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Abstract  

 

The fascinating behaviour of liquid crystals is a consequence of the shape anisotropy of 

their constituent molecules. Conventional mesogens have a rod-like or disc-like shape: 

their simplest and most common mode of liquid crystalline organization is the nematic 

phase (N), where the molecules preferentially align along a common axis, called the 

director n. Recently a new class of thermotropic liquid crystals has emerged, made of 

achiral molecules with a bent (banana-like) shape. From a chemical point of view, two 

molecular architectures can be distinguished: bent-core compounds and odd liquid 

crystal dimers. The first are characterized by a fairly rigid aromatic core and terminal 

flexible chains; the second are made of two terminal mesogenic units connected by a 

flexible spacer having an odd number of atoms. Liquid crystals of bent molecules are 

unconventional materials, in that they exhibit remarkable physical properties and new 

phase organizations, different from those of conventional liquid crystals.  

In particular, unusually low values of the bend elastic constant K33 and relatively high 

flexoelectric couplings were measured for both bent-core compounds and odd liquid 

crystal dimers in their N phase. The origin of this behaviour is not clear and different 

hypotheses have been proposed. Its understanding is important both for fundamental 

reasons and also for applications, including the design of materials optimized for new 

display modes or for electromechanical energy conversion.   

For what regards the phase organization, there is currently considerable interest for a 

new kind of nematic phase, which has been discovered only a few years ago in odd 

liquid crystals dimers, at temperatures below the common N phase. 2H-NMR 

experiments, which provide information on the molecular order, demonstrated that this 

phase is chiral, despite the molecules being achiral, and a twist-bend nematic 

organization was proposed (NTB). This is characterized by a modulated director n which 

precesses in space around an axis forming a conical helix, with conical angle θ0 and 

pitch p, thus featuring spontaneous local bend distorsions and local polar order. This 

discovery has given rise to an intense debate, in relation to both the phase structure and 

origin. Either flexoelectric couplings or an elastic instability have been proposed as 

possible driving mechanisms of the NTB-N transition. Segregation of chiral molecular 
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conformations has also been invoked to explain the phase chirality. Another aspect 

which needs clarification is the strong sensitivity of the NTB phase formation to small 

changes in the molecular structure.   

In this thesis the phase and material properties of liquid crystals of bent molecules 

have been investigated using theoretical and computational methods, with the aim to 

establish a connection between the macroscopic behaviour and the molecular structure. 

This is a challenging task: computational methods such as quantum mechanical 

calculations and atomistic Molecular Dynamics simulations are in many cases 

insufficient and alternatives routes must be found. In this work different methods have 

been used and developed, suitable to cover or connect the different length scales 

involved.  

(i) To investigate the molecular origin of the NTB-N phase transition, and to obtain 

qualitative information on the structure of the NTB phase, a molecular field model was 

developed, by generalizing the Maier-Saupe theory to apolar rigid V-shaped molecules 

in an N or NTB environment.  Our findings show that the key molecular feature at the 

origin of the NTB phase is the bent molecular shape, indicating that flexoelectric 

couplings are not essential. We showed that the phase behaviour is extremely sensitive 

to the molecular bend angle, with the NTB-N phase transition occurring only for a 

limited range of values. This result allowed us to elucidate the experimentally observed 

sensitivity of the NTB phase formation to small changes in the molecular structure. The 

model also allowed us to make some general predictions about the elastic behaviour and 

to clarify the relationship between the NTB-N phase transition and the elastic properties 

of the nematic phase, showing that transition is accompanied by softening of the bend 

elastic mode in the N phase.  

To get insight into the molecular organization in the NTB phase, Molecular Dynamics 

simulations of rigid, apolar, achiral, purely repulsive bent-shaped particles were 

performed. In this way we could explicitly take into account the possible effects of 

intermolecular correlations and further check the relationship between the molecular 

features and the phase behaviour. Our results are in line with the formation of an NTB 

organization, and, given the molecular model used, point to the crucial role of the bent 

shape, in agreement with the conclusions of our generalized Maier-Saupe model. In 

particular, the observation of a chiral organization in a system of achiral rigid particles 



ix 
 

clearly indicates that conformational chirality is not essential for the formation of the 

NTB organization.  

(ii) An Integrated Methodology (IM), which couples an atomistic representation of the 

molecular structure with a molecular field model of orientational order, was set up to 

obtain quantitative information about the phase and material properties, and their 

dependence on the chemical structure. In this context quantum mechanical DFT 

calculations were performed to obtain accurate values of the relevant molecular 

structural parameters (geometry, torsional potentials and atomic charges) and Monte 

Carlo conformational sampling was used to take into account the molecular flexibility. 

Much of the work has been dedicated to understanding the elastic and flexoelectric 

behaviour of bent-core compounds and liquid crystals dimers in their nematic (N) 

phase. Collaboration with experimental groups allowed us to validate the methodology 

on a large number of systems with different molecular structures. Very good agreement 

was obtained between our predictions and the experimental findings, showing the 

sensitivity of our methodology to details of the chemical structure and thus its 

usefulness as a tool for materials design for applications. The variety of chemical 

structures investigated allowed us to build a library of molecular parameters for the 

most common mesogenic groups, which can be reused and incremented in the future. 

Modelling allowed us to identify the molecular origin of the small bend elastic constant 

K33 exhibited by nematics of bent molecules and also to explain apparent exceptions to 

this behaviour. In particular we showed that the main parameter governing the elasticity 

of these systems is the molecular bend angle.  

The IM approach appears promising also for the development of a molecular-based 

understanding of flexoelectricity in liquid crystals. We could identify some general  

features in the flexoelectric properties of bent-core compounds and connect them to the 

molecular structure, offering a consistent interpretation of different experimental results.  

The molecular field model at the basis of the IM methodology has been extended to 

describe the orientational order in the NTB phase. In this way it was possible to analyse 

the detailed information provided by 2H-NMR experiments. By combining the 

theoretical predictions with the experimental data we could obtain quantitative estimates 

of the pitch and conical angle of the NTB phase on the basis of the molecular structure. 

We also investigated the origin of the strong enantiotopic discrimination observed in the 
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NTB phase. Our results indicate that this is not related to presence of chiral molecular 

conformations, but it is a direct consequence of the high chirality of the NTB 

environment, resulting from its extremely small pitch.  

 

The thesis is organized as follows. The Introduction is intended as an overview on 

liquid crystalline order (Chapter 1) and on the unconventional phase and material 

properties of liquid crystals of bent-shaped molecules (Chapter 2). Part I (Chapter 3) 

presents the generalized Maier-Saupe model and its results. Part II (Chapter 4) is 

devoted to the Molecular Dynamics simulations. Part III illustrates the IM methodology 

(Chapter 5), its applications to the investigation of phase and materials properties of 

bent-shape molecules in their nematic phase (Chapters 6-8), and finally its extension to 

the twist-bend nematic phase (Chapter 9). 
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Sommario  

 

L’affascinante comportamento dei cristalli liquidi è una conseguenza della forma 

anisotropa delle molecole che li costituiscono. I mesogeni convenzionali hanno la forma 

di una bacchetta o di un disco: la loro più semplice e più comune organizzazione 

liquido-cristallina è la fase nematica (N), in cui le molecole sono preferenzialmente 

allineate lungo un asse, chiamato direttore n. Recentemente è emersa una nuova classe 

di cristalli liquidi termotropici, costituiti da molecole non chirali aventi una forma curva 

(“bent”), come quella di una banana. Dal punto di vista chimico, si possono distinguere 

due architetture molecolari: i composti “bent-core” e i “dimeri dispari”. I primi sono 

caratterizzati da un cuore aromatico relativamente rigido e catene terminali flessibili; i 

secondi sono costituiti da due unità mesogeniche terminali connesse da uno spaziatore 

flessibile avente un numero dispari di atomi. I cristalli liquidi di molecole curve sono 

materiali non convenzionali, in quanto presentano proprietà fisiche notevoli e nuove 

organizzazioni di fase, diverse da quelle dei cristalli liquidi convenzionali. 

In particolare, valori insolitamente piccoli della costante elastica di bend K33 e 

accoppiamenti flessoelettrici relativamente grandi sono stati misurati per la fase 

nematica (N) sia di composti bent-core che di dimeri dispari. L’origine di questo 

comportamento non è chiara e sono state avanzate varie ipotesi. La sua comprensione è 

importante sia da un punto di vista fondamentale che ai fini delle applicazioni, tra cui la 

progettazione di materiali ottimizzati per nuovi display o per la conversione 

elettromeccanica dell’energia.   

Per quanto riguarda l’organizzazione di fase, c’è attualmente grande interesse per un  

nuovo tipo di fase nematica, scoperta solo qualche anno fa in cristalli liquidi formati da 

dimeri dispari, a temperature inferiori a quelle della comune fase N. Esperimenti 2H-

NMR, fornendo informazioni sull’ordine molecolare, hanno dimostrato che questa fase 

è chirale, nonostante sia costituita da molecole non chirali, ed è stata proposto che essa 

abbia un’organizzazione di tipo nematico “twist-bend” (NTB). Nella fase NTB il direttore 

n non è uniforme ma “modulato”: esso precede nello spazio attorno a un’asse, formando 

un’elica con angolo di cono θ0 ripetto all’asse e passo p. Localmente, questa struttura è 

caratterizzata dalla presenza di deformazioni di bend spontanee e da ordine polare. La 
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scoperta di questa fase ha dato origine a un intenso dibattito, in merito sia alla sua 

struttura che alla sua origine. È stato suggerito che la transizione NTB-N possa essere 

guidata da accoppiamenti flessoelettrici o da una instabilità elastica. È stata anche 

avanzata l’idea che la chiralità della fase derivi dalla segregazione di conformazioni 

molecolari chirali. La formazione della fase NTB appare estremamente sensibile a 

piccoli cambiamenti della struttura molecolare: questo è un altro aspetto che necessita 

spiegazione. 

In questa tesi le proprietà di fase e del materiale di cristalli liquidi costituiti da 

molecole curve sono state indagate mediante metodi teorici e computazionali, allo scopo 

di stabilire una relazione tra il comportamento macroscopico e la struttura molecolare. 

Questo è un obiettivo non banale: metodi computazionali come i calcoli  

quantomeccanici e le simulazioni di Dinamica Molecolare atomistiche sono in molti 

casi insufficienti ed è necessario trovare strade alternative. In questo lavoro di tesi sono 

stati usati e sviluppati vari metodi, adatti a coprire o connettere le diverse scale di 

lunghezza coinvolte.   

(i) Per indagare l’origine molecolare della transizione di fase NTB-N, e per ottenere 

informazioni qualitative sulla struttura della fase NTB, è stato sviluppato un modello di 

campo molecolare, generalizzando la teoria di Maier-Saupe a molecole rigide non-

polari a forma di “V”, in un intorno N o NTB. I risultati ottenuti dimostrano che la forma 

curva delle molecole è la caratteristica essenziale per spiegare l'origine della fase NTB, 

indicando che gli accoppiamenti flessoelettrici non sono necessari. Abbiamo 

evidenziato come il comportamento di fase sia estremamente sensibile all’angolo 

molecolare (“angolo di bend”): la transizione NTB-N avviene solo in corrispondenza di 

un intervallo limitato di valori. Questo risultato ci ha permesso di chiarire 

l’osservazione sperimentale per cui la formazione della fase NTB è particolarmente 

sensibile a cambiamenti della struttura molecolare. Il modello ci ha permesso anche di 

fare alcune predizioni generali relativamente al comportamento elastico e di chiarire la 

relazione tra la transizione di fase NTB-N e le proprietà elastiche della fase nematica, 

mostrando che la transizione è accompagnata da una progressiva riduzione della 

costante elastica di bend nella fase N.  

Per caratterizzare l’organizzazione molecolare nella fase NTB, sono state condotte 

simulazioni di Dinamica Molecolare di particelle curve, rigide, non polari, non chirali e 
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con interazioni puramente repulsive. Abbiamo così potuto tenere conto esplicitamente 

dei possibili effetti delle correlazioni intermolecolari e verificare ulteriormente la 

relazione tra le caratteristiche molecolari e il comportameto di fase. I risultati ottenuti 

sono coerenti con la formazione di un’organizzazione NTB e, dato il modello molecolare 

usato, indicano il ruolo cruciale della forma molecolare curva, in accordo con le 

conclusioni del modello di Maier-Saupe generalizzato. In particolare, l’osservazione di 

un’organizzazione chirale in un sistema di particelle rigide non chirali indica 

chiaramente che la chiralità conformazionale non è essenziale per la formazione 

dell’organizzazione NTB.   

(ii) È stata messa a punto una Metodologia Integrata (IM), che combina una 

rappresentazione atomistica della struttura molecolare con un modello di campo 

molecolare per l’ordine orientazionale, allo scopo di ottenere informazioni quantitative 

sulle proprietà di fase e del materiale, e sulla loro dipendenza dalla struttura chimica. In 

questo contesto sono stati condotti calcoli quantomeccanici DFT per ottenere valori 

accurati dei parametri strutturali rilevanti della molecola (geometria, potenziali 

torsionali e cariche atomiche); tecniche di campionamento conformazionale Monte 

Carlo sono state utilizzate per tenere conto della flessibilità molecolare. 

La maggior parte del lavoro di ricerca è stato dedicato alla comprensione del 

comportamento elastico e flessoelettrico della fase nematica (N) di composti bent-core e 

di dimeri liquido-cristallini. La collaborazione con gruppi di ricerca sperimentali ci ha 

permesso di validare la metodologia rispetto a una varietà di sistemi con diversa 

struttura molecolare. Il buon accordo tra le nostre predizioni e i risultati sperimentali 

dimostra che la metodologia è sensibile ai dettagli della struttura chimica, e rappresenta 

quindi un utile strumento per il design di materiali per fini applicativi. La varietà di 

strutture chimiche investigate ci ha permesso di costruire una libreria di parametri 

molecolari per i più comuni gruppi mesogenici che potrà essere riutilizzata e ampliata in 

futuro. 

L’attività di modellizzazione ci ha permessso di identificare l’origine molecolare della 

piccola costante elastica di bend K33 mostrata da cristalli liquidi nematici di molecole 

curve e anche di spiegare apparenti eccezioni questo comportamento. In particolare 

abbiamo dimostrato che l’angolo di bend molecolare è la principale caratteristica che 

determina l’elasticità di questi sistemi.  
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L’approccio IM appare promettente anche ai fini dello sviluppo di una comprensione su 

base molecolare della flessoelettricità nei cristalli liquidi. Abbiamo potuto identificare 

alcune caratteristiche generali nelle proprietà flessoelettriche di composti bent-core e 

collegarle alla struttura molecolare, e questo ci ha permesso di fornire 

un’interpretazione coerente di vari risultati sperimentali.  

Il modello di campo molecolare alla base della metodologia IM è stato esteso per 

descrivere l’ordine orientazionale nella fase NTB. In questo modo è stato possibile 

analizzare le informazioni dettagliate fornite dagli esperimenti 2H-NMR. Combinando 

le predizioni teoriche con i dati sperimentali è stato possibile ottenere stime quantitative 

del passo e dell’angolo di cono della fase NTB sulla base della struttura molecolare. 

Abbiamo anche esaminato l’origine della grande discriminazione enantiotopica 

osservata nella fase NTB. I risultati ottenuti indicano che essa non è dovuta alla presenza 

di conformazioni molecolari chirali, ma è una conseguenza diretta dell’elevata chiralità 

dell’intorno NTB, derivante dal suo passo estremamente piccolo.  

 

La tesi è organizzata come segue. L’Introduzione è da intendersi come una panoramica 

sull’ordine in fasi di cristallo liquido (Capitolo 1) e sulle proprietà non convenzionali, di 

fase e del materiale, di cristalli liquidi costituiti da molecole curve (Capitolo 2). La 

Parte I (Capitolo 3) presenta il modello di Maier-Saupe generalizzato e i suoi risultati. 

La Parte II (Capitolo 4) è dedicata alle simulazioni di Dinamica Molecolare. La Parte 

III  illustra la metodologia IM (Capitolo 5), le sue applicazioni allo studio delle proprietà 

di fase e del materiale della fase nematica di molecole curve (Capitoli 6-8), e infine la 

sua estensione alla fase nematica twist-bend (Capitolo 9).                      
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Chapter 1  

Liquid crystals: an overview 

 

 

 

 

 

1.1 Conventional liquid crystal phases 

Liquid crystals (LCs) are intermediate phases (mesophases) between isotropic liquids 

(I) and crystalline solids (Cr): they are fluid, like liquids, but at the same time they 

exhibit anisotropic physical properties, like crystals [1,2]. Liquid crystals are divided 

into two main groups, according to the driving force for their formation: thermotropic 

LCs are formed from the isotropic liquid on decreasing the temperature, lyotropic LCs 

are formed from solutions on increasing the concentration. The systems investigated in 

this thesis belong to the first group. 

The macroscopic properties of LCs are a consequence of the properties and organization 

of their constituent molecules (mesogens). In order to form a LC phase, molecules must 

have an anisotropic shape, like that of an elongated rod (calamitic LCs) or of a flat disc 

(discotic LCs) (Figure 1.1). From a chemical point of view, this is obtained by 

introducing in the molecular structure a fairly rigid anisometric unit (mesogenic group), 

usually made by aromatic rings; in order to promote the formation of a fluid phase,    

 

Figure 1.1. Molecular structure of (a) 8OCB, a rod-like mesogen,  (b) a discotic mesogen.   

(a) (b) 
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instead of a crystal, flexible units, such as alkyl chains, are attached to the mesogenic 

groups [3]. The anisotropy of intermolecular interactions promotes mutual alignment of 

the molecules along a common direction, called the director and indicated by the unit 

vector n. Liquid crystals phases are generally apolar, i.e. the directions n and –n are 

equivalent. Orientational order is the distinctive feature defining LC phases; 

mesophases with only this kind of order are called nematics; if, in addition, some degree 

of positional order is present, the phases are classified as smectics.  

Figure 1.2 shows the most important LC phases formed by achiral, rod-like mesogens 

[1,2]. In all these phases the director n is uniform, i.e. its orientation does not change in 

space. The simplest, most symmetric organization is the uniaxial nematic phase (N), of  

point group symmetry D∞h, with the C∞ symmetry axis parallel to n (Figure 1.2(a)). 

Macroscopically the C∞ axis is the main principal direction common to all second-rank 

tensor physical properties (macroscopic principal director or optical axis).  

                             

 

Figure 1.2. Examples of liquid crystal phases made of achiral molecules: (a) nematic (N), (b) smectic A 

(SmA), (c) smectic C (SmC). n is the director and Z is the normal to the smectic layers.  
 

The smectic A (SmA) and smectic C (SmC) phases possess long-range translational 

order in one dimension: the molecular centres of mass are arranged in layers, with no 

correlations between the molecular positions inside the layers. In the SmA phase 

(Figure 1.2(b)) the layer normal (Z) and the director n are parallel to each other and the 

phase has uniaxial D∞h symmetry, with C∞ // Z . In the SmC phase (Figure 1.2(c)) the 

director n is tilted with respect to the layer normal Z, and the phase has C2h point 

symmetry. The symmetry plane coincides with the plane defined by Z and n (the tilt 

(a) (b) (c) 
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plane) and the twofold symmetry axis is perpendicular to this plane. The C2 axis is the 

only principal axis common to all second rank tensor properties; the other two principal 

directions must lie on the symmetry plane, but their orientation can be different for 

different properties.  

Chirality at the molecular level gives rise to chiral phases, where the director n is not 

uniform, but spatially modulated [1,2,4]. The most common organization of chiral rod-

like molecules is the cholesteric phase (Ch, Figure 1.3(a)). The Ch phase is a nematic 

phase where the director n rotates about an axis Z, the helix axis, remaining always 

perpendicular to Z. The rotation angle is given by 2 /Z pφ π=  where p is the helical 

pitch. By convention,  p < 0 for a left-handed helix and p > 0 for a right-handed helix. 

The cholesteric phase has global D∞ symmetry, with the C∞ axis parallel to the helix 

axis, and local D2 symmetry; of the three twofold symmetry axes, one is parallel to n, 

another to the helix axis Z and the third is perpendicular to both n and Z. The helical 

pitch p is much larger than the molecular dimensions, with typical values in the range 

100 nm−1µm, so that the local biaxiality is very small [1]. The smectic C* phase 

(SmC*, Figure 1.3(b)) is a chiral variant of SmC: the director n precesses around the 

layer normal Z, forming a conical helix with the helix axis parallel to Z. Because of this 

chiral arrangement, the local symmetry is reduced to C2, with the twofold axis 

perpendicular to the tilt plane. The global symmetry is D∞ [5].   

 

   

Figure 1.3. Examples of liquid crystal phases made of chiral molecules: (a) cholesteric (Ch), (b) chiral 

smectic C (SmC*), (c) blue phase II (BPII). n represents the director, Z the helix axis and p the helical 

pitch. 

 

(a) (b) (c) 
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Blue phases are LC phases spatially periodic in three dimensions: at variance with 

crystals, the translational order is not that of the constituent molecules, which are 

positionally disordered, but arises from a 3D network of defects. Blue phases are 

usually stable in a very narrow temperature range between the isotropic and cholesteric 

phases, but recently blue phases with a wide temperature range have been found (see 

next Chapter). Figure 1.3(c) shows the structure of one kind of blue phase (BPII): this is 

described as a regular 3D assembly of so-called double-twist cylinders.   

A summary of the phases described above and of their symmetry is reported in Table 

1.1. 

Liquid Crystal Phase Symmetry 

Nematic (N) D∞h × T(3) 

Cholesteric (Ch) D∞ × T(3) [D2] 

Smectic A (SmA) D∞h × T(2)  

Smectic C (SmC) C2h × T(2) 

Chiral Smectic C (SmC*) D∞ × T(2) [C2] 

Blue Phase II (BPII) O2  

Table 1.1. Common liquid crystals phases and their symmetry. T(n) indicates continuous translational 

symmetry in n dimension. For helical phases (Ch and SmC*) both the global and the local point groups  

are indicated (the latter between square brackets) [2,4,5].  
  

1.2 Orientational order parameters 

The orientational order characterizing the liquid crystalline state is quantified by a set of 

order parameters. The latter can be defined starting from two different, though related, 

perspectives [1,6]: (i) considering the anisotropy of the molecular orientational 

distribution function (microscopic approach); (ii) looking at the anisotropy of tensorial 

physical properties of the material (macroscopic approach). 

 

1.2.1 Microscopic approach 

1.2.1.1 Definition of molecular order parameters  

From a molecular point of view, order parameters are defined as moments of the single 

particle orientational distribution function p(Ω), which gives the probability density of 
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finding a molecule in a given orientation between Ω and Ω+dΩ, and is normalized as 

[7,8]:  

( ) 1p dΩ Ω =∫     (1.1) 

The nth moments of p(Ω) are called order parameters of rank n. The number of non-

vanishing, independent order parameters is determined by the molecular and phase 

symmetry. For example, for a rigid rod-like molecule (uniaxial D∞h symmetry) in a 

conventional nematic N phase (uniaxial D∞h symmetry), the distribution function 

depends only on the angle β between the rod long-axis and the director n: p = p(β) (see 

Figure 1.4(a)). Moreover, since the phase is non-polar, only even moments of p(β) are 

different from zero. 

                             

Figure 1.4. (a) Orientation of a rod-like molecule in a uniaxial nematic phase. n is the nematic director 

and z is the rod long-axis.  (b) The second Legendre polynomial P2(cosβ).  
 

Therefore, up to second moments, the orientational distribution function is given by: 

2 2

1 5
( ) (cos ) ...

2 2
p P Pβ β= + +  ,  (1.2)  

where P2(cosβ) is the second Legendre polynomial (Figure 1.4(b)): 

2
2

3 1
(cos ) cos

2 2
P β β= −  ,  (1.3)   

and 2P  is the second rank order parameter characterizing the degree of alignment of 

the molecular z axis with respect to the nematic director n:  

(b) (a) 
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2 2

0

(cos ) ( )sinP P p d

π

β β β β= ∫  .  (1.4)   

In the isotropic phase, where all orientations have the same probability, 2P = 0, 

whereas in a perfectly order phase, where β = 0 for all molecules, 2P = 1.  

Order parameters can also be expressed using a Cartesian tensor representation [6-8]. At 

the second-rank level, the orientational order of a rigid molecule is described by the 

tensor Q: 

 , ,

, , ,3 1
,

2 2 , , ,
IJ
ij i I j J ij IJ

i j x y z
Q l l

I J X Y Z
δ δ

=
= −  =

  ,  (1.5)  

where {x, y, z} is a set of arbitrary molecular axes, {X, Y, Z} is a set of arbitrary 

laboratory axes, l i,I is the cosine of the angle between the molecular axis i and the 

laboratory axis I, δij  is the Kronecker delta, and the angular brackets denote an 

orientational average: 

... ... ( )p d= Ω Ω∫    . (1.6) 

From the definition of the Q tensor, it follows that 0II
iiI

Q =∑  and 0II
iii

Q =∑ . 

For a rod-like molecule in a conventional uniaxial nematic phase, taking the laboratory 

Z axis parallel to the nematic director n and the molecular z axis parallel to the rod long-

axis, the ordering tensor Q is diagonal, with / 2ZZ ZZ ZZ
xx yy zzQ Q Q= = − . So there is a single 

independent order parameter: 

23 1
cos

2 2
ZZ
zzQ β= −    , (1.7) 

which is also indicated as Szz and is identical to 2P  in Eq. (1.4).  

If the phase is uniaxial but the molecules are not, the ordering tensor, Eq. (1.5), is given 

by:  
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xx xy xz
ZZ
ij ij yx yy yz

zx zy zz

S S S

Q S S S S

S S S

 
 = =  
 
 

    , (1.8) 

with  

, , ,

3 1
2 2ij ji i Z j Z i jS S l l δ= = −  ,  (1.9) 

and is called the Saupe ordering matrix S.  

Real mesogens are not rigid molecules, but invariably possess some degree of 

conformational flexibility. Let’s denote with χχχχ the set of molecular torsional angles; 

then the distribution function becomes dependent on the molecular conformation as well 

as orientation. It can be expressed as [8]: 

( ) ( ) ( ),p w pΩ = Ω
χ

χ χ  , (1.10) 

where ( )p Ω
χ

 gives the probability density of finding a molecule with orientation 

between Ω and Ω+dΩ , given that it is in the conformation state defined by the set of 

torsional angles χχχχ, and w(χχχχ) is the conformational distribution function in the 

orientationally ordered phase. Order parameters are then obtained by averaging the 

contributions of all conformations: 

( )( )IJ IJ
ij ijQ d w Q= ∫ χ

χ χ    , (1.11) 

where ( )IJ
ijQ

χ
 is the order parameter for the conformation specified by the angles χχχχ: 

( ) ( ), ,

3 1
2 2

IJ
ij i I j J ij IJQ l l p dδ δ = − Ω Ω 

 ∫ χ
χ

   . (1.12) 

1.2.1.2 Molecular order parameters from NMR spectra 

In principle microscopic order parameters can be experimentally determined using 

techniques capable of accessing information on a molecular scale. One of the most 

important is Nuclear Magnetic Resonance (NMR) spectroscopy [9,10]. The NMR 
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spectrum of a molecule is the result of different kinds of interactions, between its 

nuclear spins and the external magnetic field and among the nuclear spins themselves. 

These magnetic interactions are anisotropic, since they depend on molecular tensors T: 

the chemical shielding tensor σσσσ, the direct dipolar coupling tensor D, the indirect 

coupling tensor J, and, for nuclei with spin number I ≥1, the quadrupolar coupling 

tensor q (see Table 1.2). If molecular motions are sufficiently fast on the NMR 

timescale, the spectral observables are determined by the average values of these tensors 

according to the orientational distribution function appropriate for the molecule in the 

phase. Therefore NMR can provide information on the order parameters of different 

molecular sites.  

Technique Nucleus T 

Proton NMR 1H D 

Deuterium NMR 2H q 

Carbon-13 NMR 13C σσσσ 

Table 1.2. NMR techniques mostly used to determine order parameters of liquid crystals. The last column 

specifies the relevant molecular tensor T (direct dipolar coupling tensor D, quadrupolar tensor q, 

chemical shielding tensor σσσσ).  
 

In particular, the spin Hamiltonian (and therefore the spectral features) depends on 

ZZT , the average component of the molecular tensor T resolved along the direction 

(Z) of the static magnetic field. The relation between ZZT  and the order parameters is 

given by [9,10]: 

, , ,

2
3

ZZ ZZ
iso aniso

iso ij ij

i j x y z

T T T

T S T
=

= +

= + ∑
           , (1.13) 

where Tij are the cartesian components of the tensor T in the molecular frame and 

( ) / 3,isoT Tr= T with the symbol Tr indicating the trace of the tensor. Sij are molecular 

order parameters; they are defined as in Eq. (1.9) with the Z axis parallel to the direction 

of the magnetic field.  

As an example, let’s consider the case of deuterium NMR (2H-NMR), where the 
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relevant coupling tensor is q. This tensor is traceless and for deuterons it is 

approximately axially symmetric in a molecular frame having the z axis parallel to the 

carbon-deuterium (C−D) bond. Therefore with this choice qxx = qyy = −qzz/2  and Eq. 

(1.13) takes the form:  

ZZ ZZ
aniso CD CDq q q S= =      ,  (1.14) 

where qCD=qzz and SCD=Szz. Because of the quadrupolar interaction, each non-equivalent 

deuteron in a molecule gives rise to a doublet of lines in the spectrum, with a splitting 

∆ν given by [10,11]:  

3 3
2 2

aniso
ZZ CD CDq q Sν∆ = =    .

 
(1.15) 

Therefore, measurement of quadrupolar splittings provides direct information on the 

order parameters of the C-D bonds with respect to the direction of the magnetic field.  

