreover, the formation of a glass matrix by cooling would improve the thermal properties by 

further reducing the thermal expansion coefficient (CTE), that is of 1.5·10-6 K-1 for pure cordierite17.  

Three different formulations were compared: 

- original cordierite, 0 mol% of Al2O3 replaced with B2O3 (5SiO2·2MgO·2Al2O3); 

- 12.5 mol% of Al2O3 replaced with B2O3 (5SiO2·2MgO·1.75Al2O3·0.25B2O3); 

- 25 mol% of Al2O3 replaced with B2O3 (5SiO2·2MgO·1.5Al2O3·0.5B2O3). 

For original cordierite, silicone-based mixtures were prepared using the same precursors as 

described in §11.2. In the case of B-modified cordierite, alumina (Al2O3) was partially replaced with 

B(OH)3 (Sigma-Aldrich Chem., MO, USA), following the stoichiometric SiO2/MgO/Al2O3/B2O3 molar 

proportions above reported (i.e. 5/2/2/0 for pure cordierite; 5/2/1.75/0.25 and 5/2/1.5/0.5 for the 

modified one). 

Once studied the foaming potential of boric acid at 300-350 °C, the water release from Mg(OH)2 

was suppress by using nano-sized MgO, in order to have a greater control on foaming and a more 

homogenous pore distribution when using B(OH)3. Foams were later ceramized at 1350 °C for 3 

hours, with a heating rate of 10 °C/min.  

X-ray diffraction patterns are reported for the three formulations in Fig. 11.4. As shown, cordierite 

phase purity increased with B2O3 content. In fact, samples with no B (pattern b) and  samples with 

0.25 mol of B2O3 (pattern c) presented traces of a secondary phase, consisting of mullite 

(3Al2O3·2SiO2 – PDF#12-0776), beside cordierite peaks (PDF#84-1221); while samples with higher 

content of B (0.5 mol of B2O3 – pattern d) exhibited exclusively pure cordierite (PDF#84-1221), with 

peaks perfectly matching those of the reference cordierite phase of pattern a.  

The incorporation of B in the cordierite crystals should have resulted in a shift of the cordierite 

peaks along the x axis, while the participation of B in a glass phase should have caused the 

emergence of an “amorphous halo”. Neither of these observations can be much appreciated from 

the patterns reported, possibly due to the very small amount of B incorporated in the formulations. 

Anyway, it seems reasonable to suppose that some of the B content entered the cordierite lattice 

and the remaining B participated in the formation of a glass phase.  
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The formation of glass phase might be supported by a further remark on the porosity values 

reported in Fig. 11.4. 

The samples containing less B exhibited a higher open porosity (50%) than original cordierite 

(41%), but samples with more B exhibited a smaller porosity (45%) than those with less B. This was 

surprising, because a higher B content should have resulted in a higher open porosity. This can be 

explained with the presence of glass, which could have occupied the pores, thus reducing the open 

porosity. Moreover, the connections between pores could have been filled, so the close porosity 

increased with the B content. 

 

 

 
Fig. 11.4 X-ray diffraction patterns of original and B-modified cordierite foams. 

 

Tab. 11.2 Summary of porosity values of original  
and B-modified cordierite foams. 

B2O3 content 
Popen  

(%) 
Pclosed  

(%) 

0 mol of B2O3 40.6 0.3 

0.25 mol of B2O3 50.4 1.0 

0.5 mol of B2O3 45.3 2.6 

 



169 
  

Finally, the evolution of the CTE was assessed for foams and for dense samples, these obtained 

simply by replacing the liquid silicone H62C with a solid one (MK, Wacker-Chemie GmbH, Munich, 

Germany), in order to avoid the eventual influence of porosity. Dilatometric curves are reported in 

Fig. 11.5. Interestingly, the transition present in the curve of 0.5 mol% B2O3 sample is typical of 

glasses, but the material did not flow: this indicates the presence of an amorphous phase well 

restrained by the ceramic crystals. Concerning the CTE values (Tab. 11.3), they were relatively high 

for original cordierite samples, if compared to the value found in the literature (1.5·10-6 K-1). 

Nevertheless, it is remarkable the influence of B in the material: foams and dense samples 

incorporating B displayed lower CTE values than samples without B.  

 

 
Fig. 11.5 Dilatometric curves for original and B-modified cordierite for foams (a) and dense samples (b). 

 

Tab. 11.3 Summary of CTE for original and B-modified cordierite foams and dense samples. 

 Dense samples Porous samples 

CTE at 400 °C 
(10

-6
 K

-1
) 

0 mol% of B2O3 2.96 3.38 

0.25 mol% of B2O3 2.33 2.33 

0.5 mol% of B2O3 2.19 2.08 

CTE at 1300 °C 
(10

-6
 K

-1
) 

0 mol% of B2O3 3.09 3.63 

0.25 mol% of B2O3 2.92 2.44 

0.5 mol% of B2O3 2.80 2.54 

 

 

11.4 Conclusions 
Silicone-based mixtures comprising micro-sized fillers effectively led to cordierite with high phase 

purity, comparable to the one achieved from nano-sized fillers, after ceramization at 1350 °C. 

The foaming of the samples was achieved by exploiting the release of water vapour from Mg 

hydroxide, obtained by heat treatment at 300 °C. The foams exhibited a homogenously distributed 

porosity, especially when operating with liquid polymer-based formulations. 

A similar shaping step was applied to silicone/fillers mixtures based on a solid polymer. Prior to 

foaming, in this case, extrusion was applied as a mixing technique. Although samples from extrusion 



170 
  

processing are still to be optimized, the possible use of different polymers and the simplicity of 

foaming reaction are thought to positively contribute to the industrial transfer of the approach.  

The mechanical and physical properties are in good agreement with those of cordierite foams for 

technical application in the field of ceramic filters, with open porosity of 64 % and compressive 

strength exceeding 2 MPa. 

Boric acid can be used as a further foaming agent. Boron can partially replace the aluminum 

content in cordierite, forming a liquid phase upon thermal treatment, which enhances significantly 

the final purity.  

Some boron can also enter the cordierite crystal structure, reducing the CTE. A glass phase is still 

present after the ceramization and is responsible for the increased closed porosity, but it might be 

eliminated via acidic attack. 
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12 Polymer-derived luminescent glass-ceramics  

12.1 Introduction 
Rare-earth (RE) ions have been widely studied over the last few decades, due to the distinctive 

optical properties of the materials in which they are inserted as dopants. The main applications are in 

solid state lighting, sensors, lasers, displays, optical amplifiers, etc1. Among the different RE 

elements, europium (Eu) has been extensively used in phosphors, in different oxidation states. The 

electronic configuration of Eu is [Xe] 4f75d06s2, so that there are possibilities of transitions from D 

and F shells2. When incorporated in oxide matrices as divalent or trivalent ions, it is responsible for 

red (Eu3+) or bluish (Eu2+) photoemission. Exploiting coexisting emissions of Eu2+ and Eu3+, tunable 

phosphors can be obtained. 

