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SUMMARY  

Neurofibromatosis type 1 (NF1, OMIM # 162200), also known as von Recklinghausen, is an autosomal dominant 

disease caused by mutations of the NF1 gene coding a 2818 amino acid protein, neurofibromin (Nf1). More than 

900 different mutations in the NF1 gene have been identified (HGMD, Human Genetic Mutation Database). 

Mutations of NF1 gene cause a variety of clinical manifestations such as the optic gliomas, neoplasms of the 

haematopoietic system and learning disabilities. However, the hallmark of NF1 is the development of multiple 

benign peripheral nerve sheath tumors called neurofibromas. Neurofibromas are complex tumors arising from 

peripheral nerve sheaths and mainly composed of Schwann Cells (SCs) homozygous for mutated NF1, mast cells 

(MCs) and fibroblasts (FBRs) both heterozygous for the same mutation. The plexiform variety can progress to 

highly malignant sarcomas termed Malignant Peripheral Nerve Sheath Tumors (MPNSTs), which are almost 

invariably lethal.  

Up to now, any effective therapy able to either reduces neurofibroma size and its incidence or to counteract its 

formation, has not been developed yet. The main feature of neurofibroma is a rigid structure due to massive 

deposition of collagen of different types by activated FBRs. These cells, named myofibroblasts (mFBRs), are 

massively stimulated by mast cell-secreting Transcription Growth Factor-Beta (TGF-Beta) to produce growth 

factors such as Platelet Growth Factor (PDGF), Fibroblast Growth Factor (FGF) and collagen. This leads to both 

potent SCs proliferation and deposition of rigid extracellular matrix (ECM). 

Cells’ haploinsufficient for Nf1 display hyper-activation of Rat Sarcoma (Ras), which further increases when Loss of 

Heterozigozyty (LOH) of NF1 occurs. Thus, the activation of Ras/ Rapidly Accelerated Fibrosarcoma (Raf) 

/Extracellular signal-regulated Kinase (ERK) signaling in SCs is sufficient to make them more susceptible to 

proliferative signals provided by a NF1
+/-

 niche. However, the physiological response to Ras hyper-activation is cell-

cycle arrest and/or senescence rather than transformation. Ras-mediated transformation of SCs probably relies on 

a step-wise process that integrates circuits of amplification signals from the local niche. A major component of the 

niche is the ECM, a complex network of macromolecules whose the elasticity (ranging from soft to stiff and rigid), 
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contributes to development and cancer. ECM elasticity determines how a cell senses and perceives external forces 

and thus provides a major environmental cue that determines cell behavior. Indeed, the focal adhesion complex, 

which consists of integrins, multicomplex of adaptors and signaling proteins, can be viewed as a mechanosensor 

linking the actomyosin cytoskeleton with the ECM. How lack of Nf1 may impact on the complexity of ECM-cell 

dynamic and how the great rigidity of the ECM in neurofibromas influences SCs’ behavior, is still unknown. Among 

the three functional domains described in the Nf1 protein, a Focal Adhesion Kinas (FAK) binding domain has been 

identified and Nf1 has been shown to interact with FAK, paving the way for the enunciation of new hypothesis 

aimed to explain the route of SCs transformation toward cancer. 

Rational: as in other tumors {Lu, 2012 #289}, {Yu, 2011 #292}), also in the plexiform neurofibromas, the 

tumorigenic phenotype of SCs is fostered by the amplification of integrated signaling pathways triggered by loss of 

Nf1, Ras hyper activation and deregulated ECM. Changes of the mechanical properties of ECM due to increased 

collagen secretion by mFBRs might actively contribute to tumor progression by influencing gene expression profile 

of the cells through the enhancement of Ras signaling pathway triggered by FAK. The deep investigation of these 

biological changes triggered in SCs by ECM formation is the goal of the present project. 

Project Goals: To shed light into this issue, we intend 1) to generate a novel three-dimensional experimental model 

in vitro reproducing the multicellular complexity of neurofibromas with primary cells. Immortalized cells, indeed, 

are not suitable for our aims since the molecular oncologists consider the immortalization process as the first hit 

leading to tumorigenic phenotype, because of the changes which made for cell cycle control in gene expression 2) 

to assess the requirement ECM for SCs transformation in this new in vitro system identifying the proper ECM 

composition and stiffness in matrigel (structural and non structural components) required for neurofibroma’s 

formation. 

Results:   

Isolation of primary SCs and FBRs from Neurofibromas and their biological characterization: 
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1) We have already isolated and cultured in 2D our SCs and FBRs NF1
+/-

 according to Serra methodology {Serra, 

2000 #210}. These cells have been isolated from plexiform neurofibroma biopsies after informed consent of 

patients by our Milan and Rome University collaborators.  

To get two populations of SCs and FBRs we have cultured cells in selective Medium (according to {Serra, 2000 

#210}, and our new unpublished protocol) and characterized them biochemically by: S100B {Tucker, 2011 #321} 

and p75 markers specifically recognizing SCs and collagen I secretion, alpha smooth muscle actin (α-SMA) 

expression, Smad2/3 activation, Abl kinase activation characterizing mFBR activity {Kojima, 2010 #150}. 

2) We have already obtained colonies of SCs growing in 3D in vitro system as described in step 1 and 2 (in 

transwell-like chambers to permit autocrine stimulation between mFBRs and SCs). Our preliminary data show that 

primary SCs generate colonies only when plated in an ECM/reconstituted basement membrane Collagen I-Matrigel 

of at list 3 mg/ml. However, we have still to set up the culture conditions to keep cells in highly proliferating state.  

Preliminary indications in immortalized Mouse Embrionic Fibroblasts (MEFs) 

In other cellular models as in mouse FBRs NF1
-/-

, we have found that the absence of Neurofibromin correlates with 

deregulation of FAK Y397 and Y925 phosphorylation both in absence of integrin clustering and after ligand 

stimulation. Further, the tumorigenesis assay showed that MEFNF1
-/-

ability to form colonies is affected by both 

MECK inhibitor and FAK inhibitor (Y15) indicating the cooperative role of FAK and PDGFBB growth factor in the 

tumorigenesis process mediated by Nf1. Consistently, immunoprecipitation experiments showed that in Nf1 null 

cells, Growth factor receptor-bound protein2 (Grb-2), the RAS pathway initiator, interacts with FAK also in absence 

of collagen in a PDGFBB ligand-dependent way, thus suggesting that FAK and growth factor receptors can 

cooperate to increase the Ras activity to a threshold required to induce tumorigenesis.  
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SOMMARIO  

Neurofibromatosi tipo 1 (NF1, OMIM # 162200), nota anche come di von Recklinghausen, è una malattia 

autosomica dominante causata da mutazioni del gene NF1 che codifica una proteina coi 2818 aminoacidi , detta 

neurofibromina (Nf). Più di 900 diverse mutazioni nel gene NF1 sono state identificate (HGMD, Database di 

mutazione genetica umana). Mutazioni del gene NF1 causano una varietà di manifestazioni cliniche quali il glioma 

ottico, neoplasie del sistema ematopoietico e disabilità dell'apprendimento. Tuttavia, il segno distintivo della NF1 è 

lo sviluppo dei tumori benigni nella guaina dei nervi periferici, chiamati neurofibromi. I neurofibromi sono tumori 

complessi originati da guaine nervose periferiche e costituiti prevalentemente da cellule di Schwann omozigote 

mutate per NF1, mastociti e fibroblasti entrambi eterozigoti per la stessa mutazione. I plessiformi possono 

progredire a sarcomi altamente maligni denominati MPNSTs (schwannomi maligni), che sono quasi sempre letali. 

Ad oggi non e’ ancora stata sviluppata alcuna terapia efficace in grado di ridurre la dimensione e incidenza dei 

neurofibromi, o atta a contrastarne la formazione. La caratteristica principale dei neurofibromi è la loro struttura 

rigida conseguente alla massiccia deposizione di collagene prodotto dai fibroblasti attivati. Queste cellule, 

denominate miofibroblasti, sono fortemente stimolate da mastociti che producono fattore di crescita 

trascrizionale-Beta (TGF-Beta) per produrre poi fattori di crescita, come fattore di crescita piastrinico, fattore di 

crescita dei fibroblasti e collagene. Ciò comporta sia la potente proliferazione di cellule di Schwann che la 

deposizione di matrice extracellulare rigida. 

Cellule aploinsufficienti per Nf1 comportano iperattivazione di Ras, che aumenta ulteriormente con LOH. 

L'attivazione di vie di segnale di Ras/Raf/ERK in cellule di Schwann rende le cellule più suscettibili ai segnali 

proliferativi forniti dalla nicchia NF1
+/-

. Tuttavia, la risposta fisiologica a Ras iperattivato è l’arresto del ciclo 

cellulare e/o senescenza piuttosto che trasformazione. La trasformazione Ras-mediata di cellule di Schwann 

probabilmente si basa su un procedimento che integra diversi segnali dipendenti da circuiti di amplificazione della 

nicchia stessa. Uno dei più importanti componenti della nicchia è la matrice extracellulare (ECM), una rete 

complessa di macromolecole con plasticità variabile che contribuisce alla progressione tumorale. L’elasticità di 
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ECM determina la modalità con cui una cellula percepisce le forze esterne e quindi fornisce un importante spunto 

ambientale che determina il comportamento cellulare. In effetti le adesioni focali, che consistono di integrine, 

adattatori multicomplesi e proteine di segnale, possono essere visti come meccano-sensori che collegano il 

citoscheletro con la ECM. Come la mancanza di Nf1 possa avere un impatto significativo sulla complessità di 

dinamismo di ECM-cellula o come la grande rigidezza dell'ECM in neurofibroma influenzi il comportamento delle 

cellule di Schwann, è ancora sconosciuto. Tra i tre domini funzionali descritti nella proteina, un dominio di legame, 

FAK, sulla proteina è stato identificato e Nf1 ha mostrato di interagire con FAK, spianando la strada per 

l'enunciazione di una nuova ipotesi per spiegare il percorso trasformazionale delle cellule di Schwann verso il 

cancro. 

Razionale: come in altri tumori {Lu, 2012 #289}, {Yu, 2011 #292}), anche nei neurofibromi plessiformi il fenotipo 

trasformato di SCs è favorito dall'amplificazione della segnalazione di percorsi integrati attivati sia da perdita di 

Nf1, Ras iperattivazione che deregolamentato di matrice extracellulare (ECM). Le modifiche delle proprietà 

meccaniche di ECM a causa dell'aumento di secrezione di collagene dai miofibroblasti potrebbe contribuire 

attivamente alla progressione del tumore, influenzando profili di espressione genica delle cellule attraverso la 

valorizzazione di segnale di Ras pathway generato dall'adesione focale (FAK). L'indagine in profondità di queste 

modificazioni biologiche attivate in SCs dalla formazione di ECM è l'obiettivo del presente progetto. 

Al fine di far luce su questo argomento, abbiamo intenzione di 1) generare un nuovo modello sperimentale 

tridimensionale in vitro che riproduce la complessità di neurofibroma pluricellulari con le cellule primarie. Cellule 

immortalizzate, infatti, non sono adatte per i nostri scopi poiché gli oncologi molecolari consideranno il processo di 

immortalizzazione come il primo colpo che conduce al fenotipo oncogenico, a causa dei cambiamenti che sono 

stati fatti per il controllo del ciclo cellulare di espressione genica; 2) valutare l'esigenza di ECM nella trasformazione 

di cellule di Schwann cell (SCs) in questo nuovo sistema in vitro identificando la corretta composizione dell'ECM e 

rigidità in matrigel (strutturali e non strutturali) per formazione di neurofibroma. 