 

1.2.2 Macroscopic approach 

Let κκκκ indicate a second rank tensorial physical properties of the material, such as the 

magnetic susceptibility, the static dielectric permittivity  or the optical dielectric tensor. 

In order to define an order parameter that vanishes in the isotropic phase, the anisotropic 

part of tensor, κκκκaniso, is considered:   

IJ IJ IJ
aniso isoκ κ κ δ= − , (1.16) 

where I, J = , ,X Y Z are the axes of a laboratory frame, δ is the Kronecker delta, and 

( ) / 3iso Trκ = κ is the (scalar) value of the physical property in the isotropic phase. A 

macroscopic order parameter Q is then defined as [1,6]: 

1IJ IJ
anisoQ

C
κ=   , (1.17) 

where C is a normalization constant, with the same unit of κκκκ, chosen in such a way that 

the major principal component of Q is equal to 1 for a perfectly ordered phase. For 

example, in the nematic (N) phase the tensor κκκκ is diagonal in a frame with the Z axis 
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parallel to the director n: denoting by κ
�
 and κ⊥  the components of κκκκ parallel and 

perpendicular to the director, the following form is obtained the ordering tensor Q:    

/ 2 0 0

0 / 2 0

0 0

S

S

S

− 
 = − 
 
 

Q     ,  (1.18) 

where 

( )
0

S
κ κ
κ κ

⊥

⊥

−
=

−
�

�

 ,  (1.19) 

with the zero in the subscript indicating perfect orientational order. As an example we 

can consider the macroscopic order parameter obtained from the optical dielectric 

tensor, that is from measurement of the birefringence ∆n, which is one of the most 

common techniques used to determine order parameters. Here S can be obtained as [12]:  

 
0

n
S

n
∆=
∆

  ,
 

(1.20) 

where 0n∆  corresponds to the value of the birefringence extrapolated at temperature 

T=0 K.  

 

1.3 The Maier-Saupe theory  

Maier and Saupe developed a seminal molecular field theory predicting the transition 

from the isotropic (I) to the nematic (N) phase in thermotropic liquid crystals made of 

rod-like molecules [13]. The Maier-Saupe (MS) approach is based on a mean-field 

approximation: direct intermolecular correlations are neglected, and the many-body 

potential describing the interactions of a given molecule with all other molecules is 

replaced by an effective single-particle potential, also called molecular field potential 

[2,8,14]. The orientationally dependent part of the molecular field potential, i.e. the part 

which depends on the anisotropy of the intermolecular interactions, takes the following 

form for a system of rigid rods: 
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2 2( ) (cos )or
MSU c P Pβ β= −  , (1.21) 

where β is the angle between the rod long-axis and the director n (Figure 1.4(a)), 2P  is 

the second Legendre polynomial, and 2P  is the order parameter (see Eqs. (1.3) and 

(1.4)). The parameter c, having the dimension of energy, scales the interaction potential. 

According to Eq. (1.21), rod-like molecules preferentially align their long axis parallel 

to the director. In their original derivation [13], Maier and Saupe assumed dispersion 

interactions between molecules, and c was therefore related to the anisotropy of the 

molecular polarizability. This restriction is however not necessary: the form of the 

potential in Eq. (1.21) is quite general, being the simplest expression that accounts for 

both the molecular and the phase symmetry. The single particle orientational 

distribution function is related to the Maier-Saupe potential according to:  

B

B

exp ( ) /
( )

exp ( ) / sin

or
MS

or
MS

U k T
p

U k T d

β
β

β β β

 − =
 − ∫

  ,  (1.22) 

where kB is the Boltzmann constant and T is the temperature. In the MS theory 2P  is 

found to be a universal function of the reduced temperature T/TNI, where TNI is the 

nematic-isotropic (N-I) transition temperature. The solid line in Figure 1.5 shows the 

predicted temperature dependence of the order parameter. A first order N-I transition is 

evident from the discontinuous change of 2P  at TNI. 

                                 

Figure 1.5. Order parameter as a function of the reduced temperature T/TNI: Maier-Saupe prediction 

(solid line) and experimental data for some rod-like nematic liquid crystals [14]. 
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Chapter 2  

Liquid crystals of bent-shaped molecules 

 

 

 

 

 

2.1 Bent-shaped mesogens: the chemistry 

Bent mesogens are molecules with a banana-like shape. From a chemical point of view, 

two molecular architectures can be distinguished: bent-core compounds and odd liquid 

crystals dimers (Figure 2.1).  

 

 

Figure 2.1. Chemical structure of: (a) bent-core compounds, with examples of popular bending units 

shown at the bottom; (b) odd liquid crystal dimers.  
 

Bent-core molecules are characterized by a fairly rigid aromatic core and terminal 

flexible chains [1,2].  The aromatic bending unit can be a 1,3-phenylene group, with or 

without substituents, or an oxadiazole group, just to give some examples. 

Liquid crystal dimers are made of two terminal mesogenic units connected by a flexible 

spacer, usually an alkyl chain, of variable length [3].  According to the parity of the 

spacer, dimers are classified as odd or even. Odd dimers usually have a bent shape, 

whereas even dimers are generally elongated. Cyanobiphenyl mesogenic groups (Y=CN 

X= CH2, O,  ... ;  Y = CN, F, ... 

(b) (a) 
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in Figure 2.1(b)) are extensively used, but other aromatic units can be found. The group 

joining the mesogenic unit and the spacer is called linking group: common examples are 

the methylene (−CH2−) and the ether (−O−) groups. 

 

2.2 Conventional and unconventional phase organizations of bent-

shaped mesogens 

Bent core compounds have a strong tendency to form smectic phases; indeed, the first 

bent-core compounds that were synthesised did not exhibit a nematic phase. These 

smectic phases have attracted considerable attention because of their unique 

organization, which has no analogue in conventional rod-like liquid crystals: they show 

polar order and, despite being made from achiral molecule, also chiral superstructures 

[1,4] (Figure 2.2(a)).  

 

              

Figure 2.2. (a) Tilted smectic (SmC) phases of bent-core molecules. Reprinted with permission from [4], 

Copyright 2006 The Japan Society of Applied Physics. (b) Cartoon representing a uniaxial nematic 

arrangement of smectic clusters of bent-core molecules. Reprinted with permission from [2] Copyright 

2013 Taylor & Francis. 
 

Subtle tuning of the molecular structure was required to stabilize nematic phases, 

including choice of the aromatic bending unit, introduction of substituents in certain 

positions on this unit, and modifications involving the flexible chains [5-9]. It became 

soon apparent that the nematic phase of bent-core mesogens also has distinctive 

features, different from those of conventional rod-like systems. Some bent-core systems 

have been claimed to form the long sought-after biaxial nematic phase [10,11]. 

However the characterization of biaxial order is delicate [6,12], and at present there is 

(a) (b) 
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no conclusive proof of the existence of a biaxial phase in thermotropic nematics. It has 

been proposed that some properties of nematics of bent-core mesogens could result 

from the macroscopic uniaxial arrangement of smectic-like clusters of molecules 

[2,6,13] (Figure 2.2(b)). Evidence for the formation of chiral domains in nematic liquid 

crystals of achiral bent-core mesogens has also been reported [2,14]. Moreover, upon 

chiral doping, achiral bent-core nematics have been shown to form blue phases stable of 

over a wide temperature range [15,16].  

Liquid crystal dimers have been known to organize into a conventional nematic (N) 

phase since a long time [3]. The initial interest for these systems was related to the 

discovery of a characteristic odd-even effect in the properties of their nematic-isotropic 

(N-I) phase transition: the temperature and other transitional properties were found to 

depend strongly on the parity (even or odd) of the spacer. Odd liquid crystal dimers are 

now arousing a renewed interest, especially after the discovery of a new chiral nematic 

organization, denoted as twist-bend nematic (NTB) [17]. The following section 

illustrates the structure of the NTB phase and summarizes some of the experimental 

evidences which have led to its identification. 

 

2.2.1 The Twist-Bend Nematic phase (NTB)  

Certain odd liquid crystal dimers have been found to undergo a transition from the 

conventional nematic phase (N) to a second unknown nematic phase (NX) on cooling 

[17-22]. The CB7CB dimer (Figure 2.3(b)) was the first compound for which the NX 

phase was identified as a twist-bend nematic (NTB), by Cestari et al. [17].  

The NTB organization is sketched in Figure 2.3(a). It is characterized by a heliconical 

director precessing about an axis (Z) with conical angle θ0 and helical pitch p. This 

organization has global D∞ and local C2 point group symmetry. In addition to its  

chirality, another characteristic feature of this structure is the presence of local bend 

deformations of the director, ( )= ∇ × ×B n n . The possibility that achiral bent-shaped 

molecules could form an NTB organization had been theoretically predicted many years 

before its experimental observation [23-24], and was suggested also by Monte Carlo 

simulations of a small system of V-shaped particles formed from Gay-Berne units [25]. 
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Figure 2.3 (a) The NTB phase organization (one of the two degenerate helicoidal domains), with θ0 the 

conical angle and p the helical pitch; n  and h  are unit vectors parallel to the local director and to the 

helix axis, respectively, and ( )= ∇ × ×B n n . (b) Molecular structure and phase transitions of the liquid 

crystal dimer CB7CB. The average molecular length of CB7CB is about 2.5 nm. (c) Temperature 

dependence of the quadrupolar splittings ∆ν  for the deuterated probe 8CB-d2, dissolved in CB7CB. The 

dashed vertical line indicates the NTB-N phase transition. Adapted with permission from [18] Copyright 

2012 American Chemical Society.  (d) Temperature dependence of the helical pitch p (empty circles and 

pink line) and of the birefringence ∆n (empty squares and blue line) for CB7CB. Reproduced with 

permission from [26] Copyright 2013 National Academy of Sciences, USA.   

 
In their work, Cestari et al. [17] used a variety of different experimental techniques to 

characterize the NX phase, including differential scanning calorimetry (DSC), X-ray 

diffraction (XRD), polarized optical microscopy (POM), and deuterium nuclear 

magnetic resonance (2H-NMR). DSC indicated that in CB7CB the NX-N transition is 

weakly first order. The absence of sharp reflections in the XRD diffraction pattern 

proved that NX is a nematic, rather than smectic, phase. Samples contained in planar 

cells exhibited a characteristic striped texture when observed by POM, with a 

periodicity of a few microns. The birefringence colours of consecutive stripes reversed 

on rotation of the microscope stage, suggesting the existence of chiral domains with 

opposite handedness. Important information on the phase structure have been provided 

by 2H-NMR: bifurcation of the quadrupolar splitting on entering the NX phase (Figure 

2.3(c)) unequivocally demonstrated that in this phase the director has a chiral 

organization. This result was striking, since CB7CB is an achiral molecule; inspired by 

Dozov’s predictions [24], the authors assigned the NX phase to an NTB organization. A 

(d) 

∆∆ ∆∆ νν νν
 /

k
H

z 

T
NI

-T /°C 

N     N
TB

 
(a) 

(b)       (c) 

d ∼ 2.5 nm  
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more detailed discussion of the 2H-NMR experiments will be presented in Chapter 9. 

The existence of an NTB organization, both in CB7CB and in other odd methylene-

linked dimers, is being progressively confirmed by different experimental techniques. 

Valuable insights have been reached by freeze-fracture transmission electron 

microscopy (FFTEM) [26,27] and birefringence measurements [26-29] (Figure 2.3(d)). 

FFTEM experiments have shown that the NTB phase is characterized by a remarkably 

short periodicity, of the order of a few molecular lengths. The birefringence typically 

exhibits a decrease on entering the NTB phase, which was ascribed to a tilt of the 

director.  

The NTB-N phase transition appears to be very sensitive to details of the molecular 

structure: it has been detected mainly in methylene-linked dimers, whereas it appears to 

be less common in ether-linked dimers [22,30,31]. 

 

2.3 Unconventional physical properties in the N phase  

In addition to their phase behaviour, liquid crystals of bent-shaped molecules are 

arousing considerable interest also because of the outstanding physical properties of 

their N phase. Many of these properties exhibit distinctive features, different from those 

of conventional rod-like nematics, whose origin is not fully understood. Bent-core 

compounds have been shown to possess unusual flexoelectric [32-34] and elastic 

properties [32,33,35-38], large viscosity [35,39], as well as nonstandard dielectric 

relaxation [40] and electroconvection regimes [41]. Unconventional flexoelectric and 

elastic properties have been reported also for odd liquid crystals dimers [22,27,42,43].  

Elasticity and flexoelectricity are properties of fundamental interest, both on their own 

and for other basic phenomena, such as the formation of topological defects and the 

possible role played in stabilizing modulated phase, such as the blue phases [16,44] or 

the recently discovered twist-bend nematic phase [23,24]. They are also relevant for 

applications, including the development of materials optimized for new display modes 

[42,43] or for electromechanical energy harvesting and conversion [45,46].  

In the following sections, elasticity and flexoelectricity in liquid crystals are defined, 

and a brief summary of the unconventional behaviour of bent-shaped mesogens is 

presented.  
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2.3.1 Elastic constants 

 
Liquid crystals are elastic fluids: they oppose a torque to distorsions of the director with 

respect to the equilibrium state (curvature elasticity) [47]. The fundamental modes of 

deformations and the associated elastic constants are defined by the phase symmetry. 

The elastic continuum theory of the nematic (N) phase is due to Oseen and Frank 

[48,49]: three independent bulk deformation modes are allowed, splay ( )ˆ ˆ= ∇ ⋅S n n , 

twist ( )ˆ ˆT = ⋅ ∇×n n , and bend ( )ˆ ˆ= ∇ × ×B n n  (Figure 2.4), and the bulk elastic free 

energy density is given by:  

( )2 2 2
def 11 22 33

1

2
f K K T K= + +S B

 
 ,
 

(2.1) 

where K11, K22 and K33 are respectively the splay, twist and bend elastic constants.  

The elastic constants are material parameters, which depend on the molecular structure 

of the mesogen and on the orientational order in the mesophase. The relationship 

between the molecular structure and deformations on length scales much longer than the 

molecular dimensions is however not obvious. Various molecular theories of liquid 

crystalline elasticity have been developed, usually for systems of simple idealized 

particles, such as rigid rods. A review of these theories can be found in Ref. [50, 51]. 

   

                            

Figure 2.4 Principal modes of director deformations in the nematic (N) phase : (a) splay, (b) twist, (c) 
bend.      

Here we focus on the experimental evidences. The elastic moduli of nematics have a 

magnitude of the order of some piconewtons. In conventional rod-like nematics K33 > 

K11 > K22 is generally found, and the elastic constants increase with decreasing 

temperature (increasing order parameter): K11 and K22 are approximately proportional to

(a) (b) (c) 
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2
zzS  (Szz being the major order parameter), whereas this is not always true for K33 [51, 

52].  

Quite different features have been detected in nematics of bent-shaped molecules.  An 

increasing number of experimental observations on bent-core compounds indicate that 

these systems are characterized by a low bending stiffness. Lowering of the bend elastic 

constant has been evidenced upon doping conventional nematics with bent-core 

mesogens [53-55]. More recently, the elastic behaviour in pure bent-core compounds 

has been characterized and K11 > K33 has been found, at variance with rod-like liquid 

crystals [32,33,35-38]. Moreover, the bend elastic constant appears to be only weakly 

dependent on temperature. Measurements of the elastic constants of odd liquid crystal 

dimers are scarcer, but even for these systems K33 has been found to be lower than K11 

and unusually small [22,27,43]. The origin of the small K33 values is not completely 

clear. It was proposed that the bent molecular shape could be responsible for this 

behaviour [36], but this interpretation has been questioned and it was instead suggested 

that smectic clusters could be the cause of the small K33 [35].  

  

2.3.2 Flexoelectric coefficients 

Flexoelectricity in liquid crystals bears some analogy to piezoelectricity in crystalline 

solids [56]: it consists in the appearance of an electric polarization in response to splay 

or bend deformations of the director (direct flexoelectric effect). Conversely, splay and 

bend distortions of the director can be induced upon application of an external electric 

field (converse flexoelectric effect). Flexoelectricity was discovered by Meyer [57]; 

according to his derivation the flexoelectric polarization is given by:   

flexo 1 3e e= +P S B   ,     (2.2) 

where S and bend B are the splay and bend deformation vectors (see Figure 2.4) and e1, 

e3 are respectively the splay and bend flexoelectric coefficients of the liquid crystalline 

material. The sign of the flexoelectric coefficients determines the relative orientation of 

the polarization and deformation vectors (Figure 2.5). 
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Figure 2.5 Flexoelectric effect: (a) splay, (b) bend. The relative orientation of the polarization and 

deformation vectors depends on the sign of the flexoelectric coefficients.    
 

Meyer also provided a first molecular interpretation of flexoelectricity, in terms of the 

combination of shape asymmetry and electric polarity in molecules (dipolar 

flexolectricity, Figure 2.6(a)). In an undeformed nematic phase, the molecular 

distribution is non-polar: thus a banana-shaped molecule will preferentially align its 

long axis along the director n, but its short axis will assume with equal probability any 

orientation in the plane perpendicular to n. However, if the liquid crystal is subjected to 

a bend deformation the orientational distribution function of the short axis will become 

polar: molecules can pack better if their curvature follows that of the bent director field. 

If the banana-shaped molecules possess a transverse dipole moment, an electric 

polarization will be induced. Similarly, wedge-shaped molecules having a longitudinal 

dipole will couple effectively to a splay deformation. 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 2.6 Simple molecular interpretations of the flexoelectric effect. (a) The dipolar model of Meyer  

(only the case of banana-shaped molecules is shown). The arrows represent the molecular electric dipole 

moments. (b) The quadrupolar model of Prost and Marcerou. In the deformed state, the overall density of 

positive charges is higher in the lower part than in the upper part of the picture, and a polarization is 

produced.  

(a) (b) 

(b) (a) 
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Later, Prost and Marcerou [58] suggested that flexoelectricity can be observed even in 

nematics made of apolar, rod-like molecules: this happens because splay and bend 

deformations can induce gradients in the electric quadrupolar density (quadrupolar 

flexoelectricity, Figure 2.5 (b)).  

Flexoelectric coefficients of rod-like nematics are quite small, typically of the order of a 

few picocoulombs per meter [56,59,60]. This fact, coupled to the experimental 

difficulties involved in the determination of the flexoelectric coefficients, resulted in 

different values being reported for the same compound [56,59]. Bent-core compounds 

and liquid crystal dimers have been found to exhibit higher flexoelectric couplings than 

rod-like liquid crystals [32-34,43,61]. However, even for these systems controversial 

results were obtained:  a giant value of the bend flexoelectric coefficients was reported 

for a bent-core system [34], which was not confirmed by a later investigation [62]. 

More in general it is still not clear what are the limits of the flexoelectric coupling 

strengths that can be achieved [2,63].  

Models of flexoelectricity developed for simple particles have been useful to get a 

general understanding of this phenomenon. However real molecules are not rigid 

objects, nor simple dipoles and quadrupoles: proper account of molecular flexibility and 

of the molecular charge distribution is required to capture the interplay between the 

molecular shape and the molecular electric properties [64].  

 

2.3.3 Display applications: the flexoelectrooptic effect 

Conventional twisted-nematic liquid crystal displays (TN-LCD) exhibit some 

shortcomings, such as narrow viewing angles and relatively long response times. 

Therefore the development of new high-performance LCD modes and of liquid crystal 

materials optimized for these modes is still an active area of research. Possible new 

technologies which have attracted much interest in the last years include displays based 

on the flexoelectrooptic effect [65].  

The flexoelectrooptic effect consists in the rotation of the helix axis of a chiral nematic 

liquid crystal* around an electric field perpendicular the helix axis. The most common 

cell configuration is the ULH (uniform lying helix) geometry, where the liquid crystal is 

                                                 
* Here chiral nematic indicates a nematic liquid crystal doped with a chiral additive and having a 
cholesteric-like organization.  
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aligned with the helix axis parallel to the cell surfaces (Figure 2.7). The rotation angle φ  

is given by [42]:  

2

e p
E

K
φ

π
=     ,  (2.3) 

where e  is the effective flexoelectric coefficient, 1 3( ) / 2e e e= − , K  is the effective 

elastic constant, 11 33( ) / 2K K K= + , p is the helical pitch and E is the electric field 

(magnitude and sign). The ratio /e K  is called flexoelastic ratio.  

 

                
Figure 2.7. Schematic representation of the flexolectroptic effect in the ULH configuration. http://www-
g.eng.cam.ac.uk/CMMPE/res_phenom_flexo.html 

 

Compared to TN-LCDs, displays based on the flexoelectrooptic effect would have the 

following advantages [42]: (i) wider viewing angles, because of the in-plane switching 

mechanism: (ii) better gray-scale modulation, because of the linear relation between φ 

and E; (iii) faster switching times.  

In order to exploit the potential of this display mode, nematic liquid crystals with high 

values of /e K  are required. Bent-shaped mesogens appear to be promising candidate, 

because of their unconventional flexoelectric and elastic properties. 

 

2.4 Thesis Outline 

In this thesis the phase and material behaviour of liquid crystals of bent molecules have 

been investigated by theoretical and computational methods, with the aim to establish a 

connection between the macroscopic behaviour and the molecular structure. This is a 

challenging task: computational methods such as quantum mechanical calculations and 
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atomistic Molecular Dynamics simulations are in many cases insufficient and 

alternatives routes must be found. In this work different methods have been used and 

developed, suitable to cover or connect the different length scales involved.  

In particular we have focused on the following problems: (i) the origin and the structure 

of the twist-bend nematic phase (NTB); (ii) the elastic and flexoelectric properties of the 

nematic (N) phase.  

(i) To get insight into the molecular origin of the NTB phase, we propose an extension of 

the Maier-Saupe model, modified to take into account the coupling between the 

molecular shape and the director modulation. Our objectives are the following: checking 

whether we can predict the existence of a nematic (N) to NTB phase transition; assessing 

the effect of changes in the molecular structure on the transition; investigating the 

possible relation between the formation of the NTB phase and the elastic behaviour. The 

model is presented in Chapter 3. In Chapter 4, the phase organization of bent-shaped 

particles is examined using Molecular Dynamics simulations, to further check the 

formation an NTB phase and its molecular determinants and to characterize the 

molecular organization in this phase.  

Based on our generalized Maier-Saupe model we also intend to obtain some general 

information about the structural parameter (pitch and conical angle) of the NTB phase. In 

Chapter 9, a molecular model capable of providing quantitative estimates of these 

parameters starting from a realistic representation of the molecular structure is 

presented.  

(ii) The relationship between the molecular structure and the elastic and flexoelectric 

properties of liquid crystals of bent-shaped molecules has been investigated using a 

methodology capable of bridging the different length scales involved. The 

methodology, which is illustrated in Chapter 5, had been previously applied to the 

prediction of the elastic constants of conventional rod-like LCs, providing results in 

good quantitative agreement with experimental data, at a modest computational cost. 

Here the methodology has been extended and used to predict various properties. In 

particular we have focused on the elastic and flexoelectric properties of bent-core 

compounds and liquid crystal dimers with various molecular structures, with the aim to 

understand the origin of their unsual behaviour. Collaboration with experimental groups 

has allowed us to validate our computational approach against a large number of 
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experimental data. The results obtained are presented in Chapters from 6 to 8.  
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Chapter 3  

A generalised Maier-Saupe theory for the NTB-N phase 

transition *  

 

 

 

 

 

3.1 Introduction 

As described in Chapter 2, recent experiments have shown that, on cooling, liquid 

crystals of bent-shaped molecules can undergo a transition from the conventional 

nematic phase (N) to another kind of nematic phase, called a twist-bend nematic (NTB) 

[1]: this is chiral, with doubly degenerate handedness, spontaneously bent, and locally 

polar, being characterized by a periodically distorted director ̂n  forming a conical helix, 

with conical angle θ0 and helical pitch p.   

Although the structural features of the NTB phase are becoming progressively clear, the 

origin of the direction modulation is not completely understood. The NTB organization 

was theoretically predicted several years before its experimental observation, and two 

different mechanisms were proposed [2,3]. According to Meyer’s theory [2], 

spontaneous bend distorsions of the director could result from the gain in free energy 

density bend
flexof  associated with flexoelectric couplings: 

bend
flexof ∝ − ⋅P B  ,  (3.1) 

where P is the electric polarization and ( )ˆ ˆ= ∇ × ×B n n  is the vector defining the bend 

deformation, which is perpendicular to n̂  (Figure 2.4(c)).  

A different mechanism was proposed by Dozov [3], who speculated that in liquid 

                                                 
* This Chapter is adapted from: C. Greco, G. R. Luckhurst and A. Ferrarini, Soft Matter, 2014, 10, 9318-
9323. © 2014 The Royal Society of Chemistry 
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crystals of bent-shaped molecules the bend elastic constant K33 can become negative: 

the NTB organization would thus become stable as a result of an elastic instability. 

Considering one-dimensional modulations of the director, ˆ ˆ ( )Z=n n , Dozov proposed 

the following expression for the deformation free energy density [3]: 

( )2 2 2
def 11 22 33 4

1

2
f K K T K f= + + +S B  .  (3.2) 

The first term in Eq. (3.2) is the usual Frank expression of the elastic free energy 

density (Eq. 2.1). The term f4 contains spatial derivatives of the director up to fourth 

order in the expansion and it is assumed to be always positive, thus ensuring that, even 

for K33 < 0, the elastic energy is bounded from below. The twist-bend field is a possible 

solution which minimizes the free energy in Eq. (3.2); another solution corresponds to a 

splay-bend modulation [3]. Negative K33 values for nematics of bent molecules have 

been predicted either for purely steric reasons [4] or as result of flexoelectric 

renormalization [5], using respectively a molecular field theory with atomistic 

modelling and a Landau approach. The meaning of these predictions has been widely 

debated. 

In addition to the origin of the NTB phase, another aspect which needs clarification is the 

relationship between the formation of this phase and the molecular structure [1,6-9]. 

Continuum models alone are not adequate for this purpose and a molecular based 

approach is needed.  

Here we present a molecular field theory for the NTB phase. Considering the case of 

rigid, V-shaped molecules, a minimalist model is used, which can be seen as a 

generalization of the Maier–Saupe theory† suitable to take account of both the molecular 

architecture and the twist-bend spatial modulation of the director. Thus we obtain an 

expression for the free energy where the distinctive features of the system are 

introduced from the molecular level, rather than as ad hoc parameters. This allows us to 

obtain a consistent picture of the N and NTB phases, of their transitional and elastic 

behaviour, in relation to the molecular geometry. In the next section we will give an 

overview of the model, then we will present the theoretical predictions and we will 

discuss them in the light of the available experimental data. Finally, we summarise the 
                                                 
† The Maier-Saupe theory was outlined in Chapter 1. 
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significant conclusions of our study and make comparisons with other theories. 

 

3.2 The molecular field model   

The molecular model is sketched in Figure 3.1(a): a molecule is made of two mesogenic 

arms (A and B), each of length L, joined at one end, with the bend angle χ. The 

following unit vectors are attached to the molecule: ŵ  is parallel to the C2 (molecular) 

symmetry axis and Aû , Bû  are along the arms.  

                                                           

Figure 3.1. (a) The molecular model, with χ the bend angle and L the length of one arm; ̂w , A,Bû  are 

unit vectors parallel to the two-fold symmetry axis and to the arms, respectively. (b) The NTB phase 

organization (one of the two degenerate helicoidal domains) with θ0 the conical angle and p the helical 

pitch; n̂  and ĥ  are unit vectors parallel to the local director and to the helix axis, respectively, and 
ˆˆ ˆ= ×m h n . 

 

The classic N phase is characterized by a uniform director n̂ , whereas, according to the 

customary description, each chiral domain of the NTB phase features a director that 

undergoes a heliconical precession around an axis (parallel to the unit vector ̂h  ), with 

conical angle θ0 and pitch p, or wavenumber 2 /q pπ= (see Figure 3.1(b)). In a 

laboratory frame with the Z axis parallel to the helix axis we can then write:  

( )0 0 0ˆ ˆ ( ) sin cos ,sin sin ,cosZ θ φ θ φ θ= =n n    ,
 (3.3)

 

where qZφ = . The uniaxial nematic phase is recovered for pitch p→∞ and/or conical 

angle θ0 = 0°, whereas the case with finite pitch and θ0 = 90° corresponds to the 

(b) (a) 
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cholesteric‡ organization. In the spirit of the Maier–Saupe theory, each arm is assumed 

to align preferentially to the local director n̂  at the position of the arm. Thus, the 

complete orientational potential experienced by the molecule, Uor, is the sum of the 

contributions of the two arms: 

( )( ) ( )( )2 2 A A 2 B Bˆ ˆˆ ˆorU c P P P = − ⋅ + ⋅ u n R u n R   ,
 (3.4)

 

where c is a constant (with the dimension of energy) that quantifies the orienting 

strength, P2 is the second Legendre polynomial, ( )ˆ Jn R  is the director at the position of 

the midpoint of the Jth arm (J = A, B), and 2P is the orientational order parameter of 

an arm. It is worth pointing out that the orientational potential Uor defined in Eq. (3.4)

depends on a microscopic order parameter (2P ) and two macroscopic order 

parameters (θ0 and p) which characterize the position dependence of the director field. 