It is well known that, in the case of Eu2+, the emission generally originates from the transition 

4f65d → 4f7, typically exhibiting broad bands and being strongly field-dependent. The emission of 

Eu3+ ions, instead, shows a series of narrow bands, corresponding to 5D0→F0-4 transitions, which are 

nearly independent of ligand field strength3-5.  

As reported in a recent paper by Gao et al. 6, a mixed-valence Eu-doped silicate glass-ceramic can 

be achieved by annealing at 800-950 °C an alumino-boro-silicate glass (SABBL), in turns obtained by 

conventional melting of specific reagents at 1600 °C. This procedure, summarized in Fig. 12.1, led to 

the crystallization of hexacelsian  (BaAl2Si2O8) and lanthanum orthoborate (LaBO3). La3+ sites in LaBO3 

crystallites are known to host Eu3+ ions, whereas the Ba2+ sites, in hexacelsian (barium feldspar), can 

incorporate Eu2+ ions, allowing simultaneous photoemission from Eu2+ (bluish) as well as Eu3+ centers 

(red). 

 

 
 

Fig. 12.1 Scheme for the obtainment of Eu-doped glass-ceramics according to the reaction between  
silicones and fillers and to conventional crystallization of an alumino-boro-silicate glass (SABBL). 

 

In this study, which was edited by Fiocco et al.7 and accepted for publication in 2016, an 

alternative approach is proposed in order to obtain alumino-boro-silicate glass-ceramics, with final 

phase assemblage (comprising distribution of Eu ions) resembling that of SABBL, starting from a 

preceramic polymer incorporating micro- and nano-sized reactive fillers. This methodology, again 
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schematized in Fig. 12.1, only requires a direct reaction at 1000-1200 °C of the ceramic precursors, 

thanks to the high reactivity of this system, consisting of a silicone polymer and several inorganic 

fillers. Indeed the fillers directly react with the amorphous silica provided by oxidative decomposition 

of the silicone, which exhibits a particularly defective network, being consequently prone to very 

favourable reaction kinetics8. The use of boric acid (B(OH)3), as one of the fillers, is aimed at forming 

a borate liquid phase upon firing, in turn enhancing the interdiffusion phenomena. This has been 

already shown for the development of polymer-derived wollastonite-diopside glass-ceramics, to be 

applied as biomaterials, with a small amount of borax (sodium borate) among fillers9. In the present 

case, however, the boron compound is not intended to represent simply a flux, providing a liquid 

phase later remaining as intergranular glass phase, after cooling; it is specifically designed to react 

with lanthanum oxide (La2O3), leading to LaBO3, besides its participation in the surrounding glass 

matrix. 

The flexibility of the polymer-based approach was assessed, on a preliminary basis, by developing 

glass-ceramics with modified composition, owing to the replacement of Ba2+ with Sr2+ ions (SABSL). 

The luminescence characteristics of the SASBL glass-ceramics support the hypothesis of Eu ions 

distributed in a feldspar phase (Sr-hexacelsian), as Eu2+, and in La borate, as Eu3+.  

 

12.2 Experimental 

12.2.1 Preparation of samples 

A commercial silicone resin, MK (Wacker-Chemie GmbH, Munich, Germany), solid at room 

temperature, was considered as the silica source, with a yield of 84 wt%8. The polymer was added 

with fillers, provided in form of nano- or micro-sized particle: γ-Al2O3 (Evonik Ind. AG, Germany, 13 

nm), Eu2O3 (Cometox, Italy, < 60 nm), B(OH)3 (micro-sized, VWR Normapur Int.), BaCO3 (micro-sized, 

Sigma-Aldrich Chem., MO, USA), SrCO3(micro-sized, Bitossi, Italy), La2O3 (micro-sized, Sigma-Aldrich 

Chem., MO, USA). Two different formulations were prepared, as reported in Tab. 12.1. SABSL 

samples came from a modification of the SABBL composition, obtained by replacing BaO with SrO. 

 

Tab. 12.1 Nominal composition of SABBL and SABSL samples. 

Sample composition (mol%) 

Sample type SiO2 Al2O3 Eu2O3 B2O3 La2O3 BaO SrO 

SABBL 33.3 10 0.2 16.7 5 35 0 

SABSL 33.3 10 0.2 16.7 5 0 35 

 

MK was first dissolved in isopropanol (20 ml for 10 g of final ceramic) and then mixed with the 

fillers. The mixing was performed by casting calibrated amounts of each filler in the solution of MK 

under magnetic stirring, followed by sonication for 10 min, thus obtaining stable and homogeneous 

dispersions. The mixtures were poured into large PTFE containers and dried at 60°C overnight. 

After drying, the silicone-based mixtures were in the form of solid fragments, later converted into 

fine powders by manual grinding with pestle and mortar. The powders were cold pressed in a 

cylindrical steel die applying a pressure of 40 MPa for 40 sec, without any additive. Disk specimens 

with diameter of 13 mm in diameter and approximately 3-3.5 mm in thickness were obtained and 

later fired in air at 1000-1100-1200 oC for 2 hours, with a heating rate of 5 oC/min. 

The preparation of SABSL samples was carried out by Dr. Zebo Babakhanova (Tashkent 

Institute of Chemical Technology, Uzbekistan). 
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12.2.2 Characterization of samples 

The crystalline phases were identified by means of X-ray diffraction on powdered samples (XRD; 

Bruker AXS D8 Advance, Bruker, Germany – CuKα radiation, 0.15418 nm, 40 kV-40 mA, 2θ=10-70°, 

step size=0.05°, 2s counting time), supported by data from PDF-2 database (ICDD-International 

Centre for Diffraction Data, Newtown Square, PA) and Match! program package (Crystal Impact GbR, 

Bonn, Germany). 

Photoluminescence was studied with a spectrofluorometer (FP-6300, JASCO) equipped with a Xe 

lamp. The emission was monitored at 612 nm and 450 nm, while the excitation wavelength was set 

at 250, 350, 390 nm. Luminescence spectra were collected between 280 and 800 nm. 

 

12.3 Results 

12.3.1 Phase development and evolution 

Fig. 12.2 reports the X-ray diffraction patterns of SABBL samples fired in air at 1000-1100-1200 °C. 

The lower pattern, referring to the treatment at 1000 °C, illustrates the formation of hexacelsian 

(BaAl2Si2O8 – PDF#12-0725), belonging to Ba-feldspars, and La-orthoborate (LaBO3 – PDF#12-0762). 

The specific Ba-feldspar polymorph and the borate phase exactly match the crystal phases found by 

Gao et al.6, after annealing of SABBL glass. As reported by Gao et al.6, the borate phase might be the 

result of lattice distortions (from monoclinic to orthorhombic polymorph) associated with the 

incorporation of dopants, namely Eu3+. Some additional phases, such as a secondary La-borate phase 

(La(BO2)3 – PDF#23-1140) and quartz (SiO2 – PDF#85-0794), were actually detected, but they were 

not expected to degrade the luminescence of the material.  