Risultati: 

Isolamento delle cellule di Schwann e Fibroblasti primarie da Neurofibromi e la loro caratterizzazione biologica: 
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1) Abbiamo già isolato e coltivato in 2D le nostre cellule di Schwann e Fibroblasti NF1
+/- 

secondo la 

metodologia di Serra {Serra, 2000 #210}. Queste cellule sono state isolate da biopsie di neurofibromi plessiformi 

dopo aver consenso informato dei pazienti mediante i nostri collaboratori presso Università di Milano e di Roma.  

Per ottenere due popolazioni delle cellule di Schwann e Fibroblasti abbiamo coltivato le cellule in terreno selettivo 

(secondo {Serra, 2000 #210}, e il nostro nuovo protocollo inedito) e caratterizzato dal punto di vista biochimico: 

S100B {Tucker, 2011 #321} e p75 marcatori che riconoscono specificamente le cellule di Schwann e secrezione del 

collagene di tipo I, espressione dell’actìna alfa del muscolo liscio (α-SMA), attivazione di Smad2/3, attivazione di 

abl chinasi e caratterizzare l'attività di myo-fibroblasti {Kojima, 2010 #150}. 

2) abbiamo già ottenuto le colonie di cellule di Schwann cresciute nel sistema 3D in vitro come descritto 

nella fase 1 e 2 (in transwell-like chamber per permettere la stimolazione autocrina tra myofibroblasti e le cellule 

di Schwann). I nostri dati preliminari mostrano che le cellule primarie di Schwann generano delle colonie solo 

quando piastrate in una ECM/ membrana basale ricostituita del collagene di tipo I di Matrigel di almeno 3 mg/ml. 

Tuttavia, dobbiamo ancora impostare le condizioni migliori di cultura per mantenere le cellule altamente 

proliferanti. 

Indicazioni preliminari in fibroblasti Embrionali immortalati Murini (MEFs) 

In altri modelli cellulari come nel fibroblasti NF1
-/-

 murini (MEFs), abbiamo trovato che l'assenza di neurofibromina 

scorrela con la deregolata di fosforilazione del FAK in Y397 e Y925 sia in assenza di raggruppamento di integrine 

che dopo la stimolazione con ligando. Inoltre, il saggio di tumorigenesi mostrava che la capacità di cellule di 

MEFNf1
-/-

 di formare colonie è influenzata sia da inibitore di MECK che inibitore FAK Y15 indicante il ruolo di 

cooperatzione di FAK e PDGFBB, fattore di crescita, nel processo di tumorigenesi mediato da NF1. Coerentemente, 

gli esperimenti di immunoprecipitazione hanno mostrato che in cellule null NF1, il recettore del fattore di crescita 

di proteina legata2 (Grb-2), l’iniziatore di via di segnale di RAS, interagisce con FAK anche in assenza di collagene in 

un modo PDGFBB ligando-dipendente, suggerendo così che FAK e recettori di fattori di crescita possono cooperare 

per aumentare l'attività di Ras con un valore di soglia necessario per indurre la tumorigenesi. 
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1. INTRODUCTION  

1.1 Neurofibromatosis Type 1 

Neurofibromatosis type 1 (NF1, OMIM # 162200), known as von Recklinghausen, an autosomal dominant disease, 

is also sometimes referred to as 'peripheral neurofibromatosis' caused by mutations of the NF1 gene coding a 2818 

amino acid protein, neurofibromin (Nf1). More than 900 different mutations in the NF1 gene have been identified 

(HGMD, Human Genetic Mutation Database, http://www.hgmd.cf.ac.uk/ac/index.php) [(Clementi, M., et al., 

1990)(Wallace MR, et al.,1990)]. Spontaneous mutations occur in 50% of cases; therefore, the NF1 locus may 

represent a mutational hotspot in the human genome. All affected individuals are heterozygous for loss-of-

function mutations in NF1 gene; because homozygosity in murine models has been shown to be lethal to embryos 

[Jacks et al., 1994], it is believed that one functional NF1 allele is necessary for survival. Some individuals 

demonstrate NF1 features in a localized pattern; this syndrome is termed segmental neurofibromatosis, and this 

phenotype is likely owing to a post zygotic, somatic mutation of the NF1 gene in an early stage of fetal 

development (somatic mosaicism). Most of these mutations cause protein truncation, possibly resulting in the 

absence of a mature protein, but missense point mutations are also found. A clear genotype/phenotype 

correlation is lacking, and extensive studies on mutated Nf1 proteins are missing. It is unknown if a common 

functional paradigm embeds all mutations, or if subtle changes in the defects caused by the different mutations 

explain the degrees of NF1 expressivity. For instance, it is unclear whether mutations affect expression, stability, 

sub cellular localization, post-translational modifications, or the panel of the Nf1 protein’s interactors. 

Mutation of NF1 gene causes a variety of clinical manifestations such as the optic gliomas, neoplasias of the 

hematopoietic system and learning disabilities. However, the hallmark of NF1 is the development of multiple 

benign peripheral nerve sheath tumors called neurofibromas. Neurofibromas are complex tumors arising from 

peripheral nerve sheaths and mainly composed of Schwann Cells (SCs) homozygous for mutated NF1, Mast Cells 

(MCs) and Fibroblasts (FBRs) both heterozygous for the same mutation [Gottfried et. al,2010]. The plexiform 

variety can progress to highly malignant sarcomas termed Malignant Peripheral Nerve Sheet Tumors (MPNSTs) 

which are almost invariably lethal.  

file:///C:/Users/dottorandi/AppData/Roaming/Microsoft/Documents%20and%20Settings/FChiara/Impostazioni%20locali/Temp/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=mutation
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Up to now, any effective therapy able to either reduce neurofibroma’s size and incidence or to counteract its 

formation has not been developed yet [Rubin, J.B. and Gutmann, D.H. 2005]. The main feature of neurofibromas is 

a rigid structure due to massive deposition of collagen of different types by activated fibroblasts. These cells, 

named myofibroblasts (mFBRs) are massively stimulated by mast cell-secreting Transcription Growth Factor-Beta 

(TGF-Beta) [(Yang FC
 
et al.,2006)(Parrinello S et al.,2008)] to produce growth factors such as Platelet Growth Factor 

(PGF), Fibroblast Growth Factor (FGF) and collagen. This leads to both potent SCs proliferation and deposition of 

rigid Extra Cellular Matrix (ECM). 

Cells haploinsufficient for Nf1 display hyper activation of Rat sarcoma (Ras) [Cichowski K and Jacks T, 2001], which 

further increases when Loss Of Heterozygozity (LOH) of NF1 occurs [Le LQ and ParadaLF,2007]. Thus, the activation 

of Ras/Rapidly Accelerated Fibrosarcoma (Raf)/ Extracellular Regulated Kinase (ERK) signaling in SCs is sufficient to 

make them more susceptible to proliferative signals provided by a NF1
+/-

 niche [Harrisingh MC and Lloyd AC, 2004]. 

However, the physiological response to Ras hyper activation is cell-cycle arrest and/or senescence rather than 

transformation. Ras-mediated transformation of SCs probably relies on a step-wise process that integrates circuits 

of amplification signals from the local niche. A major component of the niche is the ECM, a complex network of 

macromolecules whose the elasticity (ranging from soft and compliant to stiff and rigid), contributes to 

development and cancer [Aragona M et al, 2013]. 

ECM elasticity determines how a cell senses and perceives external forces and thus provides a major 

environmental cue that determines cell behavior. Indeed, the focal adhesion complex, which consists of integrins, 

multicomplex of adaptors and signaling proteins, can be viewed as a mechanosensor linking the actomyosin 

cytoskeleton with the ECM [Pengfei Lu et al,2012]. 

How lack of Nf1 may impact on the complexity of ECM-cell dynamic and how the great rigidity of the ECM in 

neurofibroma influences SCs’ behavior, is still unknown. Among the three functional domains described in the Nf1 

protein, a Focal Adhesion Kinase (FAK) binding domain has been identified and Nf1 has been shown to interact 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20FC%5BAuthor%5D&cauthor=true&cauthor_uid=16835260


16 

 

with FAK [Kweh F. et al, 2009], paving the way for the enunciation of new hypothesis aimed to explain the route of 

SCs’ transformation toward cancer. 

The NF1 symptoms  

NF1 displays a 100% penetrance, but expressivity is extremely variable. Patients affected by this disease show 

defects in tissues derived from the neural crest and for this reason NF1 has been described as a neurocristopathy. 

However, the symptoms are not restricted to this tissues [Cichowski and Jacks, 2001]. 

 

Skin Fold Freckling          Cafè-au-laits spots       Lisch nodule of urface of iris 

Clinical features include iris hamartomas, café au lait spots in melanocytes, freckling in the axillary or inguinal 

regions, learning deficiencies caused by defects in GABAergic neuron transmission, osseous lesions due to altered 

osteoclast-osteoblast interactions, defects in endothelial cells leading to vascular infarcts [Hersh, 2008]. 

                                                  

Plexiform Neurofibromas                            Dermal Neurofibromas                                       Optic Pathway Glioma 
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Neoplastic transformation mainly affects neural crest-derived cells. Most tumors originate in the nervous system: 

astrocytomas and gliomas of the optic pathway in the Central Nervous System (CNS); neuroblastomas and 

neurofibromas, which constitute a hallmark of the syndrome, in the Peripheral Nervous System (PNS). 

Neurofibromas are benign tumors arising from peripheral nerve sheaths, and display a distinctive degree of 

complexity because of their extensive cellular heterogeneity. They are composed of SCs, FBRs, MCs, perineural and 

endothelial cells, pericytes, and of a large amount of ECM surrounding axons [(Gottfried, 2010) (Staser et al, 

2010)]. Neurofibromas can be either dermal superficial or deep plexiform tumors. Plexiform neurofibromas can 

progress to highly malignant sarcomas, MPNSTs, which are endowed with a very poor prognosis [Parrinello and 

Lloyd, 2009]. NF1 patients may also develop non-nervous system tumors, as gastrointestinal stromal tumor, 

somatostatinoma, pheocromocytoma, rhabdomyosarcoma, breast cancer and juvenile myelomonocytic leukemia 

[(Brems et al, 2009)(Cutts et al, 2009)].  

Treatment  

Just as mentioned there is no any therapeutic product or even effective therapy to reduce the incidence and size 

of neurofibromas as well as the formation of malignant tumors. The current therapies for cutaneous 

neurofibromas that cause disfigurements include surgery and, in some instances, CO
2 

laser treatment or 

electrodessication [Rasmussen SA, et al., 2000].  

Plexiform neurofibromas are largely bulked when clinically indicated, although their infiltrative nature presents 

significant challenges during surgery, and some patients will experience nerve damage or significant hemorrhage 

[Evans, D. G. et al.2010]. Malignant transformation of plexiform neurofibromas into MPNSTs is a significant 

problem in individuals with NF1 and is a leading cause of death in Individuals with NF1-associated plexiform 

neurofibromas. These patients must be monitored for a change in tumor growth and for signs and symptoms of 

transformation, including the development of pain, neurological deficit (weakness), or constitutional symptoms 

(weight loss, night sweats). While Magnetic resonance imaging (MRI), can define the anatomic location and extent 

of a Peripheral Nervous System Tumors (PNST), it does not provide accurate information regarding malignant 

transformation [De Luca, A. et al. 2004]. 
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Treatment of MPNSTs involves surgical resection with subsequent to be effective; however, there is currently no 

standard care for these deadly cancers [Stumpf, D. A. et al 1987]. 

Unfortunately, long-term survival is rare when MPNST occurs in patients with NF1 because of lung and bone 

metastases as well as local tumor recurrence [Rasmussen, S. A., et al.,2001]. 