For the special case of rod-like molecules (χ=180°) and uniform ̂n  (i.e. p→∞), the 

Maier–Saupe expression is recovered [12] (apart from a factor of 2, which results from 

considering the molecule as made of two mesogenic units). The molecular field 

potential defined in Eq. (3.4) is a function of the molecular orientation: ( )or orU U= Ω , 

where { }, ,α β γΩ =  are Euler angles that define this orientation in a local frame with its 

'Z  axis parallel to ̂n . Orientational averages can then be defined as:  

... ... ( )f d= Ω Ω∫    ,  (3.5) 

where f(Ω) is the single molecule orientational distribution function: 

B

1
( ) exp ( )orf U k T

Q
 Ω = − Ω    ,  (3.6) 

with kB the Boltzmann constant, T the temperature and Q the orientational partition 

function: 

exp ( )or
BQ U k T d = − Ω Ω ∫   .  (3.7) 

                                                 
‡ Unlike most literature, here “chiral nematic” will not be used as a synonym of cholesteric, since this 
could be ambiguous after the identification of other chiral nematic phases [10,11]. 
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By construction the potential ( )orU Ω  reflects the symmetry of the molecule and that of 

its local environment. The NTB structure has global D∞ symmetry, with the C∞ axis 

parallel to the helix axis (̂h  in Figure 3.1(b)), and local C2 symmetry, with the twofold 

axis perpendicular to the plane containing the helix axis and the local ̂n director, i.e. 

along m̂  in Figure 3.1(b). Therefore the NTB phase is locally polar: it is compatible with 

the existence of odd-rank order parameters, defined with respect to the ̂m axis, which is 

the only principal direction common to any locally averaged property. 

According to the molecular field procedure the Helmholtz free energy of the liquid 

crystal phase, taken as the difference with respect to that of the isotropic phase, is built 

as the sum of an entropy and an internal energy contribution, both expressed in terms of 

the molecular field orientational potential [13]. The NTB phase, though non-uniform, is 

homogeneous; thus for both the N and the NTB phases we can simply refer to 

thermodynamic properties per unit volume. The change in entropy density resulting 

from orientational order is given by: 2
B ln 8 ( ) ( )ors k f f dρ π ∆ = − Ω Ω Ω ∫ , where ρ is 

the number density, /N Vρ = , with N the number of molecules and V the volume. The 

change in internal energy density is simply related to the average value of the molecular 

field potential: ( )/ 2or oru Uρ∆ = , where again the angular brackets denote the 

orientational averages defined previously. Then, we obtain for the entropic term:  

2

2 B 22 ln
8

or c Q
s P k

T
ρ ρ

π
∆ = − +  ,   (3.8) 

and for the internal energy contribution: 

2

2
oru c Pρ∆ = −    .  (3.9) 

We can then define the scaled Helmholtz free energy density as: 

2

2

2
B

*
*

ln
8

Pa Q
a

k T Tρ π
 ∆  ∆ = = − 
  

  ,  (3.10) 

with the scaled temperature B
* /T k T c= . A key feature of the free energy density in Eq. 

(3.10) is that it implicitly contains the position dependence of the director, through the 
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potential of mean torque, Eq. (3.4). Thus, it represents the free energy density of the 

nematic phase with the director field ˆ ( )n R , relative to the isotropic phase. At a given 

scaled temperature, this difference is a function of the director deformation and of the 

2P  orientational order parameter. Conversely, if a parametric form of the director field 

is used, the equilibrium state can be obtained by minimization of the free energy 

density, Eq. (3.10), with respect to 2P and the director field parameters (θ0 and p, or q, 

for the NTB phase). We can define the deformation free energy density at a given 

temperature as the difference between the free energy density of the deformed ( *a∆ ) 

and the undeformed ( u
*a∆ ) system: 

udef
* * *a a a∆ = ∆ − ∆    .  (3.11) 

Calculation of this difference as a function of the principal modes of deformation, 

defined with respect to the equilibrium state, allows us to determine the elastic 

constants, as will be shown later. 

 

3.3 Results and discussion 

We have investigated the phase behaviour of V-shaped molecules with different values 

of the bend angle χ. In our calculations the arm length L is taken as the unit of length. 

Figure 3.2 shows a set of molecular orientational order parameters and the conical angle 

and pitch in the NTB phase, calculated for χ = 150°, 140°, 135° and 130°. They are 

reported as a function of the reduced temperature red NI/T T T= , where TNI is the 

nematic–isotropic transition temperature. For χ = 140° and χ =135° we can see a first 

order transition from the isotropic to the uniaxial nematic phase, marked by a jump to a 

finite value of the 2P order parameter, followed by a second order transition, from the 

N to the NTB phase, at a lower temperature. This is evidenced by a discontinuous change 

in slope of 2P , and a simultaneous appearance of a conical angle and a finite pitch. 

Correspondingly, the onset of polar order is evidenced by the first rank order parameter 

1
wmP , with 1

wm ˆˆP = ⋅w m . Both conical angle and pitch exhibit a steep change at the 

NTB–N transition, reaching values that then remain almost constant with decreasing 
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Figure 3.2 Molecular order parameters (see text), on the left, and helical pitch p and conical angle θ0, on 

the right, as a function of the reduced temperature Tred, for V-shaped molecules with bend angle χ= 150°, 

140°,135°,130° (from top to bottom).  

150° 

140° 

135° 

130° 
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temperature: θ0 around 30° and p ∼ 4–5L. In the plots we also show the second rank 

order parameter 2
hP , for the molecular arms with respect to the helix axis ĥ . In the N 

phase, where there is no tilt, this is identical to 2P , but at the NTB–N transition a 

difference appears, since the former exhibits a drop, which is a signature of the tilt of 

the n̂ director, and then increases very slowly with decreasing temperature. For χ larger 

than 150° the NTB–N transition is predicted at a very low temperature 
TBNI N N( / 2).T T >

Surprisingly for χ = 130° we can see a direct first order transition from the isotropic to 

the NTB phase, denoted by a jump to finite values of the conical angle, the helical pitch 

and of all the orientational order parameters. These results point to a strong sensitivity 

of the phase behaviour to the bend angle: as χ becomes smaller so the width of the N 

phase decreases and the NTB phase is progressively stabilized. Unlike the stability range 

of the N phase, the structural properties of the NTB phase exhibit only a weak 

dependence upon the χ value: interestingly in all cases a tight pitch is predicted, of the 

order of a few molecular lengths, which decreases slightly with narrowing of the bend 

angle, whereas the conical angle tends to increase. 

Figure 3.3 shows the scaled deformation free energy density,
def
*a∆ , as a function of 

helical wavenumber and conical angle for χ = 140° at three different reduced 

temperatures, on either side of the NTB–N phase transition.  

 

 

Figure 3.3 Contour plots showing the scaled deformation free energy density 
def
*a∆  as a function of the 

square of the wavenumber q (L is taken as the unit of length) and of sinθ0, with θ0 being the conical angle. 

Calculations are for molecules with bend angle χ = 140°, at three different reduced temperatures on either 

side of the NTB–N phase transition: Tred = 0.83 (a), 0.80 (b) and 0.77 (c). The inset in the (a) graph shows 

a 3D representation of the free energy surface.  
 

At the higher temperature the free energy exhibits a single minimum, at q = 0, sinθ0 = 0, 

i.e. in the N phase, and increases as the deformation grows. On decreasing temperature 
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the minimum becomes shallower until a new minimum appears, at finite values of q and 

sinθ0. Then, on further decreasing temperature the minimum becomes deeper and moves 

toward higher θ0 and q values. 

According to the continuum elastic theory, the free energy density of the nematic phase 

in the presence of a twist-bend deformation (q →0) can be expressed as [14]: 

2 4 2 2 2
def 22 0 33 0 0

1 1
sin sin cos

2 2
a K q K qθ θ θ∆ = +   ,  (3.12) 

where K22 and K33 are the twist and bend elastic constants, respectively. For θ0 = 90° the 

deformation is a pure twist, whereas for θ0 = 0° the energetic cost is essentially that for 

bend. Therefore we can write:  

2
def 22 0

1
       for 90

2
a K q θ∆ = = °   ,   (3.13) 

2 2
def 0 33 0

1
sin       for 0

2
a K qθ θ∆ = → °   .  (3.14) 

Thus, from the initial slope (q → 0) of defa∆ vs. q2 we can obtain the twist and bend 

elastic constants of the N phase. This is different from the common methodology, in 

which explicit expressions for the elastic constants are used [15]. 

For pure twist, the deformation free energy is an increasing function of q and its initial 

slope remains positive over the whole temperature range. For bend deformations we 

find a more complex behaviour, as illustrated in Figure 3.4. This shows the ratio 

2
0def

* / sina θ∆  calculated for θ0 → 0° as a function of q2 , for the case χ = 140°. Data for 

a set of temperatures are reported, on either side of the NTB–N phase transition. Above 

the transition the deformation free energy for pure bend is positive and proportional to 

q2; however, unlike the usual behaviour for rod-like nematics, the initial slope, and 

hence K33, decreases with decreasing temperature. On going through the NTB–N 

transition, the slope reverses its sign, simultaneously with the disappearance of the 

nematic minimum. Analogous results were obtained using a different methodology and 

a molecular field model with atomistic resolution [4,16], for both bent-core mesogens 

and odd liquid crystal dimers having an average bent shape: the bend elastic constant 

K33 was found to decrease with increasing order, and then to take negative values.  
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Figure 3.4 Scaled deformation free energy density for pure bend as a function of the square of the 

wavenumber q (L is taken as the unit of length), for particles with bend angle χ=140° at different reduced 

temperatures (Tred = 0.90, 0.87, 0.83, 0.80, 0.77). Solid(/short-dashed) lines are used for values predicted 

at temperatures above (/below) the NTB-N transition. 
 

It is worth stressing that in this context K33 is meant as a synonym of ‘second derivative 

of the free energy with respect to bend deformations’, and only if positive does it have 

the meaning of a standard elastic modulus associated with a restoring force.  

Our results are in keeping with the main experimental findings on the NTB phase. These 

include the key role of the bend angle: the NTB phase has been detected in liquid crystal 

dimers with an odd number of groups between the mesogenic units and its appearance 

exhibits a strong sensitivity to molecular modifications [1,6-9]. In these systems the 

bend angle, taken as the angle between the mesogenic units, changes with the molecular 

conformation. The bend angle distribution for a given dimer has a subtle dependence on 

the nature of the linking group between the mesogenic units and the spacer, being 

shifted to larger values on moving from methylene to ether links [1,4]. Up to now there 

is no evidence of a direct NTB–I transition; according to our predictions good candidates 

would be systems with a small bend angle, for which however there could be other 

competing phases. From FFTEM [17,18], birefringence experiments [17-20], analysis 

of NMR spectroscopy data [21,22] and measurements of an electroclinic effect [23] , 

conical angles between 11° and 30°, together with pitches in the range 5–10 nm and 

weakly dependent on temperature, have been determined for CB7CB and other odd 

liquid crystal dimers of similar structure (average molecular lengths 2.5–3 nm). A 

slightly longer pitch, of 14 nm, was reported for a bent-core mesogen (average 

molecular length 5 nm) [24]. The birefringence, which in the N phase is found to 

increase with lowering temperature, exhibits a decrease on entering the NTB phase, 
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which was interpreted as evidence for a tilt of the director. A strong decrease was 

observed at the NTB–N transition for CB7CB and for a mixture of liquid crystal dimers 

[17,19,20] but for another odd mesogenic dimer a smoother decrease was found [18]. A 

qualitative comparison can be made with the temperature dependence of the 2
hP

 
order 

parameter (Figure 3.2). A great deal of information on the NTB phase has been provided 

by NMR spectroscopy, however the molecular representation used in our present model 

is not sufficiently detailed to allow an accurate comparison with NMR data. Finally, we 

have to mention the anomalous behaviour of the bend elastic constant in the N phase: 

for odd liquid crystal dimers K33 has been found to be unusually small and to decrease 

on moving towards the transition with the NTB phase, up to very small values in the 

proximity of the transition [7,18] although in one case a plateau was observed [25]. 

The ability to investigate on the same footing different phases and properties allows us 

to clarify some controversial issues. One is the relationship between the phase transition 

and the elastic properties. We have found that for sufficiently bent molecules, as the 

temperature decreases, the N free energy minimum broadens along the bend coordinate, 

until a new minimum appears, which corresponds to the NTB phase. This behaviour can 

be described in terms of elastic constants, i.e. the principal curvatures of the free energy 

at its minimum: K33 in the N phase decreases, until vanishing, as the temperature is 

lowered. When K33 = 0 the director can bend without cost and the twist-bend 

organization appears. With further decreasing of temperature the curvature of the free 

energy in the undeformed (N) state with respect to bend deformations becomes 

increasingly negative and the NTB minimum becomes deeper. A few points are worth 

stressing. The NTB phase has its own elastic properties, different from those of the N 

phase; thus, in principle the use of the classical Frank free energy to analyse 

experiments in the NTB phase is not justified, and could lead to questionable conclusions 

[26]. Recently, extensions of the Frank elastic theory to the NTB phase have been 

proposed, one of which contains a quartic term [3] whereas the other retains the 

quadratic form [27]. Another issue that deserves attention is the concept of ‘negative 

K33’, which should be meant as negative curvature of the free energy in the undeformed 

N state with respect to bend deformations. As such it indicates that the N phase is 

unstable with respect to bend deformations [4,7,15]. 
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3.4 Conclusions 

We have shown that a generalized Maier–Saupe theory, modified to take into account 

the coupling between director field and molecular shape, predicts the existence of the 

NTB–N transition. This means that, compared to the N phase, the NTB organization 

allows a better interaction between the noncollinear mesogenic groups, which 

compensates for the loss of entropy due to the additional polar order. Differently from 

previous theoretical approaches [3,5] our model includes molecules explicitly, though in 

a rather basic form, so that we can assess the effect of changes in the molecular 

structure on the phase behaviour. We show that this is especially sensitive to the 

molecular bend angle, with the NTB–N transition occurring for a limited range of values. 

We predict the orientational and structural parameters of the NTB phase and their 

temperature dependence; in particular, we obtain a pitch of the order of a few molecular 

lengths, weakly dependent on temperature or molecular details, in agreement with the 

available experimental data. We can also provide a consistent description of the elastic 

properties of the system, which allows us to discuss their relationship with the NTB–N 

transition. In this regard, the scenario that we describe is in substantial agreement with 

the Dozov picture, though from a different perspective. Elsewhere electrostatics, and in 

particular flexoelectric couplings, have been proposed as the main feature responsible 

for the formation of modulated phases [2,28]. One cannot, of course, exclude that such 

couplings are present and may also be more significant than in conventional rod-like 

nematics, but this does not necessarily mean that they are the driving force for the phase 

transition. Interestingly, the NTB phase has been observed experimentally even for 

mesogens that lack strong electric dipoles [18]. Indeed, the results predicted by our 

model point towards a primary role of the molecular shape, in line with the suggestion 

of early Monte Carlo simulations [29] and also with more recent lattice simulations [5]. 

In the latter the site interactions leading to the twist-bend modulation were denoted as 

‘dipolar’ or ‘flexoelectric’ but, given the model used, this has to be taken more as a 

general indication of their symmetry, rather than of their physical nature, as clarified 

also by the author themselves [30].  

Our present study can be extended along various directions. One is the introduction of a 

more detailed molecular representation, along the lines shown in Ref. [4] and [16], 

which will allow closer comparison of the predictions with experimental data, in 
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particular with those from NMR spectroscopy [21,22]. Another is the extension to 

different phases, having not only 1D periodicity, like the predicted splay–bend nematic 

[3], but even 2D and 3D modulations [30]. This is especially important in view of the 

well-known difficulties of molecular simulations of finite samples in handling non-

uniform systems. Also the use of free energy calculations in the presence of director 

deformations, as proposed here, to evaluate the elastic constants, is a general 

methodology that clearly merits exploration. 
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Chapter 4   

Molecular Dynamics simulations of bent-shaped particles   

 

 

 

 

 

4.1 Introduction  

In the previous Chapter, the nematic (N) to twist-bend nematic (NTB) phase transition 

was investigated by molecular field theory. To further check the formation of a NTB 

organization and its molecular determinants, and to characterize the molecular 

organization in the NTB phase, we performed Molecular Dynamics simulations of rigid, 

achiral, apolar bent-shaped particles interacting via a purely repulsive potential. 

Computer simulations of bent-shaped particles are still relatively scarce. In these 

studies, different simulation techniques and molecular models have been used to 

explore and understand the effect of the bent molecular shape on the phase behaviour. 

The majority of them are off-lattice Monte Carlo (MC) or Molecular Dynamics (MD) 

simulations using generic coarse-grained molecular models [1-13]. Particles having a 

bent shape were built by joining anisotropic interaction sites, such as soft or hard 

spherocylinders [1-3] or Gay-Berne ellipsoids [4-9], or chains of spherical interaction 

sites [10-13]. Particles with different bend angles were studied, with or without electric 

dipoles. A few atomistic MD simulations have also been performed, for a bent-core 

oxadiazole compound [14] and for the liquid crystalline dimer CB7CB [15]. Finally, a 

couple of works using on-lattice MC simulations can also be found in the literature [16, 

17].  

The earlier computational studies were motivated mainly by the interest in the 

unconventional smectic phases of bent-shaped molecules (see Chapter 2) [2,4-7,10-12]. 

In addition, bent molecules appeared to be good candidates for the formation of the long 

sought-after biaxial nematic phase [2,7,14,16]. Computer simulations specifically 
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devoted to the investigation of the uniaxial nematic phase of bent-shaped molecules 

have appeared only recently, following the experimental discovery that also this phase 

exhibits unconventional properties. In the work of Peroukidis et al. [3] and 

Francescangeli et al. [9] the model bent-shaped particles were found to exhibit short-

range positional and orientational correlations, taken as an indication of a uniaxial 

nematic phase made of smectic-like cybotactic clusters with local polar order. 

Interestingly, in Ref. [3] right-handed and left-handed twisted nematic organizations 

were also found, resulting from the arrangement of cybotactic clusters into a 

cholesteric-like helix. These twisted organizations formed only if some degree of 

molecular flexibility was included in the model, allowing for the existence of chiral 

molecular conformations. 

Of particularly relevance to the present work are the results obtained by Memmer [4], 

who, in addition to the conventional nematic (N) phase, observed an unusual nematic 

organization, having the characteristics of a twist-bend NTB phase (see Chapter 2) [18]. 

Such an organization was observed only in a single simulation run, and the author 

pointed out the need for further studies. The works of Chen et al. [15] and Shamid et al. 

[17] support the early results obtained by Memmer, though by the use of different 

models: in both cases a NTB organization was evidenced.  

The molecular model used in the simulations performed in this thesis will be 

introduced in the next section. In Section 4.3 and 4.4 we will outline the details of the 

simulation procedure and define the structural indicators used to characterize the phase 

organization.  The results obtained will be presented in Section 4.5 and finally the main 

conclusion of this preliminary investigation will be summarized.  

 

4.2 The molecular model 

A bent-shaped molecule is modelled as a chain of Nb=11 identical interaction sites 

(hereafter called “beads”), rigidly connected to each other to form a particle of C2v 

symmetry. Beads belonging to different molecules interact via the WCA repulsive 

potential [19]: 
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where pq p qr = −r r  is the distance between the pth and qth beads, located at position rp 

and rq , and σ and ε are the characteristic length and energy scales of the interaction, 

respectively (Figure 4.1). In the rest of this Chapter all quantities will be expressed in 

reduced units, obtained by setting σ  as the unit of length, ε as the unit of energy and 

the mass m of a bead as the unit of mass [19]. 

 

 

Figure 4.1 The WCA potential as a function of the interbead distance r. σ and ε are the characteristic 

parameters of the interaction.  
 

The center of each bead lies on the arc of a circle, of contour length L=10, with the 

tangents at the arc’s endpoints making an angle χ = 140° (Figure 4.2(A)). Three unit 

vectors are attached to the molecule (Figure 4.2(B)): b is along the C2 molecular 

symmetry axis, and a,c are each perpendicular to a molecular symmetry plane, with 

= ×c a b . With the choice made for Nb, L and χ, the distance between the terminal beads 

is about 9.8 and the angle between the unit vectors u1 and u2 connecting the central bead 

to the terminal ones (Figure 4.2(B)) is equal to 160°. In summary, the model bent-

shaped molecules studied in this work are achiral, rigid object, bearing no electrical 

dipole, but only a steric dipole intrinsic to their C2v symmetry.  
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Figure 4.2 The molecular model studied in this work. (A) A particle is made of a chain of Nb=11 beads 

lying on the arc of a circle; the arc length is L=10 and the tangents at the arc’s endpoints make an angle 

χ=140°. (B) a,b,c are unit vectors parallel to the principal molecular axes and u1,u2 are unit vectors 

connecting the central bead to the terminal ones. 
 

4.3 Simulation details  

Molecular Dynamics simulations were performed using the software LAMMPS [20]. A 

system of N=1000 molecules was studied in the NPT ensemble, at reduced temperature 

T=1 and reduced pressures P=0.65 and P=1.045. Temperature and pressure were 

controlled using a Nosé-Hoover thermostat and barostat [21-23], with time constants τT 

= 1 and τP = 1, respectively. The equations of motion were integrated using the rigid 

body algorithm of Ref. [24], with a time step ∆t = 0.01. The neighbour list was updated 

every step. Tetragonal boxes with periodic boundary conditions (PBCs) were used, with 

sides x y zL L L= ≠
 
having a fixed aspect ratio, / 4z xL L = . This relatively high aspect 

ratio was chosen with the purpose of minimizing the effect of PBCs on the pitch of the  

helical (NTB) phase [25]. To evaluate the magnitude of finite-size effects in such an 

anisotropic box, another simulation at P=0.65 was conducted, using / 1.52z xL L = : the 

results thus obtained were in agreement with those found in the more anisotropic box. 

Simulations were started from a dilute lattice of molecules, with either polar or apolar 

arrangement of the molecular axes: after equilibration, analogous results were obtained 

in both cases. Simulations were run for tens of millions of steps, with configurations 

saved every 5×104 steps for subsequent analysis. Shorter runs, of about 5×104 steps and 

sampled every 10 steps, were also conducted for specific purposes. When presenting the 

results, these simulations will be referred to as “short” simulations.   
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4.4 Characterization of the phase organization 

The structure of the phases formed by the system under study was investigated by 

determining various orientational order parameters and pair correlation functions [26, 

27]. To compute these quantities, home-made Python codes were implemented, either 

as standalone programs or, for computationally intensive tasks such as the calculation of 

pair correlation functions, as scripts calling home-made C routines. For the latter 

purpose, the library “MD analysis” was used as a framework to interface Python and C 

codes [28]. This library was also used to extract the particles coordinates from the 

binary DCD trajectories [20].   

 

4.4.1 Order parameters 

Second rank orientational order parameters were obtained following the procedure 

described in Ref. [29]. For each configuration of the system, three ordering tensors ααQ

were computed, with elements: 

( ) ( )

1

1 3 1
2 2

N
IJ i i

I J IJ

i

Q
Nαα α α δ

=

 = − 
 ∑ , (4.2)  

where I, J = X’ , Y’, Z’  are cartesian axes of an arbitrary laboratory frame, ( )i
Iα is the Ith 

component of the αααα axis of the ith molecule (αααα = a, b, c, see  Figure 4.2(B)), and δIJ is 

the Krokecker delta. Diagonalization of the three ααQ tensors yields three sets of 

eigenvalues { }0, ,αα αα ααλ λ λ+ − , with 0
αα αα ααλ λ λ− +< < . The principal phase director Z was 

identified with the eigenvector corresponding to the largest of the three ααλ +  

eigenvalues, with the latter providing the major order parameter. For the systems here 

investigated, the largest ααλ +  was always obtained for αααα = a, therefore we can write: 

0 0 0 0 0

0 0 0 0

0 0 0 0

XX
a aa

YY
aa a aa

ZZ
a aa

Q

Q

Q

λ
λ

λ

−

+

   
   = =   
   
   

Q  , (4.3) 

ZZ
aaQ  being the major order parameter. For a uniaxial phase / 2XX YY ZZ

aa aa aaQ Q Q= = − ; 
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therefore the difference XX YY
aa aaQ Q− provides an indication of the phase biaxiality [30]. 

Many of the structural quantities defined in the following paragraphs are functions of  

the components along the director Z of molecular or intermolecular position vectors. In 

particular, if r i is the position vector of the center of mass of the ith molecule, the 

molecular position along Z is given by i iz = ⋅r Z . Similarly, if r ij is the vector joining 

the centers of mass of the ith and jth molecules, then its projection along Z is given by 

ij ijz = ⋅r Z . Structural quantities depending on these variables were computed over 

trajectory intervals in which the principal director Z was almost parallel to the long side 

of the simulation box.   

To probe the existence of local polar ordering of the molecular b axis, first rank order 

parameters were calculated, as a function of the position z along the principal director Z 

[4,7]: 

( ) ( ) ( )1 ,

1 1

( )
N N

X
i i i

i i

P z z z z zδ δ⊥
= =

= ⋅ − −∑ ∑b X , (4.4)
 

( ) ( ) ( )1 ,

1 1

( )
N N

Y
i i i

i i

P z z z z zδ δ⊥
= =

= ⋅ − −∑ ∑b Y  , (4.5) 

where X and Y are Cartesian axes in
 
the plane perpendicular to Z, ,i ⊥b is the unit vector 

obtained by projecting the b vector of the ith molecule on this plane, and δ is the Dirac 

delta function. 

 

4.4.2 Pair distribution functions 

The longitudinal pair distribution function was computed [31]: 

( )||

1 1

1 1
( )

N N

ij
x y i j

j i

g r z r
L L N

δ
ρ

= =
≠

= −∑∑�
 ,  (4.6) 

where ρ = N/V is the molecular number density, with x y zV L L L=
 
the volume of the 

system. In a nematic phase( )g r
� is essentially constant; on the contrary, in a smectic 

phase ( )g r
�  exhibits peaks with a periodicity equal to the distance between the smectic 
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layers.     

 

4.4.3 Orientational pair correlation functions 

Orientational pair correlations were characterized by considering a suitable set of  

orientationally-averaged Stone invariants* [32]. Both radial and longitudinal 

orientational correlation functions were obtained, respectively by computing these 

invariants as a function of r, the intermolecular distance, or of ||r , the intermolecular 

separation along the director Z. Second rank orientational correlations were examined 

using the functions:  

( ) ( ) ( )2220

1 1 1 1

3 1
( )

2 2

N N N N

aa i j ij ij

i j i j
j i j i

S r r r r rδ δ
= = = =

≠ ≠

 = ⋅ − − −  ∑∑ ∑∑a a  , (4.7) 

( ) ( ) ( )2220

1 1 1 1

3 1
( )

2 2

N N N N

aa i j ij ij

i j i j
j i j i

S r z r z rδ δ
= = = =

≠ ≠

 = ⋅ − − −  ∑∑ ∑∑a a
� � �

 . (4.8) 

where ai and aj are the unit vectors parallel to the long molecular axes of the ith and jth 

molecule (see Figure 4.2(B)). If the intermolecular distance is sufficiently large, the 

molecular orientations become uncorrelated and 220( )aaS r reaches a limiting value which 

is related to second rank order parameters according to [33,34]:  

( )
2

2220( ) 2
6

XX YY
ZZ aa aa

aa aa r

Q Q
S r Q r ξ −→ +  

 
≫  ,  (4.9) 

where rξ  is a correlation length. Polar pair correlations between the two-fold molecular 

symmetry axes b were probed by calculating the average invariants [4,7]:  

 

( ) ( ) ( )110

1 1 1 1

( )
N N N N

bb i j ij ij

i j i j
j i j i

S r r r r rδ δ
= = = =

≠ ≠

= ⋅ − −∑∑ ∑∑b b   (4.10)  

 
                                                 
* In this thesis, scaled invariants were calculated, by omitting the numerical pre-factors which appear in 
the definition of Stone invariants. For brevity, these scaled invariants will be denoted simply as 
invariants.  
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( ) ( ) ( )110

1 1 1 1

( )
N N N N

bb i j ij ij

i j i j
j i j i

S r z r z rδ δ
= = = =

≠ ≠

= ⋅ − −∑∑ ∑∑b b
� � �

  .  (4.11) 

Finally the following longitudinal correlation function was considered [4,35]: 

( ) ( ) ( ) ( )221

1 1 1 1

( )
| |

N N N N
ij

aa i j i j ij ij
iji j i j

j i j i

z
S r z r z r

z
δ δ

= = = =
≠ ≠

 
= × ⋅ ⋅ − − 

 
∑∑ ∑∑a a Z a a

� � �
. (4.12) 

If the molecular organization is achiral, this function vanishes at all distances.  On the 

contrary, for a helical phase of pitch p, this function exhibits a sinusoidal profile, with 

periodicity λ=p/2 for a cholesteric helix and λ=p for a twist-bend helix. The helix 

handedness can be evaluated from the sign of the function at / 4r λ=
� :  

221

221

( / 4) 0 right-handed helix

( / 4) 0 left-handed helix

aa

aa

S r

S r

λ

λ

 = >


= <

�

�

. (4.13) 

Trajectory averages of the quantities described above will be indicated with an overbar:  

1

1
( )

M

m

m

A A t
M

=

= ∑    , (4.14) 

where A(tm) is the value of the property A at time tm and M is the total number of time 

steps considered to compute the average.  
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4.5 Results and Discussion 

The average number density ρ  at the two values of pressure P investigated is reported 

in Table 4.1. The statistical error on density was estimated using the method of block 

averages [19]. 

P ρ  

0.65 0.047589 (± 2×10-6) 

1.045 0.05651 (± 1×10-5) 

Table 4.1. Pressure P and average number densityρ . The estimated statistical error on density is 

reported between parentheses.  
 

At P=0.65 the system forms a nematic phase, as evidenced by the analysis of 

orientational order parameters, of the longitudinal pair distribution function and of  

orientational pair correlation functions. As shown in Figure 4.3(A)†, the major order 

parameter ZZ
aaQ  is different from zero, indicating the formation of an orientationally 

ordered phase, with the long molecular axes a preferentially aligned with each other. 