 

 
Fig. 12.2 X-ray diffraction patterns of SABBL samples fired in air at different temperatures. 
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The sample treated at 1200 °C (upper pattern) exhibited, besides the desired La-orthoborate 

phase, the formation of a different Ba-feldspar polymorph. More precisely, the main crystal phase 

consists of monoclinic celsian (BaAl2Si2O8 – PDF#38-1350), also known to host Eu2+ ions10. The phase 

composition after treatment at 1200 °C is actually much complicated: besides the two “extra-phases” 

observed after treatment at 1000 °C (quartz and La-borate), we could detect Ba-La borate 

(Ba3La2(BO3)4 - PDF#77-0546). Also in this case, the new phase is known to accommodate RE ions 

(Eu3+ ions, like in the case of La-orthoborate)11. 

Concerning the sample treated at 1100 °C (central pattern), it may be seen as a “transition 

sample” between those developed at 1000 and 1200 °C, possessing intermediate characteristics. In 

fact, both hexagonal and monoclinic celsians can be detected, as well as La-orthoborate, secondary 

La-borate and quartz.  

12.3.2 Photoluminescence properties 

Fig. 12.3a reports a room temperature excitation spectra of Eu3+, monitoring the photoemission at 

612 nm, in SABBL samples. The multiple excitation peaks are related to the Eu3+ transitions from the 

ground state 7F0 to the indicated excited levels12. The most intense peak lies at approximately 393 

nm, corresponding to the 7F0→
5L6 transition. 

 

 

 
Fig. 12.3 Eu

3+
 excitation (a) and emission (b) spectra of SABBL samples treated at different temperatures.  

 

The wavelength of maximum absorption, 393 nm, was selected for recording Eu3+ emission 

spectra, reported in Fig. 12.3b. In analogy with the findings concerning the SABBL glass-ceramics 

from conventional vitrification and annealing6, the peaks between 570 and 720 nm are due to the 

relaxation 5D0→
7F0-4 (red emission).  Among them, 5D0→

7F2 transition is electric-dipole allowed and 

the intensity of the corresponding photoemission depends strongly on the symmetry of the 

environment in which Eu3+ is hosted, whereas 5D0→
7F1 transition is magnetic-dipole allowed and the 

intensity is independent of local symmetry13. The broad emission bands appearing between 410 and 

500 nm can be reasonably assigned to the transition 4f65d→4f7 of Eu2+ ions (bluish emission)14. 

Considering the evolution of the spectra at different heat treatment, the emission bands are more 

intense and sharper for SABBL sample treated at 1000 °C, indicating optimized red and bluish 

luminescence. The luminescence effects at 1200 °C, however, are quite interesting, especially 

concerning the blue emission. The stabilization of Eu2+ at high temperature is mostly allowed in 
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reducing atmosphere, while the samples in this study were treated in air. Passing from 1000 °C to 

higher temperatures in oxidizing atmosphere, the bands of the blue emission would be expected to 

decrease; on the contrary, the red emission should increase, because of the oxidation of Eu2+ to Eu3+.  

 

 

 
Fig. 12.4 Eu

2+
 excitation (a) and emission (b) spectra of SABBL samples treated at different temperatures. 

 

The quite anomalous spectra in Fig. 12.3b, in our opinion, could be ascribed to the particular 

chemical environment associated with the ceramic conversion of the silicone polymers embedding 

the fillers, Eu2O3 particles included. The thermo-oxidative reactions occurring in the silicone upon 

firing imply the release of carbon-based moieties that could provide a reducing environment locally, 

favoring the presence of both Eu2+ and Eu3+ species.  Anyway, transition from Eu3+ to Eu2+ with 

increasing T are also reported in the literature due to several mechanisms.2,15 The actual mechanism 

of transition between different valence states would need a specific investigation, also considering 

that the sample fired at 1100°C, “intermediate” in the sense of crystal phases developed, did not 

provide an intermediate optical behaviour. This investigation, however, is beyond the aim of the 

present work. 

The excitation spectra of SABBL samples corresponding to a secondary monitoring wavelength, 

i.e. 450 nm, are reported in Fig. 12.4a. The strong excitation band between 280 and 350 nm is 

assigned to the  4f7→4f65d transition of Eu2+.14 The corresponding emission spectra, for samples 

excited at 350 nm, are shown in Fig. 12.4b. In this case, the bluish photoluminescence is dominant; 

anyway, emission peaks related to red emission are still clearly present. Again, as observed for 

exciting at 390 nm, the photoluminescence of SABBL samples is optimized at 1000 °C. 

12.3.3 Extension to Sr-substituted boro-alumino-silicate glass-ceramic 

As previously mentioned, a Sr-La boro-alumino-silicate formulation (SABSL, molar composition in 

Tab. 12.1) was considered in order to test the flexibility of our polymer-based approach. The X-ray 

diffraction patterns of SABSL samples are presented inFig. 12.5. Differently from SABBL, the 

treatment at 1200 °C caused vitrification of samples (see the upper pattern, typical for a glass).  The 

samples treated at 1000 and 1100 °C remained crystalline (lower and central pattern, respectively) 

and exhibited the same phase assemblage. In particular, two phases detected for SABSL samples 

resemble some of those developed for SABBL samples: La-orthoborate (LaBO3 - PDF#12-0762) exactly 

matches the phase in SABBL, while Sr-feldspar (SrAl2Si2O8 – PDF#70-1862) is isomorphous to 
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monoclinic Ba-celsian. Again, some extra-phases appeared, in the form of Sr-melilite (SrAl2SiO7 – 

PDF#38-1333), La-silicate (La9.31(Si1.04O4)6O2 – PDF#76-0340) and secondary La-borate phase (La3BO6 – 

PDF#50-1379). 

 

 
Fig. 12.5 X-ray diffraction patterns of SABSL samples fired in air at different temperatures. 

 

 

 
Fig. 12.6 Emission spectra of SABSL samples treated at different temperatures (excited at 250 nm). 
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Regarding the photoluminescence of SABSL samples after direct treatment at different 

temperatures, both red and blue emissions were expected, thanks to the incorporation of Eu3+ in La-

based compounds (red) and Eu2+ in Sr-feldspar phase (blue). The reduction of Eu3+ to Eu2+ with 

increasing temperature was allowed again, thanks to locally reducing conditions upon polymer-to-

ceramic conversion, as already explained for SABBL samples. 

In Fig. 12.6, we can observe the emission spectra of SABSL samples when excited at 250 nm. The 

emission peaks between 560 and 700 nm are compatible with red photoluminescence, while the 

broad band close to 400 nm is consistent with blue emission. While red emission is clearly identified 

at each temperature treatment, due to the Eu3+ incorporation, the blue emission is not present at 

1200 °C. The blue emission is actually optimized turning to 1100 °C, being very weak at 1000 °C. 

Again, the mechanism of Eu reduction/oxidation probably needs further clarification, and will 

constitute the focus of future investigations. 

 

12.4 Conclusions 
A “dual phase” Eu-doped glass-ceramic (alumino-silicate phase coupled with a borate phase) was 

successfully synthesized by direct thermal treatment of mixtures based on a silicone and ractive 

fillers, at 1000-1200 °C. The phase assemblage resembled that of a glass-ceramic obtained by 

conventional process (melting at 1600 °C and subsequent annealing), starting from the same oxide 

system (SABBL). 