The NF1 Gene  

The NF1 gene structure and functions  

In 1987, genetic linkage analysis of a large number of independent families was used to map the NF1 locus close to 

the centromer on the long arm of chromosome 17 [(Hersh JH; et al., 2008)(Gottfried ON, et al.)]. In 1990, the NF1 

gene was identified by positional cloning and it was located at 17q11.2 [(Ballester et al.,1990)(Xu et al., 

1990)(Parrinello S,et al.,)]. The NF1 gene is complex, spans more than 350 kb of genomic DeoxyRibonucleic Acid 

(DNA), and contains 60 exons [Brems H, et al., 2009]. The NF1 gene produces an 11- to 13-kb Messenger 

Ribonucleic Acid (mRNA) [(Wallace et al., 1990)(Cutts BA, et l,.2009)]. This is expressed in almost all tissues 

[Parrinello S, et al., 2009]. But it is most highly expressed in the brain, spinal cord, and the peripheral nervous 

system [(Levine, S. M., et al.,2008)(Prada, C. E. et al.2012)]. 

The NF1 gene product, Neurofibromin 

Neurofibromin is a large peptide (about 250 kDa) composed by 2818 amino acids (a.a) in humans and 2820 a.a in 

mice [Gutmann et al., 1991]. It is ubiquitously expressed during embryonic development and it is also present in a 

variety of cell types in adults [Gutmann et al., 1995], but it is most abundant in the nervous system, where it is 

found in neurons, oligodendrocytes, and SCs [Daston et al., 1992]. 

Sequence analysis of neurofibromin reveals a region of homology with the catalytic domain of the mammalian 

p120-Ras-GAP, a GTPase-activating protein (GAP) for the Ras family of proto-oncogenes [Xu et al., 1990]. 

Moreover, neurofibromin shows an extended similarity with the Saccharomyces cerevisiae Ras-GAP proteins IRA1 

and IRA2 [Ballester et al., 1990]. Exons 20-27a of neurofibromin encodes this “GAP related domain” (GRD), which 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hersh%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=18310216
http://www.ncbi.nlm.nih.gov/pubmed?term=Gottfried%20ON%5BAuthor%5D&cauthor=true&cauthor_uid=20043723
http://www.ncbi.nlm.nih.gov/pubmed?term=Parrinello%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19615906
http://www.ncbi.nlm.nih.gov/pubmed?term=Cutts%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=19710506
http://www.ncbi.nlm.nih.gov/pubmed?term=Parrinello%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19615906
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induces the conversion of Ras from its active Guanosine TriPhosphate (GTP)-bound conformation to its inactive 

Guanosine DiPhosphate (GDP)-bound form. 

 

Figure. Loss of neurofibromin deregulates Ras signaling. In response to growth factors, receptor tyrosine kinases (in the example Extracellular 
Growth Factor Receptor (EGFR)) recruit a guanine nucleotide exchange factor Sos, which activates Ras. In its active, GTP-bound form, Ras 

initiates several signaling cascades, including the Mitogen Activated Protein Kinase (MAPK) and PI3K pathways, in order to regulate cell growth, 
survival, and proliferation. Functional loss of neurofibromin compromises Ras inactivation and drives aberrant Ras dependent signaling, which 

contributes to tumor formation and progression [Dilworth et al., 2006]. 

Ras is activated at the plasma membrane upon binding of growth factor receptors to specific ligands, triggering the 

recruitment of a complex containing the adapter protein growth factor receptor bound protein 2 (Grb2) and the 

Ras guanine nucleotide exchange factor Sos, which catalyzes Ras switch to its GTP-bound state. This active form of 

Ras then binds and activates the kinas Raf and phosphatidylinositol 3-kinase (PI3K), which are the apical inducers 

of two kinas signaling cascades [Le and Parada, 2007]. 

Neurofibromin, via its GRD, exerts a reverse effect on Ras by increasing its GTP hydrolysis rate; as an unrestrained 

Ras activity is a major oncogenic determinant neurofibromin acts as a tumor suppressor protein. Many NF1-

deficient tumors exhibit elevated levels of Ras-GTP, supporting the observation that neurofibromin is a key 

regulator of Ras signaling. The functional domain of neurofibromin, Ras, acts as part of a signal transduction 

pathway that is activated by growth factors and their receptors [Bernards A. 1995]. Increased Ras-GTP leads to 

increased signaling through Raf kinase, which activates a kinase cascade involving MEK kinase and the Erk1 and 
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Erk2 isoforms of MAPK resulting in cell proliferation [(Bollag G, et al1996)(Downward J: 1998)(Sternberg 

PW,et,al.1998)]. Increased Ras-GTP also protects cells from apoptosis by activating mammalian Target Of 

Rapamycin (mTOR) [(Bhola P, et.al,2009)(Johannessen CM, et al.,2005)]. Studies confirm that neurofibromin 

negatively regulates this mTOR pathway with loss of neurofibromin expression in established human neurofibroma 

cell lines associated with high levels of mTOR activity [(Bhola P, et. al,2009)(Johannessen CM, et al.,2005)]. The 

mTOR pathway is constitutively activated in both NF1-deficient primary cells and human tumors, is dependent on 

Ras and PI3K activation, and is mediated by the phosphorylation and inactivation of the Tuberous Sclerosis 

Complex 2 (TSC2)-encoded protein tuberin by Protein Kinase B (PKB or AKT) [Johannessen CM, et al., 2005]. 

Overall, Ras is a key component of many growth factor signaling pathways, and in the absence of neurofibromin it 

is constitutively activated, resulting in increased cell proliferation and survival [Viskochil DH. 1999]. Moreover, 

direct inhibition of Ras (with farnesyltransferase inhibitors) or of Ras pathway molecules (with MEK and AKT 

inhibitors) as well as replacement of the NF1-GRD reverses the proliferative phenotype of NF1 deficient cells 

[(Hiatt et al., 2001)(Upadhyaya M. et al.,1997)]. These results strongly suggest that the tumorigenic potential 

conferred by loss of neurofibromin at least partially results from the growth advantage provided by deregulated 

Ras activity. 

The Ras/MAPK pathway is critical to normal development by its regulation of cell proliferation, differentiation, 

motility, growth, apoptosis, and cell senescence [Tidyman WE, Rauen KA, 2009]. Interestingly, there are multiple 

developmental syndromes in addition to NF1 that form tumors by abnormalities in the Ras pathway, and they are 

referred to as the “RASopathies” or “neuro-cardio-facial-cutaneous syndromes” [(Denayer E, de Ravel T, Legius E., 

2008)(Tidyman WE, Rauen KA,2009)]. These diseases include Noonan syndrome, LEOPARD syndrome, Costello 

syndrome, capillary malformation–arteriovenous malformation, and cardio-facio-cutaneous syndrome [Tidyman 

WE, Rauen KA., 2009].  
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Tumorigenesis in NF1 and therapeutic implications 

Figure. Ras/MAPK pathways responsible for multiple developmental syndromes, including NF1, Noonan syndrome, LEOPARD syndrome, 
hereditary gingival fibromatosis 1, capillary malformation–arteriovenous malformation (CM-AVM) syndrome, Costello syndrome, autoimmune 

lymphoproliferative syndrome (ALPS), cardio-facio-cutaneous (CFC) syndrome, and Legius syndrome, have considerable phenotypic overlap. 
Thus, targeted molecular treatment may be effective for multiple diseases. Figure reproduced with permission from Tidyman and Rauen 

[Tidyman WE, Rauen KA: The RASopathies: developmental syndromes of Ras/MAPK pathway deregulation. Curr Opin Genet Dev 19:230–236, 
2009]. 

They are related by germline mutations in genes that encode protein components of the Ras/MAPK pathway, and 

these mutations may result in increased signal transduction [Tidyman WE, Rauen KA., 2009]. Each syndrome 

exhibits unique phenotypic features; however, there are overlapping clinical features including characteristic facial 

features, cardiac defects, skin abnormalities, developmental delay, and a risk of malignancy [Tidyman WE, Rauen 

KA., 2009]. As just mentioned, there are several Nf1-related pathways that are significant in the pathogenesis of 

other developmental syndromes, including mTOR, which contributes to tuberous sclerosis [(Ehninger D, et. al., 

2009)(Huang J, et,al.,2009)(Mi R, et al., 2009)(Mozaffari M, et al., 2009)(Denayer and colleagues,2008)] noted that 

these syndromes with common molecular pathways demonstrated the important roles for evolutionarily 

conserved pathways not only in oncogenesis, but also in cognition, growth, and development. 
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To date, neurofibromin is known to have an additional functional domain, the yeast phosphatidylinositol-transfer 

protein (Sec14)p-like domain [Aravind et al., 1999] which is located between amino acids 1545-1816 and is 

homologous to the yeast Sec14p, a protein involved in the regulation of intracellular proteins and lipid trafficking. 

This domain belongs to a bipartite structural module that includes also a pleckstrin homology (PH)-like domain 

which is considered responsible for the regulation of the neighboring NF1-Sec domain. Even though the biological 

role of Sec14p domain in Nf1 is currently unknown, prediction of a Sec14p-like lipid binding domain in 

neurofibromin opens new lines of investigation of its Ras-GAP function in terms of regulation by lipids, and 

suggests that neurofibromin can be involved in other transduction pathways. 

 

Figure: Diagram illustrating known functional domains within neurofibromin. Domains are indicated as follows: CSRD, cysteine/serine-rich 
domain; TBD, tubulin-binding domain; GRD, GAP-related domain; Sec14/PH, Sec14- homologous domain and pleckstrin homology domain; NLS, 
nuclear localization sequence. Numbers above each sub domain indicate the positions of the corresponding amino acids within the 2818 amino 

acid length of the human neurofibromin protein [Brossier and Carroll, 2012]. 

Neurofibromin localization  

Even though the Ras-GAP activity currently appears to represent the only clearly defined biochemical function of 

this giant protein, a number of interaction partners of neurofibromin have been reported: Protein Kinase A (PKA) 

or cAMP-dependent protein kinas, protein kinas C (PKC), caveolin-1, FAK, tubulin, amyloid precursor protein, 

syndecan, kinesin-1, nuclear PMLbodies (are punctate structures found in the nuclei of certain cells), the UBX-UBD 

protein (Ubiquitin regulatory X-D proteins) Protein, Expressed in T-cells and Eosinophils in Atopic Dermatitis (ETEA) 

and p97/valosin-containing protein (p97/VCP). Neurofibromin could interact with different partners also 

https://en.wikipedia.org/wiki/Cell_nucleus
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depending on its dynamic intracellular movement which regulates not only protein localization, but also protein 

function. Neurofibromin appears to be predominantly cytoplasmic, with different cell types displaying a variable 

sub cellular localization. Some studies have also observed neurofibromin in the nucleus as it contains a nuclear 

localization sequence (NLS) at the C-terminus [Vandenbroucke et al., 2004]. The possible function of neurofibromin 

within the nucleus remains unknown. Translocation to the nuclear compartment could be a mechanism to regulate 

the GAP function of neurofibromin by sequestration in the nucleus, as Ras is located at the plasma membrane. It is 

possible that during development, the sub cellular targeting of neurofibromin depends on posttranslational 

modifications, such as phosphorylation, regulates the targeting of proteins. Indeed, neurofibromin contains 

multiple PKA and PKC serine or threonine phosphorylation consensus sites which are located within the N-

terminus of neurofibromin and, in particular, in the cysteine-rich domain (CSRD). EGF stimulation was shown to 

increase the association of neurofibromin with actin through a PKC-dependent phosphorylation of neurofibromin. 

Moreover, this modification increases the Ras-GAP activity of neurofibromin [Mangoura et al., 2006]. 

1.2 The benign tumors in Neurofibromatosis Type 1 

Neurofibromas  

The hallmark feature of the disease is the formation of multiple peripheral nerve sheath tumors, neurofibromas, 

which can arise as dermal lesions or grow internally along the plexus of major peripheral nerves. While these 

lesions are benign, they can be debilitating and deforming. In addition, a subset of these tumors can progress to 

malignant neurofibrosarcomas. Neurofibromas are rarely present in childhood, but develop during puberty and 

pregnancy, suggesting a hormonal influence on tumor growth. 