The average value of the major order parameter is 0.82ZZ
aaQ = . Given the geometric 

relation between the molecular axes a and b, the latter preferentially orient 

perpendicular to Z, as confirmed by the negative value of the corresponding order 

parameter ( 0.41ZZ
bbQ = − ). The longitudinal pair distribution function( )g r

� is essentially 

constant (data not shown), leading to the identification of the phase as a nematic. Also 

reported in Figure 4.3(A) is the order parameter XX YY
aa aaQ Q− , which is close to zero. The 

absence of long-range biaxial order is confirmed by the negligibly small value (less than 

0.05) of the difference in the ordering of the b and c molecular axes in the plane 

perpendicular to the principal director Z [7,30,33].  

The radial second rank orientational correlation function 220( )aaS r  (Figure 4.3(B)) 

reaches a plateau at a distance of about one molecular length, indicating the absence of 

long-range correlations. Its asymptotic value, 220( ) 0.67aaS r ∼ , is approximately equal to

 
                                                 
† The results at P=0.65 presented in this and the other Figures are taken from the simulation with 

/ 1.52z xL L =  .  
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( )2
ZZ
aaQ , as expected for a uniaxial nematic phase (see Eq. (4.9)). The features appearing 

in the radial correlation function 110( )bbS r  (Figure 4.3(C)) indicate the presence of short-

range polar correlations between the two-fold symmetry axes b of nearby molecules. At 

larger distances 110( )bbS r vanishes. Because of the absence of long-range correlations, the 

longitudinal correlation functions 220
||( )aaS r and 110

||( )bbS r
 
are essentially constant, and 

equal to the asymptotic value of the corresponding radial correlation function.  

 

Figure 4.3 Orientational order parameters and pair correlation functions at P=0.65. (A) Second rank 

orientational order parameters 
ZZ

aaQ  (black line at the top) and 
XX YY

aa aaQ Q−  (red line at the bottom), as a 

function of simulation time. (B) Radial ( 220( )aaS r , solid black line) and longitudinal ( 220( )aaS r
�

, red dashed 

line) second rank orientational correlation functions for the molecular axis a. (C) Radial ( 110( )bbS r , solid 

black line) and longitudinal ( 110( )bbS r
�

, dashed red line) polar orientational correlation functions for the 

molecular axis b.  The cartoons show a pair of antiparallelly (/parallelly) oriented nearby molecules 

giving rise to the negative (/positive) peak in 110( )bbS r . In (B, C) the symbol r* indicates either r or r
�
. 

Values of r* < 1 are possible since the center of mass of the model bent-shaped molecule considered in 

this work lies outside the body.  

(A) (B) 

(C) 
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At pressure P=1.045, the system still forms a nematic phase: no sign of layering could 

be detected from the analysis of the longitudinal distribution function ( )g r
� .  The 

second rank order parameters for the long molecular axis a are shown in Figure 4.4. The 

major order parameter ZZ
aaQ  exhibits large fluctuations, assuming values which range 

between 0.55 and 0.85. We will return on this point later. The biaxiality parameter 

XX YY
aa aaQ Q−  is small, although also in this case relatively large fluctuations are observed.  

 

Figure 4.4 Second rank orientational order parameters at P=1.045, as a function of simulation time: 

major order parameter
ZZ

aaQ  (black line at the top) and phase biaxiality 
XX YY

aa aaQ Q−  (red line at the bottom). 
 

The short-range structure of the system is qualitatively similar to that exhibited at 

P=0.65, as evidenced by the features appearing in the radial orientational correlation 

functions at short distances (data not shown). However a different long-range behavior 

is observed. In Figure 4.5(A)-(C) the longitudinal correlation functions 221( )aaS r
� ,

 
110( )bbS r

�  

and 220( )aaS r
� are reported. Multiple curves are shown in each plot, each corresponding to 

a single configuration taken from a representative part of the trajectory. The profiles 

obtained from each configuration are qualitatively similar: in particular, many of them 

are not flat, as it would be for a conventional nematic phase, but instead exhibit a 

periodic modulation as a function of r
� , with a periodicity p ∼ 65. Quantitatively the 

profiles differ, which is a signature that the system has a dynamic organization, 

continuously changing with time. The detailed analysis of each correlation function 

allowed us to characterize these modulated structures more precisely. 

The oscillatory behavior of 221( )aaS r
� (Figure 4.5(A)) indicates the formation of a helical  
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Figure 4.5 Longitudinal orientational correlation functions at P=1.045. (A, B, C) Data obtained from the 

analysis of a representative part of the trajectory. The various curves correspond to different 

configurations of the system. The same line color is used to plot data obtained from a given configuration. 

A thick blue line, also indicated by an arrow, is used to highlight one of the configurations giving the 

lowest minimum value of 
220( )aaS r

�
. The correlation functions for this configuration are shown together in 

(D): 
220( )aaS r

�
(solid blue line), 110( )bbS r

� (dashed red line) and 
221( )aaS r

�
(dash-dotted black line). 

0( ; , , )F r S pθ
�

 (dot-dot-dashed green line) is the function defined in Eq. (4.15), with parameters S=0.82, 

p=65 and θ0=24°.   

 

superstructure, with the helix axis parallel to Z. The inversion of the sinusoid along the 

trajectory indicates a change of handedness of the helix (see Eq.(4.13)). The 

interconversion between right- and left-handed helices gives rise to structures in which 

the helix is almost unwound and for which 221( ) 0aaS r
�
∼

 
is found.  

The function 110( )bbS r
�  also oscillates (Figure 4.5(B)) and its maximum value, which 

corresponds to preferentially parallel arrangement of the b axes, is obtained for 

molecules lying on the same plane (perpendicular to Z), or separated by r p=
� . The 

(A) (B) 

(C) (D) 
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minimum of 110( )bbS r
�  is located at / 2r p=

� : its negative value indicates that the b axes 

of molecules separated by this distance are preferentially anticorrelated. On the whole, 

the profile of 110( )bbS r
�  shows that the helical organization is locally polar, with the two-

fold molecular symmetry axes b spiralling around Z.  

The value of 220( )aaS r
� in its minimum, also located at / 2r p

�
∼

 
(Figure 4.5(C)), provides 

information about the tilt angle0θ  of the molecular long axis a with respect to the phase 

director Z [4]. For the system under study, each configuration is characterized by a 

different minimum value of 220( )aaS r
� , and therefore by a different value of 0θ . This 

observation can explain, at least qualitatively, the large fluctuations detected in the order 

parameters (Figure 4.4): in each configuration, the molecular a axes are tilted with 

respect to the helix axis Z, and the tilt angle changes along trajectory, leading to 

different values of ZZ
aaQ . To obtain an estimate of the highest value of tilt angle ( max

0θ ) 

adopted by the system, one of the configurations providing the lowest minimum value 

of 220( )aaS r
�  was selected (Figure 4.5(D)). An estimate of the corresponding tilt angle was 

obtained by analyzing the profile of 220( )aaS r
� with the following equation:  

4 2
0 0

2

2 2 4
0 0 0

23
( ; , , ) sin cos

2

2 1
2sin cos cos cos

2

r
F r S p S

p

r

p

π
θ θ

π
θ θ θ

   =    
  

  + + −  
   

�

�

�   ,

 (4.15) 

where S is the value of 220
aaS  at 0r =

�  and p is the helical pitch. The term between curly 

brackets in Eq. (4.15) was derived by assuming that the long molecular axes a are 

perfectly ordered and undergo a heliconical precession around Z, as the one described 

by the local director n in a twist-bend nematic phase (see Eq. 3.3). The prefactor S 

accounts for the fact the orientational order is not perfect. Using S=0.82 and p=65, the 

value of tilt angle that provided the best agreement between Eq. (4.15) and the profile of 

220( )aaS r
� in the selected configuration was found to be 0 24θ = ° .  

To further characterize the local polar arrangement of the molecular steric dipoles b, the 

polar order parameters 1 ( )XP z and 1 ( )YP z  defined by Eqs. (4.4)-(4.5) were computed, by 
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analysing a “short simulation” (see Section 4.3) during which the structure of the phase 

did not change appreciably. The results are reported in Figure 4.6, where the values 

obtained in the nematic phase at P=0.65 are also shown for comparison. The helical 

shape of the curve relative to P=1.045 clearly shows the presence of a local polar 

ordering axis which rotates around Z . The degree of order is represented by the helix 

radius. At P=0.65 the radius is close to zero, in agreement with the apolarity of the 

phase.  

 

Figure 4.6 Polar order parameters 1
XP  and 1

YP  as a function of the molecular position z along the 

principal director Z, at pressure P=0.65 and P= 1.045.  The inset on the right shows the projection of the 

curves on the XY plane.  

 

Snapshots of the molecular organization at P=0.65 and P=1.045 are reported in Figure 

4.7, where each molecule is coloured according to its azimuthal angle in the plane 

perpendicular to Z.  

The results obtained for the conical angle (max
0θ ∼ 24°) and for the pitch (p ∼ 65 

corresponding to 6-7 molecular lengths) can be compared with the available 

experimental data for the NTB phase of different compounds [15,36-39], with the 

theoretical predictions obtained in this thesis and reported in Chapter 3 and 9 [40,41], 

and with the value provided by an atomistic MD simulation [15]: qualitative agreement 

is found for both quantities. Quantitatively, the pitch obtained from the simulations 

performed here is somewhat larger than the value reported in the references, which 

amounts to 3-5 molecular lengths. This difference may be a consequence of the 

geometric parameters used in the present investigation: for example, according to our 
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Figure 4.7 Snapshots of the molecular organization at (A) P=0.65 and (B) P=1.045. Each molecule i is  

colour-coded according to the value of ,i ⊥ ⋅b X , where ,i ⊥b is the projection of the steric dipole ib  on the 

plane perpendicular to the principal director Z, and X is a Cartesian axis in this plane. The color scale 

ranges from red ( , 1i ⊥ ⋅ = −b X  ) to blue ( , 1i ⊥ ⋅ = +b X ). 
 

generalized Mayer-Saupe theory (Chapter 3) [40], a narrower bend angle should provide 

a slightly smaller pitch. Moreover, because of the use of periodic boundary conditions, 

the pitch may be influenced by the dimensions of the simulation box. Further 

simulations are needed to investigate this issue, but some preliminary work in this 

direction indicates that the value 65p ∼  here reported may be not too far from the 

equilibrium pitch. 

  

4.6 Conclusions  

Molecular Dynamics simulations of rigid, achiral, apolar bent-shaped particles were 

performed, using a generic coarse-grained molecular model consisting of a chain of 

purely repulsive spherical interactions sites arranged on the arc of a circle. The 

behaviour of particles with an angle χ = 140° between the arc’s endpoint was examined. 

Simulations were conducted at two different pressures P to investigate whether we 

could observe a phase transition to the twist-bend nematic phase (NTB).  Although this 

Z 

Z (A) (B) 
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study is still preliminary, some interesting indications have been found. At P=0.65 the 

system organizes into a conventional nematic phase, but significant changes are 

observed by increasing the pressure to P=1.045. The results obtained from the analysis 

of various structural parameters are in line with the presence of a twist-bend nematic 

organization. Both right- and left-handed conical helices form during the simulation 

time: as a result of the interconversion between helices of opposite handedness, 

different conical angles 0θ  are observed along the trajectory, with a maximum value of 

max
0 24θ = ° . The observation of a twist-bend organization in a system of rigid, achiral, 

apolar particles with purely steric interactions is not a foregone result and points out the 

crucial role of the bent molecular shape. This is in agreement with the conclusions 

reached in the previous Chapter using a generalized Maier-Saupe theory [40], and 

contrasts with the interpretations proposed in Ref. [42,43] and Ref. [44,45], where the 

NTB organization was ascribed to flexoelectricity or conformational chirality, 

respectively. Notice that in the generalized Maier-Saupe theory, the NTB-N phase 

transition is of enthalpic origin: in the system of “hard” particles considered here the 

transition must be driven by the entropic gain associated with exclude-volume effects. 

Experimentally the twist-bend phase has been observed in thermotropic liquid crystals 

(see Chapter 2): it would be of interest to check whether bent-shaped colloids can also 

exhibit this organization.  

The results presented here need to be confirmed by further simulations, on larger 

systems and/or employing computational boxes of different size or different boundary 

conditions. Further possible extensions of the current work include simulations of 

systems with a smaller bend angle. Investigation of the effect of molecular flexibility, 

here neglected, is also of major interest. Finally, comparison with the phase behaviour 

of multi-site V-shaped models, for which, up to now, a nematic twist-bend phase has 

not been detected [10-13], is an aspect worth further exploration.  
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Chapter 5  

Modelling the properties of nematic liquid crystals of bent-

shaped molecules with atomistic detail 

 

 

 

 

 

5.1 Introduction  

Liquid crystals (LCs) are complex soft materials, whose structure and behaviour are 

characterized by different length and time scales [1]. The relevant properties and 

interesting phenomena, though related to the microscopic structure, involve scales much 

larger than the molecular one. Important physical properties, such as the elastic moduli, 

are material parameters defined at the macroscopic scale.  

This poses a fundamental challenge to computational methods. Different particle-based 

methods exist, suitable to investigate the behaviour of soft matter at a certain level of 

resolution [1-4]. Quantum mechanical (QM) methods can provide accurate information 

about single-molecule properties but, at the present stage, are alone not sufficient to 

study soft materials, given the importance that intermolecular interactions and thermal 

fluctuations have for the behaviour of these systems. Atomistic Molecular Dynamics 

(MD) or Monte Carlo (MC) simulations allow studying samples of thousands of 

molecules for tens or hundreds of nanoseconds, and are thus suited to investigate 

structural features and behaviour at the nanoscale. Finally, generic particle models have 

proved useful for a basic understanding of processes and properties at the mesoscopic 

scale. Addressing problems at this scale while retaining chemical specificity, is, on the 

contrary, a difficult task. The ability to predict the properties of LCs starting from the 

molecular structure is of paramount importance for material design, given the strong 

sensitivity of these properties to chemical details. In recent years major advancements 

have been made in atomistic simulations of rod-like LCs: phase transition temperatures, 
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molecular order parameters, conformational distributions and other structural properties 

can be predicted with reasonable accuracy, provided suitable force-fields are used [5-7]. 

Atomistic simulation studies of the phase behaviour of bent-shaped molecules are much 

more challenging [8-11], and several aspects of the molecular organization of these 

systems remain poorly understood.  

The situation is even more critical for material properties such as elasticity and 

flexoelectricity. Different techniques have been proposed to determine these parameters 

from MD simulations [1,12-14]. Elastic constants can be obtained in a direct way from 

the long-wavelength fluctuations of the ordering tensor: this approach is robust, but 

requires very large samples to measure fluctuations with small wavevectors. 

Alternatively, an indirect approach can be used, based on a density functional formalism 

[15,16], which relates the elastic constants to the direct correlation functions (DCF). 

The latter can be in principle obtained from computer simulations [17]: in practice 

various approximations are usually introduced, which can impair the results. Recently a 

method based on free-energy calculations has also been proposed [14], but up to know it 

has been used only in the original paper. Calculations of flexoelectric coefficients from 

atomistic simulations are pratically non-existent. In principle, flexoelectric coefficients 

can be obtained from the DCF [16,18]: the problems of this approach are analogous to 

those mentioned above for the elastic constants. In Ref. [13] a linear response theory 

was used, whereby the flexoelectric coefficients are related to correlation functions of 

the polarization and orientational stress tensor: the results were affected by relatively 

large errors and the authors pointed out the need to find alternative routes.  

Recently, an integrated methodology (IM) has been proposed for predicting the phase 

and materials properties of nematic LCs, including elasticity and flexoelectricity, 

starting from the molecular structure [19-23]. For this purpose the method combines an 

atomistic description of the molecular structure with a molecular field model for the 

orientational order in the nematic (N) phase, by means of the so-called Surface 

Interaction (SI) model [24].  The method has been successfully applied to the prediction 

of the elastic constants of conventional rod-like LCs [25], obtaining results in good 

quantitative agreement with experimental data, at a modest computational cost. In Ref. 

[23] the method was used to investigate the elastic and flexoelectric behaviour of a 

series of ether-linked LC dimers with odd and even-membered spacers, providing 
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considerable understanding about the dependence of these properties on the molecular 

structure.  

In this thesis, the IM methodology has been used to investigate the phase and 

materials properties of nematic LCs of bent-core compounds and liquid crystal dimers. 

We considered systems with different chemical structures, with the aim to shed light on 

the relationship between the molecular structure of bent-shaped systems and their 

macroscopic behaviour. In the remaining part of this Chapter a brief review of the SI 

model, and of its use in the derivation of expressions for the elastic and flexoelectric 

parameters, will be given, and the IM computational procedure will be outlined. In 

Chapter 6 the uniaxial N phase of the bent core compound A131 will be characterized, 

looking at properties at different length scales. Chapter 7 is devoted to the elastic and 

flexoelectric properties of bent-core compounds and Chapter 8 to the elastic behaviour 

of liquid crystal dimers. Finally, in Chapter 9, we will show how the SI model can be 

extended to describe the long-range orientational order in the recently discovered twist-

bend nematic phase (NTB).  

 

5.2 The Surface Interaction model (SI) 

The Surface Interaction model (SI) is a molecular field model for the orientational 

distribution in nematic LCs, in which the anisotropy of the short-range steric and 

dispersive interactions responsible for orientational order is parameterized according to 

the anisotropy of the molecular surface. As such it can be thought of as a generalization 

of the Maier-Saupe theory* to molecules of any shape and structure. Assuming that each 

surface element dS tends to align parallel to the director n, the orienting molecular field 

potential, Uor, experienced by a rigid molecule is expressed as an integral over the 

molecular surface S [24]: 

( )B 2( )or

S

U k T P dSεΩ = ⋅∫ n s  .  (5.1) 

Here { }, ,α β γΩ =  is the set of Euler angles defining the molecular orientation in a 

                                                 
* The Maier-Saupe theory is outlined in Chapter 1. 
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laboratory frame { }, ,X Y Z , kB is the Boltzmann constant, T is the temperature, s is the 

unit vector perpendicular to the surface element dS and P2 is the second Legendre 

polynomial. Finally ε is a parameter, with dimension of inverse square length, which 

quantifies the orienting strength of the nematic environment. As such it is related to the 

reduced temperature Tr = T/TNI, where TNI is the nematic (N) to isotropic (I) transition 

temperature, higher values of ε corresponding to lower Tr. The single particle 

orientational distribution function, p(Ω), is related to the molecular field potential by†: 

1
( ) exp ( )or

Bp U k T
Q

 Ω = − Ω   ,   (5.2) 

where is Q the orientational partition function: 

exp ( )or
BQ U k T d = − Ω Ω ∫   . (5.3) 

Orientational averages are defined by: 

... ... ( )p d= Ω Ω∫ ; (5.4) 

So, according to Eq. 1.9, the second rank order parameter for an arbitrary axis (i) in the 

molecule is given by: 

 23 1
cos

2 2ii iS β= − ,  (5.5) 

where βi is the angle between the i axis and the director n. Conformational flexibility 

can be easily included into the model. Let’s denote by χχχχ the set of torsional degrees of 

freedom: then the orientational distribution function is replaced by the orientational-

conformational distribution function, p(Ω,χχχχ), which can be approximated as: 

( ) ( ) ( ){ }B

1
, exp orp U V k T

Z
 Ω = − Ω + χ

χ χ   ,  (5.6) 

where V(χχχχ) is the torsional potential in the isotropic phase, ( )orU Ω
χ

is the orienting 

                                                 
† General definitions of distribution functions and second-rank order parameters can be found in Chapter 
1. 
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potential experienced by a molecule in the conformational state defined by χχχχ and Z is 

the conformational-orientational partition function:
 

( ) ( ){ }Bexp orZ d d U V k T = Ω − Ω + ∫ χ
χ χ . (5.7) 

Equilibrium properties are then given by the following conformational-orientational 

averages: 

( )

( )

... ... ,

...

p d d

w d

= Ω Ω

=

∫
∫ χ

χ χ

χ χ

      .  (5.8) 

Here ...
χ
denotes an orientational average for the conformation specified by the 

torsional angles χχχχ:  

( )

( )

... ...

1
... exp     ,or

B

p d

U k T d
Q

= Ω Ω

 = − Ω Ω 

∫

∫

χχ

χ

χ

  (5.9) 

and w(χχχχ) is the conformational distribution function in the nematic phase: 

( ) ( ) Bexp V k T Q
w

Z

−  = χ
χ

χ  .  (5.10) 

This function depends on the degree of orientational order, and is thus different from 

that in the isotropic phase: in general the orienting potential will stabilize elongated 

conformations, which are better accommodated in the nematic environment than bent 

ones. If the Rotational Isomeric State approximation (RIS) [26] is used, the full 

conformational distribution is replaced by a finite set of conformers, each corresponding 

to a relative minimum of the torsional potential. Then the integrals over χχχχ can be 

replaced by a sum over conformers, and the averages defined by Eq. (5.8) can be 

rewritten as: 

... ... mm
m

w=∑   ,  (5.11) 
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where the index m runs over conformers.  

 

5.2.1 Elastic constants by the SI method 

Within the framework of the SI model, director deformations arising from elastic 

distorsions or flexoelectric couplings are accounted for through the position dependence 

of the director field, n=n(R), in Eq. (5.1). Elastic constants can then be obtained as 

second derivatives of the Helmoltz free energy density, a A V= , with V the volume of 

the system, taken with respect to the three director deformation modes‡. The difference 

in free energy density between the nematic and isotropic phase, ∆a, is given by [22]: 

B

1 1
( ) ln     ,

2
or

a u T s

U V k T p
v

∆ = ∆ − ∆

 = + ∆ + 
 

χ
   (5.12) 

where u U V∆ = ∆ and s S V∆ = ∆ are the internal energy and entropy contributions, v is 

the volume per molecule, ( )V∆ χ is the difference between the torsional potential in the 

nematic and isotropic phase, reflecting the difference in the conformational distribution, 

and the angular brackets denotes orientational-conformational averages, Eq. (5.8) or 

(5.11). The free energy density, Eq.(5.12), can be expanded in Taylor series with respect 

to gradients of the director: for deformations characterized by a length scale much 

longer than the molecular dimensions, the expansion can be truncated at quadratic terms 

and the elastic constants are identified with the coefficients of these terms. The 

following molecular expressions are thus obtained for the splay (K11), twist (K22) and 

bend (K33) elastic constants [22]:  

{ ( ) }2 2 2B
1 3 , 23 2 9 9

  for   1   ,     for   2  ,     for   3  .

ii IIXX IIZZ XZXZ i i IXZ IXZ YXZ i

k T
K c c c c c

v

I X i I Y i I Z i

ε δ δ ε ε δ= − − − − +  

= = = = = =
       (5.13) 

The terms cJKL, cJKLM and cJKL,JKL are elements of Cartesian tensors defined as integrals 

over the molecular surface, and averaged according to p0(Ω,χχχχ), the distribution function 

in the undeformed nematic phase. The Z axis is parallel to the director n in this phase.  
                                                 
‡ The fundamental deformation modes of the N phase have been defined in Chapter 2.   



PART III – Chapter 5. Modelling the properties of nematic LCs of bent molecules with atomistic detail                            

75 
 

5.2.2 Flexoelectric coefficients by the SI method 

Expressions for the flexoelectric coefficients can be obtained starting from the 

microscopic definition of the electric polarization [27]:  

( )1
...

v
= − ∇ ⋅ +P µ θ   (5.14) 

where µµµµ and θθθθ are respectively the molecular electric dipole and quadrupole moments. 

If the molecular charge distribution is described by a set of point charges qα located at 

the nuclei positions Rα, the dipole and quadrupole moments take the form [27]:  

qα αα
=∑µ R  ,  (5.15) 

( )1 2 qα α αα
= ⊗∑θ R R

  
, (5.16) 

where the symbol ⊗  indicates a direct product. Eqs. (5.15) and (5.16) can be 

substituted into Eq. (5.14), and the resulting expression can be compared with the 

macroscopic form of the flexoelectric polarization, Eq. 2.2. In the limit of long 

wavelength deformations of the director, the following microscopic expressions for the 

splay (e1) and bend (e3) flexoelectric coefficients are finally obtained [19,20]: 

00

3 3

         ,   for   1     ; ,   for   3   ,

i I J X Z ZX X ZS S
e dS r s s dS s s

v v

I Z J X i I X J Z i

ε εµ θ= − +

= = = = = =

∫ ∫
 (5.17)   

where again the averages are calculated over the distribution function in the undeformed 

phase, p0(Ω,χχχχ), and Z is parallel to the director. The splay and bend flexoelectric 

coefficients have both a dipolar (d) and a quadrupolar (q) contribution§, corresponding 

respectively to the first and second term on the right side of Eq. (5.17): e3(d) depends 

only on µX, the component of the electric dipole moment perpendicular to the director, 

                                                 
§ The flexoelectric coefficients e1 and e3 defined by Eq. (5.17) are independent of the choice of the origin 

of the molecular frame. However each of the two integrals contributing to e1 and e3, taken individually, 

depends on this choice: in order to uniquely identify a dipolar and quadrupolar contribution to the 

flexoelectric coefficients, these integrals are averaged over all possible origins within the molecular 

volume, as done for the elastic constants in Ref. [22].  
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whereas e1(d) depends only on µZ, the component parallel to the director. The 

quadrupole contribution is identical for e1 and e3. Experimentally, measurements of the 

individual flexoelectric coefficients are rare, and more commonly their difference and 

sum are determined. On the basis of Eq. (5.17) these are given by: 

1 3
0 0

3
Z X X Z X Z X ZS S

e e dS r s s dS r s s
v

ε µ µ − = − −
  ∫ ∫  (5.18)

    

1 3
0 0 0

3
2Z X X Z X Z X Z ZX X ZS S S

e e dS r s s dS r s s dS s s
v

ε µ µ θ + = − + −
  ∫ ∫ ∫

  
. (5.19)    

Therefore ( )1 3e e− depends only on the molecular dipole moment and vanishes for non-

polar molecules, while both dipole and quadrupole moments contribute to ( )1 3e e+ . 

 

5.3 The IM Computational Methodology 

Eqs. (5.13) and (5.17) allow to predict the elastic constants and the flexoelectric 

coefficients (magnitude and sign) starting from knowledge of the molecular geometry, 

torsional potentials and atomic charges. At the computational level this requires using 

and combining different methods: the overall procedure is outlined in Figure 5.1. 

Reliable predictions of phase properties are possible only if accurate values of the 

molecular parameters are employed: the latter were obtained by quantum mechanical 

density functional theory (DFT) calculations in vacuum [28], using different levels of 

theory, according to the required degree of accuracy. For the systems investigated in 

this thesis, geometry optimizations on single conformations were generally performed at 

the B3LYP/6-31G** level [29,30].  Atomic charges were obtained using the RESP 

method, with the electrostatic potential computed at the B3LYP/6-311+G** level 

[31,32]. One of the main advantages of the RESP approach is its ability to provide 

charges which are only weakly conformation dependent [31]. Electric dipole and 

quadrupole moments and flexoelectric coefficients were computed by reducing the 

RESP charges by a factor of 0.7 [23].  

Torsional potentials were obtain using a fragment-based approach: the molecular 

structure was broken into smaller representative model compounds, as customarily done 

in force-field development [33]. Relaxed torsional scans were performed, using either 
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Figure 5.1. Scheme of the IM computational methodology (left) and of the principal computer codes used 

at each step (right).   
 

the B3LYP or the M06-2X [34] functionals, and a Gaussian double-zeta basis set, 

usually 6-31+G**, as a compromise between cost-effectiveness and accuracy [34,35]. 

M06-2X is a relatively new functional developed to account for non-local electronic 

correlations at the basis of dispersion interactions, which common functional, such as 

B3LYP, are unable to describe correctly [36]. Because of its nature, the M06-2X can 

only capture electron correlations at the medium-range, but this can be sufficient to 

account for dispersion effects in small molecular systems [36,37]. Generally, in this 

thesis, the B3LYP functional was used to compute simple torsional profiles (for 

example those characterized by two symmetry-related minima separated by a large 

barrier) whereas the M06-2X functional was used to model more complex torsional 

profiles, such as those relative to fragments containing alkyl chains and aromatic rings, 

for which dispersion effects might be important. The torsional potential data thus 

obtained were fitted according to the following functional form [33]: 

( ) ( )0 1 cos
2
n

n
n

V
V V nχ χ γ= + + +  ∑   , (5.20) 

where values of n up to 6 were considered. If the torsional potential is symmetric with 
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respect to χ=0°, the phase angles γn can be simply set equal to 0° (for odd n) or 180° 

(for even n), and the only fitting parameters are represented by the coefficients V0-Vn. 

Otherwise the phase angles were also included among the fitting parameters. 

The torsional profiles obtained from the fitting procedure were used to generate 

molecular conformations by Monte Carlo (MC) sampling. At each MC move a certain 

(random) number of dihedral angles is changed by a random rotation: the resulting 

conformation is accepted or rejected on the basis of its torsional energy, according to 

the Metropolis criterion [38]. In this way the conformational space is populated 

according to the canonical distribution ( ) ( ) Bexpisow V k T∝ −  χ χ  [39, 40]. In some 

cases, instead of sampling the full torsional profile, the RIS approximation [26] was 

adopted and only the conformers corresponding to the relative minima of the torsional 

potential were considered: this will be specified when presenting the results in Chapters 

6-9. In the MC sampling procedure, conformations containing steric clashes were 

identified and eliminated: this was achieved by checking for pair of atoms closer than a 

cutoff distance ( )i jd x r r= + , where r i is the van der Waals radius of atom i and x=0.82 

[21] : radii equal to 0.185 nm (C), 0.15 nm (N and O), and 0.1 nm (H) were assumed 

[41].  