The same polymer-based approach was extended to a Eu-doped Sr-containing glass-ceramic 

formulation (SABSL), by simple replacing of the filler acting as BaO precursor with one providing SrO. 

This proved the high flexibility of the PDC approach. The phase assemblage of the Sr-containing glass-

ceramics was similar to that of Ba-containing ones.  

Spectroscopic data indicated both red and blue photoluminescence, as a consequence of the 

incorporation of both Eu2+ and Eu3+ species, in Ba/Sr-feldspar phases and in La-borate phases 

respectively. The reduction of Eu3+ to Eu2+ at high temperatures in oxidizing atmosphere was possibly 

favored by the reducing conditions, locally caused by the polymer-to-ceramic conversion of the 

silicone matrix. 

Secondary phases detected in the SABBL/SABSL samples need to be individually investigated for 

clarifying their potential contribution to luminescence. Further experiments could also include the 

use of nano-sized fillers, which are thought to promote higher homogeneity in the silicone-based 

mixtures, and some changes in dopants oxides/doping concentrations. 

In the light of these observations, the PDC approach is definitely confirmed to be suitable as an 

alternative method for synthesizing glass-ceramic phosphors by direct treatment at lower 

temperatures. 
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13 Polymer-derived gehlenite phosphors 

13.1 Introduction 
The present chapter aims at exploring the potential of nano-filled silicones for the preparation of 

luminescent powders based on gehlenite (Ca2Al2SiO7 or 2CaO∙Al2O3∙SiO2). 

Gehlenite belongs to a quite complex system and implies the introduction, in a silicone polymer, 

of more than one main oxide fillers, i.e. both CaO and Al2O3 precursors. If, on one hand, the possible 

interaction between fillers may complicate the reaction with polymer-derived silica (as recently 

found for cordierite, 2MgO∙2Al2O3∙5SiO2, in which the formation of Mg-Al spinel, MgO∙Al2O3, was 

found to precede the development of the desired alumino-silicate1), the chosen phase, on the other, 

is known for its flexibility, that could promote the ionic interdiffusion. In fact, gehlenite is well-known 

to form solid solutions with other phases, such as akermanite (Ca2MgSi2O7), sharing its melilite-type 

crystal structure: 2 Al3+ ions in tetrahedral coordination, as an example, may be exchanged with a 

Mg2+/Si4+ couple (Ca2Al3+(Al3+,Si4+)O7  turns into Ca2Mg2+(Si4+,Si4+)O7)
2.  

 

 

 
Fig. 13.1 Red-emitting Eu-doped polymer-derived gehlenite ceramic. 

 

Melilites have been increasingly considered as reference phases for luminescent materials3-8, 

based on the introduction of rare-earth ions in the relatively large octahedral sites (sandwiched 

between layers of interconnected coordination tetrahedra, e.g. Al2SiO7
4-  for gehlenite or MgSi2O7

4-  

for akermanite) normally occupied by Ca2+ ions.  

The PDC approach, here presented, is intended to provide an easy way for extensive industrial 

production, with the help of conventional firing or un-conventional treatments, such as flame 

synthesis, the latter representing feasible and low-cost method for preparation of a wide range of 

various materials. The method is based on feeding a solid (polycrystalline or amorphous) powder 

precursor directly into high temperature H2/O2 or CH4/O2 flame. The powder particles melt and the 

molten droplets are quenched by spraying them with deionized water, forming microspheres of 

desired composition. According to this method, high cooling rates (up to 1000 Ks-1) can be achieved, 

and even systems with high melting temperature and high tendency to crystallization can be 

prepared in glassy state. The method was successfully applied for the preparation of hardly meltable 

rare earth aluminates such as Al2O3-Y2O3 
9,10, Al2O3-La2O3 9,11, Al2O3-Gd2O3 

9, aluminozirconates Al2O3-

La2O3-ZrO2, Al2O3-Gd2O3-ZrO2, Al2O3-Y2O3-ZrO2 
9, and aluminosilicates (e.g.),  Al2O3-Y2O3-SiO2 

12. Such 

amorphous structures can contain much higher level of homogeneously distributed optically active 

dopants, in comparison to their single crystal, or polycrystalline counterparts, representing promising 
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laser materials or phosphors for energy saving lighting appliances. Luminescent properties of Er3+ and 

Nd3+-doped amorphous yttrium aluminosilicates have been reported12. 

The present work, published in 2014 by Bernardo et al.13, reports on a novel approach in 

preparation of glasses with gehlenite matrix, doped with an optically active additive (Eu). The 

method combines the preparation of a precursor powder from nano-filled silicones, with the 

application of flame synthesis to glasses of gehlenite composition. The glasses are characterized from 

the point of view of their luminescence properties and compared to their polycrystalline 

counterparts. A sample of the red-emitting Eu-doped gehlenite ceramic obtained is reported in Fig. 

13.1.  

 

13.2 Experimental 

13.2.1 Preparation of samples 

A commercially available silicone powder, MK (Wacker-Chemie GmbH, Munich, Germany) was 

used as silica source. The polymer was first dissolved in isopropanol and then mixed with nano-sized 

fillers, in amounts corresponding to stoichiometric gehlenite. CaO was provided by CaCO3 

nanoparticles (PlasmaChem, Berlin, Germany, 90 nm), whereas Al2O3 came from γ-Al2O3 

nanoparticles (Evonik Industries AG, Essen, Germany, 13 nm). Given the silica yield of MK (84 wt%) 

and the CaO yield of CaCO3 (56 wt%), we referred to the silicone/Al2O3/CaCO3 weight proportion of 

1/1.43/1.57. For the preparation of luminescent powders, Ca2+ ions were partially replaced by Eu3+ 

ions, provided by Eu2O3 nanoparticles (purity >99.9%, diameter 45-58 nm, Cometox Srl, Milan, Italy), 

for an amount of 7 mol%; the adjustment of the Al/Si ratio, necessary for charge compensation, gave 

the final composition of Ca1.86Eu0.14Al(Al1.14Si0.86O7) instead of Ca2Al2SiO7 
8. 

The mixing was performed under magnetic stirring, followed by ultrasonication for 10 min, which 

allowed the preparation of stable and homogeneous dispersions, later cast in large glass containers 

and left to dry overnight at 80 °C. 

After the evaporation of the solvent, the material obtained was first finely ground with mortar 

and pestle, to a size of about 100 µm, then put on alumina trays and subjected to thermal treatment 

in air (“conventional firing”), with target temperatures varying from 1100 to 1300 °C, with holding 

time of 1-3 h  and heating rate of 10 °C/min. As an alternative (tested for Eu-doped composition), 

fine powders of silicone/filler mixture were sprayed into a modified glass-melting burner with 

methane-oxygen flame (“unconventional firing”). In order to avoid undercooling of the flame 

methane was used as a carrier gas. The temperature of the flame was estimated on the basis of the 

ability to melt the glass with the melting temperature exceeding 1900 °C, as determined from the 

phase diagram. The temperature in the center of the flame was thus estimated to be approx. 2200 

°C. The powders were sprayed axially through the center of the burner. After passing the hot zone of 

the flame the stream of combustion gases carrying molten droplets was sprayed with deionized 

water in order to ensure rapid cooling of the product and to prevent its crystallization. The product 

was collected in a sedimentation vessel, and after sedimentation water was drained out. The 

sediment was thoroughly rinsed with acetone and dried. 