Dermal Neurofibromas: The most common type of neurofibroma can arise from small nerve radicals or larger 

nerve branches and grow as discrete lesions in the dermis or epidermis ranging from 0.1 to several centimeters in 

diameter. They are collectively called dermal neurofibromas and patients can develop thousands of them which, 

depending on location, can be painful and disfiguring. One of the key features of neurofibromas is their 

heterogeneity as they are composed of all cell types normally found in the peripheral nerve .However, the 
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structure of the nerve fascicle seems to be highly disorganized, with increased number of SCs and FBRs, increased 

collagen deposition, extensive MCs infiltration and disruption of the perineurium. Moreover, unlike in the normal 

nerve, the majority of SCs in neurofibromas are found dissociated from axons and axonal degeneration is present. 

 

Figure: Structure of normal nerves and neurofibromas. Diagram showing a cross-section of (a) a normal nerve fascicle and (b) the aberrant 
structure of nerve fascicles in neurofibromas [Parrinello and Lloyd, 2009]. 

 

Plexiform neurofibromas: In contrast to dermal neurofibromas, which are typically small, plexiform neurofibromas 

can develop internally along the plexus of major peripheral nerves and become quite large, involving an entire limb 

or body region. They occur in about 30% of NF1 individuals and are considered as congenital lesions. While these 

are benign tumors, they can be debilitating and can progress to malignancy. Indeed, plexiform neurofibromas 

harbor a 5% lifetime risk of transformation into MPNSTs. These are highly malignant and metastatic cancers with a 

high mortality and a poor response to chemotherapy and radiation. The difference in the mechanism of 

tumorigenesis between cutaneous neurofibromas and plexiform is unclear; however, the timing of their 

development as well as their growth properties may indicate differences in the mechanism of tumor initiation. 
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Origin of neurofibromas  

The molecular mechanisms underlying tumor development in NF1 have been obscure. Although second hit 

mutations affecting the inherited wild-type NF1 allele have been clearly identified in the myeloid leukemias and 

pheochromocytomas in NF1 patients, such mutations have been reported for only a small number of 

neurofibromas. The difficulty in detecting mutations may be due in part to the complex nature of these lesions, 

which are composed of multiple cell types, not all of which are expected to develop a second mutation. Moreover, 

it has also been suggested that NF1 heterozygosis may be sufficient for development of benign neurofibromas 

(haplo-insufficiency), with full loss of NF1 function being restricted to the progression to MPNSTs. 

Research over the past decade using mouse models has greatly enhanced our knowledge of neurofibroma 

development and malignant progression in NF1. The mouse and human NF1 genes are highly related, the amino 

acid sequence of neurofibromin is 98% identical, and there is also significant similarity between the non-coding 

regions of the mRNA. Mice homozygous for null Nf1 mutation in exon 31, a region that is often mutated in human 

NF1 patients, are embryonic lethal at E13.5 secondary to defective heart and malformation of the major cardiac 

outflow tracts. Defects in renal, hepatic and skeletal muscle development were also observed; however, nervous 

system pathology was limited to enlargement of sympathetic ganglia secondary to neuronal hyperplasia [(Brannan 

et al., 1994)(Gottfried et al., 2006)(Jacks et al., 1994)]. Heterozygous Nf1 mutant mice are viable and only have 

increased incidence of pheochromocytomas and myeloid leukemias beyond 10- to 12-month old; however, they 

do not develop PNSTs or other characteristic symptoms of human NF1. One possible explanation for this 

observation is that LOH necessary for neurofibroma development is impaired in mice. Perhaps, given the shorter 

time of gestation and lifespan compared with humans, the Nf1
+/-

 mice do not have the necessary window of 

opportunity to undergo effective LOH in target cells to initiate neurofibroma formation. Cichowski in 1999 

addressed this issue elegantly when they created chimeric mice by injecting Nf1
-/-

 ES cells into wild type 

blastocysts. These mice developed microscopic plexiform neurofibromas derived from the injected ES cells, 

demonstrating the requirement of Nf1 homozygosis for tumor formation. However, the degree of chimerism in 
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these mice occurs randomly and cannot be controlled genetically. As a result, it was difficult to establish the target 

cell or whether other cell types contribute to the tumorigenesis. 

As in human neurofibromas SCs were the most common cell type present in neurofibromas it was hypothesized 

that this cell type, or their precursors, could be the initiating cell for tumor development. SC-specific Nf1-deficient 

mice were derived by crossing Nf1flox/flox mice with the Krox20-cre transgenic mice, an embryonic SC-specific 

promoter [Zhu et al., 2002]. Mice with a conditional knock-out of Nf1 only in embryonic SCs, but wild-type in all 

other cell lineages (Nf1flox/flox; Krox20-Cre), exhibit microscopic hyperplasia in sensory ganglia but do not develop 

neurofibromas. However, when mice homozygous for Nf1 mutation (Nf1
-/-

) in SCs but heterozygous for Nf1 (Nf1
+/-

) 

in all other somatic cells (Nf1flox/-; Krox20-Cre) were generated, these mice developed multiple classic plexiform 

neurofibromas with a massive degranulating MCs infiltration, modeling human neurofibroma. These genetic 

studies implied the SC origin for neurofibroma. Nevertheless, in addition to nullizygosity at Nf1 locus in SCs, 

haploinsufficiency of Nf1 in the tumor microenvironment is also required for the tumorigenesis.  

 

Table: Genetically engineered mouse models of neurofibroma formation. Both nullizygosity at Nf1 locus in SCs and haploinsufficiency of NF1 in 
the somatic tissue are required for neurofibroma (Brossier and Carroll,2012). 

The loss of both NF1 alleles, which lacks functional neurofibromin, has a substantial growth advantage [Muir D, et 

al., 2001] and a loss of negative autocrine growth control [Muir D., 1995]. Neurofibromin- deficient SCs secrete 
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increased kit ligand, which serves as a chemo attractant for MCs expressing c-kit receptor. Also, heterozygous 

inactivation of NF1
+/–

 promotes migration of MCs on α4β1 integrins (MC surface proteins), in response to the kit 

ligand. Overall, the loss of NF1 in SCs results in an increase in growth factor production that initiates a paracrine 

loop, and it is important for tumor initiation and progression [Yang FC, et al., 2003]. Normally, growth factors 

cooperate to suppress cell death in SC precursors [Gavrilovic Jet al.,1995], but growth factor deregulation is 

thought to be involved in tumorigenesis [Ratner N, et al., 1990]. Changes in growth factor expression may be the 

direct result of NF1 gene loss or from secondary genetic events [Mashour GA, et al., 2001]. Abnormal growth 

factor receptor expression also has a role in tumorigenesis, progression, and malignant transformation.  

Timing in Nf1 loss  

Even though it is well established that neurofibromas arise from SCs that undergo LOH at the NF1 locus, the 

specific cell type within the SC lineage in which this occurs has been the topic of much debate. The SC lineage is 

well characterized and specific markers for the different cell types within the lineage have been identified. SCs 

originate from migrating neural crest stem cells (NCSCs) and SC precursors and immature SCs [Mirsky et al., 2008].  

Around birth, immature SCs differentiate into the two main mature SC types of the peripheral nerve, myelinating 

and non-myelinating SCs. The former myelinate single large-caliber axons and the latter wrap multiple small-

caliber axons in structures known as Remak bundles. Importantly, SC progenitors differentiate by late gestation 

and do not persist in the adult peripheral nervous system. Instead, upon nerve injury, the requirement for new 

cells is met by the regenerative ability of mature differentiated SCs to transiently de-differentiate to a progenitor-

like state [Parrinello and Lloyd, 2009]. 

Three independent groups have recently tested whether neurofibromas originate from embryonic stem cells or 

differentiated adult cells by generating conditional mouse models in which Nf1 LOH was induced in the SC lineage 

at different times during embryonic development [(Joseph et al., 2008)(Wu et al., 2008)(Zheng et al., 2008)]. 

Elimination of Nf1 expression in neural crest cells, the earliest stage in Schwannian differentiation, was achieved by 

mating Nf1flox/− mice with Wnt1-Cre, Mpz-Cre, and Pax3-Cre animals. Although these mice had abnormal 
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sympathetic ganglia and adrenal glands and died at birth, they did not develop neurofibromas. Given the early 

death of these animals, the observation of the tumorigenic effects of Nf1 loss is prevented. However, the authors 

observed that Nf1 loss significantly increased the frequency of stem cells at early embryonic stages but they were 

no more detectable by late gestation [Joseph et al., 2008] indicating that early progenitors with stem cell 

properties do not persist in the adult where they could give rise to neurofibroma. This observation together with 

the fact that Nf1flox/−; Krox20-Cre mice develop neurofibromas, and Krox20 is not expressed in neural crest cells, 

argues that Nf1 loss in neural crest cells is not required for neurofibroma pathogenesis.  

Mouse models in which Nf1 was ablated in SC precursors (SCPs; also known as neural crest stem cells) were 

obtained using 3.9Periostin-Cre (which is active in SCPs by E11) and P0a-Cre (expressed in SCPs beginning at E12.5) 

driver lines. While the majority of Nf1flox/−; 3.9Periosin-Cre animals died by the 4th postnatal week [Joseph et al., 

2008], Nf1flox/−; P0a-Cre animals survived and formed neurofibromas in adult limb nerve [Zheng et al., 2008]. 

Interestingly, the proliferating cells in these neurofibromas were p75+, GFAP+ and BLBP−, suggesting that mature 

non-myelinating SCs rather than SCPs were the cell type giving rise to neurofibromas in this model. In keeping with 

this idea, hyper-proliferative non-myelinating SCs were found in the postnatal sciatic nerves of Nf1flox/−; P0a-Cre 

mice prior to neurofibroma development. The time window of tumor development is consistent with findings from 

Wu and colleagues, who showed that recombination of Nf1 driven by the Desert Hedgehog (Dhh) promoter at 

E12.5 in SC precursors resulted in neurofibroma development in peripheral nerve roots, but not in nerve trunks 

[Wu et al., 2008]. Unlike the tumors arising in Nf1flox/−; P0a-Cre mice, neurofibromas developing in Nf1flox/flox; 

Dhh-Cre mice contained numerous BLBP+ cells, suggesting that immature SCs were the progenitors for these 

tumors. Interestingly, the development of neurofibromas in Nf1flox/flox; Dhh-Cre mice occurred despite the 

presence of a wild-type Nf1 microenvironment; no evidence was found for Cre-mediated recombination in mast 

cells, endothelial cells or endoneurial fibroblasts, despite the fact that Dhh-expressing progenitors capable of 

differentiating into both SCs and endoneurial fibroblasts have been found in peripheral nerve [Joseph et al., 2004]. 

Therefore, neoplastic transformation of NCSCs or no neuronal restricted nerve progenitors could potentially yield 

clonal tumors containing both SCs and FBRs.  
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Given these contradictory results, it is not yet clear whether the neoplastic SCs within plexiform neurofibromas are 

derived from mature non-myelinating SCs, immature SCs or both cell types. The possibility that these neoplastic 

SCs arise from another source such as boundary cap cells also has not yet been ruled out. Intriguingly, these 

findings could have implications for our understanding of the enormous variability in the severity of the human 

disease, even among members of the same family. 

Given the marked differences in the clinical behavior of dermal and plexiform neurofibromas, it is possible that the 

neoplastic cells in these neurofibroma subtypes are derived from distinct progenitors. Neural-crest derived 

precursor cells capable of both Schwann and melanocytic differentiation, termed skin-derived precursors (SKPs), 

are presented in the dermis of adult mice.  