For each molecular conformation, calculation of the mean field potential, Eq. (5.1), 

requires the definition of the molecular surface. For this purpose the solvent excluded 

surface was used, generated by rolling a probe sphere over the set of spheres 

representing a molecule. The triangulated surface was calculated  using the free library 

MSMS [42], with a probe sphere radius of 0.3 nm and a density of vertices of 5 Å-2. The 

same van der Waals radii used for the cutoff distance were assumed. 
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Chapter 6  

From the molecular structure to spectroscopic and material 

properties: the bent-core compound A131 as case study* 

 

 

 

 

 

6.1 Introduction  

Here the IM methodology (see Chapter 5) is used to investigate the uniaxial nematic 

phase of the bent-core mesogen A131 (Figure 6.1). This system has been the object of 

several investigations by different experimental techniques, probing the phase properties 

both at the molecular and the macroscopic level [1-7]. Besides being interesting on its 

own, this system represents a good case study to show the ability of the IM approach to 

consistently describe properties at different length scales. In particular, we focus on the 
13C NMR chemical shifts, which are related to molecular orientational order parameters, 

and on the Frank elastic constants. In Section 6.2 we report the details of the 

computational procedure. In Section 6.3 the results obtained for the various properties 

investigated are presented and discussed in the light of the available experimental data. 

                            

Figure 6.1. Chemical structure of A131 with carbon numbering. I, Nu, Nb and SmC denote the isotropic, 

the uniaxial nematic, the presumed biaxial nematic and the smectic C phase, respectively.  

                                                 
* This Chapter is adapted from C. Greco, A. Marini, E. Frezza and A. Ferrarini, ChemPhysChem, 2014, 

15, 1336-1344. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. NMR data were kindly 

provided by Prof. Ronald Y. Dong, University of British Columbia, Vancouver.  
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6.2 Computational details 

The general features of the IM computational procedure have been described in Chapter 

5. Here only the aspects specifically related to the system under investigation will be 

presented.  

 

6.2.1 Molecular geometry and torsional potentials   

The geometric parameters and torsional potentials of A131 were obtained by quantum 

mechanical DFT calculations [8]. Figure 6.2 (left) shows the molecular structure of 

A131 with the rotating bonds located in the five-ring core and in the alkyl chains. The 

overall shape of the aromatic core depends on the value of the dihedral angles 

C9−N−C10−C11 and C13−C14−C=O flanking the central aromatic ring (see Figure 6.1 for 

atom numbering), which are denoted as χ24 and χ25 respectively. A special role of the 

geometry around the central ring, which is determined by the constraints imposed by the 

local chemical structure [9], is recognized as a typical feature of bent-core mesogens 

[10,11]. According to previous computations [12,13], the torsional potential for the 

dihedral angle χ24 is characterized by two degenerate minima (χ24  ~ ± 45°); for each of 

them four states were identified for χ25 (~ ± 15° and ~ ± 165°). Thus, there is a total of 

eight symmetry-related configurations of the core, henceforth denoted as ΓΓΓΓ1–ΓΓΓΓ8. They 

are sketched in Figure 6.2 (right) and their relevant structural and energetic parameters 

are summarized in Table 6.1. The description of core configurations arising from 

rotation around χ24 and χ25 in terms of the rotational isomeric state approximation (RIS) 

[15] is justified by the fact that the potential energy minima are relatively narrow and 

separated by high barriers [12]. This description is also beneficial for the present study, 

as the identification of a small number of core geometries simplifies the analysis of the 

relationship between the molecular structure and the physical properties of interest. 

Therefore, it is kept throughout this work, and molecular conformations are grouped 

into discrete sets, each corresponding to a given core configuration. Thus, when 

speaking of the ΓΓΓΓi  set, we refer to the group of molecular conformations having the core 

in the ΓΓΓΓi configuration and any possible value of the dihedrals different from χ24 and χ25. 
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Figure 6.2. Left: molecular structure of A131; χi are the rotating dihedrals and {x,y,z} is the molecular 

frame, with x parallel to the para axis of the central ring and y perpendicular to the plane of this ring. 

Right: representation of the different configurations of the core of A131. The hexagon represents the 

central ring; open and filled symbols are used for the iminic hydrogen, linked to the carbon C9 (triangle) 

and the carbonylic oxygen (circle), above and below the plane of the central ring, respectively. Core 

configurations are defined as in Ref. [13] but, according to the IUPAC recommendation [14], the opposite 

convention is used for the sign of χ24 and χ25 (therefore the sign of the two dihedrals is the opposite of 

that of φ4 and φ5 in Figure 3 of Ref. [13]).   
 
 

Configuration χχχχ24 (°)
(a) χχχχ25 (°)

(a) ∆V (kJ/mol)  (b) 

Γ1 - 44 + 165 0.0 

Γ2 - 45 + 18 4.5 

Γ3 - 45 - 17 5.9 

Γ4 - 45 - 166 1.7 

Γ5 + 44 + 166 1.7 

Γ6 + 45 + 17 5.9 

Γ7 + 45 - 18 4.5 

Γ8 + 44 - 165 0.0 

Table 6.1. Structural and energetic parameters for the eight core configurations of A131, as obtained by 

DFT calculations at the B3LYP/6-31+G* level in vacuum (from Ref. [13]). (a) Dihedral angles are defined 

as positive for clockwise rotation [14] (this is the opposite of the convention used in Ref. [13]).  
(b) Relative energies are defined with respect to the most stable configuration. 
 

Atomic coordinates for each of the ΓΓΓΓi core configurations were obtained by geometry 

optimization at the B3LYP/6-31+G* level [13]. Torsional energy profiles for the bonds 

indicated by arrows in Figure 2 were derived by relaxed scans on selected fragments 

and are reported in Appendix A. Different levels of the theory were used, as explained 

in the following. For the alkyl chain dihedrals (χ0-χ4, χ5, χ6 and their analogues in the 

other side arm), calculations were done at the M06-2X/6-31+G** level of theory 

(Figures A.1 and A.3) [16]. According to a recent computational analysis of the 

conformational preferences of butylbenzene, the M06-2X functional gives results that 
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are in better agreement with experiments than the B3LYP functional [17]. The torsional 

potential for χ8 and χ10 was calculated at the M06-2X/6-31+G** level, using 4-

methylphenyl 4-methylbenzoate as a model compound (Figure A.5(j)). The potential 

energy surface of phenyl benzoate has been the subject of intense investigation, and 

some discrepancies exist between the different calculations as to the exact position of 

the minima and the relative height of barriers [18-20]. However, in all cases four 

equivalent energy minima are found (~ ± 60°, ~ ± 120°) and the energy barriers at 0° 

and 180° are higher than those at ± 90°. The torsional profile calculated in this work 

substantially agrees with those obtained at the B3LYP/6-31+G*[18,19] or the MP2/6–

31+G** and MP2/6–31+G* levels [18-20]. The χ7 and χ9 dihedrals are characterized by 

relatively simple torsional potentials, for which the standard B3LYP functional was 

used with the 6–31+G* basis set (Figures A.5(i) and A.7). For χ11 and χ12 the same 

torsional potential was assumed (Figure A.8). 

The full account of the molecular flexibility (including lateral chains) is the main 

difference between ours and previous computational investigations of A131, which 

were restricted to a few conformers of the core [13]. 

 

6.2.2 Monte Carlo sampling and orientational-conformational averages  

In generating conformations with Monte Carlo sampling, the full torsional potentials 

were used (see Section 5.3). The χ24 and χ25 dihedrals were not sampled since, for 

convenience of analysis and computation, separate calculations were performed for each 

of the core configurations schematized in Figure 6.2. Actually, in the light of the 

molecular symmetry, only the ΓΓΓΓ1–ΓΓΓΓ4 sets were considered. Over 50000 conformations 

were sampled for each core configuration, to guarantee convergence of all the 

investigated properties. A lower number would have been enough for most properties, 

with the exception of the bend elastic constant which, being strongly sensitive to 

molecular shape, can exhibit large fluctuations from one conformation to another. Final 

averages of the investigated properties were calculated including all core configurations. 

Only in some cases partial averages, restricted to conformations having a specific core 

configuration, were considered; this is explicitly said in Section 6.3.  

Properties were calculated as a function of the orienting strength ε (see Eq. 5.1): to 
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make the comparison with experimental data easier, some of the results are reported as a 

function of temperature. To relate ε to temperature, a linear dependence of the chemical 

shifts calculated for C5 on temperature was assumed, as observed experimentally for 

this carbon in the range between 445 and 406 K. 

 

6.2.3 13C NMR chemical shifts 

In 13C NMR experiments, the relative shieldings of 13C nuclei, known as chemical 

shifts, are measured. Henceforth these are denoted by δ , that is, the average value of 

the symmetric part of the chemical shift tensor, δδδδ. This average is conveniently 

expressed in terms of the order parameters for the principal axes of the tensor [21]. 

Hence, for the ith nucleus we can write:  

 

22 11
33 33 22 11 22 11

2 1
( )( )

3 2 2

i i
i i i i i i i i

iso S S S
δ δδ δ δ δ δ

  += + − + − −  
  

   , (6.1) 

where i
jjδ (j=1–3) are the principal values of the chemical shift tensor, i

jjS  are the 

orientational order parameters for the corresponding principal axes, and 3i i
iso Trδ = δ . 

 

6.3 Results and Discussion 

6.3.1 Molecular shape and conformational distribution 

Figure 6.3, showing the molecular geometry of conformers with the core in ΓΓΓΓ1–ΓΓΓΓ4 

configurations and all-trans alkyl chains, illustrates the importance of the χ24 and χ25 

dihedrals. The overall shape of the ΓΓΓΓ2 and ΓΓΓΓ3 structures is clearly more bent than that of 

the ΓΓΓΓ1 and ΓΓΓΓ4 structures. For this reason in previous works they were denoted as hockey-

stick-shaped and banana-shaped, respectively [13]. The bend angle, which we defined 

as the angle between the para axes of the AE rings (see Figure 6.1), is about 135° for 

the ΓΓΓΓ1 and ΓΓΓΓ4 core configurations and 115° for ΓΓΓΓ2 and ΓΓΓΓ3. Analogous values were found 

for the bend angle between the para axes of the BD rings in the ΓΓΓΓ1 and ΓΓΓΓ4   and in the ΓΓΓΓ2 

and ΓΓΓΓ3 core configurations, respectively. The torsional freedom within the aromatic core 

does not significantly change the core shape within a given ΓΓΓΓi set. Due to the form of 
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the torsional potentials for bonds within the core, the B ring, on one side, and the D, E 

rings, on the other side, tend to be twisted with respect to the central C ring, with twist 

angles of about ± 45° and ± 50°, respectively. A wider angular distribution is predicted 

for ring A, as relatively low energy barriers oppose its rotation with respect to ring B. 

  

 

Figure 6.3. Superposition of four conformers of A131, with the core in ΓΓΓΓ1–ΓΓΓΓ4 configurations and all-trans 

alkyl chains.  
 

According to the torsional potentials for the χ6 and χ13 dihedrals, alkyl chains tend to lie 

perpendicular to the benzene ring to which they are attached, so protruding out of the 

approximate molecular plane, defined by the aromatic core. Rotations around chain 

bonds can significantly modify the overall molecular shape. To quantify these changes 

we calculated the size and shape distribution of molecular conformations. To this 

purpose the smallest rectangular box containing each conformer, with the edges parallel 

to its principal inertia axes, was considered. Thus, the length (L), breadth (B), and width 

(W) were taken equal to the largest differences between the atomic coordinates along 

each side. Figure 6.4 shows the L, B, W distributions calculated for the ΓΓΓΓ1 and ΓΓΓΓ2 sets, in 

the isotropic and in the nematic phase. The outer edges of the L distributions correspond 

to the end-to-end distance (measured between the terminal methyl carbons) in all-trans 

conformers: depending on the values of the χ6 and χ13 dihedrals, this distance can reach 

up to 5.2 nm for the ΓΓΓΓ1 and 4.8 nm for the ΓΓΓΓ2 core configuration. In Figure 6.4 we can 

see that, even though the distributions are broadened by the chain mobility, the 

molecular shape remains strongly anisometric, with some difference between the ΓΓΓΓ1 and  

ΓΓΓΓ2 sets. On the average, conformations having the core in the ΓΓΓΓ2 configuration are less 

elongated and more biaxial (larger difference between breadth and width) than those 

with the core in the ΓΓΓΓ1 configuration. In the nematic phase, the maxima of the L distribu- 
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Figure 6.4. Distribution of length L, breadth B and width W calculated separately for the ΓΓΓΓ1 (left) and ΓΓΓΓ2 

(right) sets of conformations, in the isotropic phase at T=450 K (dashed lines) and in the nematic phase at 

T=395 K (solid lines).  
 

tions are shifted towards higher values, as a consequence of the stabilization of the more 

elongated molecular conformations within a given ΓΓΓΓi  set. 

Table 6.2 reports the relative weight w of each ΓΓΓΓi core configuration, calculated 

according to Eq. 5.10, which takes into account the effect of both the torsional potential 

and the molecular field potential. We can see that effect of the nematic environment 

does not dramatically modify these weights. The population of the ΓΓΓΓ2 and ΓΓΓΓ3 

configurations, already low in the isotropic phase at 450 K, becomes even lower with 

 

Configuration 450 K (I) 425 K (N) 395 K (N) 

Γ1= Γ8 0.23 0.26 0.29 

Γ2= Γ7 0.07 0.05 0.03 

Γ3= Γ6 0.05 0.03 0.02 

Γ4= Γ5 0.15 0.16 0.16 

Table 6.2. Weights of the Γi core configurations of A131, calculated at different temperatures in the 

isotropic (I) and in the nematic (N) phase, according to Eq. 5.10 of Chapter 5. 
 

decreasing temperature, in favour of the ΓΓΓΓ1 and ΓΓΓΓ4 configurations. These do not only 

have a lower energy in vacuum (see Table 6.1), but also, being more elongated, are 

stabilized by the interaction with the nematic environment. Thus, according to our 

calculations, hockey-stick-shaped conformers would have a low relative weight in the 

uniaxial nematic phase of A131, which becomes even smaller with decreasing 

temperature. 
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6.3.2 13C NMR chemical shifts and order parameters 

13C NMR chemical shifts were calculated according to Eq. (6.1), using experimental 

chemical shielding tensors for all carbons with the exception of C1, C15, and C24, for 

which only the isotropic value, iisoδ , is available [22]. For these sites, theoretical tensor 

components (GIAO-DFT) were used [13]. The NMR spectral assignments reported in 

Ref. [22] were revised in the light of the results of our calculations. Indeed, the 13C 

NMR spectrum of a complex molecule such as A131 is characterized by crowding of 

several peaks in a reduced spectral region [22], and the assignment necessarily has some 

degree of arbitrariness. The plots in Figure 6.5 show the calculated and the measured 

chemical shifts as a function of the shifted temperature T–TNI, where TNI is the isotropic-

nematic transition temperature.  

 

 

Figure 6.5. 13C NMR chemical shifts for the aromatic rings of A131 as a function of the shifted 

temperature, T–TNI : calculated (lines) and experimental values (symbols) [22]. Some of the assignments 

reported in Ref. [22] have been revised; the chemical shifts of C15 and C11 are now identical. The vertical 

lines indicate the presumed uniaxial–biaxal nematic transition and the nematic–smectic C transition. Site 

labelling is shown in Figure 6.1.  
 

It may be worth stressing that our approach is methodologically different from other 

methods used for previous analyses of the 13C NMR chemical shifts of A131, in which 

the experimental data were fitted to a model containing a number of fitting parameters 
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(typically order parameters for different parts of the molecule), which were then used a 

posteriori to interpret the orientational behavior [13, 22]. This results however must be 

taken with some prudence: depending on the spectral assignment, different sets of order 

parameters have been reported for A131, some of them clearly not consistent with the 

molecular structure [13,22]. Here, on the contrary, we started modeling the orientational 

and conformational distribution of the mesogen and the effects of the molecular 

geometry are introduced a priori. Chemical shifts, as well as any other property of the 

nematic phase, are obtained as a function of the orienting strength ε , without free 

parameters. Here we used the experimental chemical shifts of C5 to define the relation 

between ε and temperature, to report our results as a function of temperature, which 

makes the comparison with experimental data easier. However, this choice does not 

imply the agreement between theoretical and calculated chemical shifts, as the pattern 

of the iδ values is determined by the molecular geometry and the specific 

orientational preferences of the conformers. Therefore the results shown in Figure 6.5 

can be taken as an assessment of the adequacy of our description of the molecular 

structure and our account of the conformational and orientational distribution for A131. 

Some discrepancy between theoretical and experimental results can be ascribed to 

uncertainty in the molecular geometry and in the principal values and axes of the 

chemical shift tensors used in the calculations. In general, relatively higher 

discrepancies are found for carbons for which theoretical, rather than experimental 

shielding tensors were used. An example is represented by C15, the chemical shifts of 

which were overestimated, probably because of the too large δδδδ tensor values used in the 

calculations (theoretical isoδ values equal to 142.4 for ΓΓΓΓ1 and 137.6 for ΓΓΓΓ4 compared to 

the experimental value of 134.5). We can discern in Figure 6.5 that the discrepancies 

between theoretical and experimental chemical shifts tend to increase on approaching 

the nematic-smectic C transition, which could be a sign of deviations from the standard 

nematic organization assumed in our description. Indeed, the transition to a biaxial 

nematic phase has been debated [1-5,7,13]; more recently the onset of smectic C-like 

short-range fluctuations has been suggested [6].  

We have also calculated quantities that are not directly accessible to the experiment. For 

instance, the order parameters separately calculated for the ΓΓΓΓ1 and ΓΓΓΓ2 sets of 
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conformations (Figure 6.6) show significant differences, amenable to the different shape 

of the two groups of conformers (see Figure 6.3 and 6.4). For ΓΓΓΓ1 conformations higher 

ordering is predicted, with a strong tendency to align their long z axis to the director 

(high Szz) and very small biaxiality of molecular order (low Sxx – Syy). The ordering 

behavior of ΓΓΓΓ2  conformations is characterized by a lower tendency to align their z axis 

to the director and higher biaxiality of molecular order. The positive sign of the 

difference Sxx - Syy , for both ΓΓΓΓ1 and ΓΓΓΓ2 conformations, indicates their preference to keep 

the director on the xz plane, which can be identified as the  molecular plane. 

 

Figure 6.6. Order parameters, Szz (top) and Sxx - Syy (bottom), separately calculated for conformations of 

A131 having the core in the ΓΓΓΓ1 (solid lines) and in the ΓΓΓΓ2 (dashed lines) configuration, as a function of the 

shifted temperature, T–TNI. For both configurations the {x,y,z} axes of the molecular frame, shown in 

Figure 6.2, are close to the principal axis systems of the molecular Saupe matrix. 
 

6.3.3 Elastic constants 

Figure 6.7 (solid lines) shows the splay (K1), twist (K2) and bend (K3) elastic constants 

calculated for A131, as a function of temperature. Compared to the typical behaviour of 

conventional rod-like liquid crystals, remarkable differences appear. The elastic 

anisotropy, K3−K1, is negative, rather than positive. K3 is unusually low and its 

temperature dependence cannot be described by the relationship 2
3 zzK S∝ , customarily 

assumed for rod-like mesogens [23]. In order to understand the origin of this behaviour 

we considered the contribution given to K3 by different molecular conformations. High 

and positive values were found for elongated conformers, and small or even negative 

values for bent-shaped ones. The balance between these different contributions gives 

rise, on average, to the low and almost temperature independent bending stiffness 
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predicted at higher temperatures. At lower temperature K3 starts to decrease as a result 

of the steep decrease of the values coming from bent conformations. The special 

sensitivity of K3 to the molecular curvature has already been evidenced for rod-like LCs 

[24] and especially for bent mesogenic dimers, for which even negative K3 values have 

been predicted [25].  

 

 

Figure 6.7. Elastic constants calculated for the nematic phase of A131 (solid lines). Dashed lines 

represent the results obtained for the restricted set of molecular conformations having the core in the ΓΓΓΓ2   

configuration (from top to bottom: K1, K2, K3). 
 

To illustrate the effect of the molecular structure, in Figure 6.7 we report, with dashed 

lines, the elastic constants calculated for the single set of molecular conformations 

having the core in the ΓΓΓΓ2 configuration; similar results were obtained for the single ΓΓΓΓ3 

set. As described in Section 6.3.1 these conformations have a hockey-stick shape, with a 

narrow bend angle of 115°. The elastic constants predicted for banana-shaped 

conformers (sets ΓΓΓΓ1 and ΓΓΓΓ4 , having a bend angle of 135°) are close to those obtained 

after averaging over all core configurations (due to the high statistical weight of ΓΓΓΓ1 and 

ΓΓΓΓ4 conformations). Once again the most striking differences are exhibited by K3. For 

hockey-stick-shaped conformers strongly negative values are predicted, which would be 

incompatible with the existence of a stable nematic phase [26]. Our calculations may 

somehow overestimate the magnitude of these negative K3 values, but they give a strong 

indication of the different contributions of banana-shaped and hockey-stick-shaped 

conformers to the bending stiffness. Due to the low relative weight of ΓΓΓΓ2 and ΓΓΓΓ3 

conformations, the bend elastic constant obtained after averaging over all core 
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configurations remains positive; however, it would become rapidly negative upon 

increasing the amount of hockey-stick-shaped conformers. The influence of the bend 

angle on the phase behaviour of bent-core compounds is well known:  the formation of 

the nematic phase is promoted by the introduction of substituents in suitable core 

positions, which stabilize conformations with wider bend angles [10,11]. The results 

obtained here for K3 of the ΓΓΓΓ2 conformations suggest that the bend angle can also have a 

critical role, up to now not sufficiently highlighted, for the stability of the nematic phase 

with respect to bend distorsions. 

The elastic constants calculated for A131 can be compared with the measured K1 and K3 

values, reported in Ref. [6]. Good agreement is found for the splay elastic constant:  K1 

is high and shows an approximately linear dependence on temperature. For the bend 

elastic constant, theoretical predictions are in good agreement with the experimental 

trend in the temperature region far from the smectic C transition: K3 < K1 is found, with 

K3 scarcely dependent on temperature. At low temperatures experimental data show a 

rapid increase of K3: this behaviour cannot be predicted assuming a simple uniaxial 

nematic phase (see Figure 6.7). In Ref. [6] the divergence of K3 has been ascribed to 

smectic C pretransitional short-range fluctuations. Phase biaxiality, which has been 

proposed for A131 [1,2a,2c,13] could not be the reason for the experimental behaviour, 

as relatively small contributions to the elastic constants are expected to arise from 

biaxial ordering [27,28].  

 

6.4 Conclusions 

In this work, we have presented a computational investigation of the nematic phase 

formed by the bent-core mesogen A131, based on an atomistic representation of the 

molecule combined with a molecular field model. We have shown that this is an 

affordable task and the capability to simultaneously analyse properties at different 

length scales can provide considerable insight, allowing us to check the consistency of 

hypotheses otherwise difficult to ascertain. The main results can be summarized as 

follows. We have calculated the 13C NMR chemical shifts in the uniaxial nematic phase 

of A131 over a wide temperature range that extends from a few degrees below the 

nematic-isotropic transition downwards close to the transition to the smectic C phase. 

The comparison with the spectral signals reported in Ref. [22] has allowed us to revise 
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some assignment and to propose a consistent description of the molecular order in this 

system. We have found good agreement between experimental and theoretical chemical 

shifts over almost all the investigated temperature range. Some increase of the 

discrepancies upon lowering the temperature could be the effect of the pre-transitional 

SmC fluctuations that have been invoked to explain the low temperature behaviour of 

the bend-elastic constant.  

The elastic constants predicted for A131, in agreement with the experimental data far 

from the smectic C transition, are different from those of typical low molar mass rod-

like nematics. The most relevant feature is that K3 is smaller than K1 and remains almost 

constant over a wide temperature range: calculations have shown that this behaviour can 

be ascribed to the bent molecular shape. In ref. [29], it was argued that the molecular 

shape would not be sufficient to explain the unusually low K3 of bent-core mesogens 

and the presence of cybotactic clusters was invoked. The results obtained here for A131 

show that the bent molecular shape can indeed explain the unusual elastic properties. 

The experimental data for A131 show also a divergence of K3 on moving towards the 

smectic C transition, which cannot be explained within the same framework. This kind 

of behaviour, however, does not seem to be a general feature for bent-core mesogens 

[30,31].  

A valuable feature of our approach is the capability to relate phase properties to the 

conformational preferences of the mesogen. We have found that the two kinds of 

conformers of A131, evidenced by previous theoretical studies [13] and denoted as 

banana-shaped and hockey-stick-shaped, give quite different contributions not only to 

the molecular order parameters, but also to the elastic constants. However, the hockey- 

stick-shaped conformers do not significantly affect the properties of the system, given 

their low relative weight, which is around 10% and is even predicted to decrease with 

increasing order in the uniaxial nematic phase. A significant increase of these 

conformers, which has been proposed in Ref. [13] in connection with the presumed 

transition to a biaxial nematic phase, appears difficult to justify at the mean field level, 

unless short-range correlations are invoked. Thus, the features of the nematic phase are 

essentially determined by the banana-shaped conformers, which are elongated enough 

to allow for the existence of a nematic phase over a wide temperature range, and at the 

same time are bent enough to give this phase unconventional properties. 
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Chapter 7  

Elastic and flexoelectric properties of bent-core nematics* 

 

 

 

 

 

7.1 Introduction  

As described in Chapter 2, nematic liquid crystals of bent-core molecules (BCNs) 

exhibit unconventional elastic and flexoelectric properties, which remain the object of 

debate. The microscopic origin of their low bending stiffness is not fully understood [1-

7]. Due to their bent shape, BCNs were proposed to be good candidates for high 

flexoelectric couplings, and there has even been a claim of a giant effect [10]. This 

observation has not been confirmed by other measurements [4,6,11,12] and 

flexoelectricity of bent-core systems remains an open issue of [8,9]. New experimental 

and computational efforts are clearly needed to get new insight into the relationship 

between the molecular structure and the elastic and flexoelectric properties of BCNs.  

In the previous Chapter, a computational study of a bent-core compound, A131, 

was presented: there we could draw some preliminary conclusions about the 

unconventional elastic behaviour, highlighting the crucial role of a properly-bent shape. 

In this Chapter we present the results of a combined experimental and computational 

investigation of the elastic and flexoelectric properties of various bent-core compounds 

with different chemical structures. Experiments were carried out by the group of Prof. 

                                                 
* This Chapter is adapted from: (a) S. Kaur, J. Addis, C. Greco, A. Ferrarini, V. Görtz, J.W. Goodby and 

H.F. Gleeson., Phys. Rev. E, 2012, 86, 041703. © 2012 American Physical Society (b) S. Kaur, L. Tian, 

H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann and  H.F. Gleeson, J. Mater. Chem. C, 2013, 1, 

2416-2425. © 2013 The Royal Society of Chemistry. (c) S. Kaur, H. Liu, J. Addis, C. Greco, A. Ferrarini, 

V. Görtz, J.W. Goodby and H.F. Gleeson, J. Mater. Chem. C, 2013, 1, 6667-6676. © 2013 The Royal 

Society of Chemistry. (d) S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J.W. Goodby and H. F. 

Gleeson, Appl. Phys. Lett., 2014, 105, 223505 © 2014 American Institute of Physics. 
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H. F. Gleeson, Manchester University [13-16]. Two kinds of systems with different 

aromatic cores were considered: a series of 1,3,4-oxadiazole derivatives, with various 

terminal chains and peripheral substituents (Figure 7.1(a)), and a 1,3,4-thiadiazole 

compound (Figure 7.1(b)). Apparently these systems have a similar (bent) molecular 

shape, suggesting that their elastic properties should also be qualitatively similar. 

However, as will be shown in the following paragraphs, the experimentally determined 

elastic constants of the oxadiazole and thiadiazole materials exhibit a markedly different 

behaviour. On the contrary, the chemical variations across the series of oxadiazole 

compounds were observed to have little influence on their elastic properties. 

Calculations were performed to shed light on the origin of these differences and to 

identify the main molecular determinants of the unusual elastic behaviour of BCNs.  

          
Figure 7.1 Chemical structure and phase transitions of (a) the oxadiazole derivatives 1-4, (b) the 
thiadiazole derivative. Iso = Isotropic, N= Nematic, SmC = Smectic C, SmX = Smectic X, DC = Dark 
Conglomerate, Cr = Crystal.  
 

Investigation of flexoelectricity was carried out for the oxadiazole derivative 4 (Figure 

7.1 (a)): from the experiments the magnitude of the difference between the splay (e1) 

and bend (e3) flexoelectric coefficients,1 3e e− , and its temperature dependence were 

determined. Our calculations provided additional information on the individual 

flexoelectric coefficients, and on their dipolar and quadrupolar contribution, thus 

enabling a detailed interpretation of the experimental behaviour. Moreover, based on 

our calculations we could draw some general considerations on the flexoelectric 

properties of bent-core liquid crystals.  

In section 7.2 we will outline the measurement techniques employed and summarize the 

experimental findings.  The details of the calculations will be given in Section 7.3. The 

experimental and computational results will be compared and discussed in Section 7.4.     

 

1: R1 = C12H25O,   R2 = R3 = H      Iso 217.7°C N 203.6 °C SmC 

2: R1 = C9H19O,     R2 = R3 = F      Iso 221.4°C N 206.0 °C SmC 

3: R1 = C9H19O,     R2 = R3 = H     Iso 236.6°C N 204.6 °C SmX 

4: R1 = C5H11,        R2 = R3 = H     Iso 239.6°C N 184.6 °C DC 

(a) 

R=C6H13, R1=C6H12COOC2H5       Iso 154.7°C N 90.9°C  Cr 

(b) 
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7.2 Experimental findings 

7.2.1 Elastic constants of oxadiazole and thiadiazole bent-core LCs 

Elastic constants were determined from the variation of the capacitance of a LC cell in 

response to electric field induced Freedericksz transitions [17]. The latter consist in a 

reorientation of the director n of a surface-aligned nematic sample upon application of 

an electric field. The reorientation process occurs only above a certain threshold voltage 

as a result of the balance between dielectric torques, which drive the transition, and 

elastic torques, which oppose the deformation: the elastic constants can thus be obtained 

from the analysis of the threshold characteristics. 