13.2.2 Characterization of samples 

The crystalline phase identification in powders from conventional firing was performed by means 

of X-ray diffraction (XRD; Bruker AXS D8 Advance, Bruker, Germany, operating with CuKα radiation 

with the wavelength of 1.5418 Å), supported by data from PDF-2 database (ICDD-International 

Centre for Diffraction Data, Newtown Square, PA) and Match! program package (Crystal Impact GbR, 

Bonn, Germany). 
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 The product of flame synthesis, in the form of microspheres with diameters ranging from 1 to 

approx 40 μm, was first examined by optical microscope to make sure that the input powder was 

thoroughly melted and glass microspheres were formed. The amorphous nature of the product was 

verified by X-ray powder diffraction (Panalytical Empyrean equipped with the PixCEL® detector, and 

with CuKα radiation with the wavelength of 1.5405 Å). 

The density of microspheres was determined by helium pycnometry (Quantachrome Ultrapyc 

1200e). The morphology of amorphous microspheres has been examined by scanning electron 

microscopy (JEOL 7600 F) at the accelerating voltage 15 kV. Before the measurement the 

microspheres were dried in laboratory oven for 24 h at 50 C, mixed with isopropanol, and the 

suspension was deposited on sample holder. After drying the microspheres were sputtered with gold 

in order to prevent charging of the surface during measurement. 

Preliminary optical characterization was conducted by means of a spectrofluorometer (FP-6300, 

JASCO Ltd, Great Dunmow, UK), on powders of crystalline gehlenite ground and sieved to a 

maximum diameter of 2 µm, dispersed in distilled water. The photoluminescence spectra were 

recorded by Fluorolog FL3-21 spectrometer (Horiba Jobin Yvon) using Xe (400 W) arc lamp as an 

excitation source. All the presented photoluminescence spectra were obtained by Prof. D. Galusek’s 

group (Joint Glass Centre of the IIC SAS, TnUAD and RONA, University of Trencin, Slovak Republic). 

 

13.3 Results 

13.3.1 Synthesis of Eu-doped gehlenite ceramic 

The high reactivity of preceramic polymers mixed with nano-sized oxide powders is confirmed by 

the X-ray diffraction patterns in Fig. 13.2a. The CaCO3/Al2O3/silicone mixture transformed into 

gehlenite (PDF#74-1607) even at only 1100 °C, for 1h; the polymer approach is evidently close to the 

efficiency of sol-gel processing (gehlenite achievable at 1000 °C, see Chaui et al. 14). However, traces 

of Ca-monoaluminate (CaAl2O4 or CaO∙Al2O3, PDF#70-0134) were detected, and were persistent even 

with increasing firing temperature and holding time (1300°C, 3h). The characteristic main peak of Ca-

monoaluminate is well visible at 2  30°, whereas the minor ones are hidden by the ones of 

gehlenite. The formation of this phase is likely due to the direct reaction between the oxides 

provided by the nano-sized fillers, in analogy to what found for cordierite synthesis (formation of Mg-

Al spinel, MgAl2O4 
1); the difficult dissolution could be ascribed to the high thermal stability (the 

melting point of CaAl2O4 is 1600 °C, approximately15). 

The formation of Ca-monoaluminate was practically suppressed for Eu-doped gehlenite, as 

testified by Fig. 13.2b. The lattice distortion associated to the formation of a solid solution, with 

nominal composition of Ca1.86Eu0.14Al(Al1.14Si0.86O7) (with Al3+ ions substituting Si4+ ions as a 

compensation of the partial replacement of Ca2+ ions with Eu3+ ions), instead of normal gehlenite, 

probably favoured the ionic interdiffusion, even for only 1 h at 1300 °C. This result is quite significant, 

since analogous charge-compensated gehlenite solid solutions8 were prepared with a more severe 

firing (1350 °C, for 4 h), in the presence of fluxes, such as boric acid (H3BO3, evidently aimed at 

providing some liquid phase, and thus enhance interdiffusion). The formation of gehlenite solid 

solution simply from silicone-based powders could be seen as a further confirmation of the high 

reactivity of silicones combined with nano-sized fillers and of the good homogeneity achievable 

starting from suspensions of nano-particles in silicone solutions. 
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Fig. 13.2 a) Phase evolution of the CaCO3/Al2O3/silicone mixture for stoichiometric gehlenite;  

b) Comparison between stoichiometric and “charge-compensated” Eu-doped gehlenite ceramized at 1300 °C. 

 

13.3.2 Synthesis of Eu-doped gehlenite glass 

The precursor powder used for preparation of polycrystalline gehlenite by conventional heating 

was used also for preparation of glass of identical composition by flame synthesis. As mentioned 

above, the precursor powder comprised nanocrystalline calcium carbonate mixed with alumina, and 

embedded in a polymer silicon matrix. The X-ray diffraction confirmed calcium carbonate (in the 

form of mineral calcite) was the main crystalline phase present in the precursor powder (Fig. 13.3).  

 

 

 
Fig. 13.3 Fig. 2: X-ray diffraction patterns of precursor powder and glass microspheres after flame synthesis.  

The bars at the bottom of the graph represent diffraction pattern of CaCO3 (calcite). 
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The powder was fed into methane-oxygen flame with an estimated temperature of 2200 C, 

where the calcium carbonate and silicon resin decomposed to yield CaO and SiO2. The oxide fused 

and melted, creating calcium aluminosilicate melt in the form of micrometer-sized droplets. These 

were quenched by spraying them with de-ionized water yielding glass microspheres. The amorphous 

nature of microspheres was confirmed by X-ray powder diffraction (Fig. 13.3). The pattern contains 

no distinct diffraction maxima, only a broad hump in the 2θ range 20 - 40, characteristic for silicate 

and aluminosilicate glasses. The measured density of glass was 3.044  0.006 g/cm3, which was 

virtually identical with the density of mineral gehlenite (3.04 g.cm-3)16. 

 

 

 
Fig. 13.4 SEM micrographs of gehlenite glass microspheres demonstrating polydispersity of the system (a), 

 and a detailed view showing irregular features at the surfaces of microspheres (b). 

 

 

The SEM examination of the flame synthesis product revealed a polydisperse system with 

diameters of gehlenite glass microspheres ranging between 1 and approximately 15 m (Fig. 13.4a). 

The shape of microbeads, close to ideal spheres, confirms thorough melting of precursor powder 

particles.  More detailed examination at higher examination revealed the presence of irregularly 

shaped protrusions on the microspheres, which appear to be firmly attached to their surface. Their 

origin is not clear at present, but they might comprise hydrated amorphous or crystalline 

aluminosilicates created by reaction of glass with water in the course of quenching, or partial 

dissolution of microspheres with subsequent re-precipitation of hydrated products during separation 

of microspheres in sedimentation tank. However, their content was below the detection limit of 

X-ray diffraction. 