Consistent with the hypothesis that SKPs give rise to dermal neurofibromas, topical administration of tamoxifen to 

neonatal Nf1flox/−; CMV-CreERT2; Rosa26-LacZ(stop) mice results in dermal neurofibroma formation at the site of 

tamoxifen administration [Le et al., 200]. Further, SKPs isolated from these animals and treated ex vivo with 

tamoxifen to inactivate Nf1 were also capable of generating neurofibromas upon autologous subcutaneous 

transplantation into pregnant mice, indicating that these progenitors (and not other cell types residing in the 

dermis) were the cell of origin of the dermal neurofibromas. Interestingly, Nf1
−/−

 SKPs were also capable of forming 

plexiform neurofibromas when auto-grafted into sciatic nerves. Thus, while SKPs residing in the dermis may be the 

cell of origin of dermal neurofibromas, these cells are apparently highly similar to the neurofibroma-initiating cells 

in peripheral nerve. The distinct clinical behavior of these tumors may primarily reflect differences in their 

microenvironment rather than their cell of origin [Brossier and Carroll, 2012]. 

Mechanisms of early tumorigenesis  

SC’s behavior is strictly controlled by axonal contact [Corfas, G. et al. 2004]. Axons provide survival, proliferative 

and differentiation signals during embryogenesis and, in adulthood, are thought to maintain SCs in a differentiated 

state to ensure the correct functioning of the nerve [(Chan, J.R. et al. 2006)(Michailov, G.V. et al. 2004)]. 

Surprisingly, very little is known about the molecules that mediate axon–glial interactions. It is accepted; however, 
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that loss of proper SC–axonal interactions can lead to neuropathy, and the pathology of human and mouse 

neurofibromas has consistently shown that the majority of SCs are found without axonal contact [Corfas, G. et al. 

2004]. However, the significance of this lack of interaction in tumor development and the mechanisms involved 

remained unclear. The new studies described earlier add credence to these observations and, by demonstrating 

that dissociation from axons is a crucial early event in SC tumourigenesis, underlie the importance of this process. 

Work from Parrinello’s laboratory also supports these findings and provides a mechanistic explanation for this 

important event [Parrinello, S. et al.2008]. Using primary co-culture systems from the Nf1fl/fl mouse model, 

showed that acute loss of Nf1 in SCs was sufficient to prevent their association to axons and induced axonal 

dissociation of SCs in established co-cultures [Simona Parrinello and Alison C. Lloyd]. Mechanistically, it is found 

that this disruption to SC–axonal interactions was the result of Ras–Raf–ERKdependent down regulation of a 

protein expressed on the surface of SCs, semaphorin 4F (Sema4F) [Simona Parrinello and Alison C. Lloyd]. Sema4F 

is a poorly studied transmembrane member of the semaphorin family of guidance molecules, the expression of 

which is retained postnatal in the peripheral nervous system [Encinas, J.A. et al. 1999)(Kruger, R.P. et al.2005)]. 

Importantly, Sema4F was readily detectable both in freshly isolated SCs and in vivo in nerves but was strongly 

down regulated in neurofibromas. Three main conclusions are suggested by these findings: first, that Sema4F is 

normally expressed in adult nerves in which it probably has an important role in maintaining peripheral nerve 

structure and function; second, that ERK-mediated Sema4F down regulation is a key mechanism of neurofibroma 

initiation, responsible, at least in part, for the early dissociation of non-myelinated SCs observed in mouse models; 

and third, the continued down regulation of Sema4F is probably required for neurofibroma progression, possibly 

by preventing reassociation of SCs to axons. How might Sema4F-mediated loss of axonal contact lead to 

neurofibroma development? In both the P0A-Cre Nf1fl/_ and the DhhCre;Nf1fl/fl mouse models, dissociation of 

non-myelinated SCs is rapidly followed by proliferation, suggesting that, in adult nerves, loss of axonal contact 

somehow renders SCs more proliferative. In the Parrinello’s work, they provided experimental evidence supporting 

this idea. They showed that when SCs were seeded onto axons and cultured in the absence of external mitogens, 

SCs initially proliferated rapidly in response to axonal signals as expected. By contrast, once SCs fully occupied the 

axonal network, the cultures became quiescent and could not be stimulated to enter the cell cycle by addition of 
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serum mitogens. If Sema4F was down regulated in these established cultures before stimulation, however, 

dissociated SCs responded to external mitogens by undergoing proliferation. Importantly, cells lacking Sema4F 

expression did not proliferate in the absence of serum, indicating that proliferation was not triggered by a direct 

effect of Sema4F on the cell cycle, but rather by an indirect effect of loss of axonal contact. These results 

demonstrate that axonal signals are anti-proliferative and dominant over environmental mitogenic cues. 

Conversely, disruption of SC–axonal interactions is pro-tumourigenic because it renders SCs more responsive to 

environmental proliferative stimuli. This is consistent with a previous study showing that loss of axonal contact 

through loss of ErbB receptor signaling resulted, surprisingly; in the proliferation of non-myelinating SCs [Chen, S. 

et al. 2003)]. Thus, Parrinello’s laboratory could begin to delineate a model of early neurofibroma formation in 

which the increase in Ras–Raf– ERK signaling that results from Nf1 loss leads to Sema4F down regulation and 

dissociation of non-myelinating SCs. Next, the dissociated cells, freed from the growth-suppressive signals of the 

axon, are able to respond to external mitogenic cues and undergo unscheduled proliferation. 

Neurofibromas progression and inflammation  

The NF1 nerve microenvironment is pro-tumourigenic in nature (i.e. it provides mitogens and growth factors 

capable of promoting the proliferation of dissociated non-myelinating SCs). A large body of evidence supports this 

hypothesis and indicates that the Nf1
+/-

 microenvironment is a key contributor to tumor development and that 

MCs in particular have a fundamental role in this cooperation [(Zhu, Y. et al.2002)(Le, L.Q. and Parada, 

L.F.2007)(Wu, M. et al.2005)]. Indeed, the presence of extensive MC infiltration in pathological specimens of both 

mouse and human neurofibromas is a common observation. Remarkably, recent exciting work on the Krox20- Cre 

Nf1fl/_ model from the Clapp’s laboratory has taken these observations further and convincingly demonstrated 

that neurofibroma development is contingent upon infiltration of Nf1
fl/_ 

MCs in the tumour mass [Yang, F.C. et 

al.2008]. 

Consistent with this important study, in the P0A-Cre Nf1
fl/_

 mouse model [Zheng, H. et al.2008] SC proliferation 

was accompanied by the development of an inflammatory response with extensive MC infiltration at the onset of 
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tumourigenesis. The trigger for this response seemed to be degeneration of the axons left unprotected after SC 

dissociation. Importantly, as tumourigenesis progressed, inflammation and nerve degeneration became even more 

extensive in these animals and eventually led to demyelination of myelinating SCs and further axonal loss. Thus, 

early degeneration of Remak bundles triggers a series of events that mimics the normal response to nerve injury. 

However, although under physiological conditions these events promote regeneration, in the context of NF1 they 

are instead ultimately conducive to neurofibroma progression. This phenomenon might be more clearly illustrated 

by drawing a comparison with normal nerve regeneration.  

In normal nerve repair, inflammatory cells are recruited to clear axonal and myelin debris and promote the 

proliferation of de-differentiated SCs through secretion of growth factors and cytokines [(Fawcett, J.W. and 

Keynes, R.J.1990)(Scherer, S. a.S., J. L.2001)(Chen, Z.L. et al. 2007)(Hirata, K. and Kawabuchi, M.2002)]. This is 

normally a transient and self-contained process and, upon axonal regeneration, inflammation subsides and SC re-

differentiate into myelinating and non-myelinating phenotypes [(Fawcett, J.W. and Keynes, R.J. 1990)(Scherer, S. 

a.S., J. L.2001)]. The Parrinello’s laboratory has previously shown that elevated Ras signaling inhibits SC myelination 

[(Harrisingh, M.C. and Lloyd, A.C.2004)(Harrisingh, M.C. et al. 2004)] suggesting that, once de-differentiated in 

response to inflammatory signals, SCs would remain in a progenitor-like proliferative state and, as such, further 

contribute to tumor progression. This model would explain the longstanding clinical observation that 

neurofibroma formation is fostered by local trauma and injury because generation of a wound is likely to initiate 

with this pro-tumourigenic process more rapidly [(Riccardi, V.M.1992)(Cichowski, K. and Jacks, T.2001)(Riccardi, 

V.M. (1981)]. 
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2. MATERIALS AND METHODS  
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2. MATERIALS AND METHODS  

Materials: 

Murine Embryonic Fibroblasts (MEFs) & Primary Cells isolated from Plexiform Neurofibromas 

Cells used as the early experimental model were MEF, isolating from mice wild-type MEF Nf1
+/+

, heterozygous MEF 

for Nf1
+/-

 and K. O. MEF Nf1
-/- 

(for the protein neurofibromin) and immortalized with virus SV40 kindly provided by 

Prof. Stein from Telaviv University. 

And other cell types which were used recently in our 3D in vitro experimental model are primary SCs Nf1
-/-

, mFBRs 

and MCs both heterozygote for Nf1
+/-

 isolated from human neurofibromas, according to Serra methodology {Serra, 

2000 #210}.These cells have been isolated from plexiform neurofibroma biopsies after informed consent of 

patients by our Milan and Rome University’ collaborators.  

Cell Cultures 

Our MEF cells were normally cultured and grown in adhesion with the flasks’ membrane with 75 cm
2
 BD Falcon or 

in normal petri plates 58 cm
2
 in D-MEM medium (Dulbecco's Modified Eagle's Medium, High Glucose with Sodium 

Pyruvate and L-glutamine, Euroclone), with addition of: fetal bovine serum, FBS (10% v/v, Fetal Bovine Serum, 

Euroclone) which provides the essential growth factors; 5 mM L-glutamine (L-glutamine solution 200 mM, 

Euroclone), essential amino acids; penicillin (2mg/ml) and streptomycin (2mg/ml) (Penicillin Streptomycin solution 

100X, Euroclone) useful to prevent any bacterial contamination. Flasks/ Petri are then kept in an incubator at 37 °C 

in an atmosphere of enriched air with 5 % of CO2.  

Matrigel Culture for growing our Primary SCs in 2D and 3D experimental methods: To the DMEM contained of 10% 

of Bovine Serum added: Heregulin, Insulin, Foskoline, IBMX, PDGF-BB, EGF, Laminine, Fibronectine, and Collagen 

and at the very end point added also cold matrigel.  
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Primary Human Fibroblasts’ culture medium: To the DMEM contained of 10% of Bovine serum added 10ng/ml of 

PDGF-BB (40ug/ul), EGF and Insulin.  

Antibodies and Growth Factors: 

Primary antibodies: used in this study are: anti-pErk polyclonal rabbit, specific against the two isoforms Erk1 and 2 

when phosphorylated individually or both phosphorylation sites: Thr202/Tyr204 of ERK1, Thr185/Tyr187 of Erk2 

(Cell Signaling); anti-ERK which detects the levels of total ERK in the cell (Cell Signaling); anti-pAkt polyclonal rabbit, 

specific for the phosphorylation of Akt1 at the level of Ser473 (Cell Signaling); anti-Akt, which detects the levels of 

total Akt in the cell (Cell Signaling); anti-GAPDH (Millipore), primary antibody for glyceraldehydes 3-phosphate 

dehydrogenize (GAPDH), the enzyme that catalyzes the sixth step of glycolysis, used as a control of protein loading, 

as the expression of this protein is not influenced by processes that have been investigated in this thesis;GSK-

3alpha/beta (001-A): c-7291 from Santa Cruz. Phospho-GSK-3alpha/beta (Ser21/9) antibody from Cell Signaling. 

Anti-pNF1 polyclonal rabbit (Cell Signaling) specific for the sequence containing the serine 2515 phosphorylated; 

anti-NF1 mouse monoclonal (Novus Biologicals); anti-pFAK polyclonal rabbit, recognizes a sequence 

phosphorylated on tyrosine 387 (Thr397); anti-FAK rabbit monoclonal. Phospho-FAK (Tyr925) from Cell Signaling. 