 

Figure 7.2. Freedericksz transition method to measure elastic constants: (a) splay (K11), (b) bend (K33), 

(c) twist (K22). E is the electric field and d is the cell thickness. Adapted from [17]. 

 
For measurements of the splay (K11) and bend (K33) elastic constants, the electric field is 

applied perpendicular to the cell plates (see Figure 7.2(a)-(b)). Depending on the sign of 

the dielectric anisotropy of the material,ε ε ε⊥∆ = −
�

, different cell geometries are 

required: planar anchoring for 0ε∆ > (Figure 7.2(a)), homeotropic anchoring for 0ε∆ <  

(Figure 7.2(b)). The threshold voltage Vth is given by: 

   
1/2

0

1   for   0
       

3   for   0
iiK ii

th

iK
V

i

ε
π

ε ε ε
= ∆ > =  ∆ = ∆ <  

,  (7.1) 

∆ε > 0 

∆ε < 0 

(a) 

(b) 

(c) 
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where ε0 is the vacuum permittivity. Therefore either K11 or K33 can be determined from 

measurement of Vth, depending on the sign of ε∆ . The other elastic modulus influences 

the steepness of the capacitance variation above threshold and is obtained from fitting of 

the corresponding voltage change [18].  

The Freedericksz transition method in IPS (in-plane switching) cells was used for 

measurements of the twist elastic constant K22 (Figure 7.2(c)). In this geometry the 

electric field is parallel to the cell surfaces and, above a certain threshold, a twist of the 

director profile is induced. The threshold voltage Vth is related to K22 by [19]: 

22

1/2

22

0

K
th

KL
V

d
π

ε ε
 =  ∆ 

  ,  (7.2) 

where d is the cell thickness and L is the electrode separation.  

All the oxadiazole materials here investigated have 0ε∆ <  [13,14]: as a consequence, 

measurement of the splay and bend elastic constants from Freedericksz transition 

requires homeotropic cell alignment. The elastic constants of compounds 2 and 4 were 

determined across the entire nematic regime (of about 15 K and 60 K respectively), 

whereas for compounds 1 and 3 measurements close to the underlying smectic phases 

were not possible because of the deterioration of the cell alignment. The thiadiazole 

derivative exhibits a dual-frequency behaviour (the sign of ε∆ changes with frequency 

of the applied electric field and temperature): measurements of the elastic constants for 

this compound were restricted to that part of the nematic range in which 0ε∆ > , and  

planar cells were used [15]. 

Figure 7.3 (a)-(c) shows the elastic constants obtained for the oxadiazole derivatives 1-4 

as a function of shifted temperature T−TNI, where TNI is the nematic-isotropic transition 

temperature. For all materials, the bend elastic constant 33K is found to be lower than the 

splay elastic constant11K , in contrast to the typical behaviour of rod-like LCs, for which 

33 11 22K K K> > . The values of all three elastic constants are almost undistinguishable 

for compounds 1-3; slightly lower values were obtained for compound 4. Measurements 

performed for compound 4 are of particular interest, since its nematic phase extends 

across about 60 K, allowing us to examine the elastic behaviour over a wide range of 

temperatures. Remarkably, the bend elastic constant K33 is found to be almost 
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independent of temperature, at variance with the behaviour of rod-like LCs, where K33 

increases with decreasing temperature.  

 

      

Figure 7.3 The experimental splay, K11 (a), twist K22 (b) and bend K33 (c) elastic constants  as a function 

of shifted temperature, for the oxadiazole compounds 1 (squares) , 2 (circles), 3 (triangles) and 4 (stars). 
 

The elasticity of the thiadiazole material (Figure 7.4) is quite different from that of the 

oxadiazole derivatives: at all temperatures K33 > K11 is observed, analogous to the 

behaviour of rod-like LCs and in contrast to what reported to date for other bent-core 

materials, for which K11 > K33 has been found, as for the oxadiazole derivatives here 

investigated [1-6]. 

 

Figure 7.4. The experimental splay (K11, squares), twist (K22, triangles) and bend (K33, circles) elastic 

constants as a function of shifted temperature, for the thiadiazole compound. Open and closed symbol 

refer to measurements carried out at 1kHz and 10Hz, respectively.   
 

7.2.2 Flexoelectric coefficients of an oxadiazole bent-core LC 

The magnitude of the difference between the splay and bend flexoelectric coefficients, 

1 3e e− , of the oxadiazole derivative 4 were obtained from the analysis of 

flexodomains. These are equilibrium patterns consisting in a spatially periodic 

modulation of the nematic director n, which are formed in planar cells upon application 
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of an electric field above a certain threshold [20]. They can be easily recognized under 

crossed polarizers, where the distorsion pattern appears as a series of optical stripes 

parallel to the rubbing direction of the cell plates (Figure 7.5(a)). The formation of 

flexodomains is driven by the free energy gain resulting from flexoelectric couplings. If 

a DC field is applied and the one elastic constant approximation (K11=K22=K) is 

adopted, the threshold voltage Vth and the wavenumber qc of FDs are related to the 

flexoelectric difference 1 3e e−  according to [20-23]: 

( )1 3

2
1th

K
V

e e
π

µ
=

− +
 (7.3) 

1
1cq

d
π µ

µ
−=
+

 , (7.4) 

where d is the cell gap, ( )2

0 1 3ε K e eµ ε= ∆ − , ε0 is the vacuum permittivity and 

ε ε ε⊥∆ = −
�

 is the dielectric anisotropy of the liquid crystal. Eqs. (7.3)-(7.4) provide 

two independent measurements of 1 3e e− .
  

 

 

Figure 7.5. (a) Flexodomain patterns formed by the oxadiazole compound 4, observed between crossed 

polarizers. The arrow indicates the cell rubbing direction. (b) The experimentally determined value of the 

flexoelectric difference for the same material, as a function of shifted temperature. 
 

In this work an AC voltage with a low frequency of 10 Hz was applied, to avoid ionic 

conductivity contributions, in analogy to what commonly done in similar experiments 

[24]. Measurements were performed across the entire nematic regime. In using Eqs. 

(a) 

R 
2π/qc 

(b) 



PART III – Chapter 7. Elastic and flexoelectric properties of bent-core nematics 

103 
 

(7.3)-(7.4), ( )11 22 2K K K= +
 
was assumed [24]. The elastic constants of the oxadiazole 

material are reported in paragraph 7.2.1; values of its dielectric anisotropy can be found 

in Ref. [16]. The results obtained for 1 3e e− from measurements of Vth are shown in 

Figure 7.5(b); similar results were determined from qc. The flexoelectric difference 

varies approximately linearly with temperature and more than doubles across the 

nematic regime, assuming values from ∼ 8 pCm-1 to ∼ 20 pCm-1. These values are 2–3 

times higher than those reported for rod-like nematic LCs [11,24-26], in common with 

other bent-core materials [4,6].   

 

7.3 Computational details 

All calculations were made using the IM methodology, as described in Chapter 5. Here 

only the computational details related to the determination of the molecular structure of 

the compounds investigated here are presented.  

7.3.1 Oxadiazole derivatives 

All four compounds have the alkoxy OC12H25 chain as one terminal wing. At the other 

end of the molecule, compounds 2–3 are terminated by an alkoxy OC9H19 chain, 

whereas compound 4 has a shorter alkyl chain (C5H11). Figure 7.6 shows the molecular 

structure of compounds 2 and 4, as obtained from geometry optimization at the 

DFT/B3LYP/6-31G** level of theory [27]. The arrows indicate the dihedral angles that 

were allowed to rotate. For all compounds, conformational flexibility was treated within 

the framework of the RIS approximation [28]. Conformer geometries and energies were 

defined on the basis of the torsional potentials obtained from quantum mechanical 

calculations on representative molecular fragments. The torsional profiles were taken 

from the literature and/or computed by relaxed scan calculations [27] (see Appendix A). 

According to these data, the following choices were made: 

 

i. Planar geometry of the central three-ring moiety was assumed, in agreement with 

the results of DFT calculations for 2,5-diphenyl-1,3,4-oxadiazole [29]. The torsional 

potential reported there for the bond between the phenyl and oxadiazole rings 

exhibits two minima, corresponding to coplanar configuration of the rings, separated  
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Figure 7.6 The molecular structure of the 1,3,4-oxadiazole derivatives 4 (in (a)) and 2 (in (b)) obtained 

from geometry optimization (DFT/B3LYP/6-31G**). The arrows show the dihedrals (χi) that were 

allowed to rotate in Monte Carlo conformational sampling. {x,y,z} is the molecular frame, with the z axis 

passing through the carbon atoms of the oxadiazole ring and y perpendicular to the plane of this ring. (c) 

The bend angle of the oxadiazole core is about 138°. 
 

by a high barrier of about 30 kJ/mol, corresponding to perpendicular arrangement of 

the rings.  

ii.  In phenyl benzoate, the Car−COO bond between the aromatic carbon (Car) and the 

COO moiety was frozen in the planar geometry, since high barriers oppose the 

rotation about this bond [30,31] (see Figure A.5(i)). Choice of the geometry of Car-

Car-O-CO dihedral (χ16-χ17 in Figure 7.6(a) and χ21 in Figure 7.6(b)) is less obvious. 

As reported in the literature [30-32], and confirmed by the result of the DFT/M06-

2X/6-31+G** calculations carried out here (Figure A.5(j)), the torsional profile for 

this angle is sensitive to the level of theory used in the calculations, and some 

discrepancies exist regarding the exact location of the minima and the height of the 

energy barriers. Despite these uncertainties, all calculations point to a wide 

distribution in the ranges of ±(30°–150°). For the sake of simplicity, in our 

calculations the Car–Car–O–CO dihedral was allowed to adopt the two values of 

±90°, which correspond to the middle of the highest probability region.  

(a) 

(b) 

(c) 
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iii.  The benzoate group of the phenyl fluorobenzoate moiety was also assumed to be 

planar, with the CO group on the opposite side of the fuorine (F) atoms (as in Figure 

7.6 (b)). This assumption was based on torsional potentials computed at the 

DFT/B3LYP/6-31+G* level of theory (Figure A.6(k)). The profile exhibits two 

minima, corresponding to planar configurations: the minima are non-equivalent, 

since the configuration having the CO group on the opposite side of the fluorine  

atoms is lower in energy than the other by about 3 kJmol-1. The torsional potential 

for the Car–Car–O–CO dihedral in phenyl fluorobenzoate (χ20 in Figure 7.6(b)) has 

the same general form as that of phenyl benzoate, as indicated by DFT/B3LYP/6-

31+G* calculations (Figure A.6(l)): therefore, also in this case the Car–Car–O–CO 

dihedral was allowed to adopt the values of ±90°.  

iv. The CH2–CH2 and the O–CH2 bonds of the alkyl and alkoxy chains were allowed to 

jump between the trans (180°), gauche+ (+65°) and gauche− (−65°) states. The 

trans state is more stable than the gauche state: an energy difference ∆Vgt = 2.2 

kJmol-1 was assumed [33,34].  The only exception is given by the O–CH2–CH2–CH2 

dihedral angle (χ6 in Figure 7.6(a,b) and χ10 in Figure 7.6(b)), for which the gauche 

states are more stable than the trans state: in this case ∆Vgt = -2.85 kJmol-1 was used 

[34]. The energy stabilization associated with the presence of adjacent 

gauche+gauche+ (or gauche−gauche−) pairs was accounted for by adding a 

correction term ∆V’g±g± = − 0.75 kJmol-1 to ∆Vgt [34]. Conformers with adjacent 

gauche+gauche− (or gauche−gauche+) pairs, which are known to bring a high 

energy penalty, were simply rejected on the basis of the steric cutoff used in the 

Monte Carlo conformational sampling (see Section 5.3).  

v. Two possible equivalent states were assumed for the Car–Car–CH2–CH2 dihedral of 

alkyl chains (χ3 in Figure 7.6(a)), corresponding to the configuration in which the 

Car-CH2-CH2 plane lies perpendicular to the phenyl ring (χ3 =±90°), in agreement 

with the literature data [35] and with calculations carried out here at DFT/M06-

2X/6-31+G** level of the theory (Figure A.3(d)).  

vi. The Car–Car–O–CH2 dihedral of alkoxy chains also has two minima, but in this case 

they are found at 0° and 180°, with the phenyl ring and the Car–O–CH2 group lying 

in the same plane.  These two states are equivalent if the aromatic group is a 

benzene [35], whereas in the presence of fluoro substituents the conformation 
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having the O–CH2 bond on the opposite side of the fluorine atoms is found to be 

more stable (by about 3 kJmol-1 at the B3LYP/6-31G** level and 7 kJmol-1 at the 

B3LYP/6-31+G* level, see Figure A.6(m)), in agreement with calculations reported 

in the literature [36,37]. 

 

7.3.2 Thiadiazole derivative 

The molecular structure shown in Figure 7.7 was obtained by geometry optimization at 

the DFT/B3LYP/6-31G* level of theory. For simplicity, the ester group at the end of the 

alkoxy chain was replaced by two methylene groups in the calculations. We have found 

that the bend angle in the central core is 164°, in agreement with previous calculations 

for similar systems at a different level of theory [38]. 

 

 

Figure 7.7 (a) The molecular structure of the 1,3,4-thiadiazole derivative obtained from geometry 

optimization (DFT/B3LYP/6-31G*). The arrows show the dihedrals (χi) that were allowed to rotate in 

Monte Carlo conformational sampling. {x,y,z} is the molecular frame, with the z axis passing through the 

carbon atoms of the thiadiazole ring and y perpendicular to the plane of this ring. (b) The bend angle of  

the thiadiazole core is about 164°. 
 

In generating molecular conformations within Monte Carlo sampling, the following 

choices have been made: 

i. Planar geometry was assumed for the central three-ring core, in agreement with the 

results of DFT calculations for 2,5-diphenyl-1,3,4-thiadiazole [39].  

(b) 

(a) 
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ii.  Free rotation around the Car–Csp1 bonds was assumed : the dihedral angles χ0–χ3 in 

Figure 7.7 could take any value with the same probability. Indeed, according to 

experimental and theoretical studies of diphenylacetylene [40], the torsional profile 

for the Car–Csp1 bond is rather flat, with the absolute minima corresponding to 

coplanar phenyl rings and a low energy barrier, not higher than 2.5 kJ mol-1, for the 

perpendicular configuration. For comparison we have also run calculations of the 

elastic constants assuming a planar core geometry, obtained by freezing all rotations 

around Car–Csp1 bonds. Hereafter, this calculation will be referred to as the “planar-

core model”.  

iii.  For the dihedrals in the terminal and lateral alkoxy chains the same choices were 

made as for the oxadiazole compounds (see points iv and vi in Section 7.3.1), with 

the only difference that the dihedrals corresponding to the Car−O bonds were kept 

fixed in the configuration shown in Figure 7.7, with the O–CH2 bond pointing away 

from the phenylethynyl group for reasons of steric hindrance.  

 

7.4 Results and Discussion 

7.4.1 Elastic constants  

Figure 7.8 (a) shows the results of calculations of the elastic constants of the oxadiazole 

compound 4, as a function of the molecular order parameter S=Szz relative to the z axis 

defined in Figure 7.6(a) (see Eq. 1.9). For comparison the experimental data are also 

included in the plot: here S corresponds to the macroscopic order parameter obtained 

from birefringence measurements (see Eq. 1.20) [13,14]. In agreement with 

experimental trend, and in contrast to the usual behaviour of rod-like LCs, K11 > K33 > 

K22 is predicted.  Both K11 and K33 are slightly higher (by 2-3 pN) than the experimental 

values, but strict quantitative agreement is probably beyond the present capability. Our 

calculations have shown that the elastic constants are very sensitive to the molecular 

shape and flexibility, therefore the predictions are affected by a certain error related to 

unavoidable uncertainties in the geometric parameters.  

The trend of the calculated elastic constants as a function of the order parameter is also 

in agreement with experiment: K11 and K22 increase with increasing order, whereas K33 

exhibits only a weak dependence on the order parameter, first increasing and then   
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Figure 7.8 The elastic constants of the oxadiazole compounds 4 (in (a)) and 2 (in (b)), as a function of the 

order parameter S. Symbols represent the experimental data and lines the results of the calculations: K11 

(squares and dashed line), K22 (triangles and dash-dotted line) and K33 (circles and solid line). In 

calculations S is the molecular order parameter for the molecular z axis defined in Figure 7.6; in 

experiments S is the macrosocopic order parameter obtained from birefringence [13,14].  (c) Ratio of 

elastic constants (Kii) to the squared order parameter S for the oxadiazole compound 4, as obtained from 

calculations. Dashed lines are used for points beyond the experimental nematic range.  
 

decreasing at high ordering. The latter behaviour is not accounted for by simple theories 

of elasticity developed for rod-like LCs, which predict 2
iiK S∝  (see Section 2.3.1). The 

theoretical expressions of the elastic constants here used (Eq. 5.13) contain an implicit 

dependence on all orientational order parameters, without restriction to quadratic terms 

in S. Figure 7.8(c) shows the Kii/S
2 ratios calculated for compound 4: results obtained 

for values of the order parameter inside the experimental nematic range are evidenced 

by solid lines. For illustrative purpose, values predicted beyond this range are also 

included (dashed lines): they represent the elastic constants of a hypothetical nematic 

phase extending to very high ordering.  One can notice that the splay and twist elastic 

constants are not strictly proportional to S2, but deviations are relatively small.  On the 

contrary, a strong dependence on the order parameter is predicted for the ratio K33/S
2, 

which would diverge to negative values at very high ordering. Negative K33 values 

oxadiazole 4 

(a) (b) 

(c) 
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would be incompatible with the existence of a uniform nematic phase because they 

imply spontaneous bending of the director [41]. Calculations of the elastic constants 

were also carried out for compounds 2 and 3. Both differ from compound 4 for the 

replacement of the pentyl with a longer nonyloxy chain. In compound 2 there are also 

two additional F atoms in the phenyl ring attached to the nonyloxy chain. In the 

framework of the molecular model used here, the F atoms are expected to affect the 

elastic constants if they can induce a change of the conformational preferences, and thus 

a change of the average molecular shape. Quantum chemical calculations show that the 

main effect of the F atoms is that of stabilizing conformations having both the CO group 

and the O–CH2 bond on the opposite side of the F atoms (see Section 7.3.1). We have 

found that neither this variation, nor those deriving from change of the lateral chain, 

significantly affect the average molecular shape: the plots of the elastic constants as a 

function of the order parameter calculated for compounds 2 and 3 are very similar to 

each other and also not very different from that predicted for compound 4 (see Figure 

7.8). The small influence of changes in the lateral arms on the elastic constants is in line 

with the experimental data. 

Figure 7.9(a) shows the experimental and calculated elastic constants for the thiadiazole 

derivative as a function of the order parameter S. In calculations S=Szz (see Eq. 1.9), 

with the z axis defined in Figure 7.7; in the experiments S corresponds to the 

macroscopic order parameter obtained from the birefringence (see Eq. 1.20) [15]. 

  

Figure 7.9 (a) The experimental (symbols) and calculated (lines) elastic constants of the thiadiazole 

material, as a function of the order parameter: K11 (squares and dashed line), K22 (triangles and dash-

dotted line) and K33 (circles and solid line). In calculations S is the molecular order parameter Szz for  the 

molecular z axis defined in Figure 7.7; in experiments S is the macroscopic order parameter obtained from 

birefringence [15]. (b) Elastic constants calculated for the “planar-core model”: K11 (short dashed line), 

K22 (dashed line) and K33 (solid line). 

(a) (b) 
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The theoretical predictions are in excellent agreement with the experimental values. 

Calculations allow us to shed light on the origin of the different bend elasticity of the 

the thiadiazole and oxadiazole derivatives. Given the nature of the model used, the 

diversity in the elastic constants must originate from differences in the molecular 

structure: these are the bend angle in the molecular core, which increases from about 

138° to about 164° on going from the oxadiazole to the thiadiazole system, and the 

presence of the lateral chains in the latter. Our simulations point to the importance of the 

bend angle; when the angle is sufficiently wide, the behaviour of rod-like LCs is 

recovered. The sensitivity of K33 to the bend angle, especially in the range around 150°, 

has been also evidenced by calculations we have performed for model systems as a 

function of the bend angle. Some authors have suggested that the lateral chains could be 

responsible for the rod-like elasticity of the thiadiazole derivative [42], but this is not 

confirmed by our calculations. The lateral chains, which may be important to stabilize 

the nematic phase [43] do not seem to dramatically affect the elastic properties. These 

chains are highly flexible, so the average molecular shape is elongated, similar to that of 

rod-like compounds, as shown in Figure 7.10, which displays some configurations 

randomly extracted from the Monte Carlo trajectories.  

 

 

Figure 7.10 Some configurations of the thiadiazole derivative extracted from a Monte Carlo trajectory in 

the conformational space. 
 

To check whether the flexibility within the core affects the elastic properties, we have 

also run calculations keeping all rings on the same plane (“planar core model”). The 

results given in Figure 7.9(b) show that the elastic constants predicted in this way are 
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very high, especially K33 and K22, which are roughly twice as big as the experimental 

values. 

 

7.4.2 Flexoelectric coefficients   

Figure 7.11 (a) shows the flexoelectric difference ( )1 3e e−  calculated for the oxadiazole 

compound 4 as a function of the order parameter. The experimental data are also 

included for comparison: since measurements did not allow to determine the sign of

( )1 3e e− , negative values are assumed, as predicted by our calculations. The theoretical 

results are in very good agreement with the experimental findings. 

  

 

Figure 7.11 (a) The experimental (symbol) and calculated (line) values of (e1-e3) for the oxadiazole 

compound 4, as a function of order parameter S. Following calculations, the experimental values of (e1-

e3) are assumed to take a negative value.  In calculations S is the molecular order parameter for the 

molecular z axis defined in Figure 7.6; in experiments S is the macrosocopic order parameter obtained 

from birefringence [13,14]. (b) The calculated flexoelectric coefficients ei, as a function of S: splay (open 

circles), dipole contribution to the splay (filled circles), bend (open squares), dipole contribution to the 

bend (filled squares). 
 

Calculations allowed us to determine not only ( )1 3e e− , but also the individual splay 

(e1) and bend (e3) flexoelectric coefficients. As described in Chapter 5, each of them has 

both a dipolar (d) and a quadrupolar (q) contribution which result respectively from the 

molecular electric dipole and quadrupole moments. These contributions can be 

distinguished with our methodology, which can be useful to connect the flexoelectric 

behaviour to the molecular structure, also in the light of the models presented in Chapter 

2. According to the quantum mechanical calculations performed by us, the oxadiazole 

(b) (a) 
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compound 4 has a transverse dipole moment µ⊥ which, depending on the molecular 

conformation, varies from ∼3.5 D to ∼4 D, and which points towards the centre of 

curvature of the banana-like molecular shape (Figure 7.12). On the contrary, the 

longitudinal electric dipole µ|| is very small.  The results obtained for the individual 

flexoelectric coefficients and their dipolar contribution are shown in Figure 7.11(b). The 

dipolar contribution to the bend flexoelectric coefficient, e3(d), is large and positive, as 

expected for a banana-shaped molecule with an inward pointing transverse dipole [44]. 

On the contrary, e1(d) is very small, consistent with the small value of µ||; in any case, 

the banana-like molecular shape would not allow an effective coupling of a longitudinal 

dipole to a splay deformation. The quadrupole contribution, which is identical for e1 and 

e3 (see Chapter 5) is comparable in magnitude to the dipole contribution to e3, but 

opposite in sign. This leads to a small e3, lower in magnitude than e1, apparently in 

contrast to what one might expect for bent-shaped mesogens. The flexoelectric 

difference ( )1 3e e−
 
depends only on the

 
dipolar contributions: (e1−e3) ∼ − e3(d) is 

found, since e1(d) ∼ 0. 

 

 

 

Figure 7.12 Cartoon representing the molecular features of the oxadiazole compound 4 essential to 

rationalize its flexoelectric behavior: a banana-like shape coupled to a transverse dipole moment (µ⊥).  

 

It is interesting to consider how the flexolectric coefficients of the oxadiazole compound 

investigated here compare with the values experimentally determined for other bent-

shaped systems. For a 4-cyanoresorcinol bisbenzoate bent-core mesogen, which also 

has an inward pointing dipole, qualitatively similar results were reported [4]: a negative 

( )1 3e e−  which increases in magnitude from ∼10 pCm-1 to ∼17 pCm-1 with decreasing 

temperature. Although the magnitude 1 3e e−  is comparable to the values for the 
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oxadiazole compound 4, the temperature dependence is larger. In Ref. [12], a value of 

3e  ∼ 4 pCm-1 (T-TNI = −5K) is reported for another 4-cyanoresorcinol derivate, which 

is similar in magnitude to 3e  calculated here for the oxadiazole compound 4. The 

higher value, 3e  ∼16 pCm-1, found in Ref. [11] for a 4-chlororesorcinol derivative, is 

not necessarily in contradiction with what found here and in Ref. [12]. The C−Cl group 

has a lower dipole moment than the C−CN group: as a consequence a smaller dipolar 

contribution to e3 is expected. High values of 1 3e e− , even larger than 20 pCm-1 at low 

reduced temperatures, have been reported for odd mesogenic dimers, which have an 

average bent shape [45,46]. The behaviour of both ( )1 3e e−  and of e1 and e3 

individually [47] is similar to that found here for bent-core mesogens, provided all signs 

are reversed. This is explained by a change of sign of the transverse dipole, which 

points outwards in the case of dimers with terminal cyano or fluorine groups.    

 

7.5 Conclusions 

We have characterized the elastic and flexoelectric properties various bent-core 

nematics by experiments and computation, focusing on the relationship between these 

properties and the chemical structure of the mesogens. Two kinds of materials were 

examined: a series of oxadiazole derivatives and a thiadiazole compound.  

For what regards the elastic properties, K11 > K33 > K22 was obtained for all oxadiazole 

compounds, from both experiments and calculations, with low values of the bend elastic 

constant K33. This behaviour is in contrast to that exhibited by conventional rod-like 

LCs and in common with other bent-core materials studied to date. Changes in the 

length of the terminal chains and fluoro-substitution in the outer part of the aromatic 

core were found to have little influence on the values of the elastic constants. 

Completely different results were obtained for the thiadiazole material: K33 > K11 was 

found in both experiments and calculations, with high values of the bend elastic 

constant, as would be expected for a rod-like mesogen of relatively big size. 

Calculations showed that the origin of this difference can be attributed to the value of 

the core bend angle, which increases from about 138° to 164° on going from the 

oxadiazole to the thiadiazole systems. These results indicate that the bend angle is the 
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main molecular parameter governing the elastic behaviour of BCNs, especially in the 

case of the bend elastic constant K33, which appears to be extremely sensitive to changes 

in the molecular curvature. It would be interesting to study other bent-core materials 

with intermediate bend angles to obtain a threshold where K33 becomes greater than K11. 

The theoretical predictions are in very good quantitative agreement with experiments 

(within ∼2 pN), proving that the computational methodology employed by us is 

sufficiently sensitive to account for the effects of the chemical structure of the elastic 

properties.  

For what regards the flexolectric properties, the difference 1 3e e−  between the splay e1 

and bend e3 flexoelectric coefficients was experimentally determined for one of the 

oxadiazole compound. Values were obtained which are 2–3 times higher than those 

typical of conventional rod-like nematic LCs. The theoretical predictions are in very 

good agreement (within 1-2 pCm-1) with the experimental results.  Calculations gave 

access also to the individual flexoelectric coefficients and to their dipolar and 

quadrupolar contribution, providing insight into the origin of the experimental 

behaviour and allowing us to identify some general features of flexoelectricity in bent-

core compounds. After more than fourty years from its discovery, the molecular 

determinants of the flexoelectric effect in liquid crystals remain poorly understood, 

because of the experimental difficulties and the limits of simple models. The 

combination of accurate measurements and theoretical predictions presented here 

appears very promising for developing a molecular-based knowlegde of flexolectricity, 

which is very important for exploitation of this phenomenon.  
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Chapter 8  

Elasticity in liquid crystal dimers: coupling of bent shape and 

flexibility  

 

 

 

 

 

8.1 Introduction  

Liquid crystalline dimers are molecules containing two terminal mesogenic units joined 

by a flexible spacer, usually an alkyl chain with functional groups (linkers) at its ends 

(see Chapter 2) [1]. According to number of atoms in the spacer these systems have 

been classified as even and odd dimers. The length and parity of the spacer and the 

nature of the linking group are known to strongly affect the properties of the nematic to 

isotropic (N-I) phase transition (transition temperatures, entropy of transition, order 

parameters at the transition), with a characteristic odd-even effect. This happens 

because the aforementioned geometric features affect the relative orientation of the 

terminal mesogenic units, and thus the molecular shape. On average even dimers have a 

linear shape, and are thus better accommodated in the nematic environment than odd 

dimers [2,3].  