13.3.3 Characterization of crystalline and amorphous Eu-doped gehlenite 

The excitation-emission matrix for the studied Eu3+-doped gehlenite glass and its crystallized 

counterpart is shown in Fig. 13.5. Several excitation regions can be clearly seen in the range of 

360400 nm and 460470 nm, with emissions approximately at 620 and 700 nm. The maximum of 

emission intensity was observed for excitations at about 395 nm and 465 nm, respectively. For Eu3+-

doped gehlenite glass, the emission intensity at 620 nm is comparable for both excitation 

wavelengths (395 and 465 nm), while for crystalline sample the maximum emission intensity has 

been observed when sample was excited at about 395 nm. The glassy character of the Eu3+-doped 

gehlenite glass sample is reflected in broader excitation-emission regions compared to the crystalline 

sample.  
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Fig. 13.5 Excitation-emission matrix of Eu

3+
-doped gehlenite glass microspheres (a)  

and of polycrystalline  Eu
3+

-doped gehlenite (b). 

 

The more detailed excitation spectra for both samples measured in the wavelength range of 

225560 nm by monitoring the intense red emission located at 613 nm are shown in Fig. 13.6. All 

excitation as well as emission spectra were recorded at room temperature. The broad band (assigned 

as CTB) extending from 240340 nm is associated with charge-transfer (CT) transition in the Eu3+
O2 

species and corresponds to the electronic transition from 2p orbital of O2 ions to the empty 4f 

orbitals of Eu3+ ions. For crystalline sample CTB is shifted toward the lower energy side (red shift) 

compared to the glass sample. The sharp lines in the longer wavelength region are assigned to the 

intra-configurational 4f4f forbidden transitions of Eu3+ ions. The excitation spectra consist of two 

intense bands at 394 and 464 nm in addition to other relatively weak bands peaking at about 320, 

362, 365, 376, 382, 400, 413, 526 and 532 nm. The two strong excitation lines at 394 and 464 nm are 

attributed to the 7F0  5L6 and 7F0  5D2 transitions, respectively. The bands peaking around 320, 

362, 376, 526 nm are assigned to transitions from the 7F0 level to the 5H4, 
5D4, 

5G2, 
5D2, and 5G1 levels. 

On the other hand, the bands peaking around 365, 382, 400, 413 and 532 nm are assigned to the 

transitions from the thermally populated 7F1 level to the 5L7, 
5L6, 

5D3, 
5D3 and 5D1 levels of Eu3+ ions, 

respectively. 

 

 

Fig. 13.6 Excitation spectra (em = 613 nm) of Eu
3+

-doped gehlenite glass microspheres (A)  
and of polycrystalline Eu

3+
-doped gehlenite (B). 
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The emission photoluminescence (PL) spectra of the studied samples recorded in the 550750 nm 

spectral range at both excitation wavelength (394 and 464 nm) are shown in Fig. 13.7. After 

excitation into the 5L6 excited level, appreciable radiative emissions occur from the 5D0 metastable 

state to 7FJ (J = 0, 1, 2, 3, 4) states in the range of 550750 nm. When any other levels above 5D0 are 

excited, there is fast non-radiative relaxation to the 5D0 level due to the small energy gaps between 

them and consequently the same emission spectrum is obtained. The PL spectra of the studied 

samples show five major emission lines at 577 (yellow), 587 (orange), 617 (red), 655 (deep-red) and 

701 nm (deep-red) corresponding to the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions, respectively. The 

transitions 5D0  7FJ with J = 5 and 6 were not observed due to their low transition probabilities. The 
5D0  7FJ (J = 2, 4 and 6) transitions are electric dipole transitions; the existence of electric dipole 

transitions is due to the absence of the centre of symmetry and the mixing of 4f orbitals with orbitals 

of opposite parity. The appearance of narrow emission bands in the spectra is due to the shielding 

effect of 4f6 electrons by 5s and 5p electrons in outer shells in the Eu3+ ion. Among the five observed 

emission bands, the transition 5D0  7F2 (617 nm; red emission) is the one of the most intense 

transition, and is considered as hypersensitive transition (very sensitive to the site symmetry of Eu3+ 

ions) that follows the selection rule J = 2. The transition 5D0  7F1 (587 nm; orange emission) 

allowed by the selection rule J = 1 is magnetic dipole transition and is independent of the crystal 

field strength around Eu3+ ion 17. The emission due to 5D0  7F0 transition at 577 nm is normally 

forbidden. However, in the present hosts, it is observed with moderate emission intensity. The 

existence of 5D0  7F0 transition with a moderate intensity substantiates the presence of strong 

crystal field in the vicinity of rare earth ion causing Stark splitting in electric dipole (5D0  7F2) and 

magnetic dipole (5D0  7F1) transitions. As found from the de-convolution of the emission spectra 

(not shown in Fig. 13.7), the latter transition at 587 nm clearly shows three Stark components while 

the former at 617 nm exhibits five components due to the influence of the crystal-field. This indicates 

total removal of the crystal-field degeneracy. Based on the selection rules, the observed number of 

three and five Stark components for magnetic and electric dipole transitions of Eu3+ ions as well as 

appearance of 5D0  7F0 transition indicates the fact that the symmetry at Eu3+ ion site is low. Due to 

the presence of high energy phonons in host matrix (e.g. aluminosilicate glasses), the emissions 

starting from the excited levels 5DJ  (J = 1, 2 and 3) are suppressed i.e., there is a fast non-radiative 

relaxation to the 5D0 level when the Eu3+ ions are excited to any level above the 5D0. 

 

 

 
Fig. 13.7 Emission spectra of Eu

3+
-doped gehlenite glass microspheres and polycrystalline gehlenite 

 excited at exc = 394 nm (a) and exc = 464 nm (b), respectively. 
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The hypersensitivity ratio R (ration between integrated intensities of 5D0  7F2 and 5D0  7F1 

transitions), known as the asymmetric ratio, allows one to estimate the covalent nature and 

polarization of the surrounding of the Eu3+ ions by short range effects and centrosymmetry distortion 

of Eu3+ ion site. The higher the value R, the lower the symmetry around the Eu3+ ions, and the higher 

the EuO covalence, and vice versa18-20. The R values for the studied systems were found to be 4.28 

for gehlenite glass and 2.57 for crystalline sample, respectively. This suggests the presence of lower 

symmetry around the Eu3+ ions and possibly higher covalency of the EuO bond in the gehlenite 

glass, compared to crystalline Eu3+-doped Ca2Al2SiO7 sample. 

As to the comparison of the emission spectra of gehlenite glass and of the crystalline sample, the 

emission peaks are broadened in the glass sample and intensities of the emissions (especially red 

emissions) are lower compared to the crystalline sample when excited at 394 nm (NUV). However, 

when the samples are excited at 464 nm (blue light) the intensities of the red emission at about 

617 nm are comparable for both glass and crystalline samples. The computation of chromaticity is 

based on the procedure made available by Commission Internationale de L´Eclairage (CIE), France. 