Anti-phospho-Src (Tyr416) clone 9A6 Monoclonal antibody (Millipore). YAP (63.7): sc-101199 mouse monoclonal 

antibody. Purified Mouse Anti S100B from BD Transduction Laboratories. Anti-Beta Catenin, clone 7F7.2 

monoclonal antibody (Millipore). PARP-1 (H-250): sc-7150 from Santa Cruz. P53 (Pab 246): sc-100 from Santa Cruz. 

Alpha- Smooth Muscle Actin antibody from Cell Signaling.  

Secondary antibodies: Amersham ECL Anti-Mouse IgG, Horseradish Peroxides- Linked Species- Specific Whole 

Antibody (from sheep) from GE Healthcare. Amersham ECL-Anti-rabbit IgG, Horseradish Peroxides- Linked Species- 

pecific Whole Antibody (from donkey) from GE Healthcare.  

Inhibitors, growth factors and others: Purified Mouse Anti-Growth Factor Receptor Bound Protein-2 (GRB2) from 

BD Transduction Laboratories. Recombinant Human Heregulin- Bet1from PeproTech. FAK inhibitor (1, 2, 4, 

5.Benzenetetraamine tetra-hydrochloride) from Sigma-Aldrich. Beta-Gal (14B7) Mouse mAb from cell signaling. 
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Matrigel/ Matrix from CORNING.  Human PDGF-BB from PeproTech. Fibronectin Serum Bovine from SIGMA 

ALDRICH. Fibronectin Solution from Human Fibroblasts from Sigma Aldrich. MEK inhibitor(Selumetinib), PD-98059 

CALBIOCHEM. Rh EGF and FGF from R&D Systems. 3-IsoButyl-1-MethylXanthine (IBMX) Sigma.  

Methods: 

Immunoprecipitation (IP) and western blotting (WB) 

Protein immunoprecipitations were carried out on total cellular extracts. Lysates were pre-cleared by incubating 

them with protein A-Sepharose beads (Sigma) for 1 hour at 4°C; they were then incubated in agitation for 18 hours 

at 4°C with the antibody conjugated to fresh protein A-Sepharose beads. Where indicated, an unrelated antibody 

was added as a negative isotype control. Beads were then washed several times in lysis buffer. 

Proteins extracted from total cell lysates or from immunoprecipitations were then boiled for 5 min in Laemmli 

sample buffer, separated in reducing conditions on SDS-polyacrylamide gels and transferred onto Hybond-C Extra 

membranes (Amersham) following standard methods. Primary antibodies were incubated over night at 4°C. 

Preparation for Immunofluorescence staining of 3D model of cells embedded in Matrigel for confocal microscopy: 

Reagents:  

10X Phosphate Buffered Saline (PBS): To prepare 1L add 80g sodium chloride (NaCl), 2 g potassium chloride (KCl), 

14.4g sodium phosphate, dibasic (Na2HPO4) and 2.4g potassium phosphate, monobasic (KH2PO4) to 1L dH2O. 

Adjust pH to 8.0. Methanol, 100X. Permeeabilization Buffer: 0.1% Triton X-100 in PBS. Blocking Buffer (1X PBS/ 1% 

BA). Fluorochrome-conjugated secondary antibody in PBS.  

Procedure:  

Aspirate Medium. Rinse cells 1X with PBS to remove serum. Cover cells to a depth of 2-3 mm with ice-cold 100% 

methanol for 15 min at -20°C. Rinse 3X, 5min each. Permeabilize using 0.1% Triton X-100 in NH4Cl 50mM for 5 min 
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in Room Temperature (RT). Rinse 3X, 5min each. Blocking (1X PBS/ 3% normal FBS, 1% BSA) 1 h RT. Rinse 2X rapidly 

and place the primary antibody 1h RT. (Beta catenin and S100B). Rinse 3X, 10 min each. Secondary antibody in 2% 

FBS in PBS, dilution 1:500 for 45 min in RT. Rinse 3X with PBS 10 min each.  

Matrigel protocol: 

The day before the experiment put an aliquot of matrigel in the fridge and put in the refrigerator, even the plates 

and pipette tips. At the day of the experiment purr 300ul of matrigel into the 24 wells. Incubate at 37 degrees for 

at least half an hour. 

Remove cells, centrifugate them, purr them in DMEM 4% serum and counting them. 50000 Cells must be brought 

to 0.5 ml of DMEM 4% serum (such an amount of cells is for 2 wells) add to the cells 0.5 ml of assay medium (or 

always in 1-1 ratio with the volume of cells.) plate in each well 0.5 ml final solution of cells thus obtained 

composition of assay medium DMEM 10 ng/ml PDGF (the stock solution is 40 ng/ul) Matrigel 4% (so that the final 

solution containing Matrigel 2 %). 

Isolation of SCs from neurofibromas: 

Frozen tumor pieces were thawed, mechanically dissociated and further digested in DMEM, 10% serum, 500 U/ml 

penicillin/streptomycin, 160 U/ml collagenase type 1 and 0.8 U/ml dispase grade1. After an incubation period of 

18-20 h at 37° C and 10% CO2 in the medium, tissue pieces were completely dissolved by triturating with a 

narrowed Pasteur pipette. The resulting cell suspensions were transferred to a 50 ml Falcon tube containing 

DMEM with 10% FBS, centrifuged at 3080 g for 10 min and resuspended in Schwann Cells Medium (SCM) 

composed of DMEM, 10% FBS, 500 U/ml penicillin/treptomycin, 0.5mM 3-iso-butyl-L-methylxanthine, 10 nM beta-

heregulin, 0.5 uM forskolin and 2.5 ug/ml insulin. SCM was freshly prepared for each feeding. Cells were seeded at 

a density of 25000 cells/cm
2 

onto six-well plate or onto eight-well plastic labtek slides; both coated with 1 mg/ml 

poly-L-lysine and 4 ug/ml natural laminin. Cultures were incubated in a humidified atmosphere at 37°C and 10% 

CO2. SCM was changed twice a week and cells are passaged when were confluent (usually after 5-7 days).  



39 

 

  



40 

 

3. RESULTS  
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3. RESULTS  

At our very early studies we worked on the protein neurofibromin (Nf1) which was conducted in vitro using an 

experimental model, murine embryonic cells derived from mice wild type (MEF Nf1
+/+

), heterozygous (MEF Nf1
+/-)

 

and homozygous (MEF Nf1
-/-

) for NF1 gene, kindly granted by Prof. Stein from University of Telaviv. We believed 

these cells were a valuable model in that they are FBRs, as stated previously, which represent one of the cellular 

components that contribute to formation of neurofibromas. In addition, the MEF cells expressing native levels of 

neurofibromin may be a starting model to explore the physiological role of Nf1. 

The first aim was to validate the experimental system, i.e. to verify that the MEF cells Nf1
-/-

 were really missing the 

Nf1, either directly by controlling the expression of the protein, and indirectly by exploring the status of ERK the 

Ser/Thr kinase downstream of Ras. 

As shown in figure 1 which shows an experiment Western blotting with commercial antibody directed against the 

Nf1, the protein was clearly recognized in sharp bands and in agreement with the genotype cell (a band charge in 

native cells, a band poorer for the heterozygous cells, the absence of a band in cells lacking neurofibromin).  

 

Figure1: Western blotting anti-Nf1 and anti-GAPDH on cells MEF Nf1-/-, Nf1+/- e Nf1+/+ 

In the next experiment, described in Figure 2 we have tested in western blotting the phosphorylation levels and 

therefore the basal activation of the kinesis ERK in only two cell types, on which we focused our research: MEF 

Nf1
+/+

 and MEF Nf1
-/-

.  Previous studies have in fact shown that Nf1 has the function of Ras-Gap or negatively 

controls the activity of Ras. It is therefore expected, that in cells where Nf1 was missing, Ras would have higher 

activity than to the cells where Nf1 was expressed in a physiological manner. The obtained data, together, confirm 

that in the MEF Nf1
-/-

, the Nf1 is not expressed and, consequently, Ras, is more active.  
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Figure2: Western blotting anti-pERK and anti-ERK on cells MEF Nf1-/-, Nf1+/+ 

Focus forming assay: 

In order to verify whether the cells which are not expressing Nf1 had acquired transforming capacity, was 

conducted the assay of Focus Forming. This assay allows observing the cell growth in the absence of adhesion to 

the substrate which is another typical "hallmark" of transformed cells. The non-transformed cells, in fact, survive 

only in adherence to the basal membrane that contributes to the orderly architecture of the tissue. Before cellular 

seeding, plastic plates were treated (coating) 12 hours with 0.3 μg/ml poly-lysine per well. The use of this synthetic 

molecule creates an adhesion surface that mimics the basal membrane. Once plated, the cells are kept for 21 days 

in low serum (0.5 %) and are treated every three days with PDGFBB (2ng/ml and 10ng/ml) in order to observe a 

dose-response to growth factor. After five days we observed the appearance of foci in MEF cells Nf1
-/-

 while all 

cells MEF Nf1
+/+

 were detached. The "foci" are cellular aggregates composed of living cells, proliferating in the 

absence of nutrient substrates. In the following days, the foci increased in number and magnitude, parameters 

that direct to the transforming power of some cells. The foci measurement indicates that the MEF Nf1
-/-

 cells 

display transforming potential increased in presence of the PDGFBB ligand. As shown by Figure 3, while in absence 

of the growth factor PDGFBB we observe only three foci, these increase to 21 in cells treated with 2ng/ml and 46 

with 10ng/ml as measured by using a program specially designed for the purpose.  
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Figure3: Focus forming assay to show the potential of developing tumors by MEF Nf1-/- cells via stimulation with growth factor PDGFBB 

Analysis of molecular cascades downstream of Ras: 

Our aim was to investigate the activation state of "transient" effectors downstream of Ras in both cell types MEF 

Nf1
+/+

 and MEF Nf1
-/-

 cells.  The serine/threonine kinases ERK and Akt are involved respectively in the transcription 

downstream of the factors of anti apoptotic pathways. Loss of control of the process of cell replication and 

insensibility to stimuli of death represent two peculiar characteristics of the tumor cells. In the next experiment 

which is compared, in kinetics, the activation of molecular effectors downstream of Ras, proteins with activities 

serine-threonine kinesis Erk and Akt in presence and absence of neurofibromin are shown. For this purpose, the 

MEF Nf1
+/+

 and MEF Nf1
-/-

 were stimulated with the growth factor PDGFBB since it is known that its receptor 

tyrosine kinase PDGFBBR expressed in MEFs, powerfully stimulates Ras and plays an important role during the 

formation of the neurofibromas. The experimental conditions were the following: 5 min of stimulation with the 

ligand PDGFBB are able to make the receptor PDGFBBR’s levels in maximum activation that progressively 

decreases in times of longer stimulation. The cells were stimulated in kinetics, with 10ng/ml of PDGFBB, as a result 

of a depletion of nutrients for 48h. Depletion of serum has a dual function: to synchronize all of the cells at the 

same point of the cell cycle (G1) and to "turn off" any other signal transduction pathway due to the presence of 

growth factors and then to zero the contribution of other stimulations. The latter aspect is very important since 

kinase as ERK are downstream of many molecular cascades, our need instead was to observe the effect on the 

kinase activity of ERK mediated purely from the receptor PDGFBBR and the Ras-GAP that control Ras. Differences 
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between enzymatic activity of ERK in native cells and gene NF1 missing cells, determine the more suitable time 

windows for studying the enzymatic activity in these cells. 

 

Figure4: Western blotting with primary antibodies against pERK and total ERK on the cell lyses of MEF Nf1+/+ e Nf1-/- and stimulated with 
PDGFBB. 

The analysis of the experiment highlights a difference in total protein between the two cell types; therefore, it will 

not be possible to compare the absolute values of activation of the kinases but only the pattern of their activation 

curve in kinetics. 