More recently it has been recognized that the molecular structure of dimers has a 

significant influence also on other properties. These include the elastic and flexoelectric 

properties of their N phase, which appear promising for the development of new display 

applications based on the flexoelectroptic effect (see Chapter 2) [4] . Indeed, compared 

to conventional rod-like nematics, liquid crystal dimers have been found to exhibit an 

enhanced flexoelectroptical response [5]. Here the figure of merit is the flexoelastic 

ratio, /e K , where 1 3( ) / 2e e e= −  is the difference between the splay (e1) and the bend 

(e3) flexoelectric coefficients, and 11 33( ) / 2K K K= +  is the average value of the splay 
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(K11) and bend (K33) elastic constants. Even in this case, differences have been 

evidenced between odd and even dimers, the first exhibiting higher /e K  values than 

the latter. In a recent computational investigation of the flexoelectric and elastic 

properties of some ether-linked dimers [6], the elastic constant K33 was predicted to be 

much smaller in odd dimers than in even dimers; this difference was shown to be at the 

origin of the higher /e K  values of the odd-membered compounds. The predictions 

were subsequently confirmed by experiments [7].  

The identification of a twist-bend nematic organization (NTB) [8] in the phase diagram 

of methylene-linked dimers [9-21], together with the observation that this phase is less 

common in ether-linked dimers [10,18,22,23], has aroused new questions about the 

relationship between the molecular structure and the phase behaviour in these systems.  

In this chapter we present an investigation of the effect of changes in the molecular 

structure on the elastic properties of some cyanobiphenyl dimers. The work has been 

carried out in collaboration with Merck Chemicals Ltd. Results for three representative 

compounds are reported (Figure 8.1): a methylene-linked dimer (CB9CB), an ester-

linked dimer (OCO), and a compound with a cis-double bond in the middle of the 

spacer (CIS_4-4). The predicted elastic properties will be rationalized in the light of the 

molecular structure of the dimers, taking into full account the effect of the 

conformational flexibility of the spacer. Some considerations will also be drawn about  

                            

Figure 8.1. Chemical structure of the dimers here investigated. The acronyms here used for each 

compound are also indicated.   

CB9CB 

OCO 

CIS_4-4 
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the relation between the molecular structure of the dimers and their propensity to form a 

NTB phase.  In Section 8.2 the computational details will be presented and the results 

will be reported and discussed in Section 8.3. 

 

8.2 Computational details 

Elastic constants were computed according to the IM methodology, as described in 

Chapter 5. In the following we focus on the modelling aspects specifically related to the 

systems under investigation, in particular on the determination of the molecular 

geometry and the conformational distribution. Because of role played by the flexible 

spacer in determining the average molecular shape, an accurate description of the 

molecular structure is especially important for liquid crystal dimers, even more than for 

bent-core systems. 

 

8.2.1 Molecular geometry and torsional potentials   

Figure 8.2 shows the molecular structure of the compounds investigated, as obtained 

from geometry optimization at the DFT/B3LYP/6-31G** level of theory [24]. The bond 

angle connecting the mesogenic unit to the spacer is found to be CarC�C ∼ 113° for a 

methylene link and CarO�C ∼ 123° for an ester link (Car is the aromatic carbon). The 

conformation of compound CIS_4-4 shown in Figure 8.2(c) has an elongated shape, at 

variance with what one may have guessed on the basis of the structural formula shown 

in Figure 8.1. This is an interesting result, but a complete conformational analysis has to 

be carried out to determine the average molecular shape.  

The arrows in Figure 8.2 indicate the dihedral angles that were allowed to rotate. The 

torsional potential for the biphenyl twist angle (χ0 and its analogue in the other 

mesogenic unit) was deduced form the literature [25]. It is characterized by four 

equivalent minima located at ∼ ±35° and  ∼ ±145°, and energy barriers of about 8 

kJmol-1 for planar and perpendicular arrangement of the rings. For all other dihedrals, 

torsional potentials were obtained by DFT calculations on representative molecular 

fragments, and are reported in Appendix A. In the following we summarize their main 

features. 
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(a) CB9CB: 

Three kinds of dihedral angles can be distinguished: χ1 and χ10, defined by the sequence 

Car−Car−C−C; χ2 and χ9, defined by the sequence Car−C−C−C, and finally the chain 

dihedrals χi  (i = 3-8), defined by C−C−C−C. Torsional profiles for these angles were 

calculated at the M06-2X/6-31+G** level, using as model compounds propylbenzene 

(χ1), butylbenzene (χ2)  and hexane (χi ).  The M06-2X functional [26] was chosen to 

take into account the effect of dispersion interactions on the energy profile: these are 

expected to be especially important for χ2, since rotation about this bond controls the 

relative distance between the aromatic rings and the alkyl chain. The torsional potential 

for the χ1 dihedral (Figure A.3(d)) exhibits two equivalent minima at ± 90°, 

corresponding to perpendicular arrangement of the benzene ring with respect to the 

Car−C−C plane; barriers of about 5 kJmol-1 are found for nearly-planar configurations. 

These results are in agreement with what reported in the literature for ethylbenzene at 

the DFT/B3LYP/6-311G(2d,p) level of theory [27]. Both χ2 and χi exhibit minima for 

the trans (180°), gauche+ (∼ +60° ) and gauche– ( ∼ −60°) states,  but the stability order 

of the trans and gauche states is reversed for the two kinds of angles.  For the χi 

dihedrals, the trans conformation is more stable than the gauche one, with an energy 

difference ( )i
gtV∆  ~ 2.2 kJmol-1  (Figure A.1). This value is similar to that predicted by 

high-level ab initio calculations [28], and slightly lower than the value of ∼3.5 kJmol-1 

obtained by DFT/B3LYP calculations with various basis sets [29]. For the χ2 dihedral 

the value (2)
gtV∆  ~ −1.1 kJmol-1 was found (Figure A.3(e)), as reported in the literature 

[30] and in line with indications provided by some experiments [31].  This energy 

difference is very small, and probably within the error of current methods [32]: 

therefore this result mainly indicates that for the χ2 dihedral the difference in the 

population of trans and gauche states is smaller than for a “normal” C−C−C−C 

dihedral. Notice that reversal of the gauche-trans stability order for χ2 is not predicted 

by B3LYP [30]: using this functional and various basis sets, (2)
gtV∆ ∼ 2.5 kJmol-1 was 

reported, which is lower than the value ( )i
gtV∆  ∼ 3.5 kJmol-1 obtained with the same 

functional for the χi  dihedrals [29], but still in favour of the trans conformation. On the 

one hand, this indicates that dispersion effects might indeed be important to stabilize  
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Figure 8.2. Optimized geometry (DFT/B3LYP/6-31G**) of: (a) the all-trans conformation of CB9CB; 

(b) the all-trans conformation OCO; (c) the conformation of CIS_4-4 having χ2, χ3, χ8, χ9 in the trans 

state,  χ5,χ6  in the skew+ state and  χ4, χ7 in the gauche− state. The arrows indicate the dihedral angles 

that were allowed to rotate in Monte Carlo conformational sampling. Also shown is the value of the bond 

angle connecting the mesogenic unit to the spacer.  
 

gauche conformations of χ2; on the other hand it highlights that the conformational 

preferences of this dihedral angle are quite subtle. 

 

(b) OCO: 

For the χj dihedral angles of the alkyl chain (j=4-9) the same torsional potentials were 

used as those adopted for the C−C−C−C dihedrals of CB9CB. According to the 

literature [33,34], the Car−O−C(=O)−C dihedral angle exhibit two minima, 

corresponding to the trans and cis states: the latter is higher in energy than the first by ∼ 

30 kJmol-1 and is thus negligibly populated at reasonable temperatures.  Therefore in 

our calculations, this dihedral angle was kept frozen in the trans conformation. The 
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torsional profile for the Car−Car−O−CO dihedral (χ1), calculated on the model compound 

phenyl propanoate at the DFT/B3LYP/6-31G** level, was found to be relatively flat 

(Figure A.4(f)): the absolute minima, located at ∼ ±45° and ∼ ±135°, are separated by 

energy barriers of less than 2 kJmol-1. Torsional potentials for the O−C(=O)−C−C (χ2) 

and C(=O)−C−C−C (χ3) dihedral angles were computed at the DFT/M06-2X/6-31+G** 

level, using phenyl butanoate and phenyl pentanoate as model compounds, respectively.  

The dihedral angle χ2 exhibits an absolute minimum for the trans state (χ2=180°) and 

very shallow relative minima for gauche states (χ2 ∼ ±70°), with small barriers between 

them (Figure A.4(g)): the complete profile is analogous to that reported for the 

corresponding dihedral of methyl propanoate at the MP2/aug-cc-pvDZ [33] and 

DFT/B3LYP/6-311++G** [34] levels. Well-defined trans and gauche minima were 

found for χ3, with the gauche states more stable than the trans state by about −0.8  

kJmol-1 (Figure A.4(h)). This preference for gauche states was also revealed by 

MP2/aug-cc-pvDZ level calculations on methyl butanoate [33].  

 

(c) CIS_4-4: 

For the χ1, χ2 and χ3 dihedrals, the same torsional potentials were used as those adopted 

for the corresponding angles of CB9CB.  Rotational profiles for the Csp2−Csp2−C−C (χ5) 

and Csp2−C−C−C (χ4) dihedrals were obtained by DFT/M06-2X/6-31+G** calculations 

respectively on cis-2-hexene and cis-2-heptene. The torsional profile relative to χ5  

shows two minima around  ±105°, corresponding to conformations having a skew±  

geometry (Figure A.2(b)). The minima are rather broad: conformations with χ5 in the 

ranges ∼ ±(70°-180°) have a torsional energy lower than 3 kJmol-1, and are thus 

expected to be appreciably populated at room temperature. These results are in 

agreement with those reported for cis-2-pentene at the MP2/6-311G** level of theory 

[35]. The profile relative to χ4  exhibits well-defined trans and gauche energy minima 

(Figure A.2(c)): the most stable state corresponds to either the gauche+ or the gauche- 

configuration depending on the sign of χ5: if χ5 ∼ +105°, then a gauche− state is 

preferred and vice-versa. The torsional preferences relative to the χ4 and χ5 dihedral 

angles, together with the fact that these angles are correlated, is at the origin of the 

elongated shape of the conformation of compound CIS_4-4 shown in Figure 8.2(c).  
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8.2.2 Monte Carlo conformational sampling 

Fluctuations within the minima of the torsional potentials are expected to be important 

in the determining the average molecular shape of LC dimers: the superposition of small 

rotations around a large number of bonds can produce a significant change in the 

relative orientation of the terminal mesogenic units. Indeed, full account of the torsional 

distribution was found to be essential to obtain reliable predictions for the dielectric 

properties of liquid crystals dimers [36]. Therefore in the present study, conformations 

were generated using a RIS approach for the biphenyl twist angle, and Monte Carlo 

sampling of the full torsional potentials for the dihedrals in the spacer (see Chapter 5).  

 

8.2.3 Bend angle and bend elastic constant profiles  

In bent-core compounds the bend angle is determined by the shape of the aromatic core: 

since the latter is fairly rigid, the bend angle can be usually quantified using a single 

value, as shown in the previous Chapters. In dimers the bend angle θ can be defined as 

the angle between the para axes of the two mesogenic units, as schematically shown in 

Figure 8.3. Values of θ ∼ 0° correspond to hairpin conformations, having nearly parallel 

mesogenic units; values of θ ∼ 180° correspond to elongated conformations, having 

nearly antiparallel mesogenic units. Since the spacer connecting these units is flexible, a 

distribution of values between these extremes is expected. In this work we calculated 

the bend angle probability according to:   

( ) ( )
( )

B

B

( )     
( )sin

V k T

V k T

e Q d
p

e Q d

δ θ θ
θ θ

−

−

−
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∫

χ

χ

χ

χ

χ χ

χ
   ,  (8.1) 

where χχχχ is the set of dihedral angles which specify a certain conformation, having a 

bend angle ( )θ χ , an intrinsic torsional energy V(χχχχ) and an orientational partition 

function Qχχχχ (see Eq. 5.3), and ( )( )δ θ θ− χ is the Dirac delta function. The shape of the 

bend angle distribution depends therefore on the molecular geometry, on the intrinsic 

conformational preferences and on the degree of orientational order of the liquid 

crystalline environment. 
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Figure 8.3. Cartoon showing the bend angle θ  in liquid crystal dimers. The black ellipses represent the 

mesogenic units and the black irregular curve the flexible spacer. 
 

The dependence of the bend elastic constant K33 on the bend angle θ  was also 

examined. For this purpose the average contribution given to K33 by all conformations 

having a certain value of the bend angle was calculated, according to: 
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where K33(χχχχ) is the bend elastic constant calculated for the conformation specified by 

the set of torsional angles χχχχ (see Eq. 5.9). 

8.3 Results and discussion 

Figure 8.4 shows the splay (K11), twist (K22) and bend (K33) elastic constants calculated 

for the liquid crystal dimers OCO, CB9CB, and CIS_4-4, as a function of SCB, the order 

parameter for the para axis of the cyanobiphenyl group. Calculations were performed 

assuming a uniaxial nematic phase in the whole range of order parameter considered. 

On the basis of the comparison between our predictions and experimental data for other 

liquid crystal systems, the error on the calculated elastic constants can be estimated to 

be of the order of a few piconewtons (see for example the results reported in the 

previous Chapters for bent-core compounds).  

For the ester-linked dimer OCO (Figure 8.4(a)) we predict K11 > K22 ≥ K33, together 

with very low values of the bend elastic constant. The splay and twist elastic constant 

increase with increasing order parameter, whereas the bend elastic constant is almost 

independent of it, though a slow decrease can be observed at high ordering. Using the 

same computational methodology employed here, very similar results have been 

 

θθθθ 
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Figure 8.4. Splay (K11, blue dot-dot-dashed line), twist (K22, red dashed line) and bend (K33, black solid 

line) elastic constants calculated for (a) OCO, (b) CB9CB, (c) CIS_4-4, as a function of the order 

parameter for the para axis of the cyanobiphenyl unit (SCB).   
 

obtained for odd dimers having ether linkages (−O−), instead of ester ones, between the 

mesogenic units and the spacer [6]. In that work, the unusual elastic behaviour of ether-

linked odd dimers was shown to be a consequence of their bent molecular shape. 

Also for the methylene-linked CB9CB dimer  K11 > K33 is obtained (see Figure 8.4(b)). 

However the bend elastic constant is clearly distinct from that of the OCO dimer: 

negative values are obtained, which decrease steadily as the order parameter increases. 

The meaning of these negative values has already been discussed in Chapter 3, and we 

will return on this point later on in the text.  

Quite different results were obtained for the dimer having a cis double-bond along the 

spacer (CIS_4-4): as shown in Figure 8.4(c), K33 > K11 > K22 is predicted, with a bend 

elastic constant which increases with increasing order, in common with conventional 

rod-like liquid crystals.  Qualitatively similar elastic properties were predicted also for 

ether-linked dimers having an even-membered spacer, and were ascribed to their 

(c) 

(a) (b) 
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average elongated shape [6].  

For better comparison the splay, bend and twist elastic constants of the three 

compounds are plotted together in Figure 8.5, together with the values calculated for a 

conventional rod-like liquid crystals (8OCB). It is clear that, among the three elastic 

constants, K33 is the most sensitive to the details of the chemical structure. 

 

     

           

Figure 8.5. (a) Splay (K11) , (b) twist (K22) and (c) bend (K33) elastic constants for the liquid crystal 

dimers investigated in this work, as function of the order parameter for the para axis of the cyanobiphenyl 

unit (SCB): CB9CB (black solid line) , OCO (red dashed line), CIS_4-4 (blue dot-dot-dashed line). The 

results obtained for the rod-like liquid crystal 8OCB are also shown for comparison (green dotted line). 
 

In order to understand how the observed differences in bend elasticity are related to the 

molecular structure, we calculated the bend angle probability distribution for CB9CB, 

OCO and CIS_4-4, according to Eq. (8.1). The results obtained for a value the order 

parameter SCB ∼ 0.5 are compared in Figure 8.6(a). In spite of the fact that the 

distributions are broadened by the effect of the conformational freedom, clear 

differences remain between the three compounds.  For CB9CB the highest probability is 

(a) (b) 

(c) 
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found in the range* θ  ∼ 100°-150°, corresponding, on average, to a bent molecular 

shape. For OCO the maximum shifts towards higher values of the bend angle, θ ∼ 110°-

160°, corresponding to slightly less bent conformations. Finally for CIS_4-4 values in 

the range θ ∼ 130°-170° are predicted, with a significant probability for elongated 

conformations.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8.6. (a) Probability distribution for the bend angle θ between the para axes of the cyanobiphenyl 

units calculated for: CB9CB (black solid line), OCO (red dashed line), and CIS_4-4 (blue dot-dot-dashed 

line). (b) Bend elastic constant (K33) as a function of the bend angle θ for: CB9CB (black solid line), OCO 

(red dashed line), and CIS_4-4 (blue dot-dot-dashed line). The boxes superposed to the curves highlight 

the region of highest bend angle probability, as deduced from the curves in (a): CB9CB (black box), OCO 

(red box), CIS_4-4 (blue box). The results in (a) and (b) were obtained for SCB ∼ 0.48 for CB9CB and 

CIS_4-4, SCB ∼ 0.51 for OCO.  
 

These differences can be understood on the basis of the molecular geometric 

characteristics identified in Section 8.2.1. The bond angle connecting the mesogenic 

units to spacer is larger for an ester linkage (CarO�C ∼ 123°) than for a methylene linkage 

(CarC�C ∼ 113°); considering this difference, it is immediately clear that the bend angle 

for the dimers in their all-trans conformation, all transθ − , is smaller in CB9CB than in 

OCO (compare Figure 8.2 (a) and (b)). Indeed we determined all transθ −  ∼ 112° for 

CB9CB and all transθ − ∼ 152° for OCO. The results reported in Figure 8.6(a) show that 

this difference is not entirely washed out by the conformational freedom. For CIS_4-4, 

the prevalence of elongated, rather than bent, conformations is the result of the torsional 

preferences for the dihedrals angles flanking the double bond (χ4, χ5 and their 

                                                 
* Here and in the following the range is determined as full width at half maximum (FWHM) of the peak 
of highest probability.  

(a) 

 

 
 

(b) 
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equivalents in Figure 8.2(c)), discussed in Section 8.2.1. As a consequence the 

molecular shape is well different from the bent structure obtained by simple molecular 

drawings (Figure 8.1(c)) .   

These differences in the degree of molecular bending are qualitatively sufficient to 

understand the different bend elastic behaviours predicted for CB9CB, OCO and 

CIS_4-4. To put this relationship on a more quantitative basis, for each compound we 

calculated the bend elastic constant K33 as a function of the bend angle θ, according to 

Eq. (8.2). The results obtained for a value of the order parameter SCB ∼ 0.5 are shown in 

Figure 8.6(b). Very similar profiles are obtained for the three compounds, at variance 

with what found for the bend angle probability distribution. The latter determines the 

overall elastic response (Figure 8.5(c)) by preferentially sampling different regions of 

the K33 (θ) profile, as illustrated schematically by the rectangular boxes in Figure 8.6(b). 

For example for CB9CB the probability maximum includes a large number of 

conformations having negative values of the bend elastic constant, whereas for CIS_4-4 

most of the K33 (θ ) values falling in the angular range of maximum probability are 

positive. 

We can try to compare our predictions for the elastic constants with the experimental 

data available in literature. Unfortunately measurements of the elastic constants of 

dimers are scarce, so we will also consider data obtained for compounds different from 

the ones studied here, but with a closely related structure. In Ref. [37] the splay and 

bend elastic constants were measured for a series ester-linked dimers having the same 

number of carbon atoms in the spacer as OCO. It is difficult to make a quantitative 

comparison, since the authors do not report the individual elastic constants but only 

their average value, K = (K11+K33)/2, as a function of temperature rather than of order 

parameter. However the result obtained in Ref. [37] indicates that the average elastic 

constant K of ester-linked dimers is similar to that of ether-linked dimers, for which the 

same authors have reported K11 and K33 individually [7]. For the latter, results 

qualitatively similar to the ones reported here for OCO were obtained: K11 was found to 

increase with decreasing temperature (that is with increasing order parameter), whereas 

K33 was found to be low and almost temperature independent. Our predictions for 

CB9CB can be compared to the results obtained for CBF9CBF [18]: the molecular 

structure of this compound differs from that of CB9CB only for the presence of fluorine 
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substituents in the mesogenic units, in a position where they cannot significantly affect 

the molecular shape. Adding CBF9CBF to a mixture of ether-linked dimers resulted in a 

significant relative decrease of the bend elastic constant with respect to the pure host; in 

comparison a smaller relative change was measured for the splay elastic constant. These 

results suggest that CBF9CBF should have a smaller K33 than the host, but a similar K11, 

in qualitative agreement with our predictions (Figure 8.5(a) and (c)).  

The results obtained in this work also allow us to make some considerations about the 

influence of the linking group on the occurrence of the twist-bend nematic phase (NTB). 

This new kind of nematic organization has been detected mainly in methylene-linked 

dimers including CB7CB [9,11-14], CB9CB [16,17], CBF9CBF [18] and CB11CB 

[17,19,20]. In these systems the transition from the conventional N phase to the NTB 

phase occurs at temperatures fairly close to the nematic-isotropic (N-I) transition: as a 

result the nematic phase has a relatively small stability range. The NTB organization 

appears to be less common in ether-linked dimers: for compound FFO9OCB [22] and 

for a mixture of ether-liked dimers [18], an NTB phase has been observed at 

temperatures much below the N-I transition; for another compound, the NTB phase was 

detected in an extremely narrow temperature interval, of only one degree, between the 

overlying nematic and underlying smectic A phase [23]. The mesomorphic behaviour of 

a series of ester-linked dimers with different chain length has also been investigated and 

none of them was found to form a NTB phase [38].  

Recently we have developed a Maier-Saupe-like molecular model for the formation of 

the NTB phase in a system of idealized rigid V-shaped particles (see Chapter 3) [39]. We 

showed that the phase behaviour of bent particles is strongly sensitive to the molecular 

bend angle: the NTB phase was predicted to form only for sufficiently low values of the 

bend angle (about less than 150°), at temperatures progressively closer to the N-I 

transition as the bend angle is reduced. The model also allowed us to clarify the 

relationship between the phase behaviour of bent particles and their bend elasticity. We 

showed that the bend elastic constant of the N phase gradually softens on approaching 

the NTB-N phase transition, vanishing at the transition. Combining the predictions of 

this generic model with the results obtained in this work for real systems, we can give 

an interpretation of the experimental evidence reported above.The fact that an NTB 

phase has been observed for methylene-linked but not for ester-linked dimers can be 
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traced back to the different molecular shape of these dimers, with the first more bent 

than the latter, as indicated by the bend angle distributions calculated here (Figure 

8.6(a)).  

The different bend elasticity predicted for the methylene-linked and for the ester-linked 

compounds (Figure 8.5(c)) is consistent with the observed phase behaviour. The 

calculated K33 of OCO, which is small but positive over a wide range of order 

parameters, suggests that spontaneous bend deformation should appear only at low 

temperature. For CB9CB, K33 is predicted to be negative over the entire range of order 

parameters considered, implying that the NTB phase should appear directly from the 

isotropic phase, in contrast to the experimental findings. However, the uncertainties in 

the calculated elastic constant, which we can estimate to be of a few piconewtons, can 

lead to some variability in the value of the order parameter at which the bend elastic 

constant changes from positive to negative. Taking into account this uncertainty, and 

considering that the nematic phase of CB9CB is stable only in a relatively narrow range 

before the NTB phase appears, we can state that the observed discrepancy is not too 

severe.  

 

8.4 Conclusions 

We have calculated the splay (K11), twist (K22) and bend (K33) elastic constants of liquid 

crystal dimers with different linking groups between the mesogenic units and the 

spacer: a methylene-linked dimer, an ester-linked dimer and a compound with a cis-

double bond in the middle of the spacer. On the basis of the results obtained, three main 

observations can be made: (i) among the three elastic constants, K33 is the most sensitive 

to changes in the molecular structure; (ii ) in liquid crystals dimers, even small details of 

the chemical structure, such as the nature of the linking group, can have a dramatic 

effect on K33; (iii ) three markedly different kinds of elastic behaviours can be 

distinguished, according to the values and trend with order parameter of the bend elastic 

constant K33, as summarized in Table 8.1. In addition to the compounds reported here, a 

large number of other dimers with various chemical structures have been investigated 

during this thesis: apart from obvious differences in the numerical values of their elastic 

constants, all of them could be classified into these three groups. 

The differences in the bend elastic behaviour of the dimers could be ascribed to their  
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 Behaviour 
Type K 33 

Representative 
Compound 

Molecular 
Shape 

I Low, decreasing with S CB9CB Bent 

II Low, almost independent of S OCO Fairly bent 

III High, increasing with S CIS_4-4 Elongated 

Table 8.1. Classifications of dimers into groups according to their bend elasticity.   
 

different molecular shape, which ranges from bent for CB9CB, to fairly bent for OCO, 

to elongated for CIS_4-4. These observations about the molecular shape of the dimers 

were drawn taking into account the full distribution of molecular conformations, and not 

only the geometry of the all-trans conformation, as usually done in the literature. 

Combining the results obtained in this work with the predictions of a generalized Maier-

Saupe model for the phase behaviour of V-shaped particles (Chapter 3)[39], we could 

discuss the influence of the linking group on the occurrence of the twist-bend nematic 

phase, thus providing a molecular interpretation of the experimental observations.   
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Chapter 9  

Enantiotopic discrimination and director organization in the 

NTB phase* 

 

 

 

 

 

9.1 Introduction  

The odd liquid crystal dimer 1″,7″-bis(4-cyanobiphenyl-4′-yl)heptane (CB7CB), whose 

structure is shown in Figure 9.1(a), was the first compound for which a twist-bend 

nematic phase (NTB) was experimentally identified, by Cestari et al. [1]. The NTB phase 

structure has been described in Chapter 2: it is characterized by a heliconical director 

which precesses in space about an axis with conical angle θ0 and helical pitch p. Both 

right- and left- handed helicity are possible, with equal probability (Figure 9.1(c))[2]. 

                 

Figure 9.1. (a) Molecular structure and phase sequence of CB7CB: I=Isotropic, N=Nematic, NTB=Twist-

Bend Nematic. (b) Molecular structure of 8CB-d2. The label of the two prochiral deuterons is shown. (c) 

Scheme of the director organization in the NTB phase: Z is the helix axis, n is the local director, p is the 

helical pitch and θ0 is the conical angle. B0 is the static magnetic field in the NMR spectrometer. 

                                                 
* This Chapter is adapted from: C. Greco, G. R. Luckhurst and A. Ferrarini, Phys. Chem. Chem. Phys., 

2013, 15, 14961-14965.  © 2013 The PCCP Owner Society.  
 

(a) 

(b) 

(c) 
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 At the time when the experiments were done, the identity of the second nematic phase  

 (NX) formed by CB7CB and other odd dimers with similar structure [3,4] was 

completely unknown. Of particular importance for the phase identification were the 

results provided by 2H-NMR spectroscopy. Experiments were conducted either on 

deuterated CB7CB-d4 samples [1] or using deuterated probes, such as 4-octyl-4′-

cyanobiphenyl (8CB-d2, shown in Figure 9.1(b)), dissolved in the CB7CB host [5]. The 

loss of equivalence of prochiral deuterons in the NX phase unequivocally demonstrated 

the chirality of the phase. The formation of a chiral phase from achiral molecules is an 

intriguing result: inspired by earlier theoretical predictions [2], the authors interpreted it 

as a sign of an NTB organization†.  

In order to test this interpretation and to get further insight into the director 

organization, we have developed a molecular model for the long-range orientational 

order in the NTB phase. A model suitable for this purpose must be able to account for the 

coupling between the molecular structure and the modulated twist-bend environment. In 

addition, a high resolution molecular level description is needed for the prediction of 

NMR observables. We have calculated the quadrupolar splittings of the deuterated 

probe 8CB-d2 as a function of the structural parameters (conical angle and pitch) that 

characterize the twist-bend modulation. Combining our prediction with the 

experimental data [5]  we characterized the structure of the NTB phase of CB7CB. The 

origin of the enantiotopic discrimination between prochiral sites has also been 

examined, in relation to the molecular and environmental chirality.    

In Section 9.2 the 2H-NMR experimental findings will be summarized. The molecular 

model will be described in Section 9.3. The results obtained will be presented and 

discussed in Section 9.4.  

    

9.2 2H-NMR: experimental findings 

As stated in Chapter 1, the 2H-NMR spectrum of a deuterated molecule in an 

orientationally ordered environment is dominated by the quadrupolar interaction 

between the electric quadrupole moment of the nucleus and the electric-field-gradient 

[6,7]. Because of the quadrupolar interaction, deuterons give rise to a doublet of signals 

                                                 
† Hereafter the NX phase will be always referred to as an NTB phase.  
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in the NMR spectrum (Figure 9.2). The separation between the two components of the 

doublet is called the quadrupolar splitting ∆ν and its magnitude depends on the 

orientation of the carbon-deuterium (C−D) bond with respect to the direction of the 

external magnetic field. If the molecular motions are fast on the time scale of the NMR 

experiment and if the director is homogenously oriented with respect to the magnetic 

field, narrow spectral lines are observed, with a quadrupolar splitting ∆ν  given by [7,8]: 

CD CD

3
2

q Sν∆ =   . (9.1) 

Here qCD is the component, along the C−D bond, of the deuterium quadrupolar coupling 

tensor (assumed to be axially symmetric) and SCD is the order parameter of the C−D 

bond with respect to the direction of the magnetic field‡:  

2
CD CD

3 1
cos

2 2
S β= −  ,  (9.2) 

where βCD is the angle between the C−D bond and the magnetic field and the angular 

brackets denotes an orientational average. In principle, for non-uniform systems (such 

as the NTB phase), time-scale considerations and, if appropriate, averaging should be 

extended also to the positional variables. However, this is not needed for a periodic 

twist-bend modulation, since in this case, because of the helical symmetry, molecular 

translation along the helix axis has the same effect as rotation with respect to the local 

director. If a molecule contains more than one deuteron, a doublet is obtained for each 

non-equivalent site, where the equivalence is determined by the molecular and phase 

symmetries [9]. 