When excited at 394 nm the CIE chromaticity coordinates of both the gehlenite glass and 

polycrystalline gehlenite were found to be (x = 0.65, y = 0.35), indicating that both systems are 

suitable candidates for red light emitting phosphors. The emission spectra of the crystalline Eu3+-

doped Ca2Al2SiO7 sample are comparable with the Eu3+-doped Ca2Al2SiO7 systems prepared by other 

methods8,14,21. 

The room-temperature decay curves of Eu3+ ions in glass and polycrystalline gehlenite for the 

emission transition 5D0  7F2  monitored at 617 nm with an excitation at 394 nm are shown in Fig. 

13.8. The decay curves of both samples can be well fitted by a single exponential decay function, I(t) 

= I0(t) exp(-t/τ), where I and I0 are luminescence intensities, t is the time, and τ is the decay time, 

respectively (correlation coefficient R2 ~ 0.999). The decay time for Eu3+ doped gehlenite glass (1.59 

ms) was found to be smaller than for the crystalline gehlenite sample (2.30 ms). The increased 

lifetime in polycrystalline gehlenite proves higher symmetry around the Eu3+ ions and thus better 

crystal environment for Eu3+ ions in the doped Ca2Al2SiO7 phase, compared to the disordered glass 

host structure. 

 

 

 

Fig. 13.8 Decay curves for the 
5
D0  7F2 emission transition of Eu3+ ion monitored at 617 nm  

under excitation at 394 nm of polycrystalline gehlenite and gehlenite glass microspheres. 
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13.4 Conclusions 
Gehlenite (Ca2Al2SiO7) ceramics were successfully prepared by the heat treatment in oxidative 

atmosphere of a silicone resin embedding CaO and Al2O3 precursors, in the form of nano-sized 

particles which acted as reactive fillers. Luminescence was due to the use of nano-sized Eu2O3 as 

secondary additive, adopting a charge compensation formulation (Ca2-2xEu2xAl(Al1+2xSi1-2xO7)), with 

x=0.07. 

Conventional firing at only 1300 °C in oxidative atmosphere for 1 h led to a practically single phase 

Eu-containing gehlenite solid solution, as an evidence of the good homogeneity achievable starting 

from suspensions of nano-particles in silicone solutions. 

The homogenous distribution of components was further testified by the formation of Eu-doped 

alumino-silicate glass, using an alternative thermal treatment, i.e. flame synthesis. 

Crystalline and amorphous powders, with the same oxide composition, i.e. corresponding to Eu-

doped gehlenite Ca1.86Eu0.14Al(Al1.14Si0.86O7), produced by conventional firing and flame synthesis, 

respectively, could be seen as efficient inorganic phosphors, to be activated in the near-UV range. 

The different structure was associated to different emission characteristics (red luminescence 

dominant for crystalline powders, orange for amorphous powders). 

An increased lifetime for 5D0
7F2 transition was observed for polycrystalline gehlenite (2.30 ms) 

compared to gehlenite glass (1.59 ms). 
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future perspectives 
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The research activity presented in this thesis involved the synthesis, the characterization and the 

optimization of silicate ceramics of various formulations, obtained through the thermal conversion 

into ceramics, mainly conducted in air, of silicone-based mixtures. The synthesis route, based on 

polymer-derived ceramics, was proposed as an alternative to conventional techniques, such as the 

ceramic powder processing technology, undoubtedly providing a series of advantages: the wide 

variety and availability of precursors, their low cost and easy-handling, the relatively low synthesis 

temperatures and the possibility to apply the conventional plastic shaping techniques.  

In this work, the main novelty lies in the incorporation of fillers in the silicone resins to serve as 

oxide precursors, rather than to dilute the transforming mass or to compensate the shrinkage. In 

fact, here the fillers were intended to decompose into oxides and fully react only with the ceramic 

residue of the polymeric precursors, in order to obtain the formation of specific crystalline phases 

with the composition of silicates, that are generally not directly achievable by the simple pyrolysis of 

a preceramic polymer. By this way, the above-listed advantages related to preceramic polymers were 

exploited for the fabrication of ceramics at relatively low temperatures (below 1200 °C), by means of 

easy plastic forming techniques, in particular direct foaming and direct 3-D printing of preceramic 

slurries filled with reactive fillers. The fillers incorporated in the preceramic mixtures were also 

exploited, in some cases, as foaming agents or liquid phase formers, thus helping respectively the 

direct shaping of porous bodies or the obtainment of glass-ceramic components.  

The type of fillers was conveniently selected according to the desired final composition; therefore, 

a wide variety of ceramic systems was achieved, simply by changing the proportions and composition 

of the starting polymers and fillers.  

The work was logically divided into two main macro-areas: the first one regarding the realization 

of peculiar silicate formulations known for their pronounced biological properties, aimed at the 

fabrication of scaffolds for bone regeneration implants, and the second one regarding other silicate 

formulations specifically designed for further functional applications. 

Concerning the first part, devoted to bioceramic compositions, the starting point was the 

realization of silicates resembling the composition of two famous bioglasses, 45S5 (SiO2-CaO-Na2O-

P2O5 oxides system) and 58S (SiO2-CaO-P2O5 oxides system). The materials obtained exhibited good 

bioactivity, although the use of preceramic polymers and fillers did not lead to amorphous products, 

like the original bioglasses, but to only partially amorphous components. A further observation 

regarded the double role of sodium phosphate dibasic heptahydrate (Na2HPO4∙7H2O), which was 

used as an oxide precursor for Na2O and P2O5 and, at the same time, as a foaming agent, due to the 

water release from its thermal decomposition. Future investigations concerning the realization of 

amorphous ceramics might involve the application of flame synthesis to solid preceramic mixtures: in 

fact, according to this method, high cooling rates (up to 1000 Ks-1) can be achieved and even systems 

with high melting temperature and high tendency to crystallization can be prepared in glassy state.  

A second topic involved the modification of calcium silicates by incorporation of magnesium. Ca- 

silicates have received a growing interest in the last decades, but have a main drawbacks related to 

the low mechanical strength of porous bodies and the high degradation rate, which may lead to high 

pH values with detrimental effects on cells. Therefore, ion modifications of Ca-silicates have been 

proposed in literature with the aim of tailoring both mechanical and biomedical properties and, in 

this framework, significant attention has been given to the CaO-MgO-SiO2 oxides system. In 

particular, two Ca-Mg silicates were developed in this thesis: one, akermanite (Ca2MgSi2O7), as the 

the only crystal phase; the other, diopside (CaMgSi2O6), coupled with wollastonite (CaSiO3). Both 

formulations exhibited good bioactivity and great potential as bone tissue engineering materials, as 

demonstrated by the excellent cellular response of MC3T3 osteoblast precursors cells cultured on 
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polymer-derived samples, besides a compressive strength in the range of 1-2 MPa. In this case, 

samples were first obtained by direct foaming of preceramic slurries, due to the water release from 

the thermal decomposition of Mg(OH)2 and to the decomposition of hydrazine, added as a foaming 

agent.  