The kinetics analysis evidences that, as expected, ERK has the greatest activation in cells native already at 5 min of 

stimulation. As previously noted, there is difference in the levels of activation of ERK (pERK) already in the two 

basal of MEF Nf1
+/+

 and MEF Nf1
-/-

 not stimulated. In fact, in cells lacking of neurofibromin the balance between 

the activated form of ERK is the inactive moves toward the active, even without PDGFBB indicating that the effect 

of the Ras-GAP is significant even in the absence of stimulation. Noticeable, kinetics of activation of ERK between 

the two cell types following stimulation with the growth factor is different: in native cells, the protein kinase shows 

a peak of activation already after 5 min of stimulation, similarly to what happens in cells lacking of Nf1. It is 

interesting to note that while in latter the activation levels of ERK continue to be supported up to 20 minutes of 

stimulation in the MEF Nf1
+/+

, levels of pERK decrease already after 10 minutes, until returning to basal levels at 20 

minutes. 

It was subsequently investigated also the transient activation of serine/threonine kinase Akt. The Akt is activated 

by phosphatidyl-inositol 3-kinas PI3K as a result of direct activation of PI3K by the receptor PDGFBB or indirect by 
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Ras. Therefore, in our experimental model Akt should be very informative because its activity is mainly due to the 

activation of the receptor and secondly by Ras. 

 

Figure 5:. Western blotting anti pAkt and anti-Akt on cell lysates MEF Nf1+/+ and MEF Nf1-/- treated in kinetics with PDGFBB. 

In this case, comparing the two basal cells of MEF Nf1
+/+

 and MEF Nf1
-/-

, there seem to be no differences in the 

levels of pAkt. A careful analysis, however, aided by quantification of signal density carried out with NIH program, 

reveals a significant and widely reproduced difference between the kinetics of activation of Akt in MEF Nf1
+/+

 and 

MEF Nf1
-/-

 following stimulation with the PDGFBB. In MEF Nf1
+/+

 the difference between the basal levels of pAkt 

and those 10 minutes of treatment is shorter than the increase seen in 10 minutes in MEF Nf1
-/-

, indicating that Akt 

also suffers from the activity of Nf1 when present, but unlike ERK, for which the presence or absence of Nf1 

influence the time of inactivation, for Akt instead the opposite seems true. This could be explained by the fact that 

the phosphorylation of Akt is a contribution of Ras .Then if Ras is more active, Akt also is more active.  

The next question that we posed was whether the transforming potential of the cells following stimulation with 

PDGFBB is depended on other signaling pathways or not. During the Focus forming, for example, we have noticed 

that the MEF Nf1
+/+

 cells are detached from the plate as a result of depletion of serum while the MEF Nf1
-/-

were 

still attached. This was an opportunity to hypothesize that Nf1 could somehow influence the ability of the cell to 

attach the substrate. In the literature it is reported that Nf1 interacts and regulates FAK, a key protein in the 

network receptor of growth factors-integrins. Of the few existing jobs on Nf1, one in particular shows the 

importance of the functional interaction Nf1-FAK for the adjustment of focal adhesions, structures that are crucial 

to the accession and the cell movement. To formulate a suitable case we have investigated whether FAK could 

contribute to the neoplastic phenotype. 
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We explored the phosphorylation site on amino acid tyrosine of FAK, following stimulation with PDGFBB in the 

presence and absence of Nf1. 

 

Figure6: Western blotting anti pFAK and anti-FAK on cell lysates MEF Nf1+/+ and MEF Nf1-/- treated in kinetics with PDGFBB. 

In this experiment is evident that the FAK phosphorylation at the y397 site is already present in the NF1
-/- 

MEF cells 

in absence of PDGFBB stimulation indicating that the absence of Nf1 may affects this phosphorylation. Further, 

FAK phosphorylation kinetics is different between the two cell types following stimulation with PDGFBB.  

To investigate the reason why the FAK is more active in MEF Nf1
-/-

, we explored the possibility that these cells 

started to produce them self growth factors and thus basically stimulate FAK. We collected the MEF Nf1
-/-

 

supernatant from confluent flasks. Then MEF Nf1
-/-

 and MEF Nf1
+/+

 were starved for 48 hours were stimulated in 

different minutes by MEF Nf1
-/-

 supernatant and PDGFBB to also make a comparison between the potential of 

these two stimulators. We observed that MEF Nf1
-/-

 supernatant can also stimulate the cells, confirming the 

presence of growth factors in the medium. 

 

Figure11: Stimulation of MEF Nf1+/+ and MEF Nf1 -/- with two different stimulators; 1- PDGF-BB and 2- Medium conditioned of MEFNf1-/- 

Next, we asked if Nf1 interacts with FAK.  We immuonoprecipitated neurofibromin and we detected the co-

immunoprecipitation of FAK with neurofibromin. 
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Figure12: Immunoprecipitation of Nf1 with FAK 

We also investigated the possible influence of the PDGFBBR on the phosphorylation of serine 2515 of Nf1. This site 

of phosphorylation is one of the sites identified in work of phosphoproteomic as activated by growth factors and 

whose biological meaning is still unknown. This study reveals that the serine residue 2515 possesses a regulatory 

activity of Nf1 by negatively regulating its function. The experiment was conducted in western blotting with a new 

phospho-specific antibody directed against the Ser2515 of the human protein homologous to the murine on MEFs 

stimulated or not with PDGFBB for 5 minutes. 

The results, unfortunately, gave a weak indication about a possible phosphorylation in Ser of Nf1. 

 

Figure7: Western blotting anti-pNf1 and anti-Nf1 on the cell lysates of MEF Nf1+/+ e MEF Nf1-/- with and without stimulation with PDGFBB. 

In order to understand the different level of phosphorylation of Src and GSK, we performed dose response 

experiments on the MEF Nf1
-/-

 and MEF Nf1
+/+

 stimulated or not with PDGFBB. The activities of the Src family of 

non- tyrosine kinase receptors have been implicated in tumor cell invasion [reviewed by Irby and Yeatman, 2000]. 
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Src activity is significantly higher in metastatic tissues than in normal tissues [Talamonti et al., 1993]. Furthermore, 

v- src is constitutively activated form of c- src is more potent than activated Ras in generating highly metastatic 

cells [Tatsuka et al., 1996]. We found that Src kinase activity is higher in MEF Nf1
-/-

 in comparison with MEF wild 

type.  

 

Figure8: PDGF-BB 10ng/ml used for kinetic stimulation of MEF Nf1+/+ and MEF Nf1-/- cells after 48 h in serum deprivation 

Next, we started a preliminary analysis of the pathways known to be involved in the Cell/ECM route. We have 

observed that in MEF Nf1
-/-

, FAK is more activated even in absence of growth factors or integrin stimulation, and 

cell treatment with PDGFBB further increases FAK phosphorylation through phosphospecific antibody against the 

Tyr 397 and cell proliferation.  

To test the importance of FAK in tunmorigenesis we performed several tumorigenesis assays. These experiments 

were done in matrigel 2% of serum in presence and absence of Collagen and PDGFBB treated with Selumetinib 

(Sel) 10uMm or Y15 (FAK inhibitor) 50 uM during 3 days. As shown in figure 9, the absence of Nf1 in immortalized 

cells is a sufficient stimulus to promote in vitro tummorigenesis. ERK1/2 and FAK inhibitors counteract this 

tumorigenic phenotype suggesting the involvement of FAK in this process.  
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Figure9: Cell treatment with 40uM of MAPK inhibitor and 50uM of FAK inhibitor in presence/ absence of PDGFBB stimulation. 

 

 

 

 

a) In this histograms we observe that FAK inhibitor Y15 decreases the number of colonies (this is not toxic in 2D as it shown in 
histogram bellow) showing that FAK has a role in tumorigenesis of MEF immortalized cells. 
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b) This histogram shows that Y15 and Sel inhibitors are not toxic. 

 

 

 

c) Sel inhibitor decreases the formation of colonies. 
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Figure10: Treating cells in presence of Collagen with 40uM of MAPK inhibitor and 50uM of FAK inhibitor. PDGFBB increases the number and size 
of colonies that look much dense in presence of collagen. 

 

 

 

 

 
 

a) The y15 is less able to affect tumorigenesis in presence of collagen in MEF Nf1-/-. 
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b) Y15 and Sel are even less effective in presence of both Collagen and PDGF in MEF Nf1-/-. 

Taken together, our data indicate that PDGFBB and the absence of Nf1 cooperate to induce a tumorigenic 

phenotype through FAK activity. Consistently our previous data showing that in Nf1
-/-

 FAK is more phosphorylated, 

the FAK inhibitor Y15 in these cells affected tumorigenesis whereas the collagen stimulation markedly enhanced 

this phenotype. 

Next, we asked whether FAK contribuites to tumorigenesis. Our hypothesis was that FAK increases Ras activity 

through Grb-2. To assess this hypothesis, we performed an immuonoprecipitation of FAK in the same culture 

condition of the tumorigenic assay and we monitored the phosphorylation of Tyr397 and Tyr925. Phosphorylated 

Tyr 397 site of FAK binds to and phosphorylates Src that in turn phosphorylates Y925 triggering Grb2 binding (see 

figure 13). 

 

 

 

 



53 

 

Figure13: FAK increases Ras activity through Grb-2 binding 

 

a) Different phosphoryation sites of FAK in MEF Nf1+/+. 

 

 

b) Here we observe that following phosphorylation of FAK at Tyr 397 site after PDGFBB and /or collagen 
stimulation, Src binds to and phosphorylates Y925 which in turn binds Grb2 in MEF Nf1-/-. We can also observe that in MEF Nf1 -/- 
Grb2 co-precipitates independently from collagen in presence of PDGFBB. 
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c) We observe the phosphorylation of Src and ERK in MEF Nf1+/+ and make a comparison with MEF Nf1-/-. 

 

d) As depicted in this experiment we notice the phosphorylation of Src in MEF Nf1-/-. 

In accordance to our results, other studies have shown that loss of FAK in SCs results in decreasing of SCs’ 

proliferation but does not affect process extension [Grove et., al 2007].  

Similarly to our data, in NF2 tumors FAK has been found over-phosphorylated, suggesting similar molecular 

mechanisms at the tumor onset in NF1 and NF2 [Poulikakos et. Al, 2006]. In NF2 the ECM-mediated signalling is 

transduced by two co-transcription factors: YAP and TAZ. We therefore decided to explore also their potential 

involvement in the Nf1
-/-

MEF tumorigenesis. 
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Figure14: Exploration of pFAK and protein levels of YAP and Beta Catenin by western blotting with specific antibodies on total lysates 

of MEF Nf1-/- & MEF Nf1 +/+ cultured in different conditions: stimulated or not with PDGFBB in presence/absence of Collagen As depicted in 

this figure the protein levels do not significantly decrease in MEF NF1
-/-. 

 
 

 

 

 

Figure15: Absence of Nf1 favors translocation of Beta-catenin but not YAP and TAZ into the nucleus. 
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A conclusion of our very early experiments:  

Neurofibromas are mainly composed of SCs, FBRs and strong collagen I deposition due to inflammatory cells 

infiltration. These tumors arise from SCs that undergo LOH at the NF1 locus, which results in loss of functional 

neurofibromin in these cells and RAS hyper activation. Our hypothesis is that transformed phenotype is fostered by 

the amplification of integrated signaling pathways triggered by ECM, Ras hyper activation and loss of Nf1. We have 

preliminary data showing that Nf1 interacts with and regulates FAK and affects Beta -catenin and YAP/TAZ activity. 

Further, we have found that lack of Nf1 is sufficient to activate the key mediator of ECM signaling also in absence 

of external structural proteins stimuli. As next experiments we want to connect Ras or FAK with Beta -catenin and 

YAP/TAZ and tumorigenesis in 3D experiments at different collagen 1 concentrations in order to reinforce the 

hypothesis that Nf1 loss might potentiate Ras hyper activation through FAK kinase that in turn receives and 

amplifies the ECM signal leading to neoplastic transformation. 