 

Figure 9.2. 2H-NMR spectrum of a molecule containing a single deuterium site. The quadrupolar splitting 

∆ν depends on βCD, the angle between the direction of the external magnetic field B0 and C−D bond.  
 
                                                 
‡ Order parameters have been defined in Chapter 1.  
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Figure 9.3(a)-(b) shows the experimental 2H-NMR spectrum of the achiral deuterated 

probe 8CB-d2 dissolved in CB7CB, at two different temperatures above and below the 

NTB-N phase transition [5].  

 

                     

Figure 9.3. 2H-NMR spectrum of 8CB-d2 in the CB7CB host: (a) N phase, (b) NTB phase. (c) 

Temperature dependence of the quadrupolar spittings. Data in the N phase are given as �. Splittings in 

the NTB phase are indicated as � and �, and their average as �. The dashed vertical line indicates the 

NTB-N phase transition. Adapted with permission from [5]. Copyright 2012 American Chemical Society.   
 

In the N phase a single doublet is observed, consistent with the Cs symmetry of the 

probe and the D∞h symmetry of the phase. On the contrary two doublets with different 

quadrupolar splitting are present in the NTB phase, indicating that the deuterons have 

lost their equivalence: in Ref. [5] this was attributed to a change in the phase symmetry 

from D∞h to D∞. The temperature dependence of the quadrupolar splittings in the N and 

NTB is shown in Figure 9.3(c). In the N phase ∆ν increases with decreasing temperature, 

as a result of the increase in the degree of orientational order. In the NTB phase a striking 

temperature dependence is observed:  

(i) one quadrupolar splitting increases with decreasing temperature, while the other 

decreases: the splitting difference , ∆(∆ν) = ∆νB−∆νA, increases from about 3 kHz at the 

NTB–N transition to about 26 kHz at 74 K below the nematic–isotropic transition. These 

is a very large difference in comparison to those measured in common chiral nematic 

solvents [10].    

(ii) The average value ( ) 2A Bν ν ν∆ = ∆ + ∆ , is nearly independent of temperature, 

being approximately equal to 45 kHz. The jump in the splitting at the NTB-N transition 

(b) 

(a) 

N         NTB 

(c) 
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is in keeping with the first-order character of this transition [1,5].  

Analogous features are exhibited by the 2H-NMR spectra of CB7CB-d4 [1].  

 

9.3 Theoretical and computational methods 

Our model for the orientational order in the NTB phase is based on an extension of the 

the Surface Interaction (SI) model [11], which was originally developed for the 

conventional N phase. The SI model has been described in Chapter 5; here only the 

aspects relevant to the extension proposed here are presented.  

The starting point is the orienting molecular field potential, Eq. 5.1. This expression is 

especially suitable for predicting the quadrupolar splittings in the NTB phase, because it 

couples the specific features of a given molecular structure (through the molecular 

surface) with the local phase organization (through the positional dependence of the 

director). In a laboratory frame with the Z axis parallel to the helix axis of the NTB 

phase, the components of the director n are expressed as follows: 

( )0 0 0sin cos ,sin sin ,cosθ φ θ φ θ=n     , (9.3) 

where θ0 is the conical angle and φ is the azimuthal angle, defined as 2 Z pφ π= , with p 

being the helical pitch (p > 0 for a right-handed helix and p < 0 for a left-handed helix). 

For θ0 = 0° the conventional nematic and for θ0 = 90° the chiral nematic director 

organizations are recovered. If a molecule has a finite number of rapidly interconverting 

conformers (on the NMR timescale), the SCD order parameter in Eq. (9.2) is defined by 

the orientational-conformational average: 

2
CD CD

3 1
cos

2 2JJ J
S w β = − 

 
∑    , (9.4)

 

where the angular bracket denotes the orientational average for the Jth conformer and 

wJ  is the statistical weight of this conformer:  

[ ]
[ ]

B

B

exp

exp

J J
J

M M
M

V k T Q
w

V k T Q

−
=

−∑
. (9.5)
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The probability wJ  is determined by both JV , the torsional energy of the conformer in 

the isotropic phase, and or
JU , the potential of mean torque in the liquid crystalline 

environment, which enters Eq. (9.5) through the orientational partition function QJ (see 

Eq. 5.3 of Chapter 5). The SCD order parameters in Eq. (9.4) are defined with respect to 

the direction of the external magnetic field B0: this is parallel to the director n in the N 

phase and to the helix axis in the NTB phase [5]. Therefore the partition function QJ  and 

the average 2
CDcos

J
β  were calculated by integration over the angles { }, ,α β γΩ =

 

that define the molecular orientation in the laboratory frame with its Z axis parallel to B0 

(see Figure 9.4(a)). The quadrupolar splittings for the C–DA and C–DB bonds were 

finally obtained from the corresponding order parameters according to Eq. (9.1), 

assuming a value of the coupling constant qCD=168kHz. 

                          

Figure 9.4. (a) Reference frames and the transformations between them. (b) Frame attached to the 

prochiral fragment. 
 

Twenty-six conformers of 8CB were considered in the calculations: they are listed in 

Table 9.1. These were selected based on the torsional potentials for the various dihedral 

angles that define the conformational freedom of 8CB (see Figure 9.5 ). Two equivalent 

configuration (χ0 ∼ ±35°) were assumed for the biphenyl twist angle [12], together with 

a single state of the Car-CH2 bond (χ1 = 90°) [13].  Each bond in the alkyl chain (χ2 - χ7) 

has three minima, corresponding to the trans (t), gauche+ (g+) and gauche– (g−) states: 

we considered only conformers having no more than one gauche state in the alkyl chain. 

The energy difference between the trans and gauche states was evaluated by quantum 

mechanical calculations, at the DFT/M06-2X/6-31+G** level of theory [14]§. For the 

                                                 
§ Torsional potentials calculated in this thesis can be found in Appendix A.  
 

(b) (a) 
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dihedral angle χ2, the value ∆V2 = -1.1 kJ/mol was obtained (Figure A.3(e)), in 

agreement with the literature [15]. For all the other chain dihedrals ∆Vi = 2.2 kJ/mol was 

found (Figure A.1), a value in agreement with the results of high-level ab initio 

calculations [16]. The conformational energy of the each conformer was obtained as the 

sum of these contributions.  

 

Figure 9.5. Molecular structure of 8CB-d2 with labelling of the two prochiral deuterons and of the 

dihedral angles (the rotating dihedrals are indicated by arrows). 
 

n. Conformer n.  Conformer n. Conformer 
1 Mtttttt 10 Mtg-tttt 19 Mttttg+t 
2 Ptttttt 11 Mttg+ttt 20 Pttttg-t 

3 Mg+ttttt 12 Pttg-ttt 21 Pttttg+t 

4 Pg-ttttt 13 Pttg+ttt 22 Mttttg-t 

5 Pg+ttttt 14 Mttg-ttt 23 Mtttttg+ 

6 Mg-ttttt 15 Mtttg+tt 24 Ptttttg- 

7 Mtg+tttt 16 Ptttg-tt 25 Ptttttg+ 

8 Ptg-tttt 17 Ptttg+tt 26 Mtttttg- 

9 Ptg+tttt 18 Mtttg-tt   

 
Table 9.1. Conformers of 8CB considered in our calculations. Conformers are labeled by a six letter 

code: the first letter indicates the state of biphenyl (P and M for right- and left-handed twist, respectively) 

and the subsequent letters (tttttt, g+ttttt, etc.) refer to the state of the χ2 - χ7 dihedrals . 
 

9.4 Results and Discussion 

The quadrupolar splittings were calculated as a function of the orienting strength ε and 

of the conical angle θ0 and helical pitch p that characterize the director modulation in 

the NTB phase. In the N phase (θ0= 0°, p →∞) the splittings depend only on the 

orienting strength and increase with it. The open symbols in Figure 9.6(c) show the ∆ν  

values corresponding to the experimental range in the N phase as a function of ε; the 

largest experimental splitting, max,Nν∆  ∼ 42 kHz, was obtained for max,Nε ∼ 0.023 Å-2. In 

the NTB phase the quadrupolar splittings necessarily depend on the conical angle, θ0, 
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and the helical pitch, p. As explained by Beguin et al. [5], the SCD order parameters for a 

pair of prochiral deuterons related by a molecular mirror plane can be expressed as: 

2 2
CD = cos sin sin

2 2aa cc acS S S S
ψ ψ ψ± + ±   , (9.6) 

where ψ is the angle between the C–D bonds and the signs (+ and −) refer to each of the 

two enantiotopic sites. Sij are elements of the local Saupe ordering matrix [17] (see 

Chapter 1) expressed in a reference frame (a,b,c), with c perpendicular to the molecular 

symmetry plane and a parallel to the bisector of the angle between the C–D bonds 

(Figure 9.4(b)). In the achiral nematic phase c is a principal axis of the Saupe matrix: 

consequently 0acS =  and the two quadrupolar splittings are identical. However, the two 

splittings can become different in a chiral environment in which 0acS ≠ . Eq. (9.6) 

indicates that the quadrupolar splittings in the helical NTB phase can be conveniently 

analysed in terms of their average value, ν∆ , and their difference, ( )ν∆ ∆ . The latter is 

a signature of the chirality of the environment and is thus directly related to the helical 

pitch. The average value ν∆  is determined only by the diagonal elements of the Saupe 

matrix, Saa and Scc : these measure the degree of alignment of the a and c molecular axes 

to the magnetic field and, for given values of ε and θ0, are expected to be affected only 

slightly by the helical distortion of the director. Figure 9.6(a), shows, for a range of 

orienting strengths, the value of the conical angle *
0θ  that, according to our calculations, 

yields an average splitting equal to the experimental value in the NTB phase, 45ν∆ =  

kHz. Comparison of the results obtained for p = 50 Å and 500 Å shows that, as 

expected, the helical pitch has only a small effect. We can see that the conical angle 

increases with the orienting strength, reaching a value of about 35°, which remains 

nearly constant at high ε values. Figure 9.6(b) shows the calculated splitting differences, 

( )ν∆ ∆ , plotted as a function of the parameters p and ε. Calculations were performed 

assuming for each (p,ε) pair the conical angle *0θ  that yields ν∆ of 45 kHz (Figure 

9.6(a)). Pitch values ranging from 50 to 500 Å and orienting strength values from ε = 

0.0325 Å-2 to 0.075 Å-2 were assumed, suitable to cover the range of measured splittings 
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Figure 9.6. (a) The predicted values of the conical angle *
0θ  that yield a mean quadrupolar splitting ν∆

of 45 kHz, as a function of the orienting strength ε. The results obtained for two significantly different 

values of the helical pitch p are shown. (b) Difference in the quadrupolar splittings, ( )ν∆ ∆ , calculated in 

the NTB phase, as a function of the helical pitch, p, and of the orienting strength, ε. The color map 

identifies regions of different ( )ν∆ ∆ values with 3 kHz resolution, with black lines highlighting the 

boundaries between the regions. (c) Calculated quadrupolar splittings in the N phase (open symbols), and 

in the NTB phase along a path of constant pitch p = 50 Å (closed symbols). The jump in ε appearing in the 

plot corresponds to the discontinuity in the degree of order at the NTB–N transition. 
 

in the NTB phase, from ( ) TBmin,Nν∆ ∆ ∼ 3 kHz found at the experimental NTB–N 

transition to ( ) TBmax,Nν∆ ∆ ∼ 26 kHz at about 60°C below this transition. The lower 

bound of pitch values is approximately twice as large as the length of a CB7CB 

molecule. There are several (p,ε) pairs that give a particular quadrupolar splitting 

difference; to guide the eye, lines of constant ( )ν∆ ∆  are shown the plot. Every path that 

starts at a point on the lowest boundary line (where ( )ν∆ ∆ =3 kHz) and ends at the point 

where ( )ν∆ ∆ = 26 kHz (i.e. p = 50 Å and ε = 0.075 Å-2) represents, in principle, a 

possible evolution of the pitch and of the conical angle in the NTB phase upon cooling. 

At the present stage of the model’s development we are not able to identify the real 

(c) 

(a) (b) 
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path. However our results clearly show that a very small pitch, of the order of a few 

molecular length (50-100 Å) is needed to give rise to the large difference in quadrupolar 

splitting measured experimentally. As an example, the closed symbols in Figure 9.6(c) 

show the quadrupolar splittings calculated in the NTB phase along the path of constant 

pitch p = 50 Å. At the NTB–N transition both the pitch and the conical angle undergo a 

discontinuous change (from p→∞ to p = 50 Å and from *
0θ  = 0° to *

0θ  ∼ 22.5°), and 

upon further cooling the conical angle increases continuously. These results compare 

fairly well with various experimental evidences relative to the structure of NTB phase of 

CB7CB. From measurements of an electronic effect, a helical pitch of 70 Å and a 

conical angle of about 11° at the NTB–N transition were estimated [18]. Recent optical-

birefringence experiments revealed that the conical angle increases significantly deep 

into the twist-bend nematic phase [19]. FFTEM allowed direct observation of the 

nanoscale periodicity, giving a pitch of about 80 Å and weakly temperature dependent 

[20].  

Unlike the NMR experiments, we can distinguish which quadrupolar splitting 

corresponds to which deuteron. Here calculations were performed for a director forming 

a right-handed helix; for a left-handed helix the splittings for the two prochiral sites 

would be exchanged. Due to the impossibility of assigning the prochiral nuclei in the 
2H-NMR spectra, the analysis of experimental data for 8CB-d2 does not allow us to 

distinguish between a homochiral organization and the coexistence of oppositely-

handed domains in the NTB phase. However, recent 2H-NMR experiments using a 

deuterated chiral dopant dissolved in CB7CB together with a non-racemic mixture of 

the protonated dopant have confirmed the coexistence of chiral domains [21]. 

A common question in this context is whether the discrimination between prochiral sites 

is driven by the chirality of single conformers. Flexible molecules like 8CB, though 

being achiral, possess chiral conformers. However, these are present as enantiomorphic 

pairs, so a sample can be viewed as a racemic mixture. Net chirality could emerge from 

an imbalance in the population of enantiomorphic pairs due to a chiral environment. 

This has been a subject of long-standing interest and environment-induced 

deracemization has been invoked in different cases in liquid crystals [22-26].  Figure 9.7 

shows the conformational distribution, calculated using Eq. (9.5), in the isotropic phase, 

in the nematic phase close to the NTB-N transition (ε = 0.023 Å-2) and in the NTB phase (  
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Figure 9.7. Conformer distribution calculated for 8CB in the isotropic (ε =0, bars), in the nematic (ε = 

0.023 Å-2, black squares) and in the NTB phases (ε = 0.075 Å-2, red  circles). J is the conformer index, as  

reported in Table 9.1.  
 

*
0θ =35°, p = 50 Å, ε = 0.075Å-2). A temperature of 376 K, comparable to the 

experimental NTB-N transition temperature of the CB7CB liquid crystal host, was 

assumed in the Boltzmann exponent. The conformer probability in the isotropic phase is 

determined solely by the torsional potential, thus it reflects the trans/gauche energy 

difference. On the basis of the quantum mechanical data reported in Section 9.3, the 

most stable, and thus most probable, conformers are those having a gauche state in the 

first CH2-CH2 bond of the alkyl chain. The next most probable conformers are those 

with an all-trans chain; finally there are the conformers having a gauche state in a CH2-

CH2 bond different from the first one, which all have the same probability. In the liquid 

crystal phases the statistical weight of conformers also depends on how well they are 

accommodated in the ordered environment. All-trans conformers, which are the most 

elongated, become the most stable, and some difference is introduced between 

conformers having a gauche in even (χ2, χ4, χ6) or odd (χ3, χ5, χ7) positions along the 

chain, the first less elongated than the last. The changes observed on moving from the 

isotropic to the N phase are magnified when the NTB phase is considered, but this is only 

due to the higher ordering (larger ε-value in the calculations). There is a further effect 

that is peculiar to the chiral NTB phase, that is the different probability of enantiomeric 

conformers (such as Mtttttt and Ptttttt in Table 9.1 ). According to our calculations, this 

imbalance is very small for 8CB, clearly insufficient to yield the large splitting 

difference, ( )ν∆ ∆ , observed experimentally. The enantiotopic discrimination originates 

from the interplay of molecular and local phase symmetry and does not necessarily 
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require molecular chirality [9]. To test the effect of the chiral environment alone, model 

calculations were carried out for a single, fictitious achiral conformers of 8CB-d2, 

having an all-trans chain and perpendicular rings in the biphenyl moiety; this structure 

has Cs point symmetry. The result are reported in Figure 9.8. For each ε-value, the 

quadrupolar splittings were obtained assuming the same p and θ0 values used for the 

calculations shown in Figure 9.6(c)** . In spite of the achirality of the fictious conformer, 

the predicted splitting differences are even larger than those reported in Figure 9.6(c), 

demonstrating the strong effect of the chiral NTB environment, resulting from an 

extremely small helical pitch.  

 

 
Figure 9.8. Quadrupolar splittings calculated for the achiral conformation of 8CB-d2 shown on the right, 
in the nematic phase (open symbols) and in the NTB phase along a path of constant helical pitch, p=50 Å 
(closed symbols).  
 

9.5 Conclusions 

In this work we have provided a molecular interpretation of the striking features of the 
2H-NMR spectra of 8CB-d2 dissolved in the low-temperature nematic phase of the 

liquid crystal dimer CB7CB. This has been achieved using a model that combines an 

atomic-level description of the probe with a mean field description of orientational 

order. Our results support a NTB organization for the low temperature phase, as 

originally proposed in Ref. [1]. From the comparison of calculated and experimental  

NMR data we have obtained quantitative estimates for the characteristic parameters, 

helical pitch p and conical angleθ0, of the NTB phase formed by CB7CB: our predictions 

have been confirmed by a number of experimental evidences [18-20].  

                                                 
**  The results reported in Figure 9.8 are intended only to highlight the role of the molecular and 
environment chirality and should not be compared with the experimental data. 
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We have demonstrated that the enantiotopic discrimination observed in the 2H-NMR 

spectra of 8CB-d2 is determined by the interplay of molecular geometry and phase 

symmetry, and cannot be ascribed to the chirality of some conformers or to the 

population imbalance between enantiomorphic pairs of conformers, induced by the 

chiral environment. The approach we have proposed here allows us to assign the 

prochiral sites in deuterium spectra. Enantiomer assignment by NMR spectroscopy is a 

long-standing challenge [27]: it is certainly of value to explore whether the analysis of 
2H-NMR of chiral solutes in the NTB phase [21] along the lines outlined here can be 

used for this purpose. 
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Appendix A  

Torsional Potentials from quantum mechanical calculations 

 

 

 

 

 

Torsional potentials for the compounds investigated in this thesis were taken from the 

literature or computed by quantum mechanical DFT calculations, at various levels of 

theory [1]. The latter are reported below, grouped according to the chemical nature of 

the model compound to which they refer. All profiles were obtained by relaxed scan: at 

each scan point, all internal coordinates different from the dihedral of interest were 

optimized. In the plots below, symbols represent the quantum mechanical data and lines 

correspond to fitting of these data according to the expression reported in Eq. 5.20 of 

Chapter 5.  

 

Alkyl chains 

 

Figure A.1 Torsional potential (squares, DFT/M06-2X/6-31+G**) and fitting curve (line) for the central 

bond of hexane. The rotating dihedral is indicated by an arrow. The energy difference between gauche 

and trans states is ∆Vgt = +2.2 kJmol-1.  
 

DFT/M06-2X/6-31+G** (a) 
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Alkenyl chains 

                 

Figure A.2 Torsional potentials (squares, DFT/M06-2X/6-31+G**) and fitting curves (lines) for (b) cis-

2-hexene, (c) cis-2-heptene. The rotating dihedrals are indicated by arrows. During the scan of χ2 the 

dihedral angle χ1 takes a value of ∼ +105°; the energy difference between the gauche− and trans states is 

∆Vg−t  ∼ −1.5 kJmol-1, and that between the gauche+ and trans states is ∆Vg+t  ∼ +1.2 kJmol-1.   
 

Alkylbenzenes 

            

Figure A.3. Torsional potentials (squares, DFT/M06-2X/6-31+G**) and fitting curve (lines) for (d) 

propylbenzene, (e) butylbenzene. The rotating dihedrals are indicated by arrows. For χ2 the energy 

difference between the gauche and trans states is ∆Vgt ∼ −1.1 kJmol-1. 
 

 

 

 

 

DFT/M06-2X/6-31+G** (b) (c) DFT/M06-2X/6-31+G** 

DFT/M06-2X/6-31+G** (d) 
DFT/M06-2X/6-31+G** (e) 
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Phenyl esters 

                             

 

Figure A.4. Torsional potentials (squares, DFT/B3LYP/6-31G** for χ1 and DFT/M06-2X/6-31+G** for 

χ2 and χ3) and fitting curves (lines) for (f) phenyl propanoate, (g) phenyl butanoate, (h) phenyl 

pentanoate. The rotating dihedrals are indicated by arrows and by atom numbering when needed. For χ3 

the energy difference between the gauche and trans states is ∆Vgt ∼ −0.8 kJmol-1.  
 
 
Phenyl Benzoates 

                              

Figure A.5. Torsional potentials (squares, DFT/B3LYP/6-31+G* for χ1 and DFT/M06-2X/6-31+G** for 

χ2) and fitting curves (lines) for 4-methylphenyl 4-methylbenzoate.The rotating dihedrals are indicated by 

arrows. 

DFT/B3LYP/6-31G** (f) 
DFT/M06-2X/6-31+G** (g) 

DFT/M06-2X/6-31+G** 
(h) 

DFT/B3LYP/6-31+G* (i) DFT/M06-2X/6-31+G** 
(j) 
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Phenyl Fluorobenzoates 

         

      

Figure A.6. Torsional potentials (squares, DFT/B3LYP/6-31+G*) and fitting curves (lines) for (k,l) 4-

methylphenyl 2-fluoro-4-methylbenzoate, (m) phenyl 2,3-difluoro-4-ethoxybenzoate. The rotating 

dihedrals are indicated by arrows and by atom numbering when needed. During the torsional scan of χ2 

and χ3, the dihedral angle χ1 takes  a value of ∼ 0°.  

 

 

Benzilideneanilines 

  

Figure A.7. Torsional potentials (squares, DFT/B3LYP/6-31+G*) and fitting curve (line) for a derivative 

of benzilideneaniline. The rotating dihedral is indicated by an arrow. 

DFT/B3LYP/6-31+G* 
(k) 

DFT/B3LYP/6-31+G* (l) 

DFT/B3LYP/6-31+G* (m) 

DFT/B3LYP/6-31+G* (n) 
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Azobenzenes 

 

Figure A.8. Torsional potentials (squares, DFT/B3LYP/6-31+G*) and fitting curve (line) for a derivative 

of azobenzene. The rotating dihedral is indicated by an arrow. Quantum mechanical data were kindly 

provided by Dr. A. Marini, University of Pisa.  
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Conclusions  

 

In this thesis the behaviour of liquid crystals of bent-shaped molecules has been 

investigated using theoretical and computational methods. Two kinds of problems have 

been addressed: (i) phase behaviour, with focus on the recently discovered twist-bend 

nematic (NTB) phase; (ii) material properties, with focus on elastic and flexoelectric 

properties in the nematic (N) phase.  

 

(i) Using different theoretical and computational methods we could obtain major 

insights into the molecular origin and the structure of the NTB phase, addressing the 

validity of various controversial hypotheses proposed in the literature.  

To investigate the molecular origin of the NTB phase, we developed a generalized 

Maier–Saupe theory for apolar V-shaped particles (Chapter 3) and performed some 

preliminary Molecular Dynamics (MD) simulations of rigid, achiral, apolar, purely 

repulsive bent-shaped particles (Chapter 4). The existence of a nematic (N) to NTB 

phase transition is clearly evidenced by the generalized Maier-Saupe model. The results 

of the MD simulations are also in line with the formation of a twist-bend nematic 

organization. These findings show that the key molecular feature at the origin of the NTB 

phase is the bent molecular shape, and that flexoelectric coupling and conformational 

chirality are not essential.   

Using the generalized Maier-Saupe model, we examined particles with different 

molecular bend angle, and showed that the phase behaviour is extremely sensitive to 

this molecular parameter, with the NTB-N phase transition occurring only for a limited 

range of bend angle values. This result allowed us to elucidate the experimentally 

observed sensitivity of the NTB phase formation to changes in the molecular structure. 

The model also allowed us to make some general predictions about the elastic behaviour 

and to clarify the relationship between the formation of the NTB phase and the elastic 

properties of the nematic phase, showing that the N-NTB transition is accompanied by 

softening of the bend elastic mode in the N phase. 

An interesting result of the MD simulations is the formation of a NTB organization in a 

system of “hard” particles. Experimentally the twist-bend phase has been observed in 
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thermotropic liquid crystals: it would be of interest to check whether bent-shaped 

colloids can also exhibit this organization.  

The generalized Maier-Saupe model also provided important information on the 

characteristic structural parameters (pitch p and conical angle θ0) of the NTB phase and 

their temperature dependence. Remarkably, a pitch of the order of just a few molecular 

lengths was predicted, in agreement with the experimental evidences.  

Quantitative estimates of the pitch and conical angle starting from the chemical 

structure were obtained from the analysis of the experimental 2H-NMR splittings, using 

a model that combines an atomistic representation of molecules with a molecular field 

description of the orientational distribution in the NTB phase (Chapter 9). In this study 

we also discussed the origin of the strong enantiotopic discrimination observed in the 

NTB phase. Our results indicate that this is not related to presence of chiral molecular 

conformations, but it is a direct consequence of the high chirality of the NTB 

environment, resulting from its extremely small pitch.  

 

(ii ) An Integrated Methodology was set up (by combining DFT calculations, Monte 

Carlo conformational sampling, and a molecular field model with atomistic resolution, 

Chapter 5) to predict a variety of properties of nematic liquid crystals starting from the 

molecular level. In particular we focussed on the elastic and flexoelectric properties of 

bent-core compounds and liquid crystals dimers. Collaboration with experimental 

groups allowed us to validate the methodology on a large number of systems with 

different molecular structures. Very good agreement was obtained between our 

predictions and the experimental findings, showing the sensitivity of our methodology 

to details of the chemical structure and thus its usefulness as a tool for materials design 

for applications. The variety of chemical structures investigated allowed us to build a 

library of molecular parameters (geometry, torsional potential, atomic charges) for the 

most common mesogenic groups, which can be reused and incremented in the future. 

Modelling allowed us to identify the molecular origin of the small bend elastic 

constant K33 exhibited by nematics of bent-shaped molecules and also to explain 

apparent exceptions to this behaviour.  

We showed that the main molecular parameter governing the elastic behaviour of bent-

core compounds is the core bend angle (Chapters 6 and 7). Low values of K33 and 
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weakly dependent on the order parameter are obtained for sufficiently small values of 

the bend angle, such as in the case oxadiazole derivatives; when the bend angle is 

larger, as in thiadiazole derivatives, the conventional behaviour of rod-like liquid 

crystals (high K33, increasing with increasing order) is recovered.  

The molecular curvature was found to be crucial also for the elastic properties of liquid 

crystals dimers (Chapter 8). In these systems, definition of the bend angle, taken as the 

angle between the terminal mesogenic units, is not as straightforward as in bent-core 

compounds: because of the conformational flexibility of the spacer, the bend angle is 

characterized by a distribution of values. We showed that the bend angle distribution 

exhibits a subtle dependence on the chemical structure, being in particular sensitive to 

the nature of the linking group connecting the mesogenic units and the spacer. Even 

small changes in the bend angle distribution were found to have a dramatic effect on the 

bend elastic constants K33: according to the values and trend with the order parameter of 

K33, three kinds of elastic behaviours could be distinguished. In Type I behaviour, K33 is 

low and decreases with increasing order; in Type II behaviour, K33 is low and almost 

independent of order; in Type III behaviour, K33 is high and increases with increasing 

order, as in conventional rod-like nematics. Finally, combining these results with our 

generalized Maier-Saupe model for the NTB-N phase transition, we could discuss the 

influence of the linking group on the occurrence of the NTB phase in liquid crystals 

dimers.   

The results presented here for the flexoelectric properties are especially important: 

because of the experimental difficulties and the limits of simple models developed for 

rigid, idealized particles, the molecular determinants of the flexoelectric effect in liquid 

crystals still remain poorly understood. Our methodology allowed us to obtain 

quantitative estimates of the flexoelectric coefficients, and to distinguish their dipolar 

and contribution, which proved useful to connect the flexoelectric behaviour to the 

molecular structure. In this way we could identify some general features in the 

flexoelectric properties of bent-core compounds, offering new insights into the origin of 

the experimentally observed behaviour and allowing a molecular-based understanding 

of flexolectricity, which is very important for exploitation of this phenomenon.  

  

Based on the results obtained in this thesis, we envisage the following developments.  
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First it would be important to extend the Molecular Dynamics simulations performed 

here to particles with a different bent shape (such as particles with different bend angles, 

or with conformationally flexibility), to further characterize the effect of the molecular 

features on the phase organization. A topic of major interest which could be investigated 

by MD simulations is the effect of the bent shape on the dynamical properties.  

The second perspective regards the investigation of modulated liquid crystal phases by 

molecular field models. In particular the work presented here for the twist-bend 

organization could be extended to explore the stability and structure of phases with 2D 

or 3D director modulations. This would be particularly interesting in view of the 

difficulties of molecular simulations in handling non-uniform systems.  

For what regards the material properties, extension of the modelling activity to other 

systems, combined with new experimental measurements, could be helpful to further 

characterize the behaviour of bent-shaped mesogens, in particular with respect to their 

flexoelectric properties. 
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