Especially for the wollastonite-diopside composite, further experiments involved the 

incorporation of sodium borate decahydrate (Na2B4O7 ∙10H2O) and sodium phosphate dibasic 

heptahydrate (Na2HPO4∙7H2O) as “mineralizing” fillers, aimed at forming a liquid phase upon firing, 

then remaining as an intergranular glass phase, surrounding the two main crystalline phases. This 

liquid phase was expected, on the one hand, to promote the ionic interdiffusion, thus obtaining high 

phase purity; on the other hand, instead, it was expected to promote a viscous flow, thus helping the 

relaxation of stresses arising from the ceramization. These effects were also enhanced by the direct 

incorporation of a glass filler, reaching a final compressive strength of 6 MPa. Again, the 

multifunctionality of specific fillers was exploited: in fact Na2B4O7 ∙10H2O and Na2HPO4∙7H2O acted as 

foaming agents, as well as a mineralizing fillers, allowing an extensively foaming of the silicone-based 

mixtures by water release from thermal decomposition. 

Still regarding wollastonite-diopside, other shaping techniques were experimented, besides the 

direct foaming. In particular, direct ink writing was applied to silicone-based pastes for the realization 

of reticulated structures reaching 3 MPa in compression, while supercritical CO2-assisted extrusions 

were applied to solid preceramic mixtures, avoiding, in the latter case, the use of solvents and 

reaching 4 MPa in compression mode. These two processing options, made possible by the presence 

of a polymeric phase in the preceramic mixtures, showed a way to make industrial application of the 

preceramic polymers and might be further optimized in future.  

Concerning only the extruded materials, a heat treatment in inert atmosphere was carried out to 

prevent the removal of carbon in the form of gaseous products, as usually occurring in air, leading to 

the formation of a carbon phase. This was thought to be an interesting strategy for biomedical 

applications, given the recent developments concerning bioceramics incorporating carbon structures 

as reinforcement. From a mechanical point of view, the samples exceeded 20 MPa in compression 

mode, demonstrating their suitability for the realization of bone scaffolds. Nevertheless, the 

biological properties of products pyrolyzed in inert atmosphere have not been fully tested yet and 

further dissolution/cell culture studies are planned. 

Another novel formulation developed in this research work was a wollastonite-apatite composite, 

realized by a multistep synthesis process. The idea of combining these two crystal phases was born 

as a solution to the issue concerning the mechanical weakness of porous hydroxyapatite. Therefore, 

the new material was thought to couple the strong bioactivity of an outer shell of hydroxyapatite 

with a mechanically stronger open foamed wollastonite core. The route chosen was to develop a 

composite material starting from calcite (CaCO3) foams, obtained from preceramic polymers and 

fillers, treated by immersion in a phosphatising bath to obtain a partial CaCO3-to-apatite conversion 

and later ceramized to allow the reaction between the remaining calcite and silica left from the 

silicone-to-ceramic conversion. The final result was a wollastonite-apatite composite foamed 

material, that demonstrated excellent biocompatibility, bioactivity and osteogenic potential when 

MC3T3 cells were cultured on it, besides a compressive strength of 3 MPa. The same scaffolds were 

also fabricated by direct 3-D printing, obtaining an encouraging result, but the printing process still 

needs to be improved. 

A similar approach was followed to fabricate silica-bonded apatite porous structures, but by 

negative replica, which exhibited a compressive strength between 13 and 17 MPa. Here, the goal was 

to obtain a high CaCO3-to-apatite conversion, to realize a final ceramic mainly consisting of apatite. 
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One last composite material was represented by directly 3-D printed silica-bonded calcite, being 

CaCO3 a well-established material for implantation purposes. The compressive strength of the 3-D 

printed scaffolds was between 3 and 5 MPa. 

An interesting future development of some of the most attractive bioceramics realized in this PhD 

program might be the functionalization of the samples surfaces with biomolecules, mimicking the 

organic structure of natural bones and thus promoting the cell viability on the scaffolds after 

implantation. Moreover, osteoblast adhesion and proliferation might be promoted by the 

incorporation of specific adhesive sequences, in order to enhance the interactions between the 

implant and the living cells, so that to further increase the osseointegration.  

Another useful improvement, in this case concerning the shaping and synthesis method, would be 

a more extensive use of robocasting techniques for the samples production on an industrial scale. 

The second part of the present thesis, as already mentioned, regarded the fabrication of other 

silicate formulations for further functional applications. The technology transfer to other 

compositions was enabled by virtue of the high flexibility of the PDCs approach, besides a series of 

analogies in the fabrication process and in the crystal structures, as well as the multifunctionality of 

some fillers and of final silicates. 

A first example was represented by apolymer-derived forsterite ceramic (Mg2SiO4), a Mg-silicate 

which can serve as a biomedical material for its biocompatibility and bioactivity, but can also be 

considered a valid dielectric material, since it exhibits very low dielectric losses. For this reason, this 

silicate is much appreciated in telecommunications and in radar systems, from ultra-high speed LAN 

to car anti-collision devices, dielectric resonators and filters. 

Another composition developed in this research work was a polymer-derived cordierite 

(Mg2Al4Si5O18) ceramic, a Mg-Al silicate with applications in in the field of catalytic converters and 

particulate filters for diesel engines and, more generally, for components subjected to severe 

thermal gradients. Cordierite ceramics were shaped into highly porous bodies, exploiting, as already 

described for some biosilicates, the water release from dehydration of Mg(OH)2, that was used as a 

MgO precursor, for the realization of the final composition of cordierite, but also as a foaming agent, 

thanks to its multifunctionality. 

A “dual-phase” Eu-doped glass-ceramic with luminescent properties was also synthesized by 

direct reaction of a preceramic mixture, through a heat treatment at 1000-1200 °C in air. The final 

result was an alumino-boro-silicate glass-ceramic, with final phase assemblage (comprising 

distribution of Eu ions) resembling that of SABBL glass, that is usually obtained by melting at 1600 °C 

and crystallization at 900 °C. As described for some biomedical compositions, glass-ceramics can be 

fabricated from preceramic polymers incorporating some fillers, like boron compounds, that act as a 

flux, providing a liquid phase later remaining as intergranular glass phase, after cooling. However, if 

incorporated in higher amounts, the same filler, besides forming the surrounding glass matrix, could 

participate in the formation of a borate phase, that could host Eu3+ ions. Moreover, Eu2+ species were 

incorporated in an Al-silicate phase, thus giving both red and blue luminescence photoemission. The 

reduction of Eu3+ to Eu2+ at high temperatures in oxidizing atmosphere was possibly favoured by the 

reducing conditions, locally caused by the polymer-to-ceramic conversion of the silicone matrix. 

Eu species were also exploited as dopants for polymer-derived gehlenite (Ca2Al2SiO7) phosphor, a 

Ca-Al silicate exhibiting the same crystal structure as akermanite (Ca2MgSi2O7), in which RE ions can 

easily replace alkali earth metals due to the similarity in their size. Eu-doped gehlenite ceramics 

showed strong optical properties as well. 
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