Results and conclusion of the 3
rd

, last year: 

How lack of Nf1 may impact on the complexity of ECM-cell dynamic and how the great rigidity of the ECM in 

neurofibroma influences SCs behavior, is still unknown.  

In the plexiform neurofibromas, the tumorigenic phenotype of SCs could be fostered by the amplification of 

integrated signaling pathways triggered by loss of Nf1, Ras hyper activation and deregulated ECM. Changes of the 

mechanical properties of ECM due to increased collagen secretion by mFBRs recognized in the NF1 disease 

{Robert, 2014 #300} might actively contribute to tumor progression by influencing gene expression profile of the 

cells. 

Preliminary results:  

Primary SCs and FBRs isolation from Neurofibroma and their biological characterization:  
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We have already isolated and cultured in 2D SCs and Nf1 
+/-

 FBRs according to Serra methodology {Serra, 2000 

#210}. These cells have been isolated from plexiform neurofibroma biopsies after informed consent of patients by 

our Milan and Rome University collaborators. To get two populations of SCs and FBRs we have cultured cells in 

selective Medium ({Serra, 2000 #210}, and our new unpublished protocol) and biochemically characterized: S100B 

[Tucker, 2011 #263] and p75 markers specifically recognizing SCs and collagen I secretion, alpha smooth muscle 

actin (α-SMA) expression, Smad2/3 activation, Abl kinas activation characterizing mFBR activity [Kojima, 2010 

#150]. 

 

Figure16: The main cellular model: SCs and mFBRs in a Novel 3D Multicellular Model 

Steps: 1) Cell isolation and cell culture in 2D on Fibronectin and Laminin 2) Cell election in two different cell lines: SCs and mFBRs 
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Immunofluorecence analysis of SCs and mFBRs isolated from neurofibroma 

 

Figure17: SCs detection in vitro by immunoflouresence 

Generation of the multicellular in vitro system 3D with soft ECM.  

The neurofibroma-derived FRBs and SCs co-culture are performed in a transwell-like system: SCs are seeded within 

the upper chamber whereas the FBRs in the lower chamber. This system is suitable to perform the biochemical 

analysis keeping physically separated SCs and FBRs thus allowing the paracrine stimulation such as in the tumor.  

 

Figure 18: Plating cells separately in the transwell/like system. This permits the paracrine stimulation and biochemical investigation. 
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Cells are grown in Matrigel with exogenous 3D soft ECM/reconstituted basement membrane matrigel (soft gel: 0.7 

Kpa). ECM composition: as in the plexiform neurofibroma 40 % of collagens (type I, III and IV) and adhesive ECM 

proteins as fibronectine and laminin; to keep the system closer to the in vivo model, we culture the mFBRs in 

conditioned medium by activated MCs and 15 mM L-ribose. As MCs we use LAD-2 cell line (kindly provided by 

collaborators of Naple University) that will be activated by Tumor necrosis factor-alpha(TNF-α) stimulation. 

To characterize the SCs behavior in this experimental system, we will perform the canonical proliferation, 

apoptosis and senescence assays in Matrigel [Gomez-Sanchez, 2013 #302]. 

Generation of the multicellular in vitro system 3D with stiff ECM.  

We will explore the effect of increased stiffness on SCs and FRBs neurofibroma-derived cells embedded in a 3D stiff 

ECM/reconstituted basement membrane matrigel. To get this goal we will investigate precisely the stiffness range 

of the plexiform neurofibroma determined by rheology assessment by our Padua University collaborators on 20 

samples histological and genetically characterized from different patients. In general stroma stiffness in tumors 

ranges from 5000 to 40000 Pa [Levental, 2009 #303]. Subsequently, we will reproduce in vitro different pressure 

values measured ex vivo by increasing collagen I and collagen IV concentration in presence of non metabolizable 

linkers such as L-ribose and we will observe the SCs growth ability. 

Our preliminary data show that primary SCs cells generate small colonies only when plated in a ECM/reconstituted 

basement membrane matrigel of at list 700 Pa. 
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Figure 19: SCs isolated from Plexiform Neurofibroma selectively separated from FBRs and plated in 3D collagenI Matrigel. a) Primary SCs 
cultured in soft/ standard Collagen I Matrix in presence of mFBRs and MCs-conditioned medium growing in soft/ standard Collagen I Matrix. 

NOTE: CELLS SURVIVE BUT DO NOT PROLIFERATE. b) Primary SCs cultured in stiff Collagen I Matrix in presence of mFBRs and MCs-conditioned 
medium.NOTE: CELLS PROLIFERATE AND FORM A COLONY. 
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4. CONCLUSION  
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4. CONCLUSION  

As in other tumors, also in the plexiform neurofibroma, the tumorigenic phenotype of SCs is fostered by the 

amplification of integrated signaling pathways triggered by loss of Nf1, Ras hyper activation and deregulated ECM. 

Changes of the mechanical properties of ECM due to increased collagen secretion by mFBRs might actively 

contribute to tumor progression by influencing gene expression profile of the cells through the enhancement of 

Ras signaling pathway triggered by FAK. We asked ourselves how FAK possibly could contribute to tumorigenesis”? 

In mouse NF1
-/- 

FBRs, we have found that the absence of Neurofibromin correlates with deregulation of FAK Y397 

and Y925 phosphorylations both in absence of integrin clustering and after ligand stimulation. Further, the 

tumorigenesis assay showed that MEFNf1
-/- 

ability to form colonies is affected by both MECK inhibitor and FAK 

inhibitor Y15 indicating the cooperative role of FAK and PDGFBB growth factor in tumorigenic process mediated by 

Nf1. Consistently, immunoprecipitation experiments showed that in Nf1 null cells, Grb-2, the RAS pathway 

initiator, interacts with FAK also in absence of collagen in a PDGFBB ligand-dependent way, thus suggesting that 

FAK and growth factor receptors can cooperate to increase the Ras activity to a threshold required to induce 

tumorigenesis.  

Our novel three-dimensional experimental model in vitro reproduces the multicellular complexity of neurofibroma 

with primary cells. We are figuring up proper ECM composition and stiffness in matrigel for SCs transformation and 

neurofibroma’s formation. We have already obtained colonies of SCs growing in 3D in vitro system. Our 

preliminary data shows that primary SCs generate colonies only when plated in an ECM/reconstituted basement 

membrane Collagen I-Matrigel of at list 3 mg/ml. However, we have still to set up the culture conditions to keep 

cells in highly proliferating state.  
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ABBREVIATIONS 

(2D) Two- dimensional  

(3D) Three- Dimensional 

(a.a) amino acids  

(ALPS) Autoimmune Lymphoproliferative Syndrome  

(AMPK) AMP-activated protein kinas  

(CAFs) Cancer Associated Fibroblasts  

(CFC) Cardio-Facio-Cutaneous  

(CM-AVM) Capillary Malformation–Arteriovenous Malformation Syndrome 

(CNS) Central Nervous System 

(CRD) Cysteine-Rich Domain 

(CSRD) Cysteine/Serine-Rich Domain 

(Dhh) Desert Hedgehog 

(D-MEM) Dulbecco's Modified Eagle's Medium 

(DNA) Deoxyribonucleic Acid 

(ECM) Extra Cellular Matrix 

(EGFR) Extracellular Growth Factor Receptor 

(ERK) Extracellular signal-Regulated Kinase 

(ETEA) Expressed in T-cells and Eosinophils in Atopic Dermatitis 

(FAK) Focal Adhesion Complex 

(FBS) Fetal Bovine Serum 

(FGF) Fibroblast Growth Factor 

(FGF-2) Fibroblast Growth Factor 2  
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(GABA) neurotransmitter Gamma-AminoButyric Acid 

(GAPDH) Glycerldehydes 3-phosphate dehydrogenize 

(GDP) Guanosine DiPhosphate 

(GFP) 

 

Green Fluorescence Protein [An efficient method for screening effective 

siRNAs using dual-luciferase reporter assay system] 

(Grb2) Growth Factor Receptor Bound Protein-2 

(GRD) GAP related domain 

(GTP) Guanosine TriPhosphate 

(HGMD) Human Genetic Mutation Database 

(Ink4a/Arf expression) INhibitors of CDK4/Alternate Reading Frame 

(IP) Immuno-Precipitation 

(IRA1 and IRA2) Saccharomyces cerevisiae Ras-GAP proteins 

(KCl) Potassium chloride  

(Ki-67) or MKI67 is a cellular marker for proliferation 

(LOH) Loss of Heterozigozyty 

(MAPK/ MEK) Mitogen Activated Protein Kinase  

(MCs) mast cells 

(MEF) Murine Embryonic Fibroblasts 

(mFBRs) myofibroblasts or activated fibroblsts 

(MPNSTs) Malignant Peripheral Nerve Sheath Tumors 

(MRI) Magnetic resonance imaging 

(mRNA) Messenger Ribonucleic Acid 

(mTOR) mammalian Target Of Rapamycin 
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(NaCl) sodium chloride 

(NCSCs) Neural crest stem cells  

(NF1) Neurofibromatosis type 1  

(Nf1) Protein Neurofibromin 

(NLS) Nuclear localization sequence 

(Oct6) Octamer-binding transcription factor 6 

(OMIM) Online Mendelian Inheritance in Man 

(p120-Ras-GAP) a GTPase-activating protein (GAP) for the Ras family of proto-oncogenes 

(p97/VCP) p97/valosin-containing protein 

(PAR2) Protease activated receptor 2 

(PBS) Phosphate Buffered Saline 

(PDAC) Pancreatic Ductal Adino Carcinoma 

(PDGF) Platelet Growth Factor 

(PH) pleckstrin homology 

(PI3K) phosphatidylinositol 3-kinase 

(PKA) Protein Kinase A or cAMP-dependent protein kinas 

(PKB or AKT) Protein Kinase B 

(PKC) protein kinas C 

(PML bodies) Nuclear dots (also known as nuclear bodies, nuclear domains, or PML bodies) 

are punctate structures found in the nuclei of certain cells 

(PN) pseudo-neurofibroma in vitro  

(PNS) Peripheral Nervous System 

(PNST) Peripheral Nervous System Tumors  

http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDMQFjABahUKEwjN0-HkwZjJAhVFYQ8KHZPuCWI&url=http%3A%2F%2Fwww.omim.org%2F&usg=AFQjCNGdqVmVPW9J0ILIuAdD4fImLT148Q
https://en.wikipedia.org/wiki/Cell_nucleus
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(POU domain) is derived from the names of three transcription factors: Pit-1, Oct-1 and Oct-2, 

the neural Unc- 86 transcription factor from Caenorhabditis elegans 

(Raf) Rapidly accelerated fibrosarcoma 

(Ras) Rat Sarcoma 

(RT) Room Temperature 

(SCM) Schwann Cells Medium 

(SCPs) SC precursors; also known as neural crest stem cells 

(SCs) Schwann Cells 

(Sec14) yeast phosphatidylinositol-transfer protein 

(Sel) Selumetinib inhibit of ERK1/2 

(Sema4F)               semaphorin 4F 

(siRNA) Small interfering RNA 

(SKPs) skin-derived precursors  

(SMA) Smal Muscle actin  

(SMAD) Mothers Against DPP Homolog 4 

(Sos) Ras guanine nucleotide exchange factor  

(TBD) tubulin-binding domain 

(TCF/LEF)           T-cell factor/lymphoid enhancer factor 

(TGFBeta) Transcription Growth Factor-Beta 

(TNF-α) Tumor necrosis factor-alpha 

(TSC2) Tuberous Sclerosis Complex 2 

(UBX-UB protein) Ubiquitin regulatory X-D proteins 

(WB) Western Blotting 

https://en.wikipedia.org/wiki/Neural
https://en.wikipedia.org/wiki/Caenorhabditis_elegans
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(WT) wild type 

(Y15) FAK inhibitor 

  

 

 


